Keywords: concurrent shared objects, distributed algorithms, distributed computing, complexity, fault tolerance

Therefore, we present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where the worst-case step complexity of an Enqueue operation is in O(log n) and where the complexity of the Dequeue operation depends on the level of concurrency during the execution and is O(k log n) in the worst-case scenario.

We then rely on the relaxation of the FIFO queue semantics to show that allowing concurrent Dequeue operations to retrieve the same element results in an implementation with O(log n) worst-case step complexity for both the Enqueue and Dequeue operations.

Amélioration de Complexité d'Implémentations Linéarisables et Wait-free d'Objets Concurrents en Relaxant leurs Spécifications

Résumé : Dans un contexte distribué, les différents problèmes de synchronicité entre processus sont modélisés à l'aide d'objets partagés. Lorsqu'un nouvel objet partagé est implémenté, on s'appuie souvent sur des objets de base préexistants. En cherchant à maximiser l'efficacité de ces implémentations, un nouveau domaine de recherche a émergé ces dernières années, centré sur le compromis possible entre la précision d'une implémentation et sa complexité.

Nous étudions dans cette thèse la définition d'objets partagés relaxés où les opérations ont le droit à une certaine marge d'erreur, et comment cela peut améliorer la complexité de leurs implémentations. Nous considérons le cas d'objets partagés connus : counter, max register, et FIFO queue.

Tout d'abord, nous étudions la possibilité d'améliorer la complexité des implémentations relaxées du counter et max register par rapport à leurs implémentations exactes. Dans le modèle de mémoire partagée classique, nous étudions dans quelle mesure permettre aux implémentations linéarisables et wait-free de ces objets de retourner des valeurs approximatives, plutôt que des valeurs précises, peut améliorer leur complexité.

Nous considérons le k-multiplicatif max register et le k-multiplicatif counter, où les opérations de lecture sont autorisées à se tromper d'un facteur multiplicatif de k. Nous présentons une implémentation du k-multiplicatif counter wait-free linéarisable pour k ≥ n avec une complexité de pas amortie constante où n est le nombre de processus. Nous montrons également qu'en bornant l'exécution, nous sommes capables d'implémenter le counter k-multiplicatif pour k ≥ √ n d'une manière linéarisable wait-free avec une complexité de pas dans le pire des cas de O(min(log(log(m + 1)), n)) où m représente la limite du nombre d'opérations CounterIncrement lors d'une exécution. Les deux implémentations offrent une amélioration exponentielle de la complexité de leurs équivalents exacts dans l'état de l'art.

Ensuite, nous montrons que la relaxation de la sémantique du max register en autorisant l'imprécision d'un facteur multiplicatif constant produit une amélioration exponentielle de la complexité de pas dans le pire des cas pour la variante bornée, et de la complexité de pas amortie pour la variante non bornée.

Afin de mesurer les limites de ces relaxations, nous étudions les bornes inférieures de la complexité du counter et max register k-multiplicatif. Nous obtenons le résultat que lorsque le paramètre d'approximation k ne dépend pas du nombre de processus, assouplir la sémantique du counter en autorisant l'imprécision d'un facteur multiplicatif ne peut asymptotiquement réduire la complexité des pas amortis des compteurs non bornés de plus d'un facteur logarithmique. Nous prouvons également que notre max register k-multiplicatif borné est optimal.

En ce qui concerne la FIFO queue, la conception d'implémentations efficaces wait-free est complexe malgré son utilisation dans de nombreuses applications distribuées. La plupart des implémentations des FIFO queue dans la littérature s'appuient sur des contraintes de concurrence : tous les processus ne sont pas autorisés à exécuter des opérations de Enqueue et de Dequeue.

Dans cette thèse, nous étudions la possibilité d'implémenter la FIFO queue d'une façon wait-free avec une complexité logarithmique dans le pire des cas sans contraintes de concurrence. Par conséquent, nous présentons une implémentation qui prend en charge n enqueuers et k dequeuers où la complexité dans le pire des cas d'une opération Enqueue est en O(log n) et où la complexité de l'opération Dequeue dépend du niveau de concurrence et est O(k log n) dans le pire des cas.

Nous nous appuyons ensuite sur l'assouplissement de la sémantique de la FIFO queue pour montrer que le fait d'autoriser des opérations Dequeue concurrentes à retourner le même élément engendre une implémentation avec une complexité en O(log n) dans le pire des cas pour les opérations Enqueue et Dequeue. Mots-clés : objets concurrents, algorithmes distribués, calcul distribué, complexité, tolérance aux pannes On Improving the Complexity of Linearizable and Wait-free Implementations of Concurrent Objects by Relaxing their Specifications Abstract: In a distributed context, the different problems of synchronicity between processes are modeled using shared objects. When a new shared object is implemented, it relies on base objects consisting of preexisting implementations, as building blocks. In seeking to maximize the efficiency of these implementations, a new research field has emerged in recent years, with a focus on the possible trade-off between the accuracy of an implementation and its complexity.

We investigate in this thesis how defining relaxed shared objects where the operations are allowed a certain margin of error can result in improved theoretical complexity results. We consider the case study of well-known shared objects, namely: the counter, max register, and FIFO queue.

First, we study the possible improvement in step complexity of the relaxed implementation of the counter and max register objects compared to their exact implementations. In the classical shared memory model, we investigate the extent to which allowing wait-free linearizable implementations of these objects to return approximate values, rather than accurate ones, may improve their step complexity.

We consider the k-multiplicative-accurate max register and the k-multiplicative-accurate counter, where read operations are allowed to err by a multiplicative factor of k. We give a wait-free linearizable k-multiplicative-accurate counter implementation for k ≥ n with constant amortized step complexity where n is the number of processes. We also show that by bounding the execution, we are able to implement the k-multiplicative-accurate counter for k ≥ √ n in a wait-free linearizable manner and with a worst-case step complexity of O(min(log(log(m + 1)), n)) where m represents the bound on the number of CounterIncrement operations during an execution. Both implementations offer an exponential improvement on the complexities of their exact counterparts in the state of the art.

Then, we show that relaxing the semantics of max registers by allowing inaccuracy of even a constant multiplicative factor yields an exponential improvement in the worst-case step complexity of the bounded variant and in the amortized step complexity of the unbounded one.

For the sake of gauging the limitations of these relaxations, we study the lower bounds of the complexity of the k-multiplicative-accurate counter and max register in both their bounded and unbounded variations. We obtain the result that when the approximation parameter k does not depend on the number of processes, relaxing counter semantics by allowing inaccuracy of a multiplicative factor cannot asymptotically reduce the amortized step complexity of unbounded counters by more than a logarithmic factor. We also prove that our bounded k-multiplicative-accurate max register is optimal and matches the lower bound.

When it comes to the FIFO queue, designing efficient wait-free implementations remains a challenge despite its usage in many distributed applications. Most of the FIFO queue implementations in the literature rely on concurrency constraints: not all processes are allowed to execute either/or Enqueue and Dequeue operations.

In this thesis, we investigate whether it is possible to implement a logarithmic worst-case step complexity wait-free implementation that does not suffer from concurrency constraints. Following the natural evolution of modern hardware architectures into multi-core systems, the issues of synchronicity between different processes became more prevalent. For instance, ensuring the data stored remains consistent for a multi-process system is much more challenging than the case of a single-process environment.

Take, for example, the problem of assigning valid memory addresses for different applications. While the solution for a single-process system consists of simply retrieving the last attributed address and then assigning the next available slot, the problem becomes complex when it requires coordination between multiple processes.

Many fundamental multi-process coordination problems (akin to memory address assignment) can be expressed as counting problems [START_REF] Aspnes | Counting Networks and Multi-Processor Coordination[END_REF]. By considering an abstract data type, like the shared counter in the case of counting problems, it is possible to resolve the synchronicity problems for multiple processes by implementing the data type. This formalism shifts the problems at hand from low-level and architecture-specific to highlevel abstract questions.

A shared object is an instance of an abstract data type represented by a domain of possible value and a set of operations that provide the correct behavior of the object when the operations are invoked in a sequential setting. This definition is what we call the sequential specification of the object.

An implementation of a shared object offers the algorithms describing the steps executed by each process when applying an operation on the object being implemented.

Distributed algorithms that implement new shared objects rely on preexisting implementations of common shared objects denoted base objects as building blocks because they already solve many of the synchronization problems when considering a distributed execution environment. Relying on base objects also benefits from the composable or local property of linearizability and wait-freedom; meaning that if all the base objects used in the implementation of a new shared object are linearizable and wait-free, the implemented object is also linearizable and wait-free.

We say that a process takes a step during the execution of an operation of an implemented shared object when it executes an operation on a base object. Any computations that are executed locally by the process do not count in the total cost of the algorithm that implements the shared object. An execution is the sequence of steps executed by the processes as they follow the algorithms implementing a shared object. Measuring the correctness of an implementation depends on how closely matched the behavior of the operations executed in a concurrent setting, is to the sequential specification of the object. Consistency conditions formalize this distance and can vary by how strictly they relate concurrent executions to the sequential specification. The most common of these conditions is linearizability introduced by Herlihy and Wing [START_REF] Maurice | Linearizability: A correctness condition for concurrent objects[END_REF] such that, roughly speaking, an implementation is linearizable if any execution where operations are executed concurrently is equivalent to a sequential execution where each operation appears to take effect instantly at an instance during the execution of the operation and behave according to the sequential specification of the object.

It has been shown that linearizable implementations are often more costly than implementations with more lenient consistency conditions. For instance, this is the case for sequential consistency which requires that the operations appear to take place in an order that reflects the order of operations for each individual process as opposed to linearizability which requires a total order of all operations (Figure 1.1). Different results substantiate the claim by showcasing the cost difference between linearizable and sequential consistent implementations of different shared objects from read/write register, FIFO queue, and stack (Attiya and Welch [START_REF] Attiya | Sequential Consistency versus Linearizability[END_REF]) to snapshot (Petrin et al. [START_REF] Perrin | On Composition and Implementation of Sequential Consistency[END_REF]).

The implementation of a shared object is also subject to termination conditions which ensure a certain degree of progress during an execution. To ensure the operations have some guarantee of ending, these conditions are of varying degrees depending on whether the guarantee of progress is only system-wide or if it is process-specific. We consider the strongest of the termination conditions denoted wait-freedom [START_REF] Herlihy | Wait-free synchronization[END_REF] which requires that every operation ends after executing a finite number of steps.

In this thesis, we focus on complexity analysis to measure the efficiency of an implementation of a shared object and how it compares to the state of the art. For a given implementation of a shared object, many variations of the complexity of the operations can be calculated: from space complexity to step complexity and from the worst-case scenario to an overall average. In our analysis, We consider the worst-case step complexity and the amortized step complexity. The worst-case step complexity is defined as the worst-case (over all possible executions) total number of steps taken by an operation. The amortized step complexity is defined as the worst-case average number of steps performed by operations. It measures the performance of an implementation as a whole rather than the performance of individual operations. More precisely, given a finite execution E, an operation Op appears in E if it is invoked in E. We denote by Nsteps(op, E) the number of steps performed by op in E and by Ops(E) the set of operations that appear in E. The amortized step complexity of an implementation A is then:

AmtSteps(A) = max E op∈Ops(E) Nsteps(op, E)
|Ops(E)| A large portion of the research around shared objects centers around the goal of improving the efficiency of the implementations and reaching the best possible complexities. It is also of high interest to prove lower bounds or the limits to how low the complexity of an implementation can get under a specific computational model. For many common shared objects (e.g. Counter, Max Register, FIFO queue, etc.), the aim is to find implementations that match the complexity lower bounds.

For instance, a well-known result by Jayanti, Tan and Toueg [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] proved a linear lower bound in the number of processes n on the worst-case step complexity of a large class of shared objects that includes the counter object. An implementation of a wait-free counter with optimal worst-case step complexity can be constructed easily by using a wait-free atomic snapshot: Each process has a component in the snapshot object, and to increment the counter, a process simply increments its component. To read the counter's value, the process invokes Scan to obtain an atomic view of the snapshot, and returns the sum of all components in the view it obtains. Since wait-free atomic snapshot can be implemented, using reads and writes only, with worst-case step complexity linear in n, e.g. [START_REF] Attiya | Adaptive and efficient algorithms for lattice agreement and renaming[END_REF], so can counters.

To further optimize beyond this point, different strategies have been conceived to bypass the limitations of a lower bound on shared objects. For instance, by considering bounded executions where the number of operations permitted is restricted to a number m of calls; sub-linear implementations of the counter object have been obtained [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF].

More generally, a bounded shared object is a variation of a regular object but with a restriction on the number of operations in an execution of the object.

Recently, however, there has been a surge of interest in the relaxation of the sequential specification of different shared objects in order to obtain more efficient implementations. The intuition for these relaxations comes from the disconnect between the strict sequential specification of shared objects and the applicative needs in practical settings.

In many cases, applications can function normally even in the case of some anomalies in data. For instance, in the context of Big Data applications, many popular data platforms including BigQuery [START_REF] Bigquery | Hyperloglog++ functions in standard sql[END_REF], Oracle [START_REF]Quick distinct count in oracle database 12cr1[END_REF], and SQL Server [START_REF]Approx count distinct (transact-sql)[END_REF] support an approximate form of counting because the real-life applications can tolerate a margin of error and run more efficiently using approximation.

The goal is to be able to implement a shared object in a more efficient manner by allowing operations applied to the object to err to a certain degree defined by the relaxation. This thesis investigates different relaxations of widely used shared objects. And Comparing these relaxed objects to the exact versions, we can gauge the possible optimization of the implementations when applying different relaxations to shared objects.

Specifically, we focus in this thesis on the k-multiplicative-accurate relaxation first introduced in [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF] for the counter object. We study the relaxation applied to common shared objects, namely the counter and max register. The relaxed sequential specification of the k-multiplicative-accurate counter allows for the return value of a call to CounterRead to fall within an approximative range of the value returned by the exact counter. Specifically, a call to CounterRead returns x such that v/k ≤ x ≤ k • v where v is the exact value of the counter. We also study the same k-multiplicative-accurate relaxation applied to the max register. Similarly, an instance of the MaxRead operation returns an approximate value x ′ within a k multiplicative range of the maximum value v ′ written to the register (i.e.

v ′ /k ≤ x ′ ≤ k • v ′).
Following the results on the relaxed versions of the counter and max register, we shift focus to the FIFO queue and consider the relaxation denoted multiplicity and introduced in [START_REF] Castañeda | Relaxed Queues and Stacks from Read/Write Operations[END_REF] which allows multiple concurrent Dequeue operations to return the same element.

In the remainder of this chapter, we present the model of computation considered throughout the thesis and then give a detailed synthesis of our contributions and their position from the standpoint of the state of the art.

Model and Preliminaries

Model

We consider the standard asynchronous shared memory model with a set P of n processes p 1 ,. . . ,p n . Each process p i is identified by a unique integer i.

We consider that the processes are prone to crashes. Thus, a process could stop due to a crash at any moment during an execution. In an asynchronous setting, the physical time between two instructions is unknown, making it impossible to know with certainty that another process has crashed. Any distributed algorithm in the asynchronous model must take into consideration the fact that it is impossible to distinguish between the case where a process crashes and the case where it might resume its execution.

In a concurrent setting, the problems of synchronization between processes that arise are modeled using shared objects. These objects are defined by a sequential specification describing the set of operations that can be invoked on the implemented object as well the correct behavior of the operations in the absence of concurrency.

Formally, a high-level shared object O is a concrete representation of a data type T , composed of a set of states S, a finite set of operations O and a set of transitions σ between states. A transition σ(s, op(arg)) = (s ′ , res) describes the sequential behavior of the object when an instance op of an operation is invoked with the argument arg, causing the object to move from its current state s to a new state s ′ , and resulting in a response res to the operation from the object. We say that op is an update operation if it changes the state of O.

We say that an object or data type is deterministic if the set of transitions σ is a function; meaning that a specific invocation of an operation on the object from a state would always (in any execution) result in the object transitioning to the same new state and having the same response.

To solve a problem in a distributed system is to present a correct implementation of the shared object under a specific model of computation.

Implementation and execution An implementation of a shared object provides a specific data representation for the object from a set of shared base objects, each of which is assigned an initial value; the implementation also provides algorithms for each process in P to apply each operation to the object being implemented. To avoid confusion, we call operations on the base objects primitives and reserve the term operations for the objects being implemented.

An execution fragment is a (finite or infinite) sequence of steps performed by processes as they follow their algorithms. In each step, a process applies at most a single primitive to a base object (possibly in addition to some local computation). An execution is an execution fragment that starts from the initial configuration. This is a configuration in which all base objects have their initial values and all processes are in their initial states. More generally, at any moment during the execution, the configuration of E represents the state of all the base objects. We say that an operation is complete in an execution, if it returns within this execution. Otherwise, we say that the operation is pending. If an operation op 1 returns before a second operation op 2 is invoked, we say that op 1 is before op 2 in the real-time execution order, and write

op 1 < ro op 2 .
A set of primitives is historyless if all the nontrivial primitives in the set overwrite each other; we also require that each such primitive overwrites itself. A primitive is nontrivial if it may change the value of the base object to which it is applied.

In the shared memory model, the processes communicate with each other by applying primitives to base objects.

The processes are sequential. Meaning that when executing an operation, a process will execute the instructions in order and is not able to execute them in parallel. Since we consider an asynchronous model, the physical time required for the execution of a step might differ from process to process and from one instance of an operation to another. Therefore, any complexity analysis we present is based on the number of steps executed by a process during an operation.

Shared objects

In practice, there is no distinction between the shared objects being implemented and the base objects. On a case-by-case basis, the same shared object can play both roles. For instance, it is possible to use a shared counter as a base object for the implementation of a queue, as it is just as possible to have a new implementation of the counter itself.

Aside from the atomic Read/Write registers, the following is an exhaustive list of the shared objects we consider in this thesis:

• Fetch&Inc: the only primitive executed on the F etch&Inc object, is the identically named primitive F etch&Inc that increments the value of the object by 1 and returns the value prior to the incrementation.

• Test&Set: is set initially to 0, and the first call to the primitive test&set changes its value to 1. All instances of test&set return the previous value of the object and we consider that it also takes the simple Read primitive.

• Swap: takes the primitives Swap and Read, such that an instance Swap(v) writes v to the object and returns its previous value.

• Max register: takes the two primitives ReadM ax and W riteM ax such that ReadM ax returns the maximum value written to the register through the calls to W riteM ax.

• Counter: can be incremented by calling the primitive CounterIncrement and a call to CounterRead returns the number of calls to CounterIncrement before it.

• Snapshot: defined by the two primitives U pdate and Scan. Each process has a corresponding component in the snapshot and is the only one allowed to modify through a call to U pdate. And a process is able to obtain a coherent state of all the components in the snapshot object using the Scan primitive.

• CAS: takes the Read primitive as well as the Read-Modify-Write primitive CAS, such that the call CAS(old, new) writes new to the object only if the previous value of the object was old.

• FIFO queue: provides the two high-level operations Enqueue and Dequeue. The sequential specification of the queue determines that an instance Enqueue(v) adds the element v at the tail of the queue, while the Dequeue() operation removes the element at the head of the queue and returns its value, if the queue is not empty, otherwise, it returns ϵ.

When limiting the available shared base objects to the "weaker" primitives, It is often the case that the implementation of new shared objects proves to be more difficult. For instance, implementations of the FIFO queue without the CAS object are rare and require clever algorithmic ideas. This "synchronization power" that the CAS has over other base objects is a great indicator of the existence of a hierarchy within the set of shared objects.

Consensus number

The notion of consensus number was introduced by Herlihy in [START_REF] Herlihy | Wait-free synchronization[END_REF] to describe such a hierarchy for shared objects based on their ability to solve the consensus problem for a specific number of processes.

The consensus problem is fundamental in the field of fault-tolerant distributed computing since it models a large set of problems in which processes need to agree on a specific value. The consensus object takes the operation Propose(). When process p i executes an instance Propose(v i), it signifies that p i is proposing the value v i to the consensus. The operation returns the agreed-upon value of the consensus. Formally, any implementation of the consensus object needs to fulfill the following requirements. Definition 1.2.1. Consensus: Let A be an implementation of the consensus object. Let Propose(v i) be an instance executed by process p i in which p i proposes the value v i ∈ V the set of possible values of the consensus object. A satisfies the conditions of safety (validity, agreement) and liveness (termination).

• Validity: If the agreed-upon value is v, a process has invoked Propose(v).

• Agreement: No two processes decide on different values.

• Termination: All non-faulty processes decide on a value. [START_REF] Herlihy | Wait-free synchronization[END_REF]).

Consensus

Herlihy hierarchy

The consensus number associated with an object is the number of processes we can solve the consensus problem for, using only the object and Read/Write registers. For instance, the Read/Write registers have a consensus number 1, and the F etch&Add, Swap and Stack objects all have consensus number 2. We say that the consensus number of an object is infinite if it can solve the consensus problem in an asynchronous system with n processes for any n ∈ N . The CAS object is an example of an object with an infinite consensus number. Table 1.1 taken from [START_REF] Herlihy | Wait-free synchronization[END_REF], gives a more comprehensive list of different shared objects and their consensus number. In [START_REF] Herlihy | Wait-free synchronization[END_REF], it is also shown that given an object T with a consensus number i alongside Read/Write registers, it is impossible to have a wait-free implementation of any object with a consensus number j > i. However, Jayanti argues in [START_REF] Jayanti | On the Robustness of Herlihy's Hierarchy[END_REF] that the Herlihy hierarchy is not a robust wait-free hierarchy. Meaning that contrary to what might be assumed, it is possible to implement an object with a consensus number j using a combination of any number of objects with consensus numbers in 1, . . . , j -1. Meaning that combining weaker shared objects can result in the implementation of stronger ones.

Termination Conditions

An execution is non-blocking if the failure or crash of a process does not impede the progression of other processes. An execution is lock-free if there is a guarantee of system-wide progression but not necessarily a guarantee for each process to terminate. An execution is wait-free [START_REF] Herlihy | Wait-free synchronization[END_REF] if each process completes its operations if it performs a sufficiently large number of steps. We say that an implementation verifies any termination condition if all its executions do as well.

Linearizability

As one of the most intuitive consistency conditions, linearizability is used throughout the literature. Roughly speaking, an execution is linearizable [START_REF] Maurice | Linearizability: A correctness condition for concurrent objects[END_REF] if each operation appears to take effect atomically at some point between its invocation and response and behaves according to the sequential specification of the object.

Definition 1.2.5. Linearizability: Let A be an implementation of a concurrent object O. An execution E of A is linearizable if there is a sequential execution S of O such that S contains every completed operation of E and might contain some pending operations, and the inputs and outputs of the invocations and responses of the operations in S agree with the inputs and outputs in E and behave according to the sequential specification of O. Furthermore, if two completed operations op 1 and op 2 in E verify op 1 < E op 2 , then op 1 appears before op 2 in S.

We say that an implementation is linearizable if all its executions are linearizable.

Weaker Consistency Conditions

In recent years, the relaxation of the implementations of shared objects for the sake of solving scalability issues, has become the focus of many research topics. We present next some of the most common weaker consistency conditions. Formally, the set-sequential specification of a shared object differs from its sequential specification in regards to the definition of the transition function σ between states of the object. In the set-sequential specification, instead of taking a single instance op of an operation as a parameter and having a single response res, a transition σ(s, S(op)) = (s ′ , S(res)) between two states s and s ′ , of the object takes a set of instances S(op) = {op 1 , . . . , op i } of operations as a parameter and returns a set of responses S(res) = {res 1 , . . . , res i } where each response corresponds to an instance of an operation from the parameter set. An execution E of a concurrent object is set-linearizable if there exists an equivalent set-sequential execution S that contains all the complete operations of E and possibly some pending operations, and the execution S verifies that if an operation op is before another operation op ′ in E (i.e. op < E op ′) then op is also before op ′ in S. Figure 1.2 illustrates the differences between a linearization of an exact FIFO queue and a set-linearization of a relaxed FIFO queue where multiple concurrent mathitDequeue operations are allowed to return the same element. In Figure 1.2a, the linearization defines a sequential total order of all the operations, while in Figure 1.2b, multiple operations have the same linearization point and are executed concurrently in the set-linearization. Definition 1.2.6. Set-linearizability: Let A be an implementation of a concurrent object O. An execution E of A is set-linearizable if there is a set-sequential execution S of O such that S contains every completed operation of E and might contain some pending operations, and the inputs and outputs of the invocations and responses of the operations in S agree with the inputs and outputs in E. Furthermore, if two completed operations op 1 and op 2 in E verify op 1 < E op 2 , then op 1 appears before op 2 in S. We say that an implementation is set-linearizable if all its executions are set-linearizable. The consistency condition of interval-linearizability is introduced by Castañeda et al. [START_REF] Castañeda | Unifying Concurrent Objects and Distributed Tasks: Interval-Linearizability[END_REF] to take into consideration the set of problems in the distributed setting that cannot be represented with a sequential specification of an object. This is the case for the write-snapshot object as observed by Neiger [START_REF] Neiger | Set-Linearizability[END_REF]. Differently from the regular snapshot object defined by the two operations Update and Scan, the write-snapshot is defined by a single operation that concatenates the two: when a process invokes the instance write-snapshot(x) to add the value x to the object, the operation returns the state of the object. Neiger notes that it is impossible to represent the write-snapshot using a sequential specification and can only be modeled as a task. The execution in Figure 1.3 illustrates the case where an execution of a write-snapshot is not set-linearizable. No matter where the instance write-snapshot(b) is linearized, the set-linearization obtained has an operation that returns a value that appears to be predicting a future operation.

