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Amélioration de Complexité d’Implémentations Linéarisables et Wait-free
d’Objets Concurrents en Relaxant leurs Spécifications

Résumé : Dans un contexte distribué, les différents problèmes de synchronicité entre proces-
sus sont modélisés à l’aide d’objets partagés. Lorsqu’un nouvel objet partagé est implémenté,
on s’appuie souvent sur des objets de base préexistants. En cherchant à maximiser l’efficacité
de ces implémentations, un nouveau domaine de recherche a émergé ces dernières années,
centré sur le compromis possible entre la précision d’une implémentation et sa complexité.

Nous étudions dans cette thèse la définition d’objets partagés relaxés où les opérations ont
le droit à une certaine marge d’erreur, et comment cela peut améliorer la complexité de leurs
implémentations. Nous considérons le cas d’objets partagés connus : counter, max register,
et FIFO queue.

Tout d’abord, nous étudions la possibilité d’améliorer la complexité des implémentations
relaxées du counter et max register par rapport à leurs implémentations exactes. Dans le
modèle de mémoire partagée classique, nous étudions dans quelle mesure permettre aux
implémentations linéarisables et wait-free de ces objets de retourner des valeurs approxi-
matives, plutôt que des valeurs précises, peut améliorer leur complexité.

Nous considérons le k-multiplicatif max register et le k-multiplicatif counter, où les opérations
de lecture sont autorisées à se tromper d’un facteur multiplicatif de k. Nous présentons une
implémentation du k-multiplicatif counter wait-free linéarisable pour k ≥ n avec une com-
plexité de pas amortie constante où n est le nombre de processus. Nous montrons également
qu’en bornant l’exécution, nous sommes capables d’implémenter le counter k-multiplicatif
pour k ≥

√
n d’une manière linéarisable wait-free avec une complexité de pas dans le pire

des cas de O(min(log(log(m + 1)), n)) où m représente la limite du nombre d’opérations
CounterIncrement lors d’une exécution. Les deux implémentations offrent une amélioration
exponentielle de la complexité de leurs équivalents exacts dans l’état de l’art.

Ensuite, nous montrons que la relaxation de la sémantique du max register en autorisant
l’imprécision d’un facteur multiplicatif constant produit une amélioration exponentielle de la
complexité de pas dans le pire des cas pour la variante bornée, et de la complexité de pas
amortie pour la variante non bornée.

Afin de mesurer les limites de ces relaxations, nous étudions les bornes inférieures de la
complexité du counter et max register k-multiplicatif. Nous obtenons le résultat que lorsque le
paramètre d’approximation k ne dépend pas du nombre de processus, assouplir la sémantique
du counter en autorisant l’imprécision d’un facteur multiplicatif ne peut asymptotiquement
réduire la complexité des pas amortis des compteurs non bornés de plus d’un facteur logarith-
mique. Nous prouvons également que notre max register k-multiplicatif borné est optimal.

En ce qui concerne la FIFO queue, la conception d’implémentations efficaces wait-free
est complexe malgré son utilisation dans de nombreuses applications distribuées. La plupart
des implémentations des FIFO queue dans la littérature s’appuient sur des contraintes de
concurrence : tous les processus ne sont pas autorisés à exécuter des opérations de Enqueue
et de Dequeue.

Dans cette thèse, nous étudions la possibilité d’implémenter la FIFO queue d’une façon
wait-free avec une complexité logarithmique dans le pire des cas sans contraintes de concur-
rence. Par conséquent, nous présentons une implémentation qui prend en charge n enqueuers
et k dequeuers où la complexité dans le pire des cas d’une opération Enqueue est en O(log n)
et où la complexité de l’opération Dequeue dépend du niveau de concurrence et est O(k log n)
dans le pire des cas.

Nous nous appuyons ensuite sur l’assouplissement de la sémantique de la FIFO queue
pour montrer que le fait d’autoriser des opérations Dequeue concurrentes à retourner le même
élément engendre une implémentation avec une complexité en O(log n) dans le pire des cas



pour les opérations Enqueue et Dequeue.
Mots-clés : objets concurrents, algorithmes distribués, calcul distribué, complexité, tolérance
aux pannes

On Improving the Complexity of Linearizable and Wait-free Implementations of
Concurrent Objects by Relaxing their Specifications

Abstract: In a distributed context, the different problems of synchronicity between processes
are modeled using shared objects. When a new shared object is implemented, it relies on base
objects consisting of preexisting implementations, as building blocks. In seeking to maximize
the efficiency of these implementations, a new research field has emerged in recent years,
with a focus on the possible trade-off between the accuracy of an implementation and its
complexity.

We investigate in this thesis how defining relaxed shared objects where the operations are
allowed a certain margin of error can result in improved theoretical complexity results. We
consider the case study of well-known shared objects, namely: the counter, max register, and
FIFO queue.

First, we study the possible improvement in step complexity of the relaxed implementa-
tion of the counter and max register objects compared to their exact implementations. In
the classical shared memory model, we investigate the extent to which allowing wait-free lin-
earizable implementations of these objects to return approximate values, rather than accurate
ones, may improve their step complexity.

We consider the k-multiplicative-accurate max register and the k-multiplicative-accurate
counter, where read operations are allowed to err by a multiplicative factor of k. We give a
wait-free linearizable k-multiplicative-accurate counter implementation for k ≥ n with con-
stant amortized step complexity where n is the number of processes. We also show that
by bounding the execution, we are able to implement the k-multiplicative-accurate counter
for k ≥

√
n in a wait-free linearizable manner and with a worst-case step complexity of

O(min(log(log(m + 1)), n)) where m represents the bound on the number of CounterIncre-
ment operations during an execution. Both implementations offer an exponential improvement
on the complexities of their exact counterparts in the state of the art.

Then, we show that relaxing the semantics of max registers by allowing inaccuracy of
even a constant multiplicative factor yields an exponential improvement in the worst-case step
complexity of the bounded variant and in the amortized step complexity of the unbounded
one.

For the sake of gauging the limitations of these relaxations, we study the lower bounds
of the complexity of the k-multiplicative-accurate counter and max register in both their
bounded and unbounded variations. We obtain the result that when the approximation
parameter k does not depend on the number of processes, relaxing counter semantics by
allowing inaccuracy of a multiplicative factor cannot asymptotically reduce the amortized
step complexity of unbounded counters by more than a logarithmic factor. We also prove
that our bounded k-multiplicative-accurate max register is optimal and matches the lower
bound.

When it comes to the FIFO queue, designing efficient wait-free implementations remains
a challenge despite its usage in many distributed applications. Most of the FIFO queue
implementations in the literature rely on concurrency constraints: not all processes are allowed
to execute either/or Enqueue and Dequeue operations.

In this thesis, we investigate whether it is possible to implement a logarithmic worst-case
step complexity wait-free implementation that does not suffer from concurrency constraints.



Therefore, we present a wait-free FIFO queue implementation that supports n enqueuers and
k dequeuers where the worst-case step complexity of an Enqueue operation is in O(log n) and
where the complexity of the Dequeue operation depends on the level of concurrency during
the execution and is O(k log n) in the worst-case scenario.

We then rely on the relaxation of the FIFO queue semantics to show that allowing con-
current Dequeue operations to retrieve the same element results in an implementation with
O(log n) worst-case step complexity for both the Enqueue and Dequeue operations.
Keywords: concurrent shared objects, distributed algorithms, distributed computing, com-
plexity, fault tolerance

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
UMR 5800, Université de Bordeaux, 33405 Talence, France.
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Chapter 1

Introduction

1.1 Overview

Following the natural evolution of modern hardware architectures into multi-core sys-
tems, the issues of synchronicity between different processes became more prevalent.
For instance, ensuring the data stored remains consistent for a multi-process system is
much more challenging than the case of a single-process environment.

Take, for example, the problem of assigning valid memory addresses for different
applications. While the solution for a single-process system consists of simply retrieving
the last attributed address and then assigning the next available slot, the problem
becomes complex when it requires coordination between multiple processes.

Many fundamental multi-process coordination problems (akin to memory address
assignment) can be expressed as counting problems [6]. By considering an abstract data
type, like the shared counter in the case of counting problems, it is possible to resolve
the synchronicity problems for multiple processes by implementing the data type. This
formalism shifts the problems at hand from low-level and architecture-specific to high-
level abstract questions.

A shared object is an instance of an abstract data type represented by a domain of
possible value and a set of operations that provide the correct behavior of the object
when the operations are invoked in a sequential setting. This definition is what we call
the sequential specification of the object.

An implementation of a shared object offers the algorithms describing the steps
executed by each process when applying an operation on the object being implemented.

Distributed algorithms that implement new shared objects rely on preexisting imple-
mentations of common shared objects denoted base objects as building blocks because
they already solve many of the synchronization problems when considering a distributed
execution environment. Relying on base objects also benefits from the composable or
local property of linearizability and wait-freedom; meaning that if all the base objects
used in the implementation of a new shared object are linearizable and wait-free, the
implemented object is also linearizable and wait-free.

We say that a process takes a step during the execution of an operation of an
implemented shared object when it executes an operation on a base object. Any com-
putations that are executed locally by the process do not count in the total cost of the
algorithm that implements the shared object. An execution is the sequence of steps
executed by the processes as they follow the algorithms implementing a shared object.

9



(a) Linearizable execution. (b) Sequential consistent execution.

Figure 1.1: Different execution scenarios for a shared register.

Measuring the correctness of an implementation depends on how closely matched
the behavior of the operations executed in a concurrent setting, is to the sequential
specification of the object. Consistency conditions formalize this distance and can vary
by how strictly they relate concurrent executions to the sequential specification. The
most common of these conditions is linearizability introduced by Herlihy and Wing [26]
such that, roughly speaking, an implementation is linearizable if any execution where
operations are executed concurrently is equivalent to a sequential execution where each
operation appears to take effect instantly at an instance during the execution of the
operation and behave according to the sequential specification of the object.

It has been shown that linearizable implementations are often more costly than
implementations with more lenient consistency conditions. For instance, this is the
case for sequential consistency which requires that the operations appear to take place
in an order that reflects the order of operations for each individual process as opposed
to linearizability which requires a total order of all operations (Figure 1.1). Different
results substantiate the claim by showcasing the cost difference between linearizable
and sequential consistent implementations of different shared objects from read/write
register, FIFO queue, and stack (Attiya and Welch [11]) to snapshot (Petrin et al. [36]).

The implementation of a shared object is also subject to termination conditions
which ensure a certain degree of progress during an execution. To ensure the operations
have some guarantee of ending, these conditions are of varying degrees depending on
whether the guarantee of progress is only system-wide or if it is process-specific. We
consider the strongest of the termination conditions denoted wait-freedom [25] which
requires that every operation ends after executing a finite number of steps.

In this thesis, we focus on complexity analysis to measure the efficiency of an imple-
mentation of a shared object and how it compares to the state of the art. For a given
implementation of a shared object, many variations of the complexity of the operations
can be calculated: from space complexity to step complexity and from the worst-case
scenario to an overall average. In our analysis, We consider the worst-case step com-
plexity and the amortized step complexity. The worst-case step complexity is defined
as the worst-case (over all possible executions) total number of steps taken by an op-
eration. The amortized step complexity is defined as the worst-case average number
of steps performed by operations. It measures the performance of an implementation
as a whole rather than the performance of individual operations. More precisely, given
a finite execution E, an operation Op appears in E if it is invoked in E. We denote
by Nsteps(op, E) the number of steps performed by op in E and by Ops(E) the set of
operations that appear in E. The amortized step complexity of an implementation A
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is then:

AmtSteps(A) = max
E

∑
op∈Ops(E) Nsteps(op, E)

|Ops(E)|
A large portion of the research around shared objects centers around the goal of

improving the efficiency of the implementations and reaching the best possible com-
plexities. It is also of high interest to prove lower bounds or the limits to how low the
complexity of an implementation can get under a specific computational model. For
many common shared objects (e.g. Counter, Max Register, FIFO queue, etc.), the aim
is to find implementations that match the complexity lower bounds.

For instance, a well-known result by Jayanti, Tan and Toueg [29] proved a lin-
ear lower bound in the number of processes n on the worst-case step complexity of a
large class of shared objects that includes the counter object. An implementation of
a wait-free counter with optimal worst-case step complexity can be constructed easily
by using a wait-free atomic snapshot : Each process has a component in the snapshot
object, and to increment the counter, a process simply increments its component. To
read the counter’s value, the process invokes Scan to obtain an atomic view of the
snapshot, and returns the sum of all components in the view it obtains. Since wait-free
atomic snapshot can be implemented, using reads and writes only, with worst-case step
complexity linear in n, e.g. [9], so can counters.

To further optimize beyond this point, different strategies have been conceived to
bypass the limitations of a lower bound on shared objects. For instance, by considering
bounded executions where the number of operations permitted is restricted to a number
m of calls; sub-linear implementations of the counter object have been obtained [5].

More generally, a bounded shared object is a variation of a regular object but with
a restriction on the number of operations in an execution of the object.

Recently, however, there has been a surge of interest in the relaxation of the se-
quential specification of different shared objects in order to obtain more efficient imple-
mentations. The intuition for these relaxations comes from the disconnect between the
strict sequential specification of shared objects and the applicative needs in practical
settings.

In many cases, applications can function normally even in the case of some anoma-
lies in data. For instance, in the context of Big Data applications, many popular data
platforms including BigQuery [13], Oracle [37], and SQL Server [4] support an approx-
imate form of counting because the real-life applications can tolerate a margin of error
and run more efficiently using approximation.

The goal is to be able to implement a shared object in a more efficient manner
by allowing operations applied to the object to err to a certain degree defined by the
relaxation. This thesis investigates different relaxations of widely used shared objects.
And Comparing these relaxed objects to the exact versions, we can gauge the possi-
ble optimization of the implementations when applying different relaxations to shared
objects.

Specifically, we focus in this thesis on the k-multiplicative-accurate relaxation first
introduced in [7] for the counter object. We study the relaxation applied to common
shared objects, namely the counter and max register. The relaxed sequential specifi-
cation of the k-multiplicative-accurate counter allows for the return value of a call to
CounterRead to fall within an approximative range of the value returned by the exact
counter. Specifically, a call to CounterRead returns x such that v/k ≤ x ≤ k · v where
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v is the exact value of the counter. We also study the same k-multiplicative-accurate
relaxation applied to the max register. Similarly, an instance of the MaxRead operation
returns an approximate value x′ within a k multiplicative range of the maximum value
v′ written to the register (i.e. v′/k ≤ x′ ≤ k · v′).

Following the results on the relaxed versions of the counter and max register, we
shift focus to the FIFO queue and consider the relaxation denoted multiplicity and
introduced in [14] which allows multiple concurrent Dequeue operations to return the
same element.

In the remainder of this chapter, we present the model of computation considered
throughout the thesis and then give a detailed synthesis of our contributions and their
position from the standpoint of the state of the art.

1.2 Model and Preliminaries

1.2.1 Model

We consider the standard asynchronous shared memory model with a set P of n pro-
cesses p1,. . . ,pn. Each process pi is identified by a unique integer i.

We consider that the processes are prone to crashes. Thus, a process could stop due
to a crash at any moment during an execution. In an asynchronous setting, the physical
time between two instructions is unknown, making it impossible to know with certainty
that another process has crashed. Any distributed algorithm in the asynchronous model
must take into consideration the fact that it is impossible to distinguish between the
case where a process crashes and the case where it might resume its execution.

In a concurrent setting, the problems of synchronization between processes that arise
are modeled using shared objects. These objects are defined by a sequential specification
describing the set of operations that can be invoked on the implemented object as well
the correct behavior of the operations in the absence of concurrency.

Formally, a high-level shared object O is a concrete representation of a data type
T , composed of a set of states S, a finite set of operations O and a set of transitions σ
between states. A transition σ(s, op(arg)) = (s′, res) describes the sequential behavior
of the object when an instance op of an operation is invoked with the argument arg,
causing the object to move from its current state s to a new state s′, and resulting in a
response res to the operation from the object. We say that op is an update operation
if it changes the state of O.

We say that an object or data type is deterministic if the set of transitions σ is a
function; meaning that a specific invocation of an operation on the object from a state
would always (in any execution) result in the object transitioning to the same new state
and having the same response.

To solve a problem in a distributed system is to present a correct implementation
of the shared object under a specific model of computation.

Implementation and execution An implementation of a shared object provides a
specific data representation for the object from a set of shared base objects, each of which
is assigned an initial value; the implementation also provides algorithms for each process
in P to apply each operation to the object being implemented. To avoid confusion, we

12



call operations on the base objects primitives and reserve the term operations for the
objects being implemented.

An execution fragment is a (finite or infinite) sequence of steps performed by pro-
cesses as they follow their algorithms. In each step, a process applies at most a single
primitive to a base object (possibly in addition to some local computation). An ex-
ecution is an execution fragment that starts from the initial configuration. This is a
configuration in which all base objects have their initial values and all processes are in
their initial states. More generally, at any moment during the execution, the configu-
ration of E represents the state of all the base objects. We say that an operation is
complete in an execution, if it returns within this execution. Otherwise, we say that
the operation is pending. If an operation op1 returns before a second operation op2
is invoked, we say that op1 is before op2 in the real-time execution order, and write
op1 <ro op2.

A set of primitives is historyless if all the nontrivial primitives in the set overwrite
each other; we also require that each such primitive overwrites itself. A primitive is
nontrivial if it may change the value of the base object to which it is applied.

In the shared memory model, the processes communicate with each other by apply-
ing primitives to base objects.

The processes are sequential. Meaning that when executing an operation, a process
will execute the instructions in order and is not able to execute them in parallel. Since
we consider an asynchronous model, the physical time required for the execution of
a step might differ from process to process and from one instance of an operation to
another. Therefore, any complexity analysis we present is based on the number of steps
executed by a process during an operation.

Shared objects In practice, there is no distinction between the shared objects being
implemented and the base objects. On a case-by-case basis, the same shared object can
play both roles. For instance, it is possible to use a shared counter as a base object for
the implementation of a queue, as it is just as possible to have a new implementation
of the counter itself.

Aside from the atomic Read/Write registers, the following is an exhaustive list of
the shared objects we consider in this thesis:

• Fetch&Inc: the only primitive executed on the Fetch&Inc object, is the iden-
tically named primitive Fetch&Inc that increments the value of the object by 1
and returns the value prior to the incrementation.

• Test&Set: is set initially to 0, and the first call to the primitive test&set changes
its value to 1. All instances of test&set return the previous value of the object
and we consider that it also takes the simple Read primitive.

• Swap: takes the primitives Swap and Read, such that an instance Swap(v) writes
v to the object and returns its previous value.

• Max register: takes the two primitives ReadMax and WriteMax such that
ReadMax returns the maximum value written to the register through the calls
to WriteMax.
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• Counter: can be incremented by calling the primitive CounterIncrement and a
call to CounterRead returns the number of calls to CounterIncrement before it.

• Snapshot: defined by the two primitives Update and Scan. Each process has a
corresponding component in the snapshot and is the only one allowed to modify
through a call to Update. And a process is able to obtain a coherent state of all
the components in the snapshot object using the Scan primitive.

• CAS: takes the Read primitive as well as the Read-Modify-Write primitive CAS,
such that the call CAS(old, new) writes new to the object only if the previous
value of the object was old.

• FIFO queue: provides the two high-level operations Enqueue and Dequeue. The
sequential specification of the queue determines that an instance Enqueue(v) adds
the element v at the tail of the queue, while the Dequeue() operation removes the
element at the head of the queue and returns its value, if the queue is not empty,
otherwise, it returns ϵ.

When limiting the available shared base objects to the ”weaker” primitives, It is
often the case that the implementation of new shared objects proves to be more difficult.
For instance, implementations of the FIFO queue without the CAS object are rare and
require clever algorithmic ideas. This ”synchronization power” that the CAS has over
other base objects is a great indicator of the existence of a hierarchy within the set of
shared objects.

Consensus number The notion of consensus number was introduced by Herlihy in
[25] to describe such a hierarchy for shared objects based on their ability to solve the
consensus problem for a specific number of processes.

The consensus problem is fundamental in the field of fault-tolerant distributed com-
puting since it models a large set of problems in which processes need to agree on a
specific value. The consensus object takes the operation Propose(). When process pi
executes an instance Propose(vi), it signifies that pi is proposing the value vi to the
consensus. The operation returns the agreed-upon value of the consensus. Formally,
any implementation of the consensus object needs to fulfill the following requirements.

Definition 1.2.1. Consensus: Let A be an implementation of the consensus object.
Let Propose(vi) be an instance executed by process pi in which pi proposes the value
vi ∈ V the set of possible values of the consensus object. A satisfies the conditions of
safety (validity, agreement) and liveness (termination).

• Validity: If the agreed-upon value is v, a process has invoked Propose(v).

• Agreement: No two processes decide on different values.

• Termination: All non-faulty processes decide on a value.
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Consensus
Number

Object

1 read/write registers
2 test&set, swap, fetch&add, queue, stack
... ...
2n-2 n-register assignement
... ...

∞ memory-to-memory move and swap, augmented
queue, compare&swap, fetch&cons, sticky byte

Table 1.1: Examples of consensus numbers of different shared objects (table from [25]).

Herlihy hierarchy The consensus number associated with an object is the number of
processes we can solve the consensus problem for, using only the object and Read/Write
registers. For instance, the Read/Write registers have a consensus number 1, and the
Fetch&Add, Swap and Stack objects all have consensus number 2. We say that the
consensus number of an object is infinite if it can solve the consensus problem in an
asynchronous system with n processes for any n ∈ N . The CAS object is an example
of an object with an infinite consensus number. Table 1.1 taken from [25], gives a more
comprehensive list of different shared objects and their consensus number. In [25], it
is also shown that given an object T with a consensus number i alongside Read/Write
registers, it is impossible to have a wait-free implementation of any object with a
consensus number j > i. However, Jayanti argues in [27] that the Herlihy hierarchy is
not a robust wait-free hierarchy. Meaning that contrary to what might be assumed, it
is possible to implement an object with a consensus number j using a combination of
any number of objects with consensus numbers in 1, . . . , j−1. Meaning that combining
weaker shared objects can result in the implementation of stronger ones.

1.2.2 Termination Conditions

An execution is non-blocking if the failure or crash of a process does not impede the
progression of other processes. An execution is lock-free if there is a guarantee of
system-wide progression but not necessarily a guarantee for each process to terminate.
An execution is wait-free [25] if each process completes its operations if it performs a
sufficiently large number of steps. We say that an implementation verifies any termi-
nation condition if all its executions do as well.

Definition 1.2.2. Lock-freedom: Let A be an implementation of a concurrent object O
and E an execution of A. E is lock-free if for any operation α that takes infinite steps
in E there exists infinitely many concurrent operations executed by other processes that
terminate in a finite number of steps (system-wide progress).

Definition 1.2.3. Wait-freedom: Let A be an implementation of a concurrent object
O and E an execution of A. E is wait-free if all operations in E terminate in a finite
number of steps (per-process progress).
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1.2.3 Consistency Conditions

Since shared objects are defined by sequential specifications, we require a means to
relate the correct behavior of the object in a concurrent setting to its definition in
the absence of concurrency. Consistency conditions define what behaviors are allowed
during a concurrent execution.

Definition 1.2.4. A consistency condition C is the set of all legal operation sequences
of any data type T under C.

Linearizability

As one of the most intuitive consistency conditions, linearizability is used throughout
the literature. Roughly speaking, an execution is linearizable [26] if each operation
appears to take effect atomically at some point between its invocation and response
and behaves according to the sequential specification of the object.

Definition 1.2.5. Linearizability: Let A be an implementation of a concurrent object
O. An execution E of A is linearizable if there is a sequential execution S of O such that
S contains every completed operation of E and might contain some pending operations,
and the inputs and outputs of the invocations and responses of the operations in S agree
with the inputs and outputs in E and behave according to the sequential specification of
O. Furthermore, if two completed operations op1 and op2 in E verify op1 <E op2, then
op1 appears before op2 in S.
We say that an implementation is linearizable if all its executions are linearizable.

Weaker Consistency Conditions

In recent years, the relaxation of the implementations of shared objects for the sake of
solving scalability issues, has become the focus of many research topics. We present
next some of the most common weaker consistency conditions.

Formally, the set-sequential specification of a shared object differs from its sequential
specification in regards to the definition of the transition function σ between states of
the object. In the set-sequential specification, instead of taking a single instance op of
an operation as a parameter and having a single response res, a transition σ(s,S(op)) =
(s′,S(res)) between two states s and s′, of the object takes a set of instances S(op) =
{op1, . . . , opi} of operations as a parameter and returns a set of responses S(res) =
{res1, . . . , resi} where each response corresponds to an instance of an operation from
the parameter set. An execution E of a concurrent object is set-linearizable if there
exists an equivalent set-sequential execution S that contains all the complete operations
of E and possibly some pending operations, and the execution S verifies that if an
operation op is before another operation op′ in E (i.e. op <E op′) then op is also
before op′ in S. Figure 1.2 illustrates the differences between a linearization of an exact
FIFO queue and a set-linearization of a relaxed FIFO queue where multiple concurrent
mathitDequeue operations are allowed to return the same element. In Figure 1.2a, the
linearization defines a sequential total order of all the operations, while in Figure 1.2b,
multiple operations have the same linearization point and are executed concurrently in
the set-linearization.
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Definition 1.2.6. Set-linearizability: Let A be an implementation of a concurrent ob-
ject O. An execution E of A is set-linearizable if there is a set-sequential execution
S of O such that S contains every completed operation of E and might contain some
pending operations, and the inputs and outputs of the invocations and responses of the
operations in S agree with the inputs and outputs in E. Furthermore, if two completed
operations op1 and op2 in E verify op1 <E op2, then op1 appears before op2 in S.
We say that an implementation is set-linearizable if all its executions are set-linearizable.

(a) Linearizable execution.

(b) Set-linearizable execution.

Figure 1.2: Example of a linearization of an execution of a FIFO queue and a set-
linearization of an execution of a relaxed FIFO queue.

The consistency condition of interval-linearizability is introduced by Castañeda et al.
[15] to take into consideration the set of problems in the distributed setting that cannot
be represented with a sequential specification of an object. This is the case for the
write-snapshot object as observed by Neiger [35]. Differently from the regular snapshot
object defined by the two operations Update and Scan, the write-snapshot is defined
by a single operation that concatenates the two: when a process invokes the instance
write-snapshot(x) to add the value x to the object, the operation returns the state of
the object. Neiger notes that it is impossible to represent the write-snapshot using a
sequential specification and can only be modeled as a task. The execution in Figure 1.3
illustrates the case where an execution of a write-snapshot is not set-linearizable. No
matter where the instance write-snapshot(b) is linearized, the set-linearization obtained
has an operation that returns a value that appears to be predicting a future operation.
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Hence, the need for a more flexible framework where it is possible to express that an
operation happens over an interval of time that can be affected by multiple operations.

