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Abstract

Digital data is playing crucial role in our daily life in communicating, saving information,

expressing our thoughts and opinions and capturing our precious moments as digital pictures

and videos. Digital data has enormous benefits in all the aspects of modern life but forms also a

threat to our privacy. In this thesis, we consider three types of online digital data generated

by users of social media and e-commerce customers: graphs, transactional, and images. The

graphs are records of the interactions between users that help the companies understand who

are the influential users in their surroundings. The photos posted on social networks are an

important source of data that need efforts to extract. The transactional datasets represent the

operations that occurred on e-commerce services.

We rely on a privacy-preserving technique called Differential Privacy (DP) and its

generalization Blowfish Privacy (BP) to propose several solutions for the data owners to benefit

from their datasets without the risk of privacy breach that could lead to legal issues. These

techniques are based on the idea of recovering the existence or non-existence of any element in

the dataset (tuple, row, edge, node, image, vector, ...) by adding respectively small noise on the

output to provide a good balance between privacy and utility.

In the first use case, we focus on the graphs by proposing three different mechanisms to

protect the users’ personal data before analyzing the datasets. For the first mechanism, we

present a scenario to protect the connections between users (the edges in the graph) with a

new approach where the users have different privileges: the VIP users need a higher level of

privacy than standard users. The scenario for the second mechanism is centered on protecting

a group of people (subgraphs) instead of nodes or edges in a more advanced type of graphs

called dynamic graphs where the nodes and the edges might change in each time interval. In

the third scenario, we keep focusing on dynamic graphs, but this time the adversaries are more

aggressive than the past two scenarios as they are planting fake accounts in the dynamic graphs

to connect to honest users and try to reveal their representative nodes in the graph.

In the second use case, we contribute in the domain of transactional data by presenting an

existed mechanism called Safe Grouping. It relies on grouping the tuples in such a way that

hides the correlations between them that the adversary could use to breach the privacy of the

users. On the other side, these correlations are important for the data owners in analyzing the

data to understand who might be interested in similar products, goods or services. For this

reason, we propose a new mechanism that exposes these correlations in such datasets, and we
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prove that the level of privacy is similar to the level provided by Safe Grouping.

The third use-case concerns the images posted by users on social networks. We propose a

privacy-preserving mechanism that allows the data owners to classify the elements in the photos

without revealing sensitive information. We present a scenario of extracting the sentiments on

the faces with forbidding the adversaries from recognizing the identity of the persons.

For each use-case, we present the results of the experiments that prove that our algorithms

can provide a good balance between privacy and utility and that they outperform existing

solutions at least in one of these two concepts.
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1. Introduction

"Data is the new oil" is a well-known quote used to express the transition from the industrial

era to the digital age. In the formal, oil was the most critical resource to build wealth. While in

the latter, data is a crucial element to develop and expand any successful business in almost

every sector.

Data and oil also have many similar characteristics. The first one is that we cannot capitalize

any of them in their raw form. Before being consumed by the final customer, the oil needs

to be refined into gasoline, diesel, kerosene, etc. Data also cannot form a valuable asset by

itself. Looking into millions or billions of tuples of a dataset on a screen in front of you will

not help you expand your customer base, increase your profits or make the right decisions in

your business management. You need to analyze these tuples, to search for helpful information

leading to the right decision-making choices.

Amazon is one of the Tech giants with a Market Cap that exceeds the $1.6 Trillion. It was

not about luck but about analyzing the enormous size of data produced by their customers in

the best possible way to recommend to each customer what makes them buy more and more

from that platform. Jeff Bezos, the founder of Amazon, used the term "customer obsession" to

express the company’s most important priority "figure out what they want, what’s important to

them." Many articles and documentaries could be fined that tracked their rise through the prism

of being a data collector. One of the former executives said, "They happen to sell products, but

they are a data company." [79].

The countries producing crude oil might have the possibility of refining, but this is not the

case in many countries, as refining needs significant capital investment. The same could be said

about data analysis. To benefit for the maximum from your raw data, sometimes you need a

team of experts in machine learning, deep learning, or other techniques in Artificial Intelligence,

as well as expensive software solutions. In this case, the data owner prefers to rely on a third

party to complete the complex analysis.

Simultaneously, precisely as the governments try as hard as possible to maintain the

security and the stability of the main arteries for oil transport, the data owners must protect the

individuals from privacy breaches if they are selling, sharing, or publishing data.

Some may ask if data analysis results provided by the data scientist inside the company or

from a third party are the best possible output or better results could be reached. Netflix had

a supposedly good idea of publishing data to the public and rewarding a $1 million prize to

the contestant who develops the best movie recommendations algorithm. The only issue with

that idea is that they think only possible contestants will be interested in the published data,

but some privacy researchers were also excited about this opportunity. The data contained 100

million tuples of users with their movie ratings, and the identifier attributes were removed.

The authors in [121] aimed to prove that eliminating identifier attributes in that dataset is not

enough to protect the privacy of individuals. They exploit some public datasets from the IMDb

website and voter databases to link the tuples to specified individuals breaching their movies’

ratings. This is considered a privacy breach, especially the rating of controversial ones related

to religious, political, or sexual orientation issues.

18



1. Introduction

An important revenue for data owners is creating a user-centric business model to sell data

to ad agencies, social studies organizations, or pharmaceutical companies if the data is related

to diseases. Thus, the data owner might share the data with a third party or publish it to the

whole public. Either way, the privacy threats on the individuals represented in the data are the

same, then in this thesis, we will use the terms shared, released, and published interchangeably.

Therefore, questions are raising about the threats of privacy breaches. How can you be sure

that the third party, buyer, or public won’t exploit your data to gain unauthorized knowledge

about the individuals represented in the analyzed data?

One big difference between oil and data is that the oil era, sooner or later, will end. In

contrast, the era of data as a valuable asset is here to stay with us for a long time. And, as long

as this asset is very profitable, more issues about data privacy will appear.

1.1 Digital data in international conflicts

We have explained the importance of data economic and business-wise, but the data is even

more vital than that. In war, politics, and diplomatic relations, knowing more about your

enemies, opponents, or even allies makes your position more robust and your decision-making

easier.

From here, we can find a new comparison between oil and data. Both of them could lead

to dangerous international conflicts, especially between the superpowers, because those who

obtain more of these two have more chances to surpass their rivals.

Edward Snowden, a well-known whistleblower who was behind the biggest intelligence

leak in the American National Security Agency’s history that exposed the agency activities in

spying on American people [62], has revealed another document in 2015 proving that China has

hacked 50 Terabytes of top-secret data about some of the most advanced US military equipment

[61, 44]: the only two stealth and fifth-generation F-35 joint strike and F-22 Raptor, the only

stealth strategic bomber in the world B-2, in addition to space-based lasers, missile navigation

and tracking systems, as well as nuclear submarine/anti-air missile designs.

This example show the role that data could play in the military and weaponry field. The

political field is also a hugely important domain that needs information about other parties so

you can make your decisions. NSO Group, an Israeli cybersecurity company, has developed

spyware called Pegasus [114, 118] dedicated for the governments to spy on terrorist suspects’

phones as the company claimed. But, as anyone with little political knowledge would imagine,

dozens of governments buy this $50 million product to control and retrieve the data on the

phones of political and human rights activists, journalists, lawyers, activists, foreign leaders,

and of course, their political opponents. The reports say that the leaked list of victims contains

50,000 phone numbers [32], including several presidents, prime ministers, and ministers. This

scandal clarifies how politicians and governments are thirsty to get personal data about other

domestic and foreign politicians.

In many other cases, the victims are not specific individuals but a large portion of the

public. Facebook is the largest online social media service in the world. In 2006, user privacy
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concerns started emerging [48], and since that, every one to two years, a new privacy issue

about this company appears. The most massive data breach is the one linking Facebook and a

political data-analytics firm named Cambridge Analytica (CA). CA improperly obtained the

personal data of 87 million Facebook users without their consent [112]. The data-analytics firm,

then, used the data to help two campaigns target election ads using voter data in two major

political events in that period, the US presidential election [84] and Brexit referendum [139, 145]

(a referendum to ask the electorate whether the country should remain a member of, or leave,

the European Union). The results were that the campaigns hiring CA won both the election and

the referendum.

The most apparent evidence these days about the roles that data plays in international

affairs and national security is the conflict between the USA and China about the fifth-generation

technology standard for broadband cellular networks or what is known as the 5G war [67]. The

US has warned its European allies who used communications technology provided by Huawei

in their networks that they put intelligence relationships at risk. Washington has started a

pressure campaign to encourage many countries to stop relying on the Chinese to build their

5G networks. The two most effective efforst were:

• Clean Network [8]: to "protect citizens’ privacy and companies’ sensitive information on

5G mobile networks and secures data across the full range of telecommunications and

technology".

• Criteria for Security and Trust in Telecommunications Networks and Services [92]:

as a tool to determine trustworthiness and security of telecommunications equipment

suppliers for governments and network owners or operators.

These campaigns succeeded in some countries [135] like the UK and Australia, where the

governments blacklisted the chinese companies from the national 5G networks for security

reasons.

We listed these examples to prove the huge influence digital data could play in such a

crucial domain as the relations between superpowers not to claim that we are trying to solve

these complicated issues. In this thesis, we restrict our scenario on data generated by users on

social media and e-commerce websites, how to benefit from this data and protect the privacy of

the users at the same time.

1.2 Scenario

To talk more about the privacy issues in the data domain, we will present a scenario about

a social network company that adopts the Ad-based business model that needs user-centric

designs to grow. All the services related to the social network are free, and, as the American

sculptor Richard Serra once said, "if something is free, you’re the product". Actually, the real

product is the data generated by the users, and the customers are the parties willing to buy the

results of the analysis, the queries, or the mechanisms applied to the data.

20



1. Introduction

When using the data in any process, the company faces two main problems:

• User privacy: As mentioned previously, sharing the data with a third party to perform

the analysis might pose a real threat to the privacy of the users. Thus, our role in this

company is to provide privacy-preserving mechanisms that could ensure a good balance

between the privacy of the users and the utility of shared data.

• Heterogeneity of the generated data: The data generated by social media users is

very diverse in its types and forms like text, image, video, location, graphs, microdata,

transactional data, etc. In this thesis, we focus on three types of them:

– Graphs: The main type of data that a social media firm could be interested to

exploit is the graphs generated by numerous actions performed by the users: being

friends, following, messaging, tagging, blocking, muting,... Furthermore, the graphs

constructed from these actions could have different types. The static graph presents

the relations between several users in a single time interval. In contrast, a dynamic

graph represents these relations in multiple intervals by modifying its edges and

adding or removing some of its nodes to describe the relationships in every interval.

The solution could be offline, where we already have all the instances of the dynamic

graph. The online solutions are applied when the company demands that every

instance be anonymized approximately in real-time. We cannot wait for all other

instances before publishing the current one.

The attacks also can differ between static and dynamic attacks. In the formal, the

adversaries try to extract personal private data from published datasets relying on

their auxiliary data. Active attacks occur when the adversaries plant fake accounts

and attack the victim till they find their nodes in the published graphs.

– Images: Other type of data generated by the users is the images. The image could

contain a lot of information but extracting data from this type of post is not as easy

as extracting it from a text or the relationships between the users. The gallery images

of a user could reveal everything about them, starting from their preferred clothes,

shoes, watches, sunglasses, and jewelry brands to their favorites restaurants and type

of foods. Even more, the political parties, religious institutions, athletics clubs, and

non-governmental organizations will be very interested in delivering their messages

to people posting images on our social network about these issues.

These are just an example of what we can uncover from the gallery images of a user.

But the problem with the photos is that they don’t contain a simple type of data

that is easy to detect and analyze. For example, a post like ¨I miss sushi!¨ or a user

following 14 fast-food restaurants requires simple algorithms to retrieve valuable

data from the post or the user’s connections. On the other hand, an image of a family

having dinner in a restaurant contains many profitable data: What are they wearing,

eating, and drinking, in addition to the type of restaurant that they might prefer and

the cost that they are willing to pay to eat outside.
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Revealing these pieces of information requires a sophisticated and expensive

algorithm. Thus, our company might prefer to send these data to a third party

to perform this analysis on the images at an acceptable price. Here comes our

mission to apply a privacy-preserving algorithm on the images resulting in a trade-

off between privacy where the third party could not identify the faces in the pictures

and the utility where valuable data are preserved.

– Transactional data: The company could adopt a new strategy to benefit from all

the data. Instead of just selling them to interested parties, the company decided to

open its own e-commerce business. This platform targets the users by advertising

their favorite products based on their social network data. Selling the products also

produces what is called transactional data, which by analyzing it, could help us more

and more in recommending the right products to our users.

Tuples form a transactional dataset; each represents one consumer buying process,

containing the consumer id, a number of their quasi-identifiers attributes, the product

id, the price, and at least one attribute considered sensitive about the process or the

customer. Analyzing these tuples will realize the relation between the attributes that

characterize the user, from one side, and the product and its price from the other

side. This data mining can help us anticipate that users with similar attributes will

be interested in similar products with a specific price range.

For the same reasons as the past two analyses we have discussed, this analysis needs

to be done safely without threatening the consumers’ data.

In this thesis, instead of applying a different type of privacy definitions on each of these

types of data, we will propose to adopt one privacy definition called Differential Privacy and

one of its extensions called Blowfish Privacy on the heterogeneous data.

1.3 Graph Anonymization

1.3.1 Naive anonymization

A communication graph is a graph where vertices represent individuals, and an edge between

two individuals exists if communication has happened between the individuals corresponding

to the vertices. Social networks and call detail records can be modeled as communication graphs.

One way to anonymize the data of a communication graph is to remove the identifiers at the

vertices. The goal of an adversary is therefore, to discover the individual corresponding to a

node in the graph.

A communication graph Gc(Vc, Ec) can be represented as a database D of size n = |Vc|
where each tuple of D corresponds to an individual id. The tuple dimension is m = |Vc| as well.

The ith attribute of a tuple t is 1 if t._id has communicated with the individual corresponding to

node i, and 0 otherwise. A row in D represents the ego network of the corresponding vertex.
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id tuple
Bob (1) (0, 0, 1, 1, 0, 0, 0)
Alice (2) (0, 0, 0, 1, 0, 0, 0)
Adam (3) (1, 0, 0, 1, 1, 0, 0)
Carol (4) (1, 1, 1, 0, 0, 0, 0)
Roan (5) (0, 0, 0, 1, 0, 0, 0)
Karl (6) (0, 0, 0 , 0, 0, 0, 1)
Elyse (7) (0, 0, 0, 0, 0, 1, 0)

Figure 1: Original graph of social network users and their connections

An example of a communication graph and its corresponding database is shown in Figure 1.

Note that we consider a binary communication event (0 or 1). Other models might be explored

in future work, for instance, annotating the edges with call frequency, average duration, call

time, or other meta-data.

One way to anonymize the data of a communication graph is to remove the identifiers at

the vertices. Therefore, the goal of an adversary is to discover the individual corresponding

to a node in the graph. Overlapping this naive anonymization is quite simple, using some

background knowledge about the community.

Let’s say that the graph in Figure 1 represents a small community and all the

communications that took place between the individuals inside this community. To protect

the individuals’ identities, we have removed the identifier attributes from each vertex like

the account id, the name, the phone number, and the email address and replaced them with

hashed ids. At the same time, we have kept sensitive attributes necessary for the study or the

advertisers.

The challenge is to keep the real identity of each user in the graph hidden. Otherwise,

an adversary can relate the actual user with the sensitive private data of each node and the

communications placed between this user and the other users, which can be considered a

serious privacy breach.

Suppose an adversary has some public or auxiliary knowledge about our community. For

example, Bob, Adam, and Carol communicate with each other every day. As we can see in

Figure 2, this adversary can find the three nodes communicating with each other, then locating

Carol in the graph with 100% accuracy and John and Bob with 50% precision, that’s called

background attack.

1.3.2 Aspects of the graph anonymization

After explaining the failure of the naive anonymization, we will present our own privacy-

preserving mechanisms, but before that, we will list some characteristics of the graphs and their

anonymization.

The graph datasets produced by the relationships of the users have two types:

• Static: the published version of the graph is released once, and that’s it.
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(a) Naive anonymization of the graph (b) Exposing the id of 3 nodes.
Figure 2: Naive anonymization failed to protect the users facing a background attack.

• Dynamic: The published version is updated at the end of each time interval to represent

the connections in this interval.

The attacks on the graphs could also be divided into two types:

• Passive: the adversary waits for the publication of the anonymized graph, then uses their

auxiliary knowledge and some data science techniques to obtain the most achievable

knowledge about the individuals in the graph and their relations.

• Active: the adversary doesn’t wait for the publication. But instead, they take their first

step even before the data owner collects the data from the community to create the graph.

They form one or many fake accounts with specific characters connected to each other

and, most importantly, to the possible attack victims. When the graph is published, these

fake accounts are represented by nodes called Sybil nodes which, connected to each other,

form one or many Sybil subgraphs. The adversary tries to recognize these subgraphs

based on their characters, leading to easy identification of the victim nodes.

passive and active.

Confronting these attacks also takes two possible approaches. Let’s say we are publishing

the call records in a community for two years daily, starting from the first day of 2021.

• Offline: this approach means that we already have all the set graphs before releasing the

first anonymized graph. In this approach, we cannot release the first graph before getting

the last graph of the last day of 2022. It means we cannot benefit from these data before

two whole years, which may decrease the value of the published graph. Also, we could

not apply the offline solution on an indefinite stream of graphs.

