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Asbtract

Chronic kidney disease and kidney failure are a major public health issue. In the context of a con-
stantly increasing number of cases, kidney transplantation is considered an optimal management
strategy. It has the advantage of increasing the chances of survival together with a higher quality
of life and a reduced cost.

For kidneys intended for transplantation, it is essential to quickly determine the functional
status and the optimal method of preservation, both of which remain open problems at this time.
Surgeons may use suboptimal kidneys or exclude potentially better transplants. More generally,
the choice of imaging techniques to analyze the kidney in different clinical tasks, including trans-
plantation, is a research subject in its own right. Magnetic resonance imaging (MRI), in particular,
has great potential as a non-invasive method for retrieving structural and functional information.
However, the quantity and complexity of the data it generates remains an important obstacle to
its full exploitation.

Machine learning in general, and deep learning in particular, are widely studied scientific
items that can be found in many applications and research fields. Learning-based methods allow
a computer to build complex concepts from simpler ones. Recent advances in medical imaging and
machine learning have prompted many researchers to pursue the idea of augmented anatomical
and functional imaging to aid in diagnosis. By augmented imaging, we mean artificial intelligence
(AI) models designed to assist radiologists and allow them to make an optimal diagnosis.

Our PhD thesis work aims to improve the quality assessment of kidney grafts using MRI and
machine learning techniques. This work includes three applications belonging to two main tasks:
super-resolution and ultra-high field MRI synthesis for image quality improvement; and cross-
modality translation. Note that for practical reasons explained in the document, a significant part
of our work was carried out using human brain data.

In the first application, we develop a method based on self-supervised models to solve super-
resolution tasks on routine 3T MRI through learning on paired and unpaired data. The evaluation
of our results shows that the proposed methods can produce high resolution output from low
resolution input with low distortion. Furthermore, the explored solution overcomes the limitation
of existing methods requiring aligned sample pairs.

In the second part, we aim to synthesize ultra-high field (7 Tesla, or 7T) MRI data from 3T
volumes. The proposed model obtains convincing results on both objective and subjective criteria.
The final models can work stably on 3D MRI volumes, which is very promising.

In the last work, we focus on MRI cross-modality translation task. The models are designed to
generate high precision volumes among different modalities such as T1↔T2, T1↔T1c or T1↔T2-
Flair. Current work focuses on the translation of T1 MRI to its enhanced contrast version T1c, this
scenario presenting a very strong potential with respect to the precautionary principle with regard
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to gadolinium injections for obtaining T1c sequences. A comparative study between the methods
of the literature and our methods from previous work is presented. The results demonstrate that
our methods obtain a stable result on the research dataset and promising results on the practical
dataset. Moreover, experiments have shown that the results of the models are optimizable.
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Introduction

The introduction of this thesis manuscript starts with the motivations behind this Ph.D. project.
The joint laboratory I3M is presented, along with its research teams and objective. Next is the
introduction in terms of context and main challenges. Then, it will be thesis objective and the
overview of thesis structure.

Motivation

The work presented in this thesis is hosted by I3M Joint Laboratory - a collaboration between
Siemens Healthineers France, the XLIM Research Institute UMR CNRS 7252, and the Laboratory
of Mathematics and Applications (LMA) UMR CNRS 7348 from the University Poitiers. The I3M
laboratory is a consortium space for basic and applied research and publications.

In November 2019, the CHU Poitiers was equiped an ultra-high-field magnetic resonance imag-
ing (MRI) at 7 Tesla MAGNETOM Terra, which provides access to high resolution molecular and
metabolic imaging, making it possible to measure the structure and function of organs distinc-
tively. This imaging can give hope for significant progress in the in vivo study, in a non-invasive
way, of many pathologies, in their clinical management and the monitoring of their evolution, un-
der treatment, possibly after surgery, in real-time. The goal is to perpetuate its scientific research
by broadly investigating its benefits on several public health issues.

Teams in I3M laboratory are composed of DACTIM-MIS from the LMA and ICONES from the
ASALI axis from XLIM. Hosted at Center Hospital University of Poitiers (CHU), members will
thus have access to a high-field MRI platform for research and clinical use here. The DACTIM-MIS
team within the LMA is composed of CHU staff and mathematicians specializing in bio-statistical
and realistic models for modeling brain metabolism and tumor metabolism. ICONES team from
XLIM has internationally recognized expertise in multi-variate images, particularly textured ones,
using vector and bio-inspired approaches, and is developing complementary skills for machine
learning algorithms, particularly in the context of medical imaging. Teams have known and
worked together since 2012 as part of the MIRES federation. The collaboration is, therefore, quite
natural, with the CHU, within the I3M laboratory, whose objective is to implement innovative
Artificial Intelligence (AI) techniques for the processing and automatic analysis of multi-modality
images to aid in the diagnosis and therapeutic monitoring of pathologies:

1. Brain (neuro-oncology, psychiatry, studies of neurodegenerative diseases, research in cogni-
tive sciences, pharmacology with studies of the central diffusion of antibiotics by intracerebral
micro-dialysis)

2. Heart (accidents and cardiovascular diseases)
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3. Kidney (study of the graft before removal, follow-up of the graft in the transplant recipient)

Context and issue

Kidneys are vital organs that filtrate blood from waste and extra water caused by the normal
functioning of the human body. When the functions of the kidneys are not working correctly, the
latter is gradually poisoned by this waste, which is kidney failure. It is considered to be chronic
when the loss of function is progressive, and the lesions present in the kidneys have an irreversible
character. Following the French Renal Epidemiology and Information Network (REIN), it affects
more than 80,000 people treated for chronic end-stage renal failure, 2/3 being treated with dialysis
and 1/3 by transplantation. The number of affected patients increases by 2% each year. Moreover,
the number of people with kidney disease presenting no symptoms would be around 10% of the
French population, according to estimates current.

Chronic kidney disease (CKD) describes the gradual loss of renal function. It is a long-term
condition where the kidneys cannot work the way they should. CKD reaches end-stage renal
disease (ESRD), where renal dialysis or transplant is required.

From the clinical point of view, ESRD is the terminal of CKD which affects approximately
10,000 patients per year and requires replacement therapy; this number increases by around 4%
per year. This evolution of CKD represents a problem of significant public health, intimately
linked to arterial hypertension, diabetes and/or the syndrome metabolism, and cardiovascular
pathologies. At the social and economic level, CKD is associated with severe health, personal and
professional consequences, and very high costs [17].

In the context of the increasing cost of management of ESDR, reports of the High Authority
for Health and the Biomedicine Agency have modeled the possibilities of change in the trajec-
tory of patient care and assessed the consequences from clinical and economic aspects. Report
confirming that the development of kidney transplantation in all age groups is an efficient strat-
egy compared to all the strategies evaluated [26]. Patients who receive dialysis have an expected
remaining lifetime of 6.8 years, compared with 17.8 years for transplant recipients. In addition,
kidney transplantation is effective for medical and health care savings compared with dialysis by
approximately 100,000 euros per year from the second year. It also offers improved quality of
life [107]. Moreover, dialysis patients are known to experience accelerated atherosclerosis, and
there are several inflammatories and atherogenic factors due to the increased cardiovascular risk
proportional to the increase in serum creatinine, suggesting that renal failure correlates with, if
not causes, accelerated vascular and metabolic defects that predispose patients to cardiovascular
death. The better outcomes of patients with preemptive transplants and with a shorter time
on dialysis underscore the importance of early referral and evaluation for renal transplantation.
Patients with ESRD benefit from transplantation as early as possible to maximize their potential
for extended survival after transplantation.

The major challenge in organ transplantation is the preservation of grafts. Kidneys from ex-
tended criteria donors (ECD) and donations after circulatory death (DCD) donors are increasingly
used worldwide, providing good post-transplantation outcomes [197]. ECDs have risk factors for
poor function after transplantation, such as higher donor age, a history of hypertension, increased
serum creatinine, and death from a cerebrovascular accident. For a kidney intended for DCD
transplantation, the quality is usually linked to the ischemia-reperfusion injury (IRI), causing
dysfunction and/or loss of the graft [176, 204]. The extent of this damage is related to the situ-
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ation of the donor. The simplest method of dealing with the destructive cellular processes after
donor death has been to cool the kidneys. It slows down the metabolism but does not completely
stop it, leading to ongoing damage in cold-preserved organs, hence the critical importance of limit-
ing cold ischemic times. Assessment of graft quality in these marginal graft categories is complex,
and exact criteria predicting graft injury and function after transplantation are lacking [47].

Grafts lead more frequently to a delayed resumption of function, such as the delayed graft
function (DGF), or even to the loss of the organ and a return of the patient to dialysis. Hence,
surgeons usually use sub-optimal kidneys (reduced graft and even patient lifespan) or exclude
potentially better grafts. Consequently, high graft discard rates are reported for all types of
marginal renal grafts, even for those that might be appropriate for transplantation.

Before transplantation, the determination of the functional status is critical. Kidney function
has been commonly evaluated either by estimating the Glomerular Filtration Rate (GFR), which
is based on the blood serum creatinine level or by invasive biopsy. However, blood serum creatinine
level is a late indicator of renal impairment. Moreover, although the biopsy represents the gold-
standard method for assessing renal structure, it is still limited to its invasiveness and risk to the
patient (e.g., bleeding, pain), especially for CKD patients who are subjected to multiple biopsies.
Moreover, the optimal method of preserving the kidney remains an entire problem. If a visual
examination is essential, the criteria used to reach the right decision are still vague and challenging
to explain.

On the other hand, radiology was reported to help with follow-up renal diseases. Medical
images such as magnetic resonance imaging (MRI) and computed tomography (CT) play an in-
creasingly more critical role in assessing renal function. They have provided structural, functional,
and molecular information that can detect the alteration in renal tissue properties and function-
ality and help predict and diagnose renal function. The use of imaging techniques to analyze the
kidney in different clinical tasks, including that transplantation, is becoming potential research
topics. Before, ultrasound and CT were modalities of the first choice in renal imaging. Ardakani
et al. [7] proposed a pipeline for analyzing images from ultrasounds to monitor and evaluate pos-
sible complications in the follow-up of transplant patients by automating the assessment process
through statistical analysis of image textures. Studies in [164, 54] target the characterization of
renal masses by computed tomography to diagnose solid renal tumors. The work focuses on kidney
transplantation, especially the evaluation of the quality of a kidney before its transplantation. In
fact, there are few studies that have been proposed in this field. Fananapazir et al. [57] introduce
experiments to determine whether MRI could more confidently characterize indeterminate small
renal lesions (< 15 mm) previously seen on CT scans of potential renal donor patients and whether
such characterization could impact surgical management and donor candidate status.

Along with the development of medical imaging techniques, MRI becomes more popular in
clinical and research center. It provides a non-invasive assessment of body anatomy and physiology
for health and disease examination, while maintaining superior contrast resolution on soft tissues.
At this moment, MRI has mainly been used as a problem-solving technique. Currently, clinical
magnetic resonance examinations are mainly deployed at 1.5 and 3 Tesla magnetic fields. Ultra-
high field (UHF) MRI e.g. 7-Tesla (7T) or higher devices were recently introduced, allowing better
sensitivity of signal-to-noise ratio (SNR) and higher spatial resolution compared to 3-Tesla (3T) or
1.5T MRI [149]. Ultra-high field MRIs can be used to visualize physiological/pathophysiological
consequences and to resolve structures more precisely that would be difficult to detect at lower
field strengths. MRI with high quality is preferred in the clinical and research domains because it
can provide structural details critical for identifying and determining biomarkers through accurate

3



image analysis.

For the last two decades, machine learning has been coming into its own, with a growing
recognition that it can play a key role in a wide range of critical domains, such as computer
vision, natural language processing, data mining, and expert systems. Machine learning can be
defined as a set of algorithms that have the ability to learn and improve from experience without
being explicitly programmed for a specific task. Later, deep learning with neural networks was
applied to solve machine learning tasks with more advantages by introducing more straightforward
and meaningful representations. Deep learning enables the computer to build complex concepts
out of simpler concepts. The use of learning-based methods has been increasing rapidly in the
medical imaging field, including computer-aided diagnosis, radiomics, and medical image analysis.
Popular tasks of machine learning for in computer-aided diagnosis can be mentioned, such as
classification, segmentation, synthesis, etc. By performing quantitative analysis on conventional
medical images, machine learning in general and deep learning in particular hold the potential to
turn them into a fully-automated tool that can assist radiologists and clinicians in prognostic and
diagnostic.

Objective

Recent medical imaging and machine learning advantages inspired many innovative researchers to
use anatomical and functional imaging for diagnostic assistance. In this context, the requirements
for the development of a non-invasive assistant have appeared to allow practitioners to carry
out their diagnosis of the quality of a kidney intended for transplantation in optimal conditions.
Currently, the use of prediction models for kidney disease is still in its infancy, and further evidence
is needed to identify its relative value. AI models are not approved to replace radiologists medical
decision-making; instead, they can assist them in providing optimal diagnoses for their patients.

The primary objective of the thesis is to improve the assessment of renal grafts using medical
imaging techniques, especially MRI. With the support of the Siemens Healthineers MRI system
from I3M laboratory at CHU Poitiers, we expect to collect practical MRIs to implement the
research tasks.

In the scope of the project, the thesis mainly focuses on MRI instead of ultrasound or CT. The
work aims at supporting radiologist diagnosis on MRI by solving two missions: medical image
quality enhancement and cross-modality translation. For each task, we propose a specific method
to solve the problem and make a comparison with other baseline methods in order to evaluate
method performance.

In terms of MRI quality enhancement, the goal is to improve the quality of routine 3T MRI
by doing two main different tasks:

• Super-resolution (SR) is a topic that aims to reconstruct HR images from given LR images.
In the past decade, various super-resolution methods have been widely applied to medical
images to increase the spatial resolution of scans after acquisition has been performed. In
this thesis, SR is considered a tool to enhance the spatial resolution of routine MRI.

• MRI synthesis is based on a paradigm shift where a transformation model can learn to
regenerate images from a given input domain into another desired domain. Applications of
image synthesis in the field of MRI can range from cross-modality translation within single
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types (i.e. MRI T1↔ T2) or between different types of medical images (i.e. CT↔ MRI) to
field-strength conversion (i.e. 3T ↔7T) [219]. In this thesis, the topic of work is ultra-high
field MRI rendering, in which we try to produce realistic UHF MRI from routine MRI.

Each modality provides a unique view of intrinsic MR parameters for the cross-modality trans-
lation, but different factors limit the existence of complete multi-modality MR images. For ex-
ample, in brain MRI, T1-weighted images observe structures on different white and grey matters,
and contrast-enhanced T1 (T1c or T1-gado) can be used for assessment of the change of tumor
shape with its enhanced demarcation around the tumor and T2-weighted images are utilized for
locating tumors from cortical tissue. At the same time, contours of the lesion can be delineated
clearly on fluid-attenuated inversion recovery (Flair) images. Hence, integrating the strengths of
each modality can help explore rich underlying information of tissue that facilitate diagnosis and
treatment management. Moreover, deep neural networks provide a generic solution for producing
cross-modality images. Gadolinium-enhanced T1 MR imaging provides excellent delineation of
the renal structures and boundaries that increase the segmentation of the kidney from the sur-
rounding anatomical structure and the measurement of the renal and renal cyst volume. However,
gadolinium-containing contrast agents may increase the risk of a rare but serious disease called
nephrogenic systemic fibrosis in people with severe kidney failure. In this work, at this moment,
we first focus on multi-contrast cross-modality MRI translation, which aims to transform T1-gado
MRI from T1 MRI. It will be valuable research if we can produce realistic gadolinium-enhanced
T1 MRI without invasion.

However, the thesis encountered specific difficulties. First, The COVID-19 epidemic happened
at the beginning of the thesis process and became very serious in 2020-2021. It made it challenging
to access CHU due to the priority of COVID quarantine and isolation. Moreover, the UHF MRI
scanners have been set up since November 2019, and the parametric testing took time to complete,
while acquiring kidney MRIs is not the most priority for community benefits. Due to all that
reasons, the available resource for kidney MRIs necessary for research purposes was insufficient.
On the other hand, brain MRI resources are abundant and diverse, many available for the 3T
MRI scanner and some for the new 7T scanner.

Besides, the objective of the thesis is to improve the kidney assessment to support radiologists
making decisions by enhancing the quality of MRI in terms of spatial resolution, field strength,
and multi-contrast. With the advantage of superior contrast MRI on soft tissues, we believe that
improving the general quality of MRI can also help improve the quality of kidney MRI. Hence, we
decided to use brain MRI instead of kidney MRI to achieve the most optimized results.

Thesis overview

This manuscript is organized into three parts:

1. Basic medical imaging concepts and deep learning fundamentals (chapters 1, 2, and 3).

2. Model selection and implementation (chapters 4, 5, and 6).

3. Applications and Future work (chapters 7).

Chapter 1: Medical imaging for kidney disease diagnosis
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The first chapter of the thesis briefly introduces anatomy and function of kidney within the
context of CKD. Then magnetic resonance imaging comes as an optimal method for non-invasive
diagnosis. Additionally, the development of ultra-high field MRI and computer-aided MRI analysis
are also presented as the next step for medical image analysis.

Chapter 2: Learning-based for MRI synthesis

The second chapter firstly presents the fundamental knowledge of machine learning. Then,
concept and terminology of deep learning/deep neural networks are demonstrated, including neural
network components and short explanation of network training.

Chapter 3: Generative model

The third chapter focuses on generative models based on deep neural networks to learn the
representations of complex data. We start with autoencoders - primary generative models, then
extend to adversarial models and their variations.

Chapter 4: MRI Super-resolution

This chapter demonstrates MRI quality enhancement in terms of super-resolution. After ad-
dressing the current context and challenges in practice, we propose a method to solve the super-
resolution on either paired/unpaired MRI as the first phase of research. Details of the model
architecture, and training procedure, are presented, along with the study of its performance.

Chapter 5: Ultra-high field MRI synthesis

The advantage of 7T MRI is promising compared to the current 3T MRI and the research
topic challenge. This chapter tackles the development and implementation of MRI synthesis. in
this context, the MRI synthesis is ultra-high-field MRIs rendering from routine data. Details of
the model architecture and training procedure are presented, along with their performance.

Chapter 6: MRI cross-modality translation

This chapter presents multimodal cross translation on routine MRI dataset. We provide a
comparative study between methods of the literature and our methods to synthesize MRI between
T1 and T1-gado.
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Chapter 1

Medical imaging for kidney disease
diagnosis

1.1 Renal anatomy and function

The kidney is essential to the urinary system, purifying blood and eliminating waste. These func-
tions are impaired or lost when the kidneys fail, affecting homeostasis. Affected individuals may
exhibit weakness, lethargy, shortness of breath, anemia, widespread edema, metabolic acidosis, el-
evated potassium levels, and cardiac arrhythmias. The urinary system, which is controlled by the
nervous system, stores urine until the proper time for elimination and then provides the anatom-
ical structures necessary to transport this waste fluid out of the body. Incontinence is caused by
the failure of nervous control or anatomical structures, resulting in loss of control over urination.

This section provides basic concepts of kidney anatomy and function. Then, kidney disease
and common symptoms of kidney failure are presented along with the necessity of kidney trans-
plantation in treatment. Magnetic resonance imaging (MRI), a non-invasive method, is becoming
increasingly popular for medical diagnosis. Besides, ultra-high field MRI and computer-aided
applications are rapidly developing, bringing the massive potential for medical image analysis.

1.1.1 Kidney anatomy and function

Kidneys are located on both sides of the spine between the parietal peritoneum and the posterior
abdominal wall in the retroperitoneal space. The right kidney is lower due to a slight liver
displacement, whereas the left kidney is located roughly between the T12 and L3 vertebrae. The
eleventh and twelfth ribs provide some protection for the upper kidneys. The typical size of the
kidney is 11-14 cm in length, 6 cm in width, and 4 cm in depth. The kidney weighs approximately
125-175 grams in males and 115-155 grams in females [22].

Kidneys are encased by a fibrous capsule composed of irregular connective and dense tissue to
maintain shape and protection. A layer of shock-absorbing fatty tissue covers the capsule, which
is surrounded by a tough renal fascia. In a retroperitoneal position, the fascia and, to a lesser
extent, the overlying peritoneum serve to firmly anchor the kidneys to the posterior abdominal
wall. The kidneys are well-vascularized and maintain approximately 25 percent of the resting
cardiac output. The adrenal gland is located on the superior surface of each kidney. The adrenal
cortex influences kidney function directly by producing aldosterone, a hormone that stimulates
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sodium reabsorption.

Figure 1.1 it demonstrates the internal anatomy of a kidney. The outer region of the kidney
is the renal cortex, while the inner region is the medulla. The renal columns are connective tissue
processes that radiate downward from the cortex through the medulla, separating the medulla’s
most distinctive features, the renal pyramids, and renal papillae. The papillae are collections
of collecting ducts that transport nephron-produced urine to the renal calyces for excretion. In
addition to dividing the kidney into lobes, the renal columns provide a framework for the vessels
that enter and exit the renal cortex. Pyramids and renal columns form the renal lobules collectively
[22].

Figure 1.1: Kidney anatomy. [22]

Approximately 2 to 3 million tufts of specialized capillaries - the glomeruli - are distributed
more or less equally between the two kidneys in their ability to filter blood. Blood cells, platelets,
antibodies, and protein are excluded because the glomeruli primarily filter the blood based on
particle size. The glomerulus is the initial component of the nephron, which then transforms into
a highly specialized tubular structure responsible for the urine final composition. All other solutes,
including ions, amino acids, vitamins, and waste products, are filtered to produce a filtrate whose
composition resembles that of plasma. The glomeruli produce approximately 200 liters of this
filtrate per day, while less than two liters of waste are excreted as urine [22].

In addition, kidneys share with other organs to do additional critical functions, such as reg-
ulating pH or blood pressure. Kidneys are essential for determining the solute concentration in
red blood cells. In response to low oxygen levels, the kidneys produce 85 percent of the hormone
erythropoietin (EPO). EPO increases oxygen delivery to tissues by stimulating the production
of red blood cells in the bone marrow. In addition, the kidneys are involved in several intricate
endocrine pathways and produce specific hormones. In addition to EPO, a decrease in blood
flow to the kidneys stimulates them to release the enzyme renin, activating the renin-angiotensin-
aldosterone (RAAS) system and promoting sodium and water reabsorption. The reabsorption
increases both blood pressure and blood flow. The kidneys also contribute to vitamin D synthesis
by converting calcidiol to calcitriol. It also regulates blood calcium levels by converting vitamin
D3 into calcitriol, which is then secreted in response to the release of parathyroid hormone.
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1.1.2 Kidney dissease and transplantation

Chronic Kidney Disease (CKD) is characterized by progressive and irreversible deterioration of
renal function. The glomerular filtration rate (GFR) determines the volume of filtrate formed
by both kidneys per minute. The heart pumps about 5 liters of blood per min under resting
conditions and even more when exercising. Approximately 20 percent enters the kidneys to be
filtered. Then, ninety-nine percent of the filtrate is returned to the circulation by reabsorption,
producing only about 1-2 liters of urine per day. CKD is defined as decreased kidney function by
GFR of less than 60 ml/min/1.73m2, or markers of kidney damage [196].

Determination of GFR is one of the tools used to assess the excretory function of the kidney.
GFR can be accurately determined by intravenous administration of inulin or by measuring natu-
rally occurring creatinine. Inulin is a plant polysaccharide that is neither absorbed nor excreted by
the kidney. Its occurrence in urine is directly proportional to the rate at which the renal corpuscle
filters it. However, because measurement of inulin clearance is cumbersome in clinical practice,
GFR is usually estimated by measuring naturally occurring creatinine, a molecule composed of
proteins that is produced by muscle metabolism, is not reabsorbed, and is only marginally excreted
by the nephron [196].

A patient reaches end-stage renal disease (ESRD) when GFR is less than 15 ml/min/1.73m2, at
which point kidney function is no longer able to sustain life over the long term. Options for patients
with ESRD are kidney replacement therapy which includes renal dialysis and transplantation, or
conservative care (or non-dialytic care) [222]. Failure of the renal anatomy and physiology can lead
gradually or suddenly to renal failure. Symptoms of kidney failure can be mentioned as weakness,
lethargy, widespread edema, anemia, metabolic acidosis and alkalosis, heart arrhythmias, uremia,
or oliguria.

Stage of CKD Description GFR

1 Kidney function remains normal or increase GFR >90

2 Mild decrease in kidney function 60-89

3a Mild to moderate decrease in kidney function 45-59

3b moderate decrease in kidney function 30-44

4 Severe decrease 15-29

5 Kidney failure <15

Some conditions of the kidneys that may result in ESRD include: repeating urinary infections;
kidney failure caused by diabetes or high blood pressure; polycystic kidney disease or other inher-
ited disorders; glomerulonephritis, which is inflammation of the kidney filtering units; hemolytic
uremic syndrome, a rare disorder that causes kidney failure; lupus and other diseases of the im-
mune system; obstructions. Renal failure also increases mortality from cardiovascular disease and
causes directly resulting from renal failure, including fluid and electrolyte imbalance and uremia.

There are two treatment options for kidney failure: dialysis (hemodialysis or peritoneal dial-
ysis) and kidney transplantation. Although dialysis addresses the immediately life-threatening
complications of renal failure, it does not provide fluid and electrolyte homeostasis comparable to
that of a well-functioning kidney. Several metabolic functions of the kidney, such as vitamin D
synthesis and erythropoietin synthesis, are also not regulated appropriately in the absence of a
well-functioning kidney. On the other hand, kidney transplantation offers several advantages for
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patients suffering from EDSR when compared with dialysis [205]

However, the major limitation is the preservation of kidney grafts for transplantation [138].
The delayed graft function (DGF), and early graft loss are increased in transplantation [167].
Various studies indicate that ischemia, especially with increased age and prolonged cold ischemia
times, are independent risk factors for primary nonfunction, DGF, and graft failure in kidney
transplantation [154]. Assessment of graft quality in these marginal graft categories is complex,
and exact criteria predicting graft injury and function after transplantation are lacking.

1.2 Magnetic Resonance Imaging for non-invasive diagnosis

The phenomenon of nuclear magnetic resonance (NMR), introduced by Bloch F. and Purcell E.
in 1946 [25, 159], is the principle of Magnetic Resonance Imaging (MRI). The founding principle
of imaging techniques was introduced in 1949. However, the first NMR images were successfully
demonstrated in 1973 [114].

MRI is now a mature analytical method that is widely used as a diagnostic tool in clinical
medicine and research. It is non-invasive, and does not use ionizing radiation. MRI works in
almost all cases based on the sensitive interaction with hydrogen, the main component of any
biological organ. Therefore, there are almost no limitations on the samples of biological origin
that can be imaged. On the other hand, only bone tissue, which contains less and more tightly
bound hydrogen than most other body parts, provides an inherently low amplitude signal.

The contrast in an MRI image is due to the fact that the hydrogen atoms in different tissues
and compounds have slightly different chemical and magnetic environments. Therefore, they
respond somewhat differently to radio waves in the form of short radio frequency pulses (RF) sent
into the object under study. This makes it possible to detect pathological changes deep inside an
object. The greatest advantage of NMR over similar diagnostic imaging techniques such as X-ray,
computed tomography (CT) and ultrasound (US) is therefore the contrast it provides between
diseases and tissues.

In addition, MRI techniques are becoming more advanced. In the beginning, it took several
hours to produce an image, a process that can now be done in minutes or even seconds. The
faster and more reliable equipment now commercially available has given physicians a valuable
diagnostic tool. New pulse sequences are constantly being invented for specific tasks and improved
contrast. Faster scanning routines allow real-time imaging of dynamic processes such as blood
flow and drug metabolism in the body. Magnets are also improving, but at a slower pace. There
is a trend toward lighter and better-shielded magnets that make the stray field near the device
weaker, despite an increased working field.

However, there are still some disadvantages of MRI. Because MRI uses radio waves and strong
magnetic fields, imaging is not possible in patients with pacemakers or various types of metallic
implants in the body. In addition, the machines are still heavy and expensive and require a lot
of space. They are usually housed in separate buildings. In addition, professional judgment and
skill are still required when evaluating the images and choosing imaging parameters to achieve the
desired contrast.

In this chapter, we explain how the phenomenon of magnetic resonance enables the acquisition
of a physical signal starting from the basic structure of matter. This signal is then converted into
an image whose properties. Finally, we explain how the addition of different NMR acquisition
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modalities transforms MRI into a multivariate and information-rich exploration tool.

1.2.1 Nuclear magnetism

Nuclear magnetism refers to the magnetic moment property of an atom. A nucleus with an even
number of protons and neutrons will have no magnetic force, but a nucleus with an odd number
of protons or neutrons carries charges and magnetic resonance.

The hydrogen nucleus comprises a solitary proton with very high intrinsic magnetic properties.
It is considered an active nucleus, in which the proton and neutron spins do not cancel out each
other, having a net spin on itself. This spin can take two values. Depending on its direction, it
can be positive or negative. The charge of the proton, coupled with the rotation of the nucleus,
contributes to creating a magnetic moment specific to the proton. This magnetic moment is a
vector quantity, collinear with the axis of rotation of the proton. Thus, the proton is comparable
to a magnetic dipole due to its charge, rotation, and magnetic moment. Subjected to an elec-
tromagnetic field, it orients itself like a magnet. MRIs use hydrogen because the human body
contains around 70% of hydrogen, which is its potential for nuclear magnetization and relative
abundance in the body in water and fat.

Nuclear magnetic resonance

Based on the quantum-mechanical phenomenon, each nucleus rotates around its axis, inducing an
angular momentum. Nuclear magnetic resonance studies the variations of magnetization of nuclei
in electromagnetic fields.

Figure 1.2: Hydrogen spins around its axis, producing an angular momentum. Spins are randomly
oriented until the application of an external magnetic field B0. Spins align with B0 in a parallel and
anti-parallel direction with an excess of spins oriented anti-parallely, giving a net magnetization
vector (NMV) aligned in the opposite direction with B0.

A tiny piece of biological tissue contains billions of billions of hydrogen atoms. The nuclei
of the hydrogen atoms - the protons - act like tiny compass magnets, generally having random
orientation and equal energy. For every magnet pointing in any direction, there is another pointing
in the opposite direction. In this way, they balance each other’s magnetic moments, and there is
no external magnetic effect.

However, if one places a sample containing hydrogen in a magnetic field B0, the magnetic field
defines a direction in space, which by convention is the longitudinal z-axis. The magnetic moments
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of all protons aligned along this axis add up to give a macroscopic magnetization vector. Half of it
is parallel to the field, the other half is antiparallel to the field. The protons whose magnetization
vectors are parallel to the field have slightly lower energy than the others, and therefore there is
a small but significant difference in population between the two energy levels. Thus, the magnets
no longer exactly cancel each other out. This effect is called the net magnetization vector (NMV),
denoted by Mz. In the xy-plane, the magnetic moments of the protons still cancel. The magnitude
of Mz, and correspondingly the amplitude of the MR signal, is proportional to the proton density,
the external magnetic field, and the square of the gyromagnetic ratio. This has led to moving to
higher and higher fields.

Figure 1.3: The net magnetization vector aligned with the external magnetic field B0. After the
excitation by a radio-frequency pulse, the NMV flips by a certain angle following a spiral trajectory
and imposes transversal and longitudinal components.

The motion of simple precession refers to the rate of precession of the magnetic moment of the
proton around the external magnetic field, which is described by the Larmor equation:

ω0 = B0 × γ (1.1)

where ω0 represents the precessional frequency, and γ is the atomic gyromagnetic ratio.

