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Digital data is playing crucial role in our daily life in communicating, saving information, expressing our thoughts and opinions and capturing our precious moments as digital pictures and videos. Digital data has enormous benefits in all the aspects of modern life but forms also a threat to our privacy. In this thesis, we consider three types of online digital data generated by users of social media and e-commerce customers: graphs, transactional, and images. The graphs are records of the interactions between users that help the companies understand who are the influential users in their surroundings. The photos posted on social networks are an important source of data that need efforts to extract. The transactional datasets represent the Abstract prove that the level of privacy is similar to the level provided by Safe Grouping.

The third use-case concerns the images posted by users on social networks. We propose a privacy-preserving mechanism that allows the data owners to classify the elements in the photos without revealing sensitive information. We present a scenario of extracting the sentiments on the faces with forbidding the adversaries from recognizing the identity of the persons.

For each use-case, we present the results of the experiments that prove that our algorithms can provide a good balance between privacy and utility and that they outperform existing solutions at least in one of these two concepts. Abstract 4.8.3.2 Evaluating the impact of ESG on the correlations between identifying and sensitive values . . . . . . . . .

operations that occurred on e-commerce services.

We rely on a privacy-preserving technique called Differential Privacy (DP) and its generalization Blowfish Privacy (BP) to propose several solutions for the data owners to benefit from their datasets without the risk of privacy breach that could lead to legal issues. These techniques are based on the idea of recovering the existence or non-existence of any element in the dataset (tuple, row, edge, node, image, vector, ...) by adding respectively small noise on the output to provide a good balance between privacy and utility.

In the first use case, we focus on the graphs by proposing three different mechanisms to protect the users' personal data before analyzing the datasets. For the first mechanism, we present a scenario to protect the connections between users (the edges in the graph) with a new approach where the users have different privileges: the VIP users need a higher level of privacy than standard users. The scenario for the second mechanism is centered on protecting a group of people (subgraphs) instead of nodes or edges in a more advanced type of graphs called dynamic graphs where the nodes and the edges might change in each time interval. In the third scenario, we keep focusing on dynamic graphs, but this time the adversaries are more aggressive than the past two scenarios as they are planting fake accounts in the dynamic graphs to connect to honest users and try to reveal their representative nodes in the graph.

In the second use case, we contribute in the domain of transactional data by presenting an existed mechanism called Safe Grouping. It relies on grouping the tuples in such a way that hides the correlations between them that the adversary could use to breach the privacy of the users. On the other side, these correlations are important for the data owners in analyzing the data to understand who might be interested in similar products, goods or services. For this reason, we propose a new mechanism that exposes these correlations in such datasets, and we 
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CHAPTER 1

Introduction

"Data is the new oil" is a well-known quote used to express the transition from the industrial era to the digital age. In the formal, oil was the most critical resource to build wealth. While in the latter, data is a crucial element to develop and expand any successful business in almost every sector.

Data and oil also have many similar characteristics. The first one is that we cannot capitalize any of them in their raw form. Before being consumed by the final customer, the oil needs to be refined into gasoline, diesel, kerosene, etc. Data also cannot form a valuable asset by itself. Looking into millions or billions of tuples of a dataset on a screen in front of you will not help you expand your customer base, increase your profits or make the right decisions in your business management. You need to analyze these tuples, to search for helpful information leading to the right decision-making choices.

Amazon is one of the Tech giants with a Market Cap that exceeds the $1.6 Trillion. It was not about luck but about analyzing the enormous size of data produced by their customers in the best possible way to recommend to each customer what makes them buy more and more from that platform. Jeff Bezos, the founder of Amazon, used the term "customer obsession" to express the company's most important priority "figure out what they want, what's important to them." Many articles and documentaries could be fined that tracked their rise through the prism of being a data collector. One of the former executives said, "They happen to sell products, but they are a data company." [START_REF] Kelion | Amazon: How bezos built his data machinehttps[END_REF].

The countries producing crude oil might have the possibility of refining, but this is not the case in many countries, as refining needs significant capital investment. The same could be said about data analysis. To benefit for the maximum from your raw data, sometimes you need a team of experts in machine learning, deep learning, or other techniques in Artificial Intelligence, as well as expensive software solutions. In this case, the data owner prefers to rely on a third party to complete the complex analysis.

Simultaneously, precisely as the governments try as hard as possible to maintain the security and the stability of the main arteries for oil transport, the data owners must protect the individuals from privacy breaches if they are selling, sharing, or publishing data.

Some may ask if data analysis results provided by the data scientist inside the company or from a third party are the best possible output or better results could be reached. Netflix had a supposedly good idea of publishing data to the public and rewarding a $1 million prize to the contestant who develops the best movie recommendations algorithm. The only issue with that idea is that they think only possible contestants will be interested in the published data, but some privacy researchers were also excited about this opportunity. The data contained 100 million tuples of users with their movie ratings, and the identifier attributes were removed.

The authors in [START_REF] Narayanan | Robust de-anonymization of large sparse datasets[END_REF] aimed to prove that eliminating identifier attributes in that dataset is not enough to protect the privacy of individuals. They exploit some public datasets from the IMDb website and voter databases to link the tuples to specified individuals breaching their movies' ratings. This is considered a privacy breach, especially the rating of controversial ones related to religious, political, or sexual orientation issues.
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An important revenue for data owners is creating a user-centric business model to sell data to ad agencies, social studies organizations, or pharmaceutical companies if the data is related to diseases. Thus, the data owner might share the data with a third party or publish it to the whole public. Either way, the privacy threats on the individuals represented in the data are the same, then in this thesis, we will use the terms shared, released, and published interchangeably.

Therefore, questions are raising about the threats of privacy breaches. How can you be sure that the third party, buyer, or public won't exploit your data to gain unauthorized knowledge about the individuals represented in the analyzed data?

One big difference between oil and data is that the oil era, sooner or later, will end. In contrast, the era of data as a valuable asset is here to stay with us for a long time. And, as long as this asset is very profitable, more issues about data privacy will appear.

Digital data in international conflicts

We have explained the importance of data economic and business-wise, but the data is even more vital than that. In war, politics, and diplomatic relations, knowing more about your enemies, opponents, or even allies makes your position more robust and your decision-making easier.

From here, we can find a new comparison between oil and data. Both of them could lead to dangerous international conflicts, especially between the superpowers, because those who obtain more of these two have more chances to surpass their rivals.

Edward Snowden, a well-known whistleblower who was behind the biggest intelligence leak in the American National Security Agency's history that exposed the agency activities in spying on American people [START_REF] Goldsmith | The failure of internet freedom. Emerging Threats[END_REF], has revealed another document in 2015 proving that China has hacked 50 Terabytes of top-secret data about some of the most advanced US military equipment [START_REF] Gady | New snowden documents reveal chinese behind f-35 hack[END_REF][START_REF] Hirschfeld | Hacking of government computers exposed 21.5 million people[END_REF]: the only two stealth and fifth-generation F-35 joint strike and F-22 Raptor, the only stealth strategic bomber in the world B-2, in addition to space-based lasers, missile navigation and tracking systems, as well as nuclear submarine/anti-air missile designs.

This example show the role that data could play in the military and weaponry field. The political field is also a hugely important domain that needs information about other parties so you can make your decisions. NSO Group, an Israeli cybersecurity company, has developed spyware called Pegasus [START_REF] Marczak | Hide and seek: Tracking nso group's pegasus spyware to operations in 45 countries[END_REF][START_REF] Mehrotra | Pegasus has given privacy legislation a jab of urgency[END_REF] dedicated for the governments to spy on terrorist suspects' phones as the company claimed. But, as anyone with little political knowledge would imagine, dozens of governments buy this $50 million product to control and retrieve the data on the phones of political and human rights activists, journalists, lawyers, activists, foreign leaders, and of course, their political opponents. The reports say that the leaked list of victims contains 50,000 phone numbers [START_REF] Chawla | Pegasus spyware-'a privacy killer[END_REF], including several presidents, prime ministers, and ministers. This scandal clarifies how politicians and governments are thirsty to get personal data about other domestic and foreign politicians.

In many other cases, the victims are not specific individuals but a large portion of the public. Facebook is the largest online social media service in the world. In 2006, user privacy 1. Introduction concerns started emerging [48], and since that, every one to two years, a new privacy issue about this company appears. The most massive data breach is the one linking Facebook and a political data-analytics firm named Cambridge Analytica (CA). CA improperly obtained the personal data of 87 million Facebook users without their consent [START_REF] Machova | The discourse of surveillance and privacy: biopower and panopticon in the facebook-cambridge analytica scandal[END_REF]. The data-analytics firm, then, used the data to help two campaigns target election ads using voter data in two major political events in that period, the US presidential election [START_REF] Laterza | Could cambridge analytica have delivered donald trump's 2016 presidential victory? an anthropologist's look at big data and political campaigning[END_REF] and Brexit referendum [START_REF] Risso | Harvesting your soul? cambridge analytica and brexit[END_REF][START_REF] Scott | Cambridge analytica did work for brexit groups, says ex-staffer[END_REF] (a referendum to ask the electorate whether the country should remain a member of, or leave, the European Union). The results were that the campaigns hiring CA won both the election and the referendum.

The most apparent evidence these days about the roles that data plays in international affairs and national security is the conflict between the USA and China about the fifth-generation technology standard for broadband cellular networks or what is known as the 5G war [START_REF] Gong | 5g and china-us relations: Competition and intervention[END_REF]. The US has warned its European allies who used communications technology provided by Huawei in their networks that they put intelligence relationships at risk. Washington has started a pressure campaign to encourage many countries to stop relying on the Chinese to build their 5G networks. The two most effective efforst were:

• Clean Network [START_REF] Emel Akan | Us turns tide on huawei, ending ccp's 5g master plan[END_REF]: to "protect citizens' privacy and companies' sensitive information on 5G mobile networks and secures data across the full range of telecommunications and technology".

• Criteria for Security and Trust in Telecommunications Networks and Services [START_REF] Andrew | Criteria for security and trust in telecommunications networks and services[END_REF]:

as a tool to determine trustworthiness and security of telecommunications equipment suppliers for governments and network owners or operators.

These campaigns succeeded in some countries [START_REF] Radu | The governance of 5g infrastructure: between path dependency and risk-based approaches[END_REF] like the UK and Australia, where the governments blacklisted the chinese companies from the national 5G networks for security reasons.

We listed these examples to prove the huge influence digital data could play in such a crucial domain as the relations between superpowers not to claim that we are trying to solve these complicated issues. In this thesis, we restrict our scenario on data generated by users on social media and e-commerce websites, how to benefit from this data and protect the privacy of the users at the same time.

Scenario

To talk more about the privacy issues in the data domain, we will present a scenario about a social network company that adopts the Ad-based business model that needs user-centric designs to grow. All the services related to the social network are free, and, as the American sculptor Richard Serra once said, "if something is free, you're the product". Actually, the real product is the data generated by the users, and the customers are the parties willing to buy the results of the analysis, the queries, or the mechanisms applied to the data.
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When using the data in any process, the company faces two main problems:

• User privacy: As mentioned previously, sharing the data with a third party to perform the analysis might pose a real threat to the privacy of the users. Thus, our role in this company is to provide privacy-preserving mechanisms that could ensure a good balance between the privacy of the users and the utility of shared data.

• Heterogeneity of the generated data: The data generated by social media users is very diverse in its types and forms like text, image, video, location, graphs, microdata, transactional data, etc. In this thesis, we focus on three types of them:

-Graphs: The main type of data that a social media firm could be interested to exploit is the graphs generated by numerous actions performed by the users: being friends, following, messaging, tagging, blocking, muting,... Furthermore, the graphs constructed from these actions could have different types. The static graph presents the relations between several users in a single time interval. In contrast, a dynamic graph represents these relations in multiple intervals by modifying its edges and adding or removing some of its nodes to describe the relationships in every interval.

The solution could be offline, where we already have all the instances of the dynamic graph. The online solutions are applied when the company demands that every instance be anonymized approximately in real-time. We cannot wait for all other instances before publishing the current one.

The attacks also can differ between static and dynamic attacks. In the formal, the adversaries try to extract personal private data from published datasets relying on their auxiliary data. Active attacks occur when the adversaries plant fake accounts and attack the victim till they find their nodes in the published graphs.

-Images: Other type of data generated by the users is the images. The image could contain a lot of information but extracting data from this type of post is not as easy as extracting it from a text or the relationships between the users. The gallery images of a user could reveal everything about them, starting from their preferred clothes, shoes, watches, sunglasses, and jewelry brands to their favorites restaurants and type of foods. Even more, the political parties, religious institutions, athletics clubs, and non-governmental organizations will be very interested in delivering their messages to people posting images on our social network about these issues. These are just an example of what we can uncover from the gallery images of a user.

But the problem with the photos is that they don't contain a simple type of data that is easy to detect and analyze. For example, a post like ¨I miss sushi!¨or a user following 14 fast-food restaurants requires simple algorithms to retrieve valuable data from the post or the user's connections. On the other hand, an image of a family having dinner in a restaurant contains many profitable data: What are they wearing, eating, and drinking, in addition to the type of restaurant that they might prefer and the cost that they are willing to pay to eat outside.
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Revealing these pieces of information requires a sophisticated and expensive algorithm. Thus, our company might prefer to send these data to a third party to perform this analysis on the images at an acceptable price. Here comes our mission to apply a privacy-preserving algorithm on the images resulting in a tradeoff between privacy where the third party could not identify the faces in the pictures and the utility where valuable data are preserved.

-Transactional data: The company could adopt a new strategy to benefit from all the data. Instead of just selling them to interested parties, the company decided to open its own e-commerce business. This platform targets the users by advertising their favorite products based on their social network data. Selling the products also produces what is called transactional data, which by analyzing it, could help us more and more in recommending the right products to our users.

Tuples form a transactional dataset; each represents one consumer buying process, containing the consumer id, a number of their quasi-identifiers attributes, the product id, the price, and at least one attribute considered sensitive about the process or the customer. Analyzing these tuples will realize the relation between the attributes that characterize the user, from one side, and the product and its price from the other side. This data mining can help us anticipate that users with similar attributes will be interested in similar products with a specific price range.

For the same reasons as the past two analyses we have discussed, this analysis needs to be done safely without threatening the consumers' data.

In this thesis, instead of applying a different type of privacy definitions on each of these types of data, we will propose to adopt one privacy definition called Differential Privacy and one of its extensions called Blowfish Privacy on the heterogeneous data.

Graph Anonymization 1.3.1 Naive anonymization

A communication graph is a graph where vertices represent individuals, and an edge between two individuals exists if communication has happened between the individuals corresponding to the vertices. Social networks and call detail records can be modeled as communication graphs.

One way to anonymize the data of a communication graph is to remove the identifiers at the vertices. The goal of an adversary is therefore, to discover the individual corresponding to a node in the graph. The ith attribute of a tuple t is 1 if t._id has communicated with the individual corresponding to node i, and 0 otherwise. A row in D represents the ego network of the corresponding vertex. id tuple Bob [START_REF] Chicha | Cloud-based differentially private image classification[END_REF] (0, 0, 1, 1, 0, 0, 0) Alice (2) (0, 0, 0, 1, 0, 0, 0) Adam (3) (1, 0, 0, 1, 1, 0, 0) Carol [START_REF] Chicha | Node-detention differential privacy for active attacks on dynamic graph datasets[END_REF] (1, 1, 1, 0, 0, 0, 0) Roan [START_REF] Nassar | Vip blowfish privacy in communication graphs[END_REF] (0, 0, 0, 1, 0, 0, 0) Karl [START_REF] Agryzkov | A variant of the current flow betweenness centrality and its application in urban networks[END_REF] (0, 0, 0 , 0, 0, 0, 1) Elyse [START_REF] Ahmed | A random matrix approach to differential privacy and structure preserved social network graph publishing[END_REF] (0, 0, 0, 0, 0, 1, 0)

Figure 1: Original graph of social network users and their connections An example of a communication graph and its corresponding database is shown in Figure 1.

Note that we consider a binary communication event (0 or 1). Other models might be explored in future work, for instance, annotating the edges with call frequency, average duration, call time, or other meta-data.

One way to anonymize the data of a communication graph is to remove the identifiers at the vertices. Therefore, the goal of an adversary is to discover the individual corresponding to a node in the graph. Overlapping this naive anonymization is quite simple, using some background knowledge about the community.

Let's say that the graph in Figure 1 represents a small community and all the communications that took place between the individuals inside this community. To protect the individuals' identities, we have removed the identifier attributes from each vertex like the account id, the name, the phone number, and the email address and replaced them with hashed ids. At the same time, we have kept sensitive attributes necessary for the study or the advertisers.

The challenge is to keep the real identity of each user in the graph hidden. Otherwise, an adversary can relate the actual user with the sensitive private data of each node and the communications placed between this user and the other users, which can be considered a serious privacy breach.

Suppose an adversary has some public or auxiliary knowledge about our community. For example, Bob, Adam, and Carol communicate with each other every day. As we can see in Figure 2, this adversary can find the three nodes communicating with each other, then locating Carol in the graph with 100% accuracy and John and Bob with 50% precision, that's called background attack.

Aspects of the graph anonymization

After explaining the failure of the naive anonymization, we will present our own privacypreserving mechanisms, but before that, we will list some characteristics of the graphs and their anonymization.

The graph datasets produced by the relationships of the users have two types:

• Static: the published version of the graph is released once, and that's it. • Dynamic: The published version is updated at the end of each time interval to represent the connections in this interval.

The attacks on the graphs could also be divided into two types:

• Passive: the adversary waits for the publication of the anonymized graph, then uses their auxiliary knowledge and some data science techniques to obtain the most achievable knowledge about the individuals in the graph and their relations.

• Active: the adversary doesn't wait for the publication. But instead, they take their first step even before the data owner collects the data from the community to create the graph.

They form one or many fake accounts with specific characters connected to each other and, most importantly, to the possible attack victims. When the graph is published, these fake accounts are represented by nodes called Sybil nodes which, connected to each other, form one or many Sybil subgraphs. The adversary tries to recognize these subgraphs based on their characters, leading to easy identification of the victim nodes.

passive and active.

Confronting these attacks also takes two possible approaches. Let's say we are publishing the call records in a community for two years daily, starting from the first day of 2021.

• Offline: this approach means that we already have all the set graphs before releasing the first anonymized graph. In this approach, we cannot release the first graph before getting the last graph of the last day of 2022. It means we cannot benefit from these data before two whole years, which may decrease the value of the published graph. Also, we could not apply the offline solution on an indefinite stream of graphs.

• Online: the previous two cases show the importance of having an online solution where it's possible to publish every morning the private graph of the past day without waiting for any future graph.

The last characteristic that we will mention about anonymization algorithms is centered around the nature of their results. Two approaches could be listed:

• Non-interactive: The output of some of these algorithms is an anonymized version of the dataset. In this case, the data owner released the result and could not control any query or analysis done on the published output; for this reason, it's called the non-interactive approach.

• Interactive: The interactive approach doesn't release a dataset but a query or a mechanism result. The data owner receives the query, applies it to the dataset, performs the anonymization process on the result, verifies that the anonymized output doesn't breach the privacy of any individual, and finally, shares or releases the modified result.

These aspects of the nature of the graphs, the attacks and the anonymization processes will be discussed in the Chapter 3, and we will propose three anonymization mechanisms covering these aspects.

VIP nodes in the graph

We can notice an essential characteristic of social network users that is not well studied in the literature. It's the fact that the accounts have a different level of importance, and there is no need to provide the same level of privacy for all of them. Thus, we proposed to divide the nodes into two groups: VIP and Standard. The nodes could be categorized based on how many problems a privacy breach of their data might cause. These problems could be in the form of lawsuits by the users, fines by the data privacy commission of a country, or a public relations crisis.

The concept of the most important nodes in the graph is well known and widely discussed in the literature [START_REF] Lawyer | Understanding the influence of all nodes in a network[END_REF][START_REF] Gómez | Centrality in networks: finding the most important nodes[END_REF][START_REF] Yang | Mining important nodes in directed weighted complex networks[END_REF], then we are not assuming that we are presenting a new concept.

But, the nodes are categorized as most important based on some graph centralities as degrees, betweenness, closeness, farness, eigenvector. Usually, a VIP account will be categorized as important based on one of these characteristics, so there is no need for the data owner to intervene and label an account as VIP to get higher protection, but it's not the case in many scenarios. For example, many influencers or celebrities could have two accounts, one public and one private, for friends and family. Both accounts should have the same level of protection because breaching the privacy of the personal account could reveal the same personal data as the public one. Other type of accounts that could be labeled as VIP are those dedicated to help and get in touch with victims of domestic violence or any kind of human slavery, the people suffering from suicidal thoughts, depression, or bullying. This type of accounts might not be important on the scale of the mentioned centralities, but breaching and sharing the connections of these accounts may lead to tragic events for these vulnerable individuals and a vast legal and public relations crisis. For this reason, we urge our company to add a new type of VIP node based on the nature of the account instead of just the automatically computed centralities.

This concept of the most important nodes is often used to measure the utility of a privacypreserving algorithm by comparing the original and the anonymized graph based on these Before representing our privacy-preserving mechanism [START_REF] Nassar | Vip blowfish privacy in communication graphs[END_REF] for these types of nodes, we will introduce the Blowfish Privacy and how to apply it on graphs generally. Then, we will benefit from this privacy definition to execute our technique of higher privacy for privileged nodes.

After explaining Blowfish Privacy, we present our interactive service applied on static graphs that provide a high level of protection for the VIP nodes and a high level of utility for the Standard nodes. In this way, we aim to reach a good trade-off between the privacy of VIP nodes and the utility of Standard nodes. As an interactive service, the mechanism receives queries to be executed on the graph. The original result is summed with noise computed based on the Blowfish Privacy process to get the noisy result shared with the inquirer.

Protecting subgraphs in dynamic graphs

Usually, the privacy-preserving techniques are dedicated to protecting the nodes themselves or their edges. The majority of the mechanisms protecting the nodes provide a high level of privacy. For this reason, they suffer from a low level of utility in their results. On another side, the mechanisms giving edge privacy have great utility but are vulnerable against numerous types of attacks that we will detail later.

Therefore, our two following mechanisms are proposed to deal with two scenarios where we prove the edge privacy vulnerability and the node privacy's low utility. Then we propose our new solutions to deal with these scenarios.

Our second proposed anonymization mechanism [3] for graphs is applied to dynamic graphs and adopts the non-interactive approach. But, instead of being dedicated to nodes or edges, this mechanism protects particular subgraphs.

Applying the DP mechanism on graph datasets is done by adding noise to the edges, as in [START_REF] Blocki | The johnson-lindenstrauss transform itself preserves differential privacy[END_REF][START_REF] Gupta | Iterative constructions and private data release[END_REF][START_REF] Hay | Accurate estimation of the degree distribution of private networks[END_REF][START_REF] Karwa | Private analysis of graph structure[END_REF][START_REF] Proserpio | A workflow for differentiallyprivate graph synthesis[END_REF][START_REF] Sala | Sharing graphs using differentially private graph models[END_REF][START_REF] Wang | Preserving differential privacy in degree-correlation based graph generation[END_REF] or to the nodes [35,45,[START_REF] Prasad Kasiviswanathan | Analyzing graphs with node differential privacy[END_REF] to prevent identity and link disclosure while keeping the dataset suitable for analysis. However, Kifer et al. [START_REF] Kifer | No free lunch in data privacy[END_REF] have proved that an adversary with background knowledge can still disclose sensitive information from the data that induces correlations across tuples even if DP is applied.

The limitation of DP can appear in a user-centric design that relies on sharing or publishing dynamic graphs, since anonymizing each release independently will not be sufficient, because an attacker can still infer information about the individuals by combining the anonymized released graphs together. Thus, our goal in this part is to show how a DP mechanism can be extended to address the dynamic graph anonymization. If the sensitive data associated with these nodes is as mentioned in Table 1, thus, it is effortless to guess that the vertices 1, 2, and 4 represent Bob, John, and Alice, respectively. In this way, the adversary can discover the three individuals' marital status and political views, which presents a serious privacy breach. The situation does not improve in Figure 4 despite applying a DP algorithm to add edges in each graph. These noisy edges cannot change the fact that just one triangle appears in the Intersection graph. Suppose we even use a privacy-preserving technique to protect the users' identity in the three graphs, the adversary still can connect the individuals with nodes 1, 2, and 4.

We intend to solve a paradox since we need the data to still carry out valid information about the population represented by the graphs without exposing individuals' privacy. We can define the utility of the released data as one or more statistical measures that the data user can compute with a certain degree of confidence. We propose here a new anonymization technique for a dataset composed of sequential dependent released graphs based on a relaxed version of Blowfish Privacy [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF] under the non-interactive approach. Our goal is to propose a mechanism that protects the subgraphs that have a specific characteristic (like high occurrences in the released graphs, for example) by manipulating their existence or absence in each graph.

Node-Detention Differential Privacy

The third anonymization mechanism for graphs is specialized in confronting active attacks on dynamic graphs [START_REF] Chicha | Node-detention differential privacy for active attacks on dynamic graph datasets[END_REF]. It outputs an anonymized dynamic graph under the online approach. A 1. Introduction fundamental challenge of an online solution is the active attack on sequentially released graphs.

The adversary plants several Sybil nodes in the graphs, tries to identify them in the published graphs, then exploits them to identify other nodes called victim nodes. The massive advantage for the adversary in an online solution is that the data owner could not predict the new nodes, honest and Sybil, that the adversaries and the genuine users will add to the graphs in the future.

We already know all the nodes in the dataset in an offline solution before releasing the first graph. Then we can fake the existence of that node in any of the graphs even if its actual appearance is in a future graph. While in the online solution, we can only know the nodes of the current and previous graphs. Let's say that in the first graph, we had 1000 nodes; none of them is Sybil. In the second graph, 10 nodes were added, including two Sybil nodes. The adversary has to recognize the two Sybil nodes from the ten new nodes (having ids that don't appear in the first graph) instead of 1010 nodes. To make it easier to identify the Sybil ones, the adversary gives them unique characteristics, like a very high degree, by connecting via his fake account to many people in that community or a lesser degree, or any other features that are not very common in that graph. After creating one or many Sybil subgraphs using fake accounts and retrieving them, the adversary uses them to connect to some individuals and acknowledge their representative nodes in the graphs.

Let's say the adversary has successfully identified four individuals in the graph. Thus, he has the potential to reveal the relationship between these four. Who is calling who, how often? And several other private information about the relation between these victims. The data owners must protect these individuals before sharing or publishing their data. This paper proposes an online solution under Differential Privacy to safeguard individuals from active re-identification attacks. We prove that our solution provides a high level of protection against these attacks simultaneously with high utility of the published data. represents Alice. The adversary has found out that the couple didn't call each other for three days which might be a severe breach of their privacy.

Challenges and contributions of graph anonymization

In this way, we have covered by our three mechanisms the different characteristics of the anonymization graphs. We have proposed three different new solutions to help our company benefit from the generated graphs by a high utility of the graphs and the minimum possible graph. We can recap the challenges in this use case as follow:

• In a real-world scenario, the nodes of social networks have different levels of importance and need distinct levels of privacy. In contrast, Differential Privacy mechanisms give all the nodes the same privacy scale.

• Edge-Differential Privacy is unable to protect subgraphs in dynamic graphs.

• Edge-Differential Privacy is unable to protect the nodes' identity against active attacks on dynamic graphs.

• Node-Differential Privacy can resolve the past two problems but has a shallow utility.

Based on these challenges, we can list our contributions in this use-case by dividing them into three parts:

• First part:

-Introducing the Blowfish Privacy technique into graph dataset anonymization.

-Proposing the concept of two node privileges in the same graph.

-Presenting the mathematical way of obtaining the Blowfish noise for several graph queries.

• Second part:

-Presenting a passive attack on dynamic graphs that targets the subgraphs instead of the nodes or the edges.

-Proving that the existing DP algorithms could not defy this type of attack.

-Proposing a flipping mechanism to confront this attack on subgraphs and proving it complies to the BP requirements.

• Third part:

-Suggesting an active attack on dynamic graphs targeting the nodes of the graphs, especially the new nodes of each instance.

-Proving the high vulnerability of edge-DP in this scenario and the low utility of the node-DP results.

-Proposing a new DP technique called Node-Detention Differential Privacy (NNDP)

to deal with active attacks on dynamic graphs.

-Proving the reliability of our new technique in this type of scenario.

Exposing Safe Correlations in Transactional Datasets

After expanding our company's business model by opening an online retail business, a large transactional dataset is being formed and growing with each sale operation. Analyzing this data will help us better understand our consumers and what they tend to buy based on their gender, age, nationality, level of education, history of purchases, and much other information, especially when linking the data generated from their social media profiles with their purchases.

But the same kind of analysis is not limited to transactional datasets but many other types of microdata. For example, if we expand our business to a video streaming service, watching, rating, liking, or adding a movie or a series to the watchlist will generate a row in the dataset that we should study. Other examples generating the same type of data could be online Taxi service, car rental, ticket or hotel booking, online marketplace for lodging, etc.

For the same reason why removing the identifiers from a node in the graphs is not enough, also removing them from the row of transactional data is not enough before sharing with a third party. Therefore, data providers should anonymize not only the identifying values but also the associations that link individuals to their sensitive values as an adversary may be able to combine their background knowledge [START_REF] Samarati | Protecting respondents' identities in microdata release[END_REF][START_REF] Sweeney | k-anonymity: a model for protecting privacy[END_REF] to information in the released dataset to breach privacy. Hiding the associations between individuals and their sensitive values requires particular attention and cannot be done fairly straightforwardly.

Several anonymization techniques have been proposed to hide these sensitive associations.

Some are differentially private [53] while others rely on generalization [START_REF] Samarati | Protecting respondents' identities in microdata release[END_REF][START_REF] Sweeney | k-anonymity: a model for protecting privacy[END_REF][START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF][START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF][START_REF] Anjum | Banga: An efficient and flexible generalizationbased algorithm for privacy preserving data publication[END_REF][START_REF] Gong | A framework for utility enhanced incomplete microdata anonymization[END_REF] and/or bucketization [START_REF] Xiao | Anatomy: Simple and effective privacy preservation[END_REF]40,[START_REF] Biskup | On the inference-proofness of database fragmentation satisfying confidentiality constraints[END_REF][START_REF] Li | Slicing: A new approach for privacy preserving data publishing[END_REF], separating what is sensitive from non-sensitive.

(Generalization techniques can also satisfy differential privacy [START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF][START_REF] Soria | Differential privacy via t-closeness in data publishing[END_REF]46].)

These techniques have been shown to be effective and useful, but complications do arise when anonymizing transactional datasets [START_REF] Bechara Al Bouna | Using safety constraint for transactional dataset anonymization[END_REF][START_REF] Bechara Al Bouna | Anonymizing transactional datasets[END_REF]. The above methods largely ignore these problems, which assume each record corresponds to a single individual. Datasets in which several tuples relate to the same individual may expose significant correlations between identifying and sensitive values. An adversary can use their knowledge of such correlations [START_REF] Kifer | Attacks on privacy and definetti's theorem[END_REF][START_REF] Raymond | Can the utility of anonymized data be used for privacy breaches?[END_REF] to breach privacy.

A particularly obvious example is datasets including location as part of the transaction. In these datasets, correlations provide foreground knowledge and could be used by the adversary to breach individuals' privacy. To better illustrate the problem, consider the car rental scenario given in Figure 6a where any vehicle can occasionally be rented from a location and returned to another.

In this example, only 6b. Tuples in these tables are divided into groups in such a way that satisfies the privacy constraint requirements.

Anatomy uses ℓ-diversity as its underlying privacy constraint and thus protects the dataset against attribute disclosure. The anonymized tables in Figure 6b satisfy the 3-diversity privacy constraints [START_REF] Machanavajjhala | Muthuramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity[END_REF]: each record must have at least three potential sensitive values.

However, given the transactional nature of the dataset, we recognize two types of correlations [START_REF] Bechara Al Bouna | Using safety constraint for transactional dataset anonymization[END_REF]:

• Inter-group dependencies: occur when an adversary knows certain facts about the individual (e.g., Roan_U1 frequently rents a car from a specific location).

• Intra-group dependencies: correlations between values in the same QI-group, which occur when there are multiple transactions for a single individual within a group; (e.g., if all transactions in a group were for the same individual, which results in an inherent violation of ℓ-diversity.) By considering this separately for transactional data, rather than simply looking at all tuples for an individual as a single "data instance", we gain some flexibility.

Dealing with correlations is a severe hurdle; losing them reduces the outsourced data utility while keeping them poses a threat to privacy. The authors in [START_REF] Bechara Al Bouna | Using safety constraint for transactional dataset anonymization[END_REF][START_REF] Bechara Al Bouna | Anonymizing transactional datasets[END_REF] propose the safe grouping technique to ensure that each individual's tuples are grouped in one and only one QI-group that is at the same time ℓ-diverse, respects a minimum diversity for identifying attribute values, and all individuals in the same QI-group have an equal number of tuples. The approach is based on knowing (or learning) the correlations and forming buckets with a common antecedent to the correlation. This protects against inter-group dependencies. Identifiers are then suppressed where necessary (in an outsourcing model, this corresponds to encrypting just the portion of the tuple in the identifier table) to ensure the privacy constraint is met, including protection against intra-group correlation.

Figure 6c shows two QI-groups that respect safe grouping for a number of individuals k = 2 where we assume that there are no other QI-groups containing users U1 and U4. Figure 6c also shows that four identifying values in the QI-group are anonymized2 to guarantee that individuals U2, U3, and U5 have an equal number of tuples.

For the sake of privacy, safe grouping inhibits the ability to learn correlations from the dataset and, thus, decreasing the utility of the dataset for aggregate analysis and frequent pattern mining.

(c) Anonymization using Safe Grouping

Figure 6: Table Rental anonymized

In this use case, we ensure that a dataset can be anonymized at the same level of privacy, as achieved by safe grouping, but with better utility. We show that a suitable trade-off can be made for which the privacy constraint is met without losing/suppressing safe correlations. More specifically, we demonstrate that the grouping can be achieved in a way that allows identifying and sensitive values to correlate across several QI-groups, exposing their correlations and still be considered safe [2].

Again, it is not a random grouping of tuples, but instead, we ensure, while anonymizing the dataset, if k distinct identifying values are grouped together, these same identifying values remain grouped together across the anonymized dataset. In other words, we preserve a safe grouping (i.e., given two distinct ℓ-diverse QI-groups, their intersection must yield either k identifying values or none) with better utility, since the correlations between identifying and sensitive values are exposed. To achieve this, we follow a divide-and-conquer strategy, dissecting large QI-groups into smaller ones by finding at least k identifying values that correlate in the original dataset and spreading them across several QI-groups. These groups are merged when necessary to preserve ℓ-diversity.

Challenges and contributions of transactional data anonymization

This use case aims to propose a solution for data owners interested in publishing or sharing their anonymized transactional datasets. But, at the same time, they are concerned about the correlations in their dataset that could be used to breach the individuals' privacy, and still, they don't want to lose the utility that these correlations present. The challenges of this use case are:

• Adversary could benefit from correlated data in transactional dataset to expose the identities of individuals.

• Hiding the correlations restrains the ability of extracting useful information from the dataset.

Based on this contradiction, we can summarize our contributions as follows:

1. Introduction

• An in-depth study of safe grouping showing its strength and weaknesses against two types of adversaries: the first knows about the correlations, and the second can learn the correlations from the anonymized dataset.

• A correlation anonymization privacy constraint to ensure that only safe correlations are exposed in an anonymized dataset.

• An elastic safe grouping algorithm to achieve correlation anonymization using a divideand-conquer strategy keeping correlated identifying values together across QI-groups.

