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Abstract

A key challenge in Machine Learning (ML) is to design models able to learn efficiently from
graphs, characterized by nodes with attributes and a prescribed structure encoding their
relationships. Graph Representation Learning (GRL) aims to encode these two sources of
heterogeneity into a vectorial graph embedding easing downstream tasks. In this field, Optimal
Transport (OT) has been successful in providing meaningful comparison between graphs seen
as discrete probability distributions. This thesis focuses on GRL through the lens of OT, with
both concepts introduced in dedicated chapters.

Modern supervised GRL mostly relies on Graph Neural Networks (GNN) which implicitly
encode the graph topology via two main elements: node features embedding through message
passing, and aggregation with a specialized form of pooling. We introduce in this thesis a
novel point of view, which places distances to some learnable graph templates at the core of the
graph representation. This distance embedding is constructed by means of an OT distance:
the Fused Gromov-Wasserstein (FGW) distance, which simultaneously handles feature and
structure dissimilarities by solving a soft graph-matching problem. We postulate that the
vector of FGW distances to a set of template graphs, has a strong discriminative power, which
is then fed to a non-linear classifier for final predictions. This distance embedding acts as a
new pooling layer called TFGW, and can leverage on existing message passing techniques to
promote sensible feature representations, learned in an end-to-end fashion. We empirically
validate our claim on several graph classification tasks, where our method outperforms both
kernels and GNN approaches in terms of expressivity and generalization abilities.

Another contribution of this thesis aims at making Dictionary Learning (DL) amenable
to graphs dataset analysis, a key tool for unsupervised representation learning. DL explains
vector data as a linear combination of a few basic elements, accessing the quality of learned
representations via dissimilarities associated with a single ambient space. Since graphs depict
their own spaces, we propose the first linear approach adapted to Graph Dictionary Learning
(GDL), using (F)GW as the data fitting term. In our work, graphs are modeled as convex
combination of graph atoms, estimated via an online stochastic algorithm. GDL is completed
by a novel upper-bound that can be used as a fast approximation of FGW in the embedding
space. We empirically show the interest of our approach for graphs clustering, classification,
completion and for online graph subspace estimation and tracking.

Finally, the mass conservation at the core of OT, imposing a coupling between all the
nodes from the two compared graphs, has specific implications in GRL. Learning structure
and feature representations via FGW is considerably sensitive to the nodes relative importance
induced by modeling graphs as probability distributions. Managing this extra degree of free-
dom, as we made possible, improves (F)GW-based models by adding minimal computational
cost in TFGW but significant model complexity for GDL. Thus we propose to address the
limits of mass conservation constraints in (F)GW, by introducing a novel OT-based discrep-
ancy, called the semi-relaxed (Fused) Gromov-Wasserstein divergence (sr(F)GW). srFGW
provides correspondences between two graphs, while searching for a reweighed subgraph in
the target graph at a minimum (F)GW distance from the input. The latter can be estimated
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more efficiently than (F)GW and competes with methods dedicated to graph partitioning
while being more generic. Moreover, estimating a srFGW "barycenter" induces a novel DL,
where graphs are embedded as reweighed subgraphs of a single graph atom. srFGW DL
competes favorably with other DL-based competitors on various unsupervised tasks, while
being considerably faster to compute.

Key words: Machine Learning, Graphs, Optimal Transport, Graph Representation
Learning.
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Résumé

Un défi majeur de l’apprentissage machine est de concevoir des modèles capables
d’apprendre efficacement à partir de graphes, constitués de noeuds dotés d’attributs et
d’une structure décrivant leurs relations. L’apprentissage de représentation de graphe (ARG)
vise à synthétiser ces deux sources d’hétérogénéité dans un vecteur, afin de simplifier son
traitement à postériori. Dans ce domaine, le Transport Optimal (TO) fournit des compara-
isons pertinentes entre graphes, vus comme des distributions discrètes de probabilité. Cette
thèse se concentre sur l’ARG à travers le prisme du TO, tous deux détaillés dans des chapitres
dédiés.

L’ARG supervisé s’appuie essentiellement sur les réseaux de neurones graphiques (RNG),
qui encodent implicitement la topologie du graphe par le raffinement des attributs nodaux via
l’information issue de leur voisinage, et l’agrégation de cette information à l’échelle du graphe.
Nous introduisons dans cette thèse un nouveau concept, qui considère comme représentation
du graphe, des distances à certains graphes templates apprenables. A cette fin, nous exploitons
la distance de Fused Gromov-Wasserstein (FGW) issue du TO, qui traite simultanément
les dissimilarités entre nœuds et structures, en résolvant un problème de correspondance de
nœuds entre les graphes. Ce vecteur de distances possède un fort pouvoir discriminant, qui
est ensuite transmis à un classifieur gérant les prédictions finales. Ce vecteur agit telle une
couche de RNG, appelée TFGW, et peut se superposer à leurs techniques de raffinement
d’attributs nodaux, le tout étant appris simultanément. Nous validons empiriquement notre
postulat sur de multiples tâches de classification de graphes, où TFGW surpasse les méthodes
à RNG et à noyaux en termes d’expressivité et de capacité de généralisation.

Le chapitre suivant étend l’apprentissage de dictionnaire (AD), un outil clé pour l’appren-
tissage non supervisé de représentation, à l’analyse de graphes. l’AD représente les données
vectorielles par des combinaisons linéaires de quelques éléments de base, accédant à la
qualité de ces dernières via des dissimilarités associées à un espace ambiant unique. Ainsi,
nous proposons la première approche linéaire adaptée à l’AD de graphes (ADG), en utilisant
(F)GW comme mesure de qualité. Nous modélisons les graphes tels des combinaisons convexes
d’atomes de graphes, estimés grâce à un algorithme stochastique. L’ADG est complété par
une nouvelle approximation, facilement calculable, de FGW dans l’espace des représentations.
Nous montrons empiriquement l’intérêt de notre approche pour le clustering, la classification,
la complétion de graphes, ainsi que le suivi en ligne de sous-espaces de graphes.

Enfin, la conservation de la masse au cœur du TO, imposant un couplage entre tous les
nœuds des deux graphes comparés, a des implications en ARG. L’apprentissage de structures
et d’attributs nodaux via FGW est sensible à l’importance relative des nœuds induite par la
modélisation des graphes tels des distributions de probabilité. La gestion de ces pondérations,
comme nous l’avons rendu possible, améliore les modèles susmentionnés basés sur (F)GW à des
coûts de calcul supplémentaires variables. Ainsi, nous modulons ce principe de conservation,
via l’introduction de la divergence de (Fused) Gromov-Wasserstein sémi-relachée (sr(F)GW).
srFGW fournit des correspondances entre deux graphes, tout en recherchant un sous-graphe
re-pondéré dans le graphe cible à une distance (F)GW minimale de l’entrée. Cette dernière



4

rivalise, entre autres, avec les méthodes dédiées au partitionnement de graphes tout en étant
plus générique. De plus, l’estimation d’un "barycentre" de srFGW induit un nouvel AD, où
les graphes sont intégrés comme des sous-graphes re-pondérés d’un unique atome de graphe.
L’AD srFGW rivalise favorablement avec d’autres concurrents basés sur l’AD dans diverses
tâches non supervisées, tout en étant considérablement plus rapide à calculer.

Mots clés: Apprentissage statistique, Graphes, Transport Optimal, Apprentissage de
répresentation de graphes.
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Notations

Linear Algebra

[[n]] the subset {1, ..., n} of N.

x All vectors in Rn are written in bold and lower case, for all n > 1. The ith
coordinate is written xi for all i ∈ [[n]].

X All matrices in Rn×m are written in bold, for any n > 1 and m > 1. The
coordinate (i, j) will be written Xij , and unless specified otherwise the ith
row (resp. the jth column) will be denoted Xi,: (resp. X:,j).

In The identity matrix of Rn×n.

diag(x) The operator that transforms a vector x ∈ Rn into the diagonal matrix

D ∈ Rn×n such that ∀(i, j) ∈ [[n]]× [[n]], Dij =
{
xi if i = j

0 otherwise
.

� The Hadamard product between two matrices A and B in Rn×n, such that
A�B = (AijBij)ij ⊂ Rn×n. Also used as element-wise product between two
vectors.

� The element-wise division of two matrices A and B in R∗n×n, such that
A �B = (Aij/Bij)ij ⊂ Rn×n. Also used as element-wise division between
two vectors.

⊗K The Kronecker product of two matrices A ∈ Rn×m and B ∈ Rp×q, such that
A⊗K B = (AijB)ij ∈ Rnp×mq.

⊗ The tensor-matrix multiplication, such that for a tensor L ∈ Rn×m×p×q and
a matrix X ∈ Rp×q, L⊗X = (∑kl LijklAkl)ij ∈ Rn×m.

vec(X) The vectorization operator that stacks columns of a matrix X ∈ Rn×m into
a vector in Rnm.

Tr The trace operator for a matrix X ∈ Rn×m, such that Tr(X) = ∑
ij Xij .

‖ · ‖, 〈·, ·〉 A norm and an inner product that depend on the context.

lp The standard ‖ · ‖p norm.

‖ · ‖F The Frobenius norm of a matrix X ∈ Rn×m, ‖X‖F =
√

Tr(X>X) =√∑
ij X

2
ij .

〈·, ·〉F The Frobenius inner product between two matrices A and B in
Rn×m, 〈A,B〉F = Tr(A>B) = ∑

ij AijBij .

Sn The set of all permutations of [[n]] for all n ∈ N∗.

Πn The set of permutation matrices in Rn×n for all nN∗.



Contents 10

Σn The set of probability vectors in Rn+ defined in equation (3.1).

αS The set of elements {x = αy|∀y ∈ S} induced by any set S for any scalar α ∈ R∗.

Measure Theory

δx The dirac measure on x ∈ Rd, such that y ∈ Rd, δx(y) =
{

1 if x = y

0 otherwise
.

supp(µ) The support of µ, see equation (3.2).

µ⊗ ν The product measure of two probability measures µ and ν, such that for
all measurable subsets A and B, µ⊗ ν(A×B) = µ(A)ν(B).

Bernoulli(p) The Bernoulli distribution with probability p.

N (m,Σ) The multivariate Gaussian distribution with mean m and covariance Σ.

U(h,h) The set of admissible couplings between two discrete probability measures
with respective probability vectors h and h, defined in equation (3.3).

Tc(µ, ν) The Kantorovitch cost between two probability measures µ and ν, defined
in equation (3.4).

Wp(µ, ν) The p-Wasserstein distance between two discrete probability measures µ
and ν, defined in equation (3.8).

GWp(µ, ν) The Gromov-Wasserstein distance of order p between two discrete proba-
bility measures µ and ν, defined in equation (3.21).

FGWp,α(µ, ν) The Fused Gromov-Wasserstein distance of order p with trade-off param-
eter α between two discrete probability measures µ and ν, defined in
equation (3.54).

Acronyms

OT Optimal Transport.

W, GW, FGW Stands respectively for Wasserstein, Gromov-Wasserstein, Fused
Gromov-Wasserstein.

LP, QP Stands respectively for Linear Program and Quadratic Program.

RL Representation Learning.

GRL Graph Representation Learning.

GNN Graph Neural Networks.

DL Dictionary Learning.
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1.1 Structured data in Machine Learning

1.1.1 Structured data

One of the main challenges in Machine Learning (ML) is the design of efficient algorithms that
are able to learn from structured data. The latter comes with a generic notion of structure
that encode relationships between entities composing an object, or in other words a data
instance. The entities are elements, that can be endowed with attributes, such as Rd vectors
highlighting the singularity of an element, or discrete values referring to their assignments to
certain categories. The structure then captures any type of relationship between the entities.
In their simplest form, these relations can be binary interactions between elements. In more
complex scenarios, they can be encoded as real-valued vectors in Rd′ (d′ ≥ 1), expressing
interactions of different nature or strength between components.
Typical instances of structured data encountered in this thesis are e.g. molecules, composed
of atoms as entities, which can be categorized via their position in the periodic table, or
characterized by certain chemical or physical properties such as their molecular mass. The
interactions taken into account to describe the structure of the molecule can be of increasing
complexity, ranging for example from covalent bonds to Van der Waals forces.

The manipulation of structured data relates to Relational Reasoning as detailed in
Battaglia et al. (2018), which points out that these structured representations require
"structured computations" dealing with entities and their composition as a whole. This
assumes that the global understanding of these objects is conditioned by a simultaneous
processing of their feature information and structure information, namely the knowledge
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contained in the entities and their interactions. To this end, the methods of reasoning vary
according to the nature of the structure.

Explicit structured data. A first natural type of structured data, on which this thesis
focuses, appears when the structure is given explicitly. The resulting object can be understood
in a broad sense as a graph G (Wu et al., 2020). Namely, a tuple G = (V,E), composed of
a discrete set of vertices or nodes V , and a set of edges E quantifying connections between
vertices. Nodes are usually indexed in [[n]] ⊂ N, where n denotes the number of nodes in
the graph and is often referred as the graph order. They can also be assigned to attributes
or features in Rd, which induces the distinction between unattributed graphs and attributed
ones. The edges usually assign a discrete or continuous value to pairs of nodes, which
can be undirected or directed from one vertex to another. If the edges are vectors, whose
components describe different individual interactions, the graph is called a multi-edged graph
or a multigraph. Finally, a temporal component can also be associated with a graph modifying
its nodes or interactions over time, which leads to the notion of dynamic graph (Ditzler et al.,
2015).

Notable instances of graph data are found in chemical compounds or molecules modeling
(Debnath et al., 1991; Sutherland et al., 2003; Borgwardt & Kriegel, 2005; Krichene et al.,
2015; Jumper et al., 2021), brain connectivity (Bullmore & Sporns, 2009; Ktena et al., 2017;
Heitmann & Breakspear, 2018), particle physics (Shlomi et al., 2020; Thais et al., 2022),
social networks (Banerjee et al., 2013; Yanardag & Vishwanathan, 2015; Yin et al., 2017) or
resources exchange (Yang & Leskovec, 2015). This family of explicit structured data also
encompasses trees (Day, 1985), whose structure consists in a depth-wise hierarchy on the
nodes. More traditional data can also be included, such as images (Shapiro et al., 2001) seen
as two-dimensional regular grids, or time series (Ralaivola & d’Alché Buc, 2005; Wei, 2013)
and text data (Chowdhary, 2020) whose structures are inherited from their sequential nature.

Implicit structured data. In many ML tasks, the prescribed data structure does not
adequately reflect the geometry of the problem, such as the regular grid (resp. line) naturally
associated with an image (resp. univariate time series). In order to learn from these objects,
one must first extract relevant representations from them. The latter can be seen as specific
instances of structured data with a more subtle or even implicit structure (Battaglia et al.,
2018). They may be initially formatted as a set of entities without relationships, resulting
e.g from a learning step, such as a word embedding (Goldberg, 2017; Otter et al., 2020), or
feature maps associated to an image (Santoro et al., 2017; Wang et al., 2018) or one of its
segments (Harchaoui & Bach, 2007; Minaee et al., 2021).
The connections between these elements are relational inductive biases, resulting from struc-
tural priors on the object representations learned by a model. For instance, modern deep
learning architectures (Goodfellow et al., 2016) that stack building blocks or layers, impose
hierarchical relations between entities via their processing, by capturing increasingly long
range interactions among information in the input signal. These layers have a built-in induc-
tive bias chosen in accordance with the representation of their input object.
Typically, a layer in Convolutional Neural Networks (CNN, LeCun et al. (1995)) processes a
pixel locally, assuming independence w.r.t. distant entities, in a translation invariant fashion
reflecting that convolutions remain relevant across different localities in the image (Bronstein
et al., 2017; Chen et al., 2018; Kondor & Trivedi, 2018). On the contrary, Recurrent layers
are adopted for sequence or text data to favor temporal invariance (Elman, 1990; Salehinejad
et al., 2017). More precisely, their inputs and hidden representations, forming the entities,
are related through the dependence of one step’s hidden state to both the current input and
its previous hidden state. This conditioning rule, carrying a bias for locality in the sequence
via its Markovian structure (Norris & Norris, 1998), is reused over each step across all input
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representations, resulting into temporal invariance. Finally, relations between elements can
be guided by additional dependencies to classes or logic rules (Hu et al., 2016). The latter
constrain the learned object representations, so that the associated embedding space has
better class separability, knowledge transferability or interpretability (Pan & Yang, 2010;
Courty et al., 2017b; Wang & Deng, 2018; Došilović et al., 2018; Garcez et al., 2019; Beaudouin
et al., 2020; Lamb et al., 2020; Ciravegna et al., 2023).

1.1.2 Learning structured data representations

A wide range of ML approaches involve learning representations of the data that encode useful
information in the construction of predictors, such as classifiers. Representation learning
(RL) has been shown to be effective in dealing with many types of unstructured data, such
as tabular data (Bengio et al., 2013). RL became particularly successful when operating on
images or sequences, whose respective grid or line structures are shared across samples, by
constraining (or guiding) the learned representations of these objects via structural priors
such as translation or temporal invariance.

This is in contrast to graphs whose structures (and orders) are specific to each of them.
These data therefore generally present a high degree of structural heterogeneity, to which
may be added a heterogeneity arising from the feature information. Consequently, graph-
structured data requires specific modeling which has recently given rise to the paradigm of
Graph Representation Learning (GRL) (Hamilton, 2020).
GRL aims to encode a graph into a vector representation called graph embedding, which eases
comparisons between graphs or any downstream Graph Machine Learning tasks. This can
be addressed by the design of effective (dis)similarity measures to compare graphs, such as
Graph Kernel methods (Kriege et al., 2020). The latter most often model a graph implicitly
through its pairwise relations to the other graphs composing the dataset. However, one
limit of kernel methods is that the graph embedding is most often fixed and cannot be
successfully adapted to certain complex datasets. On the other hand, Geometric deep learning
approaches (Bronstein et al., 2017) attempt to learn structured data representation by means
of deep learning (Scarselli et al., 2008; Perozzi et al., 2014; Niepert et al., 2016). For example,
some Graph Neural Networks generalize the notion of convolution applied to images to the
graph, by considering adjacent nodes on the basis of the graph structure, instead of a grid
surrounding a pixel (Gilmer et al., 2017; Kipf & Welling, 2016; Wu et al., 2020).

However, both kernel methods and many deep learning based representations for graphs
suffer from the fundamental pre-image problem, that prevents recovering actual graph objects
from the graph embeddings.

1.1.3 Graphs, incomparable spaces and Optimal Transport

Many GRL methods mainly focus on designing node embeddings that encode both the
structure and the feature information of a graph. This is legitimately motivated by the desire
to return to the classical framework of Machine Learning operating on vector data, that
associates a discrete probability measure µn to a collection of samples composing a dataset, or
in our setting, a collection of node embeddings composing a graph. This discrete probability
measure is expressed as µn = ∑n

i=1 hiδxi , where xi is a sample in Rd that composes the
support of µn, and hi ≥ 0 weights its relative importance in the dataset, while satisfying∑n

i=1 hi = 1. Modeling graphs as such allows, for instance, to compare two graphs via
well-known similarities between probability measures, assuming that their respective supports
belong to a common ambient space. The latter assumption comes down to model graphs as
clouds of node embeddings, living in this ambient space, which we hope encode the topology
of their respective graphs well enough. Note that a more simplistic representation of the
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graph is often obtained by averaging its node embeddings (i.e. computing the expectation of
µn).

Optimal Transport within a common space. However, even if this intermediate
modeling of graphs as point clouds allows the use of a multitude of classical ML tools, some
choices remain more relevant than others. For instance, few similarity measures are able
to compare distributions while taking into account the geometry of the underlying space,
while also providing correspondences between samples across the representations. Optimal
Transport (OT) is an elegant theory making both possible (Villani, 2009; Santambrogio, 2015;
Peyré & Cuturi, 2019), by addressing the problem of moving certain masses from one place
to another while minimizing the distance traveled.
OT has proved to be very useful for numerous ML tasks, such as image retrieval or analysis
(Rubner et al., 1998; Thorpe et al., 2017), NLP (Kusner et al., 2015; Huang et al., 2016; Grave
et al., 2019), unsupervised learning (Arjovsky et al., 2017; Schmitz et al., 2018; Genevay
et al., 2018), signal processing (Kolouri et al., 2017), domain adaptation (Courty et al., 2014;
2017b). Finally, OT has also been used for the comparison of node embeddings in Graph
Kernels (Nikolentzos et al., 2017; Togninalli et al., 2019; Kriege et al., 2020), or within Graph
Neural Networks (Kolouri et al., 2021; Chen et al., 2020a).

Optimal Transport across incomparable spaces. Nonetheless, since graphs are natu-
rally observed and characterized by pairwise interactions between their nodes, assuming the
existence of a node ambient space shared by graphs, seen as point clouds, might omit their
respective and heterogeneous topologies. This paradigm has motivated the extension of OT
limited to a single ambient space to OT across incomparable spaces (Mémoli, 2011; Sturm,
2012). One of the key ingredients in this case is to rely on the so called Gromov-Wasserstein
(GW) distance. GW results from an OT problem adapted to the scenario in which the
respective supports of the compared probability distributions lie in different metric spaces,
hence GW is particularly suited for comparing relational data (Peyré et al., 2016; Solomon
et al., 2016). GW has been extended to weighted directed graphs in Chowdhury & Mémoli
(2019), and to attributed graphs thanks to the Fused Gromov-Wasserstein (FGW) distance in
Vayer et al. (2019a; 2020). In this setting, FGW, which will be detailed later, aims to find an
optimal coupling by minimizing an OT cost which is a trade-off of a linear OT cost between
the node features and a GW cost between the similarity matrices.

1.2 Manuscript outline and contributions

This thesis covers all the author’s (published) work and focuses on a single line of research
that is Graph Representation Learning by means of Optimal Transport across incomparable
spaces. This section provides a brief description of the other chapters of the manuscript, and
of the contributions published during this thesis.

Chapter 2: Introduction to Graph Representation Learning

This chapter aims to provide a short overview of Graph Representation Learning (GRL)
at the instance-level (namely, a graph is an observation). Since GRL lies at the crossroads
of different fields, we make an overview of GRL from two different perspectives, fitting the
contributions presented in the next chapters.

First, we introduce methods that rely on the design of effective (dis)similarity measures to
compare graphs (Section 2.1). The most common paradigm relies on Graph kernels (Kriege
et al., 2020) whose theoretical foundations are reported in Section 2.1.1. As these methods
might suffer from empirical limitations, we also briefly discuss a theory of learning with
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similarity functions developed by Balcan et al. (2008), that can be seen as a relaxation of
the former. Then we review typical kinds of Graph Kernels that we distinguish according to
whether they focus on local information within graphs (Section 2.1.2) or directly on their
global topologies (Section 2.1.3).

Second, we introduce in Section 2.2 a family of more flexible methods designed to learn
end-to-end graph representations, relying on Geometric Deep Learning (Bronstein et al.,
2021a) and Graph Neural Networks (Hamilton, 2020; Wu et al., 2020). Following an analog
pattern than in Section 2.1, for clarity, we first introduce predominant methods that focus on
node embedding schemes (Section 2.2.1), before discussing graph pooling approaches allowing
to extract global graph knowledge (Section 2.1.3).

Chapter 3: Introduction to Optimal Transport for graphs

We present here the theoretical foundations of Optimal Transport (OT) from an application
perspective related to Graph Machine Learning. Since graphs, seen as finite sets of nodes,
can be considered as an instance of discrete probability distributions, a first objective of this
chapter (Section 3.1) is to briefly present the discrete OT theory, both mathematically and
numerically (Villani, 2009; Santambrogio, 2015; Peyré & Cuturi, 2019), to compare point
clouds.

However, as graphs are naturally described by their own topologies, we introduce extensions
of OT across incomparable spaces. The latter is addressed in Section 3.2, whereas Section 3.3
deals with a mix of previous notions, allowing to compare attributed graphs thanks to the
Fused Gromov-Wasserstein (FGW) distance (Vayer et al., 2020).

OT problems across incomparable spaces will be complemented by our new contributions,
that concern estimations of "complete" barycentric graph distributions, thanks to novel
sub-gradient derivations with respect to the barycenter masses. These results were first
published in the following paper, which will be discussed in detail in Chapter 5:

- (Vincent-Cuaz et al., 2021) Online Graph Dictionary Learning. Cédric Vincent-Cuaz,
Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas Courty. In Proceedings of
the 38th International Conference on Machine Learning, ICML 2021.

Chapter 4: Optimal Transport distances for graphs meet Graph Neural
Networks

We propose in this work a novel point of view for Graph Neural Networks (GNN), which
places FGW distances to some graph templates, learned end-to-end, at the core of the graph
representation. This embedding of FGW distances can be seen as a new global pooling layer
(Section 2.2.2), and can leverage on existing message passing techniques to learn sensible
feature representations (Section 4.2). We empirically demonstrate the relevance of our
approach on several synthetic and real life graph classification datasets, where our method
surpasses kernel and GNN state-of-the-art approaches, both in terms of expressiveness and
generalization abilities (Section 4.3).

- (Vincent-Cuaz et al., 2022c) Template based graph neural network with optimal
transport distances. Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli,
Titouan Vayer, and Nicolas Courty. In Advances in Neural Information Processing
Systems, NeurIPS 2022.

Chapter 5: Fused Gromov-Wasserstein Linear Dictionary of graphs



Chapter 1. Introduction 16

This chapter focuses on unsupervised GRL through the lens of Dictionary Learning (DL).
DL consists into modeling the observed data as a linear combination of a few basic elements.
We make this analysis amenable to graph learning, by using the FGW distance for the data
fitting term. This novel Graph DL (GDL) models graphs as convex combination of graph
atoms, i.e. weighted sums, acting as graph embeddings, of pairwise similarity matrices and
corresponding feature matrices (Section 5.2).
We then provide (stochastic) solvers to estimate both the projection of an input graph onto
the dictionary, and the dictionary itself. Interestingly, we prove that the (F)GW distance in
this embedding is upper-bounded by a Mahalanobis distance over the space of embedding
weights, which is actually a reliable and fast approximation of (F)GW (Section 5.2.3). This
proxy can be efficiently used for clustering and classification of graphs datasets (Section
5.3.2). Furthermore, we empirically demonstrate the relevance of our approach for online
subspace estimation, subspace tracking by designing streams of graphs (Section 5.3.5) and
graphs completion (Section 5.2.6).

- (Vincent-Cuaz et al., 2021) Online Graph Dictionary Learning. Cédric Vincent-Cuaz,
Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas Courty. In Proceedings of
the 38th International Conference on Machine Learning, ICML 2021.

Chapter 6: Relaxing the Optimal Transport paradigm for unsupervised
Graph Representation Learning

We propose in this chapter a relaxation of the OT paradigm across incomparable spaces to
better address challenges of unsupervised GRL. At the core of OT is the idea of conservation
of mass, which imposes a coupling between all the nodes from the two compared graphs.
We argue in this chapter that this property can be detrimental for certain Graph ML tasks,
and introduce novel OT based divergences between (attributed) graphs, derived from the
(F)GW distances. We call them respectively the semi-relaxed Gromov-Wasserstein (srGW)
and semi-relaxed Fused Gromov-Wasserstein (srFGW) divergences.

After discussing srFGW properties and motivating its use in ML applications (Section
6.2.1), we propose efficient solvers for the corresponding optimization problem or regularized
versions (Section 6.2.2), which can benefit from modern parallel programming. We empirically
demonstrate the relevance of our divergence on diverse unsupervised tasks, by recovering
state-of-the-art performances at a significantly lower computational cost compared to methods
based on pure (F)GW.

- (Vincent-Cuaz et al., 2022a) Semi-relaxed gromov-wasserstein divergence and
applications on graphs. Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli,
Titouan Vayer, and Nicolas Courty. In International Conference on Learning
Representations, ICLR 2022. Also presented at Conférence sur l’Apprentissage
automatique, CAp.

- (Vincent-Cuaz et al., 2022b) Semi-relaxed gromov-wasserstein divergence for graphs
classification. Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer
and Nicolas Courty. In XXVIIIème Colloque Francophone de Traitement du Signal et
des Images, GRETSI 2022.

Chapter 7: Conclusion

This last Chapter is a short conclusion to the manuscript. It summarizes the contributions
presented in this thesis, and discusses issues that I believe are important for future research
in the field.
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This chapter aims to provide a concise overview of Representation Learning (RL) based
approaches dedicated to graph-structured data, to operate at the instance-level. RL consists
in learning representations of the data that encode useful information when building clas-
sifiers or other predictors. To this end, many approaches have been proposed over the last
decades and have proven to be effective in dealing with many types of problems related with
vector data, images or texts (Bengio et al., 2013). Such data can be considered as discrete
probability distributions belonging to a common ambient topological space, unlike graphs,
which are intrinsically characterized by their own topologies. Consequently, graph-structured
data requires specific modeling which has recently given rise to the paradigm of Graph
Representation Learning (GRL).

In a nutshell, GRL aims to encode a graph, potentially endowed with node features, into
a vector representation called graph embedding, which eases downstream Graph Machine
Learning tasks. A flourishing body of research addresses this challinge drawing on various
graph-related fields, such as Graph Theory (Bollobás, 1998; West et al., 2001; Chung, 1997)
and non-Euclidean Geometry (Greenberg, 1993). These works relate to diverse types of
approaches, such as Signal Processing (Ortega et al., 2018), Bayesian Statistics (Stephenson,
2000), Kernel methods (Kriege et al., 2020) or Geometric Deep Learning (Bronstein et al.,
2017). They offer representations that are either implicit or explicit, and may focus on
node-level or instance-level knowledge. Thus, since GRL lies at the crossroads of different
fields, it is a hard task to give a systematic description of it. In the following we make an
overview of GRL from two different perspectives, well fitting the contributions of this thesis.

First, we introduce methods that rely on the design of effective (dis)similarity measures
to compare graphs (Section 2.1). Typical instances are Graph Kernel methods that refer
to ML algorithms learning from the comparison of data points (here graphs) using specific
pairwise similarities, i.e kernels (Kriege et al., 2020). Most often these approaches model
graphs implicitly through their pairwise relations, relying on the kernel trick (Theodoridis &
Koutroumbas, 2006, Section 4.19). However, the graph representations can also be expressed
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explicitly, in a specific Hilbert or Krein space, provided that the related feature maps
are tractable. Kernel-based methods lead to deterministic or probabilistic representations.
Pioneering work on learnable graph representations involves combining kernels in a convex
fashion (Rakotomamonjy et al., 2008). However, the resulting kernels are subject to overfitting
when the information contained in the composite kernels overlaps, making complex the choice
of the latter.

Second, we introduce in Section 2.2 a family of more flexible methods designed to learn
end-to-end graph representations. Such modern approaches relate to Geometric Deep Learning
(Bronstein et al., 2021a) and Graph Neural Networks (Hamilton, 2020; Wu et al., 2020),
that aim at extending the success of Deep Learning to graph data (Goodfellow et al., 2016;
Pouyanfar et al., 2018).

2.1 Similarity based approaches
We briefly summarize here various similarity based approaches operating on graphs. The most
common paradigm relies on kernels whose theoretical foundations are reported in Section
2.1.1. Then we review typical kinds of Graph Kernels that we distinguish according to
whether they focus on local information within graphs (Section 2.1.2) or directly on their
global topologies (Section 2.1.3).

2.1.1 On the theoretical foundations of kernel methods

General concepts. In the heart of (Graph) Kernel methods lies a kernel function k :
X × X → R which is continuous on the topological product space X × X 1. If this kernel
is symmetric positive definite (PD) on X 2, then the Moore-Aronszajn (Aronszajn, 1950)
and Riesz representation (Riesz, 1909) theorems allow to assign it a unique Reproducing
Kernel Hilbert space H, such that for any (x,x′) ∈ X × X , k(x,x′) = 〈φ(x), φ(x′)〉H where
φ : X → H is called a feature map. So H is understood as the feature space. This relation
enables Kernel methods to operate in a high-dimensional (potentially infinite) feature space,
which can be let implicit to avoid untractable computation of representations φ(x), by simply
computing the inner products in H through k. This operation is known as the kernel trick
(Mohri et al., 2018, Chapters 5-6) and allows one to model complex data only through a
pairwise kernel similarity matrix.

Kernel methods have widely been adopted in Machine Learning. For instance, Support
Vector Machines (Cortes & Vapnik, 1995, SVM) will often be used for graph classification
in this manuscript. In binary classification, SVM look for a maximum-margin hyperplane
that linearly separate data points belonging to distinct classes. As data may often exhibit a
poor linear separability between classes in the input space X , SVM use implicit embedding
into the high-dimensional feature space H to promote it. Estimating a SVM comes down
to solve a constraint Quadratic Program whose Hessian depends on the Gram Matrix K =
(k(xi,xj))ij∈[[N ]] (Theodoridis & Koutroumbas, 2006, Section 4.18). Variants of these kernel-
based methods have later been derived for regression (Drucker et al., 1996) and clustering
(Ben-Hur et al., 2001). Finally, kernels have been studied in different frameworks than SVM,
e.g Gaussian processes (Rasmussen, 2003), Kernel PCA or K-means for unsupervised learning
(Schölkopf et al., 1997), and Kernel Density Estimation (Silverman, 2018).

Empirical limitations. In practice the design of PD kernels can be complex, especially for
data characterized by various local or global invariants like images, or graphs (Feragen et al.,

1Or equivalently, each component of the kernel defined on X is continuous.
2k is PD if for any n ∈ N, any elements {xi}i∈[[n]] ⊂ X and any scalars {ci}i∈[[n]] ⊂ R, we have∑
i,j≤n cicjk(xi,xj) ≥ 0
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2015). To ease a such design, research partly focused on finding specific kernel that could
be easily transformed into PD kernel. For instance, if a kernel ψ is conditionally negative
definite (CND) 3, then the kernel k = e−λψ is PD for all λ > 0 (Schoenberg, 1938; Feragen
et al., 2015, Theorem 5).

Many works also aimed at allowing the use of indefinite kernels. First, by proposing
specific QP solvers that aim at approximating solutions while seeing the indefinite kernel
as a noisy observation from an underlying positive definite signal (Luss & d’Aspremont,
2007; Chang & Lin, 2011). Second, by studying the theoretical foundations behind indefinite
kernels, that boils down to an extension of Reproducing Kernels to Krein Spaces (Loosli
et al., 2015, and references therein).

Although these inherent constraints on kernel methods may hinder their expressiveness,
they can in some ways be relaxed by the theory of learning with similarity functions developed
by Balcan et al. (2008). Authors proposed a natural general notion of a “good” similarity
functions, including many indefinite kernels, and prove that they are sufficient for learning in
classification problems. Specifically, they propose a two-stage approach where: i) a subset
(still potentially large) of data points called landmarks or templates are sampled; ii) each data
point is embedded into its similarities to the landmarks, forming a similarity vector. Standard
methods such as Logistic Regression or SVM can then be used to classify the embeddings.
Such approaches have been studied for graph geometric embeddings developed in Section
2.1.3 (Johansson & Dubhashi, 2015), and motivated some contributions of this manuscript
detailed in Chapter 4.

Focus on graph data. Before further detailing how kernels dedicated to graphs can be
built, we underline the omnipresence of invariants and symmetries in these data. Usually a
graph is modeled as a tuple G = (V,E), composed of a set of vertices V indexed in [[n]] ⊂ N
(potentially assigned to attributes in Rd), and a set of edges E quantifying connections
between vertices.

Since the node indexing is arbitrary, models operating on graphs must be invariant to
the permutation of nodes. Graph comparison methods, such as kernels, must therefore
themselves be permutation invariant. Furthermore, these data may be characterized by
specific substructures whose redundancy and/or variability must be taken into account in
some way when comparing them. With these remarks in mind, we present below various
graph kernels that rely on the identification and comparison of substructures with a specific
granularity (Section 2.1.2), before detailing kernels that rely instead on global patterns
(Section 2.1.3).

2.1.2 Substructure based Graph Kernels

Divide and Conquer strategies. A majority of graph kernels are instances of the so-
called convolution kernels. Building upon Haussler’s Convolution Framework (Haussler et al.,
1999), the methods compare graphs by first dividing them into substructures of various
granularity, e.g. vertices or subgraphs, and then evaluating base kernels between each pair of
such sub-instances. More formally, let us consider a space of K components C = C1 × ...× CK
such as any graph G, e.g. included in a dataset of graphs D, can be decomposed into elements
of C. Then consider a mapping R : C → D from components of C to graphs in D such as
R(c) = G if and only if the components c ∈ C build back up the graph G. Then the reciprocal
image of R, denoted R−1(G) = {c ∈ C|R(c) = G}, consists in the set of all components of a
graph G that we wish to compare. The R−convolution kernel between two graphs G and G is

3A symmetric kernel ψ is CND if: i) ∀x ∈ X , ψ(x, x) = 0; ii) For any n ∈ N, ∀{xi}i∈[[n]] ⊂ X , ∀{ci}i∈[[n]] ⊂
R s.t

∑
i
ci = 0, then

∑
ij
cicjψ(xi,xj) ≤ 0
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computed as follows:

kCV (G,G) =
∑

c∈R−1(G)

∑
c∈R−1(G)

K∏
i=1

ki(ci, ci) =
∑

c∈R−1(G)

∑
c∈R−1(G)

k(c, c) (2.1)

where ki is a kernel on the ith component space Ri.
The vertex label kernel kV L (Kriege et al., 2020) is a simple instance of R-convolution

for which the mapping R takes the attributes xu ∈ R of each vertex u ∈ V ∪ V composing
both compared graphs G = (V,E) and G = (V ,E), and maps them to the graph that u
is a member of. This kernel comes down to comparing graphs at a node-level such that
kV L(G,G) = ∑

xu∈{xu|u∈V }
∑
xv∈{xv |v∈V } k(xu, xv), where k is a base kernel.

Interestingly, if the kernels on substructures are invariant to orderings of nodes or edges,
so is the graph kernel. However, as such approaches rely on sums over all pairs of components,
they might suffer from several computational and expressiveness limitations. The latter
relates to the so called "diagonal dominance problem", that arises when sub-instances become
too specific, so each graph becomes increasingly similar to itself but no longer to any other
graph (Greene & Cunningham, 2006). First methods to tackle this problem mostly consists
in adding importance weights to the components (Yanardag & Vishwanathan, 2015; Aiolli
et al., 2015) or reducing the sum to predefined subset of pairs (Shin & Kuboyama, 2008).

Another paradigm aims at finding optimal assignments between selected substructures
leading to Optimal Assignment (OA) kernels (Fröhlich et al., 2005). For example, in the
first OA kernel, each node of both compared graphs is assigned to a label, acting as node
representation, which is associated to a base kernel. Then, the similarity between the two
graphs is computed based on a correspondence of their node representations, which maximizes
their pairwise similarities w.r.t the base kernel. More formally, assume that graphs G and G
are respectively decomposed as sets c = {c1, ..., cn} and c = {c1, ..., cn}, then for a given base
kernel k, the OA kernel between both graphs reads as

kOA(G,G) = max
σ∈Sn

n∑
i=1

k(ci, cσ(i)) (2.2)

These kernels have few drawbacks. First they usually do not lead to PSD kernels (Vert, 2008;
Vishwanathan et al., 2010), except for certain types of "strong" base kernels (Kriege et al.,
2016). Second they impose on the compared graphs to be decomposed into the same number
of components, e.g to have the same number of nodes if the division is node-wise. So they
require the use of padding operations to handle graphs of various orders. Finally, the OA
kernel can be extended by performing soft matching between any component sets, modeled
as probability distributions of n and n bins using Optimal Transport (Nikolentzos et al.,
2017). This latter paradigm, that will be further developed in Chapter 3, generally leads to
an indefinite kernel (Naor & Schechtman, 2007; Nikolentzos et al., 2017).

We know provide an overview of ways to decompose graphs into substructures of various
granularity.

Node embeddings via neighborhood aggregation. The most natural way to partition
a graph consists in considering the nodes that compose it. As node features are most often not
representative of the graph topology, some kernels build upon node embeddings or labels that
summarize information from the nodes neighborhood. One representative of such approaches,
for graphs potentially endowed with discrete node features, is the Weisfeiler-Lehman (WL)
subtree kernel (Shervashidze et al., 2011), based on the 1-dimensional WL test of graph
isomorphism or color refinement algorithm (Weisfeiler & Leman, 1968). Let us consider
two attributed graphs G = (V,E) and G = (V ,E), plus a mapping l0 : V ∪ V → Y0 from
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their vertices to their node labels (or colors). At each iteration t ∈ [0, ..., T ] ⊂ N, the 1-WL
algorithm computes new label functions lt : V ∪ V → Yt, such that for any node v,

lt(v) = relabel ([lt−1(v), sort({{lt−1(u)|u ∈ N(v)}})]) (2.3)

where N(v) is the neighborhood of v. sort(S) orders the multiset S and relabel maps the
pair of the previous node label lt−1(v) and multiset of its neighbors {{lt−1(u)|u ∈ N(v)}}
to a unique new label in Yt ⊂ N/ ∪t−1

i=0 Yi. The algorithm might be stopped if t = T or if
the respective images of lt−1 and lt have the same cardinality. Finally for G (resp. G), the
feature vector φ(G) (resp. φ(G)) is the concatenation over t of counting vectors summarizing
occurrences of labels in Yt. Then this convolution-like graph kernel reads as

kWL(G,G) =
∑

i∈card(∪tYt)
1φ(G)i=φ(G)i (2.4)

Originally, the 1-WL test can detect that two graphs are not isomorphic at any iteration t if
color counts φ|Yt(G) and φ|Yt(G) are different. However, it can only identify whether graphs are
potentially isomorphic (see e.g. Sato (2020), Section 3.1, and references therein). Informally,
this is mostly due to the lack of memory over past iterations while iteratively looking at
multisets of colors at iteration t which implicitly merges knowledge of t-hop neighborhoods.
This process might suffer from overlaps when graphs are regular, or contain substructures like
cliques or cycles. Shervashidze et al. (2011) also proposed various ways to iteratively explore
or define node neighborhood, e.g with the WL edge or shortest-path kernels. These 1-WL
approaches can be extended to k-WL tests where the coloring is achieved on each tuple of k
nodes (Morris et al., 2017). Other methods rather focus on explicit depth-based propagation
to iteratively get node representations, often relying on the Shannon entropy of explored
subgraphs of depth t at iteration t (Bai et al., 2014; 2015). Finally different base kernels
and coloring schemes have been introduced to handle continuous node features (Morris et al.,
2016; Neumann et al., 2016).

Simple aggregation schemes as the one described in equation (2.4) have been improved
using optimal assignments or soft matchings (see e.g. Kriege et al. (2016); Togninalli et al.
(2019)).

Subgraphs based kernels. Another partition strategy is to consider graphs as sets of
subgraphs instead of sets of nodes or edges. For instance, Shervashidze et al. (2009) proposed
to count occurrences of subgraph patterns of a fixed size called graphlets. These refer to
canonical subgraph representations of a given order m, e.g graphlets of order m = 3 are
all possible equivalence classes composed of unattributed graphs with 3 nodes up to node
permutations.

Subgraphs detection allows to leverage direct encoding of a graph topology, but counting
graphlets is not trivial and their number grows exponentially with their order m. Efficient
heuristics have been proposed to detect those with small orders (Shervashidze et al., 2009;
Ribeiro et al., 2021; Hočevar & Demšar, 2014) or by relaxing the subgraph isomorphism
condition thanks to expressive but non-injective encoding schemes (Costa & De Grave, 2010).
Two main aspects have been studied to address the computational complexity of these
approaches. The first consists in estimating graphlet counts by diverse subgraph sampling
strategies (Ahmed et al., 2016; Chen & Lui, 2018; Bressan et al., 2017), whereas the second
aims at restraining the scope of searched graphlets, e.g. to cycles or trees (Horváth et al.,
2004; Ramon & Gärtner, 2003; Mahé & Vert, 2009).

As these kernels got more computationally tractable, some have been adapted to graphs
with discrete attributes just by endowing the subset of graphlets with all possible node labels.
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Naturally, graphs with continuous attributes require these kernels to be coupled with custom
base kernels handling vertices or subgraphs comparison (Kriege & Mutzel, 2012).

2.1.3 Global structure based kernels

Paths and walks. To circumvent the dependence of subgraph-based kernels on specific
sets of patterns, several works have proposed to compare graphs through sequences formed
by traversing their nodes. The two most common traversal schemes are based on shortest
paths (SP) or random walks (RW).

Borgwardt & Kriegel (2005) proposed the SP kernel, whose similarity between two graphs
G = (V,E) and G = (V ,E) is computed by comparing attributes and shortest path lengths
between all pairs of nodes respectively composing them. The base kernel defined on V 2 × V 2

fuses feature and topology knowledge, by multiplying outputs of a kernel on V ×V comparing
node features, and another kernel defined on V 2 × V

2 comparing shortest path lengths.
Interestingly, feature maps associated to this kernel can be computed explicitly.

A consequent part of the graph kernel literature considers random walks, i.e sequences
[u0, ..., ut, ut+1, ..., uT ] of nodes along with their labels, potentially with repetitions. These
are generated by iteratively traveling from a node ut to another node ut+1 randomly sampled
in its neighborhood N(ut). As such, graphs can be considered as Markov chains (Gärtner
et al., 2003; Kashima et al., 2003; Vishwanathan et al., 2010; Mahé et al., 2004). This is
supported by a probabilistic view of kernels related to the notion of marginalized kernels. The
feature space of the kernel derives from the infinite set of unbounded and possible sequences
produced by walks. Interestingly, these kernels often admit recursive formulations which at
the end of the day boils down to finding the stationary state of a Markov Chain, either given
by closed-form formula computed by matrix inversion, or estimated by fixed-point solvers
(Vogel, 2002).

Global graph embeddings and properties. Other approaches directly rely on specific
graph matrix representations to capture global knowledge of the graph topology. Famous
instances are variants of the Laplacian (PD) matrix, defined as

L = D −A (2.5)

where D is the diagonal matrix of node degrees and A the graph adjacency matrix.
These methods leverage a probabilistic interpretation of graphs, to model them as a discrete
probability distributions, easing their comparison (Kondor & Pan, 2016). Indeed one can
construct a Gaussian Markov random field over the nodes of the graph seen as random
variables (Rue & Held, 2005), such that two graphs G and G are respectively assigned to
distributions µ = N (0,L−1) and µ = N (0,L−1). Then both distributions can be compared
using for instance the Bhattacharyya kernel k(µ, µ) =

∫ √
µ(x)µ(x)dx that can be computed

in closed form for Gaussian distributions (Jebara & Kondor, 2003). Kondor & Pan (2016)
also studied the feature space associated to this Laplacian graph kernel, to derive multiscale
Laplacian kernels capturing from the relationships between their vertices but also between
subgraphs.

Related approaches aim at obtaining geometric embeddings of the nodes e.g. through
matrix decomposition of the Laplacian based matrices or the incidence matrix (Johansson
& Dubhashi, 2015). For instance, Johansson & Dubhashi (2015) proposed to use Cholesky
decompositions of the Laplacian or pseudo-inverse Laplacian to get such embeddings (Gentle,
1998). Authors also studied embeddings using orthonormal basis inherent to the computation
of the Lovász number (Johansson et al., 2014; Lovász, 1979, Definition 1) which is a graph
global statistic.



Chapter 2. Introduction to Graph Representation Learning 23

Finally, global information about graph topologies and features can be obtained by
aggregating knowledge from various kernels, operating at any granularity, preferably if the
information they contain is not too redundant to avoid overfitting. Indeed, since positively
weighted sums of PD kernels still is a PD kernel, several works proposed to jointly learn
optimal kernel weights and support vectors (e.g. Rakotomamonjy et al. (2008)) to perform
graph classification (Kriege, 2019; Salim et al., 2020).

2.2 Graph Neural Networks
As discussed in Section 2.1, all kernel methods that historically constitute the foundations of
GRL, lead to representations which are either deterministic, or probabilistic, if a random
process underlies the kernel design. The multiple kernel learning paradigm that learns linear
combinations of kernels to benefit from their individual specificity can be considered as a
first axis of learnable graph representations. But one might argue that these methods lack of
flexibility and might rather seek for fully learnable graph representations. Nowadays, such a
goal is what is often understood as Graph Representation Learning (Hamilton, 2020) or, in a
slightly wider meaning, as Geometric Deep Learning (Bronstein et al., 2017). These refer to
emerging techniques attempting to extend Deep Learning models (Goodfellow et al., 2016;
Pouyanfar et al., 2018) to non-Euclidean domains, such as graphs, mainly relying on Graph
Neural Networks (GNN).

We provide next a short overview on this topic and refer the reader interested in more
details to the recent books (Hamilton, 2020; Bronstein et al., 2021a) and surveys (Wu
et al., 2020; Zhou et al., 2020; Kazemi et al., 2020; Zheng et al., 2022). We first introduce
predominant methods that focus on node embedding schemes (Section 2.2.1) in the vein of
Section 2.1.2, before introducing graph pooling approaches that focus on more global graph
knowledge (Section 2.1.3).

Notice that such approaches mostly focus on encoding the graph topology and node
features to perform supervised or semi-supervised down-stream task, such as node or graph
classification, usually in an end-to-end fashion. However, they can also be directly plugged as
the encoder in a Deep Autoencoder architecture (Hinton & Salakhutdinov, 2006) for graph
reconstruction or generation purposes, using simple heuristics directly over the latent space
as decoder (Wu et al., 2020, Section 6).

2.2.1 Node embeddings in GNN

GNN based methods aim at generating node representations that contain knowledge from
both the graph topology and features. Most of them do so thanks to a form of neural message
passing in which vector messages are exchanged between nodes and updated using neural
networks (Gilmer et al., 2017).

Message Passing Neural Networks (MPNN). Assume that we observe an input graph
G = (V,E), of order n, whose node features in Rd, are collected as rows in the matrix
F = (fu)u∈[[n]] ∈ Rn×d. For all nodes u ∈ V , the common message-passing (MP) at the lth

iteration in a GNN, consists in updating an hidden node embedding h(l)
u by aggregating

information from the node neighborhood N(u) encoded in {h(l−1)
v |v ∈ N(u)}. For one GNN

layer, this process can be expressed as follows (considering h(0)
u = fu):

h(l)
u = update(l−1)

(
h(l−1)
u , aggregate(l−1)(

{
h(l−1)
v |∀v ∈ N(u)

}
)
)

(2.6)

where ∀l ∈ [1, L], update(l) and aggregate(l) are arbitrary differentiable functions, typically
neural networks. The aggregation function takes as input the multiset of neighbor embeddings.
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Figure 2.1: Illustration of the mechanism of a MPNN. The update and aggregate functions are
summarized by an application φu parameterized by u that can be decomposed into L components or
layers.

As such, after L iterations or layers, the embeddings {h(l)
u } encode knowledge from the L-hop

neighbor structures and features, and can be used as such to perform e.g. node classification.
The mechanism of MPNN is illustrated in Figure 2.1.

Initially, only the node embeddings from the last layer {h(L)
u }u∈V were considered as node

representations. However a common practice first proposed by Xu et al. (2018) and inspired
from skip-connections (Srivastava et al., 2015), consists in concatenating those layer-wise
node embeddings to form final node representations, to benefit from the encoding of various
neighborhood lengths. Overall this procedure clearly resembles the neighborhood aggregation
scheme used for the WL kernels (equation 2.3), except that differentiable operations are
applied. The diversity of these operations is what mostly forms the taxonomy of GNN whose
brief synthesis is provided in the following paragraphs

Spatial GNN. Methods that mostly rely on the adjacency of nodes are often referred as
Spatial GNN. Naturally they relate to the convolution operation of Convolutional Neural
Networks performed on grids such as images (LeCun et al., 1995). These methods then differ
depending on the chosen "update" and "aggregate" functions in equation (2.6).

A historically famous and efficient way to aggregate the neighborhood message is by
summation, i.e ∑v∈N(u) h

(l)
v . For instance, one first GNN proposed by Scarselli et al. (2008)

considers the update:

h(l)
u = σ

W (l)
selfh

(l−1)
u +W (l)

neigh

∑
v∈N (u)

h(l−1)
v + b(l)

 (2.7)

where (W (l)
self ,W

(l)
neigh) and b(l) are respectively trainable parameter matrices and bias, and σ

is a non-linear activation function (element-wise). A recent state-of-the-art method from Xu
et al. (2019c), the Graph Isomorphism Networks (GIN), considers the update

h(l)
u = MLP(l)

(1 + ε(l))h(l−1)
u +

∑
v∈N(u)

h(l−1)
v

 (2.8)

where ε(l) ≥ 0, and a MLP with two layers and non-linear activations is used for the embedding
update. We refer to Hamilton (2020), Section 5.1, for explanations regarding the asymmetric
processing of node self-embedding and neighbor embeddings.

A more involved concept incorporates an attention weight (Bahdanau et al., 2014) or
importance to each neighbor, using ∑v∈N(u) α

(l)
u,vh

(l)
v as aggregation function. A first instance

is the Graph Attention Network (Veličković et al., 2018, GAT) that defines the attention
weights as

α(l)
u,v =

exp{a>W (l)
[
h

(l−1)
u ,h

(l−1)
v

]
}∑

v′∈N (u) exp{a>W (l)
[
h

(l−1)
u ,h

(l−1)
v′

]
}

(2.9)

where for any (u, v) ∈ V ×V ,
[
h

(l−1)
u ,h

(l−1)
v

]
is the concatenation of both node embeddings at

layer (l − 1). Other variants consider bilinear inner operations or more involved mechanisms
(see e.g. Zhu et al. (2021) and references therein), potentially with multi-head attentions in
the vein of Transformers (Vaswani et al., 2017).
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Many other principles exist, such as set aggregation that first applies a (non-linear)
MLP on neighbor embeddings before summation and provides a universal set function
approximator (Zaheer et al., 2017; Hamilton et al., 2017). Other methods directly see the
neighbor embeddings as sequences which are then processed and aggregated with Recurrent
Neural Networks (Li et al., 2015; Wu et al., 2020, Section 4).

Spectral GNN. A thorough analysis of the convolution operations from Euclidean to
Non-Euclidean domains, detailed in Bronstein et al. (2017; 2021a), motivated the use of graph
signal filters derived from the (normalized) Laplacian matrix (resp. operator) to operate on
graphs (resp. manifolds).
Since L is a PSD matrix it can be diagonalized in an orthonormal basis of eigenvectors
U = (ui)i∈[[n]] ⊂ Rn×n, called the Graph Fourier Transform operator, such that L = UΛU>.
Then in Graph Signal Processing (Ortega et al., 2018), a graph signal x ∈ Rn is a feature
vector of all nodes of a graph. Using the graph Fourier transform x→ U>x and its inverse
y → Uy, one can express the graph convolution of the input signal x with a parameterized
filter gθ ∈ Rn as x ?G gθ = U(U>x�U>gθ). Spectral CNN (Bruna et al., 2013) considered
fθ = diag(U>gθ) to factor the convolution as x ?G fθ = UfθU

>x, which can then be seen as
a message passing operation in a spectral domain.

Due to the eigen-decomposition of the Laplacian matrix, Spectral CNN suffers from
sensitivity issues, as any graph perturbation induces an eigenbasis change, and the learned
filters cannot be applied to a different graph structure. Moreover, the decomposition requires
O(n3) operations that prevents its application to large graphs. Several improvements were
made to overcome these limitations by using approximations and simplifications, e.g using K-
order polynomial functions (Defferrard et al., 2016, Chebnet) or first-order Taylor expansions
(Kipf & Welling, 2016, GCN). The latter methods respectively boil down to the aggregation
of K-hop and 1-hop neighborhood knowledge. As such, GCN is equivalent to a Spatial GNN
with non-parametric reweighed messages given by the following update rule:

h(l)
u = σ

W (l) ∑
v∈N (u)∪{u}

h
(l−1)
v√

|N(v)||N(u)|

 (2.10)

The expressive power of GNN. The most recent research on GNN has focused on the
expressiveness of the models, e.g. it has been shown that GIN is as expressive as a 1-WL test
(Xu et al., 2019c). These considerations deepen the roots of GNN methods in the literature
on Graph Kernels, Graph Theory and distributed local algorithmic. For instance, new GNN
models proposed to extend the neural message passing to higher-order neighborhoods modeled
as tuples, inspired from the k-WL tests or kernels (Morris et al., 2019; Maron et al., 2019a;
Chen et al., 2020c). Note that even if clear progress is observed on GNN expressiveness,
it is not necessarily coupled with improvements in terms of generalization capabilities, so
both aspects remain the biggest challenges of supervised Graph Machine Learning. We refer
the reader to the survey of Sato (2020) for a comprehensive overview of studies on GNN
expressiveness.

2.2.2 Graph pooling operations

While many methods for node embeddings have been studied (Section 2.2.1), less attention
has been devoted to Graph pooling layers (Xu et al., 2019c; Mesquita et al., 2020; Cheung
et al., 2020). These can be divided into two categories, namely global and hierarchical pooling
operators. Briefly, the first paradigm consists in factoring a graph as a vector to ease its
processing for down-stream tasks. Whereas, the second aims at reducing the size of a graph,
while preserving a graph structure, instead of reducing it to a simple vector.
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Notice that global and hierarchical pooling operators have different roles and both can be
part of the same graph-level GNN. The former compute graph embeddings to interface with
traditional Deep Learning layers, while the latter provide a multi-resolution representation of
the graph from which the GNN can gradually distill high-level properties.

Taxonomy. Grattarola et al. (2022) recently proposed the first taxonomy of Graph Pooling
operators, as combinations of three functions:

• The selection function (S) groups the nodes {vi}i∈[[n]] of the input graph G into subsets
{Sk}k∈[[K]], called supernodes, with K < n, such that Sk = {(vi, si)|si > 0} where the
value si scores how much node vi contributes to Sk.

• The reduction function (R) computes embedded (super)node attributes {v(1)
k }k∈[[K]] by

aggregating input node attributes selected in each supernode Sk.

• The connection function (C) links the embedded and reduced nodes {v(1)
k }k∈[[K]] with

(possibly attributed) edges and outputs the pooled graph G(1) = (V (1), E(1)), with
embedded edges E(1) and node features V (1) = {v(1)

k }k∈[[K]].
In this framework, a global pooling operation is a degenerate case where K = 1.

Global pooling operators. Usually for graph-level tasks, a first step consists in computing
node representation {hv}v∈[[n]] of a given graph G (see Section 2.2.1), then a readout function
provides the graph embedding:

hG = readout
(
{hv}v∈[[n]]

)
(2.11)

This representation hG is then fed e.g to a Multi-Layer Perceptron (MLP) for graph classifica-
tion. The readout function, also called the global pooling operator, is usually a non-parametric
(un)weighted sum operation taken across nodes (Li et al., 2015; Zhang et al., 2018; Wu et al.,
2019; Atwood & Towsley, 2016; Bai et al., 2019), but can be more advanced and preferably
injective (Navarin et al., 2019; Corcoran, 2020). A parametric global pooling operation using
Optimal Transport (Chapter 3) distances constitute the main contribution of Chapter 4.

Hierarchical pooling operators. Grattarola et al. (2022) proposed to distinguish hi-
erarchical pooling methods based on the following criterion: trainability, computational
complexity (linear or quadratic), adaptivity of the pooled graph size.

These pooling methods, partly mentioned in Bruna et al. (2013), are popular graph
clustering algorithms that previously found applications in Computer Vision, like variants of
Independent Component Analysis (Coates & Ng, 2011; Hyvärinen & Oja, 2000), Spectral
Clustering (Von Luxburg, 2007; Bravo Hermsdorff & Gunderson, 2019; Ma et al., 2019;
Bianchi et al., 2020b), weighted or normalized graph cuts (Dhillon et al., 2007; Monti et al.,
2017; Fey et al., 2018; Levie et al., 2018), or other graph decomposition techniques (Luzhnica
et al., 2019; Noutahi et al., 2019; Xie et al., 2020a).

The state-of-the-art approaches consists in learnable operators that can dynamically adapt
to a particular task to compute optimal pooling. Some well-known are based on (potentially
hierarchical) clustering (Ying et al., 2018; Bianchi et al., 2020a) or other node selection
mechanisms (Gao & Ji, 2019; Lee et al., 2019; Ranjan et al., 2020).

2.3 Conclusion
This chapter introduced diverse methods to obtain representations of (attributed) graphs useful
for down-stream tasks such as node or graph classification. First, we detailed similarity based
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approaches (Section 2.1) that mostly relate to the design of Graph Kernels, or relaxations such
as Balcan’s theory. These methods commonly lead to deterministic graph representations that
might lack of flexibility and scalability. To circumvent such limitations we then introduced
in Section 2.2 some concepts from the modern and flourishing Geometric Deep Learning
literature to learn graph representations end-to-end. Note that Graph Kernels remain state-
of-the-art methods on some datasets suggesting that GNN have not yet reached their full
potential.

Next chapter (Chapter 3) will introduce a major focus of this thesis, namely Optimal
Transport (OT), that can provide distances between node embeddings or graphs, hence
directly linked to Section 2.1.
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This chapter presents the theoretical foundations of Optimal Transport (OT) from an
application perspective related to Graph Machine Learning. The OT theory originated in
the 18th century to solve an everyday problem of moving one finitely divisible object to
another according to the least effort principle. It resulted in an elegant way of comparing
probability distributions while taking into account the geometry of the underlying space.
Since graphs, seen as finite sets of nodes, are an instance of discrete probability distributions,
a first objective of this chapter (Section 3.1) is to briefly present the main results of discrete
OT theory, both mathematically and numerically. We refer the reader interested in complete
overviews of these two aspects to the books Villani (2009); Santambrogio (2015) and Peyré &
Cuturi (2019) respectively.

However, as graphs are naturally observed and characterised by pairwise interactions
between their nodes, the aforementioned modeling (assuming the existence of a node ambient
space shared by graphs) might omit their respective and diverse topologies. This paradigm has
motivated the extension of OT limited to a single ambient space to OT across incomparable
spaces (Mémoli, 2011; Sturm, 2012). The latter is addressed in Section 3.2 of this chapter,



Chapter 3. Introduction to Optimal Transport for graphs 29

whereas Section 3.3 deals with a mix of both concepts (Vayer et al., 2020), more suitable for
graphs endowed with node features.

The introduction of the latter two OT problems across incomparable spaces will be
complemented by some of our new contributions to graph distribution learning (Vincent-Cuaz
et al., 2021), that will be used in the following Chapters. More specifically, we extend
the seminal Graph Representation Learning approaches based on the estimation of graph
barycenter using OT distances thanks to novel sub-gradient derivations provided in Theorems
5 and 7 (Sections 3.2.5 and 3.3.4).

3.1 Optimal Transport within a common space
In this section, we introduce the formulation of Optimal Transport between discrete measures
that is ubiquitous in this manuscript, namely the Kantorovich optimal transport problem (Sec-
tion 3.1.1). Then we detail how this formulation naturally leads to the definition of the
so-called Wasserstein distances (Section 3.1.2). After providing insights on the geometric and
statistical properties of these distances, we present several solvers for the optimization problem
inherent to their computation, with a focus on those used in the following Chapters (Section
3.1.3). Finally, we develop the notion of barycenter with respect to the Wasserstein distances,
before discussing some unsupervised representation learning approaches based on OT (Section
3.1.4).

3.1.1 Problem statements

The first mathematical formulation of the OT problem has been proposed in a Mémoire by
Gaspard Monge (Monge, 1781). It was a question of finding the most efficient way to move a
pile of sand, de facto subdivided into grains of limited granularity, from one place (déblais)
to another (remblais).

Discrete measures. A natural way to formally represent such amorphous objects is to use
discrete probability measures defined as follow. First, remark that we will use interchangeably
the terms probability vector and histogram for any element h ∈ Σn that belongs to the
probability simplex with n components:

Σn := {h ∈ Rn+|
∑
i

hi = 1} (3.1)

A discrete measure with masses {hi}i∈[[n]] ⊂ R+ encoded in vector form as h ∈ Rn+, and with
corresponding finite locations {x1, ...,xn} ⊂ X , reads as

µ =
∑
i

hiδxi (3.2)

where for all i ∈ [[n]], δxi is the Dirac measure at position xi, such that for any x ∈ X ,
δxi(x) = 1{xi=x}. The set of points {xi} composing µ is referred as its support supp(µ).
Such a measure µ describes a discrete probability measure as h ∈ Σn. Notice that it is a
specific case of an discrete positive measure whose total mass is constrained to be 1, instead
of any real positive value.1

From Monge to Kantorovich OT problems. Under such formalism, the original
problem can be cast as follows: given two probability distributions µ = ∑

i∈[[n]] hiδxi and
1We refer the reader to Peyré & Cuturi (2019), Remark 2.2, for a generic definition of measures to which

OT theory extends.



Chapter 3. Introduction to Optimal Transport for graphs 30

Figure 3.1: Left: blue dots for measure µ and red dots from measure µ are pairwise equidistant.
Hence, either matching σ = (1, 2)(full line) or σ = (2, 1) (dotted line) is optimal. Right: a Monge map
can associate the blue measure µ to the red measure µ. The weights hi are displayed proportionally
to the area of the disk marked at each location. The mapping here is such that T (x1) = T (x2) = y2,
T (x3) = y3, whereas for i ∈ {4, 5, 6, 7}, T (xi) = y1. Inspired from Peyré & Cuturi (2019).

µ = ∑
j∈[[n]] hjδyj of respectively n and n points, with potentially n 6= n, how do we transfer

all the mass of µ onto µ so that the overall effort of transferring this mass is minimized?
Henceforth the notions of transfer and effort are to be expressed. Several assumptions

were made to formalize such notions that led to various concepts of Optimal Transport. At
first, the aforementioned transfer relates to a map T (also called a Monge map) that associates
to each point xi a single point yj which must push the mass of µ towards µ’s one.
Then for this map to satisfy the least effort principle, it should minimize some trans-
portation cost from supp(µ) to supp(µ) according to a certain cost function c : (x,y) ∈
supp(µ)× supp(µ)→ R.

Seeing the notion of transfer as such leads to an oriented transportation problem, since
it might be impossible to find a Monge map satisfying the mass conservation constraints,
without allowing the probability mass hi at location xi to be sent to various target locations
{yj}j . We provide two instances of the described Monge’s OT problems in Figure 3.1. Remark
that assuming h = h = 1

n1n (thus n = n), as in the right plot with n = 2, the conservation of
mass implies that the Monge map defines a bijection on [[n]]. This emphasizes the complexity
of such an OT problem because, even in this simplified scenario with uniform distributions
of the same size, it seeks for an optimal solution among the non-convex and large set of
permutations Sn, satisfying card(Sn) = n!. Finally, the infeasibility of Monge problem can
be foreseen from the right plot of Figure 3.1 showing an optimal map from µ to µ where no
Monge map can be defined in the opposite direction. For instance, y2 with mass h2 can not be
assigned to any location {xi}i∈[[7]] while prohibiting mass splitting, as for all i ∈ [[7]], hi < h2.