When the nuclei start to process, their protons are immersed and subjected to electromagnetic
fields B0 until the net magnetization has reached a steady state of equilibrium. The precessional
path around the magnetic field is circular, like a spinning top. While rotating on their axis, the
protons turn around B0 in the shape of a double cone, oriented positively or negatively according
to the nuclear spin [23, 59]. The next stage is to apply an electromagnetic radio frequency (RF)
field at the resonance Larmor frequency, which will transfer energy to the protons. As a result,
the net magnetization vector is tilted away from the z-axis, with changes in directions described
using a rotation frame with three axes.

The effects of B0 disappear, and the precession of NMV is now locked to RF pulses at Larmor
frequency, which makes it tilted and consequently tipped within the X-Y plane. Depending on the
duration of the RF excitation pulses, the NMV goes more or less precess around its transverse axis.
In practice, one uses impulses causing rockers of 90◦ or 180◦. The flip angle, often represented by
α, is determined by both the strength and duration of the RF field/pulse. [30]. When the RF
pulse stops, the magnetization vector will gradually return to the state of equilibrium. The energy
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accumulated during the resonance will be restored in the form of a wave: this is the phenomenon
of relaxation.

Relaxation

The key of MRI is to flip the NMV from the parallel alignment by applying excitation, and then
the vector begins to drive toward its initial state and realign with the external magnetic field
during the relaxation process. When the RF pulse is turned off, spins lose their phase coherence.
Nuclei return to a state of equilibrium and the restitution of the energy accumulated during nuclear
magnetic resonance.

Figure 1.4: Examples of transversal (a) and longitudinal (b) magnetization relaxation for different
tissues

There are two types of relaxation, occurring simultaneously but independently of each other:
T1 and T2. Both are time constants, with T1 describing the return to equilibrium as vector
realigns along the z-axis, whereas T2 characterises the decay of the signal as the excited protons
begin to dephase, with changes occurring in the x-y planes. Follow exponential laws, the T1 is
the time necessary for 63% of the longitudinal regrowth to have taken place, while T2 is the time
necessary for 63% of the transverse decrease to take place.

T1-relaxation time, which is unique to each tissue, is determined by how protons are bound
and is generally longer at higher field strengths. For example, in adipose tissues, the protons are
tightly bound and will release the energy in their surroundings much faster than loosely bound
protons. In other words, the speed at which tissues release the energy/relax will determine the
value of T1. The time constant T1, modelled as an exponential growth curve, corresponds to the
time needed after the excitation pulse for M to reach 63% of its initial value. Finally, the fact
that T1 values vary with tissue types is also the rationale behind the good contrast resolution in
MRI scans. The physical process behind longitudinal relaxation is the loss of energy from spins
to lattice. T1 is related to the amount of lattice and the probability of interaction between spins
and lattice. Thus, fat has a shorter T1 than water. This exponential of t1 relaxation is given by:

Mz(t) = Mz(0)× (1− e−
t

T1 ) (1.2)

On the other hand, the T2 relaxation also occurs after the RF pulse has been applied, but
the spins have been tilted in the x-y plane, and all proton spins are synchronized and precessing
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at the same frequency. This is the stage where protons are in phase. As mentioned above, it is
the loss of this synchronization or dephasing. The T2 relaxation is also called spin-spin relaxation
because interactions between spins cause dephasing. There will be the transfer of energy from
excited protons to nearby non-excited ones. This affects the speed at which each proton spins
and causes progressive inhomogeneity that leads to signal decay. Similar to T1 relaxation, the
signal decay occurring during T2 relaxation can be modelled as an exponential curve, similar to
radioactive decay. The time constant T2 corresponds to the length of time elapsing between the
excitation and the point at which the signal has been reduced to ∼36.8% of its original value.
Moreover, fluids (e.g. water) have a long T2 since the probability of energy exchange between
spins is relatively low compared to tissues that have a greater degree of binding spins within a
matrix, which increases the probability of spins interaction. This exponential decay is given by:

Mxy(t) = Mxy(0)× e−
t

T2 (1.3)

MR signal is linked to T2 relaxation. This signal is called free induction decay (FID). Its
initial amplitude is determined by the degree to which NMV has been flipped on the xy plane,
with the highest signal obtained when the vector has been flipped to 90◦. The signal is modelled
with a decay curve containing the actual signal. The signal itself is oscillating at the resonance
frequency in the MHz range. However, in practice, the magnet is likely to have some flaws in its
manufacture, and tissue variability means that each tissue has a different magnetic susceptibility,
which causes field distortions at tissue borders. As a consequence, the signal decays faster than
the T2 relaxation would predict, and the actual signal is called T2*.

Figure 1.5: FID and T2* decay obtained by fitting the curve of FID

Spin echo

A Spin Echo (SE) is generated when a second 180◦ RF-pulse is applied a short time after the
90◦ one. The effect of this pulse is to rotate the entire system upside-down, causing the spins to
rephase and thus producing a large signal: the Spin Echo. In order to have the optimal effect,
the 180º pulse has to be applied at a specific time in the sequence. Corresponding to the middle
time point between the first RF pulse and the peak of the spin-echo. This time interval is called
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echo time (TE). The time at which the 180◦ pulse must be applied is defined as half of echo time
TE/2.

Figure 1.6: Diagram of a spin echo pulse sequence

In terms of protons, when the system has been turned on its head, it is faster precessing spins.
A good analogy that is often used is one of a race in which participants have a great variety of
speeds. At the start of the race, they are all aligned, in MRI terms, in phase. Once the race starts
(at t = 0), the contestants start moving at their fastest pace and soon find themselves at different
spots. At a given point (TE/2 in the MRI sequence), It turns around without losing speed, which
means the starting line is now the finish. As the fastest contestants will be furthest away from the
starting/finishing line and the slowest ones the closer, if they all keep going at the same speed as
they did before, they should all reach the finishing line simultaneously. For the protons, this will
be another TE/2, after which they will be in phase once more.

Once all the spins are back into phase, they immediately start to dephase again. However, a
second 180◦ pulse can be applied, using the same TE, to generate a second echo. The process can
be repeated until the time at which T2 relaxation has caused the signal to decay completely. It
should be noted here that while the 90◦-180◦ sequence gives the strongest signal, spin echoes can
be generated with other flip angles.

On the other hand, the repetition time (TR) is the time elapsing between the repetitions of
the sequence. So for the spin-echo sequence, it will be between the 90◦ pulses. Different TR and
TE are also used to determine the contrast when reconstructing MRI.

1.2.2 Image reconstruction

So far, signal generation has been described based on NMR theory. However, to get solid volume
imaging, this signal has to be transformed into an image.
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We explained the nature of the NMR signal and the mechanism by which T2 relaxation releases
stored energy. However, this signal needs to be spatially quantified and encoded to form images.
A particular coding using three gradients and the inverse Fourier transform is applied. The slice
selection gradient (GS) allows to define the thickness of the slice. Then, in the section or the
selected volume, two gradients will be successively applied to distinguish coding the protons in
line and in columns. A matrix is thus obtained, the rows and columns of which will be identified
by the following two gradients. The phase encoding gradient (GP) is used to code the lines by
assigning each proton in the volume a different phase per line. The frequency coding gradient
(GF) is used to make it possible to code the columns by assigning a frequency to each column of
protons.

Slice selection

It is done using a slice encoding or slice selection gradient, GS, together with a simultaneous
RF pulse at the Larmor frequency in Equation 1.1 determined by the selected slice, as seen in
Figure 1.7. Consequently, only the protons in the chosen slice will be excited. Since each slice
contains a range of frequencies or bandwidth, the RF pulse transmitted needs to comprise the
whole range. The thickness of the slice itself is determined by combining the strength/steepness
of the gradient and the range of frequencies/bandwidth in the RF pulse. When the signal source
has been located in a specific area, further encoding is necessary to know its position within the
slice in the phase encoding gradient. The total magnetic field strength becomes a function of z
and can be formulated as shown in Equation 1.5.

Phase encoding

The phase encoding gradient is applied for a specific period in the vertical direction, causing the
protons to rotate at different frequencies depending on their position along the gradient. Precession
will increase where the gradient increases and similarly decrease in the part of the slice where the
gradient causes a decrease in the magnetic field. In other words, the protons will have different
phases depending on their position, and this persists after the gradient is switched off. So now all
the protons are precessing with the same frequency but have different phases. To obtain an image,
multiple repetitions with different encoding gradients, which are progressively incremented, are
necessary, as can be seen in Figure 1.7.

Frequency encoding

Last, the frequency encoding gradient is applied at the right angle from the previous gradient. It
affects protons frequencies according to their positions along the gradient direction and therefore
modifies the Larmor frequencies in the remaining direction for the duration of its application,
while the phase changes from GP remain after the pulse is turned off.

Fourier transform and k-space

The reconstruction process involves the Fourier transformation of k-space in order to get an
image from the signal. k-space is represented by a square, with kx and ky axes corresponding
to horizontal and vertical axes in the actual image, respectively. However, the axes in k-space
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represent spatial frequencies rather than positions, with each k-space point containing both phase
and spatial frequency information about each pixel in the final image. The kx axis in the k-space
represents the time component, while the ky axis represents the phase encoding direction. k-space
data is converted into a grey-level image using the inverse Fourier transform in 2D space.

The k-space comprises signals with low spatial frequencies, which is essential for the delin-
eation of contrast of the image, so the fact that different tissues are going to have different signal
intensities; and the high-spatial frequencies signals are essential for the ability to define borders or
edges of the image. The ability of the image to demonstrate contrast and edge definition depends
on having more or less information in the k-space. The low frequencies are located in the center
of the space, and the high frequencies are in the periphery. Each of these regions contributes
to different aspects of the image. Thus, it is necessary to have a filled k-space prior to image
reconstruction.

Figure 1.7: Illustration of k-space

When it is received, the MNR signal, encoded in phase and frequency, will be assigned to a
value of the Fourier plane. Then during a spin-echo acquisition, each TR fills a line of the Fourier
plane. For a linear course, it can start filling the central lines before filling the periphery of the
space. It is also possible to traverse the space of k non-linearly, for example, following a spiral
pattern starting from the center. k-space filling techniques can shorten the acquisition time [134].

1.2.3 Image quality and artifacts

Having obtained an image, we must now discuss image quality factors. Indeed, these notions are
essential when setting up a machine learning system. For a system to be efficient, it must be able
to provide it with good images, which requires defining what constitutes a good quality image.
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Different MRI sequences present different functions of the object. The anatomical MRI se-
quences make it possible to obtain the topological structural information. In general, the T1 and
T2 weighted are primary anatomical sequences. Besides, T1-weighted images are also acquired
after gadolinium injection to enhance the contrast. The infusion of gadolinium is used as a con-
trast product. It alters the T1 and T2 times of the tissues in which the gadolinium spreads, which
makes it possible to reveal the vascular system. Moreover, the fluid attenuated inversion recovery
(FLAIR) sequence uses the principle of inversion recovery to suppress the signal from free water
[49]. The sequences using recovery inversion completely switch the longitudinal magnetization by
a 180◦ RF pulse. The FLAIR sequence suppresses free water, but other settings allow the fat
signal to be suppressed.

After reconstructing an image from the signal, several factors influence digital image qual-
ity. These properties are important to have high-quality images for building an efficient system.
Reconstructing an image from a physical signal requires spatial sampling. The 3D acquisition
volume is then discretized into a finite number of voxels, which has notions of image resolution
and contrast.

In general, the resolution of an image often refers to the equivalent of pixel count in digital
imaging. However, in terms of medical images, resolution refers to the subjective visual quality
of the image. A large image with objects on a few voxels usually has a good numerical resolution
but poor qualitative resolution. Thus, it is actually desired that the voxels be as small as possible
physically in order to best describe the variations of anatomical structures. On the other hand,
increasing the spatial resolution impacts the quantity of signal present in each voxel. A small
voxel might contain fewer protons than a significant voxel. In the case of ultra-high field MRI, it
is possible to increase the resolution of the images. The initial external magnetic field B0 is more
robust, and the quantity of signal available increases, which in turn makes it possible to increase
the resolution of the images [64].

In terms of image contrast, at a constant magnetic field, the amount of signal available for
each voxel decreases as the size of the voxels decreases. For a given voxel, this decrease in the
quantity of signal collected impacts the intensity of the measured signal. In general, the contrast
of images refers to the intensity dynamics of the image. When the contrast is good, its direct
effect is to make it possible to differentiate two different structures of similar intensities visually.
The MRI contrast depends on many parameters, including the proton density, the T1 and T2
relaxation times of the tissues, the variations of the magnetic field, or the TE and TR acquisition
parameters. For example, the image contrast depends on the combination of TE and TR values,
with three combinations used: the short TR/short TE define the T1-weighted, the long TR/short
TE define proton density (PD-weighted), and the long TR/long TE define the T2-weighted. The
short TR/long TE combination is not used because it produces a poor contrast.

In addition, noise is also a property of digital image, especially medical images. On the metro-
logical level, noise is parasitic information resulting from physical constraints. These disturbances
are added to the expected theoretical signal and alter the resulting image. The signal-to-noise
ratio (SNR) is used to evaluate the signal disturbance. At a constant level, if the signal is weak,
SNR becomes high, and the visual quality of the image is degraded. Thus, one of the acquisition
goals is to find the optimal parameters for reducing the signal-to-noise ratio while maintaining
high radiological resolution.

The image artifact refers to features that appear in an image that is not present in the original
image object. There are several types of artifacts in MR imaging. Each type consists of a
characteristic signature in the image.
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• Metallic artifact: This is a distortion of the magnetic field caused by the presence of fer-
romagnetic materials in the acquisition volume. This causes an absence of a signal at the
heart of the disturbance and a non-linear deformation at the periphery of the disturbance.
Some sequences specifically fight metal artifacts.

• Movement artifact: MRI acquisitions require the motionless as possible for the whole process.
However, movements such as breathing heartbeat, are irreducible. Motions disrupt phase
encoding more than frequency encoding since the phase encoding is done before reading the
signal, while the frequency encoding is applied with the signal acquisition. Some motions
can be corrected by an appropriate acquisition time of the actions. The motion artifact
causes blurring in the affected area and the appearance of ghost images in the sense of phase
encoding.

• Folding artifact: It appears when the studied object is larger than the field of view. We
then observe a folding of the off-screen part of the contra-lateral side of the image. At a
constant field of view, it is possible to make these artifacts disappear by changing the size of
the voxels, to the detriment of the spatial resolution, or by applying an anti-aliasing filter.

• Chemical shift artifact: It might cause by variations in the resonance frequency encoding
between different tissues. This concerns the interfaces between tissues, such as a transition
between fat and water. Fat molecules have a lower precessing frequency compared to water.
This leads to the presence of a black border on the water/fat interface. This artifact can be
eliminated by increasing the bandwidth to the detriment of the signal-to-noise ratio.

• Truncation artifact: It occurs at the level of intensity between two different structures
after sudden change in the acquisition, such as the transition between bone and fat. The
truncation artifact produces alternating dark and light bands in the direction of the phase
encoding.

• Magnetic susceptibility artifact: it appears at the interfaces of two juxtaposed structures
with different magnetic sensitivities, such as the transition of hemoglobin/tissue or bone/tissue.
At these interfaces, an intrinsic magnetic field gradient exists, which causes hypo-intense ar-
eas that are all the more marked as the voxel is large.

• The cross-excitation phenomenon: The excitation of protons on a slice is not limited to the
edges of the slice itself. The RF pulse also affects adjacent protons. If the acquisition slices
are stuck to each other, the protons find themselves excited several times, distorting the
signal. Therefore, spacing the slices is necessary to avoid this cross excitation.

1.3 Ultra-high field MRI: the next generation

In recent years, clinical MR examinations are mainly conducted in static magnetic fields between
1.5 and 3T. However, several studies have also been performed at magnetic fields higher than 3T
[216]. The ultra-high fields (UHF) refers to static magnetic field strengths of B0 ≥ 7T . It provides
a significantly higher signal-to-noise (SNR) ratio, and several magnetic resonance applications
benefit from higher contrast-to-noise ratios. Moreover, UHF can be utilized to resolve structures
more precisely or to visualize physiological/pathophysiological impacts that would be challenging
or impossible to detect at lower field strengths.

21



The first commercial 7T MR system for clinical imaging of the neuro- and musculoskeletal
system was approved as a medical device in 2017. Since then, the number of UHF MRI devices
has significantly expanded. It has allowed fundamental research and clinical diagnosis with MRI
scanners. Besides, it helps to simplify doing research with more significant cohorts as part of
clinical assessments with patient consent.

In general, the measurement noise in MR applications is estimated by the samples. The pro-
cession resonance frequency for hydrogen atoms is at least 64 MHz, which equates to a frequency
of 1.5T, and can linearly increase. In the case of 7T and beyond, the frequency rises to at least
300 MHz. However, at UHF strengths and higher proton resonance frequencies, an even greater
gain in SNR for hydrogen in MR applications has been recorded. Consequently, MRI at UHF
delivers a considerable increase in MR signal compared to 1.5T and 3T, the usual field strengths
in clinical MRI. This gain in signal with increasing magnetic field strength B0 can be utilized, on
the one hand, to achieve higher spatial resolution in the same measurement time or, on the other
hand, to achieve comparable image quality in a shorter measurement time, which also permits
higher temporal resolution in dynamic MRI techniques.

On the other hand, the contrast-to-noise ratio (CNR) also plays an essential role in MRI
techniques. The contrast in MRI is generally determined by the interactions between nuclear
spins and the changing environment. Different contrasts depend on various factors, such as T1
and T1-weighted, which alter differently as B0 increases. When applications require complete
relaxation before the subsequent stimulation, a longer T1 time causes a longer measurement time
at a higher magnetic field. The higher field strength in spectroscopic applications results in a
more significant splitting of resonant frequencies in the MR spectrum, which can be useful. In
addition, it also enhances susceptibility sensitivity, which benefits susceptibility-weighted imaging
and quantitative susceptibility mapping [111].

However, this can also lead to increased susceptibility artifacts, including geometric distortions
and signal dropouts in the images. In DWI, higher SNR at the ultra-high field can provide the
opportunity for higher-resolution imaging. However, it also brings challenges such as increased
magnetic field and RF inhomogeneity of the transmission field, shorter T2 relaxation, and higher
specific absorption rates. However, it can also result in susceptibility artifacts, including geometric
distortions and signal dropouts in the images. In DWI, a higher SNR at an ultra-high field can
enable imaging with a higher resolution. Nonetheless, it presents obstacles such as increased
magnetic field and RF inhomogeneity of the transmission field, shorter T2 relaxation, and specific
absorption rates [226].

As field strength and radio frequency increase, the wavelength for different body parts results
in standing wave effects. In the case of UHF and higher, strong inhomogeneities in the transmit
and receive fields can occur, leading to cancellations in the MR images, degraded contrasts, and
regional peaks in the specific absorption rate distribution [111]. Consequently, coil designs at lower
B0 may display deleterious behavior at UHF for medium to large excitation volumes. Address the
issues of inhomogeneous RF, advancements in excitation hardware and techniques such as parallel
RF transmission (pTx) have been proposed to reduce the inhomogeneity of RF excitations and
RF energy deposition by employing multiple-transmission RF coils that operate independently
and concurrently [216].

Parallel transmission plays a fundamental role in UHF MRI, turning the potential applications
of UHF into reality. It can optimize the magnetic field distribution or adjust the spin magnetization
in the desired region by using the amplitudes and phases of the multiple channels as additional
degrees of freedom. For pTx, all RF pulse shapes and gradient trajectories are typically optimized
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for each transmits pulse element. In addition, magnetic field maps in 2D or 3D for each channel
are necessary for determining pulse shapes and gradient trajectories. The latest 7T MR system
enables static RF to be performed in a short amount of time without significantly delaying the
clinical workflow, despite the fact that the required preparation steps were complex and time-
consuming. In addition to inhomogeneities in the magnetic and transmission fields, cancellations
and hot spots can occur in the local specific absorption rate distribution, which is dependent on
the RF electric field pattern during safety evaluation [58].

Application

High-resolution MRI is still the most important clinical application in UHF topic. MRI at 7T
field strengths provides higher SNR and, in several applications, higher CNR compared to MRI
at lower field strengths, resulting in higher resolution and improved tissue differentiation. There
are numerous important clinical applications for UHF MRI high-resolution imaging.

In recent years, the rapidly growing of ultra-high MRI devices hold the potential to improve
clinical diagnostics. The high-resolution MRI improves the visualization of anatomical substruc-
tures [193]. For example, study in [63] has been demonstrated using a magnetization-prepared
fast acquisition gradient echo, which could aid in diagnosing cranial nerve disease.

High-resolution morphological imaging has also been shown to be feasible for the complex
anatomical structures of the brainstem, including nonquantitative techniques and quantitative
approaches. In general, magnetic susceptibility MRI-based methods benefit significantly from
strong magnetic fields. Post-processed phase images sensitive to magnetic susceptibility enhance
the contrast between gray and white matter. Magnetic resonance angiography (MRA) can improve
imaging of small intracranial vessels and has the potential to characterize vessel walls better
[77]. MRI is the most sensitive imaging modality for detecting acute cerebral infarcts in patients
with stroke [48]. In addition, cortical microinfarcts have been described using 7T magnetization
transfer, limited to 3T [211]. In the detection of brain tumors, MRI is a cornerstone of diagnosis.
Higher spatial resolution at 7 T could help distinguish infiltrating tumors from adjacent tissues
better or reduce the administered contrast dose because of the higher contrast-to-noise ratio [166].
In patients with multiple sclerosis, better visualization of white matter lesions and visualization
of a central vein and iron deposition within MS lesions have been described [108].

In terms of abdominal MRI, these promising results of high-quality ultra-high field imaging
in neuroradiology form the theoretical basis for investigations in the abdomen. However, other
physical effects associated with higher magnetic field strengths may impair diagnostic imaging.
An increase in the magnetic field strength can provoke artifacts because of changes in tissue sus-
ceptibility, chemical shifts, or signal heterogeneities due to RF wavelength effects. Furthermore,
the energy deposited by RF waves is restrictive at high-field imaging, as the RF absorption in-
creases proportionally to the static magnetic field. Despite these limitations, 3T renal MRI has
been nearing readiness for implementation into clinical standards.

Initial approaches to 7T whole-body MRI have highlighted the potential of UHF MRI and
the need for further investigation in terms of RF technology and sequence optimization [215]. In
addition, recent studies [110] have shown that 7T MRI showed partially comparable strength and
drawback of MRI in the abdomen compared to lower field strengths, with significant differences
in T1- and T2-weighted MRI. Higher SNR and CNR were observed in several abdominal organs,
possibly allowing the detection of smaller pathologies that might be missed at lower field strengths.
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Specially for kidney, the study in [210] has presented the feasibility of a dedicated 7T MRI of
the kidneys utilizing a custom-built multiple transmit/receive RF body coil on a 7T whole-body
MR system. 7T MRI of the kidneys is feasible, providing good overall image quality of the region
of interest. T1-weighted imaging showed outstanding results regarding the differentiation of small
anatomical structures and even allowed for a robust assessment of the renal vasculature without
intravenous contrast medium administration, while T2-weighted MRI was limited at 7T because of
artifacts and specific absorption rate restrictions. Furthermore, T1 MRI with fast gradient echo-
based sequences allowed for a robust depiction of the renal vessels without requiring intravenous
gadolinium administration. The benefit of intravenous gadolinium administration for renal MRI
at 7T has not yet been evaluated. Contrast medium administration will be the focus of ongoing
studies if dynamic T1-weighted imaging and perfusion analysis of renal tissue can be successfully
implemented [210].

The initial imaging results demonstrated the successful transformation of the increased SNR
into a high spatiotemporal resolution, yielding highly defined non-enhanced anatomical images
while maintaining data acquisition within the window of a breath-hold with parallel imaging.
Further optimization of RF technology and dedicated coil concepts can be expected to surmount
better the physical effects linked to high magnetic field strength and enable the acquisition of even
greater image quality with corresponding clinical diagnostic value.

In the future, further increases in field strength will enhance the possibilities in clinical research
and will certainly lead to significant advances in these MRI techniques. The initial imaging results
demonstrate success in converting the increased SNR into high spatial and temporal resolution,
providing highly defined, unenhanced anatomical images while maintaining data acquisition within
the window of a breath-hold with parallel transmission. 7T MRI systems are currently being
installed. Systems beyond 7T are all geared towards basic research, either to study brain function
or to understand healthy human physiology and ageing or the pathophysiology of various diseases.
Given the challenges involved, field strengths greater than 7T are not currently being considered
for diagnosis in individual patients. It is expected that further optimisation of RF technology
and special coil designs will better overcome the physical effects associated with high magnetic
field strength and enable the acquisition of even better image quality with corresponding clinical
diagnostic value. With regard to renal imaging, it is possible to investigate the advantages of
dynamic imaging and perfusion analysis in 7T MRI overall.

1.4 Computer-aided MRI analysis: the augmented patholo-
gist

Machine learning in general and deep learning, in particular, have recently received enormous
attention. Deep neural networks have outperformed other established models on several important
benchmarks. Deep Learning methods are now state-of-the-art machine learning models in various
domains, from image analysis to natural language processing, and are widely used in academia
and industry. These developments hold enormous potential for medical imaging technology, data
analytics, diagnostics, and healthcare in general, which is slowly being realized.

Healthcare providers generate and hold enormous amounts of data containing extremely valu-
able signals and information at a pace far surpassing what traditional analysis methods can process.
Deep learning in medical data analysis is here to stay as a new research topic to integrate, analyze
and make predictions based on large, heterogeneous datasets. Applications of deep learning can
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range from analyze and the prediction of medical events, e.g. seizures [15] and cardiac arrests
[215], to computer-aided detection [155] and diagnosis [24], supporting clinical decision making
and survival analysis [43].

Deep learning methods are increasingly used to improve clinical practice, and the list of exam-
ples is long and growing daily. Even though there are many challenges associated with introducing
deep learning in clinical settings, the methods produce results that are too valuable to discard.
Beyond the application of machine learning in medical imaging, the attention in the medical com-
munity can also be leveraged to strengthen the general computational mindset among medical
researchers and practitioners, mainstreaming the field of computational medicine.

Deep neural networks such as convolutional neural networks can be used for efficiency improve-
ment in radiology practices through protocol determination based on classification [120]. They
can also be used to reduce the gadolinium dose in contrast-enhanced brain MRI by order of magni-
tude [66] without significant reduction in image quality. Deep learning is applied in radio-therapy
[141], in PET-MRI correction [130, 6] and for theranostics in neurosurgical imaging, combining
confocal laser endomicroscopy with deep learning models for automatic detection of intraoperative
CLE images on-the-fly [86]. Another important application area is advanced deformable image
registration, enabling quantitative analysis across different physical imaging modalities and time.
For example, fast deformable image registration of brain MR image pairs by patch-wise prediction
of the large deformation diffeomorphic metric mapping model [232]; deep learning-based 2D/3D
registration frame-work for registration of preoperative 3D data and intraoperative 2D X-ray im-
ages in image-guided therapy [248]. Neural network-based methods rely heavily on the support of
big data.

There are several thorough reviews and overviews of the field to consult for more information,
across modalities and organs, and with different points of view and levels of technical details.
For example, the comprehensive review [41] covers both medicine and biology and spanning from
imaging applications in healthcare; to key concepts of deep learning for radiologists [119, 33, 139,
203], deep learning in neuroimaging and neuroradiology [237]; brain segmentation [2]; and more
technical surveys of deep learning in medical image analysis [184, 199, 32].

Computer-aided diagnosis (CAD) refers to systems that can detect, mark, and assess potential
pathologies for radiologists to help improve identification accuracy in the case of data overload
and human resource limitation. The analysis, quantification, and categorization of images with
these methods is an important technique that can improve patient safety and care. There are
many advantages to using machine learning techniques in CAD systems. The first advantage of
machine learning is its accurate and robust performance in many radiology studies. Moreover,
CAD systems are expected to perform consistently and produce robust results with large amounts
of data at any time and space. In contrast, manual diagnosis results may be affected by fatigue,
reading time, and emotion on the part of the practitioner. The second advantage is that the
diagnosis can be finalized in a brief time. Radiological analyses might be complex and require
experienced radiologists, while a learning-based model only takes a few seconds to analyze results
from an image. With the help of a CAD system, radiologists can have the support of automatic
systems to speed up the diagnosis process less cost-effectively.

Although the performance of computer-aided diagnosis systems is improved every day to tackle
the most common clinical problems, current contributions need further investigations before being
widely applied in practice. First, most current diagnosis contributions mainly focus on predicting
one type of disease, which may not meet the clinical demands. There may be one or more diseases
existing in one radiological image. Besides, the current model training is mainly based on one
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type of measurement. However, most disease decisions in clinical practice rely on multiple domain
measurements. Information from multi-measurement may increase model accuracies. Moreover,
current medical datasets mainly cover common diseases. Only a limited number of rare diseases
are exposed to human clinicians, and many contributions may not consider these individual cases
during their model training. More comprehensive systems that can detect various diseases and
report rare cases are expected to be seen in the future.

1.5 Conclusions

In this chapter, we have presented basic concepts of kidney anatomy, functions, and diseases.
As a central part of the urinal system, kidneys are responsible for filtrating blood from waste
and extra water, preserving the inner body equilibrium, and maintaining the acid-base balanced,
synthesizing vitamins and hormones. The gradual loss of renal function defines chronic kidney
disease. It is a long-term condition where the kidneys cannot work as they should. GFR metrics
with invasive methods are used to define kidney diseases, which mention the end-point of the
kidney where either renal dialysis or transplant.

Accurate assessment of renal function and structure non-invasively is important in diagnosing
and predicting kidney diseases. Non-invasive methods using medical images such as MRI play
an increasingly critical role in assessing renal function. Moreover, advanced techniques of MRI
recently developed, such as ultra-high field MRI, which allow images able to provide more struc-
tural, functional, and molecular details that can detect the alteration in renal tissue properties
and functionality and help predict and diagnose renal function.

In the MRI field, deep learning holds a huge potential at each step of entire workflows, from
acquisition to image retrieval, segmentation to disease prediction. The following chapters provide
fundamental knowledge of deep learning and neural networks, as well as state-of-the-art for several
tasks of MRI analysis that the thesis targets on.
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Chapter 2

Deep learning and Neural network

Statistical learning or machine learning is a scientific research domain combining applied mathe-
matics, statistics and computer science. It is essentially a form of applied statistics with increased
emphasis on using computers to statistically estimate complicated functions and a decreased em-
phasis on proving confidence intervals around these functions.

Deep learning is an exciting sub-field of machine learning based on artificial neural networks
and representation learning. It uses lots of data to teach computers how to do tasks that only
humans were capable of before, such as recognizing an image, translating, etc. Types of learning
can be supervised, semi-supervised or unsupervised. Deep learning has emerged as a central tool
for solving perceptual problems and has become state-of-the-art in many fields. These include
computer vision, speech recognition, natural language processing, medical image analysis, climate
science, etc., where algorithms have produced results comparable to and, in some cases surpassing
those of human experts.

The following sections present the fundamental principles and terminology of deep learning,
neural networks, and network training. Usage of multiple network layers is referred to as the
term "deep". Deep learning is a modern variant that works with several layers of limited size, en-
abling practical application and optimal implementation while preserving theoretical universality
under moderate conditions. In deep learning, layers may also be diverse and strongly vary from
biologically informed connectionist models for efficiency, trainability, and interoperability.

2.1 Machine learning overview

The general objective of machine learning algorithms is to solve tasks by learning from sets of
samples. Unlike traditional computer programming, models automatically extracts significant
patterns from data and completes a task without being explicitly programmed. In this context,
tasks are presented in terms of how the system processes a sample to generate output. A sample
is a collection of characteristics that have been objectively measured from an object or event.
Machine learning can be used to handle a variety of problems, including classification, regression,
transcription, machine translation, synthesis, and sampling. At this moment, machine learning has
been applied in various domains ranging from computer vision, natural language processing, speech
processing, signal processing, robotics, healthcare, biology, manufacturing, economics, advertising,
etc.
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Machine learning algorithms can be separated into supervised learning and unsupervised learn-
ing by arranging samples during the learning process. The following paragraphs provide an
overview of supervised and unsupervised learning, along with basic concepts of machine learn-
ing that will be used in the thesis.

