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The first discovery of a microorganism and, by extension, the observation of a cell was achieved using microscopes by Robert Hooke and Antoni van Leeuwenhoek in the late 17th century. Since then, many scientific efforts have been deployed to characterize cells and their heterogeneity in multicellular organisms. Recent technological advances allow now to molecularly profile cells through different single-cell omics technologies. Thus, large-scale genomic, epigenomic, transcriptomic, proteomic, and metabolomic components may now be identified at single-cell resolution in order to disentangle the molecular programs that jointly orchestrate cell functions.

The exploration of the cell heterogeneity and its underlying molecular constituents is essential for the understanding of complex biological mechanisms and their involvement in health or disease states. This exhaustive exploration of human cell heterogeneity requires the unbiased identification of molecular signatures that can serve as unique cell identity cards for every cell in the body. However, the stochasticity associated with high-throughput single-cell sequencing has made it necessary to use clustering-based computational approaches in which the characterization of cell-type heterogeneity is performed at a cell-subpopulation level rather than at full single-cell resolution. In this thesis, I developed a clusteringfree multivariate statistical method, called Cell-ID, which allows the robust extraction of per-cell gene signatures from single-cell sequencing data. Through extensive benchmarks performed on a large collection of diverse single-cell sequencing datasets, I demonstrate that Cell-ID signatures allow unbiased cell identity recognition across different donors, tissues-of-origin, model organisms, and single-cell omics technologies. Moreover, I illustrate through exploratory analysis that CellID signatures encapsulate the signal related to complex biological mechanisms and can be used to investigate functional pathways and ontology.

The CellID method has been implemented as an open-source R package and can be easily integrated into existing single-cell analysis workflows by the research community. Overall, the original method that I have developed throughout this thesis will help capture individual cell heterogeneity by providing robust and unbiased signatures. Notably, it can be used to build a comprehensive reference catalog of cell identity by applying it on large-scale cells atlas projects such as the Human Cell Atlas or Mouse Cell Atlas and investigating molecular pathways associated with diseases. This work will be strongly relevant also in the near future as single-cell technologies enter a new era driven by multimodal sequencing, and cells will be characterized by the combination of several omics patterns.

Titre : Développement de méthodes bio-informatiques pour l'analyse des données de haute dimension sur cellules uniques et leur application à l'étude de l'hétérogénéité cellulaire.

Résumé :

La première découverte d'un micro-organisme et l'observation d'une cellule a été réalisée à l'aide de microscopes par Robert Hooke et Antoni van Leeuwenhoek à la fin du XVIIe siècle. Dès lors, de nombreux moyens ont été déployés pour caractériser les cellules et leur hétérogénéité dans les organismes multicellulaires. Les progrès technologiques récents permettent maintenant de caractériser les cellules grâce à différentes technologies de séquençage d'"omiques" sur cellule unique.

Ainsi, les composants génomiques, épigénétiques, transcriptomiques, protéomiques et métaboliques peuvent maintenant être identifiés à grande échelle à la résolution unicellulaire afin de déchiffrer les modules moléculaires qui orchestrent les fonctions cellulaires.

Le séquençage sur cellule unique est une technique précieuse pour analyser la diversité des cellules et leurs états dans un environnement et un instant donnés. De ce fait, cette nouvelle technologie a récemment contribuée à la découverte de nombreuses méchanismes biologiques au sein d'organismes et tissues divers. On peut notamment citer le fait qu'elle a été grandement utilisée pour analyser des données sur patient COVID-19 pour mieux élucider le mode de fonctionnement du virus et leurs effets sur les différentes cellules du corps humain.

Cette exploration de l'hétérogénéité cellulaire et de ses constituants moléculaires sous-jacents est essentielle à la compréhension des mécanismes biologiques complexes et à leur participation dans les maladies. Cette exploration exhaustive de l'hétérogénéité des cellules, nécessite une identification des signatures moléculaires de manière non biaisée, qui peuvent servir de cartes d'identité pour chaque cellule du corps. Une telle cartographie des cellules de l'organisme Cependant, la variabilité et les erreurs techniques associées au séquençage sur cellule unique a rendu nécessaire l'utilisation d'approches computationnelles basées sur le partitionnement de données dans lesquelles la caractérisation de l'hétérogénéité de type cellulaire est effectuée à un niveau de sous-population cellulaire plutôt qu'au niveau de la cellule unique.

En effet, les données de séquençages sur cellule unique présente de nombreuses problèmes techniques rendant l'analyse particulièrement difficile tels que le Fléau de la dimension, le « batch effect », les données manquantes et doivent être remédiés grâce à des méthodes bioinformatiques pour récupérer l'information biologique sous adjacente.

Dans cette thèse, j'ai développé une méthode statistique multivariée sans partitionnement de données, appelée Cell-ID, qui permet l'extraction robuste de signatures géniques, par cellule, à partir de données de séquençage sur cellule unique.

Plus spécifiquement, CellID utilise une méthode de réduction appelée MCA qui permet la représentation des cellules et des gènes dans un même espace euclidien où la distance entre gène et cellules reflète la spécificité de l'expression : Plus un gène particulier et poroche d'une cellule, plus il est fortement exprimé dans cette dernière.

Cette propriété particulière permet d'élaborer un classement de spécificté des gènes par cellules qui peut être couplé avec une méthode d'enrichissment d'ensemble de gènes pour permettre l'exploration de l'hétérogeneité des données de séquençage sur cellules uniques.

L'utilisation d'un technique de réduction de dimension permet de lutter efficacement contre les sources de variabilités techniques présente dans les données de séquençage sur cellule unique tout en retenant l'information biologique d'intérêt.

Via de nombreuses évaluations effectuées sur divers ensembles de données de séquençage unicellulaire, je démontre que les signatures extraites par Cell-ID permettent une reconnaissance impartiale de l'identité cellulaire entre différents donneurs, tissus d'origine, organismes et technologies "omiques" sur cellule unique.

CellID montre notamment des performances supérieurs à d'autres méthodes de reconnaissance de l'identité cellulaire qui se basent sur des méthodes de machine learning complexe où le processus de charactérisation des cellules est plus obscure et mois transparent.

De plus, j'illustre par une analyse exploratoire que les signatures extraites par CellID englobent les signaux liés aux mécanismes biologiques complexes et peuvent être utilisées pour étudier les voies biologiques fonctionnelles.

En combinant ma méthode avec des bases de données englobant des signatures géniques de fonctions biologiques comme KEGG, Gene Ontology, Reactome, j'ai été capable d'identifier dans une sous population rare de l'epithelmium olfactif des modules de gènes impliqués dans des mécanismes biologiques spécifiques.

iii La méthode CellID a été implémentée en tant que package R open-source et peut être facilement intégrée dans les flux de travail existants d'analyse des données de séquençage sur cellule unique par la communauté de recherche.

La méthode est notamment compatible avec d'autres outils bioinformatique spécialisé dans l'analyse des données de séquençage sur cellule unique comme Seurat ou SingleCellExperiment.

Dans l'ensemble, la méthode originale que j'ai développée tout au long de cette thèse aidera à capturer l'hétérogénéité cellulaire individuelle en fournissant des signatures robustes et non biaisées qui une fois extraites sont utilisables sur d'autres jeux de données.

CellID peut notamment être utilisé pour construire un catalogue complet d'identité cellulaire de référence en l'appliquant à des projets d'encyclopédie cellulaire à grande échelle tels que l'encyclopédie des cellules humaines (Human Cell Atlas) ou l'encyclopédie des cellules de souris (Mouse Cell Atlas), et aussi, entre autres, étudier les voies moléculaires associées aux maladies en utilisant des signatures géniques décrivant des modules fonctionnelles spécifiques.

Ce travail sera également très pertinent dans un avenir, proche avec l'avènement du séquençage multimodal à l'échelle de la cellule unique, où il sera nécessaire de caractériser les cellules par la combinaison de plusieurs "omiques".

Mots clefs : omiques, séquençage d'ARN sur cellule unique, réduction de la dimensionalité, fonction biologique, signatures géniques xi 
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Chapter 1. INTRODUCTION 1.1 THE ADVENT OF SINGLE-CELL SEQUENCING

This introductory chapter provides a comprehensive background and insight into single-cell sequencing protocols to better understand the scope of my work. It briefly describes the development of single-cell technologies, its many applications, and challenges associated with it.

A short history of NGS

One of the earliest successes to sequence DNA dates back to 1977 with the Sanger sequencing [START_REF] Sanger | DNA sequencing with chainterminating inhibitors[END_REF] and is often referred to as first-generation sequencing. Sanger sequencing dominated for decades the DNA sequencing scene and remains partially used for small scale experiments to this day. This popularity was partly due to the commercial introduction of automated DNA sequencers developed, for instance, by Applied Biosystem Instruments (1984) that has democratized DNA sequencing. However, Sanger sequencing quickly showed scalability limitations due to its cost and technical feasibility on a large scale. The first breakthrough after Sanger sequencing was achieved with microarray 2 (1995) technologies, which utilize microchips coated with short DNA elements specific to a particular set of genes to quantify their expression.

The transcript quantification achieved by microarray was used in many applications but presented limitations as they require a priori knowledge of the query genome to construct the short DNA fragments. Thus, only a limited set of genes could be profiled.

Since 2004, the sequencing strategy has drastically changed and tackled Sanger sequencing's scalability issue to perform genome profiling at a much larger scale. These modern high throughput sequencing processes are referred to as Next Generation Sequencing (NGS) or second-generation sequencing. The basic characteristics of second-generation sequencing technology reside in the Shotgun sequencing approach. Large pieces of DNA are broken down into smaller fragments called reads that are then amplified using technologies such as PCR or ligation amplification. With this procedure, NGS generates millions of short reads in parallel in a much shorter time and in a much more cost-efficient way than the Sanger sequencing method.

Using computational approaches, the sequenced reads can then be assembled to reconstruct the genome de novo [START_REF] Haas | De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[END_REF][START_REF] Li | De novo assembly of human genomes with massively parallel short read sequencing[END_REF] , or, alternatively, reads can be mapped to a pre-existing reference genome to measure the abundance of each gene.

During the last decades, next-generation sequencing technologies have played a central role in comprehending many life science mechanisms by rendering accessible the world of omics. A rapid growth characterized by increased throughput and drastic reduction of the cost in different omics sequencing has been accompanied by the creation of many bioinformatic tools developed 2 by the community, aiming at extracting crucial biological information. This democratization has allowed both small and large research groups to generate broad profiling of genome sequences for any organism of interest. For instance, Whole Genome Sequencing (WGS) has been widely used in building comprehensive human genome references such as 1000 genome project [START_REF]An integrated map of genetic variation from 1,092 human genomes[END_REF] or used in clinical research to investigate CNV and SNP [START_REF] Gonzaga-Jauregui | Human genome sequencing in health and disease[END_REF][START_REF] Handsaker | Large multiallelic copy number variations in humans[END_REF][START_REF] Rabbani | The promise of whole-exome sequencing in medical genetics[END_REF] . In transcriptomic, RNA-seq [START_REF] Mortazavi | Mapping and quantifying mammalian transcriptomes by RNA-Seq[END_REF][START_REF] Nagalakshmi | The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing[END_REF] has been widely used to quantify the transcript abundance and construct reference datasets such as GTEx [START_REF] Aguet | Genetic effects on gene expression across human tissues[END_REF] . Last but not least, methylation sequencing can map DNA cytosine methylation at singlebase resolution by employing bisulfite DNA sequencing [START_REF] Bakshi | Locus-specific DNA methylation analysis of retrotransposons in ES, somatic and cancer cells using High-Throughput Targeted Repeat Element Bisulfite Sequencing[END_REF][START_REF] Ekram | High-throughput targeted repeat element bisulfite sequencing (HT-TREBS): genome-wide DNA methylation analysis of IAP LTR retrotransposon[END_REF] and enables us to get more insight into the structure and the function of the human genome [START_REF] Jones | A Blueprint for a Human Epigenome Project: The AACR Human Epigenome Workshop[END_REF] .

The promise of single-cell sequencing

Despite its efficacy and its fast rise in popularity, one question arose quickly. "Can genetic, transcriptomic information extracted from a single-cell and sequenced?". Indeed, even though conventional RNAseq (refered to as Bulk RNAseq) can profile the expression of several thousand genes from a biological sample such as tissue or blood; the signal provided is an average of all the cells in the samples, and hence a deep investigation of cellular heterogeneity is not possible.

For instance, when analyzing two blood samples, one from healthy control and one from a particular disease patient. It is possible to detect the genes or biological pathways that are upregulated in one condition and down-regulated in the other, thus allowing getting insight into the disease. However, it is impossible to understand which cell subpopulations in the blood are involved in such mechanisms, and further experiments must be conducted to get further insight.

In the case of blood/immune cells, FACS sorting can be conducted to get a purified cell type and reconduct Bulk RNA seq on top of it. Nevertheless, this would be very tedious experimentally speaking and would require good prior knowledge of the field.

The promise of sequencing at the single-cell level opens the door to many biological applications.

The main advantage of scRNAseq upon its predecessor resides in working at the cell's base level and provides unprecedented resolution. The omics measurements at the single-cell level allow notably the de novo identification of cell types and their characteristic genes within a given tissue.

Taking back the example of a patient versus control study, heterogeneous responses in disease can be investigated by first identifying the different cell types composing the two samples and then comparing the gene expression of the different cell types between patient and control, thus efficiently detecting the subpopulations that are targeted by the disease. Moreover, subtle differences within cell subpopulations can also be described by inspecting gene expression variability (Figure 1-1), which is impossible in Bulk RNAseq. Schematic representation of the difference between bulk and single-cell sequencing; in contrast with a Bulk averaged signal, Single-cell resolution allows comparison of expression between cell types and within cell types. By grouping cells based on their transcriptomic profile similarity, disease-associated cells can be dissociated in single-cell. The figure was taken from "Entering the era of single-cell transcriptomics in biology and medicine" 15 From 2009 to 2020, intensive scientific efforts have been deployed to gradually shift omics sequencing from tissue to cell resolution and making the applications mentioned earlier a reality.

As I write, single-cell sequencing is now an integral, if not an essential part of many fields in biology, such as immunology, hepatology, neurology, and cancerology. The next section will further describe the ascension of this technology and the mechanism behind it.

Sequencing Protocol

In 2009, only after a few years of the advent of Bulk RNAseq technologies, the first protocol for performing single-cell RNA-seq (scRNA-seq) was published [START_REF] Tang | mRNA-Seq whole-transcriptome analysis of a single cell[END_REF] . This first approach enabled to quantify gene expression at the single-cell resolution. However, it necessitated to handle cells manually, and the output was limited to 1~3 cells per experiment and was hardly scalable.

Nowadays, a regular study based on single-cell data often ranges from 5000 cells to 50000 cells. Overview of the different single-cell sequencing protocols and their difference in the key steps. Depending on the experience, a full-length protocol can be chosen rather than a UMI capable protocol. The figure is taken from "Comparative Analysis of Single-Cell RNA Sequencing Methods." 18

Plate Based Sequencing

Since the first single-cell transcript capture by Wang et al. in 2009 16 , many studies aimed at enhancing the protocol to improve the overall throughput both in terms of cell count and gene coverage. Notably, protocols such as CEL-Seq [START_REF] Hashimshony | CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification[END_REF][START_REF] Hashimshony | CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[END_REF][START_REF] Yanai | CEL-Seq2-Single-Cell RNA Sequencing by Multiplexed Linear Amplification[END_REF] , Quartz-Seq [START_REF] Sasagawa | Quartz-Seq: a highly reproducible and sensitive singlecell RNA sequencing method, reveals non-genetic gene-expression heterogeneity[END_REF][START_REF] Sasagawa | Quartz-Seq2: a high-throughput single-cell RNAsequencing method that effectively uses limited sequence reads[END_REF] , and Smart-seq [START_REF] Picelli | Smart-seq2 for sensitive full-length transcriptome profiling in single cells[END_REF][START_REF] Picelli | Full-length RNA-seq from single cells using Smart-seq2[END_REF] were developed, and a commercial solution based on these protocols was marketed for the first time by Fluidigm near the end of 2014. The overall bench protocol is very similar to the one in Bulk, with the main significant difference being the addition of cell dissociation and isolation step. The protocols mentioned above first dissociate the cells using specific reagent and incubation, then cells are isolated using microfluidics/FACS to dispose them individually into a well plate. The isolated cell is then lysed to release the transcriptomic material, and the latter is reversed, transcribed, and then amplified via PCR to generate the sequencing library (Figure 12, Figure 123).

Figure 1-3 Single-cell RNA sequencing protocols

Schematic representation of single-cell sequencing protocols. The overall idea is the same as Bulk sequencing, where the aim is to get a numeric expression matrix quantifying the sequenced omic. The main difference resides in the dissociation and isolation step. Image is taken from "https://en.wikipedia.org/wiki/Single_cell_sequencing" These plate-based protocol has allowed scaling the cell count to a few hundred or, with great resources, a thousand cells [START_REF] Zilionis | Single-cell barcoding and sequencing using droplet microfluidics[END_REF] , and showed a promising future for single-cell to be applied to real case scenarios as many researchers began to realize and appreciate the plus value that singlecell can offer and used it to unveil complex heterogeneity inside tissues and diseases. The appearance of plate-based protocols has led to the publication of some of the first cancer studies using single-cell [START_REF] Patel | Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[END_REF] , the discovery of rare subpopulations [START_REF] Grün | Single-cell messenger RNA sequencing reveals rare intestinal cell types[END_REF] , first datasets on developmental biology [START_REF] Kowalczyk | Single cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells[END_REF][START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF] , and atlas of whole tissues [START_REF] Muraro | A Single-Cell Transcriptome Atlas of the Human Pancreas[END_REF][START_REF] Darmanis | A survey of human brain transcriptome diversity at the single cell level[END_REF] . However, in real case scenarios, such as clinical studies or building reference atlases of a whole organism, a few hundred or thousand cells provided by these protocols are generally not a sufficient number of cells for extensive analysis of heterogeneous cell populations. 

Droplet Sequencing

Quickly enough, the most noticeable breakthrough in terms of throughput and cost performance of single-cell was achieved in 2015 with the inauguration of droplet sequencing [START_REF] Macosko | Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets[END_REF][START_REF] Klein | Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells[END_REF] . Contrary to plate-based technology, droplet-based protocol, as its name implies, encapsulate cells inside nanodroplets using a microfluidic system. A bead combined with reagent is inserted into the cell containing droplet to perform cell lysis and PCR. Moreover, each mRNA is tagged with a unique barcode sequence present on the bead to identify the cell the mRNA originated from. This approach presents the advantage of capturing many cells at the time (more or less 5000 per sample) and is also more robust to doublet than plate-based technology and can also be parallelized to get multiple samples. On a secondary note, droplet-based technology is much more flexible in terms of the cells' size, whereas plate-based protocols often have a specific window of cells' size that they can capture. The advent of droplet sequencing has allowed the exponential growth of cell counts in studies throughout the year. This method gained quick momentum as companies such as 10X genomics provided easy to use commercial solutions with the Chromium technology [START_REF] Zheng | Massively parallel digital transcriptional profiling of single cells[END_REF] that can handle 16 different samples simultaneously using independent channels, thus enabling a single run the capture of almost one hundred thousand cells (Figure 1234). By 2017, 10X Genomics generated for the first time a dataset reaching more than one million cells using a mouse brain tissue [START_REF]1M_neurons -Datasets -Single Cell Gene Expression -Official 10x Genomics Support[END_REF] , achieving cell count that was unimaginable five years ago.

UMIs

One notable feature used extensively in most single-cell protocols is UMIs (Unique Molecular Identifier). As individual cells contain very small amounts of genetic material, PCR amplification is necessary to obtain enough cDNA to capture sufficient signal that can be mapped to the reference genome. The PCR amplification step can introduce bias where transcripts are amplified with a different order of magnitudes depending on the nucleotide sequence and can alter the genes' true proportion. Droplet-based capture protocols use nucleotide probes that include a poly(T) sequence, which binds UMI, a barcode sequence of 8~10 bases to mRNA. The 8 to 10 bases of random nucleotide sequence makeup respectively to a 5 ×10^17 and 2×10^19 possible unique combination of sequence and make the probability of getting the same tag for two different transcripts neglectable. Hence UMI allows to label uniquely all the captured transcripts. These tags are also amplified during the amplification steps. Thus the bias of amplification between molecules can be corrected after alignment to reference genome by performing deduplication, which identifies reads with the same UMI that maps to the same position (Figure 12345). These reads can thus be interpreted as technical duplicates from the amplification process rather than an independent copy of the transcript. However, by applying UMIs, only a small section at the 3' end of each transcript needs to be sequenced. This trade-off considerably reduces the amount of initial transcriptomic materials. It allows more cells to be sequenced at the cost of lower coverage, and thus fewer genes are detected compared to protocols that allow full-length transcript such as Smart-seq. 

Design of experiment

A single-cell sequencing experiment's quality depends on two factors: the cell counts and the gene coverage. These parameters can be controlled by the experimental design and chosen according to the study's goal.

Due to its high throughput and its compatibility with UMI, most of the recent studies use protocols based on droplets, rather than plate-based protocols that are not used as frequently due to the relatively low cell count for the cost, even though recently developed protocols such as seq well [START_REF] Gierahn | Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput[END_REF] has considerably lowered the price per cell. However, according to recent studies [START_REF] Mereu | Benchmarking single-cell RNA-sequencing protocols for cell atlas projects[END_REF] , if the cost factor is not taken into account, methods such as Quartz-seq2, SmartSeq2, and Cel-Seq2 performs better than in house droplet protocols and performs equally well or better against commercial solution such as Chromium by giving much more gene coverage at the cost of fewer cells being sequenced. A better gene coverage at the cost of fewer cells can be especially interesting to identify subtle heterogeneity in a targeted subpopulation. For instance, a single cell study on CD4 cell subpopulations that were pre purified using FACS gating would benefit much more from protocols with good sequencing depths as the data's heterogeneity will be seemingly subtle. In contrast, the construction of a whole organism atlas would be much easier on droplet sequencing as the data's heterogeneity is huge, and a huge cell count is essential. 

Application of single-cell sequencing

The unprecedented resolution of single-cell opens the paths to many applications. In this chapter, we present the major lines of study using single-cell technologies by highlighting recent works that took advantage of these data.

Rare cell type discovery and cell atlases

One of the most exciting applications taking advantage of single-cell sequencing resolution is discovering new cell types and substructures that were not characterized before. The sequencing of a vast number of cells from tissues allows unveiling previously undescribed very rare cells and subtle substructures within known subpopulations whose signals were hardly detectable by other means. Notably, single-cell RNA-seq revealed some new types of human blood dendritic cells (DC) and monocytes [START_REF] Villani | Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors[END_REF] . Although previous knowledge classified human blood DCs into one pDC and two common DC populations, Villani et al. study identified a total of six DC populations with clearly distinct transcriptional profiles. In another example, single-cell profiling of human and mouse epithelium led to discovering a previously unknown cell type, now referenced as ionocytes [START_REF] Montoro | A revised airway epithelial hierarchy includes CFTRexpressing ionocytes[END_REF][START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF] . While its functionality is still unknown, it has been revealed that ionocytes were deeply involved in the mechanism of pulmonary diseases, such as cystic fibrosis, despite its rarity and overall small contribution in the airway epithelium composition. By increasing the cell count in single-cell data, the possibility to find uncharacterized rare cell types and states is certainly still possible in the upcoming year. These discoveries and redefinition of cell types and cell state in single-cell have led to the creation of cell atlases. These huge projects' main aim is to create a catalog of reference transcriptomic profiles of healthy cell types such as Human Cell Atlas (HCA) [START_REF] Teichmann | The Human Cell Atlas[END_REF] , Tabula Muris [START_REF] Schaum | Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris the tabula Muris consortium[END_REF] (Figure 1234567), Mouse Cell Atlas [START_REF]Mapping the Mouse Cell Atlas by Microwell-Seq: Cell[END_REF] , or Fly Cell Atlas [START_REF] Davie | A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain[END_REF] . However, such massive projects are also conducted on a particular disease such as cancer [START_REF] Yuan | CancerSEA: a cancer single-cell state atlas[END_REF] or Alzheimer [START_REF] Grubman | A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation[END_REF] or, more recently, COVID-19 [START_REF] Wilk | A single-cell atlas of the peripheral immune response in patients with severe COVID-19[END_REF] . Unquestionably, these efforts to catalog cells can be applied using other omics such as chromatin accessibility as it was conducted on Mouse ATACseq atlas [START_REF] Cusanovich | A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility[END_REF][START_REF] Liu | An ATAC-seq atlas of chromatin accessibility in mouse tissues[END_REF] study. In that scope, the HCA consortium aims to extend the single-cell sequencing to the genome, methylome, proteome, and metabolome to fully cover all the different omics.

Evolutionary and Developmental Biology

Rare cell type discovery and cell atlases construction aim to explain the cellular composition of tissues. In an alternative approach, single-cell can also characterize cells' dynamic processes in developmental and stem cell biology. Cell specification, proliferation, differentiation, and morphogenesis are processes that are essential for the development of an adult organism from a single-cell. In that scope, instead of identifying distinct cell types, dynamic changes in the cellular state is characterized by detecting branches, constructing differentiation trajectories, and identifying genes that gradually drive cells from the initial stage to the differentiated state (Figure 12345678). The different topologies in the order of complexity, with some developmental process showcasing high plasticity in the cell fate decision process. Taken from "Concepts and limitations for learning developmental trajectories from single-cell genomics" [START_REF] Tritschler | Concepts and limitations for learning developmental trajectories from single cell genomics[END_REF] In the simplest case, the developmental process will be a simple path from one point to another, but in many cases, it is common to observe more complex trajectories involving several branching leading to different end products (Section 1.2.4.3). Notably, many data concerning, amongst others, embryogenesis [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF][START_REF] Packer | A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution[END_REF] , angiogenesis [START_REF] Jakab | Understanding angiodiversity: insights from single cell biology[END_REF][START_REF] Rohlenova | Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis[END_REF] , hematopoiesis [START_REF] Nestorowa | A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation[END_REF][START_REF] Velten | Human haematopoietic stem cell lineage commitment is a continuous process[END_REF][START_REF] Psaila | Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets[END_REF][START_REF] Ye | Studying hematopoiesis using single-cell technologies[END_REF] has been widely sequenced to elucidate the complex mechanism of development, and are typically composed of several differentiation paths. The ability of scRNAseq to take a temporal snapshot of the transcriptomic expression in many cells allows capturing both immature progenitor cells and more mature differentiated cells, thus enabling the reconstruction of trajectories by positioning cells in terms of their transcriptional or epigenetic similarity on dimensional coordinates that reflect its state in the developmental process of interest. This approach can be further enhanced by sequencing samples at different time points, which ultimately adds more concise information about timepoint into the analysis. This application is notably illustrated by the publication of Farrell et al. [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF] , where they conducted a study with the sequencing of zebrafish embryos at twelve different timepoints after fertilization. Remarkably, the authors successfully ordered the cells along the many differentiation paths and identified the gene modules driving the cell type/fate specifications (Figure 123456789).

Figure 1-9 Developmental branches of early zebrafish embryogenesis.

Two-dimensional representation of zebrafish embryos scRNAseq data at twelve different developmental stages (from 3.3h to 12h post-fertilization) using URD a trajectory inference method. Cells are colored in the function of the maturation stage of the cells, and the different branches are annotated with the corresponding cell types. Taken from "Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis" 55

Functional Insight

Many complex biological mechanisms are hard to be investigated in vivo, and in vitro models are used instead. Even though these models can be efficient in many applications, they do not reflect the complex environment and interactions present in the full organism. Single-cell sequencing allows for a high-resolution snapshot of the cellular state and considerably facilitates the in vivo investigation of complex biological mechanisms. For instance, such an application was recently performed on Skin [START_REF] Aragona | Mechanisms of stretch-mediated skin expansion at singlecell resolution[END_REF] to investigate the effect of mechanical stretching on the epithelium. The authors notably highlighted the different subpopulations strongly affected by these perturbations and identified the heavily upregulated genes in such conditions, which was not possible with in vitro experiment. Although not directly linked with a particular disease, the comprehension of such mechanisms is of great interest for medical applications as manually mediated skin stretching is a common procedure in plastic surgery to remove scars, regenerate skins or reconstruct breasts after cancer treatment.

In practical terms, this single-cell resolution was already used through microscopic techniques such as immunohistochemistry [START_REF] Corthell | Chapter 10 -Immunohistochemistry[END_REF] or in situ hybridization [START_REF] Tsai | Chapter 16 -In situ Hybridization[END_REF] , and these approaches contributed to many important biological insights. This application was notably relevant to investigate vascular cells' heterogeneity, such as endothelial cells in different tissues. However, these strategies do not combine the high resolution with high throughput both in terms of cell counts and the number of genes profiled, and hence, considerably limited the research scope. To that extent, single-cell sequencing supported greatly the effort to understand blood vessels and angiogenesis [START_REF] Jakab | Understanding angiodiversity: insights from single cell biology[END_REF] . Many single-cell data describing them in different organs such as heart [START_REF] Hulin | Maturation of heart valve cell populations during postnatal remodeling[END_REF][START_REF] Su | Single-cell analysis of early progenitor cells that build coronary arteries[END_REF] , kidney [START_REF] Barry | Molecular determinants of nephron vascular specialization in the kidney[END_REF][START_REF] Dumas | Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation[END_REF] , Lung [START_REF] Ellis | Epithelial Vegfa Specifies a Distinct Endothelial Population in the Mouse Lung[END_REF][START_REF] Lambrechts | Phenotype molding of stromal cells in the lung tumor microenvironment[END_REF] , and Brain [START_REF] Vanlandewijck | A molecular atlas of cell types and zonation in the brain vasculature[END_REF] was developed, and a general single-cell atlas from murine endothelial cells [START_REF] Kalucka | Single-Cell Transcriptome Atlas of Murine Endothelial Cells[END_REF] was also created. This collective effort highlighted endothelial cells' heterogeneity and specificity in terms of transcriptional markers in different tissues. More importantly, this extensive investigation of endothelial cells has unveiled further insight on mechanisms such as the response to inflammation or cardiac tissue regeneration by highlighting more precisely the genes that are involved in such a process, which was nearly impossible using immunochemistry or in situ hybridization.

Clinical applications

Thanks to its high resolution compared to Bulk RNAseq, Single-cell can serve as an important component of drug-development processes and therapy decisions by highlighting the cells and molecular pathways with high therapeutic potential in a specific disease [START_REF] Yofe | Single-cell genomic approaches for developing the next generation of immunotherapies[END_REF] . This approach is especially relevant in cancer, where many publications described the tumor heterogeneity and their microenvironment [START_REF] Yuan | CancerSEA: a cancer single-cell state atlas[END_REF][START_REF] Azizi | Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment[END_REF][START_REF] Guo | Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[END_REF][START_REF] Jackson | The single-cell pathology landscape of breast cancer[END_REF] . Single-cell profiling can identify molecular checkpoints or activation targets because it allows measurement of their expression in all subpopulations of cells within tumors. This approach can identify new targets for drug development, and most importantly, treatment can be optimally selected based on the composition of cell states in a specific patient.

Recently, single-cell analysis has also been deployed massively in the collective effort to fight the coronavirus crisis. Deep profiling of coronavirus patient's transcriptomic landscape enables the creation of reference atlases of the disease, and a thorough comparison of patients and healthy control allows a better understanding of the discrepancies and perturbations the virus causes.

For instance, Guo et al. [START_REF] Guo | Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[END_REF] (c andd) the cell population that was mostly only retrieved in patients during the severe COVID19 stage with notably a distinct monocyte subpopulation and plasma cells. Taken from "Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm" [START_REF] Guo | Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[END_REF] Another recent study has focused on identifying the receptors of human coronaviruses by investigating thirteen human tissues [START_REF] Qi | Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses[END_REF] . The research aimed to identify cell types expressing COVID receptors such as ACE2 abundantly and potentially uncover novel infection routes.

Notably, ACE2 was significantly expressed in the esophagus, colon, lung, liver, and kidney. These findings reinforced COVID and the ACE2 receptors' association with some unusual symptoms such as hepatic failure, respiratory injury, acute kidney injury, or diarrhea.

In summary, within a short span of a few years, the usage of single-cell sequencing in a clinical context has risen considerably. It is now an integral part of many projects for many diseases and drug development. This upward trend will continue in the next year as many hospitals invest and gain access to single-cell technologies.

Challenges of single-cell sequencing

The many applications of single-cell have led to an exponential generation of scRNAseq data in many fields. However, these new high dimensional data is accompanied by several noticeable challenges that we describe here.

Levels of resolution

The identification of subpopulations and cell identity is a crucial part of most single-cell experiments. It is especially relevant for single-cell atlases that aim to construct comprehensive reference by cataloging the different subpopulations inside an organism. The level of resolution provided by single-cell sequencing enables a detailed definition of cell types and cell states and unveils subtle nuances that were impossible to capture at the bulk level. However, in practical terms, this fine-grained information adds a new layer of complexity and raises new concerns that question the very concept of cell types [START_REF] Xia | A periodic table of cell types[END_REF] . By working at the level of cells, it becomes necessary to decide at which order of heterogeneity two subpopulations are considered as significantly distinct or not. This is especially relevant in single-cell data concerning developmental biology where cell types are not discrete and are characterized by a continuous transformation of the cells.

The level of resolution to characterize groups of cells is often subject to bias and, most importantly, driven by the experimental setup, initial hypothesis, and aim of the study. To fully detect important structures and extract information optimally. It is often crucial to investigate cellular heterogeneity at different levels of resolution.