• Online: the previous two cases show the importance of having an online solution where

it’s possible to publish every morning the private graph of the past day without waiting

for any future graph.

The last characteristic that we will mention about anonymization algorithms is centered

around the nature of their results. Two approaches could be listed:
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• Non-interactive: The output of some of these algorithms is an anonymized version of the

dataset. In this case, the data owner released the result and could not control any query

or analysis done on the published output; for this reason, it’s called the non-interactive

approach.

• Interactive: The interactive approach doesn’t release a dataset but a query or a mechanism

result. The data owner receives the query, applies it to the dataset, performs the

anonymization process on the result, verifies that the anonymized output doesn’t breach

the privacy of any individual, and finally, shares or releases the modified result.

These aspects of the nature of the graphs, the attacks and the anonymization processes will

be discussed in the Chapter 3, and we will propose three anonymization mechanisms covering

these aspects.

1.3.3 VIP nodes in the graph

We can notice an essential characteristic of social network users that is not well studied in the

literature. It’s the fact that the accounts have a different level of importance, and there is no

need to provide the same level of privacy for all of them. Thus, we proposed to divide the

nodes into two groups: VIP and Standard. The nodes could be categorized based on how many

problems a privacy breach of their data might cause. These problems could be in the form of

lawsuits by the users, fines by the data privacy commission of a country, or a public relations

crisis.

The concept of the most important nodes in the graph is well known and widely discussed

in the literature [85, 63, 164], then we are not assuming that we are presenting a new concept.

But, the nodes are categorized as most important based on some graph centralities as degrees,

betweenness, closeness, farness, eigenvector. Usually, a VIP account will be categorized as

important based on one of these characteristics, so there is no need for the data owner to

intervene and label an account as VIP to get higher protection, but it’s not the case in many

scenarios. For example, many influencers or celebrities could have two accounts, one public

and one private, for friends and family. Both accounts should have the same level of protection

because breaching the privacy of the personal account could reveal the same personal data as

the public one. Other type of accounts that could be labeled as VIP are those dedicated to help

and get in touch with victims of domestic violence or any kind of human slavery, the people

suffering from suicidal thoughts, depression, or bullying. This type of accounts might not be

important on the scale of the mentioned centralities, but breaching and sharing the connections

of these accounts may lead to tragic events for these vulnerable individuals and a vast legal and

public relations crisis. For this reason, we urge our company to add a new type of VIP node

based on the nature of the account instead of just the automatically computed centralities.

This concept of the most important nodes is often used to measure the utility of a privacy-

preserving algorithm by comparing the original and the anonymized graph based on these
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nodes. But in our work, we suggest benefiting from the concept to decide how much protection

each node should have.

Before representing our privacy-preserving mechanism [5] for these types of nodes, we will

introduce the Blowfish Privacy and how to apply it on graphs generally. Then, we will benefit

from this privacy definition to execute our technique of higher privacy for privileged nodes.

After explaining Blowfish Privacy, we present our interactive service applied on static

graphs that provide a high level of protection for the VIP nodes and a high level of utility for the

Standard nodes. In this way, we aim to reach a good trade-off between the privacy of VIP nodes

and the utility of Standard nodes. As an interactive service, the mechanism receives queries to

be executed on the graph. The original result is summed with noise computed based on the

Blowfish Privacy process to get the noisy result shared with the inquirer.

1.3.4 Protecting subgraphs in dynamic graphs

Usually, the privacy-preserving techniques are dedicated to protecting the nodes themselves

or their edges. The majority of the mechanisms protecting the nodes provide a high level of

privacy. For this reason, they suffer from a low level of utility in their results. On another side,

the mechanisms giving edge privacy have great utility but are vulnerable against numerous

types of attacks that we will detail later.

Therefore, our two following mechanisms are proposed to deal with two scenarios where

we prove the edge privacy vulnerability and the node privacy’s low utility. Then we propose

our new solutions to deal with these scenarios.

Our second proposed anonymization mechanism [3] for graphs is applied to dynamic

graphs and adopts the non-interactive approach. But, instead of being dedicated to nodes or

edges, this mechanism protects particular subgraphs.

Applying the DP mechanism on graph datasets is done by adding noise to the edges, as in

[22, 68, 69, 77, 131, 142, 156] or to the nodes [35, 45, 78] to prevent identity and link disclosure

while keeping the dataset suitable for analysis. However, Kifer et al. [81] have proved that an

adversary with background knowledge can still disclose sensitive information from the data

that induces correlations across tuples even if DP is applied.

The limitation of DP can appear in a user-centric design that relies on sharing or publishing

dynamic graphs, since anonymizing each release independently will not be sufficient, because

an attacker can still infer information about the individuals by combining the anonymized

released graphs together. Thus, our goal in this part is to show how a DP mechanism can be

extended to address the dynamic graph anonymization.

Figure 3: Graphs at disjoint time frame
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Figure 4: Graphs anonymized by an edge-DP mechanism.

To illustrate this scenario in an example, let us consider recording the communications

inside a university community for some statistics and social studies. Let us say that the graphs

in Figure 3 are the records of three days: G1 for the first day, G2 for the second, and G3 for the

third. However, by sharing these graphs as they are, a real threat of privacy could arise even if

no identifiers are associated with the vertices. For example, if the shared graphs fall into the

hands of an adversary possessing background knowledge, such as Doctor Bob and his two

students Alice and John, call each other every day. By intersecting the three graphs, G1, G2, and

G3 as in Figure 3 and by projecting the Background Knowledge to this intersection, it becomes

easy to know that vertices 1, 2, and 4 represent Doctor Bob and his two students.

Vertex Age Gender Marital Status Political View
1 30-40 Male Divorced Democratic
2 10-20 Male Single Republican
4 20-30 Female Married Republican

Table 1: Sensitive data associated to the nodes.

If the sensitive data associated with these nodes is as mentioned in Table 1, thus, it is

effortless to guess that the vertices 1, 2, and 4 represent Bob, John, and Alice, respectively. In this

way, the adversary can discover the three individuals’ marital status and political views, which

presents a serious privacy breach. The situation does not improve in Figure 4 despite applying

a DP algorithm to add edges in each graph. These noisy edges cannot change the fact that

just one triangle appears in the Intersection graph. Suppose we even use a privacy-preserving

technique to protect the users’ identity in the three graphs, the adversary still can connect the

individuals with nodes 1, 2, and 4.

We intend to solve a paradox since we need the data to still carry out valid information

about the population represented by the graphs without exposing individuals’ privacy. We

can define the utility of the released data as one or more statistical measures that the data

user can compute with a certain degree of confidence. We propose here a new anonymization

technique for a dataset composed of sequential dependent released graphs based on a relaxed

version of Blowfish Privacy [71] under the non-interactive approach. Our goal is to propose a

mechanism that protects the subgraphs that have a specific characteristic (like high occurrences

in the released graphs, for example) by manipulating their existence or absence in each graph.

1.3.5 Node-Detention Differential Privacy

The third anonymization mechanism for graphs is specialized in confronting active attacks on

dynamic graphs [4]. It outputs an anonymized dynamic graph under the online approach. A
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fundamental challenge of an online solution is the active attack on sequentially released graphs.

The adversary plants several Sybil nodes in the graphs, tries to identify them in the published

graphs, then exploits them to identify other nodes called victim nodes. The massive advantage

for the adversary in an online solution is that the data owner could not predict the new nodes,

honest and Sybil, that the adversaries and the genuine users will add to the graphs in the future.

We already know all the nodes in the dataset in an offline solution before releasing the

first graph. Then we can fake the existence of that node in any of the graphs even if its actual

appearance is in a future graph. While in the online solution, we can only know the nodes of

the current and previous graphs. Let’s say that in the first graph, we had 1000 nodes; none

of them is Sybil. In the second graph, 10 nodes were added, including two Sybil nodes. The

adversary has to recognize the two Sybil nodes from the ten new nodes (having ids that don’t

appear in the first graph) instead of 1010 nodes. To make it easier to identify the Sybil ones, the

adversary gives them unique characteristics, like a very high degree, by connecting via his fake

account to many people in that community or a lesser degree, or any other features that are not

very common in that graph. After creating one or many Sybil subgraphs using fake accounts

and retrieving them, the adversary uses them to connect to some individuals and acknowledge

their representative nodes in the graphs.

Let’s say the adversary has successfully identified four individuals in the graph. Thus,

he has the potential to reveal the relationship between these four. Who is calling who, how

often? And several other private information about the relation between these victims. The

data owners must protect these individuals before sharing or publishing their data. This paper

proposes an online solution under Differential Privacy to safeguard individuals from active

re-identification attacks. We prove that our solution provides a high level of protection against

these attacks simultaneously with high utility of the published data.

Figure 5: Active Attack on sequentially released graphs.

We can see in Figure 5 a simple example of an active attack happening during three days

where a graph presenting the connections between a number of individuals is published each

day after removing the identifying attributes . An adversary injects a Sybil node (Node 5) in

G2 and Node 3 in G3. They represent the only new individuals in these two days; then, the

adversary had no issue locating them in the published graphs. The adversary is targeting a

couple, Alice and Bob. On Day 2, they get connected with both of them using Node 5. Now, it’s

known that nodes 4 and 6 represent the couple in the graph. On Day 3, Bob is targeted by both

28



1. Introduction

Sybil nodes. The published graph shows that Node 4 is related to Bob, implying that Node 6

represents Alice. The adversary has found out that the couple didn’t call each other for three

days which might be a severe breach of their privacy.

1.3.6 Challenges and contributions of graph anonymization

In this way, we have covered by our three mechanisms the different characteristics of the

anonymization graphs. We have proposed three different new solutions to help our company

benefit from the generated graphs by a high utility of the graphs and the minimum possible

graph. We can recap the challenges in this use case as follow:

• In a real-world scenario, the nodes of social networks have different levels of importance

and need distinct levels of privacy. In contrast, Differential Privacy mechanisms give all

the nodes the same privacy scale.

• Edge-Differential Privacy is unable to protect subgraphs in dynamic graphs.

• Edge-Differential Privacy is unable to protect the nodes’ identity against active attacks on

dynamic graphs.

• Node-Differential Privacy can resolve the past two problems but has a shallow utility.

Based on these challenges, we can list our contributions in this use-case by dividing them

into three parts:

• First part:

– Introducing the Blowfish Privacy technique into graph dataset anonymization.

– Proposing the concept of two node privileges in the same graph.

– Presenting the mathematical way of obtaining the Blowfish noise for several graph

queries.

• Second part:

– Presenting a passive attack on dynamic graphs that targets the subgraphs instead of

the nodes or the edges.

– Proving that the existing DP algorithms could not defy this type of attack.

– Proposing a flipping mechanism to confront this attack on subgraphs and proving it

complies to the BP requirements.

• Third part:

– Suggesting an active attack on dynamic graphs targeting the nodes of the graphs,

especially the new nodes of each instance.

– Proving the high vulnerability of edge-DP in this scenario and the low utility of the

node-DP results.
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– Proposing a new DP technique called Node-Detention Differential Privacy (NNDP)

to deal with active attacks on dynamic graphs.

– Proving the reliability of our new technique in this type of scenario.

1.4 Exposing Safe Correlations in Transactional Datasets

After expanding our company’s business model by opening an online retail business, a large

transactional dataset is being formed and growing with each sale operation. Analyzing this data

will help us better understand our consumers and what they tend to buy based on their gender,

age, nationality, level of education, history of purchases, and much other information, especially

when linking the data generated from their social media profiles with their purchases.

But the same kind of analysis is not limited to transactional datasets but many other types

of microdata. For example, if we expand our business to a video streaming service, watching,

rating, liking, or adding a movie or a series to the watchlist will generate a row in the dataset

that we should study. Other examples generating the same type of data could be online Taxi

service, car rental, ticket or hotel booking, online marketplace for lodging, etc.

For the same reason why removing the identifiers from a node in the graphs is not enough,

also removing them from the row of transactional data is not enough before sharing with a

third party. Therefore, data providers should anonymize not only the identifying values but

also the associations that link individuals to their sensitive values as an adversary may be able

to combine their background knowledge [143, 151] to information in the released dataset to

breach privacy. Hiding the associations between individuals and their sensitive values requires

particular attention and cannot be done fairly straightforwardly.

Several anonymization techniques have been proposed to hide these sensitive associations.

Some are differentially private [53] while others rely on generalization [143, 151, 108, 95, 15, 66]

and/or bucketization [162, 40, 21, 99], separating what is sensitive from non-sensitive.

(Generalization techniques can also satisfy differential privacy [97, 148, 46].)

These techniques have been shown to be effective and useful, but complications do

arise when anonymizing transactional datasets [9, 10]. The above methods largely ignore

these problems, which assume each record corresponds to a single individual. Datasets in

which several tuples relate to the same individual may expose significant correlations between

identifying and sensitive values. An adversary can use their knowledge of such correlations

[80, 159] to breach privacy.

A particularly obvious example is datasets including location as part of the transaction. In

these datasets, correlations provide foreground knowledge and could be used by the adversary

to breach individuals’ privacy. To better illustrate the problem, consider the car rental scenario

given in Figure 6a where any vehicle can occasionally be rented from a location and returned to

another.

In this example, only1 the associations between User ID and Location in the Rental table

1We assume User ID and Vin Number are independent and identically distributed (i.i.d.).
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are sensitive and should therefore be anonymized. One way of anonymizing the dataset is

to use Anatomy [162], a bucketization technique [99, 162, 40, 93] that preserves privacy by

dividing the dataset into sensitive and non-sensitive tables and keeping the values intact

without any alteration to maximize the utility. An anatomized version of table Rental with

attributes separated into Rental_QIT and Rental_SNT is shown in Figure 6b. Tuples in these

tables are divided into groups in such a way that satisfies the privacy constraint requirements.

Anatomy uses ℓ-diversity as its underlying privacy constraint and thus protects the dataset

against attribute disclosure. The anonymized tables in Figure 6b satisfy the 3-diversity privacy

constraints[110]: each record must have at least three potential sensitive values.

However, given the transactional nature of the dataset, we recognize two types of

correlations [9]:

• Inter-group dependencies: occur when an adversary knows certain facts about the

individual (e.g., Roan_U1 frequently rents a car from a specific location).

• Intra-group dependencies: correlations between values in the same QI-group, which

occur when there are multiple transactions for a single individual within a group; (e.g.,

if all transactions in a group were for the same individual, which results in an inherent

violation of ℓ-diversity.) By considering this separately for transactional data, rather than

simply looking at all tuples for an individual as a single "data instance", we gain some

flexibility.

Dealing with correlations is a severe hurdle; losing them reduces the outsourced data utility

while keeping them poses a threat to privacy. The authors in [9, 10] propose the safe grouping

technique to ensure that each individual’s tuples are grouped in one and only one QI-group that

is at the same time ℓ-diverse, respects a minimum diversity for identifying attribute values, and

all individuals in the same QI-group have an equal number of tuples. The approach is based

on knowing (or learning) the correlations and forming buckets with a common antecedent to

the correlation. This protects against inter-group dependencies. Identifiers are then suppressed

where necessary (in an outsourcing model, this corresponds to encrypting just the portion of

the tuple in the identifier table) to ensure the privacy constraint is met, including protection

against intra-group correlation.

Figure 6c shows two QI-groups that respect safe grouping for a number of individuals

k = 2 where we assume that there are no other QI-groups containing users U1 and U4. Figure

6c also shows that four identifying values in the QI-group are anonymized2 to guarantee that

individuals U2, U3, and U5 have an equal number of tuples.

For the sake of privacy, safe grouping inhibits the ability to learn correlations from the

dataset and, thus, decreasing the utility of the dataset for aggregate analysis and frequent

pattern mining.

2Some data is anonymized/suppressed in order to meet the constraint; this is in keeping with privacy models
that uses partial suppression by replacing individual’s values with a * to preserve privacy as in [151, 108] or
encryption as in the model in [123] where some data is left encrypted, and only “safe” data is revealed.
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User ID Vin Number Location

Roan_U1 0061d4a8248* 20.09;45.11

Bob_U5 05d7f4f9496* 19.10;38.13

Roan_U1 0036153c476* 20.09;45.11

Roan_U1 05d7f4f9496* 20.09;45.11

Lisa_U4 0e352814d34* 19.60;35.40

Lisa_U4 000cf44c9b3* 19.47;43.71

Lisa_U4 000cf44c9b3* 19.60;35.40

Elyse_U2 0038da44c64* 19.72;33.96

Bob_U5 0036153c476* 19.29;36.15

Carl_U3 0038da44c64* 19.72;33.96

Carl_U3 0061d4a8248* 19.57;44.70

Carl_U3 0e352814d34* 19.57;44.70

Bob_U5 0038da44c64* 19.72;33.96

(a) Original Rental table

User ID Vin Number GID GID Location

Roan_U1 0061d4a8248* 1 1 20.09;45.11

Elyse_U2 0038da44c64* 1 1 19.72;33.96

Bob_U5 0036153c476* 1 1 19.29;36.15

Carl_U3 0e352814d34* 1 1 19.57;44.70

Roan_U1 0036153c476* 2 2 20.09;45.11

Lisa_U4 0e352814d34* 2 2 19.60;35.40

Carl_U3 0038da44c64* 2 2 19.72;33.96

Roan_U1 05d7f4f9496* 3 3 20.09;45.11

Lisa_U4 0e352814d34* 3 3 19.60;35.40

Lisa_U4 000cf44c9b3* 3 3 19.47;43.71

Bob_U5 05d7f4f9496* 4 4 19.10;38.13

Bob_U5 0038da44c64* 4 4 19.72;33.96

Carl_U3 0061d4a8248* 4 4 19.57;44.70

(b) Anonymization using
Anatomy; Tables Rental_QIT and
Rental_SNT

User ID Vin Number GID   GID Location 

Lisa_U4 0e352814d34* 1 1 19.60;35.40 

Lisa_U4 000cf44c9b3* 1 1 19.47;43.71 

Lisa_U4 000cf44c9b3* 1 1 19.60;35.40 

Roan_U1 0061d4a8248* 1 1 20.09;45.11 

Roan_U1 0036153c476* 1 1 20.09;45.11 

Roan_U1 05d7f4f9496* 1 1 20.09;45.11 

Bob_U5 05d7f4f9496* 2 2 19.10;38.13 

* 0036153c476* 2 2 19.29;36.15 

* 0038da44c64* 2 2 19.72;33.96 

* 0038da44c64* 2 2 19.72;33.96 

* 0061d4a8248* 2 2 19.57;44.70 

Carl_U3 0e352814d34* 2 2 19.57;44.70 

Elyse_U2 0038da44c64* 2 2 19.72;33.96 

(c) Anonymization using Safe
Grouping

Figure 6: Table Rental anonymized

In this use case, we ensure that a dataset can be anonymized at the same level of privacy, as

achieved by safe grouping, but with better utility. We show that a suitable trade-off can be made

for which the privacy constraint is met without losing/suppressing safe correlations. More

specifically, we demonstrate that the grouping can be achieved in a way that allows identifying

and sensitive values to correlate across several QI-groups, exposing their correlations and still

be considered safe [2].