Hence, the need for a more flexible framework where it is possible to express that an operation happens over an interval of time that can be affected by multiple operations. Formally, in the interval-sequential specification of an object, if an operation op is pending in a state q, and the transition σ is applied such that σ(q, Inv) = (q ′ , Res) where Inv is a set of operation invocations and Res is a set of responses; then op might still be pending in q ′ . Meaning that Res contains the responses of only the operations that are complete in q ′ . Definition 1.2.7. Interval-linearizability: Let A be an implementation of a concurrent object O. An execution E of A is interval-linearizable if there is an interval-sequential execution S of O such that S contains every completed operation of E and might contain some pending operations, and the inputs and outputs of the invocations and responses of the operations in S agree with the inputs and outputs in E. Furthermore, if two completed operations op 1 and op 2 in E verify op 1 < E op 2 , then op 1 appears before op 2 in S. We say that an implementation is interval-linearizable if all its executions are intervallinearizable.

Other weaker consistency conditions include quasi-linearizability [2], which models legal executions with a distance function from sequential executions. Intermediate value linearizability [START_REF] Rinberg | Brief Announcement: Intermediate Value Linearizability: A Quantitative Correctness Criterion[END_REF] is defined through linearizability such that a read operation is allowed to return a value that is bounded by two values that are legal under linearizability. And similarly to abstract data type relaxations, some consistency conditions are introduced for specific data structures. For instance local linearizability [START_REF] Haas | Local Linearizability for Concurrent Container-Type Data Structures[END_REF] is defined for containertype data structures like queues and stacks, with a guarantee of a consistent view of the object only at the process level as opposed to regular linearizability which guarantees a consistent view overall (for local-linearizability a projection of the global execution onto a specific process is linearizable).

Sequential Specification Relaxations

While considering weaker consistency conditions is one way to implement relaxed shared objects, The second approach that has emerged is the relaxation of the sequential specification of the object.

Henzinger et al. [START_REF] Henzinger | Quantitative relaxation of concurrent data structures[END_REF] introduced a formal framework for obtaining new data structures by quantitatively relaxing existing ones. Intuitively, the framework defines a distance between sequences of operations such that a sequence that might not be permitted under the sequential specification of the original object, might be allowed for the relaxed version of the object if the sequence is at some distance k from a sequence of operations that is legal. Several authors [START_REF] Talmage | Improving Average Performance by Relaxing Distributed Data Structures[END_REF][START_REF] Kirsch | Fast and Scalable, Lock-Free k-FIFO Queues[END_REF][START_REF] Rihani | MultiQueues: Simple Relaxed Concurrent Priority Queues[END_REF][START_REF] Wimmer | The Lock-Free k-LSM Relaxed Priority Queue[END_REF][START_REF] Shavit | The Computability of Relaxed Data Structures: Queues and Stacks as Examples[END_REF][START_REF] Talmage | Anomalies and Similarities among Consensus Numbers of Variously-Relaxed Queues[END_REF] have used this framework to give different implementations of relaxed data structure types or to study properties of specific relaxations.

The first general relaxation that results from this framework is the Out-of-order relaxation. When applied to an ordered data structured like the queue or stack, this relaxation allows the deleter operation (Dequeue and Pop, respectively), to return an element up to k places out-of-order.

The other generic relaxation presented in [START_REF] Henzinger | Quantitative relaxation of concurrent data structures[END_REF] is the stuttering relaxation. This relaxation allows some update operations to not take effect, meaning that the call to an operation that changes the state of the object "stutters" and does not succeed in modifying the state of the object. For a sequence of operations to be allowed under this relaxation, no more than k consecutive update operations can stutter before an operation succeeds in changing the state of the object.

The k-atomicity relaxation defined in [START_REF] Aiyer | On the Availability of Non-Strict Quorum Systems[END_REF], resembles the stuttering relaxation in that it allows read operations to return a "stale" value bounded by the parameter k to limit the number of write operations it can overlook. However, the definition of k-atomicity differs from stuttering in the sense that for the latter, an operation that changes the state of the object might "stutter" and fail to do so, while for the former, the relaxation affects the read operations alone.

Aside from this framework, there have been data type-specific relaxations that are defined with the sequential specification of the object in mind. For instance, Castañeda et al. [START_REF] Castañeda | Relaxed Queues and Stacks from Read/Write Operations[END_REF] define a relaxed queue object with multiplicity, such that multiple concurrent instances of the Dequeue operation are allowed to return the same element in the queue. They also define a relaxation that allows an instance of Dequeue to return a special value weak-empty when the queue might be empty.

Relaxation Equivalence

Talmage and Welch show in [START_REF] Talmage | Improving Average Performance by Relaxing Distributed Data Structures[END_REF] that in many ways the two approaches of considering weaker consistency conditions and relaxing the object's sequential specification are different ways to specify the same sets of allowed concurrent behaviors of a given shared object. They give in subsequent work [START_REF] Talmage | Relaxed Data Types as Consistency Conditions[END_REF] equivalent consistency conditions to different abstract data type relaxations, namely k-out-of-order, k-lateness, and k-stuttering. In doing so, they prove that in many cases both relaxing the sequential specification and considering weaker consistency conditions are two equivalent ways to represent the same set of concurrent problems faced when implementing shared data objects. Meaning that it is possible to focus on whichever approach is easier to achieve thanks to this equivalence.

Related Work and Contributions

In this section, we present the related work to the different problems we investigate in this thesis as well as our contributions. Starting with some lower bounds results justifying the limitations of step complexities of the implementations of the shared objects in the absence of any relaxation of the consistency condition or sequential specification. We then present some relaxations of shared objects with a focus on the objects we are interested in (counter, max register). Finally, we present the general landscape of wait-free FIFO queue implementations.

Counter and Max Register

Jayanti, Tan and Toueg [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] show for any deterministic non-blocking n-process implementation I of a shared object in a large set A using a set B of primitives where A = {increment, fetch&add, modulo k counter (for any k ≥ 2n), LL/SC bit, k-valued com-pare&swap (for any k ≥ n), single-writer snapshot} and B = {{resettable consensus} {historyless objects such as registers and swap registers}}, that I has a lower bound for both time and space complexities of n -1. To illustrate the intuition behind this lower bound, take the example of a simple implementation of a counter object for n processes p i with i ≤ n. If p n executes a Read() operation op n , it will need to read a single base object at least to retrieve the value of the counter. However, in the meantime, a different process p l could execute an instance of CounterIncrement() to change the value of a base object of the implementation of the counter. This would render the value read by p n obsolete and forces it to read another base object. If this scenario occurs for every process p i such that i ̸ = n, then p n will need to read n -1 base objects.

However, this lower bound result does not consider restricted-use objects. And in many cases, there have been implementations of objects that beat the Ω(n) lower bound because the executions in the restricted-use context exceed the scope of the proof of the lower bound. For instance, Aspnes, Attiya, and Censor-Hillel [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] show the possibility of implementing exact counting algorithms whose step complexity is sub-linear when the number of operations is bounded. In particular, they presented a wait-free exact counter for which the worst-case step complexities of the CounterIncrement and CounterRead operations are O min(log n log v, n) and O min(log v, n) , respectively, where v is the object's current value. In [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF], they also give an implementation of a max register that can write v in O(min(log v, n)) steps.

For this reason, Aspnes, Censor-Hill, Attiya, and Hendler [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF] generalize the lower bound results in [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] to bounded shared objects. More specifically, through this generalization, they propose a new lower bound for both time and space complexities in Ω(min(log L, n)) for deterministic implementations from historyless primitives of bounded objects where L is the bound parameter. This lower bound also proved that the m-bounded max register implementation in [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] is optimal.

For shared objects that manipulate numerical values, a natural relaxation might consist of allowing an additive margin of error for the return value of the read operation. This is the case for the k-additive-accurate counter introduced in [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] as a counter for which any CounterRead operation returns a value that is within ±k of the number of CounterIncrement operations linearized before it. It is then shown that for any deterministic solo-terminating implementation from atomic registers by n processes of an m-bounded k-additive-accurate counter, there is a CounterRead operation that takes min(n -1, ⌈log m⌉ -log(⌈log m⌉ + k)) steps. Meaning that allowing the CounterRead operation to have some additive error accounts for the cost of some of the accumulating pending operations. This lower bound is improved in [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF], where it is shown that the m-bounded k-additive-accurate counter has a lower bound of Ω(min(log m -log k, n)).

Figure 1.4: Lower bounds on restricted use objects where m is the maximum value assumed by the object or the bound on the number of operations applied to it, from [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF] .

The first relaxation we consider is the k-multiplicative-accurate relaxation introduced in [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF].

Contribution: k-multiplicative-accurate max register

We define the k-multiplicative-accurate max register, where the MaxRead operation returns an approximate value x ′ within a k multiplicative range of the maximum value v ′ written to the register (i.e.

v ′ /k ≤ x ′ ≤ k • v ′).
we have shown that relaxing the semantics of the bounded max register by allowing inaccuracy of even a constant multiplicative factor yields an exponential improvement in the worst-case step complexity. Then, we present a novel m-bounded k-multiplicativeaccurate max register algorithm whose worst-case step complexity matches this lower bound. We then easily "plug-in" our bounded k-multiplicative-accurate max regis-ter into the construction proposed by Baig et al. [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] to obtain an unbounded kmultiplicative-accurate max register with sub-logarithmic amortized step complexity.

Contribution: k-multiplicative-accurate counter

Similarly to the k-multiplicative-accurate max register, reading the of value the kmultiplicative-accurate counter through a call to the operation CounterRead returns an approximation x of the exact value v of the counter by a multiplicative factor of k

(i.e. v/k ≤ x ≤ k • v).
We implement a wait-free linearizable k-multiplicative-accurate counter for k ≥ n where n is the number of processes, with constant amortized step complexity for executions of arbitrary length. We also give an implementation of the m-bounded variant of the k-multiplicative-accurate counter for k ≥ √ n with a worst-case step complexity in O(min(log(log(m + 1)), n).

Then, by extension of the lower bound of Attiya and Hendler, [START_REF] Attiya | Time and Space Lower Bounds for Implementations Using k-CAS[END_REF], we prove that any implementation of a k-multiplicative-accurate counter from read/write and conditional primitive operations has amortized step complexity of Ω(log(n/k 2)), for k ≤ n/2. Our results together with the upper and lower bound on exact counting proved in [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] show that when the approximation parameter k does not depend on n, relaxing the counter semantics by allowing a multiplicative error cannot asymptotically reduce the amortized step complexity by more than a logarithmic factor.

We also show a lower bound for unbounded k-multiplicative-accurate counters for the worst-case step complexity in Ω(n). Meaning that the linear lower bound by Jayanti, Tan, and Toueg [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF] for exact counters also holds in the case of the k-multiplicativeaccurate counters.

FIFO Queue

There have been results showing the difficulties of implementing a linearizable waitfree queue because of the "tail chasing" problem. Roughly speaking, the "tail chasing" scenario occurs when a process is trying to retrieve an element from the queue but finds itself unable to return because it is invisible to other processes that keep modifying the state of the queue indefinitely by executing operation sequences that contain element insertions followed by dequeuing elements from the queue.

The difficulty to implement the queue in a wait-free manner is formalized by Attiya, Castañeda, and Hendler [START_REF] Attiya | Nontrivial and Universal Helping for Wait-Free Queues and Stacks[END_REF]. They categorize helping mechanisms into trivial and nontrivial helping. This distinction relies on the definition of operation valency introduced in [START_REF] Hendler | Operation-Valency and the Cost of Coordination[END_REF] to describe the possible return values an operation can have. Roughly speaking, an implementation has helping if a process makes another process decide on a return value by executing a specific mechanism. In the case of queues, stacks, and similar data structures, the helping is nontrivial, if the non-decided process is made to return a value different than ϵ (the empty state of the object). This often requires delicate communication between the processes to ensure that a value reserved for a specific undecided process is not taken by a process unaware of the helping taking place. The main result from [START_REF] Attiya | Nontrivial and Universal Helping for Wait-Free Queues and Stacks[END_REF] is the distinction between stack and queue implementations: A wait-free queue implementation requires nontrivial helping while a stack can be implemented in a wait-free manner without nontrivial helping [START_REF] Afek | Common2 Extended to Stacks and Unbounded Concurrency[END_REF].

An example of such a helping mechanism is used by Li [START_REF] Li | Non-blocking implementations of Queues in asynchronous distributed shared-memory systems[END_REF] to implement a waitfree multiple enqueuer 2 dequeuer queue. In this implementation, each instance of the Dequeue operation is represented by a node in a linked list denoted DeqCell. The position of an instance in the list is dictated by a sequence number that defines a total order for the Dequeue operations. In addition to the sequence number of the operation and the id of the process invoking the operation (i.e. d 0 or d 1), a node in DeqCell also stores both the index and the value of the element returned by the operation (Figure 1.5).

Figure 1.5: The linked list data structure storing instances of the Dequeue operation, from [START_REF] Li | Non-blocking implementations of Queues in asynchronous distributed shared-memory systems[END_REF].

The Dequeue operation uses a 2-process consensus object to communicate between the two dequeuer processes. They are used to propose the index of the instance of Dequeue that needs to be executed first as well as to agree on its return value. When a process executes an instance of Dequeue, it creates a node in DeqCell with a new sequence number. Then, it verifies that there is no pending Dequeue operation from the other dequeuer process. If there is, the process proposes the index of the pending operation, otherwise, it proposes the index of its own operation. After a response is received from the consensus object, the process executes the corresponding Dequeue operation. By the end of this execution, the process verifies if its own Dequeue operation has been assigned a return value, and returns if it is the case. Otherwise, it repeats the same steps previously executed to help the pending operation, but for the node in DeqCell it created.

A characteristic of the queue implementation by Li [START_REF] Li | Non-blocking implementations of Queues in asynchronous distributed shared-memory systems[END_REF] is that it only uses primitives with consensus level 2. In fact, it attempts to answer the open question of whether the queue object belongs into Common2 and is implementable with consensus 2 level primitives only. There exist other implementations based on registers and Common2 objects [START_REF] Eisenstat | Two-enqueuer queue in Common2[END_REF][START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF]. However, all these implementations rely on concurrency conditions that limit the number of either enqueuer (e.g. [START_REF] Eisenstat | Two-enqueuer queue in Common2[END_REF][START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF]) or dequeuer (e.g. [START_REF] Li | Non-blocking implementations of Queues in asynchronous distributed shared-memory systems[END_REF]) processes.

Even when considering strong primitives like the CAS primitive, it is often necessary to compromise between the concurrency constraints and the complexity of the wait-free queue implementations.

Using Compare&Swap, some practical wait-free queue implementations that support multiple enqueuers and multiple dequeuers have been proposed [START_REF] Kogan | Wait-Free Queues with Multiple Enqueuers and Dequeuers[END_REF][START_REF] Morrison | Fast Concurrent Queues for X86 Processors[END_REF][START_REF] Yang | A Wait-Free Queue as Fast as Fetchand-Add[END_REF][START_REF] Fatourou | Highly-Efficient Wait-Free Synchronization[END_REF]. Some of these implementations are wait-free [START_REF] Kogan | Wait-Free Queues with Multiple Enqueuers and Dequeuers[END_REF][START_REF] Yang | A Wait-Free Queue as Fast as Fetchand-Add[END_REF][START_REF] Fatourou | Highly-Efficient Wait-Free Synchronization[END_REF]; while some are only lock-free [START_REF] Morrison | Fast Concurrent Queues for X86 Processors[END_REF]. All these solutions have been evaluated empirically and do not have formal complexity analysis. Nonetheless, the worst-case step complexity of either the Enqueue or of the Dequeue operation is not sublinear.

The best-known upper bound for the worst-case step complexity of wait-free queue implementations is given by Khanchandani and Wattenhofer [START_REF] Khanchandani | On the Importance of Synchronization Primitives with Low Consensus Numbers[END_REF]. They present an algorithm in which both the Enqueue and Dequeue operations take O(√ n) steps and require O(nm) registers of O(max(log n, log m) bits, where n is the number of processes and m is the bound on the number of Enqueue operations. The previous upper bound prior to their work was in O(n) and relied only on the strong primitive CAS.

Inspired by the algorithm proposed by Ellen et al. [START_REF] Ellen | A Complexity-Based Hierarchy for Multiprocessor Synchronization: [Extended Abstract[END_REF] to solve the consensus for infinitely many processes in O(1) by combining the functionalities of weak primitives, Khanchandani et al. aimed to show through their implementation, that it is possible to improve the complexity of a shared object implementation by using a combination of strong and weak primitives. For that reason, they introduce the register TH : a new data type that takes two operations half-increment and half-max. This register is composed of two components, i.e. (t, h). A call to half-increment() increments the value of t as long as t ≤ h, and a call to half-max(i) writes the maximum between i and the previous value of h, to h. It is shown that the two operations half-max and half-increment have a consensus number of 1 and 2 respectively. Register TH is used to represent the head and tail of the queue.

In addition to the register TH, they use an array to store the queue elements as well as the data structure counting set they introduce to manage possible concurrency between Enqueue and Dequeue operations. More specifically, the counting set takes the two operations insert() and remove(). An instance insert(x) adds the element x into the set and returns the number of total inserts completed (i.e. it also counts apart from inserting the elements). The call to remove(i) will remove the i-th inserted element to set if and only if this insert was the last one executed by the corresponding process. For the queue implementation, the counting set is needed when there is a call to a Dequeue operation that is concurrent with a pending Enqueue operation which has yet to insert an element into the array.

The counting set has two main functions. First, it defines a global order for all Enqueue operations. An instance of Enqueue(x) invokes insert(x) on the counting set and retrieves the index it uses to insert the element into the array. The second purpose of the counting set consists of ensuring that a fast Dequeue instance that reaches an index of the array that has not been filled yet by a pending Enqueue, is capable of executing a call to remove(i) on the counting set to retrieve the element and return, guaranteeing the wait-freedom of the implementation.

The main difficulty in implementing the counting set object resides in transforming a local value of the counter of Enqueue operations of a single process, into a global index defined for all processes. A log system is used to store information regarding every Enqueue operation in order to compute global indexes. The sublinear complexity is obtained through an optimization of the log by limiting the concurrency during write operations to √ n processes instead of all n processes. Therefore, it seems that this approach of using the counting set is limited by this complexity and may not be easily transferable to implement other shared objects or to investigate logarithmic complexity queue implementations.

To the best of our knowledge, all other wait-free queue implementations with sublinear worst-case step complexity in the literature rely on limiting the number of processes allowed to execute either Enqueue of Dequeue operations (e.g. [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF][START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF][START_REF] Li | Non-blocking implementations of Queues in asynchronous distributed shared-memory systems[END_REF][START_REF] Eisenstat | Two-enqueuer queue in Common2[END_REF]). Jayanti and Petrovic [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF], for instance, give an implementation of a queue that supports a single dequeuer process and any number of enqueuers. Their implementation has a worst-case step complexity of O(log n) for both Enqueue and Dequeue operations, where n is the number of processes.

Contribution: FIFO queue

In this thesis, we were interested in the open question of whether it is possible to have a wait-free queue implementation in logarithmic worst-case step complexity with no concurrency constraints. In particular, we proposed a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where the worst-case step complexity of an Enqueue operation is in O(log n) and of a Dequeue operation is in O(k log n). But then, by considering a relaxation of the FIFO queue where multiple concurrent Dequeue operations are allowed to return the same element, we have shown that it is possible to implement a wait-free FIFO queue with no concurrency constraints in logarithmic step complexity.

We have also investigated the possibility of implementing an exact wait-free FIFO queue using only objects of consensus number 2. As a preliminary approach to solving the question, we limited the execution to 2 processes and presented a wait-free implementation of the FIFO queue based on such objects without relying on universal constructions or on the consensus object which cannot be used to generalize the implementation to more processes without losing the property of having a consensus number 2.

Organization

The thesis is structured as follows. First, we present in Chapter 2 the implementations of both the counter and max register objects under the relaxed semantics of k-multiplicativity. We investigate different variants of these implementations under the properties of wait-freedom and linearizability. Specifically, we present both an unbounded and bounded approximate k-multiplicative-accurate counter and max register implementations. We then present different lower bounds results for these objects: mainly we prove a lower bound on the amortized step complexity for the unbounded k-multiplicative-accurate counter by extension of a lower bound by Attiya and Hendler [START_REF] Attiya | Time and Space Lower Bounds for Implementations Using k-CAS[END_REF]. Additionally, we give a lower bound for the worst-case step complexity of the m-bounded k-multiplicative-accurate max register and counter objects.

Then, in Chapter 3, we present a wait-free linearizable FIFO queue implementation for n-enqueuer and k-dequeuer processes with a worst-case step complexity of O(log n) for the Enqueue operation and O(k log n) for the Dequeue operation. Then, we consider the relaxed semantics of the FIFO queue introduced in [START_REF] Castañeda | Relaxed Queues and Stacks from Read/Write Operations[END_REF] where multiple concurrent Dequeue operations are allowed to return the same element, denoted multiplicity. We give an implementation of set-linearizable FIFO queue with multiplicity where both the Enqueue and Dequeue operations are in O(log n).

Finally, in Chapter 4 we offer some overall insights on the work in retrospect while discussing possible leads and prospects for future work.

Chapter 2 K-multiplicative-accurate Counter and Max Register

Abstract

Relaxing the sequential specification of shared objects has been proposed as a promising approach to obtain implementations of shared objects with better complexities.

By considering the case study of two common shared objects: max register and counter, we study the possible improvement in step complexity of their relaxed implementations compared to implementations of the corresponding exact objects. In particular, in the classical shared memory model, we investigate the extent to which allowing wait-free linearizable implementations of these objects to return approximate values, rather than accurate ones, may improve their step complexity.

We consider the k-multiplicative-accurate max register and the k-multiplicativeaccurate counter, where read operations are allowed to return an approximate value within a multiplicative factor k of the accurate value (for some k ∈ N). More specifically, reads are allowed to return an approximate value x of the maximum value v previously written to the max register, or of the number v of increments previously applied to the counter, respectively, such that v/k ≤ x ≤ v • k. We provide upper and lower bounds on the complexity of implementing these objects in a wait-free manner in the shared memory model.

We give an implementation of the k-multiplicative-accurate counter that has an exponentially better amortized step complexity than the best implementation of the exact counter in the state of the art when the approximation parameter k ≥ n.

We also implement the k-multiplicative-accurate max register with an exponentially better worst-case step complexity compared to the exact max register implementation.

We give lower bounds on the worst-case step complexity of the bounded variant of both the relaxed counter and max register, as well as a lower bound on the amortized step complexity of the unbounded counter.

An earlier version of this work containing the lower bound results was presented during the 41st IEEE International Conference on Distributed Computing Systems (ICDCS 2021) [START_REF] Hendler | Upper and Lower Bounds for Deterministic Approximate Objects[END_REF].

Introduction

With the ubiquitousness of multi-core and multi-processor systems, there is a growing need to gain a better understanding of how to implement concurrent objects with improved complexity, while maintaining the natural correctness guarantee provided to programmers by linearizability. Relaxing the sequential specification of linearizable concurrent objects is one promising approach to achieving this [2,[START_REF] Henzinger | Quantitative relaxation of concurrent data structures[END_REF]. An object's sequential specification defines its correct behavior in sequential executions. Roughly speaking, linearizability [START_REF] Maurice | Linearizability: A correctness condition for concurrent objects[END_REF] guarantees that any concurrent execution is equivalent to a sequential one.

There is empirical evidence that relaxing the sequential specification of some common objects, e.g. queues and counters, yields improved performance of linearizable implementations, e.g [START_REF] Henzinger | Quantitative relaxation of concurrent data structures[END_REF][START_REF] Rukundo | Monotonically Relaxing Concurrent Data-Structure Semantics for Increasing Performance: An Efficient 2D Design Framework[END_REF]. However, the theoretical principles to implement concurrent objects more efficiently by relaxing their sequential specification are not yet clear.

We study relaxed-semantics variants of two well-known concurrent objects -counters and max registers, in the classical shared memory model. In particular, we investigate the extent to which allowing wait-free linearizable implementations of these objects to return approximate values, rather than accurate ones, may improve their step complexity.

A counter is a linearizable object that supports a CounterIncrement operation and a CounterRead operation. The sequential specification of a counter requires that a CounterRead operation returns the number of CounterIncrement operations that precede it. A relaxed variant of the counter is the k-multiplicative-accurate counter, defined by Aspnes, Censor-Hill, Attiya, and Hendler in [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF], where a CounterRead operation returns an approximate value x of the number v of CounterIncrement operations that precede it, such that v/k ≤ x ≤ v • k for some parameter k > 0.

A max register r supports a W rite(v) operation that writes a non-negative integer v to r and a Read operation that returns the maximum value previously written to r, [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF]. We define the k-multiplicative-accurate max register by allowing a Read operation to return an approximate value x of the largest value v written before it, such that v/k ≤ x ≤ v • k for some parameter k > 0.

k-multiplicative-accurate counter

To the best of our knowledge, we present the first deterministic approximate counter with constant amortized complexity. More precisely, we present a wait-free linearizable k-multiplicative-accurate counter for k ≥ n where n is the number of processes, with constant amortized step complexity for executions of arbitrary length. Then, by extension of the lower bound of Attiya and Hendler, [START_REF] Attiya | Time and Space Lower Bounds for Implementations Using k-CAS[END_REF], we prove that any n-process solo-terminating implementation of a k-multiplicative-accurate counter from read/write and conditional primitive operations (including k-word compare-and-swap) has amortized step complexity of Ω(log(n/k 2)), for k ≤ n/2. Our results together with the upper and lower bound on exact counting provided by Baig et al. in [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF], show that when the approximation parameter k does not depend on n, relaxing the counter semantics by allowing a multiplicative error cannot asymptotically reduce the amortized step complexity by more than a logarithmic factor.

(log n) [12] O(log 2 n) [12] k-multiplicative-accurate Counter Ω(log n/k 2) k ≤ n/2 (Section 2.7) O(1) k ≥ n (Section 2.2) (a) Unbounded counter results.