For instance, in Tabula Muris [START_REF] Schaum | Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris the tabula Muris consortium[END_REF] , a mouse cell atlas composed of 20 different mouse organs, the cell types are defined with two levels of annotations: one rough annotation and one refined. In the lung dataset of Tabula Muris, the rough annotation labels the lung-specific cell type as lung endothelial cells and lung epithelial cells and gives general information about cells' nature. In contrast, the refined labels classify further the epithelial cells into basal, ciliated, neuroendocrine cells, hence giving more detailed cell types. On an even higher level of resolution, standalone publications on the mouse lung epithelium, such as the one presented by Montoro et al. [START_REF] Montoro | A revised airway epithelial hierarchy includes CFTRexpressing ionocytes[END_REF] , further annotates the cell, characterizing heterogeneity not only between major cell types but also within.

Notably, tuft cells, a chemosensory cell present in small proportion in lungs that the Tabula Muris dataset did not describe, were divided into three subpopulations (progenitor tuft, tuft-1, tuft-2) as they represent different maturation stage and, most importantly, distinct biological function.

Another illustration of the importance of resolution can be seen on the tapeworm cell atlas. The atlas sequenced the whole organism, and hence different levels of observation can be made from the data. The basic level of granularity can represent the tissues. A rough resolution can represent the different tissues, but as the resolution is refined, distinct cell type inside tissues can be observed, and at the higher level of resolution, more subtle structures such as intermediate cell states and developmental trajectory can be inspected.

Figure 1-11 Illustration of the different resolution of the tapeworm atlas

Two-dimensional representation of the tapeworm atlas using PAGA [START_REF] Wolf | PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF] . Depending on the granularity chosen, the observed data points represent, in turn, tissue, cell types, and at the highest level, the intermediate cell states and the trajectories of the developmental process. "PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells" [START_REF] Wolf | PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF] The varying level of resolution that single-cell provides often demands a thorough inspection of the data at different points of view, and hence there is a real challenge for bioinformatical methods to provide enough flexibility to smoothly allow 'zooming' in and out in a comprehensive way to facilitate the exploration of heterogeneity.

sparsity in single-cell omics

scRNA-seq and other single-cell omics measurements suffer from a very high sparsity characterized by an overrepresentation of zero values. This phenomenon theoretically points to the fact that a particular gene in a given cell has no reads or UMI mapping to it, and hence, the cell was not expressing the gene in question at the time of isolation before sequencing. However, a lot of this absence of transcription is not biologically relevant (structural zeros) and is rather the consequence of technical noise. Indeed, single-cell is working with a very few numbers of original materials for sequencing input, thus rendering steps such as reverse transcription or cell lysis much more prone to failure and thus jeopardizing transcript expression capture. Moreover, compared to Bulk, where the signal is averaged, single-cell shows a stochastic gene expression pattern that can also lead to false zero.

For instance, for very lowly expressed genes, the transcript expression can be captured in one cell and not in the other due exclusively to sampling variations. This technical event causing the non-detection of a gene is called dropout [START_REF] Hicks | Missing data and technical variability in single-cell RNA-sequencing experiments[END_REF][START_REF] Kharchenko | Bayesian approach to single-cell differential expression analysis[END_REF] .

The severity of the dropout event depends on several factors. First of all, the sequencing platform used affects the level of sparsity drastically. Full-length sequencing methods such as SmartSeq is much less prone to dropouts than droplet-based technologies with UMI. Second, a good sequencing depth can also play a role in reducing the frequency of dropouts. However, increasing over and over the sequencing depths would not help either as it would quickly reach a plateau level. Finally, dropout events are logically much more frequent on genes that are lowly expressed.

These artificially created zero can severely impact downstream analysis and lead to significant error in cell-type characterization steps such as differential expression analysis. The main challenge resides in the separation of the true biological zeros from the technical noise. In that scope, many methods have been developed to either model these discrepancies or impute zero values (Section 1.2.2.4), but to this day, sparsity remains a major challenge in single-cell.

Interestingly, Peng et al. recent publication demonstrated that rather than correcting them, dropout values could be used as a signal of interest to perform a comprehensive single-cell analysis [START_REF] Qiu | Embracing the dropouts in single-cell RNA-seq analysis[END_REF] . We can expect that improvement in the bench protocol and alternative methods would further assess this challenge in the upcoming years.

Scalability

As the number of cells sequenced increased in an amazingly fast way and project targeting the creation of comprehensive single-cell atlas surfaced, computational cost became quickly one of the major bottlenecks for single-cell data analysis. Not only a single sample contains, on average, 5000 cells for a droplet-based protocol. With technologies like 10X Genomics, sixteen channels can be processed in a single run, resulting in a single experiment yielding sequencing data totaling 100000 cells.

To that extent, single-cell analysis methods must also tackle the challenge of scalability to be accessible to a significant number of audiences while preserving a high performance in terms of accuracy. Computational efficiency has to take into account both the run time and peak memory consumption. These two criteria must be carefully monitored while developing new tools for the community. It can be argued that runtime is not a particularly important criterion as far as the method can be completed in a reasonable time. However, compared to Bulk RNAseq, the complex nature of single-cell data, analysis workflow, and methods often push the user to reiterate analysis several times using a different approach and parameters that vary from one experiment to another. Moreover, as single-cell data is still subject to heavy technical noise, reproducibility of conclusion using different methods becomes essential. These factors encourage bioinformaticians to use not necessarily the most powerful tools in terms of sheer accuracy in its task but rather a compromise between accuracy, speed, and versatility.

During the last few years, many methods have strived to optimize the run time significantly. A noticeable focus was brought onto constructing efficient data structures and algorithm that goes along. To cite only a few examples:

• Sparse matrices take advantage of the sparsity of single-cell data. The sparse encoding of the matrix reduces memory use and computing time efficiently by loading only the non zero values into memory. This improvement is especially perceptible in a very sparse matrix coming from droplet-based sequencing, where the coverage of genes is generally lower than full-length scRNAseq protocols.

• Hierarchical Data Format 5 (HDF5) stores enormous single-cell data with more than a hundred thousand cells.

• Delayed Array from Bioconductor takes an "out of core approach", which allows standard matrix operations without loading the object into the memory.

Many software was developed using Python instead of R. Even though the latter is seemingly more popular amongst biologists, biostatisticians, and bioinformaticians. Python benefit from an overall faster run time in most of the applications compared to R. Big python single-cell workflow packages such as BigScale2 [START_REF] Iacono | Single-cell transcriptomics unveils gene regulatory network plasticity[END_REF][START_REF] Iacono | bigSCale: an analytical framework for big-scale single-cell data[END_REF] and SCANPY [START_REF] Wolf | SCANPY: large-scale single-cell gene expression data analysis[END_REF] were primarily designed to enhance the scalability compared to its R counterparts like Seurat.

The scalability problem in bioinformatics took on added importance so quickly that approaches for big data such as Hadoop, Spark, and cloud solutions have been lately deployed [START_REF] Guo | Bioinformatics applications on Apache Spark[END_REF] . In a recent publication, cloud-based data analysis taking advantage of spark for large-scale single-cell data analysis was introduced with Cumulus 89 and Falco [START_REF] Yang | Cloud accelerated alignment and assembly of full-length single-cell RNA-seq data using Falco[END_REF] , providing a medium for small labs with limited computational infra-structure to perform analysis on very big single-cell assays at the cost of a modest fee (Table 1-1). On a second note, GPU computing is also being adapted to singlecell to speed up the runtime with frameworks such as RAPIDS (https://github.com/claraparabricks/rapids-single-cell-examples).

The exponential growth of single-cell data with always more cells, more features, and broader coverage mentality has reached a point where we need more efficient code, setup, and hardware(further discussed in Section 5.3.1). Although many improvements are brought, the challenge of scalability will become more and more relevant in the upcoming year with the maturation of large projects like HCA, the democratization of single-cell data in a clinical setting, and the advent of multi-omics sequencing. 

SINGLE-CELL DATA ANALYSIS WORKFLOW

In this chapter, I present a thorough report of the state-of-the-art methodology for single-cell data analysis to better comprehend the place my work occupies in the fast-evolving fields of singlecell analysis. These data have been designed to answer the questions that arise from the many exciting single-cell applications and tries to cope with the aforementioned challenges.

During the last years, the development of single-cell analysis methods experienced exponential growth, with an impressive number of tools seeing the light of the day in a very short period.

scRNAtools [START_REF] Zappia | Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database[END_REF] website keeps track of most existing tools for single-cell data analysis by categorizing each method into over 30 different use cases and linking relevant publications. At the time of August 2020, more than 700 independent entries are cataloged on the website, and the number is still going strong (Figure 1 -12). Single-cell analysis workflow is composed of many steps that aim to tackle different problems and answer different questions. We can notably see the variety of single-cell analysis tools in terms of use case in The word cloud was generated using the data from the scRNAtools and word cloud R packages. More than seven hundred different single-cell packages listed in scRNAtools were included. The bigger terms represent categories with high occurrences and thus represent major aspects of single-cell data analysis.

These different steps and topics of single-cell analysis can be merged into four major phases, as described by Zappia et al. [START_REF] Zappia | Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database[END_REF] (Figure 1 -14). First of all, data acquisition to transform the raw data from sequencing into an analyzable expression matrix. Second, the data cleaning step where the expression matrix is corrected or transformed to facilitate the downstream analysis. Third, the cell assignment step, which identifies the different subpopulations or, in the case of developmental data, orders cells in terms of transcriptional similarity. Finally, the gene identification step characterizes the genes driving the results found in the cell assignment step.

Here we describe the different steps of a single-cell analysis pipeline as illustrated in The first phase, data acquisition, aims at pre-processing the FASTQ files to produce an expression matrix. In the second phase, data cleaning filters and correct for potential technical discrepancies that alter the downstream analysis.

The third phase, cell assignment, groups, or infer trajectory based on the similarity of the cells. Finally, the fourth phase identifies the genes driving the cellular heterogeneity. Adapted from "Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database" 91 

Data acquisition

For scRNAseq, The sequencing output is usually in the form of a FASTQ file listing the transcript reads. Preprocessing of the raw sequencing data into a count matrix quantifying each gene per cell is needed to perform further downstream analysis, which will bring biological insight. We briefly describe the data acquisition step for scRNAseq to obtain the expression matrix.

The reads obtained after sequencing must first be aligned against a reference genome to quantify the expression and construct an analyzable matrix. This process is typically done after first inspecting the quality of the obtained reads using a quality control tool for sequencing data such as FASTQC [START_REF]Babraham Bioinformatics -FastQC A Quality Control tool for High Throughput Sequence Data[END_REF] or Kraken [START_REF] Davis | A set of tools for quality control and analysis of highthroughput sequence data[END_REF] (Figure 12345678910111213141516). However, in most single-cell data, reads contain UMIs and cell barcodes. These components are first trimmed to obtain raw transcript reads.

Figure 1-16 Example of FASTQC output

The reads alignment process can be done using tools initially developed for Bulk RNA-Seq, such as TopHat [START_REF] Kim | TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[END_REF] or STAR [START_REF] Dobin | STAR: ultrafast universal RNA-seq aligner[END_REF] alignment tools. Alternatively, for a very large dataset coming from droplet sequencing methods, pseudo alignment methods approximating the mapping using probabilistic models and k-mer such as Kallisto 97 , eXpress [START_REF] Roberts | Streaming fragment assignment for real-time analysis of sequencing experiments[END_REF] , and Salmon 99 are advised. These methods are several orders of magnitude faster than conventional aligners and are also comparably accurate.

Notably, salmon has the unique ability to correct some of the bias caused by GC content and is one of the most popular aligners nowadays for single-cell data.

Finally, aligned reads are assigned to their corresponding cell barcodes, and the expression matrices can be constructed by counting the unique reads with the same cell barcode, UMI, and gene. When using conventional alignment, UMI samples need extra processing with methods like UMI-tools 100 or zUMIs 101 to assign cell barcodes and deduplicate UMIs. For the popular commercial solution, 10X Chromium, a dedicated all in one toolkit, CellRanger 102 , can be used (Table 2-2, Figure 1-17). After reads alignment and deduplication to quantify the data, it is important to perform quality control of individual cells to filter out any poor quality cells that might have received too much stress during the isolation process. This filtering is especially important for droplet sequencing as only a small fraction of droplets contain both beads and cells, and the created expression matrix contains 98% of empty droplets. We can notably cite three different criteria to filter out bad quality cells: number of reads per cell, number of detected genes (non zero expression), and sometimes the ratio of reads/UMI coming from mitochondrial genes as a high mitochondrial genes rate often highlight the fact that the cell has been put through a lot of stress.

Table 2-2 Summary of high-throughput scRNA-seq data processing pipelines

Comparison of seven scRNAseq data processing pipelines. Taken from "Comparison of high-throughput single-cell RNA sequencing data processing pipelines" 103 

Data cleaning and Integration

Once the expression matrix is computed from the the raw sequencing data, additional data cleaning and transformation is needed to filter and correct foor technical noise that occurred during the experiment. Here we briefly describe different aspects of pre-processing in single-cell RNAseq that facilitates the downstream analysis. 

Doublet detection

Background correction

A recently very common procedure in the data cleaning process is the correction for ambient RNA. Indeed, apart from the particular case of doublets, we normally consider that the detected transcript in a particular cell belongs to itself. However, some cells might have lysed before the isolation step, thus liberating cell-free ambient RNA that can contaminate the cell suspension and thus contaminate the data with background expression that will be shared more or less evenly among all the cells (Figure 1 -19). Other contamination can be due to evaporation in plate-based protocols like Smart-Seq or cell barcode swapping during sequencing 110 . Contamination from ambient RNA is evident when highly expressed cell-type-specific genes from large populations are found lowly expressed in other cell populations. This contamination can be present in different

proportions between experiments and can range from 2% to 50% of the total count content of the cell. However, we consider that, on average, the contamination rate with background gene 29 expression is estimated at ten percent. This sample-specific noise alters the downstream analysis, such as differential expression analysis.

Furthermore, it accentuates the batch effect when multiple samples are present, thus rendering the data integration step even more challenging. In an empiric approach, these background expressions can be investigated by looking at the genes that were identified in empty droplets or wells as they are likely to point out to the ambient RNA contained in the cell suspension. However, recently developed methods such as SoupX 111 or DecontX 112 tries to automate the removal of such background noise. SoupX uses the prior information of gene expression in empty droplets and estimates the fraction of UMIs originating from the background for each cell, and correct for these discrepancies. DecontX does not rely on empty droplets but rather uses a Bayesian approach to estimate cross-contamination rates within each cell and models both native transcripts counts from the original cell and the contaminating transcript counts to efficiently remove the background noise. Overall, no extensive benchmark was conducted to reliably assess the quality of such correction but it is generally highly advised to at least use these tools to assess the severity of background contaminations. Schematic representation of ambient RNA contamination in droplet sequencing. Ambient RNAs contained in the cell suspension before cell isolation are randomly incorporated in droplets, and after cell lysis and barcoding, it becomes indistinguishable from the transcripts contained in the actual cell that was captured. Adapted from "Decontamination of ambient RNA in single-cell RNA-seq with DecontX" 112

Normalization

Individual cells have an extremely low amount of input material available for sequencing, which is measured in the order of picograms. This lack of initial material makes library preparation steps such as cDNA capture and PCR amplification very unstable from one cell to another. The use of UMI relieves some aspects of these technical noises, such as amplification differences and gene length. Still, other elements such as GC content or reverse transcription efficiency remain unsolved. These technical discrepancies often induce several technical noises inside each cell, and therefore, an adjustment of the expression matrix must be conducted across cells.

Normalization methods try to capture and eliminate technical noise or bias that was introduced during the library preparation. This correction for technical variances is essential to safely perform downstream analyses such as clustering and differential expression analysis.

One of the most simple yet commonly used normalization protocol is library size normalization.

This method has been first popularized in bulk RNA-seq and microarray data analysis but is still widely proposed in major single-cell frameworks such as Seurat, Cell Ranger, or SCANPY.

Library size normalization assumes that the total RNA content is similar across all cells and that observed differences are due to experimental sampling. The normalization is performed by dividing each gene counts by the full RNA content and scaling by a common size factor that often ranges from 10 4 to 10 6 .

However, the initial hypothesis implying total RNA content homogeneity across cells is often untrue in many single-cell datasets as biologically relevant differences in cell size between cell types and states do exist. For instance, in the context of a developmental biology study involving cell types such as Hematopoietic Stem cells or Embryonic dataset, the total RNA content of each cell will logically highly differ with cells in an immature state producing fewer transcripts than cells in a more mature stage. Moreover, the presence of outlier genes that have been heavily amplified can deeply affect the normalization results. Overall, it has been reported that the use of bulkbased normalization methods can have serious adverse consequences for downstream analysis, such as highly variable gene detection and clustering 113 . More recently, SCONE 114 , a software specifically designed for normalization methods performance assessment, has also supported the conclusion that simple library size normalization is not sufficient to correctly adjust the data.

Hence, more sophisticated methods taking into account single-cell specificity are indeed needed.

One of the first single-cell specific approaches for normalization was to support the detection of the technical variabilities using artificially added spike ins. Software such as BASiCS 115

incorporates spike-ins into a Bayesian model to discern the technical variability from the relevant biological one and performs normalization accordingly. However, these methods are quickly limiting as every data does not necessarily have spike-ins.

Fortunately, some single-cell specific methods, such as scran 116 , or scNorm 117 , are not reliant on spike-in. Scran normalization first performs graph-based clustering on the expression matrix to gather similar cells into different pools. In a second stage, a library size transformation is performed but within each cluster. By calculating a different size factor term for each group, the scran approach considers the difference in terms of cell size from one cell type/state to another, which is not the case for Bulk RNA derived approach.

Linnorm 117 identifies genes that are stably expressed by investigating genes with very low variance across all cells. Instead of using the whole expression profiles, Linnorm calculates the scaling factors from those stable genes, making it less prone to technical noise.

A recent study showed through several datasets that a single scaling factor does not effectively normalize highly expressed genes. Hence some methods such as scNorm 118 and SCTransform 119 adopt other approaches. scNorm uses two layers of quantile regression to perform normalization.

The first round of regression is performed to estimate the dependence of genes and group them.

The second round of quantile regression is then used to determine scale factors within each group. Within-group adjustment for sequencing depth is then performed using the estimated scale factors to provide normalized estimates of expression. Moreover, although not mandatory, spikeins information can be incorporated to enhance performance.

SCTransform takes a similar approach to scNorm. Instead of finding normalization parameters that are applied to all genes, SCTransform models each gene counts using a regularized negative binomial model to construct an error model. Notably, it pools genes of similar abundance together to regularize the model parameters and avoid overfitting. The particularity of SCTransform resides in the fact that each gene expression count is replaced by the residual of the error model prediction, which represents the true biological expression of the gene within that cell with technical variation removed. This matrix of residuals can then be used in downstream analysis.

Due to large differences from one single-cell data to another, there is at that time no consensus on a particular method performing consistently better than others. Different normalization methods perform optimally for different datasets, and thus careful assessment of normalization performance must be assessed with software such as SCONE.

On a secondary note, most of the methods apply a log transformation to the count matrix after normalization to reduce the influence of high-abundance genes on the variability, also called skewness. However, recent studies 120,121 highlight the many drawbacks of such transformation.

As log transformation cannot be applied on zero values, an arbitrary pseudo count (most of the time one) is added. This artificial count is reported to distort the dataset and adds additional zero inflation 121 , especially in assays with UMI. These studies reports the introduction of technical artifacts with log transformation, which can be interpreted as an independent structure in downstream analysis. Overall, to overcome such discrepancies, 

Imputation methods

As stated before, the low RNA content of cells causes dropout events in single-cell sequencing.

It makes the generated expression matrix highly sparse, especially in droplet-based sequencing protocol, where the sequencing depth is often low. Moreover, biologically relevant genes to define subtle substructure in the data are frequently detected in low abundance and very few numbers of cells, hence, making it hardly distinguishable from technical variances and artifacts. This lack of signal in the expression matrix considerably reduces the performance of downstream analysis and makes refined detection of substructure particularly challenging. To that aim, imputation techniques are used as an optional step in single-cell analysis to amplify subtle signals and recover expression from drop out events. Imputation methods come in two flavors: smoothing based and model-based. The model-based approach such as SAVER 122 , scImpute 123 , and DrImpute 124 , consists of improving the signal to noise ratio by first identifying robust signals from biologically relevant and highly abundant genes and then amplify the remaining genes accordingly to their correlation with these strong signals.

In contrast, smoothing-based methods such as MAGIC 125 , kNN-smoothing 126 , and DCA 127 reduce the noise present in observed values using information from neighboring data points. Imputation methods gained much popularity among the single-cell community, and many tools appeared over the course of a few years.

A recent paper evaluated 18 different Single-cell RNA-sequencing Imputation methods 128 (Figure

1-20).

It notably reported methods such as MAGIC, SAVER, and kNN-smoothing as the most consistent in applications such as clustering, differential expression, and trajectory analysis, and overall, were giving an imputed expression matrix that was close to bulk transcriptome profile when inspecting a homogeneous set of cells.

However, imputation methods are also subject to many criticisms as they can, unfortunately, denature the dataset, introduce bias, and most dangerously, amplify also noise instead of biological signals. Indeed, in a recent benchmark, it was reported that imputation introduces many false positives in the differential expression analysis 129 , and significant differences can be observed from different sequencing technologies, meaning that the underlying technical noise strongly influences the imputation process. This discrepancy was observed very frequently for data-smoothing imputation such as kNN-smoothing and MAGIC. Thus, it is highly recommended to consider imputation methods for exploratory purposes and confirm subtle subpopulations with biological expertise. 

Integration

A typical single-cell experiment often comprises many samples. To name a few examples, these can be technical replicates, different conditions (patient vs. control), donors, sequencing technologies, laboratories, or even time points. As cells in different samples experience different conditions, a batch effect of variable severity can arise from single-cell data, thus tagging each sample with a specific technical noise.

Some approaches, such as cell hashing [START_REF] Stoeckius | Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics[END_REF] , labels "sample barcode" on every single-cell using oligo-tagged antibodies, enabling different samples to be multiplexed together and run in a single experiment, hence avoiding most aspects of the batch effect. However, this technique is quickly limiting since the number of cells sequenced corresponds to the capacity of one sample.

To that degree, effective batch-effect removal is essential as it is often profoundly mirrored in downstream analysis, such as clustering, where the batch effect overshadows the biological signal. Indeed, merging the raw expression matrix directly from a different experiment without any adjustment of the data often jeopardize robust interpretation.

Notably, the batch effect in single-cell can often be detected upon visualization in low dimensional space, where the cells from the same subpopulations from different batches are separated from one batch to another. Other than the empiric approach based on visualization, metrics such as silhouette coefficient, Local Inverse Simpson's Index (LISI) 130 , scaled variance of the principal components, or kBet 131 has been used to quantify in an unbiased manner the batch effect across samples. The main goal of integration methods is to correct severe technical noises while not disrupting the cell identity and other relevant biological information. These often translates into optimizing the metrics cited above.Interestingly, as the batch effect is a common issue in life science, methods from microarray and Bulk RNAseq such as Combat 132 , RUV 133 , or limma 134 were first used on single-cell data with relatively good results against low complexity dataset.

However, due to single-cell data's highly sparse nature, methods initially designed for microarray quickly showed their limitation against single-cell data with high heterogeneity and high dropout rates. Over the year, many methods specifically addressing the batch effect in single-cell appeared.

One of the first methods designed explicitly for single-cell data is the R package MNN 135 . The algorithm is based on a variant of k-nearest neighbors called mutual nearest neighbors (MNN), which, as the name indicates, conserves only the neighbors that are mutual and discards all oneway relationships. This process is performed using the expression matrices from two batches to compute a list of paired cells presenting similarities from one dataset to the other. By assessing the differences of the different pairs, MNN calculates a correction vector to align the second datasets into the first one (Figure 1-21). Remarkably, this approach enables us to compute a corrected expression matrix to be used in downstream analysis. However, due to the high computational demand of performing the k nearest neighbor search on the initial matrix, the method was quickly updated and now uses the PCA results as initial input.

Seurat single-cell analysis framework integration method 135 is also based on MNN. However, instead of PCA results, Seurat first uses Canonical Correlation Analysis (CCA) to create low dimensional representation with components driven by gene modules correlated in both datasets.

Hence, CCA filters out a big chunk of technical noises that are proper to each dataset. MNNs search is then performed on the CCA subspace, and integration vectors are calculated to merge them. While most of the integration methods are more or less related to MNN, some methods, such as Harmony 130 or CSS 136 , takes a distinct approach. Harmony also first employs PCA for dimensionality reduction. However, instead of searching for MNN. Harmony iteratively removes batch effects by applying fuzzy clustering on the dataset. At each iteration, it clusters similar cells from different batches while maximizing the diversity of batches within each cluster. It then calculates a correction factor for each cell to be applied. Contrary to MNN or CCA, Harmony only outputs an aligned low dimensional space (for instance, PCA) and does not return any corrected matrix. A benchmark evaluating 14 states of the art integration methods 137 revealed that Seurat CCA 138 , LIGER 139 , and Harmony 130 were the best performers. Harmony is considered as the best choice by the benchmark authors as the main strength resides in its computational efficiency both in terms of runtime and peak memory consumption. Harmony allows the integration of millions of cells on a personal computer with around 16Gb of RAM. In contrast, Seurat or MNN will struggle with 50000 cells even after a very stringent feature selection. With technologies such as 10X

Genomics enabling the capture of hundreds of thousands of cells per experiment, the computational scalability for integration methods is often essential for practical usage.

Even though data integration overcomes many aspects of batch effect and renders the downstream analysis of experiments with multiple samples more convenient, it is important to carefully inspect the integrated data and scrutinize the original expression matrix. Indeed, these methods can also correct adversely for relevant biological variances (over-correction). To that extent, it is useful to remind that a balanced experimental design is always essential to avoid any unnecessary batch effect inside the data.

Features selection

The initial expression matrix obtained after raw data preprocessing generally contains up to 10000 to 40000 genes depending on the sequencing protocol. However, most of these genes have neglectable importance in interpreting the data and will eventually buffer the essential gene's signal with unwanted biological and technical noise. To that extent, before performing dimensionality reduction methods, it is common to perform a first round of genes selection to discard biologically uninformative or poor-quality genes to facilitate biological interpretations.

Most of the time, we consider that real biological differences are not stochastic and that highly variable genes in the data (HVGs) are likely to be biologically relevant, whereas technical noisedriven features are likely to have low variabilities across cells.

The first identification of variable genes was introduced by Brennecke 140 and was based on the Squared Coefficient of Variation (CV2, squared variance divided by the mean) across cells. This kind of approach remains highly popular as big single-cell frameworks such as Seurat and SCANPY also select genes with the highest coefficient of variance (CV) as highly variable genes.

The approach is more robust than taking genes with the highest variances, as highly expressed genes will be more likely to have high variances from a mathematical standpoint. Especially in single-cell, the most highly expressed genes often correspond to ribosomal, mitochondrial, and other housekeeping genes that are not representative of the data's heterogeneity. Hence, metrics that adjust the variances with the mean, such as CV or CV2, prevent from keeping uninformative genes found in every single-cell assays.

Some methods like M3drop 141 implements more advanced HVGs selection by considering and modeling drop out events in the data by fitting a Michaelis Menten curve. These novel methods exploit the observation that dropout-rates per gene are strongly correlated with gene expression level. Due to the non-linear nature of this relationship, average expression level, and dropout rate across a heterogeneous cell population result in differentially expressed genes being shifted above the expected Michaelis Menten curve. Hence, biologically relevant features can be captured by identifying genes with a strong nonexpression rate and average gene expression across the cell as they reflect bimodality and, hence, biologically interesting genes.Finally, methods such as BASiCS 115 take advantage of spike-ins to determine HVGs. Using an integrated Bayesian hierarchical model, BASiCS quantifies technical variability based on artificially introduced spike-in genes. It then identifies true biological variabilities and the genes driving them by dissociating the technical variabilities found with spike-in from the data's overall variability.

The number of highly variable genes to be kept often ranges from 500 to 5000. To choose the number of top HVGs, one must carefully consider the hypothesis and the complexity of the data to maximize the signal to noise ratio. On the one hand, selecting a small number of features will likely results in keeping the utmost important signal but can filter out genes explaining a more complex substructure of the dataset. On the other hand, selecting an important number of genes will likely capture more subtle details at the cost of buffering relevant signals with noisy genes and substantially increase the computational load.

Dimensionality reduction

PCA

Principal component analysis (PCA) is used systematically on almost every single-cell data analysis. The primary aim of using PCA is to reduce the dimension by keeping the most informative component. By compressing each cell's dimensional expression profile into 5-50 principal components coordinates, unwanted technical noises with stochastic variance in the lower rank principal components are filtered from the data, and only biological variations of interest are likely to be kept and highlighted. That noise filtering often greatly enhances further downstream analysis such as clustering, trajectory inference, or nonlinear dimensionality reduction for visualization such as UMAP and t-SNE. PCA is also highly beneficial in computational time by reducing the number of features drastically for the downstream analysis described above since they often require cell-to-cell distance calculation.

While the exact computation of SVD on a typical single-cell data with 5000 cells for 3000 genes can take a whole day or even crash due to important memory consumption on low-end Interestingly, several variants of PCA has seen the day to tackle the specificity of single-cell data such as (i) GLM-PCA 121 : a generalized version of PCA intended for non-normally distributed data, (ii) rpca 146 : a variant of robust PCA complemented with Ridge L2 penalization, or (iii) scPCA 147 : sparse contrastive PCA aiming at disentangling biological signal from technical noise through the use of control data and better management of sparsity.

One of the recurrent challenges that arise when using PCA is selecting the number of principal components to retain. Commonly, in data science, one would retain a few components, so the low dimensionality space keeps 50% to 99% of the explained variance. This approach is hardly usable in single-cell since most of the variances are driven by unwanted technical and biological noise, and the first principal components often explain less than 2% of the total variance. The difficulty here is to find a good tradeoff between keeping relevant biological information and filtering unwanted technical noise. A high number of principal components will secure the biologically relevant information. However, it will also tend to keep unwanted technical variations. On the other side, keeping a few numbers of PC will discard much more technical noise at the risk of also filtering vital biological information, and this is especially critical when one is investigating rare cell types. Some methods, such as Jackstraw 148 implemented in Seurat, aims to select a statistically relevant number of principal components by subsampling and permutating the original data. Seurat also proposes a more heuristic method by plotting the singular value of the principal components and investigating the inflection point (Elbow) visually. In practice, the most common way is to choose a reasonably high number of dimensions to ensure that most of the relevant variances are still present in the PCA low dimensional space (often ranging from 30 to 50 according to the size of the data).

Other dimensionality reduction

The most standard cell projections methods for denoising is uncontestably PCA. However, other reduction methods are used to tackle more specific problems commonly encountered in singlecell data, such as drop out events or batch effects. For instance, Canonical correlation analysis 149

(CCA) is used by the Seurat R package 150 as a dimensionality reduction to integrate two datasets coming from different batches/experiments. Compared to other dimensionality reduction, CCA needs two datasets, X and Y, as input. CCA will find linear combinations of X and Y, which have a maximum correlation with each other and hence identify shared sources of variation between the two datasets. The technical noises coming from the batch effect are thus not likely to be kept in CCA since their variances are not shared between the different batches. Combined with MNN, CCA has been proven to be a very robust linear dimensionality reduction methods to cope with multisample experiment with strong batch effect.

Zero Inflated Factor Analysis 151 (ZIFA) tackles the other challenge in single-cell data, which is drop out events. Indeed PCA does not consider the zero inflation caused by technical noise and, by extension, over-dispersed data, since it uses Euclidean distances. In that scope, ZIFA combines drop out modeling with zero-inflation and factor analysis, and allows accounting for zero-inflated single-cell gene expression data. pCMF 152 based on probabilistic count matrix factorization is also another recent method that tackles the sparsity of single-cell data by modeling the dropout events using zero-inflated Poisson distribution. Again the methods aim at proposing an alternative to the variance-based formulation of PCA, which is primary associated with the Euclidean geometry and Gaussian distribution that is not corresponding with the highly overdispersed structure of single-cell count matrix. Some methods, such as Zero-Inflated

Negative Binomial-based Wanted Variation Extraction (ZINB-WaVE), try to avoid the multiplication of the processing steps by proposing an approach that includes normalization, correction, and dimensionality reduction in one single framework. Indeed, combining these different preprocessing steps and testing out their many possibilities can be daunting, and to that extent, ZINB-WaVE manages to settle these in a comprehensive workflow. All these alternatives to PCA are, however, not commonly seen due to their computational complexity and the fact that they are not optimal for every single-cell dataset. The scalability and robustness of PCA, despite its theoretical cons, make it still the compulsory dimensionality reduction to use in single-cell data.