Again, it is not a random grouping of tuples, but instead, we ensure, while anonymizing

the dataset, if k distinct identifying values are grouped together, these same identifying values

remain grouped together across the anonymized dataset. In other words, we preserve a safe

grouping (i.e., given two distinct ℓ-diverse QI-groups, their intersection must yield either

k identifying values or none) with better utility, since the correlations between identifying

and sensitive values are exposed. To achieve this, we follow a divide-and-conquer strategy,

dissecting large QI-groups into smaller ones by finding at least k identifying values that correlate

in the original dataset and spreading them across several QI-groups. These groups are merged

when necessary to preserve ℓ-diversity.

1.4.1 Challenges and contributions of transactional data anonymization

This use case aims to propose a solution for data owners interested in publishing or sharing

their anonymized transactional datasets. But, at the same time, they are concerned about the

correlations in their dataset that could be used to breach the individuals’ privacy, and still, they

don’t want to lose the utility that these correlations present. The challenges of this use case are:

• Adversary could benefit from correlated data in transactional dataset to expose the

identities of individuals.

• Hiding the correlations restrains the ability of extracting useful information from the

dataset.

Based on this contradiction, we can summarize our contributions as follows:
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• An in-depth study of safe grouping showing its strength and weaknesses against two

types of adversaries: the first knows about the correlations, and the second can learn the

correlations from the anonymized dataset.

• A correlation anonymization privacy constraint to ensure that only safe correlations are

exposed in an anonymized dataset.

• An elastic safe grouping algorithm to achieve correlation anonymization using a divide-

and-conquer strategy keeping correlated identifying values together across QI-groups.

1.5 Differential Private Image Classification

Many companies like Microsoft and Google provide free cloud storage services for individual

users for limited data size and a paid service for a larger size. Other companies like Amazon are

providing unlimited full-resolution photo storage for all prime customers. Posting images on

social media is also a type of free storage where the user could post hundreds or thousands of

photos for free. The company profits from these posts to know more about the users and their

surroundings. Analyzing the images by a third party or sharing or even publishing the results

of the analysis of images posted on public accounts would not form a real threat of private

data. But, the problem appears when these photos are published on private accounts, stored on

personal accounts on storage services, or when the images contain private information about

individuals without their consent, like the example of the spectators’ sentiments. The company

must ensure that this process could not reveal personal data.

There are many scenarios of why images are stored on the cloud and treated. But all of

them lead to the same research question: how do we benefit from the data without harming the

privacy of individuals in the dataset?

Many cloud services that provide private image classification rely on encryption to ensure

the security and privacy of the data. However, encryption does not help preserve privacy in

many cases, like in an adversarial setting. For instance, while using partially homomorphic

encryption to outsource K-Nearest Neighbors [161] classification, the authors show that distance

learning attacks are possible [94]. These approaches are time-consuming as well due to the

performance of encryption and decryption algorithms, and they are vulnerable to the theft of

encryption/decryption keys [147].

In this use case, we propose a cloud-based DP image classification approach [1] that protects

the privacy of individuals in a dataset of images. In fact, in our approach, we assume that the

cloud computing service is semi-trusted. Thus, we should not be able to identify individuals

in the dataset (i.e., images collected from the data owners) and individuals in the requests of

inquirer (i.e., a typical user of the cloud service). Then, as we can see in Figure 7, our mission is

to transform the cloud image classification into a protected process by ensuring the privacy of

images on both sides, the pictures of the training data and those of the queries.

We use a Differential Private mechanism to convert images into noisy vectors, and at the

same time, preserve their utility in a way that they remain useful for analysis. We study the
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(a) Unprotected process (b) Protected process
Figure 7: Cloud face classification

trade-off between the accuracy and the privacy regarding the global privacy budget, which is

the total allowed leakage as determined by the number of answered queries and the accuracy of

the answers. In fact, we run several classification algorithms such as Support Vector Machines,

Kernel Density Estimation (KDE), and K-NN to evaluate the privacy vs. accuracy trade-off. But

first, we should define privacy and utility in our case. From the privacy side, we should provide

a high rate of correct classifications of emotions on the faces. From the utility side, we present

a scenario where an adversary was able to get, in a way or another, a number of these noisy

vectors and has the needed technique to rebuild the images from the vectors, the adversary

should not be able to recognize the individuals in the images.

1.5.1 Challenges and contributions of image classification anonymization

The challenges of this use case are:

• It’s not safe to store vector converted from images on cloud. If an adversary managed to

get the vector, they might be able to reconstruct the image and extract private information

from it.

• Encryption approaches are time-consuming due to the performance of encryption and

decryption algorithms, and they are vulnerable to the theft of encryption/decryption

keys.

Therefore, our contributions in this use case is:

• We propose, implement and evaluate a private image classification framework based on a

DP version of the PCA technique.

• We prove that reconstructing the images from the noisy version will not identify the

individuals.

In this way, our company can benefit from the images posted on its social networks, stored

in its free or low-cost storage services, or even provided safe image classification methods to

other companies or organizations.
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2. Differential and Blowfish Privacy

Before discussing our mechanisms, we introduce some basic notions of Differential Privacy

(DP), some of their mechanisms, and what are the drawbacks of DP that motivated He et al. [71]

to propose Blowfish Privacy (BP) as a generalization of DP and how BP solve these drawbacks.

2.1 Differential privacy

In many domains, getting statistical data about a dataset is necessary. However, this data can

turn into a real threat to the privacy of any individual, participating or not, in this dataset.

This breach of privacy is due to two factors; inferring auxiliary data about an individual and

extrapolating statistical data about a community.

Dwork et al. [49] have found a solution by adding noise to the result in a way that preserves

the utility of the result and protects the individuals’ privacy. This technique is called Differential

Privacy; it was proposed in 2006 to protect the individuals’ rows when releasing statistical

data about a dataset. The basic idea is to add organized random noise to the released data to

protect all the individuals and ensure that the released data still have utility. Then it’s a trade-off

between privacy and utility. Dwork et al. [50] define DP as a privacy mechanism for a curator

holding data of individuals in a database D, where each row represents the data of a single

individual, to provide a sanitized database that allows statistical analysis and simultaneously

protecting the individual rows. Formally speaking, a randomized mechanism M with domain

N|χ| is (ϵ, δ)-Differential Private if for all S ⊂ Range(M) and for all D, D′ ∈ N|χ| such that

∥D− D′∥1 ≤ 1:

Pr[M(D) ∈ S] ≤ eϵ.Pr[M(D′) ∈ S] + δ (1)

where D and D′ are two databases of records from a universe χ, which differ by just one

row at most and eϵ is always greater or equal to 1 (ϵ ≥ 0). DP promises that the probability

of harm for an individual to participate in a survey, for example, is not more significant than

the probability of harm if she does not. By choosing δ = 0, we ensure that, for every run,

the randomized mechanism (M) returns the same results for D and D′ with roughly the same

probability. In other words, the probability that the output of M(D) is in the range S and the

probability that M(D′) is in the range S too are very close. This closeness is managed by a

privacy factor ϵ.

This factor could have two types of jobs. First, when proposing a new privacy-preserving

algorithm, to prove that it respects DP requirements, the authors could rely on the two

probabilities mentioned in the formal definition by dividing them and trying to demonstrate

the existence of an upper bound eϵ. If the upper bound is proved, then ϵ is defined, and the

algorithm is DP.

The second job is when the algorithm is based on one of the basic DP algorithms; thus, it’s

already proved to be differentially private. In this case, this factor is a tool in the data owner’s

hand to decide the good balance of utility and privacy for its data. Many studies were done

[73, 120, 82] to help the data owners chose the right ϵ.
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(a) Interactive: Multiple Queries, adaptively chosen (b) Non-Interactive: Data are sanitized and released
Figure 8: The two approaches to release the DP and BP outputs: interactive and non-
interactive.

Another parameter is required to generate the DP noisy result called Global Sensitivity ∆F

or GS. The idea of DP is to add enough noise to cover the removal of any row in the dataset.

∆F = max
D′∈N (D)

| M(D)−M(D′) | where N (D) is the set of neighboring datasets (differ bu just

one row) of D. The method that we use practically to calculate ∆F is:

1. Executing the query on the database to get the result r.

2. Executing the same query on this database but after excluding one row i to get the result

ri.

3. Calculating the absolute difference between r and ri.

4. Considering the largest absolute difference as the sensitivity of the query.

The problems appear when a tiny minority or the rows have much higher sensitivity than the

other. In this case, the noise will be much greater than needed for most of the tuples, affecting

the utility of the result. For this reason, Local sensitivity [52] and Smooth sensitivity [126] were

suggested to provide better utility. But, in a worst-case scenario, a mechanism relying on one

of these two approaches will not be able to protect the tuples with the highest sensitivities.

Therefore, this type of mechanism is not considered as DP.

DP and BP, like many other privacy-preserving algorithms, are divided into two approaches:

interactive and non-interactive. Interactive approach [54, 51] is based on a query that can be

used just once, can serve only one inquirer, and only for one task. Any mechanism that is

based on this approach returns a noisy result to the user, as in Figure 8a. Each query has a

budget ϵ = ∑i ϵi given by the database owner. Each execution i makes the budget loses ϵi of its

value. The query cannot be executed anymore when the ϵ budget is less than ϵi. Hence, this

approach has many restrictions on privacy preservation, especially if the budget is small where

the number of queries could be insufficient. Besides, the data owner should validate the query.

The non-interactive approach [54, 89], as in Figure 8b, returns a noisy synopsis data set. The

inquirer can send queries to this synopsis to get noisy statistical data. This approach has no

limits nor restrictions to the number and the sender of the queries.
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2.1.1 Laplace mechanism

As we have explained, DP was proposed at first as an approach to add restrained noise on

statistical queries. Laplace mechanism is the first and one of the most commonly used to

implement DP. It relies on Laplace distribution to generate a controlled random noise. The

Laplace distribution is:

Pr(x | b) =
1
2b
× e−|x|/b

where b = ∆F/ϵ.

To prove that the Laplace distribution could be applied as a DP mechanism, we will prove

that it respects the formal definition (inequation) of DP. First, we should clarify that Laplace will

be proved to be a mechanism of the strict version of DP where δ = 0. Suppose that a query f is

applied on a dataset D. M is an adding noise algorithm based on Laplace distribution where

its output M(D) = f (D) + x where f (D) is the original output of the query and x is the noise

generated by M. For a neighboring dataset D′, with the same logic we get, M(D′) = f (D′) + x′.

By dividing the two distributions, we seek to prove that eϵ is an upper bound of this division

which complies to the definition of DP. Thus:

Pr[M(D) = r]
Pr[M(D′) = r]

=
e−|x|/b

e−|x′|/b

=
e−| f (D)−r|/b

e−| f (D′)−r|/b

= e(| f (D′)−r|−| f (D)−r|)/b

≤ e(| f (D′)−r− f (D)+r|)/b, (following the triangle inequality)

= e(| f (D′)− f (D)|)/b

≤ e(∆F)/b, (∆F is the upper bound of | f (D′)− f (D) |)

= eϵ, (b = ∆F/ϵ)

P(x | b) is a randomly generated number between 0 and 1/2b. After getting the random

value of the probability, we can compute the noise x as: x = ±× ln(2b× P(x | b)). In this way,

the Laplace mechanism generates a controlled random noise based on ϵ and ∆F.

Laplace distribution was first chosen because of its potential to generate a low noise with

high probability. As we can see in Figure 9, to get a noise of ±1, for example, the value of

Laplace probability should be approximately 1.84, there is a 63.2% chance that this value Pr is

1.84 ≤ Pr ≤ 0.5. implying a noise x ≤| 1 |.
For the Normal distribution, to have a noise x <| 1 |, the probability value should be

0.242 ≤ Pr ≤ 0.4, the chance of having the value in this range is just 39.5%. This shows why

Laplace distribution was the choice number one to apply DP on numerical datasets or statistical

queries. It’s because it could provide enough privacy based on the two mentioned parameters

and a high level of utility by adding relatively low noise.
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Figure 9: Comparing Normal and Laplace distributions

2.1.2 Exponential Mechanism

Laplace and Gaussian mechanisms were the first to be proposed for Differential Privacy. But

both of them are applied to numerical data. The exponential mechanism was presented as

a solution to use Differential Privacy on non-numerical data. Instead of adding noise on the

numerical data, McSherry and Talwar [116] suggest applying Differential Privacy on non-

numeric valued queries by adding noise on the possibility of choosing each category to be the

result of the query or to be in the output of the mechanism.

Each category is paired with a quality score q(D, r) representing how good this category

could be as an output r for the query of the mechanism applied on the dataset D. The global

sensitivity is the maximum change in the scoring function between two datasets that differ by

just one row.

GS(q) = ∆ = max | q(D, r)− q(D′, r) |

where D and D′ differ at most by one row.

The probability of choosing r as the output of the mechanism is

P(exp(D, R, q, ϵ) = r) =
exp
( ϵq(D,r)

2∆

)
∑r′∈R exp

( ϵq(D,r′)
2∆

)
where R is the set of all possible outputs and ϵ is the privacy parameter.
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This probability returns the possibility for each value to be the output of the query. For a

value r, we first compute an exponential number formed by ϵ multiplied by the quality of r and

divided by the double global sensitivity. This number is used as the dividend in the probability.

Then we compute similar numbers, each of them related to one of the possible outputs. All

these numbers are summed, and the sum is used as the divisor in the probability. Therefore,

the same divisor in the probability is used for two possible outputs, r1 and r2; nevertheless, the

dividend varies from the exponential number related to the quality of r1 to the one related to

the quality of r2.

In this way, the probability result represents the possibility of a value r to be the output

based on its quality compared to all the qualities aggregated.

The DP formula is based on a privacy-preserving mechanism, two neighboring datasets

differing by one row and a privacy parameter ϵ.

It’s the same for the DP on graphs, but two neighboring datasets are two graphs that differ

by one element. When this element is an edge, we call the approach edge-DP, and when it’s a

node, we call it node-DP [69].

Edge-DP ensures that the noise added to the graph is enough to protect an edge’s existence

or absence in the original graph. In comparison, node-DP ensures that the noise covers a node’s

existence or absence with its whole ego network.

To compute the global sensitivity GS, we must compute the maximum number of edges

affected by adding or removing an element from the graph. For edge-DP, we have just one

scenario; it’s always two neighboring graphs that differ by any edge. Then GSedge−DP = 1.

For node-DP, the worst-case scenario is when the concerned node is related to all other

nodes. In this case, the number of edges affected is equal to the number of all other nodes:

GSnode−DP =| V | −1, which could be equal to thousands or even millions.

Higher GS leads to a higher injected noise to cover the worst-case scenario implying more

privacy but less utility. Then node-DP surpasses edge-Dp on the privacy side but has severe

drawbacks on the utility side. This paper proposes an approach to get the same privacy level of

node-DP and, at the same time, much better utility.

2.1.3 Differential Privacy on Graphs

The DP formula is based on a privacy-preserving mechanism, two neighboring datasets differing

by one row and a privacy parameter ϵ.

It’s the same for the DP on graphs, but two neighboring datasets are two graphs that differ

by one element. When this element is an edge, we call the approach edge-DP, and when it’s a

node, we call it node-DP [69].

Edge-DP ensures that the noise added to the graph is enough to protect an edge’s existence

or absence in the original graph. In comparison, node-DP ensures that the noise covers a node’s

existence or absence with its whole ego network.

To compute the global sensitivity GS, we must compute the maximum number of edges

affected by adding or removing an element from the graph. For edge-DP, we have just one
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scenario; it’s always two neighboring graphs that differ by any edge. Then GSedge−DP = 1.

For node-DP, the worst-case scenario is when the concerned node is related to all other

nodes. In this case, the number of edges affected is equal to the number of all other nodes:

GSnode−DP =| V | −1, which could be equal to thousands or even millions.