Bounded (Worst-case complexity)

Lower bound Upper bound

Exact Counter Ω(min(log m, n)) [5] O(min(log n log m, n)) for Inc O(min(log m, n)) for Read [5] k-multiplicative-accurate Counter Ω(min(log(log k m), n) (Section 2.6) O(min(log(log(m + 1)), n) k ≥ √ n + 1 (Section 2.3) (b) Bounded counter results.
Table 2.1: k-multiplicative-accurate counter implementations and lower bounds results (n is the number of processes and m is the bound on the object).

complexity of the implementation of our unbounded k-multiplicative-accurate counter and the lower bound result to the results from [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF]. Then, we consider the bounded version of the k-multiplicative accurate counter. More precisely, we give a wait-free linearizable m-bounded k-multiplicative-accurate counter for k ≥ √ n + 1 where n is the number of processes and m is the bound on the number of CounterIncrement operation instances that can be performed on the counter. The implementation has a worst-case step complexity of O(min(log(log(m+1)), n). We also prove that a lower bound on the worst-case step complexity of obstruction-free implementations of m-bounded k-multiplicative-accurate counters from historyless primitives in Ω(min(n, log 2 log k m)). Meaning that our implementation of the m-bounded k-multiplicative-accurate counter is optimal. This also implies that for unbounded kmultiplicative-accurate counters, the worst-case step complexity is in Ω(n), and we fall back to the linear lower bound by Jayanti, Tan and Toueg [START_REF] Jayanti | Time and Space Lower Bounds for Nonblocking Implementations[END_REF]. Table 2.1b summarizes the results for the bounded approximate counter and compares them to upper and lower bound results for the exact bounded counter from Aspnes, Attiya and Censor-Hillel [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF].

k-multiplicative-accurate max register

We prove that relaxing the semantics of the bounded max register by allowing inaccuracy of even a constant multiplicative factor yields an exponential improvement in the worst-case step complexity compared to the exact max register (Table 2.2). In particular, we prove that the worst-case step complexity of obstruction-free read/write implementations of m-bounded k-multiplicative-accurate max registers is Ω(min(n, log 2 log k m)), where n is the number of processes. A max register is m-bounded, if it can only represent values in {0, . . . , m-1}. Then, we present a novel m-bounded k-multiplicative-accurate max register algorithm whose worst-case step complexity matches this lower bound.

We then "plug in" our bounded k-multiplicative-accurate max register into the construction proposed by Baig et al. [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] to obtain an unbounded k-multiplicativeaccurate max register with sub-logarithmic amortized step complexity.

Bounded (Worst-case complexity)

Lower bound Upper bound

Exact Max Register Ω(min(log m, n)) [5] O(min(log m, n)) [7] k-multiplicative-accurate Max Register Ω(min(log 2 log k m, n)) (Section 2.6) O(min(log 2 log k m, n)) (Section 2.4)
(a) Bounded max register results.

Unbounded (Amortized complexity)

Upper bound

k-multiplicative-accurate Max Register O(log 2 (log k (m))) m ≥ n 2 (Section 2.5) (b)
Unbounded max register result (m is the parameter of the bounded max register used in the unbounded max register implementation).

Table 2.2: k-multiplicative-accurate max register implementations and lower bounds results (n is the number of processes and m is the bound on the object).

Hereafter is the chapter organization. In Section 2.2, we present the unbounded k-multiplicative-accurate counter implementation with the wait-freedom and linearizability proofs and the complexity analysis. In Section 2.3, we give the implementation of the bounded variant of the k-multiplicative-accurate counter alongside the proofs of progression and correctness. Then we present the implementations of the bounded and unbounded k-multiplicative-accurate max register in Section 2.5 and Section 2.4, respectively. Finally, we give lower bound results for the worst-case step complexity of the bounded k-multiplicative-accurate counter and max register in Section 2.6, and the lower bound result for the amortized step complexity of the k-multiplicative-accurate counter in Section 2.7.

Unbounded k-multiplicative-accurate Counter

Algorithm 1 describes a wait-free linearizable unbounded k-multiplicative-accurate counter with k ≥ n whose amortized step complexity is constant.

Algorithm Description

Figure 2.1 represents the main data structure of the implementation. The algorithm uses an unbounded sequence of bits initially equal to 0, denoted switch 0 , switch 1 , . . . to approximately keep track of the number of increments that have been performed by the processes. For each i ≥ 0, switch i can be accessed by test&set and read operations. switch i .test&set() sets the value of switch i to 1 and returns its previous value. A read simply returns the value of switch i .

In a nutshell, each process locally keeps an accurate count of the number of CounterIncrement operations it performs that are not yet known by the other processes. When this count reaches a certain threshold, the process tries to inform other processes of the number of increments it has performed locally, by attempting to set to 1 a switch in an appropriate bounded range. When a process succeeds in setting a switch to 1, it will restart the local count from 0. switch bits are set in increasing order with regard to their index, one after the other.

In particular, the initial value of the threshold is 1 and after their first call to CounterIncrement, each process will attempt to set switch 0 . Afterward, the sequence of switch i with i ≥ 1 is partitioned into consecutive intervals of size k. For any such interval [qk + 1, (q + 1)k], where k is an integer, and for any j ∈ [qk + 1, (q + 1)k], switch j equals to 1 indicates that k q+1 instances of CounterIncrement have been performed by some process. In other words, a process p locally performs k q+1 instances of CounterIncrement before attempting to set a switch in the interval [qk + 1, (q + 1)k] and it increments its local threshold only if it knows that the last switch in this interval is set to 1 (i.e.; at least k • k q+1 instances of CounterIncrement have been performed). The threshold is multiplied by a factor of k. There is no guarantee that p will succeed in setting to 1 one of the switches. But in this case, sufficiently many increments have been performed by the processes so that a CounterRead operation can safely ignore the increments kept locally by p i and still returns a value within a bounded factor of the actual number of increments.

By using test&set to modify a switch from 0 to 1, we ensure that the CounterIncrement instances accounted for by switch j are distinct from those accounted for by switch j ′ , for any j ′ ̸ = j.

Performing an instance of a CounterRead operation op consists in traversing the sequence of switches until 0 is found. An approximation of the total number of CounterIncrement is then deduced from the index of the last switch j that op finds equal to 1. The value returned is the sum of the CounterIncrement operations represented by each switch from switch 0 to switch j . In particular, switch 0 counts for one CounterIncrement, and each switch i in an interval [qk + 1, (q + 1)k] for some integer q ≤ q j counts for k q+1 CounterIncrement operations, where switch j belongs to the interval [q j k + 1, (q j + 1)k].

The CounterIncrement operation: Each process i is equipped with two persistent local variables, lcounter i and limit i . The former stores the number of CounterIncrement instances performed by process i not yet announced to the other processes, and the latter stores the threshold on the number of CounterIncrement that can be performed by process i without informing the other processes.

When a CounterIncrement operation is invoked by a process i, lcounter i is first incremented (line 11). To ensure that a CounterRead operation instance returns a value that is within a multiplicative factor k of the actual number of increments, when lcounter i reaches a certain threshold stored in limit i , process i tries to inform the other processes of the number of increments it has performed locally (lines 12). The value of limit i is initially 1 and is multiplied by k each time it is modified (line 21 and line 28). When lcount i = limit i = k q+1 for some integer q, process i tries to set to 1 one of the k switch j whose index j is in the corresponding range [qk + 1, (q + 1)k] (lines [START_REF] Castañeda | Unifying Concurrent Objects and Distributed Tasks: Interval-Linearizability[END_REF][START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF][START_REF] Eisenstat | Two-enqueuer queue in Common2[END_REF][START_REF] Ellen | A Complexity-Based Hierarchy for Multiprocessor Synchronization: [Extended Abstract[END_REF][START_REF] Fatourou | Highly-Efficient Wait-Free Synchronization[END_REF][START_REF] Haas | Local Linearizability for Concurrent Container-Type Data Structures[END_REF][START_REF] Harris | A Pragmatic Implementation of Non-Blocking Linked-Lists[END_REF][START_REF] Hendler | Operation-Valency and the Cost of Coordination[END_REF][START_REF] Hendler | Upper and Lower Bounds for Deterministic Approximate Objects[END_REF]. If it succeeds, it resets the local counter lcounter i . The number of CounterIncrement instances it has performed locally has been announced to the other processes, and thus will be taken into account by future CounterRead operations.

Additionally, process i writes the index of the switch it sets together with a sequence number into a shared variable H[i] (lines 17 and 18). As explained later this pair is intended to help CounterRead operation instances to complete. Finally, the process will also update the value of the local persistent variable l 0 to indicate the index of the switch it managed to set within the interval (line 22). By doing so, we ensure that the process will avoid attempting to reset the same switches every time it reaches the threshold of limit i in the current interval by starting from the index qk + l 0 in the next attempt. If it does not succeed, every switch j , where j ∈ [qk+1, (q+1)k] is set. We show in the proof that for k ≥ n, this number is sufficiently large for allowing CounterRead operations to return values within a factor k of the total number of CounterIncrement instances (Section 2.2.2). The threshold limit i is then multiplied by a factor k (line 28) and the value of l 0 is reset to 1 (line 24).

The CounterRead operation: When a CounterRead operation is invoked, process i scans the first and last switch of each interval of k switches, looking for the first one that is not yet set to 1. When such a switch is found, the index h of the last switch read that was equal to 1 is stored in the persistent local variable last i to avoid scanning the sequence from the beginning each time. We compute the value ret returned by the CounterRead operation in the function ReturnValue(p, q) where h = q • k + p (line 30). First, we consider the required increments needed to set all the switches in the current interval [qk + 1, (q + 1)k] by adding to ret the value p • k q+1 (line 31). Next, we add 1 to ret to account for the first switch 0 (line 31), and then for each previous interval [(l -1)k + 1, lk] where 1 ≤ l ≤ q, we add k l+1 to ret (line 33). Finally, we return the computed value ret multiplied by a factor k to ensure ret falls in the approximation range of the k-multiplicative-accurate counter.

However, it may be the case that the condition at line 37 is never verified, as other processes may concurrently keep executing CounterIncrement operations. Thus, to ensure wait-freedom, we employ the following helping mechanism: a CounterIncrement operation by a process i that succeeds to set a switch j , writes the index j of this switch together with a sequence number in the shared register H[i] (lines 17 and 18). A CounterRead operation op that fails to find a switch to 0 after θ(n) steps, reads all the n shared registers H[i] with i ∈ 1, . . . , n. If a consistent value is found, then it returns at line 55. Otherwise, it executes another θ(n) steps. The first time op scan the array H, Algorithm 1: k-multiplicative-accurate unbounded counter, pseudo-code for process i. it stores the sequence number read in each H[j], denotes sn j . When scanning H again, op will select a pair whose timestamp is greater than or equal to sn j +2. This ensures, that the corresponding switch has been set by process j in the execution interval of op. This requirement is illustrated in Figure 2.2. In the first execution scenario in Figure 2.2a, it would be possible for the CounterRead operation to return after reading H[j] for the first time, since the corresponding CounterIncrement is executed within the execution interval of the CounterRead operation. However, as depicted in Figure 2.2b, it is also possible for the CounterIncrement to have set its corresponding switch prior to the invocation of the CounterRead operation. Thus, to ensure the step of setting the switch is within the execution interval of the CounterRead operation, the operation is not allowed to return until the second update of H[j].

lcounter i ← lcounter i + 1 if lcounter i = limit i then j ← log k (lcounter i) if j > 0 then 15 for ℓ ← (j -1)k + l 0 , ..., j • k do 16 if switch ℓ .test&set() = 0 then 17 sn i ← sn i + 1 18 H [i] ← (ℓ, sn i) 19 lcounter i ← 0 20 if ℓ = jk then 21 limit i ← k • limit i 22 l 0 ← 1 + ℓ mod k 23 return 24 l 0 ← 1 else 26 if switch 0 .test&set() = 0 then 27 lcounter i ← 0 limit i ← k • limit i return Function ReturnValue(p,q) ret ← 1 + p • k q+1 if q ≥ 1 then ret ← ret + q l=1 k l+1 return k • ret 35 Function CounterRead() 36 c ← 0 37 while switch last i ̸ = 0 do 38 p ← last i mod k 39 q ← ⌊ last i k ⌋ 40 if last i mod k = 0 then 41 last i ← last i + 1 42 else 43 last i ← last i + k -1 44 c ← c + 1

Wait-freedom and Technical Lemmas

Let E be an execution of the k-multiplicative-accurate unbounded counter implemented in Algorithm 1.

Lemma 2.2.1. Operations CounterIncrement and CounterRead are wait-free.

Proof. Let op r and op w denote a CounterRead and CounterIncrement instance respectively in E. The number of steps taken during op w is bounded since at most the process will attempt to set k switches during a call to CounterIncrement and there are no other loops or function calls in the CounterIncrement operation. Suppose by contradiction that op r does not terminate. Meaning that every bit switch ℓ it reads has been set to 1. Since the bits are initially 0, there is at least one process q that infinitely often performs a successful test&set operation on these bits. Note that each time this occurs, q increments its sequence number sn q and reports the new value in the helping array H (lines [START_REF] Eisenstat | Two-enqueuer queue in Common2[END_REF][START_REF] Ellen | A Complexity-Based Hierarchy for Multiprocessor Synchronization: [Extended Abstract[END_REF]. As every n iterations of the while loop, op r scans the array H, it will eventually detect that the sequence number of q has been incremented at least twice, hence op r terminates via the helping mechanism (lines 50-55). Therefore, operations CounterIncrement and CounterRead are wait-free.

We continue with a few technical lemmas. Lemma 2.2.2. Switches are set to 1 in E in increasing order of their index, starting from switch 0 .

Proof. For each process p the initial value of limit p is 1 and of counter p is 0, thus the first CounterIncrement operation by process p applies a test&set primitive to switch 0 according to lines 11, 12, 13, and 27. We now prove that for any given process p and for any j ≥ 1, p applies a test&set primitive (if any) on each of the switches with indexes in the interval [(j -1) • k + 1, . . . j • k] in an increasing order of their index, starting from switch (j-1)•k+1 . First observe that for any process p, the initial value of l 0 is 1, and l 0 is set to 1 iff the value of limit p is multiplied by a factor k (lines 24,28 and lines [START_REF] Harris | A Pragmatic Implementation of Non-Blocking Linked-Lists[END_REF][START_REF] Hendler | Operation-Valency and the Cost of Coordination[END_REF]. This implies that when a new j is computed at line 13, the value of l 0 is 1.

Then the first iteration of the for loop at line 15 starts at l = (j -1) • k + 1. Also, the value of l is incremented by one at each iteration of the for loop at line 15 unless p successfully sets a switch (j-1)k+i with i ∈ {1, . . . , k}. In this latter case, the value of l 0 is modified at line 22 and takes the value i + 1 if i < k, or 1 otherwise (we reach the end of the set). If l 0 takes a value different from 1, that is l ̸ = j • k, (otherwise, the claim is proved), then the CounterIncrement operation returns at line 23 without modifying the value of limit p . Thus, in the execution of a successive CounterIncrement operation (if any), process p will apply the next test&set primitive (if any) to switch jk+i+1 (because of lines 12, 13, 15).

The value of limit i is multiplied by k (and then the value of j is incremented by one) only after a process has applied a test&set primitive (both successfully or not) to the last switch in the current interval [(j -1) • k + 1, . . . , j • k] with log k (limit i) = j (lines [START_REF] Harris | A Pragmatic Implementation of Non-Blocking Linked-Lists[END_REF][START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF]. This completes the proof. Lemma 2.2.3. For any given execution E, if a CounterRead operation op returns the value computed in ReturnValue(p, q) at line 55, then switch q•k+p was equal to 0 before the invocation of op and the test&set primitive that sets switch q•k+p to 1 is applied during the execution interval of op.

Proof. At line 51, op reads a pair (val, σ) from an entry H[p ′] of the helping array H where val = q • k + p. According to lines 16, 17, and 18, a unique process p ′ sets to 1 the switch val and associates with val the sequence number σ computed at line 17, before writing the pair (v, σ) to H[p ′] in the execution of a CounterIncrement operation op ′ .

Let p be the process that executes the CounterRead operation op. Denote by σ ′ the value of H[p ′].sn read by p at line 48 in the execution of op. According to line 52, σ -σ ′ ≥ 2. This means that process p ′ executes line 17 at least twice during the execution interval of op. In particular p ′ executes the step that set switch val to 1 after op was invoked by p. This proves the claim.

Linearizability

We next define the linearization L of the operations in E by first removing any CounterRead operation that did not complete and any incomplete CounterIncrement operation that has not successfully executed line [START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF].

Let OP W be the set of (complete and incomplete) CounterIncrement operations that successfully set a switch while executing line 16. Let OP LO be the remaining complete CounterIncrement operations in E and OP R be the set of complete CounterRead operations in E. Observe that each CounterIncrement operation successfully sets at most one switch, and each switch is successfully set by at most one process. Thus we can univocally associate each operation in OP W with the switch it sets. We order the operations in OP W ∪ OP LO ∪ OP R , according to the following rules :

1. We linearize each operation in OP W at the step where it sets its corresponding switch. From claim 2.2.2, operations in OP W are totally ordered and this order respects the real-time order. In the following, we denote opw i the i-th operation in OP W according to our linearization order with i ≥ 0.

2. We linearize a CounterRead operation opr according to whether it returns normally or through the helping mechanism:

(a) If opr returns ReturnValue(p, q) normally at line 58, then it is linearized at the step where it reads the value 1 of switch q•k+p at line 37 . This is welldefined because this read primitive exists and it is unique (it is easy to check from the pseudo-code).

(b) If opr returns ReturnValue(p, q) via the helping mechanism at line 55, then the operation is linearized immediately after opw q•k+p .

3. Let L W R denote the linearization of all operations in OP W ∪ OP R according to rules 1 and 2, we linearize an operation op in OP LO immediately before the first operation op ′ in L W R that follows op in the real-time order or at the end of L W R if op ′ does not exist.

CounterRead operations that returns 0 after reading switch 0 = 0 are linearized before opw 0 . If several operations are ordered at the same position, they are ordered respecting their real-time order. Figure 2 • Let op 1 and op 2 be two CounterIncrement operations. If at least one of these operations is in OP LO , the claim trivially follows from rule 3. Otherwise, it is already proved in rule 1.

• The next claim will be useful for proving that the ordering L is consistent with the sequential specification of the k-multiplicative-accurate counter. Claim 2.2.6. Let op be a CounterRead operation invoked by a process p i that returns ReturnValue(p, q). The number of CounterIncrement operations linearized before op in L, denoted v, is at least u min = 1 + q l=1 k l+1 + p • k q+1 and at most u max such that

u max ≤ 1 + q l=1 k l+1 + p(k -1)k q+1 + n(k q+1 -1)
where n is the number of processes. Proof. Let op be a CounterRead operation invoked by a process p i that returns ReturnValue(p, q) and let h = q • k + p with p ≥ 0. Consider the CounterIncrement operation by p j that set to 1 the switch h , denoted opw h .

op is linearized at the step where it reads switch h if it returns normally, or immediately after opw h . Thus, from our linearization rules, the minimal number of CounterIncrement operations that are linearized before op includes each opw i in OP W with 0 ≤ i ≤ h, and every CounterIncrement in OP LO linearized before op.

We have by construction that each switch s in the (l +1)-th set of k switches indexed in the interval [l • k + 1 . . . (l + 1)k] with l ≥ 0, requires a process to perform k l+1 CounterIncrement operation instances before attempting to set switch s to 1. In other words, a process p i needs its local variable lcounter i to be equal to k l+1 before it can attempt to set any switch s in [l•k+1 . . . (l+1)k] (line 12). Since the value of lcounter i is reset to 0 after a successful test&set primitive is applied on a switch (line 19), the sets of CounterIncrement operation instances associated with any pair of successful test&set primitives are disjoint. Thus,

u min = 1 + k q-1 l=0 k l+1 + p • k q+1 = 1 + k q l=1 k l + p • k q+1
since we account for, in addition to the p switches in the (q + 1)-th set and switch 0 , all k switches in each of the sets indexed from 1 to q.

Similarly, we compute an upper bound u max on the maximum number of CounterIncrement linearized before op. First, suppose that op returns normally. As already said, op is linearized at the step where it reads switch h with h = qk + p. We have two possible cases either p is equal to 0 or it is equal to 1 because the process checks the first and last switch of each set during the CounterRead () instance. These two cases are depicted in Figure 2.4 a) and b) respectively. If p is equal to 0, then process p i read switch kq+1 = 0 in the execution of op, and according to our linearization rules opw kq+1 is linearized after op. In a similar way, if p is 1, p i read switch (q+1)k = 0 and opw (q+1)k is linearized after op. However, in this second case, all the k -1 switches j with j ∈ [q •k +2 . . . (q +1)k -1] may have been set to 1 before op applied its read to switch qk+1 , and all the corresponding opw j may be linearized before op. Thus, the number of opw linearized before op is smaller than or equal to 1 + q l=1 k l+1 + p(k -1)k q+1 . It remains to count the number of CounterIncrement in OP LO linearized before op. For every process p i the value of lcounter i is smaller than k q+1 immediately before p read either switch kq+1 = 0 or switch (q+1)k = 0 in the execution of op. Since a process resets the value of its local counter only when it succeeds to set a switch to 1 (line 19), lcounter i defines the number of CounterIncrement instances by p i in OP LO that are linearized before op. Therefore,

u max ≤ 1 + q l=1 k l+1 + p(k -1)k q+1 + n(k q+1 -1)
where n is the number of processes. If op returns via the helping mechanism, then according to rule 2b, it is linearized immediately after opw q•k+p with 0 ≤ p < k. Thus, 1 + q l=1 k l+1 + pk q+1 is the number of CounterIncrement in OP W linearized before op. Since p < k the local counter of every process immediately after opw q•k+p sets the corresponding switch is smaller than k q+1 . Since k > 1, the claim follows.

Let op be a CounterRead operation and let v op = ReturnValue(p, q) be the value it returns. According to lines 31, 33 and 34 of Algorithm 1, v op = k(1+ q l=1 k l+1 +p•k q+1); that is v op = k • u min . According to claim 2.2.6, the number of CounterIncrement operations linearized before op in L, denoted u, is at least

u min = 1+ q l=1 k l+1 +p•k q+1
and at most u max ≤ 1 + q l=1 k l+1 + p(k -1)k q+1 + n(k q+1 -1) (where n is the number of processes). And we have:

u max k ≤ 1 k + q l=1 k l + p k -1 k k q+1 + n k (k q+1 -1)
u max k ≤ q l=1 k l + p • k q+1 + n • k q And v op = k(1 + k q l=1 k l + p • k q+1)
Consider a short execution where q = 0, then

v op = k(1 + p • k) and umax k ≤ p • k + n. Therefore, for k ≥ n, we have umax k ≤ v op .
Otherwise, if q ≥ 1, we have the following

v op = k(1 + k q-1 l=1 k l + k q+1 + p • k q+1) = k + k q l=2 k l + p • k q+2 + k q+2 Thus, for k ≥ √ n, umax k ≤ v op . Since p < k, ∀q ≥ 0, we have u k ≤ umax k ≤ v op ≤ k • u min ≤ k • u for any k ≥ n.
This completes the proof.

Complexity Analysis

Lemma 2.2.7. If process p applies a test&set() primitive to a switch α with i • k + 1 ≤ α ≤ (i + 1) • k for some integer i ≥ 0, then p has performed at least k i+1 CounterIncrement() operations.

Proof. Suppose that p has executed a test&set() primitive to a switch α with i • k + 1 ≤ α ≤ (i + 1) • k in the execution of a CounterIncrement() operation op. According to line 15, j was equal to i + 1 when computed at line 13, meaning that lcounter p was equal to k i+1 . The claim holds because lcounter p is incremented only at line 11, that is once for each CounterIncrement() operation performed by p. Lemma 2.2.8 (Amortized complexity). For k ≥ √ n, the amortized complexity of Algorithm 1 is constant.

Proof. Let E be a finite execution of the unbounded k-multiplicative-accurate counter object implemented in Algorithm 1. Let r denote the number of CounterRead () instances in E and s be the number of CounterIncrement() instances in E. We additionally denote Ops W (E) the set of CounterIncrement() operations that execute at least one step in E, and Ops R (E) the set of CounterRead () operations in E. We want to compute

AmtSteps(E) = op∈Ops W (E)∪Ops R (E)
N steps(op, E) r + s where N steps(op, E) is the number of steps executed by op in E.

Let Ops Wp (E) denote the CounterIncrement() operations in Ops W (E) executed by process p and s p denote the total number of CounterIncrement() operations executed by process p. Let α p be the index of the furthest switch accessed by a process p when executing any of the CounterIncrement() operations in Ops Wp (E). We have that i p • k + 1 ≤ α p ≤ (i p + 1) • k for some integer i p ≥ 0 (the case where α p = 0 is trivial).

In the worst case, process p applies a test&set() primitive to switch h for every h ∈ [0, . . . α p] and one additional step to write into H[p] (line 18) each time p successfully set one of those switches. On the other hand, by Lemma 2.2.7 if process p applies a test&set() primitive to the switch αp , then it has performed at least k i p+1 CounterIncrement() operations. Therefore,

op ∈ Ops Wp (E) N steps(op) ≤ 2 • (i p + 1)k + 1 And s p ≥ k ip+1
Thus, the total number of steps executed by the set of all processes P in order to perform the CounterIncrement() operations in E is :

op∈Ops W (E) N steps(op) = p∈P op∈Ops Wp (E) N steps(op) ≤ p ∈ P 2 • (i p + 1)k + 1 And s = p ∈ P s p ≥ p ∈ P k ip+1
Now we consider the number of steps applied by each process to perform CounterRead operations. Let α be the index of the furthest switch set to 1 by any process in P.