Since Monge maps may not exist nor be unique, such a transportation paradigm remained
an open mathematical problem for over two centuries. Seminal results on discrete or continuous
Monge matchings were discovered by Appell (1887) but only for specific cases, until the
celebrated Brenier’s theorem (Brenier, 1991) which revealed an unexpected link between
Optimal Transport and Fluid Mechanics. This theorem provided the existence and the unicity
of Monge maps between distributions, with finite second moments and admitting density (in
source), while using the squared euclidean distance c(x,y) = ‖x− y‖22 as ground cost.

Kantorovich primal problem. Still, the transfer notion of Monge imposes a deterministic
nature to the transportation problem which might be detrimental e.g. to perform more general
allocation problems. Kantorovich (1942) then proposed to relax Monge’s transportation
problem by allowing the mass at any source point to be potentially split across several target
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points. In a figurative way, the transportation problem involving finitely subdivisible objects
initially, now concerns infinitely splittable ones. Formally, the matching problem switches
from deterministic to probabilistic, as it now seeks for a mapping modeling a joint distribution,
between the source and target distributions, that defines how the mass is transported.
The mapping is then encoded as a coupling matrix T ∈ Rn×n+ , whose entry Tij depicts the
amount of mass transported from xi to yj . To satisfy the mass conservation paradigm, an
admissible coupling must belong to the set

U(h,h) := {T ∈ Rn×n+ |T1n = h,T>1n = h}

= {T ∈ Rn×n+ |∀(i, j) ∈ [[n]]× [[n]],
∑
k

Tik = hi,
∑
k

Tkj = hj} (3.3)

Interestingly, the set of admissible coupling matrices U(h,h) defines a compact and convex
set, as a convex polytope resulting from n + n mass equality constraints.2 Hence the OT
problem in its relaxed form reads as

Tc(µ, µ) = min
T∈U(h,h)

〈C,T 〉F (3.4)

where C = (c(xi,yj))i,j∈[[n]]×[[n]]. So OT now relates to a convex linear problem constrained to
the convex set U(h,h). The resulting cost Tc(µ, µ) corresponds to the minimal total cost of
moving µ towards µ by potentially splitting their masses and transporting forward the pieces
according to the optimal coupling matrix T ∗. This linear OT formulation is also ubiquitous
in everyday resource allocation problems, as illustrated by the famous examples of supplying
raw materials from warehouses to factories (Peyré & Cuturi, 2019, Remark 2.10)(Kantorovich,
1942; Hitchcock, 1941), or distributing bread from bakeries to cafes in Manhattan (Villani,
2021).

Moreover, one can observe that the Birkhoff polytope U( 1
n1n,

1
n1n) (Birkhoff, 1946)

contains the set of permutation matrices Perm(n) scaled by a factor 1/n,

1
n
Perm(n) := {Pσ ∈ Rn×n|∀σ ∈ Sn,∀(i, j) ∈ [[n]]2, (Pσ)ij = 1

n
1{j=σ(i)}} (3.5)

which is in bijection with Sn. Thus the OT cost resulting from Kantorovich’s formulation
(3.4) necessarily bounds by below the one from Monge’s problem, or equivalently the optimal
assignment problem in this scenario. Actually, these two problems result in the same optimal
cost in such settings, i.e Kantorovich’s problem always admits a permutation matrix (up to
the scaling 1

n) as optimal coupling (Peyré & Cuturi, 2019, Proposition 2.1).

Kantorovich dual problem. A last observation on the primal Kantorovich’s problem
(3.4) lies in its relation to its dual problem. Indeed, as the primal problem is convex, strong
duality for Linear Programs holds (Bertsimas & Tsitsiklis, 1997, Theorem 4.4). So we have
the equality relation stated in the following Proposition 1:

Proposition 1 (Proposition 2.4, Peyré & Cuturi (2019)) The primal problem 3.4
admits the following dual formulation

Tc(µ, µ) = max
α,β∈R(C)

〈α,h〉+ 〈β,h〉 (3.6)

2as the convex hull of a finite set of matrices (Brualdi, 2006).
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where the set of admissible "Kantorovich’s dual potentials" is

R(C) := {(α,β) ∈ Rn × Rn|∀(i, j) ∈ [[n]]× [[n]], αi + βj ≤ Cij} (3.7)

This dual formulation of the optimal transport cost induces an elegant switch in interpretation,
from the aforementioned resource allocation problems, to profit maximization problems if
the allocations were to be handled by a third-party deliverer (see Peyré & Cuturi (2019),
Remark 2.21). Moreover in a Machine Learning perspective, this dual formulation could
be used to derive subgradients w.r.t probability vectors h or h in order to learn reweighed
representations, as the primal problem is not differentiable w.r.t these variables.

3.1.2 Wasserstein distances: definitions and properties

p-Wasserstein distances. The most notable scenario occurring in OT applications is
when the respective support of compared measures belongs to a Polish space3, denoted (X , d),
like an Euclidean space. In such cases, the ground cost c of the OT problem is naturally
defined from the distance d depicting the space topology. These considerations lead to the
definition of the so-called p-Wasserstein distances reading, for any p ∈ [1,∞] as a Kantorovich
problem (3.4) whose ground cost matrix C = Dp = (dp(xi,yj))(i,j)∈[[n]]×[[m]]:

Wp
p(µ, ν) := Tdp(µ, ν) = min

T∈U(h,h)
〈Dp,T 〉F (3.8)

This function satisfies all the axioms of a distance on the space of (discrete) probability
distributions with bounded p-moments as detailed in the next theorem, which can naturally
be adapted to continuous or semi-continuous settings:

Theorem 1 (Theorem 7.3, Villani (2021)) Let (X , d) be a Polish space, p ∈ [1,+∞]
and any discrete probability distributions µ and ν on X with finite p-moments. Then 0 ≤
Wp(µ, ν) < +∞ and

i) Wp(µ, ν) = Wp(µ, ν) (symmetry)

ii) Wp(µ, ν) = 0⇔ µ = ν (separation)

iii) Wp(µ, ν) ≤Wp(µ, ξ) + Wp(ξ, ν) (triangle inequality), with ξ a discrete probability
distribution on X with finite p-moments.

Proof sketch of Theorem 1. We refer the reader to Villani (2021), Theorem 7.3, for a
detailed proof of Theorem 1. We emphasize that the triangle inequality partly results from
the Gluing Lemma (Villani, 2021, Lemma 7.6) who provides an admissible and sub-optimal
coupling from µ to ν, composed of optimal couplings between both other matching problems. �

Insights on the Wasserstein distance properties. An appealing property of Wasserstein
distances lie in their abilities to compare probability measures while taking into account the
geometry of the underlying space, governed by the ground cost c. This contrasts with the
most commonly used f-divergences (Csiszár, 1967), like the Total Variation (TV) norm or the
Kullback-Leibler (KL) divergence, which compare these measures in a point-wise manner and

3A Polish space is a separable completely metrizable topological space. Namely, it contains a countable,
dense subset i.e there exists a countable sequence of elements of the space such that every nonempty open
subset of the space contains at least one element of the sequence. Moreover, there exists at least one metric d
on X such that (X, d) is a complete metric space and d induces the space topology.
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fail to capture the geometric nature of the problem.
As a result, the latter divergences do not metrize the weak convergence (or convergence in
law) and are unstable w.r.t deformations of the distributions’ supports. We recall that a
sequence (µn)n∈N of probability measures on X a Polish space, is said to converge weakly to
µ in X if for all continuous and bounded functions f : X → R we have∫

X
fdµn −−−−−→

n→+∞

∫
X
fdµ (3.9)

However, the Wasserstein distance metrizes the weak convergence of probability measures,
meaning that (µn) converges weakly to µ if and only if Wp(µn, µ)→ 0 (Villani, 2021, Theorem
6.9).
Note that other divergences metrize the weak convergence of probability measures, e.g the
Maximum Mean Discrepancies (MMD) resulting from the integration of kernels (Gretton et al.,
2006), but they do not necessarily induce the same geometry and statistical behavior on the
space of probability measures. Notably, MMD attaches "flat" geometry to this space whereas
Wp provides a geodesic one, which is important in order to derive dynamic formulations and
gradient flows (Ambrosio et al., 2005; Chizat & Bach, 2018).

However, this refined structure modeling generally comes with higher computational cost
for the distance estimation (see Section 3.1.3), and higher sample complexity or approximation
error when sampling from a distribution. To formalize this latter point, let us consider any
probability distribution µ on Rd and an empirical distribution µn = 1

n

∑
i∈[[n]] δxi composed

of the samples xi ∼iid µ, that is expected to be a good proxy for µ. In this case, the sample
complexity of the estimation of the Wasserstein distance is exponential in the ambient space:

E{Wp(µn, µ)} = O(n−1/d) (3.10)

So Wasserstein distances suffer from the curse of dimensionality (Dudley, 1969; Weed & Bach,
2019). Weed & Bach (2019) also showed a potential refinement of this result in O(n−1/p)
where p is the intrinsic dimension of the distribution. Still, these results highlight a major
bottleneck for the use of OT in high dimensions. We refer the reader interested in more
details on statistical aspects of OT to the thesis of Weed (2019).

Special cases. In some specific scenarios, the Wasserstein distances admit closed-form
solutions. One first relates to OT between empirical distributions whose supports lie on the
real line. Interestingly, the p-Wasserstein distance between both measures is given by the
lp norm between two vectors formed by sorting the support of each measure, which can be
computed in O(n log(n)) operations using e.g a merge sort (Knuth, 1973). This relation is
actually a simple consequence of the generic result detailed in Peyré & Cuturi (2019), Remark
2.30. Namely, the OT plan between two measures µ and µ supported on R, respects the
ordering of the elements given by the monotone rearrangement of both measures, given by
the distance induced by the lp([0, 1]) norm between their respective quantile functions. We
refer the reader to Santambrogio (2015), Chapter 2, for a detailed survey on OT over the real
line.

These easily tractable closed-form solutions motivated the definition of sliced OT distances
such as the Sliced Radon Wasserstein (Bonneel et al., 2015) that computes the expected value
of the Wasserstein distance over 1D linear projections integrated on the unit sphere Sd−1

(often approximated from finite random directions). This sliced distance has been used as a
fitting term for generative networks (Kolouri et al., 2018; Deshpande et al., 2018; Liutkus
et al., 2019) or e.g as a kernel for persistence diagrams (Carriere et al., 2017). The Sliced
Radon Wasserstein (SW) distances are intimately linked to the Radon transform (Radon,
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1986), whose generalization to non-linear 1D projections (Beylkin, 1984) leads to Generalized
SW distances (Kolouri et al., 2019).

A second scenario where OT admits closed-form solutions is when probability measures
respectively depicts Gaussian distributions of Rd, such as µ = N (m,Σ) and µ = N (m,Σ),
and c is the Euclidean norm. The 2-Wasserstein distance between such distributions can be
expressed using the Bures-Wasserstein metric between positive definite matrices, which can
be computed from simple matrix operations (Bures, 1969). We refer the reader to Peyré &
Cuturi (2019), Remark 2.31, for more details on the Bures-Wasserstein metric, and an explicit
derivation of the OT map in this setting. Interestingly, when only empirical estimates of
the means and covariances are available for both distributions, the formula applied in these
estimates approximates W2

2(µ, µ) with a sample complexity of O(n−1/2) as proven in Flamary
et al. (2019). Note that an analog close form solution to the 2-Wasserstein problem between
elliptical distributions which generalizes Gaussian ones can be found in Muzellec & Cuturi
(2018).

3.1.3 Solving for linear OT

In the following, we address the estimation of an optimal solution to the primal (equation
(3.4)), and/or dual (equation (3.6), Proposition 1), Kantorovich’s transport problems between
discrete probability distributions µ = ∑

i∈[[n]] hiδxi and µ = ∑
j∈[[n]] hjδyj . The problem can be

solved in many ways, so we essentially detail the approaches used in the remaining chapters
of this manuscript. Namely, the Network Flow algorithm seeking for exact solutions, the
Sinkhorn algorithm solving for an entropically regularized OT problem and the Proximal
Point algorithm acting as its exact counterpart.

Minimum-cost Network Flow algorithm. The Minimum-cost Network Flow problem is
a common optimization and decision process, to find the cheapest possible way of sending a
certain amount of mass through a flow network. The latter is simply a directed graph, whose
nodes correspond to the source and target locations, and whose edges are defined as the costs
of moving a certain amount of mass along a given pair of source and target nodes. This
problem exactly translates to OT and can be solved efficiently using the Network Simplex
algorithm.

Before briefly detailing the Network Flow algorithm, we emphasize that its motivation is
to couple updates of the primal and dual respective solution estimates, to reach optimality
on both problems simultaneously. To this end, we highlight certain relations between both
problems being a priori independent.

First, from the complementary slackness of the Karush–Kuhn–Tucker (KKT) conditions,
one can deduce that any optimal solutions T ∗ and (α∗,β∗) to their respective problem must
satisfy for all (i, j) ∈ [[n]]× [[n]],

T ∗ij(Cij − α∗i − β∗j ) = 0 (3.11)

Therefore, the dual feasibility (equation (3.7), Proposition 1) implies that if T ∗ij > 0 then
α∗i + β∗j = Cij , otherwise if T ∗ij = 0 necessarily α∗i + β∗j < Cij (Peyré & Cuturi, 2019,
Proposition 3.2). Then, we introduce the idea that variables T and (α,β), respectively
related to both problems, are complementary w.r.t C if ∀(i, j) ∈ [[n]]× [[n]] such that Tij > 0
then Cij = αi + βj (Peyré & Cuturi, 2019, Definition 3.1). This way, if a pair of variable
T and (α,β) are feasible and complementary then they are optimal (Peyré & Cuturi, 2019,
Proposition 3.3).

The Network Flow algorithm thus relies on two simple principles: to each feasible primal
solution T one can associate a complementary pair (α,β). If that pair is feasible, then
optimality is reached. Otherwise, one can consider a modification of T that remains feasible
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and whose complementary pair (α,β) is modified so that it becomes closer to feasibility. The
first principle imposes to provide an extremal primal solutions T as starting point, which
can be carried out using the North-West Corner Rule (Peyré & Cuturi, 2019, 3.4.2). Then
the association of a complementary pair of dual variables and the potential next update of
T are achieved thanks to heuristics requiring cycle detection and tree traversals within a
bipartite graph modeling the mass flow induced by T (Bertsekas & Eckstein, 1988). We refer
the reader to Peyré & Cuturi (2019), Section 3.5, for further details on each algorithm step.

Orlin (1997) provided the first algorithmic solution with proven polynomial worst-case
complexity of O

(
(n+m)2nm log((n+m)‖C‖∞)

)
, which was later improved by Tarjan (1997)

to O ((n+m)nm log(n+m) min{log((n+m)‖C‖∞), nm log(n+m)}) thanks to the use of
dynamic trees. Numerous variants of this algorithm exist with various update rules and
modeling of the spanning tree structure (Kovács, 2015). In the following, implementations of
various OT methods rely on the Network Flow solver from POT (Flamary et al., 2021), based
on an efficient C++ implementation operating on CPU of the network simplex algorithm
with a block search pivoting strategy (Bonneel et al., 2011; Kelly & ONeill, 1991). Recent
works (Ploskas & Samaras, 2014) focused on accelerating Network Flow algorithms on GPU,
which require advanced algorithmic considerations to leverage the parallelization potential
of these units. So an integration of such solver within common GPU accelerated Machine
Learning Library, e.g Pytorch (Paszke et al., 2019), is still to come and can be (hopefully
temporarily) a bottleneck for OT based end-to-end models (see Chapter 4)

Entropic regularization of OT. One practice to approximate solutions of (3.4), made
popular by Cuturi (2013), consists in regularizing the OT problem thanks to the discrete
entropy of a coupling:

H(T ) = −
∑
ij

Tij (log(Tij)− 1) = −〈T , logT − 1n1
>
m〉F (3.12)

for any T ∈ U(h,h). H is 1-strongly concave on the set of admissible couplings, so the
regularized OT problem reading, for any ε > 0, as

T εc (µ, µ) = min
T∈U(h,h)

〈T ,C〉F − εH(T ) (3.13)

becomes ε-strongly convex, so admits a unique optimal solution. As proven in Peyré &
Cuturi (2019), Proposition 4.1, one can recover the unregularized OT cost (3.4) as ε→ 0, i.e
lim
ε→0
T εc (µ, µ) = Tc(µ, µ). In contrast, for large regularization coefficient, the solution to (3.13)

denoted Tε converges to the coupling with maximal entropy between both marginals, being
the joint probability between independent random variables respectively distributed as h and
h, i.e lim

ε→∞
T εc (µ, µ) = µ⊗µ = hh

>
. This regularization leads to an OT problem less sensitive

to small variations in the distributions, proportionally to the regularization strength, at the
cost of blurring the OT matrix that cannot be sparse for ε > 0, which negatively impacts
its interpretability. However, this behavior can improve the modeling of certain transport
problems, for example when studying traffic patterns, as human decision making tends to
produce diffuse paths for a given route (Wilson, 1969).

A simple analytic solution to (3.13) shown thanks to Lagrangian duality (Peyré & Cuturi,
2019, Proposition 4.3) takes the form T ∗ = diag(u)Kdiag(v) where K = e−C/ε (applied
element-wise) and u,v ∈ Rn+ × Rn+. The marginal constraints on T ∗ exhibit a well-known
matrix scaling problem parameterized by u and v (Nemirovski & Rothblum, 1999). The latter
can be solved using the iterative Sinkhorn algorithm (Sinkhorn & Knopp, 1967), detailed in
Algorithm 1.
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Algorithm 1 Sinkhorn algorithm solver for regularized OT problem (3.13)
1: Inputs: h,h,K = e−C/ε,v = 1n.
2: repeat
3: u← h�K>v (Update left scaling)
4: v ← h�Ku (Update right scaling)
5: until convergence
6: Return: T ∗ = diag(u)Kdiag(v).

Interestingly, the problem (3.13) is equivalent to searching for an OT matrix as close as
possible to a kernel K, in the sense of the Kullback-Leibler (KL) geometry:

min
T∈U(h,h)

DKL(T |K) (3.14)

where K = e−C/ε and DKL(T |K) = ∑
ij Tij log Tij

Kij
− Tij +Kij . This reformulation allows

the use of iterative Bregman projections (Bregman, 1967) to solve this problem, and to
analyze algorithms’ convergence (Benamou et al., 2015) as the resulting updates are actually
equivalent to those of Algorithm 1 (Peyré & Cuturi, 2019, Remark 4.8).

As the entropically regularized problem (3.13) (ε > 0) explicitly does not solve for the
unregularized OT problem (ε = 0), one can approximate solution of the latter using a
Proximal Point algorithm (PPA) with the KL metric while benefiting from the computational
simplicity of Algorithm 1 (Peyré, 2015; Schmitzer, 2019). The PPA comes down to solve
at each iteration t, a quite similar sub-problem than (3.13) using Sinkorn’s Algorithm 1, up
to a change of kernel K(t−1) = e−C/ε � T (t−1). The update of the OT matrix then reads
T (t) = diag(u(t))K(t−1)diag(v(t)). Moreover developing recursively this update rule from
the first to tth iterations exhibits the kernel e−C/(ε/t), so PPA can be seen as a Sinkhorn’s
algorithm with a decaying regularization strength ε/t.

From an application perspective, the entropic regularization of OT, either explicit or
implicit, has several computational advantages: the solvers only depend on matrix-vector
products, hence are particularly suited to modern GPU programming, in contrast to the exact
Network Flow solver. Moreover their theoretical computational complexity is lower. However,
these algorithms can suffer from stability issues when ε→ 0 (either fixed or adapted) as the
kernel K vanishes rapidly leading to divisions by 0 during the algorithms’ iterations, due to
the limited numerical precision. There are several ways to get around this problem, but often
at the cost of a slight loss in computation speed (Schmitzer, 2019; Feydy et al., 2019).

Moreover, this entropic regularization induces biases as T εc (µ, µ) 6= 0 (idem for µ) which
can be problematic for learning from T εc (µ, µ). Genevay et al. (2018) introduced the Sinkhorn
divergences resulting from correcting these biases, which enjoy appealing properties. They
define symmetric positive definite smooth functions on the space of probability measures,
which are convex in its inputs, and metrize the weak convergence (3.9) (Feydy et al., 2019).
They also act as an interpolation between Wasserstein distance and MMD (Gretton et al.,
2006), resulting in a lower sample complexity than Wasserstein’s one, i.e O(ε−d/2n−1/2)
compared to O(n−1/d) (Genevay et al., 2019).

Other OT solvers. Other regularizations in the vein of the entropic one have been ex-
plored for OT, notably smooth strictly convex ones (Dessein et al., 2018), so the resulting
optimization problem becomes strictly convex. In general, one also needs to project onto
the positive orthant so a more general Dikstra algorithm has to be used (Bauschke et al.,
2011, Chapter 29). Regularization has also been used to encode additional information as
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group-structure observed in data. To this end, Courty et al. (2014); Flamary et al. (2016a)
proposed a concave group-lasso like regularization to the entropic OT problem which can be
tackled using a Majoration Minimization algorithm (Hunter & Lange, 2004).
One generic way to solve for regularized OT, including non-convex regularizations, is Condi-
tional Gradient (CG) descent (Frank & Wolfe, 1956). This approach relies on optimizing at
each iteration a linearization of the objective function using non-regularized OT solvers (e.g
the Network Flow algorithm.) CG is highly flexible while being ensured to converge even for
non-convex objectives (Lacoste-Julien, 2016), but comes at the price of solving non-regularized
OT problems at each iteration which can be computationally intensive. A trade-off between
CG and Sinkhorn’s algorithm, leveraging entropy as a complementary regularization, can
be achieved using the Generalized Conditional Gradient algorithm (Bredies et al., 2009;
Rakotomamonjy et al., 2015).

A last notable line of works aims at coupling Stochastic optimization with known or
novel OT solvers to estimate OT plans between semi-discrete distributions, from sub-samples
of these distributions. These approaches are mostly dedicated to solve OT for large-scale
problems. As our studies reported in the remaining chapters of this manuscript focus on
discrete measures, we refer the reader seeking for details on these stochastic approaches to
e.g. Peyré & Cuturi (2019), Chapter 5; Genevay et al. (2016); Staib et al. (2017).

3.1.4 OT for unsupervised representation learning

Many ML applications focus on learning the support or the probability masses of a measure in-
volved in a Wasserstein problem. In this scenario, we model distributions, e.g µ = ∑

i∈[[n]] hiδxi
and µ = ∑

j∈[[n]] hjδxj , as tuples (X,h) and (X,h), where first X = [x1, ...,xn]> ∈ Rn×d

and X = [x1, ...,xn]> ∈ Rn×d gather locations of their respective measure in matrix forms.
While h ∈ Σn and h ∈ Σn are the corresponding probability vectors.

Minimizing for instance the transportation cost (3.8) w.r.t X, for a fixed OT matrix,
requires to differentiate through the pairwise cost matrix Dp(X,X). A classic choice is to
consider p = 2. In this way, the cost matrix can be computed with simple vector-matrix
operations, i.e D2(X,X) = X21d1

>
n + 1n1

>
dX

2 − 2XX> (power operations are taken
element-wise). And the minimization of the objective function w.r.t X, for a fixed transport
plan, can be expressed as a convex Quadratic Program with Hessian equals to diag(h)⊗K Id.4

Since manipulations of the 2-Wasserstein cost function, like the one described above, will
be ubiquitous in this manuscript, we introduce the following notations:

W2
2(µ, µ) := W2

2(X,h,X,h) := min
T∈U(h,h)

〈D2(X,X),T 〉 := min
T∈U(h,h)

EW (X,X,T ) (3.15)

With EW the 2-Wasserstein objective function for a given admissible transport plan T .

Wasserstein barycenters. A consequence of the geometry induced by the Wasserstein
distances is the definition of Wasserstein barycenters, that relates to specific weighted mean
of a set of probability distributions (McCann, 1997; Agueh & Carlier, 2011). The typical
Euclidean barycenter can be generalized to any metric space (X , d), then referred as Fréchet
(or Karcher) mean (Fréchet, 1948; Karcher, 2014). In the space of probability distribution
endowed with the Wasserstein geometry, a Fréchet mean µ of I ∈ N measures {µi}i ∈[[I]]
results from the following optimization problem:

min
µ

∑
i∈[[I]]

λi Wp
p(µi, µ) (3.16)

4As for any (i, j) ∈ [[n]]2 and (e, e′) ∈ [[d]]2, ∂2(·)
∂xie∂xje′

= 1(i,e)=(j,e′)hi.
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Where µ is the discrete measure arbitrarily formed of n locations, and {λi} are the barycentric
coordinates assigned to each input measure, such that ∀i ∈ [[I]], λi > 0, ∑i λi = 1.
We detail now this problem formulation for W2

2 according to our operative notations in
equation (3.15). First, we model each input measure µi as a tuple (Xi,hi) ∈ Rni×d × Σni .
Then (3.16) seeks for a measure µ, composed of n points, encoded as (X,h) ∈ Rn×d × Σn

such that

(X,h) = arg min
X,h

∑
i∈[[I]]

λi W2
2(Xi,hi,X,h)

= arg min
X,h

∑
i∈[[I]]

λi min
Ti∈U(hi,h)

EW (Xi,X,Ti)
(3.17)

Interestingly if X is fixed, for instance when distribution learning is performed on a grid,
the minimization problem w.r.t h is a Linear Program (Agueh & Carlier, 2011). Elegant
approaches exist to approximate this problem, such as the Bregman Projection algorithm
(Benamou et al., 2015), or convolution based algorithm when operating on regular grids
(Solomon et al., 2015). Even though there exist special easier cases (Peyré & Cuturi, 2019,
Section 9.2), finding a solution to the generic problem is complex. Cuturi & Doucet (2014)
proposed to solve (3.17) using a Block Coordinate Descent (BCD) algorithm which iterates,
until convergence, over the following steps:

i) Estimate OT matrices {Ti}, jointly with its corresponding dual potentials {(αi,βi)}
(Proposition 1), for the I independent OT problems between (Xi,hi) and fixed (X,h)
following Section 3.1.3.

ii) Update X at fixed Ti using the following closed-form (Cuturi & Doucet, 2014, Equation
8):

X = diag(1n � h)

∑
i∈[[I]]

λiT
>
i Xi

 (3.18)

iii) Update h according to Projected subgradient descent using KL geometry (Beck &
Teboulle, 2003), and proposition 1, as detailed in Cuturi & Doucet (2014), Algorithm 1.
This update rule prevents sparsity within h so equation (3.18) is well-defined. Another
possible way is to perform an Euclidean projection leading to sparse solution h, hence
reducing iteratively X to the activated components such as hi > 0.

If the set of input discrete measures {(Xi,hi)}i actually relates to a single measure
supported on a discrete subset of Rd, learning a barycenter with at most k points is equivalent
to the k-means problem (Canas & Rosasco, 2012). Indeed, the support of the barycenter
X is composed of the centroids output by k-means, and their masses h correspond to the
fraction of points assigned to each centroid. If input measures are rather samples drawn
independently from a single measure, the barycenter problem with uniform weights λ can be
seen as an empirical mean, that also asymptotically leads to the aforementioned equivalence.
We refer the reader to Peyré & Cuturi (2019), Remarks 9.2-9.3, and references therein for
further details on these matters. Remark that these considerations resonate with the method,
dedicated to graphs, that we will develop later in Chapter 6.

Barycenter estimations can be used for unsupervised Representation Learning, for example
by performing a k-means algorithm with respect to the Wasserstein geometry, considering k
Wasserstein barycenters. Overall, a such approach is rather limited regarding the learned
representations as a large amount of measures can be assigned to a single barycenter. On one
hand, it can induce interesting denoising properties, on the other hand, representing samples
with a unique centroid can result in a loss of intra-cluster variability potentially detrimental
to downstream tasks.
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OT based Dictionary Learning. One generic paradigm to factor a set of data points, while
preserving an interpretable description of the induced discrete manifold, is Dictionary Learning
(DL). DL aims at representing the input data as linear combination (or embedding) of basic
dictionary elements, called atoms, as faithfully as possible. This problem is usually formulated
as seeking for a dictionary of K atoms D ∈ Rd×K and embeddings W = (wi)i∈[[i]] ∈ RK×I

for the I data points composing X = (xi)i∈[[I]] ∈ Rd×I , such that X ≈ DW . Notable
special cases of linear DL are the Principal Component Analysis (Hotelling, 1933, PCA) and
Non-negative Matrix Factorization (Lee & Seung, 1999; 2000, NMF)

At first, most DL approaches using linear OT focused on histograms, i.e considered measure
supports fixed on a regular grid. In this scenario, the data is expressed as A = (ai)i∈[[n]] ∈ Σn

d ,
and DL seeks for embeddings W ∈ Σn

K and atoms D ∈ ΣK
d modeled as histograms, such

that A ≈DW . Hence divergences between histograms better suit this problem, e.g the KL
(Lee & Seung, 2000) or the Itakura Saito (Févotte et al., 2009) divergences, or finally the
Wasserstein distance (Sandler & Lindenbaum, 2011) which leads to the following optimization
problem:

min
{wi}⊂ΣK ,D∈ΣK

d

∑
i∈[[I]]

Wc(ai,Dwi) (3.19)

where the ground cost c encodes geometrical relationship between the histograms’ components
and can be fixed to any regular enough function, or learned (Cuturi & Avis, 2014). Problem
(3.19) has also been studied with entropic OT (equation (3.13)) to obtain smoother estimations
while speeding up the learning process (Rolet et al., 2016, and Section 3.1.3).

A more complex non-linear counter-part to (3.19), embedding data as weights within
Wasserstein barycenters was proposed by Schmitz et al. (2018). Observing that a linear
model Dw can be seen as an Euclidean barycenter weighted by w ∈ ΣK , the aforementioned
extension to Wasserstein geometry leads to the problem:

min
{wi}⊂ΣK ,D∈ΣK

d

∑
i

Wc(ai, B(wi,D)) with B(w,D) = arg min
b∈ΣK

∑
k

wk Wc(b,dk) (3.20)

This extension to nonlinear embedding on the Wasserstein simplex suggests diverse extensions
of non-supervised methods among which the Principal Component Analysis.

PCA seeks for directions that maximize the variance in the data and by definition,
the variance relates to the Euclidean geometry. The extension to geodesic spaces (as the
Wasserstein one) requires defining the notion of geodesic variance and projection as studied in
Fletcher et al. (2004), leading to the Principal Geodesic Analysis (PGA). PGA is complex to
achieve in practice as there is no analytical expression for the exponential or logarithmic maps
allowing one to travel to and from the corresponding Wasserstein tangent space. Efficient
solvers have only been proposed recently (Seguy & Cuturi, 2015; Cazelles et al., 2018; Courty
et al., 2017a).

As mentioned these methods are dedicated to histograms hence can not operate on generic
discrete measures, such as graphs seen as point clouds of their node embeddings (Chapter 2),
whose number of points can differ within a graphs’ dataset. Up to our knowledge, such DL
have first been envisioned as specific instances of Fused Gromov-Wasserstein (Vayer et al.,
2020) based DL that will be developed in Section 3.3 and Chapters 5-6.

3.2 Optimal Transport across incomparable spaces
Next we introduce another transport paradigm that extends the linear OT problem (Section
3.1) dedicated to a single ambient space, to OT across incomparable spaces. This allows
the comparison of graphs, seen as discrete probability measures, via Gromov-Wasserstein
distances (Section 3.2.1) whose properties are detailed in Section 3.2.3. We then present
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solvers for estimating these distances (Section 3.2.4) and approaches for learning GW-based
graph representations, such as GW barycenters (Section 3.2.5).

3.2.1 Problem statement

The linear OT problem assumes the existence of a ground metric space containing the supports
of compared measures, which may be a limitation. For instance, when the supports are
respectively in R3 and R2, a meaningful ground cost c : R3 × R2 → R is hard to define, and
it can not be a metric. Hence the linear OT problem endowed with a such ground cost
can no longer induce an OT distance between measures over distinct spaces. Besides, even
if measures lie in the same space, the Wasserstein distance is sensitive to a large class of
invariants such as isometries, which prevents its application to certain challenges like shape
matching.

The Gromov-Wasserstein problem. The Gromov-Wasserstein (GW) problem first
introduced in Mémoli (2007) overcomes the aforementioned limitations of linear OT. It was
first devoted to the matching of measurable metric spaces, i.e. when the respective geometry
of the compared spaces is induced by a metric (Mémoli, 2011). Then the GW problem has
been extended to gauged measure spaces (Sturm, 2012) where the inner geometries do not
necessarily satisfy the triangle inequality, to be adapted finally to the space of measurable
networks, where inner (dis)similarities between points can be asymmetric (Chowdhury &
Mémoli, 2019).5

The Gromov-Wasserstein problem is built upon a quadratic Optimal Transport problem,
instead of a linear one, which informally aims at quantifying the (dis)similarity distortion
when transporting points from one space to another. In the following we explicit the GW
problem between discrete measurable spaces and refer the reader to Mémoli (2011); Sturm
(2012); Chowdhury & Mémoli (2019) for a complete overview of the problem in any measurable
spaces.

In its generic form, the GW problem considers any pair of measurable networks (X , c, µ)
and (X , c, µ). Where (X , dX ) and (X , dX ) are polish spaces. Further endowed with continuous
measurable functions c : X × X → R and c : X × X → R, and probability measures µ
and µ, respectively supported on X and X . Then in a discrete scenario, each measurable
network can be encoded as a graph G = (C,h) composed of n = card(X ) nodes, where
C = (c(xi,xj))i,j∈[[n]] ∈ Rn×n is a matrix encoding the connectivity induced by c between
nodes, and h ∈ Σn is a probability vector resulting from µ modeling the relative importance of
the nodes within the graph. In the same way, we summarize (X , c, µ) as the graph G = (C,h)
composed of n nodes, with potentially n 6= n.

Notice that the conventional modeling of a graph G considers a tuple (V,E), composed
of a set of vertices or nodes V = {vi}i∈[[n]] and a set of edges E, i.e. connectivity relations
between vertices. Fitting this modeling to the one of the GW problem, comes down to
assuming the existence of an application s : V → X mapping a vertex vi ∈ V from the graph
to its structure representation xi = s(vi) in the structure space (X , c). So the graph is entirely
described by a fully supported probability measure over (X , c), denoted µ = ∑

i∈[[n]] hiδxi .
The GW problem between two graphs seeks for a matching between their nodes, being

as close as possible to an isometry. It does so by finding an optimal soft assignment matrix
between the nodes, solving

GWp
p(µ, µ) = GWp

p(C,h,C,h) := min
T∈U(h,h)

∑
ijkl

|Cij − Ckl|pTikTjl (3.21)

5Note that in both these last settings, compared spaces are still assumed to be Polish spaces, except that
the pairwise (dis)similarity between points (of the respective space) is decoupled from the theoretical topology
of the space.
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Figure 3.2: Illustration of the matching resulting from the GW2 problem (3.21) between two graphs
G and G depicting their respective measure networks, where points or nodes respectively colored in
red and blue are assigned to uniform probability masses h and h. The connections between nodes
in each space are colored with bold dark lines, whereas the node assignment resulting from the OT
matrix T are colored with finer dark lines.

An optimal coupling T ∗ ∈ U(h,h) (see Equation (3.3)) (if it exists) acts as a probabilistic
matching of nodes which tends to associate pairs of nodes that have similar pairwise relations
in C and C respectively, while preserving masses h and h through its marginals constraints.
An instance of such a GW matching can be found in Figure 3.2, where two graphs described by
their respective binary adjacency matrices are compared. These graphs respectively contain 2
clusters or communities, which are then matched by the OT matrix T resulting in a minimal
structure distortion of both graphs, hence a low GW cost.

Existence of solutions. In our discrete setting, a simple condition to avoid definition
issues of the GW problem (3.21) is to assume respective inner connectivity matrices C and C
to be bounded. As such the function T →∑

ijkl |Cij − Ckl|pTikTjl is lower-semi continuous,
so the Weierstrass theorem (Santambrogio, 2015, remark 1.1) ensures the existence of an OT
matrix, as U(h,h) is compact (i.e closed and bounded). We refer to Vayer (2020), Section
2.2, for a complete discussion on the existence of solutions to the GW problem (3.21).

On the regularity of OT maps. In the vein of Brenier’s theorem (Brenier, 1991), stating
that linear OT with euclidean ground cost admits OT maps given by the gradient of convex
functions, one may ask whether there are special cases of GW problems where the OT plans
also exhibit prescribed structures, or equivalently, regularities. Sturm first raised this question
of regularity as such: "Are there ’nice’ spaces in which we are able to prove Brenier’s results
for GW?" (Sturm, 2012, Challenge 3.6)

The first identified spaces of various dimensions, inducing regularity in their GW matching,
are those described by scalar products (Vayer, 2020, Theorem 4.2.3). Under mild regularity
conditions on the source probability distribution, author identified sufficient conditions to the
existence of a deterministic map resulting from the composition of a convex function and a
linear application acting as a global transformation "realigning" the probability measures in
the same space (Vayer, 2020, Theorem 4.2.3).
Another more challenging scenario is to compare spaces equipped with Euclidean norms as
inner costs. Seminal results with strong sufficient conditions were given in Sturm (2012),
Theorem 9.21, and Vayer (2020), Proposition 4.2.4. Only very recently, Dumont et al.
(2022) provided complete characterizations of OT maps for the GW problem between spaces
described by scalar products (Dumont et al., 2022, Theorem 4) and Euclidean norms (Dumont
et al., 2022, Theorem 5).
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Figure 3.3: Illustration of the matching resulting from the GW2 problem (3.21) between two discrete
distributions µ ∈ P(R3) and ν ∈ P(R2) whose graphs are derived from the euclidean norm between
locations of the respective distribution. The OT matrix T is drawn with dashed lines. Inspired from
Vayer (2020).

These results are appealing for instance to compare point clouds, seen as discrete probabil-
ity distributions, that respectively belong to Rp and Rq (p 6= q). The most natural topology
to link samples within each space is its euclidean norm, forming then graphs whose node
pairwise connectivities are euclidean distance matrices. To illustrate such a scenario, Vayer
(2020) considered discrete probability distributions µ and ν, forming spirals whose modes
are generated thanks to Gaussian mixtures, respectively in R2 and R3. The estimated GW
matching of these two distributions is illustrated in Figure 3.3. We can see that a GW
matching between both distributions highlights the instinctive minimum transport distortion
of one measure over the other, since their respective modes are matched.
We emphasize that these theoretical results on the GW matching of euclidean distance
matrices can be relevant for graph matching, since euclidean representations can be derived
from a graph (potentially weighted) adjacency matrix, using for instance its sif distance
matrix (Bavaud, 2010).

3.2.2 Gromov-Wasserstein barycenter

Since the GW problem induces a distance, one can also define a notion of barycenter, in the
same vein as the Wasserstein barycenters (Section 3.1.4). This GW barycenter estimation
problem was first investigated in Peyré et al. (2016) for discrete probability measures, defined
over various spaces endowed with symmetric inner costs such as undirected graphs.

Learning the barycenter structure. Let us consider a dataset of graphs {Gi =
(Ci,hi)}i∈[[I]] seen as discrete measurable networks (Chowdhury & Mémoli, 2019), where for a
given graph, Ci is an arbitrary node pairwise connectivity matrix, and hi a probability vector
modeling the relative significance of the graph nodes. When the weighting of the barycenter
is fixed and given by λ ∈ ΣI , the GW barycenter problem in its first formulation seeks for
a target structure C ∈ Rn×n, composed on n nodes whose relative importance is fixed to
h ∈ Σn, solving

min
C∈Rn×n

∑
i∈[[I]]

λi GW2
2(Ci,hi,C,h) = min

C
min

{Ti∈U(hi,h)}i

∑
i∈[[I]]

λiEGW (Ci,C,Ti) (3.22)
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This problem is non-convex in general, however the minimization sub-problem w.r.t C, with
fixed OT plans, is convex while considering p = 2 in GW. Peyré et al. (2016) proposed to
solve for problem (3.44) using a BCD procedure which alternates between two steps:

i) Solving I independent GW problems, with respective estimated OT matrices Ti, from
inputs (Ci,hi), respectively to the fixed and common target structure C.

ii) Updating C for fixed Ti using a closed form formula for this minimization sub-problem.
Indeed, the gradient w.r.t to C of the objective function in (3.44) reads as

∇C(·) = 2
∑
i∈[[I]]

λi{C � hh
> − T>i CiTi} (3.23)

so the first optimality condition leads to the update

C ←
(∑

i

λiT
>
i CiTi

)
� hh> (3.24)

assuming that the entry-wise division by hh> is well-defined, i.e that h does not have a null
entry. Otherwise one can simply update the rows and columns of C whose corresponding
nodes have non-null probability mass. Note that any solver detailed in Section 3.2.4 can be
used to solve the inherent OT problems. This GW barycenter problem has also been studied
by leveraging the Riemannian geometry of the Gromov-Wasserstein space (Chowdhury &
Needham, 2020). The estimation of GW barycenters has recently found many applications for
instance for shape interpolation, image clustering (Peyré et al., 2016), graph clustering and
partitioning (Xu, 2020), graphon estimation (Xu et al., 2021a), large-scale GW estimation
(Xu et al., 2019a) and structured graph prediction (Brogat-Motte et al., 2022).

Fully learning the barycentric measure. This first formulation of the GW barycenter
problem (3.44) enforces a fixed probability vector h to the barycentric measure, despite
being unknown in practice, which can be detrimental to certain applications, for instance
those relying on partitioning of the input structures such as in Xu et al. (2019a). In that
paper, authors use a barycenter of small order as intermediate matching, to estimate the GW
matching between large input graphs without comparing them directly (divide and conquer
strategy). In this case, the mass conservation constraint impose to get partitions of the input
structures whose proportions suit entries of h.
As such, Xu et al. (2019a) proposed heuristics to estimate these proportions directly from
degree distributions of the input measures. However the resulting estimated h is most
likely limited in many applications. For instance, it is easy to generate synthetic graphs
from well-known Stochastic Block Models whose degrees would be uncorrelated to cluster
proportions. These considerations advocate for also learning the barycenter probability vector
h, solving for the following optimization problem:

min
C∈Rn×n,h∈Σn

∑
i∈[[I]]

λi GW2
2(Ci,hi,C,h) (3.25)

However, any first-order optimization procedure would require to compute a subgradient
of the GW distance w.r.t this parameter. To the best of our knowledge no theoretical results
existed in the literature for finding such subgradients. To this end, we provided in our paper
Vincent-Cuaz et al. (2021), fully reported in Chapter 5, a simple way to circumvent to this
limitation. Interestingly, subgradients with respect to the probability vectors involved in the
GW matching can be computed from subgradients of the well-known Wasserstein distance:
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Theorem 2 (subgradient w.r.t masses of GW problem) Let (C,h) and (C,h)
be two graphs. Let T ∗ be an optimal coupling of the GW problem between (C,h), (C,h).
We define the following cost matrix M(T ∗) := L(C,C)⊗ T ∗ =

(∑
kl(Cik − Cjl)2T ∗kl

)
ij
.

Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the following linear OT problem:

min
T∈U(h,h)

〈M(T ∗),T 〉F (3.26)

Then µ∗(T ∗) (resp. ν∗(T ∗)) is a subgradient of the function GW2
2(C, · ,C,h) (resp.

GW2
2(C,h,C · )).

Sketch of the proof of Theorem 5. The detailed proof can be found in Annex (8.1.1). A
first step to prove Theorem 5 consists in relating a solution T ∗ of the GW problem to a
solution of the Linear Program (LP) given in Equation (3.48) using (Murty, 1988, Theorem
1.12), reported in Theorem 12. Denoting µ∗(T ∗) and ν∗(T ∗) an optimal solution to the dual
problem of (3.48), we have by strong duality

min
T∈U(h,h)

〈M(T ∗),T 〉F = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 = 〈M(T ∗),T ∗〉F = GW(C,h,C,h)

(3.27)
Then the objective is to show that ν∗(T ∗) is a subgradient of F : q → GW(C,C,h, q) (by
symmetry the result will be true for µ∗(T ∗)). We will do so by leveraging the weak-duality
of the GW problem as described in the next lemma:

Lemma 1 For any vectors µ ∈ Rn,ν ∈ Rm we define:

G(µ,ν) := min
T≥0
〈L(C,C)⊗ T − µ1>m − 1nν

>,T 〉

Let T ∗ be an optimal solution of the GW problem. Consider:

min
T∈U(h,h)

〈M(T ∗),T 〉F (3.28)

where M(T ∗) := L(C,C)⊗ T ∗. Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the prob-
lem in (3.48). If G(µ∗(T ∗),ν∗(T ∗)) = 0 then ν∗(T ∗) is a subgradient of F : q →
GW2(C,C,h, q)

After proving Lemma 2, we conclude the proof of Theorem 5 by showing that G(µ∗(T ∗),ν∗(T ∗)) =
0 thanks to equation (3.49), where G is defined in Lemma’s equation (2) �

The proposition above shows that the subgradient of GW w.r.t. the probability vec-
tors can be found by solving a linear OT problem which relates to a Wasserstein dis-
tance. The ground cost M(T ∗) of this Wasserstein problem is moreover the gradient
w.r.t. the couplings of the optimal GW loss (up to a factor 2) when structure matrices
are assumed symmetric (see equation (3.39)). Theorem 5 can be equivalently written using
M(T ∗) = 1

2{L(C,C)⊗ T ∗ + L(C>,C>)⊗ T ∗}, to highlight the gradient of the GW loss in
the general case to include asymmetric structure matrices.
In practice, when the GW problem is solved with a Conditional Gradient algorithm (Section
3.2.4), the latter already requires to solve this linear OT problem at each iteration. Thus a sub-
gradient w.r.t. the weights can be extracted for free from the last iteration of the CG algorithm.
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Algorithm 2 Projected Gradient Descent solver for extended GW barycenter problem
(3.47).
1: Inputs: Graphs {(Ci,hi)}, learning rates ηC and ηh.
2: repeat
3: Compute OT matrices with corresponding dual potentials (Ti,µi,νi) of independent

GW matching of (Ci,hi) and (C,h).
4: Perform the following updates ofC and h using gradients respectively given in equations

(3.45) and (3.52):

C ← C − ηC∇C and h← ProjΣn(h− ηh∇h) (3.31)

5: until convergence.

Therefore using Theorem 5, the computation of a subgradient w.r.t h of the objective
function of the extended GW barycenter problem (3.47) can be achieved, for a fixed C, using
the following primal-dual like relation:∑

i∈[[I]]
λi GW2

2(Ci,hi,C,h) =
∑
i∈[[I]]

λi
(
〈µi,hi〉+ 〈νi,h〉

)
(3.29)

where (µi,νi) are the dual potentials associated to the linear program given in equation
(3.48), for each independent GW matching between (Ci,hi) and (C,h). Note that any dual
optimum (µi,νi) is determined up to an additive constant, since for any real value x ∈ R the
pair (µi + x1ni ,νi − x1n) is also a feasible solution to the underlying linear problem (Cuturi
& Avis, 2014). As such, we consider a normalized version of νi which sums to zero, denoted
ν̃i, so that the subgradient w.r.t h reads as

∇h

∑
i∈[[I]]

λi GW2
2(Ci,hi,C,h)

 =
∑
i∈[[I]]

λiν̃i (3.30)

We then propose to solve for (3.47) using a projected (sub)gradient descent algorithm, sum-
marized in Algorithm 3. At each iteration, we first find an OT matrix Ti with corresponding
dual potential ν̃i for each GW matching from the input graph (Ci,hi) to (C,h). Then we
perform a projected gradient update of C and h, whose respective gradients are evaluated at
fixed pairs {(Ti, ν̃i)} by using the Envelope Theorem (Bonnans & Shapiro, 2000). In practice,
we suggest to use accelerated projected gradient descent using e.g. Adam optimizer (Kingma
& Ba, 2015).

Experiments on graph multi-partitioning. We briefly compare now both approaches,
namely the vanilla GW barycenter problem (3.44) and its extended version (3.47), on a simple
task of graph multi-partitioning. To this end, we design synthetic datasets of 10 homogeneous
graphs with orders varying in {20, 22, ..., 38}, generated via Stochastic Block Model (SBM,
Holland et al. (1983)). Each graph is composed of two clusters in imbalanced proportions
[30%; 70%], both with intra-cluster and inter-cluster connection probabilities of 0.8 and 0.2,
respectively.

To perform the simultaneous partitioning of the generated graphs, we first estimate a
GW barycenter (C,h), either fixing h to uniform (equation (3.44)) or learning it (equation
(3.47)), with as many nodes as the true number of clusters (i.e. n = 2). Then we recover the
OT matrix Ti from each GW problem between an input graph (Ci,hi) and the estimated
barycenter (C,h), already computed during the barycenter computation. Finally, the cluster
assignment of a node j for a given graph (Ci,hi) is taken as the argmax over the ith row Ti



Chapter 3. Introduction to Optimal Transport for graphs 46

GW = 0.21
ARI = 0.38

GW = 0.21
ARI = 0.46

GW = 0.12
ARI = 1.00

GW = 0.14
ARI = 1.00

Figure 3.4: Illustration of the multi-partitioning tasks performed by learning barycenters of the
simulated graphs, either fixing h to uniform (top) or estimating it (bottom). Colors are given to nodes
of the barycenter, then node colors of the input graphs are assigned by transporting colors of the
barycenter nodes according to Ti and Tj respectively.

of the OT matrix. The quality of the multi-partitioning of the graphs is then measured by
means of Adjusted Rand Index (ARI), between the predicted cluster assignments and the
known ground truth, and taken on average over all graphs. For both barycenter problems,
we run these experiments on 5 simulated datasets, then the respective averaged ARIs and
estimated optimal loss values are reported in Table 3.2. Moreover, we provide an illustration
of the GW matchings of two simulated samples to the learned barycenters in Figure 3.6.

First, we can conclude that estimating the barycenter masses h is crucial to simultaneously
partition these graphs perfectly. As expected this approach also leads to a better overall
averaged GW reconstruction of input graphs, hence the learned representation (i.e the
barycenter) relates to a better understanding of the structures. Interestingly, the loss while
estimating weights exhibits a larger variance than while considering uniform weights. As
input graphs have a few nodes sampled from SBM, they naturally have more diversity in
their actual structures, which might explain this variance.

We postulate that our approach can also lead to improvement for the simultaneous
partitioning of heterogeneous graphs, as Xu et al. (2019a) studied for barycenters endowed of
fixed probability weights. In such scenario, the partitioning has to be performed recursively,
by iteratively learning a barycenter of graphs before splitting them into subgraphs.

However considering the broader paradigm of Graph Representation Learning (Chapter
2), representing graphs as a single structure like their GW barycenter might be too limiting
to perform well on down-stream tasks. As such, we proposed novel GW based Representation
Learning methods that will be developed in Chapters 4, 5 and 6.

3.2.3 Gromov-Wasserstein properties

We now develop the properties of the distortion cost resulting from the GW problem (3.21).
First, we detail invariants of the problem for any inner costs for which the matching problem
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Table 3.1: Graph Multi-partitioning Performances of both GW barycenter problems, namely with
fixed uniform weights (unif.) and estimated ones (est.).

GW bary. ARI loss
h unif 0.35(0.03) 2.07(0.01)
h est. 1.00(0.00) 1.39(0.09)
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Figure 3.5: Illustration of 3 weakly isomorphic (asymmetric) networks, respectively supported on
X ,Y and Z. Inspired from Chowdhury & Mémoli (2019).

is well-defined, before formalizing its resulting metric properties.

Invariants of the GW problem. The GW problem (3.21) allows to compare probability
distributions whose supports lie in different, potentially non-related, spaces by defining a
notion of equivalence between both compared measures.
Following the generic setup developed in Chowdhury & Mémoli (2019), a first query is that
the information contained in a graph (or network) should be unchanged under relabeling of
its nodes. When operating on graphs modeled as probability distributions (Section 3.2.1),
this invariance relates to the concept of strong isomorphism formalized in general as follows

Definition 1 (Strong isomorphism) Two measurable networks (X , c, µ) and (X , c, µ) are
strongly isomorphic if and only if there exists a Borel measurable bijection φ : X → X
satisfying both:

i) c(x, x′) = c(φ(x), φ(x′)) for all x, x′ ∈ X .

ii) φ#µ = µ.

Moreover if both X and X are finite of cardinality n and n, respectively, then the corresponding
graphs (C,h) and (C,h) are strongly isomorphic if and only if n = n and there exists a
permutation matrix P ∈ {0, 1}n×n such that (i) C = PCP> and (ii) Ph = h.

Therefore the notion of strong isomorphism corresponds to the existence of a measure
preserving map between both matched graphs. Moreover, if (X , c) and (X , c) are metric spaces,
the structure preservation constraint (i) is equivalent to the existence of an isometry between
both spaces, i.e a surjective map φ : X → X that preserves the distances, which is de facto
bijective on these metric spaces, since for φ(x) = φ(x′) we have c(φ(x), φ(x′)) = 0 = c(x, x′)
that implies x = x′.

The relaxation to non-metric inner costs also allows multiple nodes to have the same
internal and external perceptions, i.e they have the same incoming and outgoing edge weights.
Thus these nodes can be merged or split without information loss. This idea is formalized
with the notion of weak isomorphism:
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Definition 2 (Weak isormorphism) Two measurable networks (X , cX , µX ) and (Y, cY , µY)
are weakly isomorphic if there exists (Z, cZ , µZ) with supp(µZ) = Z and measurable maps
φ : Z → X and ψ : Z → Y such that

i) cZ(z, z′) = cX (φ(z), φ(z′)) = cY(ψ(z), ψ(z′)) for all z, z′ ∈ Z.

ii) φ#µZ = µX and ψ#µZ = µY .

The weak isomorphism highlights a "tripod structure" in which the equivalence between spaces
is defined through a third space Z. The latter can be seen as an irreducible factorization
of both matched graphs whose weakly isomorphic nodes are aggregated as a unique node.
An illustration of isomorphic graphs is provided in Figure 3.5, where the two first networks
on the first row of plots are weakly isomorphic, and admit as irreducible network the one
illustrated on the second row. This notion of isomorphism is mostly relevant for non-metric
inner costs, as for metric ones strong and weak isomorphisms are equivalent (Sturm, 2012,
Lemma 1.10).

Metric properties of GW. In the vein of the Wasserstein distances (Section 3.1.2) with
p-norms as ground cost, the Gromov-Wasserstein problems endowed with (x, y) ∈ R× R→
|x− y|p as ground cost on the real-line defines a (pseudo) metric w.r.t the aforementioned
notions of isomorphism. The following theorem aims at unifying the metric properties of GW
respectively addressed in Sturm (2012); Chowdhury & Mémoli (2019):

Theorem 3 (Metric properties of GW) Let (X , cX , µX ) and (Y, cY , µY) two mea-
surable networks and any p ∈ N∗,

i) GWp is symmetric, positive and satisfies the triangle inequality. So for any
measurable network (Z, cZ , µZ) we have:

GWp(µX , µY) ≤ GWp(µX , µZ) + GWp(µZ , µY) (3.32)

ii) GWp(µX , µY) = 0 if and only if (X , cX , µX ) and (Y, cY , µY) are weakly isomorphic.

iii) if cX and cY are metrics then for any q ≥ 1, GWp(µX , µY) = 0 if and only if
(X , cqX , µX ) and

(
Y, cqY , µY

)
are strongly isomorphic.

Proof of Theorem 3. The positiveness in (i) is straightforward. We refer the reader to
the proof of Chowdhury & Mémoli (2019), Theorem 16, for the symmetry, and the triangle
inequality partly proven thanks to the Gluing Lemma (Villani, 2021, Lemma 7.6) applied
across spaces. (ii) and (iii) are respectively proven in Theorem 18 of Chowdhury & Mémoli
(2019) and Lemma 9.2 of Sturm (2012). Interestingly, the proof for (ii) is also valid even if
cX and cY are not p-integrable. �

Theorem 3 has a lot of implications. First it can endow the space of all measurable
networks or the space of all measurable metric spaces with a topology, a geometric structure,
induced by Gromov-Wasserstein distances. However, this assertion holds if all pairwise GW
distances are finite. This requirement is handled by considering the intersection of both
aforementioned spaces to the space of measurable networks with finite Lp-size, defined for
any (X , c, µ) as

sizep(X , c, µ) =
(∫
X×X

|c(x, x′)|pdµ(x)dµ(x′)
)1/p

(3.33)

As such the main theorem on the metric properties of GW can be stated as:
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Theorem 4 (GW is a distance) For any p ∈ N∗,

i) GWp is a distance on the space of all metric measure spaces with finite Lp-size
quotiented by the strong isomorphisms.

ii) GWp is a distance on the space of all measurable networks with finite Lp-size
quotiented by the weak isomorphisms.

These theorems emphasize that GW is well suited for comparing objects while seeking for a
large class of invariants such as rotations, translations or permutations. Instances of related
applications are then shape matching where the orientation of a shape does not define its
nature or for graphs where node ordering is arbitrary.

Interestingly, the space of all measurable metric spaces endowed with the topology induced
by the GW distance has a nice geodesic structure (Ambrosio et al., 2005; Sturm, 2012), in
resonance with the geodesic structure of the space of probability measures equipped with the
Wasserstein distance (Subsection 3.1.2).

GW relations to other OT problems. Gromov-Wasserstein was first introduced in
Mémoli (2011) as a probabilistic relaxation of the Gromov-Haussdorf distance (Mémoli &
Sapiro, 2004; 2005) quantifying how two metric spaces are far from being isometric, and acts
as a "smoothing" of the latter that promotes computational tractability.

On one hand, The recent success and flexibility of linear or quadratic OT paradigms for
graph data processing has led to an interest in unifying various existing approaches, or even
theories. For instance, the growing appeal of Weisfeiler-Lehman (WL) isomorphism tests and
Gromov-Wasserstein distances has prompted research into the relationship between these two
concepts. WL tests stand by their ability to potentially detect isomorphism in linear time,
thus inspiring, for instance, most recent designs of Graph Neural Networks (GNN, Section
2.2, Chapter 4). In the meanwhile, GW shines by its ability to quantify how far two graphs
are from being isomorphic, while providing interpretable soft assignments between nodes
of the graphs. Chen et al. (2022) recently proposed the WL distance between measurable
Markov Chains encompassing (attributed) graphs quantifying how far two such objects are
far from a dedicated notion of isomorphism. Then, authors identified a variant of GW suiting
their Markov Chain based formalism, that upper bounds the WL distance, as excepted from
their respective ability to detect isomorphism.

On the other hand, the broad class of invariants inherent to the GW problem may not
suit all matching problems. For instance, in unsupervised word translation resulting from
the alignment of embedded words known to belong to spaces invariant to rotations. In this
scenario, an explicit encoding of the desired invariants instead of treating all isomorphic
transformations, might lead to a better matching, e.g using Wasserstein Procrustes (Grave
et al., 2019) or other rotation invariant OT problems (Alvarez-Melis et al., 2019).

3.2.4 Solving Gromov-Wasserstein problems

We further detail the optimization problem inherent to the GW distance (3.21) between
measurable networks of finite support, before describing solvers used to estimate solutions of
the problem. We respectively encode these networks or graphs, as tuples (C,h) ∈ Rn×n ×Σn

and (C,h) ∈ Rn×n × Σn. Then the GW matching problem between both graphs aims at
solving :

GWp
p(C,h,C,h) = min

T∈U(h,h)

∑
ijkl

|Cij − Ckl|pTikTjl = min
T∈U(h,h)

〈L(C,C)p ⊗ T ,T 〉 (3.34)
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where we define L(C,C) as the tensor L(C,C) =
(
|Cik − Cjl|

)
i,j,k,l

= (Lijkl) and ⊗ is the
tensor-matrix multiplication, such that L⊗T = (∑kl LijklTkl)ij . In general, the optimization
problem (3.34) is a non-convex quadratic program which belongs to the class of NP-hard
problems (Loiola et al., 2007). It is therefore expected that its approximation is costly. De
facto an evaluation of the objective function depends on all comparisons of connections within
each graph inducing O(n2n2) operations, as the computation of L⊗ T .

The specific case of p = 2 attracted attention, partly because the tensor-matrix multipli-
cation can then be factored as

L(C,C)⊗ T = cC,C − 2CTC> (3.35)

where cC,C = C2h1>n + 1nh
>
C

2, which can be computed within O(n2n+ n2n) operations
(Peyré et al., 2016, proposition 1). Then the GW problem can be expressed as

min
T∈U(h,h)

〈cC,C ,T 〉 − 2〈CTC>,T 〉 (3.36)

which admits as equivalent classical QP formulation:

min
T∈U(h,h)

1
2vec(T )>Qvec(T ) + vec(cC,C)>vec(T ) (3.37)

where vec is the column-stacking matrix operator and Q = −4C⊗KC with ⊗K the Kronecker
product. Problem (3.37) is in general a non-convex QP, as its Hessian C ⊗ C admits for
eigenvalues the product of the eigenvalues of C and C.

GW as a generalized soft graph matching problem. Interestingly, the quadratic term
in the formulation (3.36) emphasizes the close intimacy between the GW problem and the
original Graph Matching problem which itself belongs to the class of Quadratic Assignment
Problems (QAP) (Berg et al., 2005; Loiola et al., 2007; Lyzinski et al., 2015; Maron & Lipman,
2018). Indeed, Graph matching problems aim at matching two graphs of the same order,
modeled as connectivy matrices C1 and C2 in Rn×n. These types of problem are often
addressed by solving:

min
P∈Πn

‖C1P − PC2‖2 ⇔ min
P∈Πn

−2〈C1PC
>
2 ,P 〉 (3.38)

where Πn is the set of permutation matrices. One way to approximate solution of (3.38) is
to relax the combinatorial nature of the problem, by expanding the constraint set to the
convex-hull of Πn, namely the set of doubly stochastic matrices DS = {X ∈ Rn×n|X1n =
1n,X

>1n = 1n,X ≥ 0n×n} (Aflalo et al., 2015; Kezurer et al., 2015; Dym et al., 2017;
Bernard et al., 2018). As such, the GW problem between two graphs of the same order, with
uniform probability measures such that h = h = 1n/n, is equivalent to the convex relaxation
of the original Graph Matching problem. Therefore, GW can be seen as a generalization to
graphs of any order n and n, which may differ from each other, while additionally inducing a
notion of relative importance between nodes through h ∈ Σn and h ∈ Σn.

Conditional Gradient algorithm. The GW problem expressed in its classical QP form
(3.37) might be treated as a Wasserstein problem (3.4) with a non-convex quadratic regu-
larization (Ferradans et al., 2014; Flamary et al., 2014). As mentioned in Section 3.1.3, the
non-convexity of the regularization motivates the use of a generic Conditional Gradient (CG)
algorithm, a.k.a Frank-Wolfe algorithm (Frank & Wolfe, 1956). The algorithm then iterates
over the 3 following steps (Vayer et al., 2019a):
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i) Compute the first-order Taylor approximation of the GW cost evaluated at current
estimate T , given by its gradient:

G(T ) = L(C,C)⊗ T +L(C>,C>)⊗ T (3.39)

ii) Find a descent-direction by minimizing the computed linearization of the problem
(3.39):

X∗ ∈ arg min
X∈U(h,h)

〈G(T ),X〉 (3.40)

which is a classical linear OT problem, with G(T ) as cost matrix, efficiently estimated
e.g using a Network Flow algorithm (see Section 3.1.3).

iii) Update the coupling estimate with a line-search between T and X∗, which comes down
to a constraint minimization of a second degree polynomial function admitting closed
form solution. We refer the reader to Section 3.3 where this step is detailed in a more
generic scenario.

While the problem is non-convex, CG is known to converge to a local stationary point with
O( 1√

t
) rate, where t denotes the number of performed iterates (Lacoste-Julien, 2016). Steps i)

and iii) have numerical complexity O(n2n+nn2) using the factorization of L given in equation
(3.35). Whereas solving linear OT problem using the Network Flow algorithm consists in
O (V E log V min{log(V ‖G‖∞), E log V }) operations at each iteration (Tarjan, 1997), where
V = n+n is the number of nodes and E = O(nn) is the number of edges. So the latter is the
theoretical bottleneck of the method, even if an efficient C++ implementation exist (Bonneel
et al., 2011; Flamary et al., 2021).

Entropic Regularization. Adapting the well-known entropic regularization of the linear
OT problem (3.13) to the GW problem may also lead to computational benefits. To this end,
Peyré et al. (2016); Solomon et al. (2016) proposed to estimate solutions to (3.36) thanks to
the following optimization problem:

min
T∈U(h,h)

EGW (C,C,T )− εH(T ) := min
T∈U(h,h)

EGWε (C,C,T ) (3.41)

This is a non-convex problem which was tackled using projected gradient descent using the
KL geometry for both gradient and projection steps (Peyré et al., 2016). More precisely, this
algorithm consists in iteratively updating the estimate T following

T ← ProjDKL
U(h,h)

(
T � exp(−τ∇EGWε (C,C,T ))

)
(3.42)

where first, the projection operator relates to the equation (3.14). Then τ > 0 is the step size
of descent, and the gradient satisfies ∇EGWε (C,C,T ) = G(T ) + ε log(T ) with G(T ) given in
equation (3.39). Peyré et al. (2016) suggested to set τ = 1

ε so the algorithm iterates (3.42)
are equivalent to solve for an entropically regularized linear OT problem with ground cost
G(T ), whose steps consist in

i) Computing the gradient G(T ) of the GW objective evaluated at the current estimate
T given by equation (3.39).

ii) Updating T as the unique solution of an entropic OT problem with kernel K =
exp (−G(T )/ε) using Sinkhorn’s algorithm (Algorithm 1).

From the discussion on the theoretical complexity of the entropic linear OT solver, assuming
n = n, step (ii) can be considered as having Õ(n2

ε2 ) polylogarithmic complexity (Dvurechensky
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et al., 2018). So for well chosen precision estimation ε of a GW solution, the overall theoretical
complexity of this algorithm in O(n3) is due to the gradient computation at step (i).
Like the linear OT case, the entropy term leads to diffuse mass displacements so the resulting
regularized OT matrix is not sparse, and only approximates an unregularized OT matrix
at precision ε. Moreover a trade-off guided by ε has to be taken into account, for instance
seeking for better precision (smaller ε) might posit convergence issues as the learning rate
τ = 1/ε gets higher.

Like entropic linear OT, the GW problem can be tackled using a Proximal Point algorithm
with KL geometry. This approach comes down to endow the aforementioned Projected Gradi-
ent algorithm with adaptive learning rates, by taking as Gibbs’ kernelK = exp (−G(T )/ε)�T
at each iteration (Xu et al., 2019b).

Other GW solvers. As the complexity of the existing solvers to approximate solutions to
the GW problem remains at least cubic in the number of nodes, several recent approaches
aim at reducing this computational cost to operate on large graphs.

Mémoli (2011) first proposed to estimate GW thanks to a lower bound resulting from
decoupling the action of the OT matrix from node pairs to nodes leading to the problem:

min
T (1)∈U(h,h)

∑
kl

 min
T (2)∈U(h,h)

∑
ij

|Cik − Cjl|pT
(2)
ij

T (1)
kl (3.43)

This problem is actually a Wasserstein of Wasserstein distances between 1D empirical
distributions on the lines of C and C, such that the inner OT (over T (2)) problems can be
solved with simple sort algorithms (see special cases mentioned in Section 3.1.2).