Differential Private Image Classification

Many companies like Microsoft and Google provide free cloud storage services for individual users for limited data size and a paid service for a larger size. Other companies like Amazon are providing unlimited full-resolution photo storage for all prime customers. Posting images on social media is also a type of free storage where the user could post hundreds or thousands of photos for free. The company profits from these posts to know more about the users and their surroundings. Analyzing the images by a third party or sharing or even publishing the results of the analysis of images posted on public accounts would not form a real threat of private data. But, the problem appears when these photos are published on private accounts, stored on personal accounts on storage services, or when the images contain private information about individuals without their consent, like the example of the spectators' sentiments. The company must ensure that this process could not reveal personal data.

There are many scenarios of why images are stored on the cloud and treated. But all of them lead to the same research question: how do we benefit from the data without harming the privacy of individuals in the dataset?

Many cloud services that provide private image classification rely on encryption to ensure the security and privacy of the data. However, encryption does not help preserve privacy in many cases, like in an adversarial setting. For instance, while using partially homomorphic encryption to outsource K-Nearest Neighbors [START_REF] Wu | Top 10 algorithms in data mining[END_REF] classification, the authors show that distance learning attacks are possible [START_REF] Li | Exploring privacy preservation in outsourced k-nearest neighbors with multiple data owners[END_REF]. These approaches are time-consuming as well due to the performance of encryption and decryption algorithms, and they are vulnerable to the theft of encryption/decryption keys [START_REF] Singh | Different image encryption techniquessurvey and overview[END_REF].

In this use case, we propose a cloud-based DP image classification approach [START_REF] Chicha | Cloud-based differentially private image classification[END_REF] that protects the privacy of individuals in a dataset of images. In fact, in our approach, we assume that the cloud computing service is semi-trusted. Thus, we should not be able to identify individuals in the dataset (i.e., images collected from the data owners) and individuals in the requests of inquirer (i.e., a typical user of the cloud service). Then, as we can see in Figure 7, our mission is to transform the cloud image classification into a protected process by ensuring the privacy of images on both sides, the pictures of the training data and those of the queries.

We use a Differential Private mechanism to convert images into noisy vectors, and at the same time, preserve their utility in a way that they remain useful for analysis. We study the first, we should define privacy and utility in our case. From the privacy side, we should provide a high rate of correct classifications of emotions on the faces. From the utility side, we present a scenario where an adversary was able to get, in a way or another, a number of these noisy vectors and has the needed technique to rebuild the images from the vectors, the adversary should not be able to recognize the individuals in the images.

Challenges and contributions of image classification anonymization

The challenges of this use case are:

• It's not safe to store vector converted from images on cloud. If an adversary managed to get the vector, they might be able to reconstruct the image and extract private information from it.

• Encryption approaches are time-consuming due to the performance of encryption and decryption algorithms, and they are vulnerable to the theft of encryption/decryption keys.

Therefore, our contributions in this use case is:

• We propose, implement and evaluate a private image classification framework based on a DP version of the PCA technique.

• We prove that reconstructing the images from the noisy version will not identify the individuals.

In this way, our company can benefit from the images posted on its social networks, stored in its free or low-cost storage services, or even provided safe image classification methods to other companies or organizations.

CHAPTER 2

Background: Differential and Blowfish Privacy

Differential and Blowfish Privacy

Before discussing our mechanisms, we introduce some basic notions of Differential Privacy (DP), some of their mechanisms, and what are the drawbacks of DP that motivated He et al. [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF] to propose Blowfish Privacy (BP) as a generalization of DP and how BP solve these drawbacks.

Differential privacy

In many domains, getting statistical data about a dataset is necessary. However, this data can turn into a real threat to the privacy of any individual, participating or not, in this dataset.

This breach of privacy is due to two factors; inferring auxiliary data about an individual and extrapolating statistical data about a community. 

∥D -D ′ ∥ 1 ≤ 1: Pr[M(D) ∈ S] ≤ e ϵ .Pr[M(D ′ ) ∈ S] + δ (1)
where D and D ′ are two databases of records from a universe χ, which differ by just one row at most and e ϵ is always greater or equal to 1 (ϵ ≥ 0). DP promises that the probability of harm for an individual to participate in a survey, for example, is not more significant than the probability of harm if she does not. By choosing δ = 0, we ensure that, for every run, the randomized mechanism (M) returns the same results for D and D ′ with roughly the same probability. In other words, the probability that the output of M(D) is in the range S and the probability that M(D ′ ) is in the range S too are very close. This closeness is managed by a privacy factor ϵ.

This factor could have two types of jobs. First, when proposing a new privacy-preserving algorithm, to prove that it respects DP requirements, the authors could rely on the two probabilities mentioned in the formal definition by dividing them and trying to demonstrate the existence of an upper bound e ϵ . If the upper bound is proved, then ϵ is defined, and the algorithm is DP.

The second job is when the algorithm is based on one of the basic DP algorithms; thus, it's already proved to be differentially private. In this case, this factor is a tool in the data owner's hand to decide the good balance of utility and privacy for its data. Many studies were done [START_REF] Hsu | Differential privacy: An economic method for choosing epsilon[END_REF][START_REF] Naldi | Differential privacy: An estimation theorybased method for choosing epsilon[END_REF][START_REF] Kohli | Epsilon voting: Mechanism design for parameter selection in differential privacy[END_REF] to help the data owners chose the right ϵ. Another parameter is required to generate the DP noisy result called Global Sensitivity ∆F or GS. The idea of DP is to add enough noise to cover the removal of any row in the dataset.

∆F = max D ′ ∈N (D) | M(D) -M(D ′ ) | where N (D)
is the set of neighboring datasets (differ bu just one row) of D. The method that we use practically to calculate ∆F is:

1. Executing the query on the database to get the result r.

2. Executing the same query on this database but after excluding one row i to get the result r i .

3. Calculating the absolute difference between r and r i .

4. Considering the largest absolute difference as the sensitivity of the query.

The problems appear when a tiny minority or the rows have much higher sensitivity than the other. In this case, the noise will be much greater than needed for most of the tuples, affecting the utility of the result. For this reason, Local sensitivity [52] and Smooth sensitivity [START_REF] Nissim | Smooth sensitivity and sampling in private data analysis[END_REF] were suggested to provide better utility. But, in a worst-case scenario, a mechanism relying on one of these two approaches will not be able to protect the tuples with the highest sensitivities.

Therefore, this type of mechanism is not considered as DP.

DP and BP, like many other privacy-preserving algorithms, are divided into two approaches:

interactive and non-interactive. Interactive approach [54,51] is based on a query that can be used just once, can serve only one inquirer, and only for one task. Any mechanism that is based on this approach returns a noisy result to the user, as in Figure 8a. Each query has a budget ϵ = ∑ i ϵ i given by the database owner. Each execution i makes the budget loses ϵ i of its value. The query cannot be executed anymore when the ϵ budget is less than ϵ i . Hence, this approach has many restrictions on privacy preservation, especially if the budget is small where the number of queries could be insufficient. Besides, the data owner should validate the query.

The non-interactive approach [54,[START_REF] Leoni | Non-interactive differential privacy: a survey[END_REF], as in Figure 8b, returns a noisy synopsis data set. The inquirer can send queries to this synopsis to get noisy statistical data. This approach has no limits nor restrictions to the number and the sender of the queries.

Laplace mechanism

As we have explained, DP was proposed at first as an approach to add restrained noise on statistical queries. Laplace mechanism is the first and one of the most commonly used to implement DP. It relies on Laplace distribution to generate a controlled random noise. The Laplace distribution is:

Pr(x | b) = 1 2b × e -|x|/b
where b = ∆F/ϵ.

To prove that the Laplace distribution could be applied as a DP mechanism, we will prove that it respects the formal definition (inequation) of DP. First, we should clarify that Laplace will be proved to be a mechanism of the strict version of DP where δ = 0. Suppose that a query f is applied on a dataset D. M is an adding noise algorithm based on Laplace distribution where its output M(D) = f (D) + x where f (D) is the original output of the query and x is the noise generated by M. For a neighboring dataset D ′ , with the same logic we get,

M(D ′ ) = f (D ′ ) + x ′ .
By dividing the two distributions, we seek to prove that e ϵ is an upper bound of this division which complies to the definition of DP. Thus:

Pr[M(D) = r] Pr[M(D ′ ) = r] = e -|x|/b e -|x ′ |/b = e -| f (D)-r|/b e -| f (D ′ )-r|/b = e (| f (D ′ )-r|-| f (D)-r|)/b
≤ e (| f (D ′ )-r-f (D)+r|)/b , (following the triangle inequality)

= e (| f (D ′ )-f (D)|)/b ≤ e (∆F)/b , (∆F is the upper bound of | f (D ′ ) -f (D) |) = e ϵ , (b = ∆F/ϵ) P(x | b
) is a randomly generated number between 0 and 1/2b. After getting the random value of the probability, we can compute the noise x as: x = ± × ln(2b × P(x | b)). In this way, the Laplace mechanism generates a controlled random noise based on ϵ and ∆F.

Laplace distribution was first chosen because of its potential to generate a low noise with high probability. As we can see in Figure 9, to get a noise of 

Exponential Mechanism

Laplace and Gaussian mechanisms were the first to be proposed for Differential Privacy. But both of them are applied to numerical data. The exponential mechanism was presented as a solution to use Differential Privacy on non-numerical data. Instead of adding noise on the numerical data, McSherry and Talwar [START_REF] Mcsherry | Mechanism design via differential privacy[END_REF] suggest applying Differential Privacy on nonnumeric valued queries by adding noise on the possibility of choosing each category to be the result of the query or to be in the output of the mechanism.

Each category is paired with a quality score q(D, r) representing how good this category could be as an output r for the query of the mechanism applied on the dataset D. The global sensitivity is the maximum change in the scoring function between two datasets that differ by just one row.

GS(q) = ∆ = max | q(D, r) -q(D ′ , r) |
where D and D ′ differ at most by one row.

The probability of choosing r as the output of the mechanism is

P(exp(D, R, q, ϵ) = r) = exp ϵq(D,r) 2∆ ∑ r ′ ∈R exp ϵq(D,r ′ ) 2∆
where R is the set of all possible outputs and ϵ is the privacy parameter.

This probability returns the possibility for each value to be the output of the query. For a value r, we first compute an exponential number formed by ϵ multiplied by the quality of r and divided by the double global sensitivity. This number is used as the dividend in the probability.

Then we compute similar numbers, each of them related to one of the possible outputs. All these numbers are summed, and the sum is used as the divisor in the probability. Therefore, the same divisor in the probability is used for two possible outputs, r 1 and r 2 ; nevertheless, the dividend varies from the exponential number related to the quality of r 1 to the one related to the quality of r 2 .

In this way, the probability result represents the possibility of a value r to be the output based on its quality compared to all the qualities aggregated.

The DP formula is based on a privacy-preserving mechanism, two neighboring datasets differing by one row and a privacy parameter ϵ.

It's the same for the DP on graphs, but two neighboring datasets are two graphs that differ by one element. When this element is an edge, we call the approach edge-DP, and when it's a node, we call it node-DP [START_REF] Hay | Accurate estimation of the degree distribution of private networks[END_REF].

Edge-DP ensures that the noise added to the graph is enough to protect an edge's existence or absence in the original graph. In comparison, node-DP ensures that the noise covers a node's existence or absence with its whole ego network.

To compute the global sensitivity GS, we must compute the maximum number of edges affected by adding or removing an element from the graph. For edge-DP, we have just one scenario; it's always two neighboring graphs that differ by any edge. Then GS edge-DP = 1.

For node-DP, the worst-case scenario is when the concerned node is related to all other nodes. In this case, the number of edges affected is equal to the number of all other nodes:

GS node-DP =| V | -1, which could be equal to thousands or even millions.

Higher GS leads to a higher injected noise to cover the worst-case scenario implying more privacy but less utility. Then node-DP surpasses edge-Dp on the privacy side but has severe drawbacks on the utility side. This paper proposes an approach to get the same privacy level of node-DP and, at the same time, much better utility.

Differential Privacy on Graphs

The DP formula is based on a privacy-preserving mechanism, two neighboring datasets differing by one row and a privacy parameter ϵ.

It's the same for the DP on graphs, but two neighboring datasets are two graphs that differ by one element. When this element is an edge, we call the approach edge-DP, and when it's a node, we call it node-DP [START_REF] Hay | Accurate estimation of the degree distribution of private networks[END_REF].

Edge-DP ensures that the noise added to the graph is enough to protect an edge's existence or absence in the original graph. In comparison, node-DP ensures that the noise covers a node's existence or absence with its whole ego network.

To compute the global sensitivity GS, we must compute the maximum number of edges affected by adding or removing an element from the graph. For edge-DP, we have just one scenario; it's always two neighboring graphs that differ by any edge. Then GS edge-DP = 1.

For node-DP, the worst-case scenario is when the concerned node is related to all other nodes. In this case, the number of edges affected is equal to the number of all other nodes:

GS node-DP =| V | -1, which could be equal to thousands or even millions.

Higher GS leads to a higher injected noise to cover the worst-case scenario implying more privacy but less utility. Then node-DP surpasses edge-Dp on the privacy side but has severe drawbacks on the utility side. This paper proposes an approach to get the same privacy level of node-DP and, at the same time, much better utility.

Blowfish privacy

A crucial weakness of DP is when dealing with correlated data [START_REF] Kifer | No free lunch in data privacy[END_REF]. Going back to the example in Figure 4 Every policy defines the secrets and the constraints of the graph. If the addition or removal of any tuple in the dataset is considered a secret and no constraints are listed in the policy, this is DP. For this reason, BP is considered as a generalization of DP. It relies on the same inequation but has a privacy policy P as an extension of DP. P = (T , G S , I Q ), where T denotes the domain of all possible tuples, G S = (V S , e S ) is a discriminative secret graph with V S ⊆ T and I Q denotes the set of databases that are possible under the constraints Q. Let us say that in Figure 4, we have released noisy graphs that appear as if some professors or students are communicating from inside the university during some holidays where working is strictly forbidden, for tradition or religious reasons, or during a strike of the University Teachers Union.

Then, releasing these graphs (showing calls between these phones in one of these days) may pose a problem for employees, students, or the university. Therefore, any CDR (Call Detail Records) graph that respects the privacy policy P = (T , G S , I Q ) should not show any call between phones on these specific days.

While in DP, the discriminative secret graph G S is always a complete graph, BP may allow the public to distinguish between specific tuples. Besides, DP does not have any constraint Q. Since BP is a strong privacy definition, relaxation is needed in many cases to prove that a mechanism is relaxed BP. The data owner provides the upper bound of this relaxation. Before releasing the result, we must ensure that the noise is enough that the relaxation does not surpass the upper bound. The data owners also provide any background knowledge that they possess about their database. The service takes this knowledge as a constraint and checks if the noisy graphs respect them. We will present a detailed explanation of BP while proposing how to apply it in the graph privacy use case.

CHAPTER 3

Differential and Blowfish Privacy for social networks

Introduction

Nowadays, data sharing is growing in popularity. It is shaping innovative business models and creating new marketplaces. Ad-based business models as Social network companies (Facebook, Twitter, Instagram, etc.) need user-centric designs to grow. Even companies that do not rely totally on an Ad-based model may also benefit from their users' data to make extra money like telecommunications corporations, video-on-demand service providers, etc. Then, a user-centric design benefits from its users and their data to make profits. In addition to that, communication patterns analysis is becoming crucial for global health security especially with the spread of epidemics such as COVID-19 by the means of social contact.

While it is bringing benefits to data providers, at the same time, it is putting a significant risk on the privacy of the users which is considered as an essential human right. This risk appears because the shared data contains sensitive information and needs to be appropriately protected. Several privacy breach scenarios have been widely cited, notably, the leaks of the medical records of the governor of Massachusetts [START_REF] Sweeney | Computational disclosure control: a primer on data privacy protection[END_REF][START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF] and the AOL search data in 2006 [START_REF] Barbaro | A face is exposed for aol searcher no. 4417749[END_REF], which are typical examples of privacy breaches caused by inappropriate protection of data. This is the reason, privacy-preserving frameworks were proposed to enable communication graph analysis within formal privacy guarantees. Several techniques were proposed in the literature to protect various types of data. In k-anonymity [START_REF] Samarati | Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression[END_REF], the values of the quasi-identifier attributes of the tuples are suppressed or generalized until each tuple is identical with at least (k -1) other tuples on their quasi-identifier attributes. In l-diversity [START_REF] Machanavajjhala | Muthuramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity[END_REF], a group of tuples is considered l-diverse if it contains at least l "well represented" values for the sensitive attribute.

A table is l-diverse if every group is l-diverse. In t-closeness [START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF], the distribution of sensitive attributes in any group is close to its distribution in the full population. The distance between the distribution in a group and the population distribution should not exceed a distance of t.

Differential Privacy (DP) [START_REF] Nissim | Differential privacy: A primer for a non-technical audience[END_REF] provides a mathematically provable guarantee that, whether or not, an individual's private information is included in the input of any DP algorithm, the output will lead to the same assumption about this individual's private information. In an attempt to fortify an individual's privacy, DP [50] has been proposed and has since garnered much attention among the privacy policymakers. DP is a privacy definition that aims to ensure a trade-off between privacy and utility by adding a small amount of noise enough to hide the adding or dropping of an individual from the database. DP provides ways for trading-off the privacy of individuals in a statistical database for the utility of data analysis.

Current DP mechanisms have been applied on a variety of data structures such as images [START_REF] Chicha | Cloud-based differentially private image classification[END_REF],

location data [START_REF] Miguel E Andrés | Geo-indistinguishability: Differential privacy for location-based systems[END_REF][START_REF] Ho | Differential privacy for location pattern mining[END_REF][START_REF] Xiao | Protecting locations with differential privacy under temporal correlations[END_REF], set-valued data [56,34], relational data [START_REF] Lee | How much is enough? choosing ε for differential privacy[END_REF], and graph-based datasets [START_REF] Ahmed | A random matrix approach to differential privacy and structure preserved social network graph publishing[END_REF][START_REF] Li | Graphbased privacy-preserving data publication[END_REF][START_REF] Sala | Sharing graphs using differentially private graph models[END_REF][START_REF] Wang | Differential privacy preserving spectral graph analysis[END_REF] (representing for instance social networks interactions and call detail records).

In these graphs, vertices represent individuals, sometimes annotated with meta-information.

Edges represent interactions among users and can be labeled as well.

The representation of the activities of individuals on social networks is crucial to benefit from the data provided by these networks in data analysis, social or health studies, etc. The evolution of this representation makes the data more valuable. For this reason, we have seen progress in networks presentation forms from static graphs to dynamic graphs, then from offline to online dynamic graphs. This progress leads to more and more concerns about the privacy of individuals. At the same time, the attacks on graphs have also evolved from passive to active attacks. In the former, the adversary waits for the publication of the anonymized graph, then uses their auxiliary knowledge and some data science techniques to obtain the most achievable knowledge about the individuals in the graph and their relations. In the latter, the adversary doesn't wait for the publication. But instead, they take their first step even before the data owner collects the data from the community to create the graph. They form one or many fake accounts with specific characters connected to each other and, most importantly, connected to the possible victims of the attack. When the graph is published, these fake accounts are represented by nodes called Sybil nodes which, connected to each other, form one or many Sybil subgraphs. The adversary tries to recognize these subgraphs based on their characters which could lead to easy identification of the victim nodes.

RELATED WORK

To our knowledge, no previous work concerning Blowfish Privacy towards graph datasets has been considered in the literature. However, many differentially private mechanisms were proposed for graphs. In [START_REF] Hay | Accurate estimation of the degree distribution of private networks[END_REF], Hay et al. divide these mechanisms into two types: edgedifferential privacy and node-differential privacy.

Usually, a node in a graph represents a person while an edge represents a connection between two persons. The purpose of edge-differential privacy [START_REF] Blocki | The johnson-lindenstrauss transform itself preserves differential privacy[END_REF] is to prevent the usage of these connections for revealing the identity of a person. On the other hand, node-differential privacy achieve similar data protection by blurring node appearance in the graph. Nodedifferential privacy has much more sensitivity than edge-differential privacy, which is usually preferable.

In this section, we outline some techniques and algorithms dedicated to protect the graph datasets. The techniques could be divided into 4 categories: (1) identity and link disclosure [START_REF] Zheleva | Preserving the privacy of sensitive relationships in graph data[END_REF]47,[START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF], (2) dK-graph generation model [START_REF] Chen | Publishing community-preserving attributed social graphs with a differential privacy guarantee[END_REF][START_REF] Wang | Preserving differential privacy in degree-correlation based graph generation[END_REF][START_REF] Sala | Sharing graphs using differentially private graph models[END_REF], (3) platforms and programming languages [START_REF] Frank | Privacy integrated queries: an extensible platform for privacypreserving data analysis[END_REF][START_REF] Proserpio | Calibrating data to sensitivity in private data analysis: a platform for differentially-private analysis of weighted datasets[END_REF][START_REF] Proserpio | A workflow for differentiallyprivate graph synthesis[END_REF], (4) static [START_REF] Nguyen | Network structure release under differential privacy[END_REF][START_REF] Li | Graphbased privacy-preserving data publication[END_REF] and dynamic graphs anonymization [START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF][START_REF] Bhagat | Privacy in dynamic social networks[END_REF][START_REF] Bhagat | Prediction promotes privacy in dynamic social networks[END_REF],

(5) many types of k-anonymity approahces and finally, (6) anonymization techniques against active attacks.

Identity and link disclosure

Graph data disclosure can be divided into 3 categories [START_REF] Liu | Privacy-preserving data analysis on graphs and social networks[END_REF]: 1) Identity: the identity of an individual associated with a node is revealed; 2) Link: the sensitive relationships between two individuals are disclosed; and 3) Content: the sensitive data associated with each node is compromised. We can list three privacy definitions to encounter identity disclosure:

• k-Candidate Anonymity [START_REF] Hay | Resisting structural re-identification in anonymized social networks[END_REF][START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF]: An anonymized graph satisfies k-candidate anonymity if, for a given structural query, no individual can be identified with a probability higher than 1 k .

• k-Degree Anonymity [START_REF] Liu | Towards identity anonymization on graphs[END_REF]: An anonymized graph satisfies k-degree anonymity if every node in the graph has the same degree with at least (k -1) other nodes.

• k-Neighborhood Anonymity [START_REF] Zhou | Preserving privacy in social networks against neighborhood attacks[END_REF]: A node is k-anonymous in a graph if there are at least (k -1) other nodes such that the subgraphs constructed by the neighbors of each node are all isomorphic. A graph satisfies k-neighborhood anonymity if all the nodes are k-anonymous as defined above.

Other approaches can also be listed for the link disclosure:

• Link Reidentification [START_REF] Zheleva | Preserving the privacy of sensitive relationships in graph data[END_REF]: Edges here are classified as either sensitive or observed. The goal is to minimize the probability of predicting sensitive edges based on the observed edges while keeping the number of observational edges removed small to preserve the utility.

• Privacy-Preserving Link Analysis [47]: This algorithm enables link analysis in dynamic graphs.

Online computation of eigengaps (the difference between the largest and second-largest eigenvalues) with frequent updates. The algorithms address privacy concerns by applying encryption.

• Random Perturbation for Private Relationship Protection [START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF]: Two randomization techniques were studied. The first is based on adding then deleting edges randomly. The second one relies on switching two edges, e.g. we delete the two edges (v 1 , v 2 ) and (v 3 , v 4 ), then we add the two edges (v 1 , v 3 ) and (v 2 , v 4 ) where v 1 , v 2 , v 3 and v 4 are nodes in the graph.

The content disclosure is a significant problem, but, to the best of our knowledge, the literature does not consider the impact of graph structure on this category of disclosure.

dKgraph Generation model

Another type of DP mechanisms is based on the dK-graph generation model. In these mechanisms, various parameters are derived from the original graph. DP is applied on these parameters to create noisy versions, and finally, new dereived graphs are generated using a generation model. Chen et al. [START_REF] Chen | Publishing community-preserving attributed social graphs with a differential privacy guarantee[END_REF] present a method for publishing graphs under DP. They rely on a community-preserving generative model called CAGM. This model profits from some properties from the community as parameters to generate the graphs. Some differential private methods are applied to these properties to create the noisy parameters of CAGM. Another example is in [START_REF] Wang | Preserving differential privacy in degree-correlation based graph generation[END_REF][START_REF] Sala | Sharing graphs using differentially private graph models[END_REF], where the authors propose an edge-DP graph generation mechanism relying on the dK-graph model. The mechanism generates a noisy graph based on a set of properties in the single static original graph. Thus, this mechanism cannot ensure the privacy of individuals in dynamic or multi-released graphs.

Anonymization of Dynamic graphs

Dynamic graphs are those subjected to changes in their structures or the weights of their edges. Less work follows the direction of dynamic graphs. The authors in [START_REF] Liu | A dynamic social network data publishing algorithm based on differential privacy[END_REF] rely on DP for anonymizing dynamic social networks. Their approach, named DDPA (Dynamic Differential Privacy Algorithm), adds Laplacian noise to edge weights. DDPA tracks the edge weight information across the graph iterations and adds the privacy protection budget. However, it does not consider altering the graph topology. Very similar to our second scenario in this use case is [START_REF] Wang | Anonymization for multiple released social network graphs[END_REF], in this paper, social network graphs representing a time series of the corresponding social network's evolution are anonymized to a sequence of sanitized graphs released for further analysis. We share the same view that naively applying the existing approaches to each time-series graph will breach privacy purposes. However, our assumptions are more restricted since we assume that the attacker has external Background Knowledge about the graphs.

Li et al. [START_REF] Li | Distributed privacy preserving technology in dynamic networks[END_REF] propose a privacy model k m where k indicates the privacy level and m is a time period that an adversary can monitor a victim to collect the attack knowledge. A distributed algorithm is provided that adds nodes to the graph, then generates the noisy version. The distributed greedy merge noise node algorithm (DGMNNA) reduces the number of nodes added under satisfying the anonymous model. Qiuyang et al. [START_REF] Qiuyang | Dynamic social privacy protection based on graph mode partition in complex social network[END_REF] propose a dynamic algorithm that satisfies DP and protect social networks against attacks based on semantic information. They classify the original graph into several subgraphs according to some characteristics of nodes.

The graph is represented as an adjacency matrix. Quad-tree is used to divide the dense area of each subgraph. DP noise is added to the tree's leaf nodes, and finally, the adjacency matrix is reconstructed and published.

Yue et al. [START_REF] Yue | An efficient adaptive graph anonymization framework for incremental data publication[END_REF] proposed local and global anonymity functions and a framework called APRI to apply sequential online anonymization on a set of graphs. They anonymize the degree of the node of the current graph locally, then they compare, via APRI using Kolmogorov-Smirnov Test, the distribution of node degrees of the current graph, and the set of previously anonymized graphs. When the difference is equal or greater than a given threshold, they restart the anonymization process for this graph. They use the global anonymity function to ensure the similarity in the distribution of node degrees between all the anonymized graphs.

Mcwan et al. [START_REF] Macwan | Privacy preserving approach in dynamic social network data publishing[END_REF] propose a clustering algorithm to group at least k nodes into k clusters based on their connectivity and anonymize each cluster for every instance of the graph. The algorithm supports the addition of nodes in new instances. Each cluster contains the nodes with close connectivity, and these nodes in the anonymized instance of the graph are assigned with the same label. Also, Yu et al. [START_REF] Yu | Edges protection in multiple releases of social network data[END_REF] propose a grouping mechanism for the nodes based on their properties. The mechanism guarantees that without a background knowledge, an attacker's probability of identifying a node involved in any edge is at most 1 k . Also, the probability that an attacker identifies an edge between two nodes is at most 1 k . Therefore, the goal of the mechanism is to protect edges against attacks without background knowledge dynamically.

All these mechanisms for sequentially released graphs focus on the properties of nodes, especially degrees of nodes. Thus, two of them [START_REF] Macwan | Privacy preserving approach in dynamic social network data publishing[END_REF][START_REF] Yue | An efficient adaptive graph anonymization framework for incremental data publication[END_REF] might protect dynamic graphs against a background knowledge. However, all of them do not aim to protect the dynamic graphs against the type of background knowledge containing information about the connections or the relation between two or more individuals. Returning to the example provided in the Introduction about the Doctor nad his two students, the background knowledge could be that Alice and John call Dr. Bob daily, especially in exams and project submissions. They do not usually communicate in summer, but we also know that Alice's birthday is on the 6th of August and Doctor Bob's birthday is on the 24th of August. We doubt that it is possible to prove that the mechanisms proposed to deal with the background knowledge of nodes could deal with an adversary having our type of background knowledge and trying to project it into the graphs by searching for three nodes communicating in the time of academic year especially in the periods of exams and projects. Then, a period of no communication in summer interrupted by calls on the 6th and 24th of August. Thus, our work is different from others by addressing the problem of facing this type of background knowledge and preserving an acceptable level of utility in the graph's released instances.

K-anonymity

In [START_REF] Liu | Towards identity anonymization on graphs[END_REF], Liu et al. proposed the k-degree anonymization for graphs by manipulating the degree of the nodes in such a way that the degree of any node in the graph is shared with at least k -1 other nodes. In their mechanism, they first anonymize the graph's degree sequence then build a k-degree anonymous graph based on the noisy degree sequence by adding edges to the original graph. Lu et al. [START_REF] Lu | Fast identity anonymization on graphs[END_REF] suggest a faster algorithm that combines the two phases of the previous algorithm in one stage by simultaneously applying the edge addition and the anonymization of the degree sequence.

The authors in [28,[START_REF] Casas-Roma | k-degree anonymity and edge selection: improving data utility in large networks[END_REF] assume that the previous algorithms are not efficient on large networks. They presented a polynomial-time algorithm that creates the k-degree graph by a minimum number of edge modifications. They apply a univariate micro-aggregation to anonymize the degree sequence. Instead of edge addition, Chester et al. [START_REF] Chester | Why waldo befriended the dummy? k-anonymization of social networks with pseudo-nodes[END_REF] propose a node addition algorithm to reach k-degree anonymity. [START_REF] Wu | K-symmetry model for identity anonymization in social networks[END_REF] propose a more general view than k-degree anonymization called ksymmetry anonymity to cover many properties of the nodes other than degree similarity. Ma et al. [START_REF] Ma | Kdvem: a k-degree anonymity with vertex and edge modification algorithm[END_REF] propose the KDVEM algorithm to reach k-degree anonymity while providing high utility and minimum amount of distortion. The algorithm is formed of two phases, finding the best target degree of each node and deciding the best nodes candidates to add the edges to achieve the target.

Wu et al. in

In [START_REF] Rousseau | Communitypreserving anonymization of graphs[END_REF], the authors propose an algorithm to anonymize the degree sequence of the graph to maintain its coreness for a better utility. Maintaining the core number sequence assures the retaining of most of the graph information.

These works were all based on the degree of the nodes. In [START_REF] Zhou | Preserving privacy in social networks against neighborhood attacks[END_REF], Zhou et al. propose a 1-neighborhoods algorithm by grouping the nodes having similar neighborhoods and anonymizing them. The neighborhoods extraction is based on isomorphism tests. In [START_REF] Zou | K-automorphism: A general framework for privacy preserving network publication[END_REF], the authors proposed k-automorphism to protect the published graphs against many structural attacks by applying an algorithm called KM. What's more interesting for us in their work is their suggested vertex Id generalization algorithm for k-automorphism applied on dynamically released graphs. This algorithm is applicable on the offline approach, then, we can't use it in our case where we are dealing with the online approach.

Dealing with active attack

To explain better the problem of active attack and how some related work in the literature dealt with it, we will use an example of a traveler aiming to enter a country in the era of the covid-19 pandemic. We list the scenarios proposed by each technique for the authorities to deal with this passenger.

Attacks

In [START_REF] Backstrom | Wherefore art thou r3579x? anonymized social networks, hidden patterns, and structural steganography[END_REF], the authors listed several passive and active attacks on static graphs. They propose two active attacks, the walk-based, and the cut-based. Three main differences between these two approaches could be listed:

• Cut-based attack needs fewer Sybil nodes.

• Walk-based has a much more efficient algorithm to retrieve the Sybil subgraph.

• It's harder on the privacy-preserving mechanism to detect the walk-based attack.

Mauw et al. [START_REF] Mauw | Robust active attacks on social graphs[END_REF] define the robustness of the active attack stages, and they benefit from their optimized strategy to prove that the attack is robust and resilient to small graph perturbation.

The attack presented in [36] is the type of attack that we intend to encounter in this paper.

The authors develop the attack shown in [START_REF] Backstrom | Wherefore art thou r3579x? anonymized social networks, hidden patterns, and structural steganography[END_REF] and propose an attack on dynamic graphs relying on Sybil subgraphs. In the Subsection 3.5 .3, we present the active attack inspired by [START_REF] Backstrom | Wherefore art thou r3579x? anonymized social networks, hidden patterns, and structural steganography[END_REF] with some modifications that we will encounter by our privacy-preserving approach.

SybilGuard

SybilGuard [START_REF] Yu | Sybilguard: defending against sybil attacks via social networks[END_REF] is a protocol to defend against active attacks in a decentralized approach where each node decides on its own to accept a connection with another node or not without any interference from a trusted central authority. The idea is to divide the graph into two regions, the honest and the Sybil. The edge connecting a node from the Sybil region to an honest region is called an attack edge. The goal of the protocol is to create a random routing table for each node in a way that limits the possibility of accepting nodes from the Sybil region. SybilLimit [START_REF] Yu | Sybillimit: A nearoptimal social network defense against sybil attacks[END_REF] optimizes this guarantee to represents a near-optimal one. Nevertheless, both still have some drawbacks. The high false negativity of the SybilGuard and the unrealistic assumption of SybilLimit about the knowledge of the number of honest nodes in the network were the motivations for Daenzis and Mettal to propose the SybilInfer algorithm [43]. It relies on a

Bayesian inference approach that returns potential regions of dishonest nodes with a probability of certainty for each node.

In the Covid example, these techniques do a PCR test on the traveler, but he's allowed to enter the community even if the result is positive. The authorities warn the people to keep a distance from him because he's affected. But still, he resides in society and might form a threat. These techniques guarantee that an honest node could be linked to most other honest nodes, and it will only accept a bounded number of Sybil nodes. The problem here is that no noise is added to the graph, then there is no difference between the original and published graph. So we could not prevent an adversary from locating its Sybil nodes, and the bounded number of Sybil nodes is enough to attack an honest node.

Edge-Differential Privacy

The vast majority of edge-DP mechanisms are dedicated to releases noisy graph properties as degree distribution [START_REF] Hay | Accurate estimation of the degree distribution of private networks[END_REF][START_REF] Sala | Sharing graphs using differentially private graph models[END_REF][START_REF] Wang | Preserving differential privacy in degree-correlation based graph generation[END_REF], frequent graph patterns [START_REF] Shen | Mining frequent graph patterns with differential privacy[END_REF], counting queries for k-triangles and k-stars [START_REF] Karwa | Private analysis of graph structure[END_REF], or for subgraphs [START_REF] Rastogi | Relationship privacy: output perturbation for queries with joins[END_REF] and clustering coefficients [START_REF] Wang | On learning cluster coefficient of private networks[END_REF]. An extension of DP called Blowfish Privacy [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF] also has the ability, when applied on graphs, to provide noisy query results about these properties. For example, in [? ], the authors provide methods to return anonymized query results under Blowfish Privacy applied on graphs where some nodes are more valuable than the others, implying that they should have, with their connections, a higher level of privacy than other nodes. Some other works release an anonymized version of the graph. The authors in [START_REF] Nguyen | Network structure release under differential privacy[END_REF], and [START_REF] Mülle | Privacy-integrated graph clustering through differential privacy[END_REF] proposed DP edge flipping algorithms based on a linear time algorithm for the first and a randomized response technique for the second. These two mechanisms, TmF and EdgeFlip, return an anonymized graph instead of a query result.