(a)

(b)

Figure 1.3: Example of an execution of write-snapshot that is not set-linearizable.

Formally, in the interval-sequential specification of an object, if an operation op is
pending in a state q, and the transition σ is applied such that σ(q, Inv) = (q′, Res)
where Inv is a set of operation invocations and Res is a set of responses; then op might
still be pending in q′. Meaning that Res contains the responses of only the operations
that are complete in q′.

Definition 1.2.7. Interval-linearizability: Let A be an implementation of a concurrent
object O. An execution E of A is interval-linearizable if there is an interval-sequential
execution S of O such that S contains every completed operation of E and might contain
some pending operations, and the inputs and outputs of the invocations and responses
of the operations in S agree with the inputs and outputs in E. Furthermore, if two
completed operations op1 and op2 in E verify op1 <E op2, then op1 appears before op2
in S.
We say that an implementation is interval-linearizable if all its executions are interval-
linearizable.
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Other weaker consistency conditions include quasi-linearizability [2], which models
legal executions with a distance function from sequential executions. Intermediate value
linearizability [39] is defined through linearizability such that a read operation is allowed
to return a value that is bounded by two values that are legal under linearizability. And
similarly to abstract data type relaxations, some consistency conditions are introduced
for specific data structures. For instance local linearizability [20] is defined for container-
type data structures like queues and stacks, with a guarantee of a consistent view of the
object only at the process level as opposed to regular linearizability which guarantees
a consistent view overall (for local-linearizability a projection of the global execution
onto a specific process is linearizable).

1.2.4 Sequential Specification Relaxations

While considering weaker consistency conditions is one way to implement relaxed shared
objects, The second approach that has emerged is the relaxation of the sequential
specification of the object.

Henzinger et al. [24] introduced a formal framework for obtaining new data struc-
tures by quantitatively relaxing existing ones. Intuitively, the framework defines a
distance between sequences of operations such that a sequence that might not be per-
mitted under the sequential specification of the original object, might be allowed for the
relaxed version of the object if the sequence is at some distance k from a sequence of
operations that is legal. Several authors [43, 31, 38, 45, 41, 42] have used this framework
to give different implementations of relaxed data structure types or to study properties
of specific relaxations.

The first general relaxation that results from this framework is the Out-of-order
relaxation. When applied to an ordered data structured like the queue or stack, this
relaxation allows the deleter operation (Dequeue and Pop, respectively), to return an
element up to k places out-of-order.

The other generic relaxation presented in [24] is the stuttering relaxation. This
relaxation allows some update operations to not take effect, meaning that the call to
an operation that changes the state of the object ”stutters” and does not succeed in
modifying the state of the object. For a sequence of operations to be allowed under
this relaxation, no more than k consecutive update operations can stutter before an
operation succeeds in changing the state of the object.

The k-atomicity relaxation defined in [3], resembles the stuttering relaxation in that
it allows read operations to return a ”stale” value bounded by the parameter k to limit
the number of write operations it can overlook. However, the definition of k-atomicity
differs from stuttering in the sense that for the latter, an operation that changes the
state of the object might ”stutter” and fail to do so, while for the former, the relaxation
affects the read operations alone.

Aside from this framework, there have been data type-specific relaxations that are
defined with the sequential specification of the object in mind. For instance, Castañeda
et al. [14] define a relaxed queue object with multiplicity, such that multiple concurrent
instances of the Dequeue operation are allowed to return the same element in the queue.
They also define a relaxation that allows an instance of Dequeue to return a special
value weak-empty when the queue might be empty.
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Relaxation Equivalence

Talmage and Welch show in [43] that in many ways the two approaches of considering
weaker consistency conditions and relaxing the object’s sequential specification are dif-
ferent ways to specify the same sets of allowed concurrent behaviors of a given shared
object. They give in subsequent work [44] equivalent consistency conditions to differ-
ent abstract data type relaxations, namely k-out-of-order, k-lateness, and k-stuttering.
In doing so, they prove that in many cases both relaxing the sequential specification
and considering weaker consistency conditions are two equivalent ways to represent the
same set of concurrent problems faced when implementing shared data objects. Mean-
ing that it is possible to focus on whichever approach is easier to achieve thanks to this
equivalence.

1.3 Related Work and Contributions

In this section, we present the related work to the different problems we investigate
in this thesis as well as our contributions. Starting with some lower bounds results
justifying the limitations of step complexities of the implementations of the shared
objects in the absence of any relaxation of the consistency condition or sequential
specification. We then present some relaxations of shared objects with a focus on the
objects we are interested in (counter, max register). Finally, we present the general
landscape of wait-free FIFO queue implementations.

1.3.1 Counter and Max Register

Jayanti, Tan and Toueg [29] show for any deterministic non-blocking n-process imple-
mentation I of a shared object in a large set A using a set B of primitives where A =
{increment, fetch&add, modulo k counter (for any k ≥ 2n), LL/SC bit, k-valued com-
pare&swap (for any k ≥ n), single-writer snapshot} and B = {{resettable consensus}⋃
{historyless objects such as registers and swap registers}}, that I has a lower bound

for both time and space complexities of n − 1. To illustrate the intuition behind this
lower bound, take the example of a simple implementation of a counter object for n
processes pi with i ≤ n. If pn executes a Read() operation opn, it will need to read a
single base object at least to retrieve the value of the counter. However, in the mean-
time, a different process pl could execute an instance of CounterIncrement() to change
the value of a base object of the implementation of the counter. This would render the
value read by pn obsolete and forces it to read another base object. If this scenario
occurs for every process pi such that i ̸= n, then pn will need to read n−1 base objects.

However, this lower bound result does not consider restricted-use objects. And in
many cases, there have been implementations of objects that beat the Ω(n) lower bound
because the executions in the restricted-use context exceed the scope of the proof of the
lower bound. For instance, Aspnes, Attiya, and Censor-Hillel [5] show the possibility of
implementing exact counting algorithms whose step complexity is sub-linear when the
number of operations is bounded. In particular, they presented a wait-free exact counter
for which the worst-case step complexities of the CounterIncrement and CounterRead
operations are O

(
min(log n log v, n)

)
and O

(
min(log v, n)

)
, respectively, where v is the
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object’s current value. In [5], they also give an implementation of a max register that
can write v in O(min(log v, n)) steps.

For this reason, Aspnes, Censor-Hill, Attiya, and Hendler [7] generalize the lower
bound results in [29] to bounded shared objects. More specifically, through this gen-
eralization, they propose a new lower bound for both time and space complexities
in Ω(min(logL, n)) for deterministic implementations from historyless primitives of
bounded objects where L is the bound parameter. This lower bound also proved that
the m-bounded max register implementation in [5] is optimal.

For shared objects that manipulate numerical values, a natural relaxation might
consist of allowing an additive margin of error for the return value of the read operation.
This is the case for the k-additive-accurate counter introduced in [5] as a counter for
which any CounterRead operation returns a value that is within ±k of the number
of CounterIncrement operations linearized before it. It is then shown that for any
deterministic solo-terminating implementation from atomic registers by n processes of
anm-bounded k-additive-accurate counter, there is a CounterRead operation that takes
min(n− 1, ⌈logm⌉ − log(⌈logm⌉+ k)) steps. Meaning that allowing the CounterRead
operation to have some additive error accounts for the cost of some of the accumulating
pending operations. This lower bound is improved in [7], where it is shown that the
m-bounded k-additive-accurate counter has a lower bound of Ω(min(logm− log k, n)).

Figure 1.4: Lower bounds on restricted use objects where m is the maximum value
assumed by the object or the bound on the number of operations applied to it, from [7]

.

The first relaxation we consider is the k-multiplicative-accurate relaxation introduced
in [7].

Contribution: k-multiplicative-accurate max register

We define the k-multiplicative-accurate max register, where the MaxRead operation
returns an approximate value x′ within a k multiplicative range of the maximum value
v′ written to the register (i.e. v′/k ≤ x′ ≤ k · v′).

we have shown that relaxing the semantics of the bounded max register by allowing
inaccuracy of even a constant multiplicative factor yields an exponential improvement in
the worst-case step complexity. Then, we present a novel m-bounded k-multiplicative-
accurate max register algorithm whose worst-case step complexity matches this lower
bound. We then easily ”plug-in” our bounded k-multiplicative-accurate max regis-
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ter into the construction proposed by Baig et al. [12] to obtain an unbounded k-
multiplicative-accurate max register with sub-logarithmic amortized step complexity.

Contribution: k-multiplicative-accurate counter

Similarly to the k-multiplicative-accurate max register, reading the of value the k-
multiplicative-accurate counter through a call to the operation CounterRead returns
an approximation x of the exact value v of the counter by a multiplicative factor of k
(i.e. v/k ≤ x ≤ k · v).

We implement a wait-free linearizable k-multiplicative-accurate counter for k ≥
n where n is the number of processes, with constant amortized step complexity for
executions of arbitrary length. We also give an implementation of the m-bounded
variant of the k-multiplicative-accurate counter for k ≥

√
n with a worst-case step

complexity in O(min(log(log(m+ 1)), n).
Then, by extension of the lower bound of Attiya and Hendler, [10], we prove that any

implementation of a k-multiplicative-accurate counter from read/write and conditional
primitive operations has amortized step complexity of Ω(log(n/k2)), for k ≤

√
n/2.

Our results together with the upper and lower bound on exact counting proved in [12]
show that when the approximation parameter k does not depend on n, relaxing the
counter semantics by allowing a multiplicative error cannot asymptotically reduce the
amortized step complexity by more than a logarithmic factor.

We also show a lower bound for unbounded k-multiplicative-accurate counters for
the worst-case step complexity in Ω(n). Meaning that the linear lower bound by Jayanti,
Tan, and Toueg [29] for exact counters also holds in the case of the k-multiplicative-
accurate counters.

1.3.2 FIFO Queue

There have been results showing the difficulties of implementing a linearizable wait-
free queue because of the ”tail chasing” problem. Roughly speaking, the ”tail chasing”
scenario occurs when a process is trying to retrieve an element from the queue but finds
itself unable to return because it is invisible to other processes that keep modifying the
state of the queue indefinitely by executing operation sequences that contain element
insertions followed by dequeuing elements from the queue.

The difficulty to implement the queue in a wait-free manner is formalized by Attiya,
Castañeda, and Hendler [8]. They categorize helping mechanisms into trivial and non-
trivial helping. This distinction relies on the definition of operation valency introduced
in [22] to describe the possible return values an operation can have. Roughly speaking,
an implementation has helping if a process makes another process decide on a return
value by executing a specific mechanism. In the case of queues, stacks, and similar
data structures, the helping is nontrivial, if the non-decided process is made to return
a value different than ϵ (the empty state of the object). This often requires delicate
communication between the processes to ensure that a value reserved for a specific un-
decided process is not taken by a process unaware of the helping taking place. The main
result from [8] is the distinction between stack and queue implementations: A wait-free
queue implementation requires nontrivial helping while a stack can be implemented in
a wait-free manner without nontrivial helping [1].

22



An example of such a helping mechanism is used by Li [33] to implement a wait-
free multiple enqueuer 2 dequeuer queue. In this implementation, each instance of the
Dequeue operation is represented by a node in a linked list denoted DeqCell. The
position of an instance in the list is dictated by a sequence number that defines a total
order for the Dequeue operations. In addition to the sequence number of the operation
and the id of the process invoking the operation (i.e. d0 or d1), a node in DeqCell also
stores both the index and the value of the element returned by the operation (Figure
1.5).

Figure 1.5: The linked list data structure storing instances of the Dequeue operation,
from [33].

The Dequeue operation uses a 2-process consensus object to communicate between
the two dequeuer processes. They are used to propose the index of the instance of
Dequeue that needs to be executed first as well as to agree on its return value. When
a process executes an instance of Dequeue, it creates a node in DeqCell with a new
sequence number. Then, it verifies that there is no pending Dequeue operation from
the other dequeuer process. If there is, the process proposes the index of the pending
operation, otherwise, it proposes the index of its own operation. After a response
is received from the consensus object, the process executes the corresponding Dequeue
operation. By the end of this execution, the process verifies if its own Dequeue operation
has been assigned a return value, and returns if it is the case. Otherwise, it repeats
the same steps previously executed to help the pending operation, but for the node in
DeqCell it created.

A characteristic of the queue implementation by Li [33] is that it only uses primitives
with consensus level 2. In fact, it attempts to answer the open question of whether
the queue object belongs into Common2 and is implementable with consensus 2 level
primitives only. There exist other implementations based on registers and Common2
objects [17, 16]. However, all these implementations rely on concurrency conditions that
limit the number of either enqueuer (e.g. [17, 16]) or dequeuer (e.g. [33]) processes.

Even when considering strong primitives like the CAS primitive, it is often necessary
to compromise between the concurrency constraints and the complexity of the wait-free
queue implementations.

Using Compare&Swap, some practical wait-free queue implementations that sup-
port multiple enqueuers and multiple dequeuers have been proposed [32, 34, 46, 19].
Some of these implementations are wait-free [32, 46, 19]; while some are only lock-free
[34]. All these solutions have been evaluated empirically and do not have formal com-
plexity analysis. Nonetheless, the worst-case step complexity of either the Enqueue or
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of the Dequeue operation is not sublinear.
The best-known upper bound for the worst-case step complexity of wait-free queue

implementations is given by Khanchandani and Wattenhofer [30]. They present an
algorithm in which both the Enqueue and Dequeue operations take O(

√
n) steps and

require O(nm) registers of O(max(log n, logm) bits, where n is the number of processes
and m is the bound on the number of Enqueue operations. The previous upper bound
prior to their work was in O(n) and relied only on the strong primitive CAS.

Inspired by the algorithm proposed by Ellen et al. [18] to solve the consensus for
infinitely many processes in O(1) by combining the functionalities of weak primitives,
Khanchandani et al. aimed to show through their implementation, that it is possible
to improve the complexity of a shared object implementation by using a combination
of strong and weak primitives. For that reason, they introduce the register TH : a
new data type that takes two operations half-increment and half-max. This register
is composed of two components, i.e. (t, h). A call to half-increment() increments the
value of t as long as t ≤ h, and a call to half-max(i) writes the maximum between i
and the previous value of h, to h. It is shown that the two operations half-max and
half-increment have a consensus number of 1 and 2 respectively. Register TH is used
to represent the head and tail of the queue.

In addition to the register TH, they use an array to store the queue elements as
well as the data structure counting set they introduce to manage possible concurrency
between Enqueue and Dequeue operations. More specifically, the counting set takes the
two operations insert() and remove(). An instance insert(x ) adds the element x into
the set and returns the number of total inserts completed (i.e. it also counts apart from
inserting the elements). The call to remove(i) will remove the i-th inserted element to
set if and only if this insert was the last one executed by the corresponding process. For
the queue implementation, the counting set is needed when there is a call to a Dequeue
operation that is concurrent with a pending Enqueue operation which has yet to insert
an element into the array.

The counting set has two main functions. First, it defines a global order for all
Enqueue operations. An instance of Enqueue(x ) invokes insert(x) on the counting set
and retrieves the index it uses to insert the element into the array. The second purpose
of the counting set consists of ensuring that a fast Dequeue instance that reaches an
index of the array that has not been filled yet by a pending Enqueue, is capable of
executing a call to remove(i) on the counting set to retrieve the element and return,
guaranteeing the wait-freedom of the implementation.

The main difficulty in implementing the counting set object resides in transforming
a local value of the counter of Enqueue operations of a single process, into a global
index defined for all processes. A log system is used to store information regarding
every Enqueue operation in order to compute global indexes. The sublinear complexity
is obtained through an optimization of the log by limiting the concurrency during write
operations to

√
n processes instead of all n processes. Therefore, it seems that this

approach of using the counting set is limited by this complexity and may not be easily
transferable to implement other shared objects or to investigate logarithmic complexity
queue implementations.

To the best of our knowledge, all other wait-free queue implementations with sublin-
ear worst-case step complexity in the literature rely on limiting the number of processes
allowed to execute either Enqueue of Dequeue operations (e.g. [28, 16, 33, 17]). Jayanti
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and Petrovic [28], for instance, give an implementation of a queue that supports a single
dequeuer process and any number of enqueuers. Their implementation has a worst-case
step complexity of O(log n) for both Enqueue and Dequeue operations, where n is the
number of processes.

Contribution: FIFO queue

In this thesis, we were interested in the open question of whether it is possible to have
a wait-free queue implementation in logarithmic worst-case step complexity with no
concurrency constraints. In particular, we proposed a wait-free FIFO queue implemen-
tation that supports n enqueuers and k dequeuers where the worst-case step complexity
of an Enqueue operation is in O(log n) and of a Dequeue operation is in O(k log n). But
then, by considering a relaxation of the FIFO queue where multiple concurrent Dequeue
operations are allowed to return the same element, we have shown that it is possible to
implement a wait-free FIFO queue with no concurrency constraints in logarithmic step
complexity.

We have also investigated the possibility of implementing an exact wait-free FIFO
queue using only objects of consensus number 2. As a preliminary approach to solving
the question, we limited the execution to 2 processes and presented a wait-free im-
plementation of the FIFO queue based on such objects without relying on universal
constructions or on the consensus object which cannot be used to generalize the imple-
mentation to more processes without losing the property of having a consensus number
2.

1.4 Organization

The thesis is structured as follows. First, we present in Chapter 2 the implemen-
tations of both the counter and max register objects under the relaxed semantics of
k-multiplicativity. We investigate different variants of these implementations under
the properties of wait-freedom and linearizability. Specifically, we present both an un-
bounded and bounded approximate k-multiplicative-accurate counter and max register
implementations. We then present different lower bounds results for these objects:
mainly we prove a lower bound on the amortized step complexity for the unbounded
k-multiplicative-accurate counter by extension of a lower bound by Attiya and Hendler
[10]. Additionally, we give a lower bound for the worst-case step complexity of the
m-bounded k-multiplicative-accurate max register and counter objects.

Then, in Chapter 3, we present a wait-free linearizable FIFO queue implementation
for n-enqueuer and k-dequeuer processes with a worst-case step complexity of O(log n)
for the Enqueue operation and O(k log n) for the Dequeue operation. Then, we consider
the relaxed semantics of the FIFO queue introduced in [14] where multiple concurrent
Dequeue operations are allowed to return the same element, denoted multiplicity. We
give an implementation of set-linearizable FIFO queue with multiplicity where both the
Enqueue and Dequeue operations are in O(log n).

Finally, in Chapter 4 we offer some overall insights on the work in retrospect while
discussing possible leads and prospects for future work.
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Chapter 2

K-multiplicative-accurate Counter
and Max Register

Abstract

Relaxing the sequential specification of shared objects has been proposed as
a promising approach to obtain implementations of shared objects with better
complexities.

By considering the case study of two common shared objects: max register
and counter, we study the possible improvement in step complexity of their re-
laxed implementations compared to implementations of the corresponding exact
objects. In particular, in the classical shared memory model, we investigate the
extent to which allowing wait-free linearizable implementations of these objects
to return approximate values, rather than accurate ones, may improve their step
complexity.

We consider the k-multiplicative-accurate max register and the k-multiplicative-
accurate counter, where read operations are allowed to return an approximate
value within a multiplicative factor k of the accurate value (for some k ∈ N). More
specifically, reads are allowed to return an approximate value x of the maximum
value v previously written to the max register, or of the number v of increments
previously applied to the counter, respectively, such that v/k ≤ x ≤ v · k. We
provide upper and lower bounds on the complexity of implementing these objects
in a wait-free manner in the shared memory model.

We give an implementation of the k-multiplicative-accurate counter that has
an exponentially better amortized step complexity than the best implementation
of the exact counter in the state of the art when the approximation parameter
k ≥ n.

We also implement the k-multiplicative-accurate max register with an expo-
nentially better worst-case step complexity compared to the exact max register
implementation.

We give lower bounds on the worst-case step complexity of the bounded vari-
ant of both the relaxed counter and max register, as well as a lower bound on the
amortized step complexity of the unbounded counter.

An earlier version of this work containing the lower bound results was pre-
sented during the 41st IEEE International Conference on Distributed Computing
Systems (ICDCS 2021) [23].
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2.1 Introduction

With the ubiquitousness of multi-core and multi-processor systems, there is a growing
need to gain a better understanding of how to implement concurrent objects with
improved complexity, while maintaining the natural correctness guarantee provided to
programmers by linearizability. Relaxing the sequential specification of linearizable
concurrent objects is one promising approach to achieving this [2, 24]. An object’s
sequential specification defines its correct behavior in sequential executions. Roughly
speaking, linearizability [26] guarantees that any concurrent execution is equivalent to
a sequential one.

There is empirical evidence that relaxing the sequential specification of some com-
mon objects, e.g. queues and counters, yields improved performance of linearizable
implementations, e.g [24, 40]. However, the theoretical principles to implement con-
current objects more efficiently by relaxing their sequential specification are not yet
clear.

We study relaxed-semantics variants of two well-known concurrent objects – coun-
ters and max registers, in the classical shared memory model. In particular, we in-
vestigate the extent to which allowing wait-free linearizable implementations of these
objects to return approximate values, rather than accurate ones, may improve their
step complexity.

A counter is a linearizable object that supports a CounterIncrement operation and
a CounterRead operation. The sequential specification of a counter requires that a
CounterRead operation returns the number of CounterIncrement operations that pre-
cede it. A relaxed variant of the counter is the k-multiplicative-accurate counter, defined
by Aspnes, Censor-Hill, Attiya, and Hendler in [7], where a CounterRead operation re-
turns an approximate value x of the number v of CounterIncrement operations that
precede it, such that v/k ≤ x ≤ v · k for some parameter k > 0.

A max register r supports a Write(v) operation that writes a non-negative integer
v to r and a Read operation that returns the maximum value previously written to r,
[7]. We define the k-multiplicative-accurate max register by allowing a Read operation
to return an approximate value x of the largest value v written before it, such that
v/k ≤ x ≤ v · k for some parameter k > 0.

k-multiplicative-accurate counter

To the best of our knowledge, we present the first deterministic approximate counter
with constant amortized complexity. More precisely, we present a wait-free linearizable
k-multiplicative-accurate counter for k ≥ n where n is the number of processes, with
constant amortized step complexity for executions of arbitrary length. Then, by ex-
tension of the lower bound of Attiya and Hendler, [10], we prove that any n-process
solo-terminating implementation of a k-multiplicative-accurate counter from read/write
and conditional primitive operations (including k-word compare-and-swap) has amor-
tized step complexity of Ω(log(n/k2)), for k ≤

√
n/2. Our results together with the

upper and lower bound on exact counting provided by Baig et al. in [12], show that
when the approximation parameter k does not depend on n, relaxing the counter se-
mantics by allowing a multiplicative error cannot asymptotically reduce the amortized
step complexity by more than a logarithmic factor. Table 2.1a compares the amortized
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Unbounded
(Amortized complexity)

Lower bound Upper bound

Exact Counter Ω(log n) [12] O(log2 n) [12]

k-multiplicative-accurate
Counter

Ω(log n/k2)

k ≤
√

n/2 (Section 2.7)

O(1)
k ≥ n (Section 2.2)

(a) Unbounded counter results.

Bounded
(Worst-case complexity)

Lower bound Upper bound

Exact Counter Ω(min(logm,n)) [5]
O(min(log n logm,n)) for Inc
O(min(logm,n)) for Read [5]

k-multiplicative-accurate
Counter

Ω(min(log(logk m), n)
(Section 2.6)

O(min(log(log(m+ 1)), n)
k ≥
√
n+ 1 (Section 2.3)

(b) Bounded counter results.

Table 2.1: k-multiplicative-accurate counter implementations and lower bounds results
(n is the number of processes and m is the bound on the object).

complexity of the implementation of our unbounded k-multiplicative-accurate counter
and the lower bound result to the results from [12].

Then, we consider the bounded version of the k-multiplicative accurate counter.
More precisely, we give a wait-free linearizable m-bounded k-multiplicative-accurate
counter for k ≥

√
n+ 1 where n is the number of processes and m is the bound on the

number of CounterIncrement operation instances that can be performed on the counter.
The implementation has a worst-case step complexity of O(min(log(log(m+1)), n). We
also prove that a lower bound on the worst-case step complexity of obstruction-free im-
plementations of m-bounded k-multiplicative-accurate counters from historyless prim-
itives in Ω(min(n, log2 logk m)). Meaning that our implementation of the m-bounded
k-multiplicative-accurate counter is optimal. This also implies that for unbounded k-
multiplicative-accurate counters, the worst-case step complexity is in Ω(n), and we fall
back to the linear lower bound by Jayanti, Tan and Toueg [29]. Table 2.1b summarizes
the results for the bounded approximate counter and compares them to upper and lower
bound results for the exact bounded counter from Aspnes, Attiya and Censor-Hillel [5].

k-multiplicative-accurate max register

We prove that relaxing the semantics of the bounded max register by allowing inaccu-
racy of even a constant multiplicative factor yields an exponential improvement in the
worst-case step complexity compared to the exact max register (Table 2.2). In partic-
ular, we prove that the worst-case step complexity of obstruction-free read/write imple-
mentations ofm-bounded k-multiplicative-accurate max registers is Ω(min(n, log2 logk m)),
where n is the number of processes. A max register ism-bounded, if it can only represent
values in {0, . . . ,m−1}. Then, we present a novel m-bounded k-multiplicative-accurate
max register algorithm whose worst-case step complexity matches this lower bound.

We then ”plug in” our bounded k-multiplicative-accurate max register into the
construction proposed by Baig et al. [12] to obtain an unbounded k-multiplicative-
accurate max register with sub-logarithmic amortized step complexity.
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Bounded
(Worst-case complexity)

Lower bound Upper bound

Exact Max Register Ω(min(logm,n)) [5] O(min(logm,n)) [7]
k-multiplicative-accurate

Max Register
Ω(min(log2 logk m,n))

(Section 2.6)
O(min(log2 logk m,n))

(Section 2.4)

(a) Bounded max register results.

Unbounded
(Amortized complexity)

Upper bound

k-multiplicative-accurate
Max Register

O(log2(logk(m)))
m ≥ n2 (Section 2.5)

(b) Unbounded max register result (m is the parameter of the bounded max register used in
the unbounded max register implementation).

Table 2.2: k-multiplicative-accurate max register implementations and lower bounds
results (n is the number of processes and m is the bound on the object).