Other approaches seek for relevant upper-bounds to the original GW problem, leading to
easier optimization problems. A first paradigm consists in imposing specific properties to the
transport plans as being of low rank, hence admitting glued transport plans as decomposition
(Scetbon et al., 2021a;b). Another one rather focuses on partitioning the structures, hardly or
softly, to split their matching into the matchings of their respective sub-graphs. This divide-
and-conquer strategy was first studied using the GW matchings to a reference structure,
namely a GW barycenter (see next Section 3.2.5). As such, a soft partitioning of both
input structures is performed simultaneously, based on which nodes of the input graphs
are assigned to one or more nodes in the reference structure (Xu et al., 2019a). Then,
Chowdhury et al. (2021) formalized and extended this divide-and-conquer strategy. As a
result, authors proposed the quantized Gromov-Wasserstein distance which can rely on any
partitioning scheme (Parés et al., 2017), while also considering node representative of the
formed sub-graphs, selected e.g using maximal Page Rank (Brin & Page, 1998), to better
reconstruct the global OT estimate from the sub-graph matchings.

A last family of methods to approximate the GW distance, further from the scope of
this manuscript than the aforementioned approaches, investigate the use of iterative random
sampling strategies that take into account both structures and coupling estimate (Vayer et al.,
2019b; Kerdoncuff et al., 2021; Li et al., 2022; Fatras et al., 2021b).

3.2.5 Gromov-Wasserstein barycenter

Since the GW problem induces a distance, one can also define a notion of barycenter, in the
same vein as the Wasserstein barycenters (Section 3.1.4). This GW barycenter estimation
problem was first investigated in Peyré et al. (2016) for discrete probability measures, defined
over various spaces endowed with symmetric inner costs such as undirected graphs.
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Learning the barycenter structure. Let us consider a dataset of graphs {Gi =
(Ci,hi)}i∈[[I]] seen as discrete measurable networks (Chowdhury & Mémoli, 2019), where for a
given graph, Ci is an arbitrary node pairwise connectivity matrix, and hi a probability vector
modeling the relative significance of the graph nodes. When the weighting of the barycenter
is fixed and given by λ ∈ ΣI , the GW barycenter problem in its first formulation seeks for
a target structure C ∈ Rn×n, composed on n nodes whose relative importance is fixed to
h ∈ Σn, solving

min
C∈Rn×n

∑
i∈[[I]]

λi GW2
2(Ci,hi,C,h) = min

C
min

{Ti∈U(hi,h)}i

∑
i∈[[I]]

λiEGW (Ci,C,Ti) (3.44)

This problem is non-convex in general, however the minimization sub-problem w.r.t C, with
fixed OT plans, is convex while considering p = 2 in GW. Peyré et al. (2016) proposed to
solve for problem (3.44) using a BCD procedure which alternates between two steps:

i) Solving I independent GW problems, with respective estimated OT matrices Ti, from
inputs (Ci,hi), respectively to the fixed and common target structure C.

ii) Updating C for fixed Ti using a closed form formula for this minimization sub-problem.
Indeed, the gradient w.r.t to C of the objective function in (3.44) reads as

∇C(·) = 2
∑
i∈[[I]]

λi{C � hh
> − T>i CiTi} (3.45)

so the first optimality condition leads to the update

C ←
(∑

i

λiT
>
i CiTi

)
� hh> (3.46)

assuming that the entry-wise division by hh> is well-defined, i.e that h does not have a null
entry. Otherwise one can simply update the rows and columns of C whose corresponding
nodes have non-null probability mass. Note that any solver detailed in Section 3.2.4 can be
used to solve the inherent OT problems. This GW barycenter problem has also been studied
by leveraging the Riemannian geometry of the Gromov-Wasserstein space (Chowdhury &
Needham, 2020). The estimation of GW barycenters has recently found many applications for
instance for shape interpolation, image clustering (Peyré et al., 2016), graph clustering and
partitioning (Xu, 2020), graphon estimation (Xu et al., 2021a), large-scale GW estimation
(Xu et al., 2019a) and structured graph prediction (Brogat-Motte et al., 2022).

Fully learning the barycentric measure. This first formulation of the GW barycenter
problem (3.44) enforces a fixed probability vector h to the barycentric measure, despite
being unknown in practice, which can be detrimental to certain applications, for instance
those relying on partitioning of the input structures such as in Xu et al. (2019a). In that
paper, authors use a barycenter of small order as intermediate matching, to estimate the GW
matching between large input graphs without comparing them directly (divide and conquer
strategy). In this case, the mass conservation constraint impose to get partitions of the input
structures whose proportions suit entries of h.
As such, Xu et al. (2019a) proposed heuristics to estimate these proportions directly from
degree distributions of the input measures. However the resulting estimated h is most
likely limited in many applications. For instance, it is easy to generate synthetic graphs
from well-known Stochastic Block Models whose degrees would be uncorrelated to cluster
proportions. These considerations advocate for also learning the barycenter probability vector
h, solving for the following optimization problem:
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min
C∈Rn×n,h∈Σn

∑
i∈[[I]]

λi GW2
2(Ci,hi,C,h) (3.47)

However, any first-order optimization procedure would require to compute a subgradient
of the GW distance w.r.t this parameter. To the best of our knowledge no theoretical results
existed in the literature for finding such subgradients. To this end, we provided in our paper
Vincent-Cuaz et al. (2021), fully reported in Chapter 5, a simple way to circumvent to this
limitation. Interestingly, subgradients with respect to the probability vectors involved in the
GW matching can be computed from subgradients of the well-known Wasserstein distance:

Theorem 5 (subgradient w.r.t masses of GW problem) Let (C,h) and (C,h)
be two graphs. Let T ∗ be an optimal coupling of the GW problem between (C,h), (C,h).
We define the following cost matrix M(T ∗) := L(C,C)⊗ T ∗ =

(∑
kl(Cik − Cjl)2T ∗kl

)
ij
.

Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the following linear OT problem:

min
T∈U(h,h)

〈M(T ∗),T 〉F (3.48)

Then µ∗(T ∗) (resp. ν∗(T ∗)) is a subgradient of the function GW2
2(C, · ,C,h) (resp.

GW2
2(C,h,C · )).

Sketch of the proof of Theorem 5. The detailed proof can be found in Annex (8.1.1). A
first step to prove Theorem 5 consists in relating a solution T ∗ of the GW problem to a
solution of the Linear Program (LP) given in Equation (3.48) using (Murty, 1988, Theorem
1.12), reported in Theorem 12. Denoting µ∗(T ∗) and ν∗(T ∗) an optimal solution to the dual
problem of (3.48), we have by strong duality

min
T∈U(h,h)

〈M(T ∗),T 〉F = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 = 〈M(T ∗),T ∗〉F = GW(C,h,C,h)

(3.49)
Then the objective is to show that ν∗(T ∗) is a subgradient of F : q → GW(C,C,h, q) (by
symmetry the result will be true for µ∗(T ∗)). We will do so by leveraging the weak-duality
of the GW problem as described in the next lemma:

Lemma 2 For any vectors µ ∈ Rn,ν ∈ Rm we define:

G(µ,ν) := min
T≥0
〈L(C,C)⊗ T − µ1>m − 1nν

>,T 〉

Let T ∗ be an optimal solution of the GW problem. Consider:

min
T∈U(h,h)

〈M(T ∗),T 〉F (3.50)

where M(T ∗) := L(C,C)⊗ T ∗. Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the prob-
lem in (3.48). If G(µ∗(T ∗),ν∗(T ∗)) = 0 then ν∗(T ∗) is a subgradient of F : q →
GW2(C,C,h, q)

After proving Lemma 2, we conclude the proof of Theorem 5 by showing that G(µ∗(T ∗),ν∗(T ∗)) =
0 thanks to equation (3.49), where G is defined in Lemma’s equation (2) �
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Algorithm 3 Projected Gradient Descent solver for extended GW barycenter problem
(3.47).
1: Inputs: Graphs {(Ci,hi)}, learning rates ηC and ηh.
2: repeat
3: Compute OT matrices with corresponding dual potentials (Ti,µi,νi) of independent

GW matching of (Ci,hi) and (C,h).
4: Perform the following updates ofC and h using gradients respectively given in equations

(3.45) and (3.52):

C ← C − ηC∇C and h← ProjΣn(h− ηh∇h) (3.53)

5: until convergence.

The proposition above shows that the subgradient of GW w.r.t. the probability vec-
tors can be found by solving a linear OT problem which relates to a Wasserstein dis-
tance. The ground cost M(T ∗) of this Wasserstein problem is moreover the gradient
w.r.t. the couplings of the optimal GW loss (up to a factor 2) when structure matrices
are assumed symmetric (see equation (3.39)). Theorem 5 can be equivalently written using
M(T ∗) = 1

2{L(C,C)⊗ T ∗ + L(C>,C>)⊗ T ∗}, to highlight the gradient of the GW loss in
the general case to include asymmetric structure matrices.
In practice, when the GW problem is solved with a Conditional Gradient algorithm (Section
3.2.4), the latter already requires to solve this linear OT problem at each iteration. Thus a sub-
gradient w.r.t. the weights can be extracted for free from the last iteration of the CG algorithm.

Therefore using Theorem 5, the computation of a subgradient w.r.t h of the objective
function of the extended GW barycenter problem (3.47) can be achieved, for a fixed C, using
the following primal-dual like relation:∑

i∈[[I]]
λi GW2

2(Ci,hi,C,h) =
∑
i∈[[I]]

λi
(
〈µi,hi〉+ 〈νi,h〉

)
(3.51)

where (µi,νi) are the dual potentials associated to the linear program given in equation
(3.48), for each independent GW matching between (Ci,hi) and (C,h). Note that any dual
optimum (µi,νi) is determined up to an additive constant, since for any real value x ∈ R the
pair (µi + x1ni ,νi − x1n) is also a feasible solution to the underlying linear problem (Cuturi
& Avis, 2014). As such, we consider a normalized version of νi which sums to zero, denoted
ν̃i, so that the subgradient w.r.t h reads as

∇h

∑
i∈[[I]]

λi GW2
2(Ci,hi,C,h)

 =
∑
i∈[[I]]

λiν̃i (3.52)

We then propose to solve for (3.47) using a projected (sub)gradient descent algorithm, sum-
marized in Algorithm 3. At each iteration, we first find an OT matrix Ti with corresponding
dual potential ν̃i for each GW matching from the input graph (Ci,hi) to (C,h). Then we
perform a projected gradient update of C and h, whose respective gradients are evaluated at
fixed pairs {(Ti, ν̃i)} by using the Envelope Theorem (Bonnans & Shapiro, 2000). In practice,
we suggest to use accelerated projected gradient descent using e.g. Adam optimizer (Kingma
& Ba, 2015).

Experiments on graph multi-partitioning. We briefly compare now both approaches,
namely the vanilla GW barycenter problem (3.44) and its extended version (3.47), on a simple
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GW = 0.21
ARI = 0.38

GW = 0.21
ARI = 0.46

GW = 0.12
ARI = 1.00

GW = 0.14
ARI = 1.00

Figure 3.6: Illustration of the multi-partitioning tasks performed by learning barycenters of the
simulated graphs, either fixing h to uniform (top) or estimating it (bottom). Colors are given to nodes
of the barycenter, then node colors of the input graphs are assigned by transporting colors of the
barycenter nodes according to Ti and Tj respectively.

task of graph multi-partitioning. To this end, we design synthetic datasets of 10 homogeneous
graphs with orders varying in {20, 22, ..., 38}, generated via Stochastic Block Model (SBM,
Holland et al. (1983)). Each graph is composed of two clusters in imbalanced proportions
[30%; 70%], both with intra-cluster and inter-cluster connection probabilities of 0.8 and 0.2,
respectively.

To perform the simultaneous partitioning of the generated graphs, we first estimate a
GW barycenter (C,h), either fixing h to uniform (equation (3.44)) or learning it (equation
(3.47)), with as many nodes as the true number of clusters (i.e. n = 2). Then we recover the
OT matrix Ti from each GW problem between an input graph (Ci,hi) and the estimated
barycenter (C,h), already computed during the barycenter computation. Finally, the cluster
assignment of a node j for a given graph (Ci,hi) is taken as the argmax over the ith row Ti
of the OT matrix. The quality of the multi-partitioning of the graphs is then measured by
means of Adjusted Rand Index (ARI), between the predicted cluster assignments and the
known ground truth, and taken on average over all graphs. For both barycenter problems,
we run these experiments on 5 simulated datasets, then the respective averaged ARIs and
estimated optimal loss values are reported in Table 3.2. Moreover, we provide an illustration
of the GW matchings of two simulated samples to the learned barycenters in Figure 3.6.

First, we can conclude that estimating the barycenter masses h is crucial to simultaneously
partition these graphs perfectly. As expected this approach also leads to a better overall
averaged GW reconstruction of input graphs, hence the learned representation (i.e the
barycenter) relates to a better understanding of the structures. Interestingly, the loss while
estimating weights exhibits a larger variance than while considering uniform weights. As
input graphs have a few nodes sampled from SBM, they naturally have more diversity in
their actual structures, which might explain this variance.

We postulate that our approach can also lead to improvement for the simultaneous
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Table 3.2: Graph Multi-partitioning Performances of both GW barycenter problems, namely with
fixed uniform weights (unif.) and estimated ones (est.).

GW bary. ARI loss
h unif 0.35(0.03) 2.07(0.01)
h est. 1.00(0.00) 1.39(0.09)

Figure 3.7: Illustration of an attributed graph G (left) with node features {fi}i and node locations
{xi}i. The graph is further endowed with a mass vector h = (hi)i measuring the relative significance
of its nodes. As such G can be represented by a fully supported probability measure µ over the product
space of feature (Ω, dΩ) and structure (X , c) with respective marginals µΩ and µX .

partitioning of heterogeneous graphs, as Xu et al. (2019a) studied for barycenters endowed of
fixed probability weights. In such scenario, the partitioning has to be performed recursively,
by iteratively learning a barycenter of graphs before splitting them into subgraphs.

However considering the broader paradigm of Graph Representation Learning (Chapter
2), representing graphs as a single structure like their GW barycenter might be too limiting
to perform well on down-stream tasks. As such, we proposed novel GW based Representation
Learning methods that will be developed in Chapters 4, 5 and 6.

3.3 Optimal Transport across incomparable spaces endowed
with feature information

A Large class of Graph Machine Learning problems are composed of attributed graphs,
i.e nodes, depicted by their pairwise interactions designated as structure information, and
additionally endowed with feature information. The aforementioned Gromov-Wasserstein
(Section 3.2) or Wasserstein (Section 3.1) distances, that focus solely on structures and
features, respectively, are not able to exploit jointly both information. At least not without
dedicated pre-processing schemes.
To go beyond this limitation, Vayer et al. (2019a; 2020) proposed a new OT distance that
unveils the geometric nature of the attributed graphs space, leveraging both structure and
feature information and consequently called the Fused Gromov-Wasserstein (FGW) distance.
In the following, we detail the OT problem inherent to FGW (Section 3.3.1) and its geometric
properties (Section 3.3.2). Then we introduce solvers designed for this problem (Section 3.3.3)
and the FGW barycenter estimation.
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3.3.1 Problem statement

In the OT context, attributed graphs of finite order are a specific instance of structured
objects defined over an ambient feature metric space, denoted here (Ω, dΩ), also designated
as feature space.

Attributed graphs as discrete probability measures. Let us consider an attributed
graph G modeled as a tuple (V,E), where V = {vi}i∈[[n]] refers to its set of vertices (or nodes)
and E to its edges. In the vein of Section 3.2.1, we detail next how to model G as a fully
supported measure illustrated in Figure 3.7.
First, assume the existence of an application s : V → X mapping a vertex vi ∈ V from
the graph to its structure representation xi = s(vi) in a structure space (X , c) where X is
assumed to be a Polish space, and c : X × X → R is a measurable cost function quantifying
the connectivity between the nodes in the graph. Second, we associate each vertex vi ∈ V to
a feature fi = a(vi) belonging to the feature space (Ω, dΩ), via a labeling function a : V → Ω.
Both mappings allow the graph to be entirely represented by a fully support probabil-
ity measure over the product of the structure (X , c) and feature (Ω, dΩ) spaces, as µ =∑
i∈[[n]] hiδ(xi,fi). For conciseness, we summarize node pairwise structural relations in the

matrix C = (c(xi,xj))i,j∈[[n]] ∈ Rn×n, and node features in F = (fi)i∈[[n]] ∈ Rn×d, assuming
Ω ⊂ Rd. Therefore the measure µ assigned to the graph G is encoded as the tuple (C,F ,h).

The Fused Gromov-Wasserstein problem. We now consider any pair of graphs G
and G, of any order n and n, with measures µ and µ respectively encoded as (C,F ,h)
and (C,F ,h). The Fused Gromov-Wasserstein (FGW) problem relates to a soft graph
matching problem associating pairs of structure and feature points, with similar connectivities
within each structure pair and with similar features. The FGW problem defined up to a
trade-off parameter α ∈ [0, 1], weighting linearly the importance of the structure and feature
information in the graph matching, reads as follow

FGWp
p,α(µ, µ) = FGWp

p,α(C,F ,h,C,F ,h)
= min
T∈U(h,h)

〈αL(C,C)p ⊗ T + (1− α)Dp(F ,F ),T 〉

= min
T∈U(h,h)

∑
ijkl

{α|Cij − Ckl|p + (1− α)dpΩ(fi,fk)}TikTjl
(3.54)

for any p ∈ N∗6. Where L(C,C) is the 4D tensor involved in the objective of the GW problem
(3.34), and D(F ,F ) = (dΩ(fi,f j))i,j∈[[n]]×[[n]] is the pairwise distance between features of
both matched graphs.
The objective function in problem (3.54) consists in a convex combination, guided by α, of
the GW cost (3.34) between structures C and C and a linear OT cost (3.8) between node
feature matrices F and F . To simply ensure the existance of an OT matrix, one can assume
both L and D to be bounded. Then, the OT matrix T minimizing equation (3.54) performs
the desired soft attributed graph matching, by simultaneously handling minimizations of the
structure transport distortion through the GW loss and of the transport of node features
F and F seen as point clouds in the metric space (Ω, dΩ). The latter metric dΩ can be
adapted to the feature nature of the matched graphs, for instance it can be taken as the
euclidean norm to compare continuous features of Rd or as the Hamming distance if features
are discrete.

6A more generic formulation of the FGW problem can be found Definition 3.5.7 of Vayer et al. (2020)
where fused ground costs are considered with exponents q ≥ 1, namely

(
α|Cij − Ckl|p + (1− α)dpΩ(fi, fk)

)q.
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3.3.2 Fused Gromov-Wasserstein properties

We now develop the properties of the matching cost resulting from the FGW problem (3.54).
Combining the studies of Vayer et al. (2019a; 2020) and Chowdhury & Mémoli (2019), we
detail invariants of the problem for any inner costs over structures for which the matching
problem is well-defined, before formalizing its resulting metric properties.

Invariants of the FGW problem. At first, Vayer et al. (2019a; 2020) introduced the Fused
Gromov-Wasserstein problem to operate on graphs whose structures are depicted by metric
inner costs. As the FGW and GW problems are closely related by definition, the generalization
of GW to measurable networks endowed with any structure representation investigated in
Chowdhury & Mémoli (2019) can also be envisioned for the FGW problem (Section 3.2.3).
Actually as such an adaptation is rather straigth-forward, we detail in the following the
properties of the FGW problem between any discrete measurable attributed networks, whose
inner structure costs might be metric or non-metric ones, hence also potentially asymetric.

First, the aforementioned strong isomorphism (Definition 1) relation stating invariance to
nodes permutation of unattributed graphs now reads as follows:

Definition 3 (Strong isomorphism between attributed graphs) Two measurable at-
tributed graphs (X ×Ω, c, µ) and (X ×Ω, c, µ) with finite orders n and n, respectively modeled
as (C,F ,h) and (C,F ,h), are said to be strongly isomorphic if and only if there exists a
permutation matrix P ∈ Rn×n such that

C = PCP>, F = PF and h = Ph. (3.55)

Second, the relaxation to non-metric inner structure costs allowing multiple nodes to
have the same incoming and outgoing edge weights, and also the same node features, induces
that such nodes can be merged or split without information loss. This idea is formalized with
the notion of weak isomorphism:

Definition 4 (Weak isormorphism between attributed graphs) Two measurable at-
tributed graphs (X × Ω, cX , µX ) and (Y × Ω, cY , µY) are weakly isomorphic if there exists
(Z × Ω, cZ , µZ) with supp(µZ) = Z and measurable maps φ : Z × Ω→ (φ1, φ2) ∈ X × Ω and
ψ : Z × Ω→ (ψ1, ψ2) ∈ Y × Ω such that for all (z, fz), (z′, f ′z) ∈ Z × Ω,

i) cZ(z, z′) = cX (φ1(z), φ1(z′)) = cY(ψ1(z), ψ1(z′)).

ii) dΩ(fz, f ′z) = dΩ(φ1(fz), φ1(f ′z)) = dΩ(ψ1(fz), ψ1(z′)).

ii) φ#µZ = µX and ψ#µZ = µY .

So the weak isomorphism still relates to a "tripod structure" including, both weakly isomorphic
attributed graphs (X × Ω, cX , µX ) and (Y × Ω, cY , µY), and a canonical graph representation
(Z ×Ω, cZ , µZ) resulting from the aggregation of weakly isomorphic nodes of both inputs. As
for unattributed graphs, this notion of isomorphism is mostly relevant for non-metric inner
structure costs, as for metric ones strong and weak isomorphisms are equivalent, which can
be easily deduce from the proof of Sturm (2012), Lemma 1.10.

Metric properties of FGW. The Fused Gromov-Wasserstein problem acts as a generaliza-
tion of the Wasserstein and Gromov-Wasserstein problems other many aspects. The fact that
FGW exhibits metric or pseudo-metric properties is one. The next Theorem aims at unifying
FGW metric properties mostly addressed in Vayer et al. (2019a; 2020) for metric inner
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structure costs that we genelarize to non-metric ones following recent findings of Chowdhury
& Mémoli (2019)7:

Theorem 6 (Metric properties of FGW) Let (X × Ω, cX , µX ) and (Y × Ω, cY , µY)
two measurable attributed networks. For any p ∈ N∗ and α ∈ [0, 1],

i) FGWp
p,α is symmetric and positive.

ii) FGWp
p,α(µX , µY) = 0 if and only if (X ×Ω, cX , µX ) and (Y × Ω, cY , µY) are weakly

isomorphic.

iii) if cX and cY are metrics, then FGWp,α(µX , µY) = 0 if and only if (X ×Ω, cX , µX )
and (Y × Ω, cY , µY) are strongly isomorphic.

iv) FGWp
p,α satisfies the triangle inequality if p = 1 and a relaxed triangle inequality

for p > 1. So for any measurable attributed network (Z × Ω, cZ , µZ) we have for
any p ∈ N∗:

FGWp
p,α(µX , µY) ≤ 2p−1{FGWp

p,α(µX , µZ) + FGWp
p,α(µZ , µY)} (3.56)

Proof of Theorem 6. The positiveness and the symmetry in (i) are rather straightforward.
Then, we refer the reader to the proof of Theorem 3.2 in Vayer et al. (2019a) for the relaxed
triangle inequality (ii). A detailed inspection of the proof confirms that this property is
independent of any metric-like assumptions over inner structure costs, so Theorem 3.2 (Vayer
et al., 2019a) can be extended to non-metric costs cX , cY and cX , as Chowdhury & Mémoli
(2019) did for non-attributed networks. Finally, (iii) and (iv) can be easily deduced from
coupling Theorem 3.2 of Vayer et al. (2019a) and Theorem 18 of Chowdhury & Mémoli (2019).
�

Theorem 6 endows the space of all measurable attributed networks over (Ω, dΩ) with
a topology induced by Fused Gromov-Wasserstein distances. Similarly than for GW, this
assertion holds if both structure and feature measurable costs are finite, hence reducing the
space to measurable attributed networks with finite "sizes" (Vayer, 2020, Definition 3.5.2).
As such, Theorem 4 on the metric (resp. pseudo-metric) nature of Gromov-Wasserstein, over
quotient spaces induced by the notion of strong isomorphism (resp. weak isomorphism),
can be extended to Fused Gromov-Wasserstein if p = 1, otherwise if p > 1 their respective
semi-metric relaxations have to be taken into account (see Theorem 6, iv)).
Interestingly, the space of all measurable metric networks doted of the topology induced by
the FGW distance also allows the definition of constant speed geodesic (Vayer et al., 2020,
Theorem 3.6).

3.3.3 Solving Fused Gromov-Wasserstein problems

We detail now the optimization problem inherent to the FGW distance (3.21) between
measurable attributed networks of finite support, before describing solvers used to estimate
solutions of the problem, which are closely related to those for the GW distance (Section
3.2.4).
We respectively encode attributed graphs, as tuples (C,F ,h) ∈ Rn×n × Rn×d × Σn and
(C,F ,h) ∈ Rn×n × Rn ×d × Σn. In general, the optimization problem inherent to the FGW
distance (3.54) is a non-convex quadratic program which inherits its non-convexity and its

7Notice that for various OT problems such as GW and FGW, the triangle inequality can be proved from
the relaxed triangle inequality as stated in assertion iv), over the loss function taken with exponent p. The
proof is analogous to the one of the Minkowski inequality via Hölder’s inequality.
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Algorithm 4 Conditional Gradient algorithm for FGW estimation
1: Inputs: input graph (C,F ,h), target graph (C,F ,h), trade-off parameter α.
2: repeat
3: Compute the gradient ∇T EFGWα evaluated at current estimate T using equation (3.61).
4: Compute the descent-direction X, solving for the linear OT problem (3.40) with cost

matrix ∇T EFGWα

5: Optimal Line-search step using Algorithm 5: denoting Z(γ) = T + γ(X − T ) =
T + γ∆ T ,

γ? = arg min
γ∈(0,1)

EFGWα (C,F ,C,F ,Z(γ)) = arg min
γ∈(0,1)

aγ2 + bγ + c (3.59)

with

a = −2α〈C∆TC>,∆T 〉F
b = 〈(1− α)D(F ,F ) + αcC,C ,∆T 〉F − 2α{〈CXC>,T 〉F + 〈CTC>,X〉F }

(3.60)

6: T ← Z(γ∗)
7: until convergence

computational complexity from the GW loss. As such the specific case p = 2, also benefits
from the advantageous factorization of the tensor-matrix multiplication given in equation
(3.35), calculable within O(n2n + n2n) operations (Peyré et al., 2016, proposition 1). In
this scenario, the FGW distance between (C,F ,h) and (C,F ,h) can be expressed for any
α ∈ [0, 1] as

FGW2
2,α(C,F ,h,C,F ,h) = min

T∈U(h,h)
〈αcC,C + (1− α)D(F ,F ),T 〉F − 2α〈CTC>,T 〉F

= min
T∈U(h,h)

EFGWα

(
C,F ,C,F ,T

)
(3.57)

where EFGWα refers to the FGW cost evaluated in any admissible coupling T . Then the
problem (3.57) admits as equivalent classical QP formulation:

min
T∈U(h,h)

1
2vec(T )>Qαvec(T ) + vec(αcC,C + (1− α)D(F ,F ))>vec(T ) (3.58)

with Qα = −4αC⊗KC emphasizing that the FGW problem (3.57) is in general a non-convex
QP, as its Hessian is the same for the GW problem up to a trade-off factor α, resulting from
the inclusion of feature information.

Adapting GW solvers to FGW ones. Exactly like the GW problem, the FGW problem
expressed in its classical QP form (3.58) can be treated as a Wasserstein problem with a
non-convex quadratic regularization (Ferradans et al., 2014; Flamary et al., 2014). As such,
most algorithms based on first-order derivatives of the GW cost EGW will be adapted to the
FGW cost EFGWα by simply changing the gradient computation step to the adequate one:

∇T EFGWα = α∇T EGW + (1− α)∇T EW

= α{L(C,C)⊗ T +L(C>,C>)⊗ T }+ (1− α)D(F ,F )
(3.61)
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Algorithm 5 Line-search for any second order polynom aγ2 + bγ + c.
1: Inputs: coefficients a and b.
2: If a > 0: γ∗ ← min

(
1,max

(
0, −b2a

))
3: Else if a+ b < 0 : γ∗ ← 1.
4: Else: γ∗ ← 0.

For instance, the Projected Gradient descent (PGD) algorithm proposed in Peyré et al. (2016)
to solve for the entropically regularized GW problem (3.41) with iterates given by equation
(3.42), comes down for FGW to

i) Compute the gradient ∇T EFGWα (T ) evaluated at current estimate T .

ii) Update T using Sinkhorn Algorithm 1 with kernel K = exp
(
−∇T EFGWα (T )/ε

)
where ε > 0 is the entropic regularization coefficient. FGW also admits as exact solver related
to the PGD, a Proximal Point algorithm, using the KL geometry, which comes down to
consider adaptive learning rates through the Gibbs’ kernel K = exp

(
−∇T EFGWα (T )/ε

)
� T

at each iteration (Xu et al., 2019b).
Vayer et al. (2019a; 2020) originally proposed to use an exact Conditional Gradient (CG)

solver allowing estimated solution to be sparse. The solver is detailed in Algorithm 4, which
resembles the one for GW. To complete previous explanations given in Section 3.2.4, we detail
the line-search step. It comes down to solving for the constraint minimization problem (3.59),
whose objective function can be expressed as a second degree polynomial function in γ with
coefficients given in equation (3.60). This problem admits closed form solutions computed
using the Algorithm 5. Let us mention that one can recover the detailed intermediate steps
of the Conditional Gradient solver for GW, simply setting α = 1 in Algorithm 4.

To conclude on the OT solvers for the FGW problem, the complexity of the existing
solvers to approximate solutions results from the GW term whose computation remains at
least cubic in the number of nodes. But the recent approaches detailed in Section 3.2.4 can
also be adapted to the FGW problem to reduce its computational complexity, e.g Scetbon
et al. (2021a); Xu et al. (2019a); Chowdhury et al. (2021).

3.3.4 Fused Gromov-Wasserstein barycenter

Since FGW has metric properties, Vayer et al. (2019a; 2020) proposed a notion of FGW
barycenter as a Fréchet mean of attributed graphs. Authors demonstrated the relevance of
this approach e.g. on graph denoising and the clustering of graphs and the nodes of the
graphs. Then in the vein of the GW barycenter problems (Section 3.2.5), we detail next
the FGW barycenter problem, first as introduced by fixing the barycentric distribution to
arbitrary probability weights h ∈ Σn(Vayer et al., 2019a), then while additionally learning
h ∈ Σn thanks to a novel result adapted from Theorem 5 to compute sub-gradients w.r.t.
this parameter (Vincent-Cuaz et al., 2021).

Learning the FGW barycenter support. We consider a dataset of attributed graphs
{Gi = (Ci,Fi,hi)}i∈[[I]] seen as discrete measures (Section 3.3.1). When the weighting of the
barycenter is fixed and given by λ ∈ ΣI , the FGW barycenter problem in its first formulation
seeks for target structure matrix C ∈ Rn×n and feature matrix, composed on n nodes whose
relative importance is fixed to h ∈ Σn, solving for

min
C∈Rn×n,F∈Rn×d

∑
i∈[[I]]

λi FGW2
2,α(Ci,Fi,hi,C,F ,h) (3.62)
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This problem is non-convex in general, however for fixed transport matrices {Ti}i, the block-
minimization sub-problems w.r.t C and F are convex while considering FGW2,α. Vayer et al.
(2019a) then proposed to solve for problem (3.62) adapting the BCD procedure for GW of
Peyré et al. (2016) to FGW as follow:

i) Solving I independent FGW problem for a target structure C and node features F
with respective estimated OT matrices Ti.

ii) Updating C,F for fixed Ti using closed form formulas for both minimization sub-
problems w.r.t C and F . As the gradient w.r.t C of the FGW cost satisfies ∇CEFGWα =
α∇CE

GW whose latter is given by equation (3.45), then C admits the close form update
already given in equation (3.46). Then the update w.r.t F can be computed e.g with
Equation 8 of Cuturi & Doucet (2014):

F ← diag(1n � h)
∑
i∈[[I]]

λiT
>
i Fi (3.63)

Fully learning the FGW barycenter measure. This first formulation of the FGW
barycenter problem (3.62) enforces an a priori unknown probability vector h to the barycentric
measure, which can be detrimental to certain applications. For instance, those relying on the
simultaneous partitioning of input structures and node features, such as Xu et al. (2019a) one,
previously described for GW in Section 3.2.5. To this end we proposed to learn this target
distribution h ∈ Σn, adapting Theorem 5 to the FGW distance, which provides sub-gradients
w.r.t. the probability weights for the GW problem. Similarly than for GW, a subgradient
for FGW weights can be derived from subgradients of the well-known Wasserstein distance:

Theorem 7 (subgradient w.r.t masses of FGW ) Let (C, ,F ,h) and (C,F ,h) be
two attributed graphs. Let T ∗ be an optimal coupling of the FGW problem between
(C,F ,h), (C,F ,h). We define the following cost matrix M(T ∗) := αL(C,C)⊗ T ∗ +
(1−α)D(F ,F ) =

(
α
∑
kl(Cik − Cjl)2T ∗kl + (1− α)‖Fi,: − F j,:‖22

)
ij
. Let µ∗(T ∗),ν∗(T ∗)

be the dual variables of the following linear OT problem:

min
T∈U(h,h)

〈M(T ∗),T 〉F (3.64)

Then µ∗(T ∗) (resp. ν∗(T ∗)) is a subgradient of the function FGW2
2,α(C,F , ·,C,F ,h)

(resp. FGW2
2,α(C,F ,h,C,F , ·)).

Proof of Theorem 7. The detailed proof can be found in Annex 8.1.2 and follows an analog
scheme than the proof for GW given in 8.1.1. �

The ground cost M(T ∗) of this Wasserstein problem is moreover the gradient w.r.t. the
couplings of the optimal FGW loss (up to a factor 2 for the term from the GW loss) when
structure matrices are assumed symmetric. Theorem 7 can also be equivalently written using
M(T ∗) = α

2 {L(C,C)⊗ T ∗ +L(C>,C>)⊗ T ∗}+ (1− α)D(F ,F ), to highlight the gradient
of the FGW loss in the general case to include asymmetric structure matrices.
Note that in practice the FGW problem is solved with a CG algorithm which already re-
quires to solve this linear OT problem at each iteration. In this way, after convergence, the
gradient w.r.t. the weights can be extracted for free from the last iteration of the CG algorithm.
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Then, one can endow the FGW barycenter problem of a learnable barycentric probability
vector h, solving for the following optimization problem:

min
C,F ,h

∑
i∈[[I]]

λi FGW2
2,α(Ci,Fi,hi,C,F ,h) (3.65)

Therefore using Theorem 7, the computation of a sub-gradient w.r.t h of the objective
function in problem (3.65) can be achieved, for fixed C and F , using the following primal-dual
like relation: ∑

i∈[[I]]
λi FGW2

2,α(Ci,Fi,hi,C,F ,h) =
∑
i∈[[I]]

λi
(
〈µi,hi〉+ 〈νi,h〉

)
(3.66)

where (µi,νi) are the dual centered potentials (Section 3.2.5) associated to the linear program
given in equation (3.64), for each independent FGW matching between (Ci,Fi,hi) and
(C,F ,h). Then the sub-gradient w.r.t h reads as

∇h

∑
i∈[[I]]

λi FGW2
2,α(Ci,Fi,hi,C,F ,h)

 =
∑
i∈[[I]]

λiνi (3.67)

So as for GW, we propose to solve for (3.65) using a projected (sub)gradient descent algorithm,
adapting the previously detailed Algorithm 3. At each iteration, we first find an OT matrix Ti
with corresponding dual potential ν̃i for each FGW matching from the input graph (Ci,Fi,hi)
to (C,F ,h). Then we perform a projected gradient update of C, F and h, whose respective
gradients are evaluated at fixed pairs {(Ti, ν̃i)} by using the Envelope Theorem (Bonnans &
Shapiro, 2000)

3.4 Conclusion
We introduced in this chapter, the various OT distances that can be used to operate on
graphs potentially endowed with node attributes. First, the Wasserstein distances (Section
3.1) may be of use to compare graphs modeled as point clouds omitting the graph topology.
Then the Gromov-Wasserstein (GW, Section 3.2) and Fused Gromov-Wasserstein (FGW,
Section 3.2) distances provide an interpretable way to compare graphs while taking into
account their respective structure information, and jointly with their feature information if
graphs also have node features.

These latter OT problems dedicated to graphs have shown seminal promising results on
Graph Representation Learning thanks to the estimation of barycentric measures, either
using the GW (Section 3.2.5) or FGW (Section 3.3.4) distances (Peyré et al., 2016; Vayer
et al., 2019a; Vincent-Cuaz et al., 2021). The next chapters, namely Chapters 4-5-6, aim at
developing novel (F)GW based models where the computation of dedicated (F)GW target
measures will be central to enhance desired properties of the learned representation, such as
interpretability or discriminatory capacity.
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This chapter presents the results from the paper Vincent-Cuaz et al. (2022c) which
focuses on Graph Representation Learning in the context of supervised machine learning
at the instance-level. From the observation of a dataset of several graphs assigned to
classes (classification task) or values to predict (regression task), the goal is to learn graph
representations which are discriminant with respect to these assignments.

The two most effective ways to address this problem nowadays are:

i) By designing kernels or discriminant similarity functions from distances or divergences
between graphs as detailed in section 2.1.

ii) By learning in an end-to-end fashion a vector representation of a graph, coming from the
aggregation of its node embeddings learned through a message-passing (see subsection
2.2) scheme which implicitly encodes the structural/topological information of the
graph.

We propose in this work a novel point of view, which places distances to some learnable graph
templates at the core of the graph representation. This distance embedding is constructed
thanks to the Fused Gromov-Wasserstein (FGW) distance. We postulate that the vector of
FGW distances to a set of template graphs can have a strong discriminative power, which is
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then fed to a non-linear classifier for final predictions. Distance embedding can be seen as a
new pooling layer, and can leverage on existing message passing techniques to learn sensible
feature representations. Interestingly enough, in our work the optimal set of template graphs
is also learnt in an end-to-end fashion by differentiating through this layer. After describing
the corresponding learning procedure, we empirically validate our claim on several synthetic
and real life graph classification datasets, where our method is competitive or surpasses kernel
and GNN state-of-the-art approaches. We complete our experiments by an ablation study
and a sensitivity analysis to parameters.

4.1 Introduction
Attributed graphs are characterized by i) the relationships between the nodes of the

graph (structural or topological information) and ii) some specific features or attributes
endowing the nodes themselves. Learning from those data is ubiquitous in many research
areas (Battaglia et al., 2018), e.g. image analysis (Harchaoui & Bach, 2007; Bronstein et al.,
2017), brain connectivity (Ktena et al., 2017), biological compounds (Jumper et al., 2021) or
social networks (Yanardag & Vishwanathan, 2015), to name a few. Various methodologies
detailed in the chapter 2 approach the inherent complexity of those data, such as signal
processing (Shuman et al., 2013), Bayesian and kernel methods on graphs (Perrin et al., 2003;
Ng et al., 2018; Kriege et al., 2020) or more recently Graph Neural Networks (GNN) (Wu
et al., 2020) in the framework of the geometric deep learning (Bronstein et al., 2017; 2021b).

We are interested in this work in the classification of attributed graphs at the instance
level. One existing approach consists in designing kernels that leverage topological properties
of the observed graphs (Borgwardt & Kriegel, 2005; Feragen et al., 2013; Gärtner et al., 2003;
Shervashidze et al., 2009) (see Section 2.1). For instance, the popular Weisfeiler-Lehman
(WL) kernel (Shervashidze et al., 2011) iteratively aggregates for each node the features of
its k-hop neighborhood (Section 2.1.2). Alternative approaches aim at learning vectorial
representations of the graphs that can encode the graph structure (see Section 2.2). In this
domain, GNN lead to state-of-the-art performances with end-to-end learnable embeddings
(Wu et al., 2020). At a given layer, these architectures typically learn the node embeddings
via local permutation-invariant transformations aggregating its neighbour features (Gori
et al., 2005b; Maron et al., 2019b; Kipf & Welling, 2016; Hamilton et al., 2017; Xu et al.,
2019c). In order to obtain a representation of the whole graph suitable for classification,
GNNs finally operate a pooling (Knyazev et al., 2019; Mesquita et al., 2020) of the node
embeddings, either global (e.g summation over nodes (Xu et al., 2019c)), or hierarchical (e.g
by iteratively clustering nodes (Zhang et al., 2018; Ying et al., 2018; Lee et al., 2019)).

Another line of works targets the construction of meaningful distances that integrate
simultaneously the structural and feature information, and that are based on optimal transport
(OT) (Villani, 2009; Peyré & Cuturi, 2019), as detailed in Chapter 3. Originally designed to
compare probability distributions based on a geometric notion of optimality, OT allows defining
very general loss functions between various objects, modeled as probability distributions. In
a nutshell, it proceeds by constructing a coupling between the distributions that minimizes a
specific cost. Some approaches dealing with graphs rely on non-parametric models that first
embed the graphs into a vectorial space and then match them via OT (Nikolentzos et al.,
2017; Togninalli et al., 2019; Kolouri et al., 2021; Maretic et al., 2019). Recently Chen et al.
(2020a) proposed the OT-GNN model, that embeds a graph as a vector of the Wasserstein
distances between the nodes’ embeddings (after GNN pre-processing) and learnt point clouds,
acting as templates.

Building further from OT variants, the Gromov-Wasserstein (GW) distance (see Sec-
tion 3.2) directly handles graphs through the symmetric matrix C that encodes the dis-
tance/similarity between each pair of nodes (e.g. adjacency, shortest path), and the weight
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Figure 4.1: Illustration of the proposed model. (left) The input graph is represented as a triplet
(Ci,Fi,hi) where the matrix Ci encodes the structure, Fi the features, hi the nodes’ weights. A GNN
φu is applied to the raw features in order to extract a meaningful node representations. (center) The
TFGW layer is applied to the filtered graph and provides a vector representation as FGW distances
to templates. (right) a final MLP ψv is applied to this vector in order to predict the final output of
the model. All objects red in are parameters that are learned from the data.

vector h, a probability mass function encoding the nodes’ relative importance. GW has proven
to be useful for tasks such as graph matching and partitioning (Xu et al., 2019a; Chowdhury
& Needham, 2021) or unsupervised graph dictionary learning (Xu, 2020; Vincent-Cuaz et al.,
2021; 2022a), which will be further addressed in the next chapters of this manuscript. GW
has been also extended to directed graphs (Chowdhury & Mémoli, 2019) and to attributed
graphs via the Fused Gromov-Wasserstein (FGW, Section 3.3) distance (Vayer et al., 2019a;
2020), that realizes a trade-off between an OT distance with a cost on node features and
the GW distance between the similarity matrices. Despite its recent successes on complex
unsupervised tasks such as graph clustering (Xu, 2020), FGW has never been explored as part
of an end-to-end model for graph classification. In this work, we fill this gap by introducing a
novel “layer” that embeds an attributed graph into a vector, whose coordinates are FGW
distances to few (learned) graph templates. While FGW can be performed directly on raw
data (i.e. the input structured graph without any pre-processing), we also consider the case
where features representations are learnt from a GNN, similarly to OT-GNN (Chen et al.,
2020a), and thus also realizing a particular type of aggregation.

Contributions. We introduce a new GNN layer, named TFGW for Template-based FGW
and illustrated in the middle of Figure 4.1 (Section 4.2.1). From an input graph, it computes
a vector of FGW distances to learnable graph templates. This layer can be seen as an
alternative to global pooling layers and can be integrated into any neural network architecture.
We detail the optimization strategy that enables learning simultaneously GNN pre-processing
layers and graph templates relevant for a downstream task in an end-to-end fashion (Section
4.2.2). Then we detail its properties and the associated invariances (Section 4.2.4). We
empirically demonstrate the relevance of our model in terms of performances compared
to several state-of-the-art architectures. Remarkably, we show that a simple GNN model
leveraging on our new layer can surpass state-of-the-art performances by a relatively large
margin (Sections 4.3.1 & 4.3.2). Finally, we also provide some illustrative interpretations of
our method and a sensitivity analysis of our model parameters (Sections 4.3.3 to 4.3.5).
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4.2 Template based Graph Neural Network with Optimal
Transport Distances

4.2.1 Model definition

Building upon the FGW distance and its properties, both detailed in Section 3.3, we
propose a simple layer for a GNN that takes a graph (C,F ,h) as input and computes its
FGW distances to a list of K template graphs G := {(Ck,F k,hk)}k∈[[K]] as follows :

TFGWG,α (C,F ,h) :=
[
FGW2

2,α(C,F ,h,Ck,F k,hk)
]K
k=1

(4.1)

We postulate that this graph representation can be discriminant between the observed
graphs. This claim relies on the theory of Balcan et al. (2008) detailed in Section 2.1.1,
allowing one to learn provably strongly discriminant classifiers based on the distances from
the observed graphs and templates that are sampled from the dataset. Notable instances of
such learning approach can be found e.g. in Rakotomamonjy et al. (2018) using OT distances,
and Johansson & Dubhashi (2015) combining the optimal assignment kernel and geometric
embeddings to operate on graphs.

However such an approach often requires a large amount of templates which might be
prohibitive if the distance is costly to compute. Instead, we propose to learn the graph
templates G in a supervised manner. In the same way, we also learn the trade-off parameter α
from the data. As such, the TFGW layer can automatically adapt to data whose discriminating
information can be discovered either in the features or in the structure of the graphs, or in
a combination of the two. Moreover, the template structures can leverage on any type of
input representation C since they are learnt directly from the data. Indeed, in the numerical
experiments we implemented the model using either adjacency matrices (ADJ) that provide
more interpretable templates (component Cij ∈ [0, 1] can be seen as a probability of link
between nodes) or shortest path matrices (SP) that are more complex to interpret but encode
global relations between the nodes.

The TFGW layer can be used directly as a first layer to build a graph representation
feeding a fully connected network (MLP) for e.g. graphs classication. In order to enhance
the discriminating power of the model, we propose to put a GNN (denoted by φu and
parametrized by u) on top of the TFGW layer. We assume in the remainder that this GNN
model φu is injective in order to preserve isomorphism relations between graphs (see Xu et al.
(2019c) and Section 2.2 for more details). With a slight abuse of notation, we write φu(F) to
denote the feature matrix of an observed graph after being processed by the GNN.

4.2.2 Learning problem and solver.

Learning with TFGW-GNN. We focus on a classification task where we observe a
dataset D of I graphs {Gi = (Ci,Fi,hi)}i∈[[I]] with variable number of nodes {ni}i∈[[I]] and
where each graph is assigned to a label yi ∈ Y, with Y a finite set.1 The full model is
illustrated in Figure 4.1. We first process the features of the nodes of the input graphs via
the GNN φu, then use the TFGW layer to represent the graphs as vectors in RK . Finally we
use the final MLP model ψv : RK → Y parameterized by v, to predict the label for any input
graph. The whole model is learned in a end-to-end fashion by minimizing the cross-entropy

1We focused on graph classification because it is an archetypal graph-level task that is most common in the
literature. However, our framework can be easily adapted to, for example, multi-label graph classification or
graph regression by changing the loss function L and the final MLP model ψv.
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loss on the whole dataset leading to the following optimization problem :

min
u,v,{(Ck,F k,hk)},α

1
I

I∑
i=1
L
(
yi, ψv

(
TFGWG,α (Ci, φu(Fi),hi)

))
. (4.2)

Notable parameters of (4.2) are the template graphs in the embeddings {(Ck,F k,hk)}
and more precisely their pairwise node relationship Ck, node features F k, and finally the
distribution on the nodes hk on the simplex using Theorem 7. The last parameter reweighs
individual nodes in each template and performs nodes selection when some weights are exactly
0 as illustrated in the computation of FGW barycenters in Section 3.3.4. Finally, the global
parameter α is also learnt from the whole dataset. Although it is possible to learn a different
α per template, we observed that this extra level of flexibility is prone to overfitting, so we
will not consider it in the core of the experimental Section 4.3 and refer to the Annex 8.2.4
the reader interested in the results supporting this claim.

Optimization and differentiation of TFGW. We propose to solve the optimization
problem in (4.2) using stochastic gradient descent. The FGW distances are computed by
adapting the conditional gradient solver described in Section 3.2.4 and implemented in the
POT toolbox (Flamary et al., 2021), where graphs are assumed undirected as in most graph
classification problems.

The solver was designed to allow backward propagation of the gradients w.r.t. all the
parameters of the distance and was adapted to also compute the gradient w.r.t. the parameter
α. The gradients are obtained using the Envelop Theorem (Afriat, 1971) allowing to keep
T ? constant. We used Pytorch (Paszke et al., 2017) to implement the model. The template
structure Ck, node weights hk and α are updated with a projected gradient respectively
on the set of symmetric matrices Snk(R+) (Snk([0, 1]) when Ci are adjacency matrices), the
simplex Σnk and [0, 1]. The projection onto the probability simplex of the node weights leads
to sparse solutions (Condat, 2016), therefore the size of each (Ck,F k,hk) can decrease along
iterations hence reducing the effective number of their parameters to optimize. This way the
numerical solver can leverage on the fact that many computations are unnecessary as soon as
the weights are set to zero.

Moreover, the optimal coupling T ? resulting from TFGW between (Ci, φu(Fi),hi) and
the template (Ck,F k,hk), will encode correspondances between the nodes of the graph and
the nodes of the template that will be propagated during the backward operation. The size
of the inputs, the size of the templates and their respective weight hk will play a crucial
role regarding this operation. Also note that, since the templates are estimated here to
optimize a supervised task, they will promote discriminant distance embedding instead of
graph reconstruction quality as proposed in other FGW unsupervised learning methods (Xu,
2020).

Note that the FGW solver from POT uses an OT solver implemented in C++ on CPU
which means that it comes with some overhead (memory transfer between GPU and CPU)
when training the model on GPU. Still the multiple FGW distances computation has been
implemented in parallel on CPU with a computational time that remains reasonable in
practice (see Section 4.3). While a GPU solver can be found when using entropy regularized
FGW, it introduces a new parameter related to the regularization strength which is more
cumbersome to set, and that we did not consider in the experiments. We refer the reader to
Section 3.2.4 for a more detailed discussion about these computational considerations.

4.2.3 TFGW as a generic OT based model.

One can observe that through the interpolation properties of the FGW distance regarding
the trade-off parameter α (see Theorem 3.1 in Vayer et al. (2019a) and Section 3.3.2), the
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model and its learning procedure described above can be adapted to the Wasserstein (resp.
Gromov-Wasserstein) distance template-based embedding by fixing α = 0 (resp. α = 1).

Wasserstein template-based pooling. As GNN comes with node embedding schemes
which takes implicitly into account the graph structure through message-passing (Section
2.2.1), a template based Wasserstein pooling (denoted TW) might be relevant to discriminate
point clouds outputed by GNNs φu, while operating on any graph. Notably, Chen et al.
(2020a) proposed the OT-GNN model which is exactly an instance of our TFGW model while
fixing α = 0. Defining by F the set of point cloud templates {(F k,hk)}k∈[[K]], the learning
problem stated for TFGW in equation (4.2) becomes for TW the following one:

min
u,v,{(F k,hk)}

1
I

I∑
i=1
L
(
yi, ψv

(
TWF (φu(Fi),hi)

))
. (4.3)

This approach mostly relies on the ability of the GNN pre-processing φu to produce discrimi-
nant node features aware of the graph structure. On the contrary, as the graph structure
is explicitly provided to the TFGW based templates, it may help the GNN pre-processing
to focus on producing discriminant node embeddings. Both approaches will be compared
extensively in the experimental section.

Gromov-Wasserstein template-based pooling. Adopting the Gromov-Wasserstein
distance within our distance embedding instead of Fused Gromov-Wasserstein could also be
of interest. Most likely, it would be relevant for graphs without node features and would lead
to an end-to-end model where the pre-processing step achieved by φu is omitted.

However, as illustrated in many works on graph kernels and GNNs, the common practice
is to augment such graphs with features encoding node properties, such as degree information
(e.g normalized degree distribution, one-hot encoding of node degree) or node centrality
measures (Saxena & Iyengar, 2020). Once graphs are augmented, most GNN approaches can
be integrated to embed node features and therefore advocates for the use of our TFGW layer
as the resulting graph representation is an attributed graph.

One unexplored way to reduce the number of templates’ learnable parameters by omitting
their node features, while learning on attributed graphs, would be to pre-process graphs using
Structure Learning (Li et al., 2018; Jiang et al., 2019; Zhang et al., 2019b) approaches. This
paradigm is for now mostly studied for specific variant of GNN based on graph hierarchical
pooling (see Section 2.2). Structure Learning consists in learning node pairwise similarities
resulting from both the node features and the initial graph structure. More formally, from an
attributed input graph (Ci,Fi), it consists in an application φu applied in (Ci,Fi) outputing
an embedded structure C̃i = φu(Ci,Fi). Hence, once the graphs {(Ci,Fi)}i are pre-processed
by φu, one could aim at classifying them based on the Gromov-Wasserstein distances from
their embedding C̃i to learnable graph templates.

4.2.4 Model properties

Invariances of the TFGW layer. We now discuss invariance properties of the proposed
layer resulting from the properties of FGW (see Section 3.3). Let us start with the following
lemma whose proof can be found in Annex 8.2.3,

Lemma 3 (TFGW invariant 1) The TFGW embeddings are invariant to strong iso-
morphism.

This lemma directly stems from the fact that FGW is invariant to strong isomorphism of one
of its inputs, without any assumption on the involved structure matrices. This proposition
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implies that two graphs with any aforementioned representation which only differ by a
permutation of the nodes will share the same TFGW embedding.

Since as the more general concept of weak isomorphism between graphs intervene rarely in
such scenarios, Lemma 3 stating the invariance to strong isomorphism of the TFGW may be
enough for most real-world graph classification datasets. The invariance to weak isomorphism
might be needed when graphs have nodes which are exact duplicates from each other. These
considerations can be found in the proofs of (Chowdhury & Mémoli, 2019, Theorem 16)
in the restrained context of unattributed networks using the Gromov-Wasserstein distance.
Moreover they were emphasized in (Kerdoncuff et al., 2022, Theorem 1, Definition 1) which
introduced a notion of “canonical representations” which amounts to merging the nodes which
are exact duplicates and aggregate their respective masses. For the sake of completeness, we
discussed these considerations for attributed networks in Sections 3.2-3.3, and we extend here
Lemma 3 to any graph or network, in its most generic formulation as defined in Chowdhury
& Mémoli (2019), further endowed with node attributes:

Lemma 4 (TFGW invariant 2) The TFGW embeddings are invariant to weak iso-
morphism.

Lemma 4 shows that two attributed graphs G1 and G2 with any aforementioned representation
which are weakly isomorphic will share the same TFGW embedding. Moreover, the canonical
representation Gc of G1 and G2, which does not admit any duplicate node and is unique up to
any permutation of its nodes, will also share the same TFGW embedding. As this relation
of weak isomorphism is transitive and consists in splitting/aggregating masses of duplicates
nodes, we can first remark that there exists an infinite number of graphs weakly isomorphic
to Gc which share the same TFGW embedding. Second, as strongly isomorphic graphs are
consequently weakly isomorphic Lemma 3 can be seen as a corollary of Lemma 4.

The invariance property stated in Lemma 4 holds for any mapping φu, in particular for
an injective one, such as a Multi-Layer Perceptron (MLP) (Hornik et al., 1989) or any GNN
with a sum aggregation scheme as described in Xu et al. (2019c) and as considered in our
end-to-end model presented in Subsection 4.2.2.

Perspectives. One primary concern of newly designed GNN is their expressivity (Balcilar
et al., 2021; Sato, 2020), or in other words, their ability to distinguish any non-isomorphic
graphs (see detailed discussion in Section 2.2). Accessing the expressivity of our TFGW
model consists in studying whether the converse of Lemma 4 holds true or not, i.e if two
graphs have the same TFGW embedding, are they isomorphic ? We let for future works
this theoretical question involving advanced concept of geometry and aim at addressing this
question empirically in Section 4.3.1.

Another recent concern emerging from the GNN literature relates to the generalization
abilities of these models (Knyazev et al., 2019; Garg et al., 2020). Also this point is addressed
empirically in Subsection 4.3.2.

Finally, it would be of interest to study whether our TFGW model satisfies a new kind of
universal approximation of functions (Hornik et al., 1989; Lu & Lu, 2020) defined directly on
graphs. Such property would check whether our class of models can approximate arbitrarily
well any real function defined on the product space of attributed graphs (see Section 3.3), e.g
the unknown function which assigns a graph from a dataset to its true label (Cybenko, 1989).
Although the notion of universality does not indicate how easy it is in practice to learn the
correct function, it can at least guarantee the absence of a fundamental bottleneck of our
model. We let this study, which may be well-guided by the seminal work of Brüel Gabrielsson
(2020), for future works.
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However, there exists encouraging results about universal approximation of functions defined
on point clouds of OT-GNN Chen et al. (2020a), being a specific instance of our TFGW
model. Indeed, authors showed that the standard architecture, i.e using sum pooling (see
Section 2.2), lacks a fundamental property of universal approximation of functions defined on
point clouds, and that their template-based Wasserstein pooling overcomes this limitation. To
state these results more formally, let us recall a characterization of universality. We consider
in the following, a kernel k : X 2 → R on a set X in its generic form, without any assumption
on its positivity or definiteness (see Subsection 2.1). We denote by X nd the set of point clouds
X = {xi}i∈[[n]] of size n of Rd.

Definition 5 (Universal kernels) A kernel k defined on X nd is said to be universal if for
any compact subset X ⊂ X nd , the set of functions of the form {

∑
j∈[[m]] αjσ(k(·, θj) +βj)|∀m ∈

N∗, (αj , βj) ∈ R2, θj ∈ X nd } 2 is dense in the set of continuous functions from X to R, w.r.t
the supremum norm defined on X .

Theorem 8 (Universality properties Chen et al. (2020a)) On X nd ,

i) The aggregation kernel defined for X,Y ∈ X nd by agg(X,Y ) = 〈∑i xi,
∑
j yj〉 is

not universal.

ii) The Wasserstein distance defines an universal kernel.

Sketch of the proof of Theorem 8: i) Consider a function f ∈ C(X ) such that there
exists X,Y ∈ X , such that f(X) 6= f(Y ) and ∑i xi = ∑

j yj . Then any function of the
form ∑

i αiσ(agg(Wi, ·) + θi) would take equal values on X and Y and hence would not
approximate f arbitrarily well. ii) The proof is inspired from the proof of universality of
neural networks from Cybenko (1989). It consists in using that σ is discriminatory w.r.t to
a kernel (Cybenko, 1989, Definition 1) is a sufficient condition for the kernel universality
(Cybenko, 1989, Theorem 1). Then it remains to prove that σ is discriminatory w.r.t the
Wasserstein distance (Chen et al., 2020a, Lemma 2) �

Theorem 8 states that a priori the template-based Wasserstein model is more suitable
for graphs classification than other GNN models using sum or mean pooling. Nevertheless,
OT-GNN can only distinguish graphs that have distinct multi-sets of node embeddings, e.g.
all Weisfeiler-Lehman distinguishable graphs while using GNN as node pre-processing. To
empirically study these notions of universality, generalization and expressiveness, we will
extensively compare the various template-based distance (FGW or Wasserstein) pooling with
sum pooling in the following numerical experiments using similar node embedding schemes
φu.

4.3 Experimental results
This section aims at illustrating the performances of our approach for graph classification

in synthetic and real-world datasets. First, we showcase the relevance of our TFGW layer on
existing synthetic datasets known to require expressiveness beyond the 1-WL test (Section
4.3.1). Then we benchmark our model with state-of-the-art approaches on well-known real-
world datasets (Section 4.3.2). We finally discuss our results through a sensitivity analysis of
our models (Sections 4.3.3 to 4.3.5).

2Here σ is the sigmoid function defined as σ(x) =
(
1 + e−x

)−1
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4-CYCLES: sample (y=0) 4-CYCLES: sample (y=0) 4-CYCLES: sample (y=1) 4-CYCLES: sample (y=1)

Figure 4.2: Few samples with different labels y ∈ {0, 1} from the dataset 4-CYCLES.

SKIP-CIRCLES: sample (y=0) SKIP-CIRCLES: sample (y=3) SKIP-CIRCLES: sample (y=6) SKIP-CIRCLES: sample (y=9)

Figure 4.3: Unique sample from different labels y ∈ {0, 3, 6, 9} corresponding respectively to
{2, 5, 11, 16} hops from the dataset SKIP-CIRCLES.

4.3.1 Analysis of the expressiveness of template-based OT models

Synthetic datasets beyond WL test. Identification of graphs beyond the WL test is one
important challenge faced by the GNN community. In order to test the ability of TFGW to
handle such fundamentally difficult problems we consider two synthetic datasets: 4-CYCLES
(Loukas, 2020; Papp et al., 2021) contains graphs with (possibly) disconnected cycles where
the label yi is the presence of a cycle of length 4; SKIP-CIRCLES (Chen et al., 2019) contains
circular graphs with skip links and the labels (10 classes) are the lengths of the skip links
among {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}.

Benchmarked methods. We compare the performances of the TFGW layer for embedding
such graphs with various kinds of GNN3:

i) GIN with sum pooling (Xu et al., 2019c) as baseline model proved to be at least as
expressive as the 1-WL test.

ii) GIN independently coupled with 3 augmentation techniques, which consist in adding
features to nodes or edges to make nodes with similar neighborhoods distinguishable,
provably enhancing GIN’s expressiveness: GIN-port adding port numbers on edges (Sato
et al., 2019), GIN-id adding unique IDs for nodes (Sato et al., 2021), GIN-rf adding
random features on nodes (Loukas, 2020).

iii) DropGIN (Papp et al., 2021) which for a given graph Gi drops out nodes randomly
several times forming multiple perturbed versions of Gi independently processed by
GIN and averaged to produce a finale representation of Gi.

iv) OT-GNN (Chen et al., 2020a) for which the same GIN architecture is considered except
for the pooling step, and the same number of templates than for TFGW is considered
(see below).

3More detailed description of most of these models and analysis of their expressiveness can be found in
Section 2.2.1
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Table 4.1: Accuracy on synthetic datasets beyond 1-WL tests averaged over 10 different runs. First
and second best methods highlighted in bold. We additionally report for each method the numerical
complexity to predict the label of a graph with n nodes whose maximum node degree is denoted dmax.

model complexity 4-CYCLES SKIP-CIRCLES
TFGW (ours) 0(n2nmax) 0.99(0.03) 1.00(0.00)

TFGW-fix (ours) 0(n2nmax) 0.63(0.11) 1.00(0.00)
OT-GNN 0(n2nmax) 0.50(0.00) 0.10(0.00)

GIN 0(ndmax) 0.50(0.00) 0.10(0.00)
GIN-port 0(ndmax) 0.84(0.07) 0.14(0.08)
GIN-id 0(ndmax) 0.58(0.07) 0.10(0.09)
GIN-rf 0(ndmax) 0.77(0.05) 0.16(0.05)

DropGIN 0(rndmax) 1.00(0.01) 0.82(0.28)
PPGN 0(n4) 1.00(0.01) 0.90(0.11)

v) PPGN (Maron et al., 2019a) that interleaves applications of standard MLP applied to
the feature dimension and matrix multiplication to be provably as expressive as a 3-WL
test.

We build upon the benchmark of Papp et al. (2021) by considering for all methods except
PPGN and TFGW, 4 GIN layers for 4-CYCLES, and 9 GIN layers for SKIP-CIRCLES as the
skip links can form cycles of up to 17 hops. For PPGN we kept the best performing model
among its 3 standard architectures fixing the learning rate to 0.001 and its decay to 0.5.
Since the graphs do not have features we use directly the TFGW on the raw graph repre-
sentation with α = 1 hence computing only the GW distance. The GNN methods above
artificially add a feature equal to 1 on all nodes as they have the same degree. For these
experiments we use adjacency matrices for Ci and we investigate two flavours of TFGW:

1) In TFGW-fix we fix the templates by sampling one template per class from the training
dataset (this can be seen as a simpler FGW feature extraction).

2) For TFGW we learn the templates from the training data (as many as the number of
classes) as proposed in the previous sections.

Results. Performances quantified by accuracy are averaged over 10 runs and reported
in Table 4.1. TFGW based methods perform very well on both datasets with impressive
results on SKIP-CIRCLE when GNN have limited performances. This is due to the fact
that different samples from one class of SKIP-CIRCLE are generated by permuting nodes
of the same graph and FGW distances are invariant to these permutations, so setting as
many templates as classes for this task makes the problem quite easy to handle for TFGW.
4-CYCLES has a more complex structure with intra-class heterogeneity and requires more
than two templates to perform as good as DropGIN. To illustrate this we have computed
the accuracy on this dataset as a function of the number of templates K in Figure 4.4. We
can see that a perfect classification is reached up to K = 4 for TFGW, while TFGW-fix still
struggles to generalize at K = 20. This illustrates that learning the templates is essential to
keep K (and numerical complexity) small while ensuring good performances.

Stress test on the number of templates. To further emphasize the discriminative
power of the TFGW embeddings, we report here additional experiments conducted on the
SKIP-CIRCLES simulated datasets. For adjacency (ADJ) and shortest-path (SP) matrices
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Figure 4.5: Test accuracies on SKIP-
CIRCLES of TFGW-fix for K ∈ {2, ..., 10}.

as Ci, instead of using one template per class (K = 10), we stress the TFGW-fix models by
learning on K ∈ {2, ..., 10} fixed templates sampled from the dataset. We report in Figure
4.5, the test accuracies averaged over 10 simulations with the same other settings than for the
previously reported experiments. The averaged accuracies are illustrated in bold, while the
intervals between the minimum and the maximum accuracy across runs is illustrated with a
lower intensity. We can see that both methods perfectly distinguish the classes using at most
3 templates. Moreover only 2 suffice to achieve such performance using SP matrices, which is
not the case for ADJ matrices. As these toy experiments seem to highlight the importance of
a well-chosen input representation, both ADJ and SP will be considered in the next numerical
experiments (Subsections 4.3.2 - 4.3.5).

4.3.2 Graph classification benchmark

We now evaluate and compare the performances of our TFGW GNN with a number of
state-of-the-art graph classifiers, from kernel methods to GNN. The numerical experiments
are conducted on real life graph datasets to provide a fair benchmark of all methods on
several heterogeneous graph structures.

Datasets. We use 8 well-known graph classification datasets (Kersting et al., 2016): 5
bioinformatics datasets among which 3 have discrete node features (MUTAG, PTC, NCI1
(Kriege & Mutzel, 2012; Shervashidze et al., 2011)) and 2 have continuous node features
(ENZYMES, PROTEINS (Borgwardt et al., 2005)) and 3 social network datasets (COLLAB,
IMDB-B, IDBM-M (Yanardag & Vishwanathan, 2015)). In order to analyse them with all
methods, we augment unattributed graphs from social networks with node degree features.
Detailed description and statistics on these datasets are reported in Table 8.1 of the Annex.