Many works propose to generate noisy degree distributions or similar noisy statistics from graphs under differential privacy. Generative methods are then used to create output graphs fulfilling noisy input distributions [45]. Qin et al. [START_REF] Qin | Generating synthetic decentralized social graphs with local differential privacy[END_REF] propose LDPGen for decentralized social networks. LDPGen collects neighbor lists of the nodes and reconstructs the graph in two phases under local edge-differential privacy. Finally, Karma et al. [START_REF] Karwa | Private analysis of graph structure[END_REF] presents efficient algorithms to provide noisy answers tosub graph counting queries under a relaxed version of edge-differential privacy.

The advantage of edge-DP is that it doesn't need considerable noise to be achieved. Then, the results keep a high level of utility.

To explain the disadvantage of edge-DP, let's go back to our Covid example. Edge-DP allows an infected passenger from directly entering society. But it tries, for some level, to control his connections. But this won't prevent him from infecting other people (the taxi driver driving him from the airport, the delivery man,...).

Then, this approach cannot protect the individuals in the graph from an active attack.

For example, four nodes are new (didn't appear in the first release) in the second release of a dynamic graph. By manipulating the existence and absence of the edges, Edge-DP will affect the degrees of the nodes. Table 2 shows the original and the published degrees of the new nodes.

If the adversary has injected one node of degree 1000 before this release, their goal is to retrieve that node. It's evident that v 6 is the node injected by the adversary as its published degree is close to the original one while the three others are very far. Therefore, edge-DP cannot be trusted to face an active attack on a dynamic graph despite its capacity on the utility side.

Original Degree Published Degree

Deg(v 6 ) = 1000 Deg(v 6 ) = 950 Deg(v 7 ) = 120 Deg(v 7 ) = 112 Deg(v 8 ) = 85 Deg(v 8 ) = 92 Deg(v 9 ) = 97
Deg(v 9 ) = 101 Table 2: Original and published degree of four new nodes under edge-DP.

Node-Differential Privacy

Node-Differential Privacy [START_REF] Hay | Accurate estimation of the degree distribution of private networks[END_REF] presents a strictly stronger guarantee than Edge-Differential Privacy. The guarantee is to provide enough noise to protect the existence or non-existence of a node in two neighboring graphs that differ, in the worst-case scenario, by a node connected to all other nodes in the graph where it exists. This technique ensures a high level of privacy but, on the other hand, might severely damage the utility of the output.

Differential privacy has two approaches, the interactive and non-interactive [49,51,[START_REF] Leoni | Non-interactive differential privacy: a survey[END_REF].

All the proposed node-Differential Privacy techniques and algorithms that we have found in the literature adopt the interactive approach where their objectives are to return a noisy result of queries. In contrast, our technique adopts the non-interactive setting where the output is a noisy dataset instead of a query result. Therefore, we assume that our work will be the first to present a solution to provide node protection under the non-interactive approach.

The main disadvantage of the node-DP is in the accuracy of the result. Deleting and adding nodes with their entire ego network is very expensive in the term of utility.

For this reason, many of these algorithms are relied on graph projection technique to apply node-Differential Privacy. A parameter α is used to transform a graph to be α-degree-bounded.

These graphs have a limit in the number of allowed connections for the nodes. In this way, it's guaranteed that adding or deleting a node has a limited effect on the utility. For example, the authors in [START_REF] Prasad Kasiviswanathan | Analyzing graphs with node differential privacy[END_REF] propose several techniques for interactive node-differential private techniques for degree-bounded graphs and present a methodology to analyze the accuracy of the results.

The main idea in their work is to remove all the nodes with a higher degree than α, which causes a much higher number of edges to be removed than necessary.

Another way to tackle the problem of low utility was suggested by Blocki et al. in [START_REF] Blocki | Differentially private data analysis of social networks via restricted sensitivity[END_REF]. To compute how much noise is needed in each case, we have first to calculate the global sensitivity GS of the query. GS in node-Differential Privacy is the maximum difference in the query result between the original graph and any neighbor graphs that differ by just one node from the original one. The authors in [START_REF] Blocki | Differentially private data analysis of social networks via restricted sensitivity[END_REF] propose a Restricted Sensitivity instead of Global Sensitivity.

They achieve that by reducing the set of neighbor graphs to just the ones having a distance less than d from the original graph, where d is calculated based on several projection-based techniques.

Also, based on projection techniques, Day et al. [45] present two approaches to publish degree histograms and cumulative degree histograms under node-differential privacy. Chen et al. [35] proposed a node-Differential privacy mechanism supporting equijoins to answer subgraph counting queries. Back to our Covid example, Node-DP forbids any person with positive PCR results from entering the country. While this provides a high level of protection for the citizens, it leads to a significant economic loss. This person could be a tourist, a businessman, or a skillful person that might form a high value for the business sector.

On the graph side, the technique gives us the possibility of deleting the new node with its ego network, adding a fake node and create its ego network, or manipulating the ego network of the real node. The advantage is that the adversary has a high uncertainty about the new node appearing in the published graph. Is it the real Sybil node or a fake node and the real one was deleted?

The disadvantages are:

• the need for a very high noise, which keeps us with very little utility,

• to the best of our knowledge, no node-DP mechanism was proposed, which adapts the non-interactive approach providing an anonymized version for the original graph. All the known mechanisms provide a noisy query result, mainly on the node degrees.

Therefore, we assume that our technique is the first to offer the same level of protection for the individuals and, at the same time, better utility and adapt the non-interactive approach.

SUBCHAPTER 3.3.3

Blowfish Privacy for VIP nodes

.1 Introduction

In this subchapter, we present a summary of Blowfish privacy and explore the possibility of applying it in the context of undirected communication graphs. Communication graphs represent social contact or call detail records databases. We define the notions of neighborhood, discriminative secrets, and policies for these graphs. We study several examples of queries and compute their sensitivity. Even though not addressed in the original blowfish privacy paper, we explore the idea of having a discriminative secret graph per individual. This allows us to treat some persons as VIP and put their privacy on top priority, where other persons can have lower privacy constraints. This may help to offer privacy as a service and increase the utility of the anonymized communication graph to an appropriate level. Differential privacy has a single tuning knob, namely ϵ, sometimes two (ϵ and δ). For example, increasing ϵ means more utility and less privacy. The idea of Blowfish privacy is to provide more tuning knobs by introducing policies [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF].

In Blowfish privacy, a policy specifies:

• secrets: information that must be kept secret. Since not all the information has to be secret, we can increase the utility of the data by lessening the protection of certain properties.

• and constraints: known properties about the data. Constraints add protection against an adversary who knows these constraints.

Therefore, differential privacy can be considered as an instance of Blowfish privacy where:

• every property about an individual's record is protected,

• every individual is independent of all the other individuals in the dataset. There is no correlations.

Because of its generalized framework and powerful expressiveness of adversarial knowledge, we expect that DP and BP can solve privacy challenges in graph-based databases.

In this part, we explore the application of these two privacy-preserving techniques to communication graphs such as social networks and call detail records databases. We model the Set of all possible datasets with size n

(|D| = n) (D 1 , D 2 ) ∈ N
In DP, D 1 and D 2 are neighbors, they differ in the value of one tuple M A randomized mechanism, for example adding random noise to the result of a query S ⊆ range(M)

A set of the outputs generated by M ϵ-differential privacy

For every S and every two neighbors

(D 1 , D 2 ): Pr[M(D 1 ) ∈ S] ≤ e ϵ × Pr[M(D 2 ) ∈ S] f : I n -→ R d
A function that takes a database as input and returns a vector of real numbers as output, for example a countIf query

S( f )

The global sensitivity of f is the max Manhattan distance between the outputs for any two neighbor databases:

S( f ) = max (D 1 ,D 2 )∈N || f (D 1 ) - f (D 2 )|| 1 M Lap
The Laplace Mechanism adds η ∈ R d to f (D), where η is a vector of independent random variables. Each η i is drawn from the Laplace distribution with parameter S( f )/ϵ:

Pr[η i = z] ∝ e -z.ϵ/S( f ) P = (P 1 , . . . , P k ) A partitioning of the domain T h P : I n -→ Z k
A histogram query. h P (D) outputs for each P i the number of times values in P i appear in D. The sensitivity of histogram queries is S(h P ) = 2 since replacing a tuple by another one may decrease the count of a partition and increase the count of another partition.

h T

The complete histogram query, it outputs for each t ∈ T the number of times it appears in D

E M (D)

The expected mean squared error of M:

E M (D) = ∑ i E[( f i (D) - fi (D)) 2 ]
where f i (D) and fi (D) are the ith components of the true answer and the noisy answer, respectively. For Laplace mechanism and histogram queries, this error is:

E M Lap h P (D) = |T |.E(Laplace(2/ϵ)) 2 = 8|T |/ϵ 2 .
A large epsilon means less error, hence more utility.

secrets and the auxiliary knowledge in terms of the Blowfish privacy model and give numerous examples.

.2 Notation

The Blowfish privacy notation is based on the differential privacy notation as summarized in Table 3. 

{(s

i x , s i y )|∀i, ∃A, x[A] ̸ = y[A] ∧ x[ Ā] = y[ Ā]} Partitioned: S P pairs
For every individual and every two tuples coming from the same partition where one of them is real, the real tuple is not known, i.e. {(s i x , s i y )|∀i, ∃j, (x, y) ∈ P j × P j }. This privacy definition is very useful for location data. Distance threshold: S d,θ pairs For every individual and every two tuples having their distance less than or equal to a threshold θ where one of them is real, the real tuple is not known, i.e. {(s i

x , s i y )|∀i, d(x, y) ≤ θ}

.3 Secrets

In addition, Blowfish defines secrets and discriminative pairs of secrets as shown in Table 4. We give examples of secrets and pairs of secrets over a communication graph in Table 5.

Guess the real t

Adversary

Pick a secret pair (s id t 0 , s id The discriminative secret graph generalizes the specification of discriminative pairs of secrets.

It is a graph where vertices represent secrets and edges link only the discriminative pairs of secrets. More formally it is denoted G S = (V S , E S ) where V S = T and E S ⊆ T × T . Even though not addressed in the original blowfish privacy paper, we explore the idea of having a 

i ._id = 'Bob' ∧ t j ._id = 'Alice' ∧ t i [j] = t j [i] = 1 A discriminative pair of secrets (s, s ′ )
Given two communication tuples (ego networks), we cannot distinguish which one of them belongs to Bob, for example, (t._id = 'Bob' ∧ t = (0, 1, 1, 1), t._id = 'Bob' ∧ t = (0, 0, 0, 1))

s i x
The secret where individual i has ego network x, for example, s 'Bob' (0,1,1,1) S full pairs For an individual, all ego networks are discriminative S attr pairs For an individual and two vectors that differ in only one communication, we cannot tell which one is real.

S P

pairs For an individual and two tuples belonging to the same partition, we cannot tell which tuple is the real one.

S (d,θ) pairs

Given a distance metric and a threshold. The privacy game is to challenge the adversary with one individual and two records having their distance less than or equal to threshold. A suitable distance for communication graphs is the Hamming distance (or the number of different bits), which is equivalent to the Manhattan distance in this case.

discriminative secret graph per individual. This allows us to treat some persons as VIP and put their privacy on top priority, where other persons can have lower privacy constraints. This may help increase the utility of the communication graph to an appropriate level.

In this direction, the idea of a discriminative secret is very similar to what consists a game in cryptography. We prefer to call it a privacy game here and represent it as shown in Figure 10.

In this game, a challenger picks an Id (e.g. Bob) and a pair of discriminative secrets at random (e.g. "Bob has called Alice" or "Bob has not called Alice"). The pair is represented by two tuples, or an edge in the discriminative secret graph of the Id. The edge vertices identify the two tuples.

The challenger sends the Id and the two tuples to the adversary (e.g. which one does belong to Bob?). The adversary has to guess which of the two tuples belongs to the id and responds with only 1 bit b. b = 0 is chosen for t 0 and b = 1 for t 1 .

Our goal is to make the probability of the adversary guessing the assumed right tuple not significantly different than a coin flip.

An important remark about undirected communication graphs is that not all the graphs are feasible. If Bob has talked to Alice, it means that Alice has talked to Bob. The database matrix is symmetric. Another constraint is that t i [i] must be 0, and all other entries are either 0 or 1. The Blowfish privacy framework allows to define constraints about the dataset, and redefines the notion of neighborhood databases by excluding intermediate, yet infeasible ones. Therefore, we suggest that Blowfish privacy is a more suitable framework for communication graphs than its differential privacy predecessor.

.4 Examples of policies

Examples of discriminative secret graphs for a communication graph of three nodes (for simplicity) and different policies are shown in Table 6. To explain more these policies we present examples of communications graphs neighboring for each policy:

• Full policy: a change in the ego network of any vertex is considered as a secret that should be protected regardless of how many edges has changed in this ego network. For example, in the graphs in Figure 11, the ego network of vertex 1 has changed, than this is a secret that should be protected regardless of the number of edges affected by this change.

• Attribute policy: The changes that occur in Figure 12 to the ego network between the first and the second graph is not considered as a secret under attribute policy, and therefore these two graphs are not neighbors, because the ego network of vertex 1 is changed by two edges, while, to be considered as a secret under attribute policy, an ego network should be changed by just one edge. Then the first and third graphs are neighbors.

• Distance policy: let's say we aim to protect the connectivity of the graph with a threshold 1. If we have a query asking about the number of components, we have to protect the edges that might change the result by 0 or by 1. For example, in the first two graphs of Figure 13, we have removed two edges which changed the number of components from 2 to 3. Then the adding or removing of these two edges together is a secret that should be protected, and these two graphs are neighbors. However, removing the two edges in third graph changes the number of components by 2, then, we are not interested in protecting the existence or non-existence of these two edges together. Thus, the first and third graphs are not neighbors.

• Partition policy: For partitioned policy, we take a scenario where the vertices are divided into two groups. Then the edges are also divided into two partitions: intra-groups which connect two vertices in the same group and inter-groups which connects a vertex in the first group with a vertex in the second group. Here we are interested in protecting the inter-group (orange edges). Then, the first two graphs in Figure 14 that differ by just on edge are not neighbors because adding or removing an intra-group edge doesn't form a secret, while, the first and third graphs are neighbors because they differ by one inter-group edge which form a secret.

.5 Auxiliary knowledge

Auxiliary knowledge is usually formalized using correlations, for example c(R = r 1 ) + c(R = r 2 ) = a 1 where c(r 1 ) is the count of records having the attribute R equal to r 1 , c(r 2 ) is the count of records having the attribute R equal to r 2 , and a 1 is known. Blowfish suggests to formalize auxiliary knowledge in terms of a set of constraints Q that a database D must satisfy. It denotes • the matrix of D is symmetric:

t i j = t j i
• the ego attributes are zero:

t i i = 0
It is also possible to use directed communication graphs where a directed edge from Bob to Alice means that Bob has called Alice, or initiated a session. In this case the first constraint above is not considered.

Additional constraints which are not necessarily inherent to the graph representation can be considered, for example:

• Count queries: the number of individuals that have 5 neighbors.

• Marginal constraints: A marginal is the projection of the database on a given subset of columns. Rows having the same projection are grouped in one record along with their count. In our context we project on a subset of nodes. For example let's project the database in Figure 15 on Bob and Eve only (columns 1 and 3). Alice and Carol have the same projection since both have called Bob and Eve. Therefore the projection have 3 rows:

(Bob,1), (Eve,1) and (Alice-Carol,2).

• Meta-node constraints: A meta-node is a node representing a sub-graph or a group of individuals. Meta-node auxiliary knowledge is for example the number of people calling a group of individuals, or the number of calls in between two groups of individuals. The adversary may know that the group Bob-Carol and the group Alice-Eve have three calls linking them.

• Clique constraints: A clique is a complete graph. The adversary may know that a group of nodes makes a clique or nearly a clique. For example Bob, Alice and Eve form a clique.

.6 Blowfish policy and privacy definitions

To apply Blowfish privacy, one must define a policy P(T , G S , I Q ) which is composed of a set of tuples T , a discriminative secret graph G S (V S , E S ) based on sets of discriminative pairs S pairs , and a set of possible database instances I Q under the auxiliary knowledge constraints. One also has to devise a randomized mechanism M that satisfies (ϵ, P)-Blowfish privacy. Concretely, for every pair of neighboring databases, denoted (D 1 , D 2 ) ∈ N(P), and every set of outputs S ⊆ range(M), we have:

Pr[M(D 1 ) ∈ S] ≤ e ϵ Pr[M(D 2 ) ∈ S]
To see how it differs from differential privacy, let's consider D 1 = D ∪ {x} and D 2 = D ∪ {y}, two databases that differ in one tuple, and suppose P = (T , G S , I n ), i.e., no constraints.

D 1 and D 2 are not considered neighbors unless (s i x , s i y ) ∈ S G pairs . Otherwise, having M that satisfies (ϵ, P)-Blowfish privacy means that:

Pr[M(D 1 ) ∈ S] ≤ e ϵ.d G (x,y) Pr[M(D 2 ) ∈ S]
since Blowfish privacy is shown to satisfy sequential composition. Similarly to increasing ϵ, the chance of an attacker to distinguish between pairs farther apart in the graph is higher. We gain overall utility by scarifying local privacy of some users.

The Laplace mechanism M Lap ensures (ϵ, P(T , G S , I Q ))-Blowfish privacy for any query function, f : I Q -→ R d , by outputting f (D) + η where η ∈ R d is a vector of independent random numbers drawn from Lap(S( f , P)/ϵ). S( f , P) is the policy-specific global sensitivity and is defined as: max

(D 1 ,D 2 )∈N(P) ∥ f (D 1 ) -f (D 2 )∥ 1 .
Following the definition of neighbors in [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF], let T(D 1 , D 2 ) the set of discriminative pairs 1. they both comply to the constraints, 2. T ̸ = ∅, 3. T has the smallest size, there is no feasible database

D 3 such that T(D 1 , D 3 ) ⊂ T(D 1 , D 2 ) or T(D 1 , D 3 ) = T(D 1 , D 2 ) & ∆(D 1 , D 3 ) ⊂ ∆(D 1 , D 2 ).
In our communication graph representation, two databases are candidate neighbors if they differ by the ego network of one individual, and this difference is represented in the security graph of that individual. Note that this means that one or several edges might be added or removed between two neighbor communication graphs.

To give an example, the two graphs in Figure 16 (0, 1, 0, 1) Alice (1, 0, 1, 0) Eve (0, 1, 0, 1) Carol (1, 0, 1, 0) Figure 16: Two neighboring graphs and their corresponding databases. The ego network of Bob has changed, and Bob has a G full S policy.

Under P(T , G full S , I Q ), we can obtain two neighbor communication graphs by taking one vertex and changing its ego network. Any two communication graphs that differ in n + 1 tuples where n tuples differ in one bit and one tuple differs in n bits are considered neighbors under

G full S .
To make the concept of neighbor databases used throughout the paper more straightforward, we demonstrate the following result:

Theorem 1. Given a communication graph G(V, E), its database/matrix representation M(G) and the policy P(T , G S , I Q ), where T represents all binary vectors of size |V|, G represents the overall graph of discriminative secret graphs for all the nodes, and I Q constrains the possible databases to have:

(1) ∀i ̸ = j, M i,j = M j,i = 0 or M i,j = M j,i = 1 and (2) ∀i, M i,i = 0. If G S = G attr S or G S is any non-empty subset of G attr S , we have that: Two graphs G 1 and G 2 are neighbors, i.e., (G 1 , G 2 ) ∈ N(P), if they differ by one and only one edge e(i, j) = e(j, i) and for at least one vertex of the edge (either i or j) the discriminative secret pair (s i

x , s i y ) (where x and y differ at the bit j) or (s j a , s j b ) (where a and b differ at the bit i) is in the security graph G S .

Proof. G attr

S means that two tuples form a discriminative secret pair if they differ by only one attribute. This difference is reflected in the communication graph by the addition or removal of one edge.

If G 1 and G 2 differ by one or more edges that do not correspond to discriminative secret pairs in the security graph G, then T(G 1 , G 2 ) = ∅ and the graphs are not neighbors.

If G 1 and G 2 differ by many edges that affect many secret pairs in G, then we can build a graph G 3 that takes only one of these edges that affects one (or two) secret pairs in G to form a subset of T(G 1 , G 2 ), and therefore the two graphs are not neighbors.

For the case where G 1 and G 2 differ by many edges and for only one of them e(i, j) we have

(s i x , s i y ) ∈ G or (s j a , s j b ) ∈ G S or both, then T(G 1 , G 2 ) is the minimal possible set. But we can find a sub-graph G 3 of G 2 where T(G 1 , G 2 ) = T(G 1 , G 3
) by removing the extra edges which do not have any discriminative secret pairs that belong to the security graph. Then, G 1 and G 2 are not neighbors.

For the case where G 1 and G 2 differ by only one edge e(i, j), and we have (s i

x ,

s i y ) ∈ G S or (s j a , s j b ) ∈ G S or both, then T(G 1 , G 2
) is minimal and there is no feasible intermediate database.

Only in this remaining case G 1 and G 2 are neighbors.

.7 Blowfish with individualized security graphs

We consider the possibility that different individuals may have different security graphs. For example, we can divide the users into two extreme sub-groups: VIP and Standard. The discriminative secret graph for a VIP user is complete (i.e. full protection) or attribute-based.

The discriminative secret graph for a standard user has 0 edges (i.e. null protection).

The application of Theorem 1 to the case where standard nodes' security graph is G empty S and VIP nodes' security graph is G attr S can be explained as follows. Take two communication graphs that differ by only one edge:

• Case I: If the vertices of the edge are standard nodes, then T(G 1 , G 2 ) = ∅ and the two graphs are not neighbors.

• Case II: If one of the vertices is VIP and the other is standard, then the size of T is 1 and the two graphs are neighbors.

• Case III: If the vertices of the edge are two VIP nodes, then the size of T is 2 and the two graphs are neighbors. Any intermediate database that makes | T |= 1 is infeasible.

.8 Blowfish with double security graphs

In the previous subsection, we focused on VIP nodes having security graph, while Standard nodes are left with no protection.But, Standard nodes might need some level of protection even if it's less than the VIP nodes protection. Thus, in this subsection, we propose using a security graph for each type of nodes, i.e., Full Policy for VIP and Attribute Policy for Standard.

Let T V IP and T STD be the sets of discriminative pairs under the policies applied on VIP and Standard nodes respectively. The two graphs G 1 and G 2 are neighbors under Duo Policy of Blowfish Privacy if:

1. they both comply to the constraints, • one or more edges that form the ego network of one and only one node z, we have (s z a , s z b ) (where a and b differ at the bit t and t is a node connected to z in G 1 or G 2 ) is in the security graph G f ull S .

2. T V IP ̸ = ∅, T STD ̸ = ∅ 3. T V IP ∪ T STD
̸ = j, M i,j = M j,i = 0 or M i,j = M j,i = 1 and (2) ∀i, M i,i = 0. If G S V IP = G full S and
• in addition to one edge e(i, j) = e(j, i) connecting two Standard nodes and for at least one vertex of the edge (either i or j) the discriminative secret pair (s i

x , s i y ) (where x and y differ at the bit j) or (s j a , s j b ) (where a and b differ at the bit i) is in the security graph G attr S .

Bob Alice Eve

Carol 

id tuple Bob (0, 0, 1, 1) Alice (0, 0, 1, 0) Eve (1, 1, 0, 1) Carol (1, 0, 1, 0) Bob Alice Eve Carol id tuple Bob (0, 1, 0, 1) Alice (1, 0, 1, 0) Eve (0, 1, 0, 0) Carol (1, 0, 1, 0)

.9 Global Sensitivities of graph queries and measures

To apply Blowfish privacy given a query or a function f over the protected database D, one has to determine first the global sensitivity [54] of f , based on the privacy policy P = (T , G S , I Q ):

S( f , P) = max (D 1 ,D 2 )∈N(P) || f (D 1 ) -f (D 2 )|| 1
Once the global sensitivity S( f , P) is identified, outputting f (D) + η ensures (ϵ, P)-Blowfish privacy if η ∈ R d is a vector of independent random numbers drawn from Lap(S( f , P)/ϵ).

.9.1 Histogram graph queries

In 

G 2 = G 1 ∪ {e}. Assume DV = dv 1 , ..., dv |DV|
is the set of all possible degrees for the vertices in these graphs.

If the edge e is added between node a having degree dv i and node b with degree dv j , i ̸ = j, then the count of dv i and dv j will decrease each by 1 while dv i+1 and dv j+1 will increase each by 1, as shown in Figure 18.

If the edge e is added between two nodes both having the same degree dv i , then the count of dv i will decrease by 2 and dv i+1 will increase by 2, as shown in Figure 19.

Taking both cases into account, the global sensitivity is S( f complete , P attr ) = 4.

Under P full , two graphs G 1 and G 2 are neighbors if they differ by the ego network of one vertex. In the worst case, the vertex passes from degree 0 to degree n -1, where n is the number of vertices in the graph. All the other vertices have their degrees shifted by +1. In total, 2n bins are affected and the sensitivity is 2n. 

Bob

.9.1.2 Example 2: Cumulative histogram query for degrees of vertices

Under P attr , adding edge e between two nodes a of degree dv i and b of degree dv j decreases the cumulative count of dv i (respectively dv j ) by 1, yet the cumulative count of dv i+1 (respectively dv j+1 ) stays unchanged, as shown in Figure 18.

Adding edge e between two nodes of the same degree dv i decreases the cumulative count of dv i by 2, yet the cumulative count of dv i+1 stays unchanged, as shown in Figure 19. In both cases, the global sensitivity of a cumulative histogram query is S( f cumulative , P attr ) = 2.

Under P full and a worst case scenario, n vertices change their degrees and move from one bin to another, however the receptive bin does not change its count. The sensitivity is n.

.9.1.3 Example 3: Histogram of degrees of vertices for standard nodes

In this exercise, we divide the communication graph vertices into two groups: VIP nodes and standard nodes. The discriminative secret graph for a VIP node is built as follows: There is no edge between two tuples if they differ by more than one attribute (i.e. G attr S ). In addition, we consider only attributes that belong to a VIP vertex. Two tuples differing by an attribute corresponding to a standard node are not connected in the discriminative secret graph. We denote this set of secret pairs: S attr,VIP pairs . Consider the following query: "Histogram of degrees of vertices for standard nodes". To compute their sensitivity we examine the three cases:

1. the edge we add/remove is between two VIP nodes: nothing will change in the histogram of the query, 2. the edge we add/remove is between one VIP node and one standard node: one of the bins in the histogram will decrease by 1 and its right-hand neighbor will increase by 1, as we can see in Figure 20 where we count the degrees of just the standard nodes, 3. the edge we add/remove is between two standard nodes. This edge does not correspond to a secret pair. It means that this case will not occur for two neighbor graphs and can therefore be ignored.

It follows that the sensitivity of this query under S attr,VIP pairs is only 2. The sensitivity is reduced by 50% in comparison to the full histogram query. By limiting the privacy focus to the VIP nodes, we gain in terms of utility for queries over the standard nodes.

.9.1.4 Example 4: Histogram of the number of connections between VIP nodes and standard nodes

A similar query is the "Histogram of the number of connections between a VIP node and standard nodes" or "Histogram of the number of connections between a standard node and VIP nodes" . To compute their sensitivity we examine the three cases:

1. the edge we add/remove is between two VIP nodes: nothing will change in the query's result, 2. the edge we add/remove is between one VIP node and one standard node: two of the bins in the histogram will vary by ±1, as we can see in Figure 21 where we take into consideration just the inter-group edges, 3. the edge we add/remove is between two standard nodes. This edge does not correspond to a secret pair and does not change the query result in the same time.

The sensitivity of these queries under S attr,VIP pairs is 2.

These queries are useful in a graph where the standard nodes are the members of a company's support team and the VIP nodes are the customers. The calls between a support team member and the customers are the target. We aim to study, for example, if a load balancing strategy works well, or how many clients a support member is serving in average. At the same time, we are protecting the privacy of the customers.

.9.2 Global and Local Clustering Coefficient

The clustering coefficient is a major descriptive statistics and one of the most important properties in graphs. It quantifies how well connected are the neighbors of the nodes in the graph. In this subsection we will compute the global sensitivity for three types of clustering coefficient. 

Cases

T 22: Two cases for G 1 and G 2 as neighbors under P distance .

1 ∆ T 2 ∆ ∆T ∆ T 1 3 T 2 3 ∆T 3 First 1 2 1 3 3 0 Second 0 2 2 1 3 1 Figure

.9.2.1 Local clustering coefficient

This coefficient is the likelihood that the neighbours of v V IP are connected between each others.

Let v V IP be the only VIP node in a graph G 1 while all other nodes are labeled as standard. Let lcc(v V IP ) be the proportion of neighbors of v V IP that are also connected to each other.

lcc(v V IP ) = T ∆ (v V IP ) T 3 (v V IP )
where T ∆ (v V IP ) is the number of triangles formed by v V IP and two of its neighbors, and

T 3 (v V IP ) is the number of triplets in which node v V IP is the middle node.
Therefore, we propose an attribute policy where the tuples of the discriminative graph represent the relation between the v V IP and all other nodes. In case the attribute indicates that the node is a neighbor of v V IP , then sub-attributes exist to represent the relation between this neighbor and all other neighbors. Two tuples are discriminative secrets pair if just one of their attributes or sub-attributes are different. By making the relation between v V IP and its neighbors a secret, we are protecting the real value of T 3 (v V IP ). In addition, by making also the relation between neighbors a secret, we are protecting the real value of T ∆ (v V IP ).

Let G 1 and G 2 = G 1 ∪ {e dist } be two graphs that have one VIP node each and differ in one edge e dist . G 1 and G 2 are neighbors, if e dist connects v V IP to another node, or connects two neighbors of v V IP .

Because we have two cases for distinct edge e dist between G 1 and G 2 , then we have to compute the sensitivity of each case. In the first case, where e dist connects two neighbors nodes of v V IP , the number of triplets T 1 3 in G 1 and T 2 3 in G 2 are similar while the number of triangles increments by 1.

S( f lcc , P

attr ) 1 = T 2 ∆ T 2 3 - T 1 ∆ T 1 3 = T 1 ∆ + 1 T 1 3 - T 1 ∆ T 1 3 = 1 T 1 3
In Figure 22, in the first case where node Bob is the VIP node and edge(Carol, Eve) is the distinct edge between G 1 and G 2 , we can see that ∆T ∆ is 1 and

T 1 3 = T 2 3 = 3, then S( f lcc , P attr ) 1 = 1 3 .
In the second case, e dist connects v V IP to a standard node. It means that the degree and the number of triplets for v V IP will increment between G 1 and G 2 . When adding e dist to v V IP , this new edge will form a new triplet with each of the other adjacent edge connected to v V IP . Then, by adding one edge, the number of triplets will increment by deg where deg is the degree of v V IP in G 1 . Thus, T 2 3 = T 1 3 + deg. On another hand, the number of new triangles created by adding e dist that connects v V IP to v std is the number of common neighbors N com (v std ) of v V IP and v std . For example, in the second case in Figure 22, where Bob is the VIP node and edge(Bob, Carol) is the distinct edge between G 1 and G 2 , Alice and Eve are two common neighbors for Bob and Carol, thus, T 2 3 = T 1 3 + 2. Therefore, the sensitivity is:

S( f lcc , P attr ) 2 = T 2 ∆ T 2 3 - T 1 ∆ T 1 3 = T 1 ∆ + N maxcom T 1 3 + deg - T 1 ∆ T 1 3 ( 1 
)
where N maxcom = max std=1,...,N s (N com (v std )) and N s is the number of standard nodes in G 1 except the number of v V IP neighbors.

In the second case of Figure 22, by applying the sensitivity on that example, we get

S( f lcc , P attr ) 2 = 0 + 2 1 + 2 - 0 1 = 2 3 .
Finally, as a result of having two sensitivities in two cases that differ by the type of nodes connected by e dist , the sensitivity of local clustering coefficient for a VIP node is:

S( f lcc , P attr ) = max(S( f lcc , P attr ) 1 , S( f lcc , P attr ) 2 )
To ensure that T 1 3 is never equal to 0, the degree of v V IP should be greatest or equal to 2, as a constraint Q applied on the communication graph.

.9.2.2 Global Clustering Coefficient

The global clustering coefficient gcc is the number of closed triplets (3×triangles) over the total number of triplets (both open and closed).

gcc = 3 × T ∆ T 3
where T ∆ is the total number of triangles in the graph and T 3 is the total number of triplets.

In this subsection, we compute the global sensitivity of average local clustering coefficient of two neighbors graphs G 1 and G 2 = G 1 ∪ {e dist } under Attribute Policy P attr . Adding or removing an edge between two nodes v t and v z will affect the number of open and closed triplets containing at least one of these nodes or one of their neighbors. Each neighbor of just one of the two nodes v t and v z in G 1 creates an open triplet, with both of them, in G 2 . Thus, the number of triplets in G 2 increases by

N dist (v t , v z ) + N dist (v z , v t ),
the number of distinct neighbors for v t and v z in G 1 .

The difference in global clustering coefficient between G 1 and G 2 , if e dist = (v t , v z ) is:

3 × T 2 ∆ T 2 3 - 3 × T 1 ∆ T 1 3 = 3 × (T 1 ∆ + N com (v t , v z )) T 1 3 + N dist (v t , v z ) + N dist (v z , v t ) - 3 × T 1 ∆ T 1 3 (2)
Therefore, the global sensitivity of global clustering coefficient in a graph under Full Policy is:

S( f gcc , P full ) = max t,z∈E dist 3 × (T 1 ∆ + N com (v t , v z )) T 1 3 + N dist (v t , v z ) + N dist (v z , v t ) - 3 × T 1 ∆ T 1 3 ( 3 
)
where E dist is the set of all possible edges of e dist , in other words, E dist is the set of nodes in G 1 that don't form an edge:

∀G 1 (V 1 , E 1 ), E dist = {(v t , v z ) / ∈ E 1 | v t , v z ∈ V 1 }.

.9.2.3 Average Local Clustering Coefficient

Adding or removing an edge between two nodes will affect their local clustering coefficient in addition to their neighbors'. In this subsection, we compute the average local sensitivity of two neighbors graphs G 1 and G 2 = G 1 ∪ {e dist }, relying on an attribute policy similar to the one used in the Global Clustering Coefficient.

By adding one edge e dist connecting v t and v z , the number of triangles for each of the two nodes increased by N com (v t , v z ), and the number of triplets for each of them increases by

N dis (v t , v z ) and N dis (v z , v t ) respectively.
The local clustering coefficients of the neighbors of v t and v z are also affected by e dist . These neighbors are two types, common and distinct neighbors. For each common neighbor, e dist will form a new triangle, while for a distinct neighbor, it will form a new open triplet. Therefore, by adding this edge, the average local clustering coefficient will differ between G 1 and G 2 by:

∆ alcc (v t , v z ) = 1 N × | T 1 ∆ +N com (v t ,v z ) T 1 3 +N dis (v t ,v z ) - T 1 ∆ T 1 3 | + | T 1 ∆ +N com (v t ,v z ) T 1 3 +N dis (v z ,v t ) - T 1 ∆ T 1 3 | + N com (v t ,v z ) T 1 3 + (N dis (v t , v z ) + N dis (v z , v t )) × ( T 1 ∆ T 1 3 +1 - T 1 ∆ T 1 
3

) ( 4 
)
where N is the number of nodes in the graph.