From a completely different perspective, the diffusion map is also a very popular dimensionality reduction method specialized in representing cellular trajectory in developmental biology datasets. The use of a diffusion map was popularized with the destiny package 153 and the analysis of a mouse hematopoietic dataset by Nestrowa et al [START_REF] Nestorowa | A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation[END_REF] . The diffusion maps algorithm uses kNN on low dimensional representation such as PCA to construct a graph and calculates the transition probability from one cell to another using random walks on the network. Alternatively, in the destiny package, the transition probability matrix is calculated using the Gaussian kernel for the k first nearest neighbor for each cell to enhance the scalability. The eigenvectors with decreasing eigenvalues are then calculated from the transition matrix and constitute the embedding of the cells, with each eigenvector emphasizing on a specific trajectory underlying in the data. The diffusion maps approach is especially useful for developmental data as it highlights the diffusion process by conserving the global relation between data points and diffusion distance is much more robust to noise than the regular Euclidean distance.

two-dimensional embeddings for visualization

Single-cell analyses rely heavily on the visualization of the data. Amongst all, two-dimensional embeddings are very popular amongst researchers to represent in a human interpretable way the structure of the high dimensional single-cell data. Indeed, even though techniques like PCA, ZIFA, and ZIMBwave reduces the dimension of the data comprehensively by keeping the most important variability of the data. It often falls short when representing visually highly heterogenous data that single-cell offers. When visualizing the first two dimensions in PCA, which basically consists of changing the way of looking at data by rotating the different axis, some distinct cell types can overlap in the two-dimensional representation as the genes driven in these populations are contained in other components. Two-dimensional embeddings encompass these limitations using a non-linear approach that places cells in a two-dimensional space in an optimal way based on the cell to cell similarity to fully represent local structures. The first method that was widely used by the single-cell community is t-SNE. In the original space, t-SNE measures through Euclidean distances, the similarity of every pair of data points. That similarity is then converted into normally distributed probabilities that convey the relationships between the neighboring points. Then the data points are initially embedded in a low-dimensional space at random positions. Several iterations are then performed, where, in each step, the different data points interact like physical particles; Independent data points repel each other, and at the same time, each point will be attracted to a set of n points (n defined by the perplexity parameter often ranging from 30 to 50) with the highest similarity. When applied to heterogeneous data with a transcriptionally distinctive cluster of cells, t-SNE tends to produce a visualization with a clear separation of all the different groups, making it very convenient for visual inspection. However, t-SNE fails to preserve the global structure of the data, and only the intra-cluster distances are preserved, whereas the inter-cluster distances meaningfulness is not guaranteed. The different cluster positioning is often determined by the initial random embedding of the point and can be subject to huge variations from one run to another. Moreover, tSNE struggles to scale against very large datasets even though recently, a fast approximation algorithm 154 (Flt-SNE) was developed and allows to compute embeddings for a million cells in under 30 minutes. In that scope, UMAP 155 has been the first notable contender against t-SNE for two-dimensional visualization options in single-cell. The intuitive concept is similar to the one of t-SNE where the different data points are repelling and attracting each other based on their similarity in the original space, but it uses a different optimization based on the minimization of the entropy, the law of repulsion and attraction has also been modified, and most importantly, it performs a nonrandom initialization that places points in an already well-ordinated way. These significant changes address notably the two bottlenecks of t-SNE by having better computational speed and better preservation of global data structure overall, even though the last point is still highly debated 156 .

The noticeable improvement of UMAP over tSNE has made the single-cell community shift progressively towards UMAP rather than t-SNE and is now considered as the state of the art twodimensional representation in single-cell.

Still, even though UMAP and t-SNE dominate the visual representation in single-cell publications largely, many alternatives have been developed to address specific needs of visualization. We can notably quote, amongst others, the poincaré map 157 , scvis 158 , or SWNE 159 , PAGA [START_REF] Wolf | PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF] , and ivis 160 .

Partition based graph abstraction 81 (PAGA) is a highly scalable two-dimensional embeddings method that allows notably the visualization of single-cell data at different resolutions by allowing the user to group cells according to their similarity and representing it as a network. PAGA is especially popular for developmental biology data as it allows a clear representation of all the trajectories in two dimension compared to diffusion maps where there is a need to inspect several eigenvectors to observe all the differentiation path. Moreover, most of the trajectory inference methods scale pretty badly computational wise and will take days or reach memory consumption limits when the cell counts reach over a hundred thousand. Meanwhile, PAGA achieves cell embedding and trajectory inference in less than an hour with such a scenario and is moreover very flexible as to the topology of development analyzed.

Poincaré map 157 combines kNN with geodesic distance and uses hyperbolic embedding to represents data in a disk. This specific disk conformation gives an easily interpretable hierarchical representation that is especially relevant for developmental biology data.

Ivis 160 uses the novel Siamese neural network and is linearly scalable, and has the advantage of enabling the addition of new data points on a preexisting representation. The methods also focus on preserving the global structure as UMAP.

scVI 158 proposes a two-dimensional embedding based on a probabilistic generative model that conserve the local structures and accompanies the representation with log-likelihood metrics that informs the user of the potential uncertainties or qualities of the embeddings for each cell. The metric is especially useful, as it allows us to discern easily in a quantitative way a robust local structure that is of interest for later downstream analysis or a weak structure that can be representative of technical noise rather than real cell type or state. Just like Ivis, there is a possibility to add new data points to existing embeddings SWNE 159 uses non-negative matrix factorization combined with a shared nearest neighbor to propose a very particular embedding method since it also allows the embedding of features (genes) in the same space as cells. Genes that are expressed in a particular subset of cells will be embedded near the latter. Hence SWNE, adds biological context, such as cell type genes markers in the visualization, which normally requires additional plots or tables for interpretation.

The list goes on in terms of choice for two-dimensional embeddings, and depending on the context, some of them can be the optimal solution to represent the heterogeneity of the data.

However, as tempting as it might be, there is a general consensus on not to perform any downstream analysis on top of these methods coordinates and are exclusively used in visualization. The non-linear nature of these approaches often make them a black box mathematically wise, and there is no such thing as loadings like in PCA that gives information about the genes that are driving the different axes. Hence, PCA remains the state of the art approach for further downstream analysis, such as unsupervised clustering presented in the next Section s1.2.4.1.

Cell assignment

The cell assignment step can be performed in two ways. The first being using unsupervised clustering to identify transcriptionally similar cells and regrouping them using methods such as Kmeans or hierarchy. Alternatively, using a pre-annotated dataset or signatures database, cell assignment can be conducted in a supervised manner. Here, we present both approaches.

Unsupervised Clustering

The unsupervised clustering step addresses one of the primary objectives of single-cell data:

finding groups of cells with distinctive transcriptional profiles to identify cell types present in the data. The unsupervised annotation is a mandatory step in constructing a single-cell atlas as the primary goal is to build robust references for different cell types and cell states across tissues, species, and omics.

Since the beginning of the democratization of single-cell technologies, many clustering methods dedicated to single-cell data have emerged. These methods are mainly based on three different clustering methods: k-means 161 , hierarchical 162 , and graph-based clustering 163 , and tries to improve the overall quality of the grouping by addressing discrepancies proper to single-cell with diverse preprocessing of the data. Even though more than one hundred different clustering methods were developed for single-cell, there is no strong consensus on which approach is the best performing one. Benchmark of such tools on a comprehensive panel of single-cell dataset did not highlight a specific tool or approach to be consistently best performing 164,165 . It is again important to highlight that rather than using a single clustering method, the use of several different ones in accordance with the nature of the dataset and the initial hypothesis is the best practice to obtain meaningful clusters as unsupervised clustering suffers from many unique hitches.

Indeed, in addition to the technical noise inherent to single-cell sequencing, the clustering steps can also suffer from unwanted biological information overshadowing more interesting cell types or cell states. Notably, a group of cells with an overall high expression of ribosomal, mitochondrial, or cell cycle-related genes can be isolated by the clustering algorithm since they present a seemingly different transcriptional profile. However, the identification of such a group of cells does not provide any useful biological insight since they do not identify a particular cell type or cell states but are rather representative of a low-quality cell with high sequencing stress (ribosomal and mitochondrial genes) or cell states that are considered as a confounder (cell cycle genes).

Tools such as scLVM 166 or Seurat are packed with functions to regress such genes and correct the expression matrix. Such protocol ensures that the clustering steps will not be misguided by these transcriptional confounders and find a subset of cells driven by relevant genes. Then again, these stress levels or spurious cell states can also be considered as an important part of the study in some specific cases such as cancer-related data where cell proliferation and transcript expression perturbations are relevant information.

Moreover, as discussed in chapter 1.4.1, one of the major parameters in this step is the resolution of the clustering. In almost any clustering approach, there is a need to specify directly (K-means, hierarchical clustering based methods) or indirectly (graph-based methods) the number of clusters to be obtained, and even though some metrics such as the Calinski-Harabasz 167 index exists to help select the optimal number of clusters; in practice, they are hardly useful in data like single-cell with multiple levels of heterogeneity. In a typical scRNAseq analysis routine, it is quite common to perform clustering with several resolutions. A low resolution will capture highly represented cell types while struggling at the identification of rare cells and relevant subtypes. In contrast, a high resolution will have more success at isolating rare cells and subtypes. However, it will also be more likely to create illegitimate separation inside large cell types based on very small transcriptional differences or technical confounders, which do not translate into a significant insight. Thus, trying out a reasonable number of resolutions in the clustering procedures is often critical to correctly identify the different subsets. Ultimately, a divide and conquer approach can be adopted where a first broad resolution clustering is performed to identify major cell types. Then another round of clustering is performed independently on each cell type of interest. Still, the necessity of investigating a higher level of resolution can hardly be determined by computational mean and often resolves in thorough inspection based on prior knowledge and hypothesis, and necessitates several trials.

As a matter of fact, while unsupervised clustering methods gather cells according to their similarity, it does not provide itself any information about the cell type or its functional characteristics. The annotation of the clustering outputs is often done after, in conjunction with differential expression analysis and meticulous inspection of the markers that can be done with experts or search engines such as PanglaoDB 168 . The main bottleneck of K-means resides in the fact that it is biased to find equally sized clusters and thus are very likely to miss rare cell types by including them into larger subpopulations.

K-means and Hierarchical based clustering

RaceID [START_REF] Grün | Single-cell messenger RNA sequencing reveals rare intestinal cell types[END_REF] , assess this problem by incorporating outlier detection steps to identify rare subpopulations.

Hierarchical clustering was also used in many single-cell analysis methods such as SINCERA 173 , pcaReduce 174 , CIDR 175 , BackSPIN 176 . Like the k-mean based, these methods process and transform the data to help hierarchical clustering cope with the single-cell data structure. For instance, the main focus of CIDR is to cope with the overdispersion present in single-cell data. It first identifies dropout candidates using kernel density estimation. And in a second step, CIDR performs imputation on the dropout candidates to fill in the missing gap in the expression matrix.

Finally, CIDR performs hierarchical clustering using the newly imputed expression matrix. Instead of identifying groups of points that are close together, graph-based clustering uses kNN to construct a cell to cell similarity network and identifies groups of nodes that are densely connected using community detection algorithms such as Louvain or RandomWalk 179,180 (Figure 1-24). Instead of specifying the number of clusters to be obtained, the number of kNN is the primary parameter of this approach and affects the number and size of the final clusters. A small k will partition data into many small communities, whereas a big k will group the data into large subpopulations. Notably, compared to methods based on K-means or hierarchical clustering, graph-based methods are much more efficient computational wise and are well fit for large data analysis but often struggles against smaller dataset with less than 2000 cells.

Other clustering methods

It is worth mentioning that, while most of the clustering methods that are used commonly are based on K means, hierarchical trees, or graphs, some peculiars yet interesting methods try to tackle clustering from a completely different angle. These tools can be used in conjunction with classical clustering methods to capture some information missed by the latter or counteract some of the unsolved problems from these classical methods.

GiniClust 181 takes a completely different stance in clustering methods. Rather than clustering the whole dataset, GiniClust focuses on improving the sensitivity and specificity of rare cell types recognitions. Many clustering methods are very efficient for detecting large clusters but often omit smaller subsets. The method is based on the Gini Index, primarily designed for economic study to identify inequality of revenues among populations. This coefficient is calculated for each gene.

In the case of single-cell data, a high Gini coefficient indicates a highly unequal distribution of the gene expression and demonstrates that a few numbers of cells are monopolizing the gene counts.

Hence, genes with a high Gini coefficient likely point to rare cell-type-specific genes. In a second step, the gene expression matrix is filtered by keeping top Gini coefficient genes, and clustering using DBSCAN 182 is performed to identify the rare cell subpopulations. Although inefficient for finding large clusters and not suitable for general purposes. GiniClust can be used as a complementary clustering method to identify rare subpopulations that could be missed by a broad clustering.

On a different note, as described above, one of the main issues with clustering is the necessity to directly or indirectly choose the number of clusters, with very few unbiased and reliable metrics to select it optimally. To avoid over clustering or under clustering, it is often necessary to perform a tedious and time-consuming manual inspection of the data by looking at the differentially expressed genes of the cluster, visualizing cells in low dimensions, and reiterate the process of clustering with different parameters. SCCAF 183 Python package tries to tackle this issue by proposing a clustering method with automated clustering optimization using machine learning.

First, SCCAF performs clustering normally. By default, it uses the graph-based method such as Louvain clustering with a slightly low number of k-nearest-neighborhood to obtain many clusters.

In a second step, the clustered data is then split into training and testing datasets: The training dataset is used to train a regularized linear regression classifier, and the testing is used for assessing the performance of the latter. In a third step, the predicted clusters are then compared to the original one to measure the consistency of the initial clustering by deriving a confusion matrix. A high confusion rate in the matrix between two different clusters will indicate a difficulty in discriminating cells from said cluster to the other. Hence, it points out that these 2 clusters are indeed coming from the same cell type/state and should probably be gathered together as they are likely to be the consequence of over clustering. The gathering is achieved in the final step by transforming the confusion matrix into a connection matrix that can be used as a graph. Finally, Louvain clustering is performed on the newly created graph. Several rounds of this process are completed until an equilibrium is reached and ultimately gives stable and robust clusters. The method has demonstrated that it recovers efficiently in an unsupervised manner; several experts annotated single-cell dataset and showed good performance even for rare cell types. The main limitations of the method concern that it can sometimes unnecessary merge cell types and are prone to under clustering. Nonetheless, the method proposes a less biased approach that seemingly finds the optimal clustering resolution for biological interpretation and can be very useful, especially when there is very little prior knowledge of cell-type composition in the data.

Finally, most of the widely used single-cell clustering methods produce a fixed number of groups that can be highly biased. SCCAF 183 process automates the choice of the resolution, but it is often useful to inspect different levels of granularities in terms of cell grouping in a practical case. Of 

Cell type classifiers

Cell type identifications are often made after the clustering step and the differential expression analysis that goes along with. Cluster gene markers are derived and manually associated with a cell type upon close inspection of literature. However, for most tissues and their cell types, many pre-existing extensively annotated atlases and databases with curated cell-type signatures exist.

This preliminary information and resources can be used efficiently to infer cell types on the raw dataset without additional computational step and manual curation. The necessity of cell type inference in every single cell dataset has led to the creation of many methods allowing the automation of such classifications. These methods come notably in two flavors: one using a preestablished list of curated markers built by accumulating specific cells knowledge in the literature and the other one using a pre-annotated reference single-cell dataset.

Methods using prior knowledge signatures

The procedure of cell-type characterization can be automated and applied at a single-cell resolution taking advantage of prior knowledge gene signatures that exists in the literature.

Recently developed, databases such as panglaoDB 168 and cellMarkers 186 (Figure 1 The use of prior knowledge signatures for single-cell data classification is very popular as it removes the necessity of a clustering step, and the genes driving the cellular identity are easily retrievable. However, it is limited in the sense that these approaches can hardly reveal previously unknown cell types and cell states, and a clustering step might still be relevant to identify cells putatively. Moreover, it is important to note that the quality of the prediction is directly correlated with the quality of the signatures used.

Classifiers using reference datasets

The reference-based classifiers, commonly referred to as label transferring methods, require a "golden standard" dataset that serves as a reference. These datasets can be found individually in Gene Expression Omnibus, big-scale single-cell atlases, or specific single-cell collection databases such as scRNAseqDB 193 or SCPortalen 194 . Label transferring has been proven efficient in terms of accuracy as the prediction is based on a reference single-cell data and hence takes also into account the specific structure and variabilities inherent to single-cell data, which is not the case for curated signatures collection, as the origin of the genes constituting it are of varied nature. Moreover, some genes in signatures are not even detected in single-cell due to low coverage.

Label transferring methods can be categorized into three broad categories: (i) transcriptional similarity metric based, (ii) integration, and (iii) machine learning methods, with some methods fitting in more than one category. We can notably cite for the transcriptional similarity-based methods: SingleR 23).

The scmap R package is one of the first single cell-specific label transferring methods that appeared. The package comes in two flavors: scmap-cluster and scmap-cells. In both cases, gene selection is first performed to keep genes with a low dropout rate. The filtered reference expression matrix is then used to assess the transcriptomic similarity with the query cells using cosine distances. This procedure is done at the cluster level for the scmap cluster (by averaging the gene expression per cell-type) and the cell level for scmap cells. The cell type assignment is then done based on the similarity between the reference cluster/cell and query cells, with the closest cluster/cell transferring its label to the query cells. A threshold can be put in terms of cosine similarity to accept or reject the transfer of label.

SingleR 195 performs unbiased cell type recognition from single-cell RNA sequencing data by correlating gene expression (spearman) of cell types in the reference against the query cell expression using highly variable genes in the reference. SingleR further fine-tunes the classification by rerunning the correlation analysis for each cell and removing the cell type with the lowest score until two cell types remain. The cell type corresponding to the top value after the last run is assigned to the single cell. This iterative procedure gradually adjusts the resolution of the data and allows better identification of subtle substructure that can be contained in the reference, such as naïve CD4 T cells and memory CD4 T cells in the case of immune cells.

Interestingly, even though single-cell data can be used as a reference, SingleR provides the user with a comprehensive catalog of bulk RNAseq data of pure cell lines obtained from big sequencing consortia such as Blueprint 14 , ImmGen 207 , and Encode 127 , which constitutes a very robust reference of a variety of cell types, as Bulk RNA has much more gene coverage and provides a robust signal as the initially available transcriptomic material is much higher than those of a single cell. Hierarchical classification) combines hierarchical tree and correlation analysis to train a decision tree. One major characteristic of CHETAH is its capability to assign cells to intermediate stages between two distinct cell types. This property is especially convenient for developmental biology data where cell heterogeneity is not distinct and is represented by a continuum.

Seurat framework offers a function derived from the integration algorithm described in section 2.2.5 to perform label transferring. The first step involves features selection in which Seurat selects the highly variable genes present in both query and reference datasets. A dimensionality reduction is conducted on both datasets after feature selection to position them in a shared lowdimensional space. By default, Seurat performs canonical correlation analysis (CCA) since it captures gene modules shared in both datasets. kNN is then performed to obtain k closest reference cells for each query cells, and the ratio of reference cells cell type is calculated for each query cells, thus giving a prediction score ranging from 0 to 1 for each class and every cell, informing the user of the probability of a cell to belong to one class the other. The highest prediction score cell type is assigned for each cell in the query. However, it is possible to put a threshold (such as x < 0.5) to reject a cell from being labeled and mark them as unassigned.

Interestingly, most of the integration methods can be adapted to label transferring methods by following the procedure mentioned above using kNN.

Lastly, many transferring methods commonly used in single-cells are directly derived from standard machine learning methods with a few modifications and additional initial preprocessing.

Even though the algorithm is different, the basic approach remains the same as the classifier is trained by subsetting the reference data, and then the model is applied to the query dataset. Recent publications benchmarked a comprehensive list of label transferring methods 208 , but again there was no clear winner amongst single-cell specific methods, and surprisingly, the authors claim that simple SVM was actually performing the best.

Table 2-3 Overview of automatic cell identification methods

The table recapitulates some of the most popular methods for single-cell cell type inference analysis. The rejection option tells whether a cell can be left unassigned or not. Adapted from "A comparison of automatic cell identification methods for single-cell RNA sequencing data" 208 .

Trajectory analysis

One shortcoming of most clustering methods and cell type classifiers is that they will discretely partition the data, regardless of the importance of transcriptional differences. Some of the singlecell data concern the developmental aspect and study dynamic processes such as differentiation and activation. These particular cases do not contain clear cut cell types, and the heterogeneity of cells is rather represented on a continuum. Clustering methods assign cells into distinctive categories and thus are not well suited to analyze cellular transcriptomes' gradual transition.

Trajectory analysis, also called pseudotime analysis, investigates this progressive differentiation by arranging cells along different paths based on their expression similarities. For instance, studies concerning hematopoietic stem cells focus on trajectory analysis rather than clustering as it gives a better insight into the developmental process of the stem cells into more mature cells with distinctive immune functionality.

54

During the last few years, many methods for trajectory analysis have been developed. We can notably cite TSCAN 209 , SLICER 210 , Slingshot 211 , Sincell 212 , Elpigraph 213,214 , Mpath 215 , and PAGA [START_REF] Wolf | PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF] amongst the most popular. A diverse set of tools was needed as developmental data showed many different topologies and needed to be tackled with different approaches. Indeed, developmental processes are represented by more or less complex and specific conformation. Topologies are ordered from the simplest to the most complex conformation. Image from "A comparison of single-cell trajectory inference methods" 216

The dynverse R package and manuscript 216 proposed a single framework gathering all the trajectory inference tools in a docker environment complemented with a handful of visualization capabilities. Dynverse brought much-needed flexibility in the analysis of trajectory analysis with heterogeneous datasets requiring a specific approach for each. The manuscript also presented a comparative benchmark of different methods to facilitate the decision of the method.

Figure 1-28 Guidelines for trajectory inference analysis

Decision tree and results of the benchmark on simulated datasets taken from "A comparison of single-cell trajectory inference methods" 216 . The figure aims to guide the user to a specific set of tools depending on the prior knowledge of data topology, the overall accuracy, and computational feasibility. Image from "A comparison of single-cell trajectory inference methods" 216 1.2.5 Gene identification

Differential expression analysis

After clustering, there is a need to identify the genes that are driving the found heterogeneity.

Differential expression analysis methods statistically detect genes that are significantly proposes Wilcoxon or t-test as the default option for differential expression analysis. Single-cell specific methods based on the Bayesian framework or using statistical modeling are often less popular as they make strong assumptions about the data that are not verified in all single-cell dataset. Moreover, they are much more difficult to set up and are computationally expensive.

The genes found from differential expression analysis can then be investigated to infer cell type or get insights into a particular condition present in the sample. However, one important note about differential expression analysis is that the found markers are relative to the data's heterogeneity and the other clusters. Meaningful genes of specific cell types will not be detected if they are expressed uniformly throughout all cells. For instance, B cell markers such as CD79A

would not be captured when performing differential expression analysis on a pure B cell line single-cell dataset. One must also be careful when dealing with p-values in single-cell differential expression analysis to assess the markers' significance. First of all, as there are many cells in the dataset, the p-values tend to get inflated, and even the slight log fold change between two clusters become significant due to this size effect. Moreover, compared to Bulk RNAseq, where differential expression analysis is performed on two independent samples, in single-cell, differential expression analysis is conducted on the same data used to obtain the clusters, leading to a data dredging phenomenon that potentially introduces a lot of false positives. Hence, the notion of "significant differences" between clusters using p-values is mostly erroneous.

For trajectory inference, differential expression analysis cannot be applied as no discrete cell types are defined. Instead, genes with an expression highly correlated with the pseudotimes of a particular differentiation path are statistically assessed by fitting splices. Genes associated with a trajectory are also important as they describe the biology along a path and the end products. For more complex trajectories, genes that are differentially expressed along each side of a branch point are also investigated. Monocle's BEAM 225,226 (Branch Expression Analysis Modelling) method allows such procedure by identifying genes with branch-dependent expression using two negative binomial GLMs and likelihood ratio testing.

Gene Sets Analysis

The up or down-regulation of a particular gene in a cluster or cell can be assessed using differential expression analysis. However, cell type and cell states are not driven by a single gene, and biological functions are driven by intricate interactions of several genes involving complex regulatory processes. Over many years and decades, these mechanisms have been studied to constitute gene sets databases that meticulously catalog diverse gene modules. Amongst them, we can notably cite Gene Ontology 227 , KEGG 228 , Reactome 229 , Wikipathways 230 , and GeneSigDB 231 . The MsigDB 232 and Enrichr 233 websites notably gather comprehensibly all of the databases mentioned above. In conjunction with bioinformatical methods, the prior knowledge offered by these databases notably allowed the functional analysis to extract mechanistic insight from bulk transcriptome data. The most commonly used gene set analysis methods are overrepresentation analysis 234 (ORA) and Gene Set Enrichment Analysis 192 (GSEA). ORA approach commonly uses the top n up-regulated genes in a sample and then assess the overlap between the top n genes and the functional gene set to finally calculate the probability of having that much 57 overlap if we had taken the genes randomly, using, for instance, Fischer exact test (Figure 1-30),

while GSEA uses a ranking of the genes in conjunction with Kolmogorov-Smirnoff test. These

Bulk approach are also used directly on single-cell dataset using differential expression analysis results on clusters, and hence functional analysis are mostly conducted at the cluster resolution and not at the single-cell level. The only known tool that performs geneset analysis at the singlecell level is AUCell, which mimics GSEA. Each cell's ranking is constructed by ordering the level of expression of genes in a cell and treating ties randomly. Hence, genes that are important to the cell are placed on top, but it will also ultimately include highly expressed genes across all cells, such as ribosomal and mitochondrial. Moreover, all the zero expression is treated randomly, making AUCell a pretty rough pathway analysis tool.

Figure 1-30 Over Representation Analysis

Schematic representation of the ORA used for pathway enrichment. Over representation analysis calculate the overlap between genes of interest of a particular sample/cells against a specific set of genes (functional pathways/cell type signatures). The overlap statistical significance is then judged using p-value producing test such as Fischer exact or hypergeometric test.

MOTIVATION AND CONTEXT OF THE THESIS

• With the advent of single-cell sequencing, the scientific community's effort and large cohorts such as the Human Cell Atlas 17 , Mouse Cell Atlas [START_REF]Mapping the Mouse Cell Atlas by Microwell-Seq: Cell[END_REF] , or Fly Cell Atlas 47 ; an extensible collection of single-cell datasets for every tissue, cell type, species, and omics are being generated. Interestingly, these sequencing projects are done on healthy tissue to constitute a robust reference profile of the different cell types and conducted on a more specific condition or diseases such as cancer [START_REF] Yuan | CancerSEA: a cancer single-cell state atlas[END_REF] or Alzheimer's disease [START_REF] Grubman | A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation[END_REF] . With the discovery of new cell types, subtle substructures, and distinct cell states, there is a real need to extract significant biological signals that characterize them in other datasets.

• One of the essential steps in the single-cell analysis is identifying the subpopulations underlying in the data. This process is often done after clustering and differential expression by manually investigating the genes and searching for patterns that have previously been described in the literature as being cell-type specific. Such a manual approach is often time-consuming and subject to bias.

• To that aim, many cell type classifiers were developed to take advantage of the existing reference database and prior literature to automate the cell type identification step.

However, these methods are often based on machine learning methods such as random forest or kNN that make it difficult or nearly impossible to characterize the genes driving the cellular identity.

• From another perspective, as single-cell sequencing becomes democratized, more and more medical/clinical studies include this powerful method to better understand diseases mechanism. In a clinical context, single-cell enables, for instance, identifying particular cell types that are especially affected by the disease and can overall show the perturbation in the transcriptomic profile by comparing patients against control. From that perspective, it becomes interesting to investigate the different genes individually but also modules of genes pointing to specific biological functionality. A better understanding of the functional pathways a disease is implicated with is of primordial importance for selecting potential drugs or therapy.

• Functional enrichment methods have been developed since the microarray era of NGS to highlight vital biological pathways in a dataset. These methods typically combine prior knowledge with a statistical method to gain functional and mechanistic insights from omics data. Most curated functional pathways can be retrieved in the Molecular Signature Database (MSigDB) 232 , which regroups gene sets from different functional databases such as KEGG 228 , Reactome 229 , Gene Ontology 235 , and BioCarta. As for statistical methods, many of them developed for microarrays, such as GSEA or ORA approaches, are used in single-cell. However, in practice, gene enrichment analysis is conducted by considering each cluster/subpopulation as an independent sample and averaging their expression. Gene set analysis is thus performed at the cluster level and not the singlecell level.

Chapter 2. HYPOTHESIS

From the previous considerations, the working hypothesis of this thesis are:

I. Cell types and cell states are molecularly determined by an intricate ensemble of genes that interact together and drive specific biological functions.

II. From a reductionist perspective, the diversity of cell types and cell states may be characterized by a subset of genes, a.k.a. gene signatures, that appear to be specifically and differentially associated with each of them in a reproducible manner, i.e., across independent samples, donors and experimental protocols.

III. Cell-type of cell-state specific intrinsic gene signatures may primarily be observable at singlecell resolution and thus are susceptible to be captured through the study of their single-cell RNA expression levels, as well as through other concomitant single-cell epigenomic signals such as chromatin accessibility.

IV. The biological and technical stochasticity associated with single-cell sequencing technologies can be partially handled by multivariate statistical approaches in order to extract meaningful molecular signals at single-cell resolution.

V. The functional enrichment analysis of specific gene signatures identified at single-cell resolution can unveil molecular mechanisms involved in healthy conditions and on disease onset and progression.

Chapter 3. OBJECTIVES

Considering the previous working hypothesis, the thesis's main objective is to provide a comprehensive computational method that takes advantage of the full resolution proposed by single-cell and enables cellular heterogeneity exploration both in terms of characterization of cell type and biological function at individual cell level.

Specific aims are:

1. The implementation of a multivariate statistical approach able to identify robust gene signatures at individual cell level from single-cell sequencing data without the need of a clustering step.

2. Evaluate the ability of the approach to extract in a fully unbiased way, and at individual cell resolution, the gene signatures previously associated in the scientific literature to wellcharacterized cell types. 

CELL-ID IMPLEMENTATION

The main steps of the Cell-ID workflow are schematized in 

Multiple Correspondence Analysis of the gene expression matrix

Multiple Correspondence Analysis (MCA) is a multivariate descriptive statistical technique conceptually equivalent to Principal Component Analysis for qualitative/binary data 237,238 . MCA can be applied to quantitative data through an intermediate step of so-called fuzzy coding. Here, each continuous variable p is coded through user-defined functions into several disjoint categories Qp where membership x to each category q is represented in a continuous scale between 0 and 1, and ∑ 𝑥𝑥 𝑗𝑗 = 1

𝑄𝑄 𝑝𝑝 𝑗𝑗=1

. Following (Aşan and Greenacre, 2011), fuzzy-coding of a cases-by-variables matrix of continuous data can be performed in its simplest form by doubling each variable into Qp = 2 categories as follows: Let MN, P be the gene expression matrix of N cells The orthogonal dimensions given by the eigenvectors U and V allow the simultaneous representation of both rows (i.e., cells) and columns (i.e., gene categories) in S into the same orthogonal vector space, where coordinates are obtained as follows 240 :

Row coordinates:

𝚽𝚽 = 𝑫𝑫 𝒓𝒓 -𝟏𝟏/𝟐𝟐 𝑼𝑼 = 𝑫𝑫 𝒓𝒓 -𝟏𝟏/𝟐𝟐 𝑺𝑺 𝑽𝑽𝑫𝑫 𝜶𝜶 -𝟏𝟏
Column coordinates:

𝐆𝐆 = 𝑫𝑫 𝒄𝒄 -𝟏𝟏/𝟐𝟐 𝑺𝑺 𝑻𝑻 𝑼𝑼 = 𝑫𝑫 𝒄𝒄 -𝟏𝟏/𝟐𝟐 𝑽𝑽 𝑫𝑫 𝜶𝜶
The previous expressions correspond to so-called standard and principal coordinates for rows and columns, respectively, in MCA terminology 240 . The simultaneous representation of cells and genes into the same vector space is a main advantage of MCA as compared to alternative dimensionality reduction techniques such as PCA, where only cells are projected.

Gene-to-cell distances in MCA space and gene signature extraction

In the vectorial space provided by MCA, a barycentric relationship is fulfilled between the rows and the column coordinates: the general term We note, however, that Cell-ID does not perform or relies on any clustering step whatsoever.

Notwithstanding, cell grouping information may optionally be used here as input, as provided by an external reference source (e.g., database or publication).

Per-cell gene signature enrichment analyses against reference gene sets

The gene signatures Γ 𝑛𝑛 extracted for each cell n in a dataset can be assessed through their enrichment against reference gene set (e.g., a marker gene list) associated with wellcharacterized cell types and/or functional terms. Cell-ID evaluates such enrichment through a hypergeometric test as follows: Let 𝑃𝑃 be the set of genes retained in the gene expression matrix MN, P previously defined, after the initial steps of cell and gene filtering described above. Let 𝑊𝑊 be the set of genes within a reference gene set that is contained on P (𝑊𝑊 ⊂ 𝑃𝑃). Let w be the number of genes overlapping between the signature Γ 𝑛𝑛 of size 𝛾𝛾 and the gene set W:

w = |Γ 𝑛𝑛 ∩ 𝑊𝑊|
The observed overlap w can be modeled as a random variable X distributed hypergeometrically, with probability mass function given by:

𝟏𝟏𝒓𝒓𝑷𝑷𝑷𝑷 𝒏𝒏 𝑾𝑾 (𝑿𝑿 = 𝐰𝐰) = � 𝑾𝑾 𝒘𝒘 � � 𝟏𝟏-𝑾𝑾 𝜸𝜸-𝒘𝒘 � � 𝟏𝟏 𝜸𝜸 �
Only reference gene sets of size 𝑊𝑊 ≥ 10 were considered throughout this work. When the gene signature Γ 𝑛𝑛 of a cell n in a dataset, D is evaluated against a collection of reference gene sets 𝑊𝑊 1 , 𝑊𝑊 2, … 𝑊𝑊 Ω , (e.g., a repository of cell-type marker lists or a pathway database), the above hypergeometric test p-values are corrected by multiple testing for the number of gene sets Ω evaluated. Thus, a cell n is considered enriched in those gene sets for which the hypergeometric test p-value is <1e-02, after Benjamini Hochberg multiple 241 correction. Also, when a disjointed classification is required, a cell n may be assigned to the gene set 𝑊𝑊 ω with the lowest significant corrected p-value. On the contrary, if no significant hits are found, a cell n will remain unassigned.

Per-cell gene signature enrichment

The gene signatures Γ 𝑛𝑛 extracted for each cell n in a dataset D can be assessed through their enrichment against the gene signatures Γ ′ 𝑛𝑛 extracted for each cell n' in a reference dataset D', an approach called Cell-ID(c). Analogous to the previous section, Cell-ID(c) evaluates such enrichment through a hypergeometric test: Let 𝑃𝑃 be the set of genes retained in the gene expression matrix MN, P associated with dataset D as previously defined. Let Γ ′ 𝑛𝑛 ′ |𝑃𝑃 be the set of genes of size W' within a per-cell gene signature Γ ′ 𝑛𝑛 extracted for a cell n' in the dataset D', which are contained on P, i.e.: Γ′ 𝑛𝑛 ′ |𝑃𝑃 = Γ′ 𝑛𝑛 ′ ∩ 𝑃𝑃 .