Baselines. We benchmark our approaches to the following state-of-the-art baselines for
graphs classification, split into 3 categories:

i) kernel based approaches, including FGW (Vayer et al., 2019a) operating on adjacency
and shortest-path matrices, the WL subtree kernel (Shervashidze et al., 2011, WL) and
the Wasserstein WL kernel (Togninalli et al., 2019, WWL).

ii) OT based representation learning models, including WEGL (Kolouri et al., 2021) and
OT-GNN (Chen et al., 2020a).
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Table 4.2: Test set classification accuracies from 10-fold CV. The first (resp. second) best performing
method is highlighted in bold (resp. underlined).

category model MUTAG PTC ENZYMES PROTEIN NCI1 IMDB-B IMDB-M COLLAB
Ours TFGW ADJ (L=2) 96.4(3.3) 72.4(5.7) 73.8(4.6) 82.9(2.7) 88.1(2.5) 78.3(3.7) 56.8(3.1) 84.3(2.6)

TFGW SP (L=2) 94.8(3.5) 70.8(6.3) 75.1(5.0) 82.0(3.0) 86.1(2.7) 74.1(5.4) 54.9(3.9) 80.9(3.1)
OT emb. OT-GNN (L=2) 91.6(4.6) 68.0(7.5) 66.9(3.8) 76.6(4.0) 82.9(2.1) 67.5(3.5) 52.1(3.0) 80.7(2.9)

OT-GNN (L=4) 92.1(3.7) 65.4(9.6) 67.3(4.3) 78.0(5.1) 83.6(2.5) 69.1(4.4) 51.9(2.8) 81.1(2.5)
WEGL 91.0(3.4) 66.0(2.4) 60.0(2.8) 73.7(1.9) 75.5(1.4) 66.4(2.1) 50.3(1.0) 79.6(0.5)

GNN PATCHYSAN 91.6(4.6) 58.9(3.7) 55.9(4.5) 75.1(3.3) 76.9(2.3) 62.9(3.9) 45.9(2.5) 73.1(2.7)
GIN 90.1(4.4) 63.1(3.9) 62.2(3.6) 76.2(2.8) 82.2(0.8) 64.3(3.1) 50.9(1.7) 79.3(1.7)

DropGIN 89.8(6.2) 62.3(6.8) 65.8(2.7) 76.9(4.3) 81.9(2.5) 66.3(4.5) 51.6(3.2) 80.1(2.8)
PPGN 90.4(5.6) 65.6(6.0) 66.9(4.3) 77.1(4.0) 82.7(1.8) 67.2(4.1) 51.3(2.8) 81.0(2.1)

DIFFPOOL 86.1(2.0) 45.0(5.2) 61.0(3.1) 71.7(1.4) 80.9(0.7) 61.1(2.0) 45.8(1.4) 80.8(1.6)
Kernels FGW - ADJ 82.6(7.2) 55.3(8.0) 72.2(4.0) 72.4(4.7) 74.4(2.1) 70.8(3.6) 48.9(3.9) 80.6(1.5)

FGW - SP 84.4(7.3) 55.5(7.0) 70.5(6.2) 74.3(3.3) 72.8(1.5) 65.0(4.7) 47.8(3.8) 77.8(2.4)
WL 87.4(5.4) 56.0(3.9) 69.5(3.2) 74.4(2.6) 85.6(1.2) 67.5(4.0) 48.5(4.2) 78.5(1.7)

WWL 86.3(7.9) 52.6(6.8) 71.4(5.1) 73.1(1.4) 85.7(0.8) 71.6(3.8) 52.6(3.0) 81.4(2.1)
Gain with TFGW 4.3 4.4 2.9 4.9 2.4 5.3 4.2 2.9

iii) GNN models, with global or more sophisticated pooling operations, including PATCHY-
SAN (Niepert et al., 2016), DIFFPOOL (Ying et al., 2018), PPGN (Maron et al., 2019a),
GIN (Xu et al., 2019c) and its augmented version through structure perturbations
DropGIN (Papp et al., 2021).

For methods (i) that do not require a stopping criterion dependent on a validation set,
we report results using for parameter validation a 10-fold nested cross-validation (Vayer
et al., 2019a; Kriege et al., 2020) repeated 10 times. For methods (ii) - (iii), we adopt the
hyper-parameters suggested in the respective papers, but with a slightly different model
selection scheme, as detailed in the next paragraph.

Benchmark settings. Recent GNN literature (Maron et al., 2019b; Xu et al., 2019c; Maron
et al., 2019a; Papp et al., 2021) successfully addressed many limitations in terms of model
expressiveness compared to the WL tests. Within that scope, they suggested to benchmark
their models using a 10-fold cross-validation (CV) where the best average accuracy on the
validation folds was reported. We suggest here to quantify the generalization capacities of
GNN based models by performing a 10-fold cross validation, but measuring performances on
a holdout test set never seen during training. For each split, we track the accuracy on the
validation fold every 5 epochs, then the model whose parameters maximize that accuracy is
retained. Finally, the model used to predict on the holdout test set is the one with maximal
validation accuracy averaged across all folds. This setting is more realistic than a simple
10-fold CV and allows a better understanding of the generalization performances (Bengio
& Grandvalet, 2003). This point explains why some existing approaches have here different
performances than those reported in their original paper.

For all the TFGW based approaches we empirically study the impact of the input structure
representation by considering adjacency (ADJ) and shortest-path (SP) matrices Ci. For all
template based models, we set the size of the templates to the median size of the observed
graphs.

We validate the number of templates K in {β|Y|}β, with β ∈ {2, 4, 6, 8} and |Y| the
number of classes. Only for ENZYMES with 6 classes of 100 graphs each, we validate
β ∈ {1, 2, 3, 4}. All parameters of our TFGW layers highlighted in red in Figure 4.1 are
learned while φu is a GIN architecture (Xu et al., 2019c) composed of L = 2 layers aggregated
using the Jumping Knowledge scheme (Xu et al., 2018) known to prevent overfitting in global
pooling frameworks. For OT-GNN we validate the number of GIN layers in L ∈ {2, 4}.
Finally, we validate the number of hidden units within the GNN layers and the application of
dropout on the final MLP for predictions, similarly to GIN and DropGIN.
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Table 4.3: Number of parameters and averaged prediction time per graph in milliseconds when
running on CPU and GPU.

model PTC PROTEIN
parameters CPU runtimes GPU runtimes parameters CPU runtimes GPU runtimes

(ours) TFGW 25.1k 12.1 20.7 47.7k 45.9 21.8
OT-GNN 30.8k 7.6 8.8 95.2k 27.1 11.1

GIN 29.9k 0.19 0.06 45.9k 2.5 0.09
DropGIN 44.1k 14.3 2.1 45.9k 79.8 4.7

Results. The results of the comparisons in terms of accuracy are reported in Table 4.2.
Our TFGW approach consistently outperforms with significant margins the state-of-the-art
approaches from all categories. Even if most of the benchmarked models can perfectly fit
the train sets by learning implicitly the graphs structure (Xu et al., 2019c; Papp et al., 2021;
Maron et al., 2019a), enforcing such knowledge explicitly as our TFGW layer does (through
FGW distances) leads to considerably stronger generalization performances. On 7 out of 8
datasets, TFGW leads to better performances while operating on adjacency matrices (TFGW
ADJ) than on shortest-path ones (TFGW SP). Interestingly, this ranking with respect to
those input representations does not necessarily match the one of the FGW kernel which
extracts knowledge from the graph structures Ci through FGW, as our TFGW layer. These
different dependencies to the provided inputs may be due to the GNN pre-processing of node
features which suggests the study of its ablation. Finally to complete this analysis, we report
in Table 4.3 the number of parameters of best selected models across various methods, for
the datasets PTC and PROTEIN. Our TFGW leads to considerably better classification
performances while having comparable number of parameters than these competitors. We
also reported for these models, their averaged prediction time per graph. These measures
were taken both on CPUs (Intel Core i9-9900K CPU, 3.60 GHz) and a GPU Quatro RTX
4000, in order to fairly compare the numerical complexity of these methods, as OT solver
used in TFGW and OT-GNN are currently limited to CPUs (see the discussion in Subsection
4.2.2). Although the theoretical complexity of our approach is at most cubic in the number
of nodes, we still get in practice a fairly good speed for classifying graphs, in comparison to
the other competitive methods. More precisely, TFGW has approximately the same or lower
averaged prediction time per graph on CPU as recent DropGIN architecture. However, GIN
and DropGIN get a 3-30 times speedup on GPU when TFGW is slower on GPU for PTC
and 2x faster for PROTEIN (acceleration of matrix product for large graphs but overhead
time for transfering between CPU and GPU for small graphs). This shows that TFGW is
not yet accelerated on GPU but remains reasonable in practice, so one can still benefit from
it in the GNN and MLP models.

4.3.3 TFGW-GIN: Ablation study and embedding visualization

In this Section we inspect the role of some of the model parameters (α in FGW, weights
estimation in the templates, depth of the GNN φu) in terms of the classification performance.
To this end, we first conduct on all datasets an ablation study on the graph template weights
hk and the number of GIN layers in φu.

Ablation Study. Following the same procedure as in Section 4.3.2, we benchmark the
following settings for our TFGW models: for adjacency (ADJ) and shortest path (SP)
representations Ci, we learn the distance layers either directly, on the raw data (i.e. L =
0, φu = id), or after embedding the data with (L = 1) or (L = 2) GIN layers. For L = 0 we
either fix the graph template weights hk uniformly or learn them.
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Table 4.4: Classification results from 10-fold cross-validation of our TFGW models in various
scenarios: for L ∈ {0, 1, 2} GIN layers, we either fix templates weights hk to uniform distributions or
learn them. The first and second best performing method are respectively highlighted in bold and
underlined.

model inputs hk MUTAG PTC ENZYMES PROTEIN NCI1 IMDB-B IMDB-M COLLAB
TFGW (L=0) ADJ uniform 92.1(4.5) 63.6(5.0) 67.4(7.3) 78.0(2.0) 80.3(1.5) 69.9(2.5) 49.7(4.1) 78.7(3.1)

ADJ learnt 94.2(3.0) 64.9(4.1) 72.1(5.5) 78.8(2.2) 82.1(2.5) 71.3(4.3) 52.3(2.5) 80.9(2.7)
SP uniform 94.8(3.7) 66.5(6.7) 72.7(6.9) 77.5(2.4) 79.6(3.7) 68.1(4.4) 48.3(3.6) 78.4(3.4)
SP learnt 95.9(4.1) 67.9(5.8) 75.1(5.6) 79.5(2.9) 83.9(2.0) 72.6(3.1) 53.1(2.5) 79.8(2.5)

TFGW(L=1) ADJ learnt 94.8(3.1) 68.7(5.8) 72.7(5.1) 81.5(2.8) 85.4(2.8) 76.3(4.3) 55.9(2.4) 82.6(1.8)
SP learnt 95.4(3.5) 70.9(5.5) 74.9(4.8) 82.1(3.4) 85.7(3.1) 73.8(4.8) 54.2(3.3) 81.1(2.5)

TFGW (L=2) ADJ learnt 96.4(3.3) 72.4(5.7) 73.8(4.6) 82.9(2.7) 88.1(2.5) 78.3(3.7) 56.8(3.1) 84.3(2.6)
SP learnt 94.8(3.5) 70.8(6.3) 75.1(5.0) 82.0(3.0) 86.1(2.7) 74.1(5.4) 54.9(3.9) 80.9(3.1)

The results (test accuracy) are reported in Table 4.4. Learning the weights systematically
improves the generalization capabilities of our models of at least 1% or 2% for both ADJ
and SP graph representations. For a given number of graph templates, the weights learning
allows to better fit the specificities of the classes (e.g. varying proportion of nodes in
different parts of the graphs). Moreover, as weights can become sparse in the simplex during
training they also allow the model to have templates whose number of nodes adapts to the
classification objective, while bringing computational benefits as discussed in Section 4.2.2.
Those observations explain why we learnt them by default in the benchmark of the previous
Section.
Next, we see in Table 4.4 that using GNN layers as a pre-processing for our TFGW layer
enhances generalization powers of our models, whose best performances are obtained for
L = 2. Interestingly, for L = 0, TFGW with SP matrices outperforms TFGW with ADJ
matrices, meaning that the shortest path distance brings more discriminant information on
raw data. But when L ≥ 1 (i.e. when a GNN pre-processes the node features), TFGW
with ADJ matrices improves the accuracy. An explanation could be that the GNN φu can
somehow replicate (and outperform) a SP metric between nodes. This emphasizes that the
strength of our approach clearly exhibited in Table 4.2 lies in the inductive bias of our FGW
distance embedding. This last point is further reinforced by additional experiments reported
in Section 4.3.5 where GIN layers (used by default for our TFGW model) are replaced by
GAT layers from Veličković et al. (2018) (see also Section 2.2.1, equation (2.9)).

Visualizing the TFGW embedding. In order to interpret the TFGW embeddings, we
first illustrate in Figure 4.6 the PCA projection of our distance embeddings learned on PTC
with L = 0 and L = 2 and the number of templates K varying in {4, 8}.

For this experiment, we have chosen PCA because it allows to have a more interpretable
low dimensional projection that preserves the geometry compared to local neighbourhood
based embeddings such as TSNE (Van der Maaten & Hinton, 2008) or UMAP (McInnes et al.,
2018). As depicted in the figure, the learned templates are extreme points in the embedding
space of the PCA. This result is particularly interesting because existing unsupervised FGW
representation learning methods tend toward estimating templates that belong to the data
manifold, or to form a “convex enveloppe” of the data to ensure good reconstruction (Xu,
2020) (see Chapters 5 and 6 for this matter). On the contrary, the templates learned through
our approach seem to be located on a plane in the PCA space while the samples evolve
orthogonally to this plane (when the FGW distance increases). In a classification context,
this means that the learned templates will not actually represent realistic graphs from the
data but might encode “exaggerated” or “extreme” features in order to maximize the margin
between classes in the embedding. An instance of such learned templates are illustrated in
Figure 4.7. By comparing these templates (on the left) with samples from the dataset (on
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Figure 4.6: PCA projections of the template based embeddings for different models and number of
templates.
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Figure 4.7: Illustration of the templates learned on PTC with K = 4 and L = 0 (on the left side),
and some samples from this dataset (on the right sight). The graph structures are represented using
the entries of Ck (resp. Ci) as repulsive strength and the corresponding edges are colored in shades
of grey (black being the maximum). The node colors are computed based on their features F k (resp.
Fi). The nodes size are made proportional to the weights hk (resp. hi).

the right), we can clearly see that the learned templates do not represent realistic graphs
from the data.

Finally, in Figure 4.7, the samples are coloured w.r.t. their class and the templates are
coloured by their predicted class. Interestingly, the classes are already well separated with 4
templates but the separation is clearly non-linear whereas using GNN pre-processing and a
larger number of templates leads to a linear separation of the two classes.

4.3.4 TFGW-GIN: Sensitivity analysis

In this section, we take a closer look at the estimated trade-off parameters α and provide
a sensitivity analysis w.r.t. the number of templates and the number of GIN layers for our
TFGW models.

Importance of the structure/feature aspect of FGW. To the best of our knowledge
we are the first to actually learn the trade-off parameter α of FGW in a supervised way. For
this matter, we verify that our models did not converge to degenerated solutions where either
the structure (α = 0) or the features (α = 1 ) are omitted.

To this end we report in Figure 4.8 the distributions of the estimated α for some models
learnt on datasets PTC and IMDB-B, where features are respectively existing in the dataset
or created using node degrees. We can see that for both kinds of input graph representations,
α parameters are strictly between 0 and 1. One can notice the variances of those distributions
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Figure 4.8: Distributions of estimated α on the PTC and IMDB-B datasets, using TFGW with L ∈
{0, 2} GIN layers while learning on adjacency (ADJ) or shortest-path (SP) input graph representations.

illustrating the non-uniqueness of this trade-off parameter coming from the non-convexity
of our optimization problem (a given value of α can potentially be compensated by the
scaling of the GNN output). Unfortunately, the analysis of the real relative importance
between structures and features can not be achieved only by looking at those values as the
node embeddings and templates are different across models and data splits. In order to be
exhaustive, we reported in Annex 8.2.4 the α distribution for each dataset of the best selected
TFGW models with L = 2 whose performances are given in Table 4.2.

Sensitivity to the number of GIN layers and templates. To illustrate the sensitivity
of our TFGW layer to the number of templates K and the number of GIN layers L in φu,
we learned our models on the PTC dataset with L varying in {0, 1, 2, 3, 4}. We follow the
same procedure than in the benchmark of Section 4.3.2 regarding the validation of K and
the learning process, while fixing the number of hidden units in the GNN layers to 16. The
test accuracy distributions for all settings are reported in Figure 4.9. Two phases are clearly
distinguishable. The first one for L ≤ 2, where for each L we see that the performance across
the number of templates steadily increases, and the second for L > 2 where this performance
progressively decreases as a function of L. Moreover, in the first phase performances are
considerably dependent on K to compensate for a simple node representation, while this
dependency is mitigated in the second which exhibits a slight overfitting. Note that these
deeper models still lead to competitive results in comparison with benchmarked approaches
in Table 4.2, with best averaged accuracies of 70.6 (L = 3) and 67.4 (L = 4). On one hand,
these observations led us to set our number of layers to L = 2 for all benchmarked datasets
which lead to strong generalization power. On the other hand, deeper models might be a way
to benefit from our FGW embeddings with very few templates which can be interesting from
a computational perspective on larger graph datasets.

To complete the sensitivity analysis given above, we also studied the dynamics of GIN
models with sum aggregation.

Sensitivity of GIN to the number of layers. For a number of GIN layers varying in
L ∈ {1, 2, ..., 6}, using analog settings and validation. The test accuracies of the validated
models for each L are reported in Figure 4.10. First, the model with L = 4 (default for the
method (Xu et al., 2019c)) leads to best performances on average. Whereas L = 5 leads to
worst performances but L = 6 leads to the second best model in this benchmark. Then, no
clear pattern of overfitting is observed when L increases when using sum pooling contrary to
our TFGW based pooling. Such behavior may come from the Jumping Knowledge scheme
(with concatenation) (Xu et al., 2018), as argued by the authors.
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Figure 4.9: Test accuracy distributions by number of templates K and number of GIN layers L,
using TFGW as pooling layer with K ∈ {4, 8, 12, 16} templates.

1 2 3 4 5 6
Number of layers L

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cie

s

PTC: test accuracies of best GIN models depending on L

Figure 4.10: Test accuracies on PTC of GIN using sum pooling with a varying number of layers
L ∈ {1, ..., 6}.

4.3.5 TFGW-GAT: sensitivity analysis

As we focused until here on the behavior of our models while using GIN layers, one remaining
question is how does TFGW behave with other GNN architectures than GIN? Our intuition
regarding this matter is that using our TFGW layer to obtain the graph representations
consistently leads to better performances than simple sum pooling over graph nodes, regardless
of the GNN architectures. Moreover, performances of both approaches should be correlated.
To support these affirmations, we investigate here the use of Graph Attention networks
(Veličković et al., 2018, GAT) for graph classification, either using a simple sum pooling or
using the TFGW layer.

GAT with sum pooling. First, as the GAT architecture was investigated by its authors
on node classification tasks and not graph-level ones, we study the behavior of GAT layers
within a comparable framework than the one proposed by GIN, on 3 bioinformatic datasets.
We use the same Jumping Knowledge scheme than GIN, i.e we concatenate features produced
at each GAT layer, then we sum them across all nodes to get the graph representation fed to
the final classifier ψv. To fit to the benchmark reported in Table 2 of the main paper, we
validate the features dimension in {16, 32} (using a single attention head in GAT layers) and
the dropout ratios applied to ψv in {0, 0.2, 0.5}, while considering L ∈ {1, 2, 3, 4} GAT layers.
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Table 4.5: Test set classification accuracies from 10-fold CV. The first (resp. second) best performing
method is highlighted in bold (resp. underlined).

MUTAG PTC PROTEIN
GAT (L=1) 89.4(1.0) 53.1(3.4) 77.8(1.7)
GAT (L=2) 91.1(2.5) 52.0(4.0) 76.3(3.1)
GAT (L=3) 88.9(1.7) 53.4(3.8) 75.9(2.3)
GAT (L=4) 91.2(2.8) 50.9(5.8) 77.6(2.7)
GIN (L=4) 90.1(4.4) 63.1(3.9) 76.2(2.8)

Table 4.6: Test set classification accuracies from 10-fold CV of the TFGW models using GAT or
GIN as φu. The first (resp. second) best in bold (resp. underlined).

category model MUTAG PTC PROTEIN
Ours TFGW ADJ (L=2) 95.4(3.5) 68.7(5.8) 83.4(2.8)

TFGW SP (L=2) 96.2(3.0) 67.9(5.8) 82.6(2.9)
φu = GAT TFGW ADJ (L=1) 94.8(3.1) 66.9(5.4) 82.1(3.3)

TFGW SP (L=1) 96.4(3.3) 68.3(6.0) 82.3(3.1)
Ours TFGW ADJ (L=2) 96.4(3.3) 72.4(5.7) 82.9(2.7)

TFGW SP (L=2) 94.8(3.5) 70.8(6.3) 82.0((3.0))
φu = GIN TFGW ADJ (L=1) 94.8(3.1) 68.7(5.8) 81.5(2.8)

TFGW SP (L=1) 95.4(3.5) 70.9(5.5) 82.1(3.4)
sum GAT (L=4) 91.2(2.8) 50.9(5.8) 77.6(2.7)

pooling GIN (L=4) 90.1(4.4) 63.1(3.9) 76.2(2.8)

The results in terms of accuracy are reported in Table 4.5. GAT provides competitive
performances on MUTAG and PROTEIN datasets compared to GIN, while GIN largely
outperforms GAT on the PTC dataset. Also, it seems harder to find a consensus across
datasets on L for GAT-based architectures compared to GIN’s ones. Finally, we observed
that using multi-head attention was prone to overfitting and led to lower performances on
these graph classification tasks, so such suggestions from GAT’s authors on node classification
tasks seem to not hold for these graph-level tasks.

GAT with TFGW pooling. Finally, we investigate the use of our TFGW layer with GAT
layers, as φu to produce node embeddings. We follow a similar validation than for TFGW
coupled with GIN, setting L ∈ {1, 2}. The results are reported in Table 4.6. We can see that
TFGW with GAT leads to competitive performances compared to TFGW with GIN, at least
on MUTAG and PROTEIN. GAT clearly struggles on the PTC dataset, however with our
TFGW layer instead of a sum pooling, we observe a boost of performances from 53.4% to
68.7%. Even if TFGW coupled with GIN on PTC is still considerably better than TFGW
with GAT. Therefore, the choice of GNN architectures to produce node embeddings to feed
to the TFGW layer matters, but the gain from using TFGW seems to be independent of the
GNN architecture.

4.4 Discussion and conclusion
We have introduced a new GNN layer whose goal is to represent a graph by its distances to
template graphs, according to the optimal transport metric FGW. The proposed layer can be
used directly on raw graph data, i.e without node embedding step, as the first layer of a GNN.
Or it can also benefit from more involved node embedding using classical GNN layers, such as
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the studied ones, GIN (Xu et al., 2019c) and GAT (Veličković et al., 2018), or potentially any
other ones. In a graph classification context, we combined this TFGW layer with a simple
MLP model. We demonstrated on several benchmark datasets that this approach compared
favorably with state-of-the-art GNN and kernel based classifiers. A sensitivity analysis and
an ablation study were presented to justify the choice of several parameters explaining the
good generalization performances.

We believe that the new way to represent complex structured data provided by TFGW
will open the door to novel and hopefully more interpretable GNN architectures. From
a practical perspective, future works will be dedicated to combine TFGW with fast GPU
solvers for network flow (Shekhovtsov & Hlaváč, 2013). This would greatly accelerate our
approach and more generally OT based deep learning methods. We also believe that the
FGW distance and its existing extensions can be used with other learning strategies including
the semi-relaxed FGW divergence (Vincent-Cuaz et al., 2022a;b) for sub-graph detection, as
detailed in Chapter 6.
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Fused Gromov-Wasserstein Linear
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This chapter presents the results from the paper Vincent-Cuaz et al. (2021) which focuses
on unsupervised Graph Representation Learning (GRL) through the lens of Dictionary
Learning.
Dictionary Learning basically consists into modeling the observed data as a linear combination
of a few basic elements. Yet, this analysis is not amenable in the context of graph learning, as
graphs usually belong to different metric spaces. We fill this gap by proposing a new Graph
Dictionary Learning (GDL) approach, which either uses the Gromov-Wasserstein (Section 3.2)
or the Fused Gromov-Wasserstein (Section 3.3) distance for the data fitting term, depending
on the presence of node attributes.

Contributions. In this chapter, we use OT distances between graphs encoded through
their nodes’ pairwise relations and features, to design a linear and online DL for graphs. This
novel factorization model relies on the (F)GW as data fitting term to model graphs as convex
combination of graph atoms i.e. dictionary elements. Our proposal is depicted in Figure 5.1
in the case of unattributed graphs.
We propose an online stochastic algorithm to learn the dictionary which scales to large
real-world data (Section 5.2), and uses extensively new derivations of sub-gradients of the
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(F)GW distance (Theorem 7, Section 3.3). An unmixing procedure projects the graph into
an embedding space defined w.r.t. the dictionary (Section 5.2.2).
Interestingly enough, we prove that the (F)GW distance in this embedding is upper-bounded
by a Mahalanobis distance over the space of unmixing weights, providing a reliable and fast
approximation of (F)GW (Section 5.2.3). Moreover, this approximation defines a kernel that
can be efficiently used for clustering and classification of graphs datasets (Section 5.3.2).
Finally, we empirically demonstrate the relevance of our approach for online subspace
estimation, subspace tracking by designing streams of graphs (Section 5.3.5) and graphs
completion (Section 5.2.6) over two datasets.

5.1 Introduction
The question of how to build machine learning algorithms able to go beyond vectorial

data and to learn from structured data such as graphs has been of great interest in the last
decades. Notable applications can be found in molecule compounds (Kriege et al., 2018),
brain connectivity (Ktena et al., 2017), social networks (Yanardag & Vishwanathan, 2015;
Brouard et al., 2011), time series (Cuturi & Blondel, 2018), trees (Day, 1985) or images
(Harchaoui & Bach, 2007; Bronstein et al., 2017).

Designing good representations for these data is challenging, as their nature is by essence
non-vectorial, and requires a dedicated modeling. Graph Representation Learning problems
have traditionally been handled using implicit representations such as graph kernels (Section
2.1), which may also leverage OT based distances (Section 3.2 and 3.3). However, one limit of
kernel methods is that the representation of the graph is fixed a priori and cannot be adapted
to specific datasets. On the other hand, Geometric deep learning approaches (Bronstein
et al., 2017)(see also Section 2.2) attempt to learn a representation of structured data by
means of deep learning (Scarselli et al., 2008; Perozzi et al., 2014; Niepert et al., 2016).
Graph Neural Networks (Wu et al., 2020) have shown impressive performance for end-to-end
supervised learning problems. However both kernel methods and many deep learning based
representations for graphs suffer from the fundamental pre-image problem, that prevents
recovering actual graph objects from the embeddings.

Here we attack the unsupervised graph representation learning problem, where additionally
the entirety of the data might not be known beforehand, and is rather produced continuously by
different sensors, and available through streams. In this setting, tackling the non-stationarity
of the underlying generating process is challenging (Ditzler et al., 2015). Good examples
can be found, for instance, in the context of dynamic functional connectivity (Heitmann &
Breakspear, 2018) or network science (Masuda & Lambiotte, 2020). As opposed to recent
approaches focusing on dynamically varying graphs in online or continuous learning (Yang
et al., 2018; Vlaski et al., 2018; Wang et al., 2020), we rather suppose in this work that
distinct graphs are made progressively available (Zambon et al., 2017; Grattarola et al., 2019).
This setting is particularly challenging as the structure, the attributes or the number of nodes
of each graph observed at a time step can differ from the previous ones. We propose to tackle
this problem by learning a linear representation of graphs with online dictionary learning.

Dictionary Learning (DL). Dictionary Learning (Mairal et al., 2009; Schmitz et al.,
2018) is a field of unsupervised learning that aims at estimating a linear representation of the
data, i.e. to learn a linear subspace defined by the span of a family of vectors, called atoms,
which constitute a dictionary. These atoms are inferred from the input data by minimizing a
reconstruction error. These representations have been notably used in statistical frameworks
such as data clustering (Ng et al., 2002), recommender systems (Bobadilla et al., 2013) or
dimensionality reduction (Candès et al., 2011).
While DL methods mainly focus on vectorial data, it is of prime interest to investigate flexible
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and interpretable factorization models applicable to structured data. We aim at designing a
DL method overcoming such a limit relying on a vectorial representation in the dictionary,
and which also allows a direct reconstruction of interpretable graphs.

We also consider the dynamic or time varying version of the problem, where the data
generating process may exhibit non-stationarity over time, yielding a problem of subspace
change or tracking (see e.g. Narayanamurthy & Vaswani (2018)), where one wants to monitor
changes in the subspace best describing the data.

A recent contribution potentially overcoming the pre-image problem and also considering
the dynamic or time varying version of the problem is Grattarola et al. (2019). In that paper,
a variational autoencoder is indeed trained to embed the observed graphs into a constant
curvature Riemannian manifold. The aim of that paper is to represent the graph data into a
space where the statistical tests for change detection are easier. We look instead for a latent
representation of the graphs that remains interpretable as much as possible. In this work, we
propose to address both challenges of the pre-image problem and continuous learning thanks
to a novel DL relying on Optimal Transport (Chapter 3) as a fidelity term to compare these
structured data.

Optimal Transport for structured data. Optimal Transport (OT) theory (Chapter
3) provides a set of methods for comparing probability distributions, using, e.g. the well-
known Wasserstein distance (Section 3.1). It has been notably used by the machine learning
community in the context of distributional unsupervised learning (Arjovsky et al., 2017;
Schmitz et al., 2018; Peyré & Cuturi, 2019). Broadly speaking the interest of OT lies in
its ability to provide correspondences, or relations, between sets of points. Consequently,
it has recently garnered attention for learning tasks where the points are described by
graphs/structured data (see e.g. Niepert et al. (2016); Maretic et al. (2019); Togninalli et al.
(2019); Xu et al. (2019a); Chen et al. (2020a)). One of the key ingredient in this case is to
rely on the so called Fused Gromov-Wasserstein (FGW) distance (see Section 3.3) which is
an OT problem adapted to the scenario in which the supports of the probability distributions
lie in different metric spaces.

Graph Dictionary Learning meets Optimal Transport. Note that OT divergences
as losses for linear and non-linear DL over vectorial data have already been proposed in
Bonneel et al. (2016); Rolet et al. (2016); Schmitz et al. (2018) and further details on these
approaches can be found in Section 3.1.4. However the case of structured data remains quite
unaddressed.

In a recent work, Xu (2020) proposed a non-linear factorization of graphs using a regu-
larized version of (F)GW barycenters (Peyré et al., 2016) and called it Gromov-Wasserstein
Factorization (GWF). Given a dataset of I graphs {(Ci,hi)}i∈[[I]], authors propose to learn a
dictionary {Ck ∈ RNk×Nk}k∈[[K]] by solving the following DL problem

min
{wi}⊂ΣK ,{Ck}

∑
i∈[[I]]

GW2
2

(
B̃(wi; {Ck}),Ci

)
(5.1)

where B̃(wi; {Ck}) ∈ arg minB
∑
k wik GW2

2(B,Ck) is a non-linear GW barycenter (Section
3.2.5) of the learned graph atoms {Ck}k∈[[K]] and wi ∈ ΣK is the embedding of Ci in the
dictionary. As a consequence, the projection of Ci onto the dictionary requires solving a
complex bi-level optimization problem that is computationally expensive and might suffer
from a lack of interpretability. In these terms, we propose a novel linear Dictionary Learning
that we develop in the next Section 5.2, and whose relevance to overcome these two limitations
will be empirically verified in Section 5.3.
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Figure 5.1: From a dataset of graphs without node features with different number of nodes, our
method builds a dictionary of graph atoms with an online procedure. In this scenario, it uses the
Gromov-Wasserstein distance as data fitting term between a convex combination of the atoms and a
pairwise relations representation for graphs from the dataset.

5.2 Fused Gromov-Wasserstein Linear Dictionary Learning
on graphs

In this section, we first detail how we model graphs as convex combinations of graph
atoms (Section 5.2.1). An unmixing or projection step, studied in Section 5.2.2, is performed
to get linear approximations as faithful as possible. After proving interesting properties of
our model (Section 5.2.3), we propose an online algorithm to estimate optimal graph atoms
from dataset of graphs (Section 5.2.4). Then we propose an extended DL (Section 5.2.5) to
fully exploit the (F)GW formalism by estimating simultaneously the graph structures and
distributions. Finally, we study in Section 5.2.6 the generative abilities of our DL through
graphs completion.

5.2.1 Linear modeling of graphs

We propose to model a (labeled) graph as weighted sums of pairwise relation matrices
and node feature matrices. More precisely, given a graph G = (C,F ,h) and a dictionary
{(Ck,F k,hk)}k∈[K] composed of graph with the same order N , we want to find linear
representations of the graph topology C and its node features F , as faithful as possible. In a
first place, we assume that all graph atoms share the same node distribution, i.e ∀k ∈ [[K]],
hk = h ∈ ΣN . Linear representations are parameterized by w ∈ ΣK and are then expressed
as

C̃(w) =
∑
k∈[[K]]

wkCk and F̃ (w) =
∑
k∈[[K]]

wkF k (5.2)
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while their nodes relative significance is fixed to the shared probability vector h. Notice that
this assumption is consistent with the common choice of setting node distributions to uniform
ones.

The dictionary is made of pairwise relation matrices and feature matrices of labeled
graphs with order N . Thus, each tuple (Ck,F k) ∈ RN×N × RN×d is called an atom, and
w = (wk)k∈[K] ∈ ΣK is designated as embedding and denotes the coordinate of the graph G
in the dictionary as illustrated for unattributed graphs in Figure 5.1. We rely on the FGW
distance to assess the quality of our linear approximations and propose to minimize it to
estimate its optimal embedding.

In addition to being interpretable by linearity, the convex combination used to model the
graph structure can convey certain properties of the atom structures. For instance, when the
pairwise matrices C are adjacency matrices and the dictionary atom structures are weighted
adjacency matrices with components in [0, 1], the model C̃(w) provides a matrix whose
components can be interpreted as probabilities of connection between the nodes.
Moreover if atom structures are distance matrices, such as shortest-path matrices, the model
will also be a distance matrix (as diagonal entries will be null and its off-diagonal entries
will satisfy the triangle inequality). Inner product properties (symmetry, linearity, positive-
definiteness) of the atoms can also be inherited by the linear representations of the inputs,
however Euclidean distance properties can not (Section 3.3). Finally if atom structures are
positive semi-definite (PSD) matrices, the model C̃(w) will also be PSD matrices. These
last properties can be of interest when considering the optimization problem inherent to the
FGW distance (Section 3.3).

5.2.2 Fused Gromov-Wasserstein linear unmixing

We first study the unmixing problem that consists in projecting a graph on the linear
representation discussed above, i.e. estimate the optimal embedding w of a graph G. The
unmixing problem can be expressed as the minimization of the FGW distance between any
graph G = (C,F ,h) and its linear representations in the dictionary following equation (5.2):

min
w∈ΣK

FGW2
2,α

(
C,F ,h, C̃(w), F̃ (w),h

)
⇔ min

w∈ΣK ,T∈U(h,h)
EFGWα

(
C,F , C̃(w), F̃ (w),T

)
(5.3)

where the FGW cost EFGWα is given in equation (3.57) of Section 3.3. Once more, since h
is the same for all atoms and models, it does not depend on w. This is why we called it h,
instead of h̃.

Without any assumption over structures involved in the FGW matching, the sub-problem
w.r.t T is non-convex, as detailed in Section 3.3. The sub-problem w.r.t w is a convex
quadratic program as detailed in the following lemma proven in Annex 8.3.1:

Lemma 5 (FGW unmixing sub-problem w.r.t w) For any input graph (C,F ,h),
any dictionary {(Ck,F k,h)}k∈[[K]] and any admissible coupling T ∈ U(h,h), the unmix-
ing sub-problem

min
w∈ΣK

EFGWα

(
C,F , C̃(w), F̃ (w),T

)
(5.4)

is a convex problem which is equivalent to the following canonical quadratic program

min
w∈ΣK

w>Qαw +w>c (5.5)

where
Qα = 2

(
αMGW + (1− α)MW

)
(5.6)
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is PSD as a convex combination of the PSD matrices,MGW =
(
〈DhCp,CqDh〉F

)
p,q∈[[K]]2

and MW = (〈D1/2
h
F p,D

1/2
h
F q〉F )p,q∈[[K]]2 while denoting Dh = diag(h).

Finally, c = (ck)k∈[[K]] satisfies ck = −2α〈T>CT ,Ck〉F − 2(1− α)〈T>F ,F k〉F .

Algorithm 6 BCD for unmixing problem 5.3
1: Inputs: Input graph (C,F ,h), Dictionary {(Ck,F k,h)}k, trade-off parameter α.
2: Initialize w = 1

K1K
3: repeat
4: Compute OT matrix T of FGW2

2,α

(
C,F ,h, C̃(w), F̃ (w),h

)
, with CG Algorithm 4

of Section 3.3.
5: Compute the optimal w solving (5.3) for a fixed T with CG algorithm.
6: until convergence

Interestingly, the Hessian of this quadratic form depends on linear interactions between
the atom structures and features given by the matrices MGW and MW . However, even if
this sub-problem is convex, the overall problem is non-convex so we propose to tackle it using
a Block Coordinate Descent (BCD) algorithm (Tseng, 2001).

The BCD given in Algorithm 6 works by alternatively updating the OT matrix of the
FGW distance and the embeddings w. When w is fixed the problem is a classical FGW that
we solve using the Conditional Gradient (CG) algorithm (Jaggi, 2013) based on Vayer et al.
(2019a), further detailed in Section 3.3.3. Note that the use of an exact solver for FGW,
instead of a regularized proxy allowed us to keep a sparse OT matrix as well as to preserve
“high frequency” components of the graph, as opposed to regularized versions of GW (Peyré
et al., 2016; Solomon et al., 2016; Xu, 2020) that promotes dense OT matrices and leads to
smoothed/averaged pairwise matrices (Sections 3.2.4 and 3.3.3). For a fixed OT matrix T ,
we propose to estimate solution of the sub-problem w.r.t w using the CG solver reported in
Algorithm 7. The CG consists in 3 steps:

i) Computing the gradient w.r.t w of the FGW cost EFGW satisfying for all k ∈ [[K]](
∇wEFGWα

)
k

= 2α
{
〈Ck � C̃(w),hh>〉F − 〈T>CT ,Ck〉F

}
+ 2(1− α)〈DhF̃ (w)− T>F ,F q〉F

(5.7)

An efficient implementation consists in using operations on 3D tensors to leverage the
linearity of the gradient w.r.t w. At the BCD algorithm initialization, one can store
both PSD matrices MGW and MW (see Lemma 5) to reuse them as such to compute
both terms in the gradient which depends on w. Then terms depending on T can
also be stored at the first CG iteration to avoid redundant computation and used as
such to fasten the line-search described below. Therefore the overall computation of
the gradient comes with O

(
K(N2N +NN

2 +N
3)
)
operations made at initialization.

Then at next iterations, every gradient can be computed using O(K) operations. Such
scheme is efficient as we expect N and K to be small compared to N in a factorization
context.

ii) Solve the direction-finding subproblem in equation (5.9) which consists in minimizing
the linear approximation of the problem given by the first-order Taylor approximation
of EFGWα around w. This problem admits closed-form solutions x∗, given for instance
by finding the entries K ⊂ [[K]] s.t ∀k ∈ K, gk = minj gj and forming x∗ from entries
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Algorithm 7 CG for the sub-problem w.r.t w
1: Inputs: Input graph (C,F ,h), Dictionary {(Ck,F k,h)}k, trade-off parameter α.
2: repeat
3: Compute g, the gradient w.r.t w of EFGWα (C,F , C̃(w), F̃ (w),T ) following (5.7).
4: Direction-finding subproblem:

x? = arg min
x∈ΣK

xTg (5.9)

5: Line-search: denoting z(γ) = w + γ(x? −w) = w + γ∆w,

γ? = arg min
γ∈(0,1)

EFGWα (C,F , C̃(z(γ)), F̃ (z(γ)),T ) = arg min
γ∈(0,1)

aγ2 + bγ + c (5.10)

where a = α〈C̃(∆w)2,hh
>〉+ (1− α)〈DhF̃ (∆w), F̃ (∆w)〉

b = 2α{〈C̃(∆w)� C̃(w),hh>〉 − 〈T>CT , C̃(∆w)〉}
+ 2(1− α)〈DhF̃ (w)− T>F , F̃ (∆w)〉

(5.11)

6: w ← z(γ?)
7: until convergence

x∗k = 1
|K| , ∀k ∈ K. Note that the solution is unique if and only if the gradient g admits

a unique coordinate achieving minj gj .

iii) Determine the exact step-size to update w by solving the problem in equation (5.10)
admitting closed-form solutions given in Algorithm 5, Section 3.3.3. Coefficients a and
b can be computed in O(K2) operations using pre-computed terms detailed in (i).

Note that for non-convex problems the CG algorithm is known to converge to a local
stationary point (Lacoste-Julien, 2016, Theorem 1) at a rate O(1/

√
t), where t relates to the

number of algorithm iterations. Whereas for convex problems the CG algorithm is known to
convergence to a global optimum (Jaggi, 2013, Theorem 1) at a rate O(1/t).

We also propose to promote sparsity in the weights w similarly to sparse coding (Chen
et al., 2001). To this end, we propose to use a negative quadratic regularization promoting
sparsity on the simplex as discussed in Li et al. (2016), expanding the unmixing (5.3) problem
to the following one

min
w∈ΣK

FGW2
2,α

(
C,F ,h, C̃(w), F̃ (w),h

)
− λ‖w‖22 (5.8)

where λ ∈ R+. The BCD and the CG, respectively given in Algorithms 6 and 7, are straight-
forward to adapt to this regularized unmixing problem. However the sub-problem w.r.t
w becomes non-convex for large values of λ, which reduces our theoretical guarantees. In
practice, we observed for both unmixing problems (5.3) and (5.8) a typical convergence of
the CGs in a few tens of iterations. The BCD itself converges in less than 10 iterations.

5.2.3 Fast upper bound for GW

Interestingly, when two graphs belong to the linear subspace defined by our dictionary, there
exists a proxy of the FGW distance using a dedicated Mahalanobis distance as described in
the next:
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Theorem 9 (Fused Gromov-Wasserstein upper-bound in the embedding) For
two embedded graphs with node features, with embeddings w1 and w2 over the set of
pairwise relation matrices {(Ck,F k)}k∈[K] ⊂ RN×N ×RN×d, and a shared masses vector
h ∈ Σn, the following inequality holds ∀α ∈ [0, 1],

FGW2,α
(
C̃(w1), F̃ (w1), C̃(w2), F̃ (w2)

)
≤ ‖w1 −w2‖Qα/2 (5.12)

where Qα is the PSD matrix in equation (5.6), hence engenders a Mahalanobis distance
between embeddings.

Proof of Theorem 9. Let us consider two embedded graphs with node features, with
embeddings w1 and w2 over a dictionary {(Ck,F k)}s∈[[K]] ⊂ RN×N × RN×d, and a masses
vector h shared by linear models and dictionary atoms. We introduce for any admissible
coupling T ∈ U(h,h), the application providing the FGW cost given T between both
embedded graphs fT : w ∈ Σk → EFGW

(
C̃(w1), F̃ (w1), C̃(w), F̃ (w),T

)
. This function is

further characterized in Lemma 5. As fT is a second-order polynomial function, it satisfies
for any w ∈ ΣK ,

fT (w) = fT (w1) +∇wfT (w1)>(w −w1) + 1
2(w −w1)>Qα(w −w1) (5.13)

where Qα is given by Lemma 5 and for any k ∈ Σk,

∇wfT (w1)k = 2α{〈DhC̃(w1)Dh,Ck〉 − 〈T>C̃(w1)T ,Ck〉}
+ 2(1− α)〈DhF̃ (w1)− T>F̃ (w1),F q〉

(5.14)

following intermediate equations (8.77) and (8.81) of the lemma’s proof. Then denoting T ∗
the optimal coupling resulting from the FGW problem, we have T ∗ which minimizes the
application T ∈ U(h,h) → fT (w2). Therefore as Dh is an admissible coupling, we have
fT ∗(w2) ≤ fD

h
(w2), which can be expanded using equation (5.13) as

fT ∗(w2) ≤ fD
h
(w1) +∇wfD

h
(w1)>(w2 −w1) + 1

2(w2 −w1)>Qα(w2 −w1) (5.15)

Using equation (5.14) it is easy to see that ∇wfD
h
(w1) = 0. Moreover fD

h
(w1) = 0 as it

corresponds to the FGW distance between
(
C̃(w1), F̃ (w1),h

)
and itself. So using these

relations and the definition of fT ∗(w2), we have the desired upper-bound of equation (5.12). �

As detailed in equation (5.15) of the proof, the upper-bound given in Theorem 9 is obtained
by considering the FGW cost between the linear models calculated using the admissible
coupling Dh. The latter coupling assumes that both graph representations are aligned and
therefore is a priori suboptimal. As such, this bound is not tight in general. However, when
the embeddings are close, the optimal coupling matrix should be close to Dh so that Theorem
9 provides a reasonable proxy to the FGW distance into our embedding space. In practice,
this upper bound can be used to compute efficiently pairwise kernel matrices or to do retrieval
of closest samples (see numerical experiments, Section 5.3).

5.2.4 Dictionary learning and online algorithm

Assume now that the dictionary D = {Gk : (Ck,F k,h)}k∈[K] is not known and has
to be estimated from the data. We define a dataset D of I attributed graphs D =
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{Gi : (Ci,Fi,hi)}i∈[I]. Recall that each graph Gi of order Ni is summarized by its pair-
wise relation matrix Ci ∈ RNi×Ni , its node feature matrix Fi ∈ RNi×d and weights hi ∈ ΣNi

over nodes, as described in Section 3.3.
The DL problem, that aims at estimating the optimal dictionary for a given dataset can

be expressed as:

min
{w(i)}i,{(Ck,F k)}k

I∑
i=1

FGW2,α
(
Ci,Fi,hi, C̃(wi), F̃ (wi),h

)
− λ‖wi‖22 (5.16)

where wi ∈ ΣK ,Ck ∈ RN×N and F k ∈ RN×d. Let us denote the objective function in
problem (5.16) by FD,λ({wi},D). The optimization problem above is a classical sparsity
promoting dictionary learning on a linear subspace but with the important novelty that the
reconstruction error is computed by means of the FGW distance. This allows us to learn a
graphs subspace of fixed order N using a dataset of graphs with various orders. The sum
over the errors in equation (5.16) can be seen as an expectation and we propose to devise an
online strategy to optimize the problem similarly to the online DL proposed in Mairal et al.
(2009).
The main idea is to update the dictionary {(Ck,F k}k with a stochastic estimation of the
gradients on a minibatch of B graphs B = {Gi}i. At each stochastic update the unmixing
problems providing optimal {(wi,Ti)}i are solved independently for each graph Gi of the
minibatch using a fixed dictionary {(Ck,F k)}k, according to the procedure described in
Section 5.2.2. Then one can estimate gradients w.r.t {(Ck,F k)}k of the objective function
FD,λ({wi},D) of our DL problem (5.16), by gradients computed over the minibatch, given
for each atom structure by

∇̃Ck
(
FD,λ({wi},D)

)
= 2α

∑
i∈[[B]]

wik{C̃(wi)� hh
> − T>i CiTi} (5.17)

and for each atom feature matrix by

∇̃F k
(
FD,λ({wi},D)

)
= 2(1− α)

∑
i∈[[B]]

wik{DhF̃ (wi)− T>i Fi} (5.18)

knowing that terms depending on Ti are already computed by unmixings solver. Note that if
the input graph structures {Ci} are symmetric (undirected graphs) and atom structures are
initialized as symmetric matrices, the updated atom structures following equation (5.17) will
remain symmetric. When operating on adjacency or shortest path matrices (see numerical
experiments in Section 5.3), we propose to add a projected gradient step to constraint atom
structures to be non-negative. The stochastic update of the proposed algorithm is detailed in
Algorithm 8. This process can be used on a finite dataset with possibly several epochs on the
whole dataset or online in the presence of streaming graphs. We provide an example of such
subspace tracking in Section 5.3.5. We will refer to our approach as GDL in the rest of the
manuscript.

Numerical complexity The numerical complexity of GDL depends on the complexity
of each update. The main computational bottleneck is the unmixing procedure that relies
on multiple resolution of FGW problems. The complexity of solving a FGW with the CG
algorithm between two graphs of order N and M and computing its gradient is dominated by
O
(
N2M +M2N

)
operations (Peyré et al., 2016; Vayer et al., 2019a) (see details in Section

3.3.3). Thus given dictionary atoms of order N , the worst case complexity can be only
quadratic in the highest graph order Nmax = maxi∈[[I]]Ni in the dataset, in a factorization
context where N and K are assumed small compared to Nmax.
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Algorithm 8 GDL: stochastic update of atoms {(Ck,F k)}k∈[K]

1: Sample a minibatch of B graphs B := {(Ci,Fi,hi)} .
2: Compute optimal {(wi,Ti)}i∈[[B]] by solving B independent unmixing problems with

Algorithm 6.
3: Projected gradient step with estimated gradients ∇̃Ck and ∇̃F k given (5.17) and (5.18),
∀k ∈ [K]:

Ck ← ProjR+(Ck − ηC∇̃Ck) and F k ← F k − ηF ∇̃F k (5.19)

For instance, estimating embedding on dataset IMDB-M (Section 5.3.2) over 12 atoms
takes on average 44 ms per graph (on processor i9-9900K CPU 3.60GHz)1. Note that in
addition to scale well to large datasets thanks to the stochastic optimization, our method
also leads to important speedups when using the representations as input feature for other
ML tasks. For instance, we can use the upper bound of Theorem 9 to compute efficiently
kernels between graphs instead of computing all pairwise FGW distances. Moreover, we
show in Section 5.3.2 that our GDL representation technique compares favorably to the
non-linear GW based DL GWF (see equation (5.1)), both in terms of numerical complexity
and performance.

5.2.5 Learning the graph structure and distribution

Recent researches have studied the use of potentially more general distributions h on the
nodes of graphs than the naive uniform ones commonly used. Xu et al. (2019a) empirically
explored the use of distributions induced by degrees, such as parameterized power laws,
hi = pi∑

i
pi
, where pi = (deg(xi) + a)b with a ∈ R+ and b ∈ [0, 1]. They demonstrated the

interest of this approach but also highlighted how hard it is to calibrate, which advocates for
learning these distributions.
With this motivation, we extend our GDL model defined in equation (5.16) and propose
to learn atoms of the form {(Ck,F k,hk)}k∈[K]. In this setting we have two independent
dictionaries modeling the relative importance of the nodes via hk ∈ ΣN , and their pairwise
relations and node features through (Ck,F k). This dictionary learning problem reads:

min
{(wi,vi)}i,{(Ck,F k)}k

I∑
i=1

FGW2
2,α

(
Ci,Fi,hi, C̃(wi), F̃ (wi), h̃(vi)

)
− λ‖wi‖22 − ρ‖vi‖22 (5.20)

where wi ∈ ΣK and vi ∈ ΣK are the structure and distribution embeddings, and the linear
models are defined for any i ∈ [[I]] as

C̃(wi) =
∑
k∈[[K]]

wikCk, F̃ (wi) =
∑
k∈[[K]]

wikF k, h̃(vi) =
∑
k∈[[K]]

vikhk, (5.21)

with Ck ∈ RN×N , F k ∈ RN×d and hk ∈ ΣK . We denote the objective function in problem
(5.20) by FD,λ,ρ({wi,vi},D).

Here we fully exploit the FGW formalism by estimating simultaneously the graph dis-
tribution h̃, its geometric structure C̃ and its node features F̃ . The optimization problem
(5.20) can be solved by an adaptation of the stochastic Algorithm 8, detailed in Algorithm
10. It consists in the two following steps:

1To update with new implementation
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Algorithm 9 BCD for GDL extended unmixing problem providing optimal (wi,vi,Ti) for
input graph (Ci,Fi,hi).
1: Inputs: Input graph (Ci,Fi,hi) and dictionary {(Ck,F k,hk)}k.
2: Initialize embeddings such as wi = vi = 1

K1K
3: repeat
4: Compute OT matrix Ti of FGW2,α

(
Ci,Fi,hi, C̃(wi), F̃ (wi), h̃(vi)

)
, with CG algo-

rithm (Section 3.3). From the finale iteration of CG, get dual potentials (µi,νi) of the
corresponding linear OT problem (see (5.23)).

5: Compute the optimal v by minimizing (5.23) w.r.t v using closed-form solutions (5.24)
if ρ = 0 or using CG algorithm (5.25) if ρ > 0.

6: Compute the optimal wi solving (5.8) given T and v, setting h = ∑
k vikhk, with CG

algorithm 7.
7: until convergence

Algorithm 10 extended GDL: stochastic update of atoms {(Ck,F k,hk)}k∈[[K]]

1: Sample a minibatch of B graphs B := {(Ci,Fi,hi)}i∈I⊂[[I]] .
2: Compute optimal embeddings {(wi,vi)}i∈[[B]] coming jointly with the set of OT variables

(Ti, µi, νi) by solving B independent unmixing problems with BCD algorithm 9.
3: Projected gradient step with estimated gradients ∇̃Ck (5.26), ∇̃F k (5.27) and ∇̃hk (5.28),
∀k ∈ [[K]]:
Ck ← ProjR+(Ck − ηC∇̃Ck), F k ← F k − ηF ∇̃F k and hk ← ProjΣ

N
(hk − ηh∇̃hk)

(5.22)

i) Solve the extended unmixing problem. We estimate the structure/node weights
unmixings (wk,vk) over a minibatch of graphs with an extension of the BCD Algorithm 6.
This extended BCD is summarized in Algorithm 9. First, for fixed unmixings (wi,vi),
we compute the OT matrix Tk of FGW2,α(Ci,Fi,hi, C̃(wi), F̃ (wi), h̃(vi)) using a CG
algorithm (Section 3.3). At the last iteration of this CG, a Wasserstein problem is
solved providing Ti and its corresponding optimal dual variables µi and νi satisfying:

FGW2,α(Ci,Fi,hi, C̃(wi), F̃ (wi), h̃(vi)) = 〈µi,hi〉+ 〈νi, h̃(vi)〉 (5.23)

So we can optimize EFGWα w.r.t vi at fixed Ti and wi solving for

min
v∈ΣK

〈µi,hi〉+ 〈νi, h̃(v)〉 ⇔ min
v∈ΣK

v>c (5.24)

where c = (ck = 〈νi,hk〉)k∈[[K]]. This problem is a classic Linear Program under simplex
constraints which admits closed-form solutions, as discussed in Step 2 of Algorithm 7
(Section 5.2.2).
If we further promote sparsity of vi (ρ > 0) using the negative quadratic regularization
of equation (5.20), the unmixing sub-problem w.r.t vi at fixed Ti and wi becomes

min
v∈ΣK

−ρv>v + v>c (5.25)

which is a concave Quadratic Program that can be solved using a simple Conditional
Gradient algorithm.
Finally, once vi is updated for a fixed Ti and wi, we can update wi using the CG
Algorithm 7 by posing h = ∑

k vikhk in equations (5.7) and (5.10).
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Algorithm 11 GDL: graphs completion
1: Inputs: Observed graph Cobs, Dictionary {(Ck,F k,h)}, size of the imputed graph and

trade-off parameter α.
2: Initialize randomly the entries Cimp by iid sampling from N (0.5, 0.01) (In a symmetric

manner if Cobs is symmetric).2
3: repeat
4: Compute optimal (T ,w) of (Cest,Fest,h) into the dictionary (5.8).
5: Perform a projected gradient step on Cest and Fest using gradients from equations

(5.31) and (5.32).
6: until convergence.

ii) Stochastic gradient updates. Then once unmixing problems providing (wi,vi,Ti,µi,νi)
are solved independently, we perform simultaneously a projected gradient step update
of {Ck}k and {hk}k, and a gradient step update of {Ck}k. For which stochastic
gradients of the objective function FD,λ,ρ({wi,vi},D) of problem (5.20) read for each
atom structure,

∇̃Ck
(
FD,λ,ρ({wi,vi},D)

)
= 2
B

∑
i∈[[B]]

wik{C̃(wi)� h̃(vi)h̃(vi)> − T>i CiTi}, (5.26)

each atom feature matrices,

∇̃F k
(
FD,λ,ρ({wi,vi},D)

)
= 2
B

∑
i∈[[B]]

wik{diag(h̃(vi))F̃ (wi)− T>i Fi} (5.27)

and each atom distributions

∇̃hk
(
FD,λ,ρ({wi,vi},D)

)
= 1
B

∑
i∈[[B]]

vikνi (5.28)

5.2.6 GDL for graphs completion

The GDL dictionaries estimated using equation (5.16)3 on the datasetD = {(Ci,Fi,hi)}
are expected to capture a simplified semantic within D, that might be considered as the
hidden generative process from which observed graphs were sampled. This way the dictionary
can be used to infer/complete a new graph that is only partially observed and assumed to be
generated by the same generative process observed in D.
In this setting, we aim at recovering the full structureC ∈ RN×N and node features F ∈ RN×d,
while only a subset of relations and features among Nobs < N nodes are observed, denoted as
Cobs ∈ RNobs×Nobs and Fobs ∈ RNobs×d. This amounts to solving:

min
Cimp,Fimp

min
w

FGW2,α
(
Cest,Fest,h, C̃(w), F̃ (w),h

)
− λ‖w‖22 (5.29)

with

Cest =
[
Cobs

...
. . . Cimp

]
and Fest =

[
Fobs
Fimp

]
(5.30)

where only N2 −N2
obs coefficients collected into Cimp and (N −Nobs)d coefficients collected

into Fimp are optimized, and thus imputed.
3For simplicity, we consider here that the atoms share the same distribution h. The graph completion

procedure described in this Section can be extended to GDL with learned distributions simply using the
corresponding unmixing procedure.
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We solve the optimization problem (5.29) by a classical projected gradient descent. At
each iteration, we find an optimal pair of coupling and embedding (T ,w) by solving the
unmixing problem (5.8) for a fixed (Cimp,Fimp). Then (T ,w) is used to calculate the gradient
w.r.t (Cimp,Fimp) of the FGW loss between (Cest,Fest,h) and (C̃(w), F̃w,h). The latter
is obtained thanks to the imputed components of the gradient of the FGW cost function
evaluated at the fixed optimal coupling T and embedding w by using the Envelope Theorem
(Bonnans & Shapiro, 2000). The updates read as follow, for the imputed structure

Cimp ←
[
2α
(
Cest � hh> − T C̃(w)T>

)]
imputed i,j

(5.31)

and for the imputed feature matrix

Fimp ←
[
2(1− α)

(
DhFest − T F̃ (w)

)]
imputed i

(5.32)

A projection step for Cimp can be applied to enforce known properties of Cest, such as
positivity and symmetry based on the observed subgraph Cobs to impute.
In practice the estimated Cimp will have continuous values, so e.g is Cobs is an adjacency
matrix, one has to apply apply a thresholding with value 0.5 on Cimp to recover a completed
binary adjacency matrix.

5.3 Experimental results
This section aims at illustrating the behavior of the approaches introduced so far for both
clustering and classification of graph datasets (Sections 5.3.2 and 5.3.4), online subspace
tracking (Section 5.3.5) and graphs completion (Section 5.2.6).

Implementation details. The base OT solvers that are used in the algorithms rely on the
POT toolbox (Flamary et al., 2021). For our experiments, we considered the Adam algorithm
(Kingma & Ba, 2015) as an adaptive strategy for the update of the atoms with a fixed dataset,
but used SGD with constant step size for the online experiments in Section 5.3.5.

5.3.1 GDL on simulated datasets

The GDL approach discussed in this section refers to equation (5.16) where the GW distance
is used as data fitting term (i.e. α = 1). First we illustrate it on datasets simulated according
to the well understood Stochastic Block Model (SBM, Holland et al., 1983; Wang & Wong,
1987) and show that we can recover embeddings and dictionary atoms corresponding to the
generative structure.

Datasets description. We consider two datasets of graphs, generated according to SBM,
with various orders, randomly sampled in {10, 15, ..., 60}:

1. The first scenario (D1) adopts three different generative structures (also referred to as
classes): dense (no clusters), two clusters and three clusters (see Figure 5.2). Nodes are
assigned to clusters into equal proportions. For each generative structure 100 graphs
are sampled.

2. The second scenario (D2) considers the generative structure with two clusters, but with
varying proportions of nodes for each block (see top of Figure 5.4), 150 graphs are
simulated accordingly.



Chapter 5. Fused Gromov-Wasserstein Linear Dictionary of graphs 97

GDL unmixing w(k) with = 0.001

Class 1

Class 2

Class 3

GDL unmixing w(k) with = 0

Class 1

Class 2

Class 3

Examples

1

1

1

2

2

2

3

3

3

Figure 5.2: Visualizations of the embeddings of the graphs from D1 with our GDL on 3 atoms. The
positions on the simplex for the different classes are reported with no regularization (left) and sparsity
promoting regularization (right). Three simulated graphs from D1 are shown in the middle and their
positions on the simplex reported in red.
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Figure 5.3: Visualizations of the GDL atoms learned from the graphs from D1. Nodes of each graph
atom are colored according to the labels color of the corresponding atom given in Figure 5.2. Edges
are assigned with color intensities proportionally to the corresponding entries of the atom structure
matrices Ck.

In both scenarios we fix p = 0.1 as the probability of inter-cluster connectivity and 1− p as
the probability of intra-cluster connectivity. We consider adjacency matrices for representing
the structures of the graphs in the datasets and uniform weights on the nodes.

Results and interpretations. First we learn on dataset D1 a dictionary of 3 atoms of
order 6. The unmixing coefficients for the samples in D1 are reported in Figure 5.2. On the
left, we see that the coefficients are not sparse on the simplex but the samples are clearly
well clustered and graphs sharing the same class (i.e. color) are well separated. When
adding sparsity promoting regularization (right part of the figure) the different classes are
clustered on the corners of the simplex, thus suggesting that regularization leads to a more
discriminant representation. The estimated atoms for the regularized GDL are reported on
top of Figure 5.3 as both matrices Ck and their corresponding graphs. As it can be seen, the
different SBM structures in D1 are recovered.
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

w= [0.0, 1.0] w= [0.2, 0.8] w= [0.4, 0.6] w= [0.6, 0.4] w= [0.8, 0.2] w= [1.0, 0.0]

Figure 5.4: On the top, random samples of simulated graphs from D2 (two blocks). On the bottom,
reconstructed graphs as linear combination of two estimated atoms (varying proportions for each
atom).

Figure 5.5: Plot of the pairwise distances in D1 and their Pearson correlation coefficients. GW
distance between graphs versus its counterpart between the models i.e. embedded graphs (left). GW
distance between graphs versus Mahalanobis distance between the embeddings (middle). GW distance
between the embedded graphs versus Mahalanobis between the corresponding embeddings (right).

Next we estimate on D2 a dictionary with 2 atoms of order 12. The interpolation between
the two estimated atoms for some samples is reported in Figure 5.4. As it can be seen, D2
can be modeled as a one dimensional manifold where the proportion of nodes in each block
changes continuously. We stress that the grey links on the bottom of Figure 5.4 correspond to
the entries of the reconstructed adjacency matrices. Those entries are in [0, 1], thus encoding
a probability of connection (see Section 5.2.1). The darker the link, the higher the probability
of interaction between the corresponding nodes. The possibility of generating random graphs
using these probabilities opens the door to future researches.

GW approximation in the embedding. We evaluate in Figure 5.5 the quality of the
Mahalanobis upper bound in Theorem 9 as a proxy for the GW distance on D1. On the left,
one can see that the linear model allows us to recover the true GW distances between graphs
most of the time. Exceptions occur for samples in the same class (i.e. "near" to each other
in terms of GW distance). The right part of the figure shows that the correlation between
the Mahalanobis upper bound (cf. Theorem 9) and the GW distance between the embedded
graphs is nearly perfect (0.999). This proves that our proposed upper bound provides a
nice approximation of the GW distance between the input graphs, with a correlation of 0.96
(middle of the figure), at a much lower computational cost.
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5.3.2 GDL for clustering of real-world datasets

We now show how our unsupervised GDL procedure can be used to find meaningful repre-
sentations for well-known graph classification datasets. The knowledge of the classes will be
employed as a ground truth to validate our estimated embeddings in clustering tasks.

Datasets and benchmark methods. We considered well-known benchmark datasets
divided into three categories, whose detailed descriptions are provided in Table 8.1 of the
Annex 8.2.4:

• IMDB-B and IMDB-M (Yanardag & Vishwanathan, 2015) gather graphs without node
attributes derived from social networks.

• Graphs with discrete attributes representing chemical compounds from MUTAG (Deb-
nath et al., 1991) and cuneiform signs from PTC-MR (Krichene et al., 2015).

• Graphs with real vectors as attributes, namely BZR, COX2 (Sutherland et al., 2003)
and PROTEINS, ENZYMES (Borgwardt & Kriegel, 2005).

We benchmark our GDL models for clustering tasks with the following state-of-the-art OT
models:

i) GWF (Xu, 2020) detailed in Section 5.1, using the proximal point algorithm to estimate
FGW (see Section 3.3) and exploring two configurations, i.e. with either fixed atom
order (GWF-f) or random atom order (GWF-r, default for the method).

ii) GW k-means (GW-k) which is a k-means algorithm using (F)GW distances and (F)GW
barycenters (Peyré et al., 2016) (see Section 3.3.4).

iii) Spectral Clustering (SC) (Shi & Malik, 2000; Stella & Shi, 2003) applied to the pairwise
GW distance matrices or the pairwise FGW distance matrices for graphs with attributes.

For both Dictionary Learning methods, namely GDL and GWF (i), we evaluate the
embeddings {wi} and the corresponding embedded graphs. Unlike GDL and GWF, GW-k
and SC do not require any embedding learning step. Indeed, GW-k directly computes (a
GW) k-means over the input graphs and SC is applied to the GW distance matrix obtained
from the input graphs. We complete these clustering evaluations with an ablation study of
the effect of the negative quadratic regularization proposed with our models. As introduced
in equation (5.16), this regularization is parameterized by λ, so in this specific context we
will distinguish GDL (λ = 0) from GDLλ (λ > 0).