2.1.1 Supervised learning

Supervised learning algorithms refer to a system that learns from each sample feature associated
with a label. In other words, it aims at predicting an outcome variable by giving a set of descriptive
variables that are assumed to influence the outcome. Based on the type of observation, supervised
learning include two types: regression for the continuous outcomes; and classification for discrete
outcomes.

Theoretically, supervised algorithms learn to seek a hypothesis function that describes the
relationship between input and output space. A probability from a joint distribution is applied on
input and output to reduce the dependence of variables, or random noise [68]. The loss functions
measure the accuracy of the hypothesis. The goal is to minimizes the risk of generalization error
through a learning algorithm or learning rule. Learning rules aim at selecting the function that
minimizes the average loss on the observed data [214]. The empirical risk is also commonly known
as training error. A learning system objective is to generalize well to unobserved examples. A low
training error is not a guarantee of a low generalization error. A predictor often performs well on
the training samples, but might fails to generalize over test samples.

Model complexity is another term for the expressiveness of the learning process. Other learning
rules that assign different weights to sets of hypotheses are structural risk minimization and
minimum description length. There are several supervised learning from statistical methods such
as random forest, K-nearest neighbours, decision tree and support vector machines to deep learning
methods.

K-Nearest Neighbors (KNN) [4] is a non-probabilistic supervised learning methods. In
general, KNN can be used for both classification and regression. KNN works based on the majority
vote between similar instances. The similarity is defined using distance metrics between data
points. When the model predicts output for a new data point, it finds the nearest neighbours
to that point in the training data by returning the average of the corresponding values in the
training set. As a non-parametric learning algorithm, KNNs are not restricted to a fixed number
of parameters. There is not even really a training stage or learning process. Moreover, KNN
is a simple and powerful method with any distance measure. It can make a model obtain high
accuracy given a large training set. However, it may generalize very badly given a small finite
training set.

Decision Tree [29] is another supervised learning algorithm that is also based on separating
input space into regions with separate parameters. Nodes are associated with regions, while
internal nodes break that region into a small non-overlapping region for each child of the node,
with leaf nodes and input regions having a one-to-one correspondence. However, similar to KNNs,
the performance of a single decision tree is limited to unseen data. Thus, Random Forest (RF)
[28] is created to increase the ability to generalization of the model. It involves several decision
trees from training data, then combined to form the final output.

Support Vector Machine is one of the most robust supervised learning algorithms that
analyses data for classification and regression. The idea of SVM is to find hyperplanes that
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classify data points into classes. One key innovation associated with SVM is the kernel trick to
learn non-linear models as a function using convex optimization techniques that are guaranteed
to converge efficiently.

2.1.2 Unsupervised learning

In many cases, labelled data are not readily available because labeling the training data is costly,
time-consuming, and impractical on a large scale. Additionally, it is frequently less concerned with
predicting a specific target variable than with comprehending the data. Unsupervised learning
algorithms experience a dataset containing many features and then learn valuable properties of
the structure of this dataset. As opposed to predicting a target variable, unsupervised learning in-
volves observing random vectors and attempting to learn the probability distribution or interesting
properties.

Unsupervised learning generally refers to the majority of attempts to extract information from
a distribution that does not require an annotation procedure. The term is usually associated
with learning to draw samples from a distribution, denoise data from some distribution, density
estimation, find a manifold that the data lies near, or cluster the data into groups of related
examples. In deep learning, the objective is to learn the entire probability distribution over the
dataset, either directly, as in density estimation, or implicitly, for tasks such as synthesis or
denoising.

A classic unsupervised learning task is to find the best representation of the data. Lower-
dimensional representations, sparse representations, and independent representations are three of
the most common methods. Low-dimensional representations aim to condense as much input data
as possible into a smaller representation.

Sparse representations [14] encapsulate the dataset in a representation in which the majority
of entries are zeros. Sparse representations often require an increase in the dimensionality of the
representation, so that the loss of information caused by the representation consisting primarily
of zeros is minimized. This leads in an overall structure that tends to distribute data along the
axes of the representation space. Independent representations aim to separate the sources of
variation underlying the data distribution so that the representation dimensions are statistically
independent.

Dimensionality reduction methods also can be considered as an unsupervised learning
algorithm that learns a representation of data [68]. It consists of reducing the dimension, or the
number of variables to improve a downstream task. Reducing the dimension has several benefits:
reducing the computational burden by compressing features, improving the behaviour of learning
algorithms by finding useful variables, or enabling direct visualization and interpretation. These
techniques can be divided into feature extraction and feature selection. Approaches identify a
suitable subset of the original variables to represent the data. In contrast, feature extraction
constructs new variables that include a substantial amount of global information.

Dimensionality reduction is a problem involving data approximation in high-dimensional vector
spaces. The simplest method is to reduce all data to a single representative value, such as the
mean or standard deviation. Then, data can be approximated more finely using projections on
hyperplanes. These methods are called linear dimensionality reduction with principal component
analysis (PCA) as a typical representative. This technique is based on linear algebra to learn
the orthogonal projection of data with lower dimensionality than the original input. Other linear
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methods can be mentioned as non-negative matrix factorization, random projections, compressed
sensing, and multi-dimensional scaling. Non-linear dimension reduction [118] or manifold learning
are techniques to approximate data by learning low-dimensional embeddings to maintains global
and local structures of the data. Such methods include locally linear embedding [171], isomap
[201], spectral embedding [180], laplacian eigenmap [16], kernel PCA [182].

Neural networks are another important aspect of nonlinear dimension reduction. Deep learn-
ing [116] aims to learn effective representations using multi-layer neural networks, whether it is
supervised or unsupervised. In the next chapter, concepts of neural networks will be presented.

Clustering is one of the most common tasks in unsupervised learning. It consists in finding
meaningful groups of individuals in an unlabeled data set. In exploratory data analysis, this
provides insight into the structure of a dataset and can also be used for classification, where
data points are coded with a clustered index. An object can be described by a set of features
or by its relationship to other objects, such as a distance or affinity matrix. Popular clustering
methods range from simple methods such as k-means clustering and mean-shift clustering to
complex methods such as Gaussian mixture models or hierarchical clustering. However, clustering
is outside the scope of this work and will not be used throughout the thesis, so we will not present
them in detail.

2.1.3 Other concepts

2.1.3.1 Training, testing, validation sets

Machine learning algorithms usually consist of many hyperparameters and settings that we can use
to control the behavior of the algorithm. The learning algorithm does not adapt to the values of
hyperparameters. Sometimes a setting is chosen as a hyperparameter that the learning algorithm
does not learn because the setting is difficult to optimize. More often, the setting must be a
hyperparameter because it does not make sense to learn that hyperparameter on the training set.
This is true for all hyperparameters that control model capacity. When learning on the training
set, such hyperparameters would always choose the maximum possible model capacity, which
would lead to overfitting.

A data set is usually divided into training, testing, and validation sets. While the role of the
training and testing sets is completely significant, the validation set aim to support the tranining
process to avoid overfitting or underfitting problem. The validation set consists of examples also
from the same distribution as the training set and can be used to estimate the generalization error
of the model after the learning process is complete.

The test examples may not be used to make decisions about the model, including its hyperpa-
rameters. Therefore, no example from the test set can be used in the validation set. The training
set is used to learn the parameters, while the validation set is used to estimate the generalization
error during or after training and update the hyperparameters accordingly. Since the validation
set is used to train the hyperparameters, the error of the validation set underestimates the gener-
alization error, but usually by a smaller amount than the training error. After the optimization
of the hyperparameters is complete, the generalization error can be estimated using the test set.
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2.1.3.2 Overfitting and underfitting

The key challenge in machine learning is that algorithms must also perform well on new, previ-
ously unknown inputs, not just those on which our model has been trained. Generalization is the
capacity to perform well on previously unobserved inputs. During the training phase, typically
only the training set is accessed. The training error, is computed and reduced during measure-
ment on the training set. So far, this has been considered simply as an optimization problem.
Machine learning differs from optimization in that we seek to minimize the generalization error.
The generalization error defines the expected value of the error given on new inputs. Here the
expectation is taken across different possible inputs, drawn from the distribution of inputs we
expect the system to encounter in practice.The generalization error of a machine learning model
is estimated by measuring its performance on a separate test set than the training set.

One immediate connection that can be observed between the training error and the test error
is the standard training error of a randomly selected model equal to the expected test error of
that model. The factors determine how successfully an machine learning algorithm will be able to
reduce the training error and maintain the smallest gap between the training error and the test
error. These two factors remain to the two primary challenges in machine learning: underfitting
and overfitting.

Underfitting occurs when the model cannot obtain a suitably low error value on the training
set. The model cannot generalize over the dataset and then provide low performance.

Overfitting occurs when the difference between training error and test error is excessively
high. In practice, it is observed when a model achieves high accuracy on the training set but low
performance on the test set. It can happen when the model is too complex or the unbalance of
samples between classes in the dataset. Figure 2.1 illustrates examples of overfitting, underfitting
and usual models.

Figure 2.1: An example of overfitting, underfitting and usual performance.

It is possible to control whether a model is likely underfit or overfit by controling its capacity.
Capacity of a model is its adaptability to fit a wide variety of functions. Low-capacity models may
have difficulty to fit the training set. High-capacity models may overfit by memorizing properties
of the training set that are ineffective on the test set. Choosing the hypothesis space and the set
of functions is refered as an effective solution for regulating the capacity of a learning algorithm.
For example, the linear regression algorithm has the set of all linear functions of its input as its
hypothesis space.
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2.1.3.3 Cross-Validation

Dividing the data set into training and test set only once can become a problem without considering
of ratio between these sets. A small test set implies statistical uncertainty around the estimated
average test error, making it challenging to assert that algorithm, particularly when the dataset
is small. In this situation, alternative training procedures based on repeating the training and
testing computations on randomly selected subsets or splits of the original dataset are typically
used. The k-fold cross-validation procedure is the most common technique, in which a partition
of the data set is formed by splitting it into non-overlapping subsets. The test error is estimated
by finding the average test error over a few steps. A subset of the data is used as the validation
set, while the rest of the data is used as the training set. In this way, the model can take all the
examples to estimate the average test error, but at the cost of more computational cost.

Cross-validation is a very efficient technique to overcome the limitations of training on small
datasets. It can improve the performance of the model in terms of representation and general-
ization. On the other hand, cross-validation still faces the problem that there are no unbiased
estimators for the variance of such estimators of the mean error, so it is usually approximated
[20]. Figure 2.2 demonstrates the training phase using k-fold cross validation.

Figure 2.2: Cross validation.

2.2 Deep Neural Network

Artificial neural networks, usually called neural networks, are computing systems based on a col-
lection of connected units or nodes called neurons, which loosely model the neurons in a biological
brain. Like the synapses in a biological brain, each artificial neuron in the network can receive a
signal, and then transmit it to neurons connected. In this case, the signal at a connection is a real
number, and the output of each neuron is computed using a nonlinear function of the sum of its
inputs. The interconnections are known as edges. Typically, each neuron and synapse contains a
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weight to learn during training procedure. The value of weights reflects the signal strength at a
connection. Nodes may have a threshold such that a signal is only transmitted if the aggregate
signal exceeds it. Neurons are typically arranged into layers. Different layers can apply different
transformations to inputs. Signals transmits from the input layer to the output layer, traversing
the layers multiple times if necessary.

The term deep neural networks in deep learning refer to a computing system that contains a
series of stacked layers. Each layer is composed of different types of components from basic units
such as nodes to complex ones such as operators or blocks. A layer is connected to other layers
through a set of weights. The computation happens in each layer, where it combines input with a
set of parameters or weights that either amplify or dampen that input. The weight products are
then summed, and the sum is passed through the activation function to determine to what extent
the value should progress through the network to affect the final prediction, which depends on
task purposes.

2.2.1 Very first neural network

Feedforward networks, or multilayer perceptrons, are the classic deep learning model. They are
the most basic and extreme importance in the field of machine learning in general or deep learning
in particular. The goal of this network is to learn the approximation of a function that maps an
input to a category. The model is called feedforward because information flows through the func-
tion being evaluated from input, through the intermediate computations used to define mapping
function, and finally to the output. There are no feedback connections in which model outputs
are fed back into themselves. They form the basis or are a part of many critical neural networks,
such as the convolutional networks for object recognition; or the conceptual stepping stone on the
path to recurrent networks

In a feedforward network, units are typically connected together by many different functions,
while the number of layers defines the depth of the network. The final layer of a feedforward
network is called the output layer. The behavior of the other layers is not directly specified by
the training data. Because the training data does not show the desired output for each of these
layers, they are referred as hidden layers. Typically, each hidden layer is vector-valued. The size
of hidden layers determines the network width. Because each unit receives input from numerous
other units and computes its activation value, it resembles a neuron.

2.2.2 Neural network training

Every neural network has to be trained. The goal of the training network is to find the best
configuration of parameters that can produce results with the highest accuracy possible. In the
beginning, a neural network may start with the random initialization of weights. That means all
neurons in a given layer produce an output, and they have different weights for the next neural
layer. The values of weights are adjusted to fit with data during the training phase. A significant
weight means that the input is important, while a small weight means that it has less impact. The
goal is to find another value of parameters that performs better than the initial one. In training,
using layers to produce the output is called the forward pass. However, in neural network design,
the weights of units cannot be updated by themselves because there are no feedback connections
where outputs of the model are fed back into itself. Hence, once the output has been calculated,
the system will re-propagate the evaluation error using the back-propagation algorithm [174]. The
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system will adjust the weights of the different inputs into each neuron with a given step which is
called the learning rate.

To evaluate the training phase, the objective is to minimize the error between the predicted
output made by the neural network and the actual data. This difference is represented by a
function called the loss function, cost function, or error function. The process to minimize or
maximize a function is called optimization. Gradient Descent (GD) is an iterative optimization
algorithm for finding the local minimum of a function. To find the local minimum of a function
using gradient descent, we must take steps proportional to the negative of the gradient that moves
away from the gradient of the function at the current point. Besides, there are a lot of algorithms
that optimize functions. These algorithms can be gradient-based or not, in the sense that they
are not only using the information provided by the function but also by its gradient. The details
of neural network components and training concepts are presented in the following sections.

2.3 Concepts and terminology

2.3.1 Activation function

An activation function decides whether a neuron should be activated or not. It means that it will
decide whether the neuron input to the network is important or not in the process of prediction
using simpler mathematical operations. The primary function of the activation function is to
transform the summed weighted input from the node into an output value to be fed to the next
hidden layer or as output.

In general, each neuron performs a linear transformation on the input using weights and biases
without considering the number of hidden layers attached to the network. If there is no activation
function, all layers will conduct in the same way because the composition of two linear functions
is a linear function itself. The purpose of an activation function is to add non-linearity to the
neural network.

Different neural networks use different non-linear activation functions such as sigmoid, tanh,
or rectified linear unit (ReLU) activation function, etc. Among that, ReLU and its variations have
become very popular in the last few years. The formula of ReLU is defined as:

f(x) = max(0, x) (2.1)

where x is the output from a hidden unit.

Although it gives the impression of a linear function, ReLU has a derivative function and allows
for back-propagation while simultaneously making it computationally efficient. The main catch
here is that the ReLU function does not activate all the neurons simultaneously. The neurons will
be activated if the output of the linear transformation exceeds 0. However, units after ReLU can
be fragile during the back-propagation process, called the dying ReLU problem, when a ReLU
neuron causes the weights to update so that the neuron will never activate on any data point again.
The gradient flowing through the unit will always equal zero from that point on. Therefore, ReLU
variants such as leaky ReLU, parametric ReLU, and exponential linear unit (ELU) are used to
handle the slope of the negative part in the dying ReLU issue.

The sigmoid activation function is also very popular in neural networks. It produces an output
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within the range [0, 1], which is a probability. The sigmoid function is defined as:

f(x) =
1

1 + e−x
(2.2)

where x is the output from a hidden unit.

In fact, it is commonly used for models to predict the probability of an output. Since the
probability of anything exists only between the range [0, 1], the sigmoid solves it well because of
its range. However, when the output requires probabilities for multiple classes, the sigmoid cannot
return the correct values. Thus, the softmax function is used to calculate the relative probabilities
that return each class’s probability. It is most commonly used as an activation function for the
last layer of the neural network in the case of multi-class classification. The softmax function is
defined as:

fi(x) =
exi∑K
j=1 e

xj

(2.3)

where xi are the elements of the input vector with size K to the softmax function, exi is
standard exponential function applied to each element of the input vector and

∑K
j=1 e

xj are the
sum of of all exponential function of all input. It ensures that value of output will be in range [0,
1] and sum equal to 1, thus constituting a valid probability distribution

2.3.2 Loss function

In machine learning, a loss function presents the cost paid for the difference between the expected
and predicted outcomes produced by the model. The training of neural networks is similar to an
optimization problem that seeks to minimize a loss function.

A neural network attempts to learn the probability distribution underlying the given data
observations. In machine learning, the common term of the statistical framework of maximum
likelihood estimation is used as a basis for model construction. It means it tries to find a set of
parameters and a prior probability distribution, such as the normal distribution, to construct the
model representing the distribution over our data.

Along with the development of deep learning, there are many different loss functions. From
single loss functions such as MSE, cross-entropy, L1 and L2 Regularization, etc., in classic neural
networks such as MLP to composed loss functions built from basic functions such as adversarial
loss, perceptual loss, or cycle-consistent loss seen in recent neural networks.

2.3.3 Back-propagation

As introduced in the previous part, back-propagation [174] is an algorithm that is used to train
neural networks by adjusting weights and biases in the network so that they cause the predicted
output to be closer to the expected output, thereby minimizing the cost function. The gradients
of the cost function determine the level of adjustment with respect to those parameters.

To train a feed neural network with backpropagation, there are three main components:
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• A dataset X consisting of N pairs of input and output (xn, yn) denoted as:
X = {(x0, y0), ..., (xN , yN)} where yn is desired output of the network on input xn

• A feedforward neural network consisting of m layers l with θ parameters. The parameters
of primary interest are the weight wk

ij of node j in layer lk and node i in layer lk−1; and bias
bki for node i in layer lk

• The loss function, E(X, θ), which defines the error between the desired output y and the
calculated output ŷ of the neural network on input x for set of pairs and value of the
parameters θ.

Algorithm 1 Classic back-propagation
Require: α, a fixed learning rate
Require: random initialization of the parameters wk

ij

aki , product sum plus bias for node i in layer lk
oki , output for node i in layer lk
δki , the error value for node i in layer lk
rk, number of nodes in layer lk
for n=0 to N do
Forward phase
(aki , o

k
i ) ← feedforwards(xn, w

k
ij)

Backward phase
1. Evaluate the error term for the final layer: δm1 ← am1 (ŷn − yn)

2. Backpropagate the error terms for the hidden layers at layer k = m− 1 :
δkj ← akj

∑rk+1

l=1 wk+1
il δk+1

1

3. Evaluate the partial derivatives of the individual error En with correspond to wk
ij:

∂En

∂wk
ij
←δkj o

k−1
i

Combine gradients
Total gradient: ∂E(X,θ)

∂wk
ij

= 1
N

∑N
n=1

∂En

∂wk
ij

Update weights
According to the learning rate α and total gradient ∂E(X,θ)

∂wk
ij

:

∆wk
ij = −α

∂E(X,θ)

∂wk
ij

end for

The back-propagation algorithm is formally described in algorithm subsection 2.3.3. When a
feedforward neural network uses an input x and produces an output ŷ, information flows forward,
then propagates up to the hidden units at each layer, and finally generates ŷ. This is denoted as
the feedforward in algorithm subsection 2.3.3.

The back-propagation allows the information produced from forward flow to backward through
the network to compute the gradient using a simple and inexpensive procedure. Computing deriva-
tives by propagating information through a network in back-propagation can balance the trade-off
between the difficulty of analytically finding the derivative for each neural network architecture
and the computation cost of approximating the derivative. In general, back-propagation refers to
the method that can compute the gradient of any function. Optimization algorithms in neural
network training, such as stochastic gradient descent, are used to perform learning using this
gradient.
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2.3.4 Optimization

Deep learning approaches require optimization in several contexts, and neural network training
is known as the most common and challenging problem. Network training aims to find set of
parameters that significantly minimize the loss function, reflecting the difference between model
output and desired output. When the loss functions are reduced to an acceptable value, models
can learn the mapping function.

As previously mentioned, training neural networks is generally expensive in resources and com-
putational time. For its resolution, a set of specific optimization techniques has been developed.
There are several choices for optimizers, where each optimizer features tunable parameters like
learning rate, momentum, and decay. The most commonly used optimizers are stochastic gradient
descent (SGD), Adaptive Moments (Adam), and Root Mean Squared Propagation (RMSprop).
Adam and RMSprop are variations of SGD with adaptive learning rates. Adam is used in the
proposed classifier network since it has the highest test accuracy.

Stochastic Gradient Descent (SGD) ,and its variants are considered the most fundamental
optimizer for deep learning. It is a faster version of the gradient descent (GD) in calculus. In
gradient descent, tracing the curve of a function downhill finds the minimum value, much like
walking downhill in a valley until the bottom is reached. By comparison, the actual gradient of
the total cost function becomes small and then, when approached and reaches a minimum using
the batch gradient called batch gradient descent (BGD).

Deep learning models crave data. The more the data, the more chances of a model being good.
In BGD, all the examples are considered for every step of gradient descent. However, scaling BGD
is ineffective when training data is huge due to a large amount of computation. If computing the
loss function takes several floating-point operations, computing its gradient takes about three
times to compute. To tackle this problem, SGD is a better solution to optimize training. In SGD,
only one set is considered at a time to take a single step. A set is fed into the network first to
calculate the gradient; then, the output is used to update weights. The process is repeated for all
the examples in the training dataset.

Adaptive gradient (AdaGrad) [55] is a simple modification of SGD, which implicitly
does momentum and learning rate decay by itself. Using AdaGrad often makes learning less
sensitive to hyper-parameters. However, it often tends to be worse than precisely tuned SDG
with momentum. AdaGrad adjusts the learning rate of all models individually by scaling them
inversely proportional to the sum of all the gradient squared previous values. While parameters
with small partial derivatives experience a relatively moderate fall in the learning rate, those with
the most significant partial derivatives of the loss experience a similarly substantial decrease in
learning rate. As a result, more significant progress is made in the parameter space in more
gently sloping directions. AdaGrad is advantageous in convex optimization and has specific good
theoretical characteristics. However, empirically, the growth of squared gradients from the start
of training can lead to an early and disproportionate drop in the effective learning rate. AdaGrad
operates well for some deep learning models, but not all in general.

Root mean square propagation (RMSProp) [79] is a modification of AdaGrad to perform
better in the nonconvex setting by changing the gradient accumulation into an exponentially
weighted moving average. AdaGrad is designed to converge rapidly when applied to a convex
function. When applied to a nonconvex function to train a neural network, the learning trajectory
may pass through many different structures and eventually arrive at a locally convex bowl region.
Before reaching the convex structure, AdaGrad may have made the small learning rate by shrinking
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it in accordance with the entire history of the squared gradient. On the other hand, RMSProp
behaves as if it were an instance of the AdaGrad algorithm initiated within the identified convex
bow by discarding history from the distant past using an exponentially decaying average.

Adaptive moment estimation (Adam) [102] is another adaptive learning rate optimiza-
tion algorithm. It uses momentum [160] and adaptive learning rates to make training converge
faster. When learning rates are reduced to a pre-defined schedule throughout the training phase,
adaptive learning rates are thought of as modifications to the learning rate, while momentum is
a method that accelerates SGD in the relevant direction. First, in Adam, momentum is incorpo-
rated directly as an estimate of the first-order moment of the gradient. Then, Adam includes bias
corrections to the estimates of both the first-order and second-order moments to account for their
initialization of the origin.

Currently, SGD with momentum, RMSProp, RMSProp with momentum, AdaDelta, and Adam
are the most widely used optimization algorithms. It appears that the researchers expertise with
the algorithm will significantly impact the algorithm to be used.

2.3.5 Learning rate

The learning rate is a hyperparameter that determines how much the model is controled in response
to the estimated error whenever the model weights are updated. During the network training,
optimizers provide the steps in the current direction of the slope, while the learning rate gives the
length of each step that it take. The learning rate helps the network to abandon old beliefs for
new ones.

Defining the learning rate is very important for network training because a too small value
can lead to a long training process that could get stuck, while a too large value can lead to a
suboptimal set of weights being learned too quickly or an unstable training process. Learning
rate is a very critical hyperparameter in neural network configuration. Therefore, it is necessary
to understand how to study the effects of the learning rate on model performance and to develop
adaptive learning rate on model behavior.

2.3.6 Batch Normalization

Ensuring that the weights of the network stay within a reasonable range of values are a common
issue when training a deep neural network. The network suffers from the exploding gradient
problem if they become too large. As errors are propagated backwards through the network, the
calculation of the gradient in the early stages can occasionally become exponentially large, leading
to dramatic fluctuations in the weight values. When weights have grown large enough to cause an
overflow error, it leads to vanishing gradients.

In general, it does not appear at the beginning of network training. However, it can happen in
the middle of training or even after a few epochs when suddenly, the loss function fails to return
a finite value, and the network has exploded. It can be incredibly irritating, especially if the
network has appeared to be performing well for a while. It causes by the scaling of input data
into a neural network which aims to guarantee a stable beginning to training over the initial few
iterations. Since the network weights are initially randomized, unscaled input could potentially
create huge activation values that immediately lead to exploding gradients. Because the input is
scaled, it is natural to expect the activations from all future layers to be relatively well-scaled. It
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may be true initially, but as the network trains and the weights deviate from their initial random
values, this assumption can break down. This phenomenon is known as covariate shift [84].

To remain stable, each layer implicitly assumes that the distribution of its input from the
layer beneath is approximately consistent across iterations when the network updates the weights.
However, since nothing prevents any activation distributions from significantly shifting in one
particular direction, this can occasionally result in runaway weight values and an overall collapse
of the network.

Batch normalization [84] is an approach that significantly reduces this issue. The solution
is relatively straightforward. The mean and standard deviation are calculated for each input
channel across the batch by a batch normalization layer, which then normalizes by subtracting
the mean and dividing by the standard deviation. The scale and shift are the following two learned
parameters for each channel. The output is simply the normalized input that has been shifted by
beta and scaled by gamma.

In practice, batch normalization is usually used as a layer after convolutional layers or fully
connected layers to normalize the output. During training, a batch normalization layer calculates
the moving average of each channel mean and standard deviation and stores this value as part of
the layer. There are two trainable parameters within a batch normalization layer: the scale and
shift. The moving average and standard deviation are nontrainable parameters, although they
need to be calculated for each channel. However, they are derived from the data passing through
the layer rather than trained through backpropagation.

Figure 2.3: Dropout layer.

2.3.7 Dropout

Good training for a deep neural network is when it can generalize on unseen data rather than
simply remembering the training dataset. It only performs well on the training dataset but not the
test dataset, which leads to overfitting issues. To handle this problem, regularization techniques
are usually applied to ensure that the model is penalized if it starts to overfit. Among many
ways to regularize algorithms, dropout [81, 195] is one of the most popular methods. The idea
is straightforward. During training, each dropout layer chooses a random set of units from the
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preceding layer and sets their output to zero to remove it. Figure 2.3 illustrates dropout layer on
hidden units.

This addition significantly reduces overfitting by ensuring that the network does not become
overdependent on particular units or groups of units that, in effect, remember observations from
the training set. It prevents the network from relying too much on a particular unit; therefore,
knowledge is more evenly spread across the whole network. This makes the model much better at
generalizing to unseen data because the network has been trained to produce accurate predictions
even under unfamiliar conditions, such as those caused by dropping random units. There are
no weights to learn within a dropout layer, as the units to drop are decided stochastically. In
addition, the dropout layer does not drop any units during testing; hence the entire network is
used to make predictions.

2.4 Convolutional Neural Network

Convolution is a mathematical operation fundamental to many well-known image processing oper-
ations. It is performed by multiplying pixel by pixel windows by a part of the image and summing
the result. The result is more positive if the portion of the image exactly matches the filter and
more negative if the portion of the image is the inverse of the filter. A filter, sometimes called a
kernel, is a small matrix with a specific value. When the filter cuts through a group of pixels, it
combines the values of the pixels to obtain a new matrix that picks out a particular feature of the
input. Figure 2.4 indicates how convolutional operations work in the usual case.

Strides and padding are two additional parameters used in convolution in addition to the filter.
The step size demonstrates the range that layers use to move the filters across the input is specified
by the stride parameter. Therefore, increasing the stride causes the output to be smaller. For
instance, when strides equal 2, the output height and width will be half as large as the input. It is
useful for reducing the spatial size of the tensor as it passes through the network while increasing
the number of channels. Padding refers to zero pads added to the input data so that the output
size of the layer is identical to the input size. This allows the kernel to extend over the edge of
the image so that it fits exactly into the convolution step.

Figure 2.4: Convolutional operation.

Convolutional neural networks (CNN) [115] are specific neural networks that share weights
and parameters across space. A typical CNN consists of multiple convolutional layers, followed by
pooling layers and activation functions, and then a fully connected output layer. Convolutional
operators are used to designing convolutional layers.
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In convolutional network terminology, there are three primary components: the first argument
to the convolution is often referred to as the input, the second argument is the kernel, and the
output is the feature map. In machine learning applications, the input is referred to as a multi-
dimensional array of data, and the kernel is typically an array of parameters that are adapted
by the learning algorithm. The objective of convolution is to map and patch feature maps to
the desired feature maps through the kernels. A stride is the number of elements in the multi-
dimensional array that is shifted each time along with the kernel.

Unlike feedforward networks, where each unit contains an independent weight, the values
of each element in the filters are the weights learned by the neural network through training.
Therefore, it is considered that weights are shared between units. These values are initially
random, but the filters gradually adapt weights to pick out interesting features such as edges or
colour combinations. Parameter sharing refers to using the same parameter for more than one
function in a network. In a conventional neural network, each component of the weight matrix is
used precisely once when calculating the output of a layer. It is multiplied by one input element
before being left alone. In a convolutional neural net, each kernel member is used at every position
of the input. Since the convolution operation uses parameter sharing, the network only learns one
set of parameters in general rather than multiple sets for each location.

Convolutional layers in a CNN are usually stacked together to form a pyramid-like structure.
After each convolution layer, input is reduced in the spatial dimension while the feature map size
is increased, roughly equivalent to its semantic complexity. Figure 2.5 illustrates a conventional
convolutional neural network used for image classification.

Figure 2.5: Convolutional neural netowrk architecture.

2.5 Representation learning

In machine learning, representation learning [19] presents a set of techniques enabling a system to
exploit the representations required for features from raw data automatically. It replaces manual
feature engineering and allows a machine to learn and use the features to perform a specific task.
Representation learning can be either supervised or unsupervised. In supervised representation
learning, features are learned using labelled input data, while features are learned with unlabeled
input data in unsupervised representation learning.

For example, feedforward networks trained by supervised learning perform representation
learning. Linear classifiers, such as a softmax regression classifier, are frequently used as the
final layer, while the rest of the network work to learn a good representation of the classifier to
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perform the final task. In unsupervised algorithms, it has the main training objective but also
learns a representation as a side effect. No matter how a representation was created, it can be
applied to different tasks.

Along with conventional deep learning methods, shared learning algorithms [224] also are
becoming an exciting research topic in machine learning while they can share statistical strength
across different tasks, including using information from unsupervised tasks to perform supervised
tasks. Shared representations are useful when handling multiple modalities or transferring learned
knowledge to tasks for which few or no examples are provided. Alternatively, multiple tasks can
be learned together with some shared internal representation.