Higher GS leads to a higher injected noise to cover the worst-case scenario implying more

privacy but less utility. Then node-DP surpasses edge-Dp on the privacy side but has severe

drawbacks on the utility side. This paper proposes an approach to get the same privacy level of

node-DP and, at the same time, much better utility.

2.2 Blowfish privacy

A crucial weakness of DP is when dealing with correlated data [81]. Going back to the example

in Figure 4 will clarify how DP has a real problem when dealing with this type of data where

instead of having one graph, we have multiple graphs with the same nodes. The same problem

appears when having multiple tuples related to each other by the same id, for example.

Another limitation of DP is that it aims to protect all the rows in the graph, which, in many

cases, requires a lot of noises added to the graph, which might affect the utility of the released

version. This issue was the motivation to propose another privacy definition called Blowfish

Privacy (BP), considered a generalization of DP and has the same inequation but differs in

defining the neighbor datasets. While in DP, two datasets are neighbors if they differ by just

one row or tuple, BP proposes privacy policies to determine if two graphs are neighbors.

Every policy defines the secrets and the constraints of the graph. If the addition or removal

of any tuple in the dataset is considered a secret and no constraints are listed in the policy,

this is DP. For this reason, BP is considered as a generalization of DP. It relies on the same

inequation but has a privacy policy P as an extension of DP. P = (T , GS, IQ), where T denotes

the domain of all possible tuples, GS = (VS, eS) is a discriminative secret graph with VS ⊆ T
and IQ denotes the set of databases that are possible under the constraints Q. Let us say that

in Figure 4, we have released noisy graphs that appear as if some professors or students are

communicating from inside the university during some holidays where working is strictly

forbidden, for tradition or religious reasons, or during a strike of the University Teachers Union.

Then, releasing these graphs (showing calls between these phones in one of these days) may

pose a problem for employees, students, or the university. Therefore, any CDR (Call Detail

Records) graph that respects the privacy policy P = (T , GS, IQ) should not show any call

between phones on these specific days.

While in DP, the discriminative secret graph GS is always a complete graph, BP may allow

the public to distinguish between specific tuples. Besides, DP does not have any constraint

Q. Since BP is a strong privacy definition, relaxation is needed in many cases to prove that a

mechanism is relaxed BP. The data owner provides the upper bound of this relaxation. Before

releasing the result, we must ensure that the noise is enough that the relaxation does not surpass

the upper bound. The data owners also provide any background knowledge that they possess

about their database. The service takes this knowledge as a constraint and checks if the noisy
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graphs respect them. We will present a detailed explanation of BP while proposing how to

apply it in the graph privacy use case.
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3. Differential and Blowfish Privacy for social networks

3.1 Introduction

Nowadays, data sharing is growing in popularity. It is shaping innovative business models and

creating new marketplaces. Ad-based business models as Social network companies (Facebook,

Twitter, Instagram, etc.) need user-centric designs to grow. Even companies that do not rely

totally on an Ad-based model may also benefit from their users’ data to make extra money like

telecommunications corporations, video-on-demand service providers, etc. Then, a user-centric

design benefits from its users and their data to make profits. In addition to that, communication

patterns analysis is becoming crucial for global health security especially with the spread of

epidemics such as COVID-19 by the means of social contact.

While it is bringing benefits to data providers, at the same time, it is putting a significant

risk on the privacy of the users which is considered as an essential human right. This risk

appears because the shared data contains sensitive information and needs to be appropriately

protected. Several privacy breach scenarios have been widely cited, notably, the leaks of the

medical records of the governor of Massachusetts [150, 109] and the AOL search data in 2006

[18], which are typical examples of privacy breaches caused by inappropriate protection of data.

This is the reason, privacy-preserving frameworks were proposed to enable communication

graph analysis within formal privacy guarantees. Several techniques were proposed in the

literature to protect various types of data. In k-anonymity [144], the values of the quasi-identifier

attributes of the tuples are suppressed or generalized until each tuple is identical with at least

(k− 1) other tuples on their quasi-identifier attributes. In l-diversity [111], a group of tuples is

considered l-diverse if it contains at least l "well represented" values for the sensitive attribute.

A table is l-diverse if every group is l-diverse. In t-closeness [96], the distribution of sensitive

attributes in any group is close to its distribution in the full population. The distance between

the distribution in a group and the population distribution should not exceed a distance of t.

Differential Privacy (DP) [127] provides a mathematically provable guarantee that, whether

or not, an individual’s private information is included in the input of any DP algorithm, the

output will lead to the same assumption about this individual’s private information. In an

attempt to fortify an individual’s privacy, DP [50] has been proposed and has since garnered

much attention among the privacy policymakers. DP is a privacy definition that aims to

ensure a trade-off between privacy and utility by adding a small amount of noise enough

to hide the adding or dropping of an individual from the database. DP provides ways for

trading-off the privacy of individuals in a statistical database for the utility of data analysis.

Current DP mechanisms have been applied on a variety of data structures such as images [1],

location data [14, 72, 163], set-valued data [56, 34], relational data [86], and graph-based datasets

[7, 100, 142, 157] (representing for instance social networks interactions and call detail records).

In these graphs, vertices represent individuals, sometimes annotated with meta-information.

Edges represent interactions among users and can be labeled as well.

The representation of the activities of individuals on social networks is crucial to benefit

from the data provided by these networks in data analysis, social or health studies, etc. The
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evolution of this representation makes the data more valuable. For this reason, we have seen

progress in networks presentation forms from static graphs to dynamic graphs, then from offline

to online dynamic graphs. This progress leads to more and more concerns about the privacy of

individuals. At the same time, the attacks on graphs have also evolved from passive to active

attacks. In the former, the adversary waits for the publication of the anonymized graph, then

uses their auxiliary knowledge and some data science techniques to obtain the most achievable

knowledge about the individuals in the graph and their relations. In the latter, the adversary

doesn’t wait for the publication. But instead, they take their first step even before the data

owner collects the data from the community to create the graph. They form one or many fake

accounts with specific characters connected to each other and, most importantly, connected

to the possible victims of the attack. When the graph is published, these fake accounts are

represented by nodes called Sybil nodes which, connected to each other, form one or many

Sybil subgraphs. The adversary tries to recognize these subgraphs based on their characters

which could lead to easy identification of the victim nodes.

3.2 RELATED WORK

To our knowledge, no previous work concerning Blowfish Privacy towards graph datasets

has been considered in the literature. However, many differentially private mechanisms were

proposed for graphs. In [69], Hay et al. divide these mechanisms into two types: edge-

differential privacy and node-differential privacy.

Usually, a node in a graph represents a person while an edge represents a connection

between two persons. The purpose of edge-differential privacy [22] is to prevent the usage of

these connections for revealing the identity of a person. On the other hand, node-differential

privacy achieve similar data protection by blurring node appearance in the graph. Node-

differential privacy has much more sensitivity than edge-differential privacy, which is usually

preferable.

In this section, we outline some techniques and algorithms dedicated to protect the graph

datasets. The techniques could be divided into 4 categories: (1) identity and link disclosure

[170, 47, 165], (2) dK-graph generation model [37, 156, 142], (3) platforms and programming

languages [117, 132, 131], (4) static [125, 100] and dynamic graphs anonymization [165, 19, 20],

(5) many types of k-anonymity approahces and finally, (6) anonymization techniques against

active attacks.

3.2.1 Identity and link disclosure

Graph data disclosure can be divided into 3 categories [102]: 1) Identity: the identity of an

individual associated with a node is revealed; 2) Link: the sensitive relationships between

two individuals are disclosed; and 3) Content: the sensitive data associated with each node is

compromised. We can list three privacy definitions to encounter identity disclosure:
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• k-Candidate Anonymity [70, 165]: An anonymized graph satisfies k-candidate anonymity

if, for a given structural query, no individual can be identified with a probability higher

than 1
k .

• k-Degree Anonymity [103]: An anonymized graph satisfies k-degree anonymity if every

node in the graph has the same degree with at least (k− 1) other nodes.

• k-Neighborhood Anonymity [171]: A node is k-anonymous in a graph if there are at

least (k− 1) other nodes such that the subgraphs constructed by the neighbors of each

node are all isomorphic. A graph satisfies k-neighborhood anonymity if all the nodes are

k-anonymous as defined above.

Other approaches can also be listed for the link disclosure:

• Link Reidentification [170]: Edges here are classified as either sensitive or observed. The goal is to

minimize the probability of predicting sensitive edges based on the observed edges while keeping

the number of observational edges removed small to preserve the utility.

• Privacy-Preserving Link Analysis [47]: This algorithm enables link analysis in dynamic graphs.

Online computation of eigengaps (the difference between the largest and second-largest

eigenvalues) with frequent updates. The algorithms address privacy concerns by applying

encryption.

• Random Perturbation for Private Relationship Protection [165]: Two randomization techniques

were studied. The first is based on adding then deleting edges randomly. The second one relies on

switching two edges, e.g. we delete the two edges (v1, v2) and (v3, v4), then we add the two edges

(v1, v3) and (v2, v4) where v1, v2, v3 and v4 are nodes in the graph.

The content disclosure is a significant problem, but, to the best of our knowledge, the

literature does not consider the impact of graph structure on this category of disclosure.

3.2.2 dKgraph Generation model

Another type of DP mechanisms is based on the dK-graph generation model. In these

mechanisms, various parameters are derived from the original graph. DP is applied on these

parameters to create noisy versions, and finally, new dereived graphs are generated using a

generation model. Chen et al. [37] present a method for publishing graphs under DP. They rely

on a community-preserving generative model called CAGM. This model profits from some

properties from the community as parameters to generate the graphs. Some differential private

methods are applied to these properties to create the noisy parameters of CAGM. Another

example is in [156, 142], where the authors propose an edge-DP graph generation mechanism

relying on the dK-graph model. The mechanism generates a noisy graph based on a set of

properties in the single static original graph. Thus, this mechanism cannot ensure the privacy

of individuals in dynamic or multi-released graphs.
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3.2.3 Anonymization of Dynamic graphs

Dynamic graphs are those subjected to changes in their structures or the weights of their

edges. Less work follows the direction of dynamic graphs. The authors in [104] rely on DP for

anonymizing dynamic social networks. Their approach, named DDPA (Dynamic Differential

Privacy Algorithm), adds Laplacian noise to edge weights. DDPA tracks the edge weight

information across the graph iterations and adds the privacy protection budget. However, it

does not consider altering the graph topology. Very similar to our second scenario in this use

case is [153], in this paper, social network graphs representing a time series of the corresponding

social network’s evolution are anonymized to a sequence of sanitized graphs released for

further analysis. We share the same view that naively applying the existing approaches to each

time-series graph will breach privacy purposes. However, our assumptions are more restricted

since we assume that the attacker has external Background Knowledge about the graphs.

Li et al. [101] propose a privacy model km where k indicates the privacy level and m is a time

period that an adversary can monitor a victim to collect the attack knowledge. A distributed

algorithm is provided that adds nodes to the graph, then generates the noisy version. The

distributed greedy merge noise node algorithm (DGMNNA) reduces the number of nodes added

under satisfying the anonymous model. Qiuyang et al. [134] propose a dynamic algorithm that

satisfies DP and protect social networks against attacks based on semantic information. They

classify the original graph into several subgraphs according to some characteristics of nodes.

The graph is represented as an adjacency matrix. Quad-tree is used to divide the dense area of

each subgraph. DP noise is added to the tree’s leaf nodes, and finally, the adjacency matrix is

reconstructed and published.

Yue et al. [169] proposed local and global anonymity functions and a framework called

APRI to apply sequential online anonymization on a set of graphs. They anonymize the degree

of the node of the current graph locally, then they compare, via APRI using Kolmogorov-

Smirnov Test, the distribution of node degrees of the current graph, and the set of previously

anonymized graphs. When the difference is equal or greater than a given threshold, they restart

the anonymization process for this graph. They use the global anonymity function to ensure

the similarity in the distribution of node degrees between all the anonymized graphs.

Mcwan et al. [113] propose a clustering algorithm to group at least k nodes into k clusters

based on their connectivity and anonymize each cluster for every instance of the graph. The

algorithm supports the addition of nodes in new instances. Each cluster contains the nodes with

close connectivity, and these nodes in the anonymized instance of the graph are assigned with

the same label. Also, Yu et al. [168] propose a grouping mechanism for the nodes based on their

properties. The mechanism guarantees that without a background knowledge, an attacker’s

probability of identifying a node involved in any edge is at most 1
k . Also, the probability that an

attacker identifies an edge between two nodes is at most 1
k . Therefore, the goal of the mechanism

is to protect edges against attacks without background knowledge dynamically.

All these mechanisms for sequentially released graphs focus on the properties of nodes,

especially degrees of nodes. Thus, two of them [113, 169] might protect dynamic graphs against

47



3. Differential and Blowfish Privacy for social networks

a background knowledge. However, all of them do not aim to protect the dynamic graphs

against the type of background knowledge containing information about the connections or

the relation between two or more individuals. Returning to the example provided in the

Introduction about the Doctor nad his two students, the background knowledge could be that

Alice and John call Dr. Bob daily, especially in exams and project submissions. They do not

usually communicate in summer, but we also know that Alice’s birthday is on the 6th of August

and Doctor Bob’s birthday is on the 24th of August. We doubt that it is possible to prove that

the mechanisms proposed to deal with the background knowledge of nodes could deal with an

adversary having our type of background knowledge and trying to project it into the graphs by

searching for three nodes communicating in the time of academic year especially in the periods

of exams and projects. Then, a period of no communication in summer interrupted by calls on

the 6th and 24th of August. Thus, our work is different from others by addressing the problem

of facing this type of background knowledge and preserving an acceptable level of utility in the

graph’s released instances.

3.2.4 K-anonymity

In [103], Liu et al. proposed the k-degree anonymization for graphs by manipulating the degree

of the nodes in such a way that the degree of any node in the graph is shared with at least k− 1

other nodes. In their mechanism, they first anonymize the graph’s degree sequence then build a

k-degree anonymous graph based on the noisy degree sequence by adding edges to the original

graph. Lu et al. [105] suggest a faster algorithm that combines the two phases of the previous

algorithm in one stage by simultaneously applying the edge addition and the anonymization of

the degree sequence.

The authors in [28, 29] assume that the previous algorithms are not efficient on large

networks. They presented a polynomial-time algorithm that creates the k-degree graph by

a minimum number of edge modifications. They apply a univariate micro-aggregation to

anonymize the degree sequence. Instead of edge addition, Chester et al. [39] propose a node

addition algorithm to reach k-degree anonymity.

Wu et al. in [160] propose a more general view than k-degree anonymization called k-

symmetry anonymity to cover many properties of the nodes other than degree similarity. Ma

et al. [107] propose the KDVEM algorithm to reach k-degree anonymity while providing high

utility and minimum amount of distortion. The algorithm is formed of two phases, finding

the best target degree of each node and deciding the best nodes candidates to add the edges to

achieve the target.

In [140], the authors propose an algorithm to anonymize the degree sequence of the graph

to maintain its coreness for a better utility. Maintaining the core number sequence assures the

retaining of most of the graph information.

These works were all based on the degree of the nodes. In [171], Zhou et al. propose

a 1-neighborhoods algorithm by grouping the nodes having similar neighborhoods and

anonymizing them. The neighborhoods extraction is based on isomorphism tests. In [172], the
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authors proposed k-automorphism to protect the published graphs against many structural

attacks by applying an algorithm called KM. What’s more interesting for us in their work is

their suggested vertex Id generalization algorithm for k-automorphism applied on dynamically

released graphs. This algorithm is applicable on the offline approach, then, we can’t use it in

our case where we are dealing with the online approach.

3.2.5 Dealing with active attack

To explain better the problem of active attack and how some related work in the literature dealt

with it, we will use an example of a traveler aiming to enter a country in the era of the covid-19

pandemic. We list the scenarios proposed by each technique for the authorities to deal with this

passenger.

3.2.5.1 Attacks

In [17], the authors listed several passive and active attacks on static graphs. They propose two

active attacks, the walk-based, and the cut-based. Three main differences between these two

approaches could be listed:

• Cut-based attack needs fewer Sybil nodes.

• Walk-based has a much more efficient algorithm to retrieve the Sybil subgraph.

• It’s harder on the privacy-preserving mechanism to detect the walk-based attack.

Mauw et al. [115] define the robustness of the active attack stages, and they benefit from their

optimized strategy to prove that the attack is robust and resilient to small graph perturbation.

The attack presented in [36] is the type of attack that we intend to encounter in this paper.

The authors develop the attack shown in [17] and propose an attack on dynamic graphs relying

on Sybil subgraphs. In the Subsection 3.5 .3, we present the active attack inspired by [17] with

some modifications that we will encounter by our privacy-preserving approach.

3.2.5.2 SybilGuard

SybilGuard [167] is a protocol to defend against active attacks in a decentralized approach

where each node decides on its own to accept a connection with another node or not without any

interference from a trusted central authority. The idea is to divide the graph into two regions,

the honest and the Sybil. The edge connecting a node from the Sybil region to an honest region

is called an attack edge. The goal of the protocol is to create a random routing table for each

node in a way that limits the possibility of accepting nodes from the Sybil region. SybilLimit

[166] optimizes this guarantee to represents a near-optimal one. Nevertheless, both still have

some drawbacks. The high false negativity of the SybilGuard and the unrealistic assumption

of SybilLimit about the knowledge of the number of honest nodes in the network were the

motivations for Daenzis and Mettal to propose the SybilInfer algorithm [43]. It relies on a
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Bayesian inference approach that returns potential regions of dishonest nodes with a probability

of certainty for each node.