Let w be the number of genes overlapping between the signature Γ 𝑛𝑛 of size 𝛾𝛾 and the gene set P:

w' = |Γ 𝑛𝑛 ∩ Γ′ 𝑛𝑛 ′ |𝑃𝑃 |
The observed overlap w' between two per-cell gene signatures can be modeled as a random variable X distributed hypergeometrically, with probability mass function given by:

𝟏𝟏𝒓𝒓𝑷𝑷𝑷𝑷 𝒏𝒏 𝒏𝒏′ (𝑿𝑿 = 𝑤𝑤′) = � 𝑾𝑾′ 𝒘𝒘′ � � 𝟏𝟏-𝑾𝑾′ 𝜸𝜸-𝒘𝒘′ � � 𝟏𝟏 𝜸𝜸 �
For each cell n in a dataset D, the above hypergeometric test p-values are corrected by multiple testing for the number of cells N' in the reference dataset D' against which it is evaluated. Thus, a cell n in D is considered as enriched in those signatures n' in D for which the hypergeometric test p-value is <1e-02, after Benjamini Hochberg correction on the number n' of tested gene signatures. Besides, when a disjointed classification is required, a cell n may be assigned to the cell n' in D' with the lowest significant corrected p-value. Best hits can be used for cell-to-cell matching and label transferring across datasets. On the contrary, if no significant hits are found, a cell n will remain unassigned.

Alternatively, if a grouping Θ 1 ′ , Θ 2 ′ , … Θ 𝜃𝜃 ′ of the N' cells in D' is provided, the gene signatures Γ 𝑛𝑛 for each cell n in a dataset D can be assessed through their enrichment against the corresponding per-group gene signatures Γ Θ 1 ′ , Γ Θ 2 ′ , … Γ Θ 𝜃𝜃 ′ extracted from D' as described above. We call this approach Cell-ID(g). Here, a cell n in D is considered as enriched in those cell groups Θ 𝜗𝜗 ′ from D'

for which the hypergeometric test p-value is <1e-02, after Benjamini Hochberg correction for the number of groups evaluated. Besides, when a disjointed classification is required, a cell n may be assigned to the group Θ 𝜗𝜗 ′ in D' with the lowest significant corrected p-value. Best hits can be used for cell-to-group matching and group-based label transferring across datasets. On the contrary, if no significant hits are found, a cell n will remain unassigned. Cell-ID(g) can handle both disjoint and non-disjoint cell groupings (i.e., overlapping groups), as well as complete or noncomplete groupings (i.e., when not all cells in D' have been assigned to a group).

Figure 4-1 Overview of the Cell-ID approach

(A) Cell-ID performs a dimensionality reduction of the gene expression matrix through multiple correspondence analysis (MCA), where both cells and genes are projected in a common orthogonal space. The closer a gene is to a cell in such space, the more specific it is to it. Thus, a gene ranking is obtained for each cell in a dataset based on their distance in the MCA space. The top-ranked genes for a given cell define its gene signature, which can be regarded as a unique cell identity card. Per-cell gene signatures can be independently extracted for a collection of single-cell datasets for downstream analyses. (B) Per-cell gene signatures from a dataset can be evaluated for their enrichment against (i) collections of pre-established cell type markers in order to perform automatic cell-type annotation, (ii) per-cell gene signatures from independent single-cell datasets, allowing cell matching and label transferring, and (iii) gene sets representing biological functions or molecular pathways, allowing functional annotation and interpretation of cell states.

CONSISTENCY OF MCA LOW-DIMENSIONAL REPRESENTATION OF CELLS AND GENES WITH SIMULATED DATASETS.

The consistency of MCA-based low-dimensional representation of cells and genes was first evaluated with 100 simulated scRNA-seq datasets, each containing 1000 cells and 5000 genes. We then determined whether the per-cell gene rankings obtained with MCA were consistent with the gene expression values for neighboring cells in the MCA space. As expected, genes specific to a given cell had higher log-fold changes in expression in the 5% of cells closest to the target cell (n = 50) than in the other cells (Figure 4-3 A). We then investigated how the ranking of genes with zero-counts in a cell related to the specificity of the genes concerned in neighboring cells (Figure 4-3 A). This result highlights the capacity of multivariate approaches to consider a gene to be specific to a cell in which it was not detected, provided that the gene concerned is specific to very similar cells. The MCA approach is thus robust to zero-count values that probably correspond to technical dropouts. These results could be generalized to all individual cells in a given dataset: Spearman's rank correlation 

CELL IDENTITY RECOGNITION BASED ON REFERENCE MARKER LISTS

The effort to characterize cell types was deployed long before the advent of single-cell sequencing. Countless publications describe particular cell types by enumerating its characteristic markers. Some databases such as Cellmarkers 186 , PanglaoDB 168 , or xCell 243 provide a comprehensive list of signatures for well-characterized cell types. These signatures were either manually curated by experts or obtained through bioinformatical analysis on pure cell lineage Bulk RNAseq data. Here we show that CellID can leverage these robust prior knowledge signatures to identify cell types in single-cell data.

We searched for scRNA-seq datasets in which concomitant measurements of single-cell protein marker levels had been performed. Protein marker levels provide additional evidence for cell-type annotations. In such settings, cell-type labels can be considered a golden standard reference for this study, thereby avoiding the potential circularity associated with transcription-based annotations. Two independent scRNA-seq datasets for human blood cells profiled by CITE-seq 244 and REAP-seq 245 protocols met this criterion. The Cite-Seq dataset contained data for a total of 8005 human cord blood cells, whereas the REAP-seq dataset contained data for 7488 PBMCs.

Cell-ID predictions were based on a reference collection of blood cell markers from the XCell 243 repository (Supplementary File 4).

The gene signature of each cell, extracted from the CITE-seq and REAP-seq datasets, was first evaluated with Cell-ID against each of the 21 marker lists associated with previously described cell types (Figure 4-5, Figure 4-6, Supplementary File 4). Each cell was assigned to the cell type for which it displayed the strongest enrichment. We assessed the accuracy of Cell-ID by calculating its precision (positive predictive value), recall (true positive rate), and overall agreement (F1) with the previously assigned reference cell-type labels. In both datasets, per-cell gene signatures displayed significant enrichment in the marker genes for at least one reference cell type in 83% and 73% of cells for CITE-seq and REAP-seq datasets, respectively. The best match to the gene signature was used for automatic cell-type prediction with high precision (0.87 and 0.9), recall (0. AUCell 188 , for most of the cell types considered, achieving remarkably high levels of precision.

CellAssign 190 could not be used due to the original software's execution errors, which we attribute to the length of the signatures used here, ranging from 13 to 174 genes in total, which is much longer than the gene sets of 2 to 20 genes generally used by CellAssign. Overall performance was better for the CITE-seq dataset than for the REAP-seq dataset, for all methods evaluated, due to a significant difference in the median number of genes detected per cell between the two datasets (2346 and 1260, respectively, two-sided Wilcoxon test p-value < 10 -16 ). In addition to identifying the best match between gene lists, Cell-ID was able to identify cells displaying significant enrichment in the genes of more than one of the pre-established cell-type marker lists. This result contrasts with clustering-based approaches, which partition cells into disjointed groups. This situation is illustrated by the CITE-seq CBMC dataset, for which Cell-ID identified fine-grained transitions within the Hematopoietic Stem and Progenitor cells subset We then analyzed more challenging scenarios based on real datasets in which we evaluated the capacity of Cell-ID to identify the only cell of a given rare cell type (n=1). We focused on cell types observed at low frequencies (<2%) in the previous CBMC dataset: plasmacytoid dendritic cells (pDC, 0.6%, n=49), erythrocytes (1.3%, n=105) and hematopoietic stem and progenitor cells (HSPC, CD34+ subset, 1.8%, n=134) from the CITE-Seq dataset. For each of these rare cell types containing a given number n of cells, we generated n corresponding datasets, each retaining only one cell at a time, while the rest of the subpopulations remained unchanged. Using the pre-established immune cells marker lists, as described above, Cell-ID identified the singleton cell with high mean recall (92%, 94%, and 86%), but modest precision (32%, 8%, and 76%) due to the experimental design with a very high number of negatives compared to positive (1 positive and 999 negatives), which results in mid-range F1 score (48%, 0.15%, 0.81%) (Supplementary File 8). Singleton cells pose a problem in clustering-based approaches, in which they are often merged with larger sub-populations or treated as outliers and are thus filtered out of downstream analyses. Conversely, alternative reference methods able to work at individual cell level without a clustering step, such as SCINA 187 and AUCell 188 , could not be applied in this setting either, because they are not suitable for independent evaluations one cell type at a time. 

CELL IDENTITY RECOGNITION ACROSS REFERENCE DATASET TO QUERY.

One of the most popular topics in single-cell is automated classification of cell types using a pre annotated reference dataset. Rather than performing clustering and differential expression to (A and B) Performance measured through the F1 score (y-axis) achieved by Cell-ID(g), Cell-ID(c), and ten alternative state-of-the-art methods (x-axis), covering the major approaches for cell-matching or label transfer across scRNA-seq datasets (Supplementary File 9). (A) The performance for each method is represented for each of the label transferring evaluated (as schematically represented in the top left panels), corresponding to cell-to-cell matching across datasets from pancreatic islets cells (red squares and red diamonds) and across datasets from airway epithelium (blue triangles).

Boxplots summarize global performance (macro F1 scores) for each method. (B) The performance for each method is represented for each of the rare cell types reported in the original publications associated to the cells of the pancreatic islets (squares and diamonds) and airway epithelium datasets (blue triangles) evaluated in (A). Rare cell types are represented following the color palette indicated in the legend and representing epsilon, macrophages, mast, endothelial cells (pancreatic cells), ionocytes, brush/tuft, and PNEC (airway epithelium). A cell type label gathering together brush and PNEC cells was used for consistency with the labeling provided in the human sample from achieved by Cell-ID(g), Cell-ID(c), and ten alternative state-of-the-art methods (x-axis), for the label transferring depicted in h. (E) UMAP representation of 9126 mouse olfactory epithelium cells from 30. Dots representing cells are colored according to Cell-ID(g) cell type predictions using as a reference the mouse brush/tuft gene signatures extracted from (i) mouse airway epithelium and (ii) mouse small intestinal epithelium, as schematically represented in the panels above. The 37 cells significantly enriched with airway Brush/Tuft gene signatures are highlighted in blue and were interpreted as putative SCCs. Identical results were obtained when using intestinal Brush/Tuft gene signatures. (F) Violin plots corresponding to the distribution of -log10 enrichment p-values (y-axis) across the 37 cells identified in (E) (black dots) are represented for 5 significant functional terms (x-axis). GO-0019370: Gene Ontology term "leukotriene biosynthetic process"; GO-0097400: Gene Ontology term "interleukin-17-mediated signaling pathway"; WP318: WikiPathways term "Eicosanoid Synthesis"; KEGG-hsa04725: KEGG term "Cholinergic synapse"; R-HSA-112315: Reactome term "Transmission across Chemical Synapses". cells (also known as club cells), ciliated cells, rare pulmonary neuroendocrine cells (PNEC), brush cells (also known as tuft cells), and ionocytes. Plasschaert's mouse dataset was used as the reference for this study. It allowed a within-species analysis (mouse-to-mouse) and a betweenspecies analysis (mouse-to-human) based on the same laboratory datasets. Cell-ID gene signatures at either individual cell level or group level were obtained independently for each of the datasets described above. Four independent reference-to-query assignments were evaluated: Baron's human pancreatic cells against Muraro's and Segerstolpe's human pancreatic datasets, and Plasschaert's mouse airway epithelial cells against Montoro's mouse airway epithelial cells and Plasschaert's human airway epithelial cells. For each of the referenceto-query assessments, both cell-to-cell matching and group-to-cell matching were performed, with

Cell-ID(c) and Cell-ID(g), respectively (Methods). Thus, each cell in the query dataset was assigned to the cell type from the reference cell or reference group for which it presented the lowest significant gene signature enrichment p-value (or was left unassigned if no significant hits were found; From a discovery perspective, the datasets used here provided us with an opportunity to evaluate the capacity of Cell-ID to detect ultra-rare cell types potentially missed in the original publications.

Indeed, Baron et al. reported Schwann cells (n=13; 0.17 %) in pancreatic islet datasets, an ultrarare cell type of neural crest origin. However, Schwann cells were not described in the samples 

CELL IDENTITY RECOGNITION ACROSS DIFFERENT TISSUES OF ORIGIN

Commonly, datasets from the same tissue or sample are used as a reference to classify query dataset cells. However, cell identity recognition can also be done using different tissue of origin.

In that case, the overall cell type composition will differ, but several cell types can be common between the reference and the query. Hence, the ideal cell classification would identify and label cells in common and leave the rest unassigned. In that scope, we evaluated the capacity of Cell-ID to recognize gene signatures of rare cells across independent sets from different tissues of origin.

We thus searched for rare cell types meeting the following conditions: (i) that they were common to at least two different tissues, and (ii) for which single-cell RNA-seq datasets were available, in which cell-type labels had been curated by expert annotation in the original publications.

Chemosensory epithelial cells appeared to be an ideal rare cell type present in various epithelium types, presenting all the characteristics for the analysis's purpose. Recent studies have shown that chemosensory epithelial cells, referred to as tuft cells in the intestinal mucosa, and solitary chemosensory cells (SCCs) in the nasal respiratory mucosa, belong to the brush/tuft cell family, together with the brush cells in the tracheal airway epithelium 251 252 . This chemosensory epithelial cell family has common transcriptional programs and functions in all three tissues 253 . In particular, these cells are the primary source of interleukin-25 254 , a proinflammatory protein mediating type 2 inflammation induced by diverse pathogens in various mucosal tissues.

We evaluated the capacity of Cell-ID to identify rare cell types across tissues by focusing on cell matching between the mouse tracheal airway epithelium (Plasschaert 44 and Montoro [START_REF] Montoro | A revised airway epithelial hierarchy includes CFTRexpressing ionocytes[END_REF] 

VISUALIZATION

Single-cell analyses rely heavily on visualization to observe cellular heterogeneity and drive hypothesis. Most single-cell analysis packages come with custom functions to visualize the key elements of the output. Cell-ID is no exception to the rules and provides two novel visualization options for the explorative analysis of single-cell RNA-seq data.

First, the dimensionality reduction performed through Multiple Correspondence Analysis provides a simultaneous representation of cells and genes on the same principal axes. Thus, Cell-ID allows us to visualize cells in the MCA principal components (analogous to a PCA representation) and map key gene markers together with the cell representation. In such biplots, multiple gene markers can be displayed at once so that the closer a marker is represented to a given cell, the more specific to them it is. This property is illustrated for two independent datasets corresponding to human pancreatic cells 246 and mouse airway epithelial cells [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF] , where a simultaneous projection of prototypical markers allows to rapidly identify the cell identity of the corresponding regions (Figure 456789101112131415161718).

Second, Cell-ID provides functional enrichment analysis of the gene signatures obtained for each cell in a dataset, using Gene Ontology terms and pathway annotation databases such as KEGG, 

SCALABILITY AND OTHER TECHNICAL ASPECTS

To meet the requirements of ever-growing single-cell datasets, much effort has been deployed to make CellID as scalable as possible. To evaluate Cell-ID scalability to massive single-cell RNAseq dataset analysis, we evaluated its time and memory consumption for different input sizes and benchmarked them against the state-of-the-art methods previously considered in our study (Sections 4.4, 4.5, 4.6). To that aim, we performed large-scale cell mapping and label transfer tasks between different reference-to-query datasets using single-cell RNA-seq data from the Tabula Muris atlas (see Section 4.6). All 20 tissues and organs were considered here. For the analysis, we first randomly subset an increasing number of cells (200, 500, 1000, 2000, 5000, 10000, 20000, and 50000 cells) from the 10X and -independently-from the Smart-seq datasets.

A sampling of the reference dataset was restricted to the ten most abundant cell types from 10X.

We fixed the dataset to have ten different subpopulations since the number of subpopulations in the reference dataset impacts significantly computation time for some methods such as scID or SingleR. We then evaluated the computation time and the total memory allocation of a label transfer task as a function of the number of cells in the query dataset. Thus, label transfer from a fixed reference subset of 5000 cells from the SmartSeq dataset was performed against eight different query datasets of increasing size, corresponding to the eight subsets from the 10X Genomics dataset previously described (Figure 45678910111213141516171819). Analogously, we evaluated the computation time and the total memory allocation of label transfer tasks as a function of the number of cells in the reference data. Here, label transfer from 8 different reference data of increasing size (corresponding to the eight subsets from the Smart-seq dataset previously described) against a fixed query subset of 5000 cells from the 10X Genomics dataset (Figure

4-19 C-D).

Overall, Cell-ID computational time behaved in a comparable way to other state-ofthe-art methods, yet with slightly higher memory consumption. The huge discrepancies between methods are often explained by the fact that some methods perform feature selection as default and reduce the number of genes and, by extension, the runtime and memory consumption by 5 to 10 fold. Note that CellID can also rely on HVGs and reduce the computational time and memory consumption, but for consistency with other sections, most of the genes were also kept.The previous benchmark is based on the cell matching and label transfer between a pair of datasets.

In the case of Cell-ID, such process involves (i) the MCA dimensionality reduction and per-cell gene signature extraction for each data, and (ii) cell-to-cell matching between datasets, based on hypergeometric tests on the pre-extracted per-cell gene signatures. From a computational point of view, each of such evaluations constitutes a fully independent job, and thus they can be readily parallelized in a multi-core and multi-node computing cluster. Cell-ID thus allows the creation of reference libraries of individual cell's gene signatures from massive collections of single-cell RNAseq datasets, enabling efficient large-scale cell-to-cell matching and label transfer across sets. I was given a chance to be part of the momentum by developing a unique method on my own and, in parallel, analyze diverse single-cell dataset. CellID development was concluded in creating a flexible and statistically robust tool to tackle significant needs in single-cell data analysis, even though, just like any methods, flows exist. However, CellID still has more than one trick up its sleeve with many possibilities of features extension and improvements that could be highly beneficial to the scientific community.

On a second note, thanks to these four years of research focused on methodology, I came to deeply understand the many pitfalls of single-cell data analysis and the statistical foundation of the diverse methods addressing these shortcomings. From mundane but essential topics like hardware requirement, the choice of experimental design to the software for robust statistical analysis and inference of biological interpretation, a single-cell experiment is a sophisticated ensemble where each element must be carefully orchestrated and chained together using the initial hypothesis as guiding principle.

Finally, as I write, the promise of an omics profile at cell resolution is now fulfilled 259 . Robust cell atlases are established; many insights were found in different fields, and technical challenges associated with bioinformatical analysis were addressed with variable success. However, singlecell seems to have a great future ahead with extensive usage in the clinical environment and many exciting prospects and new challenges arising with the advent of multimodal sequencing.

In this chapter, I will first briefly discuss the results obtained, including the limitations. I will then discuss further development that can be possibly brought to CellID to enhance its capabilities and bypass the current limitations. I will also give feedback and criticism about specific aspects of single-cell methodology and how CellID position itself in these contexts. Last, I will describe the prospects and further challenges of single-cell for the upcoming years and a general direction to address these questions.

DISCUSSION ON CELLID

The robust identification of cell identity is a crucial step in a single-cell experiment. Through the result section, we demonstrated the ability of CellID to extract molecular signatures that encapsulate the key biological information necessary to characterize it. By linking the signature extraction step on top of MCA dimensional reduction, CellID can partially cope with technical issues single-cell data are renowned for, such as sparsity. We demonstrated such properties using simulated datasets and showing the ability of CellID to recover genes that were potentially affected by dropout events.

The utility of identity cards generated by CellID has been demonstrated through a meticulous benchmark on several real case scenarios. First of all, we showed that CellID cell signatures could be used against pre-existing curated cell-type signatures that exist in public databases by successfully identifying the different subpopulations in immune cell types. Not only a remarkable accuracy was obtained compared to other states of the art methods. CellID achieved a higher resolution of cell characterization by effectively assigning the different developmental stages in the small subpopulation of progenitor cells that would have been very difficult to observe with a clustering approach and was not detected by other states of the art prior signatures based classifiers. However, it is important to emphasize that the quality of the prediction based on prior markers is highly correlated with the quality of the signatures, and when possible, it is advised to get these markers lists from different sources to obtain a robust consensus.

In a second step, we challenged CellID in a more label transferring (section 1.2.4.2.2) oriented approach where cell type in a query dataset is predicted using a reference dataset and compared our results with ten other popular single-cell classifiers. To that aim, we performed several scenarios. A classic label transferring between the same tissue of origin has been conducted using pancreatic and airway epithelium datasets, and we particularly emphasized results on the recognition of rare cell types. The matching of signatures between datasets was highly effective as CellID showed predictions accuracy comparable or higher to other methods and was especially efficient in recognizing rare cell types. We also investigated the capability of CellID to identify cells using two datasets of different tissues. Notably, by predicting cells in intestine epithelium using reference airway epithelium dataset, we could identify the three rare cell types that were in common and labeled most remaining cells as unassigned, whereas most of the other methods had difficulty identifying the cell populations in common, but also rejecting the classification of cells that was not described in the reference. This high specificity of CellID signatures is also very convenient to uncover cells putatively belonging to a given cell type as we unveiled the presence of Schwann cells in pancreatic and SCC cells in olfactory epithelium datasets that were not originally described by the authors. We used publicly available functional pathways to enrich such putative cells and highlighted the important biological functions these cells are involved in to 106 support such discovery. Remarkably, the uncovered functional terms were in accordance with literature describing those cells, highlighting the fact that the CellID identity cards can encapsulate not only the nature of the cell but also the functional aspect. This last aspect is especially important in a clinical setting in order to investigate not only the cell types that are targeted by a disease but also which functional pathways are perturbed.

Finally, we challenged our approach in a multi-omics context to see if the signatures extracted from scRNAseq can get a corresponding signal in scATACseq data. We did so using two atlases to also test for the scalability of our approach. Outstandingly, our approach got the best performance, with a remarkable improvement as compared to all methods evaluated, while the time spent on the classification remained relatively low.

Overall, our approach was robust in several scenarios, and we demonstrated the ability of CellID to efficiently capture biologically relevant cell heterogeneity at the fine transcriptional resolution of the cell. Compared to other methods using kNN based integration, machine learning models, and complex metrics, the concept of per-cell gene signatures provided by CellID allows a much more intuitive insight onto the important genes/modules that are driving the heterogeneity and characterizing the cell types/states. Notably, we believe that having a comprehensive list of genes is more flexible also, as different sets of signatures extracted from different datasets can be combined easily and used in conjunction in order to classify cells in a query dataset. In contrast, it is challenging, for instance, to combine two different machine learning classifiers that were trained on a different dataset. In the same manner, integration-based methods such as Seurat must first merge all the reference datasets, reperform every data cleaning, integration step to be used in label transfer. Integration based methods are also more tedious as there is a constant need of having a reference dataset at hand, whereas signatures are much more portable and offer much more ease of usage.

However, one major limitation of CellID is that the extracted signatures encapsulate genes that are cells specific according to the general heterogeneity of the data, just like in differential expression analysis. For instance, when extracting cellular signatures from a single-cell data solely containing one cell type, for example, B-cells, the individual cell signatures will likely not contain typical B-cells markers such as CD79A or VPREB3 as all the cells likely express those markers homogeneously and hence the latter will not be specific to a particular cell. Instead, it will prioritize the subtle differences that exist inside the B cell subpopulation. It is thus important when creating reference gene signatures with CellID to keep in mind the general structure and heterogeneity of the data. Gene signatures of Basal cells extracted from a Cell atlas composed of every tissue will likely differ from those extracted specifically from a sample only including airway epithelial tissue, which in turn will partly differ from signatures extracted from pure FACSsorted basal cells.

Another criticism that can be brought to CellID resides in the selection of some hyperparameters.

In all fairness, CellID hyperparameters are relatively simple compared to its peers, as they mainly consist of (i) the number of dimensions of the MCA to be taken into account to calculate the distances between genes and cells, and (ii) the number n of top genes to select in the definition of the per-cell gene signatures. In contrast, the popular Seurat method has many parameters, with notably three distinct k nearest neighbor parameters for respectively finding, filtering, and scoring the anchors, the number of reduced dimensions to retain, the number of features for anchor filtering, and whether to perform L2 penalized normalization. The hyperparameters become even more numerous and less intuitive with a machine learning approach, such as SingleCellNet, which has eight different parameters. In our study, default parameters were used throughout the benchmarks evaluated to prevent as much as possible overfitting. Nonetheless, we acknowledge that by slightly changing hyperparameter settings, results could have been improved in different scenarios, and thus advise users to explore different settings and compare the results before deriving conclusions.

As for CellID, we set the default parameter of the number of MCA components to retain as 50, the number of top genes to retain for the gene signatures as 200, and the p-value threshold for the significance at 0.01. Analogous to the PCA approach, there is no consensus on the optimal way for choosing the number of principal components to retain for downstream analysis. We settled 50 components by default as they often allowed a good tradeoff between filtering technical noise and keeping most of the subtle biological signals in a broad range of datasets. Of course, depending on the dataset's complexity, this number of components could be increased or decreased significantly and can typically range from 10 to 100. The number of genes chosen for the signatures can be very important. Theoretically, as the genes are ranked from the most specific to the less specific for the cell, taking a low number of genes for the signatures increases the specificity at the cost of missing genes relevant to a lower level resolution or general structure.

For instance, if we extract signatures from B cells from a PBMC dataset, the first top 50 genes will likely be markers related to the substructure of B cell types such as memory B cells or naïve B cells, and genes that are common to all B cells such as CD79A or VPREB3 would be observed further down in the specificity ranking around the 50~200 th position out of the 200000 genes that single-cell data usually outputs. In the end, the number of genes to be kept is a matter of tradeoff between specificity and sensitivity. Based on our personal experience, we defaulted the number of 200 genes per signatures as it offered a good compromise.

Similarly, the p-value threshold for rejecting or validating a cell classification is often a matter of perspective and trade-off between again sensitivity and specificity. The default parameter of 0.01 was set as it corresponds to the most standard p-value threshold used in biology, but most often, a significant enrichment will have a p-value much lower than 0.01. Again, we consider these default parameters robust to most situations and are much more intuitive than those proposed in other states of the art methods.

Despite some cons, we believe that the CellID package can offer a robust alternative method for single-cell heterogeneity exploration and reference gene signature building, as it deals efficiently with all the enumerated challenges in chapter 1.4. Its ability to extract biologically relevant signatures from cells or groups of cells offers flexibility to deal with the challenge of the varied resolution of single-cell data, capturing in turns the genes driving global structures or ones specific to more faint biological signals that are present in a very few cells.

IMPROVEMENT OF CELLID

Despite the four long years spent on the development of CellID and the many improvements and many fine-tuning we have brought, the approach we proposed can still be extended in many exciting ways. Here we describe some of the notable improvements that can be brought to CellID with further development.

Visualization

The sheer strength of MCA resides in its capability of representing both cells and genes in the same space while being very similar to PCA. We illustrate these properties at the end of the result section by plotting MCA cell coordinates and some of the essential genes simultaneously, allowing the user to get an idea of a marker's specificity by looking at the distance between cells and genes. However, just like PCA, MCA is not as intuitive as 2-dimensional embeddings such as UMAP and t-SNE. As most of the time, rather than using the raw expression matrix as input, principal components are directly plugged into the UMAP and t-SNE algorithm. It is also readily possible to use the MCA coordinates with a 2-dimensional embeddings algorithm. In that case, both cell and gene coordinates are merged so that the embeddings represent both cells and genes. We tested this approach in an exploratory manner against several datasets using UMAP and t-SNE (Figure 5-1). The results were very variable and too unstable (hyperparameter dependent) for safe usage.

Some datasets yielded a fair representation of both cells and genes characterized by a clear separation of different subpopulations and the cell type defining genes overlapping to their corresponding cell clusters. In other situations, the cell clusters were messier than the conventional t-SNE and UMAP, and most importantly, all genes and cells would be completely separated from each other, with genes forming a cluster of its own. We believe that this instability can be corrected by tweaking the initial k neighborhood search of t-SNE and UMAP, especially for genes. We emphasize that these kinds of representation would be potent, especially in trajectory analysis, where it would be possible to map genes participating in the differentiation process along the different branches. In exploratory settings, we have tried to use the diffusion map in conjunction with MCA coordinates on HSC (Hematopoietic Stem Cells) dataset and observed a very insightful representation of the manifold with genes ordered from stem cells genes to more mature states defining genes.

Fuzzy encoding of the data

MCA's main bottleneck resides in the fact that it can only be performed on qualitative or fuzzy coded data, which is not the case for single-cell omics. To bypass this requirement, CellID uses a simple linear scaling from 0 to 1 using the maximum and the minimum expression of each gene.

We believe that this approach preserves most faithfully the original data, and the obtained cell coordinates are close to ones obtained by PCA. However, as highlighted in the many different single-cell data analysis steps, linear methods, especially simplistic ones, have difficulty tackling single-cell data's sparse nature. It would be thus interesting to consider alternative fuzzy-coding or discretization approaches. One approach that could be tested is mixture models. Using mixture models, each gene expression could be partitioned into two or more bins by fitting multiple Gaussian curves or other models. The probability of belonging in a specific model could be used as the fuzzy value for MCA. I believe that such an approach would be much less prone to be heavily impacted by outliers and overdispersion than a linear scaling of the data. To that aim, R packages such as Mclust with functions enabling finite Gaussian mixture models can be incorporated to extend CellID discretization options. Alternatively, we can also think about fitting a logistic function for each gene expression to constrain the value between zero and one. That approach could enhance the data by removing the current linear aspect used in our scaling, which is not optimal for overdispersed data. One more aspect of fuzzy encoding of the data that can be further explored is using both the expression and non-expression bins. Right now, the signatures are constructed using only the "presence of expression" bin of the fuzzy coded data. However, CellID does calculate the coordinates also for the "absence of expression" bin for each gene.

When constructing signatures with both bins of the fuzzy coded data, it was rare to find an "absence of expression" bin in the top 500 genes out of the more or less 20000. For that reason, the "absence of expression" bin was removed for the sake of computational scalability and the general intuitiveness of the signatures. However, the "absence of expression" bins can find some usage, especially in functional terms enrichment, where genes involved in a pathway can be on or off.

Enrichment algorithm

Gene set analysis is a well-established analysis in bioinformatics for decades. Manual inspection of the genes typically allows the study of one gene or a few genes at a time and very quickly, computational approaches are needed to inspect complex biological modules that involve a huge number of genes, and many tools to perform enrichment analysis has been developed with the advent of NGS. A comprehensive classification and catalog of these methods have been described by Huang et al. 260 and informs us about each approach's diversity CellID is based on the simplest yet highly used approach: the hypergeometric/fisher-exact test.

By calculating the overlap of two gene signatures and assessing the overrepresentation of the genes relative to the universe, a p-value can be derived from the hypergeometric distribution. The test is applied as many times as cells in the data multiplied by the number of tested signatures, which can be very time-consuming. Fortunately, the hypergeometric function is very scalable. The enrichment of hundreds of thousands of cells against thousands of geneset can be completed in under 3 minutes without any parallelization in CellID.

Interestingly, the CellID packages also comprise enrichment analysis using the GSEA algorithm developed by the Broad Institute 261 . In its early days of development, CellID used the fgsea 262 R package to perform the enrichment analysis. The main advantage of GSEA resides in the fact that it takes advantage of the whole gene ranking rather than signatures and adopts a "no cutoff" strategy where there is no need to subset the initial list of genes in the expression matrix.

Moreover, GSEA provides two different metrics, which are the p-values and the enrichment score.

By investigating if the enrichment score was negative or positive, it is possible to capture the upregulated gene set but also those that were significantly downregulated. In contrast, the hypergeometric approach only gives upregulated gene sets and all neutral or down regulated gene set will have a p-value of zero and will not be discernable.

Although not shown in this manuscript, the GSEA version of CellID performed fairly well in detecting cell types and functional enrichment compared to other states of the art methods.

However, the hypergeometric approach overall outperformed the GSEA. These discrepancies can be explained by the fact that by considering the whole ranking, a lot of very inconsistently expressed low-quality or biologically irrelevant housekeeping genes are also taken into account in the calculation of the enrichment. This is not the case in the hypergeometric test, which is based on signatures that are most likely composed of genes that are robustly expressed in the cell.

Ultimately, the main bottleneck of GSEA resides in its very bad computational performance as GSEA calculates p-value using permutations. The p-value is limited by the number of permutations performed. For instance, the maximum p-value obtained with 1000 permutations is 0.001, which falls short in terms of significance resolution. On a single-core machine, we experienced a dataset of one hundred thousand cells with a runtime of 3 days to enrich 1000 functional pathways, which is hardly acceptable in practical terms.

GSEA type of analysis is very difficult to set up, and the over-representation analysis with the hypergeometric test performs better. In that scope, it would be interesting to further investigate more complex ORA. Modular enrichment analysis implemented in algorithms such as Lego 263 can improve the implemented hypergeometric methods by incorporating prior gene network information as a weight for enrichment.