Hereafter is the chapter organization. In Section 2.2, we present the unbounded
k-multiplicative-accurate counter implementation with the wait-freedom and lineariz-
ability proofs and the complexity analysis. In Section 2.3, we give the implementation
of the bounded variant of the k-multiplicative-accurate counter alongside the proofs
of progression and correctness. Then we present the implementations of the bounded
and unbounded k-multiplicative-accurate max register in Section 2.5 and Section 2.4,
respectively. Finally, we give lower bound results for the worst-case step complexity of
the bounded k-multiplicative-accurate counter and max register in Section 2.6, and the
lower bound result for the amortized step complexity of the k-multiplicative-accurate
counter in Section 2.7.

2.2 Unbounded k-multiplicative-accurate Counter

Algorithm 1 describes a wait-free linearizable unbounded k-multiplicative-accurate counter
with k ≥ n whose amortized step complexity is constant.

2.2.1 Algorithm Description

Figure 2.1 represents the main data structure of the implementation. The algorithm
uses an unbounded sequence of bits initially equal to 0, denoted switch0, switch1, . . . to
approximately keep track of the number of increments that have been performed by the
processes. For each i ≥ 0, switch i can be accessed by test&set and read operations.
switch i.test&set() sets the value of switch i to 1 and returns its previous value. A read
simply returns the value of switch i.

In a nutshell, each process locally keeps an accurate count of the number of CounterIncrement
operations it performs that are not yet known by the other processes. When this count
reaches a certain threshold, the process tries to inform other processes of the number of
increments it has performed locally, by attempting to set to 1 a switch in an appropriate
bounded range. When a process succeeds in setting a switch to 1, it will restart the
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(a) Initial configuration.

(b) Configuration after the execution of some CounterIncrement op-
erations.

Figure 2.1: The main data structure for the implementation of the k-multiplicative-
accurate counter in Algorithm 1.

local count from 0. switch bits are set in increasing order with regard to their index,
one after the other.

In particular, the initial value of the threshold is 1 and after their first call to
CounterIncrement , each process will attempt to set switch0. Afterward, the sequence
of switch i with i ≥ 1 is partitioned into consecutive intervals of size k. For any such
interval [qk + 1, (q + 1)k], where k is an integer, and for any j ∈ [qk + 1, (q + 1)k],
switchj equals to 1 indicates that kq+1 instances of CounterIncrement have been per-
formed by some process. In other words, a process p locally performs kq+1 instances of
CounterIncrement before attempting to set a switch in the interval [qk + 1, (q + 1)k]
and it increments its local threshold only if it knows that the last switch in this interval
is set to 1 (i.e.; at least k · kq+1 instances of CounterIncrement have been performed).
The threshold is multiplied by a factor of k. There is no guarantee that p will succeed
in setting to 1 one of the switches. But in this case, sufficiently many increments have
been performed by the processes so that a CounterRead operation can safely ignore the
increments kept locally by pi and still returns a value within a bounded factor of the
actual number of increments.

By using test&set to modify a switch from 0 to 1, we ensure that the CounterIncrement
instances accounted for by switchj are distinct from those accounted for by switchj′ ,
for any j′ ̸= j.

Performing an instance of a CounterRead operation op consists in traversing the
sequence of switches until 0 is found. An approximation of the total number of
CounterIncrement is then deduced from the index of the last switchj that op finds
equal to 1. The value returned is the sum of the CounterIncrement operations repre-
sented by each switch from switch0 to switchj. In particular, switch0 counts for one
CounterIncrement , and each switch i in an interval [qk + 1, (q + 1)k] for some integer
q ≤ qj counts for kq+1 CounterIncrement operations, where switchj belongs to the
interval [qjk + 1, (qj + 1)k].

The CounterIncrement operation: Each process i is equipped with two persistent lo-
cal variables, lcounteri and limiti. The former stores the number of CounterIncrement
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instances performed by process i not yet announced to the other processes, and the lat-
ter stores the threshold on the number of CounterIncrement that can be performed by
process i without informing the other processes.

When a CounterIncrement operation is invoked by a process i, lcounteri is first
incremented (line 11). To ensure that a CounterRead operation instance returns a
value that is within a multiplicative factor k of the actual number of increments, when
lcounteri reaches a certain threshold stored in limiti, process i tries to inform the
other processes of the number of increments it has performed locally (lines 12). The
value of limiti is initially 1 and is multiplied by k each time it is modified (line 21 and
line 28). When lcounti = limiti = kq+1 for some integer q, process i tries to set to
1 one of the k switchj whose index j is in the corresponding range [qk + 1, (q + 1)k]
(lines 15- 23). If it succeeds, it resets the local counter lcounteri. The number of
CounterIncrement instances it has performed locally has been announced to the other
processes, and thus will be taken into account by future CounterRead operations.

Additionally, process i writes the index of the switch it sets together with a sequence
number into a shared variable H[i] (lines 17 and 18). As explained later this pair is
intended to help CounterRead operation instances to complete. Finally, the process
will also update the value of the local persistent variable l0 to indicate the index of
the switch it managed to set within the interval (line 22). By doing so, we ensure that
the process will avoid attempting to reset the same switches every time it reaches the
threshold of limiti in the current interval by starting from the index qk+ l0 in the next
attempt. If it does not succeed, every switchj, where j ∈ [qk+1, (q+1)k] is set. We show
in the proof that for k ≥ n, this number is sufficiently large for allowing CounterRead
operations to return values within a factor k of the total number of CounterIncrement
instances (Section 2.2.2). The threshold limiti is then multiplied by a factor k (line 28)
and the value of l0 is reset to 1 (line 24).

The CounterRead operation: When a CounterRead operation is invoked, process i
scans the first and last switch of each interval of k switches, looking for the first one
that is not yet set to 1. When such a switch is found, the index h of the last switch read
that was equal to 1 is stored in the persistent local variable lasti to avoid scanning
the sequence from the beginning each time. We compute the value ret returned by the
CounterRead operation in the function ReturnValue(p, q) where h = q · k+ p (line 30).
First, we consider the required increments needed to set all the switches in the current
interval [qk + 1, (q + 1)k] by adding to ret the value p · kq+1 (line 31). Next, we add
1 to ret to account for the first switch0 (line 31), and then for each previous interval
[(l − 1)k + 1, lk] where 1 ≤ l ≤ q, we add kl+1 to ret (line 33). Finally, we return the
computed value ret multiplied by a factor k to ensure ret falls in the approximation
range of the k-multiplicative-accurate counter.

However, it may be the case that the condition at line 37 is never verified, as other
processes may concurrently keep executing CounterIncrement operations. Thus, to
ensure wait-freedom, we employ the following helping mechanism: a CounterIncrement
operation by a process i that succeeds to set a switchj, writes the index j of this switch
together with a sequence number in the shared register H[i] (lines 17 and 18). A
CounterRead operation op that fails to find a switch to 0 after θ(n) steps, reads all the
n shared registers H[i] with i ∈ 1, . . . , n. If a consistent value is found, then it returns at
line 55. Otherwise, it executes another θ(n) steps. The first time op scan the array H,
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Algorithm 1: k-multiplicative-accurate unbounded counter, pseudo-code for
process i.

1 Shared variables
2 switchj ∈ {0, 1} : for each j ∈ N, a 1-bit register that supports test&set and

read primitives, initially all 0
3 H [n] : an array of n integer pairs (val, sn)

4 Persistent local variables
5 lasti ∈ N0 : largest index of a switch accessed by i, initially 0
6 lcounteri: number of unannounced CounterIncrement by process i, initially

0
7 limiti : number of CounterIncrement that process i can perform locally,

initially 1
8 sni: number of switches set to 1 by process i, initially 0
9 l0: index of last switch accessed by the process i in the current set of

switches, initially 1

10 Function CounterIncrement()
11 lcounteri ← lcounteri + 1
12 if lcounteri = limiti then
13 j ← logk(lcounteri)
14 if j > 0 then
15 for ℓ← (j − 1)k + l0, ..., j · k

do
16 if switchℓ.test&set() = 0

then
17 sni ← sni + 1
18 H [i]← (ℓ, sni)
19 lcounteri ← 0
20 if ℓ = jk then
21 limiti ← k · limiti
22 l0 ← 1 + ℓ mod k
23 return

24 l0 ← 1

25 else
26 if switch0.test&set() = 0 then
27 lcounteri ← 0

28 limiti ← k · limiti
29 return

30 Function ReturnValue(p,q)
31 ret← 1 + p · kq+1

32 if q ≥ 1 then
33 ret← ret+

∑q
l=1 k

l+1

34 return k · ret

35 Function CounterRead()
36 c← 0
37 while switchlasti ̸= 0 do
38 p← lasti mod k

39 q ← ⌊ lasti
k
⌋

40 if lasti mod k = 0 then
41 lasti ← lasti + 1
42 else
43 lasti ← lasti + k − 1
44 c← c+ 1
45 if c mod n = 0 then
46 if c = n then
47 for j ← 1, . . . , n do
48 helpi[j]← H[j].sn

49 else
50 for j ← 1, . . . , n do
51 (val, sn)← H[j]
52 if sn− helpi[j] ≥ 2

then
53 p← val mod k

54 q ← ⌊val
k
⌋

55 return
ReturnValue(p, q)

56 if lasti = 0 then
57 return 0
58 return ReturnValue(p, q)
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(a) First execution scenario.

(b) Second execution scenario.

Figure 2.2: Example of two executions where a CounterRead operations returns through
the helping mechanism.

it stores the sequence number read in each H[j], denotes snj. When scanning H again,
op will select a pair whose timestamp is greater than or equal to snj +2. This ensures,
that the corresponding switch has been set by process j in the execution interval of op.
This requirement is illustrated in Figure 2.2. In the first execution scenario in Figure
2.2a, it would be possible for the CounterRead operation to return after reading H[j]
for the first time, since the corresponding CounterIncrement is executed within the
execution interval of the CounterRead operation. However, as depicted in Figure 2.2b,
it is also possible for the CounterIncrement to have set its corresponding switch prior
to the invocation of the CounterRead operation. Thus, to ensure the step of setting the
switch is within the execution interval of the CounterRead operation, the operation is
not allowed to return until the second update of H[j].

2.2.2 Wait-freedom and Technical Lemmas

Let E be an execution of the k-multiplicative-accurate unbounded counter implemented
in Algorithm 1.

Lemma 2.2.1. Operations CounterIncrement and CounterRead are wait-free.

Proof. Let opr and opw denote a CounterRead and CounterIncrement instance respec-
tively in E. The number of steps taken during opw is bounded since at most the process
will attempt to set k switches during a call to CounterIncrement and there are no other
loops or function calls in the CounterIncrement operation.

Suppose by contradiction that opr does not terminate. Meaning that every bit
switchℓ it reads has been set to 1. Since the bits are initially 0, there is at least one
process q that infinitely often performs a successful test&set operation on these bits.
Note that each time this occurs, q increments its sequence number snq and reports the
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new value in the helping array H (lines 17- 18). As every n iterations of the while loop,
opr scans the array H, it will eventually detect that the sequence number of q has been
incremented at least twice, hence opr terminates via the helping mechanism (lines 50-
55). Therefore, operations CounterIncrement and CounterRead are wait-free.

We continue with a few technical lemmas.

Lemma 2.2.2. Switches are set to 1 in E in increasing order of their index, starting
from switch0.

Proof. For each process p the initial value of limitp is 1 and of counterp is 0, thus the
first CounterIncrement operation by process p applies a test&set primitive to switch0

according to lines 11, 12, 13, and 27. We now prove that for any given process p and for
any j ≥ 1, p applies a test&set primitive (if any) on each of the switches with indexes
in the interval [(j − 1) · k + 1, . . . j · k] in an increasing order of their index, starting
from switch(j−1)·k+1. First observe that for any process p, the initial value of l0 is 1,
and l0 is set to 1 iff the value of limitp is multiplied by a factor k (lines 24,28 and lines
21,22). This implies that when a new j is computed at line 13, the value of l0 is 1.

Then the first iteration of the for loop at line 15 starts at l = (j − 1) · k+ 1. Also,
the value of l is incremented by one at each iteration of the for loop at line 15 unless p
successfully sets a switch(j−1)k+i with i ∈ {1, . . . , k}. In this latter case, the value of l0
is modified at line 22 and takes the value i+1 if i < k, or 1 otherwise (we reach the end
of the set). If l0 takes a value different from 1, that is l ̸= j · k, (otherwise, the claim is
proved), then the CounterIncrement operation returns at line 23 without modifying the
value of limitp. Thus, in the execution of a successive CounterIncrement operation (if
any), process p will apply the next test&set primitive (if any) to switchjk+i+1 (because
of lines 12, 13, 15).

The value of limiti is multiplied by k (and then the value of j is incremented by
one) only after a process has applied a test&set primitive (both successfully or not) to
the last switch in the current interval [(j − 1) · k + 1, . . . , j · k] with logk(limiti) = j
(lines 21, 28). This completes the proof.

Lemma 2.2.3. For any given execution E, if a CounterRead operation op returns the
value computed in ReturnValue(p, q) at line 55, then switchq·k+p was equal to 0 before
the invocation of op and the test&set primitive that sets switchq·k+p to 1 is applied
during the execution interval of op.

Proof. At line 51, op reads a pair (val, σ) from an entry H[p′] of the helping array H
where val = q ·k+p. According to lines 16, 17, and 18, a unique process p′ sets to 1 the
switchval and associates with val the sequence number σ computed at line 17, before
writing the pair (v, σ) to H[p′] in the execution of a CounterIncrement operation op′.

Let p be the process that executes the CounterRead operation op. Denote by σ′

the value of H[p′].sn read by p at line 48 in the execution of op. According to line
52, σ − σ′ ≥ 2. This means that process p′ executes line 17 at least twice during the
execution interval of op. In particular p′ executes the step that set switchval to 1 after
op was invoked by p. This proves the claim.
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2.2.3 Linearizability

We next define the linearization L of the operations inE by first removing any CounterRead
operation that did not complete and any incomplete CounterIncrement operation that
has not successfully executed line 16.

Let OPW be the set of (complete and incomplete) CounterIncrement operations
that successfully set a switch while executing line 16. Let OPLO be the remaining com-
plete CounterIncrement operations in E and OPR be the set of complete CounterRead
operations in E. Observe that each CounterIncrement operation successfully sets at
most one switch, and each switch is successfully set by at most one process. Thus we
can univocally associate each operation in OPW with the switch it sets. We order the
operations in OPW ∪OPLO ∪OPR, according to the following rules :

1. We linearize each operation in OPW at the step where it sets its corresponding
switch. From claim 2.2.2, operations in OPW are totally ordered and this order
respects the real-time order. In the following, we denote opwi the i-th operation
in OPW according to our linearization order with i ≥ 0.

2. We linearize a CounterRead operation opr according to whether it returns nor-
mally or through the helping mechanism:

(a) If opr returns ReturnValue(p, q) normally at line 58, then it is linearized at
the step where it reads the value 1 of switchq·k+p at line 37 . This is well-
defined because this read primitive exists and it is unique (it is easy to check
from the pseudo-code).

(b) If opr returns ReturnValue(p, q) via the helping mechanism at line 55, then
the operation is linearized immediately after opwq·k+p .

3. Let LWR denote the linearization of all operations in OPW ∪ OPR according to
rules 1 and 2, we linearize an operation op in OPLO immediately before the first
operation op′ in LWR that follows op in the real-time order or at the end of LWR

if op′ does not exist.

CounterRead operations that returns 0 after reading switch0 = 0 are linearized before
opw0. If several operations are ordered at the same position, they are ordered respect-
ing their real-time order. Figure 2.3a and Figure 2.3b give two examples of how the
linearization rules are applied to different executions. Figure 2.3a describes the case
where a CounterRead returns normally, and Figure 2.3b illustrates the case where a
CounterRead needs to be linearized through the specific rule for the helping mechanism
(rule 2 (b)).

Linearization rule 2 and Lemma 2.2.3 imply the following claim.

Claim 2.2.4. Let opr be a CounterRead operation. We have that opr is linearized at
some point after its invocation.

Lemma 2.2.5 (Linearizability). Algorithm 1 is a linearizable implementation of a k-
multiplicative-accurate unbounded counter.

Proof. Let op1 and op2 be two operations in E such as op1 ends before op2 is invoked.
We prove that the linearization order L respects the real-time order, thus op1 precedes
op2 in L. First, we have the following claim:
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(a) Linearization of a simple execution following the proposed rules.

(b) Linearization of the execution in Figure 2.2a where a CounterRead operation returns
through the helping mechanism.

Figure 2.3: Applications of the proposed linearization rules.

• Let op1 and op2 be two CounterIncrement operations. If at least one of these
operations is in OPLO, the claim trivially follows from rule 3. Otherwise, it is
already proved in rule 1.

• Let op1 and op2 be two CounterRead operations. If both op1 return normally the
claim trivially holds from rule 2a and claim 2.2.4. So consider that op1 returns
through the helping mechanism and let h1 = q · k + p be the index of the switch
read by op1 at line 54, the last time before returning. According to rule 2b, op1
is linearized immediately after opwh1 . Also, by Lemma 2.2.3 and rule 2, op2 is
linearized after opwh1 . The claim follows since according to our linearization rules,
If several operations are ordered at the same position, they are ordered respecting
their real-time order.

• Consider that op1 is a CounterIncrement and op2 is a CounterRead operation.
The claim follows from rules 1 and 2 and claim 2.2.4 (the reverse follows a similar
reasoning).

The next claim will be useful for proving that the ordering L is consistent with the
sequential specification of the k-multiplicative-accurate counter.

Claim 2.2.6. Let op be a CounterRead operation invoked by a process pi that returns
ReturnValue(p, q). The number of CounterIncrement operations linearized before op in
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L, denoted v, is at least umin = 1 +
∑q

l=1 k
l+1 + p · kq+1 and at most umax such that

umax ≤ 1 +
∑q

l=1 k
l+1 + p(k − 1)kq+1 + n(kq+1 − 1) where n is the number of processes.

Proof. Let op be a CounterRead operation invoked by a process pi that returns ReturnValue(p, q)
and let h = q · k + p with p ≥ 0. Consider the CounterIncrement operation by pj that
set to 1 the switchh, denoted opwh.

op is linearized at the step where it reads switchh if it returns normally, or im-
mediately after opwh. Thus, from our linearization rules, the minimal number of
CounterIncrement operations that are linearized before op includes each opwi in OPW

with 0 ≤ i ≤ h, and every CounterIncrement in OPLO linearized before op.
We have by construction that each switchs in the (l+1)-th set of k switches indexed

in the interval [l · k + 1 . . . (l + 1)k] with l ≥ 0, requires a process to perform kl+1

CounterIncrement operation instances before attempting to set switchs to 1. In other
words, a process pi needs its local variable lcounteri to be equal to kl+1 before it can
attempt to set any switchs in [l·k+1 . . . (l+1)k] (line 12). Since the value of lcounteri is
reset to 0 after a successful test&set primitive is applied on a switch (line 19), the sets of
CounterIncrement operation instances associated with any pair of successful test&set
primitives are disjoint. Thus, umin = 1+k

∑q−1
l=0 k

l+1+p ·kq+1 = 1+k
∑q

l=1 k
l+p ·kq+1

since we account for, in addition to the p switches in the (q+1)-th set and switch0, all
k switches in each of the sets indexed from 1 to q.

Similarly, we compute an upper bound umax on the maximum number of CounterIncrement
linearized before op. First, suppose that op returns normally. As already said, op is
linearized at the step where it reads switchh with h = qk + p. We have two possible
cases either p is equal to 0 or it is equal to 1 because the process checks the first and last
switch of each set during the CounterRead() instance. These two cases are depicted in
Figure 2.4 a) and b) respectively. If p is equal to 0, then process pi read switchkq+1 = 0
in the execution of op, and according to our linearization rules opwkq+1 is linearized after
op. In a similar way, if p is 1, pi read switch(q+1)k = 0 and opw(q+1)k is linearized after
op. However, in this second case, all the k−1 switchesj with j ∈ [q ·k+2 . . . (q+1)k−1]
may have been set to 1 before op applied its read to switchqk+1, and all the correspond-
ing opwj may be linearized before op. Thus, the number of opw linearized before op is
smaller than or equal to 1 +

∑q
l=1 k

l+1 + p(k − 1)kq+1. It remains to count the num-
ber of CounterIncrement in OPLO linearized before op. For every process pi the value
of lcounteri is smaller than kq+1 immediately before p read either switchkq+1 = 0 or
switch(q+1)k = 0 in the execution of op. Since a process resets the value of its local
counter only when it succeeds to set a switch to 1 (line 19), lcounteri defines the number
of CounterIncrement instances by pi in OPLO that are linearized before op. Therefore,
umax ≤ 1 +

∑q
l=1 k

l+1 + p(k− 1)kq+1 + n(kq+1 − 1) where n is the number of processes.
If op returns via the helping mechanism, then according to rule 2b, it is linearized im-
mediately after opwq·k+p with 0 ≤ p < k. Thus, 1 +

∑q
l=1 k

l+1 + pkq+1 is the number of
CounterIncrement in OPW linearized before op. Since p < k the local counter of every
process immediately after opwq·k+p sets the corresponding switch is smaller than kq+1.
Since k > 1, the claim follows.

Let op be a CounterRead operation and let vop = ReturnValue(p, q) be the value it
returns. According to lines 31, 33 and 34 of Algorithm 1, vop = k(1+

∑q
l=1 k

l+1+p·kq+1);
that is vop = k · umin. According to claim 2.2.6, the number of CounterIncrement
operations linearized before op in L, denoted u, is at least umin = 1+

∑q
l=1 k

l+1+p ·kq+1
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and at most umax ≤ 1+
∑q

l=1 k
l+1 + p(k− 1)kq+1 +n(kq+1− 1) (where n is the number

of processes). And we have:

umax

k
≤ 1

k
+

q∑
l=1

kl + p
k − 1

k
kq+1 +

n

k
(kq+1 − 1)

umax

k
≤

q∑
l=1

kl + p · kq+1 + n · kq

And vop = k(1 + k

q∑
l=1

kl + p · kq+1)

Consider a short execution where q = 0, then vop = k(1+ p · k) and umax

k
≤ p · k+n.

Therefore, for k ≥ n, we have umax

k
≤ vop.

Otherwise, if q ≥ 1, we have the following

vop = k(1 + k

q−1∑
l=1

kl + kq+1 + p · kq+1)

= k + k

q∑
l=2

kl + p · kq+2 + kq+2

Thus, for k ≥
√
n, umax

k
≤ vop.

Since p < k, ∀q ≥ 0, we have u
k
≤ umax

k
≤ vop ≤ k · umin ≤ k · u for any k ≥ n. This

completes the proof.

Figure 2.4: Switches state for the proof of claim 2.2.6. The dotted line indicates the
q+ 1-th interval of consecutive switches. When p = 1, op does not distinguish between
cases b.1) and b.2)

2.2.4 Complexity Analysis

Lemma 2.2.7. If process p applies a test&set() primitive to a switchα with i · k +
1 ≤ α ≤ (i + 1) · k for some integer i ≥ 0, then p has performed at least ki+1

CounterIncrement() operations.
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Proof. Suppose that p has executed a test&set() primitive to a switchα with i · k+1 ≤
α ≤ (i + 1) · k in the execution of a CounterIncrement() operation op. According to
line 15, j was equal to i + 1 when computed at line 13, meaning that lcounterp was
equal to ki+1. The claim holds because lcounterp is incremented only at line 11, that
is once for each CounterIncrement() operation performed by p.

Lemma 2.2.8 (Amortized complexity). For k ≥
√
n, the amortized complexity of

Algorithm 1 is constant.

Proof. Let E be a finite execution of the unbounded k-multiplicative-accurate counter
object implemented in Algorithm 1. Let r denote the number of CounterRead() in-
stances in E and s be the number of CounterIncrement() instances in E. We addition-
ally denote OpsW (E) the set of CounterIncrement() operations that execute at least
one step in E, and OpsR(E) the set of CounterRead() operations in E. We want to
compute

AmtSteps(E) =

∑
op∈OpsW (E)∪OpsR(E) Nsteps(op, E)

r + s

where Nsteps(op, E) is the number of steps executed by op in E.
Let OpsWp(E) denote the CounterIncrement() operations in OpsW (E) executed by

process p and sp denote the total number of CounterIncrement() operations executed
by process p. Let αp be the index of the furthest switch accessed by a process p
when executing any of the CounterIncrement() operations in OpsWp(E). We have that
ip · k + 1 ≤ αp ≤ (ip + 1) · k for some integer ip ≥ 0 (the case where αp = 0 is trivial).

In the worst case, process p applies a test&set() primitive to switchh for every
h ∈ [0, . . . αp] and one additional step to write into H[p] (line 18) each time p suc-
cessfully set one of those switches. On the other hand, by Lemma 2.2.7 if process
p applies a test&set() primitive to the switchαp , then it has performed at least kip+1

CounterIncrement() operations. Therefore,∑
op ∈ OpsWp(E)

Nsteps(op) ≤ 2 · (ip + 1)k + 1

And sp ≥ kip+1

Thus, the total number of steps executed by the set of all processes P in order to
perform the CounterIncrement() operations in E is :∑

op∈OpsW (E)

Nsteps(op) =
∑
p∈P

∑
op∈OpsWp (E)

Nsteps(op)

≤
∑

p ∈ P
2 · (ip + 1)k + 1

And s =
∑

p ∈ P
sp ≥

∑
p ∈ P

kip+1

Now we consider the number of steps applied by each process to perform CounterRead
operations. Let α be the index of the furthest switch set to 1 by any process in P .
If α = 0 then the claim follows. Then suppose i · k + 1 ≤ α ≤ (i + 1) · k for some
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integer i ≥ 0. For any sequence of switches with the index in [j · k + 1, . . . , (j + 1) · k]
with 0 ≤ j ≤ i a process p only reads the first and the last switch in such interval
(i.e., switchj·k+1 and switch(j+1)·k). This is because at the beginning lastp is equal to
0 and it is incremented by 1 if it is a multiple of k (at line 41), by k− 1 otherwise (line
43). Also, lastp is a persistent variable, thus a process p reads a given switch that has
been set to 1 at most once. This implies that the total number (in all its CounterRead
operations) of read primitives applied by a process p to the switches is less or equal to
2(i + 2) (2 per each of the i + 1 intervals, plus switch0 and switchα+1). Furthermore,
any CounterRead() operation executes O(n) steps of the for loop at line 47 or line 50
once every n iterations of the while loop (when the condition of line 45 is satisfied).
This means that the total number of steps executed by a process p when performing
its CounterRead() operations is less or equal to 4(i+ 2). Thus,∑

op ∈ OpsR(E)

Nsteps(op) ≤
∑

p ∈ Pr

4(i+ 2) ≤ 4(i+ 2) · nr

where Pr is the set of processes that have invoked at least one CounterRead() operation
and nr is the cardinality of Pr. Consider nr > 0, the other case is trivial. Therefore:

AmtSteps(E) ≤
∑

p∈P 2(ip + 1)k + 1∑
p∈P kip+1 + r

+
4(i+ 2) · nr

s+ r

Furthermore, by lemma 2.2.7 the minimum number of instances of the CounterIncrement()
operation executed to set the switch α is ki+1. Thus,

AmtSteps(E) ≤
∑

p∈P 2(ip + 1) + 1
k∑

p∈P kip + r
k

+
4(i+ 2) · nr

ki+1 + r

We have kx ≥ x+ 1 for k ≥ e and ∀x ∈ R, it follows:∑
p∈P 2(ip + 1) + 1

k∑
p∈P kip + r

k

≤
∑

p∈P 2(ip + 1) + 1
k∑

p∈P(ip + 1)

If i = 0, and since r ≥ nr we have:

4(i+ 2) · nr

ki+1 + r
≤ 8 · nr

k + r
≤ 8

If i ≥ 1, because nr ≤ n and ki+1 ≥ i · k2 we have:

4(i+ 2) · nr

ki+1 + r
≤ 4(i+ 2) · n

i · k2 + r

Resulting in an amortized complexity of O(1) for k ≥
√
n.