In the Covid example, these techniques do a PCR test on the traveler, but he’s allowed to

enter the community even if the result is positive. The authorities warn the people to keep a

distance from him because he’s affected. But still, he resides in society and might form a threat.

These techniques guarantee that an honest node could be linked to most other honest

nodes, and it will only accept a bounded number of Sybil nodes. The problem here is that no

noise is added to the graph, then there is no difference between the original and published

graph. So we could not prevent an adversary from locating its Sybil nodes, and the bounded

number of Sybil nodes is enough to attack an honest node.

3.2.5.3 Edge-Differential Privacy

The vast majority of edge-DP mechanisms are dedicated to releases noisy graph properties as

degree distribution [69, 142, 156], frequent graph patterns[146], counting queries for k-triangles

and k-stars [77], or for subgraphs [136] and clustering coefficients [158]. An extension of DP

called Blowfish Privacy [71] also has the ability, when applied on graphs, to provide noisy query

results about these properties. For example, in [? ], the authors provide methods to return

anonymized query results under Blowfish Privacy applied on graphs where some nodes are

more valuable than the others, implying that they should have, with their connections, a higher

level of privacy than other nodes.

Some other works release an anonymized version of the graph. The authors in [125], and

[119] proposed DP edge flipping algorithms based on a linear time algorithm for the first and a

randomized response technique for the second. These two mechanisms, TmF and EdgeFlip,

return an anonymized graph instead of a query result.

Many works propose to generate noisy degree distributions or similar noisy statistics from

graphs under differential privacy. Generative methods are then used to create output graphs

fulfilling noisy input distributions [45]. Qin et al. [133] propose LDPGen for decentralized

social networks. LDPGen collects neighbor lists of the nodes and reconstructs the graph in

two phases under local edge-differential privacy. Finally, Karma et al. [77] presents efficient

algorithms to provide noisy answers tosub graph counting queries under a relaxed version of

edge-differential privacy.

The advantage of edge-DP is that it doesn’t need considerable noise to be achieved. Then,

the results keep a high level of utility.

To explain the disadvantage of edge-DP, let’s go back to our Covid example. Edge-DP

allows an infected passenger from directly entering society. But it tries, for some level, to control

his connections. But this won’t prevent him from infecting other people (the taxi driver driving

him from the airport, the delivery man,...).

Then, this approach cannot protect the individuals in the graph from an active attack.

For example, four nodes are new (didn’t appear in the first release) in the second release of a

dynamic graph. By manipulating the existence and absence of the edges, Edge-DP will affect
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the degrees of the nodes. Table 2 shows the original and the published degrees of the new

nodes.

If the adversary has injected one node of degree 1000 before this release, their goal is to

retrieve that node. It’s evident that v6 is the node injected by the adversary as its published

degree is close to the original one while the three others are very far. Therefore, edge-DP cannot

be trusted to face an active attack on a dynamic graph despite its capacity on the utility side.

Original Degree Published Degree
Deg(v6) = 1000 Deg(v6) = 950
Deg(v7) = 120 Deg(v7) = 112
Deg(v8) = 85 Deg(v8) = 92
Deg(v9) = 97 Deg(v9) = 101

Table 2: Original and published degree of four new nodes under edge-DP.

3.2.5.4 Node-Differential Privacy

Node-Differential Privacy [69] presents a strictly stronger guarantee than Edge-Differential

Privacy. The guarantee is to provide enough noise to protect the existence or non-existence of a

node in two neighboring graphs that differ, in the worst-case scenario, by a node connected to

all other nodes in the graph where it exists. This technique ensures a high level of privacy but,

on the other hand, might severely damage the utility of the output.

Differential privacy has two approaches, the interactive and non-interactive [49, 51, 89].

All the proposed node-Differential Privacy techniques and algorithms that we have found in

the literature adopt the interactive approach where their objectives are to return a noisy result

of queries. In contrast, our technique adopts the non-interactive setting where the output is a

noisy dataset instead of a query result. Therefore, we assume that our work will be the first to

present a solution to provide node protection under the non-interactive approach.

The main disadvantage of the node-DP is in the accuracy of the result. Deleting and adding

nodes with their entire ego network is very expensive in the term of utility.

For this reason, many of these algorithms are relied on graph projection technique to apply

node-Differential Privacy. A parameter α is used to transform a graph to be α-degree-bounded.

These graphs have a limit in the number of allowed connections for the nodes. In this way, it’s

guaranteed that adding or deleting a node has a limited effect on the utility. For example, the

authors in [78] propose several techniques for interactive node-differential private techniques

for degree-bounded graphs and present a methodology to analyze the accuracy of the results.

The main idea in their work is to remove all the nodes with a higher degree than α, which

causes a much higher number of edges to be removed than necessary.

Another way to tackle the problem of low utility was suggested by Blocki et al. in [23]. To

compute how much noise is needed in each case, we have first to calculate the global sensitivity

GS of the query. GS in node-Differential Privacy is the maximum difference in the query result

between the original graph and any neighbor graphs that differ by just one node from the

original one. The authors in [23] propose a Restricted Sensitivity instead of Global Sensitivity.

They achieve that by reducing the set of neighbor graphs to just the ones having a distance
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less than d from the original graph, where d is calculated based on several projection-based

techniques.

Also, based on projection techniques, Day et al. [45] present two approaches to publish

degree histograms and cumulative degree histograms under node-differential privacy. Chen

et al. [35] proposed a node-Differential privacy mechanism supporting equijoins to answer

subgraph counting queries.

Back to our Covid example, Node-DP forbids any person with positive PCR results from

entering the country. While this provides a high level of protection for the citizens, it leads to a

significant economic loss. This person could be a tourist, a businessman, or a skillful person

that might form a high value for the business sector.

On the graph side, the technique gives us the possibility of deleting the new node with its

ego network, adding a fake node and create its ego network, or manipulating the ego network

of the real node. The advantage is that the adversary has a high uncertainty about the new node

appearing in the published graph. Is it the real Sybil node or a fake node and the real one was

deleted?

The disadvantages are:

• the need for a very high noise, which keeps us with very little utility,

• to the best of our knowledge, no node-DP mechanism was proposed, which adapts the

non-interactive approach providing an anonymized version for the original graph. All

the known mechanisms provide a noisy query result, mainly on the node degrees.

Therefore, we assume that our technique is the first to offer the same level of protection for

the individuals and, at the same time, better utility and adapt the non-interactive approach.
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SUBCHAPTER 3.3.3

Blowfish Privacy for VIP nodes

3.3 .1 Introduction

In this subchapter, we present a summary of Blowfish privacy and explore the possibility

of applying it in the context of undirected communication graphs. Communication graphs

represent social contact or call detail records databases. We define the notions of neighborhood,

discriminative secrets, and policies for these graphs. We study several examples of queries and

compute their sensitivity. Even though not addressed in the original blowfish privacy paper,

we explore the idea of having a discriminative secret graph per individual. This allows us to

treat some persons as VIP and put their privacy on top priority, where other persons can have

lower privacy constraints. This may help to offer privacy as a service and increase the utility of

the anonymized communication graph to an appropriate level. Differential privacy has a single

tuning knob, namely ϵ, sometimes two (ϵ and δ). For example, increasing ϵ means more utility

and less privacy. The idea of Blowfish privacy is to provide more tuning knobs by introducing

policies [71].

In Blowfish privacy, a policy specifies:

• secrets: information that must be kept secret. Since not all the information has to be secret,

we can increase the utility of the data by lessening the protection of certain properties.

• and constraints: known properties about the data. Constraints add protection against an

adversary who knows these constraints.

Therefore, differential privacy can be considered as an instance of Blowfish privacy where:

• every property about an individual’s record is protected,

• every individual is independent of all the other individuals in the dataset. There is no

correlations.

Because of its generalized framework and powerful expressiveness of adversarial

knowledge, we expect that DP and BP can solve privacy challenges in graph-based databases.

In this part, we explore the application of these two privacy-preserving techniques to

communication graphs such as social networks and call detail records databases. We model the
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3. Differential and Blowfish Privacy for social networks

Table 3: Notation of DP and BP, secrets, and discriminative pairs
Symbol Description

D Database of n tuples
T = A1 × A2 ×

. . .× Am
Domain of m categorical attributes

t ∈ T A single tuple
t._id Id of the tuple’s real owner
t.Ai Value of the ith attribute in tuple t
In Set of all possible datasets with size n (|D| = n)

(D1, D2) ∈ N In DP, D1 and D2 are neighbors, they differ in the value of one tuple

M A randomized mechanism, for example adding random noise to the
result of a query

S ⊆ range(M) A set of the outputs generated byM
ϵ-differential

privacy
For every S and every two neighbors (D1, D2): Pr[M(D1) ∈ S] ≤
eϵ × Pr[M(D2) ∈ S]

f : In −→ Rd A function that takes a database as input and returns a vector of real
numbers as output, for example a countIf query

S( f )

The global sensitivity of f is the max Manhattan distance between the
outputs for any two neighbor databases: S( f ) = max

(D1,D2)∈N
|| f (D1) −

f (D2)||1

MLap
The Laplace Mechanism adds η ∈ Rd to f (D), where η is a vector
of independent random variables. Each ηi is drawn from the Laplace
distribution with parameter S( f )/ϵ: Pr[ηi = z] ∝ e−z.ϵ/S( f )

P = (P1, . . . , Pk) A partitioning of the domain T

hP : In −→ Zk

A histogram query. hP (D) outputs for each Pi the number of times
values in Pi appear in D. The sensitivity of histogram queries is
S(hP ) = 2 since replacing a tuple by another one may decrease the
count of a partition and increase the count of another partition.

hT
The complete histogram query, it outputs for each t ∈ T the number of
times it appears in D

EM(D)

The expected mean squared error of M: EM(D) = ∑
i

E[( fi(D) −

f̄i(D))2] where fi(D) and f̄i(D) are the ith components of the true
answer and the noisy answer, respectively. For Laplace mechanism and
histogram queries, this error is: EMLap

hP
(D) = |T |.E(Laplace(2/ϵ))2 =

8|T |/ϵ2. A large epsilon means less error, hence more utility.

secrets and the auxiliary knowledge in terms of the Blowfish privacy model and give numerous

examples.

3.3 .2 Notation

The Blowfish privacy notation is based on the differential privacy notation as summarized in

Table 3.
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3. Differential and Blowfish Privacy for social networks

Table 4: Notions of secrets
Symbol Description & Examples

s

An arbitrary statement over the values in the database. Example1:
t._id = ’Bob’ ∧ t.disease = ’cancer’. Example2: t._id = ’Bob’ ∧ t2._id =
’Alice’∧ t1.disease = t2.disease

S A set of secrets that the data owner would like to protect, e.g. {Example1,
Example2}

(s, s′) ∈ S× S A pair of secrets, e.g. (Example1, Example2)

A discriminative
pair of secrets

(s, s′)

A mutually exclusive pair of secrets. Two statements that cannot be
true at the same time. An adversary must not be able to distinguish
which one is true and which one is false, e.g. (t._id = ’Bob’ ∧ t = x,
t._id = ’Bob’∧ t = y)

si
x The secret t._id = i ∧ t = x where x ∈ T , e.g. s’Bob’

(’cancer’,65)

Spairs A set of discriminative pairs of secrets, e.g. S full
pairs, Sattr

pairs, SPpairs, S
d,θ
pairs

SG
pairs

A set of discriminative pairs of secrets based on graph G(V, E), i.e.
{(si

x, si
y)|∀i, ∀(x, y) ∈ E}

Full domain:
S full

pairs

For every individual, the value is not known to be x or y, i.e.
{(si

x, si
y)|∀i, ∀(x, y) ∈ T × T }

Attributes: Sattr
pairs

For every individual and every two tuples differing in the value of
only one attribute A where one of them is real, the real tuple is not
known. The privacy definition is weaker than in full domain S full

pairs since
the real tuple is distinguishable if more than one attribute differs, i.e.
{(si

x, si
y)|∀i, ∃A, x[A] ̸= y[A] ∧ x[Ā] = y[Ā]}

Partitioned: SPpairs

For every individual and every two tuples coming from the same
partition where one of them is real, the real tuple is not known, i.e.
{(si

x, si
y)|∀i, ∃j, (x, y) ∈ Pj × Pj}. This privacy definition is very useful

for location data.

Distance
threshold: Sd,θ

pairs

For every individual and every two tuples having their distance less
than or equal to a threshold θ where one of them is real, the real tuple is
not known, i.e. {(si

x, si
y)|∀i, d(x, y) ≤ θ}

3.3 .3 Secrets

In addition, Blowfish defines secrets and discriminative pairs of secrets as shown in Table 4. We

give examples of secrets and pairs of secrets over a communication graph in Table 5.

Guess
the real t

Adversary

Pick a secret pair

(sid
t0

, sid
t1
) from Spairs

Challenger
id, t0, t1

b(0 or 1)

Repeat

Figure 10: Discriminative pair of secrets as a game

The discriminative secret graph generalizes the specification of discriminative pairs of secrets.

It is a graph where vertices represent secrets and edges link only the discriminative pairs of

secrets. More formally it is denoted GS = (VS, ES) where VS = T and ES ⊆ T × T . Even

though not addressed in the original blowfish privacy paper, we explore the idea of having a
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3. Differential and Blowfish Privacy for social networks

Table 5: Examples of notions of secrets for a communication database
Symbol Description - Example
Secret: s Bob has talked to Alice: ti._id = ’Bob’∧ tj._id = ’Alice’∧ ti[j] = tj[i] = 1
A discriminative
pair of secrets
(s, s′)

Given two communication tuples (ego networks), we cannot distinguish
which one of them belongs to Bob, for example, (t._id = ’Bob’ ∧ t =
(0, 1, 1, 1), t._id = ’Bob’∧ t = (0, 0, 0, 1))

si
x The secret where individual i has ego network x, for example, s’Bob’

(0,1,1,1)
S full

pairs For an individual, all ego networks are discriminative

Sattr
pairs

For an individual and two vectors that differ in only one communication,
we cannot tell which one is real.

SPpairs
For an individual and two tuples belonging to the same partition, we
cannot tell which tuple is the real one.

S (d,θ)
pairs

Given a distance metric and a threshold. The privacy game is to
challenge the adversary with one individual and two records having
their distance less than or equal to threshold. A suitable distance for
communication graphs is the Hamming distance (or the number of
different bits), which is equivalent to the Manhattan distance in this
case.

discriminative secret graph per individual. This allows us to treat some persons as VIP and put

their privacy on top priority, where other persons can have lower privacy constraints. This may

help increase the utility of the communication graph to an appropriate level.

In this direction, the idea of a discriminative secret is very similar to what consists a game

in cryptography. We prefer to call it a privacy game here and represent it as shown in Figure 10.

In this game, a challenger picks an Id (e.g. Bob) and a pair of discriminative secrets at random

(e.g. "Bob has called Alice" or "Bob has not called Alice"). The pair is represented by two tuples,

or an edge in the discriminative secret graph of the Id. The edge vertices identify the two tuples.

The challenger sends the Id and the two tuples to the adversary (e.g. which one does belong to

Bob?). The adversary has to guess which of the two tuples belongs to the id and responds with

only 1 bit b. b = 0 is chosen for t0 and b = 1 for t1.

Our goal is to make the probability of the adversary guessing the assumed right tuple not

significantly different than a coin flip.

An important remark about undirected communication graphs is that not all the graphs are

feasible. If Bob has talked to Alice, it means that Alice has talked to Bob. The database matrix is

symmetric. Another constraint is that ti[i] must be 0, and all other entries are either 0 or 1. The

Blowfish privacy framework allows to define constraints about the dataset, and redefines the

notion of neighborhood databases by excluding intermediate, yet infeasible ones. Therefore, we

suggest that Blowfish privacy is a more suitable framework for communication graphs than its

differential privacy predecessor.

3.3 .4 Examples of policies

Examples of discriminative secret graphs for a communication graph of three nodes (for

simplicity) and different policies are shown in Table 6. To explain more these policies we
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3. Differential and Blowfish Privacy for social networks

Figure 11: Example of full policy.

Figure 12: Example of attribute policy.

present examples of communications graphs neighboring for each policy:

• Full policy: a change in the ego network of any vertex is considered as a secret that should

be protected regardless of how many edges has changed in this ego network. For example,

in the graphs in Figure 11, the ego network of vertex 1 has changed, than this is a secret

that should be protected regardless of the number of edges affected by this change.

• Attribute policy: The changes that occur in Figure 12 to the ego network between the first

and the second graph is not considered as a secret under attribute policy, and therefore

these two graphs are not neighbors, because the ego network of vertex 1 is changed by

two edges, while, to be considered as a secret under attribute policy, an ego network

should be changed by just one edge. Then the first and third graphs are neighbors.

• Distance policy: let’s say we aim to protect the connectivity of the graph with a threshold

1. If we have a query asking about the number of components, we have to protect the

edges that might change the result by 0 or by 1. For example, in the first two graphs of

Figure 13, we have removed two edges which changed the number of components from 2

to 3. Then the adding or removing of these two edges together is a secret that should be

protected, and these two graphs are neighbors. However, removing the two edges in third

graph changes the number of components by 2, then, we are not interested in protecting

57



3. Differential and Blowfish Privacy for social networks

Figure 13: Example of distance policy.

Figure 14: Example of partition policy.

the existence or non-existence of these two edges together. Thus, the first and third graphs

are not neighbors.