Experimental settings. For the datasets with attributes involving FGW, we tested 15
values of the trade-off parameter α via a logspace search in (0, 0.5) and symmetrically (0.5, 1)
and select the one minimizing our objectives. Moreover adjacency matrices are used as
input representations for graphs and complementary results using shortest-path matrices are
reported in Annex 8.3.3.
For our GDL methods as well as for GWF, a first step consists into learning the atoms. A
variable number of K = βk atoms is tested, where k denotes the number of classes and
β ∈ {2, 4, 6, 8}, with a uniform number of atoms per class. When the order N of each atom
is fixed, for GDL and GWF-f, it is set to the median order in the dataset. The atoms are
initialized by randomly sampling graphs from the dataset with corresponding order. GDL
atoms are learned for unattributed (resp. attributed ) graphs over 50 epochs (resp. 100
epochs) with 16 as batch size and 0.01 as initial learning rate. Whereas GWF atoms are
learned according to Xu (2020). We tested 4 regularization coefficients λ in for both methods,
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Table 5.1: K-means on GDL and GWF embeddings (see (a)), and on input graphs (see (ii)).
Clustering performances are measured by means of Rand Index. Best results (resp. second bests) are
highlighted in bold (resp.italic). GDL performance gains w.r.t. all competitors are reported on the
last row.

Models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL (ours) 51.3(0.30) 55.1(0.28) 71.9(0.48) 51.5(0.36) 62.6(1.68) 58.4(0.52) 71.8(0.18) 60.2(0.30)
GDLλ (ours) 51.7(0.59) 55.4(0.20) 72.3(0.17) 51.9(0.54) 66.4(1.96) 59.5(0.68) 72.9(0.28) 60.5(0.71)

GWF-r 51.2 (0.02) 55.5(0.03) 68.8(1.47) 51.4(0.52) 52.4(2.48) 56.8(0.41) 72.1(0.19) 60.0(0.09)
GWF-f 50.5(0.34) 54.0(0.37) 59.0(1.91) 50.9(0.79) 51.7(2.96) 52.9(0.53) 71.6(0.31) 58.9(0.39)
GW-k 50.3(0.02) 53.7(0.07) 57.6(1.50) 50.4(0.35) 56.7(0.50) 52.5(0.12) 66.3(1.42) 50.1(0.01)

GDL gains +0.5 -0.1 +3.5 +0.5 +9.7 +2.7 +0.8 +0.5

which relate to the sparsity promoting regularization for GDL, whereas λ relates to an entropic
regularization for GWF.

The embeddings {wi} and the corresponding embedded graphs are then computed and
used as input for different clustering algorithms:

a) A k-means algorithm on the embeddings {wi} respectively produced by both DL
methods. However, whereas a standard Euclidean distance is used to implement k-
means over the GWFs embeddings, we use the Mahalanobis distances given in Theorem
9 for the k-means clustering of the GDLs embeddings.

b) A Spectral Clustering algorithm on the embeddings {wi} with the same geometry used
than in a).

c) A Spectral Clustering algorithm on the embedded graphs corresponding to embeddings
{wi}, i.e {(C̃(wi), F̃ (wi),h)} respectively given by equations (5.2) and (5.1) for GDL
and GWF. For each model, the pairwise FGW distance matrix between embedded
graphs is computed, then the kernel e−FGW is used to perform spectral clustering.

The procedures a) and b) are the most appealing as they do not require to compute an
expansive pairwise FGW distance matrix as in c). However in a factorization context, the
computation time of the FGW kernel for procedure c) can be greatly reduced compared to
the one to perform spectral clustering directly on input graphs.

The cluster assignments are assessed by means of Rand Index (RI, Rand, 1971), computed
between the true class assignment (known) and the one estimated by the different methods.
For each parameter configuration (number of atoms, number of nodes and regularization
parameter) we run each experiment five times, independently, with different random initial-
izations. The mean RI was computed over the random initializations and the dictionary
configuration leading to the highest RI was finally retained. We refer the interested reader to
Annex 8.3.4 where corresponding results measured by Adjusted Rand Index (Steinley, 2004,
ARI) are reported.

Results and interpretation. Clustering results achieved either by K-means algorithm
(a) and Spectral Clustering algorithms (b)-(c) can be respectively seen in Tables 5.1 and 5.2.
The mean RI and its standard deviation are reported for each dataset and method.

Our model outperforms or at least is comparable to the state-of-the-art OT based
approaches for most of the datasets, independently of the chosen down-stream clustering
algorithm. Results show that the negative quadratic regularization proposed with our models
brings additional gains in performance.
Across all datasets, the evaluation of GDL thanks to Spectral clustering (SC) lead to an
absolute gain of 1% to 7% in comparison to K-means. Interestingly, applying SC to the graphs
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Table 5.2: Spectral Clustering on DL embeddings w (see (b)) and embedded graphs (C̃(w), F̃ (w)),
then on input graphs (C,F ) (see (ii)). Clustering performances are measured by means of Rand Index
(%). GDL performance gains w.r.t. all competitors are reported on the last row.

Models Inputs IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL (ours) w 51.9(0.19) 56.9(0.15) 75.1(0.12) 52.7(0.10) 66.5(0.01) 66.2 (0.15 ) 72.1(0.15) 61.3(0.17)
GDLλ (ours) w 52.2(0.24) 57.1(0.09) 75.1(0.05) 52.6 (0.24 ) 66.8(0.4) 66.2 (0.15 ) 73.4(0.37) 61.7(0.25)
GDL (ours) C̃(w), F̃ (w) 52.0 (0.08 ) 57.3 (0.21 ) 73.9(0.30) 52.6(0.18) 67.1 (0.05 ) 66.2 (0.15 ) 72.8(0.31) 61.9(0.20)
GDLλ (ours) C̃(w), F̃ (w) 52.2(0.06) 57.6(0.17) 74.5 (0.01 ) 52.4(0.35) 67.5(0.11) 66.3(0.01) 73.6(0.50) 62.4(0.23)

GWF-r w 51.6(0.07) 57.1(0.04) 71.6(0.18) 51.9(0.19) 55.1(0.18) 60.3(0.17) 72.7(0.12) 60.6(0.28)
GWF-f w 51.1(0.26) 55.9(0.28) 69.8(0.33) 51.4(0.07) 53.9(0.36) 58.3(0.28) 72.4(0.25) 59.7(0.21)
GWF-r C̃(w), F̃ (w) 51.0(0.19) 55.6(0.1) 70.5(0.59) 50.9(0.20) 52.9(0.15) 59.9(0.26) 71.5(0.87) 60.3(0.34)
GWF-f C̃(w), F̃ (w) 50.2(0.05) 54.3(0.23) 66.9(1.01) 50.9(0.31) 52.8(0.32) 58.5(0.46) 70.7(0.75) 60.2(0.40)
SC C,F 50.4(0.03) 55.7(0.09) 74.5 (0.01 ) 51.7(0.04) 53.1(4.95) 65.3(0.01) 71.2(1.00) 51.9(0.01)

GDL gains +0.6 +0.5 +3.5 +0.8 +12.4 +1.0 +0.9 +1.8

embedded by GDLλ (GDL-g) lead to better performances than when the algorithm is applied
to input graphs. Therefore GDL learned in an unsupervised way provides more discriminant
graph representations. Moreover, SC evaluated on GDL-w also leads to better results than
on input graphs and competes with GDL-g. So GDL-w provides the best trade-off between
computation speed and clustering performances as the kernel required to apply SC on GDL-g
is necessarily more expansive to compute.

To better understand these phenomenons, we report in Figure 5.6 the pairwise distribu-
tions between all considered distances, for the best selected models learned on MUTAG with
GDL and GDLλ. Both dictionaries are composed of 4 atoms and learned with α = 0.9997,
whereas λ takes value in {0, 0.01}.
On the right, one can see for both GDL and GDLλ that the linear models do not allow to
recover well the FGW distances between graphs (correlations of 0.48 and 0.56), unlike our
results on synthetic data sets. This was to be expected while factoring numerous graphs
with heterogeneous structures and features within simply 4 atoms. However, as SC on graph
models leads to comparable performances than on raw data for this dataset, the learned
representations remain discriminant using both GDL and GDLλ. We emphasize that in
this scenario, GDLλ projects very different input graphs a priori on the graph model while
clustering samples well, which highlights the denoising properties of the method.
In the middle, we can see that the Mahalanobis distances between embeddings is slightly
better correlated to FGW distances between graphs than the ones between graph models,
but the distributions are still quite different for the same reasons than above. Overall, both
kind of correlations shown on the left and middle plots emphasize that great reconstruction
and clustering performances are not that closely linked.
Finally, on the left we can observe that the correlation between the Mahalanobis upper
bound and the FGW distance between embedded graphs is almost perfect (0.97) for GDLλ
and consequently better than GDL one. So by promoting sparsity among unmixings, we
enforce graph models to be almost aligned while preserving various and discriminant graph
representations. Moreover, this plot for GDLλ shows that the Mahalanobis distance can
sometimes be lower than the FGW distances between embedded graphs estimated using the
CG solver in Algorithm 4, and then provide a better estimation of these FGW distances.
These aforementioned improvements in terms of correlations and estimations might explain
why the best clustering performances are achieved thanks to the SC on embeddings using the
Mahalanobis distance.

To conclude on our analysis, we report in Table 5.3 averaged runtimes for the same relative
precision of 10−4 to compute one graph embedding on learned dictionaries from datasets
of social networks IMDB-B and IMDB-M, using a 3.60GHz CPU (processor i9-9900K). As
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Figure 5.6: Plot of the pairwise distances and their Pearson correlation coefficients, for best GDL
models learned on MUTAG, without (resp. with) sparsity promoting regularization on the first row
(resp. second row). FGW distance between graphs versus its counterpart between the embedded
graphs (left). FGW distance between graphs versus Mahalanobis distance between the embeddings
(middle). FGW distance between the embedded graphs versus Mahalanobis between the corresponding
embeddings (right).

Table 5.3: Averaged runtimes over the whole dataset to compute embeddings {wi} respective to
each method.

dataset # atoms GDL* GWF GWF/GDL
IMDB-B 12 52 ms 123 ms 2.4

16 69 ms 186 ms 2.7
IMDB-M 12 44 ms 101 ms 2.3

18 71 ms 168 ms 2.4

reported in Table 8.1 of the annex, IMDB-B contains 1000 graphs of orders 12 to 136 with a
median order of 17. Whereas IMDB-M contains 1500 relatively smaller graphs of median
order 10, with minimum and maximum orders of 7 and 89 respectively. Overall we observe a
relative gain in speed of 2.3 to 2.7 for GDL. The best relative speed increase is achieved on
biggest graphs on average for largest tested number of atoms. This further supports the use
of GDL to factor datasets containing numerous and large graphs which may require larger
number of atoms to be well represented.

5.3.3 Illustration of GDL dictionaries on real-world datasets

In the following, we first illustrate the graph atoms learned by GDL using the FGW distance
on graphs with discrete node features from MUTAG. Then we show the relevance of our
GDL extension, where a dictionary on the graph atom distributions is added, for learning
representations of social networks from IMDB-B.

GDL model on attributed graphs. We represent in Figure 5.7 the atoms and correspond-
ing closest graph samples based on their respective unmixings wi for the GDL model leading
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Figure 5.7: Atoms and their closest samples according to embeddings from GDL model learned on
MUTAG with 4 atoms and α = 0.9997. The corresponding FGW reconstruction errors are added next
to samples.

to best clustering performances on MUTAG. To recover labels for learned node features,
we perform a K-means algorithm on the features of graph models and retain the number
of clusters whose clustering maximizes the Silhouette score. Interestingly, 3 clusters are
identified, for which true node classes are recovered with an ARI of 97%, which coincides with
the true class imbalance where 3 classes among 7 represent 98% of the node class distribution.
That is why in Figure 5.7, node colors of the samples are assigned using true node classes,
while those of the atoms are assigned using the overlap of the true and predicted node classes.
Note also that the same procedure as in Figure 5.3 is used for edge colors.

This way we can see that all atoms capture rather well the ramifications composed
of orange and green nodes, and the denser structures composed of blue nodes. Also the
atoms recover substructures of blue nodes whose connectivity tend to be proportional to the
inverse of the number of cycles and the inter-cycles connectivity in the samples. These last
patterns are interesting as they involve notions of proportions which advocate learning atom
distributions to enhance their interpretability. As this analysis is tedious in the presence of
node features, we demonstrate how this distribution learning can be relevant in the following
simplified scenario.

Extended GDL model on IMDB-B dataset. We illustrate in Figure 5.8 the interest
of the extension of GDL with estimated weights for IMDB-M dataset. We can see in the
middle-left part of the figure that, without estimating the weights, GDL can experience
difficulties producing a model that preserves the global structure of the graph because of the
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Figure 5.8: Modeling of two real life graphs from IMDB-M with our GDL approaches with 8 atoms
of order 10. (left) Original graphs from the dataset, (middle left) linear model for GDL with uniform
weights as in equation (5.16), (middle right) linear model for GDL with estimated weights as in
equation (5.20) and (right) different hs on the estimated structure.

uniform weights on the nodes. In opposition, simultaneously estimating the weights brings a
more representative modeling (in the GW sense), as illustrated in the middle-right columns.
The weights estimation can re-balance and even discard non relevant nodes, in the vein of
attention mechanisms.

5.3.4 GDL for classification of real-world datasets

We show in this section that the embeddings {wi} and corresponding models {C̃(wi), F̃ (wi)}
provided by GDL can be beneficial to down-stream supervised classification tasks.
To this end, we train Support Vector Machines (SVM) on the embeddings and models using
exponential kernels e−d where d is respectively a Mahalanobis distance and a FGW distance.
For each GDL configuration, one dictionary is randomly chosen among the 5 existing ones
used for the clustering benchmark (Section 5.3.2). The embeddings and the Mahalanobis
distance associated to the dictionary are used to form a first kernel. Then we compute a
FGWα kernel on corresponding embedded graphs, using the same α than for the DL. In the
following, we denote GDL-w the SVM derived from then embeddings {wi}. Whereas GDL-g
denotes the SVM derived from the embedded graphs {C̃(wi), F̃ (wi)}.

Benchmark methods and settings. To consistently benchmark the proposed supervised
evaluation of GDL embeddings, we consider the following state-of-the-art models:

i) First we benchmark our models to several graph kernel methods (see Section 2.1):
(FGWK) The kernels e−FGW derived from FGW (Section 3.3) distances computed on
input graphs using either adjacency (ADJ) or shortest-path (SP) matrices as graph
structures; (SPK) denotes the shortest path kernel (Borgwardt & Kriegel, 2005); (RWK)
the random walk kernel (Gärtner et al., 2003); (WLK) the Weisfeler Lehman kernel
(Vishwanathan et al., 2010); (GK) the graphlet count kernel (Shervashidze et al., 2009);
(HOPPERK) the HOPPER kernel (Feragen et al., 2013); (PROPAK) the propagation
kernel (Neumann et al., 2016). We build upon the GraKel library (Siglidis et al., 2020)
to construct the kernels and perform the same hyperparameter validations as in Vayer
et al. (2019a).
For all kernel methods under various configurations, as real graph datasets commonly
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Table 5.4: Classification results measures by means of accuracy. Best results are highlighted in bolt
independently of the model categories, and the best performances from not end-to-end supervised
methods are reported in italic.

Models IMDB-B IMDB-M MUTAG PTC BZR COX2 ENZYMES PROTEIN
GDL-w ADJ (ours) 70.1(3.1) 49.0(3.7) 81.1(7.8) 55.3(8.0) 87.3(3.6) 76.6(3.2) 70.7(3.4) 72.1(3.1)
GDL-w SP (ours) 65.4(3.7) 48.0(3.8) 84.6(6.7) 55.1(6.0) 84.0(5.5) 75.9(3.8) 70.0(5.0) 73.0(3.7)
GDL-g ADJ (ours) 72.1 (4.1 ) 50.6 (4.4 ) 85.8(6.9) 58.5(7.7) 87.8 (4.3 ) 78.1(5.1) 71.4(4.2) 74.6(5.0)
GDL-g SP (ours) 68.24(4.4) 48.47(4.2) 87.1 (6.3 ) 57.1(6.6) 84.6(5.9) 76.9(4.9) 71.5(6.0) 74.9 (4.4 )
FGWK ADJ 70.8(3.5) 48.9(3.9) 82.6(7.2) 56.2(8.9) 85.6(5.2) 77.0(4.2) 72.2(4.0) 72.4(4.7)
FGWK SP 65.0(3.7) 47.8(3.8) 84.4(7.3) 55.4(7.0) 84.2(6.4) 76.5(4.7) 70.5(6.2) 74.3(3.3)
GWF-r ADJ 65.1(2.9) 47.5(3.2) - - 83.6(5.0) 75.3(4.2) 72.5 (5.4 ) 73.6(2.5)
GWF-f ADJ 64.7(2.3) 47.2(3.0) - - 83.7(5.1) 75.0(4.0) 72.1(5.0) 73.1(2.1)
GK (K=3) 57.1(3.5) 41.9(4.5) 82.9(7.9) 57.1(7.2) NA NA NA NA

SPK 56.2(2.9) 39.1(4.9) 83.3(8.0) 60.1(6.4) NA NA NA NA
RWK NA NA 79.5(7.9) 55.7(6.9) NA NA NA NA
WLK NA NA 86.4(8.0) 63.1 (6.6 ) NA NA NA NA

HOPPERK NA NA NA NA 84.5(5.2) 79.7(3.5) 46.2(3.8) 72.1(3.1)
PROPAK NA NA NA NA 80.0(5.1) 77.8(3.8) 71.8(5.8) 61.7(4.5)

GIN 64.3(3.1) 50.9(1.7) 90.1(4.4) 63.1(3.9) - - 62.2(3.6) 76.2(2.8)
TFGW ADJ 78.3(3.7) 56.8(3.1) 96.4(3.3) 72.4(5.7) - - 73.8(4.6) 82.9(2.7)

used in machine learning literature show a high variance considering structure, we
perform a nested cross validation (using 9 folds for training, 1 for testing, and report
the average accuracy of this experiment repeated 10 times) by keeping same folds across
methods. All splits are balanced w.r.t labels. In the following results, parameters of
SVM are cross validated within C ∈ {10−7, 10−6, ..., 107} and γ ∈ {2−10, 2−9, ..., 210},
using SVM implementation from Scikit-Learn (Buitinck et al., 2013).

ii) Then we include in the benchmark the end-to-end model derived from GWF (Xu, 2020).
The model consists in minimizing a weighted sum of the DL reconstruction error (see
equation (5.1)) and a classification loss, e.g cross-entropy. For a fixed dictionary state,
the unmixings are computed then used to feed a Multi-Layer Perceptron (MLP) with
non-linearities achieving final label predictions. Then the MLP and the graph atoms are
optimized using automatic differentiation. Similarly than for the clustering benchmark
we refer again to GWF-r and GWF-f when their dictionary atoms have random size
(default for the method) or when we fix it to match GDL ones. We followed authors’
choices for the validation of MLP architectures and trade-off hyperparameter to weight
reconstruction and classification losses.

iii) Finally we include SOTA GNN models by reporting few results from Chapter 4, such
as GIN with sum pooling (Xu et al., 2019c) and TFGW (Vincent-Cuaz et al., 2022c)
which uses GIN as backbone and FGW distances from learnable graph templates as
pooling layer while learning from ADJ or SP input graph representations.

Results on supervised classification. The benchmark results measured by means of
accuracy are reported in Table 5.4. First, we observe as anticipated that the model TFGW
(see Chapter 4) always outperforms other methods by significant margins, except on the
dataset ENZYMES where the gains are less significant.
Interestingly (F)GW kernels over the embedded graphs (GDL-g) built thanks to our GDL
approach consistently improve performances (from 1% to 3%) of (F)GW kernels over input
graphs (FGWK), independently of the chosen input representations (ADJ or SP). Hence, it
supports that our dictionaries (learned in an unsupervised way) are able to properly denoise
and/or capture discriminant patterns of these graphs. GDL-g outperforms other models
except GNN on all datasets except 2, PTC and COX2 where kernel methods WLK and
HOPPERK lead respectively to the best performances.
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Sample from class (A) Sample from class (B)

Figure 5.9: GDL online experiments on dataset TWITCH-EGOS: illustration of a typical sample
from class A (left plot) and class B (right plot).

Moreover the kernels based on Mahalanobis distances over embeddings w (GDL-w) lead
to performances comparable to FGWK. These results peculiarly support the use of our
embedding schema as pre-processing for classification as GDL-w comes at a considerably
lower expense than FGWK. Indeed to classify a new graph sample G of order N , GDL-w
requires to first embed G within O(N2N) operations, then to compute Mahalanobis distances
of its embedding to all I embeddings of the train dataset at a cost O(IK) where K is the
number of atoms in the dictionary. Whereas FGWK requires to compute all FGW distances
from G to the I graphs composing its train dataset coming within O(∑i∈I N

2Ni + N2
i N)

operations.

5.3.5 Online graph subspace estimation and change detection

In the following, we experiment on GDL for online graph subspace estimation on simulated
and real life datasets. We show that our approach can be used for subspace tracking of graphs
as well as for change point detection of subspaces.

Datasets and experiments. We consider here two new large graph classification datasets:
TWITCH-EGOS (Rozemberczki et al., 2020) containing social graphs without attributes
belonging to 2 classes and TRIANGLES (Knyazev et al., 2019) that is a simulated dataset of
labeled graphs with 10 classes.

Here we investigate how our approach fits to online data, i.e in the presence of a stream
of graphs. The experiments are designed with different time segments where each segment
streams graphs belonging to the same classes (or group of classes). The aim is to see if the
method learns the current stream and detects or adapts to abrupt changes in the stream,
simulated according to the following processes:

• For TWITCH-EGOS, we first streamed all graphs of a class (A), then graphs of the
other class (B), both counting more than 60.000 graphs. All these graphs consist in a
unique high-frequency (a hub structure) with sparse connections between non-central
nodes (sparser for class B). A typical sample from each class is illustrated in Figure 5.9.

• For TRIANGLES, the stream follows the three groups A,B and C, with 10,000 graphs
each, where the labels associated with each group are: A = {4, 5, 6, 7}, B = {8, 9, 10}
and C = {1, 2, 3}.

Results and discussion The online (F)GW losses and a running mean of these losses are
reported for each dataset on the left part of Figure 5.10. On the right part of the figure, we
report the average losses computed on several datasets containing data from each stream at
some time instant along the iterations.



Chapter 5. Fused Gromov-Wasserstein Linear Dictionary of graphs 107

0 5000 10000 15000 20000 25000 30000
Iterations

10−1

100

FG
W

 lo
ss

Stream A Stream B Stream C

FGW loss on streaming TRIANGLES graphs

Loss
Avg. loss
Events

0 5000 10000 15000 20000 25000 30000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

FG
W

 e
rro

r

Stream A Stream B Stream C

Avg. FGW error on Datasets A/B/C

Data A
Data B
Data C
Events

Figure 5.10: Online GDL on dataset TWITCH-EGOS with 2 atoms of 14 nodes each (top) and on
TRIANGLES with 4 atoms of 17 nodes each (bottom).

First, the online learning for both datasets can be seen in the running means with a clear
decrease of loss on each time segment. Also, note that at each event (change of stream) a
jump in terms of loss is visible suggesting that the method can be used for change point
detection.

Finally it is interesting to see on the TRIANGLES dataset that while the loss on Data
B is clearly decreased during Stream B it increases again during Stream C, thus showing
that our algorithm performs subspace tracking, adapting to the new data and forgetting old
subspaces no longer necessary.

5.3.6 Applications to graph completion

Finally, we present graph completion results on the real world datasets IMDB-B and MUTAG,
using the approach proposed in Section 5.2.6.

Experimental setting. Since the datasets do not explicitly contain graphs with missing
nodes, we proceed as follow: first we split the dataset into a training dataset (Dtrain) used
to learn the dictionary and a test dataset (Dtest) reserved for the completion tasks. For
each graph of (C,F ) ∈ Dtest, we created incomplete graphs (Cobs,Fobs) by independently
removing 10% and 20% of their nodes, uniformly at random. The partially observed graphs
are then reconstructed using the procedure described in Section 5.2.6 and the performance of
each method averaged over all imputed graphs is computed.
Note that the continuous versions of the imputed graphs (Cimp,Fimp) are not necessarily
aligned with their ground truth (C,F ). So a final step to access completion performances
consists in aligning the imputed graphs with their respective ground truth thanks to the OT
matrix T obtained by solving the (F)GW problem between both graphs. Then we apply
a threshold to the aligned imputed structures T>CimpT to recover an adjacency matrix
estimating C, and we estimate F with the aligned imputed features T>Fimp.

The hyperparameters of the dictionaries (learned exclusively on Dtrain) are validated in
the same way than in the clustering benchmark (Section 5.3.2), except that extreme values
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Figure 5.11: Completion experiments with GDL on IMDB-B dataset where 10% (right plot) and
20% (left plot) of the nodes are to be imputed, while dictionaries are learned over varying train/test
dataset proportions.

0 and 1 for α are omitted. Then the unmixings inherent to our completion algorithm are
computed using the same settings than the DL. By default, we initialize entries of Cimp by
iid sampling from N (0.5, 0.01). For IMDB-B composed of social networks, we propose to
leverage information from node degrees within Cobs to initialize connections between the
observed nodes and the imputed ones. Specifically, new connections to a node p are sampled
from N ( dp

maxq dq , 0.01) where for all q, dq denotes the degree of node q observed within Cobs.
Finally for MUTAG, imputed features are initialized uniformly at random in the range of
observed features.

Results on IMDB-B dataset. The completion results of unattributed graph from the
IMDB-B datasets measured by accuracy are reported in Figure 5.11. Both GDL and GDLλ
lead to comparable performances and are able to complete graphs with 10% (resp 20%) of
nodes to impute with an averaged accuracy of 93%-95% (resp. 92%-93%). We observe small
and gradual decreases in accuracy as the proportion of graphs used to learn the dictionaries
also decreases from 90% to 50%, but these losses in performance remain reasonable. Finally,
the sparsity promoting regularization seems beneficial to infer more nodes as GDLλ becomes
slightly but consistently better than GDL across variable test dataset proportions. Since more
complex structures have to be imputed when more nodes are removed, these gains support
the fact that our regularized GDL leads to more refined atoms allowing such reconstruction.

Results on MUTAG dataset. We postulate for attributed graphs that the respective
completions of their node connectivities and features must be performed jointly to be efficient.
To this end, we propose to evaluate our completion performance on the MUTAG dataset
by considering a non-preferential loss, i.e. one that equally considers completions of graph
structures and features. This non-preferential loss reads as the mean of the accuracy taken
over structures and the Pearson’s linear coefficient of determination r2 taken over features.

The performances quantified by our non-preferential losses, with the corresponding
accuracies and r2 coefficients are reported in Figure 5.12. First as for the IMDB-B dataset,
we can see in these scenarios that both methods lead to good performances for this novel
task of graph completion, while being rather robust to the proportion of graphs used to learn
the dictionaries. Interestingly, GDL now slightly outperforms GDLλ considering all tested
settings. This performance gap seems to grow as the proportion of nodes to be imputed
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Figure 5.12: Completion experiments with GDL on MUTAG dataset where 10% (right plot) and
20% (left plot) of the nodes are to be imputed, while dictionaries are learned over varying train/test
dataset proportions.

Table 5.5: Best α for each test dataset proportions for experiments on MUTAG dataset.

10 % imputed nodes 20 % imputed nodes
test dataset proportions (%) 10 20 30 40 50 10 20 30 40 50

GDL (α) 0.5 0.999999 0.75 0.9 0.9 0.5 0.25 0.9 0.9 0.9
GDLλ (α) 0.1 0.995 0.9 0.25 0.995 0.75 0.9 0.75 0.75 0.75

increases, which tends to contradict our previous analysis on the IMDB-B dataset. Since the
regularized GDL can provide more refined atoms, the bottleneck for imputing more complex
graphs such as attributed ones might lie in our choice of preserving the same regularization
coefficient λ for the iterative unmixings in our completion scheme than in our DL. Such
considerations are let for future works.

To complete our analysis, we report in Table 5.5 the trade-off parameters α leading to best
performances depending on the test dataset and imputed nodes proportions. We observe that
quite variable values of α are selected depending on completion settings, which advocates for
the validation of this hyperparameter also in these completion tasks. Moreover, these values
are not the same as the ones leading to most discriminant dictionaries (see Annex 8.3.4).

5.4 Discussion and conclusion
We introduced a new linear Dictionary Learning approach for graphs with different orders

relying on the Fused Gromov-Wasserstein (FGW) divergence, where graphs are modeled as
convex combination of graph atoms.
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Such modeling requires a projection step onto the dictionary for which we provided an
efficient Block Coordinate Descent algorithm. Then We design an online stochastic algorithm
to efficiently learn our dictionary and propose a computationally light proxy to the (F)GW
distance in the described graphs subspace.

Our experiments on discriminant tasks demonstrate the relevance of our DL, e.g to lead to
state-of-the-art performances for the clustering of graphs dataset and to produce discriminant
representations for down-stream classification tasks using Support Vector Machines. Moreover,
our numerical results show the relevance of our unsupervised graph representation learning
approach for online subspace tracking and graphs completion.

We envision several extensions to this work. Notably in the context of graph denoising
or graph inpainting to observe whether our novel DL can be bring improvements. Then in
a practical way for all tasks, it can be interesting to study new solvers for our GDL, e.g
using entropically regularized solvers to allow faster parallelization on GPUs and potentially
smooth the learning process (see Sections 3.2.4 and 3.3.3).

Finally, several theoretical future works can be envisioned for GDL. For instance, a
light-proxy to (F)GW in the embedding space when learning graph distributions is yet to
be found, and its search is particularly motivated by the encouraging results provided by
our proxy to (F)GW when enforcing these distributions to be equal. Our proofs of concept
for online subspace tracking and graphs completion motivate further investigations on these
matters.
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Chapter 6

Relaxing the Optimal Transport
paradigm for unsupervised Graph
Representation Learning
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This Chapter presents the results of the papers Vincent-Cuaz et al. (2022a;b) where we
proposed a relaxation of the Optimal Transport paradigm (Chapter 3) to better address
challenges of unsupervised Graph Representation Learning.

Comparing structured objects such as graphs, potentially endowed with node attributes,
is a fundamental operation involved in many learning tasks. To this end, the Gromov-
Wasserstein (GW, Section 3.2) and Fused Gromov-Wasserstein (FGW, Section 3.3) distances,
based on Optimal Transport (OT), have proven to be successful in handling the specific
nature of the associated objects (see e.g. Chapters 4 and 5). More specifically, through the
nodes connectivity relations, GW and FGW respectively operate on graphs and attributed
graphs, seen as probability measures over specific spaces. At the core of OT is the idea of
conservation of mass, which imposes a coupling between all the nodes from the two considered
graphs. We argue in this chapter that this property can be detrimental for tasks such as
graph dictionary (Chapter 5) or partition learning (Section 3.2.5).
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Contributions. We introduce novel Optimal Transport based divergences between graphs
or attributed graphs, respectively derived from the GW and FGW distances. We call them
respectively the semi-relaxed Gromov-Wasserstein (srGW) and semi-relaxed Fused Gromov-
Wasserstein (srFGW) divergences. Like FGW for GW, srFGW acts as a generalization of
srGW, via a parameter (α) linearly weighting the importance between graph structure and
feature information. Thus, in this chapter we focus on the more generic srFGW for attributed
graphs. srGW (operating on unattributed graphs) will only be used to provide some insights
in simplified scenarios.

After discussing srFGW properties and motivating its use in ML applications (Section
6.2.1), we propose efficient solvers for the corresponding optimization problem or regularized
versions (Section 6.2.2). Our solvers better fit to modern parallel programming than exact
solvers for FGW do. We empirically demonstrate the relevance of our divergence for graph
partitioning (Sections 6.4.1 and 6.4.2), Dictionary Learning (DL), clustering (Section 6.4.3)
or classification (Section 6.4.4) of graphs, and graph completion tasks (Section 6.3.2). With
sr(F)GW, we recover or surpass SOTA performances on these tasks, at a significantly lower
computational cost compared to methods based on pure (F)GW.

6.1 Introduction
As illustrated so far in this thesis, learning from graph data is an omnipresent challenge
in a number of ML tasks. A first one relates to Graph Representation Learning (Chapter
2), that either relies on meaningful notions of similarity between graphs (Section 2.1) or
graph embeddings produced by Graph Neural Networks (Section 2.2). Finally, it is often
of interest either to establish meaningful structural correspondences between the nodes of
different graphs, also known as graph matching (Zhou & De la Torre, 2012; Maron & Lipman,
2018; Bernard et al., 2018; Yan et al., 2016) or to find a representative partition of the nodes
of a graph, which we refer to as graph partitioning (Chen et al., 2014; Nazi et al., 2019;
Kawamoto et al., 2018; Bianchi et al., 2020a).

6.1.1 Optimal Transport for structured data

Based on the theory of Optimal Transport (OT) (Chapter 3), novel approaches to graph
modeling have recently emerged from a series of works, partially covered in Chapters 4 and 5.
Informally, the goal of OT is to match two probability distributions under the constraint of
mass conservation and in order to minimize a given matching cost. OT originally tackles the
problem of comparing probability distributions whose supports lie on the same metric space,
by means of the so-called Wasserstein distance (Section 3.1).

Extensions to graph data analysis were introduced by either embedding the graphs in a
space endowed with Wasserstein geometry (Nikolentzos et al., 2017; Togninalli et al., 2019;
Maretic et al., 2019) or relying on the (Fused) Gromov-Wasserstein distances (Sections 3.2 and
3.3). The latter are variants of the classical OT in which one aims at comparing probability
distributions whose supports lie on different spaces, such as graphs, potentially endowed
with node features (Section 3.2). Consequently, the (F)GW distance computes both a soft
assignment matrix between nodes of the two compared graphs and a notion of similarity
between them (see the left part of Figure 6.1). These properties have proven to be useful
for a wide range of tasks such as graph matching and partitioning (see e.g. experiments in
Section 3.2.5), estimation of nonparametric graph models (graphons, Diaconis & Janson,
2007; Xu et al., 2021a) or for graph Dictionary Learning (Chapter 5).
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6.1.2 On the limitations of Optimal Transport distances for graphs

Despite those recent successes, applications of (F)GW to graph modeling still have several
limitations. First, computing the (F)GW distance remains challenging, as it boils down to
solving a difficult non-convex Quadratic Program (equations (3.37) and (3.58)), which, in
practice, limits the size of the graphs that can be processed (Sections 3.2.4 and 3.3.3). A
second limit naturally emerges when a probability mass function is introduced over the set
of the graph nodes. The mass associated with a node refers to its relative importance and,
without prior knowledge, each node is either assumed to share the same probability mass or
to have one proportional to its degree (Xu et al., 2019a).

OT for graph partitioning. The challenge of partitioning the nodes of a graph (a.k.a
graph partitioning), by means of a GW matching, perfectly highlights the need to choose the
distributions meticulously (Section 3.2.5). To further detail how this is achieved, let us recall
that in the GW context, a graph G of order n is modeled as a pair (C,h) (Section 3.2.1).
Where C ∈ Rn×n is a matrix encoding the relationships between nodes in the topology of
the graph (i.e. adjacency), and h ∈ Σn is a probability vector, referred here as distribution,
modeling the relative importance of the nodes within the graph.
In the GW sense, the node partitioning of such a graph relies on its matching to an ideal
graph atom G = (D,h) of m nodes, with one node corresponding to a cluster (m << n) and
whose structure is encoded by a matrix D ∈ Rm×m, representing the cluster’s connections,
and its distribution h estimates the proportion of the nodes in each cluster (Xu et al., 2019a).
The OT plan between a graph G = (C,h) to the ideal graph G can be used to recover the
node clusters in G. The graph partitioning is expected to be good, at least if the (true)
number of clusters corresponds to the number of nodes in G, and the proportions of the
clusters correspond to the node weights h. Xu et al. (2019a) suggested to empirically refine
both graph distributions, by choosing h based on power-law transformations of the degree
distribution of G and to deduce h from h by linear interpolation. Chowdhury & Needham
(2021) proposed to use heat kernels (e−λL, λ ∈ R+) from the Laplacian L of G (equation
(2.5)), instead of its adjacency binary representation, and proved that the resulting GW
partitioning is closely related to the well-known Spectral Clustering (Fiedler, 1973).

(F)GW for unsupervised Graph Representation Learning. (F)GW has also been
used as a data fitting term for unsupervised Graph Representation Learning by means of
Dictionary Learning (DL) (Chapter 5). In a nutshell, DL applied to graphs datasets consists
in factorizing them as composition of graph primitives (or atoms) encoded as {(Ck,hk)}k∈[[K]].
The first approach proposed by Xu (2020) consists in a non-linear DL based on entropic
GW barycenters (see equation (5.1)). On the other hand, we presented in Chapter 5 a
linear graph DL method (GDL), by modeling graphs as a linear combination of graph
atoms thus reducing the computational cost. We also observed limitation of GDL to obtain
representative modeling for certain graphs when considering uniform weights on the nodes
of graph atoms (Section 5.3.3). To this end, we extended GDL to simultaneously handle
structure and distribution learning via respective and independent linear dictionaries (Section
5.2.5). In all cases, the embedding problem that consists in the projection of any graph on
the learned graph subspace requires solving a computationally intensive optimization problem.

In this chapter, we argue that the mass conservation paradigm inherent to the (F)GW
distance is detrimental to many applications, as the aforementioned ones, and de facto
should be relaxed, with the additional benefit of lowering the computational complexity.
Notice that various relaxations of this notion of conservation in OT exist, among which the
Unbalanced (F)GW problems (Séjourné et al., 2021; Chapel et al., 2019) most resembles
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GW(C, h, C, h) = 0.219 srGW(C, h, C) = 0.05 srGW(C, h, C) = 0.113

Figure 6.1: Comparison of the GW matching (left) and asymmetric srGW matchings (middle and
right) between graphs C and C with uniform distributions. Nodes of the source graph are colored
based on their clusters. The OT from the source to the target nodes is represented by arcs colored
depending on the corresponding source node color. The nodes in the target graph are colored by
averaging the (rgb) color of the source nodes, weighted by the entries of the OT plan.

our novel semi-relaxed (F)GW problems, which can be considered as an unexplored extreme
scenario of the latter.

As a comparison between GW and our semi-relaxed version srGW, consider Figure 6.1:
on the left image, the GW matching is given between two graphs, with respectively two
and three clusters, associated with uniform weights on the nodes. By relaxing the weight
constraints over the second (middle image) or first graph (right image) we obtain different
matchings, that can better preserve the structure of the source graph by reweighing the target
nodes and thus selecting a meaningful subgraph.

6.2 The semi-relaxed Fused Gromov-Wasserstein divergence
In what follows, we formally introduce our novel OT-based divergences between graphs and
investigate their properties (Section 6.2.1). Then, we propose solvers to tackle the optimization
problem inherent to the computation of these divergences and of some regularized versions
(Section 6.2.2).

6.2.1 Definition and properties

Problem formulation. Given two observed attributed graphs G = (C,F ,h) and G =
(C,F ,h) of n and n nodes, we propose to find a correspondence between them while relaxing
the weights h on the second graph. To this end we introduce the semi-relaxed Fused Gromov-
Wasserstein divergence as :

srFGW2,α(C,F ,h,C,F ) = min
h∈Σn

FGW2,α(C,F ,h,C,F ,h) (6.1)

for any α ∈ [0, 1], which might be referred as srFGW in the following for conciseness. Note
that a more generic setting relates to srFGWp,α, derived from FGWp,α (Section 3.3.1), for
any p ∈ N?. Here we adopt p = 2 for computational reasons as discussed in Section 3.3.3.

Problem (6.1) means that we search for a reweighing of the nodes of G leading to an
attributed graph with structure C and node features F , with minimal FGW distance from
G. We emphasize that setting α = 1 in Equation (6.1) comes down to minimizing the GW
distance between (C,h) and (C,h) w.r.t h. Hence this latter problem will be referred as the
semi-relaxed Gromov-Wasserstein divergence, denoted srGW.

While the optimization problem (6.1) above might seem complex to solve, the next
Proposition states that it is actually equivalent to a FGW problem where the mass constraints
on the second marginal of T are relaxed.
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Proposition 2 (srFGW equivalent problem) Problem (6.1) is equivalent to the fol-
lowing optimization problem:

srFGW2
2,α(C,F ,h,C,F ) = min

T∈Un(h)

∑
ijkl

{
α|Cij − Ckl|2 + (1− α)‖Fi − F k‖22

}
TikTjl

(6.2)
where Un(h) denotes the set of admissible coupling with first marginal h and relaxed
second marginal:

Un(h) =
{
T ∈ Rn×n+ |T1n = h

}
(6.3)

Proof of Proposition 2. See annex 8.4.1.

From an optimal coupling T ? of problem (6.2), the optimal weights h? expressed in
problem (6.1) can be recovered by computing T ?’s second marginal, i.e h? = T ?>1n. This
reformulation with relaxed marginal has been investigated in the context of the Wasserstein
distance (Rabin et al., 2014; Flamary et al., 2016b) and for relaxations of the GW problem
in Schmitzer & Schnörr (2013) but was never investigated for the GW distance itself. To the
best of our knowledge, the most similar related work is the Unbalanced (F)GW (Séjourné
et al., 2022; Thual et al., 2022; Séjourné et al., 2021; Liu et al., 2020; Chapel et al., 2019).
Briefly, the unbalanced OT problems consist in relaxing the mass conservation constraints
inherent to balanced problems (like GW or FGW), hence allowing mass creation or destruction
in the matching. This is achieved by seeking for a coupling U ∈ Rn×n+ , that minimizes a
transportation cost penalized by two divergence terms (e.g. Kullback-Leibler divergences),
quantifying the deviations of U ’s marginals from prior marginals, and respectively weighted
by coefficients ρs and ρt. Thus one could recover sr(F)GW with different weighting over the
marginal relaxations (ρs =∞ on the first marginal and ρt = 0 on the second) but this specific
case was not discussed nor studied in those (or previous) works.

Properties. A first interesting property of srFGW is that since h is optimized in the
simplex Σn, its optimal value h? can be sparse. As a consequence, parts of the graph G can
be omitted in the comparison, similarly to a partial matching. This behavior is illustrated
for srGW in the Figure 6.1, where two unattributed graphs with uniform distributions and
structures C and C forming respectively 2 and 3 clusters are matched. The GW matching
(left) between both graphs forces nodes of different clusters from C to be transported on
one of the three clusters of C, leading to a high GW cost where clusters are not preserved.
Whereas srGW can find a reasonable approximation of the structure of the left graph either
though transporting on only two clusters (middle) or finding a structure with 3 clusters in a
subgraph of the target graph with two clusters (right).

A second natural observation resulting from the dependence of srFGW2,α to only one in-
put distribution is its asymmetry, i.e. srFGW2,α(C,F ,h,C,F ) 6= srFGW2,α(C,F ,h,C,F ).
Interestingly, srFGW2,α shares similar properties than FGW as described in the next
lemma:

Lemma 6 (srFGW properties) For any attributed graphs G1 = (C1,F1,h1) and
G2 = (C2,F2,h2), the following assertions hold true for any α ∈ [0, 1]

i) srFGW2,α(C1,F1,h1,C2,F2) = 0 iff there exists a reweighed sub-graph of G2 which
is weakly isomorphic to G1 (Definition 4).

ii) If C1 and C2 are distance matrices then srFGW2,α(C1,F1,h1,C2,F2) = 0 iff there
exists a reweighed sub-graph of G2 which is strongly isomorphic to G1 (Definition 3)
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Then considering any third attributed graph G3 = (C3,F3,h3), and α ∈]0, 1[,

iii) For any optimal reweighing h?(1|2) from srFGW2,α(C1,F1,h1,C2,F2), we have

srFGW2
2,α(C1,F1,h1,C3,F3) ≤ 2( srFGW2

2,α(C1,F1,h1,C2,F2)
+ srFGW2

2,α(C2,F2,h
?
(1|2),C3,F3))

(6.4)

iv) For any optimal reweighing h?(1,2) from srGW(C1,h1,C2), we have

srGW2
2(C1,h1,C3) ≤ 2

(
srGW2

2(C1,h1,C2) + srGW2
2(C2,h

?
(1|2),C3)

)
(6.5)

Proof of Lemma 6. See Annex 8.4.2.

In other words the assertions i) and ii) say that srFGW2,α(C,F ,h,C,F ) vanishes iff
there exists a reweighing h? ∈ Σn of the nodes of the second graph which cancels the FGW2,α
distance. When it is the case, the induced graphs (C,F ,h) and (C,F ,h?) are weakly or
strongly isomorphic depending on the set of structure matrices considered (see Definitions 3
and 4 in Chapter 3). Then assertions iii) and iv) resemble (relaxed) triangular inequalities,
up to the fact that they depend on a specific reweighing h∗(1|2) of the intermediate graph G2
as (C2,F2,h

∗
(1|2)) given from the srFGW projection of G1 onto G2. Overall these assertions

suggest that sr(F)GW could define a quasi-metric onto the space of measurable networks
quotiented by a specific subgraph isomorphism notion. However, a such assertion is for the
moment a mere conjecture that requires further investigation left for future works. In the
following, we rather focus on the benefits springing from our divergences in applications.

6.2.2 Optimization and algorithms

In this section we discuss the computational aspects of the srFGW divergence and propose
an algorithm to solve the related optimization problem (6.2). We also discuss variations
resulting from entropic or/and sparse regularization(s) of the initial problem.

Solving for srFGW. First, notice that the srFGW problem (6.2) is equivalent to the
following non-convex Quadratic Program:

min
T∈Un(h)

α vec(T )>
(
C

2 ⊗K 1n1>n − 2C ⊗K C
)

vec(T )+(1−α) vec(D(F ,F ))> vec(T ) (6.6)

where D(F ,F ) =
(
‖Fi − F j‖22

)
i,j∈[[n]]×[[n]]

is the matrix of pairwise Euclidean distances
between node features. Hence the srFGW problem is a non-convex Quadratic Program similar
to the one of FGW with the important difference that the linear constraints are independent.

Consequently, we propose to solve problem (6.2) with a Conditional Gradient (CG)
algorithm (Jaggi, 2013) that can benefit from those independent constraints and is known to
converge to local stationary point on non-convex problems (Lacoste-Julien, 2016).
This algorithm (Algorithm 12), consists in solving at each iteration (t) a linearization
X ∈ Un(h) → 〈X,G(t)〉 of (6.2), given by equation (6.7), where G(t) is the gradient of
the objective in (6.2). The solution of the linearized problem provides a descent direction
X(t) − T (t). Then a line-search is performed, and the optimal step size γ∗ can be found in
closed form, adapting the line-search step used in the CG solver for FGW (See Algorithms 4
and 5).
While both srFGW and FGW CG require at each iteration the computation of a gradient with
complexity O(n2n+n2n) (Section 3.2.4), the main source of efficiency of our algorithm comes
from the computation of the descent directions (6.7). In the FGW case, one needs to solve
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Algorithm 12 CG solver for srFGW
1: Inputs: Input graph (C,F ,h), target graph (C,F ), trade-off parameter α.
2: repeat
3: G(t) ← Compute gradient w.r.t T of (6.1) given by equation (3.61).
4: Find the descent direction solving:

X(t) ← min
X1m=h
X≥0

〈X,G(t)〉F (6.7)

5: T (t+1) ← T (t) + γ?(X(t) − T (t)) with γ? ∈ [0, 1] from exact-line search detailed in
Annex 8.4.3.

6: until convergence.

an exact linear OT problem, while in our case, one just needs to solve several independent
linear problems under a simplex constraint:

∀i ∈ [[n]], X
(t)
i,: ← min

x∈hiΣn
〈x,G(t)

i,: 〉2 (6.8)

This simply amounts to finding minimum over each row G
(t)
i,: of G(t), as discussed e.g in

Section 5.2.2, within O(nn) operations, that can be parallelized with GPUs. Performance
gains are illustrated in the experimental Sections 6.4.1, 6.4.3 and 6.4.4.

Entropic regularization. Recent OT applications have shown the interest of adding an
entropic regularization to the exact problem (6.2), e.g. Cuturi (2013); Peyré et al. (2016).
It makes the optimization problem smoother and more robust while densifying the optimal
transport plans from the unregularized problem. Similarly to Peyré et al. (2016); Xu et al.
(2019b); Xie et al. (2020b), we can use a Mirror-Descent (MD) scheme w.r.t. the Kullback-
Leibler divergence (KL) to solve entropically regularized srFGW.
The problem boils down to find, at iteration (t), the coupling T (t+1) ∈ Un(h) that minimizes
the first-order approximation of the FGW cost function EFGWα (see equation 3.57) evaluated
at T (t), with an added KL proximity term:

T (t+1) ← arg min
T∈Un(h)

EFGWα (C,F ,C,F ,T (t)) + 〈T − T (t),G(t)〉F + εKL(T |T (t)) (6.9)

Where ε > 0, G(t) denotes the gradient of the FGW loss at iteration (t) and KL(T |T (t)) =∑
ij Ti,j log( Ti,j

T
(t)
i,j

)− Ti,j + T
(t)
i,j is the KL divergence between the variable T and the current

estimate T (t). Problem (6.9) can be reduced to the next equivalent problem:

T (t+1) ← arg min
T∈Un(h)

〈T ,G(t)〉F + εKL(T |T (t)) (6.10)

Let us denote the Entropy of any T ∈ Rn×m+ by H(T ) = −∑ij Tij(log Tij − 1), then the
following relation can be proven

〈G(t),T 〉F − εH(T ) = εKL
(
T | exp(−G

(t)

ε
)
)
⇔ εKL(T |G(t)) = 〈−ε logG(t),T 〉F − εH(T )

(6.11)
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Algorithm 13 MD solver for entropic srFGW.
1: Inputs: Input and target graphs, trade-off parameter α, entropic parameter ε.
2: repeat
3: G(t) ← Compute gradient w.r.t T of (6.1) given by equation (3.61) and applied in

T (t).
4: Compute the matrix K(t)(ε) following equation (6.14).
5: Get T (t+1) with the scaling of K(t)(ε) following equation (6.15).
6: until convergence based on the loss relative variation between steps (t) and (t+ 1).

and leads to this equivalent formulation of equation (6.10):

T (t+1) ← arg min
T∈Un(h)

〈G(t) − ε logT (t),T 〉F − εH(T ). (6.12)

Denoting M (t)(ε) = G(t) − ε logT (t), overall we end up with the following iteration

T (t+1) ← arg min
T∈Un(h)

〈M (t)(ε),T 〉F − εH(T ). (6.13)

which is equivalent to

T (t+1) ← arg min
T∈Un(h)

εKL(K(t)(ε)|T ) where K(t)(ε) := exp{−M (t)(ε)/ε}. (6.14)

in force of equation (6.11). Following the seminal work of Benamou et al. (2015), an optimal
solution T (t+1) to problem (6.14) is given by a simple scaling of the matrix K(t)(ε) reading as

T (t+1) = diag
(

h

K(t)(ε)1n

)
K(t)(ε). (6.15)

The resulting mirror-descent algorithm is summarized in Alg.13. This approach is adapted to
srGW by simply changing the gradient accordingly.

Even if the objective function of the srFGW problem is not convex, one can prove the
following convergence guaranty of our MD algorithm:

Proposition 3 (Mirror-Descent convergence) For any attributed graphs G and G,
the Mirror-Descent algorithm 13 converges to a stationary point non-asymptotically.

Proof of Proposition 3. The proof reported in Annex 8.4.4 provides the non-asymptotic
stationary convergence of the MD algorithms for a slightly more generic objective which
encompasses various sr(F)GW regularized objectives:

min
T∈Un(h)

〈aL(C,C)⊗ T + bD,T 〉F , (6.16)

where (a, b) ∈ R2
+ denote any positive scalar constants, L(C,C) is a 4D tensor (see e.g.

problem (3.34)) and D any matrix in Rn×n. This proof of convergence relies on sufficient
conditions provided by Scetbon et al. (2021a), Proposition 2, among which the smoothness of
the generic objective function in equation (6.16), relatively to the entropy H on the set Un(h).
The proof of the relative smoothness of our objective function is handled by using a sufficient
condition given by Zhang et al. (2020), which boils down to proving the next Lemma:
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Lemma 7 For any (a, b, ε) ∈ R3
+ and T ∈ Un(h), we denote the reduced objective

function from equation (6.16) by

Fa,b,ε(T ) = a〈C2
,hh

>〉F − 2a〈TCT>,C〉F + b〈D,T 〉F − εH(T ) (6.17)

Then for all T1 and T2 in Un(h), we have

‖∇Fa,b,ε(T1)−∇Fa,b,ε(T2)‖F ≤ LC,C,a,ε‖∇H(T1)−∇H(T2)‖F (6.18)

where LC,C,a,ε = a{n‖C2> +C2‖F + 4‖C‖F ‖C‖F }+ ε.

Overall, Algorithm 13 ensures the convergence to a local optimum T ∗ of the regularized
srFGW problem, that lies in the interior of the set Un(h), as T ∗ can not have null entries.
As such, the entropic regularization of srFGW problem induces a bias as srFGWε(G,G) 6= 0,
in the vein of the linear OT problem Genevay et al. (2018). We empirically investigate the
effect of these biased solutions (Section 6.4), and let the study of unbiased versions for future
works.

Sparsity promoting regularization. As illustrated in Figure 6.1, srGW naturally leads
to sparse solutions in h. To compress even more the localization over a few nodes of C,
we can promote the sparsity of h through a penalization Ω(T ) = ∑

j

√∑
i Tij = ∑

j

√
hj

which defines a concave function in the positive orthant Rn×n+ . This results in the following
optimization problem:

min
T∈Un(h)

EFGWα (C,F ,h,C,F ,T ) + λgΩ(T ) (6.19)

with λg ∈ R+ an hyperparameter. Note that an analog procedure can be applied when an
entropic regularization is already enforced. In both scenarios, we adapt the Majorisation-
Minimisation (MM) of Courty et al. (2014) that was introduced to solve classical OT with a
similar regularization. MM consists in iteratively minimizing an upper bound of the objective
function which is tight at the current iterate (Hunter & Lange, 2004). With this procedure,
the objective function is guaranteed to decrease at every iteration. To this end we only need
to major the penalty term Ω(T ) to obtain a tractable function. Consequently, we consider
the concavity of the composite functions hj →

√
hj of Ω, using the tangent inequalities:

√
hj ≤

√
h

(t)
j + 1

2
√
h

(t)
j

(hj − h
(t)
j ) (6.20)

for all j ∈ [[n]]. This essentially linearizes the regularization terms at h(t) whose contributions
can then be absorbed into the inner product inherent to EFGWα (see equation (3.54)), leading
to the intermediate optimization problem:

min
T∈Un(h)

〈αL(C,C)⊗ T + (1− α)D(F ,F ) +R(t),T 〉 (6.21)

where R(t) = λg
2

(
h

(t)−1/2
j

)
i,j∈[[n]]×[[n]]

. This way our MM algorithms summarized in Algorithm
14 consist at each (t) in the two steps:

i) Solving the srFGW problem or its entropically regularized version srFGWε, with the
additional linear OT term from the local linearization given in Equation (6.21) at
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Algorithm 14 MM solver for srFGWg and srFGWe+g

1: Inputs: Input and target graphs, trade-off parameter α, sparsity promoting parameter λ
and entropic parameter ε if using srGWe+g.

2: Set R(0) = 0.
3: repeat
4: Get optimal transport T (t) with second marginal h(t) from CG solver (Alg. 12)

(srFGWg) or MD solver (Alg. 13) (srFGWe+g) with additional linear OT term R(t−1).
5: Compute R(t) = λg

2 (h(t)
j )−1/2

ij the new local linearization of Ω(T (t)).
6: until convergence.

srGW(C, h, C, h) = 0.05 srGWe(C, h, C) = 0.06 srGWg(C, h, C) = 0.39

Figure 6.2: Comparison of the srGW matchings resulting respectively from the unregularized
problem (6.2) (left) and its regularized versions, namely entropic regularization srGWε (6.10) (middle)
and sparsity promoting regularization srGWg (6.19) (right). Nodes of the source graph are colored
based on their clusters. The OT from the source to the target nodes is represented by arcs colored
depending on the corresponding source node color. The nodes in the target graph are colored by
averaging the (rgb) color of the source nodes, weighted by the entries of the OT plan.

iteration (t− 1), adapting Alg. 12 or Alg. 13 accordingly. This step provides the new
estimate T (t).

ii) Updating the penalty term R(t) = λg
2

(
h

(t)−1/2
j

)
i,j

from T (t) with second marginal h(t).

Comparison of srGW solvers. We illustrate in Figure 6.2, the optimal couplings associ-
ated to the computation of the srGW divergence, and its regularized versions, from a graph
(C,h) with two communities, to a graph with structure C composed of three communities. We
show on the left plot the unregularized srGW (6.2) matching between both graphs estimated
using the CG Algorithm 12. The natural sparsity induced by the constraint set Un(h) results
in an optimal solution that highlights a subgraph of C containing two clusters as (C,h).
Then, we illustrate in the middle plot the effect of entropic regularization (6.10) using our
Mirror-Descent Algorithm 13, that prevents optimal couplings from srGWε to be sparse.
Consequently, all nodes of the target structure C are assigned a strictly positive mass. How-
ever, looking at the nodes with larger masses, two clusters are still clearly identifiable. So the
high-frequencies in an embedding h can still preserve discriminant structure properties of the
input graph, while imposing the consideration of the complete target structure.
Finally, the right plot shows the effect of sparsity promoting regularization into the srGW
problem (6.19). The optimal coupling estimated using our Majorization-Minimization Algo-
rithm 14 finds a smaller sub-structure in C than the one found by the unregularized srGW
problem, that still represents well the input graph. As such, srGWg lead to denoised or
compressed embeddings.
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Algorithm 15 Stochastic update of the srFGW dictionary atom (C,F )
1: Sample a minibatch of B graphs B := {(Ci,Fi,hi)}i∈[[B]].
2: Get OT matrices {T ?i }i∈[[B]] from srFGW(Ci,Fi,hi,C,F ) with any solver discussed in

Section 6.2.2.
3: Compute sub-gradients ∇̃C

(
FD(C,F )

)
and ∇̃F

(
FD(C,F )

)
of srFGW, respectively

given in Equations (6.24) and (6.25) for fixed OT matrices, to finally perform the next
projected gradient steps:

C ← ProjS(Rn×n+ )(C − ηC∇̃C
(
FD(C,F )

)
) and F ← F − ηF ∇̃F

(
FD(C,F )

)
(6.22)

6.3 The semi-relaxed (Fused) Gromov-Wasserstein barycenter
as a natural Dictionary Learning problem

A dataset of I attributed graphs D = {(Ci,Fi,hi)}i∈[[I]], with heterogeneous structures,
features and a variable number of nodes denoted by {ni}i∈[[I]] is now considered. In the
following, we introduce a novel graph Dictionary Learning (DL) whose peculiarity is to learn
a unique dictionary element. Then we discuss how this dictionary can be used to perform
graph completion, i.e. jointly reconstruct the full structure and node features of a graph
from an observed attributed subgraph.

6.3.1 A novel Graph Dictionary Learning

Semi-relaxed Fused Gromov-Wasserstein embedding. We first discuss how an ob-
served graph can be represented in a dictionary with a unique element (C,F ) (or atom), with
structure C ∈ Rn×n and node features F ∈ Rn×d, both assumed to be known or designed
through expert knowledge.
First, for a given input graph (Ci,Fi,hi), one computes srFGW2

2,α(Ci,Fi,hi,C,F ) using
the algorithmic solutions and regularization strategies detailed in Section 6.2.2. From the
estimated optimal coupling T ?i , the optimal weights for the target graph (C,F ) are recovered
by h?i = T ?>i 1ni . The graph (C,F ,h?i ) can be seen as a projection of (Ci,Fi,hi) on (C,F )
in the FGW sense and the probability vector h?i is an embedding of (Ci,Fi,hi). Representing
a graph as a vector of weights h?i on a graph (C,F ) is a new and elegant way to define a
graph subspace that is orthogonal to other DL methods, that either rely on GW barycenters
(Xu, 2020) or linear representations as those introduced in Chapter 5. One particularly
interesting aspect of this modeling is that when h?i is sparse, only the subgraph of (C,F )
corresponding to the nodes with non-zero weights in h?i is used.

srFGW Dictionary Learning and online algorithm. Given a dataset of attributed
graphs D = {Gi := (Ci,Fi,hi)}i∈[I], we propose to learn the graph dictionary (C,F ) ∈ Rn×n
from the observed data, by optimizing:

min
C∈Rn×n,F∈Rn×d

1
I

I∑
i=1

srFGW2
2,α(Ci,Fi,hi,C,F ). (6.23)

for any α ∈ [0, 1]. Let us denote FD(C,F ) the objective function in equation (6.23). This
problem is denoted as srFGW Dictionary Learning. It can be seen as a srFGW barycenter
problem (Peyré et al., 2016) where we look for a graph structure (C,F ) for which there exist
node weights (h?i )i∈[[I]] leading to a minimal FGW error. Interestingly this DL model requires
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only to solve the srFGW problem to compute the embedding h?i since it can be recovered
from the solution T ?i of the problem.

We solve the non-convex optimization problem above with an online algorithm similar to
the one first proposed in Mairal et al. (2009) for vectorial data and adapted by Vincent-Cuaz
et al. (2021) for graph data (Section 5.2.4). The core of the stochastic algorithm is depicted
in Algorithm 15.
The main idea is to update the dictionary (C,F ) with a stochastic estimation of the gradients
on a minibatch of B graphs B = {Gi}i. At each stochastic update, we solve the embedding
problems {h∗i := T ∗>i 1ni}i∈[[B]] (Section 6.2.2), independently for each graph in the mini-batch,
using a fixed dictionary (C,F ).
Then, we estimate sub-gradients w.r.t. the srFGW DL objective function FD(C,F ). These
estimates computed over the mini-batch are given, for the atom structure by

∇̃C
(
FD(C,F )

)
= 2α

∑
i∈[[B]]

{C � h∗ih
∗>
i − T ∗>i CiT

∗
i } (6.24)

and for the atom feature matrix by

∇̃F
(
FD(C,F )

)
= 2(1− α)

∑
i∈[[B]]

{
diag(h∗i )F − T ∗>i Fi

}
(6.25)

Remark that according to equations (6.24) and (6.25), an input Gi only contributes to the
update of the entries of (C,F ) that have non-null values in the embedding h∗i . Finally given
these sub-gradient estimates, we perform a projection on the set S(Rn×n

+ ) of symmetric
non-negative matrices to update C, while operating on adjacency or shortest-path input
matrices {Ci}i∈[[I]]. In practice we use Adam optimizer (Kingma & Ba, 2015) in all our
experiments.

Numerical complexity. The complexity of this stochastic algorithm is mostly bounded
by computing the gradients, which can be done in O(n2

in+ nin
2) (Section 6.2.2). Hence, in

a factorization context i.e. maxi (ni) >> n, the overall learning procedure has a quadratic
complexity w.r.t. the maximum graphs size. Since the embedding h?k is a by-product of
computing the different srFGW, we do not need an iterative solver to estimate it. Consequently,
it leads to a speed up on CPU of 2 to 3 orders of magnitude compared to our main competitors
(see Section 6.4) whose DL methods, instead, require such iterative scheme.

Relation with FGW barycenters. A specific scenario relates to considering a unique
input graph (I = 1) in the DL problem (6.23). In this setting, our srFGW Dictionary Learning
problem is equivalent to fully estimating the support of a FGW barycenter, as studied in
Section 3.3.4 (see equation (3.62)).
We originally proposed to solve the latter FGW problem using a Projected Gradient Descent
algorithm whose iterate consists in: i) solving a FGW problem given the current FGW
barycenter estimation (C,F ,h). ii) Performing projected gradient steps to update C, F ,
and finally h whose sub-gradient is given by Theorem 7. Therefore, Algorithm 15 to estimate
the srFGW DL provides a novel solver to this specific problem with I = 1, that benefits from
our relaxation of the mass conservation paradigm.

6.3.2 DL-based model for graphs completion

As with GDL (Section 5.2.6), the dictionary atom (C,F ) estimated on the dataset D can
be used to infer/complete a new graph from the dataset that is only partially observed. In
this setting, we aim at recovering the full structure C ∈ Rn×n and feature matrix F ∈ Rn×d,
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Algorithm 16 srFGW: graphs completion
1: Inputs: Observed graph Cobs, Dictionary (C,F ), size of the imputed graph and trade-off

parameter α.
2: Initialize randomly the entries Cimp by iid sampling from N (0.5, 0.01) (In a symmetric

manner if Cobs is symmetric).
3: repeat
4: Compute optimal transport T ∗, with second marginal h

∗, from
srFGW2,α(Cest,Fest,h,C,F ).

5: Perform projected gradient steps on Cest and Fest using gradients from Equations
(6.28) and (6.29).

6: until convergence.

while only a subset of relations and features among nobs < n nodes is observed, denoted as
Cobs ∈ Rnobs×nobs and Fobs ∈ Rnobs×d. This boils down to solve:

min
Cimp,Fimp

srFGW2
2,α

(
C̃, F̃ ,h,C,F

)
(6.26)

with

Cest =
[
Cobs

...
. . . Cimp

]
and Fest =

[
Fobs
Fimp

]
(6.27)

where only n2−n2
obs coefficients collected into Cimp and (n−nobs)d coefficients collected into

Fimp are optimized (and thus imputed).
We solve the optimization problem above by a classical Projected Gradient Descent

algorithm. At each iteration we find an optimal coupling T ? of srFGW that is used to
calculate the gradient of srFGW w.r.t Cimp and F imp. The latter is obtained as the gradient
of the srFGW cost function evaluated at the fixed optimal coupling T ? by using the Envelope
Theorem (Bonnans & Shapiro, 2000). The updates read as follows, for the imputed structure

Cimp ←
[
2α
(
Cest � hh> − T ∗CT ∗>

)]
imputed i,j

(6.28)

and for the imputed feature matrix

Fimp ←
[
2(1− α)

(
diag(h)Fest − T ∗F

)]
imputed i

(6.29)

The projection step is here to enforce known properties of C, such as positivity and symmetry.
In practice the estimated Cimp will have continuous values, so one has to apply a thresholding
(with value 0.5) on Cimp to recover a binary adjacency matrix.

6.4 Numerical experiments
This section aims at illustrating the behavior of the sr(F)GW divergence (Section 6.2) and
the resulting Dictionary Learning (Section 6.3) on synthetic and real-world problems. We
first investigate the use of srGW on the task of unattributed graph partitioning, that focuses
on the processing of a single graph (Sections 6.4.1 and 6.4.2). Then we test our srGW and
srFGW dictionaries for both clustering and classification of graph datasets (Sections 6.4.3 &
6.4.4), and graphs completion (Section 6.3.2).
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6.4.1 Graph partitioning: Benchmarks

As discussed in Section 6.1.2, it is possible to achieve graph partitioning via OT by estimating
a GW matching between the graph to partition G = (C,h) (n nodes) and a smaller graph
G = (IQ,h), with Q � n nodes. The atom IQ is set as the identity matrix to enforce the
emergence of densely connected groups (i.e. communities). The distribution h estimates the
proportion of nodes in each cluster. We recall that h must be given to compute the GW
distance, whereas it is estimated with srGW.