From Lemma 2.2.1, 2.2.5 and 2.2.8 we conclude:

Theorem 2.2.9. Algorithm 1 is a wait-free linearizable implementation of a k-multiplicative-
accurate unbounded counter with a constant amortized complexity for k ≥ n.
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2.3 Bounded k-multiplicative-accurate Counter

We present a wait-free linearizable m-bounded k-multiplicative-accurate counter with a
worst-case step complexity ofO(log(logm+1)) for both the CounterRead and CounterIncrement
operations. (Algorithm 2).

2.3.1 Algorithm Description

Algorithm 2: Implementation of a k-multiplicative m-bounded counter.

1 Shared variables
2 Switch[log(m) + 1 ] : array of test&set objects initialized to 0 and indexed

from 0 to logm.
3 MaxSwitch : Max register object that stores the index of the furthest switch

in Switch[] set to 1, initially −1.
4 Local persistent variables
5 lcounter : locally counts the number of increments, initially 0.
6 threshold : stores the current required number of increments to set a switch,

initially 1 .
7 index : stores the value of the last switch accessed, initially −1 .

8 Function CounterIncrement()
9 lcounter ++

10 if lcounter == threshold then
11 index++
12 if (index ≥ 1) then
13 threshold← 2× threshold
14 if Switch[index].test&set() == 0 then
15 MaxSwitch.MaxWrite(index)
16 lcounter ← 0
17 return

18 MaxSwitch.MaxWrite(index)
19 if index == 0 then
20 index++
21 threshold← 2× threshold
22 if Switch[1].test&set() then
23 MaxSwitch.MaxWrite(1)
24 lcounter ← 0
25 return

26 MaxSwitch.MaxWrite(1)

27 Function CounterRead()
28 r ←MaxSwitch.MaxRead()
29 if r == −1 then
30 return 0
31 return k · 2r
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To implement the k-multiplicative-accurate m-bounded counter, we use an array
Switch[] containing log(m) + 1 test&set objects indexed from 0 to logm. Henceforth,
we call these test&set objects switches. Each time one of these switches is set to 1,
its index is stored in the max register object MaxSwitch. Depending on the index of
each switch within the array, a certain number of CounterIncrement operations need to
be invoked by a process before it attempts to set the switch to 1. To keep track of the
number of invocations, each process has a local persistent variable denoted lcounter.
And since the number of invocations evolves with the index of the switches, we also use
the variable threshold to store the current number required for each process. Finally,
in the variable index, each process stores the value of the last switch it executed a
test&set() primitive on.

Figure 2.5: The array Switch[] of test&set objects and the corresponding number of
increments per switch.

Initially, the variable threshold is at 1. After a process invokes a CounterIncrement
operation, it will increment its local counter lcounter and then compare it to the value
of threshold. If the two match, the process will then increment the value of index, and
if this value is greater or equal to 1, the process also doubles the value of its threshold.
Then, the process attempts to set the switch at index in the array Switch[]. Regard-
less of whether it succeeds, the process will execute an instance MaxWrite(index) on
MaxSwitch. However, if it does succeed, the process will also reset the value of its local
counter lcounter to 0 because it has informed the other processes of the increments by
writing a switch. If the instance of CounterIncrement is the first instance invoked by
the process, and it fails to set the switch with the index 0, then the process will repeat
the steps for the switch with the index 1, since the two first switches both require a
single CounterIncrement instance.

During an instance of CounterRead , a process simply reads the value r ofMaxSwitch,
and if r > −1, then it will return k · 2r. Otherwise, the process will return 0. We show
that the return value falls within the approximation range defined by the sequential
specification of the k-multiplicative-accurate counter.

2.3.2 Linearizability

Let E be an execution of the k-multiplicative-accuratem-bounded counter implemented
in Algorithm 2. We construct a linearization L of E by removing some specific instances
of the CounterIncrememnt and CounterRead operations, then ordering the remaining
operations in E.

Let op be an incomplete CounterIncrement operation in E. We remove op from E
in all but the following scenario: op succeeds in setting a switch of index i to 1, and
the value of the max register MaxSwitch reaches i during E. We also remove from E,
any incomplete CounterRead operation.
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From the remaining operations in E, we denote OPw the set of CounterIncrement
operations that set a switch to 1, and OPl the set of remaining CounterIncrement
operations. And let OPr denote the set of CounterRead operations in E. We order the
operations in OPw

⋃
OPl

⋃
OPr according to the following rules:

1. Let op denote a CounterIncrement operation in OPw such that op sets to 1 the
switch with the index r, and let op′ be the first CounterIncrement operation
to write r to MaxSwitch. Such an operation exists because we remove any
incomplete CounterIncrement operation for which the index of the switch set by
the operation is never written to MaxSwitch. op is linearized at the step of op′

in which it writes r to MaxSwitch (line 15, 18, 23, or 26 of Algorithm 2).

2. The CounterRead operations in OPr are linearized at the step of reading the max
register MaxSwitch at line 28 of Algorithm 2.

3. We consider the partial order of the CounterIncrement operations in OPl where
for two operations op1 and op2 such that op1 ends before op2 is invoked, op1 is
before op2 in OPl.

We linearize the operations in OPl according to this partial order. op1 will be
linearized first according to the following rule: op1 is linearized before the first
operation already in L that follows op1 in the real-time execution order, or at the
end of L if such operation does not exist.

Lemma 2.3.1. Let op denote a CounterIncrement operation in OPw such that op sets
to 1 the switch with the index r, and let op′ be the first CounterIncrement operation to
write r to MaxSwitch. The step executed by op′ at line 15, 18, 23, or 26 of Algorithm
2, to write MaxSwitch is executed within the execution interval of op.

Proof. First, we prove that op′ exists. Since we assume that op terminates (any opera-
tion that does not is removed from E), op will execute line 15, 18, 23, or 26 of Algorithm
2 to write r to the max register MaxSwitch. Therefore, there exists an operation op′

in E that writes r to MaxSwitch.
If op = op′, the claim is trivial. We suppose that op′ is different than op. As already

mentioned, op will write r to MaxSwitch, and since op′ is the first operation to do so,
op′ needs to write r to MaxSwitch before op. Thus, op′ invokes MaxWrite(r) during
the execution interval of op.

Lemma 2.3.2 (Linearizability). Let op1 and op2 be two operations in E such that op1
ends before op2 is invoked. We have that op1 precedes op2 in L.

Proof. We consider four separate cases depending on whether op1 and op2 are CounterIncrement
or CounterRead operations:

• Let op1 and op2 be two CounterIncrement operations. If both operations are in
OPw, then they are linearized according to rule 1 at a point within their execution
interval (Lemma 2.3.1). If both operations are in OPl, then op1 is linearized before
op2 according to the linearization rule 3 which follows the partial order of the
operations in OPl. Otherwise, consider that op1 is in OPw and op2 in OPl. op1
is linearized first, then op2 is inserted after op1 according to linearization rule 3
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since op1 ends before op2 begins. Similarly, if op1 is in OPl and op2 is in OPw,
then op2 will be linearized before op1 since it is inserted before the first operation
already in L that starts after op1 ends.

• Let op1 and op2 be two CounterRead operations. From linearization rule 2, both
op1 and op2 are linearized at line 28 of Algorithm 2. Since they are linearized at
a point during their execution intervals, and we assume that op1 ends before op2
begins, the claim follows.

• Consider that op1 is a CounterIncrement and op2 is a CounterRead operation. If
op1 is in OPw, then the claim follows since both op1 and op2 are linearized within
their execution intervals (Lemma 2.3.1 and linearization rule 2). Suppose that op1
is in OPl. Based on linearization rule 3, it is inserted before the first operation
already in L that ends before op1 starts (or the end of L if such operation does
not exist). Since op1 also ends before op2 starts, op1 is linearized before op2.

• Lastly, suppose that op1 is a CounterRead and op2 is a CounterIncrement oper-
ation. The same arguments from the previous case hold. If op2 is in OPw, both
operations are linearized at a point during their execution intervals. Otherwise,
op2 is linearized before the first operation in L that starts after op2 ends. Meaning
that this operation is also linearized after op1 since op1 ends before op2 begins.
The claim follows.

Next, we show that the implementation respects the sequential specification of the
k-multiplicative-accurate counter.

Lemma 2.3.3. Each new value of MaxSwitch during E is an increment by 1 of the
previous value of MaxSwitch.

Proof. Let E be an execution of Algorithm 2 and consider process p during E. We have
that process p starts with a local threshold value of 1 stored in the variable threshold.
Throughout E, each time p invokes enough CounterIncrement operations such that the
value of its local counter matches the threshold, p increments the variable index by 1
and then eventually writes the new value of index to MaxSwitch. Each time p reaches
a new threshold, this behavior repeats and the process only ever attempts to write the
previous value of index plus one to the max register. Therefore, on the global scale of
the execution, all processes will do the same and the new value of MaxSwitch at any
point during E is an increment by 1 of the previous value of MaxSwitch.

Lemma 2.3.4. Let op denote an instance of the CounterRead operation that returns
x, and let v be the number of CounterIncrement operations before op in L. We have
v/k ≤ x ≤ k · v for k ≥

√
n+ 1.

Proof. Let r denote the value of MaxSwitch read during op at line 28 of Algorithm
2. From Lemma 2.3.3, the values written to MaxSwitch before op reads the value
r, are increments of 1 starting from −1 to r. Since the max register is a linearizable
object, the number of MaxWrite operations linearized before op is at least r. Therefore,
the minimum number of CounterIncrement operations necessary to reach this value
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of MaxSwitch is vmin = 1 +
∑r

j=1 2
j−1 = 2r. Indeed, to set the first two switches

a single CounterIncrement instance is required for each. Afterward, the number of
invocations required is multiplied by a factor of 2 each time it is reached. Furthermore,
the maximum number of CounterIncrement operations invoked before op is vmax =
1+

∑r
i=1 2

i−1+n(2r−1) = (n+1)·2r−n. The value corresponds to the minimum number
of invocations required, and an additional 2r − 1 instances per process to represent the
maximum number a process can count locally after the execution has reached the switch
at the index r.

We have that op returns x = k · 2r, thus vmax/k ≤ x. And we have x ≤ k · vmin as
long as k ≥

√
n+ 1. The claim follows.

2.3.3 Complexity Analysis

We consider the m-bounded max register implementation given by Aspnes et al. [5]
which has a step complexity of O(logm) for bothMaxWrite andMaxRead operations.

Lemma 2.3.5. A process executes O(log(logm+1)) steps during a call to the CounterRead
or CounterIncrement operation.

Proof. An instance of CounterRead calls the operation MaxWrite once and then com-
putes the return value. Similarly, the CounterIncrement operation calls the operation
MaxWrite a constant number of times and also computes a constant number of steps.
Since, We use a (logm + 1)-bounded max register in the implementation of the k-
multiplicative m-bounded counter, the claim follows.

2.4 Bounded k-multiplicative-accurate Max Regis-

ter

Algorithm 3 represents an implementation of a k-multiplicative-accurate max register.
The algorithm is wait-free, and has asymptotically optimal worst-case step complexity.
Indeed, we prove later on in the chapter a matching lower bound.

The key idea of our algorithm is to consider the k-base representation of values writ-
ten to the register and have Write operations store only the index of the bit preceding
(i.e., to the left of) the most significant bit (MSB) of their arguments. These indices
are stored in an (accurate)

(
(⌊logk(m − 1)⌋) + 1

)
-bounded max register implemented

in a wait-free manner [5]. A Read operation R reads the value p of the accurate max
register. If it equals 0 (implying that it was not written to yet), R returns 0. Otherwise,
p is the largest index written so far to the accurate max register and R returns kp. The
pseudo-code is presented by Algorithm 3.

We now prove that Algorithm 3 is a correct wait-free implementation of a k-
multiplicative-accurate max register.

Observation 2.4.1. Algorithm 3 is a wait-free implementation of a k-multiplicative-
accurate m-bounded max register.

Proof. Follows directly from the wait-freedom of the max register algorithm of [5].
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Algorithm 3: A k-multiplicative-accurate m-bounded max register

1 Shared variables

2 M :
(
(⌊logk(m− 1)⌋) + 1

)
-bounded max register initially 0

3 Function Read()
4 p←− M.read()
5 if p=0 then return 0;
6 else return kp;

7 end

8 Function Write(v)
9 p←− ⌊logkv⌋ + 1;

10 M.write(p);

11 end

Lemma 2.4.2. Algorithm 3 is a linearizable implementation of a k-multiplicative-
accurate m-bounded max register.

Proof. Let Mk
m denote a k-multiplicative-accuratem-bounded max register implemented

by Algorithm 3 and let E be an execution of Mk
m. We now specify how operation in-

stances on Mk
m in E are linearized. First, all the instances of Read that did not execute

line 4 in E and all the instances of Write operations did not execute line 10 in E do
not appear in the linearization. We say these are removed operations. Note that none
of the removed operations has completed in E. For all remaining instances, we define
the linearization point of a Read operation on Mk

m to be the linearization point of the
read operation it invoked on M in E (in line 4) and the linearization point of a Write

operation on Mk
m as the linearization point of the write operation it invokes on M (in

line 10). Since each non-removed operation instance on Mk
m in E is linearized at a step

it performs (hence during its execution interval), the linearization order we have define,
denoted by L, respects the real-time order of the operation instances in E.

It remains to show that L satisfies the sequential specification of a k-multiplicative-
accurate m-bounded max register. First note that since values written to Mk

m are from
{1, ...,m−1} and from lines 9-10, only values from {1, ..., ⌊logk(m−1)⌋+1} are written
to M. Let R denote a Read instance in L that returns 0 in line 5. Since only positive
values are ever written to M, it follows that R is not preceded in L by any Write

instance, hence the value of Mk
m when R is linearized is its initial value 0, so R returns

the exact value of Mk
m.

Assume, then, that R is preceded in L by one or more Write instances and returns
a positive value x = kp for some p ≥ 1. We need to prove that v/k ≤ x ≤ vk holds,
where v is the maximum value written by any Write() instance linearized before R
in L. Since M is linearizable and since we have linearized all non-removed instances
applied to Mk

m in E according the order of the operations they applied to M (in line
4 or in line 10), there exists a Write operation that writes some value w and appears
before R in L, such that ⌊logk w⌋ = p − 1 and p is the maximum value written to
M by any Write instance that precedes R in L. Let V = {w

∣∣⌊logk(w)⌋ = p − 1} be

the set of all the values written to Mk
m in L before R whose MSB equals p − 1. Let

v = max(V ). It follows that v is the maximum value written to Mk
m by any Write()

instance linearized in L before R. We have v ∈ [kp−1, kp−1] and x = kp. Consequently,
v ≤ x ≤ v · k and the sequential specification of the k-multiplicative m-bounded max
register is satisfied.

Theorem 2.4.3. Algorithm 3 is a wait-free linearizable implementation of a k-multiplicative-

accurate m-bounded max register with worst case operation step complexity O
(
min

(
log2(logk m), n

))
.
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Proof. Wait-freedom and linearizability follow from Observation 2.4.1 and Lemma 2.4.2,
respectively. As for step complexity – the worst case operation step complexity of the
wait-free implementation of an m-bounded max register of [5] is O

(
min(logm,n)

)
for

both Read and Write operations. Each operation of Algorithm 3 applies a single
operation on a

(
(⌊logk(m− 1)⌋) + 1

)
-bounded max register and a constant number of

additional steps. The theorem follows.

2.5 Unbounded k-multiplicative-accurate Max Reg-

ister

We present in this section a wait-free linearizable implementation of the unbounded k-
multiplicative-accurate max register with O(log2(logk(m))) amortized step complexity,
based on the bounded variant presented in Section 2.4.

2.5.1 Algorithm Description

We consider the implementation on an exact unbounded max register presented in
[12] and we “plug-in” our bounded k-multiplicative-accurate max register into their
construction to implement an unbounded k-multiplicative max register with amortized
step complexity of O(log2(logk(m))) for m ≥ n2.

The correctness of the resulting Algorithm 4 is guaranteed only in executions in
which the max register’s value is increased in bounded increments. This requirement is
formalized by the following definition.

Definition 2.5.1 (ℓ-Bounded-Increment Execution). Let E be an execution and
let M be an unbounded k-multiplicative max register object. We say that E is an ℓ-
bounded-increment execution for M if for each write operation op = Write(v) on M in
E, with v > ℓ, there exists a write operation op′ = Write(v′) on M in E that precedes
op, such that v − ℓ ≤ v′ < v.

To implement the unbounded k-multiplicative-accurate max register, we rely on
an infinite set of m-bounded k-multiplicative-accurate max registers (previously imple-
mented in Section 2.4) denoted maxj for j ∈ N0. To each maxj is associated a 1-bit
register denoted switchj.

When a process invokes aWrite(v) instance, it will compute the index of the number
of m-bounded max registers necessary to represent the value v. This is done by simply
doing the computation j ← ⌊ v

m
⌋. Then, the process will write the remainder of the

division of v by m to the bounded max register maxj, if switchj == 0 which signifies
that the bound m has not been reached yet for maxj.

The process will also set switchj−1 to 1. Because we consider a bounded-increment
execution, all the switches with an index smaller than j−1 have also been set to 1 (the
proof of this claim follows).

For the Read operation, the process traverses the set of switches until it finds the
first one that has not been set to 1. Then, it reads the value v of the corresponding
bounded max register and computes the return value v+ lasti ·m based on the index of
the switch lasti. To ensure wait-freedom, we employ the helping mechanism introduced
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by Baig et al. [12] and which we describe in detail in Section 2.2 where it is also used
for the implementation of the unbounded k-multiplicative-accurate counter.

2.5.2 Linearizability and Wait-freedom

We show in this section that the implementation of the unbounded k-multiplicative-
accurate max register is wait-free and linearizable and has an amortized step complexity
in O(log2(logk(m))) for m ≥ n2.

Claim 2.5.1. All the switches switchj in Algorithm 4 are set to 1 in an increasing
order starting from switch0 for an m-Bounded-Increment execution.

Proof. Let E denote an m-Bounded-Increment execution on the unbounded max reg-
ister implemented in Algorithm 4 and let op denote a Write(v) operation in E such
as j = ⌊v/m⌋ ≥ 1. During the execution of the lines 6 to 11 of the Write() operation
op, we know that switchj−1 is going to be set to 1. Furthermore, because E is an m-
Bounded-Increment execution, there exists another Write(v′) operation op′ that was
before op in E and such as ⌊v′/m⌋ = j − 1. During the execution of op′, similarly to
op, the switchj−2 is set to 1. By recurrence on j, we therefore have that every switch
from o to j − 1 is set to 1.

Lemma 2.5.2. Algorithm 4 is a linearizable implementation of a k-multiplicative un-
bounded max register.

Proof. To prove the linearizability of the k-multiplicative unbounded max register, we
consider Lemma 2 [12] which proves the linearizability of the unbounded max register.
This proof guarantees the linearizability of the object under the assumption (Claim 1 )
that the values written to the register are not too far apart, ensuring that the switches
are set to 1 consecutively. This condition is satisfied when m ≥ n

We define a linearization order for all operations that terminated in E and remove
any that have not finished. We start by defining the linearization point of the Write()
operations that execute line 12, and Read() operations that execute line 23 as the access
point to the max register object. Then, a Write() operation that do not access the max
register object is positioned in L following the last linearized Write() operation that
precedes it in the execution order of E. Finally a Read() operation that invokes the
GetHelp() function and does not access the max register object is positioned before the
linearizedWrite() instance that occurs afterwards in the execution order of E. We need
to prove that this linearization L satisfies the sequential specification. Let op denote a
Read() operation in L that returns x = j · m + r. There exists a Write() operation
linearized before op and that writes t to the j-th max register such as t/k ≤ r ≤ t · k,
because the k-multiplicative m-bounded max register employed in the algorithm is
linearizable and the value returned by op is either read directly from this max register
or through the call to the GetHelp() function which accesses an array containing a copy
of the max register value. Let OPW be the set of Write() operations linearized before
op with such input values (i.e. OPW = {Write(v), v = j ·m+ t AND t/k ≤ r ≤ t · k}).
And let op′ ∈ OPW be the Write() operation with the maximum input value u. We
assume the existence of a Write() operation linearized before op with an input value
w = h · m + g such as h > j. The fact that this operation is linearized before op in
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Algorithm 4: k-multiplicative unbounded max register based on Algorithm 1
[12]

1 Shared variables
2 switchj ∈ {0, 1} : a 1-bit register for each j ∈ N0, initially all 0.
3 maxj : a k-multiplicative m-bounded max register object for each j ∈ N0,

initially all 0.
4 H[n] initially all (0, 0) : a size n array storing tuples, H[i] used by process i to

help other processes.
5 Local persistent variables
6 lasti ∈ N0 : stores the largest index j such that process i accessed maxj,

initially 0.
7 sni, an integer counting the number of write operations done by process i,

initially 0.

8 Function Write(v)
9 v′ ←− v mod m;

10 j ←− ⌊ v
m
⌋;

11 if switchj == 0 then
12 maxj.write(v

′);
13 if j > 0 then
14 curMax←− maxj−1.read() + (j − 1) ·m;
15 if switchj−1 == 0 then
16 sni ←− sni + 1;
17 H[i]←− (sni, curMax);
18 switchj−1 ←− 1;

19 lasti ←− max(j, lasti);

20 end
21 Function Read()
22 c←− 0 ;
23 while switchlasti ̸= 0 do
24 lasti ←− lasti + 1;
25 c←− c+ 1;
26 if c mod n == 0 then
27 if (hV al←− GetHelp(c)) > 0 then
28 return hV al;

29 end
30 v ←− maxlasti .read();
31 return v + (lasti ·m);

32 end
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Algorithm 5: The GetHelp utility function for process i. [12]

1 Local persistent variables
2 HRi[n] : an array of integers, stores local copies of the i-th row of the H array.
3 SNi[n] : an array of integers, counting the number of writes by each process

that helps process i.

4 Function GetHelp(c)
5 if c == n then
6 for (j = 0; j < n; j ++) do
7 HRi[j]←− H[j] ;
8 SNi[j]←− HRi[j].sn;

9 end

10 else
11 for (j = 0; j < n; j ++) do
12 HRi[j]←− H[j] ;
13 if HRi[j].sn− SN [j] ≥ 2 then
14 return HRi[j].val;

15 end

16 end
17 return 0;

18 end

L, ensures that line 5 of Algorithm 4 is executed before the Read() operation if it is
a Write() operation that modifies a max register object (we assume it is with no loss
of generality because otherwise, there exists a previous Write() operation in L with
a larger than or equal input). Meaning that the return value of op would have to be
h · m + w with g/k ≤ w ≤ g · k either from directly accessing the k-multiplicative
m-bounded max register that corresponds to the h-th switch and not the j-th or from
the return value from the call to the GetHelp() function, which contradicts the order
of linearization in L. Furthermore, we have u = j ·m+ s and s/k ≤ r ≤ s · k, therefore
j ·m+ s/k < x = j ·m+ r < j ·m+ s/k satisfying the sequential specification of the k-
multiplicative unbounded max register u/k = (j ·m+s)/k ≤ x ≤ k ·u = (j ·m+s)k.

Lemma 2.5.3. Algorithm 4 is an implementation of a k-multiplicative unbounded max
register with an amortized step complexity of O(log2(logk(m))) when m ≥ n2.

Proof. The complexity of the k-multiplicative max register implemented by Algorithm
2 [12] is a direct result of the cost of the operations on the max register employed in the
implementation (lines 2 and 7), we follow a similar reasoning to bound the amortized
step complexity AmtSteps of the execution E of the k-multiplicative unbounded max
register given by the following formula:

AmtSteps(E) =

∑
op∈Ops(E)

Steps(op, E)

|Ops(E)|
With Ops(E) the set of all operations that appear in E and Steps(Op,E) the

number of steps performed by an operation Op in E. Let OpsW (E) denote the set of w
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Write() operations and Opsr(E) the set of r Read() operations in E, and let loopop be
the cost of the loop in the Read() operation. Furthermore, we note that the execution
scenario of the Read() operation in which GetHelp() is invoked requires an additional
cost of O(n) steps. The call to GetHelp() happens once every k · n steps for k > 1
when c = 0 mod n . Therefore, the number of steps taken during a Read() operation
inside the GetHelp() function is O(loopop). When substituting the exact m-bounded
max registers objects with the k-multiplicative m-bounded max registers, the cost of
accessing or modifying the max registers employed in the implementation drops from
log(m) to log2(logk(m)). Therefore we have:

AmtSteps(E) = O
(
(

∑
op∈OpsW (E)

log(logk m)

+
∑

op∈OpsR(E)

log(logk m) + loopop)/(w + r)
)

If r = 0, then AmtSteps(E) = O(log(logk m)) trivially, so assume that r > 0. From
lines 16 and 17, for every process i, lasti is never decreased and is incremented once in
every iteration of the while loop, therefore:∑

op ∈ OpsR(E)

loopop = O
(
r +

∑
i∈P

lasti

)
.