• Partition policy: For partitioned policy, we take a scenario where the vertices are divided

into two groups. Then the edges are also divided into two partitions: intra-groups which

connect two vertices in the same group and inter-groups which connects a vertex in

the first group with a vertex in the second group. Here we are interested in protecting

the inter-group (orange edges). Then, the first two graphs in Figure 14 that differ by

just on edge are not neighbors because adding or removing an intra-group edge doesn’t

form a secret, while, the first and third graphs are neighbors because they differ by one

inter-group edge which form a secret.

3.3 .5 Auxiliary knowledge

Auxiliary knowledge is usually formalized using correlations, for example c(R = r1) + c(R =

r2) = a1 where c(r1) is the count of records having the attribute R equal to r1, c(r2) is the count

of records having the attribute R equal to r2, and a1 is known. Blowfish suggests to formalize

auxiliary knowledge in terms of a set of constraints Q that a database D must satisfy. It denotes
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3. Differential and Blowfish Privacy for social networks

Table 6: Examples of discriminative secret graphs for a communication graph of three
nodes

Policy Graph

Gfull
S ≡ G(d=L1,θ=2)

S

000

001

100

101

000

001

010

011

000

010

100

110

Gattr
S ≡ G(d=L1,θ=1)

S

000

001

100

101

000

001

010

011

000

010

100

110

GPS
The partition is based

on the value of the first
non-ego attribute

000

001

100

101

000

001

010

011

000

010

100

110

G(d=L1,θ=3)
S

No challenges

000

001

100

101

000

001

010

011

000

010

100

110
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3. Differential and Blowfish Privacy for social networks

Bob

Alice

Eve

Carol

id tuple
Bob (0, 1, 1, 1)
Alice (1, 0, 1, 0)
Eve (1, 1, 0, 1)
Carol (1, 0, 1, 0)

Figure 15: Communication graph and its corresponding database

IQ ⊂ In the subset of all possible database instances. In the case of undirected communication

graphs, we have two inherent constraints:

• the matrix of D is symmetric: ti
j = tj

i

• the ego attributes are zero: ti
i = 0

It is also possible to use directed communication graphs where a directed edge from Bob

to Alice means that Bob has called Alice, or initiated a session. In this case the first constraint

above is not considered.

Additional constraints which are not necessarily inherent to the graph representation can

be considered, for example:

• Count queries: the number of individuals that have 5 neighbors.

• Marginal constraints: A marginal is the projection of the database on a given subset of

columns. Rows having the same projection are grouped in one record along with their

count. In our context we project on a subset of nodes. For example let’s project the

database in Figure 15 on Bob and Eve only (columns 1 and 3). Alice and Carol have the

same projection since both have called Bob and Eve. Therefore the projection have 3 rows:

(Bob,1), (Eve,1) and (Alice-Carol,2).

• Meta-node constraints: A meta-node is a node representing a sub-graph or a group of

individuals. Meta-node auxiliary knowledge is for example the number of people calling

a group of individuals, or the number of calls in between two groups of individuals. The

adversary may know that the group Bob-Carol and the group Alice-Eve have three calls

linking them.

• Clique constraints: A clique is a complete graph. The adversary may know that a group of

nodes makes a clique or nearly a clique. For example Bob, Alice and Eve form a clique.

3.3 .6 Blowfish policy and privacy definitions

To apply Blowfish privacy, one must define a policy P(T , GS, IQ) which is composed of a set of

tuples T , a discriminative secret graph GS(VS, ES) based on sets of discriminative pairs Spairs,
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3. Differential and Blowfish Privacy for social networks

and a set of possible database instances IQ under the auxiliary knowledge constraints. One also

has to devise a randomized mechanismM that satisfies (ϵ, P)-Blowfish privacy. Concretely,

for every pair of neighboring databases, denoted (D1, D2) ∈ N(P), and every set of outputs

S ⊆ range(M), we have:

Pr[M(D1) ∈ S] ≤ eϵ Pr[M(D2) ∈ S]

To see how it differs from differential privacy, let’s consider D1 = D ∪ {x} and D2 =

D∪ {y}, two databases that differ in one tuple, and suppose P = (T , GS, In), i.e., no constraints.

D1 and D2 are not considered neighbors unless (si
x, si

y) ∈ SG
pairs. Otherwise, having M that

satisfies (ϵ, P)-Blowfish privacy means that:

Pr[M(D1) ∈ S] ≤ eϵ.dG(x,y) Pr[M(D2) ∈ S]

since Blowfish privacy is shown to satisfy sequential composition. Similarly to increasing ϵ, the

chance of an attacker to distinguish between pairs farther apart in the graph is higher. We gain

overall utility by scarifying local privacy of some users.

The Laplace mechanismMLap ensures (ϵ, P(T , GS, IQ))-Blowfish privacy for any query

function, f : IQ −→ Rd, by outputting f (D) + η where η ∈ Rd is a vector of independent

random numbers drawn from Lap(S( f , P)/ϵ). S( f , P) is the policy-specific global sensitivity

and is defined as:

max
(D1,D2)∈N(P)

∥ f (D1)− f (D2)∥1

.

Following the definition of neighbors in [71], let T(D1, D2) the set of discriminative pairs

(si
x, si

y) such as the ith tuples in D1 and D2 are x and y. Let ∆(D1, D2) = D1\D2 ∪ D2\D1. D1

and D2 are neighbors, if:

1. they both comply to the constraints,

2. T ̸= ∅,

3. T has the smallest size, there is no feasible database D3 such that T(D1, D3) ⊂ T(D1, D2)

or T(D1, D3) = T(D1, D2) & ∆(D1, D3) ⊂ ∆(D1, D2).

In our communication graph representation, two databases are candidate neighbors if they

differ by the ego network of one individual, and this difference is represented in the security

graph of that individual. Note that this means that one or several edges might be added or

removed between two neighbor communication graphs.

To give an example, the two graphs in Figure 16 are different in three tuples: |∆(D1, D2)| =
6. If only one of the different pairs is in the security graph, for instance Bob’s pairs, we have

|T| = 1. There is no database having a non-empty subset of T, and no feasible database with

same T and a subset of ∆. (To do so, we need to make Alice’s ego network indifferent, or Eve’s

ego network indifferent, which is not possible due to symmetry constraints). We consider that

these two graphs are neighbors.

61



3. Differential and Blowfish Privacy for social networks

Bob

Alice

Eve

Carol

id tuple
Bob (0, 0, 1, 1)
Alice (0, 0, 1, 0)
Eve (1, 1, 0, 1)
Carol (1, 0, 1, 0)

Bob

Alice

Eve

Carol

id tuple
Bob (0, 1, 0, 1)
Alice (1, 0, 1, 0)
Eve (0, 1, 0, 1)
Carol (1, 0, 1, 0)

Figure 16: Two neighboring graphs and their corresponding databases. The ego
network of Bob has changed, and Bob has a Gfull

S policy.

Under P(T , Gfull
S , IQ), we can obtain two neighbor communication graphs by taking one

vertex and changing its ego network. Any two communication graphs that differ in n + 1 tuples

where n tuples differ in one bit and one tuple differs in n bits are considered neighbors under

Gfull
S .

To make the concept of neighbor databases used throughout the paper more straightfor-

ward, we demonstrate the following result:

Theorem 1. Given a communication graph G(V, E), its database/matrix representation M(G) and

the policy P(T , GS, IQ), where T represents all binary vectors of size |V|, G represents the overall

graph of discriminative secret graphs for all the nodes, and IQ constrains the possible databases to have:

(1) ∀i ̸= j, Mi,j = Mj,i = 0 or Mi,j = Mj,i = 1 and (2) ∀i, Mi,i = 0. If GS = Gattr
S or GS is any

non-empty subset of Gattr
S , we have that: Two graphs G1 and G2 are neighbors, i.e., (G1, G2) ∈ N(P), if

they differ by one and only one edge e(i, j) = e(j, i) and for at least one vertex of the edge (either i or j)

the discriminative secret pair (si
x, si

y) (where x and y differ at the bit j) or (sj
a, sj

b) (where a and b differ at

the bit i) is in the security graph GS.

Proof. Gattr
S means that two tuples form a discriminative secret pair if they differ by only one

attribute. This difference is reflected in the communication graph by the addition or removal of

one edge.

If G1 and G2 differ by one or more edges that do not correspond to discriminative secret

pairs in the security graph G, then T(G1, G2) = ∅ and the graphs are not neighbors.

If G1 and G2 differ by many edges that affect many secret pairs in G, then we can build a

graph G3 that takes only one of these edges that affects one (or two) secret pairs in G to form a

subset of T(G1, G2), and therefore the two graphs are not neighbors.

For the case where G1 and G2 differ by many edges and for only one of them e(i, j) we have

(si
x, si

y) ∈ G or (sj
a, sj

b) ∈ GS or both, then T(G1, G2) is the minimal possible set. But we can find

a sub-graph G3 of G2 where T(G1, G2) = T(G1, G3) by removing the extra edges which do not

have any discriminative secret pairs that belong to the security graph. Then, G1 and G2 are not

neighbors.
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For the case where G1 and G2 differ by only one edge e(i, j), and we have (si
x, si

y) ∈ GS or

(sj
a, sj

b) ∈ GS or both, then T(G1, G2) is minimal and there is no feasible intermediate database.

Only in this remaining case G1 and G2 are neighbors.

3.3 .7 Blowfish with individualized security graphs

We consider the possibility that different individuals may have different security graphs. For

example, we can divide the users into two extreme sub-groups: VIP and Standard. The

discriminative secret graph for a VIP user is complete (i.e. full protection) or attribute-based.

The discriminative secret graph for a standard user has 0 edges (i.e. null protection).

The application of Theorem 1 to the case where standard nodes’ security graph is Gempty
S

and VIP nodes’ security graph is Gattr
S can be explained as follows. Take two communication

graphs that differ by only one edge:

• Case I: If the vertices of the edge are standard nodes, then T(G1, G2) = ∅ and the two

graphs are not neighbors.

• Case II: If one of the vertices is VIP and the other is standard, then the size of T is 1 and

the two graphs are neighbors.

• Case III: If the vertices of the edge are two VIP nodes, then the size of T is 2 and the two

graphs are neighbors. Any intermediate database that makes | T |= 1 is infeasible.

3.3 .8 Blowfish with double security graphs

In the previous subsection, we focused on VIP nodes having security graph, while Standard

nodes are left with no protection.But, Standard nodes might need some level of protection even

if it’s less than the VIP nodes protection. Thus, in this subsection, we propose using a security

graph for each type of nodes, i.e., Full Policy for VIP and Attribute Policy for Standard.

Let TVIP and TSTD be the sets of discriminative pairs under the policies applied on VIP and

Standard nodes respectively. The two graphs G1 and G2 are neighbors under Duo Policy of

Blowfish Privacy if:

1. they both comply to the constraints,

2. TVIP ̸= ∅, TSTD ̸= ∅

3. TVIP ∪ TSTD has the smallest size,it means that each of the two sets has a size of 1.

Theorem 2. Given a communication graph G(V, E), its database/matrix representation M(G) and

the policy P(T , GSVIP , GSSTD , IQ), where T represents all binary vectors of size |V|, GSVIP and GSSTD

represent the overall graph of discriminative secret graphs for the VIP and Standard nodes respectively,

and IQ constrains the possible databases to have: (1) ∀i ̸= j, Mi,j = Mj,i = 0 or Mi,j = Mj,i = 1 and
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(2) ∀i, Mi,i = 0. If GSVIP = Gfull
S and GSSTD = Gattr

S or GSVIP and GSSTD are non-empty subsets of Gfull
S

and Gattr
S respectively, we have that: Two graphs G1 and G2 are neighbors, i.e., (G1, G2) ∈ N(P), if they

differ by

• one or more edges that form the ego network of one and only one node z, we have (sz
a, sz

b) (where a

and b differ at the bit t and t is a node connected to z in G1 or G2) is in the security graph G f ull
S .

• in addition to one edge e(i, j) = e(j, i) connecting two Standard nodes and for at least one vertex

of the edge (either i or j) the discriminative secret pair (si
x, si

y) (where x and y differ at the bit j) or

(sj
a, sj

b) (where a and b differ at the bit i) is in the security graph Gattr
S .

Bob

Alice

Eve

Carol

id tuple
Bob (0, 0, 1, 1)
Alice (0, 0, 1, 0)
Eve (1, 1, 0, 1)
Carol (1, 0, 1, 0)

Bob

Alice

Eve

Carol

id tuple
Bob (0, 1, 0, 1)
Alice (1, 0, 1, 0)
Eve (0, 1, 0, 0)
Carol (1, 0, 1, 0)

Figure 17: Two neighboring graphs and their corresponding databases. The ego
network of Bob has changed, and Bob has a Gfull

S policy.

In Figure 17, we consider Bob as a VIP node and the three others as Standards. We consider

two policies to protect these graphs, the Full Policy for VIP nodes and Attribute Policy for

Standard nodes. The two graphs shown are neighbors because just one ego network of a VIP

node (Bob) has changed and one edge between two Standard nodes (Carol-Eve) has changed.

Take two communication graphs that differ by only one ego network of vVIP0 and one edge

edist connecting vSTD0 to another node:

• Case I: If the node edist connects vSTD0 to a VIP node other than vVIP0 , than two VIP ego

networks are changed, | TVIP |= 2 then the two graphs are not neighbors.

• Case II: If the node edist connects vSTD0 to vVIP0 , in other words, just the ego network of

vVIP0 has changed, | TVIP |= 1 and | TSTD |= 0, then the two graphs are not neighbors.

• Case III: If the node edist connects vSTD0 to another Standard node, | TVIP |= 1 and

| TSTD |= 1, then the two graphs are neighbors.

3.3 .9 Global Sensitivities of graph queries and measures

To apply Blowfish privacy given a query or a function f over the protected database D, one has

to determine first the global sensitivity [54] of f , based on the privacy policy P = (T , GS, IQ):

S( f , P) = max
(D1,D2)∈N(P)

|| f (D1)− f (D2)||1
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Once the global sensitivity S( f , P) is identified, outputting f (D)+ η ensures (ϵ, P)-Blowfish

privacy if η ∈ Rd is a vector of independent random numbers drawn from Lap(S( f , P)/ϵ).

3.3 .9.1 Histogram graph queries

In the coming examples, we compute the global sensitivity of four histogram queries to compare

their values under Full and Attribute policies, and in flat graph and graph containing VIP and

Standard nodes.

3.3 .9.1.1 Example 1: Complete histogram query for degrees of vertices

Under Pattr, two graphs G1 and G2 are neighbors if G2 = G1 ∪ {e}. Assume DV = dv1, ..., dv|DV|

is the set of all possible degrees for the vertices in these graphs.

If the edge e is added between node a having degree dvi and node b with degree dvj, i ̸= j,

then the count of dvi and dvj will decrease each by 1 while dvi+1 and dvj+1 will increase each by

1, as shown in Figure 18.

If the edge e is added between two nodes both having the same degree dvi, then the count

of dvi will decrease by 2 and dvi+1 will increase by 2, as shown in Figure 19.

Taking both cases into account, the global sensitivity is S( fcomplete, Pattr) = 4.

Under Pfull, two graphs G1 and G2 are neighbors if they differ by the ego network of one

vertex. In the worst case, the vertex passes from degree 0 to degree n− 1, where n is the number

of vertices in the graph. All the other vertices have their degrees shifted by +1. In total, 2n bins

are affected and the sensitivity is 2n.

Bob

Alice

Eve

Carol

Bob

Alice

Eve

Carol

degree 0 1 2 3 0 1 2 3
count 1 2 1 0 0 3 0 1
cumulative count 1 3 4 4 0 3 3 4

Figure 18: Counts and cumulative counts of node degree for graphs G1 and G2, the
added edge e connects two nodes of different degrees.

Bob

Alice

Eve

Carol

Bob

Alice

Eve

Carol

degree 2 3 2 3
count 2 2 0 4
cumulative count 2 4 0 4

Figure 19: Counts and cumulative counts of node degree for graphs G1 and G2, the
added edge e connects two nodes of the same degree.
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3.3 .9.1.2 Example 2: Cumulative histogram query for degrees of vertices

Under Pattr, adding edge e between two nodes a of degree dvi and b of degree dvj decreases the

cumulative count of dvi (respectively dvj) by 1, yet the cumulative count of dvi+1 (respectively

dvj+1) stays unchanged, as shown in Figure 18.

Adding edge e between two nodes of the same degree dvi decreases the cumulative count

of dvi by 2, yet the cumulative count of dvi+1 stays unchanged, as shown in Figure 19. In both

cases, the global sensitivity of a cumulative histogram query is S( fcumulative, Pattr) = 2.

Under Pfull and a worst case scenario, n vertices change their degrees and move from one

bin to another, however the receptive bin does not change its count. The sensitivity is n.

3.3 .9.1.3 Example 3: Histogram of degrees of vertices for standard nodes

In this exercise, we divide the communication graph vertices into two groups: VIP nodes and

standard nodes. The discriminative secret graph for a VIP node is built as follows: There is

no edge between two tuples if they differ by more than one attribute (i.e. Gattr
S ). In addition,

we consider only attributes that belong to a VIP vertex. Two tuples differing by an attribute

corresponding to a standard node are not connected in the discriminative secret graph. We

denote this set of secret pairs: Sattr,VIP
pairs .