Finally, the global sensitivity of average local clustering coefficient is:

S( f alcc , P full ) = max (v t ,v z )∈E dist ∆ alcc (v t , v z ) (5) 
Computing the sensitivities for a flat graph or for a graph containing VIP and Standard nodes are similar but the number of nodes is reduced from N to N V IP . In the experiments, we extract subgraphs containing the VIP nodes, then we compute and compare the global sensitivities of the complete graphs and the VIP subgraphs.

.9.3 Queries of shortest paths in graphs

We present in this subsection the calculations of global sensitivities for some shortest paths queries which will help in calculating the sensitivities for some Centralities queries in the next subsection.

.9.3.1 Length of shortest-paths of two VIP nodes

Let v 1 V IP and v 2 V IP be the only VIP nodes in a graph G 1 . The query in this example is to compute the length between the two VIP nodes in the graph. We use an attribute policy P attr = (T , G attr S , I Q ), where T is the universe of tuples containing attributes that represent all the possible edges in the communication graph G 1 . G attr S = (V, E) where V = T and every edge in E connects two tuples that have just one attribute flipped. In this way, we ensure that G 1 and G 2 = G 1 ∪ {e dist } are always neighbors regardeless of the nodes connected by e dist . Let

sp 1 (v 1 V IP , v 2 V IP ) be the length of shortest-path between v 1 V IP and v 2 V IP in G 1 , S( f 1 sp , P attr ) = sp 1 (v 1 V IP , v 2 V IP ) -1 because the largest possible reduction of shortest path between v 1
V IP and v 2 V IP is realised by adding an edge connecting these two nodes which makes their shortest-path equal to 1.

.9.3.2 Sum of Lengths of shortest-paths between all VIP nodes

In this example, the query is to compute the sum of lengths of shortest-paths between all the VIP nodes. Under the same attribute policy P attr defined in Subsection 3.3 .9.3.1 , the length of shortest-path in G 2 between two VIP nodes v t and v z is :

sp 2 (v t , v z ) = min(sp 1 (v t , v z ), sp 1 (v t , v i ) + sp 1 (v j , v z ) + 1, sp 1 (v t , v j ) + sp 1 (v i , v z ) + 1)
where sp 1 (v i , v j ) is the length of shortest-path between v i and v j in G 1 and e dist connects v i and v j in G 2 . The sensitivity of the query is:

S( f 2 sp , P attr ) = max i,j=1,...,N V IP ∑ N V IP -1 t=1 ∑ N V IP z=t+1 sp 1 (v t , v z ) -sp 2 (v t , v z )

.9.4 Graph Centralities

In this subsection, we present the global sensitivities under Attribute Policy for some graph centralities.

.9.4.1 Farness and Closeness of v 0 to other VIP nodes

Let G 1 be a graph composed of VIP nodes, standard nodes and a node v 0 . The Farness of v 0 is to compute the sum of shortest-paths between v 0 and all VIP nodes under Blowfish Privacy, while the closeness is the reciprocal of the Farness. We compute the sensitivity of Farness and Closeness for node v 0 under the same policy in Subsection 3.3 .9.3.1 .

Let e dist be (v i , v j ), the length of shortest-path in G 2 between v 0 and v z is :

sp 2 (v 0 , v z ) = min(sp 1 (v 0 , v z ), sp 1 (v 0 , v i ) + sp 1 (v j , v z ) + 1, sp 1 (v 0 , v j ) + sp 1 (v i , v z ) + 1) because sp 2 (v i , v j ) = 1
Therefore the sensitivity of Farness under P attr is:

S( f f arness , P distance )(v 0 ) = max i=1,...,N V IP -1 max j=i+1,...,N V IP ∑ N V IP z=1 sp 1 (v 0 , v z ) -sp 2 (v 0 , v z )
where N V IP is the number of VIP nodes in G 1 and sp

1 (v i , v i ) = 0.
As closeness is the reciprocal of farness, then its sensitivity is the reciprocal of the minimal sum of differences between lengths of shortest-paths in G 1 and G 2 :

S( f closeness , P attr )(v 0 ) = min i=1,...,N V IP -1 min j=i+1,...,N V IP ∑ N V IP z=1 sp 1 (v 0 , v z ) -sp 2 (v 0 , v z ) -1

.9.4.2 Closeness Centrality for VIP nodes

In Subsection 3.3 .9.4.1 , we have found the sensitivity of closeness for one node v 0 . In this subsection, we compute the sensitivity of closeness for each VIP node in the same way of Subsection 3.3 .9.4.1 , then, the sensitivity of Closeness Centrality for VIP nodes in a graph G 1 under P attr is the maximum of all sensitivities of VIP nodes:

S( f closeness_centrality , P attr )(v 0 ) = max m=1,...,N V IP (S( f closeness , P attr )(v m ))

.9.4.3 Graph Degree Centrality

The degree centrality of nodes could be extended to measure the degree centrality of the whole graph known as the graph centralization. Let us say that G 1 and G 2 = G 1 ∪ {e dist } are neighbors under an Attribute Policy P attr . Let the query be to compute the graph centralization of G 1 based on just the VIP nodes under P attr . The formula of the graph centralization of G 1 is

C D (G 1 ) = ∑ N V IP i=1 [deg(v * ) -deg(v i )] N 2 V IP -3N V IP + 2 (6) 
Then e dist produce the largest difference in centralization between the two neighbors when it connects v * to a standard node. Therefore, the global sensitivity of graph centralization is

S( f centralization , P attr ) = N V IP N 2 V IP -3N V IP + 2 (7)

.9.5 Efficiency

The efficiency measure is divided to three types [START_REF] Jessica | The segregation and integration of distinct brain networks and their relationship to cognition[END_REF]: nodal, local and global.

Nodal efficiency is a measure of the efficiency of information transfer between one VIP node v t and all other VIPs.

E nodal = 1 N V IP -1 N V IP -1 ∑ z=1 1 sp(v t , v z ) ( 8 
)
Local Efficiency is a measure of the efficiency of information transfer for the VIP neighbors

N nbg of v t , excluding v t . E local = 1 N nbg (N nbg -1) N nbg -1 ∑ z=1 1 sp(v t , v z ) (9) 
And finally Global Efficiency is a measure of the efficiency of information for all the pairs of nodes on the graph and it represents an important measure for the robustness of the graph.

E global = 2 N V IP (N V IP -1) N V IP -1 ∑ t=1 N V IP ∑ z=t+1 1 sp(v t , v z ) (10) 
Next we compute the difference between the three efficiencies of G 1 and

G 2 = G 1 ∪ {e dist }. ∆E nodal (e dist ) = 1 N V IP E d ∑ z=1 | 1 sp 1 (v t , v z ) - 1 sp 2 (v t , v z ) | ( 11 
)
∆E local (e dist ) = 1 N nbg (N nbg -1) E d ∑ z=1 | 1 sp 1 (v t , v z ) - 1 sp 2 (v t , v z ) | ( 12 
)
∆E global (e dist ) = 2 N V IP (N V IP -1) |E d |-1 ∑ t=1 |E d | ∑ z=t+1 | 1 sp 1 (v t , v z ) - 1 sp 2 (v t , v z ) | ( 13 
)
where

E d is the set of VIP pairs (t, z) having sp 1 (v t , v z ) ̸ = sp 2 (v t , v z ).
In other words, it is the set of VIP pairs which their shortest paths in G 2 pass by e dist .

Thus, under Attribute Policy P attr , the global sensitivity for any of these efficiencies is

S( f e f f iciency , P attr ) = max e dist ∈E dist ∆E(e dist ) (14) 

.10 Experiments and Results

In this section, we present the results of our experiments to evaluate the Blowfish Privacy on graphs both in terms of utility and privacy. We compare G attr S and G full S for histogram queries. In addition, we show the utility of some queries under G attr,VIP S .

Our experiments use three graph datasets collected from the music streaming service Deezer (November 2017) [START_REF] Benedek Rozemberczki | Gemsec: Graph embedding with self clustering[END_REF]. These datasets represent the friendship Network of users from Croatia (HR) of 54,573 nodes and 498,202 edges, Hungary (HU) of 47,538 nodes and 222,887 edges and Romania (RO) of 41,773 nodes and 125,826 edges.

.10.1 Mean Squared Error of Complete Histogram Queries

The Mean Squared Error (MSE) for complete histogram queries under G attr S and G full S are:

E M Lap h P attr (D) = bE[Laplace(4/ϵ) 2 ] = 32b/ϵ 2 E M Lap h P full (D) = bE[Laplace(2n/ϵ) 2 ] = 8n 2 b/ϵ 2
where n is the number of vertices and b is the number of bins. We empirically sample the MSE of the complete histogram query for a given ϵ by generating the real histogram of each graph (HR, HU, and RO) and k noisy versions. We compute the MSE of the noisy versions as follows:

MSE(H, H ϵ ) = b ∑ i=1 mean k [(H(i) -H ϵ (i)) 2 ]
where H is the original histogram and and H ϵ is its ϵ-noisy version. We choose ten epsilon values: 0.1, 0.2, . . . , 1. The number of bins b is equal to 421, 113 and 113 for the graphs HR, HU and RO respectively. The results are shown in Figure 23 under G full S and in Figure 24 under G attr S . G full S has null utility whereas for G attr S we expect the standard deviation per bin to be around 32 to 56 (depending on ϵ). Using coarser bins may reduce this error by decreasing b.

.10.2 Mean Squared Error of Cumulative Histogram Queries

The MSE for cumulative histogram queries under G attr S and G full S are:

E M Lap h P attr (D) = bE(Laplace(2/ϵ)) 2 = 8b/ϵ 2 E M Lap h P full (D) = bE(Laplace(n/ϵ)) 2 = 2n 2 b/ϵ 2
The difference in MSE under G full S and G attr S is also clear for cumulative histogram queries as shown in Figure 25 and Figure 26.

.10.3 Simulating sensitivity results

In this experiment, we sample neighbors of our input graphs and compute the difference in the values of the histogram queries. We compare the obtained values with our derived sensitivity formulas. We sample the sensitivity values for our input graphs as follows:

1. take an input graph, 2. compute its histogram query H, 3. take a vertex at random, Different strategies can be adopted to change the ego network under G full :

• Take-out: The chosen vertex is taken out by removing all its connections similarly to node-based differential privacy. • Random Ego Network: The chosen vertex samples a Bernoulli distribution with predefined probability p to decide on linking to each node in the graph (we take p = 0.5).

• Flipped Ego Network: The chosen vertex deletes all its neighbors and connects to all non-neighbors.

We apply the above strategies to the complete histogram queries and vertices of different degrees. The results are shown in Figure 27. In addition we show the derived sensitivity formula and the worst case take-out difference (2 × (deg v + 1)). It is clear that G full S is unreasonably pessimistic about the sensitivity of complete histograms queries. We can gain more utility by deriving more specific discriminative secret graphs (based on the strategy of ego network manipulation) or adding constraints and auxiliary knowledge to the policy. For instance, it is unreasonable that a single node would be connected to all the other nodes in the graph.

Similar experiments for the cumulative histogram queries are shown in 28. In contrast, random and flipped ego network values are very close to the derived sensitivity formula.

.10.4 Extrapolation of queries under G attr,VIP

S

We have shown that limiting privacy to some VIP nodes provides utility for queries such as "Histogram of degrees of vertices for standard nodes" and "Histogram of the number of connections between a VIP node and standard nodes". In this experiment, we show that these queries can be exploited to estimate information about the complete graph. For instance, the histogram of degrees of vertices for standard nodes can be extrapolated to estimate the histogram of degrees of vertices for all the nodes. The histogram of the number of connections between a VIP node and standard nodes can be extrapolated to estimate the histogram of degrees of VIP nodes, and so on.

The histogram of degrees of vertices for standard nodes can be extrapolated as follows: Blowfish Privacy for subgraphs protection in dynamic graphs

H all nodes (i) = H(i) standard × 100 100 -% V IP

.1 Introduction

In this subpart,we present our second privacy-preserving technique for graphs dedicated for dynamic ones. Our technique consists of sequentially releasing anonymized versions of these graphs under Blowfish Privacy. To do so, we introduce a graph model that is augmented with a time dimension and sampled at discrete time steps. We have shown in the Introduction section that the direct application of state-of-the-art privacy-preserving Differential Private techniques is weak against background knowledge attacker models. We have presented different scenarios where randomizing separate releases independently is vulnerable to correlation attacks. Our method is inspired by Differential Privacy (DP) and its extension Blowfish Privacy (BP). To validate it, we show its effectiveness as well as its utility by experimental simulations.

.2 Preliminary Definitions

Definition 1. A simple graph G is undirected and defined in a given time frame by a set of vertices and a set of edges: G(V, E, [t i , t i+1 ]) where:

• V is the set of vertices V ⊂ V representing all the users in the time frame [t i , t i+1 ] (While V represents all the vertices in all the versions).

• E is the set of edges E ⊂ V × V representing interactions between the users in V during the time frame [t i , t i+1 ]. We consider only two states: interaction and no interaction. An edge is assigned to two vertices (representing two individuals) if they are interacting during the i th time frame.

• [t i , t i+1 ] is the i th time interval (i = 0, 1, ..., N)
The definition can be used for the anonymized graph G * (V * , E * , [t i , t i+1 ]). ■ For example, the first graph in Figure 30a is a simple undirected graph with a set of seven vertices, a set of six edges, and a time interval defined as Day 1. 

M ij =    0 if SG i ⊈ G j 1 if SG i ⊆ G j (1) 
In what follows, we will use

M ij to denote M[SG i ][G j ]. ■
Several subgraphs were sampled from the Union graph in Figure 30a and were represented as the rows of the matrix in Figure 30b. The columns of the matrix represent the graphs of the three days, and each element represents the existence of the subgraph in the graph.

The notations in this paper are summarized in Table 7. 

Symbol

.3 BP Mechanism For Sequentially Releasing

Graph Datasets

DP provides reliable privacy in a single graph [35,[START_REF] Karwa | Private analysis of graph structure[END_REF]. However, it has severe limitations when graphs are sequentially released [START_REF] Kifer | No free lunch in data privacy[END_REF] in different time frames. The problem appears when the Background Knowledge can be linked to correlated or sensitive subgraphs in G. Hence, the adversary will tie his/her background knowledge to a complete subgraph instead of separated edges or vertices in G. Here, we propose a new layer of privacy-preserving approach. It is neither edge-DP nor node-DP, considering that we are not protecting separated edges or vertices but a combination of them in the form of subgraphs. We propose a robust privacypreserving operation on the logical matrix M represented by the graphs in G and the correlated (or sensitive) sampled subgraphs. In this way, we can determine the noise as many subgraphs are suppressed or added from/to the graphs in G.

Before we elaborate more about our privacy-preserving mechanism, we define first how two logical matrices M and M ′ can be considered as neighbors.

Definition 3 (Neighboring Matrices). We say that two matrices M and M ′ are neighbors if:

1. M, M ′ ∈ I Q , which means that both respect the constraints mentioned in Subsection 2.2.

2. M, M ′ differ by just one binary element: ∃!i ∈ {0, ..., n}, j ∈ {0, ..., m} | M ij ̸ = M ′ ij where n is the number of graphs in the dataset and m is the number of sampled subgraphs.■ For example, in Figure 31, we check the neighboring between M and the three other matrices. If we have the following constraint Q that "No column in any published matrix could be formed by just 1s." M and M ′ could not be neighbors because the second column of M ′ violates the constraint, then M ′ / ∈ I Q . M and M ′′ are not neighbors because they differ by more than one element, while M and M ′′′ are neighbors because both of them respects the constraint and they differ by just one element.

Figure 32 shows the input and the output of the privacy-preserving operation applied to the logical matrix M.

Lemma 1. Let f be an operation on the logical matrix M, we say that f (M) is Differential Private (or f is ϵ-DP) if it respects the inequation: where M and M ′ are two neighbors matrices, S is one possible output of the operation f , ϵ is a privacy parameter.

Pr[ f (M) = S] ≤ e ϵ × Pr[ f (M ′ ) = S]
The output of f (M) is a matrix M * related to M by the equation

f (M ij ) = M * ij =    M ij with probability q = 1 e ϵ +1 M ij with probability p = 1 -q = e ϵ e ϵ +1 (1) 
where M ij is the opposed binary value of M ij and p > q.

Proof. Let's say that we have two neighboring matrices M and M ′ that differ by only one

element M ij ̸ = M ′ ij .
Let S be an output matrix of the operation f .

Pr[ f (M) = S] Pr[ f (M ′ ) = S] = Pr[M 11 → S 11 ] × ... × Pr[M nm → S nm ] Pr[M ′ 11 → S 11 ] × ... × Pr[M ′ nm → S nm ] = Pr[M ij → S ij ] Pr[M ′ ij → S ij ] (2) 
Then, to prove that f is ϵ-DP using the inequation

Pr[ f (M)=S]
Pr[ f (M ′ )=S] ≤ e ϵ , we have to prove that

Pr[M ij →S ij ] Pr[M ′ ij →S ij ] ≤ e ϵ . Each of M ij , M ′ ij and S ij can have two values 0 and 1. In case, M ij = M ′ ij then Pr[M ij →S ij ] Pr[M ′ ij →S ij ] = 1 ≤ e ϵ .
The four other cases to compute are:

•

Pr[1→1] Pr[0→1] = p q = e ϵ 1+e ϵ 1 1+e ϵ = e ϵ • Pr[0→1] Pr[1→1] = q p = 1 e ϵ ≤ e ϵ (because e ϵ ≥ 1) • Pr[1→0] Pr[0→0] = q p = 1 e ϵ ≤ e ϵ (because e ϵ ≥ 1) • Pr[0→0] Pr[1→0] = p q = e ϵ
In the four cases, the operation respects the inequation, which proves that f is ϵ-DP.

.3.1 Achieving the mechanism f in G

This section discusses how to populate the binary flips of the values in the logical matrix in their corresponding set of graphs G. We also evaluate how these flips may affect the privacy of our proposed mechanism. In the implementation, these flips are achieved by suppressing or adding edges in G. We notice that this might affect the ability of the mechanism to achieve DP.

The flips made by the operation f have two types:

• 0 -→ 1: here, the element in M is 0 (which means that the subgraph does not exist in the corresponding original graph) but has been flipped to 1 in M * (the subgraph exists in the correspondent anonymized graph). All the missed edges of the subgraph should be added to perform this modification in the anonymized graph.

• 1 -→ 0: here, the element in M is 1 (which means that the subgraph exists in the corresponding original graph) but has been flipped to 0 in M * (the subgraph does not exist in the correspondent anonymized graph). One or more edges should be deleted from the subgraph to perform this modification in the anonymized graph.

Let g be the operation that implements the flips made by f (M) in G. g cannot guarantee a full projection of the flips in G. A possible scenario to explain this drawback in privacy is when the same edge should remain in a subgraph while it should be deleted in another subgraph in the same graph. Then, it is obvious that it is not possible to implement in the graphs all the modifications done on the matrix. In Figure 33 for example, to perform the first flip, the operation g deletes the edge [START_REF] Chicha | Cloud-based differentially private image classification[END_REF][START_REF] Chicha | Node-detention differential privacy for active attacks on dynamic graph datasets[END_REF]. For the second flip, the operation adds the two edges [START_REF] Chicha | Cloud-based differentially private image classification[END_REF][START_REF] Chicha | Node-detention differential privacy for active attacks on dynamic graph datasets[END_REF] and [START_REF] Chicha | Cloud-based differentially private image classification[END_REF][START_REF] Nassar | Vip blowfish privacy in communication graphs[END_REF]; thus, the second flip cancels the effect of the first flip, and then the final status of the subgraph in the second flip is similar to its status before the flip. In this way, the privacy guarantee provided by f could be reduced when applying g on the graphs. In other words, after releasing G, an adversary may create a matrix M adv that might represent the real status of the subgraphs more accurately than M * . That is the effect of g on the privacy guarantee. Thus, the implementation cannot provide the desired privacy guarantee provided by the operation of f .

Still, it can offer a relaxed guarantee called (ϵ, δ)-BP, where ϵ is a privacy parameter provided by the data owner and δ is the relaxation parameter of the privacy definition.

In the next subsection, we will discuss in detail the privacy guarantee. However, this discussion cannot be reliable if we do not define the implementation steps first. As we have explained, the purpose of the implementation is to populate the flips in the graphs. We can list four types of these flips:

• 0 -→ 0: an element 0 in the matrix M remains 0 in the noisy matrix M * .

• 0 -→ 1: an element 0 in the matrix M is flipped to 1 in the noisy matrix M * .

• 1 -→ 0: an element 1 in the matrix M is flipped to 0 in the noisy matrix M * .

• 1 -→ 1: an element 1 in the matrix M remains 1 in the noisy matrix M * .

Because the implementation of a flip can cancel the effects of some previous implementations, we can assume that the ones performed initially have a higher probability of being canceled than those performed at the end. A random implementation of the flips will make impossible to compute the level of privacy provided by the implementation and to define the In this way, we have computed the four possible values for the probability. The next step is to show that by using any two of these values in Equation 6, the result remains lesser than e ϵ :

•

Pr[1→1]-δ Pr[0→1] = p-δ q ≤ p q = e ϵ • Pr[0→1]-δ
Pr[1→1] = q-δ p ≤ q p = 1 e ϵ ≤ e ϵ (because e ϵ ≥ 1)

•

Pr[1→0]-δ Pr[0→0] = q-δ ′ -δ p-δ ′ ≤ q p if: p(q -δ ′ -δ) ≤q(p -δ ′ ) pδ ′ + pδ ≥qδ ′ δ ≥δ ′ × q -p p (7) 
qp ≤ 0 and δ ≥ 0, then the Inequation 7 is always true, thus:

Pr[1→0]-δ Pr[0→0] ≤ q p = 1 e ϵ ≤ e ϵ (because e ϵ ≥ 1)
•

Pr[0→0]-δ Pr[1→0] = p-δ ′ -δ q-δ ′ ≤ p q if: q(p -δ ′ -δ) ≤p(q -δ ′ ) qδ ′ + qδ ≥pδ ′ δ ≥δ ′ × p -q q (8)
Then, the only inequation that should be verified to ensure that G can be released under (ϵ, δ)-BP is: δ ′ ≤ δ × q p-q . By substituting p and q by their values, we get:

δ ′ ≤ δ e ϵ -1
Theorem 3. Let g be the operation that implements the flips made by f (M) in G, we say that g is (ϵ, δ)-BP if there exists a policy P = (T , G S , I Q ) that applies on G and composed of the Universe T , the discriminative secret graph G S and I Q that denotes all the possible G under the constraints Q.

Proof. T contains all the possible graphs from the anonymized version of the set G. G S = (V S , E S ) is a discriminative secret graph where V S = T and e S ∈ E S connects two vertices that should be indistinguishable for the public. In this work, e S will connect any two vertices of G S that represent two graphs that differ by just one subgraph sampled in our mechanism. Two graphs that differ by one or more edges but resemble in all the sampled subgraphs do not form a discriminative pair. They might be distinguishable, and the two vertices representing them in G S are not connected by an edge e S . Therefore, the discriminative secret graph G S is not complete. In other words, E S is the set of edges that connects two vertices representing a difference in the status of one or more sampled subgraphs. By proving that our mechanism's discriminative secret graph is not complete, we have demonstrated that our mechanism does not respect the DP definition requirements.

We can assume that our mechanism is under the Attribute version of BP. The Attribute Definition in BP describes a mechanism that aims to hide any changes made to any attribute in a set of tuples, which is literally what we aim to do by protecting any modifications done to the element of the matrix M by manipulating the existence and non-existence of its corresponding subgraph in the released set of graphs.

Finally, the constraint Q is related to the Inequation 4: δ ′ ≤ δ e ϵ -1 beside any constraint provided by the data owner. Therefore, if G respects this inequation, then G ⊂ I Q .■ By proving that g respects:

• the BP Inequation in Equation 3,

• a well defined Policy P, we have proved that the mechanism is (ϵ, δ)-BP.

.4 Anonymization Algorithm

This section details our mechanism by applying the Blowfish Privacy for sequentially releasing graphs discussed in the previous section. The process is depicted in Figure 34. To note that we should possess all the graphs before starting the anonymization process. To proceed, we sample a number of subgraphs from a Union Graph G ∪ , based on some criteria. For example, in our implementations, we will focus AddSG searches for all the edges that should be in the subgraph SG i and adds all of these edges that do not exist in the graph G * j . While the DropSG function sorts all the edges of SG i , then deletes the one having the least weight in the Union Graph G ∪ . The edges' weight is calculated while creating the Union Graph based on the required type of the subgraphs' sampling, for example, sampling the high correlated subgraphs or the least correlated subgraphs.

Algorithm 1: Main Algorithm Require: G, {SG BK }, p Ensure: G * {SG 1 , ..., SG n } ← SampleSG(G ∪ , {SG BK }) M n×m ← BuildLogical Matrix(G, {SG}) for i ← 1 to n do for j ← 1 to m do M * ij ← Flip(M ij , p) end for end for G * = G for i ← 1 to n do for j ← 1 to m do if M ij == 1 & M * ij == 0 then G * i ← DropSG(SG i , G * j ) end if end for end for for i ← 1 to n do for j ← 1 to m do if M * ij == 1 then G * i ← AddSG(SG i , G * j ) end if
In is important to note that before releasing, we have to compute δ ′ = FaultSg n×m where FaultSg is the number of subgraphs in G that doesn't reflex their binary values in M * and n × m is the number of elements in M * . Finally, we have to verify the Inequation 4. In case the inequation is verified, then it is safe to release the graphs under the guarantee of (ϵ, δ)-BP. Otherwise, the mechanism must be re-executed, or the data owner may decide to increase the relaxation parameter δ.

.4.2 Discussion

In this subsection, we will discuss three issues. The first one is: Is it possible to have a different result by re-executing the mechanism without changing any of the inputs ϵ, δ, and K? Actually, yes, it is possible. Any BP or DP algorithms are called a randomized algorithm which means.

They employ a degree of randomness as part of their logic. In our case, the two probabilities p and q are concerned with this randomness. The value of these probabilities will remain the same as the ϵ is not changed. However, even if the probabilities and the original matrix did not change, each value in this matrix is subjected to a flip with a probability of q. The group of subgraphs that should be flipped and the rate of subgraphs in this group that will not be flipped practically because of other flips, as explained in Subsection 3.4 .3.1 and especially in Figure 33, cannot be controlled by the mechanism. Therefore, if δ ′ is not respecting the Inequation 4, then maybe a re-execution will fix the problem. However, if many re-executions did not help, this is an indicator that the relaxation parameter δ provided by the data owner is very small for this dataset and should be increased.

The second issue is about how n the number of sampled subgraphs may impact the result.

Any increase in the number of sampled subgraphs means more manipulation in the edges. That is because the number of subgraphs that should be added or removed will increase, leading to a big increase in the added edges and a smaller increase in the removed edges, especially if we are removing just one edge for each subgraph. Overall, the rise in the value of n will lead to more privacy and less utility.

The third issue is why we have chosen to remove just one edge from each subgraph that should be dropped. In Figure 33, we have explained how deleting one edge may effect a subgraph that should be added but does not exist in the final result. When deleting two or more edges from each subgraph, the possibility of this impact increases, so the rate δ ′ . Hence, the possibility that the Inequation 4 is not respected becomes higher, forcing the data owner to re-execute the mechanism or increase the relaxation parameter δ. 

.5 Experiments

This section will present our experiments' results to evaluate our approach both in terms of utility and privacy. We implement our algorithm in Python on the "Autonomous Systems AS-733" dataset [START_REF] Leskovec | Autonomous systems AS-733 @ONLINE[END_REF][START_REF] Leskovec | Graphs over time: densification laws, shrinking diameters and possible explanations[END_REF] containing 733 releases, 6474 vertices, and 13895 edges in the largest release, and we conducted experiments on an Intel Core i7 2.4 GHz PC with 8GB RAM.

As well as our algorithm, we will apply an edge-DP algorithm called TmF [START_REF] Nguyen | Network structure release under differential privacy[END_REF] that adds noise to each graph without considering the correlations. We will compare the results of both algorithms based on many privacy and utility measures.

.5.1 Trade-off Between Privacy and Utility

When applying DP or BP mechanisms, one of the data owners' issues is choosing the privacy parameters to set an acceptable trade-off between privacy and utility. This subsection proposes a method for the data owners applying our mechanism and the TmF mechanism to choose ϵ.

The values we have used for the privacy parameter ϵ of our algorithm are: 0.1, 0.2, 0.5 and 1. The TmF mechanism has two privacy parameters ϵ 1 and ϵ 2 . In [START_REF] Nguyen | Network structure release under differential privacy[END_REF], they fix the value of ϵ 2 = 0.1, while ϵ 1 is related to the number of nodes | V |: ϵ 1 = coe f × ln(| V |), where coe f = 1, 2 and 3. In our work, we add also the value 0.5 to the values of coe f . In this subsection, we use the confusion matrix as a method for the data owners to choose ϵ for our BP mechanism and ϵ 1 for the TmF mechanism. We extract a number of subgraphs from each original graph and project them on original and private versions of the graph to find isomorphic subgraphs. We compare the number of subgraphs found in all the versions and compute the ratio of:

• True Positive: Subgraphs that appear in both original and released versions.

• False Positive: Subgraphs appear in the released version but do not exist in the original one.

• True Negative: Subgraphs that exist neither in the original graph nor in the released one.

• False Negative: Subgraphs that exist in the original graph but do not appear in the released one. In Figure 45, we consider the percentage of True Positive and True Negative as the ratio of utility, while the rate of False Positive and False Negative isis the ratio of privacy. It is up to the data owners to choose the privacy parameter based on how much privacy they want in their released graphs. For the BP mechanism, increasing ϵ means more utility and less privacy. Increasing coe f for ϵ 1 in the TmF mechanism also leads to less privacy, but this drop in privacy is quicker than the decline in the BP mechanism. We can then say that our mechanism maintains a more balanced trade-off between privacy and utility than TmF while changing each mechanism's privacy parameters.

.5.2 Measuring Privacy

In these experiments, we are focusing on protecting the high correlated subgraphs. By high correlated, we mean the subgraphs that frequently appear in the original graphs. Therefore, we have sampled 1000 high correlated subgraphs. We consider the scenario that an adversary has generated the Intersection graph from our released graphs. Then we compare the percentage of these 1000 subgraphs that appear in the Intersection graphs generated from the released graphs under our mechanism and TmF mechanism. Higher numbers mean more high correlated subgraphs are not protected.

Figure 36 shows that the percentages of high correlated subgraphs that our mechanism failed to protect in the Intersection of the released graphs are much smaller than these of the TmF mechanism. It also shows that increasing the number of nodes in the sampled subgraphs from 3 to 5 leads to a smaller portion. The reason is that a higher number of nodes in a subgraph means a higher number of edges, which increases the possibility that one of these edges is removed in the Intersection, which is enough to consider this subgraph as protected. Also, in Figure 36, we can notice that a higher ϵ increases the percentage of failure for both algorithms and the three K values. That is reasonable because having a higher ϵ means that the value of probability p has increased. In contrast, the value of q has decreased, which leads to a decline in the number of flips. Therefore an rise in the number of unprotected subgraphs can be predictable.

.5.3 Kullback-Leibler Divergence for Union and Intersection Graphs

In this subsection, we use Kullback-Leibler (KL) Divergence to compare the distributions of degrees of nodes between the Union of the original graphs and the Union of the released graphs under our mechanism and TmF mechanism. We generate the Union of the original graphs then the Union of the released graphs. Each edge in these Unions is weighted by the number of times it appears in the graphs. For example, an edge that appears in 35 graphs, its weight in the Union is 35. We create two lists of edges W ∪ containing all the edges and their weights in the original Union and W ′ ∪ for the edges of the Union of released graphs.

D KL (W ′ ∪ || W ∪ ) =| ∑ e∈E W ′ ∪ W ′ ∪ [e] × log W ′ ∪ [e] W ∪ [e] | (1) 
where E W ′ ∪ are all the edges listed in list W ′ ∪ and W ′ ∪ [e] is the weight of edge e. For the second KL Divergence, we generate the weighted Intersections of the original and the released graphs. Then we create two lists W ∩ and W ′ ∩ containing the edges that appear in at least one of the two Intersections. The weight of each edge in W ∩ is the number of times it appears in the original graphs, while its weight in W ′ ∪ is the number of times it appears in the released graphs.

D KL (W ′ ∩ || W ∩ ) =| ∑ e∈E W ′ ∩ W ′ ∩ [e] × log W ′ ∩ [e] W ∩ [e] | (2) 
In Figure 37a, KL Divergence of Union graphs under the TmF mechanism is much higher than those under the BP mechanism for K = 3, 4, and 5. That is because TmF adds and removes a large number of edges all over each graph, and all these manipulations affect the Union graphs, leading to this high KL Divergence for TmF. On the other hand, our mechanism focuses on manipulating the edges that create high correlated subgraphs. All other edges are not affected by our algorithm; hence, the KL Divergence under our mechanism is much smaller than the KL divergence of TmF.

In Figure 37b, we see that KL Divergence for TmF is smaller than KL Divergence for our algorithm. This chart proves the motivation for this work. As we have explained, using a DP mechanism on sequentially released graphs will cause the injection of much noise, as shown in Figure 37a. Still, most of the noise disappears when generating the released graphs' Intersection, which may lead to a serious privacy breach.

We also notice from the two charts in Figure 37 that a higher K leads to a higher KL Divergence, which means more privacy and less utility. It can be explained as a result of adding a high number of edges for each sampled subgraph that should be added to K = 5 nodes, for example, compared to K = 3.

.5.4 Centrality Measures

The majority of the studies on social networks focus on extracting the most important individuals (vertices) in the network. We will prove that the effect of our mechanism on the list of most important individuals is negligible.

To find the most important individuals, we study the centrality of the vertices, and according to the purpose of each study, we choose the type of centrality measures. Linton C.

Freeman said in 1978 [START_REF] Linton C Freeman | Centrality in social networks conceptual clarification[END_REF]: "There is certainly no unanimity on exactly what centrality is or on its conceptual foundations, and there is little agreement on the proper procedure for its measurement," which is still true today. However, we can define it as a measurement of the extent to which an individual interacts with other individuals in the network. We compare the 100 most important nodes of the original graphs, the BP version, and the TmF version based on four centralities:

• Degree: It is the number of vertices at a distance one for each vertex. In our case, where the graph is a simple undirected graph, we can define the degree simply as the number of edges connected to each vertex. The degree centrality [27] of a vertex v is defined as

C D = deg(v).
In many social studies, people with the most connections are the most important individuals in the network.

• Farness: The farness of a node v is the sum of all shortest-paths of v to all other nodes.

The closeness [START_REF] Okamoto | Ranking of closeness centrality for large-scale social networks[END_REF] is the reciprocal of the farness :

C(v) = 1 ∑ y d(y, v)
where d(y, v) is the distance between vertices v and y. In this case, the most important vertices are the closest ones to all other nodes. Thus, we can rely on these individuals to spread information to all other nodes sequentially.

• Betweenness [START_REF] Agryzkov | A variant of the current flow betweenness centrality and its application in urban networks[END_REF]: This centrality quantifies the number of times a vertex occurs on a geodesic; in other words, it is the number of times a vertex appears in the shortest path between two other nodes.

This centrality was proposed by Freeman [58], and his idea was that actors who exist between other individuals might control the interactions between these individuals. Then, this centrality quantifies the control of a vertex on the communication of other vertices.