Representation learning is exciting because it provides one way to perform unsupervised and
semi-supervised learning. For example, a dataset only includes a minimal amount of labelled
data, while the number of unlabelled data is significant. Severe overfitting frequently occurs
when supervised learning techniques are applied to the labelled subset. Semi-supervised learning
provides a way to overcome the overfitting issue by incorporating learning from unlabeled data.
The supervised learning task can be explicitly resolved by learning effective representations for
the unlabeled data.

2.5.1 Pre-train

Training deep neural networks with many layers remains a challenge due to the complexity of
the task and high computational cost. When the number of hidden layers increases, preserving
information propagated back to earlier layers is significantly reduced. It results that weights
in early hidden layers are rarely or never updated, whereas weights in final hidden layers are
typically updated. This issue, also known as the vanishing gradient problem, typically prevented
the training of very deep neural networks. It is a common problem in deep learning because as
more layers are added to neural networks, the gradients of the loss function approach zero, making
the network hard to train.

Greedy layer-wise pre-training, often known as pre-training, is a technique that initially allowed
the development of deeper neural network models. Pre-training aims at adding a new hidden layer
to a model and then retraining it. It allows the new model to learn to map on new inputs while
maintaining the parameters of the existing hidden layers of the old model. Pretraining works based
on the assumption that it is simpler to train a shallow network as opposed to a deep network, and
it devises a layer-by-layer training approach that fits a shallow model.

There are two primary pre-training strategies: supervised and unsupervised greedy layer-
wise pre-training. In general, the overall training scheme for both supervised and unsupervised
pre-training is nearly the same in most cases. During supervised pre-training, hidden layers
are successively added to a model trained on a supervised learning task. Unsupervised pre-
training, on the other hand, relies on a single-layer representation learning algorithm that learns
latent representations. Each layer is pre-trained by unsupervised learning, using the output of
the previous layer to generate a new data representation. There are two important factors for
unsupervised pre-training: the initialization of parameters and the learning distribution of input.
The initialization for neural network parameters can significantly affect to model regularizing,
whereas learning input distribution can extend the input-to-output mapping. When the number
of unlabeled examples is significant and can be used to initialize a model before using smaller
examples to fine-tune the model weights for a supervised task, unsupervised pre-training may be
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appropriate.

Even though the weights in the last layers are held constant for both tasks, it is common to
fine-tune all weights in the network after adding a new final layer. Pretraining is a significant
milestone in developing deep learning, as it enables the creation of networks with more hidden
layers than ever before.

2.5.2 Transfer Learning

Transfer learning refers to the topic in which a model learned to perform a task is exploited to
improve generalization in a task [251]. In general, transfer learning allows new models to perform
more than two different tasks, including tasks of the captured model. For example, a model is
trained to classify visual categories, such as bikes and cars, and then it can be used in the second
model to learn about different visual categories, such as planes and boats. Suppose the first model
contains significantly more data than the second. In that case, this may make it easier to learn
representations that can be quickly generalized using only a small number of examples from the
second model.

In general, transfer learning can be achieved via representation learning when there exist
features that are useful for different research purposes or tasks, corresponding to underlying factors
that appear in more than one setting.

Domain adaption [165, 18] is a sub-category of transfer learning where the task remains the
same between models, but the input distribution is slightly different. The objective is to use data
from the first model to extract information that could be useful for learning or even for making
predictions directly in the second model. The fundamental key of representation learning is that
the single representation may be effective in various contexts. Representation learning can take
advantage of the training data available for both tasks by using the same representation.

2.6 Conclusion

This section has provided an overview of machine learning with definitions and examples of super-
vised and unsupervised learning. The basic deep learning/deep neural network concepts are also
presented. Deep neural networks are generally completely flexible by design, and there are no fixed
rules for model architecture. In addition, the term convolutional layers and convolutional neural
networks are introduced. The concept of convolutional layers is a significant part of deep neural
networks, which has been successfully applied in many computer vision tasks. In the thesis, it has
been used to build generative neural networks to solve different problems within the objective.
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Chapter 3

Generative models

Deep learning algorithms hold great potential in computer vision, e.g., pattern recognition, clas-
sification, or regression. With this development, image synthesis using deep learning methods has
become a potential research area due to its tremendous advantages. Generative models describe
methods that produce outputs in a way that has no apparent relationship to probability distri-
butions over possible input samples. The term generative indicates the primary purpose of the
model: to generate new data.

Initially, generative methods were mostly based on statistical models, such as the Gaussian
mixture model, the Hidden Markov model, etc. Later, with the development of neural networks,
methods with autoencoders (AE) and later variational autoencoders (VAE) were widely applied.

When Ian Goodfellow et al. [69] first presented Generative Adversarial Networks (GAN), it
was a breakthrough in image synthesis. GANs have achieved remarkable results long thought to
be virtually impossible for artificial systems, such as transferring image styles or generating fake
images with near-realistic quality without requiring huge amounts of tediously labelled training
data. By proposing an architecture consisting of 2 separate neural networks, GANs have enabled
computers to generate impressively realistic data.

GAN is a class of generative models judged primarily on comparing specific outputs to potential
inputs. Before the invention of GANs, the best machines could produce a blurred countenance
- and even that was celebrated as a breakthrough success using AEs. Later, advances in GANs
enabled computers to synthesize false faces whose quality rivalled high-resolution portrait photos.

A generic GANs consists of two simultaneously trained models: the generator trained to gen-
erate fake data and the discriminator trained to discern the fake data from actual examples. As a
generative method, GAN aims to produce new data with desired content from the input. On the
other hand, the term "adversarial" points to the dynamic competition between the two models
that constitute the generator and the discriminator.

The generator goal in GAN is to produce examples that capture the characteristics of the
targets, so much so that the output it generates looks indistinguishable from real ones. The
generator might be considered as an object recognition model but in a reverse direction. Object
recognition algorithms learn the patterns of images to complete tasks. In contrast, the GAN
generator learns to create the patterns essentially from scratch rather than recognizing them. The
input to the generator is frequently just a vector of random numbers.

On the other hand, the discriminator goal is to determine whether a particular example comes
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from the training dataset or is created by the generator. Therefore, the generator knows it
did something right each time the discriminator is tricked into classifying a fake image as real.
Conversely, each time the discriminator correctly rejects an instance as fake, the generator receives
the feedback that it needs to improve.

The following section will introduce generative neural network architectures for image synthe-
sis. Starting with the most fundamental algorithm, the autoencoder (AE), we will present generic
AE several and its variants. Although AE has not been used during this PhD, it is an essential
part of modern deep learning for image synthesis, which achieved state-of-the-art before. We will
mention them briefly in terms of architecture. Then, we will introduce adversarial methods in
detail. It will be the most important part of this thesis when we provide the generic architec-
ture of GANs and their variants, which we have used extensively. The architecture GAN and its
generator and discriminator are separated neural networks. Depending on the complexity of the
GAN implementation, these can range from simple feed-forward neural networks to convolutional
neural networks or even more complex variants.

3.1 Autoencoders

Autoencoders are neural networks that are trained to extract useful representations and recon-
struct inputs in an unsupervised strategy while minimizing information loss [80]. AE models
learn the approximation of the identity function; while this may appear straightforward, it ex-
tracts critical representations from dimensionality reduction and higher-level features by imposing
various constraints on the network design and activations. Autoencoders have been utilized for
decades and can be viewed as a non-linear alternative to PCA with the capacity to learn complex
transformations of the input data. In addition, they can be trained with SGD, which has linear
complexity with the number of samples.

3.1.1 Architecture

The general architecture of AE is represented in Figure 3.1. An AE contains three components:
encoder, decoder and a latent space. The encoder maps the input from space X to a latent feature
space Z, and then the decoder reconstructs it back to the original data as closely as possible.
Latent space is typically a representation of a smaller dimension and acts as an intermediate
step. The generation part only happens in the latent space and the decoder. In other words,
autoencoders can systematically and automatically uncover these information-efficient patterns,
define them, and use them as shortcuts to increase the information throughput. The parametric
mapping pϕ(Z|X) from X to Z are represented by a neural network with parameters ϕ. In general,
only the Z is needed to be transmitted, which is typically much lower-dimensional, thereby saving
the bandwidth.

Here, the encoder can be represented by a function pϕ : X → Z, and qθ : Z → X , where ϕ
and θ are the parameters of encoder and decoder respectively. The goal of training is to tune the
parameters of the encoder and the decoder to find the best appropriate parameters for the two
networks and get a sense of how the examples are represented in the latent space.

max
ϕ,θ

E(X,Z)∼pϕ [logqθ(X|Z)] (3.1)
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Figure 3.1: General autoencoder architecture.

One of the critical distinctions with autoencoders is that it only requires one loss function to
train the whole network. First, the encoder is trained by passing the input X with the aim that
the decoder is managed to reproduce X̂ back as close to X as possible. That loss function is called
the reconstruction loss.

In other words, the reconstruction X̂ is presented for the mean of a distribution that has
generated X. In the case of continuous variables, Gaussian distribution is the most popular
approache which leads to the mean squared error (MSE) loss:

LMSE(X, X̂) = ||X − X̂||22 (3.2)

In case of binary variables, it can expressed to a probability which has range between [0,1],
the common choice is Bernoulli distribution which lead to binary cross-entropy loss:

LBCE(X, X̂) = −
N∑
i=1

X i log X̂ i + (1−X i) log(1− X̂ i)

3.1.2 Regularized AE

In general, AEs are constantly trained with some regularization to reduce the size of the hypothesis
space to learn good representations of the data called regularized AE [3]. The most basic form
of regularization is to use an intermediate feature space through a lower dimension, forcing the
model to learn an efficient code with fewer parameters.

There are two kinds of regularized AE: under-complete, where the internal layer has a smaller
number of units than the input AE and overcomplete, where the internal layer has more units than
the input layer. Both map the input space to a lower-dimensional feature space, thus reducing
non-linear dimensionality.
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Figure 3.2: Variational autoencoders architecture.

Regularized AE are trained not only to optimize the reconstruction error but with additional
constraints on the structure of the latent space. Several techniques have been proposed to pre-
vent autoencoders from learning the identity function and also to improve the ability to capture
important information and learn more meaningful representations. Among these, there are three
main classes: sparse, denoising and contractive autoencoder.

Sparse autoencoders [147, 135, 9] presented data compression by applying a theoretically high
number of units in each hidden layer, whereas only a set of units are active simultaneously.
Sparsed output are obtained by the use of KL-divergence distance [147] or L1 loss [9]. In contrast,
contractive autoencoders [169] utilize the loss function in the form of the squared Frobenius norm
of the Jacobian matrix in the encoder. It becomes equivalent to L2 weight decay in the case of a
linear AE.

Denoising autoencoders [217] learn to reconstruct a duplicated version of the input to minimize
loss when the input vector is produced by the stochastic corruption process , e.g, random dropout
or additive noise. Through the training to remove noise and recover the original data after noise
removal, the network learns useful representations and extracts valuable features from the input
distribution.

Later the stacked denoising autoencoders were proposed to enhance the performance of the
generic model for several reconstruction tasks. The stacked model applied the advantage of pre-
trained (Section 2.5.1) to initialize each layer to enhance the representation of the feature. It
consists in stacking several networks by using the output of each AE as the input of the next AE.
First, the network is pretrained using greedy layer-wise training [21]. Then, all encoder layers
followed by decoder layers are concatenated in reverse layer-wise training order, forming a deeper
network. Next, the stacked denoising autoencoder is finetuned on reconstruction error.
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3.1.3 Variational autoencoders

The standard under complete AE has limitations because latent spaces are unstructured objects
and may not be continuous or overfit. Theoretically, even a single continuous latent variable can
memorize the entire training set using one real number per sample.

Variational autoencoder (VAE) [103], a deep latent-variable probabilistic model, has solved
the existing problems. The original VAE is built based on Bayesian machine learning. VAE aims
to learn the distribution by finding the suitable parameters defining that function in latent space.
Samples are produced from the latent distribution and then fed into the decoder to reconstruct
the input. Figure 3.2 illustrates a general architecture of a VAE.

In VAE, the latent space is represented as a distribution composed of a learned mean and
standard deviation instead of a set of numbers. The decoder act as a generative model that
samples the data using the likelihood qθ(X|Z), while the encoder is an inference or recognition
model that applies the posterior distribution pϕ(Z|X). The goal of the encoder is to approximate
the posterior, which is intractable.

As a machine learning problem, it is necessary to define a loss function to update the network
weights through backpropagation. The objective is to jointly estimate the generative model pa-
rameters θ and the variational parameters ϕ to minimize the reconstruction error between input
and output of the network, using maximum likelihood estimation (Equation 3.1). Similar to AE,
the reconstruction loss of VAE are often mean squared error (Equation 3.2) and cross-entropy
(Equation 3.1.1). Besides, to maximize the log-likelihood to improve the generated data quality
and to minimize the distribution distances between the real posterior and the estimated one, VAE
introduced the evidence of lower bound loss function (ELBO), which, based on Kullback–Leibler
divergence [103]. In addition, to make the ELBO suitable for training purposes, the reparameter-
ization trick is a sampling technique while maintaining different operations to allow end-to-end
optimization by backpropagation [104].

Later, several studies were proposed with the aim of improving the performance of VAE.
Popular studies can be highlighted, such as β-VAE [78] which uses tunable β hyperparameter
weights to balance the ELBO loss, ladder VAE [192] which applies the batch normalization and
deterministic warm-up to train the variational models with many stochastic layers. Other methods
use multiple stochastic variables such as: importance weighted autoencoders [31], normalizing
flows [168], inverse autoregressive flows [105], Variational Gaussian Processes [76]. Finally, recent
studies has been demonstrated to improve the latent space structure and disentanglement such as
: InfoVAE [246], β-TCVAE [36], FactorVAE [99], π-VAE[143].

3.2 Generative adversarial network

GANs are still considered part of the unsupervised learning strategy in deep learning, even through
the automated labelling process. GANs are extremely potent because they can perform complex
tasks instead of latent space interpolations of the autoencoder.

The main concept of GANs is straightforward. As a generative model, GAN contains two
components: generator and discriminator, to learn the input distribution to produce samples. The
primary function of the generator is to generate new examples that can fool the discriminator,
while the discriminator is trained to classify that examples are generated or real data. Figure 3.3
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Figure 3.3: General GAN architecture.

illustrates the general architecture of a GAN model. In the ideal case, at the end of the training
process, the discriminator will no longer be able to see the difference between the synthetically
generated data and the real ones, and the generator can then be used to generate new, never-
before-observed, realistic data.

The idea of training both the generator and discriminator simultaneously in order for both
networks to learn the distribution of data is an exciting research topic. However, achieving stable
training in the generator-discriminator network is not easy. When the discriminator computes the
lost functions, network weights are rapidly updated. However, if the discriminator converges faster
than the generator, it cannot receive sufficient gradient updates for parameters and consequently
fails to converge. Moreover, GAN training is also affected by the partial or total modal collapse,
where the generator produces nearly identical outputs for different latent encodings.

This section describes the concepts underlying GAN. Then, advanced concepts, including GAN
and its variants, will be covered.

3.2.1 Adversarial architecture

Following Goodfellow et al. [69], GAN contains a generator G and a discriminator D. Formally,
the generator and the discriminator are represented by differentiable neural networks, each with
its cost function.

To regularize terms for the adversarial explanation, we use x to present real data, and z
represents an arbitrary encoding or noise vector to synthesize new signals. Mathematically, the
generator works to produce G(z) = x̂ that is supposed to be as close to a real example as possible,
x̂ ≈ x. The discriminator takes either a real example x or a fake example x̂ to classify. For the
real examples, D(x) seeks to be as close as possible to 1, while for fake examples, D(x̂) strives to
be as close as possible to 0, while the generator strives to produce fake examples x̂ ≈ x such that
D(x̂) is as close to 1 as possible.

The goal of adversarial training is to solve the adversarial min-max problem in Equation 3.4.
The generator aims to minimize errors while the discriminator tries to maximize them. The final
objective is to train the generator G to fool a differentiable discriminator D that is trained to
distinguish generated SR images from A images. With this approach, the generator can learn
to create highly similar solutions to real images, hence difficult to classify by D. The generator
can learn to produce extremely similar solutions to real images, making them challenging for D to
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classify. This promotes the existence of perceptually superior solutions in the subspace or manifold
of real images.

min
G

max
D

Ex∼ pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.4)

where pdata(x) and Ex∼pdata(x) are respectively the empirical distribution and data distribution
of real data x [67], while the pz(z) present for a prior on input variables.

Significantly, the training dataset determines the kind of examples the generator will learn to
emulate. The input to the generator can be any kind of data, and the output is a synthesized one
with desired content. Meanwhile, the discriminator input is the real or synthesized data. Genuine
data comes from the true sampled data, while the generator produces the generated data.

The goal of the generator is to produce examples that capture the data distribution of the
training dataset, while the discriminator learn distribution to distinguish real data from fake
data. It acts as a classifier to produce the probability of a given sample. All valid data is labelled
as a value in the range [0.0, 1.0]. Algorithms 2 summary the training process of a GAN model.

Algorithm 2 GAN training algorithm
for each training iteration do

• Train the discriminator:

1. Take a random mini-batch of real examples x

2. Take a mini-batch of random noise vectors z and generate a mini-batch of fake exam-
ples: G(z) = x̂.

3. Compute the classification losses for D(x) and D(x̂), and backpropagate the total error
to update θD to minimize the classification loss.

• Train the generator:

1. Take a mini-batch of random noise vectors z and generate a mini-batch of fake exam-
ples: G(z) = x̂.

2. Compute the classification loss for D(x̂), and backpropagate the loss to update θG to
maximize the classification loss.

end for

Both generator and discriminator are trained using backpropagation. Theoretically, the gener-
ator and discriminator are trained simultaneously. However, the generator and the discriminator
are trained alternatively in practice. During classifying, only the discriminator parameters will be
updated. The discriminator is trained to classify the given input as the real or generated sample.
At regular intervals, the generator defines its output as actual data and labels it 1.0. When that
sample is presented to the discriminator, it will be classified as fake with a label close to 0.0 by
default.

On the other hand, the generator parameters can only be updated only when it produces a
realistic sample. During the generative phase, the discriminator parameters are typically tem-
porarily frozen in practice. The gradients are then allowed to backpropagate from the final layer
of the discriminator to the initial layer of the generator. The generator will finally utilize the
gradients to update its parameters and enhance its ability to generate realistic samples.

Overall, the process is comparable to two networks competing against one another while also
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cooperating. When models converge, they can synthesize data that appears genuine. The discrim-
inator believes that the synthesized data is real or has a label near 1.0, allowing it to be discarded.
The generator component will be useful for generating meaningful outputs from random noise
inputs.

3.2.2 Loss function

Following the standard notation, let LG denote the generator loss function and LD for the dis-
criminator loss function. Parameters of two networks are represented by θG for the generator and
θD for the discriminator.

In contrast, GANs consist of two networks whose cost functions depend on both network
parameters. Hence, the generator loss function is LG(θG, θD), and the discriminator lost function
is LD(θG, θD). A neural network can generally tune all its parameters during the training process.
However, each network can tune only its own parameters in a GAN. The generator can control
only θG, while the discriminator can tune only θD during training. Accordingly, each network has
control over only a part of what determines its loss. Because each loss function depends on the
other network parameters, but each network cannot control the other network parameters, this
scenario is most straightforward to describe as an optimization problem. Hence, it is not easy to
balance the parameters for both networks to ensure efficient training.

The cost used for the discriminator is:

LD(θG, θD) = −Ex∼ pdata [logD(x)]− Ez∼pz [log(1−D(G(z)))] (3.5)

This loss function is based on the standard cross-entropy cost that is minimized when training
a standard binary classifier with a sigmoid output. It is the negative sum of the expectation of
correctly identifying real data D(x), and the expectation of correctly identifying synthetic data,
1D(G(z)). The log does not change the local minima.

The loss value of the generator is based on zero-sum, in which the sum of all loss functions for
both networks is always zero. Hence, it is simply the negative of the discriminator loss function
[67].

LG(θG, θD) = −LG(θG, θD) (3.6)

Thus, based on Equation 3.6, from the perspective of the generator, its loss functions should be
minimized, but from the point of view of the discriminator, its loss function should be maximized.
Maximizing with respect to θD, the optimizer updates gradient on discriminator in order to pretend
synthesized sample to be real. Simultaneously, by minimizing with respect to θG, the optimizer
updates parameters of generator to fool the discriminator.

3.2.3 Training GAN difficulty

Training a GAN can be complicated since it has to balance the training of two separated neu-
ral networks simultaneously. Several studies have figured out shortcomings of GAN training in
different scenarios [87, 60]. These drawbacks of GAN training can be categorized into five main
tasks:
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• Oscillating loss: the loss of the discriminator and the generator may start to oscillate wildly
instead of showing long-term stability. Typically, the loss fluctuates slightly between batches.
However, it is expected to stabilize or gradually increase/decrease rather than fluctuate
erratically to ensure that your GAN converges and improves over time.

• Mode collapse: it occurs when the generator exploits a small number of examples that trick
the discriminator and, as a result, cannot generate any other examples. The generator, for
instance, is trained over multiple batches without updating the discriminator in between.
The generator would tend to identify a single mode that consistently fools the discriminator,
at which point it would assign every point in the latent input space to that observation. This
indicates that gradients of loss function can reach zero. Even if the discriminator is retrained
to avoid being fooled by this generator, the generator will simply find another mode that fools
the discriminator, as it has become accustomed to its input and therefore has no incentive
to diversify its output.

• Uninformative loss: since deep neural networks are compiled to minimize the loss function,
it is reasonable to assume that the smaller the loss function of the generator, the higher
the image quality. The loss functions cannot be compared to evaluate them at different
stages of the training process because the generator is only evaluated against the current
discriminator and the discriminator is constantly improving. Because there is no correlation
between generator loss and quality of data, it can be challenging to monitor GAN training.

• Overgeneralization: when the model produces outputs with more content than expected or
vice versa. This happens when GAN overgeneralizes and learns things that should not exist
based on the real data.

• Hyperparameters: there are several hyperparameters that must be configured. In addition
to the discriminator and generator overall architecture, there are stack normalization pa-
rameters, dropout, learning rate, activation layers, convolutional filters, kernel size, striding,
batch size, and latent space size to take into account. GANs are extremely sensitive to
small changes in each of these parameters, and finding a working set of parameters is often
a matter of trial and error as opposed to following a set of predetermined guidelines.

Recently, several solutions have been proposed to solve the difficulty of training GAN and also
to improve the training process, such as increasing network depth [67], feature matching [178],
mini-batch discrimination [84], normalization techniques, etc.

Besides, as mentioned previously, training GAN is based on the min-max problem. The dis-
criminator minimizes the loss function, but the generator maximizes the same loss function. This
is unfortunate for the generator because when the discriminator successfully rejects generator
samples with high confidence that lead to the gradient vanishes for the generator. As a result,
the generator fails to converge. In practice, the discriminator is confident in its prediction in
classifying the synthetic data as fake and will not update the GAN parameters. Furthermore, the
gradient updates are small and have diminished significantly as they propagate to the generator
layers. To solve this problem, the non-saturating GAN techniques are used to solve this problem.
In order to keep minimizing the loss function on the generator while maximizing it on the dis-
criminator, the content of the loss function for the generator is flipped to construct the new loss
function. The cost for the generator then becomes:

LG(θG, θD) = −Ez∼ pdata logD(G(z)) (3.7)
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By training the generator, the loss function simply maximizes the likelihood of the discrimina-
tor believing that the synthetic data is real. The new formulation is purely heuristic and no longer
zero-sum. The generator parameters are updated only after the entire adversarial network has
been trained. Because gradients are transmitted from the discriminator to the generator. During
adversarial training, the discriminator weights are frozen only temporarily.

3.2.4 Deep Convolutional GAN

In general, the architecture of the generator and discriminator can be any model. It can range
from a simple feed-forward neural network with a single hidden layer to a deep neural network. If
the data is an image, both the generator and discriminator networks will use a CNN. That GAN
architecture using deep CNN is known as Deep Convolutional GAN (DCGAN).

The first DCGAN was introduced in [163] in 2016, marking one of the most important early
innovations in GANs. It was not the first attemp to use CNNs in GANs, but it was the first time
group of researchers were able to successfully integrate CNNs into a full-scale GAN model. In
fact, the use of CNNs increase the difficulty for GAN training due to the instability and gradient
saturation. Existing challenges require researchers to propose alternative approaches, such as the
LAPGAN [50]. This method applied a cascade architecture within a Laplacian pyramid, whereas
the model is trained at each level using the GAN framework.

The DCGAN introduced a new scheme and optimizations to scale up CNN architecture to
the full GAN framework. It did not require to reduce general GAN architecture or modify the
underlying GAN. By using batch normalization [84] during feature extraction, the network can
stabilize the training process by normalizing inputs at each layer.

Normalization is the technique to scale data to reduce the size of the computation. Normal-
ization has several advantages. Perhaps most important, it makes comparisons between features
with vastly different scales easier and, by extension, makes the training process less sensitive to
the scale of the features. The idea behind is to normalize the inputs to each layer for each training
minibatch as it flows through the network. And as the parameters get tuned by back-propagation,
the distribution of each layer input is prone to change in subsequent training iterations, which
destabilizes the learning process covariate shift [84]. Batch normalization solves it by scaling values
in each minibatch by the mean and variance of that mini-batch.

3.2.4.1 Generator

CNNs have traditionally been used for classification tasks, in which the network takes in multi-
dimensional data as input and—through a series of convolutional layers—outputs a single vector
of class scores which relate to the probability of input for a domain.

In order to generate an image by using the CNN architecture, instead of taking an image and
processing it into a probability vector, hidden layers are added to transform feature maps into
images. The key to this process is the upsampling method.

The generator starts with an input which is in the form of a multi-dimensional matrix. Though
fully connected layers, features are extracted and reshaped into a smaller size and larger depth.
Then, at some points, the input is progressively reshaped such that its base grows while its
depth decreases until we reach desired size and contents using sampling operators. The types of
upsampling methods can be ranged from static interpolation to convolutional upsampling called
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Figure 3.4: Illustration of DCGAN generator architecture.

transposed convolution (or deconvolution). Figure 3.4 and Figure 3.5 illustrate data flow in a
simple DCGAN generator and discriminator with several layers.

3.2.4.2 Discriminator

The discriminator is a CNN that is similar to a classification network. The input is a multi-
dimensional matrix, and the output is a prediction vector: in this case, a binary classification
indicating whether the input image was classified to be real rather than fake.

Figure 3.5: Illustration of DCGAN discriminator architecture.

3.3 GAN variations

Semi-supervised learning is one of the most promising areas of the practical application of GANs.
Unlike supervised learning, in which we need a label for every example in our dataset, and un-
supervised learning, in which no labels are used, semi-supervised learning has a class label for
only a small subset of the training dataset. By internalizing hidden structures in the data, semi-
supervised learning strives to generalize from the small subset of labelled data points to classify
new, previously unseen examples effectively. Importantly, for semi-supervised learning to work,
the labelled and unlabeled data must come from the same underlying distribution.

55



Since Goodfellow et al. [69] have proposed the generative adversarial networks (GAN) model,
many follow-up studies of GAN and its variations have been applied in several computer vision
tasks. GAN has proved its efficiency in achieving state-of-the-art performance in the image syn-
thesis field. In this section, we will present variants of GAN networks, which has been used in this
thesis.

3.3.1 Wasserstein GAN

As mentioned in previous sections, GANs are notoriously hard to train. The opposing objectives
of the two networks, the discriminator and the generator, can easily cause training instability.
The discriminator attempts to classify the fake data from the real data correctly. Meanwhile, the
generator tries its best to trick the discriminator.

If the discriminator learns faster than the generator, the generator parameters will fail to
optimize. On the other hand, if the discriminator learns more slowly, the gradients may vanish
before reaching the generator. In the worst case, if the discriminator is unable to converge, the
generator will not be able to get any useful feedback.

Wasserstein GAN (WGAN) [8] has been introduced by proposing a novel method to improve
GAN training. WGAN argues that the stability in training a GAN depends on the loss of functions.
In this study, they introduced the earth mover distance (EMD) as a loss function that clearly
correlates with the visual quality of the samples generated. Figure 3.6 and Figure 3.7 indicate the
training scheme of WGAN for both generator and discriminator.

In EMD, the loss function of the discriminator are defined as:

LD = −Ex∼ pdata logDw(x) + EzDw(G(z)) (3.8)

This equation is quite similar to Equation 3.5, with some important differences.

Here, the Dw represent the discriminator. It aims to estimate the earth mover’s distance
and looks for the maximum difference between the real examples and the generated examples
distribution under different valid parametrizations of the Dw function.

The discriminator is trying to make the generator harder to generate samples by looking at
different projections using Dw into shared space in order to maximize the amount of probability
mass it has to move.

In the case of a generator, the loss function is defined as:

LG = −EzDw(G(z)) (3.9)

The objective is trying to minimize the distance between the expectation of the real distribution
and the expectation of the generated distribution. WGAN contains more understandable loss with
more tunable training.

Similar to GANs, WGAN alternately trains the discriminator and generator. However, in
WGAN, the discriminator trains for some critic iterations before training the generator for one
iteration. It contrasts with GANs with an equal number of training iterations for the discriminator
and generator. Training the discriminator means learning the parameters of the discriminator. It
requires two mini-batches from real and fake samples to compute the gradient of discriminator
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Figure 3.6: WGAN generator training. The generator produce images during this training. Syn-
thesized data is pretended to be real with label=1. The discriminator weights are frozen but
gradients propagate back to the generator

Figure 3.7: WGAN discriminator training.

parameters after feeding the sampled data to the discriminator network. Then, EMD optimization
is imposed by clipping the discriminator parameters. After several critical iterations of discrimina-
tor training, the discriminator parameters are frozen. The generator training starts by sampling
a batch of fake data. The sampled data is labelled as real (1.0), endeavouring to fool the dis-
criminator network. Both generator and discriminator parameters are optimized using RMSProp
optimizers. After training the generator, the discriminator parameters are unfrozen, and another
iteration of discriminator training starts. These processes repeat until the model convergence.

Similar to GANs, the discriminator can be trained as a separate network. However, training
the generator always requires the participation of the discriminator through the adversarial net-
work since the loss is computed from the output of the generator network. The most practical
implication of WGAN is that it allows the training of discriminators can be stopped by mea-
suring the Wasserstein distance. Besides, the correlation between the discriminator loss and the
perceptual quality also helps inform when to stop.

3.3.2 Conditional GAN

GANs are capable of producing various examples with any desired content. Although the synthesis
domain can be controlled by learning to emulate the training dataset, GAN cannot specifically
generate any of the characteristics of the data samples. The ability to decide what kind of data will
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be generated opens the door to a vast array of applications. The conditional GAN (CGAN) [142]
is one of the first GAN innovations that made targeted data generation possible, and arguably
the most influential one.

Conditional GAN is a generative adversarial network whose generator and discriminator are
conditioned during training by using some additional information. CGAN is generally similar to
DCGAN except for the additional one-hot vector input. The one-hot label is concatenated with
the latent vector before the dense layer for the generator. For the discriminator, a new fully-
connected layer is added. The new layer is used to process the one-hot vector and reshape it so
that it is suitable for concatenation to the other input of the next CNN layer.

During CGAN training, the generator learns to produce realistic examples from given labels,
and the discriminator learns to distinguish fake example-label pairs from real example-label pairs.
Moreover, the discriminator in a CGAN does not learn to identify which class is which. It learns
only to accept real, matching pairs while rejecting mismatched pairs and pairs in which the example
is fake.

The generator uses examples with their label to synthesize a fake example with the condition
of label value. This fake example aims to look as close as possible to a real example for the given
label.

Figure 3.8: Illustration of CGAN workflow.