Consider the following query: "Histogram of degrees of vertices for standard nodes". To

compute their sensitivity we examine the three cases:

1. the edge we add/remove is between two VIP nodes: nothing will change in the histogram

of the query,

2. the edge we add/remove is between one VIP node and one standard node: one of the

bins in the histogram will decrease by 1 and its right-hand neighbor will increase by 1, as

we can see in Figure 20 where we count the degrees of just the standard nodes,

3. the edge we add/remove is between two standard nodes. This edge does not correspond

to a secret pair. It means that this case will not occur for two neighbor graphs and can

therefore be ignored.

It follows that the sensitivity of this query under Sattr,VIP
pairs is only 2. The sensitivity is reduced

by 50% in comparison to the full histogram query. By limiting the privacy focus to the VIP

nodes, we gain in terms of utility for queries over the standard nodes.

3.3 .9.1.4 Example 4: Histogram of the number of connections between VIP nodes and

standard nodes

A similar query is the "Histogram of the number of connections between a VIP node and

standard nodes" or "Histogram of the number of connections between a standard node and VIP

nodes" . To compute their sensitivity we examine the three cases:

1. the edge we add/remove is between two VIP nodes: nothing will change in the query’s

result,
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Figure 20: Example of changes in histogram of degrees of vertices for standard nodes.

Figure 21: Example of changes in histogram of the number of connections between VIP
nodes and standard nodes.

2. the edge we add/remove is between one VIP node and one standard node: two of the

bins in the histogram will vary by ±1, as we can see in Figure 21 where we take into

consideration just the inter-group edges,

3. the edge we add/remove is between two standard nodes. This edge does not correspond

to a secret pair and does not change the query result in the same time.

The sensitivity of these queries under Sattr,VIP
pairs is 2.

These queries are useful in a graph where the standard nodes are the members of a

company’s support team and the VIP nodes are the customers. The calls between a support

team member and the customers are the target. We aim to study, for example, if a load balancing

strategy works well, or how many clients a support member is serving in average. At the same

time, we are protecting the privacy of the customers.

3.3 .9.2 Global and Local Clustering Coefficient

The clustering coefficient is a major descriptive statistics and one of the most important

properties in graphs. It quantifies how well connected are the neighbors of the nodes in

the graph. In this subsection we will compute the global sensitivity for three types of clustering

coefficient.
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Bob

Alice

Eve

Carol

(a) First case.

Bob

Alice

Eve

Carol

(b) Second case.

Cases T1
∆ T2

∆ ∆T∆ T1
3 T2

3 ∆T3

First 1 2 1 3 3 0
Second 0 2 2 1 3 1

Figure 22: Two cases for G1 and G2 as neighbors under Pdistance.

3.3 .9.2.1 Local clustering coefficient

This coefficient is the likelihood that the neighbours of vVIP are connected between each others.

Let vVIP be the only VIP node in a graph G1 while all other nodes are labeled as standard. Let

lcc(vVIP) be the proportion of neighbors of vVIP that are also connected to each other.

lcc(vVIP) =
T∆(vVIP)

T3(vVIP)

where T∆(vVIP) is the number of triangles formed by vVIP and two of its neighbors, and

T3(vVIP) is the number of triplets in which node vVIP is the middle node.

Therefore, we propose an attribute policy where the tuples of the discriminative graph

represent the relation between the vVIP and all other nodes. In case the attribute indicates that

the node is a neighbor of vVIP, then sub-attributes exist to represent the relation between this

neighbor and all other neighbors. Two tuples are discriminative secrets pair if just one of their

attributes or sub-attributes are different. By making the relation between vVIP and its neighbors

a secret, we are protecting the real value of T3(vVIP). In addition, by making also the relation

between neighbors a secret, we are protecting the real value of T∆(vVIP).

Let G1 and G2 = G1 ∪ {edist} be two graphs that have one VIP node each and differ in

one edge edist. G1 and G2 are neighbors, if edist connects vVIP to another node, or connects two

neighbors of vVIP.

Because we have two cases for distinct edge edist between G1 and G2, then we have to

compute the sensitivity of each case. In the first case, where edist connects two neighbors nodes

of vVIP, the number of triplets T1
3 in G1 and T2

3 in G2 are similar while the number of triangles

increments by 1.

S( flcc, Pattr)1 =
∣∣ T2

∆

T2
3
− T1

∆

T1
3

∣∣
=
∣∣ T1

∆ + 1
T1

3
− T1

∆

T1
3

∣∣
=

1
T1

3
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In Figure 22, in the first case where node Bob is the VIP node and edge(Carol, Eve) is

the distinct edge between G1 and G2, we can see that ∆T∆ is 1 and T1
3 = T2

3 = 3, then

S( flcc, Pattr)1 =
1
3

.

In the second case, edist connects vVIP to a standard node. It means that the degree and the

number of triplets for vVIP will increment between G1 and G2. When adding edist to vVIP, this

new edge will form a new triplet with each of the other adjacent edge connected to vVIP. Then,

by adding one edge, the number of triplets will increment by deg where deg is the degree of

vVIP in G1. Thus, T2
3 = T1

3 + deg.

On another hand, the number of new triangles created by adding edist that connects vVIP to

vstd is the number of common neighbors Ncom(vstd) of vVIP and vstd. For example, in the second

case in Figure 22, where Bob is the VIP node and edge(Bob, Carol) is the distinct edge between

G1 and G2, Alice and Eve are two common neighbors for Bob and Carol, thus, T2
3 = T1

3 + 2.

Therefore, the sensitivity is:

S( flcc, Pattr)2 =
∣∣ T2

∆
T2

3
−

T1
∆

T1
3

∣∣
=
∣∣ T1

∆ + Nmaxcom

T1
3 + deg

−
T1

∆
T1

3

∣∣
(1)

where Nmaxcom = max
std=1,...,Ns

(Ncom(vstd)) and Ns is the number of standard nodes in G1 except the

number of vVIP neighbors.

In the second case of Figure 22, by applying the sensitivity on that example, we get

S( flcc, Pattr)2 =
0 + 2
1 + 2

− 0
1
=

2
3

.

Finally, as a result of having two sensitivities in two cases that differ by the type of nodes

connected by edist, the sensitivity of local clustering coefficient for a VIP node is:

S( flcc, Pattr) =

max(S( flcc, Pattr)1, S( flcc, Pattr)2)

To ensure that T1
3 is never equal to 0, the degree of vVIP should be greatest or equal to 2, as a

constraint Q applied on the communication graph.

3.3 .9.2.2 Global Clustering Coefficient

The global clustering coefficient gcc is the number of closed triplets (3×triangles) over the total

number of triplets (both open and closed).

gcc =
3× T∆

T3

where T∆ is the total number of triangles in the graph and T3 is the total number of triplets.

In this subsection, we compute the global sensitivity of average local clustering coefficient

of two neighbors graphs G1 and G2 = G1 ∪ {edist} under Attribute Policy Pattr. Adding or

removing an edge between two nodes vt and vz will affect the number of open and closed

triplets containing at least one of these nodes or one of their neighbors.
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vt, vz and each of their common neighbors represents an open triplet. By adding an edge

between vt and vz in G2, these open triplets turn into triangles. Therefore, The number of

triangles in G2 increments by Ncom(vt, vz), the number of common neighbors for vt and vz.

Each neighbor of just one of the two nodes vt and vz in G1 creates an open triplet, with

both of them, in G2. Thus, the number of triplets in G2 increases by Ndist(vt, vz) + Ndist(vz, vt),

the number of distinct neighbors for vt and vz in G1.

The difference in global clustering coefficient between G1 and G2, if edist = (vt, vz) is:∣∣ 3× T2
∆

T2
3
− 3× T1

∆

T1
3

∣∣=∣∣ 3× (T1
∆ + Ncom(vt, vz))

T1
3 + Ndist(vt, vz) + Ndist(vz, vt)

− 3× T1
∆

T1
3

∣∣ (2)

Therefore, the global sensitivity of global clustering coefficient in a graph under Full Policy is:

S( fgcc, Pfull) = max
t,z∈Edist

(∣∣ 3× (T1
∆ + Ncom(vt, vz))

T1
3 + Ndist(vt, vz) + Ndist(vz, vt)

− 3× T1
∆

T1
3

∣∣) (3)

where Edist is the set of all possible edges of edist, in other words, Edist is the set of nodes in G1

that don’t form an edge: ∀G1(V1, E1), Edist = {(vt, vz) /∈ E1 | vt, vz ∈ V1}.

3.3 .9.2.3 Average Local Clustering Coefficient

Adding or removing an edge between two nodes will affect their local clustering coefficient in

addition to their neighbors’. In this subsection, we compute the average local sensitivity of two

neighbors graphs G1 and G2 = G1 ∪ {edist}, relying on an attribute policy similar to the one

used in the Global Clustering Coefficient.

By adding one edge edist connecting vt and vz, the number of triangles for each of the

two nodes increased by Ncom(vt, vz), and the number of triplets for each of them increases by

Ndis(vt, vz) and Ndis(vz, vt) respectively.

The local clustering coefficients of the neighbors of vt and vz are also affected by edist. These

neighbors are two types, common and distinct neighbors. For each common neighbor, edist will

form a new triangle, while for a distinct neighbor, it will form a new open triplet. Therefore, by

adding this edge, the average local clustering coefficient will differ between G1 and G2 by:

∆alcc(vt, vz) =
1
N ×

(
| T1

∆+Ncom(vt,vz)

T1
3+Ndis(vt,vz)

− T1
∆

T1
3
|

+ | T1
∆+Ncom(vt,vz)

T1
3+Ndis(vz,vt)

− T1
∆

T1
3
| +Ncom(vt,vz)

T1
3

+
(
(Ndis(vt, vz) + Ndis(vz, vt))× (

T1
∆

T1
3+1 −

T1
∆

T1
3
)
))

(4)

where N is the number of nodes in the graph.

Finally, the global sensitivity of average local clustering coefficient is:

S( falcc, Pfull) = max
(vt,vz)∈Edist

∆alcc(vt, vz) (5)

Computing the sensitivities for a flat graph or for a graph containing VIP and Standard

nodes are similar but the number of nodes is reduced from N to NVIP. In the experiments,
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we extract subgraphs containing the VIP nodes, then we compute and compare the global

sensitivities of the complete graphs and the VIP subgraphs.

3.3 .9.3 Queries of shortest paths in graphs

We present in this subsection the calculations of global sensitivities for some shortest paths

queries which will help in calculating the sensitivities for some Centralities queries in the next

subsection.

3.3 .9.3.1 Length of shortest-paths of two VIP nodes

Let v1
VIP and v2

VIP be the only VIP nodes in a graph G1. The query in this example is to

compute the length between the two VIP nodes in the graph. We use an attribute policy

Pattr = (T , Gattr
S , IQ), where T is the universe of tuples containing attributes that represent

all the possible edges in the communication graph G1. Gattr
S = (V, E) where V = T and

every edge in E connects two tuples that have just one attribute flipped. In this way, we

ensure that G1 and G2 = G1 ∪ {edist} are always neighbors regardeless of the nodes connected

by edist. Let sp1(v1
VIP, v2

VIP) be the length of shortest-path between v1
VIP and v2

VIP in G1,

S( f 1
sp, Pattr) = sp1(v1

VIP, v2
VIP) − 1 because the largest possible reduction of shortest path

between v1
VIP and v2

VIP is realised by adding an edge connecting these two nodes which makes

their shortest-path equal to 1.

3.3 .9.3.2 Sum of Lengths of shortest-paths between all VIP nodes

In this example, the query is to compute the sum of lengths of shortest-paths between all the

VIP nodes. Under the same attribute policy Pattr defined in Subsection 3.3 .9.3.1 , the length of

shortest-path in G2 between two VIP nodes vt and vz is :

sp2(vt, vz) = min(sp1(vt, vz),

sp1(vt, vi) + sp1(vj, vz) + 1,

sp1(vt, vj) + sp1(vi, vz) + 1)

where sp1(vi, vj) is the length of shortest-path between vi and vj in G1 and edist connects vi and

vj in G2. The sensitivity of the query is:

S( f 2
sp, Pattr) = max

i,j=1,...,NVIP

(
∑NVIP−1

t=1

(
∑NVIP

z=t+1

(
sp1(vt, vz)− sp2(vt, vz)

)))

3.3 .9.4 Graph Centralities

In this subsection, we present the global sensitivities under Attribute Policy for some graph

centralities.
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3.3 .9.4.1 Farness and Closeness of v0 to other VIP nodes

Let G1 be a graph composed of VIP nodes, standard nodes and a node v0. The Farness of v0 is

to compute the sum of shortest-paths between v0 and all VIP nodes under Blowfish Privacy,

while the closeness is the reciprocal of the Farness. We compute the sensitivity of Farness and

Closeness for node v0 under the same policy in Subsection 3.3 .9.3.1 .

Let edist be (vi, vj), the length of shortest-path in G2 between v0 and vz is :

sp2(v0, vz) = min(sp1(v0, vz),

sp1(v0, vi) + sp1(vj, vz) + 1,

sp1(v0, vj) + sp1(vi, vz) + 1)

because sp2(vi, vj) = 1

Therefore the sensitivity of Farness under Pattr is:

S( f f arness, Pdistance)(v0) = max
i=1,...,NVIP−1

(
max

j=i+1,...,NVIP

(
∑NVIP

z=1

(
sp1(v0, vz)− sp2(v0, vz)

)))
where NVIP is the number of VIP nodes in G1 and sp1(vi, vi) = 0.

As closeness is the reciprocal of farness, then its sensitivity is the reciprocal of the minimal

sum of differences between lengths of shortest-paths in G1 and G2:

S( fcloseness, Pattr)(v0) =

(
min

i=1,...,NVIP−1(
min

j=i+1,...,NVIP

(
∑NVIP

z=1

(
sp1(v0, vz)− sp2(v0, vz)

))))−1

3.3 .9.4.2 Closeness Centrality for VIP nodes

In Subsection 3.3 .9.4.1 , we have found the sensitivity of closeness for one node v0. In this

subsection, we compute the sensitivity of closeness for each VIP node in the same way of

Subsection 3.3 .9.4.1 , then, the sensitivity of Closeness Centrality for VIP nodes in a graph G1

under Pattr is the maximum of all sensitivities of VIP nodes:

S( fcloseness_centrality, Pattr)(v0) =

max
m=1,...,NVIP

(S( fcloseness, Pattr)(vm))

3.3 .9.4.3 Graph Degree Centrality

The degree centrality of nodes could be extended to measure the degree centrality of the whole

graph known as the graph centralization. Let us say that G1 and G2 = G1 ∪ {edist} are neighbors

under an Attribute Policy Pattr. Let the query be to compute the graph centralization of G1

based on just the VIP nodes under Pattr. The formula of the graph centralization of G1 is

CD(G1) =
∑NVIP

i=1 [deg(v∗)− deg(vi)]

N2
VIP − 3NVIP + 2

(6)
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where v∗ is the VIP node with the highest degree.

To compute the global sensitivity, we have to find the case of largest possible difference

between CD(G1) and CD(G2). The denominators of the two centralizations are obviously the

same in all the cases because the number of VIP nodes does not change in the two neighbor

graphs. Thus, we will focus on the difference of their numerators. We can list four cases for edist:

• The two nodes of edist are standards, the degrees of VIP nodes are the same in both graphs.

Thus, CD(G1)− CD(G2) = 0.

• The two nodes of edist are both VIP (vi and vj but not v∗).

| CD(G1)− CD(G2) |=

| [2×deg(v∗)−deg(vi)−deg(vj)]−[2×deg(v∗)−(deg(vi)+1)−(deg(vj)+1)]
N2

VIP−3NVIP+2 |

= 2
N2

VIP−3NVIP+2

• edist connects a VIP node vi to a Standard node.

| CD(G1)− CD(G2) |=

| [deg(v∗)−deg(vi)]−[deg(v∗)−(deg(vi)+1)]
N2

VIP−3NVIP+2 |

= 1
N2

VIP−3NVIP+2

• edist connects v∗ to a VIP node vi.

| CD(G1)− CD(G2) |=

|
deg(v∗)−deg(vi)+∑

NVIP−1
j=1 [deg(v∗)−deg(vj)]

N2
VIP−3NVIP+2 −

(deg(v∗)+1)−(deg(vi)+1)+∑
NVIP−1
j=1 [(deg(v∗)+1)−deg(vj)]

N2
VIP−3NVIP+2 |

= NVIP−1
N2

VIP−3NVIP+2

• edist connects v∗ to a Standard node.

| CD(G1)− CD(G2) |=

| ∑
NVIP
j=1 [deg(v∗)−deg(vj)]

N2
VIP−3NVIP+2 −

∑
NVIP
j=1 [(deg(v∗)+1)−deg(vj)]

N2
VIP−3NVIP+2 |

= NVIP
N2

VIP−3NVIP+2
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Then edist produce the largest difference in centralization between the two neighbors when

it connects v∗ to a standard node. Therefore, the global sensitivity of graph centralization is

S( fcentralization, Pattr) =
NVIP

N2
VIP − 3NVIP + 2

(7)

3.3 .9.5 Efficiency

The efficiency measure is divided to three types [41]: nodal, local and global.

Nodal efficiency is a measure of the efficiency of information transfer between one VIP

node vt and all other VIPs.

Enodal =
1

NVIP − 1

NVIP−1

∑
z=1

1
sp(vt, vz)

(8)

Local Efficiency is a measure of the efficiency of information transfer for the VIP neighbors

Nnbg of vt, excluding vt.