If α = 0 then the claim follows. Then suppose i

• k + 1 ≤ α ≤ (i + 1) • k for some integer i ≥ 0.
For any sequence of switches with the index in [j • k + 1, . . . , (j + 1)

• k] with 0 ≤ j ≤ i a process p only reads the first and the last switch in such interval (i.e., switch j•k+1 and switch (j+1)•k). This is because at the beginning last p is equal to 0 and it is incremented by 1 if it is a multiple of k (at line 41), by k -1 otherwise (line 43). Also, last p is a persistent variable, thus a process p reads a given switch that has been set to 1 at most once. This implies that the total number (in all its CounterRead operations) of read primitives applied by a process p to the switches is less or equal to 2(i + 2) (2 per each of the i + 1 intervals, plus switch 0 and switch α+1). Furthermore, any CounterRead () operation executes O(n) steps of the for loop at line 47 or line 50 once every n iterations of the while loop (when the condition of line 45 is satisfied). This means that the total number of steps executed by a process p when performing its CounterRead () operations is less or equal to 4(i + 2). Thus,

op ∈ Ops R (E) N steps(op) ≤ p ∈ P r 4(i + 2) ≤ 4(i + 2) • n r
where P r is the set of processes that have invoked at least one CounterRead () operation and n r is the cardinality of P r . Consider n r > 0, the other case is trivial. Therefore:

AmtSteps(E) ≤ p∈P 2(i p + 1)k + 1 p∈P k ip+1 + r + 4(i + 2) • n r s + r
Furthermore, by lemma 2.2.7 the minimum number of instances of the CounterIncrement() operation executed to set the switch α is k i+1 . Thus,

AmtSteps(E) ≤ p∈P 2(i p + 1) + 1 k p∈P k ip + r k + 4(i + 2) • n r k i+1 + r
We have k x ≥ x + 1 for k ≥ e and ∀x ∈ R, it follows:

p∈P 2(i p + 1) + 1 k p∈P k ip + r k ≤ p∈P 2(i p + 1) + 1 k p∈P (i p + 1)
If i = 0, and since r ≥ n r we have:

4(i + 2) • n r k i+1 + r ≤ 8 • n r k + r ≤ 8 If i ≥ 1, because n r ≤ n and k i+1 ≥ i • k 2 we have: 4(i + 2) • n r k i+1 + r ≤ 4(i + 2) • n i • k 2 + r
Resulting in an amortized complexity of O(1) for k ≥ √ n.

From Lemma 2.2.1, 2.2.5 and 2.2.8 we conclude:

Theorem 2.2.9. Algorithm 1 is a wait-free linearizable implementation of a k-multiplicativeaccurate unbounded counter with a constant amortized complexity for k ≥ n.

Bounded k-multiplicative-accurate Counter

We present a wait-free linearizable m-bounded k-multiplicative-accurate counter with a worst-case step complexity of O(log(log m+1)) for both the CounterRead and CounterIncrement operations. (Algorithm 2).

Algorithm Description

Algorithm 2: Implementation of a k-multiplicative m-bounded counter. To implement the k-multiplicative-accurate m-bounded counter, we use an array Switch[] containing log(m) + 1 test&set objects indexed from 0 to log m. Henceforth, we call these test&set objects switches. Each time one of these switches is set to 1, its index is stored in the max register object M axSwitch. Depending on the index of each switch within the array, a certain number of CounterIncrement operations need to be invoked by a process before it attempts to set the switch to 1. To keep track of the number of invocations, each process has a local persistent variable denoted lcounter. And since the number of invocations evolves with the index of the switches, we also use the variable threshold to store the current number required for each process. Finally, in the variable index, each process stores the value of the last switch it executed a test&set() primitive on. Initially, the variable threshold is at 1. After a process invokes a CounterIncrement operation, it will increment its local counter lcounter and then compare it to the value of threshold. If the two match, the process will then increment the value of index, and if this value is greater or equal to 1, the process also doubles the value of its threshold. Then, the process attempts to set the switch at index in the array Switch[]. Regardless of whether it succeeds, the process will execute an instance M axW rite(index) on M axSwitch. However, if it does succeed, the process will also reset the value of its local counter lcounter to 0 because it has informed the other processes of the increments by writing a switch. If the instance of CounterIncrement is the first instance invoked by the process, and it fails to set the switch with the index 0, then the process will repeat the steps for the switch with the index 1, since the two first switches both require a single CounterIncrement instance.

During an instance of CounterRead , a process simply reads the value r of M axSwitch, and if r > -1, then it will return k • 2 r . Otherwise, the process will return 0. We show that the return value falls within the approximation range defined by the sequential specification of the k-multiplicative-accurate counter.

Linearizability

Let E be an execution of the k-multiplicative-accurate m-bounded counter implemented in Algorithm 2. We construct a linearization L of E by removing some specific instances of the CounterIncrememnt and CounterRead operations, then ordering the remaining operations in E.

Let op be an incomplete CounterIncrement operation in E. We remove op from E in all but the following scenario: op succeeds in setting a switch of index i to 1, and the value of the max register M axSwitch reaches i during E. We also remove from E, any incomplete CounterRead operation.

From the remaining operations in E, we denote OP w the set of CounterIncrement operations that set a switch to 1, and OP l the set of remaining CounterIncrement operations. And let OP r denote the set of CounterRead operations in E. We order the operations in OP w OP l OP r according to the following rules:

1. Let op denote a CounterIncrement operation in OP w such that op sets to 1 the switch with the index r, and let op ′ be the first CounterIncrement operation to write r to M axSwitch. Such an operation exists because we remove any incomplete CounterIncrement operation for which the index of the switch set by the operation is never written to M axSwitch. op is linearized at the step of op ′ in which it writes r to M axSwitch (line 15, 18, 23, or 26 of Algorithm 2).

2. The CounterRead operations in OP r are linearized at the step of reading the max register M axSwitch at line 28 of Algorithm 2.

3. We consider the partial order of the CounterIncrement operations in OP l where for two operations op 1 and op 2 such that op 1 ends before op 2 is invoked, op 1 is before op 2 in OP l .

We linearize the operations in OP l according to this partial order. op 1 will be linearized first according to the following rule: op 1 is linearized before the first operation already in L that follows op 1 in the real-time execution order, or at the end of L if such operation does not exist. Proof. First, we prove that op ′ exists. Since we assume that op terminates (any operation that does not is removed from E), op will execute line 15, 18, 23, or 26 of Algorithm 2 to write r to the max register M axSwitch. Therefore, there exists an operation op ′ in E that writes r to M axSwitch.

If op = op ′ , the claim is trivial. We suppose that op ′ is different than op. As already mentioned, op will write r to M axSwitch, and since op ′ is the first operation to do so, op ′ needs to write r to M axSwitch before op. Thus, op ′ invokes M axW rite(r) during the execution interval of op.

Lemma 2.3.2 (Linearizability). Let op 1 and op 2 be two operations in E such that op 1 ends before op 2 is invoked. We have that op 1 precedes op 2 in L.

Proof. We consider four separate cases depending on whether op 1 and op 2 are CounterIncrement or CounterRead operations:

• Let op 1 and op 2 be two CounterIncrement operations. If both operations are in OP w , then they are linearized according to rule 1 at a point within their execution interval (Lemma 2.3.1). If both operations are in OP l , then op 1 is linearized before op 2 according to the linearization rule 3 which follows the partial order of the operations in OP l . Otherwise, consider that op 1 is in OP w and op 2 in OP l . op 1 is linearized first, then op 2 is inserted after op 1 according to linearization rule 3 since op 1 ends before op 2 begins. Similarly, if op 1 is in OP l and op 2 is in OP w , then op 2 will be linearized before op 1 since it is inserted before the first operation already in L that starts after op 1 ends.

• Let op 1 and op 2 be two CounterRead operations. From linearization rule 2, both op 1 and op 2 are linearized at line 28 of Algorithm 2. Since they are linearized at a point during their execution intervals, and we assume that op 1 ends before op 2 begins, the claim follows.

• Consider that op 1 is a CounterIncrement and op 2 is a CounterRead operation. If op 1 is in OP w , then the claim follows since both op 1 and op 2 are linearized within their execution intervals (Lemma 2.3.1 and linearization rule 2). Suppose that op 1 is in OP l . Based on linearization rule 3, it is inserted before the first operation already in L that ends before op 1 starts (or the end of L if such operation does not exist). Since op 1 also ends before op 2 starts, op 1 is linearized before op 2 .

• Lastly, suppose that op 1 is a CounterRead and op 2 is a CounterIncrement operation. The same arguments from the previous case hold. If op 2 is in OP w , both operations are linearized at a point during their execution intervals. Otherwise, op 2 is linearized before the first operation in L that starts after op 2 ends. Meaning that this operation is also linearized after op 1 since op 1 ends before op 2 begins. The claim follows.

Next, we show that the implementation respects the sequential specification of the k-multiplicative-accurate counter. Proof. Let E be an execution of Algorithm 2 and consider process p during E. We have that process p starts with a local threshold value of 1 stored in the variable threshold. Throughout E, each time p invokes enough CounterIncrement operations such that the value of its local counter matches the threshold, p increments the variable index by 1 and then eventually writes the new value of index to M axSwitch. Each time p reaches a new threshold, this behavior repeats and the process only ever attempts to write the previous value of index plus one to the max register. Therefore, on the global scale of the execution, all processes will do the same and the new value of M axSwitch at any point during E is an increment by 1 of the previous value of M axSwitch. Lemma 2.3.4. Let op denote an instance of the CounterRead operation that returns x, and let v be the number of CounterIncrement operations before op in L. We have

v/k ≤ x ≤ k • v for k ≥ √ n + 1.
Proof. Let r denote the value of M axSwitch read during op at line 28 of Algorithm 2. From Lemma 2.3.3, the values written to M axSwitch before op reads the value r, are increments of 1 starting from -1 to r. Since the max register is a linearizable object, the number of MaxWrite operations linearized before op is at least r. Therefore, the minimum number of CounterIncrement operations necessary to reach this value of M axSwitch is v min = 1 + r j=1 2 j-1 = 2 r . Indeed, to set the first two switches a single CounterIncrement instance is required for each. Afterward, the number of invocations required is multiplied by a factor of 2 each time it is reached. Furthermore, the maximum number of CounterIncrement operations invoked before op is v max = 1+ r i=1 2 i-1 +n(2 r -1) = (n+1)•2 r -n. The value corresponds to the minimum number of invocations required, and an additional 2 r -1 instances per process to represent the maximum number a process can count locally after the execution has reached the switch at the index r.

We have that op returns x = k • 2 r , thus v max /k ≤ x. And we have x ≤ k • v min as long as k ≥ √ n + 1. The claim follows.

Complexity Analysis

We consider the m-bounded max register implementation given by Aspnes et al. [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] which has a step complexity of O(log m) for both M axW rite and M axRead operations.

Lemma 2.3.5. A process executes O(log(log m+1)) steps during a call to the CounterRead or CounterIncrement operation.

Proof. An instance of CounterRead calls the operation M axW rite once and then computes the return value. Similarly, the CounterIncrement operation calls the operation M axW rite a constant number of times and also computes a constant number of steps. Since, We use a (log m + 1)-bounded max register in the implementation of the kmultiplicative m-bounded counter, the claim follows.

Bounded k-multiplicative-accurate Max Register

Algorithm 3 represents an implementation of a k-multiplicative-accurate max register. The algorithm is wait-free, and has asymptotically optimal worst-case step complexity. Indeed, we prove later on in the chapter a matching lower bound.

The key idea of our algorithm is to consider the k-base representation of values written to the register and have Write operations store only the index of the bit preceding (i.e., to the left of) the most significant bit (MSB) of their arguments. These indices are stored in an (accurate) (⌊log k (m -1)⌋) + 1 -bounded max register implemented in a wait-free manner [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF]. A Read operation R reads the value p of the accurate max register. If it equals 0 (implying that it was not written to yet), R returns 0. Otherwise, p is the largest index written so far to the accurate max register and R returns k p . The pseudo-code is presented by Algorithm 3.

We now prove that Algorithm 3 is a correct wait-free implementation of a kmultiplicative-accurate max register.

Observation 2.4.1. Algorithm 3 is a wait-free implementation of a k-multiplicativeaccurate m-bounded max register.

Proof. Follows directly from the wait-freedom of the max register algorithm of [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF].

Proof. Wait-freedom and linearizability follow from Observation 2.4.1 and Lemma 2.4.2, respectively. As for step complexity -the worst case operation step complexity of the wait-free implementation of an m-bounded max register of [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] is O min(log m, n) for both Read and W rite operations. Each operation of Algorithm 3 applies a single operation on a (⌊log k (m -1)⌋) + 1 -bounded max register and a constant number of additional steps. The theorem follows.

Unbounded k-multiplicative-accurate Max Register

We present in this section a wait-free linearizable implementation of the unbounded kmultiplicative-accurate max register with O(log 2 (log k (m))) amortized step complexity, based on the bounded variant presented in Section 2.4.

Algorithm Description

We consider the implementation on an exact unbounded max register presented in [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] and we "plug-in" our bounded k-multiplicative-accurate max register into their construction to implement an unbounded k-multiplicative max register with amortized step complexity of O(log

2 (log k (m))) for m ≥ n 2 .
The correctness of the resulting Algorithm 4 is guaranteed only in executions in which the max register's value is increased in bounded increments. This requirement is formalized by the following definition. Definition 2.5.1 (ℓ-Bounded-Increment Execution). Let E be an execution and let M be an unbounded k-multiplicative max register object. We say that E is an ℓbounded-increment execution for M if for each write operation op = Write(v) on M in E, with v > ℓ, there exists a write operation op ′ = Write(v ′) on M in E that precedes op, such that v -ℓ ≤ v ′ < v.

To implement the unbounded k-multiplicative-accurate max register, we rely on an infinite set of m-bounded k-multiplicative-accurate max registers (previously implemented in Section 2.4) denoted max j for j ∈ N 0 . To each max j is associated a 1-bit register denoted switch j .

When a process invokes a Write(v) instance, it will compute the index of the number of m-bounded max registers necessary to represent the value v. This is done by simply doing the computation j ← ⌊ v m ⌋. Then, the process will write the remainder of the division of v by m to the bounded max register max j , if switch j == 0 which signifies that the bound m has not been reached yet for max j .

The process will also set switch j-1 to 1. Because we consider a bounded-increment execution, all the switches with an index smaller than j -1 have also been set to 1 (the proof of this claim follows).

For the Read operation, the process traverses the set of switches until it finds the first one that has not been set to 1. Then, it reads the value v of the corresponding bounded max register and computes the return value v + last i • m based on the index of the switch last i . To ensure wait-freedom, we employ the helping mechanism introduced by Baig et al. [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] and which we describe in detail in Section 2.2 where it is also used for the implementation of the unbounded k-multiplicative-accurate counter.

Linearizability and Wait-freedom

We show in this section that the implementation of the unbounded k-multiplicativeaccurate max register is wait-free and linearizable and has an amortized step complexity in O(log 2 (log k (m))) for m ≥ n 2 . Claim 2.5.1. All the switches switch j in Algorithm 4 are set to 1 in an increasing order starting from switch 0 for an m-Bounded-Increment execution.

Proof. Let E denote an m-Bounded-Increment execution on the unbounded max register implemented in Algorithm 4 and let op denote a W rite(v) operation in E such as j = ⌊v/m⌋ ≥ 1. During the execution of the lines 6 to 11 of the W rite() operation op, we know that switch j-1 is going to be set to 1. Furthermore, because E is an m-Bounded-Increment execution, there exists another W rite(v ′) operation op ′ that was before op in E and such as ⌊v ′ /m⌋ = j -1. During the execution of op ′ , similarly to op, the switch j-2 is set to 1. By recurrence on j, we therefore have that every switch from o to j -1 is set to 1.

Lemma 2.5.2. Algorithm 4 is a linearizable implementation of a k-multiplicative unbounded max register. Proof. To prove the linearizability of the k-multiplicative unbounded max register, we consider Lemma 2 [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] which proves the linearizability of the unbounded max register. This proof guarantees the linearizability of the object under the assumption (Claim 1) that the values written to the register are not too far apart, ensuring that the switches are set to 1 consecutively. This condition is satisfied when m ≥ n

We define a linearization order for all operations that terminated in E and remove any that have not finished. We start by defining the linearization point of the W rite() operations that execute line 12, and Read() operations that execute line 23 as the access point to the max register object. Then, a W rite() operation that do not access the max register object is positioned in L following the last linearized W rite() operation that precedes it in the execution order of E. Finally a Read() operation that invokes the GetHelp() function and does not access the max register object is positioned before the linearized W rite() instance that occurs afterwards in the execution order of E. We need to prove that this linearization L satisfies the sequential specification. Let op denote a Read() operation in L that returns x = j • m + r. There exists a W rite() operation linearized before op and that writes t to the j-th max register such as t/k ≤ r ≤ t • k, because the k-multiplicative m-bounded max register employed in the algorithm is linearizable and the value returned by op is either read directly from this max register or through the call to the GetHelp() function which accesses an array containing a copy of the max register value. Let OP W be the set of W rite() operations linearized before op with such input values (i.e. OP W = {W rite(v), v = j • m + t AND t/k ≤ r ≤ t • k}). And let op ′ ∈ OP W be the W rite() operation with the maximum input value u. We assume the existence of a W rite() operation linearized before op with an input value w = h • m + g such as h > j. The fact that this operation is linearized before op in Algorithm 4: k-multiplicative unbounded max register based on Algorithm 1 [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] 1 Shared variables 2 switch j ∈ {0, 1} : a 1-bit register for each j ∈ N 0 , initially all 0.

3 max j : a k-multiplicative m-bounded max register object for each j ∈ N 0 , initially all 0. last i ∈ N 0 : stores the largest index j such that process i accessed max j , initially 0. 7 sn i , an integer counting the number of write operations done by process i, initially 0. L, ensures that line 5 of Algorithm 4 is executed before the Read() operation if it is a W rite() operation that modifies a max register object (we assume it is with no loss of generality because otherwise, there exists a previous W rite() operation in L with a larger than or equal input). Meaning that the return value of op would have to be h • m + w with g/k ≤ w ≤ g • k either from directly accessing the k-multiplicative m-bounded max register that corresponds to the h-th switch and not the j-th or from the return value from the call to the GetHelp() function, which contradicts the order of linearization in L. Furthermore, we have u Proof. The complexity of the k-multiplicative max register implemented by Algorithm 2 [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] is a direct result of the cost of the operations on the max register employed in the implementation (lines 2 and 7), we follow a similar reasoning to bound the amortized step complexity AmtSteps of the execution E of the k-multiplicative unbounded max register given by the following formula:

8 Function Write(v) 9 v ′ ←-v mod m; j ←-⌊ v m ⌋; if switch j == 0 then max j .write(v ′); if j > 0 then curM ax ←-max j-1 .read() + (j -1) • m; if switch j-1 == 0 then 16 sn i ←-sn i + 1; 17 H[i] ←-(sn i , curM ax); 18 switch j-1 ←-1; last i ←-max(j, last i); end Function Read() c ←-0 ; while switch last i ̸ = 0 do last i ←-last i + 1; c ←-c + 1; if c mod n == 0 then if (hV al ←-GetHelp(c)) > 0 then
= j • m + s and s/k ≤ r ≤ s • k, therefore j • m + s/k < x = j • m + r < j • m + s/k satisfying the sequential specification of the k- multiplicative unbounded max register u/k = (j •m+s)/k ≤ x ≤ k •u = (j •m+s)k.
AmtSteps(E) = op∈Ops(E)
Steps(op, E)

|Ops(E)|

With Ops(E) the set of all operations that appear in E and Steps(Op, E) the number of steps performed by an operation Op in E. Let Ops W (E) denote the set of w W rite() operations and Ops r (E) the set of r Read() operations in E, and let loop op be the cost of the loop in the Read() operation. Furthermore, we note that the execution scenario of the Read() operation in which GetHelp() is invoked requires an additional cost of O(n) steps. The call to GetHelp() happens once every k • n steps for k > 1 when c = 0 mod n . Therefore, the number of steps taken during a Read() operation inside the GetHelp() function is O(loop op). When substituting the exact m-bounded max registers objects with the k-multiplicative m-bounded max registers, the cost of accessing or modifying the max registers employed in the implementation drops from log(m) to log 2 (log k (m)). Therefore we have:

AmtSteps(E) = O (op∈Ops W (E) log(log k m) + op∈Ops R (E) log(log k m) + loop op)/(w + r)
If r = 0, then AmtSteps(E) = O(log(log k m)) trivially, so assume that r > 0. From lines 16 and 17, for every process i, last i is never decreased and is incremented once in every iteration of the while loop, therefore:

op ∈ Ops R (E) loop op = O r + i∈P last i .
Consequently,

AmtSteps(E) = O (w • log(log k m) + r • log(log k m) + (r + i∈P last i))/(w + r) .
Assume that max register max α is accessed in E. Since E is an n-bounded-increment execution and all max ȷ registers are m-bounded, at least m•(α-1)/n W rite() operations have completed prior to this access. Letting L = max i∈P last i denote the maximum value of all last i variables at the end of E, we get that w ≥ m n (L -1). Furthermore,

i∈P last i ≤ n • L. Thus, AmtSteps(E) = O w log(log k m) + r log(log k m) + (r + n • L) w + r = O log(log k m) + n • L m n (L -1) + r = O log(log k m) + n 2 m L (L -1) + n m r
we have an amortized step complexity of O(log 2 (log k (m))) for the unbounded kmutliplicative max register when r > 0 and m ≥ n 2 . From Lemma 2.5.2, and 2.5.3 we have Theorem 2.5.4. Algorithm 4 is a wait-free linearizable implementation of a k-multiplicative unbounded max register with an amortized step complexity of O(log 2 (log k (m))) when m ≥ n 2 .

Proof. The proof for the property of wait-freedom of Algorithm 2 [START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] still holds when we substitute the m-bounded max register with the k-multiplicative m-bounded max register since we prove this latter to be wait-free. The linearizability and complexity results are from Lemma 2.5.2 and Lemma 2.5.3 respectively.

Worst-case Step Complexity Lower bound for k-multiplicative-accurate m-bounded Max Register and Counter

Aspnes et al. [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF] proved a worst-case step complexity on the lower bound of a class of concurrent objects called L-perturbable, that includes objects such as max registers, counters and snapshots. L is called the perturbation bound. Roughly speaking, an object is L-perturbable if, for every implementation of the object, there exists an operation Op and an execution E, in the course of which Op is "perturbed" L times. An outstanding operation Op by process p is said to be perturbed by a process q, if a solo execution by q can change the response of a solo execution by p. They prove [7, Theorem 1] that any obstruction-free implementation of an L-perturbable object O from historyless primitives has an execution in which some process accesses Ω min(log 2 L, n) distinct base objects during a single operation instance. Specifically, this implies that the worstcase step complexity of such implementations is Ω min(log 2 L, n) . For the sake of presentation completeness, we restate the definition of an L-perturbable object from [START_REF] Aspnes | Lower Bounds for Restricted-Use Objects[END_REF].

[5], Definition 2. Let I be an obstruction-free implementation of an object. The set S k of k-perturbing executions with respect to an operation instance op n by process p n is defined inductively as follows:

1. S 0 is the singleton set containing the empty sequence.

If α

k-1 λ k-1 is in S k-1
, where λ k-1 consists of n -1 events, one by each of the processes p 1 , . . . , p n-1 , then α k-1 λ k-1 is in S k . In this case, we say that α k-1 λ k-1 is saturated.

Suppose α

k-1 λ k-1 is in S k-1
, no process has more than one event in λ k-1 , and there is a sequence γ of events by a process p l different from p n and the processes that have events in λ k-1 , such that the sequences of events by p n as it performs op n after α k-1 λ k-1 and α k-1 γλ k-1 differ. Let γ = γ ′ eγ ′′ , where e is the first event of γ such that the sequences of events taken by p n as it performs op n by itself after α k-1 λ k-1 and after α k-1 γ ′ eλ k-1 differ. Let λ be some permutation of the event e together with the events in λ k-1 , and let λ ′ , λ ′′ be any two sequences of events such that λ = λ ′ λ ′′ . Then the execution α k λ k is in S k , where α k = α k-1 γ ′ λ ′ and λ k = λ ′′ .

[5], Definition 3. An obstruction-free implementation of an object is L-perturbable if there is an operation instance op n such that the set S L of L-perturbing executions with respect to op n by p n is nonempty.

An object O is perturbable if all its obstruction-free implementations are perturbable.

[5], Theorem 1. Let A be an n-process obstruction-free implementation of an Lperturbable object O from historyless primitives. Then A has an execution in which some process accesses Ω(min(log 2 L, n)) distinct base objects during a single operation instance.

Lemma 2.6.1. A k-multiplicative-accurate m-bounded max register is Θ(log k m)-perturbable for k > 1.

Proof. Let O be a k-multiplicative-accurate m-bounded max register and consider an obstruction-free implementation of O. We show that O is (1 2 log k (m -1))-perturbable for a Read() operation instance op n by process p n . We proceed by induction where the base case for r = 0 is immediate. Let r < 1 2 log k (m -1) and let α r-1 λ r-1 be an (r -1)-perturbing execution of O. If α r-1 λ r-1 is saturated, then it is also an rperturbing execution. Otherwise, denote by v r-1 the maximum input to the write() operations linearized before op n in the execution sequence α r-1 λ r-1 . Since α r-1 λ r-1 is not saturated, there exists a process p l ̸ = p n that does not take steps in λ r-1 . Let γ be the execution fragment by p l where it finishes any incomplete operation in α and then performs a write() operation to the max register with the value v r = k 2 v r-1 + 1. Then op n must return a value x such that kv r-1 < v r /k ≤ x ≤ kv r when run after α r-1 γλ r-1 . It follows that an r-perturbing execution can be constructed from α r-1 λ r-1 and γ as specified by [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF], Definition 2. Because O is an m-bounded max register, during the rth step of the induction, the value written to the max register must satisfy v r ≤ m -1. Consequently it suffices to have:

v r ≤ (k + 1) 2r ≤ m -1 =⇒ r ≤ 1 2 log k+1 (m -1) = Θ(log k m)
from Lemma 2.6.1 and [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF], Theorem 1 we have the following theorem:

Theorem 2.6.2. The worst-case step complexity of a k-multiplicative m-bounded max register is

Ω min(log 2 (log k m), n) Lemma 2.6.3. A k-multiplicative-accurate m-bounded counter is Θ(log k (m))-perturbable for k > 1.
Proof. Let O be a k-multiplicative m-bounded counter and consider an obstruction-free implementation of O. We show that O is (1 2 log k (m-1))-perturbable for a CounterRead () operation instance op n by the process p n . We proceed by induction where the base case for r = 0 is immediate. Let α r-1 λ r-1 be an (r -1)-perturbing execution of O. If α r-1 λ r-1 is saturated, then it is also an r-perturbing execution. Otherwise, let I r denote the number of CounterIncrement() operation instances performed by the perturbing process in iteration r. We have that I 1 = 1 in order for op n to return a value greater than 0. For r > 1, if op n runs after a r-1 λ r-1 it can return a value that is as large as k • r-1 j=1 I j . Therefore, we need the number of complete CounterIncrement() operation instances after a r-1 γλ r-1 to be at least k 2 • r-1 j=1 I j + 1 for op n to return a value greater than k • r-1 j=1 I j . Besides the CounterIncrement() operation instances in γ, at least r-1 j=1 I j -(r -1) have finished, therefore setting I r = (k 2 -1)• r-1 j=1 I j +r implies that op n returns at least

1 k (r-1 j=1 I j -(r-1)+I r) = 1 k (r-1 j=1 I j -(r-1)+(k 2 -1)• r-1 j=1 I j +r) = 1 k (k 2 • r-1 j=1 I j +1) which is greater tha k • r-1
j=1 I j as needed.