Therefore, in this case, the most important individuals have a high probability of occurring in the shortest path of two vertices randomly chosen.

The betweenness centrality of vertex v is defined as

C B (v) = ∑ i<j sp ij (v) sp ij
where sp ij is the number of shortest paths between vertices i and j, and sp ij (v) is the number of shortest paths between vertices i and j that pass through v.

• Eigenvector [26]: This centrality measures the influence of the vertex in the graph. It depends on the number and the quality of the connections. Therefore, a vertex v 1 , with number of connections less than a vertex v 2 , may outrank v 2 if the quality of its connections is higher. The centrality score of vertex v can be defined as:

x v = ∑ i∈N(v) x i = ∑ i A vi x i
where N(v) is a set of the neighboring nodes of v, A is the non-negative adjacency matrix of the graph.

The main idea of releasing multiple graphs sequentially instead of releasing just one graph is to improve the utility of the released data. For this reason, we compare the 100 most important nodes between each graph and its released versions to measure each graph's utility instead of just the Union and the Intersection graphs. Then we count the common nodes in these 100 nodes to determine the number of most important nodes unaffected by the anonymization mechanism.

In Figure 38, we compute the mean of the common nodes counts for all the graphs in each release. We consider this mean as a measure of utility for the set of released graphs. The number of common important nodes of our algorithm for K = 3, 4, and 5 are incredibly close; then, we choose to use the number of common important nodes for just K = 4. Figure 38a shows that our algorithm highly preserves the most important nodes. Approximately more than 90% of the most important nodes are preserved in our algorithm's released graphs. While in Figure 38b, we see that the algorithm does not preserve most of the important nodes, especially for coe f = 0.5. That changes when coe f increases, but in most cases, our utility is still much higher than the utility provided by TmF. We can explain that difference in utility due to focusing just on manipulating the edges related to particular subgraphs (in our experiments, the high correlated subgraphs) we aim to protect, while the TmF mechanism is manipulating edges all over the graph.

SUBCHAPTER 3.3.5

Differential Privacy for Active Attacks on Dynamic Graphs

.1 Introduction

Graphs are data that abstract a number of nodes (individuals, servers, routers,...) and the relations between them called edges. Dynamic graphs, also called multi-released or sequentially released graphs are even more valuable than static ones. A static graph shows the relation between many individuals in a community as several edges presenting the fact that, for example, at least one call has taken place between two of the individuals in a month. Instead, in a dynamic graph, we show this relation daily for a month. In other words, in this case, the dynamic graph is presenting 30 static graphs. Dynamic graphs represent more accurate data than statics', but with each progress, the challenges grow.

Static graphs already have many privacy issues that should be taken into consideration before sharing the graphs. These issues rise and become more complex in the dynamic graphs.

Actually, in our previous subpart, we have treated one of these threats in dynamic graphs.

In that subpart, we have discussed the scenario of an adversary taking advantage of the multiple graphs released by creating the Intersection and the Union graph of these graphs to expose some relations between individuals that should remain confidential. We have focused on protecting the subgraphs with high occurrences or very low occurrences in the set of released graphs. We have proved that edge-Differential Privacy, a technique based on adding and removing some edges from the original graph, cannot provide the desired protection to these subgraphs.

We have proposed a three steps solution based on Blowfish Privacy, an extension of Differential Privacy. The first step required sampling of the subgraphs that we aim to protect in the set of graphs. In the second step, we create a table, every row represents one of the sampled subgraphs, and every column represents one of the graphs in the set. Each cell is filled by 1, if the subgraph of that row exists in the graph of that column, or 0 otherwise. We proposed a probability under Blowfish Privacy to flip some of these cells from 0 to 1 or vice versa. The third step consists of applying in the graphs the changes that occurred in the second step. This step is done by adding the missed edges for the flips from 0 to 1. Then to remove some edges for the subgraphs that have flipped from 1 to 0.

Dealing with active attacks becomes more complicated in online dynamic graphs than offline ones and much more challenging than in static graphs. This subpart proposes a technique to protect the individuals in online dynamic graphs exposed to active attacks. Our approach is based on the idea of Hypergraph, where a Hypernode called Detention Node will hide the nodes suspected of being Sybil by applying a catch and release mechanism based on Differential Privacy.

.2 Preliminaries

A dynamic or sequentially released graph G is composed of a set of static graphs {G 1 , G 2 , ..., G i } where each static graph G i = {V i , E i } is composed of a number of nodes V i and edges E i representing the connections between the nodes. G i is dedicated to the connections that take place in the time interval [t i-1 , t i ], for this reason, it doesn't show any node that didn't exist before the timestamp t i . It's also important to mention that each node has a unique id that doesn't change between G i and G i+1 .

.3 Active Attack on Sequentially Released Graphs

Passive attacks wait for the release of the anonymized graph and benefit from two types of knowledge to breach the privacy of individuals in the dataset. The first type is the auxiliary or the background knowledge. It's based on information known by the adversary about one or more individuals in the graph. For example, if we know that a traveler arrived yesterday to the town and on a dynamic published graph representing the town residents and their communications, one new node was added. We are sure that it represents this traveler.

The second type is foreground knowledge, where the adversary performs some data science techniques to extract some information to breach the privacy of individuals by linking them to their representative nodes and find more about their connection with other individuals. For example, we notice that a high percentage of nodes that appear for a short period in the graph then disappear have created relationships with a specific node. We can analyze that these nodes are tourists and the particular node is Alex, the touristic guide in the town. Now that we have found him in the graph, we focus more and more on background and foreground knowledge about him to reveal more about his personal and professional life.

Meanwhile, the first step of the active attacks is performed even before the data owner generates the original graph representing the community. The adversary creates fake accounts or identities in the community to be presented in the graph. Then, they benefit from these nodes, called Sybil nodes, to connect to some victims and explore their nodes in the graph to find out more about their relations with other individuals.

Therefore, they create their own foreground knowledge in the original dataset, try to retrieve it from the published dataset, and then use it to reveal the real identity of the victims.

In this subpart, we focus on defending the individuals against the active attack on dynamic graphs formed of three steps which were highly inspired from [36] with some modifications.

The first step is creating Sybil subgraphs where the attacker inserts a small number of nodes in several releases. By that process, a tempo-structural pattern is created relating each Sybil node to a specific release. S = {S 1 , S 2 , ..., S n } is the set of Sybil nodes forming one of the subgraphs injected by the adversary. Each S i has two important characteristics: the first release r(S i ) = G j in which S i was injected and a set of degrees of S i representing its degree in each graph from its first appearance till the current graph: Deg(S i ) = {deg j (S i ), deg j+1 (S i ), ..., deg c (S i )} where j is the index of the graph where S i was included for the first time and c is the index of the current graph. These two characteristics are crucial to start the second step of the attack.

To make the second step easier, it's also important to have a mechanism to set the edges between the nodes in the Sybil subgraph called inter-Sybil connection. In [START_REF] Backstrom | Wherefore art thou r3579x? anonymized social networks, hidden patterns, and structural steganography[END_REF], they suggest to include an edge between S i and S i+1 then to include with probability 0.5 between S i and all other nodes in the Sybil subgraph. The standard results in random graph theory [START_REF] Bollobás | Random graphs[END_REF] imply that this form of subgraphs, with high probability, has no non-trivial automorphism. In other words, each Sybil node in this subgraph has a different characteristic from the other Sybil nodes, and it won't be confused with other nodes in the subgraph.

Sybil subgraph retrieval is the second step where the adversary tries to identify the Sybil subgraph in the released versions of the graphs. The adversary profits from their knowledge about the characteristics of the Sybil nodes and the structure of the subgraphs to retrieve them.

First, a Sybil node S i is chosen, then the adversary collects all the possible candidate nodes in the published graph that could be the actual S i . We assume that a node x in G c is a candidate to be the Sybil node S i if:

• r(x) ≥ r(S i ). In [36], the two first appearances should be in the same graph. Still, we are considering the possibility that the data owner could apply a privacy-preserving mechanism that might hide the new node for some releases before allowing its appearance to make it harder for the adversary to assume the original graph where this node was included for the first time.

• the set of degrees Deg(x) should be close to Deg(S i ) where, for example, for the current

graph, deg c (S i ) -θ ≤ deg c (x) ≤ deg c (S i ) + θ,
where θ is a tolerance threshold. And the same condition should be true for all other degrees existing in Deg(x).

x and all other nodes that fit these two conditions form a set of candidates X S i = {x 1 S i , ..., x m S i }. The second part of this step extends each candidate from a single node to a subgraph until just one candidate subgraph resembles the Sybil one. Therefore, we can assume that this candidate is the real Sybil subgraph.

Using a Breadth-First-Search or Depth-First-Search techniques, we can list in Syb list all the nodes in the Sybil graph starting from S i (The Sybil node chosen in the first part of this step).

Let S 2 i be the second Sybil node in Syb list . Each candidate x in X S i should have at least one node 3. Differential and Blowfish Privacy for social networks in its ego network that fulfills the two conditions listed in the first part when compared to S 2 i . In this case, x and its neighbor form a candidate subgraph in X S i . If more than one neighbor fulfills the conditions, then x will form a candidate subgraph with each of these neighbors. If none of these neighbors fulfill the conditions, then x is removed from X S 2 i . For each other Sybil node in Syb list , each subgraph candidate is extended or removed in the same way, but with one more condition. For S 4 i , for example, the extended subgraph should form an isomorphic subgraph to the one formed by S 1 i , S 2 i , S 3 i and S 4 i . After the last node in Syb list , the candidate graphs have the same number of nodes as the Sybil graph. If just one candidate graph remains in Syb list , then this is considered as the Sybil graph. If more than one remains, more Sybil nodes are required to be injected in the coming graphs, and the same process is applied until one candidate remains. The third and last possibility is when all the subgraph candidates failed to resemble the Sybil subgraph. In this case, the adversary should increase the value of θ. In this way, more subgraphs will be considered candidates, increasing the possibility of finding the Sybil one.

When the Sybil subgraph is retrieved, the adversary could initiate the third step. This step aims to link individuals that the adversary knows they exist in the dataset to their actual nodes. It uses the Sybil subgraph to attack several individuals by contacting them using the fake accounts that form the Sybil subgraphs. One or more Sybil nodes reach each victim, and a set of candidate victim nodes is created. After each release, this set is updated until the adversary has complete confidence that a specific node represents the individual victim.

.4 Node-Detention Differential Privacy

This section represents our solution for protecting the graph from Sybil nodes using the same example of the traveler in the pandemic era. Thus, the first question is when the traveler can get into the plane to travel to our country? Approaches as SybilGuard, SybilLimit, and some similar ones, even if his PCR result is positive or he is from a high-risk country, he is allowed to get on the plane and enter the country. Still, they provide a platform for their citizens listing the new arrivals with positive results from high-risk areas and urge their citizens to stay far from them. Edge-DP also lets the traveler control his connections by deciding who can meet and who is forbidden to meet. Anyway, for the two previous approaches, the infected traveler has entered society and presents a health risk.

For this reason, node-DP has suggested a much more strict solution. Any person from a high-risk area or who has positive results will be forbidden to enter the country. This approach represents high protection for society but has many drawbacks. What if the traveler is a citizen and wants to return to his country from his country of residence? What if he's a doctor or a nurse that will help to fight Covid? What if he's a businessman that will help the economy of the country in this pandemic? This last solution provides a high level of protection but in many cases also presents a significant loss for the economic, health, or touristic sectors and a legal challenge for the authorities by banning a fellow citizen from entering his own country.

The solution for us is simple. We prepare quarantine facilities that accommodate any traveler with a positive PCR or coming from a high-risk area. His exit from these facilities is decided based on his new PCR results and the number of days he has been quarantined. Getting out of these facilities doesn't mean he will never come back. Whenever the health authorities have some suspicions about him because someone from his surroundings was infected or was in a place at the same time with a covid patient, he will be required to do a new PCR test. If it's positive, all his relatives, close friends, and co-workers must do the test. All the infected are quarantined in the facilities. The others must stay at home for a while till we are entirely sure they are Covid free.

When we are confident that this quarantined group gets rid of Covid, they are free to leave the facilities and their home.

That's very similar, with tiny differences, to our idea of dealing with new nodes in each graph that are suspicious of being Sybil nodes. We create a hyper node that we call the detention node v DET where nodes could be hidden where some of their characteristics are suspicious. A probability P catch computed under DP is used to decide if the new node v i will be hidden or not in a published graph G * j . If P catch is higher than a threshold θ catch than v i is hidden inside v DET . If v i has been hidden in graph G * j , then for G * j+1 , a probability P release is computed based on three parameters:

• the suspicions about the characteristics v i in graph G j+1 ,

• the quality of the connections: having more connections to suspects give v i increase the suspicions about v i ,

• the ¨criminal record¨of v i .

In the next section, while proposing a mechanism to apply our approach, we give a possible definition of suspicions and ¨criminal record¨based on many features. Let's say v i was released, but new suspicions have been raised in a graph G t . If P catch-gang is higher than θ catch-gang , v i should be hidden in G * t . Let's say v i is a Sybil node, and the adversary makes an extreme move via vi as connecting to a very high number of nodes to identify that v i is their Sybil node. If v i was the only node that appears in G * t-1 and is hidden in G * t , therefore the adversary can be sure that v i is a Sybil node.

For this reason, when P catch-gang (v i ) > θ catch-gang , we check if v i is related to a gang of k nodes than all the k nodes are hidden. If not, the mechanism should choose k -1 suspicious nodes unrelated to any other gang and group with v i . The gang members should be hidden or on probation, hiding their ids but letting them be visible in the published graph G * t . In future graphs, if P release-gang of each hidden member of the gang is higher than θ release-gang , then the whole gang is released.

The crucial difference between our technique and node-DP is that, in the latter, when a node is deleted, all its edges are also deleted. Thus, the ego network and the degree of all its neighbor nodes are affected. In our approach, the only edges that are hidden are those linking the nodes inside v DET . All the edges connecting the hidden node v i with a free node v f appear 

.4.1 Neighbor Graphs in Node-Detention Differential Privacy

As we can see in Figure 40, we consider that two graphs are neighbors if one node differs by being free in one of the graphs and hidden in the other one. Let G 1 be the graph where Node 8

is free, and G 2 be the graph where Node 8 is hidden.

Definition 4. Let G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) be two graphs where V 1 = V 2 and E 1 = E 2 . Let V 1 = V h1 ∪ V f 1 and V 2 = V h2 ∪ V f 2
where V h1 and V f 1 (V h2 and V f 2 ) are the set of the hidden nodes and

free nodes respectively in G 1 (in G 2 ). And V h1 ∩ V f 1 = V h2 ∩ V f 2 = ∅.
The two graphs are neighbors if and only if

V f 1 ∆V f 2 = V h1 ∆V h2 = {v d }
In other words, in the two neighboring graphs, one and only one node differs between the sets of hidden nodes between the first and the second graph, and it's the same node that differs between the set of free nodes also.

.4.2 Global Sensitivity of Node-Detention Differential Privacy

The most critical advantage NDDP has over node-DP is the relatively low global sensitivity.

The global sensitivity computes the maximum number of edges that could be affected by adding or removing one element from the graph. In this way, we have an indicator of the noise needed to cover the affected edges.

In edge-DP, the concerned element is an edge. Then it's evident that the number of affected edges is just one. While for the node-DP, the concerned element is a node. By adding or removing a node, the number of affected edges is related to the degree of this node. For example, if we add a node with a degree of 15, then 15 edges were added to the graph. In the worst-case scenario, we add a node with the highest possible degree, which is the number of nodes in the graph beside the new node. The global sensitivity for Node-DP is ∆ f node-DP =| V | -1.

In NDDP, the concerned element, the same as node-DP, but instead of adding or removing the node and affecting all its edges, we just hide it, and the only edges that are completely hidden with the node are thus relating it to other hidden nodes. In this way, the maximum number of edges affected is related to the number of hidden nodes in the graph instead of the total number of nodes.

In Figure 40, the only edges that were hidden from the public by hiding Node 8 in G 2 are those linking Node 8 to hidden nodes. Then the maximal difference in the number of hidden edges between the two neighbors is the number of hidden nodes in the graph where Node 8 is free. In our example, the global sensitivity of NDDP is 2, while global sensitivity of node-DP would be the highest possible degree of Node 8, which is 7.

In general, global sensitivity of NDDP could be computed by considering two neighbor graphs G 1 and G 2 . The node that differ between these two graph is v di f , which is free in G 1 and hidden in G 2 . In a worst-case scenario, v di f is connected to all the hidden nodes in G 1 and their

number is | V h1 |. In G 2 , v di f is hidden, thus, | V h2 |=| V h1 | +1.
And all its edges connected to other hidden nodes are also hiddens. In the worst-case scenario, the number of these edges is | V h1 | and that's the global sensitivity.

Therefore, to compute the global sensitivity, having two neighbor graphs G 1 and G 2 , we focus on the graph where v di f is free; it's the graph with the lowest number of hidden nodes.

The global sensitivity is the maximum possible number of edges between v di f and the hidden nodes; in other words, it's the number of hidden nodes in that graph.

For this reason, the global sensitivity of NDDP is 

∆ f NDDP = min(| V h1 |, | V h2 |) while that of node-DP is | V | -1 which is, usually, much higher than min(| V h1 |, | V h2 |).

.5 Discussion

.5.1 Adding Edge-Differential Privacy

As we have explained in the Subsection 3.2.5.3 and Table 2, edge-DP cannot by itself protect the individuals in an online dynamic graph. It's because a Sybil node will be allowed to appear in the published graph whenever the adversary injected it, and then adding some noise to its original degree might not be enough to prevent the adversary from retrieving it with high confidence.

While our approach is detected to this type of protection, we notice that the only edges affected by our algorithm are those connecting two hidden nodes, and the edges connecting a free node to a hidden node are partially affected. Therefore, the adversary is entirely sure that an edge relating to two free nodes in the published version is a real edge. In addition, the degree of any free node is also the real degree of that node. When a node has all its neighbors free, the adversary fully exposes this neighbor list.

For this reason, we recommend using our approach with any edge-DP mechanism that adopts a non-interactive approach (a mechanism that returns a noisy graph instead of a noisy query result).

The composite theorem [55] gives us the possibility of dividing the privacy parameter ϵ into ϵ 1 and ϵ 2 . ϵ 1 for the mechanism intending in manipulating the edges and ϵ 2 for our mechanism. In that way, the anonymization procedure is considered (ϵ 1 , ϵ 2 )-NNDP.

.6 A Mechanism of Node-Detention Differential Privacy

This section proposes a mechanism to apply the NDDP, relying mainly on the exponential mechanism. When a graph has one or more new nodes, the mechanism should decide which nodes will be published and which will be hidden in the detention node.

The exponential mechanism, as we have explained in the Background section, relies on three parameters: the privacy parameter ϵ provided by the data owner, the quality score q that we will compute for each step of our mechanism in this section, and finally the global sensitivity GS based on the quality scores.

Before computing these two parameters, we should notice that the adversary doesn't know the characteristics of the graph release that they are trying to insert the Sybil nodes in. But they see the structure of the previously published graphs. The adversary always aims to insert the Sybil nodes with unique characteristics to retrieve them in the second stage of the attack easily.

In our mechanism, we will focus on the degree of the nodes, but any other feature could be considered instead of the degree in other mechanisms.

The adversary has two ways to choose the degree of the nodes. The first one is arbitrary, and hoping that the degree is not very common in the graph. The second one is based on the previously published graphs. These graphs are indeed noisy, but the noise should not affect the degrees severely because the utility of the graphs would be highly affected in this case.

Therefore, computing the average degree of the previous releases and the number of times each degree occurs in the earlier graphs might give the adversary a good idea of what degrees to choose and what to eliminate. For example, is it common to have isolated nodes or to have nodes with a maximum degree? Is it rare to have nodes with more than 1000 degrees or less than 5 degrees? Answering these questions would help the adversary in choosing the degrees of their Sybil nodes.

This mechanism is based on the idea of anomaly detection. We put ourselves in the adversary's shoes, and for each node, we ask: is it a degree that, as adversaries, would we use it for our Sybil node or not? The more likely the answer would be yes, the more the quality we give to the node is higher, leading to a higher chance of being hidden in the published version.

The answer to the previous question is based on an analysis that we think the adversary has done on the previously published graphs. But the other way is that they have chosen the degrees arbitrarily without any study on the published data. Our advantage here is that we have the original graph before starting our privacy mechanism. When the adversary makes decisions about the node degrees, they know nothing about the original graph. For this reason, when computing the quality of the nodes, we consider the two possibilities. A part of this score will be linked to our analysis of previous graphs, and the other part is related to analyzing the current graph. In this way, even if the Sybil degrees were arbitrary, we forbade the adversary from retrieving them in the published version of the current graph.

.6.1 Quality Components

In the coming subsections, we explain how we propose to apply the four stages of our mechanism: the First Capture, the First Release, the Gang Capture, and the Gang Release.

In each of these stages, we use the exponential mechanism to decide the status of each node in the published versions. Each exponential mechanism needs a quality score as an input. The quality scores have four components that recur in each score.

We will explain these four components based on each node's characteristics and its relations with other nodes.

.6.1.1 Clustering based on degrees

When a Sybil node has a unique characteristic, it will help the adversary retrieve it from the published graphs. For this reason, we apply the Kernel Density Estimation (KDE) to cluster the nodes based on their degrees. The clustering is based on 1-Dimensional data; thus, we can consider the clusters as integrals.

KDE creates several minima and maxima. Each minima is considered as a border between two integrals, and each integral has a maxima. Each node is inside an integral based on its degree. The absolute difference between the degree of a node deg(v i ) and maxima of its integral maxima(v i ) is a component in the quality score. The higher difference gives an indicator that the number of nodes having the same degree is low. Then, if it's a Sybil node, it's easier for the adversary to retrieve it.

Then, the first component is:

q c (v) G j =| deg(v) -maxima(v) |
where maxima(v) is the maxima of the integral where v exists based on its degree in graph G j .

It's important here to clarify for the reader that this quality is not about uniqueness, where if a node has a unique degree, then it's suspicious. But it's closeness; more a node has a degree (even if unique) close to the degrees of numerous other nodes, that makes this node less suspicious.

For example, in an interval between 20 and 30, and the maxima is 23. Having a unique node of degree 24 doesn't make it suspicious more than two nodes of degree 28. The unique node is close to the maxima; then many nodes have the degrees 22, 23, and 25. Thus the degree 24 is not an anomaly. While two nodes of degree 28 might be considered suspicious because they are far away from the main gathering in this interval, thus it's easier for the adversary to find them if they are Sybil nodes. Even if their degrees are anonymized, the adversary could discover them with higher confidence than the unique node of degree 24.

It's always important to remember that the goal of privacy-preserving mechanisms is not exclusively privacy, but it's about a balanced trade-off between privacy and utility. Therefore, the adversary would expect that by applying edge-DP, the original degree of its Sybil node has changed by, for example, ±2 most probably. An actual value of an anonymized published degree of 28 is most likely between 26 and 30. As those degrees are far from the maxima, then the number of nodes in this area is low, and it's easier for the adversary to find if these nodes are their malicious nodes or not. While the unique node of anonymized degree 24 most probably, has an original degree between 22 and 26. It's a crowded area where it's not easy to find if this is the Sybil node or not. For this reason, a unique node could be more trusted than multiple nodes far from the maxima.

.6.1.2 Profile Quality

Each node has a profile helping us to know its history. Precisely as a person's medical history is vital to deal with their possible Covid infections, their history of vaccination or diseases determines if quarantine is required.

We apply the same concept to the nodes. We create a vector Q(v) containing the qualities of the node v in the previous graphs. Thus, after the release of the published version G * j-1 , we could update the vector by adding the quality of v in that graph.

Q(v) =< q(v) G f , ..., q(v) G j-1 >
where G f is the first graph where v appears.

The quality profile q p (v) G j is the second component of v for the graph G j :

q p (v) G j = 1 | Q(v) | |Q(v)| ∑ i=1 q(v) G i | Q(v) | -(i -1)
This component has two functions: the first is computing the quality of v in G j , and the second is computing the quality of any neighbor node of v in G j (the fourth component).

.6.1.3 Connection Quality

The connection score is the third component of the quality score. This component examines the relations of the node. Going back into our example about the Covid pandemic, let's say that the records show that most of the traveler's family members that come back from the same country some days ago were infected. In that case, there should be a higher possibility of imposing a quarantine on the traveler than if his family members were not infected.

The connection score component has the same goal of investigating the relations of new and old members of the graph. In our mechanism, we use three statuses and a score for each of them, as we can see in Table 8. The data owner might have statuses or other scores to use, but the scores should always be positive.

Neighbour Status Score

Hidden 2 New 1 Free 0.5

Table 8: Sensitive data associated to the nodes.

Let's say that v has ten neighbors in G i , where 5 of them were free in G * i-1 , three were hidden, and two new nodes. Then, Conn score (v) = {score : N neighbours } = {2 : 3, 1 : 2, 0.5 : 5} Therefore, the connection quality is

q conn (v) G j = |Conn score (v)|-1 ∏ l=0 (score N neighbours )[l] = 2 3 × 1 2 × 0.5 5 = 0.25

.6.1.4 Neighboring Quality

The fourth component has the same concept as the connection quality in investigating the connections of v i . But in this component, we focus on the qualities of the neighbors, not their status in the last published graph. It's essential to check the statuses of the neighbors of v i , but it's also important to compute their qualities. Thus, we compute the mean of the qualities of v's neighbor:

q n (v) G j = ∑ |N o (v)| i=1 q p (N o (v)[i]) g j-1 | N o (v) |
where N o (v) is the set of neighbors that are old nodes.

These four qualities listed and explained are engineered features to compute an anomaly score for a given node. Now, we can start by proposing the four stages of our mechanism.

.6.2 Anonymization of First Graph G 1

In the first graph, we cannot categorize the nodes as new and old. All of the nodes are new, and their quality vector Q is still empty.

Therefore, the only component available is q c based on the difference between the degree of the node and its integral maxima.

q(v) G 1 = q c (v) G 1
The set of neighboring graph N(G 1 ) of G 1 is the set of graphs that differ by just one node of

G 1 .
Then, it's similar to the node-DP in the first graph as we don't yet have detention node and hidden nodes.

The global sensitivity of q(v) G 1 is the maximum difference in the distance between the degree of v and its interval's maxima in G 1 and any graph of N(G 1 ). This difference is based on two possibilities. When a node is added or deleted in a neighbor graph G ′ 1 , the value of maxima(v) will change, or even v will change its interval. Then, the global sensitivity is:

GS(q(v) G 1 ) = max G ′ 1 ∈N(G 1 ) | q(v) G 1 -q(v) G ′ 1 |
The rest of the anonymization mechanism for G 1 is similar to what we will explain in Subsection 3.5 .6.5.

.6.3 First Capture

The First Capture is a step in the mechanism applied on the new nodes in the current graph G j where j > 1. It will provide a list of new nodes that should be hidden. In this subsection, we compute our suggested quality score and global sensitivity for this mechanism. The quality of each new node v new is composed of three components already explained. The component missed in this quality is the profile quality q p as the quality vector of this node is still empty.

q 1 (v new ) G j = q c (v new ) G j × q conn (v new ) G j × q n (v new ) G j
To compute the global sensitivity GS(q 1 (v new ) G j ), we create a set of published graphs

G ′ * = {G ′ * 1 , ..., G ′ * j-1 } that differ from the real set of published graphs G * = {G * 1 , ..., G * j-1
} by just one node v di f f that is hidden in one set and free in the other set. v di f f differs in the last graphs of the set G * j-1 and

G ′ * j-1 ∈ N(G * j-1 )
where N(G * j-1 ) is the set of graphs that differ by just v di f f from G * j-1 , where v di f f is free in one graph and hidden in the other. By this difference, two qualities are affected.

First, q conn could change by max( score hidden score f ree , score f ree score hidden ). The second component is q n that computed the mean of the qualities of the neighbours of v new . q n changes based on the modifications that happens on the quality of the node v di f f that differs between G j-1 and its neighbour graph, and also the qualities of the nodes that are in the same time neighbours of v di f f in G j-1 and neighbours of v new in G j . Therefore,

GS(q 1 (v new ) G j ) = q c (v new ) G j × max( score hidden score f ree , score f ree score hidden ) × max G ′ * j-1 ∈N(G * j-1 | q n (v new ) G j -q n (v new ) G ′ j |
where G ′ j and G j are the same but they differ by the last published graph G * ′ j-1 and G * j-1 . Finally, the probability that v new is hidden in the published version of G j is

P(exp(G j , V G j new , q 1 , ϵ) = v new ) = exp ϵq(G j ,v new ) 1 2GS(q 1 ) ∑ v ′ new ∈V G j new exp ϵq(G j ,v ′ new ) 1 2GS(q 1 ) where V G j new is the set of new nodes in graph G j . v new is hidden if P(exp(G j , V G j new , q 1 , ϵ) = v new ) 1 > θ f irst-capture
where θ f irst-capture is a threshold set by the data owner. Higher threshold gives more protection to the graph from sybil nodes but less utility by hidden a greater number of new nodes.

.6.4 First Release

In this subsection, we are focusing on hidden nodes in G j-1 that have never been free in any prior releases. After introducing the fake account in a previous release, the adversary is unsure if the node representing this account is still hidden or a free node. For this reason, they still try to give a remarkable degree to the node in the same way as the first creation to identify the Sybil node in case it is already free. Here, the quality contains the four components explained previously with an additional element related to the number of releases hr(v h ) where v h was hidden.

q(v h ) 2 G j = hr(v h ) q c (v h ) G j × q p (v h ) G j × q conn (v h ) G j × q n (v h ) G j
The global sensitivity of q 2 for two neighboring sets of published graphs similar to the previous subsection:

GS(q 2 , v h ) = max G ′ * j-1 ∈N(G * j-1 ) | q(v h ) 2 G j -q(v h ) 2 G ′ j |
The exponential probability is:

P(exp(G j , V G j h , q 2 , ϵ) = v h ) 2 = exp ϵq(G j ,v h ) 2 2GS(q 2 ) ∑ v ′ h ∈V G j h exp ϵq(G j ,v ′ h ) 2 2GS(q 2 )
where V G j h is the set of nodes hidden in the detention node in G * j-1 and waiting their First Release.

v h is released from the detention node and will be a free node in

G * j if P(exp(G j , V G j new , q 2 , ϵ) = v new ) 2 > θ f irst-
release where θ f irst-release is a threshold set by the data owner.

.6.5 Gang Capture

In every release, some nodes might be suspicious without being new nodes. Then, for each release, a privacy mechanism for old nodes should be applied.

Identical quality scores and global sensitivities as those in the First Capture are also used in the Gang Capture. If the probability is higher than θ Gang-Capture , then the node should be hidden. But we assume this is not enough to prevent the adversary from identifying their Sybil nodes.

While the adversary is still unsure about the Sybil node they have implemented in a previous graph, they might try to perform an extreme move and then benefit from the list of nodes that were free in the last graph and hidden in the currently published one. Suppose the list contains a small number of nodes. In that case, the adversary might recognize their Sybil nodes, especially if the other newly hidden ones don't have close characteristics to the Sybil nodes. In this way, the adversary can retrieve the Sybil nodes and being one step closer to find their Sybil subgraphs.

For this reason, we add another layer of protection based on the idea of node gangs. When the mechanism returns that an old node v s is a suspect and should be hidden in this graph, we check if it is already linked to a gang or not. If the answer is yes, all the members that are also suspects are hidden while the remaining members are put on probation. A node is on probation when it's not in the detention node, but its id is hidden.

If v s isn't associated with any gang, we choose k -1 nodes unassociated to a gang and having the closest quality scores to v s . In this way, we hide the suspected nodes of the gangs and keep the highest possible utility by leaving the other members outside the Detention. At the same time, the protection of the hidden nodes' ids of this gang was not affected because the ids of the free members are also hidden. Thus, the adversary cannot differentiate between the gang members to find their Sybil node.

.6.6 Gang Release

The exponential probability for the Gang Release is similar to that of the First Release. But to release a gang, all its hidden members should have a probability greater than θ gang-release .

Sometimes, it's difficult for all the hidden members to get an enough high probability to be freed if the threshold has a high value. Then, it's recommended to have a θ gang-release relatively low.

Another issue that we can face in this stage is the scenario where the user (adversary or honest) of an account has stopped using it for good then the degree of the node v d0 is 0. It might be the reason to keep the other gang members on probation for a long time.

Our solution is based on the idea of identity swap. Let's take the scenario where a gang is hidden in a previously published graph mainly because of a set of nodes V d0 having 0 degrees and the gang still in the detention node. First, we perform the exponential probabilities in the current graph to check if the gang is eligible to be freed. If not, we review the nodes responsible for that result. If all of them have a 0-degree in this graph and the last z original graphs, the identity swap occurs.

We pick the node v is with the highest exponential probability P 1 when it was hidden and perform an identity swap with v d0 ∈ V d0 . Thus, now the node having 0 degrees has the id v is , and the node eligible to be freed has the id v d0 . The gang is freed in the currently published graph with its secretly new members, while the public doesn't know that some members are new with swapped identities. This scenario is not always necessary. In any exponential mechanism, we have some randomness conditioned on the quality scores. Then, there is some possibility that the probability for the 0-degree node is high enough not to experience the Gang Capture or to perform a Gang Release, especially that we have recommended that θ gang-release should not be high.

.6.7 State machine diagram

After listing and explaining all the parts of the mechanism, we will recap them by drawing a state machine diagram showing all the possible statuses of a node and how they could shift from one status to another:

• We start with a new node. In this status, the node has two options; it will be hidden in the published version of the graph if the First Capture step outputs this decision; otherwise, it will be a free node.

• A hidden node in the last published graph has three options in the current graph: -It could become a free node if the First Release algorithm (applied if the node was not free in any previously published graph) returns this decision, or the Gang Release algorithm (applied if the node was free previously in at least one published graph and now, it's a member of a gang) returns this decision, and none of the other gang members is suspicious.

-In case one member at least is suspicious, the freed nodes of this gang are put on probation.

-If the First Release or the Gang Release algorithm decides that the nodes are still suspicious, the user will stay hidden in the detention node.

• A free node in the last published graph also has three options in the current one:

-If the Gang Capture algorithm detects an anomaly in the current characteristics of the node, then the node is hidden in the detention.

-Otherwise, the node will remain free if it's not related to any gang or all the fellow members in the gang are not suspicious.

-If at least one gang member is suspicious; then our innocent node is put on probation.

• The fourth status is on probation. This status means that, in the last published graph, the node is not suspicious, but it's a member in a gang where at least one member is suspicious. As the node was not suspicious, then, as any free node, the Gang Capture algorithm will be applied to it. The options for the current graph are as follow:

-The algorithm returns that the node has become suspicious and should be hidden. -The algorithm returns that the node is still not suspicious, but other gang members will remain hidden. Thus, the node will still be on probation.

-The algorithm returns that all the gang members are not suspicious anymore. The node and all his fellow gang members are free.

.7 Process Diagram

The diagram in Figure 42 shows the decision-making that the mechanism passes through for a node v i to decide its status in the published version. The first question is if it's a new node or not. If the answer is yes, then the First Capture mechanism is applied. If the output is greater than the threshold θ f irst-catch , thus, the mechanism should hide the node. If not, the mechanism waits until all the new gangs are formed for this graph and checks if v i is chosen as a gang member. Its status is on probation if it's a member; otherwise, it's a free node. If it's an old node, the mechanism checks its status in the last published graph. The Gang Capture would be applied regardless of v i being free or on probation if it weren't hidden. If the output is higher than θ gang-catch , we check if v i is a gang member. If it's not, we create a new gang, but v i will be hidden in both cases. If the output is less than θ gang-catch , the mechanism checks if it's a gang member to decide if it should be free or on probation.