Consequently,

AmtSteps(E) = O
(
(w · log(logk m) + r · log(logk m)

+ (r +
∑
i∈P

lasti))/(w + r)
)
.

Assume that max register maxα is accessed in E. Since E is an n-bounded-increment
execution and all maxȷ registers arem-bounded, at leastm·(α−1)/n Write() operations
have completed prior to this access. Letting L = max

i∈P
lasti denote the maximum value

of all lasti variables at the end of E, we get that w ≥ m

n
(L − 1). Furthermore,∑

i∈P

lasti ≤ n · L. Thus,

AmtSteps(E) = O
(w log(logk m) + r log(logk m) + (r + n · L)

w + r

)
= O

(
log(logk m) +

n · L
m

n
(L − 1) + r

)

= O
(
log(logk m) +

n2

m
L

(L − 1) +
n

m
r

)
we have an amortized step complexity of O(log2(logk(m))) for the unbounded k-

mutliplicative max register when r > 0 and m ≥ n2.

From Lemma 2.5.2, and 2.5.3 we have
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Theorem 2.5.4. Algorithm 4 is a wait-free linearizable implementation of a k-multiplicative
unbounded max register with an amortized step complexity of O(log2(logk(m))) when
m ≥ n2.

Proof. The proof for the property of wait-freedom of Algorithm 2 [12] still holds when
we substitute the m-bounded max register with the k-multiplicative m-bounded max
register since we prove this latter to be wait-free. The linearizability and complexity
results are from Lemma 2.5.2 and Lemma 2.5.3 respectively.

2.6 Worst-case Step Complexity Lower bound for

k-multiplicative-accurate m-bounded Max Reg-

ister and Counter

Aspnes et al. [7] proved a worst-case step complexity on the lower bound of a class
of concurrent objects called L-perturbable, that includes objects such as max registers,
counters and snapshots. L is called the perturbation bound. Roughly speaking, an object
is L-perturbable if, for every implementation of the object, there exists an operation Op
and an execution E, in the course of which Op is “perturbed” L times. An outstanding
operation Op by process p is said to be perturbed by a process q, if a solo execution
by q can change the response of a solo execution by p. They prove [7, Theorem 1]
that any obstruction-free implementation of an L-perturbable object O from historyless
primitives has an execution in which some process accesses Ω

(
min(log2 L, n)

)
distinct

base objects during a single operation instance. Specifically, this implies that the worst-
case step complexity of such implementations is Ω

(
min(log2 L, n)

)
.

For the sake of presentation completeness, we restate the definition of an L-perturbable
object from [7].

[5], Definition 2. Let I be an obstruction-free implementation of an object. The set
Sk of k-perturbing executions with respect to an operation instance opn by process pn is
defined inductively as follows:

1. S0 is the singleton set containing the empty sequence.

2. If αk−1λk−1 is in Sk−1, where λk−1 consists of n − 1 events, one by each of the
processes p1, . . . , pn−1, then αk−1λk−1 is in Sk. In this case, we say that αk−1λk−1

is saturated.

3. Suppose αk−1λk−1 is in Sk−1, no process has more than one event in λk−1, and
there is a sequence γ of events by a process pl different from pn and the processes
that have events in λk−1, such that the sequences of events by pn as it performs
opn after αk−1λk−1 and αk−1γλk−1 differ. Let γ = γ′eγ′′, where e is the first event
of γ such that the sequences of events taken by pn as it performs opn by itself after
αk−1λk−1 and after αk−1γ

′eλk−1 differ. Let λ be some permutation of the event
e together with the events in λk−1, and let λ′, λ′′ be any two sequences of events
such that λ = λ′λ′′. Then the execution αkλk is in Sk, where αk = αk−1γ

′λ′ and
λk = λ′′.
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[5], Definition 3. An obstruction-free implementation of an object is L-perturbable if
there is an operation instance opn such that the set SL of L-perturbing executions with
respect to opn by pn is nonempty.

An objectO is perturbable if all its obstruction-free implementations are perturbable.

[5], Theorem 1. Let A be an n-process obstruction-free implementation of an L-
perturbable object O from historyless primitives. Then A has an execution in which
some process accesses Ω(min(log2 L, n)) distinct base objects during a single operation
instance.

Lemma 2.6.1. A k-multiplicative-accurate m-bounded max register is Θ(logkm)-perturbable
for k > 1.

Proof. Let O be a k-multiplicative-accurate m-bounded max register and consider an
obstruction-free implementation of O. We show that O is (1

2
logk(m − 1))-perturbable

for a Read() operation instance opn by process pn. We proceed by induction where
the base case for r = 0 is immediate. Let r < 1

2
logk(m − 1) and let αr−1λr−1 be

an (r − 1)-perturbing execution of O. If αr−1λr−1 is saturated, then it is also an r-
perturbing execution. Otherwise, denote by vr−1 the maximum input to the write()

operations linearized before opn in the execution sequence αr−1λr−1. Since αr−1λr−1 is
not saturated, there exists a process pl ̸= pn that does not take steps in λr−1. Let γ be
the execution fragment by pl where it finishes any incomplete operation in α and then
performs a write() operation to the max register with the value vr = k2vr−1+1. Then
opn must return a value x such that kvr−1 < vr/k ≤ x ≤ kvr when run after αr−1γλr−1

. It follows that an r-perturbing execution can be constructed from αr−1λr−1 and γ as
specified by [5], Definition 2. Because O is an m-bounded max register, during the rth
step of the induction, the value written to the max register must satisfy vr ≤ m − 1.
Consequently it suffices to have:

vr ≤ (k + 1)2r ≤ m− 1 =⇒ r ≤ 1

2
logk+1(m− 1) = Θ(logkm)

from Lemma 2.6.1 and [5], Theorem 1 we have the following theorem:

Theorem 2.6.2. The worst-case step complexity of a k-multiplicative m-bounded max
register is Ω

(
min(log2(logk m), n)

)
Lemma 2.6.3. A k-multiplicative-accurate m-bounded counter is Θ(logk(m))-perturbable
for k > 1.

Proof. Let O be a k-multiplicative m-bounded counter and consider an obstruction-free
implementation ofO. We show thatO is (1

2
logk(m−1))-perturbable for a CounterRead()

operation instance opn by the process pn. We proceed by induction where the base
case for r = 0 is immediate. Let αr−1λr−1 be an (r − 1)-perturbing execution of O. If
αr−1λr−1 is saturated, then it is also an r-perturbing execution. Otherwise, let Ir denote
the number of CounterIncrement() operation instances performed by the perturbing
process in iteration r. We have that I1 = 1 in order for opn to return a value greater
than 0. For r > 1, if opn runs after ar−1λr−1 it can return a value that is as large as
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k ·
∑r−1

j=1 Ij. Therefore, we need the number of complete CounterIncrement() operation

instances after ar−1γλr−1 to be at least k2 ·
∑r−1

j=1 Ij +1 for opn to return a value greater

than k ·
∑r−1

j=1 Ij.

Besides the CounterIncrement() operation instances in γ, at least
∑r−1

j=1 Ij − (r− 1)

have finished, therefore setting Ir = (k2−1)·
∑r−1

j=1 Ij+r implies that opn returns at least
1
k
(
∑r−1

j=1 Ij−(r−1)+Ir) =
1
k
(
∑r−1

j=1 Ij−(r−1)+(k2−1)·
∑r−1

j=1 Ij+r) = 1
k
(k2 ·

∑r−1
j=1 Ij+1)

which is greater tha k ·
∑r−1

j=1 Ij as needed.

Ir =
r−1∑
i=0

(r − i)(k2 − 1)i =
r∑

i=1

i · (k2 − 1)r−i

= (k2 − 1)r
r∑

i=1

i

(k2 − 1)i

=
(k2 − 1)((k2 − 1)r − 1) + r(2− k2)

(k2 − 2)2
≤ k2r ≤ m

=⇒ r ≤ 1

2
logk(m) = Θ(logkm)

From Lemma 2.6.3 and [5], Theorem 1, we prove the following Theorem

Theorem 2.6.4. The worst-case step complexity of a k-multiplicative m-bounded counter
is Ω

(
min(log2(logkm), n)

)
2.7 Amortized Step Complexity Lower bound for

k-multiplicative-accurate Counter

In this section, we prove that the total step complexity of solo-terminating implemen-
tations of k-multiplicative accurate counters is Ω(n log2q+1

n
k2
) for k ≤

√
n/2, assuming

the implementation uses base objects that support only read, write and either reading
or regular conditional primitives of arity q or less.

For sake of completeness, in the following, we remember the definitions and the
statement of lemmata presented in [10] that are used to prove our lower bound. In
particular, only Lemma 2.7.2, Corollary 2.7.2.1, Lemma 2.7.4 and Theorem 2.7.5 differ
from the original work.

Preliminaries

From now on, execution fragments are defined as (finite or infinite) sequences of events,
with the understanding that each execution fragment is the projection of a single cor-
responding sequence of steps.

If a process has not completed its operation instance, it has exactly one enabled
event, which is the next event it will perform, as specified by the algorithm it is using
to apply its operation instance to the implemented object. We say that an execution
E is quiescent if every instance that starts in E completes in E.
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Processes communicate with one another by issuing events that apply read-modify-
write (RMW) primitives to vectors of base objects. We assume that a primitive is
always applied to vectors of the same size. This size is called the arity of the primitive.
RMW primitives of arity 1 are called unary or single-object RMW primitives. RMW
primitives of arity larger than 1 are called multi-object RMW primitives. For presenta-
tion simplicity we assume that all the base objects to which a primitive is applied are
over the same domain. A RMW primitive, applied to a vector of k base objects over
some domain D, is characterized by a pair of functions, ⟨g, h⟩, where g is the primi-
tive’s update function and h is the primitive’s response function. The update function
g : Dk × W → Dk, for some input-values domain W , determines how the primitive
updates the values of the base objects to which it is applied.

In the following definitions, when we refer to an event as issued after execution E, we
mean it is issued immediately after execution E. Similarly, when we refer to the state of
an object after execution E, we refer to its state immediately after E. Let e be an event,
issued by process p after execution E, which applies the primitive ⟨g, h⟩ to a vector of
base objects ⟨o1, . . . , ok⟩. Then e atomically does the following: it updates the values
of objects o1, . . . , ok to the values of the components of the vector g(⟨v1, . . . , vk⟩, w),
respectively, where −→v = ⟨v1, . . . , vk⟩ is the vector of values of the base objects after E,
and w ∈ W is an input parameter to the primitive. We call −→v the object-values vector
of e after E. The RMW primitive returns a response value, h(−→v , w), to process p. If
W is empty, we say that the primitive takes no input.

A k-compare-and-swap (k-CAS), for some integer k ≥ 1, is an example of a RMW
primitive.

Next, we revise the concept of conditional synchronization primitives.

Definition 2.7.1. A RMW primitive ⟨g, h⟩ is conditional if, for every possible input

w,
∣∣∣{−→v |g(−→v , w) ̸= −→v

}∣∣∣ ≤ 1. Let e be an event that applies the primitive ⟨g, h⟩ with
input w. The change point of e is the unique vector −→cw such that g(−→cw, w) ̸= −→cw; any
other vector is a fixed point of e.

In other words, a RMW primitive is a conditional primitive if, for every input
w, there is at most one vector −→cw such that g(−→cw, w) ̸= −→cw. k-CAS is a conditional
primitive for any integer k ≥ 1. The single change point of a k-CAS event with input
⟨old1, . . . , oldk, new1, . . . , newk⟩ is the vector ⟨old1, . . . , oldk⟩. Read is also a conditional
primitive, since read events have no change points.

The next definition captures the extent to which processes are aware of the par-
ticipation of other processes in an execution. Intuitively, a process p is aware of the
participation of another process q in an execution if there is information flow from q
to p in that execution; that is, p reads a shared-memory value that was either directly
written by q or indirectly influenced by a value written by q. The following definitions
formalize this notion.

Definition 2.7.2. Let eq be an event by process q in an execution E, which applies
a non-trivial primitive to a vector v of base objects. We say that an event ep in E
by process p is aware of eq if ep accesses a base object o such that at least one of the
following holds:

• There is a prefix E ′ of E such that eq is visible on o in E ′ and ep is a RMW event
that applies a primitive other than write to o, and it follows eq in E ′, or
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• there is an event er that is aware of eq in E and ep is aware of er in E.

If an event ep of process p is aware of an event eq of process q in E, we say that p
is aware of eq and that ep is aware of q in E.

The following definition quantifies the extent to which a process is aware of the
participation of other processes in an execution.

Definition 2.7.3. Process p is aware of process q after an execution E if either p = q
or p is aware of an event of q in E. The awareness set of p after E, denoted AW (E, p),
is the set of processes that p is aware of after E.

We use the following technical definition and lemma.

Definition 2.7.4. Let S = {e1, · · · , ek} be a set of events by different processes that
are enabled after some execution E, each about to apply write or a conditional RMW
primitive. We say that an ordering of the events of S is a weakly-visible schedule of S
after E, denoted by σ(E, S), if the following holds. Let E1 = Eσ(E, S), then

1. at most a single event of S is visible on any one object in E1. If ej ∈ S is visible
on a base object in E1, then ej is issued by a process that is not aware of any
event of S in E1,

2. any process ia aware of at most a single event of S in E1, and

3. all the read events of S are scheduled in σ(E, S) before any event of σ(E, S)
changes a base object.

Weakly-visible schedules are used in the sequel for constructing executions that slow
down the rate in which processes become aware of other processes. The following lemma
shows that every set of outstanding write and conditional events has a weakly-visible
schedule.

Lemma 2.7.1. Let S = {e1, · · · , ek} be a set of events by different processes that
are enabled after some execution E, each about to apply write or a conditional RMW
primitive. Then there is a weakly-visible schedule of S after E.

Lower bound

The key intuitions behind the following lower bound proofs are that first, in any n-
process execution of a k-multiplicative accurate counter implementation, ‘many’ pro-
cesses need to be aware of the participation of ‘many’ other processes in the execution,
and second, if processes only use read, write and conditional primitives, then a schedul-
ing adversary can order events so that information about the participation of processes
in the computation accumulates ‘slowly’. We use Definitions 2.7.2 and 2.7.3, as well as
Lemma 2.7.1, to capture this intuition.

The following lemma proves a relation between the value returned by a CounterRead
operation instance of a process in some execution and the size of that process’ awareness
set after that execution.
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Lemma 2.7.2. Let E be an execution of a solo-terminating k-multiplicative accu-
rate counter object implementation where each process executes one instance of the
CounterIncrement() operation followed by one instance of the CounterRead() opera-
tion. If the CounterRead() instance by a process p returns i in E then |AW (E, p)| ≥ i

k
.

Proof. Assume, by way of contradiction, that there is an execution E where each process
executes one instance of the CounterIncrement() operation followed by one instance of
the CounterRead() operation, and a process p such that a CounterRead() instance by
p, namely op, returns i and |AW (E, p)| < i

k
.

We construct a new execution E ′ as follows: for any process q /∈ AW (E, p), we first
remove all the events of q from E; then, for any process q′, we remove all the events of
q′ that are aware of q. Note that if an event eq′ of q

′ is aware of q, then all following
events by q′ are also aware of q and are removed. Also, no events of p are removed since
p is aware only of processes in AW (E, p).

We prove that E ′ is an execution, and that it is indistinguishable from E. We
consider events in the order they appear in E ′. Let e′q be an event by process q′ that
appears in E ′, namely E ′ = E ′

1e
′
qE

′
2. Since e

′
q is also in E, we can also write E = E1e

′
qE2.

For the induction, assume that E ′
1 is an execution and that it is indistinguishable to

every process that appears in it from E1. In particular, q′ does not distinguish between
E ′

1 and E1 and takes the same step after both of them. To see why q′ obtains the same
response in e′q after E ′

1 and after E1, note that it can return a different response only
if in E, e′q is aware of an event e that was removed from E1. This happens only if
e is aware of some process q /∈ AW (E, p), meaning that in E, e′q is also aware of q,
contradicting the fact that e′q was not removed. Hence E ′

1e
′
q is an execution and q′ does

not distinguish between E ′
1e

′
q and E1e

′
q.

This implies that the CounterRead() instance by p returns i also in E ′; on the
other hand, less than i

k
processes participate in E ′. Let E” be the extension of E ′ in

which the processes that participate in E ′ complete their operation instances, one at a
time. This execution exists by solo-termination, and results in a quiescent execution.
However, less than i

k
instances of CounterIncrement() operations completed in E”,

and we have that p returns i when invoking op. Thus, the response of the op is not
linearizable. In particular, consider any linearization L of E” and let v be the number
of CounterIncrement() instances linearized before op in L, we have that v

k
≤ i ≤ k · v <

k · i
k
= i.

Similar to Corollary 6 in [10], the following corollary is an immediate consequence
of Lemma 2.7.2.

Corollary 2.7.2.1. Let E be a quiescent n-process execution of a solo-terminating k-
multiplicative counter implementation, where each process executes one instance of the
CounterIncrement() operation followed by one instance of a CounterRead() operation.
Then, the awareness sets of n

2
processes contain at least n

2k2
other processes after E.

Proof. Let L denote any linearization of E, and let op be the i-th CounterRead() in-
stance in L. Since op is the i-th instance of CounterRead() in L, it returns v such as
v ≥ i

k
. By considering the last n

2
processes linearized and by Lemma 2.7.2, the claim

follows.
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Information about processes that participate in an execution is transferred through
base objects. The following definition quantifies the number of other processes a process
can become aware of when it reads a base object.

Definition 2.7.5. Let E be an execution, o be a base object, and q be a process. We
say that o has record of q after E if there is an event e, visible on o in E, such that the
following hold:

1. E = E1eE2,

2. e is an application of a non-trivial primitive to an objects-vector that contains o
by some process r such that q ∈ F (E1e, r).

The familiarity set of o after E, denoted F (E, o), contains all processes that o has record
of after E.

Definition 2.7.6. Let E be an execution. We let M(E) = maxp,o({|AW (E, p)|
∣∣p ∈

P}∪{|F (E, o)|
∣∣o ∈ B}) denote the maximum size of a process awareness set and object

familiarity set after E.

Definition 2.7.7. Let P be a set of synchronization primitives. We say that P is c-
bounded, for some constant c, if for every execution E and for every set S of events
that are enabled after E, applying primitives from P, there is a schedule σ of S such
thatM(Eσ)/M(E) ≤ c holds.

From Definition 2.7.7, it is clear that the smaller c is, the more can a scheduling
adversary slow down the rate in which processes become aware of others.

Lemma 2.7.3. The set of primitives that contains write and all the conditional prim-
itives of arity c or less is (2c+ 1)-bounded.

Lemma 2.7.4. Let A be an n-process solo-terminating implementation of a k-multiplicative
counter from base objects that support only primitives from a c-bounded set P and
0 < k ≤

√
n/2. Then A has an execution E that contains Ω(n logc

n
k2
) events,

in which every process performs a single CounterIncrement() instance and a single
CounterRead() instance.

Proof. We construct an n-process execution, E, with Ω(n logc
n
k2
) events, in which ev-

ery process performs a single CounterIncrement() instance and a single CounterRead()
instance. The inductive construction proceeds in rounds, indexed by the integers
1, 2, · · · , r, for some r ∈ N , and it maintains the following invariant: before round
i starts, the size of the awareness set of any process and the size of the familiarity set
of any base object is at most ci−1.

If a process p has not completed its operation instances before round i starts, we
say that p is active in round i. All processes are active in round 1. All the processes
that are active in round i have an enabled event in the beginning of round i. We denote
the set of these events by Si. We denote the execution that consists of all the events
issued in rounds 1, . . . , i by Ei. We also let E0 denote the empty execution.

For the induction base, note that, before execution starts, objects have no record of
processes and processes are only aware of themselves. ThusM(E0) = 1 holds.
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For the induction step, assume thatM(Ei−1) ≤ ci−1 holds. Since P is c-bounded,
there is an ordering σi of the events of Si such thatM(Ei−1σi) ≤ cM(Ei−1) ≤ ci. We
let Ei = Ei−1σi.

By Corollary 2.7.2.1, the awareness sets of n
2
processes contain at least n

2k2
other

processes after E with 1 ≤ n
2k2
≤ n, meaning that k ≤

√
n/2. Therefore, each of

these processes is active in at least the first logc(
n
2k2
− 1) rounds, performing at least

logc(
n
2k2
− 1) events in E.

Our step complexity lower bound is immediate from Lemma 2.7.4 and Lemma 2.7.3.

Theorem 2.7.5. Let A be an n-process solo-terminating implementation of a k-multiplicative
counter from base objects that support only read, write and either reading or regu-
lar conditional primitives of arity q or less. Then A has an execution E that con-
tains Ω(nlogq+1(n/k

2)) events for k ≤
√

n/2, in which every process performs a single
CounterIncrement() instance and a single CounterRead() instance.

2.8 Discussion

We have presented upper and lower bounds on the step complexity of a variant of
deterministic approximate counters and max registers.

Specifically, we presented a wait-free linearizable k-multiplicative-accurate counter
for k ≥ n with constant amortized step complexity. While the condition on the approx-
imation parameter k is necessary to ensure the return value of CounterRead operations
remains valid for executions of any length, it is worth noting that for executions where
more than 1 + n(k − 1) CounterIncrement operations are executed prior to the first
CounterRead operation, the condition lessens to k ≥

√
n.

We also show that by bounding the execution, we are able to implement the k-
multiplicative-accurate counter for k ≥

√
n in a wait-free linearizable manner and with

a worst-case step complexity of O(min(log(log(m + 1)), n)). The step complexity of
our implementation approaches the lower bound on the worst-case complexity imple-
mentation of an m-bounded k-multiplicative-accurate counter which we prove to be
Ω(min(log(logk m), n)).

We have also proved the possibly counter-intuitive result that when the accuracy
parameter k does not depend on n, relaxing counter semantics by allowing inaccuracy
of a multiplicative factor cannot asymptotically reduce the amortized step complexity
of unbounded counters by more than a logarithmic factor.

The behavior of the counter in an unbounded relaxed setting for a parameter
k ∈]

√
(n
2
), n[ remains an open question. The maximum improvement in the worst-case

step complexity of the bounded variant of k-multiplicative-accurate counters remains
an open question. Also, when k is constant, it is unclear whether there exists a de-
terministic wait-free k-multiplicative-accurate counter implementation with o(log2 n)
amortized step complexity.

We also show that relaxing the semantics of max registers by allowing inaccuracy of
even a constant multiplicative factor yields an exponential improvement in the worst-
case step complexity of the bounded variant and in the amortized step complexity of
the unbounded one.
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Chapter 3

Efficient Queue Implementations

Abstract

Despite the widespread usage of FIFO queues in distributed applications, de-
signing efficient wait-free implementations of queues remains a challenge. Al-
though the literature contains a variety of FIFO queue implementations, the vast
majority rely on concurrency constraints: for a given implementation, not all
processes are allowed to execute either/or Enqueue and Dequeue operations.

These restrictions on the number of dequeuers or the number of enqueuers
that can operate on the queue hold even when the implementations use strong
synchronization primitives, like the Compare&Swap.

The best upper bound for a multiple enqueuer wait-free FIFO queue imple-
mentation is given by Jayanti and Petrovic in [28] where both the Enqueue and
Dequeue operations are in O(log n) with n the total number of processes. How-
ever, their implementation risks violating the sequential specification of the queue
for executions with multiple dequeuer processes because multiple Dequeue oper-
ations might return the same element. If we do not limit the number of processes
that can perform enqueue and dequeue operations, the best-known upper bound
on the worst-case step complexity for a wait-free queue is given by Khanchandani
and Wattenhofer [30]. In particular, they present an implementation of a multiple
dequeuer multiple enqueuer wait-free queue whose worst-case step complexity is
in O(

√
n), where n is the number of processes.

In this work, we investigate whether it is possible to improve this bound. In
particular, we are interested in a logarithmic worst-case step complexity wait-free
implementation that does not suffer from concurrency constraints. Therefore, we
present a wait-free FIFO queue implementation that supports n enqueuers and
k dequeuers where the worst case step complexity of an Enqueue operation is
in O(log n) and where the complexity of the Dequeue operation depends on the
level of concurrency during the execution and is O(k log n) in the worst-case
scenario where all dequeuer processes are concurrent at a certain point during
the execution.

We then rely on the relaxation of the FIFO queue semantics to show that
allowing concurrent Dequeue operations to retrieve the same element results in
an implementation with O(log n) worst-case step complexity for both the Enqueue
and Dequeue operations.

An iteration of this work was presented during the 2022 Conference On Prin-
ciples Of Distributed Systems (OPODIS).
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3.1 Introduction

Shared FIFO queues are an important building block for the design of many concurrent
applications.

So in order to have high-performing applications, it is crucial to have efficient imple-
mentations of the FIFO queue. These implementations also need to satisfy system-wide
progress in the case of a failure. Oftentimes, implementations are content with the non-
blocking condition of lock-freedom which allows individual threads to starve but guar-
antees system-wide progress. Imposing the stricter guarantee of wait-freedom where
all operations finish in a finite number of steps, is often costly and requires intricate
helping mechanisms which can complicate the algorithms.

The design of efficient wait-free and linearizable concurrent queues is a difficult
task even if the implementation is allowed to rely on strong synchronization primitives
like Compare&Swap. However, many implementations of concurrent FIFO queues
have been proposed using shared objects provided by multiprocessor architectures, e.g.
Compare&Swap, registers, Fetch&Add, and so on.

Most implementations with sublinear step complexity have limited concurrency,
meaning that they limit either the number of enqueuers or dequeuers. For instance,
David [16] presents a wait-free linearizable queue with a single enqueuer and multiple
dequeuers with constant step complexity. Jayanti and Petrovic [28] provide an im-
plementation of a multiple enqueuer, single dequeuer queue with O(log n) worst-case
step complexity, where n is the number of processes. More recently, Khanchandani
and Wattenhofer proposed a multiple enqueuer and multiple dequeuer wait-free queue
implementation where both the enqueue and the dequeue operations have a worst-case
step complexity of O(

√
n).

Previous solutions leave open the question of whether there exists a wait-free multi-
ple enqueuer and multiple dequeuer queue with logarithmic worst-case step complexity.
We investigate the step complexity cost requirements of a FIFO queue implementation
with no limitations on the number of processes that can apply Enqueue and Dequeue
operations.

By extension of algorithmic ideas from [28], we first show that a better complexity
can be achieved even with multiple enqueuers and multiple dequeuers. In particular,
we present a wait-free linearizable concurrent queue for n processes from which all n
are enqueuers and k ≤ n are dequeuers. In our implementation, the step complexity of
an Enqueue operation is in O(log n), while the complexity of a Dequeue operation is in
O(k log n). Our implementation has logarithmic complexity as long as k is a constant.
Also, it improves on the implementation by Khanchandani and Wattenhofer solution
as long as k ∈ O(

√
n

logn
).