SVD algorithm

One of the improvements CellID would need is related to its computational efficiency. As a single experiment can reach cell counts as high as one hundred thousand, scalability can be the major problem. As CellID discretize the data in two different bins at the initial steps, the memory usage is also doubled. Moreover, this discretization makes sparse matrices impossible since zeros in the expression bin are translated as one in the non-expression bin. This setup makes CellID highly memory demanding and makes large data analysis difficult without consequent hardware to support the memory load. The peak of computational runtime and memory usage is obtained during the MCA calculation part. Other steps, such as gene ranking calculations and hypergeometric tests, are fairly optimized and run fast with very low memory consumption. To perform approximate SVD for MCA coordinates calculation, CellID uses the irlba r package based on Lanczos bidiagonalization. Irlba method is very popular and has been used by many singlecell methods such as Seurat 138 , Scater 264 , and Harmony 130 , due to its reasonably fast runtime and approximation accuracy. However, it would be beneficial to propose more efficient SVD implementations to enable the analysis of large-scale data. For instance, at the cost of less accuracy than irlba, we could use random singular value decomposition methods proposed by Halko et al. . 265 or Li et al 266 . Based on PCA methods benchmark 142 , the use of RSVD would approximatively speed up the computational time by two folds while decreasing the memory consumption by 30 percent. By extension of the RSVD, it would be highly helpful to implement an online version of MCA (as described in section 1.2.3.1) that does not load the whole matrix into memory but rather performs operations chunk by chunk from the hard disk. Online (R)SVD methods are already described by the Online PCA Julia package and can certainly be adapted for MCA. Theoretically, the use of online SVD would allow MCA computation, the extraction of signatures, and enrichment analysis against 8000 functional pathways on a dataset with 1 million cells with a single machine of 64Gb of ram in under two hours. Such implementations would allow CellID to perform on large cell atlases on reasonable hardware.

Iterative clustering

One other additional feature that we could think of with CellID is iterative unsupervised clustering or reclustering through self-projection, as described in the clustering section within the SCCAF 183 method. Instead of training machine learning classifiers using generalized linear regression as SCCAF did, CellID could perform a similar task by taking advantage of cell-type predictions through signatures enrichment. The main idea would be to execute first an initial clustering step with common clustering methods such as Louvain clustering, just like SCCAF. In a second step, gene signatures are extracted from the clusters using CellID. The extracted signatures are then tested against each cell signatures of the data, and a reclustering is performed by assigning the signatures with the highest p-value as a cluster of the cells. Cluster gene signatures would then be tested against each other in a pairwise manner, and pairs of clusters with high enrichment would be merged, as they reflect over clustering. This process may be iterated until equilibrium is reached, and hence, robust clustering could be achieved. Compared to SCCAF, this approach should be much faster and more robust with rare cell types for which training a classifier by splitting the dataset becomes complicated.

A GENERAL COMMENT ON SINGLE-CELL DATA ANALYSIS

Single-cell data analysis is a very powerful tool to unveil a complex biological mechanism and subtle cell states. However, analyzing the data correctly to optimally extract information can be very difficult even for a seasoned bioinformatician with Bulk RNA seq or microarray experience.

Even though my thesis's main effort was focused on the development of CellID, there was a constant necessity to update my knowledge about other tools and the general single-cell workflow. With more than a hundred of single-cell data analyzed and several experiences teaching single-cell analysis, I had the chance to stumble into most of the pitfalls and get feedback from others. This section will describe general recommendations for single-cell data analysis from a personal perspective by assessing the hidden bottlenecks and quirks found in single-cell data analysis. Moreover, I will briefly talk about how CellID was affected by some of these issues and how it can interact with other methods.

A word about hardware

To begin analyzing single-cell datasets, the first requirement is to have a decent machine to perform the analysis. As obvious as it may seem, one of the widely disregarded aspects in the single-cell study is hardware requirements. Indeed, many single-cell enthusiasts beginning their first experiment consider thoroughly the bench equipment to acquire the data but often omit computational resources to analyze the data. While most downstream analysis of Bulk RNA seq can be completed without any problem on a regular laptop, performing single-cell analysis is nowadays barely achievable using a high-end laptop, and the possibility of analysis would become quickly limited. This mundane yet important problem often prevents to make optimal use of the hard-obtained data.

The most important part of the hardware to consider would be RAM in general and not the CPU.

Indeed, most of the single-cell routine analysis is done on a single core in R and Python, and only certain functions can be parallelized with most of the time minor speed up. Of course, a high number of CPU cores might come in handy when performing the same workflow on several samples, and a next-generation programming language such as Julia could make more efficient use of the core counts. However, most of the time, the main bottleneck does not reside in the runtime but rather peak memory consumption. RAM's over-usage halts the running function and ultimately causes a crush that wipes out all the analysis sessions. In the best of the world, when working with data containing around 50000 cells, it is advised to work on a dedicated server with more than 128~256Gb of RAM. The recent improvement in the analysis algorithm enables us to perform fairly complex single-cell analysis with a personal desktop of 64Gb. For instance, all the analysis performed with CellID in the results section (Figure 5-2)was possible on such a machine.
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One alternative is to use recently developed cloud-based approaches when hardware capabilities are limited as they are fast and cost-efficient. However, a cloud-based platform can become quickly limiting in terms of the analysis that can be performed as they lack the modularity that a personal server/machine can offer. Performing routine analyses such as dimensionality reduction and clustering are perfectly fine, but tailoring the analysis to the experiment's specificity becomes much more complicated without standalone packages and software. Approximate single-cell data analysis capabilities for different levels of hardware. The indicated numbers are an order of magnitudes for basic single-cell workflows and do not consider the incorporation of computationally expensive tasks or situations.

To conclude, a good design of the experiment in single-cell experiments must consider the bench equipment to capture the data but also the hardware/computational capabilities to fully extract the information from the generated data.

Programming language: Python or R?

One of the questions that can arise while browsing the list of tools for single-cell data analysis is the choice of programming language, which is mostly either R or Python. At first sight, the decision seems purely technical and depends on personal skills and preferences, but upon closer inspection, these two-programming language responds to different needs.

R packages are abundant in number. Currently (September 2020), 430 R packages against 250

Python packages are listed in scRNA tools. Some of the major packages, such as dynverse for trajectory analysis, are exclusively available in R. In contrast, most of the Python packages have an alternative in R. Additionally, while adding an extra layer of coding, the reticulate R package allows exporting python functions into R. In contrast, there is no way to export R functions to python in a seemingly easy way. One major argument in favor of R is the comprehensive collection of data handling packages (tidyverse). Compared to python alternatives like pandas, many users prefer the ease of use and R's intuitive grammar. Moreover, R has a much better visualization capability overall with ggplot2, which is essential for a field like single-cell that heavily relies on visual inspection of the data. CellID was developed in R with those advantages in mind.

However, Python is also an interesting alternative and is gaining momentum in the single-cell field. The main argument for choosing Python over R is undeniably for computational efficiency.

Python native code is much more optimized than R, and classes can be handled with more flexibility. Experienced Python programmers will likely have much more ease to optimize the code to fit their needs than seasoned R programmers in R. When dealing with large data with limited computational resources, Python packages such as SCANPY and BigScale2 can be more suitable than R frameworks.

That said, this divergence does not, of course, point out a clear winner, and both resources are undeniably invaluable. From a personal perspective, it is important to understand both as it can broaden the possibilities in terms of analysis. However, shortly, it is highly likely that other programming languages will contribute significantly to single-cell analysis. As I am writing this manuscript, more than 90% of single-cell software is written in Python or R. Nevertheless, a programming language such as Julia could propose much-needed enhancements over Python and R. Indeed, Julia takes the best of both worlds since it is more efficient than Python computational wise and as intuitive as R in terms of coding grammar. Moreover, comprehensive visualization tools are available and efficient parallelization of linear algebra is implemented, which are invaluable resources in single-cell. The combination of computational efficiency and the general ease of use will certainly appeal to computational scientists and biologists. Thus, it is expected that the Julia programming language will certainly be a state-of-the-art language for scientific calculations soon and will also gain popularity in single-cell.

Tidying single-cell analysis with single-cell framework/object

The list of standalone software and packages concerning particular aspects of single-cell analysis seems unexhaustive. The possibility of custom analysis combining several of these methods is countless. It can be very quickly daunting to organize a comprehensive workflow as different tools give different output formats, and compatibility is not always guaranteed. Moreover, apart from the expression matrix, many results, such as dimensionality reduction coordinates and cell clusters, are generated throughout the analysis. Additionally, some single-cell experiment sequence concurrently several omics and generate more than one matrices.

To organize these data in a tidy manner, a complex object/class that can centralize the analysis and correctly indexes the analysis results with the raw data are necessary. These would be the Seurat object or SingleCellExperiment object in R and SCANPY object for Python packages.

High-level objects/classes greatly simplify the workflow by performing functions on that single object for all the analysis and additionally makes it easy to share the object as they encapsulate all the intermediate results (Figure 5-3). Adapting existing tools to be used in conjunction with these objects is, most of the time, fairly easy, and remarkably, recently developed packages often make an effort to provide wrappers to their functions so that they can be used on the go with existing frameworks.

Figure 5-3 Overview of SingleCellExperiment object

The Bioconductor object conveniently stores the different datatypes generated by single-cell experiment analyses by organizing them into different slots and connecting them like an SQL database. For instance, the "Assay" slot contains the raw, normalized, transformed expression matrices. The colData slot encapsulates metadata concerning the cells, such as the one concerning the design of the experiment (condition, timepoints, tissue) or those that have been generated during the analysis (cluster, cell type prediction, mitochondrial genes rate). All the dimension reduction performed is also stored in a specific slot. Such an object allows a comprehensive organization of the numerous data and facilitates the analysis considerably. Taken from "Orchestrating single-cell analysis with bioconductor" [START_REF] Amezquita | Orchestrating single-cell analysis with Bioconductor[END_REF] On a secondary note, all of these classes are accompanied by visualization utilities that are readily much more convenient for figure generations than manually performing these tasks with general-purpose visualization libraries of said programming language. From a personal perspective, both SingleCellExperiment and Seurat are great classes that enhance the general workflow and are essential to ensure reproducibility. In terms of structure, both objects are highly similar. However, in practical terms, some notable differences can be observed between the two objects. SingleCellExperiment is much more modular by the simple fact that it is affiliated to the The conversion of one single-cell object to another is implemented in the Seurat workflow facilitating the integration of different tools and data sharing between platform.

Conversely, Seurat has less direct compatibility with other standalone packages and is thus less flexible than SingleCellExperiment. Overall, Seurat is the best choice for beginners, and

SingleCellExperiment is more fit for power users. With all these things considered, most singlecell objects can be easily converted from one to another, as shown in Figure 5-4. Following this philosophy of well-organized analyses, CellID has been developed to be compatible with both frameworks to facilitate its integration into an existing workflow, as a posteriori, different platforms generally show a preference for a unique framework.

Even though quite optimized, CellID is not the most scalable method. In the case of label transferring, the newly created sciBet 198 would be much faster with decent accuracy. In the case of pathway analysis, AUCell would also be faster even though the ranking system is very rough.

However, CellID occupies a very peculiar place in the landscape of single-cell downstream analysis and is very flexible and versatile in terms of functionality and can be easily part of a standard workflow.

Visualization

Visualization is an inherent part of single-cell data analysis, from the visualization of gene expression level with violin plot or heatmaps, low dimensional representation of cells, to gene network graphs. Most single-cell publications rely heavily on graphical representations of the data.

As stated above, major single-cell frameworks offer many possibilities for visualization. However, some software such as iSEE 267 , SPRING 268 The central piece of these interactive visualization suits is often the two-dimensional embeddings of cells presented in Section 2.3.3. These visual representations, such as t-SNE and UMAP, has greatly increased over a few years. Other popular representations include, amongst others, scvis 158 , Ivis 160 , SWNE 159 , PAGA [START_REF] Wolf | PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF] , Force Atlas 275 , Poincaré maps 157 , and, has been widely used on single-cell datasets to intuitively make sense of the overall heterogeneity of the dataset.

Inevitably, there have been many discussions about the most optimal two-dimensional visualization and how to efficiently use the hyperparameters that come with them 155,276 .

Like all methods, the key to choosing a good visualization is to understand the underlying algorithm and their respective strength. Different visualization often serves different purposes and hence performs optimally with certain datasets. For instance, SWNE proposes, like MCA, a representation of both genes and cells, scVis gives loglikelihood metrics to inform the user about the quality of the embedding for each cell, Poincaré maps and PAGA are well suited for trajectory inference, and ivis is designed to facilitate the integration of new data point on top of existing embeddings. However, one general rule is to use these representations to guide the potential hypotheses and orient the downstream analysis according to what interesting element has been highlighted. It is generally considered as bad practice to use these non-linear (black-box) methods cell coordinates to perform downstream analyses or to directly draw conclusions from the visual inspection without any statistical methods backing it up. In contrast, MCA is a linear dimensionality reduction just like PCA, and its coordinates can thus be used in downstream analysis. However, no conclusion should be drawn from CellID peculiar visualization capability, as presented in Section 4.7.

Sample integration

One of the most challenging aspects of single-cell data analysis is the sample integration and the correction of batch effects that come along with it. Nowadays, most serious single-cell projects involve several samples and hence several rounds of sequencing. This multiplication of samples is often due to the complex design of experiments involving different conditions, time points, and many replicates. If we take, for example, one of the latest research on COVID19 using single-cell to study the response of immune cells [START_REF] Guo | Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[END_REF] ; we can observe that a public dataset of healthy PBMC with more than 60000 cells is used as a control while the authors generated data with two COVID19 patients on three different stages of the disease (day1, day 5, day 7) making a total of 17000 cells for the patient. The used platform for single-cell isolation and sequencing differs from patient and control, and thus a batch effect removal is mandatory for downstream analysis.

However, it becomes very difficult with all the combinations of the condition to perform batch effect correction, and the risk of over correcting the data becomes non-neglectable. Thus, removing the difference of interest between patient and control, or different time points is extremely high. When I tested different integration approaches with their default parameter on that particular COVID19 dataset to reproduce the results as an exploratory analysis. I was surprised to see that, in most cases, the monocyte subpopulation described in the results, with a pretty distinct transcript expression pattern and expression of genes involved in the inflammatory response, has been merged with common healthy monocytes and, most importantly, on methods that proposed a corrected expression matrix, the markers characterizing the perturbed monocyte population was removed completely from the patient or added in the healthy control. Hence, the particular cell state information proper to monocyte belonging to patients has completely vanished.

With that example in mind, integration methods must be used very carefully. Most of these integration methods, by default, are excellent to map cell type but have much more difficulty mapping cell states correctly as they were designed to enhance benchmark metrics that value optimal mixtures of the dataset in the context of global structure (distinct cell type) and are hence not optimized to detect the more subtle cell states. This is especially true when a particular state is not present in one sample but is in the other, like in most real-case scenarios with patient versus control. The changes provoked by the disease in terms of transcripts expression do not give a strong signal as the cells' global structure. Hence, these biologically relevant changes are regarded as part of the batch effect and corrected by the algorithm. For that very reason, it is not recommended to perform differential expression analysis on corrected expression matrices provided by some integration methods such as MNN and Seurat, and it is rather suggested to perform it on the initial matrix while taking into account the different conditions. In that scope, I strongly recommend tuning down some of the hyperparameter set by default in integration methods to relax the correction and try to keep the biologically relevant signals. Notably, as most of the methods are based on MNN/SNN, choosing a smaller k in the nearest neighbor search can prevent overcorrection. Alternatively, some methods, such as Augur 277 , helps the user prioritize cell-types affected by a specific condition by ranking the different cell types by assessing the magnitude of differences between conditions within cell types.

CellID is not an integration method per se, even though, just like PCA, new data points can be projected using the cell and gene coordinates, and integration capabilities taking advantage of cell signatures can certainly be implemented. Alternatively, it is also possible to detect components that are highly affected by batch effects, using the Wilcoxon test on the cell coordinates between samples, and later remove those components from the analysis. However, at this stage, such capabilities are not tested nor implemented.

The question of whether to use integration methods in conjunction with CellID is yet to be assessed. However, based on personal experience, It is possible to consider using the corrected expression matrix for broad cell type predictions, using the integrated dataset as a query.

Nonetheless, It is not recommended to perform signatures extraction on integrated data to construct reference signatures. Most importantly, functional enrichment and subtle cell state 123 investigation should be performed on the directly merged data rather than merged by integration methods to avoid any important signal correction.

For instance, taking the example of COVID patient data again, there was no need with CellID to integrate the data to identify the perturbed cell subpopulations, and a quick functional analysis of the data quickly pinpointed the subpopulations with terms that are consistent with the paper conclusion such as inflammatory response, or NF-KappaB signaling (Figure 5-5).

Figure 5-5 Exploratory analysis of Guo et al. COVID data with CellID

Patient one and control datasets were merged without integration methods, and hence clear batch effect can be seen on the UMAP plot in (A, B) with the different cell types (annotated individually beforehand) not aligning with each other. However, using the Hallmark functional pathways, CellID was able to identify the subpopulation of interest with a strong immune response, described by the authors.

PROSPECTS OF SINGLE-CELL TECHNOLOGIES

Now that the sequencing technology has been democratized and the different methods to tackle single-cell data are well established, one might think that single-cell exponential growth might come to a halt. However, the advent of single-cell seems to be only at its first stage as its democratization has been achieved and becomes widely used in a clinical context. Moreover, technology-wise speaking, single-cell resolution is entering a new era driven by the concurrent sequencing of multiple modalities, further expanding its applications and capabilities in terms of analyses. Here, we describe such prospects and discuss the relevancy of our work in such a context.

Single-cell in precision and personalized medicine

As described in section 1.1.4.4, single-cell is now a major actor in the clinical context. The huge cost reduction and throughput increase allowed the technology's democratization and can now be integrated into hospitals and used to profile patients and tailor the treatment according to the results. This application is especially relevant in personalized cancer treatment and rare genetic diseases. In cancerology, tumor contains very heterogeneous cell populations from one patient to another but also within the patient. This diversity makes treatment selection very challenging.

In general, bulk analysis of cells was used as a primary diagnostic tool to orient the treatment.

But again, by averaging the signal of all cells in a sample, rare cell subpopulations that are resistant to therapy and cause relapses are completely missed. In that context, the application of single-cell sequencing in cancer can improve diagnostics, prognostics, targeted therapy, early detection, and noninvasive monitoring, as shown in Figure 56. Notably, single-cell can identify rare tumor tissue variants that have the potential to drive drug resistance or serve as biomarkers of therapeutic success and ultimately advancing cancer genomics 278 . We believe that our work fits very well in that scope as it enables the exploration of tumor heterogeneity both in terms of structure and mechnanisms. By constructing reference gene signatures of tumor cells, it might be possible to better identify the subtypes of cancer, its mechanism, and ultimately help the process of treatment selection.
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Single-cell multimodal omics

Single-cell sequencing was elected method of the year by the nature editorial board in 2013 280 .

The title seems well deserved, as, in the following years, single-cell heavily impacted and revolutionized the NGS scene by unveiling unfathomed cellular heterogeneity and its implications in complex biological mechanisms. Six years later, single-cell was selected as the year's method for 2019 for a very particular expansion: multimodal omics. As described previously, while singlecell sequencing is in the majority performed on the transcriptome, it can also be performed on the genome to detect CNV or on epigenome to inspect chromatin accessibility or methylation level.

These different omics can be sequenced independently and then integrated using recently methylome achieved by scTrio 287,288 . While these protocols are not yet democratized, companies such as 10X Genomics has begun commercializing toolkits to perform scRNAseq and ATACseq concurrently on the same cells. We can expect that in the upcoming years, the field of single-cell genomics will gradually shift from the simple transcriptional snapshot to multimodal single-cell sequencing. For instance, with technologies like scTrio, it would likely be possible to investigate the effect of a particular variant on an exome on the actual transcriptional expression of the gene or its chromatin accessibility and have the full picture of genotype, phenotype, and the underlying mechanisms. The joint profiling of omics will be packed with interesting applications that could not be performed with transcripts information alone (Figure 567). When analyzed individually, these single-cell omics data already delivers an astounding amount of unfathomed information.

However, the information gathered by these multimodal sequencing technologies is not only the sum of its parts 289 . The real interest resides in linking the different modalities and searching for cross omics patterns to unveil subtle heterogeneity and complex biological mechanisms. Notably, the transcriptomic and epigenetic combination will help disentangle complex gene regulatory network and cell to cell communications driving cellular functions by revealing subtle cell states and their characterizing transcriptional factors and enhancer modules. From another perspective, the combination of genome and transcriptome will allow the link between genotype and phenotype, which can be extremely useful in rare genetic diseases caused by variants and can mark a strong step towards precision medicine.

Of course, linking such data would need powerful bioinformatics tools to disentangle the complexity behind it and fully harvest meaningful biological insight. The many challenges proper to single-cell data, such as the data's overdispersion, high dimensionality, computational scalability, and technical noise across studies and technologies, must be properly tackled on the multiple layers of omics. On a second note, this data multiplication will accentuate the need for a good data management system and big data capabilities to easily access and analyze the data in an optimal way. Modern tools such as Cloud and GPU computing, Apache spark system, Hadoop or MongoDB will certainly play a key role to support this expansion Moreover, the combination of all these novel information will further challenge the concept of cell type. As the integration of scRNAseq data is already a serious challenge that remains enhanced, the integration of multiple omics data will propose an even more serious challenge in bioinformatical analysis in the upcoming year. One major concern is that different modalities do not have complete correspondence between the profiled features: scRNAseq quantifies genes, methylation can be intergenic, chromatin accessibility is measured with pikes intensity. These discrepancies raise the question about the relative importance/weight of these different traits.

Methods that can find common ground for the different omics to be analyzed jointly are thus a primordial necessity. In the scope of our work, CellID, we briefly demonstrated that signatures could be extracted for different omics independently, and cross omics enrichment is possible.

With concurrent profiling of several omics, we could also imagine a novel feature in CellID that extracts a single joint omics signatures for each cell that comprises all the important omics modules in one single identity card. 

Chapter 6. CONCLUSIONS

From the evidence provided in this manuscript, the conclusions of this thesis are:

1. The implemented multivariate statistical approach called Cell-ID, based on Multiple Correspondence Analysis, was able to identify prototypic gene signatures associated to wellcharacterized cell types at individual cell level from single-cell sequencing data without the need of a clustering step.

2. Through the application of the Cell-ID approach to diverse biological samples, we observed that the identified gene signatures associated to specific cell types and differentiation states were indeed consistently reproducible across independent single-cell RNA-seq datasets, despite batch effects and biological and technical noise.

3. In the context of our comparative benchmark against alternative state-of-the-art methods and on the biological systems evaluated, the Cell-ID approach achieved superior performance in both automatic cell type annotation as well as in cell type matching across independent biological samples, donors, model organisms, and single-cell omics technologies.

4. The Cell-ID capacity to identify bonafide rare cells and their characteristic gene signatures at individual cell resolution was shown through selected datasets and across different cellular contexts and tissues. Here, the consistency of the functional enrichment analysis of per-cell gene signatures with the associated rare cells was illustrated through specific case studies.

5. When applied to specific large-scale cell atlas projects, the Cell ID approach proved to be scalable both in terms of accuracy in automatic cell type annotation and label transferring, as well as in computational cost.

132 contamination annotations, which were in such cased filtered out. In the case of sci-ATAC gene activity score matrices, the same preprocessing as for scRNA-seq data was applied.

Comparative benchmark of marker-based cell-type annotation

In the comparative benchmark assessing the method's capacity to classify cells using preestablished gene signatures (section 4.3), two alternative semi-supervised classifiers were used:

SCINA 187 and AUCell 188 (Supplementary File 3). Cell-ID predictions were based on a reference collection of blood cell markers from the XCell repository 243 (Supplementary File 4). Only cell types of the hematopoietic lineage supported by more than three bulk RNAseq samples in XCell were considered: hematopoietic stem cells (HSC), multipotent progenitors (MPP), B cells, CD4+

T cells, CD8+ T cells, natural killer (NK) cells, plasmacytoid dendritic cells (pDC), common myeloid progenitors (CMP), granulocyte myeloid progenitors (GMP), megakaryocyte and erythrocyte progenitors (MEP), erythrocytes, megakaryocytes, platelets, basophils, eosinophils, neutrophils, CD14+ monocytes, CD16+ monocytes, macrophages, dendritic c(DC), conventional dendritic cells (cDC). For each cell type, the marker list used included genes replicated in at least 20% of the reported sources. Raw count matrices were used as input for AUCell, and logtransformed normalized matrices were used for SCINA, following their associated vignettes.

SCINA was run with default parameters except for i) the maximum number of iterations and the convergence rate, which were increased to 20 and 0.999 respectively to ensure stable results, and ii) the rejection parameter, which was set to true to enable cells to be labeled as unassigned when there is a low confidence on the cell type prediction. For AUCell, the gene set with the highest AUC score was used to classify cells unless the maximum AUC score was <0.1, what left a cell as 'unassigned'.

Comparative benchmark of approaches performing cell-type label-transferring across datasets

In addition to Cell-ID, we evaluated ten alternative approaches for cell-type label-transferring across scRNA-seq (Supplementary File 3). All methods were run using default parameters unless otherwise stated. When default settings were not explicitly defined, the setting used in the associated vignettes were followed. Methods used as input either the raw or the normalized count data (after gene filtering as described above), following each method's documentation. For those methods that stipulate it, gene expression matrices were further restricted to common genes between the reference and the query datasets. In the case of MNN 135 , we transferred labels from the reference to the query datasets between closest mutual nearest neighbor cells, and cells were left unassigned when no mutual nearest neighbor cells were found. We modified the default parameter of k nearest neighbor of MNN to k = 50 as the default k = 20 failed to find mutual nearest neighbor matches for a large fraction of cells, which negatively affected the benchmark metrics evaluated.

Furthermore, for the selection of hypervariable genes in MNN, we used the default Seurat function for highly variable gene detection (2000 genes), and we took the intersection between the reference and the query highly variable genes to perform the query and reference dataset integration following the package's vignette. In the case of SCN 204 , all cells classified as rand were considered unassigned, as well as all cells classified as "nodes" in CHETAH 200 . For Seurat, cells were labeled as unassigned when the projection score was below 0.5.

Classification performance assessment

Cell annotation performance was assessed through 3 complementary metrics, i.e., precision, recall, and F1 score, which is the harmonic mean between the precision and recall. Each metric was first calculated for each cell type in the query dataset. Second, each metric (i.e., recall, precision, and F1 score) was calculated for the global set as the arithmetic means of the corresponding metric across the evaluated cell types. In such a way, an overweighed contribution of largely populated cell types is avoided, allowing a larger contribution of more rare cell types to the metrics evaluated. Mapping across datasets of cell type nomenclature was performed through manual curation and is reported in Supplementary File 5. For label-transferring performance assessment, cells left unassigned in a query dataset were considered a false assignment when their actual cell type was represented in the reference dataset or considered a true assignment otherwise. Therefore, for intestinal dataset label transferring, any cell types apart from endocrine, brush/tuft, and goblet were considered negative cell types since they are not present in the reference dataset and should be labeled unassigned. Thus, unassigned cells were considered as true positive if labeled against negative cells, and the negative cells were evaluated in the calculation of performance metrics in the same manner as the three other cell types present in the reference and were also considered in the global performance metrics. For interspecies labeltransferring across human and mouse datasets, the query dataset's initial raw matrix was restricted to genes with one-to-one orthologs. Ortholog relations were obtained from BioMart (release 100, version April 2020, GrCH38.p13 for human, and GRCm38.p6 for mouse 292,293 ) using gene symbols.

Functional Enrichment

Functional enrichment analyses (section 4.5) were performed using six sources of functional 

Description

The exhaustive exploration of human cell heterogeneity requires the unbiased identification of molecular signatures that can serve as unique cell identity cards for every cell in the body. However, the stochasticity associated with high-throughput single-cell RNA sequencing has made it necessary to use clustering-based computational approaches in which the transcriptional characterization of cell-type heterogeneity is performed at cell-subpopulation level rather than at full single-cell resolution. We present here Cell-ID, a clustering-free multivariate statistical method for the robust ex- • pathway -name of the pathway as in 'names(pathway)';

• pval -an enrichment p-value;

• padj -a BH-adjusted p-value;

• ES -enrichment score, same as in Broad GSEA implementation;

• NES -enrichment score normalized to mean enrichment of random samples of the same size;

• nMoreExtreme' -a number of times a random gene set had a more extreme enrichment score value;

• size -size of the pathway after removing genes not present in 'names(stats)'.

• leadingEdge -vector with indexes of leading edge genes that drive the enrichment, see http: //software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm#_Running_ a_Leading. In the previous plot we colored cells according to the pre-established cell type annotations available as metadata ("cell.type") and as provided in Baron et al. 2016. No clustering step was performed here. In the common scenario where such annotations were not available, the DimPlotMC function would represent cells as red colored dots, and genes as black crosses. To represent all genes in the previous plot, just remove the "features" parameter from the previous command, so that the DimPlotMC function takes the default value.

GetCellGeneDistance

Alternative state-of-the-art dimensionality reduction techniques

For the sake of comparisson, state-of-the-art dimensionality reduction techniques such as PCA, UMAP and tSNE can be obtained as follows:

Baron <-RunPCA(Baron, features = rownames(Baron)) Baron <-RunUMAP(Baron, dims = 1:30) Baron <-RunTSNE(Baron, dims = 1:30) PCA <-DimPlot(Baron, reduction = "pca", group.by = "cell.type") + ggtitle( "PCA") + theme(legend.text = element_text(size =10), aspect.ratio = 1) tSNE <-DimPlot(Baron, reduction = "tsne", group.by = "cell.type")+ ggtitle(" tSNE") + theme(legend.text = element_text(size =10), aspect.ratio = 1) UMAP <-DimPlot(Baron, reduction = "umap", group.by = "cell.type") + ggtitle( "UMAP") + theme(legend.text = element_text(size =10), aspect.ratio = 1) MCA <-DimPlot(Baron, reduction = "mca", group.by = "cell.type") + ggtitle(" MCA") + theme(legend.text = element_text(size =10), aspect.ratio = 1) ggarrange(PCA, MCA, common.legend = T, legend = "top") ggarrange(tSNE, UMAP, common.legend = T, legend = "top")

Cell-ID automatic cell type prediction using pre-established marker lists

At this stage, Cell-ID can perform an automatic cell type prediction for each cell in the dataset. For that purpose, prototypical marker lists associated to well-characterized cell types are used as input, as obtained from third-party sources. Here we will use the Panglao database of curated gene signatures to predict the cell type of each individual cell in the Baron data.

We will illustrate the procedure with two collections of cell-type gene signatures: first restricting the assessment to known pancreatic cell types, and second, a more challenging and unbiased scenario where all cell types in the database will be evaluated. Alternative gene signature databases and/or custom made marker lists can be used by adapting their input format as described below. The quality of the predictions is obviously highly dependent on the quality of the cell type signatures.

Obtaining pancreatic cell-type gene signatures

# download all cell-type gene signatures from panglaoDB panglao <-read_tsv("https://panglaodb.se/markers/PanglaoDB_markers_27_Mar_20 20.tsv.gz") # restricting the analysis to pancreas specific gene signatues panglao_pancreas <-panglao %>% filter(organ == "Pancreas") # restricting to human specific genes panglao_pancreas <-panglao_pancreas %>% filter(str_detect(species,"Hs"))

# converting dataframes into a list of vectors, which is the format needed as input for CellID panglao_pancreas <-panglao_pancreas %>% group_by(`cell type`) %>% summarise(geneset = list(`official gene symbol`)) pancreas_gs <-setNames(panglao_pancreas$geneset, panglao_pancreas$`cell type `)

Obtaining gene signatures for all cell types in the Panglao database #filter to get human specific genes panglao_all <-panglao %>% filter(str_detect(species,"Hs"))

# convert dataframes to a list of named vectors which is the format for CellI D input panglao_all <-panglao_all %>% group_by(`cell type`) %>% summarise(geneset = list(`official gene symbol`)) all_gs <-setNames(panglao_all$geneset, panglao_all$`cell type`) #remove very short signatures all_gs <-all_gs[sapply(all_gs, length) >= 10] Assessing per-cell gene signature enrichments against pre-established marker lists A per-cell assessment is performed, where the enrichment of each cell's gene signature against each cell-type marker lists is evaluated through hypergeometric tests. No intermediate clustering steps are used here. By default, the size n of the cell's gene signature is set to n.features = 200 By default, only reference gene sets of size ≥10 are considered. In addition, hypergeometric test p-values are corrected by multiple testing for the number of gene sets evaluated. A cell is considered as enriched in those gene sets for which the hypergeometric test p-value is <1e-02 (-log10 corrected p-value >2), after Benjamini Hochberg multiple testing correction. Default settings can be modified within the RunCellHGT function.

The RunCellHGT function will provide the -log10 corrected p-value for each cell and each signature evaluated, so a multi-class evaluation is enabled. When a disjointed classification is required, a cell will be assigned to the gene set with the lowest significant corrected pvalue. If no significant hits are found, a cell will remain unassigned. # For each cell, evaluate if the lowest p-value is significant pancreas_gs_prediction_signif <-ifelse(apply(HGT_pancreas_gs, 2, max)>2, yes = pancreas_gs_prediction, "unassigned") # Save cell type predictions as metadata within the Seurat object Baron$pancreas_gs_prediction <-pancreas_gs_prediction_signif

The previous cell type predictions can be visualized on any low-dimensionality representation of choice, as illustrated here using tSNE plots # Comparing the original labels with Cell-ID cell-type predictions based on p ancreas-specific gene signatures color <-c("#F8766D", "#E18A00", "#BE9C00", "#8CAB00", "#24B700", "#00BE70", "#00C1AB", "#00BBDA", "#00ACFC", "#8B93FF", "#D575FE", "#F962DD", "#FF65AC", "grey") ggcolor <-setNames(color,c(sort(unique(Baron$cell.type)), "unassigned")) From an unbiased perspective, Cell-ID cell type prediction can be performed using as input a comprehensive set of cell types that are not necessarily restricted to the organ or tissue under study. To illustrate this scenario all cell types in the Panglao database can be evaluated at once. # For the sake of visualization, we group under the label "other" diverse cel l types for which significant enrichments were found: Baron$all_gs_prediction <-ifelse(all_gs_prediction_signif %in% c(names(pancr eas_gs), "Schwann cells", "Endothelial cells", "Macrophages", "Mast cells", " T cells","Fibroblasts", "unassigned"), all_gs_prediction_signif,"other") color <-c("#F8766D", "#E18A00", "#BE9C00", "#8CAB00", "#24B700", "#00BE70",

Cell-ID(c) and Cell-ID(g): per-cell and per-group gene signature extraction from a reference dataset

In Cell-ID(c), the gene signatures extracted for each cell n in a dataset D can be assessed through their enrichment against the gene signatures extracted for each cell n' in a reference dataset D'. Alternatively, Cell-ID(g) takes advantage of a grouping of cells in D, where per-group gene signatures are extracted and evaluated against the gene signatures for each cell n in the query dataset D. We note that the groupings used in Cell-ID(g) should be provided as input and tipically originate from a manual annotation process.