In that way, we have covered the possibilities of v i being new or old and free or on probation in the last published graph. We still have the case of being hidden. In this scenario, we check if it's a gang member. Then we decide which part of the mechanism should be applied between the First Release and the Gang Release. If the output is less than the required threshold, the node will stay in Detention in both cases. The difference is when the output is higher than the threshold. In the First Release case, the node is directly freed, while in the Gang Release case, we check if all the members are free, then v i is free also; otherwise, v i is on probation.

.8 Experiments

In this section, we present the results of our experiments to evaluate the NNDP on dynamic graphs both in terms of utility and privacy. We implement our algorithm in Python on the "Reddit Hyperlink Network" dataset [START_REF] Kumar | Community interaction and conflict on the web[END_REF] containing daily releases between January 2014 and April 2017. The dataset contains 55863 subreddits (communities on Reddit.com) as nodes and 858490 edges representing hyperlinks connecting the subreddits. We conducted experiments on an Intel Core i7 2.4 GHz PC with 8GB RAM.

Besides our algorithm, we will also apply an edge-DP algorithm called TmF [START_REF] Nguyen | Network structure release under differential privacy[END_REF] which adds noise to each graph independently from other graphs by adding and removing edges before releasing an anonymized graph (non-interactive approach). For the node-DP, as we have mentioned in the Related Work section, none of the node-DP mechanisms adapts to the non-interactive mechanism. For this reason, we created two baseline node-DP algorithms to compare their results to the NNDP results.

.8.1 The baseline node-DP algorithms

The naive algorithm is based on randomly deleting nodes from the original graph. The second algorithm is based on an exponential mechanism where the quality is based on the uniqueness of the degree. A node with a unique degree in the graph has a higher probability of being removed than a node that shares the same degree with other nodes. A higher number of nodes sharing the same degree leads to a lower probability of one of them being removed.

The second algorithm is based on the exponential mechanism, which is a well-known DP mechanism. But the first one is based on a random mechanism; thus, we have to prove it respects the node-DP requirements. For each node in the original graph, we randomly generate a number between 0 and 1. If this number is smaller than a threshold θ, the node is removed from the anonymized version.

Let's consider two neighbor original graphs G 1 and G 2 = G 1 ∪ {v di f f } that differ by just one node. Let S be a subgraph of G 2 . First, we apply the random mechanism R on the two original graphs. Then, we compute the probability that the output graph has the same nodes as S. As the nodes are similar in G 1 and G 2 except for v di f f , we can conclude that by dividing the two probabilities, we are dividing the probabilities that the status of v di f f in the anonymized version of G 1 (or G 2 ) is still the same in S:

P[R(G 1 ) -→ S] P[R(G 2 ) -→ S] = P[R(G 1 )[v di f f ] -→ S[v di f f ]] P[R(G 2 )[v di f f ] -→ S[v di f f ]] where R(G 1 )[v di f f (R(G 2 )[v di f f
) represents the status of the node v di f f as exists or doesn't exist in the anonymized graph R(G 1 ) (R(G 2 ) respectively).

That's because any other node v in G 1 and G 2 has the same status, thus, has the same probability:

P[R(G 1 )[v] -→ S[v]] = P[R(G 2 )[v] -→ S[v]] = 1 .
To prove that a mechanism is node-DP, we should demonstrate that the division of those two probabilities has an upper bound that we can compute and that we call it e ϵ .

In the case of this random algorithm, we can list two scenarios. The first is that v di f f exists in S, and the second is that the node doesn't exist. In both scenarios, v di f f exists in G 2 and doesn't exist in G 1 .

In the first scenario:

P[R(G 1 )[v di f f ] -→ S[v di f f ]] P[R(G 2 )[v di f f ] -→ S[v di f f ]] = 0 θ = 0
As we are just removing nodes, a node that doesn't appear in the original graph has zero chance of existence in the anonymized version. Then in this first scenario, v di f f exists in S, there is no possibility that R(G 1 ) has the same nodes as S.

In the second scenario,

P[R(G 2 )[v di f f ] -→ S[v di f f ]] P[R(G 1 )[v di f f ] -→ S[v di f f ]] = θ 1 = θ
Then the highest upper bound in the two scenarios is e ϵ = θ ≤ 1. Therefore, ϵ should be positive (which is always the case) to consider that the algorithm satisfies the node-DP requirements.

.8.2 Privacy parameters

The TmF mechanism has two privacy parameters ϵ 1 and ϵ 2 . In [START_REF] Nguyen | Network structure release under differential privacy[END_REF], they fix the value of ϵ 2 = 0.1, thus we did the same in our experiments. ϵ 1 is related to the number of nodes | V |:

ϵ 1 = coe f × ln(| V |).
The values under the horizontal (x) axis represent the values of coe f , and at the same time, they represent the second privacy parameter in NNDP as explained in Subsection 3.5 .5.1. The first baseline node-DP is random and doesn't rely on a privacy parameter; thus, its results will be presented as a horizontal line in the charts.

.8.3 Utility metrics

One of the most known methods to measure the utility of an anonymized graph is to compare the original graph with the anonymized one on the base of the most important nodes in the graph. The more these nodes are still the same in the two graph versions, the more we can assume that the privacy-preserving algorithm provides high utility to the published data.

In our previous work [3], we have explained and used four centralities to choose the most important nodes: degree, farness, betweenness, and eigenvector. In these experiments, we use the same centralities.

It is not possible to compute and compare in a precise way the centralities between two graphs that differ in the number of nodes, especially for betweenness and closeness centralities.

Therefore, comparing the original graphs and their published version isn't practical for the node-DP and NNDP mechanisms. For this reason, we have compared the published graphs (the free nodes and their edges in the case of NNDP) with their corespondent subgraph in the original graph. Then, the goal of experiments in this subsection is not to find out the number or the rate of important nodes hidden or removed by the anonymized methods. But the objective is to study the impact of these privacy-preserving techniques on the nodes that appear in the published graph (nodes that are not hidden or removed). We apply this study by comparing the 100 most important nodes in both the published graphs and their counterparts subgraphs in the original graphs.

The charts in Figure 43 show that the two baseline node-DP mechanisms have obvious less utility in the scope of most important nodes in the original graph and published graph.

As expected, the edge-DP surpasses the NNDP mechanism, but this out-performance is small compared to the difference between the node-DP and the edge-DP.

.8.4 Encountering the active attack

In this subsection, we simulate an active attack on the four anonymized versions of the published graph (anonymized by TmF, the two node-DP algorithms, and the NNDP). We will choose some new nodes as Sybil nodes; we will try to retrieve them from the anonymized graphs. The rate of successful retrieve indicates how much vulnerable the privacy-preserving algorithm is against an active attack.

We perform two types of active attacks: • the random: we choose the Sybil nodes arbitrarily,

• the planned: we first check the previous releases to find the rarest degrees. These degrees should not be very far from the other degrees so they don't form apparent suspicions. We choose the nodes having these degrees in the current graph as Sybil nodes.

The results of the simulation attacks shown in Figure 44 confirms that an edge-DP algorithm doesn't have the potential to prevent the retrieval of the Sybil subgraphs from the published graphs.

By node-DP 1, we mean the baseline privacy-preserving mechanism based on random removing of nodes and their edges, and node-DP 2 is the second baseline mechanism based on exponential mechanism. The latter surpasses the former significantly in preventing the success of the second step of the attack. NNDP and node-DP have very close performance facing the attacks based on random degrees, while our mechanism outperforms the node-DP in the case of planned attacks. We think this out-performance is because we are studying the previously published graphs similar to the attacker, which gives us a higher potential to detect suspicious nodes than node-DP 2, relying on just the uniqueness of the degree.

.8.5 Confusion Matrix

In this subsection, we use a confusion matrix to measure the efficiency of the two node-DP and the NNDP mechanisms. We compute the percentage of four categories:

• True positive: The nodes are appearing in the published graphs and are innocent nodes.

• False positive: The nodes are appearing in the published graphs and are Sybil nodes.

• True negative: The nodes removed or hidden and are Sybil nodes.

• False negative: The nodes removed or hidden and are innocent nodes.

The edge-DP is not a part of this experiment as it doesn't remove or hide any node. For the other mechanisms, we compute the mean of the percentages of the Sybil nodes hidden or removed in each release (true positive) and the mean of the percentages of innocent nodes published in the releases (true negative). We don't have to compute the two other categories as they are just the complements of these two: the percentage of false-positive is equal to 100 -the percentage of true positive, and the same concept for the false and true negative.

The two charts in Figure 45 show these two means based on the mechanism and the privacy parameter ϵ. As we can notice, the NNDP outperforms the two baseline mechanisms in both categories, which ensures a high utility for the NNDP outputs.

Introduction

The emergence of data outsourcing promoted by the services provided by cloud computing, has led to the promulgation of privacy regulations [30] to protect the confidentiality of personal information. These regulations direct data providers to abide by strict rules of anonymization before the release of data containing Personally Identifiable Information (PII). Data providers should anonymize not only the identifying values but also the associations that link individuals to their sensitive values as an adversary may be able to combine his/her background knowledge [START_REF] Samarati | Protecting respondents' identities in microdata release[END_REF][START_REF] Sweeney | k-anonymity: a model for protecting privacy[END_REF] to information in the released dataset to breach privacy.

A particularly challenging problem for data anonymization is dealing with transactional data. Most anonymization methods assume homogeneous, independent and identically distributed (i.i.d.) data; ¨flattening¨transactional data to satisfy this model results in wide, sparse data that does not anonymize well with traditional techniques. While there have been some approaches for generalization-based anonymization, bucketization techniques (e.g., Anatomy) pose new challenges. In particular, bucketization provides the opportunity to learn correlations between data items, but also a risk of identifying individuals because of dependencies inferred from such correlations. We present a method that balances these issues, retaining the ability to discover correlations in the data, while hiding dependencies that would enable correlations to be used to link specific values to individuals. We introduce a correlation anonymization constraint that ensures correlations do not allow data to be linked to a specific individual, and an elastic safe grouping algorithm that meets this constraint while preserving data correlations. We evaluate the utility loss on a transactional rental dataset.

Related Work

Correlation in literature

The correlation problem in data anonymization has been a topic of interest for some time. The works described in [START_REF] Kifer | Attacks on privacy and definetti's theorem[END_REF][START_REF] Li | Injector: Mining background knowledge for data anonymization[END_REF][START_REF] Raymond | Can the utility of anonymized data be used for privacy breaches?[END_REF] are good examples of attacks that identify correlation problems in anonymization techniques allowing attackers to use their background knowledge or their extracted foreground knowledge to breach privacy.

In [START_REF] Raymond | Can the utility of anonymized data be used for privacy breaches?[END_REF], the authors consider correlation as foreground knowledge that can be mined from anonymized data. They use the possible worlds model to compute the probability of associating an individual with a sensitive value based on a global distribution. In [START_REF] Kifer | Attacks on privacy and definetti's theorem[END_REF], a Naïve Bayesian model is used to compute association probability. They used exchangeability [START_REF] Aldous | Exchangeability and related topics[END_REF] and DeFinetti's theorem [START_REF] Ressel | De Finetti-type theorems: an analytical approach[END_REF] to model and to compute patterns from the anonymized data. In [START_REF] Li | Injector: Mining background knowledge for data anonymization[END_REF], the authors deal with background knowledge that can be mined from the data. In their paper, they focus mainly on what we consider as negative correlations, which limits the ability to handle positive and exposed correlations.

In [START_REF] Hui | Hiding outliers into crowd: Privacy-preserving data publishing with outliers[END_REF][START_REF] Bechara Al Bouna | Efficient sanitization of unsafe data correlations[END_REF], the authors provide solutions to cope with the correlation problem by either bounding it to the privacy constraint as in [START_REF] Bechara Al Bouna | Efficient sanitization of unsafe data correlations[END_REF] or hiding highly correlated values, outliers in the dataset [START_REF] Hui | Hiding outliers into crowd: Privacy-preserving data publishing with outliers[END_REF]. Unlike these techniques that are specifically defined for correlations between quasi-identifying attributes and sensitive values in non-transactional datasets, we consider that those correlations, where multiple tuples are related to the same individual, result in possible linking of a particular sensitive values to a particular individual when correlated in the same group or across several groups. Wang et al. propose in [START_REF] Wang | Generalized bucketization scheme for flexible privacy settings[END_REF] a bucketization technique that creates flexible QI-groups based on the importance of the sensitive value. By doing so, the authors reduce the impact of correlations that spread across groups but fail to consider the intra group correlations; correlations between the values in the same group. In a similar work to ours [START_REF] Gong | Anonymizing 1:m microdata with high utility[END_REF], Gong et al. propose a (k, l)-diversity privacy constraint to anonymize a dataset that contains multiple tuples for the same individual. Their technique ensures that there are at least k individuals for an identifying set of sensitive attribute values in addition to l well-represented identifying sets of sensitive attribute values. This is similar to our assumptions, having k distinct individuals and at the same time maintaining l-diverse QI-groups, the only difference is that this technique uses generalization to ensure that these constraints are met.

In [57], the authors propose a knowledge-based sequential anonymization algorithm (KSAA) for privacy preservation when different anonymized views of the same original dataset are published. They present a bottom-up anonymization algorithm, KSAA, that uses generalization to protect against background knowledge attacks. KSAA clusters tuples and generates QI-groups satisfying the privacy model in the current view. It checks, in a second step, if the privacy constraint is satisfied when several views are joined together. In our work and unlike KSAA, we do not hide the correlations we expose them instead and make sure that they cannot be used to link an individual to his/her identifying and sensitive values.

Differential privacy [53] approaches release privatized data by adding noise to the released data or query results. The noise is calibrated so that the impact of any individual on the outcome is small relative to the noise added, thus effectively hiding any individual in the noise. Since differentially private mechanisms add independent and identically distributed noise, they are vulnerable against correlations where an adversary is able to filter out the noise While this is a strong privacy definition, for many uses this approach is impractical, as the noise, while typically small, is potentially unbounded. We opt for bucketization, which keeps values intact but provides protection against linking sensitive data to individuals. We extend our previous work [START_REF] Bechara Al Bouna | Anonymizing transactional datasets[END_REF] to address correlations that explicitly violates the targeted privacy goal while minimizing the loss in data utility.

Privacy approaches and algorithms

Two attack models can be classified: Linkage and probabilistic attacks. As its name indicates, the linkage attacks model occurs when the adversary is trying to relate an individual victim to a record in the published dataset (record linkage), to a sensitive attribute (attribute linkage), or the whole table (table linkage) in the case of Existential Uncertainty.

The second model, called probabilistic attack, aims at providing the adversary with vital information to ensure a significant variation in his/her prior and the posterior of beliefs. 9: Privacy techniques and attack models k-anonymity [START_REF] Sweeney | k-anonymity: a model for protecting privacy[END_REF] requires that every tuple in the dataset is indistinguishable in their quasi-identifiers from k -1 other tuples by generalizing these attributes to ensure this similarity.

Record Attribute Table Probalistic

k-anonymity ✓ (ϵ, m)- anonymity ✓ l-diversity ✓ ✓ t-closeness ✓ ✓ δ-presence ✓ ESG ✓ ✓ ✓ Table
This definition can deal with record linking.

Machanavajjhala et al. [START_REF] Machanavajjhala | Muthuramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity[END_REF] propose the l-diversity definition relying on distributing the sensitive attributes in a way that is called "well-represented", three definitions of this term were suggested. The simplest one is that in each group containing all the tuples with the same generalized quasi-identifiers, these tuples have at least l different sensitive attributes. In this way, l-diversity deals with attribute linking by avoiding the lack of diversity of sensitive attributes for an equivalence class or a QI-group.

Proximity breach occurs when the adversary may not learn the exact numeric value of the sensitive attribute linked to an individual. Nevertheless, suppose the victim is linked to an equivalence class with all (or the majority) of the sensitive values are in a small interval. In that case, the adversary could estimate a proximate sensitive value for this individual with high confidence. (ϵ, m)-anonymity citejiexing2008 requires that for every sensitive value x in the QI-group, at most 1/m other values are in the interval [xϵ, x + ϵ].

The previous approaches and their extensions focus on the local distribution of each equivalence class, neglecting the importance of global distribution. Thus, t-closeness [START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF] is proposed to deal with two problems that l-diversity fails to consider. The first one is the semantic closeness of the values. A class of 3 tuples having the same generalized quasi-identifiers is considered 3-diverse if it contains three different locations, at least for the sensitive attribute. If we link Bob to this class and all three locations are in the same city, we have unveiled that Bob was in that city.

Another problem is the distribution of the sensitive values in the whole table versus in one class. For example, if a location appears in 10% of sensitive attributes in the entire dataset and appears two times (50%) in a class of 4 tuples. Then, linking an individual to this class will increase the probability of being in this location from 10% to 50%.

By focusing on the global distribution, t-closeness can confront the challenges of the probabilistic attack. But one objective to publish the table is to analyze the correlation between some QI attributes and the sensitive attribute. Since t-closeness restricts that each QI-group has nearly the same distribution as the distribution of the entire table, the desired goal cannot be achieved. Hiding the safe corrlations is also the disadvantage of the safe grouping appraoch that motivates us to propose the Elastic Safe Grouping.

These privacy approaches are based on the idea that the adversary knows that the victim exists in the dataset, tries to identify him/her, and linking its id to the correct sensitive value.

Another type of privacy violations could be when the adversary is uncertain and tries to disclose the existence or absence of an individual in the private dataset. The basic idea of δ-Presence [START_REF] Mehmet Ercan Nergiz | Hiding the presence of individuals from shared databases[END_REF] is that the probability for an adversary to identify any individual as being in the anonymized table should be in a range δ = (δ min , δ max ) that defines the level of trade-off between the utility and privacy.

Our approach, called Elastic Safe Grouping (ESG), relies on Anatomy and l-diverstiy to encounter record and attribute linkages, respectively. Concerning the probabilistic attack, ESG ensures that the global distribution exposes just safe correlations for better utility with the same privacy guarantees of the Safe Grouping. Thus, ESG encounters probabilistic attacks also as we have mentioned in Table 9.

Numerous algorithms and tools were proposed to realize these privacy approaches. For record linkage, Incognito [START_REF] Lefevre | Incognito: Efficient fulldomain k-anonymity[END_REF] presents several optimal bottom-up algorithms based on Fulldomain generalization and Record suppression, and the size of the QI-group is computed according to the rollup property [START_REF] Benjamin | Privacy-preserving data publishing: A survey of recent developments[END_REF]. µ-argus [START_REF] Hundepool | µ-and τ-argus: Software for statistical disclosure control[END_REF] achieves k-anonymity by checking the lowdimensional combinations of identifying values and applying subtree generalization and cell suppression.

For attribute linkage, InfoGain Mondrian [START_REF] Lefevre | Workload-aware anonymization[END_REF] is based on Multidimensional Generalization to create a k-anonymous and l-diverse dataset with the consideration of some data mining tasks.

Top-Down disclosure.

For table linkage, SPALM and MPALM [START_REF] Mehmet Ercan Nergiz | Hiding the presence of individuals from shared databases[END_REF] lean on Full-domain and Multidimensional Generalizations, respectively, and benefit from the anti-monotonicity property of the δ-presence approach to hide the presence of individuals in datasets.

For Probabilistic attack, all the algorithms lies on adding noise as ϵ-Differential Privacy [51], Cross-Training Round Sanitization [START_REF] Chawla | Toward privacy in public databases[END_REF], and αβ Algorithm [START_REF] Rastogi | The boundary between privacy and utility in data publishing[END_REF]. In Section 4.7, we prove that our algorithm satisfies an extension of Differential Privacy called Blowfish privacy, which confirms that our work also can deal with probabilistic attacks. Also, many tools were proposed to apply the privacy approaches. TIAMAT [42] is a tool for interactive analysis of anonymization techniques, mainly k-anonymity. It allows data publishers to analyze the accuracy and runtime performance of various k-anonymization techniques and find suitable parameter settings for anonymization. ARX Data Anonymization [START_REF] Prasser | Arxa comprehensive tool for anonymizing biomedical data[END_REF] Tool implements a set of techniques that can handle a broad spectrum of data anonymization tasks.

It supports many privacy and risk models, methods for transforming data, and methods for analyzing the usefulness of output data. Identifier (A id ) represents an attribute that can be used (possibly with external information available to the adversary) to identify the individual associated with a tuple in a table. We distinguish two types of identifiers; sensitive and non-sensitive. For instance, the attribute Security Number is a sensitive identifier; as such it must be suppressed (encrypted). Non-sensitive identifiers are viewed as public information and include both direct identifiers such as User ID in Figure 6a, and quasi-identifiers that in combination may identify an individual (such as <Gender, Birthdate, Zipcode>, which uniquely identifies many individuals.)

Preliminary Definitions

Sensitive attribute (A s ) contains sensitive information that must not be linkable to an individual but does not inherently identify an individual. In our example (Figure 6a), the attribute Location is considered sensitive and should not be linked to an individual.

Attack Model

The adversary relies on two types of Knowlege: Foreground and Background. The Foreground Knowledge is based on the correlations that can be found in the published dataset.

An adversary can obtain additional information from the published dataset in the form of global distribution, which can lead to individual privacy breach.

The table in Figure 6b ) = 0.9 × 0.5 = 0.45 which is higher then 1/l where l = 3 which is considered a privacy breach. With more Background or Foreground Knowledge linked to U1 or U4, one of these two probabilities may increase to allow the adversary to link one of the two v id with that sensitive value with high certainty.

The same learning could be done on the relation of a QI attribute with sensitive attribute in an attempt to link the id of the tuple containing the QI attribute with one of the sensitive attributes. In our example this linkage attack cannot be done, but if we take a dataset of patients and their diseases, the adversaries can easily link a quasi-identifier or a non-sensitive value to a sensitive value using Background or Foreground Knowledge. For example, breast cancer is related with females in 0.99% of the cases. Heart attacks is related to men with 70% of cases. The flu is very common in US in February and in Australia in August. The osteoporosis is related with women in 80% of cases. 98% of people diagnosed with Parkinson are above 40 years old.

The adversary can get this knowlege by doing some research on some medical websites or can get close numbers from doing some data mining from the published dataset. Thus they will be able to exclude the link between a tuple containing the age, the sex and the country of an individual with some sensitive values and increase the probability of this link between that tuple and some other sensitive values.

From this example, the knowledge can be modelled in two formats. First, as a set of tuples < u, v s , con f (u, v s ) > where u is the identification of an individual, v s is a sensitive attribute and con f (u, v s ) is a confidence score that links u to v s . And the second From This example also we can see how the adversary take advantages from inter-group dependencies to form his/her Foreground Knowledge. The problem is that the majority of the privacy techniques focus on the local distribution which means the distribution of QI and sensitive attributes in the QI-groups to ensure that no intra-group dependencies will let an adversary get important Foreground Knowledge from the group. But it's rare to find a technique dealing with inter-group dependencies in the global distribution.

format is < v ns , v s , con f (v ns , v s ) >
Safe grouping hides the correlations to forbid the adversary from gaining Foreground Knowledge. Our motivation in this work is to propose an approach that allows the adversary to expose the correlations and prevent him/her from taking advantage of these correlations.

The idea is that if some individuals co-exist in one QI-group, then, in any other QI-group, all of them will also co-exist, or none of them will exist. In that way, it is possible to gain Foreground Knowledge from the correlations between the non-sensitive and sensitive attributes. But, at the same time, it's hiding the correlations between the individuals and the sensitive attribute.

Suppose we take the same example discussed in this section. Let's say that the three ids U1, U3, and U4 co-exist in 10 QI-groups where the location 19.60;35.40 is mentioned in 9 of them. This foreground Knowledge can't help in linking the location with one of the ids. These rules are not applied to the non-sensitive attributes, than the correlations between them and the sensitive attributes could be exposed for a better utility.

Strength and Weaknesses of Safe Grouping

Safe grouping ensures that an individual's tuples are grouped in one and only one QI-group that is at the same time ℓ-diverse, respects a minimum diversity for identifying attribute values, and all subsets T u for an individual u in QI j have an equal number of tuples. The formal definition several QI-groups (e.g., in Figure 6b, the identifying value U 1 correlates with location 20.09; 45.11 in QI 1 , QI 2 , and QI 3 ). A privacy breach might occur if the adversary can use the learned knowledge to link the identifying value v id to an individual u.

Works described in [START_REF] Raymond | Can the utility of anonymized data be used for privacy breaches?[END_REF][START_REF] Kifer | Attacks on privacy and definetti's theorem[END_REF][START_REF] Li | Injector: Mining background knowledge for data anonymization[END_REF] provide an in-depth study on how to estimate the strength of the association between sensitive and non-sensitive values in post-anonymization based on their correlations. They demonstrated that some significant correlations in the data could be measured (i.e., estimating the probability of associating a quasi-identifying value with a sensitive value in an anonymized table) as such the resulting score would exceed the allowed privacy threshold.

In a dataset that satisfies safe grouping, none of these significant correlations can be learned from the dataset where Pr(v id , v s ) = Pr(v id , v s |QI j ) = 1/ℓ. While this is a good indicator from a privacy perspective, it is, however, expensive in terms of utility. Safe grouping and other proposed techniques [START_REF] Samarati | Protecting respondents' identities in microdata release[END_REF][START_REF] Sweeney | k-anonymity: a model for protecting privacy[END_REF][START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF]53], unfortunately, sacrifice some of the data utility by losing these correlations for the sake of privacy.

In the next section, we show how sparing some of these correlations; keeping them exposed, can be achieved without risking data privacy. In other words, a correlation between an identifying and sensitive value is safe if both the probability of a user having that particular identifying value is low, and the correlation between the identifying and sensitive values is below 1/ℓ.

Exposing Safe Correlations

While exposing significant correlations results in better utility for aggregate analysis, it tends to be difficult to achieve without threatening individuals' privacy in a rigid bucketization technique. In fact, the use of a bucketization technique such as anatomization or even safe grouping, creates QI-groups that are either unsafe; exposing significant correlations to the adversary, or of large sizes reducing the utility of the dataset.

In the following, we define a privacy constraint that allows us to expose significant correlations and ensure their safety by creating flexible QI-groups in a way that preserves both privacy and utility. The basic idea is that if an identifying value in a particular QI-group, appears multiple times in several QI-groups in T * , then there are k -1 identifying values that must appear the same number of times. This ensures that the correlation known to the adversary Lemma 5. Correlation anonymization privacy constraint exposes only safe correlations in an anonymized 

Elastic safe grouping (ESG)

We present in this section an elastic safe grouping algorithm (ESG) that achieves correlation anonymization. As its name implies, the algorithm simulates an elastic behavior where individuals' tuples are grouped, spread over several sub-groups, and then merged again to create ℓ-diverse QI-groups. Technically, the algorithm is based on a divide-and-conquer strategy;

dividing buckets composed of at least k identifying values into sub-groups to expose safe correlations, and merging (if necessary) these sub-groups to create ℓ-diverse QI-groups.

The algorithm breaks down into three main stages. In the first stage, the table is divided into buckets of δ ≥ k identifying values (i.e., in a similar manner to the safe grouping algorithm described in [START_REF] Bechara Al Bouna | Using safety constraint for transactional dataset anonymization[END_REF][START_REF] Bechara Al Bouna | Anonymizing transactional datasets[END_REF]). By doing so, we group tuples of each of the identifying values in one and only one bucket along with tuples of at least k -1 other identifying values. In the second stage, each bucket is divided into sub-groups based on the identifying value with the minimum number of tuples in the bucket. This reduces the size of the QI-groups, exposing safe correlations since each identifying value correlates with at least k - remove a random tuple t u from T u 10:

sub-group ← t u # add t u to the sub-group Suppress remaining tuples in tmp return QI-groups 18: end function Algorithm 2 describes the core of ESG. It takes a table T, two privacy constraints, k (number of identifying values) and ℓ, and returns an anonymized table T * . In the first two steps, the algorithm hashes the table based on the identifying values and sorts it in an ascending order starting from the value that has the minimum number of tuples. In Step 7 to 11, the algorithm creates z buckets, divides each bucket into sub-groups, and creates from these sub-groups, QIgroups that respect the ℓ-diversity privacy constraint. Once QI-groups are identified, the algorithm separates in Step 11 to 18, the table T into two distinct tables T QIT and T SNT and inserts tuples of each of the created QI-groups into T QIT and T SNT accordingly while randomly shuffling the sensitive values.

Dividing buckets

The Divide function divides a bucket B, in Step 6 to 14, into sub-groups such that the total number of created sub-groups depends on min, which is the number of tuples of the first identifying value in the bucket |T u 0 |. T u 0 is the set that contains the least number of tuples since individuals' tuples in each of the buckets are sorted in an ascending order. A sub-group is formed in Step 8 to 11, by randomly removing a tuple t u from each individual's related tuples T u in the bucket B and adding it to sub-group.

The Divide function ensures in Step 14, that the remaining identifying values in the bucket B are uniformly distributed. That is hiding, encrypting or suppressing some identifying values to ensure that the probability of linking an individual u to his/her identifying value is equal to the probability of linking u to any other identifying value in the QI-group. The Divide function creates after that the last sub-group. For example, let us assume that a bucket B contains identifying values of three distinct individuals, u 0 , u 1 , and end if 11: end procedure 4.6.2.2 Creating QI-groups QI-groups are created using the procedure MergeOrCreate, which takes a sub-group and verifies its ℓ-diversity. In Step 5 in the MergeOrCreate procedure, sub-groups that do not meet the ℓ-diversity constraint are stored in a temporary buffer tmp. This process is repeated sequentially for the sub-groups in the bucket until tmp satisfies ℓ-diversity. Before moving to the next bucket, if ℓ-diversity is still not met in tmp, all the tuples in the buffer are then suppressed. This process increases the size of the QI-group for the sake of privacy but also retains as many tuples as possible.

u 2 having |T u 0 | = 2, |T u 1 | = 3, and |T u 2 | = 3. B = {T u 0 = {t u 0 , t u 0 }, T u 1 = {t u 1 , t u 1 , t u 1 }, T u 2 = {t u 2 , t u 2 , t u 2 }}.
Let n be the total number of tuples in T, ESG produces m QI-groups such that, m ≤ n δ , where δ = max(k, l).

Proof. The Divide function in ESG produces at most z ∑ i=1 min(B i ) QI-groups (assuming that all QI-groups are ℓ-diverse) where, min(B i ) is a function that returns the minimum number of tuples of an individual in Bucket

B i . Now, if z ∑ i=1 min(B i ) ≤ n δ , then z ∑ i=1 min(B i ) ≤ n |U| × |U| δ z ∑ i=1 min(B i ) ≤ n |U| × z 1 z × z ∑ i=1 min(B i ) ≤ n |U| 1 z × z ∑ i=1 min(B i ) ≤ 1 |U| × |U| ∑ y=1 |T u y |
The last statement in our equation compares two values in a cumulative moving average In Figure 47, we explain the process of our algorithm. We can divide it to three stages.

since {min(B i )}, (∀i, 1 ≤ i ≤ z) is a subset of {|T u y |}, ∀y, 1 ≤ y ≤ |U|, {min(B)} ⊆ {|T u |} and z ∑ i=1 min(B i ) ≤ |U| ∑ y=1 |T u y |. Thus, for |U| ≥ z, the value 1 |U| × |U| ∑ y=1 |T u y | is continuously greater than 1 z × z ∑ i=1 min(B i ).

The anonymization process

In the first one; the users are sorted in descending order based on the number of tuples then divided into buckets of δ users each, where δ = max(K, l), for example in Table 48a, δ = 3 as we can see in Figure 48a.

In the second stage, each bucket is divided into sub-groups based on the identifying value with the minimum number of tuples in the bucket. For example, in Figure 48c, 3 sub-groups of size 3 where each sub-group contains one tuple from u 1 , u 3 and u 4 .

In the third stage, we check if the sub-group is l-diverse. If it's not, then the sub-group is sorted in tmp sequentially till tmp is l-diverse. If all the sub-groups related to a bucket are treated and the tmp is not l-diverse than all its tuples are suppressed. Finally, each l-diverse QI-group is created wether directly from sub-groups or from the buffer tmp.

Analysis of elastic safe grouping algorithm

Given n as the total number of tuples in the 

T (n) = n × log n + z × ( n |U| × 2δ) = n × log n + |U| δ × ( n |U| × 2δ) = n × log n + 2n

Achieving Blowfish Privacy

In this section, we prove that our mechanism achieves Blowfish Privacy [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF], an extension of Differential Privacy [55]. Differential and Blowfish Privacy are widely used privacy techniques in many domains as data mining[? ], deep learning [? ], image classification [? ], location [? ], graphs, social networks and Call Details Records anonymization [? 3]. These two approaches can confront probabilistic attacks. We benefit from this proof as a confirmation that our algorithm has the same ability.

The key difference between the two definitions is that the set of neighbors in Blowfish depends on a policy P that determines the set of discriminative pairs as well as the constraints known about the database. Blowfish Privacy required that a privacy-preserving mechanism has the potential to hide the existence or non-existence of a row in a dataset. To prove this ability:

• we define a range of outputs S,

• we list all the possible scenarios of adding (or deleting) one row to the dataset,

• we compute the probability Pr[ESG(D) → S] that the output of our mechanism applied on the original dataset is in the range S, then the same probability but applied on D ′ ,

• we prove the existence of an upper bound ϵ for the distance of these two probabilities and prove that this upper bound holds up for all the scenarios of the row addition (or deletion).

In the coming subsection, we list all the possible scenarios of adding a tuple to the dataset. These scenarios focus on the status of the bucket containing the tuples of the same individual related to the added tuple. We compute an upper bound ϵ and prove it holds up for all the cases.

Determining the privacy paramater ϵ

In this subsection, we show that our mechanism respects the Blowfish Privacy inequation shown in Equation 1. For this reason, we have to determine an upper bound to the possible effect on the output that takes place when adding or removing one tuple from the original dataset.

Let's say we have two datasets D = {t 1 , ..., t n }, D ′ = {t 1 , ..., t n+1 } where t i is a tuple containing quasi-identifier and sensitive attributes, t i is connected to one of the users in the Universe and t n+1 is connected to one of those appearing in D.

To assume that our mechanism ESG respects the differential private inequation, we have to compute the privacy parameter ϵ in the following inequation: In Table 48a, 3 sub-groups will be created from B 1 and 1 sub-group from B 2 . While the two remaining tuples from U 5 will be excluded (A id → u * ) as we can see in Table 48b .

Pr[ESG(D) → S] Pr[ESG(D ′ ) → S] ≤ e ϵ ( 1 
In Table 48c, B 1 will create also 3 sub-groups. B 1 has more than one individual (in this example, all of them) with the minimum number of tuples min In Table 48e, the new tuple is related to U 5 which requires to sort the individuals again based on the number of their tuples. After sorting, u • Pr ′′ div : the case were sg is l-diverse in D but not in D ′ . Pr ′′ div = 0 because sg in D ′ will not merge and don't create a QI-group or merge with another sub-group and create a different QI-group.

• Pr

(3) div : the case were sg is not l-diverse in D but it is in D ′ . Pr ′′′ div = 0 for the same logic mentioned for Pr ′′ div .