The discriminator receives real/fake examples with labels. On the real example-label pairs,
the discriminator learns how to recognize real data and how to recognize matching pairs. On the
synthesized examples, it learns to recognize fake image-label pairs, thereby learning to tell them
apart from the real ones. The discriminator outputs a single probability indicating its conviction
that the input is a real, matching pair. The discriminator’s goal is to learn to reject all fake
examples and all examples that fail to match their label while accepting all real example-label
pairs. Figure 3.8 demonstrates the data flow of CGAN with fake/real image-label pairs.

The loss function of the discriminator and the generator of CGAN are defined as:

LD(θG, θD) = −Ex∼ pdata [logD(x|y)]− Ez∼pz [log(1−D(G(z|ŷ)))] (3.10)

LG(θG, θD) = −Ez log(1−D(G(z|ŷ))) (3.11)

where y and ŷ are labels of real and synthesized data, respectively.
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The new loss function of the discriminator aims to compute the error of lost function betweeen
real images coming from the dataset and fake images coming from the generator, given their one-
hot labels. In terms of the generator, the loss function of the generator maximizes the correct
prediction of the discriminator on fake images conditioned on the specified one-hot labels. The
generator learns how to generate the specific examples given its one-hot vector, which can fool the
discriminator. Algorithm 3 summarize the training of CGAN for both generator and discriminator.

Algorithm 3 CGAN training algorithm
for each training iteration do

• Train the discriminator:

1. Take a random mini-batch of real examples x with corressponding label y
2. Compute D((x, y)) for the mini-batch and backpropagate the binary classification loss

to update θD to minimize the loss.
3. Take a mini-batch of input z and a class label y to generate a mini-batch of fake

examples: G(z, y) = x̂|y.
4. Compute D(x̂|y, y) for the mini-batch and backpropagate the binary classification loss

to update θD to minimize the loss.

• Train the generator:

1. Take a mini-batch of input z and class labels (z, y) to generate a mini-batch of fake
examples: G(z, y) = x̂|y.

2. Compute D(x̂|y, y) for the given mini-batch and backpropagate the binary classifica-
tion loss to update θG to maximize the loss.

end for

Along with the DCGAN, CGAN is one of the most influential early GAN variants that has
inspired countless new research directions. It might be the most impactful and promising adver-
sarial network as a general-purpose solution to image-to-image translation problems. One of the
most successful early implementations based on the Conditional GAN paradigm is pix2pix, which
uses pairs of images to learn to translate from one domain into another. In theory and practice,
the conditioning information used to train a CGAN can be much more than just labels to provide
for more complex use cases and scenarios.

3.4 CycleGAN

Image-to-image translation can be considered as a special case of image synthesis. The pix2pix
[85] algorithm is an example of a cross-domain algorithm. It was developed based on conditional
GAN [142]. The condition here is related to a complete image rather than a class, typically of
the same dimensionality as the output image that is then provided to the network as a kind of a
label.

The idea is powerful and versatile; however, the main disadvantage of neural networks similar
to pix2pix is that the training input and output images must be in pairs to start the training
phase. In practice, aligned image pairs are not available or expensive to generate from the source
images, or we have no idea how to generate the target image from the given source image.
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Cycle-consistent adversarial network (CycleGAN) [250] proposed by Zhu et al. is an image-
to-image translation model for learning to translate an image from a source domain to a target
domain in the absence of paired examples. No alignment is needed. CycleGAN learns the source
and target distributions and how to translate from source to target distribution from given sample
data. CycleGAN has become a very effective method in the image synthesis and image translation
domain.

Figure 3.9: CycleGAN generator workflow.

3.4.1 General architecture

The overall CycleGAN architecture can be viewed as training GANs in reversed directions. Fol-
lowing the fundamental CycleGAN [250] model, the final purpose aims at synthesizing an image
of the domain A into another image with desired content belonging to a different domain B. The
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model contains two generators to produce images between two domains and two discriminators
to predict whether the output is real or generated. The first generator GAB translating the image
from domain A to B, has a corresponding discriminator DB; and GBA has the discriminator DA .

Generators and discriminators work in pairs. They aim to learn to create solutions that are
highly similar to real images and difficult to classify. This encourages perceptually superior so-
lutions residing in the subspace, or manifold, of real images. For both tasks, we used the same
architecture of discriminator, except for the difference between functions. In the end, the discrim-
inators can evaluate generated outputs by values ranging from 0 to 1. The overall architecture of
CycleGAN is shown in Figure 3.9.

3.4.2 Loss function

CycleGAN is used for cross-domain translation. To regularize symbols for CycleGAN architecture
explanation, we use A for the first domain B for the second domain. From the original CycleGAN
model [250], the loss function of model based on the adversarial loss Ladv from original GAN [69]
and the cycle consistency loss Lcycle which is used to prevent the generators can produce unrelated
output during unpaired training, thereby improving training efficiency. The final loss L function
of CycleGAN can be written as:

L = Ladv(GBA, DB, A,B) + Ladv(GAB, DA, B,A) + λLcycle(GBA, GAB) (3.12)

In Equation 3.12, the first generator GBA implements the mapping function A → B with its
discriminator DB, while the second generator GAB implements the mapping function B → A with
discriminator DA.

3.4.2.1 Adversarial loss

In CycleGAN, since there are two generators and two discriminators, the adversarial loss is applied
for both generators. Training with adversarial loss solves Equation 3.4. From Equation 3.4 and
Equation 3.12, the adversarial loss of the first generator from A to B can be presented as:

Ladv(GBA, DA, A,B) = EB∼ pdata(B)[logDB(B)]+

EA∼pdata(A)[log(1−DB(GBA(A)))]
(3.13)

where B ∼ pdata(B) and A ∼ pdata(A) are data distribution of B and A based on [67].

GBA generates images GBA(A) that are expected to look as similar as images B, while DB

aims at distinguishing between generated samples GBA(A) and real samples B. GBA work to
minimize this objective against an adversary DB that tries to maximize it. On the other hand,
the second generator GAB which downsamples images from B to A, we solve a similar adversarial
loss function Ladv(GAB, DB, B,A):

Ladv(GAB, DB, B,A) = EA∼ pdata(A)[logDA(A)]+

EB∼pdata(B)[log(1−DA(GAB(B)))]
(3.14)
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3.4.2.2 Cycle consistency loss

Theoretically, the adversarial loss can control the learning mapping of generators to produce
outputs identically distributed as target domains [67]. However, Zhu et al. [250] show that using
only the adversarial loss cannot guarantee that the learned function will map an individual input
to output in a large capacity network.

CycleGAN introduced the cycle consistency loss intending to reduce the space of possible
mapping functions. For each generated images GBA(A) from A, the generating cycle must be able
to reconstruct it back to the original image such that GAB(GBA(A)) ≈ A. Thus, in the CycleGAN
model, for each generating process between classes, there exists two consistent cycles to secure the
generating process between domains:

Lcycle(GBA, GAB) = EA∼pdata(A)[∥GAB(GBA(A))− A∥1]
+EB∼pdata(B)[∥GBA(GAB(B))−B∥1]

(3.15)

Cycle consistency is the key for a training that does not require pairs of input and ground-
truth data. It prevents generators from producing images that do not relate to the output in
an unpaired training, while the comparison of adversarial functions ensures the procedure with
unpaired data.

3.4.3 Training procedure

As can be seen from Figure 3.9, the workflow of CycleGAN contains two cycles: the forward cycle
that produces images from domain A to B and the backward cycle that produce images from
domain B to domain A. CycleGAN is symmetric in which each flow is similar but in reversed
direction. In the forward cycle, examples of domain A are firstly fed to the generator GAB to
produce a sample that supposes to belong to domain B, then it is evaluated by the discriminator
D(B) to see if it looks real in domain B, and finally translated back to domain A using GBA

to measure the cyclic loss. The cycle consistency check implies of transformation between real
samples of each domains and synthesized ones which should remain intact and be recoverable.
Details of CycleGAN training algorithms are shown in 4.

3.4.4 Generator architecture

Current architectures of generators for GAN-based methods in general, or CycleGAN in particular,
are mostly based on convolutional neural networks which contain convolutional layers rather than
fully connected layers as a feed-forward network. Among different types of CNNs, U-net and
Residual network (ResNet) are the base architectures that are currently used to solve image
translation tasks. The following paragraphs will present the architecture of these methods as the
generator of CycleGAN.

3.4.4.1 U-net

U-net [170], based on the fully convolutional network, was introduced for biomedical image seg-
mentation. Similar to VAE, U-net itself has parts referred to as encoder and decoder. A general
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Algorithm 4 CycleGAN training algorithm
for each training iteration do

• Train the discriminator:

1. Take a mini-batch of random images from each domain A and B.
2. Use the generator GAB to translate images A to domain B and vice versa with GBA.
3. Compute DA(A) and DA(GBA(B)) to get the losses for real images in A and translated

images from B, respectively. Then add these two losses together.
4. Compute DB(B) and DB(GAB(A) to get the losses for real images in B and translated

images from A, respectively. Then add these two losses together.
5. Compute total loss for discriminator based on DA(A) and DB(B).

• Train the generator:

1. Input the images from domain A and B.
2. Compute the validity of A DA(GBA(B)) and the validity of B DB(GAB(A))

3. Compute the reconstructed of A GBA(GAB(A)) and reconstructed of B GAB(GBA(B))

4. Compute the identity mapping of A GBA(A), and identity mapping of B GAB(B)

5. Update the parameters of both generators inline with the cycle-consistency loss, iden-
tity loss, and adversarial loss.

end for

Figure 3.10: The original U-net architecture [170]. It contains a contraction path and expanding
path The contraction and expanding paths are sometimes referred to as encoder and decoder,
respectively.

network consists of two halves: the downsampling half, where input is compressed spatially but
increased depth, and an upsampling half, where representations are expanded spatially while the
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depth is reduced. The overall architecture of U-net has been successfully applied in several tasks of
computer vision with better performance instead of only segmentation tasks. The key idea is to fo-
cus on classification and understanding large regions, including higher resolution skip connections,
to preserve the detail that can then be accurately segmented, although it is compressed.

Unlike the linear structure of VAE, in which data flows through the network from input to
output, one layer after another, U-net uses skip connections that allow information to shortcut
parts of the network and flow through to later layers. For classification models, a final fully
connected layer is enough to output the probability of a particular class being present in the image.
However, it is critical to upsample feature maps back to the input size for image segmentation
and synthesis tasks without losing information. Through the downscaling and the subsequent
upscaling, U-net compresses the image to capture the most meaningful representation but, at the
same time, can add back all the detail. Feature maps learn contextual understanding of what
input is while reducing information about where it is located.

Figure 3.10 shows the original architecture of U-net generator. U-net contains convolutional
layers to encode information for data and transpose convolutional (deconvolutional) layers to
upsampling feature maps. Similar to CNN-based methods, these layers are followed by activation
functions such as ReLU and normalization functions.

The concatenated layers join a set of layers together along a particular axis. In the U-net, con-
catenated layers connect upsampling layers to the equivalently sized layer in the downsampling
parts. The layers are joined together along the depth dimension, while the number of feature map
sizes remains the same. There are no weights to be learned in a concatenated layer. Besides,
CycleGAN uses instance normalization layers [209] rather than batch normalization layers [84],
which in style transfer problems can lead to more satisfying results. The instance normalization
normalizes every single observation individually rather than as a batch. Unlike batch normal-
ization, it does not require mean and stand deviation parameters to be calculated as a running
average during training since at test time, the layer can normalize per instance in the same way
as it does at train time. The means and standard deviations used to normalize each layer are
calculated per channel and observation. Also, the instance normalization layers do not need to
learn weights since there are no scaling or shifting parameters like batch normalization.

3.4.4.2 ResNet

Figure 3.11: A single residual block. (1) generic residual block (2) residual block with removal of
normalization

Along with U-net, residual network (ResNet) [75] is a popular generative architecture used
for the generative model. The ResNet architecture allows information from previous layers in
the network to skip ahead of one or more layers. However, instead of using a U-shape design to
connect layers from the downsampling of the network to corresponding upsampling, ResNet uses
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a series of stacked residual blocks where each block contains a skip connection that sums the input
and output of the block before passing this on to the next layer. ResNet for the generator also
contains downsampling and upsampling layers. The overall architecture of the ResNet is shown
in Figure 3.12

Since AlexNet [109], the state-of-the-art CNN architecture is going deeper and deeper. How-
ever, training a deep neural network with many layers is difficult due to the vanishing gradient
problem [189], where the repeated multiplication may make the gradient infinitely small during
back-propagation. When the network goes deeper, its performance gets saturated or degrades
rapidly. ResNet has solved this issue by introducing an identity shortcut connection that skips
one or more layers. When the error gradients can backpropagate freely through the network
through the skip connections that are part of the residual blocks [75]. Adding additional layers
never degrades the network performance because the skip connections ensure that it is always
possible to pass through the identity mapping from the previous layer if no additional informative
features can be extracted. The shortcut connection reduce not only the number of network pa-
rameter, but also the computational complexity of algorithms. Figure 3.11 presents the original
residual blocks and the residual blocks with removal of normalization layers.

Figure 3.12: U-net generator architecture.It contains a contraction path and expanding path The
contraction and expanding paths are sometimes referred to as encoder and decoder, respectively.

3.4.5 Discriminator architecture

The goal of discriminators is to produce the probability of a given input to classify whether it is
real or not. The CycleGAN discriminator is based on the PatchGAN [85] architecture, where the
discriminator divides the input into square overlapping “patches” and classifies each patch as real or
fake, rather than predicting the whole input. Therefore the output of the discriminator is a tensor
that contains the predicted probability for each patch, rather than just a single number. Patches
are predicted simultaneously when input flow through the network. Input is not divided up the
image manually and passes each patch through the network. The division of the image into patches
arises naturally as a result of the convolutional discriminator architecture. It allows the design
of the CycleGAN to be fully convolutional, meaning that it can scale relatively easily to higher
resolutions. Other than that, the discriminator of CycleGAN is still a relatively straightforward
implementation.

Using a PatchGAN discriminator is that the loss function can then measure how good the
discriminator is at distinguishing images based on their style rather than their content. Since each
element of the discriminator prediction is based only on a small square of the image, it must use
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the style of the patch rather than its content to make its decision.

3.5 Conclusion

This section has provided fundamental knowledge of the generative models in autoencoder and
generative adversarial neural networks. Autoencoders are fundamental generative models to map
high-dimensional input into a low-dimensional latent space so that high-level features can be ex-
tracted from raw input. However, there are still drawbacks to using plain autoencoders as a
generative model sampling. Variational autoencoders solve these problems by introducing ran-
domness into the model and constraining how points in the latent space are distributed.

In terms of generative adversarial networks, all GANs are characterized by a generator versus
discriminator architecture, with the discriminator trying to classify between real and fake images
and the generator aiming to fool the discriminator. By balancing the adversarial training of two
networks, the final model can gradually learn to produce similar observations to those in the
training set. Overall, the GAN framework is highly flexible and able to be adapted to many
exciting problem domains.

The last part is the CycleGAN - a generative model used for image translation and style
transfer. The CycleGAN methodology allows training a model to translate images from one
domain to another. Hence, the potential of CycleGAN is enormous, which allows us to apply it
to different topics related to medical images. Crucially, CycleGAN does not require paired images
from each domain to implement, making it a powerful and flexible technique.
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Chapter 4

MRI super-resolution

The work presented in this chapter lead to the following publications:

[1] Do, H., Bourdon, P., Helbert, D., Naudin, M., Guillevin, R. (2021). 7T MRI super-
resolution with Generative Adversarial Network. Electronic Imaging, 2021(18), 106-1.

[2] Do, H., Helbert, D., Bourdon, P., Naudin, M., Guillevin, C., Guillevin, R. (2021, October).
MRI super-resolution using 3D cycle-consistent generative adversarial network. In 2021 Sixth
International Conference on Advances in Biomedical Engineering (ICABME) (pp. 85-88). IEEE.

4.1 Introduction

Magnetic resonance imaging (MRI) is widely used in medical imaging because it provides a nonin-
vasive assessment of the anatomy and physiology of the body in health and disease while offering
the best contrast resolution for soft tissue. High-quality MRI is preferred in clinical centers and
research settings because it can provide important structural details with a smaller voxel size,
enabling accurate image analysis. At the same time, low-resolution MRI (LR) is plagued with
noise and a lack of structural information. Therefore, the demand for image quality with sufficient
detail in medical imaging is rapidly increasing. However, MRI images are usually acquired with
limited resolution and low spatial coverage, which is limited by signal-to-noise ratio (SNR) or
longscan time [158]. For example, a 3 Tesla (3T) MRI scanner may take 2 to 48 hours to produce
a high-resolution (HR) result, depending on the clinicopathologic question and the size of the
scanned area. Therefore, it is not easy to achieve the desired resolution with high-resolution MRI.
Recently, the improvement of medical image quality has become an important issue of great value
for both research and practice. Figure 4.1 illustrates an examples of LR and HR MRI. In the full
view, the differences between low and high-resolution MRI are not clear but can be seen clearly
in zoom-in view.

Single-image super-resolution (SR), an image quality enhancement technique, has become a po-
tential post-processing method to increase the spatial resolution of medical scans after acquisition
virtually. It produces high-resolution images from single- or multi-frame low-resolution images,
using either explicit geometric regularity constraints or self-learned rules. In recent years, SR has
been getting much attention from the community because of its benefits in medical image analysis
[125]. Moreover, several studies has been proposed to enhance spartial resolution MRI. The variety
of methods stretches from statistical method such as interpolation [121, 202], dictionary mapping
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[126, 11], self-learning [136] to automatically techniques using neural networks [40, 239] or hybrid
methods [162]. Specially, with advanced network architectures and training process, CNN-based
super-resolution has achieved significant success on both objective (peak signal-to-noise ratio -
PSNR) [127, 117, 100] and subjective (human visual quality assessment tests) [117, 177] criteria.

Existing methods in SR require paired datasets to implement. Generally, a training dataset
for super-resolution contains pairs of low and high-resolution MRI to update loss value during
training. Hence, these are usually not large enough due to paired data retrieval tedious and time-
consuming task. However, as mentioned above, the scanning to produce HR MRI can take a very
long time. Thus, it is not easy to obtain a paired medical dataset in the field of super-resolution.
Currently, there does not exist a public dataset with paired MRI for the SR task.

Within the scope of the thesis, the work focuses on implementing a method that enhances
the spatial resolution on routine 3T MRI to improve diagnosis and assessment. To address data
availability problems, we propose a method that can implement either on paired/unpaired datasets.
The proposed method is based on a cycle-consistent generative adversarial network (CycleGAN)
[250] to benefit the unpaired training. As presented in Chapter 3, CycleGAN is a well-known
method for image-to-image translation. However, different from the literature methods, we propose
a novel architecture of generators to improve the performance of medical data.

With the support of MRI infrastructure at CHU Poitiers, we are able to explore the perfor-
mance of the proposed method on practical data. Hence, for the super-resolution task, we aim to
examine the performance of methods on both research and practical dataset, focusing on 3T and
also 7T MRI.

Our main contributions are:

• We propose a unified framework based on CycleGAN for super-resolution. With a different
generator from the generator of CycleGAN, the proposed model can perform the super-
resolution on MRI through unpaired training. Besides, the method is implemented on both
2D and 3D MRI data.

• We do experiments on both research and practical MRI dataset to ensure the performance of
the dataset. With training medical dataset has high-quality enough, the proposed methods
can work on any available MRI dataset.

• Finally, we make a comparison of the proposed method with traditional super-resolution
and other well-known GAN-based methods to highlight the performance.

In the next section 4.2, we present concepts and state-of-the-art image super-resolution with
different CNN-based methods for medical images. Then we discuss the details of network archi-
tectures used in our experiments in Section 4.3 and 4.4. After that are the experimental results
and comparison between methods; finally will be the discussion.

4.2 Related work

4.2.1 Image super-resolution

Super-resolution is a process that produces HR images from single- or multi-frame LR images.
In the case of medical analysis, it becomes a potential solution as a post-processing technique
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Figure 4.1: Examples of low and high-resolution MRI. From left to right: low-resolution MRI and
high-resolution images, from top to bottom: full view and zoom-in view.

to improve the spatial resolution of MR images [213]. Figure 4.1 illustrates an examples of low
and high-resolution MRI. In the beginning, SR is similar to an optimization problem to minimize
the cost between observed LR image and regularization terms. However, statistical methods are
limited by concepts of data representation. It results to non-robust methods, and the performance
is not stable on images with great structural details.

Before deep learning-based approaches achieved state-of-the-art performance, super-resolution
methods mostly relied on interpolation [190], edge-preservation [198], and dictionary learning [228].
regularization [95].

In general, interpolation-based methods, such as linear or nearest-neighbor interpolation, are
simple and easy to implement. However, the effectiveness of basic interpolation is not high when
the result usually contains artifacts, blurred sharp edges, or recovering fine details in complex
textures [186]. Later, upsampling methods via patch-based non-local reconstruction have been
proposed [137] to improve MRI image quality. On the other hand, regularization approaches
such as manifold regularization [133], non-local similarity regularization [240], total variation reg-
ularization [208] are usually used for SR MRI. Both interpolation- and regularization-based SR
methods mainly perform SR operations directly on the testing image using information only from
the testing image itself [186].

Along with the development of neural networks in computer vision, Dong et al. [52] firsty
proposed the super-resolution convolutional neural network (SRCNN). It contains three convo-
lution layers for feature extraction, feature space building, and image reconstruction together in
end-to-end training. After that, many follow-up approaches have been inspired with improve-
ment on network structures [100, 206, 200]. Deep-learning-based studies have been proposed in
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medical analysis to apply to MRI images. Dense network [40] full use of hierarchical features for
reconstruction. Residual network [150] reconstructs 3D HR cardiac volume from multiple 2D LR
slices.

4.2.2 Learning-based methods for super-resolution

Up to now, many deep learning-based methods have presented excellent performances in the
field of super-resolution. The number of learning-based methods is fast increasing with different
algorithms to improve model performance. The size of the complexity of models is significantly
increasing, wherein the depth of models becomes a practical problem. Kim et al. [100] have proved
that expanding the network architecture is the key to obtaining the high-quality super-resolution
outputs. However, a deep network using advanced techniques to increase network depth could ease
the difficulty of training. In addition, when the network is too deep, gradient disappearance and
gradient explosion issues are declared [189]. Although data regulation and batch normalization
can solve these gradient issues, they can lead to model performance degradation.

Figure 4.2: SRDenseNet architecture.

ResNet, proposed by He et al. [75], has addressed this problem by introducing the residual
learning. The output of the previous convolutional layer is connected to the next for smoother
information flows through a shortcut. It has been proved to neither increases the number of
network parameters nor the computational complexity of algorithms. Kim et al. [100] presented
a very deep convolutional network (VDSR) that uses an architecture composed of 20 layers.
Advantage of ResNet, this method introduced residual learning in SR tasks and initialized a
higher learning rate to accelerate the training process.

Besides, Wang et al. [221] introduced a method that combines deep learning terms and con-
ventional sparse coding for super-resolution. It outperformed in SR fields, while the sparse coding
algorithm contributes to training speed and model compactness. Shi et al. [188] proposed the
efficient sub-pixel convolutional neural network (ESPCN). The network architecture consists of
two convolution layers to extract feature information; then, the sub-pixel convolution layer aggre-
gates the feature information and rearranges elements from low-resolution space to the output in
high-resolution space. Later, the sub-pixel layer achieved superior super-resolution performance
and became a popular and efficient upsampling method in many other studies. Laplacian Pyra-
mid Super-Resolution Network (LapSRN) [113] is a method based on gradually reconstructing the
sub-band residuals of high-resolution images. Feature maps of LR images are taken as the input
of the next layer at each level of the pyramid, and then it predicts the high-frequency residuals.
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DenseNet [82] proposed a connectivity pattern to improve the flow of feature information
by concatenating previous layer information. The network is more efficient and presented an
appreciable performance improvement compared to ResNet with fewer parameters. Later, recent
studies in image super-resolution show that removing unnecessary batch normalization (BN) layers
in residual blocks [220] and dense blocks [127] can reduce the computational cost, memory usage
and boost model performance. The flow of the gradient is unobstructed due to the direct link
between layers.

Inspired from DenseNet, Tong et al. [206] have proposed the densely connected network (SR-
DenseNet) that uses dense blocks with skip connections to solve the SR problems. The architecture
of original SRDenseNet are shown in Figure 4.2. This architecture allows subsequent layers can
effectively use extracted feature information from each convolutional layer; hence the information
convention is preserved between different levels from different convolution layers in the network.
Features of ground truth images are retained to a greater extent; therefore, the dense connection
can effectively improve the quality of image reconstruction. SRDenseNet has significantly im-
proved performance over the model using multi-level features, indicating that level fusion benefits
SR problems. Figure 4.3 shows the architecture of residual and dense block, and later is blocks
with removal of normalization layers.

Figure 4.3: Residual blocks and dense blocks with skip connection.

Residual Dense Network (RDN) introduced by Zhang et al. [244] - a combination of DenseNet
and ResNet to solve the image super-resolution. This network presented the residual dense blocks
(RDB) that use the densely connected structures effectively utilize local features from convolution
layers and the combination of dense skip connection and residual learning. Besides, the idea of
fusing local and global features with residual learning makes full use of the features from the
proceeding layers.

4.2.3 Generative adversarial networks for super-resolution

Since Goodfellow et al. [69] proposed the generative adversarial network model (GAN), many
follow-up studies of GAN and its variations have been used in various computer vision tasks. In
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general, GAN has demonstrated its efficiency in achieving top performance in image synthesis.
Recently, GAN has also been used in the field of super-resolution. Super-resolution GAN (SRGAN)
[117] and Enhanced super-resolution GAN (ESRGAN) [220] have been successfully applied to solve
SR problems for color images. In addition, CycleGAN [250], proposed by Zhu et al. is an image-
to-image translation model for learning how to translate an image from a source domain to a
target domain in the absence of paired examples. In general, CycleGAN has been used in image
synthesis and image translation domains. By taking advantage of CNN-based methods, we can
also use CycleGAN to solve super-resolution in medical data. The advantage of this method is
that it does not require paired images for efficient training, which is a challenge for high-resolution
MRI.

Most previous super-resolution methods aim to optimize HR image reconstruction by mini-
mizing the pixel-wise difference between original and generated images. However, one drawback is
that reconstructing small, critical details is extremely difficult if one is only concerned with local,
pixel-wise differences. In contrast, if global perceptual constraints can be taken into account, the
SR model will be guided by both local intensity information and patchwise perceptual information,
likely resulting in a better and sharper SR reconstruction [117].

With benefits from the GAN framework of Goodfellow et al. [69] for its unsupervised-learning
potential of capturing perceptually essential image features, Ledig et al. [117] proposed the SR-
GAN to handle the super-resolution issue. The adversarial loss is defined in the GAN model
[69], and it also extends with perceptual loss in SRGAN. In perceptual loss concepts, this model
used a pre-trained model for feature extraction and compared it with features of the generator
to minimize loss of information. Besides, SRGAN defines the activation layers of a pre-trained
deep network, where the distance between two activated features is minimized. Several techniques
have been implemented to provide different building unit architectures to transform LR into HR
images and reduce computation costs during the training phase. Residual blocks from ResNet and
Dense blocks from DenseNet are the most popular architecture used in GAN-based methods for
SR tasks because these units can be combined or modified to speed up the training process and
improve model performance.

4.2.4 MRI super-resolution

Super-resolution on medical images is getting much attention from the community because of its
benefits in practice [125]. Methods are applied on different types of medical images MRI, CT,
PET, ultrasound [179, 39, 239]

In terms of MRI, many deep learning-based methods have been proposed to improve the
spartial resolution. In general, digital MRIs are stored as types of 2D (slices) or 3D (volumes).
Thus, deep learning methods applied to MRI can be both in 2D or 3D space. The following
paragraphs will survey applying deep learning methods on MRI at both levels.

In terms of 2D MRI, there are many studies. Zeng et al. [238] proposed a method for simul-
taneously estimating single-contrast and multi-contrast MRI images. Single-contrast sub-network
solves the super-resolution problem of low-resolution T2 images; the multi-contrast sub-network
estimates multi-contrast T2 images based on the reference T1 images and T2 super-resolution
images. HR images are MRI brain images, and LR images are simulation data. Shi et al. [187]
used local residual block and global residual network to extend SRCNN to solve a 2D MRI SR
problem. Zhao et al. [247] extended an SRCNN architecture for 2D MRI brain images. The
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network consists of three main sub-networks: feature extraction sub-network, non-linear mapping
sub-network, and reconstruction. The non-linear mapping sub-network comprises a set of cascaded
channel splitting blocks where each block follows a merge-and-run strategy; it splits features into
two branches, precisely, one for DenseNet, and the other for residual learning. Liu et al. proposed
a multi-scale fusion convolution network (MFCN) [128]. This network has several multi-scale
fusion units (MFU) in which each unit corresponds to an estimation obtained with filters at a
specified scale. Oktay et al. introduced the T-L network [151] based on U-net architecture, which
was used for image segmentation and super-resolution for 2D cardiac images.

In terms of 3D MRI super-resolution, Pham et al. in [157] attempted to perform SR on 3D
MRI brain images with the SRCNN framework. The comparison between the networks trained
on natural and MRI images was also given. Oktay et al. [150] proposed a 3D CNN based on
residual learning for SR of cardiac images. The proposed network is modified from VDSR with
the replacement of the interpolation operation by a deconvolution layer at the top of the network.
Zhao et al. [245] presented an extended EDSR for MRI brain super-resolution. The EDSR-based
network is trained with the paired low and high-resolution images in the axial direction. Then the
low-resolution image in sagittal and coronal directions is reconstructed from the trained model.
Chen et al. in [40] proposed a densely connected super-resolution network (DCSRN) for brain
MRI images, similar to the DenseNet. The DCSRN is densely connected, while the output of each
block will be reused in the latter blocks.

In general, a 3D model is preferable to fully solve the ill-posed super-resolution because it
can directly extract 3D structural information. Recent studies [157, 40] demonstrated that a
3D CNN outperforms its 2D counterpart since it fully exploits the 3D volume information. The
network architectures use 3D convolutions. With the additional dimension introduced by a 3D
CNN, the number of parameters of the network overgrows. The performance of a deep network
generally improves with more layers and weights, but with 3D, the model becomes computationally
expensive. A densely connected network has efficient memory usage and is practical for 3D images.

4.3 Methodology

The core problem of super-resolution for medical images in the real world is the lack of paired
data. The research objective is to reconstruct LR MRI volumes obtained under a down-sampled
protocol to HR MRI volumes following a scaling factor s; through a training process that does not
require paired data for analysis. In the scope of the work, we expect the final model to perform
super-resolution on a low-resolution volume to a high-resolution volume following a scaling factor.

The proposed method is a generative model based on the cycle-consistent design to perform
the super-resolution through paired/unpaired training. The hybrid model contains two different
generators with changes from the original models to perform the up and down resolution. All the
modification of resolution is only executed during the training process.

CycleGAN is a generative model used to perform efficient training with unpaired data, while
the new generator responds for the super-resolution part.
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4.3.1 Network architecture

4.3.1.1 Adversarial network architecture

As presented in the previous chapter, the general GAN contains a generator G and a discriminator
D. Generators and discriminators work in pairs to solve the adversarial min-max problem. The
generator aims at minimizing errors against a discriminator that tries to maximize them. The
goal is to train the generator G to fool a differentiable discriminator D that is trained to distin-
guish generated high-resolution images from low-resolution images. However, existing GAN-based
methods for super-resolution often requires paired LR and HR images to let the discriminator
compare real and generated images. On the other hand, the core problem of super-resolution for
medical images in the real world is the lack of paired data. Moreover, MRIs contain different or
more complex spatial variations, correlations, and statistical properties than natural images, thus
limiting the SR imaging performance of most traditional methods.