Then, we show that both Enqueue and Dequeue operations can have worst-case
step complexity in O(log n), if we allow concurrent Dequeue operations to return the
same element. This relaxed semantic denoted multiplicity has been formalized and
introduced for the FIFO queue in [14]. Table 3.1 summarizes the state of the art and
compares it to the contributions in this work.
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Step complexity Space complexity Concurrency limit
CAS -
LL/SC

Fetch&Inc -
Swap

Khanchandani and
Wattenhofer [30]

O(
√
n)

O(nm) of
O(max(log n, logm)) registers

None Y Y

David [16] O(1) Unbounded Single enqueuer N Y
Jayanti and
Petrovic [28]

O(log n) O(n+m) Single dequeuer Y N

Li [33] O(m) Unbounded 2 dequeuers N Y
Eisenstat [17] O(m) Unbounded 2 enqueuers N Y
Exact queue
(this work)

O(log n) for Enq
O(k log n) for Deq

Unbounded k dequeuers Y Y

Relaxed queue
(this work)

O(log n) Unbounded None Y Y

Table 3.1: Comparing the contributions to state-of-the-art queue implementations (n
is the number of processes and m is the number of enqueued elements).

3.2 Wait-Free Linearizable Queue

We present in this section our implementation of a multiple enqueuer multiple dequeuer
FIFO queue. Then, we show that the implementation is linearizable and wait-free
and that the worst-case step complexity of the Enqueue operation and the Dequeue
operation is O(log n) and O(k log n), respectively, where k is the number of dequeuer
processes and n the number of all processes.

3.2.1 Inspiration

Jayanti and Petrovic [28] give an implementation of a queue that supports a single
dequeuer process and any number of enqueuers. Their implementation has a worst-
case step complexity of O(log n) for both Enqueue and Dequeue operations, where n is
the number of processes.

A preliminary step to their implementation is to present a single enqueuer single
dequeuer queue. Implementing this object is simple because of the absence of concur-
rency between the two processes in any execution: an instance of Dequeue operates at
the head of the queue while an instance of Enqueue acts on its tail. The difficulty arises
when considering multiple dequeuer processes. In order to use the single enqueuer sin-
gle dequeuer queue as a base object for the main algorithm, an additional function was
necessary to allow dequeuer processes to read the front of the queue.

The main data structure for the multiple enqueuer single dequeuer queue (Figure
3.1 consists of a binary tree where each leaf is associated with a single enqueuer single
dequeuer queue. The number of leaves also represents the number of total enqueuer
processes. Henceforth, we denote the single enqueuer single dequeuer queues at the
leaves sub-queues. The data structure used for all the tree nodes is the CAS object.
For each node N of the tree, a sub-tree is defined as the substructure such that the root
of the sub-tree is N and contains all the children nodes of N up to the leaf layer of the
original tree.

Each enqueued element is attributed a unique timestamp. In the leaves of the tree
is stored the smallest timestamp of all enqueued elements in the associated sub-queue
(single enqueuer single dequeuer queue). Since there is a single enqueuer per sub-queue,
it is easy to deduce that the smallest timestamp for a given sub-queue corresponds to
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Figure 3.1: Main data structure of the wait-free queue implementation, from [28].

the timestamp of the element at the head of the sub-queue. Then recursively, each
internal node of the tree stores the smallest timestamp between its children nodes. The
smallest timestamp is propagated to the root of the tree after the execution of each
operation. Hence the need for the auxiliary function that allows dequeuer processes to
read the head of the sub-queue in order to be able to propagate the smallest timestamp
value from a given sub-queue. The goal is to ensure that in the presence of enqueued
elements (non-empty queue), the root of the tree stores the smallest timestamp overall.
When the dequeuer process executes an instance of Dequeue, it reads the timestamp
at the root of the tree and returns the corresponding element from the appropriate
sub-queue. The Dequeue operation will also update the timestamps in the path from
the leaf to the root.

Figure 3.2: Sequential specification violation for the queue implementation in [28] in
the case of multiple dequeuer processes.

The limitation of this implementation in multiple dequeuer executions derives from
the timestamp-based computations during the Dequeue operations. More precisely,
while the root of the tree stores the timestamp of a unique enqueued element, if multiple
dequeuer processes read the same value at the root and race to return the equivalent
value unaware of any concurrent operations, then multiple Dequeue operations could
return the same element resulting in a violation of the sequential specification of the
FIFO queue object. Figure 3.2 represents such a situation. When both processes p
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and q read the root of the tree, they retrieve the value of timestamp (st′, q). Since
they have no knowledge of the other process executing a concurrent operation, both
processes dequeue the same element v associated with the unique timestamp (st′, q).

3.2.2 Algorithm Overview

We present hereafter a conceptual overview of the algorithm implementing the k-
dequeuer n-enqueuer concurrent queue.

The queue object is divided into n different sub-queue objects such that each sub-
queue i is accessed by the unique enqueuer process with the same id i along with any
of the k dequeuer processes. Each sub-queue i is represented by an array of elements
items[i] and two pointers head[i] and tail[i] (meaning that items, head, and tail are
all two-dimensional arrays). head[i] points to the head of the sub-queue i where the
first available element resides, and tail[i] points to the end of the queue. When these
two pointers coincide, the sub-queue is empty. Similarly to [28], we link the sub-queue
objects together through a binary tree structure where each leaf corresponds to one
of the n sub-queues. Whereas in [28], the leaves store single enqueuer single dequeuer
queue objects, and the internal nodes are CAS objects. Our tree structure (Figure 3.3)
contains CAS objects at every level and the sub-queue objects are implemented aside
using the previously described arrays. We can envision that each enqueuer process i is
associated with the sub-queue i and the i-th leaf in the binary tree T .

When an Enqueue(v) operation is invoked by an enqueuer process p, the element v
is enqueued in the corresponding p-th sub-queue. Each enqueued element is associated
with a unique timestamp, used by the dequeuers to select the element to be returned
(if any).

In particular, each enqueued element is associated to a pair (st, p) where st is the
value of a max register, and p is the id of the process that invoked the corresponding
Enqueue operation. Two processes executing concurrent Enqueue(v) operations can
retrieve the same value from the max register, but the process id makes each timestamp
unique. Timestamps are totally ordered according to the lexicographical order. The
timestamps associated with the elements in a given sub-queue reflect the real-time
order of Enqueue() operations by the same process. In particular, if an element e is
enqueued in a sub-queue p before another element e′, then e is associated with a smaller
timestamp than e′. This also means that the head of the sub-queue has the smallest
timestamp among the other elements in the same sub-queue.

For the sake of complexity, the timestamps are organized in a tree structure where
the n leaves correspond to the timestamps of the elements at the head of the corre-
sponding n sub-queues, and the root stores the smallest timestamp among the ones in
the leaves. Our construction is similar to the one proposed by Jayanti and Petrovic in
[28].

To manage concurrency in writing the nodes of the tree, we employ the same scheme
proposed in [28]: a process writes a node of the tree by calling the CAS primitive. If
this first attempt fails, the process tries a second time. Even in the scenario where this
second instance of CAS fails, we prove later on, that the value written to the node
guarantees the coherence of the values present on the tree structure.

Thus, a Dequeue operation simply reads the root of the tree and returns the corre-
sponding element in the appropriate sub-queue in the same manner that this is done in
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the single dequeuer queue in [28]. The Dequeue operation also updates the timestamps
stored in the tree in the path from the leaf to the root. However, to support k different
dequeuer processes, we need to manage the concurrency between their operations. This
is done by introducing a helping mechanism for the Dequeue operation. In particular,
each Dequeue operation has a unique sequence number. Before executing its instance of
Dequeue operation, a process will first ensure that the instances with smaller sequence
numbers are not more pending. If they are, the process will execute the steps neces-
sary for them to finish, and it will update the tree before executing its own instance of
Dequeue. Since there are k dequeuer processes, during an instance of Dequeue, there
could be at most k − 1 other processes executing a Dequeue operation concurrently.

Figure 3.3: Data structure for the k-dequeuer n-enqueuer queue implementation.

3.2.3 Algorithm Pseudocode

In the implementation of the multiple dequeuer and multiple enqueuer queue in Algo-
rithm 6-7, we use two main data structures: a two-dimensional array of registers, called
items, where each row p together with two integers head[p] and tail[p] represents the
sub-queue of process p; and a balanced binary tree T with n leaves where each node is
a CAS object used to stores the timestamps of enqueued elements.

The sub-queue p contains the elements enqueued by process p that have not been
dequeued, i.e. the current sub-queue p is defined by its values h and t of the max
register head[p] and the register tail[p] respectively. If h = t, the sub-queue p is empty.
Otherwise, it is the ordered list of t− h elements : items[p][h], · · · , items[p][t− 1].

Each Enqueue operation executed by process p is associated with a unique times-
tamp (st, p) where st is an integer obtained from the max register enqCounter, and p
is the process id. The empty queue is associated with a special timestamp (ϵ,−1), and
we consider that ϵ > i ∀i ∈ N. items[p][i] = (val, (st, p)) means that the i-th Enqueue
operation by p has enqueued the value val, and that this Enqueue has the timestamp
(st, p).

The smallest timestamp of a sub-queue p is the timestamp value of items[p][h] where
h is the current value of the head of the sub-queue. This timestamp is stored in the p-th
leaf of the tree T associated with p, called p-leaf. The following details the different
functions of the implementation in Algorithm 6-7.

• Enqueue(v): when process p calls an instance of Enqueue(v), it starts by con-
structing the corresponding timestamp (st, p) by reading the value of enqCounter.
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Algorithm 6: Wait-free queue implementation (pseudo-code for process p).

1 Shared variables
2 enqCounter : Max register object, initially 0.
3 deqCounter :Fetch&Inc object, initially 1.
4 head [n] : Array of Max register objects, initially 0.
5 tail [n] : Array of registers where each register contains an integer, initially 0.
6 items [n][· · · ] : Two dimensional array of registers, each register contains the

uplet (val, (st, it)) initially (⊥, (⊥,⊥)).
7 T : binary tree of CAS objects with n leaves, each node contains the pair

(st, id), all initially (ϵ,−1).
8 deqOps [· · · ] : Array of CAS objects, initially (⊥,⊥). deqOps[j] = (i, id)

means that the j-th Dequeue operation returns items[id][i].val if id ̸= −1,
otherwise the operation returns ϵ.

9 Function Enqueue(v)
10 st← enqCounter.MaxRead()
11 t← tail[p]

12 items[p][t]← (v, (st, p))
13 tail[p]← tail[p]+ 1
14 enqCounter.MaxWrite(st+ 1)
15 Propagate(p)
16 return True

17 Function Dequeue()
18 num← deqCounter.Fetch&Inc()
19 for (i← max(1, num− k + 1); i ≤ num; i++) do
20 if deqOps[i].Read() = (⊥,⊥) then
21 if i > 1 then
22 UpdateTree(i− 1)

23 FinishDeq(i)

24 (j, id)← deqOps[num].Read()
25 if id = −1 then
26 return ϵ
27 else
28 (ret,−)← items[id][j]

29 return ret

Process p will then write (v, (st, p)) to item[p][t] where t is the value of tail[p].
Then, it updates the value of tail[p] to t+1. Afterward, the value st+1 is written
to the max register enqCounter to ensure that all subsequent Enqueue operations
will have a greater timestamp than (st, p). Finally, process p calls Propagate(p)
to update the timestamps in the nodes of the tree T from the p-leaf to the root,
if necessary.

• Refresh(node, isLeaf ): this function is invoked during the execution of an instance
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Algorithm 7: Auxiliary functions to the queue implementation

1 Function Propagate(id)
2 currentNode← leaf(T, id)
3 if !Refresh(currentNode, True) then
4 Refresh(currentNode, True)

5 do
6 currentNode← parent(currentNode)
7 if !Refresh(currentNode, False) then
8 Refresh(currentNode, False)

9 while currentNode ̸= root(T)

10 Function Refresh(node, isLeaf)
11 (st, id)← node.Read()
12 if isLeaf then
13 h← head[id].MaxRead()
14 t← tail[id]

15 if h = t then
16 ret← node.CAS((st, id), (ϵ,−1))
17 else
18 (−, (st′,−))← items[id][h]

19 ret← node.CAS((st, id), (st′, id))

20 return ret

21 else
22 (min st,min id)←read minimum

timestamp in current node’s children
23 return node.CAS((st, id), (min st,min id))

24 Function FinishDeq(num)
25 (−, id)← root(T).Read()
26 if id = −1 then
27 deqOps[num].CAS((⊥,⊥), (ϵ,−1))
28 else
29 h← head[id].MaxRead()
30 deqOps[num].CAS((⊥,⊥), (h, id))

31 Function UpdateTree(num)
32 (j, id)← deqOps[num].Read()
33 if id ̸= −1 then
34 head[id].MaxWrite(j + 1)
35 Propagate(id)

of Propagate to reset the timestamp stored in a node. If the boolean isLeaf is
equal to True, the current node represents a leaf of the tree T . In this case,
the operation computes the minimum timestamp in the corresponding sub-queue.
This value is either (1) (ϵ,−1) if the sub-queue is empty (line 16 of Algorithm
7); or a timestamp (2) (st′, i)(line 18 of Algorithm 7). If isLeaf = False then
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node is not a leaf; the operation reads the timestamps stored in the children of
the current node to compute the minimal timestamp. Then, in both cases, the
operation executes the CAS primitive on node to write the timestamp and returns
the resulting boolean.

• Propagate(id): updates the nodes of the tree T in the path from the id-leaf node
to the root. Specifically, the function relies on calls to Refresh while traversing
the path to update each individual node. To ensure that the value written into
a node is up to date, the call to the function Refresh(node,−) is repeated if the
first call fails because a concurrent instance r1 of Refresh(node,−) might have
written an outdated value since r1 started before the call to Refresh(node,−) in
Propagate(id). However, after the second call to Refresh(node,−), we are certain
that the value written is up to date because it can only be written by an instance
invoked after Propagate(id). This technique is used in the implementation of the
single dequeuer multiple enqueuer queue in [28].

• Dequeue: First, an instance of the Dequeue operation executed by a process p,
computes its unique sequence number num by applying a Fetch&Inc primitive
on deqCounter. Then, p executes the helping mechanism to assist any pending
Dequeue operation with a sequence number i ∈ [max(1, num − k + 1), num])
in increasing order of i. If the operation with the index i is still pending (i.e.
deqOps[i] is still set to its initial value), p executes UpdateTree(i − 1) if i > 1,
to ensure that the root of the tree is updated to an accurate value. Then, p
executes FinishDeq(i) to decide on the operation’s return value in deqOps[i].
After the return values have been decided for all Dequeue operations with in-
dexes in [max(1, num− k + 1), num]), p reads deqOps[num] = (i, j) and returns
items[j][i].val, otherwise p returns ϵ.

• FinishDeq(num): The array DeqOps stores the information regarding the return
values of each Dequeue operation. A call to FinishDeq with the parameter num
decides a value and attempts to write it to DeqOps[num] using a CAS primi-
tive.FinishDeq(num) reads the timestamp at the root of the tree T : (−, id). And
if id = −1 (i.e. the queue is empty), then (ϵ,−1) is written to DeqOps[num].
Otherwise, the value (h, id) is written to DeqOps[num] where h is the value of the
head of the sub-queue id. In either scenario, if the CAS instruction fails, another
process has succeeded in executing a CAS instruction on DeqOps[num] and the
return value for the corresponding Dequeue has been decided.

• UpdateTree(num): A simple function call that encapsulates the steps necessary
before executing the Dequeue operation with the sequence number num + 1. If
the Dequeue operation with the sequence number num returns ϵ, then there are
no additional steps necessary. Otherwise, if an element has been returned, it is
necessary to update the head of the sub-queue id from which the return value
was retrieved; followed by a call to the function Propagate(id) to update the tree
accordingly.
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3.2.4 Proof

In this section, we establish that Algorithm 6-7 is a wait-free implementation of a k-
dequeuer multi-enqueuer queue. We also establish that an Enqueue operation has a
worst-case step complexity of O(log n) and a Dequeue operation has a worst-case step
complexity of O(k log n).

Algorithm properties

Each Dequeue operation is associated with a unique sequence number that is the value
obtained by applying the Fetch&Inc primitive on deqCounter at line 18 of Algorithm
6.

Lemma 3.2.1. A total order between Dequeue operations is provided by their sequence
number. This order respects the real-time order.

Proof. Let deq1 and deq2 be two Dequeue operations by process p1 and p2 respectively.
Let seq1 be the sequence number of deq1 and seq2 be the sequence number of deq2. We
prove that if deq1 precedes deq2 in real-time order, then seq1 < seq2.

deq1 completes before deq2 is invoked, thus p1 executes line 18 of Algorithm 6 before
the invocation of deq2 by p2. The proof follows from the fact that deqCounter is a
linearizable Fetch&Inc object.

The Dequeue operation with the sequence number i is complete at a given config-
uration C if DeqOps[i] ̸= (⊥,⊥) (i.e.; the value of DeqOps[i] at C is not the initial
value). Otherwise, it is incomplete at C.

Observation 3.2.2. Let deq denote a Dequeue operation with the sequence number i.
Any call to FinishDeq(i) is executed after the invocation of deq.

Lemma 3.2.3. Fix an execution E and let C be any configuration of E. ∀h > 0 and
∀i ≥ 1, if the h + i-th Dequeue operation exists and it is complete at C, then the i-th
Dequeue operation is complete at C.

Proof. Consider the first configuration C where the h+ i-th Dequeue operation is com-
plete, i.e.; deqOps[i + h] ̸= (⊥,⊥). Assume by contradiction that deqOps[i] has its
initial value at C.

The value of deqOps[i] is only set during the execution of FinishDeq(i) at line 30
or 27 of Algorithm 7. According to the condition in the for-loop (line 19 of Algorithm
6), only a Dequeue operation with a sequence number i + h ≤ l ≤ i + h + k − 1 may
change the value of deqOps[i+ h].

According to Lemma 3.2.1, the Dequeue operations with a sequence number smaller
than or equal to l, and in particular ∈ [i, l], have started at the configuration immedi-
ately before the value of deqOps[i+ h] is changed by the l-th Dequeue operation. Also,
the Dequeue operations with a sequence number num ∈ [i, i + k − 1] could not have
returned at C otherwise deqOps[i] ̸= (⊥,⊥) at C (contradicting our assumption). This
is trivially true for num = i. For num ∈ [i + 1, i + k − 1], and since the condition
at line 20 of Algorithm 6 is true for deqOps[i], the Dequeue operation with sequence
number num will execute the FinishDeq(i) function and set deqOps[i] ̸= (⊥,⊥) before
it returns.
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Thus, l should be greater than i+k−1. But this means that there are k+1 pending
Dequeue operations, which contradicts the fact that we can have at most k pending
Dequeue operations. There is a contradiction.

As deqOps[num] is updated only during the execution of the function FinishDeq(num);
the following observation is a consequence of Lemma 3.2.3.

Observation 3.2.4. Before the first execution of FinishDeq(i+h), FinishDeq(i) has
been executed.

Each Enqueue operation op has a unique timestamp composed of an integer obtained
by reading the Max register enqCounter during the execution of line 10, and the id of
the process that executed the operation op.

Observation 3.2.5. For each p, the timestamps of the elements written in the sub-array
items[p] are monotonically increasing in accordance with their index in the array. In
other terms, we have items[p][i].ts < items[p][i+ 1].ts.

At any given configuration, the sub-queue of process p is the sub-array of items[p]
in the range items[p][head[p].MaxRead()], ..., items[p][tail[p]− 1].

Lemma 3.2.6. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before
enq2 is invoked. Let (st1, id1) be the timestamp of enq1 and (st2, id2) be the time stamp
of enq2. We have st1 < st2.

Proof. After the execution of line 14 of Algorithm 6 during enq1, any value returned
by a enqCounter.MaxRead is greater or equal to st1 + 1. The claim follows from the
fact that enq2 executes line 10 of Algorithm 6 after enq1 returned.

We say that the i-th Enqueue operation by a process p matches the Dequeue oper-
ation with sequence number j, if deqOps [j ] = (i, p) at some point in the execution.

Meaning, if the Dequeue operation returns, it returns the element enqueued by the
i-th Enqueue operation of process p (i.e. items[p][i]).

Lemma 3.2.7. An Enqueue operation has at most a single matching Dequeue opera-
tion.

Proof. Let enq be the i-th Enqueue operation by a process p. Assume by contradiction
that there are two Dequeue operations, deq1 and deq2 that match enq. Let j1 and
j2 be their corresponding sequence numbers. Then, deqOps [j1 ] = deqOps [j2 ] = (i, p).
By Lemma 3.2.1 and without loss of generality, let j1 < j2. Because of the Obser-
vation 3.2.4, FinishDeq(j1) returned before FinishDeq(j2) is invoked. According to
lines 22 to 23 of Algorithm 6, UpdateTree(j1) is executed before FinishDeq(j1 + 1).
This means that the value i+ 1 is written in the Max register head[p] at line 34 before
that a process read it during the FinishDeq(j1 + 1). And since j2 ≥ j1 + 1, the claim
follows.

Lemma 3.2.8. Let enq denote the i-th Enqueue operation by a process p. Let ts =
(st, p) be the timestamp of enq. Let s be any node in the tree T in the path from the
p-th leaf to the root of the tree. At any configuration C after enq ends and such that
deqOps[j] ̸= (i, p) for each j ≥ 0, we have that the timestamp stored at s is smaller
than or equal to ts at C.
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Proof. After enq, we have that tail[p] ≥ i+1, because enq is the i-th Enqueue operation
executed by p.

We first prove that after enq, head[p] is smaller than or equal to i as long as
deqOps[l] ̸= (i, p) for any l ≥ 0.

The value of head[p] is updated only during the execution of the function UpdateTree
(line 34 of Algorithm 7). In particular, the value of head[p] is set to a value j+1 where j
is the value read from some deqOps[num] at line 32. Also, the value of deqOps[num] is
updated only during the execution of the function FinishDeq(num) with a value read
from head[p] (lines 29 and 30). We prove by induction on j that if the value written
in head[p] is j then, all values 0, . . . j − 1 have been previously written in head[p] (in
increasing order) and to some deqOps[num]. The base case is for j = 1. Consider
the first MaxWrite() that writes 1 to head[p] and let q be the process applying this
primitive. According to line 34, q has read the value (0, p) from some deqOps[num],
which has been updated with a value read from head[p]. The claim follows.

Suppose this is true for a value j, we show that the claim holds for j + 1. Consider
the first process, denoted q, that writes j + 1 into head[p]. q has read (j, p) from some
deqOps[num] at line 32. By inductive hypothesis, and by the linearizability of head[p]
all the values 0, . . . j have been written in head[p] and all the values 0, . . . j − 1 have
been written in some deqOps[num]. The claim follows.

Hence, head[p] ≤ i as long as for any l ≥ 0, we have deqOps[l] ̸= (i, p). This is
because to write the value i + 1 (and then any greater value), a process has to read
deqOps[l] = (i, p) for some l.

base case k = 0. s is the p-th leaf. Since enq completes, there is at least one
instance of Propagate(p) performed after that process p has written the value i in tail[p].
The value of head[p] is smaller than or equal to i, so any instance of Propagate(p) that
changes the value of s before C, will write a timestamp read in items[p][j] for some
j ≥ i. By Observation 3.2.5, the timestamp read is smaller than or equal to ts = (st, p).

It remains to prove that after an instance of Propagate(p) completes, denoted prop,
a value smaller than or equal to i has been written in the leaf corresponding to p. An
instance of Propagate(p) performs two Refresh(s). Each Refresh(s) reads the state
of s, then the head[p] and the corresponding timestamp ts and then applies a CAS to
s to modify its value with ts. Suppose that both Refresh(s) fail (and in particular
the second one), otherwise the claim is trivial. The second Refresh(s) fails because
another an instance of Propagate(p), denoted prop′ successfully applied a CAS on s.
But prop′ has read head[p] after tail[p] is set to i. Meaning that it has read a value
smaller than or equal to i and it writes in s the corresponding timestamp that is smaller
than or equal to ts.

induction case k + 1 ≤ log n. Suppose that the claim holds for j ≤ log n : the
timestamp stored at sj is smaller than or equal to ts where sj is in the path from the
p-th leaf to the root at a height of j ≤ k. We prove that the claim holds for the parent
of sj, denoted sj+1.

Any instance of Propagate(p) updates the nodes in the path from the p-th leaf to
the root, one by one, starting from the leaf and following the path to the root. Also,
immediately after enq completes, there is at least one Propagate(p) instance that passed
through all the nodes in this path. Consider, the first Propagate(p) that updated node
sj+1 after sj has been updated, denoted prop.

Observe that any process that executes the Refresh function on node sj+1 writes
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the minimum timestamp it reads from the children of sj+1. And that the second
Refresh(sj+1) fails only if another Propagate(p) has modified the state of this node
with a value smaller than or equal to the value at sj read by prop.

Lemma 3.2.9. Let enq be an Enqueue operation with the timestamp ts that enqueued
items[p][i]. If (i, p) was written to deqOps[j] by a process q, then the execution of line
25 of Algorithm 7 to read ts by q was executed after the invocation of enq.

Proof. enq is the i-th enqueue operation by p. Let deq be the Dequeue operation
executed by q that retrieves ts from the root of the tree (Line 25 of Algorithm 7)
before writing (i, p) to deqOps[j]. enq must execute the line 13 of Algorithm 6 before
ts can be propagated in the tree according to the code of function Refresh. The claim
follows.

Lemma 3.2.10. Let enq1 and enq2 be two Enqueue operations such that enq1 ends
before enq2 is invoked. If enq2 has a matching Dequeue operation deq2, then enq1 also
has a matching Dequeue operation deq1.

Proof. By contradiction, we suppose that deq2 exists and deq1 does not. We denote
ts1 and ts2 the timestamps associated with enq1 and enq2 respectively and num2 the
sequence number of deq2. From Lemma 3.2.6, ts1 < ts2 because enq1 ends before enq2
begins.

And since enq1 does not have a matching Dequeue, there is no j ≥ 0 such that
deqOps[j] = (i, p) where items[i][p] is enqueued by enq1. Therefore, from Lemma
3.2.8, for any node s in the path in T from the p-th leaf to the root, the timestamp
stored at s is smaller than or equal to ts1. In particular, for the root of the tree, the
timestamp stored is smaller or equal to ts1. From Lemma 3.2.9, the step of line 25 of
Algorithm 7 to read the root of the tree before writing deqOps[num2] is executed after
the invocation of enq2 which is after the invocation of enq1. Meaning that during this
step, the timestamp at the root was smaller or equal to ts1 contradicting the fact that
ts1 < ts2.