All partitioning performances are measured by Adjusted Mutual Information (AMI, Vinh
et al., 2010). These measures will be completed thanks to the Adjusted Rand Index (ARI) on
real-world datasets. AMI and ARI compare the nodes partition provided by the OT matrix
in srGW with the "true" (it would be wiser to say the "annotated") one available with the
datasets analyzed. The comparison between ARI and AMI has been thoroughly investigated
in Romano et al. (2016) and led to the following conclusion: ARI should be used when the
reference clustering has large equal sized clusters; AMI should be used when the reference
clustering is unbalanced and there exist small clusters.

On srGW algorithm initialization. Chowdhury & Needham (2021) discussed the sensitiv-
ity of GW solvers to the initialization depending on few choices of input graph representations.
This way it is arguable to compare GW and srGW by using the product hh>, usually
chosen as default initialization, but methods to select better starting points have not been
investigated yet in the GW literature.

However for these partitioning tasks we should/can not initialize the transport plan of
our srGW solver using the product of h ∈ ΣN with a uniform target distribution h(0) = 1

Q1Q,
leading to T (0) = 1

Qh1>Q. Indeed, for any symmetric input representation C of the graph,
the partial derivative of our objective w.r.t the (p, q) ∈ [[N ]]× [[Q]] entries of T , satisfies

∂EGW

∂Tpq
(C, IQ,T (0)) = 2

∑
ij

(Cip − δjq)2T
(0)
ij = 2

Q

∑
ij

(C2
ip + δjq − 2Cipδjq)hi

= 2
Q
{Q

∑
i

C2
iphi + 1− 2

∑
i

Ciphi}
(6.30)

This expression is independent of q ∈ [[Q]], so taking the minimum value over each row in the
direction finding step of our CG Algorithm 12, will lead to X = T (0). Then the line-search
step involving, for any γ ∈ [0, 1], Z(0)(γ) = T (0) + γ(X − T (0)) will be independent of γ
as Z(0)(γ) = T (0). This implies that the algorithm would terminate with optimal solution
T ? = T (0) being a non-informative coupling.

Nevertheless, we observed for srGW that using an initialization based on the hard
assignments of a K-means performed on the rows of the input representations (up to the
left scaling diag(h)), leads to better srGW estimation and graph partitioning performances.
Hence we applied this scheme for our method in the next graph partitioning benchmarks.
We will illustrate later in this section, how srGW refines these hard assignments by soft ones
through OT, on real-word graph datasets.

Experiments on simulated data. In Figure 6.3, we illustrate the behavior of GW and
srGW partitioning on a toy graph, simulated according to SBM (Holland et al., 1983) with
3 clusters of different proportions. We see that miss-classification occurs either when the
proportions h do not fit the true ones or when q 6= 3. On the other hand, clustering from
srGW can simultaneously recover any cluster proportions (since it estimates them) and can
select the actual number of clusters, using the sparse values in h.
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GW(C, h, I3, h) = 0.235
 (ami=0.66)

GW(C, h, I4, h) = 0.274
 (ami=0.54)

srGW(C, h, I3) = 0.087
 (ami=1.0)

srGW(C, h, I4) = 0.087
 (ami=1.0)

Figure 6.3: GW vs srGW partitioning of G = (C,h = 1n/n) with 3 clusters of varying proportions
to G = (Iq,h) where h is fixed to uniform for GW (left) and estimated for srGW (right) for Q = 3 and
Q = 4. Nodes of G are colored based on their cluster assignments while those of G are interpolated
based on linear interpolation of node colors of G linked to them through their OT (colored line between
nodes) if these links exist, otherwise default nodes color is black. Node sizes of both graphs G and G
are proportional to their respective masses h and h (except for black nodes of zero mass).

Table 6.1: Partitioning benchmark: Datasets statistics.

Datasets # nodes # communities connectivity rate (%)
Wikipedia 1998 15 0.09
EU-email 1005 42 3.25
Amazon 1501 12 0.41
Village 1991 12 0.42

Real-world datasets. In order to benchmark the srGW partitioning on real (directed and
undirected) graphs, we consider 4 datasets (whose statistics are provided in Table 6.1), using
the same pre-processing routine as in Chowdhury & Needham (2021):

1. A Wikipedia hyperlink network (Yang & Leskovec, 2015, Wikipedia), preprocessed by
choosing 15 webpage categories and extracting their induced directed subgraphs.

2. A directed graph of email interactions between departments of a European research
institute (Yin et al., 2017, EU-email).

3. An Amazon product network (Yang & Leskovec, 2015, Amazon), where the subgraph
induced by top 12 product categories was selected.

4. A network of interactions between indian villages (Banerjee et al., 2013, Village)

For the directed graphs (Wikipedia & EU-email), we also construct symmetric versions
following the procedure described in Chowdhury & Needham (2021) that consists in adding
the reciprocal edges.

Benchmark settings. Our main competitors are the two GW based partitioning methods
proposed by Xu et al. (2019b) and Chowdhury & Needham (2021). The former (GWL) relies
on adjacency matrices, the latter (SpecGWL) adopts heat kernels on the graph normalized
laplacians (SpecGWL). The GW solver of Flamary et al. (2021) was used for these methods.
For fairness, we also consider these two representations for srGW partitioning (namely srGW
and srSpecGW). All these OT based methods depend on hyperparameters which can be
tuned in an unsupervised way (i.e. without knowing the ground truth partition) based
on modularity maximization (Chowdhury & Needham, 2021). Following their numerical
experiments, we considered as input distribution h for the observed graph the parameterized
power-law transformations of the form hi = pi∑

i
pi

where pi = (deg(i)+a)b, with deg(i) the i-th
node degree and real parameters a ∈ R and b ∈ [0, 1]. If the graph has no isolated nodes we
chose a = 0 and a = 1 otherwise. b is validated within 10 values {0, 0.0001, 0.005, ..., 0.1, 0.5, 1}
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Table 6.2: Partitioning performances on real datasets measured by AMI. We see in bold (resp. italic)
the first (resp. second) best method. NA: non applicable.

Wikipedia EU-email Amazon Village
asym sym asym sym sym sym

srGW (ours) 56.92 56.92 49.94 50.11 48.28 81.84
srSpecGW 50.74 63.07 49.08 50.60 76.26 87.53

srGWe 57.13 57.55 54.75 55.05 50.00 83.18
srSpecGWe 53.76 61.38 54.27 50.89 85.10 84.31

GWL 38.67 35.77 47.23 46.39 38.56 68.97
SpecGWL 40.73 48.98 45.89 49.02 65.16 77.85
FastGreedy NA 55.30 NA 45.89 77.21 93.66
Louvain NA 54.72 NA 56.12 76.30 93.66
InfoMap 46.43 46.43 54.18 49.10 94.33 93.66

srGW gain +10.7 +7.77 +0.57 -1.07 -9.23 -6.13

which progressively transform the input distribution from the uniform to the normalized
degree ones. An ablation study of this parameter is reported in Table 6.6. The heat parameter
for SpecGWL and srSpecGW is tuned for each dataset within the range [1, 100] by recursively
splitting this range into 5 values, find the parameter leading to maximum modularity, and
repeat the same process on the induced new interval with this best parameter as middle point.
This process is stopped based on the relative variation of maximum modularity between two
successive iterates of precision 10−3. A similar scheme can be used to fine-tune the entropic
parameter.

Finally, three competing methods specialized in graph partitioning are also considered:
FastGreedy (Clauset et al., 2004), Louvain (with validation of its resolution parameter,
Blondel et al., 2008) and Infomap (Rosvall & Bergstrom, 2008).

Results on real-world datasets. The graph partitioning performances, measured by
means of AMI and ARI, are respectively reported in Table 6.2 and 6.3. Our method
srGW always outperforms the GW based approaches for a given type of input structure
representations (adjacency vs heat kernels), moreover the entropic regularization seems to
improve the performance on these applications. One can also observe that the choice of
performance metric (AMI or ARI) leads to slight variations of rankings, which seem to occur
more often for methods explicitly based on modularity maximization. We want to stress
that our general purpose divergence srGW outperforms methods that have been specifically
designed for nodes clustering tasks on 3 (based on AMI) or 4 (based on ARI) out of 6 datasets.

Runtimes comparison on real datasets. To complete our analysis we report in Table
6.4 the runtimes on CPUs for the partitioning benchmark on real datasets. For the sake of
comparison, we re-ran the srGW partitioning experiments using CPUs instead of a GPU
(Tesla K80). In this setting, we can observe that GW partitioning of raw adjacency matrices
(GWL) is the most competitive in terms of computation time (while being the last in terms
of clustering performances), on par with InfoMap. Overall, our srGW partitioning methods
seem slower than GW based ones in terms of speed, even if we remain in the same order
of complexity. This might be due to several practical aspects. The linear OT problems
involved in each CG iteration of GW based methods are solved thanks to a C solver (POT’s
implementation (Flamary et al., 2021)), whereas our srGW CG solver is fully implemented
in Python. This can compensate the computational benefits of srGW solver regarding
GW solver. So the computation time became mostly affected by the number of computed
gradients. We observed in these experiments that for the same precision level, srGW needed
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Table 6.3: Partitioning performances on real datasets measured by ARI, corresponding to best
configurations reported in Table 6.2. We see in bold (resp. italic) the first (resp. second) best method.
NA: non applicable.

Wikipedia EU-email Amazon Village
asym sym asym sym sym sym

srGW (ours) 33.56 33.56 30.99 29.91 30.08 67.03
srSpecGW 32.85 58.91 32.76 31.28 51.94 80.36

srGWe 36.03 36.27 35.91 36.87 31.83 69.58
srSpecGWe 37.71 57.24 38.22 30.74 75.81 74.71

GWL 5.70 13.85 19.35 26.81 24.96 48.35
SpecGWL 25.23 30.94 26.32 30.17 46.66 67.22
FastGreedy NA 55.61 NA 17.23 45.80 93.97
Louvain NA 52.16 NA 32.79 42.64 93.97
InfoMap 35.48 35.48 16.70 16.70 89.74 93.97

srGW gains +2.23 +3.3 +21.52 +4.08 - 13.93 -13.61

Table 6.4: Runtimes (seconds) on real datasets measured on CPU for all partitioning methods and
corresponding best configurations.

Wikipedia EU-email Amazon Village
asym sym asym sym sym sym

srGW (ours) 4.62 4.31 4.18 4.22 4.31 4.68
srSpecGW 2.91 2.71 2.49 2.83 3.06 3.11

srGWe 2.69 2.48 2.31 2.81 2.87 2.53
srSpecGWe 2.35 1.96 2.15 2.03 2.16 2.58

GWL 0.17 0.17 0.13 0.12 0.13 0.16
SpecGWL 0.77 1.25 1.55 0.97 1.01 0.88
FastGreedy NA 0.56 NA 2.31 0.37 1.26
Louvain NA 0.52 NA 0.31 0.20 0.49
InfoMap 0.17 0.18 0.12 0.14 0.13 0.16

considerably more iterations to converge than GW. This might be due to the difference
in conditioning of the respective Quadratic Programs that respectively admit for Hessian(
C

2 ⊗K 1n1>n − 2C ⊗K C
)
and −2C ⊗K C. So using a non-informative structure C = IQ

might negatively impact the convergence speed of srGW, and advocate for further studies
regarding srGW based graph partitioning using more informative C.

srGW runtimes: CPU vs GPU. Finally, we stress that we observed runtimes 10 to 20
times slower for srGW using CPUs instead of a GPU. To illustrate this matter, we generated
10 graphs according to Stochastic Block Model with 10 clusters, a varying number of nodes
in {100, 200, ..., 2900, 3000} and the same connectivity matrix. We report in Figure 6.4, the
averaged runtimes of one CG iteration depending on the size of the input graphs. For small
graphs with a few hundreds of nodes, performances on CPUs or a single GPU are comparable.
However, operating on GPU becomes very beneficial once graphs of a few thousand of nodes
are processed.

6.4.2 Graph partitioning: Initialization and parameterization

In this section, we provide complementary insights on the specific choices that led to perfor-
mances reported in the previous Section 6.4.1, namely the initialization of srGW algorithms
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Figure 6.4: Runtimes of srGW’s CG algorithm over increasing graph sizes.

Table 6.5: Partitioning performances on real datasets measured by AMI. Comparison between srGW
and K-means whose hard assignments are used to initialize srGW.

Wikipedia EU-email Amazon Village
asym sym asym sym sym sym

srGW (ours) 56.92 56.92 49.94 50.11 48.28 81.84
srGWe 57.13 57.55 54.75 55.05 50.00 83.18

Kmeans (adj) 29.40 29.40 36.59 34.35 34.36 60.83
srGW gains +27.73 +28.15 +18.16 +20.7 +25.64 +22.35

using a K-means algorithm, and the (validated) parametrization of the input graph distribu-
tions according to power laws.

Initializations. As mentioned in Section 6.4.1, for the srGW based graph partitioning
that uses a non-informative structure, we proposed to initialize its CG and MD solvers
using a K-means algorithm. The latter is applied over the rows of the rescaled input graph
structures diag(h)C if it is symmetric, or its symmetrization diag(h)(C +C>)/2 otherwise.
As this initialization already leads to a partitioning of the graph, we compare the K-means
performances with the ones of the srGW algorithms that aim at refining these solutions. For
the K-means algorithm an analog validation than for srGW methods over h is performed to
select the best graph partitioning. The performances measured by means of AMI, while using
the adjacency matrix for C, are reported in Table 6.5. These support the use of our srGW
methods for graph partitioning that improve the K-means solution from 18 to 28 points of
AMI.

Parameterized input distributions: Ablation study. To conclude on our graph
partitioning benchmark, we perform an ablation study of the parameter b ∈ [0, 1] introduced
on the input graph distributions, first suggested by Xu et al. (2019a). The results in terms
of AMI are reported on all tested datasets in Table 6.6. In most scenarios and in every OT
based methods, a parameter b ∈]0, 1[ leads to best AMI performances (except for the dataset
Village), while the common assumption of uniform distribution remains competitive. The use
of raw normalized degree distributions consequently reduces partitioning performances of all
methods. Hence these results first indicate that further research on the input distributions
could be beneficial. They also suggest that the commonly used uniform input distributions
provide a good compromise in terms of performances while being parameter-free.
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Table 6.6: Partitioning performances on real datasets measured by AMI: Ablation study of the
parameter involved in the power-law transformations parameterized by b ∈ [0, 1] of normalized degree
distributions for srGW and GW based methods. We denote different types of transformation by ’unif’
(b = 0), ’deg’ (b = 1) and ’inter’ (0 < b < 1). We see in bold (resp. italic) the first (resp. second) best
model. We also highlight distributions leading to the first (bold) and the second (italic) highest scores
across all methods.

Wikipedia EU-email Amazon Village
asym sym asym sym sym sym

unif deg inter unif deg inter unif deg inter unif deg inter unif deg inter unif deg inter
srGW (ours) 52.7 47.4 56.9 52.7 47.4 56.9 49.7 43.6 49.9 49.5 39.9 50.1 40.8 42.7 48.3 74.9 62.0 81.8
srSpecGW 48.9 44.8 50.7 58.2 55.4 63.0 47.8 44.3 49.1 46.8 43.6 50.6 75.7 69.5 76.3 87.5 78.1 86.1

srGWe 54.9 48.5 57.1 54.3 47.8 57.6 53.9 48.6 54.8 53.5 42.1 55.1 48.2 42.9 50.0 83.2 69.1 82.7
srSpecGWe 51.7 45.2 53.8 59.0 54.9 61.4 52.1 47.9 54.3 47.8 43.2 50.9 83.8 76.9 85.1 84.3 77.6 83.9

GWL 33.8 8.8 38.7 33.15 14.2 35.7 47.2 35.1 43.6 37.9 46.3 45.8 32.0 27.5 38.5 68.9 43.3 66.9
SpecGWL 36.0 28.2 40.7 29.3 33.2 48.9 43.2 40.7 45.9 48.8 47.1 49.0 64.5 64.8 65.1 77.3 64.9 77.8

6.4.3 Clustering of graphs datasets

We now show how the embeddings {h?i }i∈[[I]] provided by the sr(F)GW Dictionary Learning
can be particularly useful for the task of clustering a dataset of graphs D = {(Ci,Fi,hi)}i∈[[I]].

Datasets and methods. We consider here three types of datasets, which were already
studied in Section 5.3.2 of Chapter 5:

i) Social networks without node attributes from IMDB-B and IMDB-M (Yanardag &
Vishwanathan, 2015).

ii) Graphs with discrete features representing chemical compounds from MUTAG (Debnath
et al., 1991) and cuneiform signs from PTC-MR (Krichene et al., 2015)

iii) Graphs with continuous features, namely BZR, COX2 (Sutherland et al., 2003) and
PROTEINS, ENZYMES (Borgwardt & Kriegel, 2005).

Our main competitors are the following OT-based SOTA models:

i) GDL (Vincent-Cuaz et al., 2021) and its regularized version GDLλ, both introduced in
Chapter 5.

ii) GWF (Xu, 2020), with both fixed (GWF-f) and random (GWF-r, default setting for
the method) atom size.

iii) GW kmeans (GW-k), a K-means algorithm equipped with (F)GW distances and
barycenters (Peyré et al., 2016; Vayer et al., 2019a).

Experimental settings. For all experiments we follow the benchmark proposed in Vincent-
Cuaz et al. (2021). The clustering performances are measured by means of Rand Index
(RI, Rand, 1971). This metric, that comes down to an accuracy up to class rearrangement,
is chosen to provide a comparison with the performances measured via accuracy for the
supervised evaluation of our embeddings given in Section 6.4.4. We refer the interested reader
to the Annex 8.4.5 for the performances comparison in terms of ARI and AMI.

The standard Euclidean distance is used to implement K-means over srGW and GWFs
embeddings, but we use for GDL the dedicated Mahalanobis distance as described in Theorem
8 introduced in Chapter 5. GW-k does not use any embedding since it directly computes (a
GW) K-means over the input graphs.

For DL based approaches, a first step consists into learning the atoms. srGW dictionary
sizes are tested in M ∈ {10, 20, 30, 40, 50}, the atom is initialized by randomly sampling
its entries from N (0.5, 0.01) and made symmetric. The extension of srGW to attributed
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Table 6.7: Clustering performances on real datasets measured by Rand Index. In bold (resp. italic)
we highlight the first (resp. second) best method.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
MODELS IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN

srGW (ours) 51.6(0.10) 54.9(0.29) 71.3(0.39) 51.5(0.12) 62.6(0.96) 60.1(0.27) 71.7(0.12) 59.7(0.10)
srGWg 52.4(0.46) 56.7(0.34) 72.3(0.51) 51.8(0.39) 66.8(0.38) 62.2(0.27) 72.5(0.10) 60.7(0.29)
srGWe 51.8(0.56) 55.4(0.14) 74.4(0.84) 52.4(0.42) 67.6(1.17) 59.8(0.39) 70.9(0.33) 60.0(0.21)

srGWe+g 52.2(0.83) 55.9(0.68) 74.7(0.73) 52.5(0.47) 67.8(0.94) 60.5(0.36) 71.3(0.52) 60.8(0.43)
GDL (Chap.5) 51.3(0.27) 55.1(0.35) 71.9(0.48) 51.5(0.31) 62.8(1.60) 58.4(0.52) 69.8(0.33) 60.2(0.28)

GDLλ 51.7(0.56) 55.4(0.22) 72.3(0.17) 51.8(0.47) 66.3(1.71) 59.6(0.74) 71.0(0.36) 60.5(0.65)
GWF-r 51.0(0.30) 55.1(0.46) 69.1(1.02) 51.5(0.59) 52.5(2.41) 56.9(0.46) 72.1(0.21) 60.0(0.11)
GWF-f 50.4(0.29) 54.2(0.27) 59.1(1.87) 50.8(0.81) 51.8(2.84) 52.8(0.53) 71.6(0.31) 58.9(0.41)
GW-k 50.3(0.03) 53.7(0.07) 57.6(1.45) 50.4(0.33) 56.8(0.53) 52.5(0.13) 66.4(1.37) 50.1(0.01)

srGW gains +0.7 +1.3 +2.4 +0.7 +1.5 +2.6 +0.4 + 0.3

Table 6.8: Embedding computation times (in ms) averaged over whole datasets at a convergence
precision of 10−5 on learned dictionaries. (−) (resp. (+)) denotes the fastest (resp. slowest) runtimes
regarding DL configurations. We report here runtimes using FGW0.5 for datasets with nodes attributes.
Measures taken on Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
(-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+)

srGW (ours) 1.51 2.62 0.83 1.59 0.86 1.83 0.40 1.01 0.43 0.79 0.51 0.90 0.62 0.95 0.46 0.60
srGWg 1.95 6.11 1.06 5.53 3.68 5.98 1.65 3.38 0.89 2.88 0.97 4.60 1.35 4.73 1.57 2.96
GWF-f 219 651 103 373 236 495 191 477 181 916 129 641 93 627 78 322
GDL 108 236 43.8 152 102 514 100 509 73.2 532 48.7 347 38 301 29 151

graphs, namely srFGW, is referred as srGW for conciseness. One efficient way to initialize
atoms features for minimizing our resulting reconstruction errors is to use a (Euclidean)
K-means algorithm seeking for n clusters on the nodes features observed in the dataset. For
GDL and GWF, the same validation of hyper-parameters (number of atoms, regularization
parameter) than detailed in Section 5.3.4 is performed. Note that for srGWg, srGWe and
srGWe+g, the sparsity promoting and/or entropic regularization coefficients are validated
within {0.001, 0.01, 0.1, 1.0}.

For each parameter configuration (number of atoms, number of nodes and regularization
parameters) we run each experiment five times, independently. The mean RI over the five
runs is computed and the dictionary configuration leading to the highest RI for each method
is reported.

Results and discussion. Clustering performances and running times are reported in
Tables 6.7 and 6.8, respectively. All variants of srGW DL are at least comparable with the
SOTA GW based methods. Remarkably, the sparsity promoting variants always outperform
other methods. Notably Table 6.8 shows embedding computation times of the order of
the millisecond for srGW, two order of magnitude faster than the competitors. Moreover,
srGW computation times were measured on CPUs but could be greatly enhanced through
parallelization on GPUs, contrary to the second best performing method GDL. Overall, these
results clearly support the use of srGW for the clustering of graphs.

Complementary experiments could be considered to evaluate our embeddings, e.g. using
a Spectral Clustering algorithm on the pairwise FGW distances between embedded graphs
{(C,F ,hi)}i∈[[I]], as performed for GDL in Section 5.3.2. As these latter experiments lead to
rather analog rankings between OT methods, than when GDL embedded graphs are validated
in a supervised manner using SVM (Section 5.3.4), we only evaluate embedded graphs in this
supervised setting in Section 6.4.4.
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Visualizations of srGW embeddings. We provide in Figure 6.5 some examples of
graphs embeddings from the dataset IMDB-B learned on a srGW dictionary C of 10 nodes.
We assigned different colors to each nodes of the graph atom (forth column) in order to
visualize the correspondences recovered by the OT plan T ? resulting from the projection
of the respective sample (C,h) onto C in the srGW sense (third column). As the atom
has continuous values we set the edges intensity of grey proportional to the entries of C.
By coloring nodes of the observed graphs based on the OT to its respective embedding
(C)(second column) we clearly observe that key subgraphs information, such as clusters and
hubs are captured within the embedding.

Impact of the graph atom size. If we increase the size of the dictionary, our embeddings
are refined and can bring complementary structural information is brought at a higher
resolution e.g. finding substructures or variable connectivity between nodes in the same
cluster. We illustrate these resolution patterns in Table 6.6 for embeddings learned on the
IMDB-B dataset. We represent the embedded graph size distributions depending on the sizes
of the graph atom learned thanks to srGW and its sparse variant srGWg. For any graph
atom size, the mean of each embedded graph size distribution represented with a white dot
is below the atom size, hence embeddings are sparse and subparts of the atom are indeed
selected. Moreover, promoting sparsity of the embeddings (srGWg) lead to more concentrated
embedded graph size distributions with lower averaged sizes than its unregularized counterpart
(srGW), as expected. Finally, these distributions seem to reach a stable configuration when
the graph atom size is large enough. This argues in favor of the existence of a (rather small)
threshold on the atom size where the heterogeneity of all the graphs contained in the dataset
is well summarized in the dictionaries.
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Data sample Ci,hi Data sample (colored by T) Projected ̄C, h̄ ⋆ Dictionary ̄C

Data sample Ci,hi Data sample (colored by T) Projected ̄C, h̄ ⋆ Dictionary ̄C

Data sample Ci,hi Data sample (colored by T) Projected ̄C, h̄ ⋆ Dictionary ̄C

Data sample Ci,hi Data sample (colored by T) Projected ̄C, h̄ ⋆ Dictionary ̄C

Figure 6.5: Illustration of the embedding of different graphs from the IMDB dataset on the estimated
dictionary C. Each row corresponds to one observed graph and we show its graph (left), its graph
with nodes colored corresponding to the OT plan (center left), the projected graph on the dictionary
with optimal weight h? and the full dictionary with uniform mass (right).

6.4.4 Classification of graphs datasets

Benchmark settings. We now aim at analyzing if our unsupervised DL methods produce
discriminative graph representations. As the resulting (attributed) graph subspace is endowed
with the (F)GW geometry, we perform classification as a downstream task, using SVM with
(F)GW kernels computed on embedded graphs. For all experiments we mimic the benchmark
proposed in GDL classification benchmark (Section 5.3.4), using adjacency matrices as input
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Figure 6.6: On the left: Evolution of the embedded graph sizes over the graph atom size validated
in {10, 20, 30, 40, 50} for dictionaries learned with srGW and srGWg (with λ = 0.01). On the right:
Averaged ratios of input and corresponding embedded graph sizes using benchmarked DL methods.

Table 6.9: Classification performances on real datasets: We highlight the 1st (resp. 2nd) best method
in bold (resp. italic). Unfilled values (-) when methods are specific to certain type of graph features.

No attribute Discrete attributes Real attributes
Categories Models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
OT DL srGW (ours) 72.1(4.1) 49.2(3.6) 89.1(5.9) 64.5(7.8) 88.0(4.2) 77.7(2.7) 72.3(5.7) 72.9(5.1)

srGWg (ours) 73.2(4.3) 51.3(3.4) 90.3(5.4) 64.5(6.9) 88.5(3.9) 79.8(1.8) 73.6(4.3) 74.1(4.8)
GDL (Chap. 5) 70.1(3.3) 49.1(4.6) 87.4(5.0) 56.4(6.5) 85.9(4.3) 77.4(3.1) 70.7(3.9) 71.6(3.9)

GDLλ 71.5(4.1) 50.1(4.8) 88.1(7.8) 59.5(8.4) 86.5(5.4) 78.1(4.4) 71.5(4.2) 72.9(5.8)
OT kernel FGWK 70.8(3.5) 48.9(3.9) 82.6(7.2) 56.2(8.9) 85.6(5.2) 77.0(4.2) 72.2(4.0) 72.4(4.7)
Kernels SPK 56.2(2.9) 39.1(4.9) 83.3(8.0) 60.6(6.4) - - - -

WLK - - 86.4(8.0) 63.1(6.6) - - - -
HOPPERK - - - - 84.5(5.2) 79.7(3.5) 46.2(3.8) 72.1(3.1)
PROPAK - - - - 80.0(5.1) 77.8(3.8) 71.8(5.8) 61.7(4.5)

graph structures.
Hence, FGWK refers to (F)GW kernels between raw input graphs, and other methods are

SOTA graph kernels unrelated with OT.We perform 10-fold nested cross-validations repeated
over 10 train/test splits, using same folds across methods, and same validated values for
SVM’s hyperparameters.

Results. Classification performances measured by means of accuracy are reported in Table
6.9. All variants of srGW DL lead to more discriminant graph representations than those
of GDL, while consistently improving performances provided by FGWK opereting on raw
graphs represented by their adjacency matrix. Notably srGWg consistently outperforms all
benchmarked methods.

Moreover, our srGW DL naturally leads to embedded graphs of variable resolutions,
contrary to GDL, with considerably small number of nodes relatively to their input represen-
tations. This behavior illustrated on IMDB-B in the figure 6.6 helps to drastically reduce
the runtimes required to compute the GW pairwise matrices used in SVM, especially while
promoting sparsity of our embeddings, as reported in Table 6.10. Therefore, the coupled
discriminant denoising abilities and computational efficiency of our methods show that it
could even be considered as a pre-processing step for GW based analysis.
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Table 6.10: GW Kernel computation times (in ms) on different graph embeddings and input graphs,
averaged over all corresponding pairs of graphs (499500 symmetric pairs in IMDB-B).

Models Runtimes (ms)
min max

srGW (ours) 4.7 11.1
srGWg (ours) 1.7 3.7
GDL (Chap.5) 19.1 19.9

FGWK 24.7

6.4.5 Graphs completion

Finally, we present graph completion results on the real world datasets IMDB-B and MUTAG,
using the approach proposed in Section 6.3.2. We follow an analog procedure than in GDL
experiments on graph completion detailed in Section 5.3.6. Then we report the benchmark of
both GDL and srGW DL based completion methods.

Settings. The simulation of completion tasks on datasets IMDB-B and MUTAG are the
same for GDL and srGW DL. The hyperparameters of the dictionaries (learned exclusively
on Dtrain) are validated in the same way as in the clustering benchmarks (Sections 5.3.2 and
6.4.3), except that extreme values 0 and 1 for α are omitted. Then the unmixings inherent to
our completion algorithm are computed using the same settings than the DL. For both DL
methods, we initialize the entries of Cimp by iid sampling from N (0.5, 0.01). For IMDB-B
composed of social networks, we propose to leverage information from node degrees within
Cobs to initialize connections between the observed nodes and the imputed ones. Specifically,
new connections to a node p are sampled from N ( dp

maxq dq , 0.01) where for all q, dq denotes the
degree of node q observed within Cobs. Finally for MUTAG, imputed features are initialized
uniformly at random in the range of observed features.

Since the datasets do not explicitly contain graphs with missing nodes, we proceed as
follow: first we split the dataset into a training dataset (Dtrain) used to learn the dictionary
and a test dataset (Dtest) reserved for the completion tasks. We then considered two different
scenarios:

• Scenario 1: We vary the test dataset proportions from {10%, 20%, ..., 50%}. Then for
each graph of C ∈ Dtest, we created incomplete graphs Cobs by independently removing
10% and 20% of their nodes, uniformly at random.

• Scenario 2: We fix the proportion of the test dataset to 10% and make percentage of
imputed nodes vary in {10, 15, 20, 25, 30}.

For both scenarios, the partially observed graphs are then reconstructed using the procedure
described in Section 5.3.6 and the average performance of each method is computed for 5
different dataset splits.

Results. The graph completion results for Scenario 1 are reported in Figures 6.7 and 6.8.
Our srGW dictionary learning outperforms GDL consistently, when enough data is available
to learn the atoms. When the proportion of train/test data varies, we can see that the
linear GDL model that maintains the marginal constraints tends to be less sensitive to the
scarcity of data. This can come form the fact that srGW is more flexible thanks to the
optimization of h but can slightly overfit when few data is available. Sparsity promoting
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Figure 6.7: Completion performances for IMDB-B dataset, measured by means of accuracy for
structures, respectively averaged over all imputed graphs.
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Figure 6.8: Completion performances for MUTAG dataset, measured by means of accuracy for
structures and Mean Squared Error for node features, respectively averaged over all imputed graphs.

regularization can clearly compensate this overfitting and systematically leads to the best
completion performances (high accuracy, low Mean Squared Error).

The graph completion results for Scenario 2 are reported in Figures 6.9 and 6.10. Our
sr(F)GW dictionary learning and its regularized variants outperform GDL and GDLλ con-
sistently when the percentage of imputed nodes is not too high (< 20%), whereas this
trend is reversed for high percentage of imputed nodes. Indeed, as sr(F)GW dictionaries
capture subgraph patterns of variable resolutions from the input graphs, the scarcity of prior
information in an observed graph leads to a too high number of valid possibilities to complete
it. Whereas GDL dictionaries based on (F)GW lead to more steady performances as they
keep their focus on global structures. Interestingly, the sparsity promoting regularization
can clearly compensate this kind of overfitting over subgraphs for higher levels of imputed
nodes and systematically leads to better completion performances (high accuracy, low Means
Square Error). Moreover, the entropic regularization of srGW (srGWe and srGWe+g) can be
favorably used to compensate this overfitting pattern for high percentages of imputed nodes
(> 20%) and also pairs well with the sparse regularization (srGWe+g).



Chapter 6. Relaxing the Optimal Transport paradigm for unsupervised Graph
Representation Learning 136

10 15 20 25 30
imputed nodes (%)

90

91

92

93

94

95

96

97

co
m

pl
et

io
n 

ac
cu

ra
cy

 (%
)

IMDB-B test dataset proportion 10.0%
srGW
srGWg

srGWe

srGWe + g

GDL
GDL

Figure 6.9: Completion performances for IMDB-B dataset, measured by means of accuracy for
structures averaged over all imputed graphs.
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Figure 6.10: Completion performances for MUTAG dataset, measured by means of accuracy for
structures and Mean Squared Error for node features, respectively averaged over all imputed graphs.

6.5 Conclusion
We introduced in this chapter new transport based divergences between structured data
by relaxing the mass constraint on the second distribution of the Gromov-Wasserstein
and Fused Gromov-Wasserstein problems (Section 6.2.1). After designing efficient solvers to
estimate these divergences (Section 6.2.2), called the semi-relaxed (Fused) Gromov-Wasserstein
sr(F)GW, we suggest to learn a unique graph to describe a dataset of graphs in the sr(F)GW
sense. This novel modeling can be seen as a Dictionary Learning approach where graphs are
embedded as a subgraph of a single atom.
Numerical experiments highlight the interest of our methods for graph partitioning (Sections
6.4.1 and 6.4.2), and representation learning of graphs datasets whose evaluation is conducted
through clustering (Section 6.4.3), classification (Section 6.4.4) and completion (Section 6.4.5).

We believe that these new divergences will unlock the potential of (F)GW for graphs with
unbalanced proportions of nodes. The associated fast numerical solvers allow to handle large
size graph datasets, which was not possible with current (F)GW solvers. One interesting
future research direction includes an analysis of sr(F)GW to perform parameters estimation
of well-known random graph models such as Stochastic Block Models. Also, as relaxing
the second marginal constraint in the original optimization problem gives more degrees of
freedom to the underlying problem, one can expect dedicated regularization schemes, over
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e.g. the level of sparsity of h, to address a variety of application needs, including pooling in
Graph Neural Networks (See Chapters 2 and 4). Finally, our method can be seen as a special
relaxation of the subgraph isomorphism problem. It remains to theoretically understand in
which sense this relaxation holds.
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This last Chapter is a short conclusion to the manuscript. It summarizes the contributions
presented in this thesis, while discussing research directions that seem relevant according to
me.

7.1 Brief overview of the contributions
This thesis focuses on Graph Representation Learning (GRL) by means of Optimal Transport
(OT) across incomparable spaces, both introduced in Chapter 2 and Chapter 3 respectively.

7.1.1 Optimal Transport for Graph Representation Learning

OT provides a set of distances for comparing graphs, modeled as discrete probability measures,
where the nodes supporting them are whether assumed to belong to a common ambient space,
or legitimately left as such in their respective graph topology. Both paradigms relate to the
Wasserstein (Villani, 2009) and the (Fused) Gromov-Wasserstein ((F)GW) distances (Mémoli,
2011; Sturm, 2012; Vayer et al., 2020), respectively.
The latter carry a strong discriminant power for graph-level tasks (Vayer et al., 2019a), that
we successfully leveraged in our new Graph Neural Networks (GNN, Section 2.2), called
TFGW, presented in Chapter 4. Specifically, we showed that representing a graph via a vector
of its FGW distances to learnable templates, acting as a global pooling in GNN (Section 2.2.2),
enhances GNN expressivity and leads to state-of-the-art performances on graph classification
tasks (Section 4.3).

Another convenient aspect of these distances between a source distribution and a well-
chosen or estimated target one lie in the soft correspondences between nodes that they provide.
Overall these properties can be used for a myriad of graph ML tasks. For instance, an OT
matrix can be relevant for node-level tasks, such as the partitioning of a single graph (Xu
et al., 2019a; Chowdhury & Needham, 2021) or of multiple ones simultaneously (Section
3.2.5).
The distances, themselves, can be used as fidelity terms for unsupervised GRL, while their
intrinsic OT matrices, linking both input and learned graph representations, alleviate the
pre-image problem that most GRL approaches suffer from. We illustrated this in Chapter 5
by introducing a novel Graph Dictionary Learning (GDL), that models a graph as a convex
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combination of graph atoms. Learning such a dictionary from a given dataset provides a
linear graph subspace, where the graphs, once embedded, can for example be better clustered
or classified (Section 5.3). These downstream discriminative tasks are performed either by
using (F)GW over embedded graphs with reduced orders (in a factorization context), or by
using a dedicated Mahalanobis distance directly on embeddings that acts as a reasonable
proxy for (F)GW (Section 5.2.3).

7.1.2 Learning the graph distribution

Nevertheless, the mass conservation at the core of OT, imposing a coupling between all the
nodes from the two compared graphs, has specific implications in GRL. In many scenarios,
learning only the structure and feature representations of a graph limits the modeling potential.
The latter is fully exploited when the relative importance of nodes is also learned, as now
possible using sub-gradients provided in Theorems 5 and 7 (Sections 3.2.5 & 3.3.4). Managing
this extra degree of freedom inherent in OT has, e.g. improved the respective performance of
TFGW and GW-based graph multi-partitioning, with minimal additional computational cost.
We also extended GDL by adding a second and independent linear dictionary that models
the relative importance of the nodes (Section 5.2.5).
This second dictionary mitigates the fixed resolution enforced by the dictionary over the
structure, as node weights of the learned templates can become sparse. This way the
(simultaneous) node weights estimation of the embedded graph can re-balance and even
discard irrelevant nodes, in the vein of attention mechanisms, leading to a more representative
modeling of the input. However, this extension of GDL has some drawbacks. First, it
complicates both the unmixing mechanism and the estimation of dictionaries. Second,
the Mahalanobis distance introduced for the vanilla GDL model can no longer be used to
approximate (F)GW in the embedding space, so its potential generalization in this framework
remains an open question.

Finally, we proposed in Chapter 6 to fully embrace this distribution learning paradigm
by directly addressing the mass conservation constraint inherent in (F)GW. To this end,
we propose to find correspondences between two graphs, while searching for a reweighed
subgraph of the target graph at a minimum (F)GW distance from the input graph. This leads
to the definition of a novel OT-based discrepancy, called the semi-relaxed (Fused) Gromov-
Wasserstein divergence (sr(F)GW, Section 6.2). The latter can be estimated more efficiently
than (F)GW (Section 6.2.2), while e.g. consequently enhancing GW-based approaches to
partition a single input graph (Section 6.4.1). Moreover, considering a form of srFGW
barycenter problem induces a novel DL, orthogonal to other GW-based DL (Chapter 5),
where graphs are embedded as reweighed subgraphs of a single graph atom (Section 6.3).
The learned representations compete favorably with other DL-based competitors, e.g. for
graph clustering or classification, while being considerably faster to compute (section 6.4).

7.2 Perspectives for Optimal Transport on graphs
In the following, we discuss potential research directions motivated by an analysis of the pros
and cons of the models proposed in this manuscript, or of related approaches. We identify two
building blocks, where OT on graphs can lead to new models (or combinations thereof) that
are potentially relevant for addressing graph ML tasks, namely: i) Discriminant modeling; ii)
Dictionary Learning and generative modeling.

Notice that the computational complexity of OT on graphs is another fundamental
limitation, that prevents its use for large scale graph ML tasks. We refer the reader to Section
3.2.4 for a brief overview of approaches that could be useful to relax the computational burden
of (F)GW estimation in GRL.
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7.2.1 Discriminant modeling

The conclusive results obtained with our TFGW global pooling motivate further research on
its relevance to answer current questions of the GNN literature, e.g. regarding heterophily
(Zhu et al., 2020; Zheng et al., 2022; Luan et al., 2022) and (over)smoothing (Topping et al.,
2021; Chen et al., 2020b).
Both challenges, which are naturally dependent, relate to the neighborhood-based message-
passing mechanism used in most GNN, to produce discriminant node features that also encode
the graph topology. At present, these issues are mainly studied on node-level tasks, rather
than on potentially more complex graph-level tasks, since graphs in a dataset can exhibit
different levels of intra- and inter-class heterogeneity.

Heterophily in Graph Neural Networks. Graph heterophily points out that neighboring
nodes in a graph have different labels, or distant features. This property is often observed
in real-world scenarios, for example in molecular networks, as protein structures are more
often composed of different types of amino acids linked together (Zhu et al., 2020). Such an
information can be negatively affected, first by non-discriminant message passing scheme,
such as neighborhood mean aggregation (e.g. GIN (Xu et al., 2019c)), second by an overly
simplistic global pooling of the node embeddings. Addressing the first source of limitation has
been shown to be relevant for graph-level task (e.g. (Ye et al., 2022)), using mean pooling,
and might be further improved using OT. However the second source is still unexplored, and
global pooling schemes where the graph structure is explicitly provided, like TFGW, should
mitigate the information loss and be further studied theoretically.

Moreover, as discussed for TFGW in Section 4.2.2, the OT matrix encodes correspondences
between respective nodes of the input and a template that will be propagated during the
backward operation. So, enforcing or controlling the heterophily of template graphs, for
instance through regularization losses, can be a way to preserve such a signal in the input
graph.

Finally, exploring novel template-based global pooling using other graph (dis)similarities
from the OT literature could provide a better trade-off between computation speed, accuracy
and expressivity. For instance, it could be interesting to study this trade-off using srFGW.
More specifically, the second marginal of an OT matrix (hi = T>1n), from srFGW of an
input Gi onto a template graph Gk, can act as a relational global pooling. Learning from such
representations requires "differentiation" through the matrix T of the FGW loss, which can
be performed using e.g. our Mirror-Descent solver 13, whose iterations are auto-differentiable.
The latter could compete with TFGW while using less templates, as graph embeddings will
be nourished by knowledge from every sub-graphs contained in a template, instead of its
global structure.
One might also envision to perform global pooling via Graph Diffuse Wasserstein distances
(Barbe et al., 2021), from an input to graph templates encoded as

{
exp

(
−tkLk

)
F k

}
k∈[[K]]

,
where tk, Lk and F k, are respectively the heat parameter, the Laplacian and feature matrices
of a template. The use of Wasserstein discrepancies instead of FGW-based ones is interesting
to reduce the computational complexity of the pooling operation. However, the explicit
introduction of diffusion in the learned graph representations could also be subject to excessive
smoothing, detrimental to the encoding of a heterophilic behavior.

Over-smoothing in Graph Neural Networks. On the other hand, over-smoothing (i.e.
that GNN performances do not necessarily increase with the number of layers) also affect
GNN with TFGW pooling (see e.g. Figures 4.9 and 4.10).
Theoretical studies on this phenomenon are for now dedicated to node-level tasks, and seminal
results on linear GNN indicate that a trade-off in their depth has to be found (Keriven, 2022).
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Studying this phenomenon on graph-level tasks with linear GNN and TFGW pooling (finally
fed to a Logistic model), could be an interesting first step to better explain performances
reached in Chapter 4 and build upon it.
Analyses that consider non-linear GNN as GIN are for now only studied asymptotically
w.r.t the number of layers, tracking for instance the Dirichlet energy of node embeddings
across layers (Cai & Wang, 2020). The latter resonates with common energies used to define
special types of evolution equations as Gradient Flows to describe dynamical particle systems
(Kichenassamy et al., 1995; Santambrogio, 2017). De facto, several GNN have recently been
studied as discrete dynamical systems following specific energies (Di Giovanni et al., 2022),
and considering FGW as such might be of real interest.

Novel frameworks for graph pooling. One drawback of TFGW is that the learned
templates are not interpretable and correspond to extreme points of an envelop in the distance
embedding (Section 4.3.3). Learning templates as barycenters of inputs belonging to a given
class could enhance model interpretability. A distribution over classes can then be obtained
using a softmax over FGW distances of an input to the barycentric templates (Snell et al.,
2017).
However, iterative FGW barycenter estimation can have a prohibitive computational cost.
Relevant barycenters could rather be estimated from srFGW embeddings of a graph, onto a
(small) graph template that prescribes the barycenters’ topology. Even if FGW remains the
natural distance to compare the corresponding embedded graphs, establishing new relations
between FGW and e.g. a linear OT problem using the graph topology as ground-cost could
bring new theoretical and practical benefits. Notice that OT on a given graph metric space
has already been studied in various settings that might provide some leads (e.g. (Tong et al.,
2021; 2022; Le et al., 2022)).
Another perspective consists in using embedded graphs provided by the srFGW projection of
an input onto a template, directly as a learnable hierarchical graph pooling (Section 2.2.2).
Such an approach could bring a novel notion of "convolution" in the GNN literature.

7.2.2 Dictionary Learning and Generative modeling

On one hand, we addressed in Chapters 5 and 6 diverse unsupervised graph ML tasks, such
as graph clustering and completion, by means of Dictionary Learning (DL). These methods
come with their own limitations, such as their robustness, which would benefit from further
study. On the other hand, lots of novel Graph autoencoders (GAE) have emerged from
the GNN literature to learn network embeddings, mostly for node-level tasks, or generate
new graphs (Section 6, Wu et al. (2020)). GAE are deep neural architectures which map
nodes of a graph into a latent feature space and decode graph information from these latent
representations. The position of the two types of approaches is still unknown as to their
respective performances on these unsupervised tasks, plus the mixing of both paradigms is
almost unexplored, and should be investigated in a near future.

Going further on (sr)FGW-based DL. Classical OT to compare probability distributions
is known to be sensitive to outliers and missing data. Unbalanced OT, which compares
arbitrary positive measures whose total mass can vary, is a well studied way to limit these
sensitivity issues (Séjourné et al., 2022). This comparison translates to (F)GW which can
suffer from structural or feature noise naturally observed in real-world graphs. So we can
expect representations learned with our FGW based DL approaches to be sensitive to those.
The same holds to some extent for our srFGW DL, although it is an extreme case of unbalanced
FGW (UFGW, Thual et al. (2022)), the total amount of mass remains the same between
both distributions. So exploring novel settings in UFGW for graph DL could be a direct
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path to better and more robust representations, with promising relations to the literature on
inexact graph matching (Bunke & Allermann, 1983; Gori et al., 2005a).

Robustness could also be addressed thanks to a better understanding of the variations
of the OT matrix from (sr)FGW between two graphs, w.r.t common graph edits, like edge
removal or node feature transformations. The latter could lead to novel OT discrepancies,
where structural or feature perturbations can be directly included in the matching loss. At
a higher level, linear unmixing inherent in GDL, whose variations were partly studied in
Section 5.2.2, could also be made robust by including e.g. additive perturbations with a
bounded norm.

Finally, node feature embeddings which are ubiquitous in the GNN literature, deserve more
attention from FGW based DL methods, in my opinion. As most neighborhood aggregation
schemes are not invertible, such a feature processing is not relevant for DL, where one wants to
be able to reconstruct the graph from its embedding. Interestingly, a novel class of invertible
propagation schemes has been proposed for Graph Normalizing Flows (GNF) (Liu et al.,
2019). The latter could be used to define non-trivial multi-resolution DL, for instance by
learning a srFGW atom fitting well the graphs produced at each forward-pass in a GNF layer.
A consensus from unmixings computed at each resolution could outperform vanilla srFGW
DL on graphs clustering and completion.

FGW-based generative modeling. The seminal work of Xu et al. (2021a) made a first
link between GW barycenter estimation and generative graph models called (Lp) graphons
(Diaconis & Janson, 2007; Borgs et al., 2019). The latter are graph limits formalized as
(symmetric) measurable functions W : Ω2 → Y = [0, 1], with Ω a measurable space, satisfying
e.g. Ω = [0, 1] without loss of generality. Graphs of any order n can be sampled from a
graphon, first sampling n points {xi}i∈[[n]] uniformly in Ω = [0, 1] or using a predefined grid.
Then sampling the graph edges such that Aij ∼ Bernouilli(W (xi, xj)). Such a modeling is
known to produce dense graphs, and can be adapted to handle sparse graphs setting Y = R
and modifying the edge sampling (Borgs et al., 2016; Fabian et al., 2022).
Graphons can be approximated by step-functions, which can be estimated via a GW barycenter
of observed graphs (Xu et al., 2021a), whose structure and node weights dictate respectively
the graph edge sampling and the partitioning of Ω. Naturally, the barycenter order limits
the resolution of the graphon estimation. A first solution to this problem is to model the
GW barycenter implicitly via a neural network fθ : Ω2 → [0, 1] that outputs edge connections
from a pair of points sampled in Ω (Xia et al., 2022; Sitzmann et al., 2020).

Any GW-based DL can then be interpreted as a manifold of graphons from which graphs
can be sampled. This theory can also be extended to attributed graphs, and has been used
to derive a Graphon Autoencoder in Xu et al. (2021b). This paradigm allows to envision a
wide-range of novel generative models for unsupervised learning. And also might be used to
design adversarial training (Goodfellow et al., 2020; Miyato et al., 2018; Zhang et al., 2019a;
Fatras et al., 2021a) of GNN so they can lead to more robust representations.

On the theoretical side, relations with GW barycenter and graphons as limits of random
graphs, motivates the investigation of (sr)GW-based parameter estimation of well-known
random graph models, being actually graphons, such as Stochastic Block Models (Holland
et al. (1983)), or even Random Geometric Graph Models (Araya Valdivia & Yohann, 2019).
Moreover, more generic class of graph limits called Graphexes have been recently proposed
(Borgs et al., 2021), so understanding their relations to GW, or more generally to OT, might
open a novel door to graph generative modeling.
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Chapter 8

Annexes

8.1 Proofs of Chapter 3

8.1.1 Proof of Theorem 5: subgradient w.r.t distributions of GW

In this section we will prove the following result:

Theorem 4 (subgradient w.r.t masses of GW problem) Let (C,h) and (C,h)
be two graphs. Let T ∗ be an optimal coupling of the GW problem between (C,h), (C,h).
We define the following cost matrixM(T ∗) := L(C,C)⊗T ∗ =

(∑
kl(C1,ik − C2,jl)2T ∗kl

)
ij.

Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the following linear OT problem:

min
T∈U(h,h)

〈M(T ∗),T 〉F (8.1)

Then µ∗(T ∗) (resp ν∗(T ∗)) is a subgradient of the function GW2
2(C,C, · ,h) (resp

GW2
2(C,C,h, · )).

Before proving the Theorem 5, let us state the following theorem which relates a solution
of a Quadratic Program (QP) with a solution of a Linear Program (LP):

Theorem 12 (Murty (1988), Section 1) Consider the following (QP):

minx f(x) = cx+ xTQx
s.t. Ax = b, x ≥ 0 (8.2)

Then if x∗ is an optimal solution of (8.2) it is an optimal solution of the following (LP):

minx f(x) = (c + xT∗Q)x
s.t. Ax = b, x ≥ 0 (8.3)

Proof of the Theorem 4.

Step 1. In the following T ≥ 0 should be understood as ∀i, j Tij ≥ 0. Let (C,h) and
(C,h) be two graphs of order n and m with C1 ∈ Sn(R),C2 ∈ Sm(R) and (h,h) ∈ Σn ×Σm.
Let T ∗ be an optimal solution of the GW problem i.e. GW2(C,C,h,h) = 〈L(C,C) ⊗
T ∗,T ∗〉F . We define M(T ∗) := L(C,C)⊗ T ∗. We consider the problem:

min
T∈U(h,h)

〈M(T ∗),T 〉F = min
T∈U(h,h)

〈L(C,C)⊗ T ∗,T 〉F (8.4)

We will first show that the optimal coupling for the Gromov-Wasserstein problem is also
an optimal coupling for the problem (8.4), i.e minT∈U(h,h)〈M(T ∗),T 〉F = 〈M(T ∗),T ∗〉F .
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Applying Theorem 12 to our case gives exactly that:

T ∗ ∈ arg min
T∈U(h,h)

〈M(T ∗),T 〉F (8.5)

since T ∗ is an optimal solution of the GW problem and so minT∈U(h,h)〈M(T ∗),T 〉F =
〈M(T ∗),T ∗〉F .

Now let µ∗(T ∗),ν∗(T ∗) be an optimal solution to the dual problem of (8.4). Then by
strong duality it implies that:

min
T∈U(h,h)

〈M(T ∗),T 〉F = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 = 〈M(T ∗),T ∗〉F (8.6)

Since 〈M(T ∗),T ∗〉F = GW2(C,C,h,h) we have:

GW2(C,C,h,h) = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 (8.7)

Step 2. To prove the Theorem 5 the objective is to show that ν∗(T ∗) is a subgradient of
F : q → GW(C,C,h, q) (by symmetry the result will be true for µ∗(T ∗)). In other words
we want to prove that:

∀q ∈ Σm, 〈ν∗(T ∗), q〉 − 〈ν∗(T ∗),h〉 ≤ F (q)− F (h) (8.8)

We will show in the following an equivalent formulation of this condition. The dual variable
ν∗(T ∗) is a subgradient of F : q → GW2(C,C,h, q) if and only if:

∀q ∈ Σm, 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉 ≤ F (q) (8.9)

Indeed ν∗(T ∗) is a subgradient if and only if:

∀q ∈ Σm, 〈ν∗(T ∗), q〉 − 〈ν∗(T ∗),h〉 ≤ F (q)− F (h) (8.10)

However using (8.7) and the definition of F we have:

F (h) = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 (8.11)

So overall:

〈ν∗(T ∗), q〉 − 〈ν∗(T ∗),h〉 ≤ F (q)− (〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉)
⇐⇒ 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉 ≤ F (q)

(8.12)

Step 3. In order to prove Theorem 5 we have to prove that the equivalent condition
given by equation (8.12) is satisfied. We will do so by proving the following lemma leveraging
the weak-duality of the GW problem:

Lemma 1 For any vectors µ ∈ Rn,ν ∈ Rm we define:

F(µ,ν) := min
T≥0
〈L(C,C)⊗ T − µ1>m − 1nν

>,T 〉

Let T ∗ be an optimal solution of the GW problem. Consider:

min
T∈U(h,h)

〈M(T ∗),T 〉F (8.13)
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where M(T ∗) := L(C,C)⊗ T ∗. Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the prob-
lem in (8.13). If F(µ∗(T ∗),ν∗(T ∗)) = 0 then ν∗(T ∗) is a subgradient of F : q →
GW2(C,C,h, q)

Proof of lemma 1. Let q ∈ Σm be any weights vector be fixed. Recall that F : q →
GW2(C,C,h, q) so that:

F (q) = GW2(C,C,h, q) = min
T∈U(h,q)

〈L(C,C)⊗ T ,T 〉 (8.14)

The Lagrangian associated to (8.14) reads:

min
T≥0

max
µ,ν

L(T ,µ,ν) where L(T ,µ,ν) := 〈L(C,C)⊗ T ,T 〉+ 〈h− T1m,µ〉+ 〈q − T>1n,ν〉

(8.15)

Moreover by weak Lagrangian duality:

min
T≥0

max
µ,ν

L(T ,µ,ν) ≥ max
µ,ν

min
T≥0

L(T ,µ,ν) (8.16)

However:

max
µ,ν

min
T≥0

L(T ,µ,ν) = max
µ,ν
〈µ,h〉+ 〈ν, q〉+ min

T≥0
〈L(C,C)⊗ T − µ1>m − 1nν

>,T 〉

= max
µ,ν
〈µ,h〉+ 〈ν, q〉+ F(µ,ν)

So by considering the dual variable µ∗(T ∗),ν∗(T ∗) defined previously we have:

max
µ,ν

min
T≥0

L(T ,µ,ν) ≥ 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗), q〉+ F(µ∗(F∗),ν∗(T ∗)) (8.17)

Now combining (8.16) and (8.17) we have:

min
T≥0

max
µ,ν

L(T ,µ,ν) ≥ 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗), q〉+ F(µ∗(T ∗),ν∗(T ∗)) (8.18)

Since F (q) = minT≥0 maxµ,ν L(T ,µ,ν) we have proven that:

∀q ∈ Σm, 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉+ F(µ∗(T ∗),ν∗(T ∗)) ≤ F (q) (8.19)

However equation (8.12) states that ν∗(T ∗) is a subgradient of F if and only if:

∀q ∈ Σm, 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉 ≤ F (q) (8.20)

So combining (8.19) with (8.12) proves:

F(µ∗(T ∗),ν∗(T ∗)) ≥ 0 =⇒ ν∗(T ∗) is a subgradient of F (8.21)

However we have F (h) = 〈µ∗(T ∗),h〉 + 〈ν∗(T ∗),h〉 by (8.11). So F(µ∗(T ∗),ν∗(T ∗)) ≤ 0
using (8.19) with q = h. So we can only hope to have F(µ∗(T ∗),ν∗(T ∗)) = 0. �

Step 4. The previous lemma states that it is sufficient to look at the quantity F(µ∗(T ∗),ν∗(T ∗))
in order to prove that ν∗(T ∗) is a subgradient of F . Interestingly the condition F(µ∗(T ∗),ν∗(T ∗)) =
0 is satisfied as proven in the following:

We want to study:

F(µ∗(T ∗),ν∗(T ∗)) = min
T≥0
〈L(C,C)⊗ T − µ∗(T ∗)1>m − 1nν

∗(T ∗)>,T 〉
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We define H(T ) := 〈Ł(C,C) ⊗ T − µ∗(T ∗)1>m − 1nν
∗(T ∗)>,T 〉. Since T ∗ is optimal

coupling for minT∈U(h,h)〈M(T ∗),T 〉F by (8.5) then for all i, j we have T ∗ij(M(T ∗)ij −
α∗i (T ∗)− β∗j (T ∗)) = 0 by the property of the optimal couplings for the Wasserstein problems.
Equivalently:

∀(i, j) ∈ [n]× [m], T ∗ij([L(C,C)⊗ T ∗]ij − α∗i (T ∗)− β∗j (T ∗)) = 0 (8.22)

Then:

H(T ∗) = Tr
(
T ∗>(L(C,C)⊗ T ∗ − µ∗(T ∗)1>m − 1nν

∗(T ∗)>)
)

=
∑
ij

T ∗ij(L(C,C)⊗ T ∗ − µ∗(T ∗)1>m − 1nν
∗(T ∗)>)ij

=
∑
ij

T ∗ij([L(C,C)⊗ T ∗]ij − α∗i (T ∗)− β∗j (T ∗)) = 0

(8.23)

Which proves F(µ∗(T ∗),ν∗(T ∗)) = 0. �

8.1.2 Proof of Theorem 7: subgradient w.r.t distributions of FGW

In this section we will prove the following theorem 7 which extends the theorem 5 to the
FGW distance:

Theorem 6 (subgradient w.r.t masses of FGW ) Let (C, ,F ,h) and (C,F ,h) be
two attributed graphs. Let T ∗ be an optimal coupling of the FGW problem between
(C,F ,h), (C,F ,h). We define the following cost matrix Mα(T ∗) := αL(C,C)⊗ T ∗ +
(1−α)D(F ,F ) =

(
α
∑
kl(C1,ik − C2,jl)2T ∗kl + (1− α)‖Fi − F j‖22

)
ij
. Let µ∗(T ∗),ν∗(T ∗)

be the dual variables of the following linear OT problem:

min
T∈U(h,h)

〈Mα(T ∗),T 〉F (8.24)

Then µ∗(T ∗) (resp ν∗(T ∗)) is a subgradient of the function FGW2
2,α(C,F ,C,F , · ,h)

(resp FGW2
2(C,F ,C,F ,h, · )).

Proof of the Theorem 6.

Step 1. Let T ∗ be an optimal solution of the FGW problem i.e. FGW2,α(C,F ,C,F ,h,h) =
〈αL(C,C) ⊗ T ∗ + (1 − α)D(F ,F ),T ∗〉F . We define Mα(T ∗) := αL(C,C) ⊗ T ∗ + (1 −
α)D(F ,F ). We consider the problem:

min
T∈U(h,h)

〈Mα(T ∗),T 〉F = min
T∈U(h,h)

〈αL(C,C)⊗ T ∗ + (1− α)D(F ,F ),T 〉F (8.25)

We will first show that the optimal coupling for the Fused Gromov-Wasserstein problem is also
an optimal coupling for the problem (8.25), i.e minT∈U(h,h)〈Mα(T ∗),T 〉F = 〈Mα(T ∗),T ∗〉F .
Applying Theorem 12 to our case gives exactly that:

T ∗ ∈ arg min
T∈U(h,h)

〈Mα(T ∗),T 〉F (8.26)

since T ∗ is an optimal solution of the FGW problem, we do have the desired relation
minT∈U(h,h)〈Mα(T ∗),T 〉F = 〈Mα(T ∗),T ∗〉F .
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Now let µ∗(T ∗),ν∗(T ∗) be an optimal solution to the dual problem of (8.4). Then by
strong duality it implies that:

min
T∈U(h,h)

〈Mα(T ∗),T 〉F = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 = 〈Mα(T ∗),T ∗〉F (8.27)

Since 〈Mα(T ∗),T ∗〉F = FGW2,α(C,F ,C,F ,h,h) we have:

FGW2,α(C,F ,C,F ,h,h) = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 (8.28)

Step 2. To prove the Theorem 7 the objective is to show that ν∗(T ∗) is a subgradient
of F : q → FGW2,α(C,F ,C,F ,h, q) (by symmetry the result will be true for µ∗(T ∗)). In
other words we want to prove that:

∀q ∈ Σm, 〈ν∗(T ∗), q〉 − 〈ν∗(T ∗),h〉 ≤ F (q)− F (h) (8.29)

Following the same development than for the step 2 of the proof of theorem 5, we have the
following result for FGW, which is equivalent to (8.12) for GW. The dual variable ν∗(T ∗) is
a subgradient of F : q → FGW2,α(C,F ,C,F ,h, q) if and only if:

∀q ∈ Σm, 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉 ≤ F (q) (8.30)

Step 3. In order to prove Proposition 7 we have to prove that the equivalent condition
given by equation (8.30) is satisfied. To this end we will prove an analog result for FGW
than the one stated for the Lagrangian of GW in Lemma 1.

Let us define for any vectors µ ∈ Rn,ν ∈ Rm,

F(µ,ν) := min
T≥0
〈αL(C,C)⊗ T + (1− α)D(F ,F )− µ1>m − 1nν

>,T 〉

= min
T≥0
〈Mα(T )− µ1>m − 1nν

>,T 〉

Let µ∗(T ∗),ν∗(T ∗) be the dual variables of the problem in (8.26). We will the fol-
lowing implication: If F(µ∗(T ∗),ν∗(T ∗)) = 0 then ν∗(T ∗) is a subgradient of F : q →
FGW2,α(C,F ,C,F ,h, q).

Let q ∈ Σm be any weights vector be fixed. The Lagrangian associated to the primal
problem giving F (q) reads

F (q) min
T≥0

max
µ,ν

L(T ,µ,ν) (8.31)

where

L(T ,µ,ν) := 〈αL(C,C)⊗ T + (1− α)D(F ,F ),T 〉+ 〈h− T1m,µ〉+ 〈q − T>1n,ν〉
= 〈Mα(T ),T 〉+ 〈h− T1m,µ〉+ 〈q − T>1n,ν〉

(8.32)

Moreover by weak Lagrangian duality:

min
T≥0

max
µ,ν

L(T ,µ,ν) ≥ max
µ,ν

min
T≥0

L(T ,µ,ν) (8.33)

However:

max
µ,ν

min
T≥0

L(T ,µ,ν) = max
µ,ν
〈µ,h〉+ 〈ν, q〉+ min

T≥0
〈Mα(T )− µ1>m − 1nν

>,T 〉

= max
µ,ν
〈µ,h〉+ 〈ν, q〉+ F(µ,ν)
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So by considering the dual variable µ∗(T ∗),ν∗(T ∗) defined previously we have:

max
µ,ν

min
T≥0

L(T ,µ,ν) ≥ 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗), q〉+ F(µ∗(T ∗),ν∗(T ∗)) (8.34)

Now combining (8.33) and (8.34) we have:

min
T≥0

max
µ,ν

L(T ,µ,ν) ≥ 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗), q〉+ F(µ∗(T ∗),ν∗(T ∗)) (8.35)

Since F (q) = minT≥0 maxµ,ν L(T ,µ,ν) we have proven that:

∀q ∈ Σm, 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉+ F(µ∗(T ∗),ν∗(T ∗)) ≤ F (q) (8.36)

However equation 8.30 states that ν∗(T ∗) is a subgradient of F if and only if:

∀q ∈ Σm, 〈ν∗(T ∗), q〉+ 〈µ∗(T ∗),h〉 ≤ F (q) (8.37)

So combining (8.36) with (8.30) proves:

F(µ∗(T ∗),ν∗(T ∗)) ≥ 0 =⇒ ν∗(T ∗) is a subgradient of F (8.38)

However using the definition of F and the relation in 8.28, we have

F (h) = 〈µ∗(T ∗),h〉+ 〈ν∗(T ∗),h〉 (8.39)

So injecting (8.39) in (8.36) with q = h, we have F(µ∗(T ∗),ν∗(T ∗)) ≤ 0. So we can only
hope to have F(µ∗(T ∗),ν∗(T ∗)) = 0. �

Step 4. The previous lemma states that it is sufficient to look at the quantity F(µ∗(T ∗),ν∗(T ∗))
in order to prove that ν∗(T ∗) is a subgradient of F . Interestingly the condition F(µ∗(T ∗),ν∗(T ∗)) =
0 is satisfied as proven in the following:

We want to study:

F(µ∗(T ∗),ν∗(T ∗)) = min
T≥0
〈αL(C,C)⊗ T + (1− α)D(F ,F )− µ∗(T ∗)1>m − 1nν

∗(T ∗)>,T 〉

We define H(T ) := 〈αŁ(C,C)⊗ T + (1− α)D(F ,F )− µ∗(T ∗)1>m − 1nν
∗(T ∗)>,T 〉. Since

T ∗ is optimal coupling for minT∈U(h,h)〈M(T ∗),T 〉F by (8.26) then for all i, j we have
T ∗ij(M(T ∗)ij − µ∗i (T ∗) − ν∗j (T ∗)) = 0 by the property of the optimal couplings for the
Wasserstein problems. Equivalently:

∀(i, j) ∈ [n]× [m], T ∗ij(α[L(C,C)⊗ T ∗]ij + (1− α)D(F ,F )ij − µ∗i (T ∗)− ν∗j (T ∗)) = 0
(8.40)

Then:

H(T ∗) = Tr
(
T ∗>(αL(C,C)⊗ T ∗ + (1− α)D(F ,F )− µ∗(T ∗)1>m − 1nν

∗(T ∗)>)
)

=
∑
ij

T ∗ij(αL(C,C)⊗ T ∗ + (1− α)D(F ,F )− µ∗(T ∗)1>m − 1nν
∗(T ∗)>)ij

=
∑
ij

T ∗ij(α[L(C,C)⊗ T ∗]ij + (1− α)D(F ,F )ij − µ∗i (T ∗)− ν∗j (T ∗)) = 0

(8.41)

Which proves F(µ∗(T ∗),ν∗(T ∗)) = 0.
�
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8.2 Proofs and additional results of Chapter 4

8.2.1 Notations and preliminaries

Notations An undirected attributed graph G with n nodes can be modeled in the OT
context as a tuple (C,F ,h), where C ∈ Sn(R) is a matrix encoding relationships between
nodes, F = (f1, ...,fn)> ∈ Rn×d is a node feature matrix and h ∈ Σn is a vector of weights
modeling the relative importance of the nodes within the graph (Figure 1 of the main paper).
We always assume in the following that values in C and F are finite. Let us now consider
two such graphs G = (C,F ,h) and G = (C,F ,h), of respective sizes n and n (with possibly
n 6= n). The Fused Gromov-Wasserstein (FGW) distance is defined for α ∈ [0, 1] as Vayer
et al. (2020; 2019a):

FGWα(C,F ,h,C,F ,h) = min
T∈U(h,h)

EFGWα (C,F ,C,F ,T ) (8.42)

with U(h,h) := {T ∈ Rn×n+ |T1n = h,T>1n = h}, the set of admissible coupling between h
and h. For any T ∈ U(h,h), the FGW cost EFGWα can be decomposed as

EFGWα (C,F ,C,F ,T ) = αEGW (C,C,T ) + (1− α)EW (F ,F ,T ) (8.43)

which respectively refers to a Gromov-Wasserstein matching cost EGW between graph struc-
tures C and C reading as

EGW (C,C,T ) =
∑
ijkl

(Cij − Ckl)2TikTjl (8.44)

and a Wasserstein matching cost EW between nodes features F and F ,

EW (F ,F ,T ) =
∑
ik

‖fi − fk‖22Tik (8.45)

Preliminaries Given two graphs G and G, we first provide a reformulation of each matching
costs EGW and EW through matrix operations which will facilitate the readability of our
proof.