When Zhu et al. introduced CycleGAN [250] - an image-to-image translation framework using
unpaired data, it has inspired many studies on different computer vision tasks and the potential
for SR. In this case, the CycleGAN aims to translate input LR MRI volume into an HR MRI
volume without requiring paired images during training. Following the fundamental CycleGAN,
the network contains two generators to produce images between low and high-resolution MRI and
two discriminators to predict real or generated data. Along with the adversarial loss from the
GAN model, to prevent the generators from producing synthetic images that are irrelevant to the
inputs, the cycle-consistency loss is used for two generators to force the synthesized images to
be identical to their inputs for each class. This loss function prevents CycleGAN from requiring
paired data for training. The details of loss functions and general architecture have been presented
in Section 3.4.

4.3.1.2 Building blocks

The proposed generator uses Residual Dense Blocks (RDB) [244] as building units to extract
feature information. Figure 4.4 illustrates the design of RDB in the super-resolution model by
removing normalization layers. These blocks have been successfully applied in the fields of super-
resolution [73, 127, 1]. A RDB contains several convolutional layers followed by a ReLU activation
function [65] in continuous connection. RDB can reduce computational time and memory usage
and speed up the training process by removing batch normalization from general residual and
dense blocks.

RDB introduced the contiguous memory mechanism that allows access to information between
block layers bypassing the state of the preceding block to layers of the current block [244]. The
size of feature maps is increased through each convolutional layer with a specific growth rate to
synthesize information from raw input. The high growth rate can further improve the performance
of the network. In the end, feature output has information of all subsequent layers, which not
only extracts dense local features but also preserves the feed-forward flow.

Moreover, by concatenating components of blocks, local features are synthesized from the states
of preceding RDBs and whole layers in the current RDB. Then, a convolutional layer adaptively
fuses the output information [244]. Local feature learning improves the preservation of information
inside the network, combining the hierarchical features. Information of all layers is fully used with
RDBs to obtain dense features.
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Figure 4.4: Residual dense block architecture.

4.3.1.3 Generative network architecture

Different from the generic CycleGAN [250], generators of the proposed model for super-resolution
is modified with the addition of several RDBs for feature extraction. In the beginning, shallow
features are produced from input through two single convolutional layers in order to reduce input
size for the following computation. Then, local features from RDBs are extracted and concatenated
to form global features. The number of features is increased through each layer with a fixed growth
rate to synthesize information. Then, the information of all layers is preserved based on local and
global features fusion mechanism. Next, global features from RDBs are stacked to fully use features
from all the preceding layers.

Figure 4.5: Generator architecture.

After the feature extraction process, a bottleneck convolutional layer is applied to adaptively
fuse hierarchical features, followed by a convolutional layer to extract additional features for global
residual learning. Then, fused features are concatenated to obtain the dense feature. The final
process is to upsample this dense feature to form the desired output.

The detail of super-resolution generator is shown in Figure 4.5. Within the scope of the
work, we implement the proposed methods on both 2D and 3D space in order to compare the
model performance. In general, the architecture of the 2D and 3D models are similar for feature
extraction. However, the main difference lies in the upsampling part, which is the most critical
process. A model working well on 2D volumes cannot be ensured to work well in 3D due to the
data structure and uniformity.

For the 2D SR model, the upsampling operator uses the sub-pixel function from ESPCNN.
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Introduced by Shi et al. [188], it is an efficient way to upscale resolution for 2D images. It has
proved its potential and has been used in many state-of-the-art in SR field [117, 127]. The sub-
pixel function consists of a convolutional layer followed by a shuffler function to arrange pixels
from input into an output of with the desired size. The sub-pixel can be represented as a standard
convolution in a low-resolution space followed by a periodic shuffling operation. However, during
our experiments, we have found that the sub-pixel function does not work stable on our 3D MRI.

For the 3D model, we implement two types of upscaling. The first approach uses a linear
interpolation layer in 3D space to dense upscale features before the final convolutional layer forms
the HR output. For the second solution, we use deconvolutional layers to perform the upsample
operators for dense features. By striding a set of kernels over s steps, the element of a feature-
map is rearranged to form consecutive pixels in the HR space. The advantage of this approach
over static upsampling is that it contains learnable parameters with the same computational
complexity, improving model performance. However, since consecutive pixels depend on different
feature maps that are independently randomly initialized, it might lead to new artifacts in the
HR output.

Although generating an image from high-resolution to low-resolution has no value for research,
it is a part of the network for unpaired training. The architecture of the generator for downgraded
is similar to the first one. To down-sample features, we use convolutional/ pooling layers as
downscale operators to reconstruct LR from HR MRI for the downsample generator.

Figure 4.6: Architecture of discriminator. It contains several convolutional layers followed by
Instance Normalization and Leaky ReLU.

The structure of discriminators is shown in Figure 4.6. Because the main work of discriminators
is to classify the input and generated output, the architecture of the two discriminators are similar.

It is a CNN with multiple convolutional layers followed by instance normalization layer, and
Leaky ReLU (LReLU) activation to synthesize information from given input. The network depth
is modifiable based on the number of building blocks within the network. The last convolutional
layer with a single output channel is used to generate values ranging from 0 (the generated image)
to 1 (real MRI). In addition, we provide the option to predict using the sigmoid function with the
convolutional layer.
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4.4 Experiments

4.4.1 Dataset

4.4.1.1 Imaging dataset

As presented above, we want to examine the performance of the proposed method on both research
and practical data. For this task, we firstly focus on super-resolution on T1 and T2-weighted MRI
- the most common MRI sequences and then extend to different types of sequences. Thus, only
T1 and T2-weighted MRIs are processed as training data.

We use the MICCAI BraTS 2018 [140, 13, 12], a dataset containing 3T MRI volumes with differ-
ent types of sequences as research data. The variety within BraTS is ensured by samples acquired
with various clinical protocols and scanners from multiple institutions. It contains 285 subjects
in the training set and 59 subjects in the validation set, including T1-weighted, T2-weighted,
post-contrast T1-weighted and T2-FLAIR. MRI volumes are pre-processed by co-registration to
the same anatomical template, interpolation to the same spacing at 1mm3 and skull-stripping.
The field of view on each volumes is 155× 240× 240.

With the support of Siemens Healthineers MRI devices at Poitiers University Hospital, we
have built a practical dataset (appearing later as the CHU dataset), including both 3T and 7T
MRI. A total of 46 3D MP-RAGE brain MRI subjects, T1-weighted for 3T MRI at different slice
spacing, are collected. 3T MRI volumes were acquired from a Siemens Magnetom Skyra scanner,
including 18 samples at 0.9mm3 voxel spacing with field of view 240× 288× 192 and 28 samples
at 0.6mm3 with field of view 336× 416× 448.

In addition, we also want to find out how the super-resolution model works on 7T MRI along
with 3T volumes and take advantage of the Siemens Magnetom Terra scanner at CHU Poitiers.
These 7T volumes were recently extracted in late 2021 when the COVID-19 situation became
more stable, and the 7T machine was put into operation. 7T MRIs in CHU dataset consists in 61
samples at 0.5mm3 voxel spacing with field of view is 448× 448× 320 and 20 samples at 0.75mm3

with size 340× 340× 240.

4.4.1.2 Data pre-processing

Super-resolution requires both low and high-resolution MRI for training. Based on studies of
Rueda et al. [173], with a MRI dataset with high enough quality, low-resolution MRI can be
obtained with minimal loss and reduced appearance of new artifacts through the degradation
process [173]. For both the BraTS and CHU datasets, as in [185], LR volumes are downgraded
from MRI volumes at original resolution through down-sampling operators at isotropic scaling
factors with Gaussian filters to avoid aliasing artifacts.

4.4.2 Training setup

Two generators are built with slightly different components to perform the up-sample and down-
sample operators from our design. The upsampling operators include two different methods: linear
upsampler (SRCycleGAN) and deconvolutional layer (SRCycleGAN+DC). While the first opera-
tor involves static re-sampling, up-sampling using DC is more flexible with learnable parameters
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that will be optimized during the training phase. We consider both model configurations deserve
performance assessment. Each generator contains three RDBs, where each block includes three
dense blocks in residual connection.

The complexity of GAN models remains a considerable problem with millions of parameters
and increase along with model depth or the input size. To reduce the computational cost of the
model, the model is trained on patches. The ratio between high- and low-resolution patches is
defined as scaling factor s. This work trains separate single-scale networks with s = 2 and s = 4
scaling factors. To ensure the trade-off between data size and model performance, for each batch,
patches are randomly extracted into a maximum size of 64 × 64 × 64 patches on HR volumes
corresponding to a size of 64/s× 64/s× 64/s on LR volumes. In our experiments, we choose the
maximum number of patches on each sample as 15 to secure the diversity of data and avoid patch
duplication in the training phase. The size and number of patches are modifiable arguments.

The batch size is set to 2. The learning rate is initialized to 1e−4, and decay starts after every
20 epochs. The ADAM optimizer [102] is used to update network weights based on training data.
With this configuration, the training of SRCycleGAN takes an average learning time of 10 hours
with a GPU NVIDIA A100 40GB for 200 epochs.

4.4.3 Evaluation metrics

To evaluate the image quality between ground-truth and output MRI volumes in both tasks, we
use peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) metrics. The PSNR
evaluates the ratio between the maximum power of an input image and the power of features
that distort the image. On the other hand, SSIM evaluates perceptual image quality instead of
calculating pixel-wise variations. Two images can be considered similar if they show the highest
PSNR and SSIM.

In MRI super-resolution, we compare the performance of two states of the proposed 3D model
(SRCycleGAN and SRCycleGAN+DC), the 2D SRCycleGAN to tricubic interpolation, Enhanced
super-resolution GAN (ESRGAN) [220] for measurement purposes.

ESRGAN

ESRGAN, proposed by Wang et al. [220], is an improved version of SRGAN to increase the
resolution of images. ESRGAN introduced residual-in-residual dense blocks (RRDB) without
batch normalization (BN) layers as buidling units instead of residual blocks of SRGAN. Details
of the generators with the additions of RRDB are shown in Figure 4.7

RRDB is a combination of residual blocks with multiple levels and dense block connections
[127]. Recent research has demonstrated that removing BN layers can reduce computational cost
and memory usage, and improve model performance. Despite the fact that BN layers use mean
and variance computations to normalize the features during training and testing, BN layers have
a tendency to produce undesirable artifacts and limit generalization ability when the difference
between the training and testing sets is substantial [218].

Along with adding layers and connections to improve model performance, RRDB exploits
deeper and more complex connections than the residual blocks of SRGAN. Meanwhile, the general
high architecture of the ESRGAN model is kept as SRGAN. The discriminator of ESRGAN is also
improved from SRGAN, based on the relativistic GAN [94]. Instead of estimating the probability

78



of an input being real or natural, the relativistic discriminator calculates the probability of a real
image to be relatively more realistic than a fake image [218].

The ESRGAN is built only for 2D data. Besides, ESRGAN uses features before the activa-
tion layers, which helps overcome the drawbacks of the original design. ESRGAN also used the
perceptual loss from a VGG pre-trained model during training to improve model performance.
The perceptual loss in SRGAN can cause inconsistent reconstructed brightness compared with
the ground-truth image or the sparsely activate of features when the deep network is intense.
A recent study [218] based on ESRGAN for MRI data has proved the potential of this method
on super-resolution images. In this work, we re-implement the ESRGAN from the original as a
reference to compare the performance of GAN-based model.

Figure 4.7: ESRGAN architecture.

Overall, we evaluate the super-resolution on routine clinical data (CHU dataset) and research
data (BraTS test set) to examine model performance. Super-resolution enhances the structural
information of the low-resolution 3T MRI input. For each ground-truth in the test set, there
are corresponding reconstructed MRIs at the exact resolution, which are generated from 2D and
3D SR-CycleGAN, ESRGAN, and interpolation methods. Besides, there is also a test of model
performance on 7T MRI.
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Tricubic ESRGAN 2D SRCycleGAN SRCycleGAN SRCycleGAN+DC

Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BraTS 2x 26.24 0.7254 40.12 0.8409 44.57 0.8327 48.75 0.8782 51.22 0.8825

4x 22.26 0.4782 35.85 0.6820 36.76 0.6441 34.78 0.7168 37.82 0.7283

CHU 3T 2x 26.07 0.7397 43.89 0.8220 42.31 0.8254 48.56 0.8606 48.86 0.8749

0.9mm 4x 22.20 0.4916 30.60 0.6533 30.48 0.6594 33.09 0.7022 34.24 0.7103

CHU 3T 2x 26.65 0.7300 44.17 0.8464 44.26 0.8492 49.76 0.8803 49.86 0.8902

0.6mm 4x 22.75 0.4953 30.27 0.6679 31.59 0.6806 35.07 0.7227 35.18 0.7327

CHU 7T 2x 25.67 0.7347 42.75 0.8443 44.68 0.8399 49.27 0.8758 49.75 0.8815

0.75 mm 4x 22.67 0.5050 31.33 0.6586 30.85 0.6742 34.21 0.7212 34.67 0.7187

CHU 7T 2x 26.32 0.7467 44.30 0.8577 46.01 0.8637 48.84 0.8980 51.48 0.9028

0.5mm 4x 23.03 0.5116 31.09 0.6935 31.48 0.6976 35.84 0.7309 36.42 0.7455

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 4.1: Average value of PSNR (dB) and SSIM for scale factors ×2 and ×4 on BraTS and CHU
MRI dataset. Resolution-enhancement methods (tricubic interpolation, ESRGAN, 2D SRCycle-
GAN, 3D SRCycleGAN and 3D SRCycleGAN+DC) were compared with ground-truth images for
quantitative evaluation.

4.5 Results

Table 4.1, Figure 4.8, Figure 4.9 show the quantitative results obtained by all tested methods
on the different types of MRI of BraTS and CHU datasets. Image quality measurements in
terms of PSNR and SSIM show that our 3D SR-CycleGAN method is able to achieve the lowest
distortion for s = 2 and s = 4 scale factors. The SSIM values on reconstructed images are
higher than other GAN-based and interpolation methods, indicating that our method maintains
optimal perceptual quality compared with ground-truth images. PSNR values also indicate that
SR-CycleGAN outperforms the other methods for objective quality measurement.

Both versions of our 3D CycleGAN provide an outperformed super-resolution result with de-
tailed textures compared to 2D models and tricubic interpolation. For example, SSIM scores
exceed 0.88 on 7T MRI at 0.75 mm at 2× scale, ensuring a better fidelity of image structures such
as contours or fine details compared to the original volume shown in visual quality.

Figure 4.10 illustrates model performance on T1-weighted 3T and 7T MRI from the CHU
dataset by displaying a selection of data slices. Both versions of our SRCycleGAN model main-
tain fine visual structures compared to ground truth data. Zoomed-in views corresponding to the
red boxes on whole-brain images also highlight the superiority of the 3D SRCycleGAN model con-
figured with deconvolutional layers compared to the one using static up-sampling, which contains
more blur and brightness/contrast fidelity issues. Object in higher-zoom (yellow circles) is finely
reconstructed from the low-resolution MRI compared to the ground truth, without crashing of
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voxels.

4.6 Discussion

As discussed in the previous section, 3D CycleGAN demonstrates higher performance compared
to other methods of 3D MRI super-resolution. This demonstration in terms of SSIM values is
particularly important, as SSIM computation approaches subjective visual quality metrics derived
from the human visual system.

It is critical to analyze network performance. In interpolation, high-resolution features to
be resolved are usually treated as low-order representations of existing low-resolution features.
Although this is an acceptable assumption for natural images, it may not be valid for medical
images due to the complex morphology, textures, and low SNR of tissue. In addition, such
interpolation methods consistently perform the interpolation over a certain length scale (usually
a few pixels around the pixel to be interpolated). Therefore, they are also not ideal for medical
images, especially for MRI of the brain, since its structure and components are very complex. As
a result, there is no way to distinguish whether a particular pixel truly represents the anatomy or
whether that pixel is affected by noise or artifacts such as motion or aliasing.

In terms of ESRGAN, it is a well-known GAN-based super-resolution method for natural im-
ages. One advantage of ESRGAN is the outbreak architecture, which uses a new architecture of
building units to improve model performance while reducing training costs. However, recent stud-
ies [218] have presented its drawbacks for medical images and proposed improvements for dealing
with MRI. The efficiency of ESRGAN also comes from the improvement of the loss function. The
original version proposed a perceptual loss based on using features extracted from the pre-trained
model (VGG). In the case of medical data, there are no standard pre-trained models for this task,
while using models such as VGG does not optimize.

We also observe that the performance of the model is limited in terms of blur for small objects,
although the reconstructed images are quite detailed. However, we consider the CHU dataset a
practical problem, and the reconstructed images are relatively impressive. Besides, we have to
focus on the quality of input. In general, when the resolution of input is not good enough, the
overall degradation can lead to the lack of information on objects that later happen to be only
partially reconstructed in the output [125].

Although our proposed method can achieve compelling results in many cases, some limita-
tions currently exist in the output. In the case of CHU data, we realize that the brightness of
reconstructed images is slightly higher than the ground truth. It is automatically changed during
the super-resolution process without any interference. Unlike images that are 8-bit color, medical
images are usually 16-bit color. Because of the larger tone color, the value of voxels in medical
data on the reconstructed image might be slightly different from the ground truth, which leads to
this issue.

To optimize the performance and complexity of the model, training is performed on patches to
reduce the computational cost of the model and to ensure the diversity of the data. The adversarial
and cycle consistency losses are retained for the primary model. The generators are modified by
adding several dense residual blocks. The number of blocks increases as the model depth or input
size increases.

MRI volumes contain different or more complex spatial variations, correlations, and statistical
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Figure 4.8: Comparison of model performance on the different ground-truth MRI for quantitative
image similarity metrics using SSIM: (a) 3T MRI with 0.9 mm slice thickness, (b) 3T MRI with
0.6 mm slice thickness, (c) 7T MRI with 0.75 mm slice thickness, (d) 7T MRI with 0.5 mm slice
thickness

Figure 4.9: Comparison of model performance on the different ground-truth MRI for quantitative
image similarity metrics using PSNR: (a) 3T MRI with 0.9 mm slice thickness, (b) 3T MRI with
0.6 mm slice thickness, (c) 7T MRI with 0.75 mm slice thickness, (d) 7T MRI with 0.5 mm slice
thickness
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Figure 4.10: Visualization of 3D model performance on CHU 3T and 7T MRI: (a),(e) low-
resolution MRI, (b),(f) ground-truth MRI, (c),(g) SRCycleGAN, (d),(h) SRCycleGAN with de-
convolutional layers output. On randomly selected sample, zoom-ins are shown in the red box.
The vessel in the yellow circle is blurred out LR MRI (a),(e) and partially recovered in (d),(h)
and preserves more details in (c),(g)

properties than natural images, which limits the SR imaging performance of most traditional
methods. Because the sampling and degradation operations are coupled and poorly posed, the
tasks of SR can only be performed to a limited extent by traditional methods. These methods
cannot effectively recover some fine features and run the risk of blurring new artifacts. In unpaired
training, the generated output cannot be compared with the target output to improve performance
because of the different voxel values.
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A 2D model can directly apply to 3D volumes slice-by-slice or combine coronal, axial, and
sagittal views. However, structural information in 3D volumes is more natural with details rather
than combining slices. The 3D model reconstructs the whole volume; therefore, the volume
uniformity is more secure than a 2D model. In 3D volume, a blood vessel may cast its edge
to neighbor slices when the 2D SR model processes by the single slice. It also can reduce the
appearance of noise/artifacts or even the gap between the object in reconstructed results.

4.7 Conclusion

Current approaches in MRI super-resolution require paired low- and high-resolution data for train-
ing, which are difficult to obtain due to limited resources and computational time. In the first work
of this dissertation, we proposed the SRCycleGAN to solve super-resolution on MRI data. The
advantage of self-learning between two classes can be used to perform the unpaired training. The
proposed methods can work stably on different types of MRI. The evaluation of the reconstructed
images on both 3T and 7T MRI shows exploitable results with low distortion and detailed texture.

We also compared SRCycleGAN with different methods in the same areas to have an objective
perspective on model performance. Quantitative evaluation shows that SRCycleGAN is better
and more measurable than other methods at different scaling factors.

We want to improve the quality of MRI further. Since super-resolution aims to reconstruct
the input with the highest quality possible, a gap exists between high-resolution 3T and standard
7T MRI remains. In the next section, we will implement the synthesis task to produce UHF-MRI
to compare the performance with the SR task.
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Chapter 5

Ultra-high field MRI synthesis

The work presented in this chapter is under submission as:

[1] Do, H., Bourdon, P., Helbert, D., Naudin, M., Guillevin, R. (2022). Realistic ultra-high
field MRI rendering using cycle-consistent generative adversarial networks.

Submitted to SPIE Journal of Medical Imaging

5.1 Introduction

In recent years, ultra-high field (UHF) MRI e.g. 7-Tesla (7T) or higher devices were introduced,
which provide better signal-to-noise ratio (SNR) sensitivity and higher spatial resolution compared
with 3-tesla (3T) or 1.5T MRI [149]. However, at this moment, 7T MRI machines are significantly
more expensive and are still in the early stages of large-scale deployment; thus, they are less
common in hospitals and clinical centers. Therefore, enhancing medical image quality through
artificial means such as machine learning-based synthesis holds potential for clinical and research
interests.

Image synthesis techniques are based on a paradigm shift in which a transform model can learn
to regenerate images from a given input domain to another desired domain. Image synthesis in
medical imaging is an active research topic with numerous applications in radiology. The idea
behind medical image synthesis is to accelerate the usual procedure by replacing all or part of
the acquisition, which is usually limited by time, labor or cost constraints. Applications of image
synthesis in medical imaging range from cross-modality translation within individual types (i.e.
MRI T1 ↔ T2) or between different types of medical images (i.e. CT ↔ MRI) to field- strength
conversion (i.e. 3T ↔7T) [219].

Within the scope of the thesis, we aim to support the medical diagnosis by improving the
quality of routine MRIs. In the previous chapter, we presented quality enhancement on routine
MRI by performing super-resolution. In this work, we aim at achieving UHF (7T) quality out of
routine (3T) MRI. While both super-resolution and image synthesis enhance MRI quality, their
requirements and output are different.

Super-resolution produces high-resolution out of low-resolution through reverse transform rules
trained on a set of images emulating HR content, with their downsampled versions serving as LR
content. While achieving good performance in aesthetic properties, ones could argue that pixel
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or voxel downsampling in the digital image domain is unrealistic and inconsistent with actual
resolution changes in MRI field maps. Synthesis, on the other hand, holds more ambitious promises
by relying on standard MRI data pairs (e.g. 3T and 7T) to emulate conversion on a physical level.
A substantial drawback for MRI synthesis is the difficulty in having reliable training data i.e. both
3T and 7T MRI content for the same subject acquired simultaneously. For example, to obtain
paired 3T and 7T MRI, patients must take the test on the same day. Later, the post-process has
to be prepared manually with an exact alignment process. With the CHU dataset that has been
built from MRI systems at CHU Poitiers, we keep using 3T and 7T MRI to implement the MRI
synthesis for the 3T-to-7T conversion task.

Our main contributions are:

• We take advantage of the proposed CycleGAN model with appropriate modification to do
the synthesis on entire 3D MRI volumes. The architecture of the generator is modified to
work on the synthesis task. Although the proposed model can perform the task through
unpaired training, this task is implemented on weakly-aligned data pairs to maximize the
performance;

• We do experiments on practical MRI data to evaluate the performance of the dataset. Real
3T and 7T MRI are processed and used for experiments;

• Results show the efficiency of the proposed CycleGAN, overcoming limitations in training
data. Finally, we compare the proposed method with traditional methods to highlight the
performance;

In the next Section 5.2, we present related work for synthesis tasks with the most common
architectures for medical images. Then we discuss the details of network architectures used in
our experiments in Section 5.3 and 5.4. After that are the experimental results and comparison
between methods; finally will be the discussion.

5.2 Related work

5.2.1 Common network architectures

Recently, image synthesis has gained much interest in many exciting clinical applications for
different types of medical images such as MRI, CT, PET, etc. Statistical methods are usually
implemented with explicitly defined rules for converting data between two domains and require
a specific case-by-case parameter to optimize performance. Hence, these specific methods, which
usually depend on the characteristics of the involved imaging modalities, lead to application-
specific complex methodologies. Besides, it is also a challenge to build these models on the two
imaging modalities, including precise information, such as anatomical and functional imaging.

Following the rapid development in deep learning, neural networks and their variants have been
proposed and become popular methods for medical image synthesis. Through a network learning
process to map between the input domain and desired domain, these methods can perform a
prediction stage to synthesize the target from an input. In contrast with statistical methods,
learning-based methods are more generalizable due to the regularization of architecture different
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modalities with minimal adjustment. Hence, these methods allow the robust transformation of
various clinical modality imaging.

Deep learning methods in medical image synthesis are mainly categorized into three types:
auto-encoder (AE), U-net, and generative adversarial network (GAN). The details of these three
networks are present in chapter 3; hence, in this section, we quickly summarise their architecture
with a brief introduction to how it is applied for medical image synthesis. These methods are not
different from each other, but their complexity is stepwise increases.

5.2.1.1 Autoencoder

An auto-encoder (AE) and variation autoencoder (VAE) is a class of generative model trained
to learn to reconstruct their inputs by extracting useful intermediate representations. A basic
AE consists of input, output, and functions that encode feature maps into latent space and then
decode them to form desired output. In computer vision, the architecture of encoder and decoder
network in AE is usually forms of CNNs. It is composed of several convolutional layers with
trainable parameters. As a CNNs-based network, normalization, activation function, dropout
or pooling layers are also applied to improve the performance of model. Activation function
and normalization are the most common components due to their benefits in reducing internal
covariate shift for faster convergence. Besides, dropout and pooling layers are usually used to
avoid overfitting and save memory.

However, the AEs are limited on non-regularized latent space; where it is challenging to apply to
current medical synthesis. Instead, VAEs are used to perform different complex tasks in medical
image synthesis. For example, studies in [144, 56] used ResNet in AE architecture due to its
shortcut connections that skip one or more layers, easing the training of the deep network without
adding extra parameters or computational complexity. It allows feature maps from the initial
layers that usually contain fine details to be easily propagated to the deeper layers.

In addition, the study in [72] used AE to synthesize CT from MR images. The encoder
architecture uses several convolution layers, ReLU, batch normalization, and pooling layers to
extract hierarchical features. The decoder architecture is the same, except the pooling layers
are replaced by deconvolution layers to reconstruct the CT images from low to high resolution.
The encoder and decoder are connected by shortcuts on multiple layers to enable high-resolution
features from the encoder to be used as extra inputs for the decoder. The model was trained on
pairs of MR-CT slices in 2D space.

5.2.1.2 U-net

The architecture of U-net is close to an AE variant, where it consists of an encoder and a decoder.
The encoding part extracts hierarchical features from the input using a CNN-based architecture
to reduce the input and increase depth. In contrast, the decoder uses deconvolution layers to
reconstruct features into output with desired content. Two parts of the U-net are linked and
concatenated from top to bottom layers. These layers can also learn simple features captured in
different levels.

Most studies using U-net followed the general architecture, with modification and improvement
in training procedures to perform different tasks. Studies in [130] used the same architecture. How-
ever, the model is trained on discretized maps from CTs to produce CT synthesis for segmentation
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problems instead of MR-based CT synthesis.

Components in U-net are also modifiable. For example, batch normalization layers, can be
replaced by other function such as instanace normalization. Study in [146] used generalized para-
metric ReLU instead of the usual ReLU layer to adaptively adjust the activation function. [207]
added a dropout layer before the first transposed convolution in the decoder to avoid overfitting.

In [88], they proposed an U-net-based uses fully connected conditional random field to provide
complementary information between neighbouring voxels and the base classifier to attenuationaly
correct PET/MR imaging. Based on conditional random field [112], their method built pairwise
potentials between all pairs of voxels from original volumes and the output of models in 3D
space. Dong et al. [53] proposed U-net architecture to synthesize CT for attenuation correction of
PET/MRI. The network uses a landmark advance and a self-attention design to use the feature
maps from coarse-scale in the encoder to identify relevant features and eliminate noise prior by
assigning attention scores. In addition, Gupta et al. [71] introduced a U-net based model to
generate synthetic CT images from MRI for treatment planning.

In addition, the architecture of U-net now is more modified with building blocks in the encoding
and decoding part. Instead of only convolutional layers, residual blocks from ResNet are used to
produce feature maps with residual shortcuts and to save computational memory.

5.2.1.3 GAN

At this moment, GANs are widely applied to medical imaging synthesis [234]. GANs and their
many variations have been applied to enhance the quality of medical images through super-
resolution [241, 38, 218], cross-modality synthesis tasks such as CT to MRI [123, 90, 225], or
3T to 7T MRI [148, 161]. Many GAN-based methods have been proposed. For example, a study
in [148] used GAN with binary cross-entropy loss function and patch-based training to generate
different modality images.

In addition, varying structures composed of building blocks have proven useful for different
applications. Several studies have demonstrated the efficiency of residual blocks in GAN archi-
tecture for medical image synthesis tasks, where differences between input and output are not
too large such as CT ↔ CBCT or low-counting PET ↔ full-counting PET [74]. Study in [56]
integrated residual blocks in a CGAN architecture to MR→CT. Two deconvolution layers replace
fully connected layers. Kim et al. [101] proposed a GAN that used the U-net architecture with the
residual training scheme for the generator. Olberg et al. [152] introduced a pyramid convolutional
network within U-net generator to exploit the characteristic of single pixels.

The difficulty of training GAN is also mentioned due to vanishing gradients or mode collapse
when both generator and discriminator are trained to be optimal. To address this problem,
Yang et al. [231] used Wasserstein loss in WGAN for the discriminator as an alternative with
even smoother gradient flow and faster convergence. Besides, a study in [156] indicated that a
feature-matching approach by using a new objective function, in which the generator produces
the synthesized images to be close to the expected value of the discriminator instead of directly
maximizing the final output of the discriminator.

Finally, since CycleGAN [250] was published, many following studies in medical synthesis have
been inspired. The CycleGAN introduced a cycle-consistent mapping workflow within two separate
directions that do not require paired training sets. The potential of CycleGAN for medical image
synthesis is appealing due to the complexity of exactly matching pairs of data or misalignment
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errors.

5.2.2 MRI synthesis

Research in medical image synthesis focusing on MRI can be categorized into two groups based
on the objectives: inter-modality and intra-modality synthesis.

The inter-modality synthetic techniques include studies of image synthesis from medical imag-
ing to another, such as from MR ↔ CT, MR ← PET, etc. Synthesizing MR from CT (and vice
versa) using neural networks is a fundamental and common topic in medical image analysis. The
primary purpose of CT-based MR synthesis is to use CT acquisition to replace MRI when MRI
was not too popular. In the beginning, the image quality and visualization of synthesized MRI
in these studies are considerably different from actual MRI, leading to the limit of direct usage
for diagnostic. However, it can be used for non-diagnostic purposes, such as treatment planning
for radiation therapy. Using both imaging modalities leads to not only time expense and cost for
patients but also the issues of alignment during the fusion process [98] thus, the requirement for
the automatic process has increased, which opens the opportunity for deep learning methods.

In general, both MR and CT imaging are usually utilized for treatment planning, such as
simulation in the current radiation therapy workflow. MRI demonstrated an excellent contrast
on soft tissue, which is useful for delineating organ status or locating tumours. On the other
hand, CT gives reference images for pre-treatment positioning and electron density maps for dose
calculation. The lack of relationship between voxel intensity of MR and CT leads to the gap in
visualization and contrast of images, which can cause the failure of intensity-based calibration
approaches. Statistic methods usually segment MR images into material classes to assign to CT.
Hence, it usually relies on the segmentation and registration process, which contains a significant
error due to the ambiguous boundary between classes. Regarding deep neural generative networks,
popular studies using VAEs to synthesize MR-based from CT can be mentioned, such as [227],
[51]. In terms of U-net, the number of studies is more diverse. [37, 5] applied U-net based methods
to produce brain CT-based from T2-weighted MRI, while [146, 131] used T1-weighted MRI with
similar architecture.