• Pr

div : the case were sg is ldiverse in D and D ′ . The minimum probability of this case is the probability of choosing l distinct sensitives values in sg in D and in D ′ :

Pr (4) div min = | A s D |! l!× | A s D | l × | A s D ′ |! l!× | A s D ′ | l where | A s D | (| A s D ′ |) is the number of sensitive attributes in sg in D (D ′ respectively).
Therefore, the minimal value of Pr div is: Then:

Pr div min = 0 + 0 + 0 + | A s D |! l!× | A s D | l × | A s D ′ |! l!× | A s D ′ | l
Pr[ESG(D) → S] Pr[ESG(D ′ ) → S] ≤ l! 2 × | A s D | l × | A s D ′ | l | A s D |!× | A s D ′ |! × ∑ |B| i=1 pr i Therefore: ϵ = ln l! 2 × | A s D | l × | A s D ′ | l | A s D |!× | A s D ′ |! × ∑ |B| i=1 pr i

Determining the policy

Blowfish Privacy is based on a privacy policy P = (T , G, I Q ), where T denotes the domain of all possible datasets created from a universe of tuples, G = (V, E) is a discriminative secret graph with V ⊆ T , an edge in graph G connects two nodes that represent two datasets from T that differ by one and just one tuple and I Q denotes the set of databases that are possible under the constraints Q that are known about the database.

Determining the constraints

It's not uncommon to have publicly known constraints about our original dataset. Therefore, logically, the anonymized data should also respect the constraints. But Differential Privacy doesn't take into consideration any constraint. This drawback is one of the reasons that motivated He et al. [START_REF] He | Blowfish privacy: Tuning privacy-utility trade-offs using policies[END_REF] to propose the Blowfish Privacy as a generalization of Differential Privacy.

In our case, we can assume that the public knows that our released dataset should respect the ℓ-diversity.

Therefore, for each tuple < u, v s , con f (u, v s ) >, the confidence score after any release is as follow: con f ′ (u, v s ) ≤ max(1 l , con f (u, v s )) where con f ′ (u, v s ) is the updated con f (u, v s ) after the release.

In other words, the release does not help the adversary to increase any of his confidence scores con f (u, v s ) in any tuple to exceed an upper bound max( 1 l , con f (u, v s )). For more explanation, what is meant by the upper bound of con f ′ (u, v s ) is: if con f (u, v s ) is already greater than 1 l then the release will not increase the confidence score, then con f ′ (u, v s ) will be equal to con f (u, v s ). If con f ′ (u, v s ) is less then 1 l , then the release will not allow to the adversary to get a con f ′ (u, v s ) that exceeds 1 l . Thus, this upper bound can be considered as the constraint of the data when applying our mechanism.

Therefore, by proving that our mechanism respects the inequation of Blowfish Privacy and by defining the constraint, we have shown that Elastic Safe Grouping is

ln l! 2 ×|A s D | l ×|A s D ′ | l ×|U| (Universe) |A s D |!×|A s D ′ |!×|U| (D) × ∑ |B| i=1 pr i -Blowfish Private.

Experiments

We now present a set of experiments to evaluate the efficiency of our approach, both in terms of computation as well as loss of data utility. We implemented our algorithms in Java based on the Anonymization Toolbox [START_REF] Kantarcioglu | Anonymization toolbox[END_REF], and conducted experiments with an Intel XEON 2.4GHz PC with 2GB RAM. 

Dataset evaluation

Utility metrics and measures

We use the following metrics and measures to evaluate the efficiency of our technique in preserving the data's utility.

Relative confidence error

The relative confidence error (RCE) measures the relative difference in the confidence of the correlation between an identifying value v id and a sensitive value v s between the original and anonymized tables.

This captures the impact of privacy protection on the ability to learn interesting and potentially useful correlations. RCE is defined in the following equation:

RCE(v id , v s ) = |con f (v id , v s |T) -con f (v id , v s |T * )| con f (v id , v s |T)
where,

• con f (v id , v s |T) is the confidence of v id and v s in table T,

• con f (v id , v s |T * ) is the observed confidence that shows how often the association between v id and v s is true across the anonymized table T * .

We assume that a frequent association between v id and v s in table T can still be identified in anonymized T * (i.e., v id is more likely to be associated with v s in the QI-groups to which it belongs). The observed confidence is formally defined as follows:

con f (v id , v s |T * ) = ∑ m j=1 f j (v id , v s ) ∑ m j=1 g j (v id )
where f j (v id , v s ) = 1 if v id and v s are associated in QI j 0 otherwise and,

g j (v id ) = 1 if v id exists in QI j 0 otherwise

Mean squared group size

The Mean Squared Group Size (MSGS) investigates how likely an identifying value remains associated with its corresponding sensitive value in post-anonymization [START_REF] Wang | Generalized bucketization scheme for flexible privacy settings[END_REF]. The MSGS is formally computed as follows:

MSGS(T * ) = ∑ m j=1 (|QI j | -1) 2 |T| -1
Intuitively, the smaller the size of the QI-groups, the smaller the value returned by the MSGS, which indicates that an identifying value is more likely to be associated with its corresponding sensitive value in the same QI-group.

Kullback-Leibler divergence

In information theory, Kullback-Leibler (KL) divergence calculates the difference between two probability distributions. In this paper, we use it to compare the distributions of identifying attribute A id values before and after anonymization; before and after anonymizing/suppressing some of the identifying values and tuples to preserve the privacy constraint. This measure originates from the observation that, whenever the distribution of identifying values in the anonymized table diverges from the original distribution, the utility of the data in the anonymized table will decrease. We denote by P A id ,T and P A id ,T * , the distributions of identifying attribute A id values in T and T * respectively. KL divergence on T and T * is computed as follows:

D KL (P A id ,T ||P A id ,T * ) = |D(A id )| ∑ i=1 Pr(v id i |T) × log Pr(v id i |T) Pr(v id i |T * )
where |D(A id )| is the number of distinct identifying values in A id , Pr(v id |T) and Pr(v id |T * ) are the probabilities of the observed value v id in table T and T * respectively.

We use a non-linear transformation of KL divergence denoted by D N = 1e -D KL , to bound the score of D KL between 0 and 1 and compare it in several anonymization techniques. The smaller D N value, the closer the distribution P A id ,T * is to P A id ,T .

Comparing with the 1:M mechanism

This subsection compares our mechanism with the 1:M mechanism by evaluating each anonymization's Information Loss.

In [START_REF] Xiao | Anatomy: Simple and effective privacy preservation[END_REF], Xiao et al. compare their Anatomy algorithm to a Generalization algorithm. They use a set of 10 000 count queries applied on a generalized dataset and an anatomized dataset.

The generalization algorithm generalizes the QI attributes into groups. The sensitive attributes are not manipulated, but it's impossible to relate the sensitive attribute with its real corresponding attribute by more than 1 k . In the conditions of each query, they indicate at least one QI attribute beside the sensitive attribute. Then they compute the probability p that a tuple in the QI-groups qualifies the range predicates of the query. Finally, the query result is p × s, where s the number of sensitive queries having the same value as the one indicated in the query. This technique is not feasible for the 1:M algorithm because the sensitive attributes are also generalized in this algorithm. For this reason, we can use two probabilities and multiply their results by each other to answer the query. The first probability is that a tuple in a QI-group qualifies the query's range predicates. The second is that a sensitive attribute in the same QIgroup qualifies the query's predicates for the sensitive groups. To compute these probabilities, we can apply the NCP used in the experiments in [START_REF] Gong | Anonymizing 1:m microdata with high utility[END_REF].

Let's the query be: Select count(*) from Table where col QI1 = q 1 and col QI2 = q 2 ... and col QIm = q m and col sens = q sens . In this query we are counting all the tuples containing q 1 , q 2 , ..., q m and q sens . We can apply the query twice and change the value of Table from Rental_Table_Original to Rental_Table_1M. Normaly, computing the difference between the two results gotten from the query, then dividing the difference by the result of the query applied to Rental_Table_Original will give us the Information Loss.

However, this method is not achievable in the 1:M algorithm because all the table values are generalized. For this reason, we will compute the Information Loss in another way; we will rely on the Equation 1 to get the same result expected by using the method of the difference of two queries' results:

IL 1M =| Q sens | ×NCP(q sens ) × m ∑ i=1 QID -NCP(q i ) (1) 
where Q sens is the generalization of q sens and NCP(q sens ) =

   0 | q sens |= 1 | q sens | / | A | otherwise and QID -NCP(q i ) = ∑ d j=1 NCP(q i ) d
where d is the number of all possible values for col i .

After getting the information loss of the 1:M algorithm, we should get the loss of our algorithm to compare the results. The method that we apply to compute the loss is based on the following equation:

IL ESG = | ∑ g i=0 (n S i (q sens ) × n QI i (q 1 ,...,q m ) n QI i ) -Org_Res | Org_Res ( 2 
)
where g is the numbers of groups in the Table, n S i (q sens ) is the number of sensitive attributes in the i th group of the Sensitive table where the value of the attributes is q sens , n QI i (q 1 , ..., q m ) is the number of the tuples in the i th group of the Quasi-Identifier table where the value of the attributes are (q 1 , ..., q m ), n QI i is the number of tuples in the i th group in the Quasi-Identifier table and Org_Res is the result of the query when applied on the original table .   Finally, we compute the mean of all IL 1M computed for a set of queries and the mean of IL ESG for the same set, and then we compare the two means to find out which method has a higher information loss.

We compare the two algorithms by applying IL ESG and IL 1M on approximately 1000 combinations of attributes. Figure 49 shows that 1:M generalization has a rate of information loss more than ESG by 1.5 to 2 times generally.

Evaluation results

We elaborated a set of experiments to evaluate the efficiency of our elastic safe grouping and compared the results with safe grouping and anatomy. These experiments can be summarized as follows:

• Evaluating the size and the growth of QI-groups in a dataset anonymized using elastic safe grouping, safe grouping, and anatomy. • Evaluating utility loss in terms of suppressions in a dataset anonymized using elastic safe grouping and safe grouping.

• Evaluating the performance of elastic safe grouping. In this section, we examine the growth in number and size of QI-groups. We vary k from 12 to 20 and leave l equal to 10. At each execution, we retrieve the number of QI-groups and the

MSGS.

Let m be the number of the QI-groups produced in post-anonymization. m is computed as follows:

• using safe grouping, m = |U| k where, |U| is the number of distinct individuals in T.

• using ESG, |U| δ ≤ m ≤ n δ where, n is the number of tuples in T.

• using anatomy, m ≈ n l where, l is the l-diversity privacy constant.

We consider that the smaller the size of the QI-groups, the higher the association of identifying and QI values is to their sensitive values. The results as shown in Figure 50 shows that ESG presents a considerable improvement over safe grouping for the number of QI-groups. Figure 51 shows that ESG provides almost the same utility as anatomy; keeping the associations between sensitive and identifying values suitable for discovery but exposing only safe correlations.

Evaluating the impact of ESG on the correlations between identifying and sensitive values

In this experiment, we use the RCE measure defined in Section 4.8.2.1 to evaluate how correlations are preserved after the anonymization of the table using both, ESG and safe grouping. Specifically, we learn significant correlations from the original table T (i.e., correlations having a confidence greater than or equal to a maxCon f threshold and a support greater than or equal to a minSup threshold) and compute after that, at each run, their observed confidence from the anonymized table T * . Finally, we compare the resulting average RCE measure using both, ESG and safe grouping algorithms. The results from Figure 52 show that the error of safe grouping remains almost invariant, since each of the individuals, has their identifying values stacked in the same QI-group. In ESG, however, the error is lower and tends to change with k, since some of the groups are merged to create l-diverse QI-groups. Summarizing, the results show that significant correlations learned from the original table are better preserved using ESG.

Evaluating utility loss in T *

In this experimental setup, we evaluate the utility loss when using safe grouping and ESG. Both algorithms guarantee privacy by either suppressing tuples and/or anonymizing identifying values. Finally, we compare the divergence in the distributions of A id values in a dataset anonymized using ESG and safe grouping. For that matter, we use the D N measure to determine the difference between the distribution of identifying values in the original table versus the distribution of identifying values in the anonymized table; anonymized using ESG, and safe grouping.

Each of the tests is repeated three times per anonymization technique where, in each run, we vary k from 12 to 20 and leave l constant for l = 8, 10, and 12. At each execution, with given values for k and l, we compute the percentage of suppressed rows, the number of anonymized identifying values, and D N .

Test 1: Percentage of suppressed rows

The results from Figure 53 show that for small values of k, safe grouping performs better than ESG. The former suppresses few to no tuples at all compared to the outcome of ESG as the latter creates l-diverse QI-groups in each of the buckets. All the remaining QI-groups, the ones that are not l-diverse, are entirely suppressed (Step 17 in the Divide function). In safe grouping, however, only a few tuples are suppressed from the QI-group in succession and as long as l-diversity is not met [START_REF] Bechara Al Bouna | Using safety constraint for transactional dataset anonymization[END_REF][START_REF] Bechara Al Bouna | Anonymizing transactional datasets[END_REF]. This explains why for small values of k, safe grouping retains more tuples than ESG, but when k increases, QI-groups grow in size thus, more likely l-diverse. As noticed, for k = 20 the percentage of tuples suppressed in both safe grouping and ESG is almost the same. Another aspect to show is that when l increases the percentage of suppressed tuples increases too since the number of QI-groups that respect l-diversity tends to decrease. Another finding is that there is a negative correlation between the number of anonymized identifying values and l, since the process of ensuring the uniform distribution of identifying values is applicable only for l-diverse QI-groups. That is, when l is large, both anonymization algorithms, safe grouping, and ESG, produce fewer l-diverse QI-groups, and thus, the number of values to be anonymized tends to decrease. Note that a suitable trade-off between values of k and l is likely to achieve an acceptable number of anonymized identifying values and suppressed tuples . Here, we summarize our findings regarding the loss in utility due to the suppression/anonymization of tuples and identifying values. We choose to compute D N of the distributions of identifying values before and after the anonymization of the dataset using both ESG and safe grouping. The results in Figure 55 show that safe grouping provides less divergence at the beginning but converges however to reach values produced by ESG when k increases.

Overall, the anonymization cost is relatively small where we can see that the value of D N is at most equal to 0.02 for l = 12.

Introduction

In this part, we aim to design and develop an anonymous full-duplex image classification framework under Differential Privacy. We work under the assumption that both the cloud and the querier are semi-trusted entities; thus, their data should remain safe and confidential.

That is, neither the querier nor the cloud should be able to link a particular individual from the other party to an image while maintaining, to a certain extent, suitable classification accuracy.

We use Principal Component Analysis (PCA) to transform images into anonymized vectors (differentially private synopsis of PCA vectors) and we ensure that the individuals in these vectors remain unidentifiable.

Related Work

The K-Nearest Neighbors (K-NN) [START_REF] Wu | Top 10 algorithms in data mining[END_REF] is one of the most popular and influential data mining algorithms in the literature. However, many adaptive attacks [START_REF] Li | Exploring privacy preservation in outsourced k-nearest neighbors with multiple data owners[END_REF] can form a real threat to data privacy in K-NN based systems. Li et al. propose in [START_REF] Li | Exploring privacy preservation in outsourced k-nearest neighbors with multiple data owners[END_REF] a privacy-preserving system based on Kernel density estimation using Gaussian Kernel instead of K-NN.

Their system, as most of the other related works, uses computation over encrypted data.

They describe four roles:

• The data owners submit encrypted data to the system.

• The queriers submit encrypted queries to receive classification results.

• The host role, possessed by the cloud, stores the incoming encrypted data and hosts the classification.

• Finally, the Cryptographic Service Provider (CSP) owns both encryption and decryption keys.

They demonstrate that Distance-Learning attacks under the K-NN system can breach data privacy if an untrusted data owner is, at the same time, a querier and propose to use Kernel density estimation instead of K-NN. In this paper, due to the noisy vectors and the sampling, using K-NN is safe.

The work described in [START_REF] Su | Differentially private k-means clustering[END_REF] turns the K-means clustering algorithm to a differentially private algorithm, where noise is added to the centroids in a way that respects the requirements of Differential Privacy. Differentially private K-Means is divided into two approaches:

interactive and non-interactive.

Interactive approach [START_REF] Su | Differentially private k-means clustering[END_REF] is based on a query that can be used just once, can serve only one querier and only for one task. Any mechanism that is based on this approach returns a noisy result to the user. Each query has a budget α = ∑ i α i given by the database owner. Each execution i makes the budget loses α i of its value. The query cannot be executed anymore when the α budget is less than α i . Hence, this approach has many restrictions on privacy preservation, empirical means. Assuming a normal (Gaussian) probability distribution of errors, orthogonal transformations naturally arise. The PCA is an orthogonal transformation (actually a coordinate rotation) that aligns the transformed axes with the directions of maximum variance:

S = U ∑ V T (1) 
where U and V are orthogonal matrices, and ∑ has the set of singular values. U(m × m) has for columns the eigenvectors of the covariance matrix C of S. The first column of U is the eigenvector having the largest absolute eigenvalue (the first principal component). The most significant variance is in the direction of the first principal component. The most significant variance on the subspace orthogonal to this vector is in the direction of the second principal components, and so on. The matrix B = U T S is therefore useful for dimensionality reduction of the original data. In effect, B r = U T r S, where U r is the smaller matrix having only the first r < m columns of U, is a reduced representation of the data. B r is an r × n matrix. Data reconstruction is governed by S r = U r B r (an n × m matrix), which is a lossy version of the original data S [START_REF] Uri | A first course on numerical methods[END_REF].

In our mechanism, we intend to add enough noise to the PCA vectors of images in a way that the individuals in the images remain unidentifiable, but at the same time, the vectors can be used to train the classifier.

Differentially Private Image Classification Framework

We assume that the first party (the data owner) holds a dataset of face images. The images belong to different classes, and each image is labeled with its class number. The second party, which is the end-user, has one face image of an unknown class and wants to predict this class, or a multi-face image and wants to know how many faces have a specific reaction. In non-private settings, this would be easy: We use a database with labeled images to train the classifier, and we predict an unknown image based on the classifier's result. In private settings, we want to imagine a man in the middle asking for information about the image (the query) and the image database (or the classification model). This man in the middle must not be able to recognize the identity of any subject no matter how many questions he asks.

Both parties must add noise to make the whole process Differentially Private. We want as a result that any single image in the database be masked by reducing every image into a noisy vector. The query image is masked as well. However, to ensure an accurate classification, adding noise to a database of images and requests must be done using a global privacy parameter.

In our framework (see Fig. 56), four types of actors are listed:

• Trusted Data Owner: sends the essential dataset to anonymization service, and later, can send more images with trusted classification.

• Untrusted Data Owner: sends images to the anonymization service, with untrusted classification. Trusted and untrusted data owners may request a noisy image from the synopsis dataset to be sure that the face is unrecognizable. The principal component vectors, the eigenvectors, and the mean vectors are required to reconstruct images, so the service keeps the eigenvectors and means vectors on a different cloud.

• Querier: sends one face or multi-face images to the anonymization service with the aim of getting their classifications.

• Data Host: receives three types of vectors:

1) Trusted data owner vectors (sample noisy images) are used to train the classification algorithm.

2) Untrusted data owner vectors are classified, and the output is returned to the anonymization service to check the truthfulness of the data owner classification.

3) Querier vectors are classified, and the output is returned to the querier.

Anonymization service

The service transforms every image in the primary dataset into a vector using PCA and adds Differentially Private noise to the vectors. It performs safe sampling and returns a synopsis dataset, and checks the truthfulness of the untrusted data owner classification. The process breaks down as follows:

The first step is to concatenate a set of images into one matrix S as PCA reduces a set of images into a set of vectors. Then, we compute the covariance matrix C = 1 m S T S; where m is the number of columns of S.

PCA is turned into a Differentially Private mechanism by adding differential private noise to C. The noise matrix L is generated by sampling its elements from a probability distribution.

Then, the noisy covariance N is calculated: N = L + C.

To get the vectors of the images, we should first calculate characteristics vectors and values called respectively eigenvectors u and eigenvalues λ using this equation: (N -˘λI)u = 0.

Eigenvalues can be found by calculating det(N -˘λI) = 0, and then the eigenvectors are calculated. All the eigenvectors will be concatenated in one matrix U, and the PCA matrix P is computed by multiplying S by U. Each column of P is a PCA vector. If a trusted data owner sends the set of images, then the vectors will be sampled to create a synopsis dataset sent to the cloud.

Privacy-preserving PCA

To make PCA a privacy-preserving mechanism using differential privacy, we should turn the covariance matrix C into a noisy matrix. Therefore, we generate a noise matrix from a probability distribution and add it to the covariance matrix. Practically, using C in the PCA process returns a memory error due to the enormous dimensions of C. For this reason, C is substituted by a matrix A = 1 m SS T where data matrix S ∈ R n×m . Then each row of the matrix P is a PCA vector instead of each column.

Generating matrix N with Laplacian noise

We choose Laplace distribution [START_REF] Jiang | Wishart mechanism for differentially private principal components analysis[END_REF] to achieve differential privacy. The probability density function of Laplace distribution Lap(µ, b) is:

P(x | µ, b) = 1 2b e -|x-µ| b (1) 
where µ = 0, b = 2d nα and α is a privacy parameter. For S ∈ R n×m , we sample d 2 +d 2 values from this distribution to fill the upper triangular part of the noise matrix L then the values of the lower triangle part are copied from opposite position. Finally, we add the noise matrix L to A.

Generating matrix N with Laplacian noise

For a long time, SULQ method [START_REF] Blum | Practical privacy: the sulq framework[END_REF] was the only Differentially Private approximation to PCA. This method based on Gaussian distribution guarantees weaker privacy than the differential privacy known as (α, δ)-differential privacy. Chaudhuri et al. in [31] proved that SULQ is not a good candidate for effective dimensionality reduction. They proposed a simple modification and called their method MOD-SULQ. This method, as in SULQ, is based on Gaussian distribution. First, we compute the parameter of the distribution:

β = d + 1 nα 2 log d 2 + d δ2 √ 2π + 1 √ αn ( 2 
)
where α is a privacy parameter and δ is a relaxation parameter.

We generate after that a symmetric noise matrix based on the probability density function of Gaussian distribution N(µ, β 2 ):

P(x | µ, β 2 ) = 1 2β 2 π e -(x-µ) 2 2β 2 (3) 
where µ = 0. Finally the noise matrix is added to A.

sampling to create a synopsis dataset

To perform the sampling, we reconstruct some images from noisy vectors whose classifications were not affected by the added noise.

We compute two distance scores of the noisy image and compare them to two user-defined thresholds. First, we compare each image to its noisy version. Second, we compare the noisy image to the mean of the images with the same classification label.

If distance scores are less than these thresholds, we can consider the image as unidentifiable, and at the same time, its classification was not affected by the noise. Therefore this noisy vector will be added to our synopsis dataset.

If the data owner is untrusted, then the vectors are classified on the cloud, and the classification result is compared to the label sent by the data owner for each image. If the label of the image and the classification result are not identical, then the vector is dropped.

Otherwise, the vector will be a part of the sampling process.

The images sent by data owners are already labeled. Therefore, the sampled vectors are classified and form the training dataset. If an end-user sends the images, then after applying the private-preserving PCA process on the images, the noisy vectors are directly sent to the cloud to be classified.

Experiments

Our experiments were applied on a dataset of Japanese face images (JAFFE) [START_REF] Michael | Japanese female facial expressions (jaffe), database of digital images[END_REF], containing 213 images of 7 facial expressions.

Experimental Settings

We have applied three classification algorithms to test which one returns better results.

The first algorithm is the Support Vector Machine that has proved its superiority among many other classification methods [38]. SVM is based on transforming the data in input space into data in featured space in a way that renders the classes linearly separable. Then, a line or a plane is drawn between the classes, and the classification is based on this line or plane.

The two other classification algorithms K-NN and Kernel Density Estimation, are from the same family. We have chosen K-NN and Kernel Density Estimation to check if K-NN is more accurate than the Kernel algorithm; in this case, we can declare that we can apply K-NN in our model with no concerns about distance-learning attacks in DO-Q Threat Model case [START_REF] Li | Exploring privacy preservation in outsourced k-nearest neighbors with multiple data owners[END_REF].

Kernel calculates the influence of every point in each class on a given query relative to the distance between this point and the query. The Gaussian Kernel formula to calculate the influence is:

K(|| q -x i ||) = 1 σ √ 2π e -1 2σ 2 ||q-x i || 2 (1)
where q is the query tuple, x i is the ith data tuple, σ is a parameter chosen to maximize accuracy [START_REF] Li | Exploring privacy preservation in outsourced k-nearest neighbors with multiple data owners[END_REF] and || . || is the L2 norm.

In K-NN, which is one of the most popular classification algorithms, the K nearest neighbors have the same influence on the query; the others have 0 impacts. This shows that choosing the parameter K is very critical to get the best result from this algorithm [START_REF] Anava | k*-nearest neighbors: From global to local[END_REF].

The two most notable observations we have found in the empirical study are: The need for a minimal privacy parameter (vast amount of noise) to provide privacy for images. Hence, adding more and more noise is unable to hide facial features.

For the first observation, we have studied the values of the elements inside the matrices and the vectors:

For a set of images of dimensions n × m, in every image the value x of the pixel ∈ [0, 255],

then data is centered so x c ∈ [-128, 128].

We compute A = X c .X T c so x a = x 2 1 + x 2 2 + ... + x 2 (n×m) ; where X c is the centered data. Therefore, x a ∈ [0, [START_REF] Okamoto | Ranking of closeness centrality for large-scale social networks[END_REF] 

× n × m) 2 ].
In our experiments n = m = 256, so x a ∈ [0, 7.10 13 ], we have found that to provide enough privacy to the reconstructed images, we should have m > [0, 7.10 13 ], where n is an element of the noise matrix, to get this value for m, the privacy parameter α ≤ 10 -15 .

For the second observation, let's consider the function used to rebuild the images:

i = vec.U + mean (2) 
where vec is the noisy vector of the specified image, U is the matrix containing the eigenvectors, and mean is the vector containing the means of the dataset.

Then after reshaping i as n × m matrix, the matrix is normalized:

i = i -min(i) max(i) -min(i) × 255 (3) 
We assume that reconstructing images using the eigenvectors, the mean, and then normalizing the matrix makes it impossible for the noise to hide the face or its features. From Figure 57, we can see that for a 256 × 256 image, the privacy parameter α < 1--15

is not enough to provide privacy where, regardless of how small α is, the features are still identifiable.

Evaluating Privacy vs. Accuracy

First, we compare the three classification algorithms, Kernel Density Estimation, SVM, and K-NN. The latter surpasses the two other algorithms by far, as the accuracy of Kernel Density Estimation and SVM did not exceed the 50%. Thus, we have focused on K-NN and compared its performances based on privacy parameter α, probabilistic distributions (Laplace and Gaussian)

and distance functions (Chebyeshev, Euclidean, and Manhattan) used in K-NN.

In Figure 58, we can notice how the accuracy decreases when α decreases. For α = e -10 , the accuracy ranges between 0.92 and 1, but in the previous section, we have seen how the noisy images with α < e -15 are identifiable.

Chebyshev Distance outperforms the two other distances for Laplacian noisy dataset. For α between e -15 and e -20 , the accuracy is 0.9 when using Chebyshev, which forms a good trade-off between privacy and utility.

For the Noisy Gaussian dataset, the three distance functions have close results. For α between e -50 and e -15 , the accuracy is between 75% and 85%. Hence, for a better trade-off between privacy and utility, the data owner should apply the Laplace mechanism with a privacy parameter in the range of [e -50 , e -15 ] using the Chebyshev distance in K-NN classification.

CHAPTER 6

Conclusion

6. Conclusion

Recap

In this thesis we present the crucial role played by the digital data in several fields especially in e-commerce and user-centric social networks businesses and how the heterogeneous data generated by users can help make more profit. We discuss the risk of privacy breaches while analysing this data and their possible damages on users and companies at the same time.

We propose many Blowfish and Differential Privacy mechanisms as a solution to help the companies benefit from three type of data with the minimum risk possible.

In the first use-case, we propose three mechanisms to produce a good balance between utility and privacy on graph datasets. We detail the types of graphs (static and dynamic), the types of attacks (passive and active) and types of mechanism (offline and online). Then, we propose our three mechanisms to cover all these cases.

We have summarized Blowfish privacy, its formal model and the enhanced privacy-utility trade-off that it brings with respect to its predecessor, Differential Privacy. Then, we enrolled examples of its application to communication graph databases and their typical queries. We further studied the idea of privacy as a service with differentiation among different groups of individuals. We showed that this relaxation is formally feasible and proved its utility through the enrollment of several queries and computing their sensitivity. We work under the settings of binary differentiation (standard vs. VIP) and binary communication status (0 or 1). In addition, we propose a mechanism to provide anonymized results for more sophisticated queries such as local clustering coefficients, lengths of shortest paths, and some centralities.

Then, we proposed, implemented, and evaluated a BP mechanism to provide privacy for sequentially released graphs. We have proved that DP cannot ensure strong privacy for subgraphs in an intersection of several releases. Then we have proposed our solution based on the BP definition. In the experiments, we have proposed a method for the data owners to help them calibrating the trade-off of privacy and utility of their graphs. We have proved that our mechanism preserves the graphs' utility better than a DP mechanism and provides strong privacy for subgraphs.

For the third mechanism, we presented an active attack on dynamic graphs. These graphs are anonymized and published based on an online approach. We explain how edge-DP cannot deal with active attacks on dynamic graphs and how node-DP has inferior results on the utility In our second use-case, we proposed a technique that safely exposes significant correlations between individuals and their sensitive values; correlations bounded by a privacy constant δ to preserve utility for associations discovery. We adopted a divide-and-conquer strategy to spread the correlations safely into several QI-groups and put it into effect in an elastic safe grouping algorithm. We studied the efficiency of our algorithm by comparing the resulting utility to safe grouping algorithm and to anatomy. The results of our experiments showed considerable improvement for associations discovery compared to safe grouping, while compared to anatomy, results were close.

In the third use-case we focus on image datasets where we have proposed, implemented and evaluated a private image classification framework based on Differentially Private Principal Components Analysis. Using this framework, we ensure that the individuals in the image dataset are kept safe on a semi-trusted cloud service by adding Pifferentially Private noise to the images' PCA vectors. User requests are distorted as well to keep the participating individuals unidentifiable. We elaborated a set of experiments to evaluate the trade-off between the accuracy and the privacy of the dataset against several classification algorithms, namely K-NN, Kernel Density Estimation, and SVM. K-NN has shown to be very promising. We identified as well that a privacy parameter within the range of [e -15 , e -20 ] must be used to balance between the privacy and accuracy of K-NN using the Laplacian mechanism.

Future Work

The three mechanisms presented in this thesis for graph anonymization rely on a trusted central especially the neighbors, decide if the status of a node is hidden or free. We will present a profound study about the challenges and advantages that don't appear in the centralized approach. In addition to this, we will focus on the detention node by presenting a deep study about the idea of having a set of detention nodes in each release instead of just one.

How many detention nodes should we have in each graph? How do we distribute the suspicious nodes between these detention nodes? What is the form of an edge between two hidden nodes in two different Detention? What are the drawbacks and the advantages of having one Detention node versus many Detention nodes?
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  communication graph G c (V c , E c ) can be represented as a database D of size n = |V c | where each tuple of D corresponds to an individual id. The tuple dimension is m = |V c | as well.

  Naive anonymization of the graph (b) Exposing the id of 3 nodes.
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 7 Figure 7: Cloud face classification

  (a) Interactive: Multiple Queries, adaptively chosen (b) Non-Interactive: Data are sanitized and released

Figure 8 :

 8 Figure 8: The two approaches to release the DP and BP outputs: interactive and noninteractive.

Figure 9 :

 9 Figure 9: Comparing Normal and Laplace distributions
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 1110 Figure 10: Discriminative pair of secrets as a game

Figure 11 :

 11 Figure 11: Example of full policy.

Figure 12 :

 12 Figure 12: Example of attribute policy.

Figure 13 :

 13 Figure 13: Example of distance policy.

Figure 14 :

 14 Figure 14: Example of partition policy.

Figure 15 :

 15 Communication graph and its corresponding database I Q ⊂ I n the subset of all possible database instances. In the case of undirected communication graphs, we have two inherent constraints:

  (s i x , s i y ) such as the ith tuples in D 1 and D 2 are x and y. Let ∆(D 1 , D 2 ) = D 1 \D 2 ∪ D 2 \D 1 . D 1 and D 2 are neighbors, if:

  are different in three tuples: |∆(D 1 , D 2 )| = 6. If only one of the different pairs is in the security graph, for instance Bob's pairs, we have |T| = 1.There is no database having a non-empty subset of T, and no feasible database with same T and a subset of ∆. (To do so, we need to make Alice's ego network indifferent, or Eve's ego network indifferent, which is not possible due to symmetry constraints). We consider that these two graphs are neighbors.

  has the smallest size,it means that each of the two sets has a size of 1. Theorem 2. Given a communication graph G(V, E), its database/matrix representation M(G) and the policy P(T , G S V IP , G S STD , I Q ), where T represents all binary vectors of size |V|, G S V IP and G S STD represent the overall graph of discriminative secret graphs for the VIP and Standard nodes respectively, and I Q constrains the possible databases to have: (1) ∀i

Figure 17 :

 17 Two neighboring graphs and their corresponding databases. The ego network of Bob has changed, and Bob has a G full S policy.In Figure17, we consider Bob as a VIP node and the three others as Standards. We consider two policies to protect these graphs, the Full Policy for VIP nodes and Attribute Policy for Standard nodes. The two graphs shown are neighbors because just one ego network of a VIP node (Bob) has changed and one edge between two Standard nodes (Carol-Eve) has changed. Take two communication graphs that differ by only one ego network of v V IP 0 and one edge e dist connecting v STD 0 to another node: • Case I: If the node e dist connects v STD 0 to a VIP node other than v V IP 0 , than two VIP ego networks are changed, | T V IP |= 2 then the two graphs are not neighbors. • Case II: If the node e dist connects v STD 0 to v V IP 0 , in other words, just the ego network of v V IP 0 has changed, | T V IP |= 1 and | T STD |= 0, then the two graphs are not neighbors. • Case III: If the node e dist connects v STD 0 to another Standard node, | T V IP |= 1 and | T STD |= 1, then the two graphs are neighbors.
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 1819 Counts and cumulative counts of node degree for graphs G 1 and G 2 , the added edge e connects two nodes of different degrees. Counts and cumulative counts of node degree for graphs G 1 and G 2 , the added edge e connects two nodes of the same degree.

Figure 20 :

 20 Figure 20: Example of changes in histogram of degrees of vertices for standard nodes.

Figure 21 :

 21 Figure 21: Example of changes in histogram of the number of connections between VIP nodes and standard nodes.

  v t , v z and each of their common neighbors represents an open triplet. By adding an edge between v t and v z in G 2 , these open triplets turn into triangles. Therefore, The number of triangles in G 2 increments by N com (v t , v z ), the number of common neighbors for v t and v z .

Figure 23 :

 23 Figure 23: MSE of complete histogram queries under Full Policy (k = 10).

Figure 24 :

 24 Figure 24: MSE of complete histogram queries under Attribute Policy (k = 10).

Figure 25 :

 25 Figure 25: MSE of cumulative histogram queries under Full Policy (k = 10).

Figure 26 :

 26 Figure 26: MSE of cumulative histogram queries under Attribute Policy (k = 10).

Figure 27 :

 27 Figure 27: Simulation of complete histogram queries under Full Policy.

Figure 28 :

 28 Figure 28: Simulation of cumulative histogram queries under Full Policy.

Figure 29 :

 29 Figure 29: MSE of extrapolation for complete histogram queries under VIP/Standard partition.

  Three simple undirected graphs (G 1 , G 2 , G 3 ) and their respective union G U . (b) A logical matrix M.