I r = r-1 i=0 (r -i)(k 2 -1) i = r i=1 i • (k 2 -1) r-i = (k 2 -1) r r i=1 i (k 2 -1) i = (k 2 -1)((k 2 -1) r -1) + r(2 -k 2) (k 2 -2) 2 ≤ k 2r ≤ m =⇒ r ≤ 1 2 log k (m) = Θ(log k m)
From Lemma 2.6.3 and [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF], Theorem 1, we prove the following Theorem Theorem 2.6.4. The worst-case step complexity of a k-multiplicative m-bounded counter is Ω min(log 2 (log k m), n)

Amortized Step Complexity Lower bound for k-multiplicative-accurate Counter

In this section, we prove that the total step complexity of solo-terminating implementations of k-multiplicative accurate counters is Ω(n log 2q+1 n k 2) for k ≤ n/2, assuming the implementation uses base objects that support only read, write and either reading or regular conditional primitives of arity q or less.

For sake of completeness, in the following, we remember the definitions and the statement of lemmata presented in [START_REF] Attiya | Time and Space Lower Bounds for Implementations Using k-CAS[END_REF] that are used to prove our lower bound. In particular, only Lemma 2.7.2, Corollary 2.7.2.1, Lemma 2.7.4 and Theorem 2.7.5 differ from the original work.

Preliminaries

From now on, execution fragments are defined as (finite or infinite) sequences of events, with the understanding that each execution fragment is the projection of a single corresponding sequence of steps.

If a process has not completed its operation instance, it has exactly one enabled event, which is the next event it will perform, as specified by the algorithm it is using to apply its operation instance to the implemented object. We say that an execution E is quiescent if every instance that starts in E completes in E.

Processes communicate with one another by issuing events that apply read-modifywrite (RMW) primitives to vectors of base objects. We assume that a primitive is always applied to vectors of the same size. This size is called the arity of the primitive. RMW primitives of arity 1 are called unary or single-object RMW primitives. RMW primitives of arity larger than 1 are called multi-object RMW primitives. For presentation simplicity we assume that all the base objects to which a primitive is applied are over the same domain. A RMW primitive, applied to a vector of k base objects over some domain D, is characterized by a pair of functions, ⟨g, h⟩, where g is the primitive's update function and h is the primitive's response function. The update function g : D k × W → D k , for some input-values domain W , determines how the primitive updates the values of the base objects to which it is applied.

In the following definitions, when we refer to an event as issued after execution E, we mean it is issued immediately after execution E. Similarly, when we refer to the state of an object after execution E, we refer to its state immediately after E. Let e be an event, issued by process p after execution E, which applies the primitive ⟨g, h⟩ to a vector of base objects ⟨o 1 , . . . , o k ⟩. Then e atomically does the following: it updates the values of objects o 1 , . . . , o k to the values of the components of the vector g(⟨v 1 , . . . , v k ⟩, w), respectively, where -→ v = ⟨v 1 , . . . , v k ⟩ is the vector of values of the base objects after E, and w ∈ W is an input parameter to the primitive. We call -→ v the object-values vector of e after E. The RMW primitive returns a response value, h(-→ v , w), to process p. If

W is empty, we say that the primitive takes no input.

A k-compare-and-swap (k-CAS), for some integer k ≥ 1, is an example of a RMW primitive.

Next, we revise the concept of conditional synchronization primitives. In other words, a RMW primitive is a conditional primitive if, for every input w, there is at most one vector -→ c w such that g(-→ c w , w) ̸ = -→ c w . k-CAS is a conditional primitive for any integer k ≥ 1. The single change point of a k-CAS event with input ⟨old 1 , . . . , old k , new 1 , . . . , new k ⟩ is the vector ⟨old 1 , . . . , old k ⟩. Read is also a conditional primitive, since read events have no change points. The next definition captures the extent to which processes are aware of the participation of other processes in an execution. Intuitively, a process p is aware of the participation of another process q in an execution if there is information flow from q to p in that execution; that is, p reads a shared-memory value that was either directly written by q or indirectly influenced by a value written by q. The following definitions formalize this notion. Definition 2.7.2. Let e q be an event by process q in an execution E, which applies a non-trivial primitive to a vector v of base objects. We say that an event e p in E by process p is aware of e q if e p accesses a base object o such that at least one of the following holds:

• There is a prefix E ′ of E such that e q is visible on o in E ′ and e p is a RMW event that applies a primitive other than write to o, and it follows e q in E ′ , or Lemma 2.7.2. Let E be an execution of a solo-terminating k-multiplicative accurate counter object implementation where each process executes one instance of the CounterIncrement() operation followed by one instance of the CounterRead () operation. If the CounterRead () instance by a process p returns i in E then |AW (E, p)| ≥ i k . Proof. Assume, by way of contradiction, that there is an execution E where each process executes one instance of the CounterIncrement() operation followed by one instance of the CounterRead () operation, and a process p such that a CounterRead () instance by p, namely op, returns i and |AW (E, p)| < i k . We construct a new execution E ′ as follows: for any process q / ∈ AW (E, p), we first remove all the events of q from E; then, for any process q ′ , we remove all the events of q ′ that are aware of q. Note that if an event e q ′ of q ′ is aware of q, then all following events by q ′ are also aware of q and are removed. Also, no events of p are removed since p is aware only of processes in AW (E, p).

We prove that E ′ is an execution, and that it is indistinguishable from E. We consider events in the order they appear in E ′ . Let e ′ q be an event by process q ′ that appears in E ′ , namely

E ′ = E ′ 1 e ′ q E ′ 2 .
Since e ′ q is also in E, we can also write E = E 1 e ′ q E 2 . For the induction, assume that E ′ 1 is an execution and that it is indistinguishable to every process that appears in it from E 1 . In particular, q ′ does not distinguish between E ′

1 and E 1 and takes the same step after both of them. To see why q ′ obtains the same response in e ′ q after E ′ 1 and after E 1 , note that it can return a different response only if in E, e ′ q is aware of an event e that was removed from E 1 . This happens only if e is aware of some process q / ∈ AW (E, p), meaning that in E, e ′ q is also aware of q, contradicting the fact that e ′ q was not removed. Hence E ′ 1 e ′ q is an execution and q ′ does not distinguish between E ′ 1 e ′ q and E 1 e ′ q . This implies that the CounterRead () instance by p returns i also in E ′ ; on the other hand, less than i k processes participate in E ′ . Let E" be the extension of E ′ in which the processes that participate in E ′ complete their operation instances, one at a time. This execution exists by solo-termination, and results in a quiescent execution. However, less than i k instances of CounterIncrement() operations completed in E", and we have that p returns i when invoking op. Thus, the response of the op is not linearizable. In particular, consider any linearization L of E" and let v be the number of CounterIncrement() instances linearized before op in L, we have that

v k ≤ i ≤ k • v < k • i k = i.
Similar to Corollary 6 in [START_REF] Attiya | Time and Space Lower Bounds for Implementations Using k-CAS[END_REF], the following corollary is an immediate consequence of Lemma 2.7.2.

Corollary 2.7.2.1. Let E be a quiescent n-process execution of a solo-terminating kmultiplicative counter implementation, where each process executes one instance of the CounterIncrement() operation followed by one instance of a CounterRead () operation. Then, the awareness sets of n 2 processes contain at least n 2k 2 other processes after E. Proof. Let L denote any linearization of E, and let op be the i-th CounterRead () instance in L. Since op is the i-th instance of CounterRead () in L, it returns v such as v ≥ i k . By considering the last n 2 processes linearized and by Lemma 2.7.2, the claim follows.

Information about processes that participate in an execution is transferred through base objects. The following definition quantifies the number of other processes a process can become aware of when it reads a base object. Definition 2.7.5. Let E be an execution, o be a base object, and q be a process. We say that o has record of q after E if there is an event e, visible on o in E, such that the following hold:

1. E = E 1 eE 2 ,
2. e is an application of a non-trivial primitive to an objects-vector that contains o by some process r such that q ∈ F (E 1 e, r).

The familiarity set of o after E, denoted F (E, o), contains all processes that o has record of after E.

Definition 2.7.6. Let E be an execution. We let

M(E) = max p,o ({|AW (E, p)| p ∈ P} ∪ {|F (E, o)| o ∈ B})
denote the maximum size of a process awareness set and object familiarity set after E.

Definition 2.7.7. Let P be a set of synchronization primitives. We say that P is cbounded, for some constant c, if for every execution E and for every set S of events that are enabled after E, applying primitives from P, there is a schedule σ of S such that M(Eσ)/M(E) ≤ c holds.

From Definition 2.7.7, it is clear that the smaller c is, the more can a scheduling adversary slow down the rate in which processes become aware of others.

Lemma 2.7.3. The set of primitives that contains write and all the conditional primitives of arity c or less is (2c + 1)-bounded. Lemma 2.7.4. Let A be an n-process solo-terminating implementation of a k-multiplicative counter from base objects that support only primitives from a c-bounded set P and 0 < k ≤ n/2. Then A has an execution E that contains Ω(n log c n k 2) events, in which every process performs a single CounterIncrement() instance and a single CounterRead () instance.

Proof. We construct an n-process execution, E, with Ω(n log c n k 2) events, in which every process performs a single CounterIncrement() instance and a single CounterRead () instance. The inductive construction proceeds in rounds, indexed by the integers 1, 2, • • • , r, for some r ∈ N , and it maintains the following invariant: before round i starts, the size of the awareness set of any process and the size of the familiarity set of any base object is at most c i-1 .

If a process p has not completed its operation instances before round i starts, we say that p is active in round i. All processes are active in round 1. All the processes that are active in round i have an enabled event in the beginning of round i. We denote the set of these events by S i . We denote the execution that consists of all the events issued in rounds 1, . . . , i by E i . We also let E 0 denote the empty execution.

For the induction base, note that, before execution starts, objects have no record of processes and processes are only aware of themselves. Thus M(E 0) = 1 holds.

For the induction step, assume that M(E i-1) ≤ c i-1 holds. Since P is c-bounded, there is an ordering σ i of the events of S i such that M(E i-

1 σ i) ≤ cM(E i-1) ≤ c i . We let E i = E i-1 σ i .
By Corollary 2.7.2.1, the awareness sets of n 2 processes contain at least n 2k 2 other processes after E with 1 ≤ n 2k 2 ≤ n, meaning that k ≤ n/2. Therefore, each of these processes is active in at least the first log c (n 2k 2 -1) rounds, performing at least log c (n 2k 2 -1) events in E. Our step complexity lower bound is immediate from Lemma 2.7.4 and Lemma 2.7.3.

Theorem 2.7.5. Let A be an n-process solo-terminating implementation of a k-multiplicative counter from base objects that support only read, write and either reading or regular conditional primitives of arity q or less. Then A has an execution E that contains Ω(nlog q+1 (n/k 2)) events for k ≤ n/2, in which every process performs a single CounterIncrement() instance and a single CounterRead () instance.

Discussion

We have presented upper and lower bounds on the step complexity of a variant of deterministic approximate counters and max registers.

Specifically, we presented a wait-free linearizable k-multiplicative-accurate counter for k ≥ n with constant amortized step complexity. While the condition on the approximation parameter k is necessary to ensure the return value of CounterRead operations remains valid for executions of any length, it is worth noting that for executions where more than 1 + n(k -1) CounterIncrement operations are executed prior to the first CounterRead operation, the condition lessens to k ≥ √ n. We also show that by bounding the execution, we are able to implement the kmultiplicative-accurate counter for k ≥ √ n in a wait-free linearizable manner and with a worst-case step complexity of O(min(log(log(m + 1)), n)). The step complexity of our implementation approaches the lower bound on the worst-case complexity implementation of an m-bounded k-multiplicative-accurate counter which we prove to be Ω(min(log(log k m), n)).

We have also proved the possibly counter-intuitive result that when the accuracy parameter k does not depend on n, relaxing counter semantics by allowing inaccuracy of a multiplicative factor cannot asymptotically reduce the amortized step complexity of unbounded counters by more than a logarithmic factor.

The behavior of the counter in an unbounded relaxed setting for a parameter k ∈] (n 2), n[remains an open question. The maximum improvement in the worst-case step complexity of the bounded variant of k-multiplicative-accurate counters remains an open question. Also, when k is constant, it is unclear whether there exists a deterministic wait-free k-multiplicative-accurate counter implementation with o(log 2 n) amortized step complexity.

We also show that relaxing the semantics of max registers by allowing inaccuracy of even a constant multiplicative factor yields an exponential improvement in the worstcase step complexity of the bounded variant and in the amortized step complexity of the unbounded one.

Chapter 3

Efficient Queue Implementations Abstract Despite the widespread usage of FIFO queues in distributed applications, designing efficient wait-free implementations of queues remains a challenge. Although the literature contains a variety of FIFO queue implementations, the vast majority rely on concurrency constraints: for a given implementation, not all processes are allowed to execute either/or Enqueue and Dequeue operations.

These restrictions on the number of dequeuers or the number of enqueuers that can operate on the queue hold even when the implementations use strong synchronization primitives, like the Compare&Swap.

The best upper bound for a multiple enqueuer wait-free FIFO queue implementation is given by Jayanti and Petrovic in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF] where both the Enqueue and Dequeue operations are in O(log n) with n the total number of processes. However, their implementation risks violating the sequential specification of the queue for executions with multiple dequeuer processes because multiple Dequeue operations might return the same element. If we do not limit the number of processes that can perform enqueue and dequeue operations, the best-known upper bound on the worst-case step complexity for a wait-free queue is given by Khanchandani and Wattenhofer [START_REF] Khanchandani | On the Importance of Synchronization Primitives with Low Consensus Numbers[END_REF]. In particular, they present an implementation of a multiple dequeuer multiple enqueuer wait-free queue whose worst-case step complexity is in O(√ n), where n is the number of processes. In this work, we investigate whether it is possible to improve this bound. In particular, we are interested in a logarithmic worst-case step complexity wait-free implementation that does not suffer from concurrency constraints. Therefore, we present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where the worst case step complexity of an Enqueue operation is in O(log n) and where the complexity of the Dequeue operation depends on the level of concurrency during the execution and is O(k log n) in the worst-case scenario where all dequeuer processes are concurrent at a certain point during the execution.

We then rely on the relaxation of the FIFO queue semantics to show that allowing concurrent Dequeue operations to retrieve the same element results in an implementation with O(log n) worst-case step complexity for both the Enqueue and Dequeue operations.

An iteration of this work was presented during the 2022 Conference On Principles Of Distributed Systems (OPODIS).

Introduction

Shared FIFO queues are an important building block for the design of many concurrent applications.

So in order to have high-performing applications, it is crucial to have efficient implementations of the FIFO queue. These implementations also need to satisfy system-wide progress in the case of a failure. Oftentimes, implementations are content with the nonblocking condition of lock-freedom which allows individual threads to starve but guarantees system-wide progress. Imposing the stricter guarantee of wait-freedom where all operations finish in a finite number of steps, is often costly and requires intricate helping mechanisms which can complicate the algorithms.

The design of efficient wait-free and linearizable concurrent queues is a difficult task even if the implementation is allowed to rely on strong synchronization primitives like Compare&Swap. However, many implementations of concurrent FIFO queues have been proposed using shared objects provided by multiprocessor architectures, e.g. Compare&Swap, registers, F etch&Add, and so on.

Most implementations with sublinear step complexity have limited concurrency, meaning that they limit either the number of enqueuers or dequeuers. For instance, David [START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF] presents a wait-free linearizable queue with a single enqueuer and multiple dequeuers with constant step complexity. Jayanti and Petrovic [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF] provide an implementation of a multiple enqueuer, single dequeuer queue with O(log n) worst-case step complexity, where n is the number of processes. More recently, Khanchandani and Wattenhofer proposed a multiple enqueuer and multiple dequeuer wait-free queue implementation where both the enqueue and the dequeue operations have a worst-case step complexity of O(√ n). Previous solutions leave open the question of whether there exists a wait-free multiple enqueuer and multiple dequeuer queue with logarithmic worst-case step complexity. We investigate the step complexity cost requirements of a FIFO queue implementation with no limitations on the number of processes that can apply Enqueue and Dequeue operations.

By extension of algorithmic ideas from [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF], we first show that a better complexity can be achieved even with multiple enqueuers and multiple dequeuers. In particular, we present a wait-free linearizable concurrent queue for n processes from which all n are enqueuers and k ≤ n are dequeuers. In our implementation, the step complexity of an Enqueue operation is in O(log n), while the complexity of a Dequeue operation is in O(k log n). Our implementation has logarithmic complexity as long as k is a constant. Also, it improves on the implementation by Khanchandani and Wattenhofer solution as long as k ∈ O(√ n log n). Then, we show that both Enqueue and Dequeue operations can have worst-case step complexity in O(log n), if we allow concurrent Dequeue operations to return the same element. This relaxed semantic denoted multiplicity has been formalized and introduced for the FIFO queue in [START_REF] Castañeda | Relaxed Queues and Stacks from Read/Write Operations[END_REF]. Table 3

Wait-Free Linearizable Queue

We present in this section our implementation of a multiple enqueuer multiple dequeuer FIFO queue. Then, we show that the implementation is linearizable and wait-free and that the worst-case step complexity of the Enqueue operation and the Dequeue operation is O(log n) and O(k log n), respectively, where k is the number of dequeuer processes and n the number of all processes.

Inspiration

Jayanti and Petrovic [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF] give an implementation of a queue that supports a single dequeuer process and any number of enqueuers. Their implementation has a worstcase step complexity of O(log n) for both Enqueue and Dequeue operations, where n is the number of processes.

A preliminary step to their implementation is to present a single enqueuer single dequeuer queue. Implementing this object is simple because of the absence of concurrency between the two processes in any execution: an instance of Dequeue operates at the head of the queue while an instance of Enqueue acts on its tail. The difficulty arises when considering multiple dequeuer processes. In order to use the single enqueuer single dequeuer queue as a base object for the main algorithm, an additional function was necessary to allow dequeuer processes to read the front of the queue.

The main data structure for the multiple enqueuer single dequeuer queue (Figure 3.1 consists of a binary tree where each leaf is associated with a single enqueuer single dequeuer queue. The number of leaves also represents the number of total enqueuer processes. Henceforth, we denote the single enqueuer single dequeuer queues at the leaves sub-queues. The data structure used for all the tree nodes is the CAS object. For each node N of the tree, a sub-tree is defined as the substructure such that the root of the sub-tree is N and contains all the children nodes of N up to the leaf layer of the original tree.

Each enqueued element is attributed a unique timestamp. In the leaves of the tree is stored the smallest timestamp of all enqueued elements in the associated sub-queue (single enqueuer single dequeuer queue). Since there is a single enqueuer per sub-queue, it is easy to deduce that the smallest timestamp for a given sub-queue corresponds to Figure 3.1: Main data structure of the wait-free queue implementation, from [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF].

the timestamp of the element at the head of the sub-queue. Then recursively, each internal node of the tree stores the smallest timestamp between its children nodes. The smallest timestamp is propagated to the root of the tree after the execution of each operation. Hence the need for the auxiliary function that allows dequeuer processes to read the head of the sub-queue in order to be able to propagate the smallest timestamp value from a given sub-queue. The goal is to ensure that in the presence of enqueued elements (non-empty queue), the root of the tree stores the smallest timestamp overall. When the dequeuer process executes an instance of Dequeue, it reads the timestamp at the root of the tree and returns the corresponding element from the appropriate sub-queue. The Dequeue operation will also update the timestamps in the path from the leaf to the root. Figure 3.2: Sequential specification violation for the queue implementation in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF] in the case of multiple dequeuer processes.

The limitation of this implementation in multiple dequeuer executions derives from the timestamp-based computations during the Dequeue operations. More precisely, while the root of the tree stores the timestamp of a unique enqueued element, if multiple dequeuer processes read the same value at the root and race to return the equivalent value unaware of any concurrent operations, then multiple Dequeue operations could return the same element resulting in a violation of the sequential specification of the FIFO queue object. Figure 3.2 represents such a situation. When both processes p and q read the root of the tree, they retrieve the value of timestamp (st ′ , q). Since they have no knowledge of the other process executing a concurrent operation, both processes dequeue the same element v associated with the unique timestamp (st ′ , q).

Algorithm Overview

We present hereafter a conceptual overview of the algorithm implementing the kdequeuer n-enqueuer concurrent queue.

The queue object is divided into n different sub-queue objects such that each subqueue i is accessed by the unique enqueuer process with the same id i along with any of the k dequeuer processes. Each sub-queue i is represented by an array of elements items[i] and two pointers head[i] and tail[i] (meaning that items, head, and tail are all two-dimensional arrays). head[i] points to the head of the sub-queue i where the first available element resides, and tail[i] points to the end of the queue. When these two pointers coincide, the sub-queue is empty. Similarly to [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF], we link the sub-queue objects together through a binary tree structure where each leaf corresponds to one of the n sub-queues. Whereas in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF], the leaves store single enqueuer single dequeuer queue objects, and the internal nodes are CAS objects. Our tree structure (Figure 3.3) contains CAS objects at every level and the sub-queue objects are implemented aside using the previously described arrays. We can envision that each enqueuer process i is associated with the sub-queue i and the i-th leaf in the binary tree T .

When an Enqueue(v) operation is invoked by an enqueuer process p, the element v is enqueued in the corresponding p-th sub-queue. Each enqueued element is associated with a unique timestamp, used by the dequeuers to select the element to be returned (if any).

In particular, each enqueued element is associated to a pair (st, p) where st is the value of a max register, and p is the id of the process that invoked the corresponding Enqueue operation. Two processes executing concurrent Enqueue(v) operations can retrieve the same value from the max register, but the process id makes each timestamp unique. Timestamps are totally ordered according to the lexicographical order. The timestamps associated with the elements in a given sub-queue reflect the real-time order of Enqueue() operations by the same process. In particular, if an element e is enqueued in a sub-queue p before another element e ′ , then e is associated with a smaller timestamp than e ′ . This also means that the head of the sub-queue has the smallest timestamp among the other elements in the same sub-queue.

For the sake of complexity, the timestamps are organized in a tree structure where the n leaves correspond to the timestamps of the elements at the head of the corresponding n sub-queues, and the root stores the smallest timestamp among the ones in the leaves. Our construction is similar to the one proposed by Jayanti and Petrovic in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF].

To manage concurrency in writing the nodes of the tree, we employ the same scheme proposed in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF]: a process writes a node of the tree by calling the CAS primitive. If this first attempt fails, the process tries a second time. Even in the scenario where this second instance of CAS fails, we prove later on, that the value written to the node guarantees the coherence of the values present on the tree structure.

Thus, a Dequeue operation simply reads the root of the tree and returns the corresponding element in the appropriate sub-queue in the same manner that this is done in the single dequeuer queue in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF]. The Dequeue operation also updates the timestamps stored in the tree in the path from the leaf to the root. However, to support k different dequeuer processes, we need to manage the concurrency between their operations. This is done by introducing a helping mechanism for the Dequeue operation. In particular, each Dequeue operation has a unique sequence number. Before executing its instance of Dequeue operation, a process will first ensure that the instances with smaller sequence numbers are not more pending. If they are, the process will execute the steps necessary for them to finish, and it will update the tree before executing its own instance of Dequeue. Since there are k dequeuer processes, during an instance of Dequeue, there could be at most k -1 other processes executing a Dequeue operation concurrently.

Algorithm Pseudocode

In the implementation of the multiple dequeuer and multiple enqueuer queue in Algorithm 6-7, we use two main data structures: a two-dimensional array of registers, called items, where each row p together with two integers head[p] and tail[p] represents the sub-queue of process p; and a balanced binary tree T with n leaves where each node is a CAS object used to stores the timestamps of enqueued elements.

The sub-queue p contains the elements enqueued by process p that have not been dequeued, i.e. the current sub-queue p is defined by its values h and t of the max register head[p] and the register tail[p] respectively. If h = t, the sub-queue p is empty. Otherwise, it is the ordered list of t -h elements :

items[p][h], • • • , items[p][t -1].
Each Enqueue operation executed by process p is associated with a unique timestamp (st, p) where st is an integer obtained from the max register enqCounter, and p is the process id. The empty queue is associated with a special timestamp (ϵ, -1), and we consider that ϵ > i ∀i ∈ N. items[p][i] = (val, (st, p)) means that the i-th Enqueue operation by p has enqueued the value val, and that this Enqueue has the timestamp (st, p).

The smallest timestamp of a sub-queue p is the timestamp value of items[p][h] where h is the current value of the head of the sub-queue. This timestamp is stored in the p-th leaf of the tree T associated with p, called p-leaf. The following details the different functions of the implementation in Algorithm 6-7.

• Enqueue(v): when process p calls an instance of Enqueue(v), it starts by constructing the corresponding timestamp (st, p) by reading the value of enqCounter.

Algorithm 6: Wait-free queue implementation (pseudo-code for process p).

Shared variables

enqCounter : Max register object, initially 0.

deqCounter :Fetch&Inc object, initially 1.

head [n] : Array of Max register objects, initially 0.

tail [n] : Array of registers where each register contains an integer, initially 0.

items[n][• • •] :
Two dimensional array of registers, each register contains the uplet (val, (st, it)) initially (⊥, (⊥, ⊥)).