By first expanding the GW matching cost given in 8.44 and using the marginal constraints
over T ∈ U(h,h), EGW can be expressed as

EGW (C,C,T ) =
∑
ij

C2
ijhihj +

∑
kl

C
2
klhkhl − 2

∑
ijkl

CijCklTikTjl

= 〈C2,hh>〉+ 〈C2
,hh

>〉 − 2〈T>CT ,C〉

= 〈T>C2T ,1n×n〉+ 〈TC2
T>,1n×n〉 − 2〈T>CT ,C〉

(8.46)

where power operations are applied element-wise and 1p×q is the matrix of ones of size p× q
for any integers p and q.

Then through similar operations EW can be expressed as

EW (C,F ,h,C,F ,h,T ) =
∑
i

‖fi‖22hi +
∑
k

‖fk‖22hk − 2
∑
ik

〈fi,fk〉Tik

= 〈F 21d,h〉+ 〈F 2
1d,h〉 − 2〈FF>,T 〉

= 〈T>F 2,1n×d〉+ 〈TF 2
,1n×d〉 − 2〈F>T ,F>〉

(8.47)
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8.2.2 Proof of Lemma 3: TFGW invariance to strong isomorphism

Lemma 2 (TFGW invariance to strong isomorphism) The TFGW embeddings
are invariant to strong isomorphism.

Proof of Lemma 2. First, as our TFGW embeddings can operate after embedding the
nodes feature of any graph, let us also introduce such an application. Given any feature
matrix F = (f1, ...,fn)> ⊂ Rn×d, we denote by φ : Rn×d → Rn×d′ an application such that
φ(F ) = (ϕ(f1), ..., ϕ(fn))> with ϕ : Rd → Rd′ .

Let us now consider any pair of graphs G1 = (C1,F1,h1) and G2 = (C2,F2,h2) defined
as in Subsection 8.2.1. Assume that G1 and G2 are strongly isomorphic. This is equivalent to
assuming that they have the same number of nodes n and there exists a permutation matrix
P ∈ {0, 1}n×n such that C2 = PC1P

>, F2 = PF1 and h2 = Ph1 (Vayer et al., 2019a;
Chowdhury & Mémoli, 2019).

First observe that the application φ preserves the relation of strong isomorphism. Indeed,
as φ operates on each node independently through ϕ, we have φ(F2) = Pφ(F1) i.e,

φ(F2) = (ϕ(F2,1), ..., ϕ(F2,n)) = P (ϕ(F1,1), ..., ϕ(F1,n)) = Pφ(F1) (8.48)

Therefore the embedded graphs (C1, φ(F1),h1) and (C2, φ(F2),h2) are also strongly isomor-
phic and are associated by the same permutation P linking G1 and G2.

Let us consider any graph template G = (C,F ,h). We will prove now that the FGW cost
from (C1, φ(F1),h1) to G applied in T is the same than the FGW cost from (C2, φ(F2),h2)
to G applied in PT . To this end we will prove that analog relations hold for the Gromov-
Wasserstein and the Wasserstein matching costs independently (in this generic scenario), then
we will conclude thanks the equation (8.43) which expresses FGW as a linear combination
between both aforementioned costs.

First using the reformulation of EGW of equation (8.46), we have

EGW (C1,C,T ) = 〈T>C2
1T ,1n×n〉+ 〈TC2

T>,1n×n〉 − 2〈T>C1T ,C〉

= 〈T>P>C2
2PT ,1n×n〉+ 〈TC2

T>,P>1n×nP 〉 − 2〈T>P>C2PT ,C〉

= 〈(PT )>C2
2PT ,1n×n〉+ 〈PTC2(PT )>,1n×n〉 − 2〈(PT )>C2PT ,C〉

= EGW (C2,C,PT )
(8.49)

where we used C2
1 = (P>C2P )2 = P>C2

2P and the invariance to permutations of 1n×n.
Then, for EW similar operations using equation (8.47) and φ(F2)2 = (Pφ(F1))2 = Pφ(F1)2

lead to,

EW (φ(F1),F ,T ) = 〈T>φ(F1)2,1n×d〉+ 〈TF 2
,1n×d〉 − 2〈φ(F1)>T ,F>〉

= 〈T>P>φ(F2)2,1n×d〉+ 〈TF 2
,P1n×d〉 − 2〈φ(F2)>PT ,F>〉

= 〈(PT )>φ(F2)2,1n×d〉+ 〈PTF 2
,1n×d〉 − 2〈φ(F2)>PT ,F>〉

= EW (φ(F2),F ,PT )

(8.50)
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Therefore, the same result holds for FGW using (8.43) and equations (8.49)-(8.50) as

EFGWα (C1, φ(F1),C,F ,T ) = αEGW (C1,C,T ) + (1− α)EW (φ(F1),F ,T )
= αEGW (C2,C,PT ) + (1− α)EW (φ(F2),F ,PT )
= EFGWα (C2, φ(F2),C,F ,PT )

(8.51)

Following an analog derivation than above, one can easily prove for T ∈ U(h2,h) that

EFGWα (C2, φ(F2),C,F ,T ) = EFGWα (C1, φ(F1),C,F ,P>T ) (8.52)

Using the relations (8.51) and (8.52), we will now prove the following equality

FGWα(C1, φ(F1),h1,C,F ,h) = FGWα(C2, φ(F2),h2,C,F ,h) (8.53)

First of all, the existence of optimal solutions for both FGW problems is ensured by
the Weierstrass theorem (Santambrogio, 2015). We denote an optimal coupling T ?1 ∈
U(h1,h) for FGWα(C1, φ(F1),h1,C,F ,h). Assume there exists an optimal coupling T ?2 for
FGWα(C2, φ(F2),h2,C,F ,h) such that

EFGWα (C2, φ(F2),C,F ,T ?2 ) < EFGWα (C2, φ(F2),C,F ,PT ?1 ) (8.54)

then using the equalities (8.52) for the l.h.s and (8.51) for the r.h.s, we have

EFGWα (C1, φ(F1),C,F ,P>T ?2 ) < EFGWα (C1, φ(F1),C,F ,T ?1 ) (8.55)

which contradicts the optimality of T ?1 . Therefore such T ?2 can not exist and necessarily PT ?1
is an optimal coupling for FGWα(C2, φ(F2),h2,C,F ,h). Finally, we can conclude using the
optimality of T ?1 and PT ?1 for their respective FGW matching problems and the equality
(8.51):

EFGWα (C1, φ(F1),C,F ,T ?1 ) = EFGWα (C2, φ(F2),C,F ,PT ?1 )
⇔ FGWα(C1, φ(F1),h1,C,F ,h) = FGWα(C2, φ(F2),h2,C,F ,h)

(8.56)

�

8.2.3 Proof of Lemma 4: TFGW invariance to weak isomorphism

Lemma 3 (TFGW invariance to weak isomorphism) The TFGW embeddings are
invariant to weak isomorphism.

Proof of Lemma 3. Let us consider any pair of graphs G1 = (C1,F1,h1) and G2 =
(C2,F2,h2) which are now assumed to be weakly isomorphic. According to the notion of weak
isomorphism, two nodes of a graph, e.g the nodes xi and xj (xi 6= xj) of G1, are informally the
same if they have the same "internal perception", i.e C1(xi, xj) = C1(xi, xi) = C1(xj , xj) =
C1(xj , xi) and F1(xi) = F1(xj), and the same "external perception", i.e all the incoming and
outgoing edge weights are the same. Therefore there exists a canonical representation of G1
and G2 referred as Gc = (Cc,Fc,hc) composed of C = | supp(hc)| nodes such that

• G1 and G2 are weakly isomorphic to Gc

• Gc does not admit any pair of nodes which have the same internal and external
perceptions referred as canonical nodes. Moreover the masses assigned to these canonical
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nodes correspond to the sum of masses of the corresponding nodes which have the same
internal and external perceptions in G1 and G2 respectively.

Therefore there exist membership matrices M1 ∈ {0, 1}n1×C and M2 ∈ {0, 1}n2×C , such that
for

∀k ∈ {1, 2}, Ck = MkCcM
>
k , Fk = MkFc (8.57)

but we cannot deduce hk from hc as the operation of summing masses of weakly isomorphic
nodes of Gk to form hc is not bijective. However it is easy to check that T ∗kc = diag(hk)Mk ∈
U(hk,hc) is an optimal coupling from Gk to Gc.

One can first observe that the application Φ preserves the relation of weak isomorphism
applied over Fk described in (8.57). Indeed as Φ operates on each node independently though
φ, we have Φ(Fk) = MkΦ(Fc) for k ∈ {1, 2} as,

Φ(Fk) = (φ(Fk,1), ..., φ(Fk,nk)) = Mk(φ(Fc,1, ..., φ(Fc,C))) = MkΦ(Fc) (8.58)

Let us consider any graph template G = (C,F ,h). We will prove now that the FGW cost
from (C1, φ(F1),h1) to G is the same than the ones from (C2, φ(F2),h2) to G, i.e.

FGWα(C1, φ(F1),h1,C,F ,h) = FGWα(C2, φ(F2),h2,C,F ,h) (8.59)

Let us consider any k ∈ {1, 2} and Tk ∈ U(hk,h). We will now aim at expressing any
FGW cost between (Ck,Φ(Fk),hk) and G, as a FGW cost between (Cc,Φ(Fc),hc) and G.
First using the reformulation of EGW of equation (8.46), we have

EGW (Ck,C,Tk) = 〈T>k C2
kTk,1n×n〉+ 〈TkC

2
T>k ,1nk×nk〉 − 2〈T>k C1Tk,C〉

= 〈T>k MkC
2
cM

>
k Tk,1n×n〉+ 〈TkC

2
T>k ,Mk1C×CM

>
k 〉

− 2〈T>k MkCcM
>
k Tk,C〉

= 〈(M>
k Tk)>C2

cM
>
k Tk,1n×n〉+ 〈M>

k TkC
2(M>

k Tk)>,1C×C〉
− 2〈(M>

k Tk)>CcM>
k Tk,C〉

= EGW (Cc,C,M>
k Tk)

(8.60)

Where the second equality comes from the relations, C2
k = (MkCcM

>
k )2 = MkC

2
cM

>
k

and 1nk×nk = Mk1C×CM
>
k .

Then, for EW similar operations using equation (8.47), φ(Fk)2 = (Mkφ(Fc))2 = Mkφ(Fc)2

and M>
k 1nk×d = 1C×d lead to,

EW (φ(Fk),F ,Tk) = 〈T>k φ(Fk)2,1n×d〉+ 〈TkF
2
,1nk×d〉 − 2〈φ(Fk)>Tk,F

>〉

= 〈T>k Mkφ(Fc)2,1n×d〉+ 〈TkF
2
,M>

k 1n×d〉 − 2〈φ(Fc)>M>
k Tk,F

>〉

= 〈(M>
k Tk)>φ(Fc)2,1n×d〉+ 〈M>

k TkF
2
,1C×d〉 − 2〈φ(Fc)>M>

k Tk,F
>〉

= EW (φ(Fc),F ,M>
k Tk)

(8.61)

Therefore, the same result holds for FGW using (8.43) and equations (8.60)-(8.61) as

EFGWα (Ck, φ(Fk),C,F ,Tk) = αEGW (Ck,C,Tk) + (1− α)EW (φ(Fk),F ,Tk)
= αEGW (Cc,C,M>

k Tk) + (1− α)EW (φ(Fc),F ,M>
k Tk)

= EFGWα (Cc, φ(Fc),C,F ,M>
k Tk)

(8.62)
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Now our goal will be to express any FGW cost between (Cc,Φ(Fc),hc) and G, as a FGW
cost between (Ck,Φ(Fk),hk) and G. The procedure will be rather equivalent to the one to
get the opposite relation stated in equation (8.62), however to proceed we need to express
reciprocal relations than the one in (8.57) giving Ck (resp. Fk) depending on Cc (resp. Fc),
i.e we need to express Cc (resp. Fc) based on Ck (resp. Fk).

We can show that simple developments of the following products of matrices lead to the
following relations:

∀k ∈ {1, 2}, Cc = M̃>
k CkM̃k, Fc = M̃>

k Fk (8.63)

where M̃k = diag(hk)Mkdiag( 1
hc

) is a reweighed membership matrix.
First observe that for any coupling Tc ∈ U(hc,h), we have M̃kTc ∈ U(hk,h). Moreover

simple computations give M̃>
k C

2
kM̃k = C2

c and M̃>
k 1nk×nkM̃k = 1C×C . The latter relations

and the equation (8.63) lead to the following relation between the GW cost of Cc and Ck to
C:

EGW (Ck,C,M̃kTc) = 〈T>c M̃>
k C

2
kM̃kTc,1n×n〉+ 〈M̃kTcC

2
T>c M̃

>
k ,1nk×nk〉

− 2〈T>c M̃>
k CkM̃kTk,C〉

= 〈T>c C2
cTc,1n×n〉+ 〈M̃kTcC

2
T>c M̃

>
k ,1nk×nk〉 − 2〈T>c CcTk,C〉

= 〈T>c C2
cTc,1n×n〉+ 〈TcC

2
,1C×C〉 − 2〈T>c CcTk,C〉

= EGW (Cc,C,Tc)
(8.64)

Then, for EW similar operations using equation (8.47), equation (8.63), Φ(Fc)2 = M̃>
k Φ(Fk)2

and M̃>
k 1nk×d = 1C×d lead to,

EW (φ(Fk),F ,M̃kTc) = 〈T>c M̃>
k φ(Fk)2,1n×d〉+ 〈M̃kTcF

2
,1nk×d〉 − 2〈φ(Fk)>M̃kTc,F

>〉

= 〈T>c φ(Fc)2,1n×d〉+ 〈TcF
2
,1C×d〉 − 2〈φ(Fc)>Tc,F

>〉
= EW (φ(Fc),F ,Tc)

(8.65)

Therefore, the same result holds for the FGW cost using (8.43) and equations (8.64) and
(8.65),

EFGWα (Cc, φ(Fc),C,F ,Tc) = EFGWα (Ck, φ(Fk),C,F ,M̃kTc) (8.66)

Therefore denoting T ∗k an optimal coupling from (Ck,Φ(Fk),hk) to G and T ∗c an optimal
coupling from (Cc,Φ(Fc),hc) to G, we have from equations (8.62) and (8.66),

EFGWα (Ck, φ(Fk),C,F ,T ∗k ) = EFGWα (Cc, φ(Fc),C,F ,M>
k T

∗
k )

EFGWα (Cc, φ(Fc),C,F ,T ∗c ) = EFGWα (Ck, φ(Fk),C,F ,M̃kT
∗
c )

(8.67)

Thus, as M>
k T

∗
k is a suboptimal admissible coupling in U(hc,h), we have

EFGWα (Cc, φ(Fc),C,F ,T ∗c ) ≤ EFGWα (Cc, φ(Fc),C,F ,M>
k T

∗
k )

= EFGWα (Ck, φ(Fk),C,F ,T ∗k )
(8.68)
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and similarly as M̃kT
∗
c is a suboptimal admissible coupling in U(hk,h), we have

EFGWα (Ck, φ(Fk),C,F ,T ∗k ) ≤ EFGWα (Ck, φ(Fk),C,F ,M̃kT
∗
c )

= EFGWα (Cc, φ(Fc),C,F ,T ∗c )
(8.69)

Therefore for any k ∈ {1, 2},

EFGWα (Ck, φ(Fk),C,F ,T ∗k ) = EFGWα (Cc, φ(Fc),C,F ,T ∗c ) (8.70)

which implies the desired result i.e

FGWα(C1,Φ(F1),h1,C,F ,h) = FGWα(C2,Φ(F2),h2,C,F ,h) (8.71)

�

8.2.4 Complements on graphs classification benchmark

Description of datasets. We report in Table 8.1 some statistics on the datasets used for
various graphs classification or clustering benchmark.

Table 8.1: Statistics on real datasets considered in some classification and clustering benchmarks.

datasets features #graphs #classes mean #nodes min #nodes max #nodes median #nodes
MUTAG {0..6} 188 2 17.93 10 28 17.5
PTC-MR {0, .., 17} 344 2 14.29 2 64 13
NCI1 {0, ..., 36} 4110 2 29.87 3 111 27
BZR R3 405 2 35.75 13 57 35
COX2 R3 467 2 41.23 32 56 41
ENZYMES R18 600 6 32.63 2 126 32
PROTEIN R29 1113 2 29.06 4 620 26
IMDB-B None 1000 2 19.77 12 136 17
IMDB-M None 1500 3 13.00 7 89 10
COLLAB None 5000 3 74.5 32 492 52

Learning with an alpha per template.
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Table 8.2: Classification results from 10-fold cross-validation of our TFGW models in various
scenarios: for L ∈ {0, 1, 2} GIN layers, we either force the trade-off parameter α to be shared by all
templates (shared, default for the method), or we learn an α for each template (indep). We learn
the templates weights hk by default. The first and second best performing method are respectively
highlighted in bold and underlined.

model inputs α MUTAG PTC PROTEIN
TFGW (L=0) ADJ shared 94.2(3.0) 64.9(4.1) 78.8(2.2)

ADJ indep 94.1(3.4) 65.2(4.3) 79.1(2.6)
SP shared 95.9(4.1) 67.9(5.8) 79.5(2.9)
SP indep 94.7(2.9) 67.3(5.2) 79.9(3.2)

TFGW(L=1) ADJ shared 94.8(3.1) 68.7(5.8) 81.5(2.8)
ADJ indep 95.4(3.5) 69.5(5.6) 80.9(2.4)
SP shared 95.4(3.5) 70.9(5.5) 82.1(3.4)
SP indep 95.9(4.1) 70.2(5.6) 81.5(2.8)

TFGW (L=2) ADJ shared 96.4(3.3) 72.4(5.7) 82.9(2.7)
ADJ indep 94.2(3.8) 69.0(5.2) 80.5(3.1)
SP shared 94.8(3.5) 70.8(6.3) 82.0(3.0)
SP indep 94.1(3.4) 69.8(5.5) 80.3(2.5)

8.3 Proofs and additional results of Chapter 5

8.3.1 Proof of Lemma 5: convexity of the unmixing problem w.r.t the
embeddings

Lemma 4 (FGW unmixing sub-problem w.r.t embeddings) For any input graph
(C,F ,h), any dictionary {(Ck,F k,h)}k∈[[K]] and any admissible coupling T ∈ U(h,h),
the unmixing sub-problem

min
w∈ΣK

EFGWα

(
C,F ,h, C̃(w), F̃ (w),h

)
(8.72)

is a convex problem which is equivalent to the following canonical quadratic program

min
w∈ΣK

w>Qαw +w>c (8.73)

where Qα = 2(αMGW + (1 − α)MW ) is PSD as a convex combination of the PSD
matrices

MGW =
(
〈DhCp,CqDh〉F

)
pq

and MW = (〈D1/2
h
F p,D

1/2
h
F q〉F )pq∈[S]

(8.74)
denoting Dh = diag(h).
Finally, c = (ck)k∈[[K]] satisfies ck = −2α〈T>CT ,Ck〉 − 2(1− α)〈T>F ,F k〉.

Proof of Lemma 4. We start by developing the objective function

EFGWα (C,F , C̃(w), F̃ (w),T ) = αEGW (C, C̃(w),T ) + (1− α)EW (F , F̃ (w),T ) (8.75)
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for any embedding w ∈ ΣK and any admissible transport matrix T ∈ U(h,h). We do so by
first handling the GW cost EGW and then the Wasserstein cost EW :

EGW (C,
∑
s

wsCs,T ) =
∑
ij

C2
ijhihj +

∑
kl

(
∑
s

wsCs,kl)2hkhl − 2
∑
ijkl

Cij(
∑
s

wsCs,kl)TikTjl

=
∑
ij

C2
ijhihj +

∑
kl

∑
pq

wpwqCp,klCq,klhkhl − 2
∑
ijkl,s

wsCijCs,klTikTjl

(8.76)

Therefore the first derivates w.r.t w of the GW cost in the unmixing problem satisfies

∂EGW

∂wi
= 2

∑
kl,p

wpCi,klCp,klhkhl − 2
∑
ijkl

CijCi,klTikTjl

= 2{〈Ci � C̃(w),hh>〉 − 〈T>CT ,Ci〉}

(8.77)

Then the second derivatives read as

∂2EGW

∂wj∂wi
= 2〈Ci �Cj ,hh

>〉 (8.78)

Using Tr
(
(C1 �C2)>xx>

)
= Tr

(
(C1 �C2)xx>

)
= Tr

(
C>1 diag(x)C2 diag(x)

)
, we have

∂2EGW

∂wj∂wi
= 2 Tr{D1/2

h
C
>
i D

1/2
h
D

1/2
h
CjD

1/2
h
} (8.79)

Then using the relation Tr{A>B} = vec(A)>vec(B) (see e.g Petersen et al. (2008),
equation 521), we have the following factorization MGW

ij = 2vec(Bi)>vec(Bj), where
∀k ∈ [K],Bk = D

1/2
h CkD

1/2
h and vec is the vectorization operator of a matrix which

converts the matrix into a column vector by stacking the columns of the matrix A on top of
one another.
Hence with B = (Bk)k∈[[K]] ⊂ RN2×K , the Hessian associated to the GW cost, denoted
here MGW , admits for any w ∈ ΣK , the following PSD factorization MGW (w) = 2BTB.
Therefore MGW is a PSD matrix.

EW (F ,
∑
s

wsF s,h) =
∑
i

‖Fi‖22hi +
∑
j

‖
∑
s

wsF s‖22hj − 2
∑
ij

〈Fi,
∑
s

wsF s,j〉Tij

=
∑
i

‖Fi‖22hi +
∑
pq

wpwq
∑
j

〈F p,j ,F q,j〉hj − 2
∑
s

ws
∑
ij

〈Fi,F s,j〉Tij

(8.80)

Therefore the first derivates w.r.t w of the Wasserstein cost involved in the FGW unmixing
reads for any q ∈ [[K]] as

∂EW

∂wq
= 2

∑
p

wp
∑
j

〈F q,j ,F p,j〉hj − 2
∑
ij

〈Fi,F q,j〉Tij

= 2〈DhF̃ (w)− T>F ,F q〉
(8.81)
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Then the second derivates read as

∂2EW

∂wp∂wq
= 2

∑
j

〈F q,j ,F p,j〉hj = 2〈D1/2
h
F p,D

1/2
h
F q〉 (8.82)

Therefore the Hessian associated to the Wasserstein cost reads asMW (w) = 2
(
〈D1/2

h F p,D
1/2
h F q〉F

)
p,q∈[[K]]

.

MW is also a PSD matrix as it can be factorized asMW = 2B>B withB =
(
vec(D1/2

h F k)
)
k∈[[K]]

∈

RNd×K .
Therefore the Hessian M associated to the FGW cost reads as

M(w) = αMGW (w) + (1− α)MW (w) (8.83)

is also a PSD matrix as the convex combination of the PSD matrices MGW and MW . Thus
we can conclude that w → EFGWα (C,F , C̃(w), F̃ (w),T ) is a convex function.
�

8.3.2 Line-search of the Conditional Gradient solver for the unmixing
subproblem

For completeness, we detail here the factorization used in the line-search sub-problem of
Algorithm 7. As explicited in (5.10), the exact line-search comes down to solve for:

γ? = arg min
γ∈(0,1)

EFGWα (C, C̃(z(γ)),T ) (8.84)

where z(γ) = w + γ(x? −w) = w + γ∆w. This problem can be easily solved by observing
that the FGW loss EFGWα can be factored as a second-order polynomial function in γ,
f(γ) = aγ2 + bγ + c.

Indeed, following equations (8.46) and (8.47) we have

EFGWα (C,F , C̃(z(γ)), F̃ (z(γ)),T ) = αEGW (C, C̃(z(γ)),T ) + (1− α)EW (F , F̃ (z(γ)),T )
(8.85)

where

EGW (C, C̃(z(γ)),T )

= 〈C2,hh>〉+ 〈C̃(z(γ))2,hh
>〉 − 2〈T>CT , C̃(z(γ))〉

= 〈C2,hh>〉 − 2
∑
p

(wp + γ∆wp)〈T>CT ,Cp〉+
∑
pq

(wp + γ∆wp)(wq + γ∆wq)〈Cp �Cq,hh
>〉

= 〈C2,hh>〉 − 2〈T>CT , C̃(w)〉 − 2γ〈T>CT , C̃(∆w)〉

+
∑
pq

(
wpwq + γ(wp∆wq + ∆wpwq) + γ2∆wp∆wq

)
〈Cp �Cq,hh

>〉

= 〈C2,hh>〉 − 2〈T>CT , C̃(w)〉+ 〈C̃(w)2,hh
>〉

+ 2γ{〈C̃(w)� C̃(∆w),hh>〉 − 〈T>CT , C̃(∆w)〉}

+ γ2〈C̃(∆w)2,hh
>〉

(8.86)

where power operations are applied element-wise. So one can define this GW cost as

EGW (C, C̃(z(γ)),T ) := aGWγ2 + bGWγ + cGW (8.87)
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where coefficients are given in equation (8.86).
Then through similar operations EW can be expressed as

EW (F , F̃ (zγ), ,T )
=
∑
i

‖fi‖22hi +
∑
j

‖f̃j(z(γ))‖22hj − 2
∑
ij

〈fi, f̃j(z(γ))〉Tij

= 〈F 21d,h〉+ 〈
(∑

p

(wp + γ∆wp)F p

)2

1d,h〉 − 2〈F
(∑

p

(wp + γ∆wp)F p

)>
,T 〉

= 〈F 21d,h〉+
∑
pq

(wp + γ∆wp)(wq + γ∆wq)〈F p � F q1d,h〉 − 2
∑
p

(wp + γ∆wp)〈FF
>
p ,T 〉

= 〈F 21d,h〉+ 〈F̃ (w)21d,h〉 − 2〈F F̃ (w)>,T 〉

+ 2γ
{
〈
(
F̃ (w)� F̃ (∆w)

)
1d,h〉 − 〈F F̃ (∆w)>,T 〉

}
+ γ2〈F̃ (∆w)21d,h〉

(8.88)

So one can define this Wasserstein cost as

EW (F , F̃ (z(γ)),T ) := aWγ2 + bWγ + cW (8.89)

where coefficients are given in equation (8.88).
Therefore, using equations (8.87) and (8.89), the FGW cost given in equation (8.85) can

be written as
EFGWα (C,F , C̃(z(γ)), F̃ (z(γ)),T ) := aγ2 + bγ + c (8.90)

with for all x ∈ {a, b, c}, x = αxGW + (1− α)xW .

8.3.3 Proof of Theorem 9: FGW upper-bound in the embedding

Theorem 8 (FGW upper-bound in the embedding) For two embedded graphs with
node features, with embeddings w(1) and w(2) over the set of pairwise relation matrices
{(Cs,F s)}s∈[S] ⊂ RN×N ×RN×d, and a shared masses vector h, the following inequality
holds ∀α ∈ [0, 1],

FGW2,α
(
C̃(w(1)), F̃ (w(1)), C̃(w(2)), F̃ (w(2))

)
≤ ‖w(1) −w(2)‖αMGW+(1−α)MW

(8.91)

with,
C̃(w) =

∑
s

wsCs and F̃ (w) =
∑
s

wsF s (8.92)

Where MGW =
(
〈DhCp,CqDh〉F

)
pq

and MW = (〈D1/2
h F p,D

1/2
h F q〉F )pq∈[S], and

Dh = diag(h), are PSD matrices and therefore their linear combinations being PSD
engender Mahalanobis distances between embeddings.

Didactic proof of Theorem 8. First, let us recall the decomposition of the FGW cost
applied in any T ∈ U(h,h) between any pair of graphs (C,F ,h) and (C,F ,h),

EFGWα

(
C,F ,C,F ,T

)
= αEGW

(
C,C,T

)
+ (1− α)EW

(
F ,F ,T

)
(8.93)
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for any α ∈ [0, 1], where the GW cost EGW and the Wasserstein cost EW are respectively
given in equations (8.44) and (8.45).
To bound by above the FGW distance between two embedded graphs (C̃(w(1)), F̃ (w(1)),h)
and (C̃(w(2)), F̃ (w(2)),h) with embeddings w(1) and w(2) in ΣS , we will consider both costs
EGW and EW independently.

Bounding the Gromov-Wasserstein distance.
Let us recall the formulation of the GW cost EGW previously given in equation (8.44), as

a Frobenius inner product (see e.g Peyré et al. (2016)). Let any pair of graphs (C,h) and
(C,h) and an admissible coupling T ∈ U(h,h), we have

EGW
(
C,C,T

)
=
∑
ij

C2
ijhihj +

∑
kl

C
2
klhkhl − 2

∑
ijkl

CijCklTikTjl

= 〈C2,hh>〉+ 〈C2
,hh

>〉 − 2〈CTC>,T 〉
(8.94)

Then denoting any admissible coupling T ∈ U(h,h), the GW cost between these embedded
graph structures applied in T reads as

EGW
(
C̃(w(1)), C̃(w(2)),T

)
= 〈(

∑
p

w(1)
p Cp)2 + (

∑
p

w(2)
p Cp)2,hh>〉+

− 2〈(
∑
p

w(1)
p Cp)T (

∑
q

w(2)
p Cq)>,T 〉

=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q }〈Cp �Cq,hh
>〉

− 2
∑
pq

w(1)
p w(2)

q 〈CpTC
>
q ,T 〉

(8.95)

With the following property of the trace operator:

Tr
(
(C1 �C2)xx>

)
= Tr

(
C>1 diag(x)C2 diag(x)

)
(8.96)

For conciseness let us introduce the diagonal operator x ∈ ΣK →Dx = diag(x). Then using
equation 8.96 we have the following relations,

〈Cp�Cq,hh
>〉 = Tr{(Cp�Cq)>hh>} = Tr{(C>p �C

>
q )hh>} = Tr{C>pDhCqDh} (8.97)

So we can rewrite the expression of the GW cost given in equation 8.95 as

EGW
(
C̃(w(1)), C̃(w(2)),T

)
=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q }Tr{C>pDhCqDh}

− 2
∑
pq

w(1)
p w(2)

q Tr{CqT
>C
>
p T }

=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q }Tr{C>pDhCqDh}

− 2
∑
pq

w(1)
p w(2)

q Tr{C>p TCqT
>}

(8.98)

As the equation 8.98 is true for any admissible coupling T ∈ U(h,h), it is also true for the
optimal coupling T ∗ which minimizes T → EGW (C̃(w(1)), C̃(w(2)),T ) and provides the GW
cost between both embedded graphs (C̃(w(1)),h) and (C̃(w(2)),h), if we omit for now their
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node features. Moreover as Dh is an admissible and sub-optimal coupling it satisfies,

GW
(
C̃(w(1)), C̃(w(2)),h,h

)
≤ EGW

(
C̃(w(1)), C̃(w(2)),Dh

)
(8.99)

Observed now that using the equation (8.98), we can expressive the GW cost applied in Dh

as

EGW
(
C̃(w(1)), C̃(w(2)),Dh

)
=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q − 2w(1)
p w(2)

q }Tr{C>pDhCqDh}

=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q − 2w(1)
p w(2)

q }MGW
pq

= w(1)TMGWw(1) +w(2)>MGWw(2) − 2w(1)>MGWw(2)

(8.100)

where MGW = (MGW
pq )p,q∈[[K]] satisfies MGW

pq = Tr{C>pDhCqDh} = 〈DhCp,CqDh〉.
It suffices to prove that the matrix MGW is a PSD matrix to conclude that it defines a
Mahalanobis distance over the set of embeddings w which bounds by above the GW distance
between corresponding embedded graphs.
Let us reformulate any entry (p, q) of MGW as

MGW
pq = 〈DhCp,CqDh〉 = Tr{C>pDhCqDh} = Tr{D1/2

h C
>
pD

1/2
h D

1/2
h CqD

1/2
h }

= Tr{
(
D

1/2
h CpD

1/2
h

)>
D

1/2
h CqD

1/2
h }

(8.101)

Then using the relation Tr{A>B} = vec(A)>vec(B) (see e.g Petersen et al. (2008), equation
521), we have the following factorization MGW

pq = vec(Bp)>vec(Bq), where ∀n ∈ [S],Bn =
D

1/2
h CnD

1/2
h and vec is the vectorization operator of a matrix which converts the matrix

into a column vector by stacking the columns of the matrix A on top of one another. Hence
with B = (Bn)n ⊂ RN2×S , MGW admits the PSD factorization BTB and therefore is a
PSD matrix.

Bounding the Wasserstein distance.
We will now focus on the wasserstein cost EW involved in FGW and show that omitting

the graph structures, we can bound the Wasserstein distance between embedded node features
(F̃ (w(1)),h) and (F̃ (w(2)),h) which can be seen as point clouds. Let us first highlight a
suitable factorization of the Wasserstein cost between any pair of point clouds (F ,h) and
(F ,h). For any admissible coupling T ∈ U(h,h) we have

EW (F ,F ,T ) =
∑
ij

‖Fi − F j‖22Tij

=
∑
i

‖Fi‖22hi +
∑
j

‖F j‖22hj − 2
∑
ij

〈Fi,F j〉Tij

= 〈D1/2
h F ,D

1/2
h F 〉F + 〈D1/2

h F ,D
1/2
h F 〉F − 2〈FF>,T 〉F

(8.102)
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Therefore using equation (8.102), we can rewrite the Wasserstein cost between any two
embedded feature matrices as,

EW
(
F̃ (w(1)), F̃ (w(2)),T

)
= 〈D1/2

h F̃ (w(1)),D1/2
h F̃ (w(1))〉+ 〈D1/2

h F̃ (w(2)),D1/2
h F̃ (w(2))〉

− 2〈F̃ (w(1))F̃ (w(2))>,T 〉

=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q }〈D
1/2
h F p,D

1/2
h F q〉

− 2
∑
pq

w(1)
p w(2)

q 〈F pF
>
q ,T 〉F

(8.103)

As the equation 8.103 is true for any admissible coupling T ∈ U(h,h), it is also true for
the optimal coupling T ∗ which minimizes T → EW

(
F̃ (w(1)), F̃ (w(2)),T

)
and provides the

Wasserstein cost between both embedded point clouds (F̃ (w(1)),h) and (F̃ (w(2)),h), if we
omit for now their graph structure. Moreover asDh is an admissible and sub-optimal coupling
it satisfies,

W
(
F̃ (w(1)), F̃ (w(2)),h,h

)
≤ EW

(
F̃ (w(1)), F̃ (w(2)),Dh

)
(8.104)

Observed now that using the equation (8.103), we can expressive EW applied in Dh as

EW
(
F̃ (w(1)), F̃ (w(2)),Dh

)
=
∑
pq

{w(1)
p w(1)

q + w(2)
p w(2)

q − 2w(1)
p w(2)

q }〈D
1/2
h F p,D

1/2
h F q〉

= w(1)TMWw(1) +w(2)>MWw(2) − 2w(1)>MWw(2)

(8.105)

whereMW =
(
〈D1/2

h F p,D
1/2
h F q〉F

)
pq∈[[S]]

which is also a PSD matrix as it can be factorized

as B>B with B =
(
vec(D1/2

h F s)
)
s∈[S]

∈ RNd×S , hence defines a Mahalonobis distance
between embeddings.

Bounding the Fused Gromov-Wasserstein distance.
As the equations (8.98) and (8.103) hold for any admissible coupling T ∈ U(h,h), it is

also true for the optimal coupling T ∗ which minimizes T → αEGW
(
C̃(w(1)), C̃(w(2)),T

)
+

(1− α)EW
(
F̃ (w(1)), F̃ (w(2)),T

)
and provides the Fused Gromov-Wasserstein cost between

both embedded graphs (C̃(w(1)), F̃ (w(1)),h) and (C̃(w(2)), F̃ (w(2)),h).
Moreover as Dh is an admissible and sub-optimal coupling it satisfies,

FGW2,α
(
C̃(w(1)), F̃ (w(1)), C̃(w(2)), F̃ (w(2))

)
≤ αEGW

(
C̃(w(1)), C̃(w(2)),Dh

)
+ (1− α)EW

(
F̃ (w(1)), F̃ (w(2)),Dh

)
(8.106)

Let us denote ∀α ∈ (0, 1),Mα = αMGW +(1−α)MW whereMGW andMW are respectively
defined in equations (8.100) and (8.105). Mα defines a PSD matrix as a convex combination
of PSD matrices MGW and MW , hence engender a Mahalanobis distance in the embedding



Chapter 8. Annexes 162

space. Moreover following equations (8.100) and (8.105), we have for all α ∈ [0, 1],

FGW2
2,α

(
C̃(w(1)), Ã(w(1)), C̃(w(2)), Ã(w(2))

)
≤ w(1)>Mαw

(1) +w(2)>Mαw
(2) − 2w(1)>Mαw

(2)

= ‖w(1) −w(2)‖Mα

(8.107)

which concludes the proof of the theorem 8.
�

8.3.4 Clustering benchmark : additional results

Table 8.3: GDL configurations leading to best clustering performances using spectral clustering
on embeddings for benchmarked real-world datasets. K refers to the number of atoms and α to the
trade-off parameter inherent to the FGW distance (set to - if the GW distance is used). If several
configurations lead to the same performances, the one with the less atoms is reported.

GDL GDLλ
datasets K α K α λ

IMDB-B 16 - 16 - 0.01
IMDB-M 12 - 16 - {0.01, 0.001}
MUTAG 4 0.9997 4 0.9997 0.01
PTC 4 0.9997 4 0.9997 0.01

BZR (norm) 4 {0.5, ..., 0.9997} 4 {0.5, ..., 0.9997} {0.01, 0.001}
COX2 (norm) 8 0.9997 8 0.9997 0.01

Table 8.4: FGW configurations leading to best clustering performances using spectral clustering on
input graphs with node features.

datasets α

MUTAG {0.995, 0.9997}
PTC {0.9}

BZR (norm) 0.1
BZR (raw) 0.9997
COX (norm) 0.9997
COX (raw) 0.995

ENZYMES (norm) 0.995
ENZYMES (raw) 0.995
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8.4 Proofs and additional results of Chapter 6

8.4.1 Proof of Proposition 2: srFGW equivalent problems

Proposition 2 (srFGW equivalent problem) Problem (6.1) is equivalent to the fol-
lowing optimization problem:

srFGW2
2,α(C,F ,h,C,F ) = min

T∈Un(h)

∑
ijkl

{
α|Cij − Ckl|2 + (1− α)‖Fi − F k‖22

}
TikTjl

(8.108)
where Un(h) denotes the set of admissible coupling with first marginal h and relaxed
second marginal:

Un(h) =
{
T ∈ Rn×n+ |T1n = h

}
(8.109)

Proof of Proposition 2. Consider a solution of problem (6.1) denoted (h?1,T1) and note
that the definition implies that T1 ∈ U(h,h?1). Another observation is that given h?1, the
transport plan T1 also belongs to arg min

T∈U(h,h?1) E
FGW
α (C,F ,C,F ,T ) hence is an optimal

solution of FGW2,α(C,F ,h,C,F ,h?1).
Now consider a solution of problem (8.108) denoted T2 with second marginal h?2. By

definition the couple (h?2,T2) is suboptimal for problem (6.1) i.e

EFGWα (C,F ,C,F ,T1) ≤ EFGWα (C,F ,C,F ,T2) (8.110)

And the symmetric also holds as T1 is a suboptimal admissible coupling for problem 8.108 i.e
,

EFGWα (C,F ,C,F ,T2) ≤ EFGWα (C,F ,C,F ,T1) (8.111)

These inequalities imply that EFGWα (C,F ,C,F ,T1) = EFGWα (C,F ,C,F ,T2). Therefore we
necessarily have

T1 ∈ arg min
T∈Un(h)

EFGWα (C,F ,C,F ,T ) (8.112)

and
(h?2,T2) ∈ arg min

h∈Σn,T∈U(h1,h)
EFGWα (C,F ,C,F ,T ) (8.113)

Hence the equality, FGW2,α(C,F ,h,C,F ,h?1) = FGW2,α(C,F ,h,C,F ,h?2), holds true.
Therefore by double inclusion we have

arg min
T∈Un(h)

EFGWα (C,F ,C,F ,T ) = arg min
h∈Σm,T∈U(h,h)

EFGWα (C,F ,C,F ,T ). (8.114)

Which is enough to prove that both problems are equivalent. �

8.4.2 Proofs of Lemma 6: sr(F)GW properties

Lemma 5 (srFGW properties) For any attributed graphs G1 = (C1,F1,h1) and
G2 = (C2,F2,h2), the following propositions hold true for any α ∈ [0, 1]

i) srFGW2
2,α(C1,F1,h1,C2,F2) = 0 iff there exists a reweighed sub-graph of G2 which

is weakly isomorphic to G1 (Definition 4).
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ii) If C1 and C2 are distance matrices then srFGW2
2,α(C1,F1,h1,C2,F2) = 0 iff there

exists a reweighed sub-graph of G2 which is strongly isomorphic to G1 (Definition 3)

Then considering any third attributed graph G3 = (C3,F3,h3), and α ∈]0, 1[,

iii) For any optimal reweighing h?(1,2) from srFGW2,α(C1,F1,h1,C2,F2), we have

srFGW2
2,α(C1,F1,h1,C3,F3) ≤ 2( srFGW2

2,α(C1,F1,h1,C2,F2)
+ srFGW2

2,α(C2,F2,h
?
(1,2),C3,F3))

(8.115)

iv) For any optimal reweighing h?(1,2) from srGW(C1,h1,C2), we have

srGW2
2(C1,h1,C3) ≤ 2

{
srGW2

2(C1,h1,C2) + srGW2
2(C2,h

?
(1,2),C3)

}
(8.116)

Proof of Lemma 5. Let us denote any attributed graphs G1 = (C1,F1,h1) and G2 =
(C2,F2,h2), and α ∈ [0, 1]. We prove in the following each assertion of Lemma 5.

proof of assertions i)-ii) The reasoning involved in this proof mostly relates on the defini-
tion of srFGW as minh∈Σn

FGW2,α(C1,F1,h1,C2,F2,h).

(⇒) Assume that srFGW2,α(C1,F1,h1,C2,F2) = 0. Then we have FGW2,α(C1,F1,h1,C2,F2,h
∗) =

0, for some h∗ ∈ Σn. By virtue of the Fused Gromov-Wasserstein properties [ref theo],
(C1,F1,h1) and (C2,F2,h

∗) are weakly isomorphic. Moreover, if C1 and C2 are distance
matrices, then both graphs are strongly isomorphic.

(⇐) Assume there exists reweighing h ∈ Σn of G2, such that (C1,F1,h1) and (C2,F2,h)
are weakly (resp. strongly) isomorphic. Then FGW2,α(C1,F1,h1,C2,F2,h) = 0, so there
exists T ∗ ∈ U(h1,h) such that EFGW2,α (C1,F1,C2,F2,T

∗) = 0. Moreover as T ∗ ∈ Un(h1),
since U(h1,h) ⊂ Un(h1), and the same FGW cost is involved in both transport problems, we
have

0 ≤ srFGW2,α(C1,F1,h1,C2,F2) ≤ FGW2,α(C1,F1,h1,C2,F2,h) = 0 (8.117)

which implies srFGW2,α(C1,F1,h1,C2,F2) = 0.

We now prove the assertion iv) before iii) as the proof follows analog steps with simpler
computations.

proof of assertion iv) To emphasize the action of srGW as a projection from a graph Gi
to another Gj , we denote here by h(i|j) an optimal reweighing of the nodes of Gj in the GW
sense. Moreover, as the following proof requires manipulation over indices of the matrices
composing a graph, the ith graph (Ci,Fi,hi) is denoted here (C(i),F (i),h(i)).

We consider now the following solutions to the corresponding srGW problems:

• (T (1|2),h
(1|2)) as optimal solutions of srGW(C(1),h(1),C(2))

• (T (1|3),h
(1|3)) as optimal solutions of srGW(C(1),h(1),C(3))

• (T (2|3),h
(2|3)) as optimal solutions of srGW(C(2),h(2),C(3))

We introduce a padded version h ∈ Σn(2) of h(1|2) satisfying for all i ∈ [[n(2)]],
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hi =

h
(1|2)
i if h(1|2)

i 6= 0
1 otherwise

(8.118)

Note that the constant 1 is arbitrary and could be set to any other scalar value c 6= 0.
Let us consider now the matrix S ∈ Rn(1)×n(3) defined as

S = T (1|2)diag(1/h)T (2|3) =

∑
k

T
(1|2)
ik T

(2|3)
kj

hk

 (8.119)

Let us check the marginals of S, starting for its right marginal

S1n(3) = T (1|2)diag
(
h
−1)

h
(1|2) = T (1|2)

(
1
h

(1|2)
j 6=0

)
j∈[[n(2)]]

= h(1) (8.120)

These equalities come from the respective right marginals of T (1|2) and T (2|3), and that
∀j ∈ [[n(2)]], h(1|2)

j = 0 =⇒ ∀i ∈ [[n(1)]], T (1|2)
ij = 0. Then using analog arguments for its left

marginal:

S>1n(1) = T (2|3)Tdiag(h−1)T (1|2)T1n(1) = T (2|3)Tdiag(h−1)h(1|2) = h
(2|3) (8.121)

So S ∈ Un(3)(h1) is a sub-optimal admissible coupling to the srGW projection of (C(1),h(1))
onto C(3). So we have:

srGW2(C(1),h(1),C(3)) = EGW (C1,C3,T
(1|3))

≤ EGW (C1,C3,S)

=
∑
ijkl

(C(1)
ij − C

(3)
kl )2SikSjl

=
∑
ijkl

(C(1)
ij − C

(3)
kl )2

∑
p

T
(1|2)
ip T

(2|3)
pk

hp

∑
q

T
(1|2)
jq T

(2|3)
ql

hq


=

∑
ijkl,pq

(C(1)
ij − C

(2)
pq + C(2)

pq − C
(3)
kl )2

T (1|2)
ip T

(2|3)
pk

hp

T (1|2)
jq T

(2|3)
ql

hq


(8.122)
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Then by using the convexity of x→ x2 or equivalently by using Holder inequality, we have

srGW2(C(1),h(1),C(3)) ≤ 2
∑
ijkl,pq

(C(1)
ij − C

(2)
pq )2

T (1|2)
ip T

(2|3)
pk

hp

T (1|2)
jq T

(2|3)
ql

hq


+ 2

∑
ijkl,pq

(C(2)
pq − C

(3)
kl )2

T (1|2)
ip T

(2|3)
pk

hp

T (1|2)
jq T

(2|3)
ql

hq


= 2

∑
ijpq

(C(1)
ij − C

(2)
pq )2

∑
k

T
(1|2)
ip T

(2|3)
pk

hp

∑
l

T
(1|2)
jq T

(2|3)
ql

hq


+ 2

∑
klpq

(C(2)
pq − C

(3)
kl )2

∑
i

T
(1|2)
ip T

(2|3)
pk

hp

∑
j

T
(1|2)
jq T

(2|3)
ql

hq


= 2

∑
ijpq

(C(1)
ij − C

(2)
pq )2T

(1|2)
ip T

(1|2)
jq + 2

∑
klpq

(C(2)
pq − C

(3)
kl )2T

(2|3)
pk T

(2|3)
ql

= 2EGW (C(1),C(2),T (1|2)) + 2EGW (C(2),C(3),T (2|3))
(8.123)

So we can conclude that

srGW(C(1),h(1),C(3)) ≤ 2
{

srGW(C(1),h(1),C(2)) + srGW(C(2),h
(1|2)

,C(3))
}

(8.124)

proof of assertion iv) For any α ∈]0, 1[, we consider now the following solutions to the
corresponding srFGW problems:

• (T (1|2),h
(1|2)) as optimal solutions of srFGW2,α(C(1),F (1),h(1),C(2),F (2))

• (T (1|3),h
(1|3)) as optimal solutions of srFGW2,α(C(1),F (1),h(1),C(3),F (3))

• (T (2|3),h
(2|3)) as optimal solutions of srFGW2,α(C(2),F (2),h(2),C(3),F (3))

In the same way as for the proof of Assertion iv), we introduce a padded version h ∈ Σn(2) of
h

(1|2) defined in equation (8.118), and the matrix S = T (1|2)diag(1/h)T (2|3) ∈ Un(3)(h1) (see
equation (8.119)).

So S ∈ Un(3)(h1) is a sub-optimal admissible coupling to the srFGW projection of
(C(1),F (1),h(1)) onto (C(3),F (3)). So we have:

srFGW2,α(C(1),F (1),h(1),C(3),F (3))
= EFGWα (C(1),F (1),C(3),F (3),T (1|3))
≤ EFGWα (C(1),F (1),C(3),F (3),S)
= αEGW (C(1),C(3),S) + (1− α)EW (F (1),F (3),S)

(8.125)

Using exactly the same inequalities than in equation (8.123) of the proof of assertion iv), one
has

EGW (C(1),C(3),S) ≤ 2
{
EGW (C(1),C(2),T (1|2)) + EGW (C(2),C(3),T (2|3))

}
(8.126)
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Next to handle the Wasserstein cost over feature matrices, we have by definition

EW (F (1),F (3),S) =
∑
ij

‖F (1)
i − F (3)

j ‖
2
2Sij

=
∑
ij

‖F (1)
i − F (3)

j ‖
2
2

∑
k

T
(1|2)
ik T

(2|3)
kj

hk


=
∑
ijk

‖F (1)
i − F (2)

k + F (2)
k − F (3)

j ‖
2
2
T

(1|2)
ik T

(2|3)
kj

hk

(8.127)

Then by applying the triangle inequality with the Euclidean norm of Rd, and using the
convexity of x→ x2, we have

EW (F (1),F (3),S) ≤ 2
∑
ijk

‖F (1)
i − F (2)

k ‖
2
2
T

(1|2)
ik T

(2|3)
kj

hk
+ 2

∑
ijk

‖F (2)
k − F (3)

j ‖
2
2
T

(1|2)
ik T

(2|3)
kj

hk

= 2
∑
ik

‖F (1)
i − F (2)

k ‖
2
2T

(1|2)
ik 2 +

∑
jk

‖F (2)
k − F (3)

j ‖
2
2T

(2|3)
kj

= 2EW (F (1),F (2),T (1|2)) + 2EW (F (2),F (3),T (2|3))
(8.128)

Therefore bounding each term in the rhs of (8.125), using the bounds on the GW cost and
the Wasserstein cost, given respectively in equations (8.126) and (8.128), we have

srFGW2,α(C(1),F (1),h(1),C(3),F (3))

≤ 2α
{
EGW (C(1),C(2),T (1|2)) + EGW (C(2),C(3),T (2|3))

}
+ 2(1− α)

{
EW (F (1),F (2),T (1|2)) + EW (F (2),F (3),T (2|3))

}
= 2

{
EFGWα (C(1),F (1),C(2),F (2),T (1|2)) + EFGWα (C(2),F (2),C(3),F (3),T (2|3))

}
= 2

{
srFGW2,α(C(1),F (1),h(1),C(2),F (2)) + srFGW2,α(C(2),F (2),h

(1|2)
,C(3),F (3))

}
(8.129)

�

8.4.3 Line-search of the Conditional Gradient solver for srFGW

For completeness, we detail here the factorization used in the line-search step of Algorithm
12. The exact line-search comes down to find:

γ? = arg min
γ∈(0,1)

EFGWα (C,F ,C,F ,Z(γ)) (8.130)

where Z(γ) = T + γ(X? − T ) = T + γ∆T . This problem can be easily solved by observing
that the FGW loss EFGWα can be factored as a second-order polynomial function in γ,
f(γ) = aγ2 + bγ + c.

Indeed, following equations (8.46) and (8.47) we have

EFGWα (C,F ,C,F ,Z(γ)) = αEGW (C,C,Z(γ)) + (1− α)EW (F ,F ,Z(γ)) (8.131)
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Then, denoting h(γ) = Z(γ)>1n = (T +γ∆T )>1n = h+γ∆h, the GW cost can be expressed
as

EGW (C,C,Z(γ))

= 〈C2,hh>〉+ 〈C2
,Z(γ)>1n1

>
nZ(γ)〉 − 2〈Z(γ)>CZ(γ),C〉

= 〈C2,hh>〉+ 〈C2
, (h+ γ∆h)(h+ γ∆h)>〉 − 2〈(T + γ∆T )>C(T + γ∆T ),C〉

= 〈C2,hh>〉+ 〈C2
,hh

>〉+ γ〈C2
,h∆h> + ∆hh>〉+ γ2〈C2

,∆h∆h>〉

− 2
{
〈T>CT ,C〉+ γ〈T>C∆T + ∆T>CT ,C〉+ γ2〈∆T>C∆T ,C〉

}
= 〈C2,hh>〉+ 〈C2

,hh
>〉 − 2〈T>CT ,C〉

+ γ
{
〈C2

,h∆h> + ∆hh>〉 − 2〈T>C∆T + ∆T>CT ,C〉
}

+ γ2
{
〈C2

,∆h∆h>〉 − 2〈∆T>C∆T ,C〉
}

(8.132)

where power operations are applied element-wise. Then using properties of the Trace operator,
we have the relations

〈A,xy>〉 = Tr{A>xy>} = Tr{yx>A} = Tr{Ayx>} = 〈A>,yx>〉 (8.133)

and

〈T>C∆T ,C〉 = Tr{∆T>C>TC} = Tr{C∆T>C>T } = 〈∆T>C>T ,C〉 (8.134)

one has

EGW (C,C,Z(γ)) = 〈C2,hh>〉+ 〈C2
,hh

>〉 − 2〈T>CT ,C〉

+ γ
{
〈C2 +C2T

,h∆h>〉 − 2〈T>(C +C>)∆T ,C〉
}

+ γ2
{
〈C2

,∆h∆h>〉 − 2〈∆T>C∆T ,C〉
} (8.135)

So one can define this GW cost as

EGW (C,C,Z(γ)) := aGWγ2 + bGWγ + cGW (8.136)

where coefficients are given in equation (8.135).
Then through similar operations EW can be expressed as

EW (F ,F ,Z(γ))

= 〈F 21d,h〉+ 〈F 2
1d,h(γ)〉 − 2〈FF>,Z(γ)〉

= 〈F 21d,h〉+ 〈F 2
1d,h+ γ∆h〉 − 2〈FF>,T + γ∆T 〉

= 〈F 21d,h〉+ 〈F 2
1d,h〉 − 2〈FF>,T 〉+ γ

{
〈F 2

1d,∆h〉 − 2〈FF>,∆T 〉
} (8.137)

So one can define this Wasserstein cost as

EW (F ,F ,Z(γ)) := bWγ + cW (8.138)

where coefficients are given in equation (8.137).
Notice that only the GW cost leads to a second order polynom in γ. Therefore, using

equations (8.136) and (8.138), the FGW cost given in equation (8.131) can be written as

EFGWα (C,F ,C,F ,Z(γ)) := αaGWγ2 + bγ + c (8.139)
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with for all x ∈ {b, c}, x = αxGW + (1− α)xW .

8.4.4 Proof of Proposition 3: Convergence of srFGW Mirror-Descent
algorithm

Even if the objective function of the srGW problem and its variants is not convex, we prove
in the following the non-asymptotic stationary convergence of the MD algorithms for the
generic objective which encompasses every aforementioned ones:

min
T∈U(h,m)

〈aL(C,C)⊗ T + bD,T 〉, (8.140)

where (a, b) ∈ R2
+ denote any scalar constants.

The proof relies on Proposition 2 of Scetbon et al. (2021a). The following steps consist in
proving that the objective function in problem (8.140) satisfies the sufficient conditions of
Proposition 2, to conclude on the convergence of our MD algorithm. The main challenge,
addressed in Lemma 6, is to prove the relative smoothness of our objective w.r.t. the KL
divergence. This lemma proves a sufficient condition, following Zhang et al. (2020), to such a
relative smoothness.

Let us first recall some notions linked to the relative smoothness with respect to a convex
function. Let X a closed convex subset in an Euclidean space Rd. Given a convex function
H : X → R continuously differentiable, one can define the prox-function associated to H as

DH(x, z) := H(x)−H(z)− 〈∇H(z),x− z〉. (8.141)

Then the definition of the relative smoothness with respect to H is formally expressed as
follow:

Definition 6 (Relative smoothness) Let L > 0 and f continuously differentiable on X .
f is said to be L-smooth relatively to H if ∀x,y ∈ X ,

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ LDH(y,x). (8.142)

Another definition of use for the following is:

Definition 7 (relative strong convexity) Let α > 0 and f continuously differentiable on
X . f is said to be α-strongly convex relatively to h if ∀x,y ∈ X ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ αDh(y, x). (8.143)

We will use in the following this general result on the non-asymptotic stationary convergence
of the mirror-descent scheme defined by the following recursion:

xk+1 = arg min
x∈X

〈∇f(xk),x〉+ 1
γk
DH(x,xk) (8.144)

where (γk) is a sequence of positive step-size. Which is expressed for srFGW by equation
(6.10), for b = (1 − a) with a ∈ [0, 1] and D = D(F ,F ) the pairwise Euclidean distance
matrix between node features F and F . The latter can be easily adapted to include the
additional sparsity promoting regularization discussed in Section 6.2.2.

Proposition 2 (Scetbon et al. (2021a)) Let N ≥ 1, f continuously differentiable
on X and L-smooth relatively to H. By considering for all k ∈ [[N ]], γk = 1/2L and by
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denoting D0 = f(x0)−minx∈X f(x), we have

min
k∈[[N−1]]

∆k ≤
4LD0
N

, (8.145)

where for all k ∈ [[N ]],

∆k := 1
γ2
k

{DH(xk,xk+1) +DH(xk+1,xk)}. (8.146)

Let us now show that the generic objective function given in equation (8.140) is relatively
smooth with respect to the KL divergence, so we will conclude on the convergence of our MD
scheme directly using proposition 2.
Note that, without loss of generality, we omit in the definition of Fa,b,ε the term of the srFGW
objective that involves the constant vector h.

Lemma 6 Let (a, b, ε) ∈ R3
+. We denote for any T ∈ Un(h) with second marginal h

and ε ∈ R∗+, the reduced objective function:

Fa,b,ε(T ) = a〈C2
,hh

>〉F − 2a〈TCT>,C〉F + b〈D,T 〉F + εH(T ) (8.147)

where H(T ) = 〈T , logT − 1n1
>
n 〉F denotes the negative entropy of T .

Then for all T1 and T2 in U(h,m), we have

‖∇Fa,b,ε(T1)−∇Fa,b,ε(T2)‖F ≤ LC,C,a,ε‖∇H(T1)−∇H(T2)‖F (8.148)

where LC,C,a,ε = a{n‖C2> +C2‖F + 4‖C‖F ‖C‖F }+ ε.

Proof of Lemma 6. First of all we have for any T ∈ U(h,m),

∇TFa,b,ε(T ) = ∇T Tr{aT>1n1
>
nTC

2> − 2aT>CTC> + bD − εT>(logT − 1n1
>
n )}

= a1n1
>
nT (C2> +C2)− 2a{CTC> +C>TC}+ bD − ε{logT + 1n1

>
n − 1n1

>
n }

= a1n1
>
nT (C2> +C2)− 2a{CTC> +C>TC}+ bD − ε logT .

(8.149)

Therefore we have,

‖∇Fa,b,ε(T1)−∇Fa,b,ε(T2)‖F
= ‖a1n1>n (T1 − T2)(C2> +C2)− 2a{C(T1 − T2)C> +C>(T1 − T2)C} − ε(logT1 − logT2)‖F
≤ a‖1n1>n (T1 − T2)(C2> +C2)‖F + 2a{‖C(T1 − T2)C>‖F + ‖C>(T1 − T2)C‖F }
+ ε‖ logT1 − logT2‖F

(8.150)

By applying the triangle inequality. Then using the sub-multiplicativity of the Frobenius
norm, we have

a‖1n1>n (T1 − T2)(C2> +C2)‖F + 2a{‖C(T1 − T2)C>‖F + ‖C>(T1 − T2)C‖F }

≤ a{‖1n1>n ‖F ‖C
2> +C2‖F + 4‖C‖F ‖C‖F }‖T1 − T2‖F

(8.151)

Now we seek for a comparison between H and the Frobenius norm to conclude. Note that
H is equivalent to the sum of negative entropy functions over columns i.e T ∈ Un(h) →
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∑
j H̃(T:j) = H(T ). For any x ∈ Σn, denoting g : x→ −1

2x
>x− H̃(x), we have

∇g(x) = −x+ logx+ 1n − 1n = −x+ logx
=⇒ ∇2g(x) = diag(−1 + 1/x)

which is a PSD matrix onto the probability simplex leading to ∇2
xH̃|Σn < ∇2

x

(
−1

2‖.‖
2
2

)
|Σn

.

This property is equivalent to the 1-strong relative convexity of
(
−1

2‖.‖
2
2

)
with respect to H̃

as proven in Lu et al. (2018). Then we can conclude by linearity that
(
−1

2‖.‖
2
F

)
is 1-strongly

convex relatively to H, which provides from T1 to T2 the following inequalities resulting from
the aforementioned definition:

−〈T2,T2〉F
2 ≥ −〈T1,T1〉F

2 − 〈T1,T2 − T1〉F − 〈T2, logT2 − 1n1
>
n 〉F + 〈T1, logT1 − 1n1

>
n 〉F

+ 〈logT1,T2 − T1〉F

⇔ −〈T2,T2〉F
2 ≥ 〈T1,T1〉F

2 − 〈T1,T2〉F + 〈T2, logT1 − logT2〉F
(8.152)

using that 〈T1,1n1
>
n 〉F = 〈T2,1n1

>
n 〉F = 1. Then a simple rearrangement gives

1
2‖T2 − T1‖2F ≤ 〈T2, logT2 − logT1〉F . (8.153)

The analog computation from T2 to T1 gives that

1
2‖T2 − T1‖2F ≤ 〈T1, logT1 − logT2〉F . (8.154)

Adding both last inequalities, we obtain

‖T1 − T2‖2F ≤ 〈T1 − T2, logT1 − logT2〉F
≤ ‖T1 − T2‖F ‖ logT1 − logT2‖F

(8.155)

by Cauchy-Schwarz inequality. Which is equivalent to

‖T1 − T2‖F ≤ ‖ logT1 − logT2‖F . (8.156)

Finally, Putting equations 8.150, 8.151 and 8.156 all together, we have

‖∇Fa,b,ε(T1)−∇Fa,b,ε(T2)‖F ≤ a{n‖C
2> +C2‖F + 4‖C‖F ‖C‖F + ε}‖ logT1 − logT2‖F

= LC,C,a,ε‖∇H(T1)−∇H(T2)‖F
(8.157)

where LC,C,a,ε = a{n‖C2> +C2‖F + 4‖C‖F ‖C‖F }+ ε, as ∇H(T ) = − logT (see (8.149)).
This final result provides the desired inequality of Lemma 6.
�

Proposition 3 (Mirror-Descent convergence) For any attributed graphs G and G,
the Mirror-Descent algorithm 13 converges to a stationary point non-asymptotically.

Proof of Proposition 3. Using Lemma 6, we can conclude that the objective function
involved in equation (8.140) and Proposition 3 is LC,C,a,ε-smooth relatively to H. Therefore
all assumptions from Proposition 2 are satisfied. This allows to conclude on the convergence
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of our MD algorithm stated in Proposition 3, which then only requires to set appropriate
parameters in the generic equation (8.140) to match those of srFGW.
�

8.4.5 Complements on graphs clustering experiments

Table 8.5: Clustering performances on real datasets measured by Adjusted Rand Index(ARI. In
bold (resp. italic) we highlight the first (resp. second) best method.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
MODELS IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN

srGW (ours) 3.14(0.19) 2.26(0.08) 41.12(0.93) 2.71(0.16) 6.24(1.49) 5.98(1.26) 3.74(0.22) 16.67(0.19)
srGWg 5.03(0.90) 3.09(0.11) 43.27(1.20) 3.28(0.76) 16.50(2.06) 7.78(1.46) 4.12(0.12) 18.52(0.28)
srGWe 3.51(1.10) 2.18(0.05) 48.32(1.65) 4.60(0.91) 15.44(2.46) 5.71(0.93) 3.36(0.39) 16.81(0.17)

srGWe+g 4.56(1.62) 2.71(0.24) 48.77(1.47) 4.97(0.83) 16.38(2.15) 6.15(1.24) 3.98(0.62) 18.03(0.32)
GDL 2.67(0.52) 2.26(0.13) 39.62(0.49) 2.72(0.48) 6.43(1.42) 5.12(1.37) 3.39(0.31) 17.08(0.21)

GDLreg 3.44(1.09) 2.17(0.19) 40.75(0.23) 3.59(0.71) 14.83(2.88) 6.27(1.89) 3.57(0.44) 18.25(0.37)
GWF-r 2.09(0.61) 2.03(0.15) 37.09(1.13) 2.92(0.92) 2.89(2.66) 5.18(1.17) 4.27(0.31) 17.34(0.14)
GWF-f 0.85(0.57) 1.74(0.13) 18.14(3.09) 1.54(1.24) 2.78(2.41) 4.03(0.96) 3.69(0.28) 15.89(0.20)
GW-k 0.66(0.07) 1.23(0.04) 15.09(2.48) 0.66(0.43) 4.56(0.83) 4.19(0.58) 2.34(0.96) 0.43(0.06)

Table 8.6: Clustering performances on real datasets measured by Adjusted Mutual Information(AMI).
In bold (resp. italic) we highlight the first (resp. second) best method.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
MODELS IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN

srGW (ours) 3.31(0.25) 2.63(0.33) 32.97(0.57) 3.21(0.23) 8.20(0.75) 2.64(0.40) 6.99(0.18) 12.69(0.32)
srGWg 4.65(0.33) 2.95(0.24) 33.82(1.58) 5.47(0.55) 9.25(1.66) 3.08(0.61) 7.48(0.24) 13.75(0.18)
srGWe 3.58(0.25) 2.57(0.26) 35.01(0.96) 2.53(0.56) 10.28(1.03) 3.01(0.78) 7.71(0.29) 12.51(0.35)

srGWe+g 4.20(0.17) 2.49(0.61) 35.13(2.10) 2.80(0.64) 10.09(1.19) 3.76(0.63) 8.27(0.34) 14.11(0.30)
GDL 2.78(0.20) 2.57(0.39) 32.25(0.95) 3.81(0.46) 8.14(0.84) 2.02(0.89) 6.86(0.32) 12.06(0.31)

GDLreg 3.42(0.41) 2.52(0.27) 32.73(0.98) 4.93(0.49) 8.76(1.25) 2.56(0.95) 7.39(0.40) 13.77(0.49)
GWF-r 2.11(0.34) 2.41(0.46) 32.94(1.96) 2.39(0.79) 5.65(1.86) 3.28(0.71) 8.31(0.29) 12.82(0.28)
GWF-f 1.05(0.15) 1.85(0.28) 15.03(0.71) 1.27(0.96) 3.89(1.62) 1.53(0.58) 7.56(0.21) 11.05(0.33)
GW-k 0.68(0.08) 1.39(0.19) 9.68(1.04) 0.80(0.18) 6.91(0.48) 1.51(0.17) 4.99(0.63) 3.94(0.09)



173

Bibliography

Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On convex relaxation of graph
isomorphism. Proceedings of the National Academy of Sciences, 112(10):2942–2947, 2015.
(Cited on page 50).