The group of intra-modality investigations consists of studies that translate data between two
different protocols from an imaging modality. Various applications in this domain for MRI have
been proposed, including translation between sequence types, high strength-field MRI rendering,
or restoring undersampled acquisitions.

In the scope of this chapter, only studies related to ultra-high field synthesis will be mentioned.
Related work for cross-modality translation will be demonstrated in the next chapter. In general,
for all tasks in medical image synthesis, preserving contrast and resolution is the most critical factor
that decides the effectiveness of a method. Rendering ultra-high field MRI from low magnetic field
MRI allows acquisition on broadly available low-magnetic-field equipment while providing greater
spatial resolution and improved contrast, similar to what might be obtained from a cutting-edge
devices. In contrast, translation between sequences and restoration of undersampled acquisitions
can both shorten acquisition times. Although these applications are motivated by distinct clinical
goals, they pose the same technical challenges during the task of image synthesis: preserving
contrast, resolution, and biological details that are relevant for diagnosis

In the beginning, conventional methods have been applied to address these problems. Com-
pressed sensing (CS) approaches perform on data that have a sparse representation in the trans-
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formation domain [233]. For example, in the case of multi-contrast MRI translation, the contrast
level of a patch is expressed as a sparse linear combination of patches in an atlas, and the com-
bination is then applied to image patches in the target contrast [122]. However, these methods
require time and resource-intensive optimization as an iterative algorithm, while optimization is
usually implemented as an iterative algorithm, which is time and resource-intensive.

Deep learning methods, in contrast, encourage the integration of neural networks into these
strategies for their superior mapping capability of nonlinear relationships and significant savings
in compute time. It is also common to apply neural networks in synthesis domains. Moreover,
learning-based methods provide comparable or better performance on quantitative image quality
metrics with less computational time. Zhang et al. [243] proposed a cascaded design using
dual-domain and interactive multi-layer network streams in the spatial and frequency domains.
Compared with a single spatial domain, the dual-domain method presented better visual results.
Qu et al. [162] designed a wavelet-based affine transformation layer to modulate feature maps
from the spatial and wavelet domains in the encoder, followed by an image reconstruction in the
decoder that synthesizes 7T images from wavelet-modulated spatial information. In addition, also
synthesizing 7T MRI from 3T MRI, Nie et al. [148] proposed a GAN-based method that solves
the task at the image level.

GAN for image synthesis serves as a form of data augmentation and also as an anonymiza-
tion tool. Other research topics also in the fields of MRI synthesis can be mentioned, such as
brain tumour segmentation using coarse-to-fine GANs[145], generating synthetic medical images
to address retinal fundus images [70], synthesizing realistic prostate lesions in T2-weighted and
apparent diffusion coefficient resembling [106]; synthesis of patient-specific transmission image for
PET attenuation correction in PET/MR imaging of the brain using a CNN [194]; image synthesis
with GANs for tissue recognition[242]; synthetic data augmentation using a GAN for improved
liver lesion classification [62].

5.3 Network architecture

In the scope of the work, our objective is to produce an ultra-high field MRI volume from a
routine 3T MRI. Similar to the previous work on super-resolution, the general architecture is
based on cycle-consistent GAN. Unlike the generator in super-resolution model, the generator for
MRI synthesis is modified to fit the problem and reduce the complexity and cost. CycleGAN work
to perform the adversarial training while the new generator responds for the synthesis part.

5.3.1 Adversarial network architecture

As presented in Chapter 3 and 4, CycleGAN contains two generators and two discriminators. Two
generators work to produce output between 3T and 7T MRI while two discriminators predict real
or generated data. The training for this task is paired, but the cycle-consistency loss is still kept
to force the synthesized images to be related to their inputs for each domain and ensure model
performance. Details of pre-processing for pairing are presented in Section 5.4.2

Based on the result of MRI super-resolution in both 2D and 3D space, we found that the
performance of the 3D model is better than the 2D model in all aspects. Thus, in this work, we
only focus on the 3D model.

90



5.3.2 Generative network architecture

The generator of CycleGAN for UHF MRI synthesis also use residual dense blocks (RDB) [244] - a
combination of residual blocks and dense blocks as building units to extract feature information. In
terms of residual blocks, when the input bypasses these hidden layers via the residual connection,
the hidden layers enforce the minimization of a residual image between the source and ground
truth target images, thereby minimizing noise and artifacts. In contrast, dense blocks concatenate
outputs from previous layers rather than feed-forward summation as in a standard AE block,
capturing hierarchy information to better represent the mapping from the source to the target
image modality. RDB has proved its potential in the MRI super-resolution task; hence we would
like to apply it also in the synthesis task. Figure 5.1.a shows the 3D implementation of the RDB
block. In this implementation, a RDB also contains 3D convolutional layers followed by a ReLU
activation function [65] in continuous connection.

Figure 5.1: Architecture of generator. Here, we use 3 RDBs for feature extraction. The number
of blocks can change the size and complexity of whole model.

Although using RDBs as building units, the generators for synthesis work are quite different
from the super-resolution model. Shallow features are generated from raw input through two
single convolutional layers to reduce input size for the following computation. Then, RDBs work
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as building units to synthesize information from feature maps. However, only local features are
used to store information. The number of features is also increased through each block with a
fixed growth rate to synthesize information.

In this model, we remove the fusion operator after the final blocks to reduce the complexity
and computation time for training. The bottleneck convolutional layers are kept to represent
the features with reduced dimensionality. Moreover, we also remove the concatenation between
shallow and fused features before the resampling part. Finally, a transposed convolutional layer
is used to reshape encoded features to form the desired output. The details of 3D generator
implementation are shown in Figure 5.1.

Figure 5.2: Architecture of discriminator. It contains several convolutional layers followed by
Instance Normalization and Leaky ReLU for 3D data.

Unlike super-resolution, the generators in the synthesis task do not consider the difference in
size between input and output. Hence, the architecture of the two generators is similar and the
same for the two discriminators. The structure of 3D discriminators is shown in Figure 5.2. It
is a CNN that contains several convolutional layers mixed with an instance normalization layer
followed by Leaky ReLU (LReLU) activation to extract information from 3D volume and label
whether it is an actual or generated image. The depth of the network is customizable depending on
the number of mixed blocks in the network. In the end, a convolutional layer with a single output
channel is used to produce values ranging from 0 (generated image) to 1 (real MRI). Besides, we
also make an option to use the sigmoid function with the convolutional layer to predict.

5.4 Experiments

5.4.1 Dataset

As presented in previous work, we have built the CHU dataset with the support of Siemens
Healthineers MRI devices at Poitiers University Hospital, which contains both 3T and 7T MRI
with high-resolution. 127 3D MP-RAGE brain MRI subjects are T1-weighted for both 3T and
7T at different slice spacing. 3T MRI volumes were acquired from a Siemens Magnetom Skyra
scanner, while a Siemens Magnetom Terra scanner produced 7T MRI volumes.

Retrieving standard pairs of 3T and 7T data for MRI synthesis is a tedious task with unsat-
isfiable constraints such as acquiring both scans simultaneously on the same patient or having
an exact slice thickness match between both resolutions. In the CHU dataset, only ten pairs
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Figure 5.3: Illustration pair 3T and 7T MRI before preprocessiing. 3T samples are inclined with
7T samples, lead to a mismatch of voxel position.

of 3T MRI at 0.9mm and 7T MRI at 0.75mm qualified for the synthesis task. Pairs of 3T and
7T were acquired within the closest time to avoid the appearance of artefacts between subjects.
Moreover, since the 3T 0.9mm with voxel size 240 × 288 × 192 and 7T 0.75 mm with voxel size
340× 340× 240 were used, we can minimize the mismatch in position and have the most accurate
volume alignment because of comparable slice thickness. Due to the difference between volumes
properties, the mismatch in voxel slice and position between volumes are quite clear observed,
even though we have selected samples with the closest spacing. Figure 5.3 illustrates raw pairs of
3T and 7T MRI before alignment.

Although the design of CycleGAN can perform the unpaired training, due to the limit of
weakly-registered pairs and the size of the dataset, the synthesis model is trained with paired data
to optimize the model performance. Details of experiments are presented in subsection 6.4.3. Here,
the objective of the synthesis aims to produce the UHF MRI from a given routine MRI in the CHU
dataset. In this work, we separated pairs into a train/test set with ratio 8:2, respectively. Cross-
validation is also applied during training phase due to the limited size of dataset. To evaluate the
performance of the proposed model, the synthesized 7T MRIs are compared to ground-truth 7T
MRIs.
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Figure 5.4: Illustration pair 3T and 7T MRI after alignement. Voxel position of 3T and 7T
samples are similar

5.4.2 Pre-processing

The synthesis for MRI in this work mainly requires the alignment between 3T and 7T MRI
subjects for the paired training. We used the FLIRT linear registration tool from FSL [89] - a
comprehensive library of analysis tools for MRI brain imaging data, to register pairs of 3T and
7T MRI to standard space using and remove pose differences. Each 3T MRI is rigidly aligned to
its corresponding 7T image. Figure 5.4 shows 7T and 3T aligned by 7T MRI. After the alignment
process, volumes are considered to have same voxel size and spacing.

To reduce adverse impact of signal variation across different scanners and sites, training sam-
ples of each domain are standardized with other samples in the same domain using histogram
standardization to make voxel values in the same intensity range. Then, all aligned samples
are normalized using z-norm to reduce the computation cost and avoid training frag. The z-
normalization uses terms of mean and standardization to re-scale transform voxel value within
range [0, 1].

Finally, augmentation techniques such as random rotation and flipping are applied to extend
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the size of the dataset, increase variability, and avoid over-fitting before training.

5.4.3 Training setup

In this work, we evaluate the performance of our method is the context of MRI synthesis, which is
its most challenging task. We perform experiments to produce 7T-like MRI from 3T and vice versa
on a subset extracted from CHU data in Section 4.4.1. Training images are paired by registration
to preserve quantitative pixel values and reduce baseline geometric mismatch, allowing the network
to focus on mapping details and accelerate training.

Two generators of the network are built in a fashion similar to significant modifications from
the previous model. Fused connections of building units are removed to reduce the complexity
and enhance the performance. Besides, the link between shallow feature and extracted features
are also cut to reduce the dependence of output on input. The bottleneck convolutional layer and
transposed convolutional layer are kept to obtain a representation of the features with reduced
dimensionality and reshape the feature to the desired size.

In terms of complexity, it will increase along with the increase of model depth or the input size.
However, since we have reduced several unnecessary fused connections and the concatenation of
the shallow feature, the model configuration can be enhanced to improve the performance. In this
work, each generator contains six RDBs, where each block includes three dense blocks in residual
connection.

Model is also trained on patches to ensure diversity within samples. After alignment, 3T
and 7T MRI volumes are fairly registered, then augmenation techniques such as flip, ratation,
are applied to expand number of samples. For each batch, patches are randomly extracted into a
maximum size of 64×64×64 patches on 3T volumes and corresponding to the size on 7T volumes.
The ADAM optimizer is also adapted for optimization.

The batch size is set to 4. The learning rate is initialized to 1e−4, and decay starts after every
20 epochs. The training CycleGAN for MRI synthesis takes an average of 25 hours with a GPU
NVIDIA A100 40GB for 200 epochs. Results of the synthesis model are presented in the next
section.

5.4.4 Evaluation metrics

Similar to the previous task, to evaluate the image quality between ground-truth and generated
MRI volumes in both tasks, we use peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) metrics.

For practical reasons detailed in Section 5.4.1, actual MRI synthesis performance assessment
can only be performed with the CHU dataset at the present time. For this experiment our
CycleGAN model is now trained on actual 3T and actual 7T pairs as required. Because there
are only a very limited number of studies dedicated to generating synthetic 7T out of 3T MRI
(or pseudo-7T ), with prediction algorithms published in this field [148, 243, 11] being trained on
private datasets with limited size, we decided to run the WATNet [162] source code on the CHU
dataset for bench-marking.
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Figure 5.5: Axial, sagittal and coronal views of synthetic 7T MRI. From left to right: 3T MRI
(input), ground-truth 7T (expected output), synthetic 7T generated by WATNet, synthetic 7T
generated by our model. Zoomed-in areas appear as red rectangles.
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5.5 Results

Table 5.1 illustrates the model performance for MRI synthesis tasks in terms of PSNR and SSIM
assessment. CycleGAN outperforms the baseline methods. In case 7T MRI synthesizing, the
SSIM/PSNR values reach 0.83/48.50. In addition, Figure 5.5 visualizes the generated outputs
from the model in both directions (3T to 7T). Axial zoomed-in views in the red rectangle indicate
that our method clearly improves the quality of grey/white matters from 3T MRI compared to
the 7T ground-truth. Moreover, the details of the sulcus and gyrus are precisely reconstructed
with high accuracy, close to 7T MRI quality.

Table 5.1: MRI synthesis quality assessment in terms of PSNR (dB) and SSIM values. Synthetic
7T data generated out of 3T data with our method and WATNet is compared to its corresponding
ground-truth samples for quantitative evaluation.

Metric WATNet CycleGAN

SSIM 0.81025 0.8309

PSNR (dB) 43.29 48.53

With PSNR values over 40dB, the results presented in Table 5.1 demonstrates that while
CycleGAN was originally designed for weakly paired or unpaired data fitting tasks such as image
style translation, we can notice that combining its cycle consistency constraint with input samples
that are at least rigidly aligned can help to overcome the limitations in data size and weak 3T/7T
pairing.

In addition, due to the design of CycleGAN, we also can perform the 3T synthesized from
7T. Table 5.1 and Figure 5.6 also presented the result on model for the backward generation.
Although the applicative value of 3T-synthesized from 7T MRI is of low importance, it has proved
that the proposed model can perform a good translation between two domains. With PSNR and
SSIM value even higher than the forward cycle, the proposed CycleGAN ensure the performance
of the model on the CHU dataset without overfitting problems.

5.6 Discussion

5.6.1 Overview

The CycleGAN model has presented a potential result in the field of MRI synthesis. However, we
also observed limitations in the generated output in visual assessment and measurement values.

This task is completed on a dataset with a limited size. We have ten pairs of 3T and 7T
MRIs among different samples in our dataset. In general, samples are not genuinely standard for
medical image synthesis. First, pairs of 3T and 7T MRIs come from the same patient but were not
acquired simultaneously, with the same thickness of slices. Thus, pairs of data for MRI synthesis
are mostly similar. In practice, 3T and 7T MRI volumes were collected with the closest thickness
to maximize the similarity between subjects at precise locations. Nevertheless, since 3T and 7T
MRI are not precisely equal in size, applying the alignment techniques to original data for the
image translation task is mandatory. However, the alignment techniques do not fully overcome
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Figure 5.6: Visualization in axial, sagittal and coronal views of 3T synthesized MRI from 7T.
From left to right: 7T MRI input , real 3T MRI, and CycleGAN output.

the voxel spacing difference from data acquisition.

The mismatch position can be observed visually from Figure 5.7. Because pairs are weakly
paired through automatic alignment, the appearance of artefacts is inevitable. We tried to mini-
mize errors during pre-processing. The proposed method is trained to handle the difference based
on semi-supervised learning. We consider that the performance can be improved by adding or
standardizing data. For another example, in a close-up coronal view in Figure 5.5, the difference
between 3T input and 7T output is clear, but our model can reconstruct 7T MRI from 3T MRI
with detailed texture and close to 7T ground-truth. In addition, since the amount of training and
testing sets is limited while the diversity of training is only ensured by the augmentation process
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Figure 5.7: Illustration mismatch between pair 3T and 7T.

and patch training, CycleGAN provides an exploitable result in measured values on the test set.

Based on [219], we also realize the advantage of using 3D models compared to 2D models for
medical images. A 2D model can directly apply to 3D volumes slice-by-slice or combine coronal,
axial, and sagittal views. However, structural information in 3D volumes is more natural with
details than combining slices. The 3D model reconstructs the whole volume; therefore, the volume
uniformity is more secure than a 2D model. In 3D volume, a blood vessel may cast its edge to
neighbour slices when the 2D SR model processes by the single slice. It also can reduce the
appearance of noise/artifacts or even the gap between the object in reconstructed results.

In addition, we conclude that MRI synthesis has provided not only higher but also more
coherent performance to fit with the research objective than super-resolution to produce a realistic
UHF MRI. Although both models are trained to enhance the quality of the input, the SR model
generally aims at enhancing the quality of MRI while maintaining the basic input properties, which
are not necessarily those of UHF MRI. It means that the SR model is not trained to change the
properties of the original input, e.g. the contrast made from the magnetic strength field; hence,
the SR model can only produce better 3T with more texture details instead of generating 7T-like
MRI from 3T MRI. On the other hand, the MRI synthesis is directly trained to transform input
from a domain to the desired output; thus, it is not just performance but also consistency.
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Overall, although reconstructed 7T MRIs are still noisy compared to ground-truth 7T MRIs,
the detail of white-grey matter has improved differentiation over the 3T example without global
morphological alterations. The spatial resolution is strongly increased from 3T MRI in all direc-
tions. Besides, the proposed provides a better definition of the basilar trunk and anterior cerebral
circulation. In addition, the straight sinus in reconstructed MRI has no deviation of the centerline
without morphological alteration compared to the ground truth.

5.6.2 Network characterization

Since pairs of 3T and 7T images are similar in terms of structure but their appearance are quanti-
tatively different, in this work, we take advantage of the residual dense blocks to extract features
from input. As mentioned in previous sections, residual connection enforces minimization between
input and target images, thereby minimizing noise and artifacts while dense blocks can capture
important frequency information to better represent the mapping from the source image to the
target image modality. The residual dense blocks have been successfully applied in the SR task;
hence we examine the performance of these building units for the synthesis task.

Besides, the complexity of GAN-based models is very considerable, with millions of parameters.
The main model keeps the content of adversarial and cycle consistency losses. The generators are
modified with severe changes from the previous model to enhance performance.

In fact, in the beginning, we have done several experiments using the SRCycleGAN from
previous work to examine its performance on the synthesis task. In these experiments, upsampling
operators have been replaced to regularize the input and output size. However, the obtained
results are not too impressive. Through the research, we found that the fused operator after
feature extraction and the link of shallow feature has limited the model performance. In super-
resolution, pairs of LR and HR images are similar in both structure and appearance, while the
main difference is the spatial resolution. Information of all layers is preserved based on local and
global features fusion mechanisms. Global features from RDBs are stacked to use features from all
the preceding layers fully. These have proved efficient in memorizing the critical input information
and avoiding artifact generation during the unpaired training, which is the main objective of the
research.

However, in the case of MRI synthesis, the contrast and the appearance of 3T and 7T MRI
are clearly different, while the training is executed on pairs which have been aligned to have
the same structural information. This fusion and link operators seem to prevent the significant
transformation in contrast to images. By removing unnecessary operators, the results obtained
from experiments are fastly improved.

Besides, it also helps to reduce the complexity of the model. As mentioned above, it increases
along with the increase of model depth or the size of the features. By cutting unnecessary con-
nections, we have significantly reduced the size of feature maps while improving the performance.
With the same configuration as the super-resolution model as mentioned in Section 4.4.2, the
training model is faster than 30%. Hence, we can expand the training setup with the deeper
configuration of network components. Table 5.2 and Figure 5.8 show the quantitative and visual-
ization of CycleGAN using SR architecture and the CycleGAN with reducing connections.
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CycleGAN using SR architecture CycleGAN for synthesis

SSIM PSNR SSIM PSNR

3T to 7T 0.6827 38.87 0.8309 48.53
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 5.2: Average value of PSNR (dB) and SSIM between SRCycleGAN and the current Cycle-
GAN model for MRI synthesis. Synthesized 7T volumes by two CycleGAN models are compared
with corresponding ground-truth MRI for quantitative evaluation.

Figure 5.8: Illustration comparison of 7T synthesized MRI for two CycleGAN model. From left
to right: 3T MRI input, ground-truth 7T MRI, 7T synthesized using SRCycleGAN generator and
7T synthesized of current CycleGAN.

5.6.3 Perspective

In both tasks, we observe that the reconstructed output at high-resolution levels is quite close to
the original input in all aspects, at both the training and testing phases. In general, no additional
artifacts appear in the reconstructed images. The proposed method can perform both quality
enhancement in 3D space.

Within the scope of the project, we aim to provide an automatically system to produce the
UHF MRI images. Our system can take routine brain MRIs to perform the task without any
additional process. By synthesizing MRI, we expect our method to produce the output as close
to the ground-truth as possible. Synthesizing results from the pre-trained model only takes a few
minutes to complete, compared to the usual time of MRI scanners and the current expense for
UHF scanners. Hence, it can become a potential research topic for medical image analysis.

5.7 Conclusion

This work presented a hybrid generative model based on CycleGAN to produce realistic UHF-MRI.
Advantaged by semi-supervised learning in cycle-consistent architecture, the proposed method can
solve synthesis on routine MRI in 3D space. Results from comparison among different methods
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demonstrate that the method outperforms current state-of-the-art methods in MRI synthesis
to produce UHF-MRI, under both qualitative and quantitative terms. The advantage of cycle-
consistent in medical image synthesis is also proven by the convincing results, overcoming the
limitation in training data for MRI synthesis.

At this moment, the proposed method works stably on 3D brain MRI, holding a great promise
of the research topic in practice. Our objective is to provide an end-to-end system to produce
UHF MRI by synthesizing. The network can produce 7T MRIs from routine 3T MRIs without
any additional process with a well-trained model. The synthesizing process takes less time than
the usual time of MRI scanners, as well as the current expense for UHF scanners. Hence, it can
become a potential research topic for medical image analysis. For future work, we will research
the functional information and diagnosis on synthesized images to evaluate the research topic
comprehensively.

There are different tasks in the fields of MRI synthesis. Among different topics, cross-modality
translation is one of research topic that recently receive a lot of attention from community due to
its benefits in research and practical. In the next work, we want to examine the performance of
CycleGAN model for this task with a comparison to other state-of-the-art methods.
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Chapter 6

MRI Cross modality translation

6.1 Introduction

MRI modalities provide complementary information to radiologists for diagnosing, assessing, and
planning patient treatment. Different MRI pulse sequences produce different modalities to capture
specific characteristics in contrast and function of the scanned area. T1-weighted is used to observe
the structure of an object; T2-weighted is utilized for locating tumors; contrast-enhanced T1 (T1c
or T1-gado) is favorable for assessment of tumor shape change with its enhanced demarcation
around the tumor; or T2 fluid-attenuated inversion recovery (T2-FLAIR) presents the contours
of the lesion with water suppression [132, 23]. Taking advantage of modalities by integration
can help to explore meaningful information about tissue that facilitates diagnosis and treatment
management.

Acquiring a complete multi-modality MRI for an individual patient is challenging due to several
factors. There is a specific failure rate due to incorrect machine settings during the scanning
process. The mobility of patients during acquisitions also can lead to the appearance of motion
artifacts. Moreover, modalities capture different anatomy characteristics, and the relationship
between two modalities is highly non-linear; therefore, it is hard to learn the mapping from one
modality to another.

In the case of contrast-enhanced T1 acquisition, using contrast agents such as gadolinium is
necessary. In general, it was proved safe to be used with a low, non-toxic dose, well-tolerated
without any adverse immediate or long-term effects [175]. However, it has been identified as the
causative agent in nephrogenic systemic fibrosis in patients with severe kidney failure and for
which there is currently no known specific or consistently compelling treatment [27, 181, 97].

Differences in characteristics across modalities in imaging protocols result in a lack of ap-
proaches to get consistent image modalities for every patient. Cross-modality translation - a topic
aimed at synthesizing a modality from a given modality without real acquisitions, holds great
potential for clinical practice. It has been widely investigated in medical image analysis and has
achieved initial achievements in recent years.

In the previous work, we presented the medical image synthesis to solve the task of super-
resolution and ultra-high field construction using a generative model.

To address the problem of MRI modality in practice, in this work, we mainly focus on imple-
menting different cross-modality generation frameworks to find an optimized method on experi-
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mental CHU data, then develop a method with superior results.Within the research objective, the
cross-modality models can generate output among different modalities such as T1↔ T2, T1 ↔
T1c, T1 ↔ T2-Flair. However, in this work, we firstly focus on translation between T1 and T1c
due to the research value of contrast-enhanced MRI for overall assessment in general and kidney
in particular [10]. On the other hand, we have built a dataset of pairs of T1-T1c MRI that cover
a wide variety of diseases to train a model that can perform the translation in any case.

Among different generative architectures, we decided to implement two cross-modality frame-
works based on GAN to evaluate its effectiveness. The first method in this work is the CycleGAN
model. As we have presented above, the benefits of CycleGAN in the synthesis domain are very
promising. Regarding medical images, its performance has been demonstrated in previous works
on enhancing MRI quality. Here, we take advantage of the proposed method for UHF synthesis
by adopting it for cross-modality translation. CycleGAN can complete tasks in both forward
and backward directions. Hence it only requires one model to complete this task, while other
GAN-based methods usually require two.

Figure 6.1: Comparison between cross-domain models using CycleGAN and starGAN. To handle
multiple domains, there are six CycleGAN model needed for each pair of images, while StarGAN
only uses a single generator.

The second framework is StarGAN [42] - a recently novel method for multi-domain image
translation. Unlike CycleGAN, StarGAN uses only one unified model with one generator and one
discriminator to perform image-to-image translations between multiple domains. For instance,
to learn all the mappings between 4 modalities T1, T1c, T2, and T2-Flair, 12 models have to
be trained separately using GAN, or six in the case of the CycleGAN. However, StarGAN, only
needs a single model. StarGAN aims to overcome the ineffectiveness and inefficiency of the usual
GAN model in terms of learning the features among all image domains and their generalizability.
We adopted the strategy of StarGAN and specially applied it to multimodal MR image synthe-
sis. Figure 6.1 illustrates the different between starGAN and CycleGAN for multi-modal cross
translation.

Experiments are conducted on both research and practical dataset. BraTS dataset is again
used in this work because it contains four different modalities including T1 and T1c MRI. On the
other hand, we built a practical dataset containing pairs of T1-T1c MRI that cover a wide variety
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of diseases.

To sum up, in this phase, our objective is:

• We do a comparative study between methods of the literature and our methods in cross-
modality translation among T1-T1c MRI. A comprehensive comparison is provided on re-
search and practical datasets; each has its unique characteristics in terms of data size, patient
cohort, and disease status.

• The proposed CycleGAN method that has been applied in previous works, and we would like
adopt its architecture for cross-modality translation. Besides, we reimplement the StarGAN
in 3D space, with a different configuration to examine its performance on T1-T1c conversion.

• The results demonstrate that our methods obtain a stable result on the research dataset
and promising results on the practical dataset. Moreover, experiments have shown that the
results of the models are optimizable.

6.2 Related work

At the beginning, multimodal MRI conversion relied on intensity transformation or atlas regis-
tration based methods. In atlas registration, images of target modality are reconstructed by the
atlas-to-image transformation, which contains pairs of images with different tissue contrasts co-
registered and sampled on the same voxel locations in space [172, 35]. However, the performance
of these methods is limited only to healthy subjects because an atlas is not usually produced from
subjects with diseases [44]. On the other hand, intensity transformation-based algorithms learn
the mappings between source and target images based on the intensity of each voxel instead of
relying on the strict geometric relationship across different anatomies [91, 92]. Later, statistic
learning methods were widely used to replace traditional methods such as dictionary learning
[172], nearest neighbor [61], random forests [93].

Along with the rapid development of deep learning, generative models using neural networks
have been proposed to solve multi-domain image translation. As a specific synthesis task, the
variety of these models can be categorized into three groups: autoencoder, U-net, and GAN. The
architectures have been presented in detail in Chapter 3. Especially, GAN-based models have be-
come popular methods and achieved state-of-the-art in several tasks. Research in [163, 142] is the
first work using GAN-based architecture for a multi-domain image translation problem. It pro-
vided a promising performance to reconstruct output with descriptive ability augmentation of the
generator. However, the limit of these GAN-based methods comes from the one-way translation,
which requires many resources for complex tasks. In recent years, CycleGAN [250], conditional
GAN (cGAN) [85] or recently the starGAN [42] have been released to address the challenge with
strong potential.

In the field of medical images, deep generative models have been rapidly applied and achieved
excellent performance in multi-modal MRI synthesis. Sevetlidis et al. [183] proposed an autoen-
coder architecture for one-to-one MRI synthesis using fused feature maps in a hierarchical design in
a patch-based method. The encoder represents the source image in the latent space, and then the
decoder reconstructs the target image from these representations. Nguyen et al. [212] introduced
a location-sensitive deep network to synthesize T2 from given T1 by integrating image intensity
feature and spatial information following principled manners. Huang et al. [83] presented a joint
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convolutional sparse coding with weakly-supervised training to solve the cross-modality synthesis
in 3D medical imaging.

Besides, there are several also GAN studies applying to medical images. Yu et al. [235] applied
cGAN to produce a 3D Flair MRI from given T1. Later, they published another method called
edge-aware GANs (Ea-GANs) to handle the discrete generation between slices in the 2D synthesis
of cGAN. The model adopts the local feature maps at a global level with 3D estimation [236].
Studies in [45, 229] also used cGAN to synthesize between T1 and T2. Models were designed with
the addition of pixel-wise and perceptual losses in overall architecture to perform pairs training
and the cycle loss for unpaired training. Out et al. [153] introduced a GAN-based approach
to reconstruct MR angiography from T1 and T2-weighted MRI. These methods overcome the
limitations of unique correlation between the source and target modalities by using two different
modalities, encouraging shared latent representations among multiple source images.

Other researchers use multiple inputs to produce single output can be mentioned such as
[96] used an autoencoder to synthesize Flair from T1, T2, and diffusion-weighted imaging, [223]
applied 3D CNN to produce Flair from given T1, T2, T1 spin-echo, proton density, and double
inversion recovery, or [124] proposed a flexibly GAN to take arbitrary subsets of modalities to
generate the target modality. Chartsias et al. [34] used the autoencoder to take all the available
MRI modalities as input and simultaneously synthesize one or more missing modalities. Recently,
Zhou et al. [249] introduced a hybrid-fusion network consisting of modality-specific, multi-modal
fusion, and image synthesis subnetworks to learn the correlations among multiple modalities with
enhanced multi-level fusion strategy, thus improving the performance of synthesis.

In terms of CycleGAN and starGAN, few studies have been published and achieved promising
performance in multi-modality translation. These models can produce more than one modality us-
ing a single model to overcome the drawback of one-way translation of previous methods. Besides,
both architectures can learn the features among all image domains and their generalizability to
different datasets in which images may be labeled partially. For example, [46, 129] directly applied
CycleGAN from [250] to synthesize between T1 and T2 MRI; while [191, 122, 44] used the Star-
GAN with minor modification to solve the synthesis between several modalities. However, current
studies using starGAN are implemented on research datasets without questioning its performance
on a practical dataset. Thus, we also want to examine its performance on the practical dataset,
in which the difficulty is increased.

6.3 Network architecture

Our objective is to synthesize MRI volume between T1 and T1c MRI. Two selected GAN-based
methods are starGAN and CycleGAN. Since there is no difference in initial requirement or data
pre-processing between UHF synthesis and cross-modality translation task, the architecture of
CycleGAN is kept to examine its performance in this task. The details of CycleGAN have been
presented in detail in previous sections; therefore, we do not mention its architecture again. We
will focus on starGAN architecture to explore this model’s requirement and workflow on cross-
modality translation.