Lemma 3.2.11. Let enq1 and enq2 be two Enqueue operations such that enq1 ends
before enq2 is invoked and let deq1 and deq2 be the matching Dequeue operations to
enq1 and enq2 respectively. We have that deq1 has a lower sequence number than deq2.

Proof. We denote num1 and num2 the sequence numbers of deq1 and deq2 respectively,
and ts1 and ts2 the timestamps of enq1 and enq2 respectively. By contradiction, we
suppose that num1 > num2. Since enq1 ends before enq2 begins we have that ts1 < ts2
(Lemma 3.2.6).

And since deqOps[i] are written in an increasing order of i according to Lemma 3.2.3,
we have that deqOps[num2] is written before deqOps[num1]. However, from Lemma
3.2.8, as long as deqOps[num1] has its initial value, then the timestamp stored at the
root is smaller than or equal to ts1. At the execution of line 25 of Algorithm 7 to
compute the final value of deqOps[num2] , the root has a timestamp smaller or equal
to ts1; contradicting the fact that ts1 < ts2.

Lemma 3.2.12. Let deq be a Dequeue operation and let enq be an Enqueue operation
that ends before deq is complete. Let C be a configuration of E where enq does not have
a matching Dequeue operation deq′ or deq′ is not complete at C. If deq is complete at
C, then deq does not return ϵ.
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Proof. By contradiction, we suppose that deq returns ϵ. Let i denote the sequence
number of deq and ts denote the timestamp of enq. Since deq returns ϵ, deq reads the
value (ϵ,−1) in deqOps[i] at line 24 of Algorithm 6. Therefore, during the execution
of FinishDeq(i), the process that writes deqOps[i], reads (ϵ,−1) at the root of the
tree (line 27 of Algorithm 7). However, By Lemma 3.2.8, the timestamp at the root
of the tree after the end of enq is smaller than or equal to ts. Meaning that during
the execution of line 25 of Algorithm 7 during the instance FinishDeq(i) that writes
deqOps[i], the timestamp at the root of the tree was smaller than or equal to ts. We
reach a contradiction because (ϵ,−1) is larger than any timestamp (h,−) ∀h ∈ N.

Linearizability

In the literature, a popular approach to defining the linearization of an execution of a
shared object implementation consists of defining a linearization point for each opera-
tion in the execution. Simply speaking, a step executed during a high-level operation is
chosen as the instant where the operation takes effect. Since each of these linearization
points falls within the execution interval of its corresponding operation, it is possible to
define a total order of the operations based on the linearization points. The lineariza-
tion is the sequential execution of the operations following the total order defined. The
linearization is correct if it is shown to follow the real-time execution order and all the
operations behave according to the sequential specification of the object.

Using this technique to prove the linearizability of an implementation has the advan-
tage of simplifying the proof of correctness in regard to the real-time execution order.
If the execution intervals of two operations in the execution do not interweave, then it
is simple to prove that the first of the two operations will be linearized first since the
linearization point is defined in a segment of the execution prior to the invocation of
the second operation.

However, it is not always possible to employ this method to define the linearization.
In some cases, it is impossible to define the linearization point of an operation inde-
pendently from the entire execution. Meaning that future operations in the execution
might affect the correct order in which an operation needs to be inserted into the lin-
earization to ensure its behavior is in accordance with the sequential specification of
the object.

Consider, for example, the implementation of a FIFO queue. And assume that the
Enqueue and Dequeue operations are linearized through the definition of a linearization
point within their execution interval. Figure 3.4 represents different execution scenarios
of such an implementation. While the first execution in Figure 3.4a is linearizable
through the total order defined by the linearization points. In Figure 3.4b, this order
violates the sequential specification of the FIFO queue since the elements a and b are
returned out of order.

More specifically, The order of linearization of the two concurrent Enqueue opera-
tions depends on the order in which the elements enqueued were returned (i.e. the order
of the Dequeue operations). If the linearization of the Enqueue operations is determined
without taking into consideration the order of the returned elements, the linearization
might not follow the FIFO order since the first Dequeue operation might not return
the first available element in the linearization. Therefore, to prove the linearizability of
our implementation, we follow a different method where the insertion of each operation
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(a) Linearizable execution. (b) Non-linearizable execution.

Figure 3.4: Linearization of different execution scenarios by considering linearization
points.

from the execution is explicitly described in relation to the preexisting operations in
the linearization.

First, we construct a permutation L of some of the Dequeue and Enqueue operations
invoked such that L contains all operations that have terminated. Then, we prove that
L preserves the real order as well as the semantics of a queue.

Linearization definition Let E denote a given execution of the wait-free queue
implemented in Algorithm 6 and Algorithm 7. We classify every Dequeue operation
deq that appears in E to exactly one of the following types :

1. deq does not execute line 18 of Algorithm 6 in E. Thus deq is not attributed a
sequence number.

2. deq executes line 18 of Algorithm 6 in E, its sequence number is j and deqOps[j]

has the initial value (⊥,⊥) in E.

3. deq executes line 18 of Algorithm 6 in E, its sequence number is j and deqOps[j] ̸=
(⊥,⊥) in E.

We remove from E, any Dequeue operation of type 1 and 2. We denote DEQ the set
of Dequeue operations of type 3. Each operation in DEQ is associated with a unique
sequence number j ∈ N0. We totally order all the operations in DEQ according to their
sequence number. Also, let deq be any incomplete Dequeue operation in DEQ and let j
be its sequence number. We complete deq by returning the value v if deqOps[j] = (i, id)
in E and items[id][i] = (v,−). Otherwise, we complete deq by returning the empty
queue value ϵ.

We remove every Enqueue operation that does not execute line 13 of Algorithm 6
in E. We denote ENQ the set of Enqueue operations that appear in E and that we
do not remove. Every Enqueue operation enq in ENQ is uniquely identified by a pair
(i, id) meaning that enq is the i-th Enqueue operation performed by the process id. We
associate the Dequeue operation in DEQ with sequence number i with the Enqueue
operation (j, id) such that deqOps[i] = (j, id).

Let ENQd denote the Enqueue operations in ENQ that have an associated Dequeue
operation in DEQ. We associate each Enqueue operations in ENQd with the sequence
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(a) Linearizable execution. (b) Previously non-linearizable execution.

Figure 3.5: Linearization of different execution scenarios following proposed rules.

number of the corresponding Dequeue. Thus, Enqueue operations in ENQd are totally
ordered according to the sequence number of their matching Dequeue operations.

We construct the linearization L of the operations in E as follow:

1. First we insert the Enqueue operations in ENQd one by one and according to
their total order, denoted enqi1 , enqi2 . . . in L. Notice that enqih is the Enqueue
operation associated with the Dequeue operation having the sequence number ih.
Assuming that enqih+1

exists, we have ih < ih+1 ; and all the Dequeue operations
having a sequence number i ∈ [ih + 1, ih+1 − 1] return the value ϵ.

2. Then, we insert the Dequeue operations one by one according to their the sequence
number. For any sequence number k, If deqk returns ϵ it is inserted immediately
after deqk−1 if it exists, or at the beginning otherwise. In the case where deqk does
not return ϵ, it is linearized immediately after the furthest point in L following:
(i) the previous deqk−1, (ii) the matching Enqueue operation enqil with il = k,
and (iii) the last Enqueue operation that ends before the invocation of deqk.

3. Let enq denote an Enqueue operation from the remaining Enqueue operations
with no matching Dequeue operations (i.e. ENQ \ ENQd). We insert enq after
the last operation in ENQd and before the first Dequeue operation that starts
after enq ends (or at the end of L if such Dequeue does not exist). If multiple
operations from ENQ \ ENQd are linearized at the same point, then they are
ordered according to their real-time order.

The execution shown in Figure 3.4b is now linearizable following the rules proposed
since the Enqueue operations follow the order of the matching Dequeue operations
(Figure 3.5b). And in Figure 3.6, we show how different executions are linearized by
following the rules in order and we highlight in particular the two possible scenarios for
rule 3.

For two operations op1 and op2, we denote op1 <L op2 when op1 precedes op2 in the
linearization L.

Linearization and real-time order We show that the linearization defined in the
previous section respects the real-time execution order.

Lemma 3.2.13. Let op1 and op2 be two Enqueue operations in E such that op1 ends
before op2 is invoked. op1 precedes op2 in L.
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(a) First execution scenario for rule 3. (b) Second execution scenario for rule 3.

Figure 3.6: Linearization rules applied to two executions.

Proof. First, consider the case where both operations do not have matching Dequeue
operations. From linearization rule 3, an Enqueue operation that does not have a
matching Dequeue operation is linearized before the first Dequeue operation that starts
after it ends or at the end of L if such Dequeue operation does not exist. If op1 is
linearized at the end of L, then op2 is also linearized at the end of L after op1, because
op2 starts after op1 ends and there is no Dequeue operation that starts after op1 ends.
We suppose that there exists a Dequeue operation deq1 such that op1 is linearized
immediately before deq1. If op2 is linearized at the end of L, the claim is trivial. So let
deq2 be a Dequeue operation such that op2 is linearized immediately before deq2. We
have op1 <ro op2 <ro deq2. Meaning that deq2 = deq1 or deq1 <L deq2, because both
operations start after op1 ends, and deq1 is the first such operation in L. Therefore,
op1 <L op2 according to their real time execution order following linearization rule 3.

Next, if op1 has a matching Dequeue operation but op2 does not, we have that op2
is linearized after the last linearized Enqueue operation that has a matching Dequeue
operation. The case where op1 does not have a matching Dequeue operation but op2
does, is impossible according to Lemma 3.2.10. We suppose that both op1 and op2
have matching Dequeue operations, named respectively deq1 and deq2. From Lemma
3.2.11, we have that deq1 has a smaller sequence number than deq2. Therefore, from
linearization rule 1, op1 is linearized before op2.

Lemma 3.2.14. Let deq be a Dequeue operation with the sequence number j and let
enq be an Enqueue operation invoked after deq returns. If enq has a matching Dequeue
operation deq′, then the sequence number of deq′ is greater than j.

Proof. We denote i the sequence number of deq′. By contradiction we suppose that j >
i. We consider the configuration C where deq completes. According to Lemma 3.2.3,
deq′ also has been completed at C. Meaning that deqOps[i] ̸= (⊥,⊥) at C. However,
from the hypothesis, enq has not started at C, as enq is not invoked until deq finishes.
According to Lemma 3.2.9, deq′ cannot match enq. The claim follows.

Lemma 3.2.15. Let deq be a Dequeue operation with the sequence number j and let
enq be an Enqueue operation invoked after deq returns. If enq has a matching Dequeue
operation deq′, then any Dequeue operation with a sequence number l < j is linearized
before enq.

Proof. By contradiction, we suppose that there exists Dequeue operations with sequence
numbers strictly smaller than j that are linearized after enq, and let deql be the first of
these operations in L. Thus , if deql−1 exists, we have that deql−1 <L enq.
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If deql returns ϵ, from linearization rule 2, deql is linearized immediately after deql−1

if it exits, or at the beginning of L. Therefore, deql <L enq. There is a contradiction.
Otherwise, deql has a matching Enqueue operation denoted enql. We denote i the

sequence number of deq′. From Lemma 3.2.14, we have that j < i. Therefore, l < j < i.
Thus, enql <L enq from linearization rule 1. Furthermore, we have deql−1 <L enq (if
it exists). Therefore, since enql <L enq and deql−1 <L enq, according to linearization
rule 2, enq <L deql because enq <ro deql (rule 2.3 of linearization) . Consequently,
deqj <ro enq <ro deql. Contradicting the fact that l < j (Lemma 3.2.1).

Theorem 3.2.16. Let op1 and op2 be two operations in E such that op1 ends before
op2 is invoked. Then, op1 precedes op2 in L.

Proof. Four cases have to be studied according to the type of operations.

1. op1 and op2 are two Dequeue operations. Since op1 ends before op2 begins, the
sequence number i1 of op1 is strictly smaller than the sequence number i2 of op2
(Lemma 3.2.1). From linearization rule 2, we have op1 is before op2 in L.

2. The case where op1 and op2 are Enqueue operations is proved by Lemma 3.2.13.

3. op1 is an Enqueue operation and op2 is a Dequeue operation. First, consider the
case that op2 does not return ϵ. If op1 ∈ ENQd, then from linearization rule 2,
op2 is linearized after op1 because op2 is inserted after the last Enqueue operation
that ends before op2 starts. Otherwise, If op1 ̸∈ ENQd, from linearization rule 3,
it is linearized before the first Dequeue operation that starts after op1 ends. Thus
op1 is linearized before op2.

Next, consider the case where op2 returns ϵ, and let i denote its sequence number.
By Observation 3.2.2 and Lemma 3.2.12, op1 has a matching Dequeue operation
deq, and deq is complete before op2 is complete.

Let j is the sequence number of deq. Since deq is complete before op2 is complete,
by Lemma 3.2.3, we have that j < i. Therefore, from linearization rule 2, deq is
linearized before op2. Thus, from linearization rule 1, op1 <L deq <L op2. The
claim follows.

4. Finally, we suppose that op1 is a Dequeue operation and that op2 is an Enqueue
operation. If op2 does not have a matching Dequeue operation, from linearization
rule 3, it is linearized before the first Dequeue operation that starts after op2 ends
or at the end of L if such operation does not exist. Thus, op2 is linearized after
op1 because op1 ends before op2 starts.

So consider that op2 has a matching Dequeue operation deq and let i be its
sequence number and j be the sequence number of op1.
If op1 returns ϵ, from the linearization rule 2, we have op1 = deqj is linearized
immediately after deqj−1 (or beginning of L if it does not exist). And from Lemma
3.2.15, for each l < j, we have that deql is linearized before op2. In particular, we
have that deqj−1 is linearized before op2. Therefore, op1 is linearized before op2.

Otherwise, consider enqj the matching operation of op1. From linearization rule
2, op1 is linearized after (i) deqj−1, (ii) enqj and after (iii) the last Enqueue enq′

that ends before op1 starts. We show that op2 is linearized after all these three
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operations. From Lemma 3.2.15, we have that deqj−1 is linearized before op2 (i).
From Lemma 3.2.14, we have that j < i meaning that enqj is linearized before op2
according to the total order of the sequence numbers of their matching Dequeue
operations (ii). And since op1 ends before op2 starts, enq′ <ro op2. Therefore,
enq′ <L op2 because we have shown that the linearization of the Enqueue op-
erations respects the real time execution order (Lemma 3.2.13) (iii). The claim
follows.

Linearization and the Queue Sequential Specification

Lemma 3.2.17. Let deq be a Dequeue operation that returns v ̸= ϵ. There exists an
Enqueue(v) denoted enq that such that enq is linearized before deq and there is no
Dequeue operation deq′ ̸= deq that also returns v.

Proof. First, we prove that enq exists. Since deq returns v ̸= ϵ, it has read a value (j, p)
in deqOps[i] where i is the sequence number of deq (line 24 of Algorithm 6). Meaning
that items[p][j] = v and the Enqueue operation that enqueued v denoted enq, is the
j-th instance of Enqueue by process p. By linearization rule 2, deq is linearized after
enq. And we have shown in Lemma 3.2.7 that each Enqueue operation has at most a
single matching Dequeue operation. The claim follows.

Lemma 3.2.18. Let enq1 and enq2 be two Enqueue operations such that enq1 <L enq2.
If enq2 has a matching Dequeue deq2, then enq1 has a matching Dequeue deq1 and
deq1 <L deq2.

Proof. By contradiction, we suppose that enq1 does not have a matching Dequeue
operation. From linearization rule 3, enq1 is linearized after all Enqueue operations in
ENQd. Especially, enq1 is linearized after enq2. There is a contradiction. And from
linearization rule 1, enq1 and enq2 are linearized according to the total order of the
sequence numbers of their matching Dequeue operations. The claim follows.

From the two previous Lemmas 3.2.17-3.2.18, we have the following theorem.

Theorem 3.2.19. Let deq be a Dequeue operation in L. If deq does not return ϵ, then
it returns the element enqueued by the first Enqueue operation in L that does not have
a matching Dequeue operation linearized before deq.

Lemma 3.2.20. Let deqϵ be a Dequeue operation that returns ϵ. And let enq be an
Enqueue operation linearized before deqϵ. We have that enq has a matching Dequeue
operation deq that is also linearized before deqϵ.

Proof. First, we show that enq has a matching Dequeue operation deq. By contradic-
tion, we suppose that enq is in ENQ\ENQd. From linearization rule 3, enq is inserted
before the first Dequeue operation deq′ that starts after enq ends or at the end of L if
deq’ does not exist. The case where enq is linearized at the end of L is trivial because
it contradicts the fact that enq is linearized before deqϵ. So deq′ exists. By lemma
3.2.12 deq′ does not return ϵ. Since enq <L deqϵ, we have deq′ <L deqϵ Hence, deqϵ has
a greater sequence number than deq′ from linearization rule 2. Thus, deqϵ is complete
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after deq′ is complete (Lemma 3.2.3). We conclude by lemma 3.2.12, that deqϵ does
not return ϵ. There is a contradiction. Thus, enq has a matching Dequeue operation
denoted deq.

In the following, we establish that deq is linearized before deqϵ. Let i denote the
sequence number of deqϵ and let j be the sequence number of deq. By contradiction,
we assume that i < j (i.e. deq is linearized after deqϵ). Let deqk be the first Dequeue
operation linearized after enq with k its sequence number. Such an operation exists as
enq <L deqϵ. We have k ≤ i, according to the linearization rule 2. Assume that deqk
returns ϵ. If k = 0 then no operation is linearized before deqk; in this case, there is a
contradiction. Otherwise (k ≥ 1), there is no Enqueue operation linearized after deqk−1

and before deqk because deqk is linearized immediately after deqk−1 (linearization rule
2). This contradicts the fact that deqk is the first Dequeue operation linearized after
enq. Hence deqk does not return ϵ. We conclude that k < i. Therefore, deqk is complete
before deqϵ is complete (Lemma 3.2.3). deqk does not match enq as we assume that
deq is linearized after deqϵ. From linearization rule 2, deqk can only be linearized after
enq because enq terminates before the invocation of deqk. Thus, by Lemma 3.2.12, deqϵ
cannot return ϵ if j > i. There is a contradiction.

Step Complexity

We show that the worst-case step complexity of an Enqueue and Dequeue operation
is O(log n) and O(k log n), respectively. To do so, we establish the following Lemma.
The main intuition is that while propagating the timestamp the process has to read a
constant number of nodes per level going from a leaf to a root. Since there are n leaves,
the high of the tree is in O(log(n).

Lemma 3.2.21. A process executes O(log n) steps during a call to the function Propagate(id).

Proof. When a process calls the function Propagate(id), it will update the binary tree
starting from the leaf that corresponds to the sub-array items[id]. Meaning, that the
process first retrieves the values h and t of head[id] and tail[id] respectively, and then
either realizes that there are no available elements in the sub-array anymore (line 16
of Algorithm 7), or retrieves the time stamp of the element indexed in h (line 18
of Algorithm 7). Since there are no loops during these computations, the process will
execute them in constant time. Afterward, the process will traverse down-up the binary
tree of height log n to propagate the information toward the root. During each step, the
process reads the minimum timestamp of the node’s children, and attempts to write
that minimum to the current node using a CAS primitive. If the first attempt fails,
the process will try a second time. Therefore, the entire journey from the leaves to the
root of the tree is done in O(log n) steps. The claim follows.

During the execution of an Enqueue operation there are no loops or function calls
aside from a call to the function Propagate(id). And during a Dequeue operation, a
process executes at most k instances of Propagate(id). The following corollary ensues.

Corollary 3.2.21.1. A process executes O(log n) steps during the execution of an
Enqueue operation and O(k log n) steps during the execution of a Dequeue operation.
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3.3 Set-Linearizable Wait-free Queue Algorithm with

Multiplicity

In this section, we rely on the approach of relaxing the semantics of the FIFO queue to
propose a wait-free implementation where both the Enqueue and Dequeue operations
have a worst-case step complexity of O(log n).

Specifically, we consider the set-sequential specification of shared objects formally
introduced in Section 1.2.3 and the weakened consistency condition of set-linearizability
[35]. Simply put, the set-sequential specification of an object allows for multiple op-
erations to be executed simultaneously even in a sequential setting. And we say that
an execution E of a concurrent object is set-linearizable if there exists an equivalent
set-sequential execution S that contains all the complete operations of E and possibly
some pending operations such that if an operation op is before another operation op′

in E then op is also before op′ in S. Figure 3.7 illustrates the difference between the
linearization and set-linearization of the same execution.

While the approach to relaxation usually relies on either considering a weakened
consistency condition or relaxing the sequential specification of the object, we consider
a combination of the two. Namely, we consider the multiplicity relaxation [14] which
allows for multiple concurrent Dequeue operations to return the same element, and we
prove that that the implementation of such a FIFO queue is set-linearizable. It is nec-
essary to consider the set-sequential specification of the queue because it is impossible
to define a sequential execution of the relaxed FIFO queue with multiplicity that does
not violate the sequential specification, namely two non concurrent Dequeue operations
cannot return the same element.

Figure 3.7: Example of a set-linearizable execution of the relaxed queue with multiplic-
ity.

3.3.1 Algorithm Pseudocode and Description

Only the algorithm of the Dequeue operation is different from the Algorithm in Sec-
tion 3.2. In the implementation of the relaxed queue, we do not require the unicity
of the sequence numbers of the Dequeue operations. From this point on, we denote
Exact-Queue the implementation of the FIFO queue in Algorithm 6-7 in Section 3.2,
and Relaxed-Queue the implementation of the relaxed queue based on the Exact-Queue
with the changes described in Algorithm 8.
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Algorithm 8: Relaxed-Queue: implementation of the wait-free queue with
multiplicity (Dequeue pseudo-code for process p).

1 Function Dequeue()
2 num← deqCounter.MaxRead()
3 if deqOps[num].Read() ̸= (⊥,⊥) then
4 deqCounter.MaxWrite(num+ 1)
5 num← num+ 1

6 if num ≥ 1 then
7 UpdateTree(num− 1)
8 FinishDeq(num)
9 (h, id)← deqOps[num].Read()

10 if id = ⊥ then
11 return ϵ
12 else
13 (ret,−)← items[id][h]

14 return ret

We use a max register object for deqCounter instead of the previously used Fetch&Inc.
Multiple concurrent Dequeue operations retrieve the same sequence number num from
deqCounter as long as deqOps[num] remains unchanged. A Dequeue operation takes
the sequence number num+1 only after the Dequeue operations with the sequence num-
ber num are completed (i.e. deqOps[num] ̸= (⊥,⊥)). Thus, we relinquish the need for
a helping mechanism for slow Dequeue operations since such an operation would have
to be completed by another operation with the same sequence number before the next
sequence number is assigned.

If a process retrieves the value num from deqcounter at the beginning of a Dequeue
then its sequence number seq is in {num, num+1} depending the value of deqops[num]
it reads. If deqOps[num] has been written, the operation increments deqCounter using
theMaxWrite primitive, and takes the sequence number num+1, otherwise its sequence
number is num. Similarly to Algorithm 6, the operation then executes the necessary
steps to write deqOps[seq] where seq ∈ {num, num + 1} is the sequence number of
the operation. Meaning that the process executes UpdateTree(seq − 1) if the Dequeue
operation with the sequence number seq − 1 exists, to ensure that the root of the
tree has an accurate value. Then, the process executes FinishDeq(seq), after which
deqOps[seq] is set to a value different than its initial value. If DeqOps[seq] = (i, p)
the Dequeue operation returns items[p][i].val, otherwise it returns ϵ. Several Dequeue
operations may have the same sequence number, and thus return the same value. The
design of the algorithm ensures that two Dequeue operations can have the same sequence
number only if they are concurrent. In the following, we consider the implementation
of the relaxed FIFO queue with multiplicity and give the detailed proof for set-
linearizability as well as the property of wait-freedom and worst-case step complexity
of O(log n) for both Enqueue and Dequeue operations.
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3.3.2 Algorithm Properties

Let E be an execution of Relaxed-Queue. The sequence number of a Dequeue oper-
ation corresponds to the value of num during the execution of line 9 of Algorithm 8.
The sequence number of a Dequeue operations is no longer necessarily unique because
multiple instances can retrieve the same sequence number num from deqCounter.

Lemma 3.3.1. A partial order between Dequeue operations is provided by their sequence
number. This order respects the real-time order.

Proof. Let deq1 and deq2 be two Dequeue operations by process p1 and p2 respectively.
Let seq1 be the sequence number of deq1 and seq2 be the sequence number of deq2. We
prove that if deq1 precedes deq2 in real-time order, then seq1 < seq2.

deq1 completes before deq2 is invoked, thus p1 executes the function FinishDeq(num),
after which a value has necessarily been written to deqOps[num] where num is the se-
quence number of deq1. Therefore, if deq2 retrieves the same sequence number as deq1
at line 2 of Algorithm 8, the test at line 3 would fail and the process would increment
the value of deqCounter and num (lines 4 and 5). The claim follows.

Lemma 3.3.2. Let deq1 and deq2 be two Dequeue operations. If deq1 and deq2 have
the same sequence number, then they return the same value.

Proof. Let j be the sequence number of both deq1 and deq2. Both operations return an
element by reading the value stored in deqOps[j] at line 9 of Algorithm 8. The claim
follows.

Observation 3.3.3. Let deq be a Dequeue operation with the sequence number i, and
let op be an operation that ends before deq is invoked. We have op ends before deqOps[i]
is written.

Lemma 3.3.4. Let C be a configuration of E. ∀h > 0 and ∀i ≥ 1, if a Dequeue
operation with the sequence number i+h exists and it is complete at C, then a Dequeue
operation with the sequence number i is complete at C.

Proof. Consider the first configuration C where there is a complete Dequeue operation
with the sequence number i+ h, i.e.; deqOps[i+ h] ̸= (⊥,⊥). Assume by contradiction
that deqOps[i] has its initial value at C.

Before a Dequeue operation can have the sequence number i + h, the condition in
line 3 of Algorithm 8 needs to be verified for each sequence number in the range [i, i+h[.
Meaning that before reaching the configuration C, a Dequeue operation had successfully
executed the instance FinishDeq(i) that writes deqOps[i]. There’s a contradiction.