T : binary tree of CAS objects with n leaves, each node contains the pair (st, id), all initially (ϵ, -1).

deqOps[• • •] : Array of CAS objects, initially (⊥, ⊥). deqOps[j] = (i, id) means that the j-th Dequeue operation returns items[id][i].val if id ̸ = -1, otherwise the operation returns ϵ. Function Enqueue(v) st ← enqCounter.M axRead() t ← tail[p] items[p][t] ← (v, (st, p)) tail[p] ← tail[p] + 1 enqCounter.M axW rite(st + 1) P ropagate(p) return T rue Function Dequeue() num ← deqCounter.F etch&Inc() for (i ← max(1, num -k + 1); i ≤ num; i + +) do if deqOps[i].Read() = (⊥, ⊥) then 21 if i > 1 then 22 U pdateT ree(i -1) 23 F inishDeq(i) (j, id) ← deqOps[num].Read() if id = -1 then return ϵ else (ret, -) ← items[id][j]
return ret Process p will then write (v, (st, p)) to item[p][t] where t is the value of tail[p]. Then, it updates the value of tail[p] to t + 1. Afterward, the value st + 1 is written to the max register enqCounter to ensure that all subsequent Enqueue operations will have a greater timestamp than (st, p). Finally, process p calls Propagate(p) to update the timestamps in the nodes of the tree T from the p-leaf to the root, if necessary.

• Refresh(node, isLeaf): this function is invoked during the execution of an instance node is not a leaf; the operation reads the timestamps stored in the children of the current node to compute the minimal timestamp. Then, in both cases, the operation executes the CAS primitive on node to write the timestamp and returns the resulting boolean.

• Propagate(id): updates the nodes of the tree T in the path from the id-leaf node to the root. Specifically, the function relies on calls to Refresh while traversing the path to update each individual node. To ensure that the value written into a node is up to date, the call to the function Refresh(node, -) is repeated if the first call fails because a concurrent instance r 1 of Refresh(node, -) might have written an outdated value since r 1 started before the call to Refresh(node, -) in Propagate(id). However, after the second call to Refresh(node, -), we are certain that the value written is up to date because it can only be written by an instance invoked after Propagate(id). This technique is used in the implementation of the single dequeuer multiple enqueuer queue in [START_REF] Jayanti | Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks[END_REF].

• Dequeue: First, an instance of the Dequeue operation executed by a process p, computes its unique sequence number num by applying a F etch&Inc primitive on deqCounter. Then, p executes the helping mechanism to assist any pending Dequeue operation with a sequence number i ∈ [max(1, num -k + 1), num]) in increasing order of i. If the operation with the index i is still pending (i.e. deqOps[i] is still set to its initial value), p executes U pdateT ree(i -1) if i > 1, to ensure that the root of the tree is updated to an accurate value. Then, p executes F inishDeq(i) to decide on the operation's return value in deqOps[i].

After the return values have been decided for all Dequeue operations with indexes in [max(1, num -k + 1), num]), p reads deqOps[num] = (i, j) and returns items[j][i].val, otherwise p returns ϵ.

• FinishDeq(num): The array DeqOps stores the information regarding the return values of each Dequeue operation. A call to FinishDeq with the parameter num decides a value and attempts to write it to DeqOps[num] using a CAS primitive.FinishDeq(num) reads the timestamp at the root of the tree T : (-, id). And if id = -1 (i.e. the queue is empty), then (ϵ, -1) is written to DeqOps[num].

Otherwise, the value (h, id) is written to DeqOps[num] where h is the value of the head of the sub-queue id. In either scenario, if the CAS instruction fails, another process has succeeded in executing a CAS instruction on DeqOps[num] and the return value for the corresponding Dequeue has been decided.

• UpdateTree(num): A simple function call that encapsulates the steps necessary before executing the Dequeue operation with the sequence number num + 1. If the Dequeue operation with the sequence number num returns ϵ, then there are no additional steps necessary. Otherwise, if an element has been returned, it is necessary to update the head of the sub-queue id from which the return value was retrieved; followed by a call to the function Propagate(id) to update the tree accordingly.

Proof

In this section, we establish that Algorithm 6-7 is a wait-free implementation of a kdequeuer multi-enqueuer queue. We also establish that an Enqueue operation has a worst-case step complexity of O(log n) and a Dequeue operation has a worst-case step complexity of O(k log n).

Algorithm properties

Each Dequeue operation is associated with a unique sequence number that is the value obtained by applying the F etch&Inc primitive on deqCounter at line 18 of Algorithm 6.

Lemma 3.2.1. A total order between Dequeue operations is provided by their sequence number. This order respects the real-time order.

Proof. Let deq 1 and deq 2 be two Dequeue operations by process p 1 and p 2 respectively. Let seq 1 be the sequence number of deq 1 and seq 2 be the sequence number of deq 2 . We prove that if deq 1 precedes deq 2 in real-time order, then seq 1 < seq 2 . deq 1 completes before deq 2 is invoked, thus p 1 executes line 18 of Algorithm 6 before the invocation of deq 2 by p 2 . The proof follows from the fact that deqCounter is a linearizable F etch&Inc object.

The Dequeue operation with the sequence number i is complete at a given configuration C if DeqOps[i] ̸ = (⊥, ⊥) (i.e.; the value of DeqOps[i] at C is not the initial value). Otherwise, it is incomplete at C. According to Lemma 3.2.1, the Dequeue operations with a sequence number smaller than or equal to l, and in particular ∈ [i, l], have started at the configuration immediately before the value of deqOps[i + h] is changed by the l-th Dequeue operation. Also, the Dequeue operations with a sequence number num ∈ [i, i + k -1] could not have returned at C otherwise deqOps[i] ̸ = (⊥, ⊥) at C (contradicting our assumption). This is trivially true for num = i. For num ∈ [i + 1, i + k -1], and since the condition at line 20 of Algorithm 6 is true for deqOps[i], the Dequeue operation with sequence number num will execute the F inishDeq(i) function and set deqOps[i] ̸ = (⊥, ⊥) before it returns.

Thus, l should be greater than i + k -1. But this means that there are k + 1 pending Dequeue operations, which contradicts the fact that we can have at most k pending Dequeue operations. There is a contradiction.

As deqOps[num] is updated only during the execution of the function F inishDeq(num); the following observation is a consequence of Lemma 3.2.3. Observation 3.2.4. Before the first execution of F inishDeq(i + h), F inishDeq(i) has been executed.

Each Enqueue operation op has a unique timestamp composed of an integer obtained by reading the Max register enqCounter during the execution of line 10, and the id of the process that executed the operation op. Lemma 3.2.6. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 ends before enq 2 is invoked. Let (st 1 , id 1) be the timestamp of enq 1 and (st 2 , id 2) be the time stamp of enq 2 . We have st 1 < st 2 .

Proof. After the execution of line 14 of Algorithm 6 during enq 1 , any value returned by a enqCounter.M axRead is greater or equal to st 1 + 1. The claim follows from the fact that enq 2 executes line 10 of Algorithm 6 after enq 1 returned.

We say that the i-th Enqueue operation by a process p matches the Dequeue operation with sequence number j, if deqOps[j] = (i, p) at some point in the execution.

Meaning, if the Dequeue operation returns, it returns the element enqueued by the i-th Enqueue operation of process p (i.e. items[p][i]). Lemma 3.2.7. An Enqueue operation has at most a single matching Dequeue operation.

Proof. Let enq be the i-th Enqueue operation by a process p. Assume by contradiction that there are two Dequeue operations, deq 1 and deq 2 that match enq. Let j 1 and j 2 be their corresponding sequence numbers. Then, deqOps[j 1] = deqOps[j 2] = (i, p). By Lemma 3.2.1 and without loss of generality, let j 1 < j 2 . Because of the Observation 3.2.4, F inishDeq(j 1) returned before F inishDeq(j 2) is invoked. According to lines 22 to 23 of Algorithm 6, U pdateT ree(j 1) is executed before F inishDeq(j 1 + 1). This means that the value i + 1 is written in the Max register head[p] at line 34 before that a process read it during the F inishDeq(j 1 + 1). And since j 2 ≥ j 1 + 1, the claim follows.

Lemma 3.2.8. Let enq denote the i-th Enqueue operation by a process p. Let ts = (st, p) be the timestamp of enq. Let s be any node in the tree T in the path from the p-th leaf to the root of the tree. At any configuration C after enq ends and such that deqOps[j] ̸ = (i, p) for each j ≥ 0, we have that the timestamp stored at s is smaller than or equal to ts at C. the minimum timestamp it reads from the children of s j+1 . And that the second Ref resh(s j+1) fails only if another P ropagate(p) has modified the state of this node with a value smaller than or equal to the value at s j read by prop. Lemma 3.2.9. Let enq be an Enqueue operation with the timestamp ts that enqueued items[p][i]. If (i, p) was written to deqOps[j] by a process q, then the execution of line 25 of Algorithm 7 to read ts by q was executed after the invocation of enq.

Proof. enq is the i-th enqueue operation by p. Let deq be the Dequeue operation executed by q that retrieves ts from the root of the tree (Line 25 of Algorithm 7) before writing (i, p) to deqOps [j]. enq must execute the line 13 of Algorithm 6 before ts can be propagated in the tree according to the code of function Ref resh. The claim follows.

Lemma 3.2.10. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 ends before enq 2 is invoked. If enq 2 has a matching Dequeue operation deq 2 , then enq 1 also has a matching Dequeue operation deq 1 .

Proof. By contradiction, we suppose that deq 2 exists and deq 1 does not. We denote ts 1 and ts 2 the timestamps associated with enq 1 and enq 2 respectively and num 2 the sequence number of deq 2 . From Lemma 3.2.6, ts 1 < ts 2 because enq 1 ends before enq 2 begins.

And since enq 1 does not have a matching Dequeue, there is no j ≥ 0 such that deqOps[j] = (i, p) where items[i][p] is enqueued by enq 1 . Therefore, from Lemma 3.2.8, for any node s in the path in T from the p-th leaf to the root, the timestamp stored at s is smaller than or equal to ts 1 . In particular, for the root of the tree, the timestamp stored is smaller or equal to ts 1 . From Lemma 3.2.9, the step of line 25 of Algorithm 7 to read the root of the tree before writing deqOps[num 2] is executed after the invocation of enq 2 which is after the invocation of enq 1 . Meaning that during this step, the timestamp at the root was smaller or equal to ts 1 contradicting the fact that ts 1 < ts 2 . Lemma 3.2.11. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 ends before enq 2 is invoked and let deq 1 and deq 2 be the matching Dequeue operations to enq 1 and enq 2 respectively. We have that deq 1 has a lower sequence number than deq 2 .

Proof. We denote num 1 and num 2 the sequence numbers of deq 1 and deq 2 respectively, and ts 1 and ts 2 the timestamps of enq 1 and enq 2 respectively. By contradiction, we suppose that num 1 > num 2 . Since enq 1 ends before enq 2 begins we have that ts 1 < ts 2 (Lemma 3.2.6).

And since deqOps[i] are written in an increasing order of i according to Lemma 3.2.3, we have that deqOps[num 2] is written before deqOps[num 1]. However, from Lemma 3.2.8, as long as deqOps[num 1] has its initial value, then the timestamp stored at the root is smaller than or equal to ts 1 . At the execution of line 25 of Algorithm 7 to compute the final value of deqOps[num 2] , the root has a timestamp smaller or equal to ts 1 ; contradicting the fact that ts 1 < ts 2 . Lemma 3.2.12. Let deq be a Dequeue operation and let enq be an Enqueue operation that ends before deq is complete. Let C be a configuration of E where enq does not have a matching Dequeue operation deq ′ or deq ′ is not complete at C. If deq is complete at C, then deq does not return ϵ.

Proof. By contradiction, we suppose that deq returns ϵ. Let i denote the sequence number of deq and ts denote the timestamp of enq. Since deq returns ϵ, deq reads the value (ϵ, -1) in deqOps[i] at line 24 of Algorithm 6. Therefore, during the execution of F inishDeq(i), the process that writes deqOps[i], reads (ϵ, -1) at the root of the tree (line 27 of Algorithm 7). However, By Lemma 3.2.8, the timestamp at the root of the tree after the end of enq is smaller than or equal to ts. Meaning that during the execution of line 25 of Algorithm 7 during the instance F inishDeq(i) that writes deqOps[i], the timestamp at the root of the tree was smaller than or equal to ts. We reach a contradiction because (ϵ, -1) is larger than any timestamp (h, -) ∀h ∈ N.

Linearizability

In the literature, a popular approach to defining the linearization of an execution of a shared object implementation consists of defining a linearization point for each operation in the execution. Simply speaking, a step executed during a high-level operation is chosen as the instant where the operation takes effect. Since each of these linearization points falls within the execution interval of its corresponding operation, it is possible to define a total order of the operations based on the linearization points. The linearization is the sequential execution of the operations following the total order defined. The linearization is correct if it is shown to follow the real-time execution order and all the operations behave according to the sequential specification of the object.

Using this technique to prove the linearizability of an implementation has the advantage of simplifying the proof of correctness in regard to the real-time execution order. If the execution intervals of two operations in the execution do not interweave, then it is simple to prove that the first of the two operations will be linearized first since the linearization point is defined in a segment of the execution prior to the invocation of the second operation.

However, it is not always possible to employ this method to define the linearization. In some cases, it is impossible to define the linearization point of an operation independently from the entire execution. Meaning that future operations in the execution might affect the correct order in which an operation needs to be inserted into the linearization to ensure its behavior is in accordance with the sequential specification of the object.

Consider, for example, the implementation of a FIFO queue. And assume that the Enqueue and Dequeue operations are linearized through the definition of a linearization point within their execution interval. Figure 3.4 represents different execution scenarios of such an implementation. While the first execution in Figure 3.4a is linearizable through the total order defined by the linearization points. In Figure 3.4b, this order violates the sequential specification of the FIFO queue since the elements a and b are returned out of order.

More specifically, The order of linearization of the two concurrent Enqueue operations depends on the order in which the elements enqueued were returned (i.e. the order of the Dequeue operations). If the linearization of the Enqueue operations is determined without taking into consideration the order of the returned elements, the linearization might not follow the FIFO order since the first Dequeue operation might not return the first available element in the linearization. Therefore, to prove the linearizability of our implementation, we follow a different method where the insertion of each operation from the execution is explicitly described in relation to the preexisting operations in the linearization.

First, we construct a permutation L of some of the Dequeue and Enqueue operations invoked such that L contains all operations that have terminated. Then, we prove that L preserves the real order as well as the semantics of a queue.

Linearization definition Let E denote a given execution of the wait-free queue implemented in Algorithm 6 and Algorithm 7. We classify every Dequeue operation deq that appears in E to exactly one of the following types :

1. deq does not execute line 18 of Algorithm 6 in E. Thus deq is not attributed a sequence number.

2. deq executes line 18 of Algorithm 6 in E, its sequence number is j and deqOps[j] has the initial value (⊥, ⊥) in E.

3. deq executes line 18 of Algorithm 6 in E, its sequence number is j and deqOps[j] ̸ = (⊥, ⊥) in E.

We remove from E, any Dequeue operation of type 1 and 2. We denote DEQ the set of Dequeue operations of type 3. Each operation in DEQ is associated with a unique sequence number j ∈ N 0 . We totally order all the operations in DEQ according to their sequence number. Also, let deq be any incomplete Dequeue operation in DEQ and let j be its sequence number. We complete deq by returning the value v if deqOps[j] = (i, id) in E and items[id][i] = (v, -). Otherwise, we complete deq by returning the empty queue value ϵ.

We remove every Enqueue operation that does not execute line 13 of Algorithm 6 in E. We denote EN Q the set of Enqueue operations that appear in E and that we do not remove. Every Enqueue operation enq in EN Q is uniquely identified by a pair (i, id) meaning that enq is the i-th Enqueue operation performed by the process id. We associate the Dequeue operation in DEQ with sequence number i with the Enqueue operation (j, id) such that deqOps[i] = (j, id).

Let EN Q d denote the Enqueue operations in EN Q that have an associated Dequeue operation in DEQ. We associate each Enqueue operations in EN Q d with the sequence We construct the linearization L of the operations in E as follow:

1. First we insert the Enqueue operations in EN Q d one by one and according to their total order, denoted enq i 1 , enq i 2 . . . in L. Notice that enq i h is the Enqueue operation associated with the Dequeue operation having the sequence number i h .

Assuming that enq i h+1 exists, we have i h < i h+1 ; and all the Dequeue operations having a sequence number i ∈ [i h + 1, i h+1 -1] return the value ϵ.

2. Then, we insert the Dequeue operations one by one according to their the sequence number. For any sequence number k, If deq k returns ϵ it is inserted immediately after deq k-1 if it exists, or at the beginning otherwise. In the case where deq k does not return ϵ, it is linearized immediately after the furthest point in L following: (i) the previous deq k-1 , (ii) the matching Enqueue operation enq i l with i l = k, and (iii) the last Enqueue operation that ends before the invocation of deq k .

3. Let enq denote an Enqueue operation from the remaining Enqueue operations with no matching Dequeue operations (i.e. EN Q \ EN Q d). We insert enq after the last operation in EN Q d and before the first Dequeue operation that starts after enq ends (or at the end of L if such Dequeue does not exist). If multiple operations from EN Q \ EN Q d are linearized at the same point, then they are ordered according to their real-time order.

The execution shown in Figure 3.4b is now linearizable following the rules proposed since the Enqueue operations follow the order of the matching Dequeue operations (Figure 3.5b). And in Figure 3.6, we show how different executions are linearized by following the rules in order and we highlight in particular the two possible scenarios for rule 3.

For two operations op 1 and op 2 , we denote op 1 < L op 2 when op 1 precedes op 2 in the linearization L.

Linearization and real-time order We show that the linearization defined in the previous section respects the real-time execution order. Lemma 3.2.13. Let op 1 and op 2 be two Enqueue operations in E such that op 1 ends before op 2 is invoked. op 1 precedes op 2 in L. Proof. First, consider the case where both operations do not have matching Dequeue operations. From linearization rule 3, an Enqueue operation that does not have a matching Dequeue operation is linearized before the first Dequeue operation that starts after it ends or at the end of L if such Dequeue operation does not exist. If op 1 is linearized at the end of L, then op 2 is also linearized at the end of L after op 1 , because op 2 starts after op 1 ends and there is no Dequeue operation that starts after op 1 ends. We suppose that there exists a Dequeue operation deq 1 such that op 1 is linearized immediately before deq 1 . If op 2 is linearized at the end of L, the claim is trivial. So let deq 2 be a Dequeue operation such that op 2 is linearized immediately before deq 2 . We have op 1 < ro op 2 < ro deq 2 . Meaning that deq 2 = deq 1 or deq 1 < L deq 2 , because both operations start after op 1 ends, and deq 1 is the first such operation in L. Therefore, op 1 < L op 2 according to their real time execution order following linearization rule 3.

Next, if op 1 has a matching Dequeue operation but op 2 does not, we have that op 2 is linearized after the last linearized Enqueue operation that has a matching Dequeue operation. The case where op 1 does not have a matching Dequeue operation but op 2 does, is impossible according to Lemma 3.2.10. We suppose that both op 1 and op 2 have matching Dequeue operations, named respectively deq 1 and deq 2 . From Lemma 3.2.11, we have that deq 1 has a smaller sequence number than deq 2 . Therefore, from linearization rule 1, op 1 is linearized before op 2 . Lemma 3.2.14. Let deq be a Dequeue operation with the sequence number j and let enq be an Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq ′ , then the sequence number of deq ′ is greater than j.

Proof. We denote i the sequence number of deq ′ . By contradiction we suppose that j > i. We consider the configuration C where deq completes. According to Lemma 3.2.3, deq ′ also has been completed at C. Meaning that deqOps[i] ̸ = (⊥, ⊥) at C. However, from the hypothesis, enq has not started at C, as enq is not invoked until deq finishes. According to Lemma 3.2.9, deq ′ cannot match enq. The claim follows. Lemma 3.2.15. Let deq be a Dequeue operation with the sequence number j and let enq be an Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq ′ , then any Dequeue operation with a sequence number l < j is linearized before enq.

Proof. By contradiction, we suppose that there exists Dequeue operations with sequence numbers strictly smaller than j that are linearized after enq, and let deq l be the first of these operations in L. Thus , if deq l-1 exists, we have that deq l-1 < L enq.

If deq l returns ϵ, from linearization rule 2, deq l is linearized immediately after deq l-1 if it exits, or at the beginning of L. Therefore, deq l < L enq. There is a contradiction.

Otherwise, deq l has a matching Enqueue operation denoted enq l . We denote i the sequence number of deq ′ . From Lemma 3.2.14, we have that j < i. Therefore, l < j < i. Thus, enq l < L enq from linearization rule 1. Furthermore, we have deq l-1 < L enq (if it exists). Therefore, since enq l < L enq and deq l-1 < L enq, according to linearization rule 2, enq < L deq l because enq < ro deq l (rule 2.3 of linearization) . Consequently, deq j < ro enq < ro deq l . Contradicting the fact that l < j (Lemma 3.2.1). Theorem 3.2.16. Let op 1 and op 2 be two operations in E such that op 1 ends before op 2 is invoked. Then, op 1 precedes op 2 in L.

Proof. Four cases have to be studied according to the type of operations. So consider that op 2 has a matching Dequeue operation deq and let i be its sequence number and j be the sequence number of op 1 .

If op 1 returns ϵ, from the linearization rule 2, we have op 1 = deq j is linearized immediately after deq j-1 (or beginning of L if it does not exist). And from Lemma 3.2.15, for each l < j, we have that deq l is linearized before op 2 . In particular, we have that deq j-1 is linearized before op 2 . Therefore, op 1 is linearized before op 2 .

Otherwise, consider enq j the matching operation of op 1 . From linearization rule 2, op 1 is linearized after (i) deq j-1 , (ii) enq j and after (iii) the last Enqueue enq ′ that ends before op 1 starts. We show that op 2 is linearized after all these three 3.3 Set-Linearizable Wait-free Queue Algorithm with Multiplicity

In this section, we rely on the approach of relaxing the semantics of the FIFO queue to propose a wait-free implementation where both the Enqueue and Dequeue operations have a worst-case step complexity of O(log n). Specifically, we consider the set-sequential specification of shared objects formally introduced in Section 1.2.3 and the weakened consistency condition of set-linearizability [START_REF] Neiger | Set-Linearizability[END_REF]. Simply put, the set-sequential specification of an object allows for multiple operations to be executed simultaneously even in a sequential setting. And we say that an execution E of a concurrent object is set-linearizable if there exists an equivalent set-sequential execution S that contains all the complete operations of E and possibly some pending operations such that if an operation op is before another operation op ′ in E then op is also before op ′ in S. Figure 3.7 illustrates the difference between the linearization and set-linearization of the same execution.

While the approach to relaxation usually relies on either considering a weakened consistency condition or relaxing the sequential specification of the object, we consider a combination of the two. Namely, we consider the multiplicity relaxation [START_REF] Castañeda | Relaxed Queues and Stacks from Read/Write Operations[END_REF] which allows for multiple concurrent Dequeue operations to return the same element, and we prove that that the implementation of such a FIFO queue is set-linearizable. It is necessary to consider the set-sequential specification of the queue because it is impossible to define a sequential execution of the relaxed FIFO queue with multiplicity that does not violate the sequential specification, namely two non concurrent Dequeue operations cannot return the same element.

Algorithm Pseudocode and Description

Only the algorithm of the Dequeue operation is different from the Algorithm in Section 3.2. In the implementation of the relaxed queue, we do not require the unicity of the sequence numbers of the Dequeue operations. From this point on, we denote Exact-Queue the implementation of the FIFO queue in Algorithm 6-7 in Section 3.2, and Relaxed-Queue the implementation of the relaxed queue based on the Exact-Queue with the changes described in Algorithm 8. We use a max register object for deqCounter instead of the previously used F etch&Inc. Multiple concurrent Dequeue operations retrieve the same sequence number num from deqCounter as long as deqOps[num] remains unchanged. A Dequeue operation takes the sequence number num+1 only after the Dequeue operations with the sequence number num are completed (i.e. deqOps[num] ̸ = (⊥, ⊥)). Thus, we relinquish the need for a helping mechanism for slow Dequeue operations since such an operation would have to be completed by another operation with the same sequence number before the next sequence number is assigned.

If a process retrieves the value num from deqcounter at the beginning of a Dequeue then its sequence number seq is in {num, num+1} depending the value of deqops[num] it reads. If deqOps[num] has been written, the operation increments deqCounter using the MaxWrite primitive, and takes the sequence number num+1, otherwise its sequence number is num. Similarly to Algorithm 6, the operation then executes the necessary steps to write deqOps[seq] where seq ∈ {num, num + 1} is the sequence number of the operation. Meaning that the process executes U pdateT ree(seq -1) if the Dequeue operation with the sequence number seq -1 exists, to ensure that the root of the tree has an accurate value. Then, the process executes F inishDeq(seq), after which deqOps[seq] is set to a value different than its initial value. If DeqOps[seq] = (i, p) the Dequeue operation returns items[p][i].val, otherwise it returns ϵ. Several Dequeue operations may have the same sequence number, and thus return the same value. The design of the algorithm ensures that two Dequeue operations can have the same sequence number only if they are concurrent. In the following, we consider the implementation of the relaxed FIFO queue with multiplicity and give the detailed proof for setlinearizability as well as the property of wait-freedom and worst-case step complexity of O(log n) for both Enqueue and Dequeue operations. The following three Lemmas are the same exact properties as Lemmas 3.2.6, 3.2.8 and 3.2.9 since the pseudo-code involved is unchanged. Lemma 3.3.7. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 ends before enq 2 is invoked. Let (st 1 , id 1) be the timestamp of enq 1 and (st 2 , id 2) be the timestamp of enq 2 . We have st 1 < st 2 . Lemma 3.3.8. Let enq denote the i-th Enqueue operation by a process p. Let ts = (st, p) be the timestamp of enq. Let s be any node in the tree T in the path from the p-th leaf to the root of the tree. At any configuration C after enq ends and such that deqOps[j] ̸ = (i, p) for each j ≥ 0, we have that the timestamp stored at s is smaller than or equal to ts at C. Lemma 3.3.9. Let enq be an Enqueue operation with the timestamp ts that enqueued items[p][i]. If (i, p) was written to deqOps[j] by a process q, then the execution of line 25 of Algorithm 7 to read ts by q was executed after the invocation of enq.