Image synthesis aims to produce a modality volume to target MRI volumes through the training
process. To regularize symbols for presentating architectures, with a pair of MRI volumes, V T1

defines the T1-weighted volume while V T1c is presented for the T1 contrast-enhanced volume,
which has the same size by a tensor of size C ×W ×H ×D.
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6.3.1 starGAN

6.3.1.1 Adversarial network architecture

Following the original starGAN [42], the model aims to translate a given MRI modality into mul-
tiple modalities with only one generator and one generator. As a GAN-based method [69], the
generator works to synthesize images between domains, while the discriminator predicts whether
the output is actual or generated. The generator aims at minimizing errors against the discrimi-
nator that tries to maximize them.

In general, a generator can learn to produce any output. However, mapping an input to
multiple outputs without complementary information is very difficult to define desired output
and hard to implement due to the complex training process. To address this issue, the starGAN
model uses an input image along with a defined label as input to synthesize an output. The idea
of starGAN is quite similar to the CGAN model (in Section 3.3.2). Labels are represented as
one-hot encoding vectors to define the modality. During the training process, the generator learns
to flexibly generate the input image along with given random labels. However, different from the
CGAN model, the generator is also trained to translate the synthesized image back to input by
giving the input modality label.

Hence, in general workflow, the generator responds to two different tasks: synthesizing output
from an input image and then reconstructing it back to the original modality image using the input
label. With the labels, the generator can produce different output types while the reconstruction
process ensures performance. The generative process of starGAN has the form of a cycle like
CycleGAN.

Regarding the discriminator, it works to distinguish between the real and synthesized samples
as a GAN generator and classify the real image corresponding to its modality label. For a given
pair of images and labels, the discriminator returns two values: the probability distributions of
the image and its modality label. The general workflow of the starGAN is shown in Figure 6.2

6.3.1.2 Loss function

In starGAN [42], the objective loss function is composed of generator and discriminator losses,
including three main functions. The generator G aim to translate the input V T1 into an V T1c

with the target modality label LT1c such that G(V T1, LT1c) → V̂ T1c ≈ V T1c. The discriminator
D produces probability distributions on image volume and modality label from a given input, for
example, V T1 →

{
Dimg(V

T1), Dlabel(V
T1)

}
.

As a GAN method, [69], the adversarial loss Ladv is always used in every model. Besides, via
the reconstruction process of the generator, the term of reconstruction loss Lrec are also applied to
force the generator to synthesize images that appear to be identical to their inputs corresponding
to the domain. Besides, in starGAN [42], a single discriminator works to classify the label along
with the given input, and to optimize both D and G. Hence, t be more clear, the value of modality
classification loss Lcls are divided into two sub-functions: a loss function to optimize discriminator
Ld_cls, and a loss function to optimize generator Lg_cls.

In general, the objective loss function LstarGAN can be defined as:

LG = Ladv + λcls Lg_cls + λrec Lrec (6.1)
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Figure 6.2: Illustration of starGAN schematic, consisting of one generator and one discriminator

LD = −Ladv + λcls Ld_cls (6.2)

where λcls and λrec are hyper-parameters that of modality classification and reconstruction
loss, respectively.

Adversarial loss: The concept of adversarial loss is applied on every GAN-based architecture.
Training with adversarial loss solves the min-max problem exposed in the previous section. The
adversarial loss of the generator can be presented as:

Ladv = EV T1 [logDimg(V
T1)] + EV T1,LT1c [log(1−Dimg(G(V T1, LT1c)))]

(6.3)

where G uses input image V T1 and the modality label LT1c to generate a synthesized image
G(V T1, LT1c) → V̂ T1c that is expected to look as similar as possible to images V T1c, while D
aims at distinguishing between generated samples V̂ T1c and real samples V T1c. G minimizes this
objective cost against an adversary D that tries to maximize it.

Reconstruction loss: In general, the adversarial loss can control the learning mapping of
generators to produce outputs identically distributed as target domains [67]. However, Zhu et
al. [250] proved that minimizing only adversarial loss cannot guarantee that translated images
preserve the content of their input images while changing only the domain-related part of the
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inputs. The terms of reconstruction loss in starGAN are similar to the concept of cycle consistency
loss in CycleGAN to reduce the space of possible mapping functions:

Lrec = EV T1,LT1c,LT1 [
∥∥V T1 −G(G(V T1, LT1c), LT1)

∥∥
1
] (6.4)

where generator G takes in the translated image G(V T1, LT1c) and the modality label LT1 as
input to reconstruct the V̂ T1 ≈ V T1. Thus, in the starGAN model, for each generating process
between classes, there always exists the a cycle to secure the generating process between two
modality.

Modality Classification Loss: For a given input V T1 and a target modality label LT1c,
the goal is to translate V T1 into an output image V T1c , which is properly classified to the
target modality LT1c. To measure the label classification, the discriminator imposes a loss when
optimizing both networks during training. The loss of modality classification in starGAN is
decomposed into two functions: the modality classification loss for real samples used to optimize
the discriminator Ld_cls and another loss of synthesized volumes used to optimize the generator
Lg_cls.

In detail, the modality classification loss for discriminator is defined as:

Ld_cls = EV T1,LT1 [−logDlabel(L
T1|V T1)] (6.5)

where the term Dlabel(L
T1|V T1) represents the probability distribution over modality labels

computed by D. Consider that the training data contains the input image and modality label pair
(V T1, LT1). With the aim to minimize the objective function, the discriminator learns to classify
a real image V T1 to its corresponding original modality LT1 [42].

On the other hand, the loss function for the modality classification of generator is defined as:

Lg_cls = EV T1,LT1c [−logDlabel(L
T1c|G(V T1, LT1c))] (6.6)

where G tries to minimize this objective to generate images that can be classified as the target
label LT1c.

6.3.1.3 Generative network architecture

We built the network based on the original starGAN [42]. The generator uses residual blocks [75]
as building units for feature extraction. It has been proven to reduce computational time while
ensuring the model performance with fewer parameters. First, the label as a one-hot vector is
spatially replicated to have the same size as the input, and then it will be concatenated with the
input volumes to form the input of the generator. At the beginning of the network, the first two
convolutional layers extract shallow features from the input to reduce size and increase depth.
Next, Residual blocks work as building units to synthesize information from feature maps. Two
deconvolutional layers are ultilized to reconstruct the feature map back to the original size before
generating the synthesized output at the final layers. The details of 3D generator implementation
are shown in Figure 6.3.

The structure of discriminators is shown in Figure 6.4. Unlike previous architecture, the
starGAN discriminator performs the classification between the input and generated output and
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Figure 6.3: The architecture of the generator.

identifies the modality label simultaneously. As usual, a convolutional layer with a single output
channel is used to produce values ranging from 0 to 1. Besides, the architecture of the two
discriminators is modified with an additional convolutional layer to form the modality classification
vector. The discriminator returns two separate outputs for a given input.

Figure 6.4: Architecture of discriminator.

6.4 Experiments

6.4.1 Dataset

As mentioned above, we want to examine the performance of two different models on cross-
modality synthesis on both research and practical data. For this task, we currently focus on T1
and T1c MRI conversion due to its benefits and the scope of the thesis. Then extend to different
types of modality.

In terms of the research dataset, again, we use the MICCAI BraTS 2018 [140, 13, 12] because it
already has aligned T1-weighted, T2-weighted, T1 contrast-enhanced, and T2-FLAIR. The detail
of the BraTS dataset was presented in Section 4.4.1. There are several studies that used the BraTS
dataset for synthesis task [44, 230], but we re-implement the selected methods on this dataset for
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a comparative purpose.

With the support of CHU Poitiers, we have built another practical dataset (appearing later as
the synCHU dataset). A total of 290 pairs of T1 and T1c, 3D MP-RAGE brain MRI are collected
for this work. All 3T MRI volumes were acquired from a Siemens Magnetom Skyra scanner, at
0.9mm3 voxel spacing with the field of view 240 × 288 × 192. The variety of samples includes
different types of diseases. The number of volume pairs in the training, validation, and test set is
200:40:50, respectively.

Besides, during experiments, we found problems translating subjects with glioma in the synCHU
dataset compared to performance on BraTS. Hence, we create a sub-dataset from synCHU that
contains glioma subjects and other subjects with a ratio of 50:50 to enhance the performance of
translating T1c with glioma. It contains 60 samples, divided into training, validation, and test
set with size 40:10:10, respectively.

6.4.2 Pre-processing

Unlike previous work on synthesis, all samples in both dataset have been well aligned, hence we
take advantage of aligned pairs to perform these methods. Besides, to pre-process samples for
training, we applied standardization and normalization methods to reduce the adverse impact of
signal variation across different scanners and sites. Training samples in a modality are standardized
with other samples in the same modality using histogram standardization to make voxel values
in the same intensity range. Then, all aligned samples are normalized using z-normalization to
reduce the computation cost and avoid model divergence. The z-normalization uses terms of mean
and standardization to re-scale transform voxel value within range [0, 1].

In terms of augmentation, the variety of synCHU and BraTS datasets has been ensured by
the dataset size. We do not need to deploy any techniques on this dataset. on the other hand, we
applied techniques such as random rotation and flipping on the subset of the synCHU dataset to
extend the size of the dataset, increase variability, and avoid over-fitting before training

6.4.3 Training setup

For each method, we did several experiments to produce T1-T1c MRI on three datasets: BraTS,
synCHU, and a subset extracted from the synCHU dataset.

6.4.3.1 CycleGAN

The architecture of model is similar to CycleGAN used for UHF synthesis, where two generators
are mirrored with the removal of unnecessary connections between hierarchical features to reduce
the dependence of output on input while speeding up the training process. Besides, model com-
plexity will increase along with the increase of depth or input size. Since we have reduced several
unnecessary fused connections and the concatenation of the shallow feature, the model configu-
ration can be enhanced to improve the performance. In this work, each generator contains six
RDBs, where each block includes three dense blocks in residual connection. Training is executed
in pairs, allowing the network to focus on mapping details and optimizing the performance.

Model is also trained on patches. For each batch, patches are randomly extracted into a
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maximum size of 64 × 64 × 64 on T1 and T1c volumes. The ADAM optimizer is adapted for
optimization. The learning rate starts at 2e−4 and decays by half every five epochs.

For all datasets, the batch size is also set as four. The learning rate is initialized to 1e−4,
and decay starts after every ten epochs. The training CycleGAN for BraTS, synCHU, and subset
dataset takes an average of 10, 12, and 6 hours respectively, on a GPU NVIDIA A100 40GB for
100 epochs.

6.4.3.2 starGAN

The generator is built following the original paper [42]. The generator contains 16 residual blocks,
where each block includes two convolutional layers followed by an instance normalization layers
and a ReLU activation function in residual connection. The modality labels are pre-defined during
pre-processing part. The depth-wise concatenation between input and label is executed during
the training phase. The discriminator consists of several convolutional layers followed by the
Leaky ReLU activation function to extract the feature. The final layers include two independent
convolutional layers. The first convolutional layers return the distributed probability of the given
input, while the second layers return a vector with a probability of domain classification.

StarGAN is also trained on patches. For each sample, patches with a size of 64× 64× 64 are
randomly extracted. The batch size is set to 4. Adam optimizer with a learning rate of 1e−4 was
used for training the model for 100 epochs. On average, the training time of starGAN for BraTS,
synCHU, and subset dataset is 15, 18, and 9 hours on GPU NVIDIA A100 40GB.

6.4.4 Evaluation metrics

Similar to the previous tasks, we use peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) metrics to evaluate the image quality between ground-truth and generated MRI
volumes in both tasks.

6.5 Results

Within the research objective, we do a comparative study between our proposed CycleGAN and
the current baseline starGAN methods for cross-multimodal translation. The BraTS is used as
a reference to explore performance on a research dataset. In contrast, synCHU and its subset is
considered as practical dataset.
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Figure 6.5: Visualization of T1-T1c translation on HGG object in BraTS dataset. In each image,
from left to right: T1 input, ground-truth T1c, CycleGAN and starGAN output.

CycleGAN starGAN

SSIM PSNR SSIM PSNR

T1 to T1c 0.9434 33.76 0.9682 35.92

T1c to T1 0.9321 31.11 0.9496 32.24
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 6.1: Average value of PSNR (dB) and SSIM for T1-T1c translation on BraTS dataset. Syn-
thesized images generated by CycleGAN and starGAN are compared with corresponding ground-
truth MRI for quantitative evaluation.

The performance of CycleGAN and starGAN on BraTS are summarized in Table 6.1 in terms
of PSNR and SSIM assessment. It quantitatively shows how starGAN achieves better results
than CycleGAN in the BraTS dataset in both directions (T1 to/from T1c). The SSIM/PSNR
of starGAN reaches 0.9682/35.92 on T1-to-T1c and 0.9496/32.24 on T1c-to-T1 conversion. The
result of our starGAN is quite close to the previous study that also applied starGAN for cross-
modality translation [44]. On the other hand, the results of CycleGAN also presented a very
competitive result. The SSIM/PSNR of the CycleGAN model reaches 0.9434/33.76 on T1-to-
T1c and 0.9321/31.11 on T1c-to-T1, in which we can conclude that the model can work well on
research data.

Besides, visualization in Figure 6.6, Figure 6.7 demonstrated that both models can fairly
produce T1c from T1 with low distortion of tumour objects. The shape and positions of tumors
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Figure 6.6: Visualization of T1-T1c translation on LGG object in BraTS dataset. In each image,
from left to right: T1 input, ground-truth T1c, CycleGAN and starGAN output.

in T1c ground-truth are closely reconstructed on synthesized output.

CycleGAN starGAN

SSIM PSNR SSIM PSNR

T1 to T1c 0.8715 29.44 0.8562 27.22

T1c to T1 0.9021 30.70 0.8677 28.19
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 6.2: Average value of PSNR (dB) and SSIM for T1-T1c translation on synCHU dataset. Syn-
thesized images generated by CycleGAN and starGAN are compared with corresponding ground-
truth MRI for quantitative evaluation.

Table 6.2 presentes results of two models on the synCHU dataset. The SSIM/PSNR of synthe-
sized T1 for CycleGAN and starGAN are 0.8715/29.44 and 0.8562/27.22, respectively. Here, we
notice a performance reduction in producing the translation of both models. In general, the re-
duction in performance of approaches in practice is usually due to the difference between practical
and research data in terms of pre-processing and difficulty.

Figure 6.8 shows synthesized T1c from T1 MRI on non-glioma samples. In fact, in almost
all cases, output of both models is quite clear compared to ground-truth with no change in the
structure. Moreover, CycleGAN provides a better result on contrast points reconstruction, while
it is limited on starGAN.

Besides, we also found that two models have failed to reconstruct T1c from T1 on glioma
subjects. Figure 6.9 demonstrated the output of CycleGAN and starGAN on a case with glioma.
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Figure 6.7: Visualization of model performance on BraTS dataset on T1c-T1 conversion. In each
image, from left to right: T1 input, ground-truth T1c, CycleGAN and starGAN output.
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Figure 6.8: Visualization of model performance on synCHU dataset. In each image, from left
to right, top to bottom: input/ground-truth T1/T1c MRI, synthesized T1c/T1c generated by
CycleGAN and starGAN.

Figure 6.9: Failed recontruction of model on glioma subjects from T1 to T1c. From left to right:
T1 MRI input, T1c ground-truth MRI, synthesized output by CycleGAN and starGAN.
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As can be seen from the figure, both models cannot recognize the tumour location and shape it
in the output.

Through different experiments, we found that the problems come from the unbalance between
the number of gliomas and other samples in the synCHU dataset. There are only 10% of samples
containing clear tumour on a total of 290 samples which consists of different diseases. Thus, we
extracted a sub-dataset from synCHU and re-trained models to focus on MRI with tumour.

CycleGAN starGAN

SSIM PSNR SSIM PSNR

T1 to T1c 0.9257 32.21 0.8821 29.53

T1c to T1 0.9112 31.88 0.8845 28.79
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 6.3: Average value of PSNR (dB) and SSIM for T1-T1c translation on subset dataset. Syn-
thesized images generated by CycleGAN and starGAN are compared with corresponding ground-
truth MRI for quantitative evaluation.

Table 6.3 presentes the quantitative evaluation of methods on the subset dataset. The model
performance has significantly improved, with the SSIM/PSNR reaching 0.9257/32.21 on Cycle-
GAN and 0.8821/29.53 on starGAN. The visualization in Figure 6.10 illustrates that both models
could reasonably locate and shape the tumour in synthesized T1c. Although the results still need
to be improved, it has been increased a lot from the previous experiments on the entire dataset.

6.6 Discussion

In this work, we compared CycleGAN and starGAN - two recent two state-of-the-art methods
for cross-domain translation. Methods aim to learn the similarity and differences between differ-
ent MRI modalities for synthesis purposes. Models are performed on research (BraTS2018) and
practical dataset (synCHU) for evaluation and currently focused on T1 from/to T1c conversion.
However, it should be noted that methods can synthesize multiple MRI modalities. Models have
presented promising results in the cross-modality translation task. However, limitations are clearly
observed in visual assessment and measurement values.

The T1-T1c translation is considered one of the most challenging conversions due to the ap-
pearance of contrast-enhanced points in T1c. In the aspect of computer vision, it can appear
everywhere in the T1c; hence fully synthesizing T1c modalities need to be carefully studied and
researched. That explains why metric evaluation in SSIM/PSNR is usually lower than previous
work, such as super-resolution and UHF synthesis. In super-resolution, the predicted output is
generally similar to the input in terms of image properties (e.g., brightness, contrast) and struc-
tural information, with a significant improvement in spatial resolution and details. Regarding
to UHF synthesis, although there might be a mismatch between paired 3T and 7T due to the
alignment, in general, the structural information between pairs is similar. In other words, for
both tasks, there will be no appearance of new "artifacts" such as contrast points or tumors in the
final output like the T1-T1c task. We have compared the performance of starGAN on the BraTS
dataset with other studies on the same topics [44, 230] as a reference for our implementation.
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Figure 6.10: Visualization of model performance on subset dataset. From left to right: T1 MRI
input, T1c MRI, CycleGAN and starGAN output.
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Minor differences in quantitative results might come from configurations in network architecture
or training parameters, but the results are close in general.

Besides, both methods can fairly synthesize T1c from/to T1 MRIs. Evaluation in PSNR / SSIM
and visualization on the BraTS dataset have shown that starGAN can provide higher performance
than CycleGAN. However, the performance of both methods has significantly decreased on the
synCHU dataset. We observed detailed results and close to ground truth on non-glioma subjects.
The main structure of objects is kept, while contrast points can be reconstructed, especially on
the CycleGAN model. However, both models failed to reconstruct samples with glioma.

Through different experiments, we have figured out the problems resulting from the imbalance
between glioma and non-glioma samples in the entire dataset. By doing experiments on the subset
dataset with more representative glioma samples, we have improved the prediction process from
previous work. Both models can reconstruct T1c with the appearance of glioma from the given T1
MRI. Although experimental results are still limited in terms of locations and shape of the tumor
compared to the ground truth, we believe that it can be improved in the following experiments.
For example, we can use another subset that only contains glioma samples like the BraTS dataset
as training data. Besides, the performance of CycleGAN can surpass the starGAN in the synCHU
or subset dataset although its performance is lower than the starGAN in BraTS.

In fact, in BraTS, all samples are subjects with glioma, while this number on practical dataset
is much lower. Hence, we temporally conclude that the CycleGAN performs better on practical
datasets than the starGAN. To explain, the adversarial of CycleGAN are implemented in pairs,
which usually can optimize results. It is explicable since the CycleGAN method incorporates cycle-
consistent design in forwarding and backward cycles with paired training, taking full advantage
of structural information and thus leading to comparable generation results. It has been proved
through the MRI synthesis in previous work, where the dataset is limited by size and variety.

On the other hand, starGAN only uses one label to classify the T1 and T1c MRI. It might be
too general to define a sample. The potential of starGAN for multi-modality translation is very
considerable. With the presentation of modality labels in the architecture, starGAN can generate
specific output on corresponding label contents. Furthermore, a starGAN model can use several
labels to determine the different properties of a sample. For example, to improve the performance
of starGAN on the synCHU dataset, we can use another label along with the modality label to
pre-define glioma samples. Then, during the training phase, the model has to consider that there
is a second condition to synthesize the desired output. However, doing so will significantly increase
the complexity and depth of the network.

At this moment, this work is ongoing. The current step is to compare the performance of two
models to examine the performance of our prosed CycleGAN model, the cross-modality synthesis
task, while starGAN now is considered the state-of-the-art domain. In future work, we want to
increase the current CycleGAN model’s performance by attempting different generator architec-
tures. In terms of starGAN, we also want to enhance its performance by modifying the general
architecture or re-training the model with multiple labels to specify training samples for details
generation. After that, we aim to expand the work to other modalities.
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6.7 Conclusion

In this work, we did a comparative study of our proposed CycleGAN and the starGAN for the
T1-T1c conversion. Methods have been evaluated using research (BraTS) and practical datasets
(synCHU), in which MRI modalities were spatially co-registered. Experiments on research dataset
have presented that starGAN achieves better performance compared to CycleGAN, with equivalent
results to recent studies in the same topic. On the other hand, CycleGAN provided higher synthetic
performance on a practical dataset, where the differences between samples and difficulty are
increased.

In general, both methods can enhance the capability of cross-modality MRI translation to
tackle the challenges from a clinical context. With the advantage of robust implementation, this
topic is very potential in practice where multi-contrasts MRIs are necessary for better diagnosis
and treatment planning.
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Conclusion

Chronic kidney disease (CKD) describes the gradual loss of renal function. In the context of the
increasing CKD as a problem of significant public health, kidney transplantation is an efficient
strategy compared to all the strategies evaluated with the benefits of lifetime and treatment cost.
In general, CKD patients are known to experience accelerated atherosclerosis, and there are sev-
eral inflammatories and atherogenic factors due to the increased cardiovascular risk proportional
to the increase in serum creatinine, suggesting that renal failure correlates with, if not causes,
accelerated vascular and metabolic defects that predispose patients to cardiovascular death. Pa-
tients with ESRD benefit from transplantation as early as possible to maximize their potential for
extended survival after transplantation. The better outcomes of patients with preemptive trans-
plants and a shorter dialysis time underscore the importance of early referral and evaluation for
renal transplantation.

Before transplantation, the determination of the functional status is critical. Standard methods
such as estimating the GFR or invasive biopsy are a late indicator of renal impairment. Moreover,
the optimal method of preserving the kidney remains an entire problem. If a visual examination is
essential, the criteria used to reach the right decision are still vague and challenging to explain. On
the other hand, radiology was reported to help with follow-up renal diseases. Medical images such
as MRI and CT play an increasingly more critical role in assessing renal function. Especially, MRI
was demonstrated to be a powerful tool to evaluate renal tissue by assessing both renal function
and structure for both kidneys with structural, functional, and molecular information. The use of
imaging techniques to analyze the kidney in different clinical tasks, including that transplantation,
is becoming a potential research topic. MRI modalities offer safe, low-cost, non-invasive, clinically
available, and short time examination techniques. Those imaging techniques could provide a rapid
assessment for both transplanted kidneys and grafts. Thus, developing a robust and non-invasive
alternative to imaging is, therefore, a subject with many challenges.

Besides, machine learning, and later deep learning, has been coming into its own, with great
adaptability to high dimensionality problems. Machine learning can be defined as a set of al-
gorithms that can learn and improve from experience without being explicitly programmed for
a specific task. Learning-based enables the computer to build complex concepts out of simpler
concepts. Recent medical imaging and machine learning advantages inspired many innovative
researchers to use anatomical and functional imaging for diagnostic assistance. AI models are
not approved to replace radiologists medical decision-making; instead, they can assist them in
providing optimal diagnoses for their patients.

Within the scope of the thesis, we aim to improve the assessment of renal grafts before removal
using medical imaging techniques, focusing on MRI. Besides, the objective of the thesis is to
improve kidney assessment to support radiologists making decisions by enhancing the quality of
MRI in terms of spatial resolution, field strength, and multi-contrast.
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However, since the COVID-19 epidemic took place during most of the thesis work, as well as
the insufficiency of available resources, research works are implemented on brain MRI to achieve
optimized results. Since we do not focus on any specific disease in general, but to improve the
overall quality of MRI, we believe that it can also help improve the quality of kidney assessment.
Hence, we decided to use brain MRI instead of kidney MRI to achieve the most optimized results.

There are three main research tasks have been proposed and solved in this thesis, including
super-resolution and UHF synthesis for image quality enhancement; and cross-modality transla-
tion. In each task, we present an overview of related works used in the domains along with our
contribution.

In terms of data, the works are completed on both research and practical dataset. The MICCAI
BraTS2018 - a dataset containing 3T MRI volumes with different types of sequences is used as
research data. The variety within BraTS is ensured by samples acquired with various clinical
protocols and scanners from multiple institutions. It contains several samples, including T1-
weighted, T2-weighted, post-contrast T1-weighted, and T2-FLAIR. It is used for super-resolution
and cross-domain translation tasks. On the other hand, with the support of MRI systems at
CHU Poitiers, we are allowed to extract medical data for research works. Two datasets have
been built for the three tasks. The first dataset contains different samples of 3T and 7T MRI,
mostly unpaired, and a few samples are paired for quality enhancement tasks. The second dataset
contains pairs of 3T MRIs with different modalities (currently T1 and contrast-enhanced T1) used
for the cross-modality task.

Chapter 4 presents a method that enhances the spatial resolution on routine 3T MRI to
improve diagnosis and assessment. When most current approaches in MRI super-resolution require
paired low and high-resolution data for training, which are difficult to obtain due to the limited
resource and time computation, the proposed the SRCycleGAN to solve the super-resolution task
through either paired/unpaired training based on the self-supervised designs. The architecture of
generators is modified from the base model to improve the performance of medical data. Besides,
the methods are implemented for both 2D and 3D MRI.

Experiments have been conducted on research and practical MRI datasets to ensure model
performance. Results figured out that the proposed methods can work stably on different types
of MRI. Evaluation of reconstructed images on both 3T and 7T MRI shows exploitable results
with low distortion and detailed texture. The advantage of the approach is that paired data is
not required for an efficient training process. Therefore it can be executed on several publicly
available MRI datasets, thus overcoming the limitations explained earlier.

Besides, we also compared model performance with different methods in the same domains to
have an objective perspective on model performance. Selected methods include the traditional
super-resolution (interpolation) and state-of-the-art GAN-based model. The quantitative evalua-
tion shows that the SRCycleGAN is better and more measured than other methods on different
scaling factors. Besides, we also conclude that a 3D model can provide better performance than
a 2D model in general due to the unity between slices and the entire volume. It also can reduce
the appearance of noise/artifacts or even the gap between the object in reconstructed results.

Chapter 5 indicated the quality enhancement process by synthesizing UHF (7T) MRI out of
routine (3T) MRI. Synthesis holds great potential by relying on standard MRI data pairs (e.g. 3T
and 7T) to emulate conversion on a physical level. This work presented a hybrid generative model
based on CycleGAN to produce realistic UHF-MRI. Advantaged by semi-supervised learning in
cycle-consistent architecture, the proposed method can solve synthesis on routine MRI in 3D
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space. The architecture of the generator is modified to work on the synthesis task.

A substantial drawback for MRI synthesis is the difficulty in having reliable training data such
as pairs of 3T and 7T MRI content for the same subject acquired simultaneously. With the CHU
dataset that has been built from MRI systems at CHU Poitiers, we keep using 3T and 7T MRI
to implement the MRI synthesis for the 3T-to-7T conversion task. Since our training data is
limited for this task, models are implemented on true data pairs to maximize the performance.
Experiments are done on experimental MRI data to evaluate the performance of the dataset. Real
3T and 7T MRI are processed and used for experiments.

Results from a comparison among different methods demonstrate that the method outperforms
current state-of-the-art methods in MRI synthesis to produce UHF-MRI under qualitative and
quantitative terms. The convincing results also prove the advantage of cycle-consistent medical
image synthesis, overcoming the limitation in training data for MRI synthesis. The final models
can work stably on 3D brain MRI, holding great promise for the research topic in practice.

In chapter 6, we focus on MRI cross-modality translation task. Models can generate output
among different modality such as T1↔ T2, T1 ↔ T1c, T1 ↔ T2-Flair. However, we currently
focus on translation between T1 and T1 contrast-enhanced brain MRI due to its research value
for overall assessment in general and for kidney patients in particular.

We do a comparative study between methods in cross-modality translation among T1-T1c
MRI. Among all generative architecture that has been proposed, we implement two cross-modality
frameworks based on GAN to illustrate its effectiveness on experimental data. The first method
in this work is the CycleGAN model. We take advantage of the proposed methods in UHF
synthesis by adopting them for cross-modality transformation. The second framework is StarGAN
- a recently novel method for image translation. StarGAN uses only one unified model with one
generator and one discriminator to perform image-to-image translations between multiple domains.
We adopted the strategy of StarGAN and specially applied it to multimodal MR image synthesis.
In this work, we build a 3D implementation of StarGAN to solve the T1-T1c conversion task.

The experiments have also been conducted on research and practical datasets. The research
dataset results are well-performed compared to the previous study in the same domain. The
evaluation is executed on the entire dataset and a subset dataset focusing on a specific task for a
practical dataset. Results demonstrated that both selected methods achieved a promising result
on usual subjects, while the performance is strongly reduced in samples with glioma due to the
unbalance of data. After retraining on the subset dataset, both models have significantly improved
the performance with fair reconstruction on samples with tumors.
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Chapter 7

Perspectives

Regarding the objective of the thesis, the first future work is to investigate the performance
of proposed methods on kidney data. We expect the model to perform well for kidney MRI
for different tasks, including super-resolution, UHF synthesis, and T1-T1c conversion. If it can
perform well, it can bring a huge value to thesis work in practice. On the other hand, we can
apply transfer learning and domain adaptation to current work to expand performance on kidney
data instead of re-train all models. As mentioned in section 2.5, models can be fine-tuned with
new additional kidney samples for each task. Transfer learning aims to apply a solved problem
to a different but related problem. In this case, we consider that MRI for different pathology
has the same base properties, such as acquisition and modalities, with the difference in structural
information.

In the second task, we want to expand the training dataset size to explore and evaluate the
performance of the proposed method. Indeed, the current dataset for UHF is limited. We consider
this research topic precious, while the results hold great potential for synthesizing UHF from a
given 3T MRI. The quality is significantly enhanced in contrast and structural details, allowing
better support for diagnostic aid. Besides, the University Hospital of Poitiers imaging platform,
especially via the Telsa MRI 7 and its acquisitions, opens the way for these studies.

In the third task, the work is currently in the comparative study phase, with much opportunity
to enhance the performance of both models. Since we have worked on generative models for almost
the time of the thesis, we believe that we can improve our current work with several solutions.
Later, we can extend the study to different modalities, such as T1 ↔ T2, T1c ↔ T2, etc.

Overall, our objective is not to replace radiologists medical decision-making; instead, we aim to
assist them in providing optimal diagnoses for their patients. Furthermore, each work of the thesis
is completed based on this objective. The processing of images can be implemented independently
for each task or linked into a chain based on a different purpose. The model can produce output
with desired content from given input without any additional process. All the tasks take less time
than the usual time of MRI scanners, as well as the current expense for UHF scanners or the
lack of multi-modality resources for a patient. Hence, it can become a potential research topic for
medical image analysis. The application can rapidly provide synthesized results in minutes, and
the radiologist can evaluate the performance of the algorithm and its agreement with the imaging
examination.

Lastly, the extreme objective of clinical workflow is to fill the gap between research and practice.
Although we do not want to replace the radiologists in decision making instead of assisting them
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in providing optimal personalized care for their patients. However, we hope our work can benefit
current MRI acquisition to produce realistic MRI as close to natural as possible. If so, it can
overcome the current infrastructure limitation, time consumption, and expense. For example, the
7T MRI is currently the highest strength-field MRI in the commercial. However, it is not popular
in clinical and research centers, leading to a lack of UHF resources in diagnosis. If we can have an
optimized method with the superior result for ultra-high field and cross-modality translation, we
can rapidly produce a complete multi-modality MRI for each patient with less time and expense.
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