Analogous to the previous section, Cell-ID(c) and Cell-ID(g) evaluate such enrichments through hypergeometric tests, and p-values are corrected by multiple testing for the number of cells or the number of groups against which they are evaluated. Best hits can be used for cell-to-cell matching (Cell-ID(c)) or group-to-cell matching (Cell-ID(g) and subsequent label transferring across datasets. If no significant hits are found, a cell will remain unassigned.

Here we illustrate Cell-ID(c) and Cell-ID(g) using the Baron dataset as a reference set from which both cell and group signatures are extracted. The Segerstolpe dataset is used as the query set on which the cell-type labels previously annotated in the Baron dataset are transferred. information concerning the cell including information such as the sample, number of UMI, number of features detected and newly generated results such as clustering are also stored in there. It is always good practice to use an object designed specifically for single cell like Seurat or SingleCellExperiment object to facilitate the analysis and also share the data.

To initialize a Seurat object you need to feed as input a count matrix into the CreateSeuratObject function. you can specify parameters such min.cells to filter out genes that are expressed in a very low number of cells or min.features to filter out cells that are expressing very low number of genes as they might actually be an empty droplet.

#read count matrix from healthy control CountControl <-readRDS("/shared/projects/singlecell2020/data/downstream/data /CountControl.rds") #Initialize the Seurat object with some filtering SeuratCon <-CreateSeuratObject(CountControl, min.features = 200, min.cells = 3, project = "healthy_control") #Add some metadata SeuratCon$sample <-"control" SeuratCon$condition <-"control" # View metadata column tibble(SeuratCon@meta.data) ## # A tibble: 

Simple data QC

Simple quality control can be performed with Seurat. It is notably very common to calculate the ratio of mitochondrial genes in the total gene expression.

We filter out cells with high mitochondrial genes rate as they reflect cells that was highly stressed during the sequencing protocol.

We filter out also genes that has a low number of genes detected and also those that has a very high number of genes expressed as there is a great chance that they are actually doublets. 

Normalization, Variable Features and Scaling.

As seen in the previous course, normalization must be performed to account for the differences between cells. Here we will use a simple library size normalization combined with log transformation that is proposed by Seurat for the sake of speed but it is nonetheless important to tailor the normalization methods depending on, your data, initial hypothesis and computational capacity. For a good alternative (fairly better than a library normalization), check the SCTtransfrom function in Seurat.

In this step we also perform feature selection by finding the genes that are the most variables. Not only it will filter out genes with minor biological relevance but by extension it will also greatly decrease the computational load.

Finally we scale the normalized matrix so that the genes have a variance of 1 across all cells, this ensure that the genes that are expressed highly do not dominate the signal. 

PCA

Even though, the gene selection step reduce the data considerably, there is a further need to reduce dimension using linear cell projection of the data to keep the most important variability in the data.

PCA is by far the most commonly used technique but you can also check more single cell specific methods that tries to cope with over-dispersion of the data such as ZIFA and pCMF.

The main question that arise after performing PCA is "how many component do we have to keep?". Seurat proposes a statistical methods with the function JackStraw. Alternatively you can plot the explained variance using the ElbowPlot. In practical case, almost nobody uses that, and it is better to take around 30-50 principal components just to be sure to not miss any subtle information.

On a second note, with PCA we can visualizse the genes that is driving the components with DimHeatmap function in Seurat, thus allowing to already get some insight about the heterogeneity of the data. 

dimensional embeddings

PCA is a robust and mathematically wise robust linear methods. But it falls short for visualizing local similarities in two dimensions. Here we will use tSNE and UMAP to visualize the data in a human interpretable way. Very important to note, even though these two dimensional data is very nice, it is highly recommended to not use them in further analysis such as clustering, as tSNE and UMAP is pretty much a black box mathematically speaking. One of the major, question that can be asked for clustering, is the number of cluster. There is no absolute answer for that question and it is common to perform clustering with different parameters and get different level of resolution. In graph clustering you can fine tune the k.param (larger k will have less cluster and smaller k more cluster) but in Seurat you can also use the resolution parameter (high resolution = more cluster). 

Differential expression

After the identification of subgroups of cells using unsupervised clustering, one can find marker genes characterizing the different groups by conducting differential expression analysis on the expression matrix. This can be done using the FindAllMarkers function in Seurat. The differential expression used by default in Seurat is the Wilcoxon test and we will use it here.

However other methods initially designed for RNAseq(DESeq) and single cell (MAST) are also proposed and can be chosen using the test.use. I personally recommend using the "poisson" methods for droplet UMI based methods as it is more likely to capture false positive and only keeps genes that are robustly differentially expressed. There is of course no method to rule them all and basic test such as wilcoxon test is a very scalable yet robust methods and can be confidently used in single cell.

Describing briefly the other parameters min.pct is the fraction of cells expressing the genes to be considered in the analysis (filter outlier genes expressed in few cells but very highly).

The logfc.threshold is as its name implies a sharp threshold for the logfc and filter any genes that is below and thus allows to filer genes that are not significantly up/down regulated. The only.pos allows to capture only the genes that are up regulated and filters any down-regulated genes.

# Find differentially expressed markers for each found cluster ControlMarkers <-FindAllMarkers(SeuratCon, only.pos = TRUE, min.pct = 0.1, l ogfc.threshold = 0.5, test.use = "wilcox")

# Get the 2 most up-regulated genes in each cluster ControlMarkersArranged <-ControlMarkers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC) %>% dplyr::select(gene, everything()) %>% mutate_at(c("avg_logFC", "pct.1", "pct.2"),function(x) round(x,2)) %>% mutate_at(c("p_val", "p_val_adj"),function(x)formatC(x, format = "e", digit s = 2)) tibble(ControlMarkersArranged, filter = "bottom") 

celltype prediction using reference

In the control dataset, we performed clustering analysis, differential expression analysis and inspected the genes to infer the different cell types. This can be very tedious and especially painful if you have no biological knowledge about the tissue/sample you're working on. Thanksfully, if we have a reference dataset it can be used to infer cell types by checking the similarity between the reference and the the unkwon sample. We call this procedures label transferring and Seurat has an in built methods with FindTransferAnchor that will match transcriptionally similar cells between query and reference and TransferData that will predict the cell types based on these similarities. Label transferring methods comes in many flavor, if you're interested check among others CHETAH, SingleR, SingleCellNet, Garnett for R and ACTINN, LAmbDA for Python.

Integration

In a normal circumstance, it is rare to analyze only one sample. The main interest resides in the fact of combining the different data to analyze them jointly. However, to integrate data we have to correct from technical differences that arise between different experiment called batch effect (sequencing technology, time points, reagent used, etc). Here we will briefly explore these discrepancies and how to deal with them to obtain conclusions that are as unbiased as possible.

Merge dataset

First off, lets merge the three Seurat objects using merge command and then perform the basic workflow again. There is no need of quality control as it was already performed before. Then let's visualize the different data in a UMAP and split them using the providing the sample metadata in the split.by argument. As shown in the umap the different cell types are completely separated. The two patient data are some what more connected than the control (which is logic sing they come from the same patient and the same sequencing protocol), but stil we can observe that the monocytes cell type is completely separated (spoiler -that's our boy).

Integrate with Harmony

To account for batch effect, we can use integration methods such as CONOS, LIGER, BBKNN, Scanorama or MNN. Seurat has a built in function for batch effect correction with FindIntegrationAnchors and IntegrateData (Stuart et al. 2019). However here for the sake of computational efficiency (to not burn Roscoff server), we will choose another methods called harmony (Korsunsky et al. 2019) which is a super salable integration methods that is also considered as one of the best in a recent benchmark. In contrast with Seurat, this integration method does not provide at the end a corrected expression matrix but a corrected PCA coordinates that can be used for instance in clustering. If you want a corrected expression matrix, you can use MNN or Seurat built in function. But be very careful what you wish for, integration methods can correct for batch effect but can correct also for actually meaningful biological signal (in this case COVID perturbation). Even though, the default parameters in the functions are very well thought. In integration methods I recommend to change or try out different parameters to avoid over-correction. In the RunHarmony function that would be the sigma; a larger value of sigma will tend to correct less the differences between the different samples. Here instead of the default value 0.1, we will choose 0.2. 

Cell Type prioritization

Most of the time, it is very difficult to identify the cell type that are the most affected by a certain condition. Again, using integration methods correct for the batch effect but also sometimes for true biological discrepancies between conditions. 20 Augur (Skinnider et al. 2020) helps to find the cell type that are the most affected by a particular condition (in this case sick_patient vs cured_patient and healthy control) by ranking them from the most perturbed cell type to the most stable. As the runtime is very log for the scope of this practical session, we will directly load the pre computed results from Augur.

# AugurResults <-calculate_auc(AllSeurat, label_col = "sample", cell_type_co l= "cell_type",num_threads = 1 AugurResults <-read_rds("/shared/projects/singlecell2020/data/downstream/dat a/AugurResults.rds") AugurResults ## # A tibble: 

Differential expression COVID Monocytes

Now that we have identified that monocytes is the cell type that is particularly affected by the COVID, differential expression analysis must be conducted to understand which genes are driving that heterogeneity. We will use the FindMarkers function here and we will specify some parameters to investigate the genes that are diferentially expressed between the patient day 1 monocytes and the healthy control.

# Find differentials expressed markers between monocytes in patient day1 (PD1 ) and control MonoMarkers <-FindMarkers(AllSeurat, ident.1 = "PD1", ident.2 = "control", g roup.by = 'sample', subset.ident = "CD14_Mono", logfc.threshold = 1) %>% rown ames_to_column("gene") %>% mutate_at(c("avg_logFC", "pct.1", "pct.2"),function(x) round(x,2)) %>% mutate_at(c("p_val", "p_val_adj"),function(x)formatC(x, format = "e", digit s = 2)) ## $TNFA_SIGNALING_VIA_NFKB ## [1] "JUNB" "CXCL2" "ATF3" "NFKBIA" "TNFAIP3" "PTGS2" "CXCL1" ## [8] "IER3" "CD83" "CCL20" ## ## $HYPOXIA ## [1] "PGK1" "PDK1" "GBE1" "PFKL" "ALDOA" "ENO2" "PGM1" "NDRG1" "HK2" ## [10] "ALDOC" ## ## $CHOLESTEROL_HOMEOSTASIS ## [1] "FDPS" "CYP51A1" "IDI1" "FDFT1" "DHCR7" "SQLE" "HMGCS1" ## [8] "NSDHL" "LSS" "MVD" ## ## $MITOTIC_SPINDLE ## [1] "ARHGEF2" "CLASP1" "KIF11" "KIF23" "ALS2" "ARF6" "MYO9B" ## [8] "MYH9" "TUBGCP3" "CKAP5" ## ## $WNT_BETA_CATENIN_SIGNALING ## [1] "MYC" "CTNNB1" "JAG2" "NOTCH1" "DLL1" "AXIN2" "PSEN2" "FZD1" ## [9] "NOTCH4" "LEF1" ## ## $TGF_BETA_SIGNALING ## [1] "TGFBR1" "SMAD7" "TGFB1" "SMURF2" "SMURF1" "BMPR2" "SKIL" "SKI" ## [9] #Find Differentially enriched pathways MonoPathways <-FindMarkers(AllSeurat, ident.1 = "PD1", ident.2 = "control", group.by = 'sample', subset.ident = "CD14_Mono", logfc.threshold = 1, assay = "Hallmark") %>% rownames_to_column("gene") %>% dplyr::arrange(-avg_logFC) %>% mutate_at(c("avg_logFC", "pct.1", "pct.2"),function(x) round(x,2)) %>% mutate_at(c("p_val", "p_val_adj"),function(x)formatC(x, format = "e", digit s = 2)) 

# create list of genes related to cell cycle
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 11 Figure 1-1 Single-cell transcriptome analyses of tissues and cell types.

  This number can scale up to 1 million for a large project, and current single-cell consortiums such as the Human Cell Atlas 17 aim to sequence more than several billion in total. Here we will illustrate the exponential rise of single-cell throughput by briefly describing the different technologies developed during this decade (Figure1-2).
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 12 Figure 1-2 Schematic overview of single-cell protocols.

Figure 1 - 4

 14 Figure 1-4 Exponential growth of cell counts in single-cell experiments. (a) Schematic representation of the different cell isolation techniques throughout the years. (b) Graphics representing the increase of cell count numbers per single cell protocols from 2009 to 2017. The X-axis represents the year, and Y-axis represents the number of cells. Important protocols are highlighted by color code. Figure taken from "Exponential scaling of single-cell RNA-seq in the past decade" 33 .

Figure 1 - 5

 15 Figure 1-5 Unique molecular identifier for scRNAseq quantification. The drawing represents in (a) two different cells with different gene reads composition. Each independent gene is distinguished with a color code. (b) UMI labeling process on the reads and the consequence after PCR amplification. (c) deduplication of the genes after reads alignment, and robust genes quantification by taking account of UMIs. "Quantitative single-cell RNA-seq with unique molecular identifiers" 38

  On a secondary note, it is also very important to minimize the batch effect when dealing with experiments containing samples with different conditions. When possible, it is good practice to put both conditions and perform sequencing at the same time. Alternatively, techniques based on barcoding such as cell hashing[START_REF] Stoeckius | Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics[END_REF] allow to put different conditions on the same sample and then demultiplex the different conditions to minimize as much as possible technical variances (Figure1-6).
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 16 Figure 1-6 Cell Hashing for single-cell data demultiplexing Schematic overview of sample multiplexing by Cell Hashing. Cells from different samples are incubated with DNAbarcoded antibodies recognizing ubiquitous cell surface proteins. Distinct barcodes allows the identification of the sample it originated from and hence multiple sample can be pooled and sequenced to avoid batch effect.
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 17 Figure 1-7 Tabula Muris data Two-dimensional representation of the Tabula Muris data comprising the scRNA sequencing of 20 mouse organs and more than 50000 cells in total. Color code indicates the different tissues and cell types are directly indicated onto the embedding. Figure taken from "Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris" 45
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 18 Figure 1-8 Pseudotemporal ordering can reconstruct developmental processes (a) Schematic representation of the differentiation process and cell fates Waddington 53 , (b) example of pseudotemporal ordering of cells and its different components. (c)The different topologies in the order of complexity, with some developmental process showcasing high plasticity in the cell fate decision process. Taken from "Concepts and limitations for learning developmental trajectories from single-cell genomics"[START_REF] Tritschler | Concepts and limitations for learning developmental trajectories from single cell genomics[END_REF] 

  established a comprehensive transcriptional profile of 2 severe patients in different time points, including the initial stage and remission using inflammatory drugs. The study notably identified a specific subset of monocyte in the initial stage that may be responsible for an uncontrolled and excessive release of cytokines in severe COVID-19 cases (Figure 1-10).
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 1 Figure 1-10 Clinical application of single-cell on two severe COVID19 patients. The figure summarises the research conducted by Guo et al. 78 . (a) scRNAseq was performed on immune cell types of two patients severely affected by the disease using droplet sequencing, and healthy control data was integrated. Moreover, the sample collection has been performed at several time points for the patients(day1, day5, day7), and a drug against inflammatory response has been used on day1. (b,c,d) two-dimensional representation of the data with cell colored with (b) cell types identified after computational analysis, (c) the different stages of the disease, (d) the different samples. The black dot circle highlight in(c and d) the cell population that was mostly only retrieved in patients during the severe COVID19 stage with notably a distinct monocyte subpopulation and plasma cells. Taken from "Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm"[START_REF] Guo | Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[END_REF] 
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 1 11 represents the different resolution of the tapeworm atlas using PAGA, a two dimensional manifold learning embeddings that allows multi-resolution representation of the cell heterogeneity.
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 112 Figure 1-12: Quantitative evolution of single-cell developed methods.The graphic represents the number of packages listed in the scRNA-tools database at different time points from September 2017 to August 2020.
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 113 Figure 1-13: Wordcloud of categories referenced in scRNAtools.
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 115 portray the general overview of the current state of the art bioinformatical methods and provide the context of my thesis work.
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 1 Figure 1-14 Main phases of single-cell data analysis:Schematic representation of the different phases of single-cell data processing and analysis, as presented byZappia et al. The first phase, data acquisition, aims at pre-processing the FASTQ files to produce an expression matrix. In the second phase, data cleaning filters and correct for potential technical discrepancies that alter the downstream analysis. The third phase, cell assignment, groups, or infer trajectory based on the similarity of the cells. Finally, the fourth phase identifies the genes driving the cellular heterogeneity. Adapted from "Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database"[START_REF] Zappia | Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database[END_REF] 
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 1 Figure 1-15 Overview of the single-cell data analysis workflow. The figure shows an overview of the common procedures in a single-cell pipeline using Bioconductor packages. The preprocessing step comprises data acquisition and cleaning steps illustrated in Figure 1-14. It overall transforms the raw sequencing data to an expression matrix optimized to have as few confounding factors and technical noise as possible and facilitate the acquisition of true biological signals. The downstream analysis comprises cell assignment and gene identification phase to explore cellular heterogeneity with clustering, trajectory inference, and assess the genes driving the heterogeneity with differential expression analysis (Figure 1-14). Finally, visualization and report generation is also an important component of single-cell analyses, as they facilitate the communication between biologists and bioinformaticians. Image from "Orchestrating single-cell analysis with Bioconductor" 92 .
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 1 Figure 1-17 major steps of high-throughput scRNA-seq data processing Demultiplexing, sequence QC, alignment, and transcript quantification are applied to generate an expression matrix representing single cells' gene expression from sequencing reads. "Comparison of high-throughput single-cell RNA sequencing data processing pipelines" 103
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 1 Figure 1-18 Schematic overview of doublet detection with DoubletFinder Doublet identification is performed by first simulating many doublets by averaging the expression of two different cells. The newly created artificial doublets are then projected in the low dimensional space, and then kNN is performed to see how many are doublets are neighboring to the original cells (proportion of artificial nearest neighbors: pANN). A threshold is then fixed to remove cells with a high pANN score as they are likely to represent doublets in the original data. Adapted from "DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors" 105
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 1 Figure 1-19 Ambient RNA contamination in droplet sequencing.
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 1 Figure 1-20 Effect of imputation methods on two-dimensional visualization.Two-dimension visualization (UMAP) of the scRNAseq dataset of ten sorted peripheral blood mononuclear cell (PBMC) cell types from 10x Genomics after applying imputation on the original expression matrix (except no_imp). The three different subplots are color-coded by the cell type, Kmeans clustering results, and Louvain clustering results. The observed results vary greatly from one imputation method to another, with some methods preserving more or less the original structure of the data and some others completely distorting it. Using imputation methods is always subject to the risk of amplifying unwanted signals such as technical variability, and its usage must be carefully thought, and preferentially, no conclusion should be drawn directly from imputed data. Taken from "A Systematic Evaluation of Singlecell RNA-sequencing Imputation Methods"128 
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 1 Figure 1-21 Integration with MNN (a,b,c,d,e) Schematic representation of MNN integration methods (a) Representation of 2 batches in high dimensions (b) Cells are matched by finding mutual nearest neighboring pairs of cells (c) Batch correction vectors are calculated between the MNN pairs (d) batch2 is integrated into batch1 using the correction vector (e) The procedure can be repeated for a further batch using the newly integrated data as a reference. (f,g,h) two-dimensional representation of a simulated dataset with two batches. Adapted from "Batch effects in single-cell RNA sequencing data are corrected by matching mutual nearest neighbors" 135

  computational hardware; several algorithms have recently emerged 142 to compute the singular values approximately to drastically enhance the speed and the memory consumption at the cost of minor accuracy. Amongst other we can quote irlba 143 , Rspectra 144 , rsvd 145 implementations for popular singular vectors approximation. Notably, out-of-core PCA implementation, which reduces memory consumptions, is becoming popular due to the need to analyze data with more than 1 million cells coming from large cohorts and single-cell atlases (Figure 1-22).
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 1 Figure 1-22 Overview of PCA algorithm performance.Comparison of six principal components algorithm on four datasets with a different number of cells: PBMCs (10 2 cells), Pancreas (10 3 cells), BrainSpinalCord (10 5 cells), and Brain datasets (10 6 cells). tSNE has been performed with the result of each PCA implementation. Red circles highlight a mediocre separation of clusters and thus potentially an inaccuracy in PCA computation. The different algorithms give a pretty similar two-dimensional representation; however, with huge single-cell data, some implementation can reach maximum memory consumption. Taken from "Benchmarking principal component analysis for large-scale single-cell RNA-sequencing" 142

  Many single-cell methods are based on k-means and hierarchical clustering for ultimately grouping the cells but these methods first transform the original data to enhance the unsupervised classification and cope with known issues of these algorithms. We can notably cite for Kmeans based methods SIMLR 169 , SAIC 170 , SinNLRR 171 , SC3 172 , and RaceID 28 . As an example, one of the most popular methods in the early stage of single-cell was Single-cell Consensus Clustering 172 (SC3) and is based on Kmeans clustering. From the initial input matrix, SC3 constructs three different cells to cell distances matrix using the Spearman, Pearson, and Euclidean metrics. The three different matrices are then transformed using PCA or Laplacian transform, giving ultimately six different low dimensional representations on which K-means clustering is performed. Finally, the six independent clustering results are then merged by calculating a consensus matrix on top of which hierarchical clustering is performed. By averaging the results of six different clusters, SC3 aims to provide a more robust identification of transcriptionally distinct groups of cells. However, the calculation of six different clusters at initial steps comes at the cost of more computational time, making the use of SC3 unfit for data with more than 5000 cells.

Figure 1 -

 1 Figure 1-23 The SC3 framework for consensus clustering of scRNA-seq dataPipeline for the clustering methods SC3. From the filtered gene expression matrix, three distances are calculated, and two transformations (PCA and Laplacian) are applied on each distance. K means clustering is then performed on each of the six matrices, and a consensus matrix is generated to ultimately create robust cluster labels. Taken from "SC3: consensus clustering of single-cell RNArna-seq data" 172

1. 2

 2 .4.1.2 Graph-based clusterings Even though still widely used, both K-means and hierarchical clustering are, however, very expensive computational wise and quickly struggles against droplet sequencing data that comprise more than 5000 cells. Due to that limitations, the most popular clustering algorithm to this date remains graph-based clustering. Graph-based methods were first introduced in singlecell with Phenograph 177 and were rendered popular by framework packages such as Seurat and SCANPY.
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 1 Figure 1-24 Graph-based clustering A simple representation of graph-based clustering. Each node (cells) are connected to their nearest neighbors. Then, a community identification algorithm groups sets of nodes that are strongly connected together. Taken from "insightdatascience.com: Graph-based machine learning: Part I" 178

  course, this can be done by performing multiple clustering with varying parameters of k clusters in Kmeans or k-nearest neighborhood in graph-based methods. Still, the side-by-side comparison of different clustering is often tedious and necessitates thorough manual and visual inspections, which raises the analysis's overall complexity. Hierarchical clustering methods enable to construct trees that show clusters within a cluster and allow an easier observation of the different grouping levels but are still nonetheless difficult to interpret due to the high number of cells. The recently published R package ClusterTree 184 and TooManyCells 185 tries to resolve these problems by proposing an original clustering method combined with intuitive visualization and ultimately empowers multiresolution and multifaceted exploration of single-cell subpopulations (Figure 1-25).
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 1 Figure 1-25 TooManyCells cells heterogeneity representation Representation of mouse splenocytes labeled with major immune-cell lineages based on predefined lineage markers with (a) TooManyCells, (b) tSNE representation, (c) tSNE representation, and Seurat clustering as labels. TooManyCells unique approach allows a better distinction of the heterogeneity and that at a different level of resolution. Some of the subtle subpopulations are completely missed by the Seurat default graph-based approach (c). Adapted from "TooManyCells identifies and visualizes relationships of single-cell clades" 185

  -26) offer an extensive collection of professionally curated cell-type signatures that can be used in prior knowledge-based classifiers to label each cell individually without the need of any clustering steps. These prior based methods comprise, amongst others, SCINA 187 , AUCell 188 , Garnett 189 ,Cellassign 190 , and DigitalCellSorter 191 . The main inputs of these methods are the expression matrix and a list of signatures related to a specific cell type, but the approach taken for classification is quite diverse.SCINA and Cellassign calculate the likelihood of a cell to belong in a particular cell type with an expectation-maximization algorithm with SCINA using Bimodal distribution fitting for marker genes and Cellassign using Tensorflow machine learning models with custom variables.DigitalCellSorter uses a voting algorithm to automatically identify cells, and Garnett uses a generalized linear model to train a classifier based on prior knowledge. More particularly, AUCell 188 is a method that identifies cells enriched by a particular gene set such as cell type signatures or functional pathways in single-cell RNA-seq data and acts as a simplified version of the GSEA 192 tool. AUCell assesses the gene ranking for each cell by sorting the expression of the genes from the highest to the lowest and treating ties randomly. It then uses the Area Under the Curve (AUC), handling all the genes present in the gene set as true positives on the y-axis and those that are not present as false positives on the x-axis, to calculate whether a critical subset of the gene set is enriched within a cell. The distribution of AUC scores across all the cells allows the exploration of signatures enrichment. Even though the author does not explicitly state this use case, AUCell can be used for cell type prediction by comparing different cell type signatures enrichment across cells and identifying the cell-type achieving maximum enrichment for each cell.
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 1 Figure 1-26 CellMarker a database for curate cell-type markersThe main interface of the CellMarker webpage (http://biocc.hrbmu.edu.cn/CellMarker/index.jsp), where curated signatures of 16 different organs and their cell types can be browsed interactively and downloaded for both mouse and human. For each gene in a signature, a metric indicating the relative importance and confidence is reported based on the number of sources covering it. The main sources of these markers comprise RNAseq experiment, flow cytometry, immunochemistry, and experimental study.

  scID 197 classifies a given target dataset based on their transcriptional similarity to given reference clusters in 4 steps. As a first step, scID extracts cluster-specific gene sets from the reference data and calculates weights (based on Fisher's Linear Discriminant Analysis) representing their discriminative power to identify the cluster of interest. Next, scID scores all target cells based on the expression of the cluster-specific gene sets and, finally, identifies equivalent target cells by fitting a mixture of Gaussian distributions. CHETAH 200 (Characterization of cEll Types Aided by

  These structures include, by order of complexity: cyclical, linear, bifurcating, multifurcating, tree, connected graph, disjointed graph and are represented in Figure 1-27. Hence, different trajectory analysis methods perform optimally for different types of topology(Figure 1-28).
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 1 Figure 1-27 Schematic representation of the different trajectory topologies.

  upregulated or downregulated in a specific cluster and are commonly used in Bulk sequencing data. Naturally, many major Bulk native methods such as limma 134 , DeSeq 217 , and EdgeR 218 was also applied directly to single-cell RNAseq data. However, to confront single-cell unique technical discrepancies, many novel methods such as SCDE 83 , D3E 219 , MAST 220 , DESingle 221 , scDD 222 , and sigEMD 223 have been developed. Moreover, due to the great number of cells, basic statistical methods requiring a minimum of samples such as the Student t-test or Wilcoxon test can also be applied to single-cell data.

Figure 1 -Figure 1 - 29 .

 1129 Figure 1-29 Summary of differential expression analysis methods benchmark.Methods are ranked from worst to best, considering different metrics such as the True positive rate compared to bulk data, computational scalability, and false discovery proportions (FDP). Adapted from "Bias, robustness, and scalability in single-cell differential expression analysis."

3 .

 3 Assess the reproducibility of the identified single-cell gene signatures across independent biological samples, donors, model organisms, and single-cell omics technologies. 4. Evaluate the capacity of the approach to identify bonafide rare cells across different cellular contexts and tissues through the assessment of their characteristic gene signatures at individual cell resolution. 5. Illustrate the association of the gene signatures identified at the individual cell level with specific cellular functions and molecular pathways 6. Perform a comparative benchmark against alternative state-of-the-art methods evaluating its ability to carry out automatically cell-type annotation and cell matching across independent singlecell datasets despite technical and biological batch effects. 7. Characterize its scalability and performance in large-scale cell atlas projects Chapter 4. RESULTS
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 41 First, the library size normalized, and the log-transformed count matrix is transformed into a fuzzy coded indicator matrix where expression values are represented on a continuous scale between 0 and 1. Second, Cell-ID performs a dimensionality reduction of the indicator matrix using Multiple Correspondence Analysis, where both cells and genes are represented into the same vector space 236 . Third, percell gene rankings are calculated from the gene-to-cell distances in MCA space, where the top closest genes to a cell will define its gene signature. If a grouping of cells is provided, per-group gene rankings may be obtained analogously using the geometric centroid in the MCA space of the cells belonging to a given group. The enrichment of per-cell and/or per-group gene signatures is then evaluated through hypergeometric tests against (i) reference marker gene lists and/or (ii) per-cell and/or per-group gene signatures extracted through Cell-ID from reference single-cell datasets. Per-cell and per-group gene signatures represent identity cards allowing automatic cell type and functional annotation and cell matching across datasets. Each of these steps is described in detail in the following sections.

Let

  (i.e., cases) and P genes (i.e., variables), with general term mnp gathering the expression level of gene p in cell n. For each column vector Mp in M, two membership functions 𝑥𝑥 + = 𝑓𝑓 + (𝑚𝑚): ℜ → ℜ: [0,1] and 𝑥𝑥 -= 𝑓𝑓 -(𝑚𝑚): ℜ → ℜ: [0,1] , where 𝑓𝑓 -(𝑚𝑚) = 1 -𝑓𝑓 + (𝑚𝑚), can be defined by linearly scaling between 0 and 1 the expression values for each gene across all cells as follows:𝒙𝒙 + 𝒏𝒏𝒏𝒏 = 𝒎𝒎 𝒏𝒏𝒏𝒏 -𝐦𝐦𝐢𝐢𝐢𝐢�𝑴𝑴 𝒏𝒏 � 𝐦𝐦𝐦𝐦𝐦𝐦�𝑴𝑴 𝒏𝒏 �-𝐦𝐦𝐢𝐢𝐢𝐢�𝑴𝑴 𝒏𝒏 � ; 𝒙𝒙 - 𝒏𝒏𝒏𝒏 = 𝟏𝟏 -𝒙𝒙 + 𝒏𝒏𝒏𝒏 ; From such functions, a fuzzy-coded indicator matrix XN, K can be built, representing a total of K=2P categories : of XN, K is thus N*P, since each of the N cells has P sets of fuzzy coded-values, each adding up to 1. The Multiple Correspondence Analysis (MCA) of a fuzzy-coded indicator matrix follows that of a regular MCA 239 . From the matrix XN, K, a matrix of relative frequencies FN, K is defined as :𝑭𝑭 𝑵𝑵,𝑲𝑲 = 𝟏𝟏 𝑵𝑵𝟏𝟏 𝑿𝑿From the row sums and column sums of F, two diagonal matrices Dr and Dc are built, respectively, SNK be the matrix of standardized relative frequencies resulting from𝐒𝐒 = 𝐃𝐃 𝐫𝐫 -𝟏𝟏/𝟐𝟐 𝐅𝐅 𝐃𝐃 𝐜𝐜 -𝟏𝟏/𝟐𝟐The singular-value decomposition (SVD) of the matrix SNK leads to𝐒𝐒 = 𝐔𝐔 𝐃𝐃 𝛂𝛂 𝐕𝐕 𝐓𝐓Where U and V contain by columns the singular vectors of norm 1 (U T U=1; V T V=1), and 𝐷𝐷 𝛼𝛼 is a diagonal matrix of singular values ∝ 𝑖𝑖 , which are positive and displayed in descending order:∝ 1 ≥ ∝ 2 ≥ … > 0.Alternatively, U and V can be obtained as the matrices displaying by columns the eigenvectors of norm 1 of the product SS T and S T S, respectively, with eigenvalues 𝜆𝜆 𝑖𝑖 , where 𝛼𝛼 𝑖𝑖 = 𝜆𝜆 𝑖𝑖 1/2 . Thus,𝑺𝑺𝑺𝑺 𝑻𝑻 𝑼𝑼 = 𝑼𝑼 𝑫𝑫 𝝀𝝀 ; 𝑺𝑺 𝑻𝑻 𝑺𝑺 𝑽𝑽 = 𝑽𝑽 𝑫𝑫 𝝀𝝀 ; 𝑼𝑼 𝑻𝑻 𝑼𝑼 = 𝟏𝟏 ; 𝑽𝑽 𝑻𝑻 𝑽𝑽 = 𝟏𝟏Alternatively, V can be calculated from U with the transition formula:𝑽𝑽 = 𝑺𝑺 𝑻𝑻 𝑼𝑼 𝑫𝑫 𝜶𝜶 -𝟏𝟏 = 𝑺𝑺 𝑻𝑻 𝑼𝑼 𝑫𝑫 𝝀𝝀 -𝟏𝟏/𝟐𝟐In the previous expressions, the first vectors 𝑢𝑢 �⃗ 1 and 𝑣𝑣 ⃗ 1 are associated with the trivial solution 𝛼𝛼 1 = 𝜆𝜆 1 = 1; and are thus removed from the analysis at this stage. After eliminating the trivial solution, the sum of all the eigenvalues 𝜆𝜆 𝑖𝑖 from SS' (so-called total Inertia in MCA terminology) equals the Chi-squared statistic 𝜒𝜒 2 of the indicator matrix XN, K divided by N. Thus, the orthogonal vectorial space generated by the eigenvectors of SS' can be viewed as a decomposition of the Chi-squared statistic 𝜒𝜒 2 in its independent sources of variation, each accounting for a fraction given by 𝜆𝜆 𝑖𝑖 ∑ 𝜆𝜆 𝑖𝑖 𝐼𝐼 𝑖𝑖=1 ⁄ . At this stage, further dimensionality reduction can be performed by retaining the first 𝐽𝐽 eigenvectors as the most informative components while disregarding the rest of the dimensions from downstream analysis. Here we established 𝐽𝐽 = 50 as the default parameter throughout all the analyses performed.