We say that the i-th Enqueue operation by a process p matches the Dequeue operation deq with sequence number j, if deq writes deqOps[j] = (i, p) at some point in the execution. And we say that a Dequeue operation deq with sequence number j matches the i-th Enqueue operation by process p, if it returns items[p][i].

Lemma 3.3.10. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 ends before enq 2 is invoked. If enq 2 has a matching Dequeue operation deq 2 , then enq 1 also has a matching Dequeue operation deq 1 .

Proof. By contradiction, we suppose that deq 2 exists and deq 1 does not. We denote ts 1 and ts 2 the timestamps associated with enq 1 and enq 2 respectively and num 2 the sequence number of deq 2 . From Lemma 3.3.7, ts 1 < ts 2 because enq 1 ends before enq 2 begins.

And since enq 1 does not have a matching Dequeue, there is no j ≥ 0 such that deqOps[j] = (i, p) where items[i][p] is enqueued by enq 1 . Therefore, from Lemma 3.3.8, for any node s in the path in T from the p-th leaf to the root, the timestamp stored at s is smaller than or equal to ts 1 after enq 1 ends. In particular, for the root of the tree, the timestamp stored is smaller or equal to ts 1 . From Lemma 3.3.9, the step of line 25 of Algorithm 7 to read the root of the tree before writing deqOps[num 2] is executed after the invocation of enq 2 which is after the invocation of enq 1 . Meaning that during this step, the timestamp at the root was smaller or equal to ts 1 contradicting the fact that ts 1 < ts 2 . Lemma 3.3.11. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 ends before enq 2 is invoked and let deq 1 and deq 2 be the matching Dequeue operations to enq 1 and enq 2 respectively. We have that deq 1 has a lower sequence number than deq 2 .

Proof. We denote num 1 and num 2 the sequence numbers of deq 1 and deq 2 respectively, and ts 1 and ts 2 the timestamps of enq 1 and enq 2 respectively. By contradiction, we suppose that num 1 > num 2 (num 1 ̸ = num 2 from Lemma 3.3.2). Since enq 1 ends before enq 2 begins we have that ts 1 < ts 2 (Lemma 3.3.7).

And since deqOps[i] are written in an increasing order of i according to Lemma 3.3.4, we have that deqOps[num 2] is written before deqOps[num 1]. However, from Lemma 3.3.8, as long as deqOps[num 1] has its initial value, then the timestamp stored at the root is smaller than or equal to ts 1 . At the execution of line 25 of Algorithm 7 to compute the final value of deqOps[num 2] , the root has a timestamp smaller or equal to ts 1 ; contradicting the fact that ts 1 < ts 2 . Lemma 3.3.12. Let deq be a Dequeue operation and let enq be an Enqueue operation that ends before deq is complete. Let C be a configuration of E where enq does not have a matching Dequeue operation deq ′ or deq ′ is not complete at C. If deq is complete at C, then deq does not return ϵ.

Proof. By contradiction, we suppose that deq returns ϵ. Let i denote the sequence number of deq and ts denote the timestamp of enq. We also denote deq i the operation that writes deqOps[i].

Since deq returns ϵ, deq reads the value (ϵ, -1) in deqOps[i] at line 9 of Algorithm 8. Therefore, during the execution of F inishDeq(i), deq i reads (ϵ, -1) at the root of the tree (line 27 of Algorithm 7). However, By Lemma 3.3.8, the timestamp at the root of the tree after the end of enq is smaller than or equal to ts. Since enq ends before deq starts, it specifically ends before deq is complete. Meaning that during the execution of line 25 of Algorithm 7 during the instance F inishDeq(i) that writes deqOps[i] during deq i , the timestamp at the root of the tree was smaller than or equal to ts. We reach a contradiction because (ϵ, -1) is larger than any timestamp (h, -) ∀h ∈ N.

Set-linearizability

Let E denote a given execution of Relaxed-Queue. We classify every Dequeue() operation deq that appears in E to exactly one of the following types : for i ≥ 0, i.e. DEQ ′ = {deq i , ∀i ≥ 0}. The operations in DEQ ′ are totally ordered according to their sequence number.

We remove every Enqueue() operation that does not execute line 13 of Algorithm 6 in E. We denote EN Q the set of Enqueue() operations that appear in E and that we do not remove. Every Enqueue() operation enq in EN Q is uniquely identified by a pair (i, id) meaning that enq is the i-th Enqueue() operation performed by the process id. We associate the Dequeue() operation in DEQ with sequence number i with the Enqueue() operation (j, id) such that deqOps[i] = (j, id).

Let EN Q d denote the Enqueue() operations in EN Q that have an associated Dequeue() operation in DEQ ′ . We associate each Enqueue() operations in EN Q d with the sequence number of the corresponding Dequeue(). Thus, Enqueue() operations in EN Q d are totally ordered according to the given sequence number.

We construct the set-linearization SL of the operations in E as follow:

1. First we insert the Enqueue() operations in EN Q d one by one and according to their total order, denoted enq i 1 , enq i 2 . . . and so on. Notice that enq i h is the Enqueue() operation associated with the Dequeue() operation having the sequence number i h in DEQ ′ . Assuming that enq i h+1 exists, we have i h < i h+1 ; and all the Dequeue() operations having a sequence number i ∈ [i h + 1, i h+1 -1] return the value ϵ.

2. Then, we insert the Dequeue() operations in DEQ ′ one by one according to their the sequence number. For any sequence number k, If deq k returns ϵ it is inserted immediately after deq k-1 if it exists, or at the beginning of SL otherwise. In the case where deq k does not return ϵ, it is inserted immediately after the furthest point in SL following: (i) the previous deq k-1 , (ii) the matching Enqueue operation enq i l with i l = k, and (iii) the last Enqueue operation that ends before the invocation of any Dequeue operation with the sequence number k (i.e. DEQ k).

3. Let enq denote an Enqueue operation from the remaining Enqueue() operations with no matching Dequeue operations (i.e. EN Q \ EN Q d). We insert enq after the last operation in EN Q d and before the first Dequeue() operation deq i in SL such that, there exists a Dequeue operation deq ′ i in DEQ i that starts after enq ends (or at the end of SL if such Dequeue() does not exist). If multiple operations from EN Q\EN Q d are inserted at the same point, then they are ordered according to their real-time order. 4. For i ≥ 0, we insert all Dequeue operations in DEQ i \ {deq i } at the same point as deq i .

For two operations op 1 and op 2 , we denote op 1 < SL op 2 when op 1 precedes op 2 in the set-linearization SL. Lemma 3.3.13. Let op 1 and op 2 be two Enqueue operations in E such that op 1 ends before op 2 is invoked. op 1 precedes op 2 in SL.

Proof. First, consider the case where both operations do not have matching Dequeue() operations. From set-linearization rule 3, an Enqueue operation that does not have a matching Dequeue operation is inserted before the first Dequeue operation deq i in SL such that there exists an operation deq ′ i in DEQ i that starts after enq ends; or at the end of L if such Dequeue operation does not exist. If op 1 is inserted at the end of SL, then op 2 is also inserted at the end of SL after op 1 , because op 2 starts after op 1 ends and there is no Dequeue operation that starts after op 1 ends. We suppose that there exists a Dequeue operation deq i such that op 1 is inserted immediately before deq i . If op 2 is inserted at the end of SL, the claim is trivial. So let deq j be a Dequeue operation such that op 2 is inserted immediately before deq j . We have op 1 < ro op 2 < ro deq ′ j . Meaning that deq j = deq i or deq i < SL deq j , because both operations deq ′ i and deq ′ j start after op 1 ends, and deq ′ i is the first such operation in SL. Therefore, op 1 < SL op 2 according to their real time execution order following set-linearization rule 3.

Next, if op 1 has a matching Dequeue() operation but op 2 does not, we have that op 2 is inserted after the last Enqueue() operation that has a matching Dequeue() operation in SL. The case where op 1 does not have a matching Dequeue() operation but op 2 does, is impossible according to Lemma 3.3.10. We suppose that both op 1 and op 2 have matching Dequeue() operations, named respectively deq 1 and deq 2 . From Lemma 3.3.11, we have that deq 1 has a smaller sequence number than deq 2 . Therefore, from set-linearization rule 1, op 1 is before op 2 in SL. Lemma 3.3.14. Let deq be a Dequeue operation with the sequence number j and let enq be an Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq ′ with the sequence number i then j < i.

Proof. By contradiction we suppose that j ≥ i. We consider the configuration C where deq completes. According to Lemma 3.3.4, deq ′ also has been completed at C. Meaning that deqOps[i] ̸ = (⊥, ⊥) at C. However, from the hypothesis, enq is not invoked until after deq finishes. Contradicting the fact that deq ′ is the matching Dequeue operation of enq. Lemma 3.3.15. Let deq be a Dequeue operation with the sequence number j and let enq be an Enqueue operation invoked after deq returns. We suppose that enq has a matching Dequeue operation deq ′ with the sequence number i. We have that any Dequeue operation with a sequence number l < j is before enq in SL.

Proof. By contradiction, we suppose that there exists Dequeue operations with sequence numbers strictly smaller than j that are after enq in SL, and let deq l be the first of these operations in SL.

We suppose that deq l returns ϵ. Since deq l is the first Dequeue operation with a sequence number smaller than j that is inserted after enq. We have that deq l-1 < SL enq. From set-linearization rule 2, deq l is inserted immediately after deq l-1 (if it exists). Therefore, deq l < SL enq. There is a contradiction.

We suppose that deq l does not return ϵ. Let enq l be the matching Enqueue operation to deq l . From Lemma 3.3.14, we have that j < i. Therefore, l < j < i. Thus, enq l < SL enq. Furthermore, we have deq l-1 < SL enq because deq l is the first operation with a sequence number smaller than j inserted after enq in SL. Therefore, from set-linearization rule 2, there exists a Dequeue operation deq ′ l such that enq < ro deq ′ l . Consequently, deq j < ro enq < ro deq ′ l . Contradicting the fact that l < j (Lemma 3.3.1).

Theorem 3.3.16. Let op 1 and op 2 be two operations in E such that op 1 ends before op 2 is invoked. op 1 precedes op 2 in SL.

Proof. Four cases have to be studied according to the type of operations. Next, consider the case where op 2 returns ϵ. Every Dequeue operation with the sequence number i returns ϵ and are inserted at the same point in SL (setlinearization rule 4). Let deq i denote the Dequeue operation that writes deqOps[i].

We have that op 1 ends before deq i is complete (Observation 3.3.3). By Lemma 3.3.12, op 1 has a matching Dequeue operation deq, and deq is complete before deq i is complete. And since deq is complete before deq i is complete, we have that j < i where j is the sequence number of deq (Observation 3.3.5). Therefore, from set-linearization rule 2, deq is inserted before op 2 . Thus, from set-linearization rule 1, op 1 < SL deq < SL deq i . And from set-linearization rule 4, deq i and op 2 are insterted at the same point; i.e. op 1 < SL op 2 .

4. Finally, we suppose that op 1 is a Dequeue() operation and that op 2 is an Enqueue() operation. Let j denote the sequence number of op 1 . If op 2 does not have a matching Dequeue operation, from set-linearization rule 3, it is inserted before the first Dequeue operation deq k in SL such that there exists a Dequeue operation deq ′ k in DEQ k that starts after op 2 ends or at the end of SL if such operation does not exist. By definition, all the operations in DEQ j are concurrent. Hence, there is no Dequeue operation in DEQ j that starts after op 2 ends because such operation cannot be in contention with op 1 which ends before op 2 starts. Therefore, if deq k exists it is after op 1 in SL. Thus, op 2 is inserted after op 1 in SL.

Next, consider that op 2 has a matching Dequeue operation deq with the sequence number i. If op 1 returns ϵ, from the set-linearization rule 2, we have op 1 is inserted immediately after deq j-1 the Dequeue operation with the previous sequence number (or the beginning of SL if it does not exist). And from Lemma 3.3.15, we have that deq l is inserted before op 2 for any l < j. In particular, we have that deq j-1 is inserted before op 2 . Therefore, op 1 is inserted before op 2 . We suppose that op 1 does not return ϵ. From set-linearization rule 2, op 1 is inserted after (i) deq j-1 , (ii) the matching Enqueue operation enq j and after (iii)

in O(log n) and the Dequeue operation is in O(k log n). Meaning, that as long as the number k of dequeuer processes is constant, our implementation has logarithmic step complexity, which improves on the previous upper bound of O(√ n). While we focused on theoretical evaluations of step complexity, it could also be of interest to compare the algorithm empirically to other FIFO implementations to gauge its applicative relevance.

Any queue implementation has a limitation regarding space complexity because of the requirement to store all the enqueued elements that have not been dequeued. Simply by considering an execution where a process only executes Enqueue operations, we can show a lower bound on space complexity in the number of elements present in the queue. Besides this limitation, there also seems to be a trade-off between step and space complexity in the implementations that appear in the literature. For instance, David [START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF] implements a single enqueuer queue with a constant step complexity but with infinite space complexity. But then, it is argued in [START_REF] David | A Single-Enqueuer Wait-Free Queue Implementation[END_REF], that it is possible to bound the space complexity of their implementation to the detriment of the step complexity that would reach O(n).

Some implementations propose memory reclaiming schemes in which data that is no longer useful is discarded (i.e. dequeued elements). In [START_REF] Yang | A Wait-Free Queue as Fast as Fetchand-Add[END_REF], Yang et al. propose such a scheme based on the epoch-based reclamation in [START_REF] Harris | A Pragmatic Implementation of Non-Blocking Linked-Lists[END_REF] to manage the memory of non-blocking lists. The performance of the wait-free queue implemented in [START_REF] Yang | A Wait-Free Queue as Fast as Fetchand-Add[END_REF] is measured empirically, and it is shown that the implementation manages to outperform other prior queue implementations regardless of the overhead generated by the memory usage optimization. We do not consider the issue of optimizing the space complexity in the scope of this work because of the intricacies that seem to correlate with balancing both the step and space complexities of a wait-free queue implementation, and we leave the question for future work.

Then, to the best of our knowledge, we presented the first relaxed FIFO queue with logarithmic step complexity where every process can perform both Enqueue(v) and Dequeue() operations. It remains an open question whether it is possible to implement an exact wait-free linearizable FIFO queue with worst-case logarithmic step complexity without restriction on the number of enqueuers and dequeuers or to implement a relaxed FIFO queue in constant or near-constant step complexity.

Chapter 4 Conclusion

In this thesis, we study the possibility of improving the complexity of concurrent object implementations by relaxing their sequential specification. In particular, we focused on three common objects, the counter, max register, and FIFO queue.

We studied both upper and lower bounds of these relaxed objects to have a clear understanding, as much as possible, of the extent the relaxations can improve the implementation of a shared object and bring forth any limitations to this approach.

First, we study how allowing wait-free linearizable implementations of the counter and max register objects to return approximate values, rather than accurate ones, may improve their step complexity.

We consider the k-multiplicative-accurate max register and the k-multiplicativeaccurate counter, where read operations are allowed a margin of error of a multiplicative factor of k. We give a wait-free linearizable k-multiplicative-accurate counter implementation for k ≥ n with constant amortized step complexity where n is the number of processes.

We also show that by bounding the execution, we are able to implement the kmultiplicative-accurate counter for k ≥ √ n in a wait-free linearizable manner and with a worst-case step complexity of O(min(log(log(m + 1)), n)) where m represents the bound on the number of CounterIncrement operations during an execution. Both implementations offer an exponential improvement on the complexities of their best exact counterparts in the state of the art.

Then, we study the lower bounds of the complexity of the k-multiplicative-accurate counter and max register in both their bounded and unbounded variations. We obtain the result that when the approximation parameter k does not depend on the number of processes, relaxing counter semantics by allowing inaccuracy of a multiplicative factor cannot asymptotically reduce the amortized step complexity of unbounded counters by more than a logarithmic factor. We also prove that our bounded k-multiplicativeaccurate max register is optimal and matches the lower bound.

When it comes to the FIFO queue, we investigate whether it is possible to implement a logarithmic worst-case step complexity wait-free implementation that does not suffer from concurrency constraints. Therefore, we present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where the worst-case step complexity of an Enqueue operation is in O(log n) and where the complexity of the Dequeue operation depends on the level of concurrency during the execution and is O(k log n) in the worst-case scenario.

We then rely on the relaxation of the FIFO queue semantics to show that allowing concurrent Dequeue operations to retrieve the same element results in an implementation with O(log n) worst-case step complexity for both the Enqueue and Dequeue operations.

Perspectives and prospects

There remains a few open problems around the results we presented that can be explored.

In the case of the k-multiplicative-accurate counter, depending on the parameter k, we do not know how the relaxation affects the implementation when k ∈] n/2, n[. Although our implementation of the unbounded relaxed counter can achieve constant amortized step complexity for k ≥ √ n when the executions are long enough, a small gap still remains for the possible values of the approximation parameter k.

On a more high-level aspect, we have presented many cases where the relaxation of shared objects achieves better theoretical complexity results than exact objects. However, it is often the case that the relaxations are closely dependent on the nature of the object and do not necessarily translate into a large set of objects. It could be interesting to attempt to classify different types of relaxations to understand how they correlate with each other as well as how they relate to the different classes of weakened consistency conditions.

 (a) Linearizable execution. (b) Sequential consistent execution.

Figure 1 . 1 :

 11 Figure 1.1: Different execution scenarios for a shared register.

 (a) Linearizable execution. (b) Set-linearizable execution.

Figure 1 . 2 :

 12 Figure 1.2: Example of a linearization of an execution of a FIFO queue and a setlinearization of an execution of a relaxed FIFO queue.

Figure 1 . 3 :

 13 Figure 1.3: Example of an execution of write-snapshot that is not set-linearizable.

 (a) Initial configuration. (b) Configuration after the execution of some CounterIncrement operations.

Figure 2 . 1 :

 21 Figure 2.1: The main data structure for the implementation of the k-multiplicativeaccurate counter in Algorithm 1.

1 3 H 1 8

 131 Shared variables 2 switch j ∈ {0, 1} : for each j ∈ N, a 1-bit register that supports test&set and read primitives, initially all 0 [n] : an array of n integer pairs (val, sn) 4 Persistent local variables 5 last i ∈ N 0 : largest index of a switch accessed by i, initially 0 6 lcounter i : number of unannounced CounterIncrement by process i, initially 0 7 limit i : number of CounterIncrement that process i can perform locally, initially sn i : number of switches set to 1 by process i, initially 0 9 l 0 : index of last switch accessed by the process i in the current set of switches, initially 1 Function CounterIncrement()

 (a) First execution scenario. (b) Second execution scenario.

Figure 2 . 2 :

 22 Figure 2.2: Example of two executions where a CounterRead operations returns through the helping mechanism.

 (a) Linearization of a simple execution following the proposed rules. (b) Linearization of the execution in Figure 2.2a where a CounterRead operation returns through the helping mechanism.

Figure 2 . 3 :

 23 Figure 2.3: Applications of the proposed linearization rules.

Figure 2 . 4 :

 24 Figure 2.4: Switches state for the proof of claim 2.2.6. The dotted line indicates the q + 1-th interval of consecutive switches. When p = 1, op does not distinguish between cases b.1) and b.2)

1 variables 2 3 MaxSwitch

 123 Shared Switch[log(m) + 1] : array of test&set objects initialized to 0 and indexed from 0 to log m. : Max register object that stores the index of the furthest switch in Switch[] set to 1, initially -1. 4 Local persistent variables 5 lcounter : locally counts the number of increments, initially 0.

6 threshold

 6 : stores the current required number of increments to set a switch, initially 1 .

7 index 13 threshold ← 2 × threshold 14 if 16 lcounter ← 0 17 return 18 M 19 if index == 0 then 20 index + + 21 threshold ← 2 × threshold 22 if 23 M 28 r

 7132141617181920212222328 : stores the value of the last switch accessed, initially -1 . Switch[index].test&set() == 0 then 15 M axSwitch.M axW rite(index) axSwitch.M axW rite(index) Switch[1].test&set() then ← M axSwitch.M axRead() 29 if r == -1 then 30 return 0 31 return k • 2 r

Figure 2 . 5 :

 25 Figure 2.5: The array Switch[] of test&set objects and the corresponding number of increments per switch.

Lemma 2 . 3 . 1 .

 231 Let op denote a CounterIncrement operation in OP w such that op sets to 1 the switch with the index r, and let op ′ be the first CounterIncrement operation to write r to M axSwitch. The step executed by op ′ at line 15, 18, 23, or 26 of Algorithm 2, to write M axSwitch is executed within the execution interval of op.

Lemma 2 . 3 . 3 .

 233 Each new value of M axSwitch during E is an increment by 1 of the previous value of M axSwitch.

4 H

 4 [n] initially all (0, 0) : a size n array storing tuples, H[i] used by process i to help other processes.[START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF] Local persistent variables 6

28 return 5 :1persistent variables 2 HR 5 if c == n then 6 for 9 end 10 else 11 for

 28525691011 hV al; end v ←-max last i .read();return v + (last i • m);end Algorithm The GetHelp utility function for process i.[START_REF] Ahad | Long-Lived Counters with Polylogarithmic Amortized Step Complexity[END_REF] Local i [n] : an array of integers, stores local copies of the i-th row of the H array.3SN i [n] : an array of integers, counting the number of writes by each process that helps process i.[START_REF]Approx count distinct (transact-sql)[END_REF] Function GetHelp(c) (j = 0; j < n; j + +) do7 HR i [j] ←-H[j] ; 8 SN i [j] ←-HR i [j].sn; (j = 0; j < n; j + +) do 12 HR i [j] ←-H[j] ; 13 if HR i [j].sn -SN [j] ≥ 2 then14 return HR i [j].val;

Lemma 2 . 5 . 3 .

 253 Algorithm 4 is an implementation of a k-multiplicative unbounded max register with an amortized step complexity of O(log 2 (log k (m))) when m ≥ n 2 .

Definition 2 . 7 . 1 .≤ 1 .

 2711 A RMW primitive ⟨g, h⟩ is conditional if, for every possible input w, -→ v |g(-→ v , w) ̸ = -→ v Let e be an event that applies the primitive ⟨g, h⟩ with input w. The change point of e is the unique vector -→ c w such that g(-→ c w , w) ̸ = -→ c w ; any other vector is a fixed point of e.

Figure 3 . 3 :

 33 Figure 3.3: Data structure for the k-dequeuer n-enqueuer queue implementation.

Observation 3 . 2 . 2 .

 322 Let deq denote a Dequeue operation with the sequence number i. Any call to F inishDeq(i) is executed after the invocation of deq. Lemma 3.2.3. Fix an execution E and let C be any configuration of E. ∀h > 0 and ∀i ≥ 1, if the h + i-th Dequeue operation exists and it is complete at C, then the i-th Dequeue operation is complete at C. Proof. Consider the first configuration C where the h + i-th Dequeue operation is complete, i.e.; deqOps[i + h] ̸ = (⊥, ⊥). Assume by contradiction that deqOps[i] has its initial value at C. The value of deqOps[i] is only set during the execution of F inishDeq(i) at line 30 or 27 of Algorithm 7. According to the condition in the for-loop (line 19 of Algorithm 6), only a Dequeue operation with a sequence number i + h ≤ l ≤ i + h + k -1 may change the value of deqOps[i + h].

Observation 3 . 2 . 5 .

 325 For each p, the timestamps of the elements written in the sub-array items[p] are monotonically increasing in accordance with their index in the array. In other terms, we have items[p][i].ts < items[p][i + 1].ts. At any given configuration, the sub-queue of process p is the sub-array of items[p] in the range items[p][head[p].M axRead()], ..., items[p][tail[p] -1].

 (a) Linearizable execution. (b) Non-linearizable execution.

Figure 3 . 4 :

 34 Figure 3.4: Linearization of different execution scenarios by considering linearization points.

 (a) Linearizable execution. (b) Previously non-linearizable execution.

Figure 3 . 5 :

 35 Figure 3.5: Linearization of different execution scenarios following proposed rules.

 (a) First execution scenario for rule 3. (b) Second execution scenario for rule 3.

Figure 3 . 6 :

 36 Figure 3.6: Linearization rules applied to two executions.

Figure 3 . 7 :

 37 Figure 3.7: Example of a set-linearizable execution of the relaxed queue with multiplicity.

Algorithm 8 : 5 num ← num + 1 6if num ≥ 1 then 7 U 8 F inishDeq(num) 9 (10 if id = ⊥ then 11 return ϵ 12 else 13 (

 851789101213 Relaxed-Queue: implementation of the wait-free queue with multiplicity (Dequeue pseudo-code for process p). 1 Function Dequeue() 2 num ← deqCounter.M axRead() 3 if deqOps[num].Read() ̸ = (⊥, ⊥) then 4 deqCounter.M axW rite(num + 1) pdateT ree(num -1) h, id) ← deqOps[num].Read() ret, -) ← items[id][h] 14 return ret

Observation 3 . 3 . 6 .

 336 For each p, the timestamps of the elements written in the sub-array items[p] are monotonically increasing in accordance with their index in the array. In other terms, we have items[p][i].ts < items[p][i + 1].ts. At any given configuration, the sub-queue of process p is the sub-array of items[p] in the range items[p][head[p].M axRead()], ..., items[p][tail[p] -1].

 3.2.2 Algorithm Overview . 3.2.3 Algorithm Pseudocode . 3.2.4 Proof . 3.3 Set-Linearizable Wait-free Queue Algorithm with Multiplicity 3.3.1 Algorithm Pseudocode and Description 3.3.2 Algorithm Properties . 3.3.3 Set-linearizability . 3.3.4 FIFO Queue Specification . 3.3.5 Step Complexity . 3.4 Discussion .