As deqOps[num] is updated only during the execution of the function FinishDeq(num);
the following observation is a consequence of Lemma 3.3.4.

Observation 3.3.5. Before the first execution of FinishDeq(i+h), FinishDeq(i) has
been executed.

Each Enqueue operation op has a unique timestamp composed of an integer obtained
by reading the Max register enqCounter during the execution of line 10, and the id of
the process that executed the operation op.
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Observation 3.3.6. For each p, the timestamps of the elements written in the sub-array
items[p] are monotonically increasing in accordance with their index in the array. In
other terms, we have items[p][i].ts < items[p][i+ 1].ts.

At any given configuration, the sub-queue of process p is the sub-array of items[p]
in the range items[p][head[p].MaxRead()], ..., items[p][tail[p]− 1]. The following three
Lemmas are the same exact properties as Lemmas 3.2.6, 3.2.8 and 3.2.9 since the
pseudo-code involved is unchanged.

Lemma 3.3.7. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before
enq2 is invoked. Let (st1, id1) be the timestamp of enq1 and (st2, id2) be the timestamp
of enq2. We have st1 < st2.

Lemma 3.3.8. Let enq denote the i-th Enqueue operation by a process p. Let ts =
(st, p) be the timestamp of enq. Let s be any node in the tree T in the path from the
p-th leaf to the root of the tree. At any configuration C after enq ends and such that
deqOps[j] ̸= (i, p) for each j ≥ 0, we have that the timestamp stored at s is smaller
than or equal to ts at C.

Lemma 3.3.9. Let enq be an Enqueue operation with the timestamp ts that enqueued
items[p][i]. If (i, p) was written to deqOps[j] by a process q, then the execution of line
25 of Algorithm 7 to read ts by q was executed after the invocation of enq.

We say that the i-th Enqueue operation by a process p matches the Dequeue oper-
ation deq with sequence number j, if deq writes deqOps [j ] = (i, p) at some point in the
execution. And we say that a Dequeue operation deq with sequence number j matches
the i-th Enqueue operation by process p, if it returns items[p][i].

Lemma 3.3.10. Let enq1 and enq2 be two Enqueue operations such that enq1 ends
before enq2 is invoked. If enq2 has a matching Dequeue operation deq2, then enq1 also
has a matching Dequeue operation deq1.

Proof. By contradiction, we suppose that deq2 exists and deq1 does not. We denote
ts1 and ts2 the timestamps associated with enq1 and enq2 respectively and num2 the
sequence number of deq2. From Lemma 3.3.7, ts1 < ts2 because enq1 ends before enq2
begins.

And since enq1 does not have a matching Dequeue, there is no j ≥ 0 such that
deqOps[j] = (i, p) where items[i][p] is enqueued by enq1. Therefore, from Lemma 3.3.8,
for any node s in the path in T from the p-th leaf to the root, the timestamp stored at
s is smaller than or equal to ts1 after enq1 ends. In particular, for the root of the tree,
the timestamp stored is smaller or equal to ts1. From Lemma 3.3.9, the step of line
25 of Algorithm 7 to read the root of the tree before writing deqOps[num2] is executed
after the invocation of enq2 which is after the invocation of enq1. Meaning that during
this step, the timestamp at the root was smaller or equal to ts1 contradicting the fact
that ts1 < ts2.

Lemma 3.3.11. Let enq1 and enq2 be two Enqueue operations such that enq1 ends
before enq2 is invoked and let deq1 and deq2 be the matching Dequeue operations to
enq1 and enq2 respectively. We have that deq1 has a lower sequence number than deq2.

83



Proof. We denote num1 and num2 the sequence numbers of deq1 and deq2 respectively,
and ts1 and ts2 the timestamps of enq1 and enq2 respectively. By contradiction, we
suppose that num1 > num2 (num1 ̸= num2 from Lemma 3.3.2). Since enq1 ends before
enq2 begins we have that ts1 < ts2 (Lemma 3.3.7).

And since deqOps[i] are written in an increasing order of i according to Lemma 3.3.4,
we have that deqOps[num2] is written before deqOps[num1]. However, from Lemma
3.3.8, as long as deqOps[num1] has its initial value, then the timestamp stored at the
root is smaller than or equal to ts1. At the execution of line 25 of Algorithm 7 to
compute the final value of deqOps[num2] , the root has a timestamp smaller or equal
to ts1; contradicting the fact that ts1 < ts2.

Lemma 3.3.12. Let deq be a Dequeue operation and let enq be an Enqueue operation
that ends before deq is complete. Let C be a configuration of E where enq does not have
a matching Dequeue operation deq′ or deq′ is not complete at C. If deq is complete at
C, then deq does not return ϵ.

Proof. By contradiction, we suppose that deq returns ϵ. Let i denote the sequence
number of deq and ts denote the timestamp of enq. We also denote deqi the operation
that writes deqOps[i].

Since deq returns ϵ, deq reads the value (ϵ,−1) in deqOps[i] at line 9 of Algorithm
8. Therefore, during the execution of FinishDeq(i), deqi reads (ϵ,−1) at the root of
the tree (line 27 of Algorithm 7). However, By Lemma 3.3.8, the timestamp at the root
of the tree after the end of enq is smaller than or equal to ts. Since enq ends before deq
starts, it specifically ends before deq is complete. Meaning that during the execution of
line 25 of Algorithm 7 during the instance FinishDeq(i) that writes deqOps[i] during
deqi, the timestamp at the root of the tree was smaller than or equal to ts. We reach
a contradiction because (ϵ,−1) is larger than any timestamp (h,−) ∀h ∈ N.

3.3.3 Set-linearizability

Let E denote a given execution of Relaxed-Queue. We classify every Dequeue() opera-
tion deq that appears in E to exactly one of the following types :

1. deq does not execute line 2 of Algorithm 8, or deq executes it but then verifies
the condition in line 8 of Algorithm 8 and never executes the step at line 5.

2. deq has a sequence number j and deqOps[j] has the initial value (⊥,⊥) in E.

3. deq has a sequence number j and deqOps[j] ̸= (⊥,⊥) in E.

We remove from E, any Dequeue() operation of type 1 and 2. We denote DEQ the
set of Dequeue() operations of type 3. Let deq be any incomplete Dequeue() operation
in DEQ and let j be its sequence number. We complete deq by returning the value v
if deqOps[j] = (i, id) in E and items[id][i] = (v,−). Otherwise, we complete deq
by returning the empty queue value ϵ. We consider the set DEQi of all instances of
Dequeue that have the same sequence number i. Let deqi be the operation in DEQi

that writes deqOps[i] during the call to FinishDeq(i) at line 8 of Algorithm 8. Since
deqOps[i] is a CAS object, deqi is unique. We denoteDEQ′ the set of all deqi operations
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for i ≥ 0, i.e. DEQ′ = {deqi,∀i ≥ 0}. The operations in DEQ′ are totally ordered
according to their sequence number.

We remove every Enqueue() operation that does not execute line 13 of Algorithm
6 in E. We denote ENQ the set of Enqueue() operations that appear in E and that
we do not remove. Every Enqueue() operation enq in ENQ is uniquely identified by a
pair (i, id) meaning that enq is the i-th Enqueue() operation performed by the process
id. We associate the Dequeue() operation in DEQ with sequence number i with the
Enqueue() operation (j, id) such that deqOps[i] = (j, id).

Let ENQd denote the Enqueue() operations in ENQ that have an associated
Dequeue() operation in DEQ′. We associate each Enqueue() operations in ENQd with
the sequence number of the corresponding Dequeue(). Thus, Enqueue() operations in
ENQd are totally ordered according to the given sequence number.

We construct the set-linearization SL of the operations in E as follow:

1. First we insert the Enqueue() operations in ENQd one by one and according
to their total order, denoted enqi1 , enqi2 . . . and so on. Notice that enqih is the
Enqueue() operation associated with the Dequeue() operation having the sequence
number ih in DEQ′. Assuming that enqih+1

exists, we have ih < ih+1 ; and all
the Dequeue() operations having a sequence number i ∈ [ih + 1, ih+1 − 1] return
the value ϵ.

2. Then, we insert the Dequeue() operations in DEQ′ one by one according to their
the sequence number. For any sequence number k, If deqk returns ϵ it is inserted
immediately after deqk−1 if it exists, or at the beginning of SL otherwise. In the
case where deqk does not return ϵ, it is inserted immediately after the furthest
point in SL following: (i) the previous deqk−1, (ii) the matching Enqueue opera-
tion enqil with il = k, and (iii) the last Enqueue operation that ends before the
invocation of any Dequeue operation with the sequence number k (i.e. DEQk).

3. Let enq denote an Enqueue operation from the remaining Enqueue() operations
with no matching Dequeue operations (i.e. ENQ \ ENQd). We insert enq after
the last operation in ENQd and before the first Dequeue() operation deqi in SL
such that, there exists a Dequeue operation deq′i in DEQi that starts after enq
ends (or at the end of SL if such Dequeue() does not exist). If multiple operations
from ENQ\ENQd are inserted at the same point, then they are ordered according
to their real-time order.

4. For i ≥ 0, we insert all Dequeue operations in DEQi \ {deqi} at the same point
as deqi.

For two operations op1 and op2, we denote op1 <SL op2 when op1 precedes op2 in
the set-linearization SL.

Lemma 3.3.13. Let op1 and op2 be two Enqueue operations in E such that op1 ends
before op2 is invoked. op1 precedes op2 in SL.

Proof. First, consider the case where both operations do not have matching Dequeue()
operations. From set-linearization rule 3, an Enqueue operation that does not have a
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matching Dequeue operation is inserted before the first Dequeue operation deqi in SL
such that there exists an operation deq′i in DEQi that starts after enq ends; or at the
end of L if such Dequeue operation does not exist. If op1 is inserted at the end of SL,
then op2 is also inserted at the end of SL after op1, because op2 starts after op1 ends and
there is no Dequeue operation that starts after op1 ends. We suppose that there exists
a Dequeue operation deqi such that op1 is inserted immediately before deqi. If op2 is
inserted at the end of SL, the claim is trivial. So let deqj be a Dequeue operation such
that op2 is inserted immediately before deqj. We have op1 <ro op2 <ro deq′j. Meaning
that deqj = deqi or deqi <SL deqj, because both operations deq′i and deq′j start after
op1 ends, and deq′i is the first such operation in SL. Therefore, op1 <SL op2 according
to their real time execution order following set-linearization rule 3.

Next, if op1 has a matching Dequeue() operation but op2 does not, we have that op2
is inserted after the last Enqueue() operation that has a matching Dequeue() operation
in SL. The case where op1 does not have a matching Dequeue() operation but op2
does, is impossible according to Lemma 3.3.10. We suppose that both op1 and op2
have matching Dequeue() operations, named respectively deq1 and deq2. From Lemma
3.3.11, we have that deq1 has a smaller sequence number than deq2. Therefore, from
set-linearization rule 1, op1 is before op2 in SL.

Lemma 3.3.14. Let deq be a Dequeue operation with the sequence number j and let
enq be an Enqueue operation invoked after deq returns. If enq has a matching Dequeue
operation deq′ with the sequence number i then j < i.

Proof. By contradiction we suppose that j ≥ i. We consider the configuration C where
deq completes. According to Lemma 3.3.4, deq′ also has been completed at C. Meaning
that deqOps[i] ̸= (⊥,⊥) at C. However, from the hypothesis, enq is not invoked until
after deq finishes. Contradicting the fact that deq′ is the matching Dequeue operation
of enq.

Lemma 3.3.15. Let deq be a Dequeue operation with the sequence number j and let
enq be an Enqueue operation invoked after deq returns. We suppose that enq has
a matching Dequeue operation deq′ with the sequence number i. We have that any
Dequeue operation with a sequence number l < j is before enq in SL.

Proof. By contradiction, we suppose that there exists Dequeue operations with sequence
numbers strictly smaller than j that are after enq in SL, and let deql be the first of
these operations in SL.

We suppose that deql returns ϵ. Since deql is the first Dequeue operation with a
sequence number smaller than j that is inserted after enq. We have that deql−1 <SL enq.
From set-linearization rule 2, deql is inserted immediately after deql−1 (if it exists).
Therefore, deql <SL enq. There is a contradiction.

We suppose that deql does not return ϵ. Let enql be the matching Enqueue operation
to deql. From Lemma 3.3.14, we have that j < i. Therefore, l < j < i. Thus,
enql <SL enq. Furthermore, we have deql−1 <SL enq because deql is the first operation
with a sequence number smaller than j inserted after enq in SL. Therefore, from
set-linearization rule 2, there exists a Dequeue operation deq′l such that enq <ro deq′l.
Consequently, deqj <ro enq <ro deq

′
l. Contradicting the fact that l < j (Lemma 3.3.1).
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Theorem 3.3.16. Let op1 and op2 be two operations in E such that op1 ends before
op2 is invoked. op1 precedes op2 in SL.

Proof. Four cases have to be studied according to the type of operations.

1. op1 and op2 are two Dequeue() operations. Since op1 ends before op2 begins, the
sequence number i1 of op1 is strictly smaller than the sequence number i2 of op2
(Lemma 3.3.1). From set-linearization rule 2 and rule 4, we have op1 is before op2
in SL.

2. The case where op1 and op2 are Enqueue() operations is proved by Lemma 3.3.13.

3. op1 is an Enqueue operation and op2 is a Dequeue() operation. Let i denote the
sequence number of op2. First, consider the case that op2 does not return ϵ. In the
case where op1 ∈ ENQd, from set-linearization rule 2 and 4, op2 is inserted after
the last Enqueue operation that ends before every Dequeue operation in DEQi

starts. Therefore, op2 is inserted after op1 in SL. In the case where op1 ̸∈ ENQd,
from set-linearization 3, it is inserted before the first Dequeue operation deqi such
that there exists deq′i in DEQi that starts after op1 ends; or at the end of SL if
such Dequeue does not exist. Thus op1 is inserted before op2.

Next, consider the case where op2 returns ϵ. Every Dequeue operation with the
sequence number i returns ϵ and are inserted at the same point in SL (set-
linearization rule 4). Let deqi denote the Dequeue operation that writes deqOps[i].
We have that op1 ends before deqi is complete (Observation 3.3.3). By Lemma
3.3.12, op1 has a matching Dequeue operation deq, and deq is complete before
deqi is complete. And since deq is complete before deqi is complete, we have that
j < i where j is the sequence number of deq (Observation 3.3.5). Therefore, from
set-linearization rule 2, deq is inserted before op2. Thus, from set-linearization
rule 1, op1 <SL deq <SL deqi. And from set-linearization rule 4, deqi and op2 are
insterted at the same point; i.e. op1 <SL op2.

4. Finally, we suppose that op1 is a Dequeue() operation and that op2 is an Enqueue()
operation. Let j denote the sequence number of op1. If op2 does not have a
matching Dequeue operation, from set-linearization rule 3, it is inserted before the
first Dequeue operation deqk in SL such that there exists a Dequeue operation deq′k
in DEQk that starts after op2 ends or at the end of SL if such operation does not
exist. By definition, all the operations in DEQj are concurrent. Hence, there is
no Dequeue operation in DEQj that starts after op2 ends because such operation
cannot be in contention with op1 which ends before op2 starts. Therefore, if deqk
exists it is after op1 in SL. Thus, op2 is inserted after op1 in SL.

Next, consider that op2 has a matching Dequeue operation deq with the sequence
number i. If op1 returns ϵ, from the set-linearization rule 2, we have op1 is inserted
immediately after deqj−1 the Dequeue operation with the previous sequence num-
ber (or the beginning of SL if it does not exist). And from Lemma 3.3.15, we
have that deql is inserted before op2 for any l < j. In particular, we have that
deqj−1 is inserted before op2. Therefore, op1 is inserted before op2.
We suppose that op1 does not return ϵ. From set-linearization rule 2, op1 is in-
serted after (i) deqj−1, (ii) the matching Enqueue operation enqj and after (iii)
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the last Enqueue operation enq′ that ends before any Dequeue operation with
the sequence number j starts. We show that op2 is inserted after all these three
operations. From Lemma 3.3.15, we have that deqj−1 is inserted before op2 (i).
From Lemma 3.3.14, we have that j < i meaning that enqj is linearized before op2
according to the total order of the sequence numbers of their matching Dequeue
operations (ii). And since op1 ends before op2 starts, enq′ <ro op2. Therefore,
enq′ <SL op2 because we have shown that the set-linearization of the Enqueue
operations respects the real time execution order (iii). The claim follows.

3.3.4 FIFO Queue Specification

In this section, we show that the Dequeue operations in a set-linearization SL of an
execution of the Relaxed-Queue follow the FIFO order.

Lemma 3.3.17. Let deq be a Dequeue operation that returns v ̸= ϵ. There exists an
Enqueue(v) denoted enq that such that enq is before deq in SL, and there is no Dequeue
operation deq′ that also returns v such that deq′ is not inserted at the same point as deq
in SL.

Proof. First, we prove that enq exists. Since deq returns v ̸= ϵ, it has read a value (j, p)
in deqOps[i] where i is the sequence number of deq (line 9 of Algorithm 8). Meaning
that items[p][j] = v and the Enqueue operation that enqueued v denoted enq, is the
j-th instance of Enqueue by process p. From set-linearization rule 2, the matching
Dequeue operation to enq is inserted after enq. Therefore, deq is either the matching
operation to enq or has the same sequence number, and for both cases, deq is inserted
after enq.

Let deq′ be an operation that also returns v. Since deq′ reads deqOps[i], it has the
same sequence number i as deq. From set-linearization rule 4, it is inserted at the same
point as deq.

Lemma 3.3.18. Let enq1 and enq2 be two Enqueue operations such that enq1 <SL enq2.
If enq2 has a matching Dequeue deq2, then enq1 has a matching Dequeue deq1 and
deq1 <SL deq2.

Proof. By contradiction, we suppose that enq1 does not have a matching Dequeue
operation. From set-linearization rule 3, enq1 is inserted after all Enqueue operations
in ENQd. Especially, enq1 is inserted after enq2. There is a contradiction. And from
set-linearization rule 1, enq1 and enq2 are inserted according to the order of the sequence
numbers of their matching Dequeue operations. The claim follows.

From the two previous Lemmas 3.3.17-3.3.18, we have the following theorem.

Theorem 3.3.19. Let deq be a Dequeue operation in SL. If deq does not return ϵ,
then it returns the element enqueued by the first Enqueue operation in SL that does not
have a matching Dequeue operation inserted before deq.

Lemma 3.3.20. Let deqϵ be a Dequeue operation that returns ϵ. And let enq be an
Enqueue operation inserted before deqϵ in SL. We have that enq has a matching
Dequeue operation deq that is also inserted before deqϵ in SL.
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Proof. First, we show that enq has a matching Dequeue operation deq. By contradic-
tion, we suppose that enq is in ENQ \ ENQd. From set-linearization rule 3, enq is
inserted before the first Dequeue operation deql in SL such that there exists an oper-
ation deq′l that starts after enq ends; or at the end of SL if deq′l does not exist. The
case where enq is inserted at the end of SL is trivial because it contradicts the fact
that enq is inserted before deqϵ. So deq′l exists. By lemma 3.3.12 deq′l does not return ϵ.
Since enq <SL deqϵ, we have deq′l <SL deqϵ Hence, deqϵ has a greater sequence number
than deq′l from set-linearization rule 2. Thus, deqϵ is complete after deq′l is complete
(Lemma 3.3.4). We conclude by lemma 3.3.12, that deqϵ does not return ϵ. There is a
contradiction. Thus, enq has a matching Dequeue operation denoted deq.

In the following, we establish that deq is inserted before deqϵ. Let i denote the
sequence number of deqϵ and let j be the sequence number of deq. We denote deqj the
operation that writes deqOps[j]. By contradiction, we assume that i < j (i.e. deq is
inserted after deqϵ). Let deqk be the first Dequeue operation inserted after enq with
k its sequence number. Such an operation exists as enq <SL deqϵ. We have k ≤ i,
according to the set-linearization rule 2. Assume that deqk returns ϵ. If k = 0 then
no operation is inserted before deqk; in this case, there is a contradiction. Otherwise
(k ≥ 1), there is no Enqueue operation inserted after deqk−1 and before deqk because
deqk is inserted immediately after deqk−1 (set-linearization rule 2). This contradicts the
fact that deqk is the first Dequeue operation inserted after enq. Hence deqk does not
return ϵ. We conclude that k < i.

deqk does not match enq as we assume that deq is inserted after deqϵ. From set-
linearization rule 2, deqk can only be inserted after enq because enq terminates before
the invocation of an operation deq′k with the same sequence number k. Since k < i,
deq′k is complete before deqϵ is complete (Lemma 3.3.4). Therefore, deqϵ is complete
afte enq ends. Thus, by Lemma 3.3.12, deqϵ cannot return ϵ if j > i. There is a
contradiction.

3.3.5 Step Complexity

In this section, we establish that the Enqueue and Dequeue operations implemented in
the Relaxed-Queue both have a worst-case step complexity of O(log n).

Lemma 3.3.21. A process executes O(log n) steps during the execution of either an
Enqueue operation or Dequeue operation.

Proof. Lemmas 3.2.21 and 3.2.21.1 hold for the Relaxed-Queue. Therefore, the claim
follows for Enqueue operations.

Let deq denote an instance of the Dequeue operation implemented in Algorithm 8.
The number of steps executed during deq is dependent on the cost of the UpdateTree
function (Line 7 of Algorithm 8), in which a call to Propagate can be executed. From
Lemma 3.2.21, the number of steps executed during an instance of Propagate isO(log n).
The claim follows.

3.4 Discussion

We have presented a wait-free implementation of a k-multiple dequeuer n-multiple
enqueuer FIFO queue. The worst case step complexity of the Enqueue operation is
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in O(log n) and the Dequeue operation is in O(k log n). Meaning, that as long as the
number k of dequeuer processes is constant, our implementation has logarithmic step
complexity, which improves on the previous upper bound of O(

√
n). While we focused

on theoretical evaluations of step complexity, it could also be of interest to compare the
algorithm empirically to other FIFO implementations to gauge its applicative relevance.

Any queue implementation has a limitation regarding space complexity because
of the requirement to store all the enqueued elements that have not been dequeued.
Simply by considering an execution where a process only executes Enqueue operations,
we can show a lower bound on space complexity in the number of elements present in
the queue. Besides this limitation, there also seems to be a trade-off between step and
space complexity in the implementations that appear in the literature. For instance,
David [16] implements a single enqueuer queue with a constant step complexity but with
infinite space complexity. But then, it is argued in [16], that it is possible to bound the
space complexity of their implementation to the detriment of the step complexity that
would reach O(n).

Some implementations propose memory reclaiming schemes in which data that is
no longer useful is discarded (i.e. dequeued elements). In [46], Yang et al. propose
such a scheme based on the epoch-based reclamation in [21] to manage the memory
of non-blocking lists. The performance of the wait-free queue implemented in [46] is
measured empirically, and it is shown that the implementation manages to outperform
other prior queue implementations regardless of the overhead generated by the memory
usage optimization. We do not consider the issue of optimizing the space complexity in
the scope of this work because of the intricacies that seem to correlate with balancing
both the step and space complexities of a wait-free queue implementation, and we leave
the question for future work.

Then, to the best of our knowledge, we presented the first relaxed FIFO queue with
logarithmic step complexity where every process can perform both Enqueue(v) and
Dequeue() operations. It remains an open question whether it is possible to implement
an exact wait-free linearizable FIFO queue with worst-case logarithmic step complexity
without restriction on the number of enqueuers and dequeuers or to implement a relaxed
FIFO queue in constant or near-constant step complexity.
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Chapter 4

Conclusion

In this thesis, we study the possibility of improving the complexity of concurrent object
implementations by relaxing their sequential specification. In particular, we focused on
three common objects, the counter, max register, and FIFO queue.

We studied both upper and lower bounds of these relaxed objects to have a clear
understanding, as much as possible, of the extent the relaxations can improve the
implementation of a shared object and bring forth any limitations to this approach.

First, we study how allowing wait-free linearizable implementations of the counter
and max register objects to return approximate values, rather than accurate ones, may
improve their step complexity.

We consider the k-multiplicative-accurate max register and the k-multiplicative-
accurate counter, where read operations are allowed a margin of error of a multiplicative
factor of k. We give a wait-free linearizable k-multiplicative-accurate counter imple-
mentation for k ≥ n with constant amortized step complexity where n is the number
of processes.

We also show that by bounding the execution, we are able to implement the k-
multiplicative-accurate counter for k ≥

√
n in a wait-free linearizable manner and

with a worst-case step complexity of O(min(log(log(m + 1)), n)) where m represents
the bound on the number of CounterIncrement operations during an execution. Both
implementations offer an exponential improvement on the complexities of their best
exact counterparts in the state of the art.

Then, we study the lower bounds of the complexity of the k-multiplicative-accurate
counter and max register in both their bounded and unbounded variations. We obtain
the result that when the approximation parameter k does not depend on the number of
processes, relaxing counter semantics by allowing inaccuracy of a multiplicative factor
cannot asymptotically reduce the amortized step complexity of unbounded counters
by more than a logarithmic factor. We also prove that our bounded k-multiplicative-
accurate max register is optimal and matches the lower bound.

When it comes to the FIFO queue, we investigate whether it is possible to im-
plement a logarithmic worst-case step complexity wait-free implementation that does
not suffer from concurrency constraints. Therefore, we present a wait-free FIFO queue
implementation that supports n enqueuers and k dequeuers where the worst-case step
complexity of an Enqueue operation is in O(log n) and where the complexity of the
Dequeue operation depends on the level of concurrency during the execution and is
O(k log n) in the worst-case scenario.
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We then rely on the relaxation of the FIFO queue semantics to show that allowing
concurrent Dequeue operations to retrieve the same element results in an implemen-
tation with O(log n) worst-case step complexity for both the Enqueue and Dequeue
operations.

Perspectives and prospects

There remains a few open problems around the results we presented that can be ex-
plored.

In the case of the k-multiplicative-accurate counter, depending on the parameter
k, we do not know how the relaxation affects the implementation when k ∈]

√
n/2, n[.

Although our implementation of the unbounded relaxed counter can achieve constant
amortized step complexity for k ≥

√
n when the executions are long enough, a small

gap still remains for the possible values of the approximation parameter k.
On a more high-level aspect, we have presented many cases where the relaxation

of shared objects achieves better theoretical complexity results than exact objects.
However, it is often the case that the relaxations are closely dependent on the nature
of the object and do not necessarily translate into a large set of objects. It could be
interesting to attempt to classify different types of relaxations to understand how they
correlate with each other as well as how they relate to the different classes of weakened
consistency conditions.
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