  Simulated scRNA-seq datasets were obtained with the Splatter 242 Bioconductor package (version 1.4.1; https://bioconductor.org/packages/release/bioc/html/splatter.html). For the generation of structured datasets, each simulation was set to originate from five underlying subpopulations with relative sizes of 30%, 25%, 20%, 15%, and 10% cells, respectively. No clustering or cluster labels were used in any way for the analysis. Splatter's logistic function, modeling the probability of a gene having zero counts, was defined by a midpoint parameter x0 = 3 counts, to obtain a simulated dataset with about 60% ~ 70% of the count matrix content equal to zero after default normalization and filtering, a dropout rate consistent with those observed on other datasets used in this manuscript. Default values were used for all the other parameters. Centered and scaled principal component analysis (PCA) was performed with the base R prcomp function. We first compared the correspondence between MCA and PCA low-dimensional representations of cells by performing Spearman's rank correlation analysis on their principal axes coordinates. The cell representation achieved by MCA dimensionality reduction was largely equivalent to that achieved by principal component analysis (PCA) on the same dataset. Spearman's correlation coefficients for the correlation between MCA and PCA coordinates achieved median and standard deviation values across data sets of 1.00±0.02, 1.00±0.02, 0.99±0.02, 0.99±0.02, and 0.99±0.02 for their first five principal axes, respectively (Figure4-2).
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 42 Figure 4-2 Correspondence between PCA and MCA low-dimensional representations of cells.Low-dimensional representation of a simulated scRNA-seq dataset on the two first principal axes obtained through PCA (A, cell projection) or MCA (B, cell projection, and C, gene projection). (D) Median values of Spearman's correlation coefficient for the relationship between cell coordinates on the first ten principal axes from MCA (x-axis) and the first ten principal axes from PCA (y-axis) over 100 simulated scRNA-seq datasets. Median absolute Spearman's correlation coefficient values are represented on a color scale ranging from 0 (dark blue) to 1 (dark red), and the precise value is indicated inside.
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 43 Figure 4-3 Consistency of the per-cell gene rankings with the gene expression levels of neighboring cells in the MCA space.(A) An individual cell was randomly selected from a dataset selected from 100 simulated scRNA-seq sets, each containing 1000 cells and 5000 genes. For each gene (grey dot), this figure shows the log-fold change in expression relative to (i) its mean expression value in the 5% of cells closest to the target cell (n=50), and (ii) its mean expression value in the rest of the cells in the dataset (y-axis). Genes were grouped into 20 bins of equal size (x-axis) based on their ranking relative to the target cell on the MCA space (Figure4-1). High ranks (on the left side of the x-axis) correspond to small gene-to-cell distances, indicating that gene expression is highly specific to the target cell, whereas lower ranks (on the right) reflect a lack of specificity to the target cell. The gene expression values in the target cell were not considered in the assessment of such log-fold changes. For each bin, two boxplots are shown, summarizing (i) the distribution of log-fold changes in expression across genes for which the target cell presented a non-zero count (red); and (ii) the distribution of log-fold changes in expression across genes for which the target cell presented a zero count (blue). (B) Analogous figureto (A),showing the generalization of patterns to all individual cells in a randomly selected dataset. Each cell was first independently assessed as in (A), and its per-bin median values were extracted to plot a distribution across cells (boxplots in B). Figures analogous to (A) and (B) are shown when the per-cell gene rankings displayed on the x-axis through bins of equal size were obtained from (i) a naïve approach based on the log-fold changes in gene expression observed in a cell relative to all the other cells in the dataset (C, D) or (ii) from highest-to-lowest expression values within a cell, with random ranks for ties, as previously described (AUCell, E, F).
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 4446 figures; Figure 4-4, Figure 4-6, and Supplementary File 7). Cell-ID outperformed reference methods for cell-type classification based on pre-established signatures, such as SCINA 187 and
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 44 Figure 4-4 Overview of CellID cell identification capability using reference signatures.Cell-ID cell type prediction of human cord blood mononuclear cells using pre-established marker lists. (A) UMAP representation of 8005 cord blood mononuclear cells profiled by CITE-seq3. Dots representing cells are colored according to Cell-ID cell type predictions using pre-established immune cell signatures, as indicated by the figure's labels. (B) Performance measured through the F1 score achieved by Cell-ID, AUCell, and SCINA cell type predictions for each blood cell type was reported in the original publication. Boxplots summarize the F1 scores for each method. The numbers above boxplots denote the global performance (macro F1 score, upper digits) and its standard deviation (lower digits), where the maximum and minimum values across methods are colored in black and grey, respectively. (C) Zoomed UMAP representation on Erythrocytes and CD34+ cells showing that the Cell-ID multi-class cell assignments capture transient cell states consistent with the cell-type hierarchy associated with immature hematopoietic stem cell differentiation. Cells are color-coded according to the -log10 enrichment p-value obtained by Cell-ID with pre-cursor cell types: HSC, MPP, CMP, GMP, MEP, and erythrocytes. The color scale for cells extends from white (p value=1) to dark red (p-value = 1e-10), with p-values<1e-10 fixed at this value). (D) Heatmap representing, for each cell (displayed in columns), the -log10 transformed p-value obtained by Cell-ID in tests of the association of the gene signature with each of the evaluated preestablished marker lists, representing a total of 21 blood cell types (displayed in rows). The color code of the heatmap extends from dark blue (p value=1) to yellow (p-value = 10-2) to dark red (p-value = 10-10), with p values<10-10 fixed at this value). Non-significant associations (p value>10-2 after Benjamini Hochberg correction for the number of gene signatures tested) are shown in blue. The columns in the heatmaps were grouped by the reference cell-type label, as indicated by the colored bands at the top and the associated legend. CD34: CD34+ hematopoietic stem cells; Eryth: Erythrocytes; Mk: Megakaryocytes, B: B cells, CD4 T: CD4+ T cells, CD8: CD8+ T cells, CD14: CD14+ monocytes, CD16 Mono: CD16+ monocytes, NK: natural killer cells, DC: dendritic cells, pDC: plasmacytoid dendritic cell, HSC: hematopoietic stem cells, MPP: muti-potent-progenitor, CMP: common-myeloid-progenitors, GMP: granulocytemonocyte-progenitor, MEP: megakaryocyte-erythrocyte-progenitor.

(

  CD34 + ) according to the hematopoietic hierarchy (Figure 4-4 C). No immature CD34 + cells in the REAP-seq dataset were reported in the original publication 245 . The gradient of Cell-ID enrichment scores was consistent with the Hematopoietic Stem Cells (HSC) lineage differentiation process. Thus, Cell-ID multi-class scores reflect smooth transitions at individual cell level from the most immature HSC to multipotent progenitors (MPP), branching between myeloid (CMP/GMP) and erythroid (MEP) progenitors, which ultimately differentiate into erythrocytes. Both clustering-based approaches and alternative methods would have missed such fine-grained transitions. Thus, SCINA and AUCELL provided a coarse-grained classification between HSCs and erythrocytes, with no assignment to intermediate states between these two classes.
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 45 Figure 4-5 Automatic Cell-ID cell-type identification of human peripheral blood mononuclear cells with pre-established signatures. UMAP representation of 7488 peripheral blood mononuclear cells (PBMCs) profiled with a REAP-seq protocol, with colorcoding of the cells according to blood cell type classification based on (A) single-cell protein marker levels as provided, and (B) Cell-ID predictions based on a reference collection of well-established blood cell signatures. (C) Heatmap representing, for each cell (displayed in columns), the -log10 transformed p-value obtained by Cell-ID testing of the association of the gene signature with each of the evaluated pre-established signatures (displayed in rows). The heatmap color scale extends from dark blue (p value=1) to yellow (p-value = 10-2) to dark red (p-value = 10-10), with p values<10-10 fixed at this value). Non-significant associations (p value>10-2 after Benjamini Hochberg correction for the number of gene signatures tested) are shown in blue. The columns in the heatmaps were grouped by the reference cell-type label, as indicated by the colored bands at the top and in the associated legend.
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 46 Figure 4-6 Cell type prediction performance using reference immune cell signatures.Performance measured through Precision, recall, and F1 scores achieved by Cell-ID, AUCell, and SCINA cell type predictions on (A) CBMCs Cite-Seq data, and (B) PBMCs Reap-Seq data, for each of the blood cell types reported in the original publications. Boxplots summarize the corresponding scores for each method. The numbers above boxplots denote the global performance (macro F1 score, upper digits) and its standard deviation (lower digits), where the maximum and minimum values across methods are colored in black and grey, respectively.

  manually identify markers and by extension cell type, many methods have been implemented to transfer the cell labels from one dataset to another to facilitate cell-type classification. The seamless extraction of cell signatures from both reference and query allows CellID to perform cell-type classification. In that scope, Cell-ID provides two options for cell type matching across datasets: (i) Cell-ID(c), in which individual cells in a query dataset are matched to transcriptionally analogous cells in a reference dataset; and (ii) Cell-ID(g), in which individual cells in a query dataset are matched to cell group labels previously established in a reference dataset through clustering and/or expert annotation. Thus Cell-ID(c) provides cell-to-cell matching, whereas Cell-ID(g) performs group-to-cell matching from reference-to-query datasets. However, it should be noted that Cell-ID(g) performs no clustering whatsoever, as the cell groups in the reference dataset are provided as an input by the reference source.For the evaluation of Cell-ID(c) and Cell-ID(g), we searched for tissues profiled in several independent scRNA-seq datasets and meeting the following three conditions: (i) cell type labels curated through expert annotation in the original publications, (ii) containing at least one rare cell type (cell types accounting for less than 2% of the cells in a sample), and (iii) different sequencing protocols and/or different model organisms (i.e., humans and mice) used. Two tissues meeting these requirements were identified (Figure4-7):(A) Pancreatic islets: we considered three scRNA-seq datasets for pancreatic cells from human donors: (i) 8659 cells from four deceased donors healthy at the time of death profiled with the inDrop protocol(Baron et al. 246 ), (ii) 2126 cells from four deceased organ donors sequenced with CEL-seq2(Muraro et al. 31 ) and (iii) 2168 cells from six healthy donors and four donors with type-2 diabetes sequenced with Smart-seq2(Segerstolpe et al. 247 ). Baron dataset reported the greatest diversity of cell types and was chosen as the reference for this analysis. The cell types identified in Baron's human dataset included two exocrine cell types (acinar and duct cells), five endocrine cell types (alpha, beta, delta, gamma, and epsilon cells), three immune cell types (tissue-resident macrophages, mast cells, cytotoxic T cells), pancreatic stellate cells, endothelial cells and Schwann cells of neural crest origin. All of these cell types, except for Schwann cells and cytotoxic T cells, were reported byMuraro et al. and Segerstolpe et al. (B) Airway epithelium: three independent airway epithelial cell datasets from mice and human donors were obtained, including (i) 7662 tracheal epithelial cells from four mice profiled with 10X Genomics technology(Plasschaert et al. 44 ); (ii) 7586 airway tracheal cells from six mice sequenced with inDrop(Montoro et al. 43 ); (iii) 2970 primary bronchial epithelial cells from three human donors profiled with 10X Genomics technology(Plasschaert et al. 44 ).
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 47 Figure 4-7 Performance of Cell-ID cell-to-cell matching across independent scRNA-seq datasets from the same or different tissue of origin, within and across species.
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 4 Figure 4-8 tSNE representation of CellID cell type prediction tSNE representation of (A) human pancreatic islet cells from the Muraro (top panels) and Segerstolpe (bottom panels) datasets, and (B) airway epithelium cells from the Montoro's mouse dataset (top panels) and Plasschaert's human dataset (bottom panels). Cells are color-coded according to the cell type labels annotated in the original publications (left panels), as well as by the cell type predictions from Cell-ID(g) (middle panels), and CellID(c) (right panels).
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 489 Figure 4-8). Cell-ID cell-to-cell matching and group-to-cell matching were thus evaluated by assessing the cell-type agreement between the transferred labels and the original labels in the query dataset. Comparative benchmarking was performed against a representative set of alternative state-of-the-art methods covering major approaches for cell-matching or label transfer across scRNA-seq datasets (Supplementary File 3): (i) integration-based methods for cell-tocell matching across datasets based on reciprocal k-nearest neighbor analysis and projection in a common low-dimensional space (Seurat 138 , MNN 135 ); (ii) transcriptome similarity assessment without an integration step (scmap_cluster and scmap cell 196 , scID 197 and singleR 248 ); and (iii) machine learning-based methods training models through cross-validation in the reference dataset followed by prediction in the query dataset (CaSTle 206 , scPred, SCN 204 and CHETAH 200 ).Both Cell-ID(c) and Cell-ID(g) consistently reached high precision (>82% and >83%), recall ( >82% and >=76%) and F1 values (>74% and >74%, respectively) across all reference-to-query assignments evaluated (multinomial p-value < 2.2e-16 for all figures; Figure4-7 A, Figure4-9A-B, Supplementary File 9). Cell-ID performance was at least as good as that of all alternative state-of-the-art methods. Notably, Cell-ID obtained high-performance scores even in for cell-type matching across species, which proved challenging for most of the methods evaluated. We assessed the robustness of Cell-ID gene signatures further by focusing on the cell types present at low frequencies (<2%) in the previous query datasets: epsilon cells, tissue-resident macrophages, mast cells, and endothelial cells from pancreatic islet samples(Muraro et al. and Segerstolpe et al.), and PNEC, brush cells and ionocytes in the mouse and human airway epithelium datasets(Montoro et al. and Plasschaert et al., respectively). As expected, referenceto-query assignments for such rare cell types were generally more error-prone for all the methods evaluated, including Cell-ID (Figure4-7 B, Figure4-9 C-D). Nevertheless, Cell-ID performed better than the alternative methods, with salient scores for Cell-ID(g) for most of the rare cell types evaluated (median F1 values greater than 88%, respectively, with p value<1e-5 for all evaluated rare cell populations relative to expectations from a random binomial distribution).
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 49 Figure 4-9 Benchmark of CellID and other states of the art label transferring methods Precision and recall of Cell-ID cell-to-cell matching across independent scRNA-seq datasets from the same or different tissue of origin, within and across species. Performance achieved by Cell-ID(g), Cell-ID(c), and ten alternative state-ofthe-art methods (x-axis), measured through Precision (A and C), and Recall (B and D). Panels are analogous to the ones described in (A-B) legend.

of

  Muraro et al. and Segerstolpe et al. We thus explored possible enrichment in the Cell-ID gene signatures extracted for each of the 13 Schwann cells in theBaron et al. dataset for the 2126 and 2168 cells, respectively of the query datasets. Both Cell-ID(c) and Cell-ID(g) identified n=4 cells in the Muraro et al. dataset and n=2 cells in the Segerstolpe et al. dataset that had been initially labeled as ductal(Muraro et al. 31 ) or unclassified(Segerstolpe et al. 247 ) in the associated publications. These cells presented high expression levels of Schwann cell markers (SOX10, S100B, CRYAB, NGFR, CDH19, and PMP22) and of markers of response to nerve injury (SOX2, ID4, and FOXD3), as described byBaron et al. 246 . Accordingly, SOX10, S100B, CRYAB, NGFR, CDH19, and PMP22 ranked among the top 100 gene signatures associated with the four and two cells annotated as Schwann cells by Cell-ID (Figure 4-10), and these six genes were significantly upregulated in these cells relative to the other cells (Wilcoxon test p-value < 10 -3 , in both datasets). The identification of putative Schwann cells was replicated by Seurat, MNN, scID, SCN, SingleR, and scmap cluster, but missed by CaSTLe, scmap cell, scPred, and CHETAH, which labeled them as "other" or "unassigned". Moreover, functional enrichment analysis of the gene signatures of each of the four and two putative Schwann cells revealed significant enrichment in 62 Gene Ontology (GO) biological processes (median p-value across cells <0.01) for the Muraro et al. dataset and 26 GO biological processes for the Segerstolpe et al. dataset, with 10 terms common to the two sets (Supplementary File 1). Nervous system development (GO:0007399), including glial cell differentiation (GO:0010001) and axonogenesis (GO:0007409), were among the top 10 terms displaying enrichment in both sets (p-values less than or equal to 2.18e-05 and 2.98e-03, respectively), consistent with the neural crest origin of Schwann cells 249 . The prominent role played by Schwann cells in the myelination process 250 was, in turn, reflected in several functional terms and pathways for which significant enrichment was detected, including collagen fibril organization (GO:0030199) in the four cells from the Muraro dataset and myelination (GO:0042552) and collagen binding (GO:0005518) in the two cells from the Segerstolpe dataset. These signals were consistently reproduced with alternative pathway annotation sources such as KEGG 228 , Reactome 229 , and WikiPathways 230 (Supplementary File 1, Supplementary File 6).Overall, these results show that Cell-ID gene signatures are highly reproducible at both the cell and group levels, across independent datasets from the same tissue of origin, despite the use of different sequencing protocols, donors, and species. This reproducibility was robust even for rare cell types present at extremely low frequencies, demonstrating the ability of Cell-ID to extract biologically relevant gene signatures at individual cell resolution. In particular, matching across 87 datasets by Cell-ID is fully transparent in terms of the set of genes driving the hits, and is therefore fully interpretable in biological terms. This contrasts sharply with the situation for label transfer methods based on assessments of similarity over the entire transcriptome (e.g., Seurat, MNN, scmap) or machine-learning approaches, for which individual gene contributions are difficult to interpret (e.g., scPred, SCN).
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 4 Figure 4-10 Expression level of Schwann cell markers. Distribution of log-transformed normalized gene expression levels (y-axis) of Schwann cell markers (SOX10, S100B, CRYAB, NGFR, CDH19, and PMP22) across pancreatic islet cells from (A) Segerstolpe and (B) Muraro datasets. Values of their associated boxplots are represented in yellow for the n=4 and n=2 cells in the Muraro and Segerstolpe datasets, respectively, which were identified by both Cell-ID(c) and Cell-ID(g) as putative Schwann cells, and in grey for the rest of cells. Brackets and p-values indicate the results of two-sided Wilcoxon rank-sum tests comparing the distribution across putative Schwann cells versus the other cells in the dataset.

datasets, as described in section 4 . 4 )

 44 and the mouse small intestinal epithelium (single-cell dataset from Haber et al255 , for 7216 cells from four mice sequenced with the inDrop protocol). The mouse airway and intestinal epithelia display major differences in terms of their cell-type composition.BothPlasschaert et al. and Montoro et al. reported basal, secretory (including goblet in Montoro), ciliated cells, PNEC, ionocytes, and brush/tuft cells in the airway epithelium (Section 4.4). Haber et al. performed single-cell analyses on the intestinal epithelium in which they identified enterocytes (45%), transit-amplifying cells (21%), stem cells (18%), goblet cells (7%), Paneth cells (4%), enteroendocrine cells (4%) and brush/tuft cells (2%) (Figure4-11). Cell-ID(g) and Cell-ID(c) were applied with default parameters for reference-to-query assignments from Plasschaert and Montoro's mouse airway epithelial cells to Haber's mouse intestinal epithelial cells. Each cell in the mouse intestinal epithelial dataset was assigned to the cell type from the mouse airway epithelial for which it presented the lowest significant p-value for gene signature enrichment (or was left unassigned if no significant hits were found). Both Cell-ID(g) and Cell-ID(c) identified brush/tuft, but also endocrine cells and goblet cells in the intestinal epithelium, based on brush/tuft, PNEC, and secretory/goblet gene signatures, respectively, extracted from the airway epithelium (Figure4-7 C and Figure 4-11 B).

Figure 4 -

 4 Figure 4-11 Overview of label transferring between Airway and intestinal epithelium t-SNE representation of 7216 cells from mouse small intestinal epithelium, where dots representing cells are color-coded according to (A) manual cell type annotations provided in Haber et al. and (B) Cell-ID(c) and Cell-ID(g) cell type predictions (top and bottom panels, respectively), using as a reference the mouse airway epithelial gene signatures extracted from Montoro and Plasschaert datasets (left and right panels, respectively). Cells with no significant enrichments were left unassigned and are displayed in grey. (C) Precision, Recall and F1 score (y-axis), achieved by Cell-ID(g), Cell-ID(c), and ten alternative state-of-the-art methods (x-axis), for the label transferring results depicted in (B).

Figure 4 -(Figure 4

 44 Figure 4-12 Highlight of SCC in olfactory epithelium datasets. UMAP representation of olfactory epithelium cells from (A) Fletcher et al. and (B) Wu et al. datasets. The inset panels focus on cells identified by Cell-ID as putative SCCs.Cells represented by dots are color-coded according to (i) their Cell-ID(g) -log10 enrichment p-value using as a reference the mouse brush/tuft gene signatures extracted from mouse airway epithelium and small intestinal epithelium, as indicated in the panel titles; (ii) the log-normalized expression of two solitary chemosensory cells markers, i.e., interleukin 25 (IL25) and G protein subunit alpha Transducin 3 (GNAT3); and (iii) The -log10 enrichment p-values for two functional terms, i.e., "leukotriene biosynthetic process" (Gene Ontology term GO:0019370) and "interleukin-17-mediated signaling pathway" (GO:0097400). The color scale throughout panels extends from gray (indicating a non-significant p-value or a lack of detection of gene expression) to red, corresponding to a significant p-value or high gene expression level.

Figure 4 -Figure 4 -

 44 Figure 4-13 Highlight of pathways enriched in putative SCCs. Boxplot showing the top 5 most enriched pathways in Wu et al. (up) and Fletcher et al. dataset. The p-values in the right represent the one-tailed Wilcoxon test between the putative SCC and the other cells.

Figure 4 -

 4 Figure 4-16 Prediction confusion matrix between Tabula Muris and Mouse ATAC Atlas.Heatmap representing the confusion matrix between the manually curated cell type annotations from the Mouse ATAC atlas (displayed per rows) and the Cell-ID(c) cell type predictions (displayed per columns) using the gene-signatures extracted from the manually annotated cell types provided by the Tabula Muris mouse cell atlas. The color code in the heatmap represents the ratio r of the cell types displayed per rows that are allocated in the cell types represented per columns, ranging from white (r = 0) to red (r =1).

Figure 4 -

 4 Figure 4-17 Performance of CellID in cross omics prediction. Performance measured as F1 score (y-axis) achieved by Cell-ID(g), Cell-ID(c), and ten alternative state-of-the-art methods (x-axis), in the cell type label transferring from Tabula Muris scRNAseq to scATAC Atlas for 10X (top panel) and smarts-seq (bottom panel), as depicted in Supplementary Figure 4-15.

  Reactome, and WikiPathways. Functional enrichment analysis may help with the functional interpretation of cell heterogeneity and assist in cell type identification, as illustrated for Schwann cells (Section 4.4) and Solitary Chemosensory Cells (SCCs, Section 4.5) in the exploratory analysis of pancreas and airway epithelium single-cell RNA-seq datasets, respectively. Thus, functional enrichments can be visualized in a low-dimensionality representation of cells by coloring each cell with an intensity proportional to its -log10 p-value for a query functional and biological pathway (Figure4-18 E-F). Cell-ID R package provides per-cell functional enrichment analysis as a built-in function, which stores the enrichment outputs as additional cell attributes in standard R single-cell data structures, such as SingleCellExperiment and Seurat objects. Such seamless integration allows other single-cell RNA-seq tools to use enrichment scores in alternative cell visualizations, e.g., UMAP 155 or cell diffusion maps 258 .

Figure 4 -

 4 Figure 4-18 Novel visualization options provided by Cell-ID for the explorative analysis of single-cell RNA-seq data. Simultaneous MCA representation of prototypical marker genes (indicated by back cross symbols and gene name labels) on (A) Baron human pancreatic cells, and (C) Plasschaert mouse airway cells, color-coded according to the cell type labels annotated in the original publication. (B) and (D) Equivalent representation of cells in MCA space as depicted in (A) and (C) where cells are color-coded according to their levels of expression for the corresponding selected markers. (E) and (F) Equivalent representation of cells in MCA space as depicted in (A) and (C) where cells are color-coded according to their functional enrichment -log10 p-value for a given functional term or biological pathway, as indicated in the figure titles.

Figure 4 -

 4 Figure 4-19 Computational times and memory consumption of label transfer methods on simulated datasets. (A and B) Line plots showing on the y-axis (A) the computation time and (B) the total memory allocation as a function of the number of cells (x-axis) randomly sampled from the Tabula Muris 10X data that were used as query dataset for cell type label transferring from a reference dataset of 5000 randomly sampled cells from the Tabula Muris SmartSeq dataset. Results are plotted for Cell-ID(g), Cell-ID(c), and the ten state of the art methods evaluated. (C and D) Line plots showing on the y-axis (C) the computation time and (D) the total memory allocation as a function of the number of cells (x-axis) randomly sampled from the Tabula Muris SmartSeq data used as a reference dataset for cell type label transferring on a query dataset of 5000 randomly sampled cells from the Tabula Muris 10X data. Results are plotted for Cell-ID(g), Cell-ID(c), and the ten state of the art methods evaluated.
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 51 Figure 5-1 Two dimensional embeddings of cells and genes Exploratory usage of CellID package to plot in a two-dimensional space both cells and genes. (A) Regular UMAP of a PBMC dataset with 2500 cells. (B) UMAP obtained using the MCA cell and gene coordinates. The black dot represents genes. (C) Same plot as (B) but keeping only some cell type markers for the genes.

Figure 5 - 2

 52 Figure 5-2 Hardware requirements for single-cell analysis.

  Bioconductor environment, and thus, most single-cell packages on Bioconductor are compatible with SingleCellExperiment classes. The base package does not provide useful functions by itself, and the user must gather a comprehensive toolset to use it. On the other hand, Seurat is packed with a handful of functions in its package, and most analyses can be performed on the go without the need for any other packages.
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 54 Figure 5-4 Interoperability with other single-cell frameworks with Seurat.

  , UCSC Cell Browser 269 , Vision 270 , scSVA 271 , Singlecell Explorer 272 , and Schnapps 273 are designed with the sole purpose of offering interactive analysis and visualization capabilities. A recent publication compares this software in detail 274 . These visualization tools are very important, and I strongly advise them in the sense that it facilitates the transfer of information from bioinformaticians to biologists and clinicians by lowering the entry-level of single-cell analysis and allowing comfortable visual inspection. However, these visual tools do not scale to a very important number of cells and are especially suited with small projects with less than 20000 cells. As CellID is based on Seurat and SingleCellExperiment object, MCA based visual representation is compatible with the iSEE or UCSC Cell browser.
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 56 Figure 5-6 Overview of single-cell capabilities for personalized cancer treatment (A) Bulk analysis of a tumor identifies the most abundant malignant cells (averaged signals) and suggests a drug to target them only. (B) scRNA-seq resolves each tumor subpopulations and the corresponding biomarkers to tailor the treatment.(C) Longitudinal profiling of patient samples with scRNA-seq (or biomarkers discovered with it) allows to monitor of disease state, and hence a better treatment timing can be chosen. (D) Analysis of samples before and after treatment may provide insight on subsets that are resistant to a given therapy by unveiling their biomarkers and mechanisms of resistance. (E) Because of its sensitivity, scRNA-seq might also be used in a clinical setting to detect rare disease-associated cells, which would have been missed by bulk analyses. Taken from "Single-cell analyses to tailor treatments"279 

  developed statistical methods like MOFA 281 or SingleCellFusion 282 . Remarkably, recent technological advances in single-cell sequencing protocol enabled the parallel sequencing of multiple omics (Figure 5-8), including single-cell genome and transcriptome (G&T-seq) 283 , singlecell DNA methylation and transcriptome (scM&T-seq) 284 , single-cell chromatin accessibility, and transcriptome (sci-CAR) 285 , and single-cell transcriptome and methylation (scNMT-seq) 286 , and most remarkably, the simultaneous sequencing of 3 different omics; genome, transcriptome, and
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 57 Figure 5-7 Schematic overview of single-cell multi-modalities and its applications.

Figure 5 - 8

 58 Figure 5-8 Multimodality in single-cell technologies. Representation of the different single-cell sequencing protocols enabling the simultaneous capture of transcriptome and another omic. The color shading represents the different omics that are captured in conjunction with the transcriptome. Image taken from https://github.com/arnavm/multimodal-scRNA-seq.

#

  Performing per-cell hypergeometric tests against the gene signature collect ion HGT_pancreas_gs <-RunCellHGT(Baron, pathways = pancreas_gs, dims = 1:50, n.f eatures = 200) # For each cell, assess the signature with the lowest corrected p-value (max -log10 corrected p-value) pancreas_gs_prediction <-rownames(HGT_pancreas_gs)[apply(HGT_pancreas_gs, 2, which.max)]

  OriginalPlot <-DimPlot(Baron, reduction = "tsne", group.by = "cell.type") + scale_color_manual(values = ggcolor) + theme(legend.text = element_text(size =10), aspect.ratio = 1) Predplot1 <-DimPlot(Baron, reduction = "tsne", group.by = "pancreas_gs_predi ction") + scale_color_manual(values = ggcolor) + theme(legend.text = element_text(size =10), aspect.ratio = 1) ggarrange(OriginalPlot, Predplot1, legend = "top",common.legend = T)

  HGT_all_gs <-RunCellHGT(Baron, pathways = all_gs, dims = 1:50) all_gs_prediction <-rownames(HGT_all_gs)[apply(HGT_all_gs, 2, which.max)] all_gs_prediction_signif <-ifelse(apply(HGT_all_gs, 2, max)>2, yes = all_gs_ prediction, "unassigned")

#

  Extracting per-cell gene signatures from the Baron dataset with Cell-ID(c) Baron_cell_gs <-GetCellGeneSet(Baron, dims = 1:50, n.features = 200) # Extracting per-group gene signatures from the Baron dataset with Cell-ID(g) Baron_group_gs <-GetGroupGeneSet(Baron, dims = 1:50, n.features = 200, group .by = "cell.type") Preprocessing and MCA assessment of the Segerstolpe dataset used as the query set # Normalization, basic preprocessing and MCA dimensionality reduction assessm ent Seger <-NormalizeData(Seger) Seger <-FindVariableFeatures(Seger) Seger <-ScaleData(Seger) Seger <-RunMCA(Seger, nmcs = 50) #> 0.825 sec elapsed #> 10.955 sec elapsed #> 0.508 sec elapsed Seger <-RunPCA(Seger) Seger <-RunUMAP(Seger, dims = 1:30) Seger <-RunTSNE(Seger, dims = 1:30) tSNE <-DimPlot(Seger, reduction = "tsne", group.by = "cell.type", pt.size = 0.1) + ggtitle("tSNE") + theme(aspect.ratio = 1) UMAP <-DimPlot(Seger, reduction = "umap", group.by = "cell.type", pt.size = 0.1) + ggtitle("UMAP") + theme(aspect.ratio = 1) ggarrange(tSNE, UMAP, common.legend = T, legend = "top")

#

  Calculate percentage of mitochondrial genes SeuratCon[["percent.mt"]] <-PercentageFeatureSet(SeuratCon, pattern = "^MT-" ) # Visualize the different quality metrics VlnPlot(SeuratCon, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3, pt.size = 0.1) # Filter low quality cells from Seurat object SeuratCon <-subset(SeuratCon, subset = nFeature_RNA > 200 & nFeature_RNA < 2 500 & percent.mt < 5)

#

  Library Size Normalization SeuratCon <-NormalizeData(SeuratCon, scale.factor = 10000) # Find Variable Genes SeuratCon <-FindVariableFeatures(SeuratCon, nfeatures = 3000) top20 <-head(VariableFeatures(SeuratCon), 20) # plot variable features HVF1 <-VariableFeaturePlot(SeuratCon,pt.size = 0.1) + NoLegend() HVF2 <-LabelPoints(plot = HVF1, points = top20, repel = TRUE) HVF2 # Scale Data SeuratCon <-ScaleData(SeuratCon, features = rownames(SeuratCon))

#

  Calculate PCA coordinates using HVF SeuratCon <-RunPCA(SeuratCon, npcs = 30, features = VariableFeatures(SeuratC on)) #Plot PCA PCA <-DimPlot(SeuratCon,reduction = "pca", pt.size = 0.1) + NoLegend() #Plot PCA Variance Elbow <-ElbowPlot(SeuratCon) # Plot expression of gene driving principal component PCAgenes <-DimHeatmap(SeuratCon, dims = 1:2, balanced = TRUE, nfeatures = 1 0, fast = FALSE) PCAgenes[[1]] <-PCAgenes[[1]] + ggtitle("PC1") PCAgenes[[2]] <-PCAgenes[[2]] + ggtitle("PC2") # Summary (PCA + Elbow) / PCAgenes

  SeuratCon <-RunTSNE(SeuratCon, dims = 1:30, reduction.name = "tsne") TSNE <-DimPlot(SeuratCon, reduction = "tsne", pt.size = 0.1) + NoLegend() + ggtitle("tSNE") SeuratCon <-RunUMAP(SeuratCon, dims = 1:30) UMAP <-DimPlot(SeuratCon, reduction = "umap", pt.size = 0.1) + NoLegend() + ggtitle("UMAP") TSNE + UMAPClusteringNow that we have a clean low dimensional space with PCA, we can perform clustering analysis to investigate the different subpopulations in our data. By default Seurat uses graph clustering. There is so much clustering methods available for single cell but graph clustering is one of the most robust and most efficient in terms of scalability. If you're interested you can check among other SC3, SCAAF, TooManyCells as potential alternatives.