	Chapter 1
	Introduction
	1.1 Overview

Table 1 .

 1 1: Examples of consensus numbers of different shared objects (table from

	Number	Object
	1	read/write registers
	2	test&set, swap, fetch&add, queue, stack

	2n-2	n-register assignement

	∞	memory-to-memory move and swap, augmented queue, compare&swap, fetch&cons, sticky byte

 1.2.3 Consistency ConditionsSince shared objects are defined by sequential specifications, we require a means to relate the correct behavior of the object in a concurrent setting to its definition in the absence of concurrency. Consistency conditions define what behaviors are allowed during a concurrent execution. Definition 1.2.4. A consistency condition C is the set of all legal operation sequences of any data type T under C.

Table 2 .

 2 1a compares the amortized

	Unbounded (Amortized complexity)	Lower bound	Upper bound
	Exact Counter	Ω	

 .3a and Figure 2.3b give two examples of how the linearization rules are applied to different executions.Figure 2.3a describes the case where a CounterRead returns normally, and Figure 2.3b illustrates the case where a CounterRead needs to be linearized through the specific rule for the helping mechanism (rule 2 (b)).Linearization rule 2 and Lemma 2.2.3 imply the following claim. Let opr be a CounterRead operation. We have that opr is linearized at some point after its invocation.

	Claim 2.2.4.

Lemma 2.2.5 (Linearizability). Algorithm 1 is a linearizable implementation of a kmultiplicative-accurate unbounded counter.

Proof. Let op 1 and op 2 be two operations in E such as op 1 ends before op 2 is invoked. We prove that the linearization order L respects the real-time order, thus op 1 precedes op 2 in L. First, we have the following claim:

 Let op 1 and op 2 be two CounterRead operations. If both op 1 return normally the claim trivially holds from rule 2a and claim 2.2.4. So consider that op 1 returns through the helping mechanism and let h 1 = q • k + p be the index of the switch read by op 1 at line 54, the last time before returning. According to rule 2b, op 1 is linearized immediately after opw h 1 . Also, by Lemma 2.2.3 and rule 2, op 2 is linearized after opw h 1 . The claim follows since according to our linearization rules, If several operations are ordered at the same position, they are ordered respecting their real-time order.• Consider that op 1 is a CounterIncrement and op 2 is a CounterRead operation.

	The claim follows from rules 1 and 2 and claim 2.2.4 (the reverse follows a similar
	reasoning).

Table 3 .

 3 .1 summarizes the state of the art and compares it to the contributions in this work. 1: Comparing the contributions to state-of-the-art queue implementations (n is the number of processes and m is the number of enqueued elements).

		Step complexity	Space complexity	Concurrency limit	CAS -LL/SC	Fetch&Inc -Swap
	Khanchandani and Wattenhofer [30]	O(√	n)	O(nm) of O(max(log n, log m)) registers	None	Y	Y
	David [16]	O(1)	Unbounded	Single enqueuer	N	Y
	Jayanti and Petrovic [28]	O(log n)	O(n + m)	Single dequeuer	Y	N
	Li [33]	O(m)	Unbounded	2 dequeuers	N	Y
	Eisenstat [17]	O(m)	Unbounded	2 enqueuers	N	Y
	Exact queue (this work)	O(log n) for Enq O(k log n) for Deq	Unbounded	k dequeuers	Y	Y
	Relaxed queue (this work)	O(log n)	Unbounded	None	Y	Y

 1. op 1 and op 2 are two Dequeue operations. Since op 1 ends before op 2 begins, the sequence number i 1 of op 1 is strictly smaller than the sequence number i 2 of op 2 (Lemma 3.2.1). From linearization rule 2, we have op 1 is before op 2 in L. 2. The case where op 1 and op 2 are Enqueue operations is proved by Lemma 3.2.13. 3. op 1 is an Enqueue operation and op 2 is a Dequeue operation. First, consider the case that op 2 does not return ϵ. If op 1 ∈ EN Q d , then from linearization rule 2, op 2 is linearized after op 1 because op 2 is inserted after the last Enqueue operation that ends before op 2 starts. Otherwise, If op 1 ̸ ∈ EN Q d , from linearization rule 3, it is linearized before the first Dequeue operation that starts after op 1 ends. Thus op 1 is linearized before op 2 . Next, consider the case where op 2 returns ϵ, and let i denote its sequence number. By Observation 3.2.2 and Lemma 3.2.12, op 1 has a matching Dequeue operation deq, and deq is complete before op 2 is complete. Let j is the sequence number of deq. Since deq is complete before op 2 is complete, by Lemma 3.2.3, we have that j < i. Therefore, from linearization rule 2, deq is linearized before op 2 . Thus, from linearization rule 1, op 1 < L deq < L op 2 . The claim follows. 4. Finally, we suppose that op 1 is a Dequeue operation and that op 2 is an Enqueue operation. If op 2 does not have a matching Dequeue operation, from linearization rule 3, it is linearized before the first Dequeue operation that starts after op 2 ends or at the end of L if such operation does not exist. Thus, op 2 is linearized after op 1 because op 1 ends before op 2 starts.

 1. op 1 and op 2 are two Dequeue() operations. Since op 1 ends before op 2 begins, the sequence number i 1 of op 1 is strictly smaller than the sequence number i 2 of op 2 (Lemma 3.3.1). From set-linearization rule 2 and rule 4, we have op 1 is before op 2 in SL. 2. The case where op 1 and op 2 are Enqueue() operations is proved by Lemma 3.3.13. 3. op 1 is an Enqueue operation and op 2 is a Dequeue() operation. Let i denote the sequence number of op 2 . First, consider the case that op 2 does not return ϵ. In the case where op 1 ∈ EN Q d , from set-linearization rule 2 and 4, op 2 is inserted after the last Enqueue operation that ends before every Dequeue operation in DEQ i starts. Therefore, op 2 is inserted after op 1 in SL. In the case where op 1 ̸ ∈ EN Q d , from set-linearization 3, it is inserted before the first Dequeue operation deq i such that there exists deq ′ i in DEQ i that starts after op 1 ends; or at the end of SL if such Dequeue does not exist. Thus op 1 is inserted before op 2 .

Conclusion

Acknowledgements

Proof. Let M k m denote a k-multiplicative-accurate m-bounded max register implemented by Algorithm 3 and let E be an execution of M k m . We now specify how operation instances on M k m in E are linearized. First, all the instances of Read that did not execute line 4 in E and all the instances of Write operations did not execute line 10 in E do not appear in the linearization. We say these are removed operations. Note that none of the removed operations has completed in E. For all remaining instances, we define the linearization point of a Read operation on M k m to be the linearization point of the read operation it invoked on M in E (in line 4) and the linearization point of a Write operation on M k m as the linearization point of the write operation it invokes on M (in line 10). Since each non-removed operation instance on M k m in E is linearized at a step it performs (hence during its execution interval), the linearization order we have define, denoted by L, respects the real-time order of the operation instances in E.

It remains to show that L satisfies the sequential specification of a k-multiplicativeaccurate m-bounded max register. First note that since values written to M k m are from {1, ..., m -1} and from lines 9-10, only values from {1, ..., ⌊log k (m -1)⌋ + 1} are written to M. Let R denote a Read instance in L that returns 0 in line 5. Since only positive values are ever written to M, it follows that R is not preceded in L by any Write instance, hence the value of M k m when R is linearized is its initial value 0, so R returns the exact value of M k m . Assume, then, that R is preceded in L by one or more Write instances and returns a positive value x = k p for some p ≥ 1. We need to prove that v/k ≤ x ≤ vk holds, where v is the maximum value written by any Write() instance linearized before R in L. Since M is linearizable and since we have linearized all non-removed instances applied to M k m in E according the order of the operations they applied to M (in line 4 or in line 10), there exists a Write operation that writes some value w and appears before R in L, such that ⌊log k w⌋ = p -1 and p is the maximum value written to M by any Write instance that precedes R in L. Let V = {w ⌊log k (w)⌋ = p -1} be the set of all the values written to M k m in L before R whose MSB equals p -1. Let v = max(V). It follows that v is the maximum value written to M k m by any Write() instance linearized in L before R. We have v ∈ [k p-1 , k p -1] and x = k p . Consequently, v ≤ x ≤ v • k and the sequential specification of the k-multiplicative m-bounded max register is satisfied.

Theorem 2.4.3. Algorithm 3 is a wait-free linearizable implementation of a k-multiplicativeaccurate m-bounded max register with worst case operation step complexity O min log 2 (log k m), n .

• there is an event e r that is aware of e q in E and e p is aware of e r in E.

If an event e p of process p is aware of an event e q of process q in E, we say that p is aware of e q and that e p is aware of q in E.

The following definition quantifies the extent to which a process is aware of the participation of other processes in an execution. Definition 2.7.3. Process p is aware of process q after an execution E if either p = q or p is aware of an event of q in E. The awareness set of p after E, denoted AW (E, p), is the set of processes that p is aware of after E.

We use the following technical definition and lemma. Definition 2.7.4. Let S = {e 1 , • • • , e k } be a set of events by different processes that are enabled after some execution E, each about to apply write or a conditional RMW primitive. We say that an ordering of the events of S is a weakly-visible schedule of S after E, denoted by σ(E, S), if the following holds. Let E 1 = Eσ(E, S), then 1. at most a single event of S is visible on any one object in E 1 . If e j ∈ S is visible on a base object in E 1 , then e j is issued by a process that is not aware of any event of S in E 1 , 2. any process ia aware of at most a single event of S in E 1 , and 3. all the read events of S are scheduled in σ(E, S) before any event of σ(E, S) changes a base object.

Weakly-visible schedules are used in the sequel for constructing executions that slow down the rate in which processes become aware of other processes. The following lemma shows that every set of outstanding write and conditional events has a weakly-visible schedule.

Lemma 2.7.1. Let S = {e 1 , • • • , e k } be a set of events by different processes that are enabled after some execution E, each about to apply write or a conditional RMW primitive. Then there is a weakly-visible schedule of S after E.

Lower bound

The key intuitions behind the following lower bound proofs are that first, in any nprocess execution of a k-multiplicative accurate counter implementation, 'many' processes need to be aware of the participation of 'many' other processes in the execution, and second, if processes only use read, write and conditional primitives, then a scheduling adversary can order events so that information about the participation of processes in the computation accumulates 'slowly'. We use Definitions 2.7.2 and 2.7.3, as well as Lemma 2.7.1, to capture this intuition.

The following lemma proves a relation between the value returned by a CounterRead operation instance of a process in some execution and the size of that process' awareness set after that execution. Function FinishDeq(num)

Function UpdateTree(num)

of Propagate to reset the timestamp stored in a node. If the boolean isLeaf is equal to T rue, the current node represents a leaf of the tree T . In this case, the operation computes the minimum timestamp in the corresponding sub-queue. This value is either (1) (ϵ, -1) if the sub-queue is empty (line 16 of Algorithm 7); or a timestamp (2) (st ′ , i)(line 18 of Algorithm 7). If isLeaf = F alse then Proof. After enq, we have that tail[p] ≥ i+1, because enq is the i-th Enqueue operation executed by p.

We first prove that after enq, head[p] is smaller than or equal to i as long as deqOps[l] ̸ = (i, p) for any l ≥ 0.

The value of head[p] is updated only during the execution of the function U pdateT ree (line 34 of Algorithm 7). In particular, the value of head[p] is set to a value j +1 where j is the value read from some deqOps[num] at line 32. Also, the value of deqOps[num] is updated only during the execution of the function F inishDeq(num) with a value read from head[p] (lines 29 and 30). We prove by induction on j that if the value written in head[p] is j then, all values 0, . . . j -1 have been previously written in head[p] (in increasing order) and to some deqOps[num]. The base case is for j = 1. Consider the first MaxWrite() that writes 1 to head[p] and let q be the process applying this primitive. According to line 34, q has read the value (0, p) from some deqOps[num], which has been updated with a value read from head[p]. The claim follows.

Suppose this is true for a value j, we show that the claim holds for j + 1. Consider the first process, denoted q, that writes j + 1 into head[p]. q has read (j, p) from some deqOps[num] at line 32. By inductive hypothesis, and by the linearizability of head[p] all the values 0, . . . j have been written in head[p] and all the values 0, . . . j -1 have been written in some deqOps [num]. The claim follows.

Hence, head[p] ≤ i as long as for any l ≥ 0, we have deqOps[l] ̸ = (i, p). This is because to write the value i + 1 (and then any greater value), a process has to read deqOps[l] = (i, p) for some l.

base case k = 0. s is the p-th leaf. Since enq completes, there is at least one instance of P ropagate(p) performed after that process p has written the value i in tail[p]. The value of head[p] is smaller than or equal to i, so any instance of P ropagate(p) that changes the value of s before C, will write a timestamp read in items[p][j] for some j ≥ i. By Observation 3.2.5, the timestamp read is smaller than or equal to ts = (st, p).

It remains to prove that after an instance of P ropagate(p) completes, denoted prop, a value smaller than or equal to i has been written in the leaf corresponding to p. An instance of P ropagate(p) performs two Ref resh(s). Each Ref resh(s) reads the state of s, then the head[p] and the corresponding timestamp ts and then applies a CAS to s to modify its value with ts. Suppose that both Ref resh(s) fail (and in particular the second one), otherwise the claim is trivial. The second Ref resh(s) fails because another an instance of P ropagate(p), denoted prop ′ successfully applied a CAS on s. But prop ′ has read head[p] after tail[p] is set to i. Meaning that it has read a value smaller than or equal to i and it writes in s the corresponding timestamp that is smaller than or equal to ts.

induction case k + 1 ≤ log n. Suppose that the claim holds for j ≤ log n : the timestamp stored at s j is smaller than or equal to ts where s j is in the path from the p-th leaf to the root at a height of j ≤ k. We prove that the claim holds for the parent of s j , denoted s j+1 .

Any instance of P ropagate(p) updates the nodes in the path from the p-th leaf to the root, one by one, starting from the leaf and following the path to the root. Also, immediately after enq completes, there is at least one P ropagate(p) instance that passed through all the nodes in this path. Consider, the first P ropagate(p) that updated node s j+1 after s j has been updated, denoted prop.

Observe that any process that executes the Ref resh function on node s j+1 writes operations. From Lemma 3.2.15, we have that deq j-1 is linearized before op 2 (i). From Lemma 3.2.14, we have that j < i meaning that enq j is linearized before op 2 according to the total order of the sequence numbers of their matching Dequeue operations (ii). And since op 1 ends before op 2 starts, enq ′ < ro op 2 . Therefore, enq ′ < L op 2 because we have shown that the linearization of the Enqueue operations respects the real time execution order (Lemma 3.2.13) (iii). The claim follows.

Linearization and the Queue Sequential Specification Lemma 3.2.17. Let deq be a Dequeue operation that returns v ̸ = ϵ. There exists an Enqueue(v) denoted enq that such that enq is linearized before deq and there is no Dequeue operation deq ′ ̸ = deq that also returns v.

Proof. First, we prove that enq exists. Lemma 3.2.20. Let deq ϵ be a Dequeue operation that returns ϵ. And let enq be an Enqueue operation linearized before deq ϵ . We have that enq has a matching Dequeue operation deq that is also linearized before deq ϵ .

Proof. First, we show that enq has a matching Dequeue operation deq. By contradiction, we suppose that enq is in EN Q \ EN Q d . From linearization rule 3, enq is inserted before the first Dequeue operation deq ′ that starts after enq ends or at the end of L if deq' does not exist. The case where enq is linearized at the end of L is trivial because it contradicts the fact that enq is linearized before deq ϵ . So deq ′ exists. By lemma 3.2.12 deq ′ does not return ϵ. Since enq < L deq ϵ , we have deq ′ < L deq ϵ Hence, deq ϵ has a greater sequence number than deq ′ from linearization rule 2. Thus, deq ϵ is complete after deq ′ is complete (Lemma 3.2.3). We conclude by lemma 3.2.12, that deq ϵ does not return ϵ. There is a contradiction. Thus, enq has a matching Dequeue operation denoted deq.

In the following, we establish that deq is linearized before deq ϵ . Let i denote the sequence number of deq ϵ and let j be the sequence number of deq. By contradiction, we assume that i < j (i.e. deq is linearized after deq ϵ). Let deq k be the first Dequeue operation linearized after enq with k its sequence number. Such an operation exists as enq < L deq ϵ . We have k ≤ i, according to the linearization rule 2. Assume that deq k returns ϵ. If k = 0 then no operation is linearized before deq k ; in this case, there is a contradiction. Otherwise (k ≥ 1), there is no Enqueue operation linearized after deq k-1 and before deq k because deq k is linearized immediately after deq k-1 (linearization rule 2). This contradicts the fact that deq k is the first Dequeue operation linearized after enq. Hence deq k does not return ϵ. We conclude that k < i. Therefore, deq k is complete before deq ϵ is complete (Lemma 3.2.3). deq k does not match enq as we assume that deq is linearized after deq ϵ . From linearization rule 2, deq k can only be linearized after enq because enq terminates before the invocation of deq k . Thus, by Lemma 3.2.12, deq ϵ cannot return ϵ if j > i. There is a contradiction.

Step Complexity

We show that the worst-case step complexity of an Enqueue and Dequeue operation is O(log n) and O(k log n), respectively. To do so, we establish the following Lemma. The main intuition is that while propagating the timestamp the process has to read a constant number of nodes per level going from a leaf to a root. Since there are n leaves, the high of the tree is in O(log(n). Proof. When a process calls the function Propagate(id), it will update the binary tree starting from the leaf that corresponds to the sub-array items[id]. Meaning, that the process first retrieves the values h and t of head[id] and tail[id] respectively, and then either realizes that there are no available elements in the sub-array anymore (line 16 of Algorithm 7), or retrieves the time stamp of the element indexed in h (line 18 of Algorithm 7). Since there are no loops during these computations, the process will execute them in constant time. Afterward, the process will traverse down-up the binary tree of height log n to propagate the information toward the root. During each step, the process reads the minimum timestamp of the node's children, and attempts to write that minimum to the current node using a CAS primitive. If the first attempt fails, the process will try a second time. Therefore, the entire journey from the leaves to the root of the tree is done in O(log n) steps. The claim follows.

During the execution of an Enqueue operation there are no loops or function calls aside from a call to the function Propagate(id). And during a Dequeue operation, a process executes at most k instances of Propagate(id). The following corollary ensues.

Algorithm Properties

Let E be an execution of Relaxed-Queue. The sequence number of a Dequeue operation corresponds to the value of num during the execution of line 9 of Algorithm 8. The sequence number of a Dequeue operations is no longer necessarily unique because multiple instances can retrieve the same sequence number num from deqCounter. Lemma 3.3.1. A partial order between Dequeue operations is provided by their sequence number. This order respects the real-time order.

Proof. Let deq 1 and deq 2 be two Dequeue operations by process p 1 and p 2 respectively. Let seq 1 be the sequence number of deq 1 and seq 2 be the sequence number of deq 2 . We prove that if deq 1 precedes deq 2 in real-time order, then seq 1 < seq 2 .

deq 1 completes before deq 2 is invoked, thus p 1 executes the function F inishDeq(num), after which a value has necessarily been written to deqOps [num] where num is the sequence number of deq 1 . Therefore, if deq 2 retrieves the same sequence number as deq 1 at line 2 of Algorithm 8, the test at line 3 would fail and the process would increment the value of deqCounter and num (lines 4 and 5). The claim follows.

Lemma 3.3.2. Let deq 1 and deq 2 be two Dequeue operations. If deq 1 and deq 2 have the same sequence number, then they return the same value.

Proof. Let j be the sequence number of both deq 1 and deq 2 . Both operations return an element by reading the value stored in deqOps[j] at line 9 of Algorithm 8. The claim follows.

Observation 3.3.3. Let deq be a Dequeue operation with the sequence number i, and let op be an operation that ends before deq is invoked. We have op ends before deqOps[i] is written. Lemma 3.3.4. Let C be a configuration of E. ∀h > 0 and ∀i ≥ 1, if a Dequeue operation with the sequence number i + h exists and it is complete at C, then a Dequeue operation with the sequence number i is complete at C. Proof. Consider the first configuration C where there is a complete Dequeue operation with the sequence number i + h, i.e.; deqOps[i + h] ̸ = (⊥, ⊥). Assume by contradiction that deqOps[i] has its initial value at C. Before a Dequeue operation can have the sequence number i + h, the condition in line 3 of Algorithm 8 needs to be verified for each sequence number in the range [i, i+h[. Meaning that before reaching the configuration C, a Dequeue operation had successfully executed the instance F inishDeq(i) that writes deqOps[i]. There's a contradiction.

As deqOps[num] is updated only during the execution of the function F inishDeq(num); the following observation is a consequence of Lemma 3.3.4. Observation 3.3.5. Before the first execution of F inishDeq(i + h), F inishDeq(i) has been executed.

Each Enqueue operation op has a unique timestamp composed of an integer obtained by reading the Max register enqCounter during the execution of line 10, and the id of the process that executed the operation op.

the last Enqueue operation enq ′ that ends before any Dequeue operation with the sequence number j starts. We show that op 2 is inserted after all these three operations. From Lemma 3.3.15, we have that deq j-1 is inserted before op 2 (i). From Lemma 3.3.14, we have that j < i meaning that enq j is linearized before op 2 according to the total order of the sequence numbers of their matching Dequeue operations (ii). And since op 1 ends before op 2 starts, enq ′ < ro op 2 . Therefore, enq ′ < SL op 2 because we have shown that the set-linearization of the Enqueue operations respects the real time execution order (iii). The claim follows.

FIFO Queue Specification

In this section, we show that the Dequeue operations in a set-linearization SL of an execution of the Relaxed-Queue follow the FIFO order. Lemma 3.3.17. Let deq be a Dequeue operation that returns v ̸ = ϵ. There exists an Enqueue(v) denoted enq that such that enq is before deq in SL, and there is no Dequeue operation deq ′ that also returns v such that deq ′ is not inserted at the same point as deq in SL.

Proof. First, we prove that enq exists. Since deq returns v ̸ = ϵ, it has read a value (j, p) in deqOps [i] where i is the sequence number of deq (line 9 of Algorithm 8). Meaning that items[p][j] = v and the Enqueue operation that enqueued v denoted enq, is the j-th instance of Enqueue by process p. From set-linearization rule 2, the matching Dequeue operation to enq is inserted after enq. Therefore, deq is either the matching operation to enq or has the same sequence number, and for both cases, deq is inserted after enq.

Let deq ′ be an operation that also returns v. Since deq ′ reads deqOps[i], it has the same sequence number i as deq. From set-linearization rule 4, it is inserted at the same point as deq. Lemma 3.3.18. Let enq 1 and enq 2 be two Enqueue operations such that enq 1 < SL enq 2 . If enq 2 has a matching Dequeue deq 2 , then enq 1 has a matching Dequeue deq 1 and deq 1 < SL deq 2 .

Proof. By contradiction, we suppose that enq 1 does not have a matching Dequeue operation. From set-linearization rule 3, enq 1 is inserted after all Enqueue operations in EN Q d . Especially, enq 1 is inserted after enq 2 . There is a contradiction. And from set-linearization rule 1, enq 1 and enq 2 are inserted according to the order of the sequence numbers of their matching Dequeue operations. The claim follows.

From the two previous Lemmas 3.3.17-3.3.18, we have the following theorem. Lemma 3.3.20. Let deq ϵ be a Dequeue operation that returns ϵ. And let enq be an Enqueue operation inserted before deq ϵ in SL. We have that enq has a matching Dequeue operation deq that is also inserted before deq ϵ in SL.

Proof. First, we show that enq has a matching Dequeue operation deq. By contradiction, we suppose that enq is in EN Q \ EN Q d . From set-linearization rule 3, enq is inserted before the first Dequeue operation deq l in SL such that there exists an operation deq ′ l that starts after enq ends; or at the end of SL if deq ′ l does not exist. The case where enq is inserted at the end of SL is trivial because it contradicts the fact that enq is inserted before deq ϵ . So deq ′ l exists. By lemma 3.3.12 deq ′ l does not return ϵ. Since enq < SL deq ϵ , we have deq ′ l < SL deq ϵ Hence, deq ϵ has a greater sequence number than deq ′ l from set-linearization rule 2. Thus, deq ϵ is complete after deq ′ l is complete (Lemma 3.3.4). We conclude by lemma 3.3.12, that deq ϵ does not return ϵ. There is a contradiction. Thus, enq has a matching Dequeue operation denoted deq.

In the following, we establish that deq is inserted before deq ϵ . Let i denote the sequence number of deq ϵ and let j be the sequence number of deq. We denote deq j the operation that writes deqOps [j]. By contradiction, we assume that i < j (i.e. deq is inserted after deq ϵ). Let deq k be the first Dequeue operation inserted after enq with k its sequence number. Such an operation exists as enq < SL deq ϵ . We have k ≤ i, according to the set-linearization rule 2. Assume that deq k returns ϵ. If k = 0 then no operation is inserted before deq k ; in this case, there is a contradiction. Otherwise (k ≥ 1), there is no Enqueue operation inserted after deq k-1 and before deq k because deq k is inserted immediately after deq k-1 (set-linearization rule 2). This contradicts the fact that deq k is the first Dequeue operation inserted after enq. Hence deq k does not return ϵ. We conclude that k < i. deq k does not match enq as we assume that deq is inserted after deq ϵ . From setlinearization rule 2, deq k can only be inserted after enq because enq terminates before the invocation of an operation deq ′ k with the same sequence number k. Since k < i, deq ′ k is complete before deq ϵ is complete (Lemma 3.3.4). Therefore, deq ϵ is complete afte enq ends. Thus, by Lemma 3.3.12, deq ϵ cannot return ϵ if j > i. There is a contradiction.

Step Complexity

In this section, we establish that the Enqueue and Dequeue operations implemented in the Relaxed-Queue both have a worst-case step complexity of O(log n).

Discussion

We have presented a wait-free implementation of a k-multiple dequeuer n-multiple enqueuer FIFO queue. The worst case step complexity of the Enqueue operation is