Figure 30 :

 30 Figure 30: An example of the Union graph G ∪ and logical matrix.

Figure 31 :

 31 Figure 31: Matrix M and three of its possible neighbors.

Figure 32 :

 32 Figure 32: An anonymization operation applied on a logical matrix results a noisy logical matrix.

Figure 33 :

 33 Figure 33: Two flips performed by g where the first flip was cancelled by the second one.

Figure 34 :

 34 Figure 34: Process Diagram.

end for end for 1 :

 1 function FLIP(val, p)In steps 9-15, the algorithm drops all the subgraphs that should be deleted based on the flipping process. While in steps 16-22, the algorithm adds the corresponding subgraphs, even if these subgraphs are already in the original graph because steps 9-15 might have caused the drop of some of these subgraphs unintentionally.

Figure 35 :

 35 Figure 35: Confusion matrix for sampled subgraphs in every graph and its noisy versions based on K (number of vertices for each subgraph) and privacy parameter.

Figure 36 :

 36 Figure 36: Percentage of sampled high correlated subgraphs unprotected in Intersection graphs.

Figure 37 :

 37 Figure 37: KL Divergence for Union and Intersection graphs. (The above values in horizontal axis are the values of ϵ for our algorithm. The bottom values represent coe f for TmF mechanism.)

Figure 38 :

 38 Figure 38: Number of common nodes for the 100 most important nodes based on four centralities.

Figure 40 :

 40 Figure 40: Two neighbor graphs G 1 and G 2 differing by just Node 8.

  On the other side, the global sensitivity of edge-DP is indeed very low. Still, we have explained in the Related Work section how edge-DP could not prevent Sybil nodes from being injected into the graph and forming a threat to the privacy of the individuals.

Figure 41 :

 41 Figure 41: A state machine diagram for all the possible statuses of the node.

Figure 42 :

 42 Figure 42: Process Diagram of the Detention Differential Privacy.

Figure 43 :

 43 Figure 43: Number of common nodes for the 100 most important nodes based on four centralities.

Figure 44 :

 44 Figure 44: The percentage of attacks prevented by each algorithm.

  (a) Percentage of hidden or removed Sybil nodes. (b) Percentage of innocent published nodes.

Figure 45 :

 45 Figure 45: Confusion matrix for the two baseline node-DP and NNDP mechanisms.

1 : 8 :

 18 function DIVIDE(Bucket B) # takes a bucket B of δ identifying values and returns a set of QI-groups 2: QI-groups[] := {} 3: tmp[] := {} 4: min := |T u 0 | # T u 0 since the elements in the bucket B are sorted for each T u in B do 9:

Figure 47 :

 47 Figure 47: Process Diagram of the elastic safe grouping

  u |) of any bucket.

u∈B 1 ( 1 (

 11 | T u |) = 3. In this case, regardless of the individual related to t n+1 , min u∈B | T u |) will remain 3, because at least one individual still has just 3 tuples. Thus, as we can see in 48d, the only change is in the number of u * which doesn't affect the possibility of the output to be in range S.

Finally, we can

  compute the minimal value of Pr[ESG(D ′ ) → S] as: Pr[ESG(D ′ ) → S] min = Pr not-new × Pr mnt × Pr div min

Figure 49 :

 49 Figure 49: Information Loss of ESG and 1:M generalization

Figure 50 :

 50 Figure 50: Evaluating the number of QI-groups and the MSGS in ESG and Safe Grouping

Figure 51 :

 51 Figure 51: Evaluating the QI-groups numbers in Anatomy, Safe Grouping, and ESG

Figure 52 :

 52 Figure 52: Comparing RCE using ESG and safe grouping

Figure 53 :Figure 54 :Figure 55 :

 535455 Figure 53: % of suppressed rows in safe grouping and ESG

Test 2 :

 2 Number of anonymized identifying valuesFrom Figure54, we can see that the number of anonymized identifying values increases with k. This could happen whenever we stack additional identifying values in a QI-group where both, ESG and safe grouping tend to anonymize more values to ensure the uniform distribution in the QI-group. For instance, if a bucket B contains identifying values of 4 distinct individuals, u 0 , u 1 , u 2 , and u 4 having|T u 0 | = 1, |T u 1 | = 2, |T u 2 | = 4,and |T u 3 | = 6. For k = 2, two QI-groups are created, QI 1 = {T u 0 , T u 1 } and QI 2 = {T u 2 , T u 3 }. The total number of anonymized identifying values is equal to 3.For k = 3, only one QI-group is created in which we add tuples of 4 distinct individualsQI 1 = {T u 0 , T u 1 , T u 2 , T u 3 }.The number of identifying values to anonymize is now equal to 9.

Test 3 :

 3 Comparing the divergence in the distributions of A id values in pre-and post-anonymization

Figure 56 :

 56 Figure 56: General Architecture of a Differentially Private image classification system

Figure 57 :

 57 Figure 57: Image reconstruction based on Laplace noisy vectors.

Figure 58 :

 58 Figure 58: Accuracy Score for K-NN Classification.

  side. Then we propose our mechanism called Node-Detention Differential Privacy (NNDP), where suspicious nodes are hidden in a hyper node called Detention node for one or more releases. Our mechanism is a new type of node-DP that differs from others in that it's the first to return an anonymized graph instead of the anonymous query result. The experiments prove that NNDP can provide a very high level of privacy and a very acceptable level of utility compared to two baseline node-DP mechanisms.

  authority. The individuals presented in the graph might not trust the central authority and refuse to share their row data with it before being anonymized. For this reason, in future work, we will propose • a local version of Blowfish Privacy definition for graphs, and apply it on graphs with multiple levels of privacy by proposing a decentralized mechanism to compute the noise added to the results of the queries • a decentralized mechanism to protect particular subgraphs in dynamic graphs where the nodes composing these graphs decide the status of their subgraphs in the published version of each release of the dynamic graph • a decentralized system under a local version of Differential Privacy where other nodes,

Table 1 :

 1 Sensitive data associated to the nodes.

	Vertex Age Gender Marital Status Political View
	1	30-40	Male	Divorced	Democratic
	2	10-20	Male	Single	Republican
	4	20-30 Female	Married	Republican

table 1 .

 1 Introductionare sensitive and should therefore be anonymized. One way of anonymizing the dataset is to use Anatomy[START_REF] Xiao | Anatomy: Simple and effective privacy preservation[END_REF], a bucketization technique[START_REF] Li | Slicing: A new approach for privacy preserving data publishing[END_REF][START_REF] Xiao | Anatomy: Simple and effective privacy preservation[END_REF] 40,[START_REF] Li | Cross-bucket generalization for information and privacy preservation[END_REF] that preserves privacy by dividing the dataset into sensitive and non-sensitive tables and keeping the values intact without any alteration to maximize the utility. An anatomized version of table Rental with attributes separated into Rental_QIT and Rental_SNT is shown in Figure

1 

the associations between User ID and Location in the Rental

  Differential Private if for all S ⊂ Range(M) and for all D, D ′ ∈ N |χ| such that

	Dwork et al. [49] have found a solution by adding noise to the result in a way that preserves
	the utility of the result and protects the individuals' privacy. This technique is called Differential
	Privacy; it was proposed in 2006 to protect the individuals' rows when releasing statistical
	data about a dataset. The basic idea is to add organized random noise to the released data to
	protect all the individuals and ensure that the released data still have utility. Then it's a trade-off
	between privacy and utility. Dwork et al. [50] define DP as a privacy mechanism for a curator
	holding data of individuals in a database D, where each row represents the data of a single
	individual, to provide a sanitized database that allows statistical analysis and simultaneously
	protecting the individual rows. Formally speaking, a randomized mechanism M with domain
	N |χ| is (ϵ, δ)-

  will clarify how DP has a real problem when dealing with this type of data where instead of having one graph, we have multiple graphs with the same nodes. The same problem appears when having multiple tuples related to each other by the same id, for example.

	Another limitation of DP is that it aims to protect all the rows in the graph, which, in many
	cases, requires a lot of noises added to the graph, which might affect the utility of the released
	version. This issue was the motivation to propose another privacy definition called Blowfish
	Privacy (BP), considered a generalization of DP and has the same inequation but differs in
	defining the neighbor datasets. While in DP, two datasets are neighbors if they differ by just
	one row or tuple, BP proposes privacy policies to determine if two graphs are neighbors.

Table 3 :

 3 Notation of DP and BP, secrets, and discriminative pairs Symbol Description D Database of n tuples T = A 1 × A 2 × . . . × A m Domain of m categorical attributes Value of the ith attribute in tuple t I n

	t ∈ T	A single tuple
	t._id	Id of the tuple's real owner
	t.A i	

Table 4 :

 4 Notions of secrets An arbitrary statement over the values in the database. Example1: t._id = 'Bob' ∧ t.disease = 'cancer'. Example2: t._id = 'Bob' ∧ t 2 ._id = 'Alice' ∧ t 1 .disease = t 2 .disease S A set of secrets that the data owner would like to protect, e.g. {Example1, Example2} (s, s ′ ) ∈ S × S A pair of secrets, e.g. (Example1, Example2) mutually exclusive pair of secrets. Two statements that cannot be true at the same time. An adversary must not be able to distinguish which one is true and which one is false, e.g. (t._id = 'Bob' ∧ t = x, t._id = 'Bob' ∧ t = y) s i

	Symbol	Description & Examples
	s	
	A discriminative	
	pair of secrets	
	(s, s ′ )	

A

x

  The secret t._id = i ∧ t = x where x ∈ T , e.g. s'Bob' 

		('cancer',65)
	S pairs	A set of discriminative pairs of secrets, e.g. S full pairs , S attr pairs , S P pairs , S d,θ pairs
	S G pairs	A set of discriminative pairs of secrets based on graph G(V, E), i.e. {(s i x , s i y )|∀i, ∀(x, y) ∈ E}
	Full domain:	
	S full	

pairs

For every individual, the value is not known to be x or y, i.e.

{(s i

x , s i y )|∀i, ∀(x, y) ∈ T × T }

Attributes: S attr pairs For every individual and every two tuples differing in the value of only one attribute A where one of them is real, the real tuple is not known. The privacy definition is weaker than in full domain S full pairs since the real tuple is distinguishable if more than one attribute differs, i.e.

Table 5 :

 5 Examples of notions of secrets for a communication database

	Symbol	Description -Example
	Secret: s	Bob has talked to Alice: t

Table 6 :

 6 Examples of discriminative secret graphs for a communication graph of three nodes

	Policy	Graph		
		001		
		000	010	
		011		
	G full S ≡ G S (d=L 1 ,θ=2)			
	001			
	000	100	000	100
	101			
	G attr S ≡ G			

(d=L 1 ,θ=1) S

  G S STD = G attr S or G S V IP and G S STD are non-empty subsets of G full S and G attr S respectively, we have that: Two graphs G 1 and G 2 are neighbors, i.e., (G 1 , G 2 ) ∈ N(P), if they differ by

1 Example 1: Complete histogram query for degrees of vertices

  the coming examples, we compute the global sensitivity of four histogram queries to compare their values under Full and Attribute policies, and in flat graph and graph containing VIP and Under P attr , two graphs G 1 and G 2 are neighbors if

	Standard nodes.
	3.3 .9.1.

Table 7 :

 7 Notations and descriptions

		Description	Symbol	Description
	T	Domain of all possible tuples	G S	Discriminative secret graph
	G ∪	Union graph of the set of graphs G	G	Undirected simple graph
	V	Set of nodes in G	E	Set of edges in G
	[t i , t i+1 ]	i th time interval	G *	Anonymized version of G
	G	Set of graphs to be released	M n×m	Logical matrix of size n × m
	M *	Anonymized version of M	SG	Sampled subgraph from G
	f	Operation on logical matrix M	S	Range of outputs
	p, q	Probabilities	g	Operation on a set of graphs G

δ ′

Rate of subgraph in G that does not reflect their values in M * I Q Set of databases that are possible under the constraints Q

  SG i , G * j ) Sort all edges of SG i based on their weights in G ∪ #G ∪ = G 1 ∪ G 2 ∪ ... ∪ G ne min := edge of SG i with minimum weight drop(e min ) from G *

	function ADDSG(SG i , G * j ) for each edge e in SG i do if e not in G * j then add(e) to G * j end if end for return G * j end function	function DROPSG(j return G * j
		end function

Table 10

 10 summarizes the set of notation used in this chapter. Given a table T with a set of attributes {A 1 , ..., A b }, t[A i ] refers to the value of attribute A i for the tuple t. Let U be the set of individuals of a specific population, ∀u ∈ U we use T u to denote the set of tuples in T related to

	T	a table containing individuals
		related tuples
	t i	a tuple of T
	u	an individual described in T
	T u	a set of tuples related to indi-
		vidual u
	A	an attribute of T
	A id an identifying attribute of T
	A s	a sensitive attribute of T
	QI j a quasi-identifier group
	T *	Anonymized version of table
		T

Table 10 :

 10 Notationsthe individual u. Attributes of a table T that we deal with in this paper are divided as follows;

  satisfies 3-diversity. Let's say we have 10 Qi-groups containing tuples for Carl_U3, in 9 of them we don't have 19.60;35.40 as a sensitive value. They co-exist just in QI 2 . The adversary can predict with conficdence of 90% that 19.60;35.40 in QI 2 is not linked to Carl_U3. Then the probability of linking this sensitive value to one of the two remaining identities is PR(v 19.60;35.40 | v U1 ) = PR(v 19.60;35.40 | v U4

  where v ns is a non-sensitive attribute. For example, < U1, 19.60; 35.40, 0.45 > means that the adversary can link Roan U 1 and the location 19.60; 35.40 with a 45% confidence. While < Male, HearAttack, 0, 7 > means that the adversary can link the non-sensitive attribute 'Male' with the sensitive attribute 'Heart Attack' with 70% confidence.

  Definition 6 (Safe Significant Correlation). A significant correlation between an identifying value v id and a sensitive value v s is safe if ∀u ∈ U, Pr(u, v id |T * ) ≤ 1/k and Pr(v id , v s |T * ) ≤ 1/ℓ .

	4.6.1 Safe correlations
	A significant correlation is considered safe if an adversary cannot use his/her knowledge of
	this correlation (or his/her ability to learn it from the anonymized table) to link an individual u
	to his/her identifying value. Formally:

table T *

 T .Proof. ∀u ∈ U, ∀v id , v s , an identifying value and a sensitive value in T * , if a significant correlation exists between v id and v s in T * , then v id and v s either correlate in the same QIgroup or across QI-groups. Given that the correlation anonymization constraint is satisfied on T * , if v id , and v s correlate in the same QI-group, there exists k -1 other identifying values that correlate with v s since each and every QI-group in T * contains at least identifying values for k individuals. Therefore Pr(u, v id |T * ) ≤ 1/k and Pr(v id , v s |T * ) ≤ 1/l due to bucketization.Alternatively, if v id and v s correlate across QI-groups, e.g., ∀QI i , QI j , QI-groups in T * , correlation anonymization guarantees that ∀v id ∈ π A id QI j ∩ π A id QI j , ∃V id such that, v id ∈ V id , where V id is a set containing k -1 identifying values that correlate with v id across the QI-groups in T * , and thus Pr(u, v id |T * ) ≤ 1/k and Pr(v id , v s |T * ) ≤ 1/l due to bucketization. Figure46is an example of an anonymized table T * that respects the correlation anonymization privacy constraint. Let us assume that an adversary knows that the individual Roan rents frequently from location 20.09; 45.11. We can notice that such a correlation is exposed; location 20.09; 45.11 is correlated across QI-groups QI 2 , QI 3 , and QI 4 in T SNT . The same applies for Roan_U1 that is correlated in QI-groups QI 2 , QI 3 , and QI 4 in T QIT . However, since the privacy constraint is satisfied, these same correlations apply equally to two other identifying values, Lisa_U4 and Carl_U3 making Pr(Roan, Roan_U1|T * , β Roan ) ≤ 1/3; the only reason the adversary can attribute this to Roan is prior knowledge.

  1 other identifying values. In the final stage, ℓ-diverse QI-groups are created. Sub-groups that are not ℓ-diverse are merged together to create ℓ-diverse QI-groups. Ensure: T * = {T QIT , T SNT } 1: Hash the tuples in T by their A id values, {T u } 2: Sort the set of {T u } based on their number of tuples in an ascending order# {T u |∀T u i , T u j , i ≤ j, |T u i | ≤ |T u j |} 3: δ := max(k, l) 4: z := ], ..., t[A], ...t[A m ], j) into T QITfor each random value v s of A s ∈ QI j do

		Algorithm 2: Elastic safe grouping algorithm
	Require: T, k, ℓ
		|U|
	δ 5: QI-groups[] := {}
	6: sub-groups[] := {}
	7: for i := 0 to z do
	8:	Create a Bucket B i of δ A id values from {T u }
		# Remaining tuples are kept in the last bucket
	9:	QI-groups ← Divide(B i )
	10: end for
	11: for each QI j in QI-groups do
	12:	for each tuple t ∈ QI j do
	13: insert tuple (t[A 1 14: end for
	15:	
	16:	insert tuple (j, v s ) into T SNT
	17:	end for
	18: end for

  The function divides the bucket into two sub-groups, sub-group 1 and sub-group 2 since |T u 0 | = 2. It creates first sub-group 1 = {t u 0 , t u 1 , t u 2 }, anonymizes in Step 15 some of the identifying values remaining in the bucket B to ensure their uniform distribution, and creates sub-group 2 = {t u 0 , t u 1 , t * u 1 , t u 2 , t * u 2 }. t * u is used to denote a tuple in which the identifying value v id = t u [A id ] is anonymized.

	3:	QI-groups ← sub-group
	4:	

1: procedure MERGEORCREATE(sub-group) 2:

if sub-group is ℓ-diverse then

  table, the number of distinct individuals |U| in T, |T u |, which is the number of tuples per individual u, the following estimates the complexity of ESG. The cost of the sorting step (Step 2 in Algorithm 1) is n × log(n). In the Divide function, we estimate the value of min (Step 6 in the Divide function) to be the average number of tuples per individual denoted by n |U| (see property 4.6.2.2). The cost of MergeOrCreate procedure is in a worst case, equal to δ, which is the cost of merging a QI-group of size δ with temp (Step 5 in the MergeOrCreate procedure). So now, to sum up, the cost of ESG is as follows:

)

  It means that if the QI-group QI j of ESG(D) is formed of 4 tuples: 2 belonging to one user and the other 2 belonging to 2 different users, then the QI-group QI j of any output in the range S should have the same structure even if the tuples don't belong to the same users as in QI

		u∈B i	(| T u |) for all users
	in the bucket B i . Then min u∈B i	(| T

j of ESG(D). The structure doesn't take into consideration the excluded identifying values in these groups (Excluded identifying values are those switched by *). Therefore, the range of S is based on the output of ESG(D), thus, it's obvious that Pr[ESG(D) → S] = 1. Then, to achieve the upper bound e ϵ , we should compute the minimal value of Pr[ESG(D ′ ) → S].

First, we assume that we are adding a tuple {t n+1 } to D ′ . This tuple is definitely added to one of the buckets as shown in Figure

48

. The process of dividing the buckets into sub-groups is based on the identifying value with the minimum number of tuples min u |) is the factor that controls the number of sub-groups created from each bucket, for example in Table

48a

, B 1 and B 2 will be divided into 3 and 1 sub-groups respectively.

The first step in computing Pr[ESG(D ′ ) → S] and its lower bound is to calculate the probability that adding t n+1 to D ′ doesn't affect min

  sg 1 to become l-diverse and create a QI-group while in D ′ it doesn't merge or merge with a sub-group different than sg and creates a different QI-group. In this case Pr ′ div min = 0.

5 , u 1 and u 4 are in B 1 while u 4 and u 2 are in B 2 . Neither min u∈B 1 (| T u |) nor min u∈B 2 (| T u |) were affected by adding t n+1 to u 5 . For this reason, as Table

48f

shows us, the structure of the output is similar to that of ESG(D) even if the identity sub-group

We assume User ID and Vin Number are independent and identically distributed (i.i.d.).

Some data is anonymized/suppressed in order to meet the constraint; this is in keeping with privacy models that uses partial suppression by replacing individual's values with a * to preserve privacy as in[START_REF] Sweeney | k-anonymity: a model for protecting privacy[END_REF][START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF] or encryption as in the model in[START_REF] Erhan | Query processing in private data outsourcing using anonymization[END_REF] where some data is left encrypted, and only "safe" data is revealed.

https://github.com/ElieChicha/ESC/blob/main/sourcedata.xlsx
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where v * is the VIP node with the highest degree.

To compute the global sensitivity, we have to find the case of largest possible difference between C D (G 1 ) and C D (G 2 ). The denominators of the two centralizations are obviously the same in all the cases because the number of VIP nodes does not change in the two neighbor graphs. Thus, we will focus on the difference of their numerators. We can list four cases for e dist :

• The two nodes of e dist are standards, the degrees of VIP nodes are the same in both graphs. Thus, C D (G 1 ) -C D (G 2 ) = 0.

• The two nodes of e dist are both VIP (v i and v j but not v * ).

• e dist connects a VIP node v i to a Standard node.

• e dist connects v * to a VIP node v i .

• e dist connects v * to a Standard node.

relaxation parameter δ. Therefore, two possible orders can be applied. If we are interested in preserving the subgraphs that should exist in G, the steps are as follows:

1. Remove at least one edge from each subgraph represented by 1 in M and 0 in M * .

2. Ensure that all the subgraphs represented by 1 in M and M * remain in the graphs after

Step [START_REF] Chicha | Cloud-based differentially private image classification[END_REF]. In other words, if any edge removed in Step (1) leads to the removal of a subgraph represented by 1 in the matrix, this edge should be re-added.

3. Add all the missing edges for the subgraphs represented by 0 in M and 1 in M * .

In this way, we guarantee that all the subgraphs represented by 1 in the matrix M * will exist in the released version of G. Also, we may find in the set some subgraphs that should not exist.

Whilst, if we are interested in guaranteeing that all the subgraphs represented by 0 in M * do not exist in the released version of G, then the order need to be reversed as follows:

1. Add all the missing edges for the subgraphs represented by 0 in M and 1 in M * .

2. Ensure that all the subgraphs represented by 0 in M and M * do not exist in the graphs after Step (1).

3. Remove one or more edges from each subgraph represented by 1 in M and 0 in M * .

By following this order, the set is clean from all undesirable subgraphs, but it may also miss some subgraphs that should appear in G.

.3.2 Toward a BP mechanism

After explaining the operation f and its reliable privacy guarantee as well as the drawbacks of implementing g in the privacy domain, we will determine the implementation's privacy guarantee in this subsection.

Lemma 2. Let δ ′ be the rate of subgraphs in G that does not reflect their values in M * . Let G, G ′ and S be three sets of graphs where G and G ′ are two neighboring sets that differ in just one sampled subgraph and S is a possible output of g applied on G and G ′ . g respects the inequation

Proof. To prove the Lemma 2, we have to prove that:

The left-hand side part of the inequation can be written in the following way:

Let SG di f be the only subgraph that differs between G and G ′ . The status of SG di f in G, G ′ and S can be indicated by the binary values M ij , M ′ ij and S ij . Then, the above fraction can be reduced to:

All the probabilities are less than or equal to 1. Thus:

Consequently, we can assume that

Therefore, to prove the Inequation 5, it is enough to prove that

To continue our proof, we have to find all possible values of these probabilities. In this step of the proof, we can see the importance of the orders in the second stage. We will continue this proof based on the first order listed, but the second order will also lead to the same final result.

We can list four possible values to the probabilities in Equation 6:

• Case 1: Pr[1 → 0] is the probability that f flips the binary value in the matrix. Nevertheless, because these flips are performed at first by the operation g, based on the first order, then there is a probability δ ′ that the following flip will cancel the current one, thus:

• Case 2: Pr[0 → 0] is the probability that f doesn't flip the value. But some following flips performed by g may cause the appearance of the subgraph in G, thus:

• Case 3: Pr[1 → 1] is the probability that f doesn't flip the value. Based on the order of flips in g, all the upcoming flips will be performed by adding edges so that no flip can cause the drop of this subgraph from G, thus:

• Case 4: Pr[0 → 1] is the probability that f flips the binary value in the matrix. In this case too, no further flip could drop this subgraph, thus:

on the high correlated subgraphs. These are the subgraphs that exist in the most graphs in the set of graphs G: a subgraph that exists in 90% of graphs has a much higher possibility of being sampled than a subgraph that exists in 50% of the graphs. Based on these sampled subgraphs, we create a matrix M, as in Figure 30b, with binary attributes showing the status of each subgraph in each graph. Then, we apply the flipping probability to the values of the attributes. In this section, we will adapt the first order of implementation explained in In summary, our proposed mechanism is composed of these steps:

1. Sampling a number of subgraphs of K vertices.

2. Creating a matrix that represents the existence of the sampled subgraphs in each graph of the set.

3. Applying the operation f by anonymizing the matrix under the requirements of Differential Privacy.

4. Applying the operation g by adding/suppressing edges in the set of graphs.

In the following subsection, we will propose an algorithm to apply the operation and the implementation.

.4.1 Applying The Algorithm

The list of sampled subgraphs is converted into a matrix M, as explained in the Definition 2.

M will be subject to the flipping operation f , as in Figure 32 where the binary output of the algorithm relies on the probabilities p and q shown in Lemma 1.

The main algorithm takes as input the original set of graphs G, a number of subgraphs In steps 3-7, the algorithm creates the noisy matrix M * by applying the function Flip. This function takes a binary value and a probability of p as input; it generates a random number of rnd between 0 and 1; if rnd is higher than p, then the binary value is flipped.

as linking v f with the detention node v DET without the possibility for the public of specifying the corresponding node inside v DET .

Figure 39: The types of nodes and edges

From here, we can list four types of nodes:

• Detention node v DET is a special type of hyper node that could hold many nodes inside of it. The id, the number, and the edges connecting these nodes are hidden. We have just one detention node in every released graph.

• Hidden node is a node hidden inside the v DET so the public cannot see it.

• Free node is the normal node that the public can see.

• On-probation node is the same as a free node, but its id is hidden from the public.

The types of nodes implies that we can also list three types of edges:

• Free edge is an edge between two free nodes:

the set of free edges.

• Semi-free edge is an edge between a free and a hidden node. The public can see that the edge is linking a free node to the detention node but cannot know the Id of the hidden node: e(v i , v j ) ∈ E s f if just one of v i and v j is in v DET where E s f is the set of semi-free edges.

• Hidden edge is an edge hidden from the public linking two hidden nodes:

where E h is the set of hidden edges.

Our approach aims to ensure a high level of uncertainty for the adversary when trying to re-identify the Sybil nodes in the published graphs. When adding a new node to a graph G j , it's uncertain in which published graph it will appear for the first time. Even after releasing the new nodes, they could be hidden again whenever they are suspicious so that the adversary couldn't have more than 1/k confidence about which node is the Sybil one.

CHAPTER 4

Blowfish Privacy for Transactional Dataset of safe grouping is given as follows.

Definition 5 (Safe Grouping). Given a table T, safe grouping is satisfied on T iff 1. ∀u ∈ U, the subset T u of T is contained in one and only one quasi-identifier group QI j (1 ≤ j ≤ m) such that QI j respects ℓ-diversity and contains at least k subsets T u 1 , ..., T u k where u 1 , ..., u k are k distinct individuals of the population and,

This definition gives Safe Grouping the ability to hide the correlations that could link an identifying value to a specific sensitive value. For example, the adversary has Background

Knowledge that Roan has rented ten cars last year, 9 of them were from the same location Qi-groups, the adversary may predict that the tuples of Roan exist in this specific QI-group.

But they cannot link Roan to U1 with a probability higher than 1/3 because they could not distinguish it from the User IDs or Lisa and Bob.

We now study the strength and weaknesses of safe grouping under two scenarios. In the first, we assume that the original data is anonymized and shared with others for analysis

purposes. An adversary will try to infer individuals' sensitive values from the anonymized dataset. We assume that the adversary knows that a particular significant correlation exists in the dataset and wants to use it to link the individual to his/her identifying and sensitive values in the anonymized dataset to gain greater confidence in an individual's value that is inherent in simply knowing the correlation.

In the second, we assume that the adversary is able to learn significant correlations and use them to link an identifying value to a particular individual. We use β u to denote the background knowledge of an adversary related to the correlation of u's tuples in the dataset. For instance, Pr(u, v id |T * , β u ) represents the probability of linking u to his/her identifying value v id given, the anonymized dataset T * , and the adversary's knowledge of the correlation of u's related tuples in T * .

Assumption 1: adversary knows the correlations

The adversary knows that the identifying value of an individual u correlates with some other values in the dataset; e.g., individual u is using the renting service frequently, or more seriously when the adversary knows the correlation between the identifying value of u and a particular sensitive value; e.g., an individual u is continuously renting from location v s . In both cases, a privacy breach might occur if the adversary can link u to his/her corresponding identifying value v id in the dataset. This could happen when the same identifying and sensitive values correlate across QI-groups.

We demonstrate, in the following, that safe grouping protects against such disclosure. to their identifying values v 1 id and v 2 id respectively is at most equal to 1/k. Alternatively, let us now assume a stronger adversary; an adversary capable of linking an individual u to his/her identifying value v id in T * . If T * satisfies safe grouping, the probability of linking u to his/her sensitive value v s is at best equal to 1/ℓ. Lemma 4 (Attribute Disclosure). Given an anonymized table T * that satisfies safe grouping, an adversary with the ability to link an individual u to his/her identifying value v id in T * , cannot link u to his/her sensitive value with a probability Pr(u, v s |T * , β u ) greater than 1/ℓ.

Proof. Pr(u, v s |T * , β u ) can be written as Pr(u, v id |T * , β u ) ×Pr(v id , v s |T * , β u ) where, Pr(u, v id |T * , β u ) is the probability of linking an individual u to the identifying value v id assuming knowledge of the correlation β u and Pr(v id , v s |T * , β u ) is the probability of linking the identifying value v id to the sensitive value v s . Pr(u, v id |T * , β u ) is equal to 1 since the adversary is able to link u to his/her identifying value. Safe grouping, however, groups all of the individual's tuples in one and only one QI-group, and thus ) . Now, given that safe grouping separates the dataset, in a similar way to anatomy, into two tables T QIT and T SNT where only the link between the tuples in the T QIT and T SNT is anonymized,

where Pr(t, v s |QI j ) is the probability of linking the tuple t for which t[A id ] = v id , to the sensitive value v s . This leads to a probability

|QI j | that is less than or equal to 1/ℓ.

Assumption 2: adversary learns the correlations

The adversary learns the correlations from the anonymized table; e.g., an individual's identifying value v id correlates with location v s . For instance, this would happen in an anatomized table when both, the identifying value and the sensitive value correlate across does not "single out" a specific identifying value. Our Correlation Anonymization constraint is formally defined as follows:

[Correlation Anonymization] Let T * be a anonymized table, and D(A id ) be the domain of values of A id , ∀QI j ∈ T * for (1 ≤ j ≤ m), we say that a significant correlation between an identifying value v id and a sensitive value v s is safely anonymized in T * i f f

In other words, Correlation anonymization ensures that the intersection of any two or more QI-groups on their identifying attribute A id , yields either a set of k identifying values or an empty set. This is achieved while preserving the uniform distribution of individuals' related tuples in the QIgroups to cope with the inter-dependencies in each of the QI-groups (as in safe grouping) and diversifying the sensitive values in the QI-group to prevent linking non-sensitive to sensitive information.

Users

Users of the individuals has changed. Thus the output is in S.

In Table 48g, t n+1 is related to u 2 which increments min

Thus, the structure of the output will be affected which put it outside the range S.

In conclusion, based on the third, we should compute the probability Pr min that t n+1 doesn't belong to an individual having min For each bucket B i , the probability that t n+1 doesn't affect its min Then, we can compute Pr mnt as:

where | B | is the number of buckets.

The second step in the algorithm is to make sure that the sub-group is l-diverse to create a QI-group. Otherwise, the sub-group might merge with another sub-group to create a QI-group.

Thus, we have to compute the probability Pr div that the sub-group sg containing t n+1 in D ′ will create the same QI-group that it has created in D. This event could be sub-divided into 4 events:

• Pr ′ div : the case were sg isn't l-diverse in D, and still not l-diverse in D ′ . The minimal value of this probability could be reach when, for example in D, sg merge with another CHAPTER 5 especially if the budget is small where the number of queries could be insufficient. Besides, the data owner should validate the query. The non-interactive approach algorithms [START_REF] Su | Differentially private k-means clustering[END_REF] return a noisy synopsis data set. The querier can send queries to this synopsis to get noisy statistical data. This approach has no limits nor restrictions to the number and the sender of the queries.

Differential Privacy for Image

Several other works [START_REF] Nassar | K-nn classification under homomorphic encryption: application on a labeled eigen faces dataset[END_REF][START_REF] Taheri | Face authentication in encrypted domain based on correlation filters[END_REF][START_REF] Gomez-Barrero | Multi-biometric template protection based on homomorphic encryption[END_REF] rely on encryption for privacy. Taheri et al. in [START_REF] Taheri | Face authentication in encrypted domain based on correlation filters[END_REF] propose a method for face authentication in the encrypted domain. In [START_REF] Gomez-Barrero | Multi-biometric template protection based on homomorphic encryption[END_REF], they propose a general framework for multi-biometric template protection based on homomorphic probabilistic encryption. The work in [START_REF] Nassar | K-nn classification under homomorphic encryption: application on a labeled eigen faces dataset[END_REF] is similar to our proposed approach but relies on partially homomorphic encryption called Paillier's encryption. This type of encryption is a public key scheme; this means that the encryption can be done using a public key, while decryption can only be done by a trusted party that possesses the private key. The technique, however, assumes that the cloud is a trusted party, and thus the privacy of the dataset is threatened.

As shown in Table 12, the two other works rely on encryption, and all the works need a trusted data owner. The trusted data owner is always required, or the system model cannot be private. The other trusted party is the cryptographic service for the first work, the cloud for the second (which can cause a severe threat to the dataset), and the anonymization service for our work. These encryption and decryption tend to be time-consuming. Finally, we consider that using noise addition techniques like Differential Privacy can provide better performance and keep the data suitable for classification.

The benefits and disadvantages of other techniques and mechanisms should be studied to find out their capabilities in this domain, like pixelization, blurring, and PCA-like mechanisms.

Although we think that blurring or pixelization cannot provide the same level of privacy and utility as Differential Privacy, but this issue needs more study in future works.

Principal Components Analysis

PCA [START_REF] Powell | Principal component analysis @ONLINE[END_REF] is a singular value decomposition to reduce data dimensionality. Given data points in an m-dimensional space, PCA projects them into lower-dimensional space while preserving as much information as possible. Consider a matrix S(n × m), in this work, each matrix column represents an image of m features. These features are, for instance, the RGB values (or the grayscale values) of the image pixels. The features are subtracted from their respective For the transactional data, in the near future, we intend to extend our technique to provide privacy against strong adversaries; adversaries that can combine multiple values in a multidimensional correlation, while preserving the utility of the dataset.

For the image processing, we intend to evaluate the efficiency of our approach in a real application scenario where collaborative attacks in which some of the data owners may be semi-trusted as well.

The digital data generated by online users and customers have other types than the ones focused on in this thesis. Two of these types are locations and texts. Therefore in the future, we will propose • a Blowfish Private mechanism for locations that provides useful information after analysis and ensures that the users' exact locations could not be exposed. This mechanism also will consider the correlation problems represented by the recurrences of locations for the same user that could reveal private data about them.

• a Differential Private mechanism for data mining on unstructured text data that should provide a good balance between the utility of the collected text content and the privacy of the users who have written the posts or the replies.