#

  Construct graph SeuratCon <-FindNeighbors(SeuratCon, dims = 1:30, reduction = "pca", k.param = 20) SeuratCon <-FindClusters(SeuratCon, resolution = 0.1, verbose = F) SeuratCon <-FindClusters(SeuratCon, resolution = 2, verbose = F) SeuratCon <-FindClusters(SeuratCon, resolution = 0.5, verbose = F) res.0.1 <-DimPlot(SeuratCon, group.by = "RNA_snn_res.0.1", reduction = "umap ", label = T) + ggtitle("res.0.1") + NoLegend() res.0.5 <-DimPlot(SeuratCon, group.by = "RNA_snn_res.0.5", reduction = "umap ", label = T) + ggtitle("res.0.5") + NoLegend() res.2.0 <-DimPlot(SeuratCon, group.by = "RNA_snn_res.2", reduction = "umap", label = T) + ggtitle("res.2.0") + NoLegend() res.0.1 + res.0.5 + res.2.0

  AllSeurat <-merge(x = SeuratCon, y = list(SeuratPD1, SeuratPD5)) AllSeurat <-NormalizeData(AllSeurat) AllSeurat <-FindVariableFeatures(AllSeurat, nfeatures = 3000) AllSeurat <-ScaleData(AllSeurat) AllSeurat <-RunPCA(AllSeurat, npcs = 30) AllSeurat <-RunUMAP(AllSeurat, dims =1:30) DimPlot(AllSeurat, group.by = "cell_type", split.by = "sample")

  AllSeurat <-RunHarmony(AllSeurat, dims.use = 1:30, group.by.vars = "sample", sigma = 0.2, reduction.save = "harmony") ggHarmony <-DimPlot(AllSeurat, reduction = "harmony", group.by = "sample", c ells = sample(colnames(AllSeurat))) AllSeurat <-RunUMAP(AllSeurat, dims = 1:30, reduction = "harmony", reductio n.name = "humap") HUMAP_sample <-DimPlot(AllSeurat, reduction = "humap", group.by = "sample", cells = sample(colnames(AllSeurat))) HUMAP_celltype <-DimPlot(AllSeurat, reduction = "humap", group.by = "cell_t ype") (HUMAP_sample + HUMAP_celltype) UMAP_batch <-DimPlot(AllSeurat, reduction = "umap", group.by = "cell_type")

  ccgenes <-unlist(cc.genes.updated.2019) # Order table by log fold change and filter Mitochondrial, ribosomal, cell cy cle genes MonoMarkersArranged <-MonoMarkers %>% dplyr::arrange(-avg_logFC) %>% filter(!str_detect(gene,("RP|MT|ATP"))) %>% filter(!gene %in% ccgenes) tibble(MonoMarkersArranged)Functionnal AnalysisLet's see which gene modules are enriched in the patient monocyte with CellID. Here we will use the Hallmark gene signatures that is integrated in the CellID package but other signatures can be downloaded in MsigDB. To perform the enrichment analysis first RunMCA to add multiple correspondence analysis as a new dimensionality reduction. Then use RunCellHGT to perform hypergeometric test with the pathway of your choice

  "ACVR1" "PMEPA1" # MCA AllSeurat <-RunMCA(AllSeurat, nmcs = 30) ## 7.483 sec elapsed ## 11.818 sec elapsed ## 3.579 sec elapsed HallmarkResults <-RunCellHGT(AllSeurat, pathways = Hallmark, dims = 1:30) AllSeurat@assays[["Hallmark"]] <-CreateAssayObject(HallmarkResults)

FeaturePlot

  (object = AllSeurat, features = c("INFLAMMATORY-RESPONSE","TNFA-SI GNALING-VIA-NFKB"), reduction = "humap", order= T) VlnPlot(AllSeurat, features = c("INFLAMMATORY-RESPONSE","TNFA-SIGNALING-VIA-N FKB"),idents = "CD14_Mono",group.by = "sample")

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 -1 Cumulus cloud-based single-cell analysis scalability benchmark

 1 

			Time		Cost
		CellRanger + Seuratv3	CellRanger + SCANPY	Cumulus	Cumulus
	Total	10d,5h,38min	9d,5h,35min	15h15 min	137.15$
	Mkfastq	13h,18min	13h,18min	7h,54min	17$
	Count	8d,14h,12min	8d,14h,12min	6h,44min	120$
	Analysis	26h,8min	2h,5min	37min	0.15$

Figure 1-18). In contrast

  

	Due to its relatively low cost and high throughput, microfluidic droplet protocols that encapsulate
	single cells in a uniquely barcoded droplet gained huge popularity. However, these technologies
	are not flowless and produce from time to time doublet/multiplet containing several cells. These
	doublets can be either homotypic or heterotypic. Homotypic doublet combines two cells of the
	same cell type/state and thus similar profile cells, whereas heterotypic doublets contain distinct
	transcriptional patterns. While homotypic doublets are rarely a problem, heterotypic doublets
	translate into a biologically nonexistent mixed signal that can jeopardize the downstream analysis
	and thus must be removed. Since the number of cells in a droplet follows a Poisson distribution,
	doublets number can be attenuated by loading fewer cells during the capture but ultimately leads
	to less output and increases the overall cost per cell.
	Several machine learning methods, such as Scrublet 104 , DoubletFinder 105 , and Solo 106 , have been
	developed to counter this phenomenon. These methods simulate doublets in silico by averaging
	two singlets' expression profiles and then training a classifier that will be eventually used to
	classify doublets on the original dataset.
	Scrublet and DoubletFinder, use low dimensional representation based on SVD in conjunction
	with kNN classifier (, Solo uses a nonlinear embedding coupled with a
	neural network classifier, which, in theory, performs better against large datasets such as single-
	cell. To this day, no comprehensive, third party benchmark has been performed on doublet
	detection methods. However, computational wise, Scrublet is by far the most efficient.
	Alternatively, demultiplexing approaches can also help to detect inter-sample doublets. It can be
	done through bench protocols like cell hashing or analytical methods such as souporcell 107 ,
	Vireo 108 , or scSplit 109 that can infer cell sample origins by using variants detected in scRNA-seq
	reads. Demultiplexing samples allows identifying both homotypic and heterotypic cross-genotype
	doublets that may have highly similar transcriptional profiles.

  Lun et al. suggest increasing the pseudo count value and filter out thoughtfully, whereas Townes et al. advise removing the log transformation step generally speaking.

  195 , scmap 196 , scID 197 , sciBet 198 , CHETAH 200 ; for the integration based methods, Seurat anchortransfer 138 is the most popular, but pretty much any integration methods such as MNN can be modified to be used as a label transfer methods; and last, for machine learning methods we can particularly cite scVI 201 , ACTINN 202 , LAmbDA 203 , for Python packages and SingleCellNet 204 , scPred 205 and CaSTLe 206 for R (Table

  𝑔𝑔 𝑘𝑘𝑗𝑗 of G representing the coordinate of a column k in the dimension represented by the eigenvector 𝑢𝑢 �⃗ 𝑗𝑗 of U, corresponds to the weighted average (centroid) of the N row coordinates 𝜙𝜙 𝑛𝑛𝑗𝑗 from Φ, where weights are given by 𝑥𝑥 𝑛𝑛𝑘𝑘 ∑ �⃗ . At this stage, only the gene category coordinates 𝑔𝑔 ⃗ 𝑝𝑝 + , conveying the presence of gene expression relative to the maximum per gene, are retained for downstream analysis. From the previous expressions, the Euclidean distances 𝑑𝑑 𝑛𝑛𝑝𝑝 (𝜙𝜙 �⃗ 𝑛𝑛, 𝑔𝑔 ⃗ 𝑝𝑝 + ) can be computed for each cell n and each gene p in the dataset. The genes 𝑔𝑔 𝑝𝑝 constituting the signature Γ 𝑛𝑛 associated with a cell n are obtained from its top 𝛾𝛾 closest genes in MCA space: A default value of 𝛾𝛾 = 200 was established throughout this work, and ties resolved with random ranks. More generally, the genes 𝑔𝑔 𝑝𝑝 constituting the signature Γ Θ associated with a group of cells Θ can be obtained from the Euclidean distances 𝑑𝑑 𝑝𝑝 (𝜙𝜙 �⃗ 𝜃𝜃, 𝑔𝑔 ⃗ 𝑝𝑝 + ) between each gene p and the group centroid 𝜙𝜙 �⃗ 𝜃𝜃 , obtained from the geometric center of the 𝜙𝜙 �⃗ 𝑛𝑛 vectors associated with the cells

	𝑥𝑥 𝑛𝑛𝑘𝑘 the frequency conditioned by columns of the corresponding values in the fuzzy indicator matrix 𝑁𝑁 𝑛𝑛=1 ⁄ , i.e., 𝑋𝑋 𝑁𝑁,𝐾𝐾 : 𝑔𝑔 𝑘𝑘𝑗𝑗 = 1 ∑ 𝑥𝑥 𝑛𝑛𝑘𝑘 𝑁𝑁 𝑛𝑛=1 � 𝑥𝑥 𝑛𝑛𝑘𝑘 * 𝜙𝜙 𝑛𝑛𝑗𝑗 𝑁𝑁 𝑔𝑔 ⃗ 𝑝𝑝 + + 𝑔𝑔 ⃗ 𝑝𝑝 𝒏𝒏 �𝒅𝒅 𝒏𝒏𝒏𝒏 (𝝓𝝓 �� �⃗ 𝒏𝒏, 𝒈𝒈 ��⃗ 𝒏𝒏 + � ≤ 𝜸𝜸)� -= 0 𝚪𝚪 𝒏𝒏 = �𝒈𝒈 𝒏𝒏 | ∀𝒏𝒏: 𝐫𝐫𝐦𝐦𝐢𝐢𝐫𝐫 𝑛𝑛 ∈ Θ.

𝑛𝑛=1

Thus, in MCA space, the closer a column (i.e., gene category) is to a row (i.e., gene), the more specific it is. Besides, each set of Qp = 2 categories for each gene p is centered at the origin: i.e. 𝚪𝚪 𝚯𝚯 = �𝒈𝒈 𝒏𝒏 | ∀𝒏𝒏: 𝐫𝐫𝐦𝐦𝐢𝐢𝐫𝐫 𝒏𝒏 �𝒅𝒅 𝒏𝒏𝒏𝒏 (𝝓𝝓 �� �⃗ 𝜽𝜽, 𝒈𝒈 ��⃗ 𝒏𝒏 + � ≤ 𝜸𝜸)�

  Plasschaert et al. (C) t-SNE representation of 7216 cells from mouse small intestinal epithelium 29. Dots representing cells are colored according to Cell-ID(g) cell type predictions, using as a reference the mouse airway epithelial gene signatures extracted from Plasschaert et al., as schematically represented in the panels above. Intestinal epithelium cell types with significant enrichment p-values are colored in green (goblet), brush/tuft (light blue), and dark blue (endocrine). Cells with significant enrichments in airway epithelial signatures without an analogous cell type in intestinal epithelium are represented in black. Intestinal epithelium cells with no significant enrichments were left unassigned and are displayed in grey. For comparison,

the associated manual cell type annotations provided in 29 are represented in Figure 4-11 A. (D) F1 score (y-axis)

Table 5 -1: Comparison of interactive single-cell data visualization methods.

 5 

The table describes the capabilities in terms of visualization and analysis of popular interactive tools. The table is taken from "Comparison of visualization tools for single-cell RNAseq data"

274 

  Description The exhaustive exploration of human cell heterogeneity requires the unbiased identification of molecular signatures that can serve as unique cell identity cards for every cell in the body. However, the stochasticity associated with high-throughput singlecell RNA sequencing has made it necessary to use clustering-based computational approaches in which the transcriptional characterization of cell-type heterogeneity is performed at cell-subpopulation level rather than at full single-cell resolution. We present here Cell-ID, a clustering-free multivariate statistical method for the robust extraction of per-cell gene signatures from single-cell RNA-seq. Cell-ID allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and single-cell omics protocols. Cell-ID is distributed as an open-source R software package: https://github.com/RausellLab/CelliD. HgProteinCodingGenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 integrateGSEASeurat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 MgProteinCodingGenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 pairDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 plotReducedDimMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 RunCellGSEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 RunCellHGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 RunGroupGSEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 RunMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 RunMCDMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 RunMCTSNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

	2		R topics documented:
		fastmatch,	
		matrixStats,	
	Index	ggplot2,	27
		ggrepel,	
	Rcpp, CellID-package BiocParallel, SummarizedExperiment, Multiple Correspondence Analysis on Single Cell for Joint Dimension-ality Reduction of Gene and Cell, Cells Geneset Extraction and Gene-fgsea set Enrichment Analysis
	Suggests knitr, rmarkdown,	Package 'CellID'
		readr, BiocStyle	October 4, 2020
	Type Package VignetteBuilder knitr	
	Title Unbiased Extraction of Single Cell Identity using Multiple Correspondence Analysis RoxygenNote 6.1.1
	Version 1.0.0 biocViews RNASeq, SingleCell, DimensionReduction, Clustering, GeneSetEnrichment, GeneExpres-
		sion, ATACSeq	
	LinkingTo Rcpp, RcppArmadillo
	R topics documented:
	Depends R (>= 3.6),	
		Seurat,	
		SingleCellExperiment	
	License MIT + file LICENSE	
	Encoding UTF-8	
	LazyData true	
	Imports RcppArmadillo,	
		stats,	
		utils,	
		grDevices,	
		Matrix,	
		plotly,	
		RColorBrewer,	
		tictoc,	
	annotations: Reactome 229 , KEGG 228 , WikiPathways 230 , GO biological process 227 , GO molecular scater,
	stringr, function, and GO cellular component, collectively gathering a total of 8709 terms. Gene sets irlba,
	associated with functional pathways, and ontology terms were obtained as provided in the scales,
	data.table, enrichr 233 website http://amp.pharm.mssm.edu/Enrichr/#stats. (Supplementary File 6) glue,
		pbapply,	
		umap,	
		Rtsne,	
		reticulate,	
		destiny,	
			1

CellID-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 checkCellIDArg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 DimPlotMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 DistSort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 fgseaCellID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 GetCellGeneDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 GetCellGeneRanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 GetCellGeneSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 GetGeneCellCoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 GetGroupCoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 GetGroupGeneDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 GetGroupGeneRanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 GetGroupGeneSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 GetGSEAMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 GO_biological . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Hallmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 RunMCUMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 setDimMCSlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 seuratPbmc

  traction of per-cell gene signatures from single-cell RNA-seq. Cell-ID allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and single-cell omics protocols. Cell-ID is distributed as an open-source R software package: https://github.com/RausellLab/CelliD.

		DimPlotMC fgseaCellID
	Arguments	
	checkCellIDArg X fgseaCellID	Check for CellID arguments a seurat object reworked fgsea for ram and speed efficiency in CellID
	reduction	Which dimensionality reduction to use. If not specified, searches for mca.
	dims	Dimensions to plot, must be a two-length numeric vector specifying x-and y-
	Description Description	dimensions
	Check for CellID arguments features character vector of features to plot, must be present in the specified dimension
	loadings reworked fgsea for ram and speed efficiency in CellID
	Usage size.feature integer indicating size of geom_point for features
	checkCellIDArg(X, group.by, reduction, dims, features, cells) size.feature.text Usage
	integer indicating size of geom_text for features fgseaCellID(pathways, stats, nperm = 1000, minSize = 10,
	## S3 method for class 'Seurat' as.text logical indicating as to include text label for feature plotting, will produce warn-maxSize = 500, gseaParam = 0)
	checkCellIDArg(X, group.by = NULL, reduction, dims, ing if TRUE and length(features) > 50
	features = NULL, cells = NULL)
	... Arguments	Other arguments passed to DimPlot
	## S3 method for class 'SingleCellExperiment' pathways List of gene sets to check checkCellIDArg(X, reduction, dims, features = NULL, cells = NULL, group.by = NULL) Value stats Named vector of gene-level stats. Names should be the same as in 'pathways'
	A ggplot object nperm Author(s) Arguments	Number of permutations to do. Minimial possible nominal p-value is about 1/nperm
	Maintainer: Akira Cortal <akira.cortal@institutimagine.org> X Seurat or SingleCell Experiment Object Examples minSize Minimal size of a gene set to test. All pathways below the threshold are ex-
	group.by seuratPbmc <-RunMCA(seuratPbmc, nmcs = 5) Name of meta.data or ColData column. cluded.
	reduction seuratPbmc <-DimPlotMC(seuratPbmc, features = Seurat::VariableFeatures(seuratPbmc)) Which dimensionality reduction to use, must be based on MCA.
	dims	A vector of integers indicating which dimensions to use of specified reduction
		embeddings and loadings.
	features	Character vector of feature names to subset feature coordinates. If not specified
	DistSort	will take all features available from specified reduction loadings. Sort Gene Cell Distance Matrix
	cells	Character vector of cell names to subset cell coordinates. If not specified will
		take all features available from specified reduction Embeddigns.
	Value Description	
	list of corrected arguments if no error is thrown. Sort Gene Cell Distance Matrix
	Usage	
	DimPlotMC DistSort(distance) Seurat DimPlot for MCA like Dimensionality Reduction
	Arguments	
	Description	
	distance	distance matrix with features at rows and cell at columns
	Small modification of the regular Seurat DimPlot function to enable plotting features for mca like
	dimensionality reduction.
	Value	
	list of ranking of genes by cells

Usage

DimPlotMC(X, reduction = "mca", dims = c

(1, 2)
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Load Data

To illustrate Cell-ID usage we will use throughout this vignette two publickly available pancreas single-cell RNA-seq data sets provided in [START_REF] Baron | A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter-and Intra-cell Population Structure[END_REF] and Segerstolpe et al. 2016. We provide here for convinience the R objects with the raw counts gene expression matrices and associated metadata #read data BaronMatrix <-readRDS(url("https://storage.googleapis.com/cellid-cbl/Baron Matrix.rds")) BaronMetaData <-readRDS(url("https://storage.googleapis.com/cellid-cbl/Baron MetaData.rds")) SegerMatrix <-readRDS(url("https://storage.googleapis.com/cellid-cbl/Seger stolpeMatrix.rds")) SegerMetaData <-readRDS(url("https://storage.googleapis.com/cellid-cbl/Seger stolpeMetaData2.rds"))

Data input formats

Cell-ID use as input single cell data in the form of specific S4objects. Curreltly supported files are SingleCellExperiment from Bioconductor and Seurat Version 3 from CRAN. For downstream analyses, gene identifiers corresponding to official gene symbols are used.

Global matching accuracy was evaluated by analyzing cell-type labeling's concordance with the original cell-type annotations from the corresponding publications (Supplementary File 5).

Comparative benchmarking was performed against a representative set of alternative state-ofthe-art methods covering major approaches for label transfer or cell-matching across scRNA-seq datasets (Supplementary File 3), as previously described Section 4.4. Cell-ID(g) yielded high precision, recall and F1 scores, clearly outperforming all the other methods evaluated (Figure 4567D, Figure 456789, and Supplementary File 10). Similar results were obtained when the Plasschaert or Montoro mouse airway epithelial cells were used as the reference set. Alternative methods, including Cell-ID(c), performed less well, by contrast to the results obtained for label transfer between samples from the same tissue of origin (Section 4.4). This lower performance was driven by many false positives (i.e. incorrect label transfer from the reference to the query dataset), resulting in low precision and low F1 scores. By contrast, correct label assignment rates remained high for Cell-ID(g), which did not assign labels from the reference to the query set in the absence of significant statistical support. The higher performance of Cell-ID(g) than of Cell-ID(c) suggests that group-based gene signatures are more robust than individual cell-based signatures for cell-type matching across samples from different tissues of origin.

We then searched for olfactory epithelium single-cell datasets to evaluate the capacity of Cell-ID to identify solitary chemosensory cells (SCCs) by projecting brush/tuft signatures extracted from the airway and intestinal epithelia. Two datasets from published works were identified: (i) Wu et al 256 , in which a total of 9126 olfactory epithelium cells from mice aged 0, 3, 7, and 21 days were sequenced with the 10X Genomics protocol, and (ii) Fletcher et al. . 257 , in which 849 cells from mice aged 21-28 days were sequenced with the Smart-Seq2 protocol. The mouse olfactory epithelium has a cell-type composition different from those of the airway and intestinal epithelia.

Both Wu et al. and Fletcher et al. reported the presence of transitional horizontal basal cells, resting horizontal basal cells, microvillous cells, mature sustentacular cells, mature olfactory sensory neurons, immediate neuronal precursors, immature sustentacular cells, immature olfactory sensory neurons, globose basal cells, and unknown/unlabeled cells. However, neither of these studies reported the presence of SCCs among the cells sequenced.

Nevertheless, these two datasets provided us with an opportunity to illustrate the capacity of Cell-ID for exploratory cell-type scanning on single-cell datasets of a query tissue, using gene signatures extracted from single-cell datasets for a set of reference tissues. Cell-ID(g) was used to evaluate the presence in the olfactory epithelium of cells with the tuft/brush cell gene signatures extracted from the airway and intestinal epithelium, as described above. Cell-ID(g) identified a total of 37 cells in the Wu dataset and 5 cells in the Fletcher dataset displaying gene signatures with significant enrichment in the genes of the Tuft/brush cell signatures extracted from the airway epithelium (dataset from Plasschaert et al [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF].

respectively. Cell-type nomenclature equivalences between the Tabula Muris and the ATAC Atlas datasets are presented in Supplementary File 5. Comparisons were made across datasets based on gene expression matrices (scRNA-seq) and gene activity scores (scATACseq) .

Cell-ID(g) and Cell-ID(c) were applied with default parameters for reference-to-query assignments from (i) SMART-Seq2 and (ii) 10X genomics Tabula Muris scRNA-seq data to the Mouse ATAC Atlas. Thus, each cell in the Mouse ATAC Atlas was assigned to the cell type from the Tabula Muris scRNA-seq dataset for which it presented the lowest significant p-value for gene signature enrichment (or was left unassigned if no significant hits were found). We performed this procedure independently for the SMART-Seq2 and 10X genomics datasets. Global matching accuracy was evaluated by assessing the concordance of cell-type labeling between the manually curated cell type annotations provided by the corresponding databases (Supplementary File 5).

Comparative benchmarking was performed against a representative set of alternative state-ofthe-art methods, as described in Section 4.4, except for scID 197 , which could not be included here due to computational time limitations (>48 h in our computing infrastructure; Methods). 

By

Dealing with big data

While single-cell data analysis's primary aim is to recover relevant information as accurately as possible, computational limitation in single-cell studies has become more frequent with the increasing number of cells in each experiment. In a sense, a long runtime is not a problem when there is no need to perform the analysis several times. Still, in single-cell, due to its extremely rich content in terms of information compared to bulk RNASeq, there is often a need to reiterate the analysis several times with different parameters, approaches, and combinations of methods, which can be extremely time-consuming when added together. Added to runtime, memory efficiency is also a major problem in single-cell as data gradually becomes bigger.

As discussed previously in Section 5.2.1, good hardware is often very helpful to extend the technical capability of analysis. However, the exponential growth of cell counts and data set has taken on such dimensions that even with a very powerful server, it is crucial to think fastidiously about the different methods' algorithmic efficiency.

While developing CellID and analyzing diverse datasets during these four years, I stumbled many times in a situation where I was just unable to perform the analysis due to computational resource limitations. Ultimately, even with a reasonably powerful server with over a 500Gb of internal memory, the consumption peak exceeded when analyzing with standard workflow complex datasets with more than 200000 cells.

These technical constraints often incite to reevaluate the general workflow of the analysis, and sometimes minor accuracy tradeoff for better computational efficiency can be mandatory to fully conduct the analysis. As shown in many benchmarks of different steps and aspects of single-cell analysis 137,164,165,216,224 , the number of tools seems unexhaustive.

In most of these benchmarks, there is often no clear winner in terms of global accuracy, and often the number of scenarios that have been tested is unfortunately limited, even though different tools are optimized for different scenarios. However, the computational efficiency is much less affected by the nature of the data and mostly considers only the number of cells and genes. Hence, the algorithmic upper bound complexity O is pretty much stable from data to data.

A good approach to construct the main pipeline for routine single-cell analysis is to select for each step the method that has been classified in the top tier in terms of global accuracy and then by scalability. For instance, that would be library size for normalization, harmony for integration, irlba algorithm for PCA, UMAP for visualization, PAGA for trajectory, graph-based clustering for unsupervised classification, and Wilcoxon or t-test for differential expression analysis. An efficient computational pipeline that gives overall accurate information for a great variety of data is primordial to further tailor the analysis.

Chapter 7. MATERIAL AND METHODS

Data availability

All single-cell data sets used in this paper are publicly available (Supplementary File 2). scRNAseq datasets for human blood cells profiled by Cite Seq 244 and Reap Seq 245 were downloaded from the gene expression omnibus (GEO; accession numbers GSE100866 and GSE100501, respectively). Cell-type labels for these two datasets were obtained following the Multimodal Analysis vignette (https://satijalab.org/seurat/multimodal_vignette.html) of the Seurat 138 R package.

Pancreas scRNA-seq datasets from Baron 246 , Muraro [START_REF] Muraro | A Single-Cell Transcriptome Atlas of the Human Pancreas[END_REF] , and Segerstolpe 247 and their associated cell-type annotations were downloaded via the scRNAseq 291 R package as a SingleCellExperiment format R object.

Plasschaert [START_REF] Plasschaert | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF] mouse and human and Montoro [START_REF] Montoro | A revised airway epithelial hierarchy includes CFTRexpressing ionocytes[END_REF] mouse airway epithelium scRNA-seq datasets, and their annotations were downloaded from GEO (GSE102580, GSE103354). Haber 255 intestinal epithelium scRNA-seq dataset was downloaded from GEO accession code GSE92332.

Olfactory epithelium scRNA-seq datasets from Fletcher 257 and Wu 256 were downloaded from GEO (GSE95601, GSE120199), and their cell type annotations were obtained from the associated Github repositories: https://github.com/rufletch/p63-HBC-diff for Fletcher et al. 257 and https://www.stowers.org/research/publications/odr for Wu et al. 256 , respectively. Tabula Muris 45 10X and Smart-seq mouse scRNAseq datasets were downloaded from https://tabula-muris.ds.czbiohub.org/. Gene activity score matrices from the Mouse sci-ATAC-seq atlas datasets from Cusanovich [START_REF] Cusanovich | A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility[END_REF] were obtained from http://atlas.gs.washington.edu/mouseatac/data/ as provided by the authors and resulting from the aggregation of information across all differentially accessible chromatin sites linked to a target gene.

Preprocessing and normalization of single-cell datasets

All single-cell RNA-seq datasets analyzed in the study took as input the raw count gene expression matrices provided by the original sources. Library size normalization was carried out by rescaling counts to a common library size of 10000. Log transformation was performed after adding a pseudo-count of 1. All analyses throughout the manuscript were restricted to a background set of 19308 and 21914 protein-coding genes from human and mouse, respectively, obtained from BioMart Ensembl release 100, version April 2020 (GrCH38.p13 for human, and GRCm38.p6 for mouse 292,293 ). Genes expressing at least one count in less than five cells were removed. No filtering of cells was done unless the original sources provided "doublet" or

Visualization

UMAP 155 or tSNE 294 representations were alternatively used for visualization purposes throughout the manuscript. However, no biological conclusions whatsoever were drawn from visual inspection of such representations. UMAP and tSNE representations were obtained with Seurat default parameters following this vignette (https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html).

Computational resources

All analyses presented in the manuscript were run in a workstation with 64-GB RAM and an AMD Ryzen 2700X processor with eight 3.6-GHz physical cores, except for the scalability benchmark presented in Section 4.8, where an Intel Xeon Gold 6140 with 36 2.3 GHz cores processor and 640Gb of RAM was used.

Code availability

Cell-ID is implemented as an R package and is available on GitHub 
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Cell-ID R package

This vignette illustrates the use of the Cell-ID R package v1.0 available at https://github.com/RausellLab/CelliD Cell-ID is a clustering-free multivariate statistical method for the robust extraction of percell gene signatures from single-cell RNA-seq. Cell-ID allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and single-cell omics protocols. We present here the main functionalities of the Cell-ID R package through several use cases.

Installation

Cell-ID is based on R version >= 3.6. It contains dependencies with several CRAN and Biocondutor packages as described in the Description file

To install Cell-ID, set the repositories option to enable downloading Bioconductor dependencies:

if(!require("tidyverse")) install.packages("tidyverse") if(!require("ggpubr")) install.packages("ggpubr") if(!require("devtools")) install.packages("devtools") setRepositories(ind = c(1, 2, 3, 4)) devtools::install_github("RausellLab/CelliD")

Common installation issues

macOS users might experience installation issues related to Gfortran library. To solve this, download and install the appropriate gfortran dmg file from https://github.com/fxcoudert/gfortran-for-macOS

Data input and preprocessing steps

Restricting the analysis to protein-coding genes

While Cell-ID can handle all types of genes, we recommend restricting the analysis to protein-coding genes. Cell-ID package provides two gene lists (HgProteinCodingGenes and MgProteinCodingGenes) containing a background set of 19308 and 21914 protein-coding genes from human and mouse, respectively, obtained from BioMart Ensembl release 100, version April 2020 (GrCH38.p13 for human, and GRCm38.p6 for mouse). Gene identifiers here correspond to official gene symbols. 

Creating a Seurat object, and processing and normalization of the gene expression matrix

Library size normalization is carried out by rescaling counts to a common library size of 10000. Log transformation is performed after adding a pseudo-count of 1. Genes expressing at least one count in less than 5 cells are removed. These steps mimmic the standard Seurat workflow desribed here.

# Create Seurat object and remove remove low detection genes Baron <-CreateSeuratObject(counts = BaronMatrixProt, project = "Baron", min. cells = 5, meta.data = BaronMetaData) Seger <-CreateSeuratObject(counts = SegerMatrixProt, project = "Segerstolpe" , min.cells = 5, meta.data = SegerMetaData)

# Library-size normalization, log-transformation, and centering and scaling o f gene expression values Baron <-NormalizeData(Baron) Baron <-ScaleData(Baron, features = rownames(Baron))

While this vignette only illustrates the use of Cell-ID on single-cell RNA-seq data, we note that the package can handle other types of gene matrices, e.g sci-ATAC gene activity score matrices.

Cell-ID dimensionality reduction through MCA

CellID is based on Multiple Correspondence Analysis (MCA), a multivariate method that allows the simulataneous representation of both cells and genes in the same low dimensional vector space. In such space, eucledian distances between genes and cells are computed, and per-cell gene rankings are obtained. The top 'n' closest genes to a given cell will be defined as its gene signature. Per-cell gene signatures will be obtained in a later section of this vignette.

To perform MCA dimensionality reduction, the command RunMCA is used:

sec elapsed

The DimPlotMC command allows to visualize both cells and selected gene lists in MCA low dimensional space.

Cell-ID per-cell functionnal annotation against functional ontologies and pathway databases

Once MCA is performed, per-cell signatures can be evaluated against any custom collection of gene signatures which can, e.g. represent functional terms or biological pathways. This allows Cell-ID to perfome a per-cell functional enrichment analysis enabling biological interpretation of cell's state. We illustrate here how to mine for that purpose a collection 7 sources of functional annotations: KEGG, Hallmark MSigDB, Reactome, WikiPathways, GO biological process, GO molecular function and GO cellular component. Gene sets associated to functional pathways and ontology terms can be obtained from enrichr

Here we illustrateuse the Hallmark and KEGG pathways in HyperGeometric test and integrate the results into the Seurat object to visualise the -log10 pvalue of the enrichment into an UMAP. 

Abstract

In this session, to illustrate the different statistical analysis methods of scRNA-seq data, we will reproduce in a smaller scale, a study that was conducted on 2 severe COVID19 patient (Guo et al. 2020). Using Seurat, single cell analysis framework, we will first begin with a quick analysis from scratch of a healthy PBMC data that will serve us as a control sample. We will first go through simple quality control, normalization and feature selection. In a second step we will reduce dimension and perform two dimensional embeddings to visualize the data. Finally, we will perform clustering and differential expression to ultimately identify cell sub-populations and the genes that are driving them. We will then integrate the data of a severe COVID patient onto the analyzed control patient to try to observe the discrepancies.

Load Library

library(Seurat) # Framework for single cell data. library(SeuratWrappers) # Extension for Seurat. library(harmony) # Highly efficient integration method. library(CellID) # Extraction of signatures and enrichment analysis for sc dat a. library(Augur) # Cell type prioritization methods. library(tidyverse) # bundle of package for data science library(ggpubr) # ggplot for publication plot.

library(patchwork) # combine ggplot library(DT) # fancy table visualization

Control Data

Creating Seurat Object

The first step of using Seurat is the creation of a Seurat object. The Seurat object contains different slots designed for different types of data encountered in single cell analysis and facilitate the overall analysis workflow by unifying the input and output. The assays slot stores the expression matrix and its various variant (logcounts, normalized counts, scaled counts) or other omics matrix such as ATACseq data. The metadata slot gathers all the

Assign cell types

Once we have identified the genes driving the heterogeneity. Cell types can be assigned manually using prior knowledge in the literature or panglaoDB[https://panglaodb.se/index.html] (or ask your biologist). Here we change the identifier of Seurat object from cluster number to cell type names. One interesting thing that can be done after cell type identification, is to check for the cell type proportion. There is no in built function for that in Seurat but we can easily extract the cell type information from the metadata, calculate the fraction and plot it using pie chart.

# Change new.cluster.ids <-c("CD4_T", "CD14_Mono", "B", "CD8_T", "CD16_Mono", "NK", " Megakaryocytes") names(new.cluster.ids) <-levels(SeuratCon) SeuratCon <-RenameIdents(SeuratCon, new.cluster.ids) SeuratCon$cell_type <-as.vector(SeuratCon@active.ident) 
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