SN Afriat. Theory of maxima and the method of lagrange. SIAM Journal on Applied
Mathematics, 20(3):343–357, 1971. (Cited on page 69).

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal
on Mathematical Analysis, 43(2):904–924, 2011. (Cited on pages 37 and 38).

Nesreen K Ahmed, Theodore L Willke, and Ryan A Rossi. Estimation of local subgraph
counts. In 2016 IEEE International Conference on Big Data (Big Data), pp. 586–595.
IEEE, 2016. (Cited on page 21).

Fabio Aiolli, Michele Donini, Nicolò Navarin, and Alessandro Sperduti. Multiple graph-kernel
learning. In 2015 IEEE Symposium Series on Computational Intelligence, pp. 1607–1614.
IEEE, 2015. (Cited on page 20).

David Alvarez-Melis, Stefanie Jegelka, and Tommi S Jaakkola. Towards optimal transport
with global invariances. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 1870–1879. PMLR, 2019. (Cited on page 49).

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and
in the space of probability measures. Springer Science & Business Media, 2005. (Cited on
pages 33 and 49).

Paul Appell. Mémoire sur les déblais et les remblais des systemes continus ou discontinus.
Mémoires présentes par divers Savants à l’Académie des Sciences de l’Institut de France,
29:1–208, 1887. (Cited on page 30).

Ernesto Araya Valdivia and De Castro Yohann. Latent distance estimation for random
geometric graphs. Advances in Neural Information Processing Systems, 32, 2019. (Cited
on page 142).

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017. (Cited on pages 14 and 86).

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathe-
matical society, 68(3):337–404, 1950. (Cited on page 18).

James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances in neural
information processing systems, 29, 2016. (Cited on page 26).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. (Cited on
page 24).



BIBLIOGRAPHY 174

Lu Bai, Peng Ren, Xiao Bai, and Edwin R Hancock. A graph kernel from the depth-based
representation. In Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 1–11.
Springer, 2014. (Cited on page 21).

Lu Bai, Luca Rossi, Zhihong Zhang, and Edwin Hancock. An aligned subtree kernel for
weighted graphs. In International Conference on Machine Learning, pp. 30–39. PMLR,
2015. (Cited on page 21).

Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun,
and Wei Wang. Unsupervised inductive graph-level representation learning via graph-
graph proximity. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 1988–1994, 2019. (Cited on page 26).

Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with similarity
functions. Machine Learning, 72(1):89–112, 2008. (Cited on pages 15, 19, and 68).

Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In Proceedings of the International Conference on Learning Representations
(ICLR), 2021. (Cited on page 71).

Abhijit Banerjee, Arun G Chandrasekhar, Esther Duflo, and Matthew O Jackson. The
diffusion of microfinance. Science, 341(6144), 2013. (Cited on pages 12 and 125).

Amélie Barbe, Marc Sebban, Paulo Gonçalves, Pierre Borgnat, and Rémi Gribonval. Graph
diffusion wasserstein distances. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 577–592. Springer, 2021. (Cited on page 140).

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl,
Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan
Pascanu. Relational inductive biases, deep learning, and graph networks, 2018. (Cited on
pages 11, 12, and 66).

Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator
theory in Hilbert spaces, volume 408. Springer, 2011. (Cited on page 36).

François Bavaud. Euclidean distances, soft and spectral clustering on weighted graphs. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 103–118. Springer, 2010. (Cited on page 42).

Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d’Alché
Buc, James Eagan, Winston Maxwell, Pavlo Mozharovskyi, and Jayneel Parekh. Flexi-
ble and context-specific ai explainability: A multidisciplinary approach. arXiv preprint
arXiv:2003.07703, 2020. (Cited on page 13).

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003. (Cited on page
38).

Asa Ben-Hur, David Horn, Hava T Siegelmann, and Vladimir Vapnik. Support vector
clustering. Journal of machine learning research, 2(Dec):125–137, 2001. (Cited on page
18).



BIBLIOGRAPHY 175

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
Iterative bregman projections for regularized transportation problems. SIAM Journal on
Scientific Computing, 37(2):A1111–A1138, 2015. (Cited on pages 36, 38, and 118).

Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-fold cross-
validation. Advances in Neural Information Processing Systems, 16, 2003. (Cited on page
76).

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013. (Cited on pages 13 and 17).

Alexander C Berg, Tamara L Berg, and Jitendra Malik. Shape matching and object recognition
using low distortion correspondences. In 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05), volume 1, pp. 26–33. IEEE, 2005.
(Cited on page 50).

Florian Bernard, Christian Theobalt, and Michael Moeller. Ds*: Tighter lifting-free convex
relaxations for quadratic matching problems. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4310–4319, 2018. (Cited on pages 50 and 112).

Dimitri P Bertsekas and Jonathan Eckstein. Dual coordinate step methods for linear network
flow problems. Mathematical Programming, 42(1):203–243, 1988. (Cited on page 35).

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA, 1997. (Cited on page 31).

Gregory Beylkin. The inversion problem and applications of the generalized radon transform.
Communications on pure and applied mathematics, 37(5):579–599, 1984. (Cited on page
34).

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In International Conference on Machine Learning, pp.
874–883. PMLR, 2020a. (Cited on pages 26 and 112).

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Hierarchical
representation learning in graph neural networks with node decimation pooling. IEEE
Transactions on Neural Networks and Learning Systems, 2020b. (Cited on page 26).

Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A, 5:
147–154, 1946. (Cited on page 31).

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008. (Cited on page 126).

Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. Recommender
systems survey. Knowledge-based systems, 46:109–132, 2013. (Cited on page 85).

Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media, 1998.
(Cited on page 17).

J. Bonnans and Alexander Shapiro. Perturbation Analysis of Optimization Problems. 01 2000.
ISBN 978-1-4612-7129-1. doi: 10.1007/978-1-4612-1394-9. (Cited on pages 45, 55, 64, 96,
and 123).



BIBLIOGRAPHY 176

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
interpolation using lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH
Asia conference, pp. 1–12, 2011. (Cited on pages 35 and 51).

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon
wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision, 51(1):
22–45, 2015. (Cited on page 33).

Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. Wasserstein barycentric coordinates:
Histogram regression using optimal transport. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2016), 35(4), 2016. (Cited on page 86).

Christian Borgs, Jennifer T Chayes, Henry Cohn, and Nina Holden. Sparse exchangeable
graphs and their limits via graphon processes. arXiv preprint arXiv:1601.07134, 2016.
(Cited on page 142).

Christian Borgs, Jennifer Chayes, Henry Cohn, and Yufei Zhao. An lp theory of sparse
graph convergence i: Limits, sparse random graph models, and power law distributions.
Transactions of the American Mathematical Society, 372(5):3019–3062, 2019. (Cited on
page 142).

Christian Borgs, Jennifer T Chayes, Souvik Dhara, and Subhabrata Sen. Limits of sparse
configuration models and beyond: Graphexes and multigraphexes. The Annals of Probability,
49(6):2830–2873, 2021. (Cited on page 142).

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth
IEEE international conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005. (Cited
on pages 12, 22, 66, 99, 104, and 129).

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21
(suppl_1):i47–i56, 2005. (Cited on page 75).

Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving
graph sparsification and coarsening. Advances in Neural Information Processing Systems,
32, 2019. (Cited on page 26).

Kristian Bredies, Dirk A Lorenz, and Peter Maass. A generalized conditional gradient method
and its connection to an iterative shrinkage method. Computational Optimization and
applications, 42(2):173–193, 2009. (Cited on page 37).

Lev M Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR computational
mathematics and mathematical physics, 7(3):200–217, 1967. (Cited on page 36).

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Communications on pure and applied mathematics, 44(4):375–417, 1991. (Cited on pages
30 and 41).

Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi.
Counting graphlets: Space vs time. In Proceedings of the tenth ACM international conference
on web search and data mining, pp. 557–566, 2017. (Cited on page 21).

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7):107–117, 1998. (Cited on page 52).



BIBLIOGRAPHY 177

Luc Brogat-Motte, Rémi Flamary, Celine Brouard, Juho Rousu, and Florence D’Alché-Buc.
Learning to predict graphs with fused gromov-Wasserstein barycenters. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 2321–2335. PMLR, 17–23 Jul 2022.
(Cited on pages 43 and 53).

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017. (Cited on pages 12, 13, 17, 23, 25, 66, and 85).

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021a. (Cited on pages 15, 18, 23, and 25).

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velivcković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478, 2021b.
(Cited on page 66).

Céline Brouard, Florence d’Alché Buc, and Marie Szafranski. Semi-supervised penalized
output kernel regression for link prediction. In 28th International Conference on Machine
Learning (ICML 2011), pp. 593–600, 2011. (Cited on page 85).

Richard A Brualdi. Combinatorial matrix classes, volume 13. Cambridge University Press,
2006. (Cited on page 31).

Rickard Brüel Gabrielsson. Universal function approximation on graphs. Advances in Neural
Information Processing Systems, 33:19762–19772, 2020. (Cited on page 71).

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013. (Cited on
pages 25 and 26).

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for
machine learning software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pp. 108–122, 2013. (Cited
on page 105).

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature reviews neuroscience, 10(3):186–198, 2009.
(Cited on page 12).

Horst Bunke and Gudrun Allermann. Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters, 1(4):245–253, 1983. (Cited on page 142).

Donald Bures. An extension of kakutani’s theorem on infinite product measures to the tensor
product of semifinite w*-algebras. Transactions of the American Mathematical Society,
135:199–212, 1969. (Cited on page 34).

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv
preprint arXiv:2006.13318, 2020. (Cited on page 141).

Guillermo Canas and Lorenzo Rosasco. Learning probability measures with respect to optimal
transport metrics. Advances in Neural Information Processing Systems, 25, 2012. (Cited
on page 38).



BIBLIOGRAPHY 178

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? Journal of the ACM (JACM), 58(3):1–37, 2011. (Cited on page 85).

Mathieu Carriere, Marco Cuturi, and Steve Oudot. Sliced wasserstein kernel for persistence
diagrams. In International conference on machine learning, pp. 664–673. PMLR, 2017.
(Cited on page 33).

Elsa Cazelles, Vivien Seguy, Jérémie Bigot, Marco Cuturi, and Nicolas Papadakis. Geodesic
pca versus log-pca of histograms in the wasserstein space. SIAM Journal on Scientific
Computing, 40(2):B429–B456, 2018. (Cited on page 39).

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011. (Cited on page
19).

Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Partial gromov-wasserstein with
applications on positive-unlabeled learning. arXiv preprint arXiv:2002.08276, 2019. (Cited
on pages 113 and 115).

Benson Chen, Gary Bécigneul, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola.
Optimal transport graph neural networks. arXiv preprint arXiv:2006.04804, 2020a. (Cited
on pages 14, 66, 67, 70, 72, 73, 75, and 86).

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3438–3445,
2020b. (Cited on page 140).

Samantha Chen, Sunhyuk Lim, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-
lehman meets gromov-wasserstein. arXiv preprint arXiv:2202.02495, 2022. (Cited on page
49).

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by
basis pursuit. SIAM review, 43(1):129–159, 2001. (Cited on page 90).

Xiaowei Chen and John CS Lui. Mining graphlet counts in online social networks. ACM
Transactions on Knowledge Discovery from Data (TKDD), 12(4):1–38, 2018. (Cited on
page 21).

Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta. Iterative visual reasoning beyond
convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7239–7248, 2018. (Cited on page 12).

Yudong Chen, Sujay Sanghavi, and Huan Xu. Improved graph clustering. IEEE Transactions
on Information Theory, 60(10):6440–6455, 2014. (Cited on page 112).

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between
graph isomorphism testing and function approximation with gnns. Advances in neural
information processing systems, 32, 2019. (Cited on page 73).

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020c.
(Cited on page 25).

Mark Cheung, John Shi, Oren Wright, Lavendar Y Jiang, Xujin Liu, and José MF Moura.
Graph signal processing and deep learning: Convolution, pooling, and topology. IEEE
Signal Processing Magazine, 37(6):139–149, 2020. (Cited on page 25).



BIBLIOGRAPHY 179

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing
systems, 31, 2018. (Cited on page 33).

KR1442 Chowdhary. Natural language processing. Fundamentals of artificial intelligence, pp.
603–649, 2020. (Cited on page 12).

Samir Chowdhury and Facundo Mémoli. The Gromov-Wasserstein distance between networks
and stable network invariants. arXiv:1808.04337 [cs, math], September 2019. arXiv:
1808.04337. (Cited on pages 14, 40, 42, 47, 48, 53, 59, 60, 67, 71, and 150).

Samir Chowdhury and Tom Needham. Gromov-wasserstein averaging in a riemannian
framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 842–843, 2020. (Cited on pages 43 and 53).

Samir Chowdhury and Tom Needham. Generalized spectral clustering via gromov-wasserstein
learning. In International Conference on Artificial Intelligence and Statistics, pp. 712–720.
PMLR, 2021. (Cited on pages 67, 113, 124, 125, and 138).

Samir Chowdhury, David Miller, and Tom Needham. Quantized gromov-wasserstein. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
811–827. Springer, 2021. (Cited on pages 52 and 62).

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997. (Cited
on page 17).

Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Lió, Marco
Maggini, and Stefano Melacci. Logic explained networks. Artificial Intelligence, 314:103822,
2023. (Cited on page 13).

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in
very large networks. Physical review E, 70(6):066111, 2004. (Cited on page 126).

Adam Coates and Andrew Ng. Selecting receptive fields in deep networks. Advances in neural
information processing systems, 24, 2011. (Cited on page 26).

Laurent Condat. Fast projection onto the simplex and the l1 ball. Mathematical Programming,
158(1):575–585, 2016. (Cited on page 69).

Padraig Corcoran. Function space pooling for graph convolutional networks. In International
Cross-Domain Conference for Machine Learning and Knowledge Extraction, pp. 473–483.
Springer, 2020. (Cited on page 26).

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995. (Cited on page 18).

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In
ICML, 2010. (Cited on page 21).

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain adaptation with regularized optimal
transport. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 274–289. Springer, 2014. (Cited on pages 14, 37, and 119).

Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe. Learning wasserstein embeddings. arXiv
preprint arXiv:1710.07457, 2017a. (Cited on page 39).



BIBLIOGRAPHY 180

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distri-
bution optimal transportation for domain adaptation. Advances in Neural Information
Processing Systems, 30, 2017b. (Cited on pages 13 and 14).

Imre Csiszár. Information-type measures of difference of probability distributions and indirect
observation. studia scientiarum Mathematicarum Hungarica, 2:229–318, 1967. (Cited on
page 32).

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in neural information processing systems, pp. 2292–2300, 2013. (Cited on pages 35 and 117).

Marco Cuturi and David Avis. Ground metric learning. The Journal of Machine Learning
Research, 15(1):533–564, 2014. (Cited on pages 39, 45, and 55).

Marco Cuturi and Mathieu Blondel. Soft-DTW: a Differentiable Loss Function for Time-Series.
arXiv:1703.01541 [stat], February 2018. arXiv: 1703.01541. (Cited on page 85).

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In Inter-
national conference on machine learning, pp. 685–693. PMLR, 2014. (Cited on pages 38
and 63).

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989. (Cited on pages 71 and 72).

William HE Day. Optimal algorithms for comparing trees with labeled leaves. Journal of
classification, 2(1):7–28, 1985. (Cited on pages 12 and 85).

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal
of medicinal chemistry, 34(2):786–797, 1991. (Cited on pages 12, 99, and 129).

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016. (Cited on page 25).

Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling using the
sliced wasserstein distance. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3483–3491, 2018. (Cited on page 33).

Arnaud Dessein, Nicolas Papadakis, and Jean-Luc Rouas. Regularized optimal transport and
the rot mover’s distance. The Journal of Machine Learning Research, 19(1):590–642, 2018.
(Cited on page 36).

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors
a multilevel approach. IEEE transactions on pattern analysis and machine intelligence, 29
(11):1944–1957, 2007. (Cited on page 26).

Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich,
and Michael M Bronstein. Graph neural networks as gradient flows. arXiv preprint
arXiv:2206.10991, 2022. (Cited on page 141).

Persi Diaconis and Svante Janson. Graph limits and exchangeable random graphs. arXiv
preprint arXiv:0712.2749, 2007. (Cited on pages 112 and 142).

G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary environments: A
survey. Computational Intelligence Magazine, IEEE, 10:12–25, 11 2015. (Cited on pages
12 and 85).



BIBLIOGRAPHY 181

Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial intelligence:
A survey. In 2018 41st International convention on information and communication
technology, electronics and microelectronics (MIPRO), pp. 0210–0215. IEEE, 2018. (Cited
on page 13).

Harris Drucker, Christopher J Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.
Support vector regression machines. Advances in neural information processing systems, 9,
1996. (Cited on page 18).

Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. The Annals of
Mathematical Statistics, 40(1):40–50, 1969. (Cited on page 33).

Theo Dumont, Théo Lacombe, and François-Xavier Vialard. ON THE EXISTENCE OF
MONGE MAPS FOR THE GROMOV-WASSERSTEIN DISTANCE. working paper or
preprint, October 2022. (Cited on page 41).

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal
transport: Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm.
In International conference on machine learning, pp. 1367–1376. PMLR, 2018. (Cited on
page 51).

Nadav Dym, Haggai Maron, and Yaron Lipman. Ds++: A flexible, scalable and provably
tight relaxation for matching problems. arXiv preprint arXiv:1705.06148, 2017. (Cited on
page 50).

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. (Cited
on page 12).

Christian Fabian, Kai Cui, and Heinz Koeppl. Learning sparse graphon mean field games.
arXiv preprint arXiv:2209.03880, 2022. (Cited on page 142).

Kilian Fatras, Bharath Bhushan Damodaran, Sylvain Lobry, Remi Flamary, Devis Tuia, and
Nicolas Courty. Wasserstein adversarial regularization for learning with label noise. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021a. (Cited on page 142).

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas
Courty. Minibatch optimal transport distances; analysis and applications. arXiv preprint
arXiv:2101.01792, 2021b. (Cited on page 52).

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt.
Scalable kernels for graphs with continuous attributes. Advances in neural information
processing systems, 26, 2013. (Cited on pages 66 and 104).

Aasa Feragen, Francois Lauze, and Soren Hauberg. Geodesic exponential kernels: When
curvature and linearity conflict. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3032–3042, 2015. (Cited on pages 18 and 19).

Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. Regularized
discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3):1853–1882, 2014.
(Cited on pages 50 and 61).

Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative matrix factorization
with the itakura-saito divergence: With application to music analysis. Neural computation,
21(3):793–830, 2009. (Cited on page 39).



BIBLIOGRAPHY 182

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast
geometric deep learning with continuous b-spline kernels. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 869–877, 2018. (Cited on page
26).

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé,
and Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn
divergences. In The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 2681–2690. PMLR, 2019. (Cited on page 36).

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):
298–305, 1973. (Cited on page 113).

R Flamary, N Courty, D Tuia, and A Rakotomamonjy. Optimal transport for domain
adaptation. IEEE Trans. Pattern Anal. Mach. Intell, 1, 2016a. (Cited on page 37).

Rémi Flamary, Nicolas Courty, Alain Rakotomamonjy, and Devis Tuia. Optimal transport
with laplacian regularization. In NIPS 2014, Workshop on Optimal Transport and Machine
Learning, 2014. (Cited on pages 50 and 61).

Rémi Flamary, Cédric Févotte, Nicolas Courty, and Valentin Emiya. Optimal spectral trans-
portation with application to music transcription. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, pp. 703–711, Red Hook,
NY, USA, 2016b. Curran Associates Inc. ISBN 9781510838819. (Cited on page 115).

Rémi Flamary, Karim Lounici, and André Ferrari. Concentration bounds for linear monge map-
ping estimation and optimal transport domain adaptation. arXiv preprint arXiv:1905.10155,
2019. (Cited on page 34).

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard,
Alexander Tong, and Titouan Vayer. Pot: Python optimal transport. Journal of Machine
Learning Research, 22(78):1–8, 2021. (Cited on pages 35, 51, 69, 96, 125, and 126).

P Thomas Fletcher, Conglin Lu, Stephen M Pizer, and Sarang Joshi. Principal geodesic
analysis for the study of nonlinear statistics of shape. IEEE transactions on medical
imaging, 23(8):995–1005, 2004. (Cited on page 39).

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956. (Cited on pages 37 and 50).

Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. In
Annales de l’institut Henri Poincaré, volume 10, pp. 215–310, 1948. (Cited on page 37).

Holger Fröhlich, Jörg K Wegner, Florian Sieker, and Andreas Zell. Optimal assignment
kernels for attributed molecular graphs. In Proceedings of the 22nd international conference
on Machine learning, pp. 225–232, 2005. (Cited on page 20).

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine
learning, pp. 2083–2092. PMLR, 2019. (Cited on page 26).

A Garcez, M Gori, LC Lamb, L Serafini, M Spranger, and SN Tran. Neural-symbolic
computing: An effective methodology for principled integration of machine learning and
reasoning. Journal of Applied Logics, 6(4):611–632, 2019. (Cited on page 13).



BIBLIOGRAPHY 183

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. In International Conference on Machine Learning, pp.
3419–3430. PMLR, 2020. (Cited on page 71).

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Learning theory and kernel machines, pp. 129–143. Springer, 2003.
(Cited on pages 22, 66, and 104).

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for
large-scale optimal transport. Advances in neural information processing systems, 29, 2016.
(Cited on page 37).

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics, pp.
1608–1617. PMLR, 2018. (Cited on pages 14, 36, and 119).

Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample
complexity of sinkhorn divergences. In The 22nd international conference on artificial
intelligence and statistics, pp. 1574–1583. PMLR, 2019. (Cited on page 36).

James E Gentle. Numerical linear algebra for applications in statistics. Springer Science &
Business Media, 1998. (Cited on page 22).

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pp. 1263–1272. PMLR, 2017. (Cited on pages 13 and 23).

Yoav Goldberg. Neural network methods for natural language processing. Synthesis lectures
on human language technologies, 10(1):1–309, 2017. (Cited on page 12).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. (Cited
on pages 12, 18, and 23).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communica-
tions of the ACM, 63(11):139–144, 2020. (Cited on page 142).

Marco Gori, Marco Maggini, and Lorenzo Sarti. Exact and approximate graph matching
using random walks. IEEE transactions on pattern analysis and machine intelligence, 27
(7):1100–1111, 2005a. (Cited on page 142).

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE international joint conference on neural networks,
volume 2, pp. 729–734, 2005b. (Cited on page 66).

Daniele Grattarola, Daniele Zambon, Lorenzo Livi, and Cesare Alippi. Change detection
in graph streams by learning graph embeddings on constant-curvature manifolds. IEEE
Transactions on Neural Networks and Learning Systems, PP:1–14, 07 2019. (Cited on pages
85 and 86).

Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding
pooling in graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022. (Cited on page 26).

Edouard Grave, Armand Joulin, and Quentin Berthet. Unsupervised alignment of embeddings
with wasserstein procrustes. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 1880–1890. PMLR, 2019. (Cited on pages 14 and 49).



BIBLIOGRAPHY 184

Marvin J Greenberg. Euclidean and non-Euclidean geometries: Development and history.
Macmillan, 1993. (Cited on page 17).

Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal
dominance in kernel document clustering. In Proceedings of the 23rd international conference
on Machine learning, pp. 377–384, 2006. (Cited on page 20).

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A
kernel method for the two-sample-problem. Advances in neural information processing
systems, 19, 2006. (Cited on pages 33 and 36).

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. (Cited on pages 25
and 66).

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence
and Machine Learning, 14(3):1–159, 2020. (Cited on pages 13, 15, 18, 23, and 24).

Zaïd Harchaoui and Francis Bach. Image classification with segmentation graph kernels. In
2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2007.
(Cited on pages 12, 66, and 85).

David Haussler et al. Convolution kernels on discrete structures. Technical report, Technical
report, Department of Computer Science, University of California . . . , 1999. (Cited on
page 19).

S. Heitmann and M. Breakspear. Putting the "dynamic" back into dynamic functional
connectivity. Network Neuroscience, 2(2):150–174, 2018. (Cited on pages 12 and 85).

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006. (Cited on page 23).

Frank L Hitchcock. The distribution of a product from several sources to numerous localities.
Journal of mathematics and physics, 20(1-4):224–230, 1941. (Cited on page 31).

Tomaž Hočevar and Janez Demšar. A combinatorial approach to graphlet counting. Bioin-
formatics, 30(4):559–565, 2014. (Cited on page 21).

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983. (Cited on pages 45, 56, 96, 124, and 142).

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989. (Cited on page 71).

Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for predictive
graph mining. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 158–167, 2004. (Cited on page 21).

Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933. (Cited on page 39).

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep
neural networks with logic rules. arXiv preprint arXiv:1603.06318, 2016. (Cited on page
13).

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q Weinberger.
Supervised word mover’s distance. Advances in neural information processing systems, 29,
2016. (Cited on page 14).



BIBLIOGRAPHY 185

David R Hunter and Kenneth Lange. A tutorial on mm algorithms. The American Statistician,
58(1):30–37, 2004. (Cited on pages 37 and 119).

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411–430, 2000. (Cited on page 26).

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pp. 427–435. PMLR, 2013. (Cited on pages 89, 90,
and 116).

Tony Jebara and Risi Kondor. Bhattacharyya and expected likelihood kernels. In Learning
theory and kernel machines, pp. 57–71. Springer, 2003. (Cited on page 22).

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with
graph learning-convolutional networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11313–11320, 2019. (Cited on page 70).

Fredrik Johansson, Vinay Jethava, Devdatt Dubhashi, and Chiranjib Bhattacharyya. Global
graph kernels using geometric embeddings. In International Conference on Machine
Learning, pp. 694–702. PMLR, 2014. (Cited on page 22).

Fredrik D Johansson and Devdatt Dubhashi. Learning with similarity functions on graphs
using matchings of geometric embeddings. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 467–476, 2015.
(Cited on pages 19, 22, and 68).

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021. (Cited on pages 12 and 66).

Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS),
volume 37, pp. 199–201, 1942. (Cited on pages 30 and 31).

Hermann Karcher. Riemannian center of mass and so called karcher mean. arXiv preprint
arXiv:1407.2087, 2014. (Cited on page 37).

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of the 20th international conference on machine learning (ICML-03),
pp. 321–328, 2003. (Cited on page 22).

Tatsuro Kawamoto, Masashi Tsubaki, and Tomoyuki Obuchi. Mean-field theory of graph
neural networks in graph partitioning. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, pp. 4366–4376, Red Hook, NY, USA,
2018. Curran Associates Inc. (Cited on page 112).

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach.
Learn. Res., 21(70):1–73, 2020. (Cited on page 23).

Damian J Kelly and Garrett M ONeill. The minimum cost flow problem and the network
simplex solution method. PhD thesis, Citeseer, 1991. (Cited on page 35).

Tanguy Kerdoncuff, Rémi Emonet, and Marc Sebban. Sampled gromov wasserstein. Machine
Learning, 110(8):2151–2186, 2021. (Cited on page 52).



BIBLIOGRAPHY 186

Tanguy Kerdoncuff, Rémi Emonet, Michaël Perrot, and Marc Sebban. Optimal tensor
transport. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7124–7132, 2022. (Cited on page 71).

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
arXiv preprint arXiv:2205.12156, 2022. (Cited on page 140).

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2016. (Cited on page 75).

Itay Kezurer, Shahar Z Kovalsky, Ronen Basri, and Yaron Lipman. Tight relaxation of
quadratic matching. In Computer graphics forum, volume 34, pp. 115–128. Wiley Online
Library, 2015. (Cited on page 50).

Satyanad Kichenassamy, Arun Kumar, Peter Olver, Allen Tannenbaum, and Anthony Yezzi.
Gradient flows and geometric active contour models. In Proceedings of IEEE International
Conference on Computer Vision, pp. 810–815. IEEE, 1995. (Cited on page 141).

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
(Cited on pages 45, 55, 96, and 122).

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. (Cited on pages 13, 25, and 66).

Donald E Knuth. Sorting and searching. 1973. (Cited on page 33).

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and
generalization in graph neural networks. Advances in neural information processing systems,
32, 2019. (Cited on pages 66, 71, and 106).

Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K Rohde.
Optimal mass transport: Signal processing and machine-learning applications. IEEE signal
processing magazine, 34(4):43–59, 2017. (Cited on page 14).

Soheil Kolouri, Phillip E Pope, Charles E Martin, and Gustavo K Rohde. Sliced wasserstein
auto-encoders. In International Conference on Learning Representations, 2018. (Cited on
page 33).

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Gener-
alized sliced wasserstein distances. Advances in neural information processing systems, 32,
2019. (Cited on page 34).

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. In International Conference on Learning Representations,
2021. (Cited on pages 14, 66, and 75).

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. Advances in neural
information processing systems, 29, 2016. (Cited on page 22).

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In International Conference on Machine
Learning, pp. 2747–2755. PMLR, 2018. (Cited on page 12).

Péter Kovács. Minimum-cost flow algorithms: an experimental evaluation. Optimization
Methods and Software, 30(1):94–127, 2015. (Cited on page 35).



BIBLIOGRAPHY 187

Walid Krichene, Syrine Krichene, and Alexandre Bayen. Efficient bregman projections onto
the simplex. In 2015 54th IEEE Conference on Decision and Control (CDC), pp. 3291–3298.
IEEE, 2015. (Cited on pages 12, 99, and 129).

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. arXiv
preprint arXiv:1206.6483, 2012. (Cited on pages 22 and 75).

Nils M Kriege. Deep weisfeiler-lehman assignment kernels via multiple kernel learning. arXiv
preprint arXiv:1908.06661, 2019. (Cited on page 23).

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment
kernels and applications to graph classification. Advances in neural information processing
systems, 29, 2016. (Cited on pages 20 and 21).

Nils M. Kriege, Matthias Fey, Denis Fisseler, Petra Mutzel, and Frank Weichert. Recognizing
Cuneiform Signs Using Graph Based Methods. arXiv:1802.05908 [cs], March 2018. arXiv:
1802.05908. (Cited on page 85).

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020. (Cited on pages 13, 14, 17, 20, 66, and 76).

Sofia Ira Ktena, Sarah Parisot, Enzo Ferrante, Martin Rajchl, Matthew Lee, Ben Glocker, and
Daniel Rueckert. Distance metric learning using graph convolutional networks: Application
to functional brain networks. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 469–477. Springer, 2017. (Cited on pages 12, 66,
and 85).

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to
document distances. In International conference on machine learning, pp. 957–966. PMLR,
2015. (Cited on page 14).

Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016. (Cited on pages 37, 51, 90, and 116).

Luis C Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe Vardi.
Graph neural networks meet neural-symbolic computing: A survey and perspective. arXiv
preprint arXiv:2003.00330, 2020. (Cited on page 13).

Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable
metric for probability measures with graph metrics. In International Conference on Artificial
Intelligence and Statistics, pp. 9844–9868. PMLR, 2022. (Cited on page 141).

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995. (Cited on
pages 12 and 24).

Daniel Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. Advances
in neural information processing systems, 13, 2000. (Cited on page 39).

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999. (Cited on page 39).

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
conference on machine learning, pp. 3734–3743. PMLR, 2019. (Cited on pages 26 and 66).

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Transactions
on Signal Processing, 67(1):97–109, 2018. (Cited on page 26).



BIBLIOGRAPHY 188

Mengyu Li, Jun Yu, Hongteng Xu, and Cheng Meng. Efficient approximation of gromov-
wasserstein distance using importance sparsification. arXiv preprint arXiv:2205.13573,
2022. (Cited on page 52).

Ping Li, Syama Sundar Rangapuram, and Martin Slawski. Methods for sparse and low-rank
recovery under simplex constraints. arXiv preprint arXiv:1605.00507, 2016. (Cited on page
90).

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018. (Cited on page 70).

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493, 2015. (Cited on pages 25 and 26).

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. Advances in Neural Information Processing Systems, 32, 2019. (Cited on page 142).

Weijie Liu, Chao Zhang, Jiahao Xie, Zebang Shen, Hui Qian, and Nenggan Zheng. Partial
gromov-wasserstein learning for partial graph matching. arXiv preprint arXiv:2012.01252,
2020. (Cited on page 115).

Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, and Fabian-Robert Stöter.
Sliced-wasserstein flows: Nonparametric generative modeling via optimal transport and
diffusions. In International Conference on Machine Learning, pp. 4104–4113. PMLR, 2019.
(Cited on page 33).

Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto, Peter
Hahn, and Tania Querido. A survey for the quadratic assignment problem. European
Journal of Operational Research, 176(2):657–690, 2007. ISSN 0377-2217. doi: https:
//doi.org/10.1016/j.ejor.2005.09.032. (Cited on page 50).

Gaëlle Loosli, Stéphane Canu, and Cheng Soon Ong. Learning svm in krein spaces. IEEE
transactions on pattern analysis and machine intelligence, 38(6):1204–1216, 2015. (Cited
on page 19).

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020. (Cited on page 73).

László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information
theory, 25(1):1–7, 1979. (Cited on page 22).

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization
by first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354,
2018. (Cited on page 171).

Yulong Lu and Jianfeng Lu. A universal approximation theorem of deep neural networks for
expressing probability distributions. Advances in neural information processing systems,
33:3094–3105, 2020. (Cited on page 71).

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. (Cited on page 140).

Ronny Luss and Alexandre d’Aspremont. Support vector machine classification with indefinite
kernels. Advances in neural information processing systems, 20, 2007. (Cited on page 19).



BIBLIOGRAPHY 189

Enxhell Luzhnica, Ben Day, and Pietro Lio. Clique pooling for graph classification. arXiv
preprint arXiv:1904.00374, 2019. (Cited on page 26).

Vince Lyzinski, Donniell E Fishkind, Marcelo Fiori, Joshua T Vogelstein, Carey E Priebe,
and Guillermo Sapiro. Graph matching: Relax at your own risk. IEEE transactions on
pattern analysis and machine intelligence, 38(1):60–73, 2015. (Cited on page 50).

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks
with eigenpooling. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 723–731, 2019. (Cited on page 26).

Pierre Mahé and Jean-Philippe Vert. Graph kernels based on tree patterns for molecules.
Machine learning, 75(1):3–35, 2009. (Cited on page 21).

Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert.
Extensions of marginalized graph kernels. In Proceedings of the twenty-first international
conference on Machine learning, pp. 70, 2004. (Cited on page 22).

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning
for sparse coding. In Proceedings of the 26th annual international conference on machine
learning, pp. 689–696, 2009. (Cited on pages 85, 92, and 122).

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. Got:
an optimal transport framework for graph comparison. In Advances in Neural Information
Processing Systems, pp. 13876–13887, 2019. (Cited on pages 66, 86, and 112).

Haggai Maron and Yaron Lipman. (probably) concave graph matching. In Advances in
Neural Information Processing Systems, pp. 408–418, 2018. (Cited on pages 50 and 112).

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019a. (Cited on
pages 25, 74, 76, and 77).

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations, 2019b. (Cited
on pages 66 and 76).

Naoki Masuda and Renaud Lambiotte. A Guide To Temporal Networks, volume 6. World
Scientific, 2020. (Cited on page 85).

Robert J McCann. A convexity principle for interacting gases. Advances in mathematics, 128
(1):153–179, 1997. (Cited on page 37).

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018. (Cited on
page 78).

Facundo Mémoli. On the use of gromov-hausdorff distances for shape comparison. 2007.
(Cited on page 40).

Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching.
Foundations of computational mathematics, 11(4):417–487, 2011. (Cited on pages 14, 28,
40, 49, 52, and 138).

Facundo Mémoli and Guillermo Sapiro. Comparing point clouds. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 32–40, 2004.
(Cited on page 49).



BIBLIOGRAPHY 190

Facundo Mémoli and Guillermo Sapiro. A theoretical and computational framework for isom-
etry invariant recognition of point cloud data. Foundations of Computational Mathematics,
5(3):313–347, 2005. (Cited on page 49).

Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural
networks. Advances in Neural Information Processing Systems, 33:2220–2231, 2020. (Cited
on pages 25 and 66).

Shervin Minaee, Yuri Y Boykov, Fatih Porikli, Antonio J Plaza, Nasser Kehtarnavaz, and
Demetri Terzopoulos. Image segmentation using deep learning: A survey. IEEE transactions
on pattern analysis and machine intelligence, 2021. (Cited on page 12).

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence, 41(8):1979–1993, 2018. (Cited
on page 142).

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018. (Cited on page 18).

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad.
Royale Sci., pp. 666–704, 1781. (Cited on page 29).

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5115–5124, 2017. (Cited on page 26).

Christopher Morris, Nils M Kriege, Kristian Kersting, and Petra Mutzel. Faster kernels for
graphs with continuous attributes via hashing. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pp. 1095–1100. IEEE, 2016. (Cited on page 21).

Christopher Morris, Kristian Kersting, and Petra Mutzel. Glocalized weisfeiler-lehman graph
kernels: Global-local feature maps of graphs. In 2017 IEEE International Conference on
Data Mining (ICDM), pp. 327–336. IEEE, 2017. (Cited on page 21).

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pp. 4602–4609, 2019. (Cited on page 25).

K.G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Sigma series in
applied mathematics. Heldermann, 1988. ISBN 978-3-88538-403-8. (Cited on pages 44, 54,
and 143).

Boris Muzellec and Marco Cuturi. Generalizing point embeddings using the wasserstein space
of elliptical distributions. Advances in Neural Information Processing Systems, 31, 2018.
(Cited on page 34).

Assaf Naor and Gideon Schechtman. Planar earthmover is not in l_1. SIAM Journal on
Computing, 37(3):804–826, 2007. (Cited on page 20).

Praneeth Narayanamurthy and Namrata Vaswani. Nearly optimal robust subspace tracking.
In International Conference on Machine Learning, pp. 3701–3709. PMLR, 2018. (Cited on
page 86).



BIBLIOGRAPHY 191

Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. Universal readout for graph
convolutional neural networks. In 2019 International Joint Conference on Neural Networks
(IJCNN), pp. 1–7. IEEE, 2019. (Cited on page 26).

Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. Gap: Generalizable
approximate graph partitioning framework. arXiv preprint arXiv:1903.00614, 2019. (Cited
on page 112).

Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling. Linear Algebra
and its Applications, 302:435–460, 1999. (Cited on page 35).

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation
kernels: efficient graph kernels from propagated information. Machine Learning, 102(2):
209–245, 2016. (Cited on pages 21 and 104).

Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering: Analysis and an
algorithm. Advances in neural information processing systems, 2:849–856, 2002. (Cited on
page 85).

Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian semi-supervised learning
with graph gaussian processes. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. (Cited on page 66).

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In International conference on machine learning, pp. 2014–2023.
PMLR, 2016. (Cited on pages 13, 76, 85, and 86).

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Matching node
embeddings for graph similarity. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pp. 2429–2435,
2017. (Cited on pages 14, 20, 66, and 112).

James R Norris and James Robert Norris. Markov chains. Number 2. Cambridge university
press, 1998. (Cited on page 12).

Emmanuel Noutahi, Dominique Beaini, Julien Horwood, Sébastien Giguère, and Prudencio
Tossou. Towards interpretable sparse graph representation learning with laplacian pooling.
arXiv preprint arXiv:1905.11577, 2019. (Cited on page 26).

James B Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78(2):109–129, 1997. (Cited on page 35).

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MFMoura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE,
106(5):808–828, 2018. (Cited on pages 17 and 25).

Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages of deep
learning for natural language processing. IEEE transactions on neural networks and
learning systems, 32(2):604–624, 2020. (Cited on page 12).

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010. (Cited on page 13).

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN:
Random dropouts increase the expressiveness of graph neural networks. In Advances in
Neural Information Processing Systems, 2021. (Cited on pages 73, 74, 76, and 77).



BIBLIOGRAPHY 192

Ferran Parés, Dario Garcia Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé,
Jesús Labarta, Ulises Cortés, and Toyotaro Suzumura. Fluid communities: A competitive,
scalable and diverse community detection algorithm. In International conference on complex
networks and their applications, pp. 229–240. Springer, 2017. (Cited on page 52).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in pytorch. 2017. (Cited on page 69).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019. (Cited on page 35).

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701–710, 2014. (Cited on pages 13 and 85).

Bruno-Edouard Perrin, Liva Ralaivola, Aurelien Mazurie, Samuele Bottani, Jacques Mallet,
and Florence d’Alche Buc. Gene networks inference using dynamic bayesian networks.
Bioinformatics, 19(suppl_2):ii138–ii148, 2003. (Cited on page 66).

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008. (Cited on pages 156 and 160).

Gabriel Peyré. Entropic approximation of wasserstein gradient flows. SIAM Journal on
Imaging Sciences, 8(4):2323–2351, 2015. (Cited on page 36).

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends
in Machine Learning, 11:355–607, 2019. (Cited on pages 14, 15, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 66, and 86).

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel
and distance matrices. In International Conference on Machine Learning, pp. 2664–2672,
2016. (Cited on pages 14, 42, 43, 50, 51, 52, 53, 61, 62, 63, 64, 86, 89, 92, 99, 117, 121, 129,
and 159).

Nikolaos Ploskas and Nikolaos Samaras. Gpu accelerated pivoting rules for the simplex
algorithm. Journal of Systems and Software, 96:1–9, 2014. (Cited on page 35).

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes,
Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning:
Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5):1–36,
2018. (Cited on pages 18 and 23).

Julien Rabin, Sira Ferradans, and Nicolas Papadakis. Adaptive color transfer with relaxed
optimal transport. In 2014 IEEE International Conference on Image Processing (ICIP),
pp. 4852–4856, 2014. doi: 10.1109/ICIP.2014.7025983. (Cited on page 115).

Johann Radon. On the determination of functions from their integral values along certain
manifolds. IEEE transactions on medical imaging, 5(4):170–176, 1986. (Cited on page 33).

Alain Rakotomamonjy, Francis Bach, Stéphane Canu, et al. Simplemkl. Journal of Machine
Learning Research, 9:2491–2521, 2008. (Cited on pages 18 and 23).



BIBLIOGRAPHY 193

Alain Rakotomamonjy, Rémi Flamary, and Nicolas Courty. Generalized conditional gradient:
analysis of convergence and applications. arXiv preprint arXiv:1510.06567, 2015. (Cited
on page 37).

Alain Rakotomamonjy, Abraham Traoré, Maxime Berar, Rémi Flamary, and Nicolas Courty.
Distance measure machines. arXiv preprint arXiv:1803.00250, 2018. (Cited on page 68).

Liva Ralaivola and Florence d’Alché Buc. Time series filtering, smoothing and learning using
the kernel kalman filter. In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., volume 3, pp. 1449–1454. IEEE, 2005. (Cited on page 12).

Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. In
Proceedings of the first international workshop on mining graphs, trees and sequences, pp.
65–74, 2003. (Cited on page 21).

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 66(336):846–850, 1971. (Cited on pages 100 and 129).

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling
for learning hierarchical graph representations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 5470–5477, 2020. (Cited on page 26).

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on
machine learning, pp. 63–71. Springer, 2003. (Cited on page 18).

Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. A
survey on subgraph counting: concepts, algorithms, and applications to network motifs
and graphlets. ACM Computing Surveys (CSUR), 54(2):1–36, 2021. (Cited on page 21).

Frigyes Riesz. Sur les opérations functionnelles linéaires. Gauthier-Vllars, 1909. (Cited on
page 18).

Antoine Rolet, Marco Cuturi, and Gabriel Peyré. Fast dictionary learning with a smoothed
wasserstein loss. In Artificial Intelligence and Statistics, pp. 630–638. PMLR, 2016. (Cited
on pages 39 and 86).

Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. Adjusting for
chance clustering comparison measures. The Journal of Machine Learning Research, 17(1):
4635–4666, 2016. (Cited on page 124).

Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123,
2008. (Cited on page 126).

Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-
source Python Framework for Unsupervised Learning on Graphs. In Proceedings of the
29th ACM International Conference on Information and Knowledge Management (CIKM
’20), pp. 3125–3132. ACM, 2020. (Cited on page 106).

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with
applications to image databases. In Sixth international conference on computer vision
(IEEE Cat. No. 98CH36271), pp. 59–66. IEEE, 1998. (Cited on page 14).

Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and applications.
Chapman and Hall/CRC, 2005. (Cited on page 22).



BIBLIOGRAPHY 194

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017. (Cited on
page 12).

Asif Salim, SS Shiju, and S Sumitra. Design of multi-view graph embedding using multiple
kernel learning. Engineering Applications of Artificial Intelligence, 90:103534, 2020. (Cited
on page 23).

Roman Sandler and Michael Lindenbaum. Nonnegative matrix factorization with earth
mover’s distance metric for image analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(8):1590–1602, 2011. (Cited on page 39).

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55
(58-63):94, 2015. (Cited on pages 14, 15, 28, 33, 41, and 151).

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview.
Bulletin of Mathematical Sciences, 7(1):87–154, 2017. (Cited on page 141).

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.
Advances in neural information processing systems, 30, 2017. (Cited on page 12).

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020. (Cited on pages 21, 25, and 71).

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural
networks for combinatorial problems. Advances in Neural Information Processing Systems,
32, 2019. (Cited on page 73).

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph
neural networks. In Proceedings of the 2021 SIAM International Conference on Data
Mining (SDM), pp. 333–341. SIAM, 2021. (Cited on page 73).

Akrati Saxena and Sudarshan Iyengar. Centrality measures in complex networks: A survey.
arXiv preprint arXiv:2011.07190, 2020. (Cited on page 70).

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,
2008. (Cited on pages 13, 24, and 85).

Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In
International Conference on Machine Learning, pp. 9344–9354. PMLR, 2021a. (Cited on
pages 52, 62, 118, and 169).

Meyer Scetbon, Gabriel Peyré, and Marco Cuturi. Linear-time gromov wasserstein distances
using low rank couplings and costs, 2021b. (Cited on page 52).

Morgan A Schmitz, Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco
Cuturi, Gabriel Peyré, and Jean-Luc Starck. Wasserstein dictionary learning: Optimal
transport-based unsupervised nonlinear dictionary learning. SIAM Journal on Imaging
Sciences, 11(1):643–678, 2018. (Cited on pages 14, 39, 85, and 86).

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport
problems. SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019. (Cited on
page 36).



BIBLIOGRAPHY 195

Bernhard Schmitzer and Christoph Schnörr. Modelling convex shape priors and matching
based on the gromov-wasserstein distance. J. Math. Imaging Vis., 46(1):143–159, may 2013.
ISSN 0924-9907. doi: 10.1007/s10851-012-0375-6. (Cited on page 115).

Isaac J Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics,
pp. 811–841, 1938. (Cited on page 19).

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In International conference on artificial neural networks, pp. 583–588. Springer,
1997. (Cited on page 18).

Vivien Seguy and Marco Cuturi. Principal geodesic analysis for probability measures under
the optimal transport metric. Advances in Neural Information Processing Systems, 28,
2015. (Cited on page 39).

Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré. The unbalanced gromov
wasserstein distance: Conic formulation and relaxation. Advances in Neural Information
Processing Systems, 34:8766–8779, 2021. (Cited on pages 113 and 115).

Thibault Séjourné, Gabriel Peyré, and François-Xavier Vialard. Unbalanced optimal transport,
from theory to numerics. arXiv preprint arXiv:2211.08775, 2022. (Cited on pages 115
and 141).

Linda G Shapiro, George C Stockman, et al. Computer vision, volume 3. Prentice Hall New
Jersey, 2001. (Cited on page 12).

Alexander Shekhovtsov and Václav Hlaváč. A distributed mincut/maxflow algorithm combin-
ing path augmentation and push-relabel. International journal of computer vision, 104(3):
315–342, 2013. (Cited on page 83).

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics,
pp. 488–495. PMLR, 2009. (Cited on pages 21, 66, and 104).

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011. (Cited on pages 20, 21, 66, and 75).

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000. (Cited on page 99).

Kilho Shin and Tetsuji Kuboyama. A generalization of haussler’s convolution kernel: mapping
kernel. In Proceedings of the 25th international conference on Machine learning, pp. 944–951,
2008. (Cited on page 20).

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020. (Cited on page
12).

David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst. The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains. IEEE Signal Processing Magazine,
30:83–98, 2013. (Cited on page 66).

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos
Skianis, and Michalis Vazirgiannis. Grakel: A graph kernel library in python. Journal of
Machine Learning Research, 21(54):1–5, 2020. (Cited on page 104).



BIBLIOGRAPHY 196

Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.
(Cited on page 18).

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967. (Cited on page 35).

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. (Cited on page 142).

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017. (Cited on page 141).

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas Guibas. Convolutional wasserstein distances: Efficient
optimal transportation on geometric domains. ACM Transactions on Graphics (ToG), 34
(4):1–11, 2015. (Cited on page 38).

Justin Solomon, Gabriel Peyré, Vladimir G Kim, and Suvrit Sra. Entropic metric alignment
for correspondence problems. ACM Transactions on Graphics (TOG), 35(4):1–13, 2016.
(Cited on pages 14, 51, and 89).

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015. (Cited on page 24).

Matthew Staib, Sebastian Claici, Justin M Solomon, and Stefanie Jegelka. Parallel streaming
wasserstein barycenters. Advances in Neural Information Processing Systems, 30, 2017.
(Cited on page 37).

Douglas Steinley. Properties of the hubert-arable adjusted rand index. Psychological methods,
9(3):386, 2004. (Cited on page 100).

X Yu Stella and Jianbo Shi. Multiclass spectral clustering. In null, pp. 313. IEEE, 2003.
(Cited on page 99).

Todd Andrew Stephenson. An introduction to bayesian network theory and usage. Technical
report, Idiap, 2000. (Cited on page 17).

Karl-Theodor Sturm. The space of spaces: curvature bounds and gradient flows on the space
of metric measure spaces. arXiv preprint arXiv:1208.0434, 2012. (Cited on pages 14, 28,
40, 41, 48, 49, 59, and 138).

Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic
algorithm: A method for developing classification structure- activity relationships. Journal
of chemical information and computer sciences, 43(6):1906–1915, 2003. (Cited on pages 12,
99, and 129).

Robert E Tarjan. Dynamic trees as search trees via euler tours, applied to the network
simplex algorithm. Mathematical Programming, 78(2):169–177, 1997. (Cited on pages 35
and 51).

Savannah Thais, Paolo Calafiura, Grigorios Chachamis, Gage DeZoort, Javier Duarte, Sanmay
Ganguly, Michael Kagan, Daniel Murnane, Mark S Neubauer, and Kazuhiro Terao. Graph
neural networks in particle physics: Implementations, innovations, and challenges. arXiv
preprint arXiv:2203.12852, 2022. (Cited on page 12).



BIBLIOGRAPHY 197

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition. Elsevier, 2006.
(Cited on pages 17 and 18).

Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K Rohde, and Dejan Slepčev. A
transportation lp distance for signal analysis. Journal of mathematical imaging and vision,
59(2):187–210, 2017. (Cited on page 14).

Alexis Thual, Huy Tran, Tatiana Zemskova, Nicolas Courty, Rémi Flamary, Stanislas Dehaene,
and Bertrand Thirion. Aligning individual brains with fused unbalanced gromov-wasserstein.
arXiv preprint arXiv:2206.09398, 2022. (Cited on pages 115 and 141).

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten
Borgwardt. Wasserstein weisfeiler–lehman graph kernels. In Advances in Neural Information
Processing Systems, pp. 6436–6446. Curran Associates, Inc., 2019. (Cited on pages 14, 21,
66, 75, 86, and 112).

Alexander Tong, Guillaume Huguet, Dennis Shung, Amine Natik, Manik Kuchroo, Guillaume
Lajoie, Guy Wolf, and Smita Krishnaswamy. Embedding signals on graphs with unbalanced
diffusion earth mover’s distance. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5647–5651. IEEE, 2022. (Cited on
page 141).

Alexander Y Tong, Guillaume Huguet, Amine Natik, Kincaid MacDonald, Manik Kuchroo,
Ronald Coifman, Guy Wolf, and Smita Krishnaswamy. Diffusion earth mover’s distance
and distribution embeddings. In International Conference on Machine Learning, pp.
10336–10346. PMLR, 2021. (Cited on page 141).

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curva-
ture. arXiv preprint arXiv:2111.14522, 2021. (Cited on page 140).

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-
mization. Journal of optimization theory and applications, 109(3):475–494, 2001. (Cited on
page 89).

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008. (Cited on page 78).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. (Cited on page 24).

Titouan Vayer. A contribution to optimal transport on incomparable spaces. arXiv preprint
arXiv:2011.04447, 2020. (Cited on pages 41, 42, and 60).

Titouan Vayer, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport
for structured data with application on graphs. In International Conference on Machine
Learning, pp. 6275–6284. PMLR, 2019a. (Cited on pages 14, 50, 57, 59, 60, 62, 63, 64, 67,
69, 75, 76, 89, 92, 104, 129, 138, 149, and 150).

Titouan Vayer, Rémi Flamary, Romain Tavenard, Laetitia Chapel, and Nicolas Courty. Sliced
gromov-wasserstein. In NeurIPS 2019-Thirty-third Conference on Neural Information
Processing Systems, volume 32, 2019b. (Cited on page 52).

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused
gromov-wasserstein distance for structured objects. Algorithms, 13(9):212, 2020. (Cited on
pages 14, 15, 29, 39, 57, 58, 59, 60, 62, 67, 138, and 149).



BIBLIOGRAPHY 198

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018. (Cited on pages 24, 78, 81, and 83).

Jean-Philippe Vert. The optimal assignment kernel is not positive definite. arXiv preprint
arXiv:0801.4061, 2008. (Cited on page 20).

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009. (Cited on pages
14, 15, 28, 66, and 138).

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc.,
2021. (Cited on pages 31, 32, 33, and 48).

Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas Courty.
Online graph dictionary learning. In Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10564–
10574. PMLR, 18–24 Jul 2021. (Cited on pages 15, 16, 29, 43, 54, 62, 64, 67, 84, 122,
and 129).

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty.
Semi-relaxed gromov-wasserstein divergence and applications on graphs. In International
Conference on Learning Representations, 2022a. (Cited on pages 16, 67, 83, and 111).

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty.
Semi-relaxed gromov-wasserstein divergence for graphs classification. In Colloque GRETSI
2022-XXVIIIème Colloque Francophone de Traitement du Signal et des Images, 2022b.
(Cited on pages 16, 83, and 111).

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty.
Template based graph neural network with optimal transport distances. In Advances in
Neural Information Processing Systems, 2022c. (Cited on pages 15, 65, and 105).

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance. The
Journal of Machine Learning Research, 11:2837–2854, 2010. (Cited on page 124).

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt.
Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010. (Cited on
pages 20, 22, and 104).

Stefan Vlaski, Hermina P Maretić, Roula Nassif, Pascal Frossard, and Ali H Sayed. Online
graph learning from sequential data. In 2018 IEEE Data Science Workshop (DSW), pp.
190–194. IEEE, 2018. (Cited on page 85).

Curtis R Vogel. Computational methods for inverse problems. SIAM, 2002. (Cited on page
22).

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):
395–416, 2007. (Cited on page 26).

Junshan Wang, G. Song, Y. Wu, and Liang Wang. Streaming graph neural networks via
continual learning. Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, 2020. (Cited on page 85).

Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing,
312:135–153, 2018. (Cited on page 13).



BIBLIOGRAPHY 199

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7794–7803, 2018. (Cited on page 12).

Yuchung J Wang and George Y Wong. Stochastic blockmodels for directed graphs. Journal
of the American Statistical Association, 82(397):8–19, 1987. (Cited on page 96).

Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence
of empirical measures in wasserstein distance. Bernoulli, 25(4A):2620–2648, 2019. (Cited
on page 33).

Jonathan Daniel Weed. Statistical problems in transport and alignment. PhD thesis, Mas-
sachusetts Institute of Technology, 2019. (Cited on page 33).

William W.S. Wei. 458Time Series Analysis. In The Oxford Handbook of Quantitative
Methods in Psychology: Vol. 2: Statistical Analysis. Oxford University Press, 2013. doi:
10.1093/oxfordhb/9780199934898.013.0022. (Cited on page 12).

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the
algebra which appears therein. NTI, Series, 2(9):12–16, 1968. (Cited on page 20).

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle
River, 2001. (Cited on page 17).

Alan Geoffrey Wilson. The use of entropy maximising models, in the theory of trip distribution,
mode split and route split. Journal of transport economics and policy, pp. 108–126, 1969.
(Cited on page 35).

Jun Wu, Jingrui He, and Jiejun Xu. Net: Degree-specific graph neural networks for node and
graph classification. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 406–415, 2019. (Cited on page 26).

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 2020. (Cited on pages 12, 13, 15, 18, 23, 25, 66, 85, and 141).

Xinyue Xia, Gal Mishne, and Yusu Wang. Implicit graphon neural representation. arXiv
preprint arXiv:2211.03329, 2022. (Cited on page 142).

Yu Xie, Chuanyu Yao, Maoguo Gong, Cheng Chen, and A Kai Qin. Graph convolutional
networks with multi-level coarsening for graph classification. Knowledge-Based Systems,
194:105578, 2020a. (Cited on page 26).

Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan Zha. A fast proximal point method
for computing exact wasserstein distance. In Ryan P. Adams and Vibhav Gogate (eds.),
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of
Proceedings of Machine Learning Research, pp. 433–453. PMLR, 22–25 Jul 2020b. (Cited
on page 117).

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for
graph partitioning and matching. Advances in neural information processing systems, 32:
3052–3062, 2019a. (Cited on pages 43, 46, 52, 53, 57, 62, 63, 67, 86, 93, 113, 128, and 138).

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein
learning for graph matching and node embedding. In International conference on machine
learning, pp. 6932–6941. PMLR, 2019b. (Cited on pages 52, 62, 117, and 125).



BIBLIOGRAPHY 200

Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via
structured gromov-wasserstein barycenters. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 10505–10513, 2021a. (Cited on pages 43, 53, 112,
and 142).

Hongteng Xu, Peilin Zhao, Junzhou Huang, and Dixin Luo. Learning graphon autoencoders
for generative graph modeling. arXiv preprint arXiv:2105.14244, 2021b. (Cited on page
142).

Hongtengl Xu. Gromov-wasserstein factorization models for graph clustering. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 6478–6485, 2020. (Cited
on pages 43, 53, 67, 69, 78, 86, 89, 99, 105, 113, 121, and 129).

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning, pp. 5453–5462. PMLR, 2018. (Cited on
pages 24, 76, and 80).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019c. (Cited on
pages 24, 25, 66, 68, 71, 73, 76, 77, 80, 83, 105, and 140).

Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang.
A short survey of recent advances in graph matching. In Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval, pp. 167–174, 2016. (Cited on page 112).

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374,
2015. (Cited on pages 12, 20, 66, 75, 85, 99, and 129).

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015. (Cited on pages
12 and 125).

Peng Yang, Peilin Zhao, and Xin Gao. Bandit online learning on graphs via adaptive
optimization. International Joint Conferences on Artificial Intelligence, 2018. (Cited on
page 85).

Wei Ye, Jiayi Yang, Sourav Medya, and Ambuj Singh. Incorporating heterophily into graph
neural networks for graph classification. arXiv preprint arXiv:2203.07678, 2022. (Cited on
page 140).

Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order graph
clustering. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 555–564, 2017. (Cited on pages 12 and 125).

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. Advances in neural
information processing systems, 31, 2018. (Cited on pages 26, 66, and 76).

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017. (Cited on page 25).

Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Concept drift and anomaly detection in
graph streams. IEEE Transactions on Neural Networks and Learning Systems, PP, 06 2017.
(Cited on page 85).



BIBLIOGRAPHY 201

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In International conference on machine learning, pp. 7354–7363.
PMLR, 2019a. (Cited on page 142).

Kelvin Shuangjian Zhang, Gabriel Peyré, Jalal Fadili, and Marcelo Pereyra. Wasserstein
control of mirror langevin monte carlo. In Conference on Learning Theory, pp. 3814–3841.
PMLR, 2020. (Cited on pages 118 and 169).

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In Thirty-second AAAI conference on artificial
intelligence, 2018. (Cited on pages 26 and 66).

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can
Wang. Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954,
2019b. (Cited on page 70).

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural
networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.
(Cited on pages 23 and 140).

Feng Zhou and Fernando De la Torre. Factorized graph matching. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 127–134. IEEE, 2012. (Cited on page
112).

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. AI Open, 1:57–81, 2020. (Cited on page 23).

Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, and Yongdong
Zhang. Bilinear graph neural network with neighbor interactions. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, 2021.
ISBN 9780999241165. (Cited on page 24).

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs.
Advances in Neural Information Processing Systems, 33:7793–7804, 2020. (Cited on page
140).


	Abstract
	Résumé
	Remerciements
	Notations
	Introduction
	Structured data in Machine Learning
	Structured data
	Learning structured data representations
	Graphs, incomparable spaces and Optimal Transport

	Manuscript outline and contributions
	Chapter 2: Introduction to Graph Representation Learning
	Chapter 3: Introduction to Optimal Transport for graphs
	Chapter 4: Optimal Transport distances for graphs meet Graph Neural Networks
	Chapter 5: Fused Gromov-Wasserstein Linear Dictionary of graphs
	Chapter 6: Relaxing the Optimal Transport paradigm for unsupervised Graph Representation Learning
	Chapter 7: Conclusion


	Introduction to Graph Representation Learning
	Similarity based approaches
	On the theoretical foundations of kernel methods
	Substructure based Graph Kernels
	Global structure based kernels

	Graph Neural Networks
	Node embeddings in GNN
	Graph pooling operations

	Conclusion

	Introduction to Optimal Transport for graphs
	Optimal Transport within a common space
	Problem statements
	Wasserstein distances: definitions and properties
	Solving for linear OT
	OT for unsupervised representation learning

	Optimal Transport across incomparable spaces
	Problem statement
	Gromov-Wasserstein barycenter
	Gromov-Wasserstein properties
	Solving Gromov-Wasserstein problems
	Gromov-Wasserstein barycenter

	Optimal Transport across incomparable spaces endowed with feature information
	Problem statement
	Fused Gromov-Wasserstein properties
	Solving Fused Gromov-Wasserstein problems
	Fused Gromov-Wasserstein barycenter

	Conclusion

	OT distances for graphs meet GNN
	Introduction
	Template based Graph Neural Network with Optimal Transport Distances
	Model definition
	Learning problem and solver.
	TFGW as a generic OT based model.
	Model properties

	Experimental results
	Analysis of the expressiveness of template-based OT models
	Graph classification benchmark 
	TFGW-GIN: Ablation study and embedding visualization 
	TFGW-GIN: Sensitivity analysis
	TFGW-GAT: sensitivity analysis

	Discussion and conclusion

	Fused Gromov-Wasserstein Linear Dictionary of graphs
	Introduction
	Fused Gromov-Wasserstein Linear Dictionary Learning on graphs
	Linear modeling of graphs
	Fused Gromov-Wasserstein linear unmixing
	Fast upper bound for GW
	Dictionary learning and online algorithm
	Learning the graph structure and distribution
	GDL for graphs completion

	Experimental results
	GDL on simulated datasets
	GDL for clustering of real-world datasets
	Illustration of GDL dictionaries on real-world datasets
	GDL for classification of real-world datasets
	Online graph subspace estimation and change detection
	Applications to graph completion

	Discussion and conclusion

	Relaxing the Optimal Transport paradigm for unsupervised Graph Representation Learning
	Introduction
	Optimal Transport for structured data
	On the limitations of Optimal Transport distances for graphs

	The semi-relaxed Fused Gromov-Wasserstein divergence
	Definition and properties
	Optimization and algorithms

	The semi-relaxed (Fused) Gromov-Wasserstein barycenter as a natural Dictionary Learning problem
	A novel Graph Dictionary Learning
	DL-based model for graphs completion

	Numerical experiments
	Graph partitioning: Benchmarks
	Graph partitioning: Initialization and parameterization
	Clustering of graphs datasets
	Classification of graphs datasets
	Graphs completion

	Conclusion

	Conclusion
	Brief overview of the contributions
	Optimal Transport for Graph Representation Learning
	Learning the graph distribution

	Perspectives for Optimal Transport on graphs
	Discriminant modeling
	Dictionary Learning and Generative modeling


	Annexes
	Proofs of Chapter 3
	Proof of Theorem 5: subgradient w.r.t distributions of GW
	Proof of Theorem 7: subgradient w.r.t distributions of FGW

	Proofs and additional results of Chapter 4
	Notations and preliminaries
	Proof of Lemma 3: TFGW invariance to strong isomorphism
	Proof of Lemma 4: TFGW invariance to weak isomorphism
	Complements on graphs classification benchmark

	Proofs and additional results of Chapter 5
	Proof of Lemma 5: convexity of the unmixing problem w.r.t the embeddings
	Line-search of the Conditional Gradient solver for the unmixing subproblem
	Proof of Theorem 9: FGW upper-bound in the embedding
	Clustering benchmark : additional results

	Proofs and additional results of Chapter 6
	Proof of Proposition 2: srFGW equivalent problems
	Proofs of Lemma 6: sr(F)GW properties
	Line-search of the Conditional Gradient solver for srFGW
	Proof of Proposition 3: Convergence of srFGW Mirror-Descent algorithm
	Complements on graphs clustering experiments


	Bibliography