Elocal =
1

Nnbg(Nnbg − 1)

Nnbg−1

∑
z=1

1
sp(vt, vz)

(9)

And finally Global Efficiency is a measure of the efficiency of information for all the pairs

of nodes on the graph and it represents an important measure for the robustness of the graph.

Eglobal =
2

NVIP(NVIP − 1)

NVIP−1

∑
t=1

NVIP

∑
z=t+1

1
sp(vt, vz)

(10)

Next we compute the difference between the three efficiencies of G1 and G2 = G1 ∪ {edist}.

∆Enodal(edist) =
1

NVIP

Ed

∑
z=1
| 1

sp1(vt, vz)
− 1

sp2(vt, vz)
| (11)

∆Elocal(edist) =
1

Nnbg(Nnbg − 1)

Ed

∑
z=1
| 1

sp1(vt, vz)
− 1

sp2(vt, vz)
| (12)

∆Eglobal(edist) =
2

NVIP(NVIP − 1)

|Ed |−1

∑
t=1

|Ed |

∑
z=t+1

| 1
sp1(vt, vz)

− 1
sp2(vt, vz)

| (13)

where Ed is the set of VIP pairs (t, z) having sp1(vt, vz) ̸= sp2(vt, vz). In other words, it is

the set of VIP pairs which their shortest paths in G2 pass by edist.

Thus, under Attribute Policy Pattr, the global sensitivity for any of these efficiencies is

S( fe f f iciency, Pattr) = max
edist∈Edist

∆E(edist) (14)

3.3 .10 Experiments and Results

In this section, we present the results of our experiments to evaluate the Blowfish Privacy on

graphs both in terms of utility and privacy. We compare Gattr
S and Gfull

S for histogram queries.

In addition, we show the utility of some queries under Gattr,VIP
S .
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Our experiments use three graph datasets collected from the music streaming service

Deezer (November 2017) [141]. These datasets represent the friendship Network of users from

Croatia (HR) of 54,573 nodes and 498,202 edges, Hungary (HU) of 47,538 nodes and 222,887

edges and Romania (RO) of 41,773 nodes and 125,826 edges.

3.3 .10.1 Mean Squared Error of Complete Histogram Queries

The Mean Squared Error (MSE) for complete histogram queries under Gattr
S and Gfull

S are:

EMLap
hPattr

(D) = bE[Laplace(4/ϵ)2] = 32b/ϵ2

EMLap
hPfull

(D) = bE[Laplace(2n/ϵ)2] = 8n2b/ϵ2

where n is the number of vertices and b is the number of bins. We empirically sample the MSE

of the complete histogram query for a given ϵ by generating the real histogram of each graph

(HR, HU, and RO) and k noisy versions. We compute the MSE of the noisy versions as follows:

MSE(H, Hϵ) =
b

∑
i=1

meank[(H(i)− Hϵ(i))2]

where H is the original histogram and and Hϵ is its ϵ-noisy version. We choose ten epsilon

values: 0.1, 0.2, . . . , 1. The number of bins b is equal to 421, 113 and 113 for the graphs HR, HU

and RO respectively. The results are shown in Figure 23 under Gfull
S and in Figure 24 under Gattr

S .

Gfull
S has null utility whereas for Gattr

S we expect the standard deviation per bin to be around 32

to 56 (depending on ϵ). Using coarser bins may reduce this error by decreasing b.

3.3 .10.2 Mean Squared Error of Cumulative Histogram Queries

The MSE for cumulative histogram queries under Gattr
S and Gfull

S are:

EMLap
hPattr

(D) = bE(Laplace(2/ϵ))2 = 8b/ϵ2

EMLap
hPfull

(D) = bE(Laplace(n/ϵ))2 = 2n2b/ϵ2

The difference in MSE under Gfull
S and Gattr

S is also clear for cumulative histogram queries

as shown in Figure 25 and Figure 26.

3.3 .10.3 Simulating sensitivity results

In this experiment, we sample neighbors of our input graphs and compute the difference in the

values of the histogram queries. We compare the obtained values with our derived sensitivity

formulas. We sample the sensitivity values for our input graphs as follows:

1. take an input graph,

2. compute its histogram query H,

3. take a vertex at random,
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Figure 23: MSE of complete histogram
queries under Full Policy (k = 10).

Figure 24: MSE of complete histogram
queries under Attribute Policy (k = 10).

Figure 25: MSE of cumulative histogram
queries under Full Policy (k = 10).

Figure 26: MSE of cumulative histogram
queries under Attribute Policy (k = 10).

4. randomly change the ego network of the vertex for Gfull, change the value of only one

edge for Gattr,

5. compute the histogram query for the obtained graph H′,

6. compute the L1-norm ||H − H′||1,

7. repeat starting at (c),

8. take max ||H − H′||1 and compare to the corresponding sensitivity: 2n for Gfull and just 4

for Gattr
S ,

9. repeat starting at (a),

Different strategies can be adopted to change the ego network under Gfull:

• Take-out: The chosen vertex is taken out by removing all its connections similarly to

node-based differential privacy.
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Figure 27: Simulation of complete his-
togram queries under Full Policy.

Figure 28: Simulation of cumulative
histogram queries under Full Policy.

• Random Ego Network: The chosen vertex samples a Bernoulli distribution with

predefined probability p to decide on linking to each node in the graph (we take p = 0.5).

• Flipped Ego Network: The chosen vertex deletes all its neighbors and connects to all

non-neighbors.

We apply the above strategies to the complete histogram queries and vertices of different

degrees. The results are shown in Figure 27. In addition we show the derived sensitivity formula

and the worst case take-out difference (2× (degv + 1)). It is clear that Gfull
S is unreasonably

pessimistic about the sensitivity of complete histograms queries. We can gain more utility

by deriving more specific discriminative secret graphs (based on the strategy of ego network

manipulation) or adding constraints and auxiliary knowledge to the policy. For instance, it is

unreasonable that a single node would be connected to all the other nodes in the graph.

Similar experiments for the cumulative histogram queries are shown in 28. In contrast,

random and flipped ego network values are very close to the derived sensitivity formula.

3.3 .10.4 Extrapolation of queries under Gattr,VIP
S

We have shown that limiting privacy to some VIP nodes provides utility for queries such

as "Histogram of degrees of vertices for standard nodes" and "Histogram of the number of

connections between a VIP node and standard nodes". In this experiment, we show that

these queries can be exploited to estimate information about the complete graph. For instance,

the histogram of degrees of vertices for standard nodes can be extrapolated to estimate the

histogram of degrees of vertices for all the nodes. The histogram of the number of connections

between a VIP node and standard nodes can be extrapolated to estimate the histogram of

degrees of VIP nodes, and so on.

The histogram of degrees of vertices for standard nodes can be extrapolated as follows:

Hall nodes(i) = H(i)standard ×
100

100−%VIP
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Figure 29: MSE of extrapolation for complete histogram queries under VIP/Standard
partition.

The mean squared error of the extrapolated histogram query compared to the complete

histogram query is shown in Figure 29. Naturally, the error depends on the ratio of the number

of VIP nodes to the total number of vertices in the graph.

78



SUBCHAPTER 3.3.4

Blowfish Privacy for subgraphs

protection in dynamic graphs

3.4 .1 Introduction

In this subpart,we present our second privacy-preserving technique for graphs dedicated for

dynamic ones. Our technique consists of sequentially releasing anonymized versions of these

graphs under Blowfish Privacy. To do so, we introduce a graph model that is augmented with a

time dimension and sampled at discrete time steps. We have shown in the Introduction section

that the direct application of state-of-the-art privacy-preserving Differential Private techniques

is weak against background knowledge attacker models. We have presented different scenarios

where randomizing separate releases independently is vulnerable to correlation attacks. Our

method is inspired by Differential Privacy (DP) and its extension Blowfish Privacy (BP). To

validate it, we show its effectiveness as well as its utility by experimental simulations.

3.4 .2 Preliminary Definitions

Definition 1. A simple graph G is undirected and defined in a given time frame by a set of vertices and

a set of edges: G(V, E, [ti, ti+1]) where:

• V is the set of vertices V ⊂ V representing all the users in the time frame [ti, ti+1] (While V
represents all the vertices in all the versions).

• E is the set of edges E ⊂ V ×V representing interactions between the users in V during the time

frame [ti, ti+1]. We consider only two states: interaction and no interaction. An edge is assigned

to two vertices (representing two individuals) if they are interacting during the ith time frame.

• [ti, ti+1] is the ith time interval (i = 0, 1, ..., N)

The definition can be used for the anonymized graph G∗(V∗, E∗, [ti, ti+1]). ■

For example, the first graph in Figure 30a is a simple undirected graph with a set of seven

vertices, a set of six edges, and a time interval defined as Day 1.
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(a) Three simple undirected graphs (G1, G2, G3) and
their respective union GU .

(b) A logical matrixM.

Figure 30: An example of the Union graph G∪ and logical matrix.

Definition 2. Let G be a set of graphs to be released in distinct time frames, G = {G1, ..., Gn}. Let

SG be a subgraph of G where ∃G ∈ G such that SG ⊆ G. We define the logical matrixM whose row

and column indices indicate the elements of SG and G. M[SGi][Gj] =Mij represents the status of

subgraph SGi in the graph Gj, where

Mij =

0 if SGi ⊈ Gj

1 if SGi ⊆ Gj

(1)

In what follows, we will useMij to denoteM[SGi][Gj]. ■

Several subgraphs were sampled from the Union graph in Figure 30a and were represented

as the rows of the matrix in Figure 30b. The columns of the matrix represent the graphs of the

three days, and each element represents the existence of the subgraph in the graph.

The notations in this paper are summarized in Table 7.

Symbol Description Symbol Description
T Domain of all possible tuples GS Discriminative secret graph
G∪ Union graph of the set of graphs G G Undirected simple graph
V Set of nodes in G E Set of edges in G

[ti, ti+1] ith time interval G∗ Anonymized version of G
G Set of graphs to be released Mn×m Logical matrix of size n×m
M∗ Anonymized version ofM SG Sampled subgraph from G

f Operation on logical matrixM S Range of outputs
p, q Probabilities g Operation on a set of graphs G

δ′
Rate of subgraph in G that does
not reflect their values inM∗ IQ

Set of databases that are
possible under the constraints Q

Table 7: Notations and descriptions
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Figure 31: MatrixM and three of its possible neighbors.

3.4 .3 BP Mechanism For Sequentially Releasing

Graph Datasets

DP provides reliable privacy in a single graph [35, 77]. However, it has severe limitations when

graphs are sequentially released [81] in different time frames. The problem appears when the

Background Knowledge can be linked to correlated or sensitive subgraphs in G. Hence, the

adversary will tie his/her background knowledge to a complete subgraph instead of separated

edges or vertices in G. Here, we propose a new layer of privacy-preserving approach. It

is neither edge-DP nor node-DP, considering that we are not protecting separated edges or

vertices but a combination of them in the form of subgraphs. We propose a robust privacy-

preserving operation on the logical matrixM represented by the graphs in G and the correlated

(or sensitive) sampled subgraphs. In this way, we can determine the noise as many subgraphs

are suppressed or added from/to the graphs in G.

Before we elaborate more about our privacy-preserving mechanism, we define first how

two logical matricesM andM′ can be considered as neighbors.

Definition 3 (Neighboring Matrices). We say that two matricesM andM′ are neighbors if:

1. M,M′ ∈ IQ, which means that both respect the constraints mentioned in Subsection 2.2.

2. M,M′ differ by just one binary element: ∃!i ∈ {0, ..., n}, j ∈ {0, ..., m} | Mij ̸=M′
ij where n

is the number of graphs in the dataset and m is the number of sampled subgraphs.■

For example, in Figure 31, we check the neighboring between M and the three other

matrices. If we have the following constraint Q that "No column in any published matrix could

be formed by just 1s."M andM′ could not be neighbors because the second column ofM′

violates the constraint, thenM′ /∈ IQ. M andM′′ are not neighbors because they differ by

more than one element, whileM andM′′′ are neighbors because both of them respects the

constraint and they differ by just one element.

Figure 32 shows the input and the output of the privacy-preserving operation applied to

the logical matrixM.

Lemma 1. Let f be an operation on the logical matrixM, we say that f (M) is Differential Private (or

f is ϵ-DP) if it respects the inequation:

Pr[ f (M) = S] ≤ eϵ × Pr[ f (M′) = S]

81



3. Differential and Blowfish Privacy for social networks

Figure 32: An anonymization opera-
tion applied on a logical matrix results
a noisy logical matrix.

Figure 33: Two flips performed by g
where the first flip was cancelled by
the second one.

whereM andM′ are two neighbors matrices, S is one possible output of the operation f , ϵ is a privacy

parameter.

The output of f (M) is a matrixM∗ related toM by the equation

f (Mij) =M∗
ij =

Mij with probability q = 1
eϵ+1

Mij with probability p = 1− q = eϵ

eϵ+1

(1)

whereMij is the opposed binary value ofMij and p > q.

Proof. Let’s say that we have two neighboring matrices M and M′ that differ by only one

elementMij ̸=M′
ij. Let S be an output matrix of the operation f .

Pr[ f (M) = S ]
Pr[ f (M′) = S ] =

Pr[M11 → S11]× ...× Pr[Mnm → Snm]

Pr[M′
11 → S11]× ...× Pr[M′

nm → Snm]

=
Pr[Mij → Sij]

Pr[M′
ij → Sij]

(2)

Then, to prove that f is ϵ-DP using the inequation Pr[ f (M)=S ]
Pr[ f (M′)=S ] ≤ eϵ, we have to prove that

Pr[Mij→Sij]

Pr[M′
ij→Sij]

≤ eϵ. Each ofMij,M′
ij and Sij can have two values 0 and 1. In case,Mij = M′

ij

then Pr[Mij→Sij]

Pr[M′
ij→Sij]

= 1 ≤ eϵ. The four other cases to compute are:

• Pr[1→1]
Pr[0→1] =

p
q =

eϵ

1+eϵ

1
1+eϵ

= eϵ

• Pr[0→1]
Pr[1→1] =

q
p = 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr[1→0]
Pr[0→0] =

q
p = 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr[0→0]
Pr[1→0] =

p
q = eϵ

In the four cases, the operation respects the inequation, which proves that f is ϵ-DP.

3.4 .3.1 Achieving the mechanism f in G

This section discusses how to populate the binary flips of the values in the logical matrix in

their corresponding set of graphs G. We also evaluate how these flips may affect the privacy of
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our proposed mechanism. In the implementation, these flips are achieved by suppressing or

adding edges in G. We notice that this might affect the ability of the mechanism to achieve DP.

The flips made by the operation f have two types:

• 0 −→ 1: here, the element inM is 0 (which means that the subgraph does not exist in the

corresponding original graph) but has been flipped to 1 inM∗ (the subgraph exists in

the correspondent anonymized graph). All the missed edges of the subgraph should be

added to perform this modification in the anonymized graph.

• 1 −→ 0: here, the element in M is 1 (which means that the subgraph exists in the

corresponding original graph) but has been flipped to 0 inM∗ (the subgraph does not

exist in the correspondent anonymized graph). One or more edges should be deleted

from the subgraph to perform this modification in the anonymized graph.

Let g be the operation that implements the flips made by f (M) in G. g cannot guarantee a

full projection of the flips in G. A possible scenario to explain this drawback in privacy is when

the same edge should remain in a subgraph while it should be deleted in another subgraph

in the same graph. Then, it is obvious that it is not possible to implement in the graphs all

the modifications done on the matrix. In Figure 33 for example, to perform the first flip, the

operation g deletes the edge (1, 4). For the second flip, the operation adds the two edges (1, 4)

and (1, 5); thus, the second flip cancels the effect of the first flip, and then the final status of

the subgraph in the second flip is similar to its status before the flip. In this way, the privacy

guarantee provided by f could be reduced when applying g on the graphs. In other words, after

releasing G, an adversary may create a matrixMadv that might represent the real status of the

subgraphs more accurately thanM∗. That is the effect of g on the privacy guarantee. Thus, the

implementation cannot provide the desired privacy guarantee provided by the operation of f .

Still, it can offer a relaxed guarantee called (ϵ, δ)- BP, where ϵ is a privacy parameter provided

by the data owner and δ is the relaxation parameter of the privacy definition.

In the next subsection, we will discuss in detail the privacy guarantee. However, this

discussion cannot be reliable if we do not define the implementation steps first. As we have

explained, the purpose of the implementation is to populate the flips in the graphs. We can list

four types of these flips:

• 0 −→ 0: an element 0 in the matrixM remains 0 in the noisy matrixM∗.

• 0 −→ 1: an element 0 in the matrixM is flipped to 1 in the noisy matrixM∗.

• 1 −→ 0: an element 1 in the matrixM is flipped to 0 in the noisy matrixM∗.

• 1 −→ 1: an element 1 in the matrixM remains 1 in the noisy matrixM∗.

Because the implementation of a flip can cancel the effects of some previous implemen-

tations, we can assume that the ones performed initially have a higher probability of being

canceled than those performed at the end. A random implementation of the flips will make

impossible to compute the level of privacy provided by the implementation and to define the
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relaxation parameter δ. Therefore, two possible orders can be applied. If we are interested in

preserving the subgraphs that should exist in G, the steps are as follows:

1. Remove at least one edge from each subgraph represented by 1 inM and 0 inM∗.

2. Ensure that all the subgraphs represented by 1 inM andM∗ remain in the graphs after

Step (1). In other words, if any edge removed in Step (1) leads to the removal of a subgraph

represented by 1 in the matrix, this edge should be re-added.

3. Add all the missing edges for the subgraphs represented by 0 inM and 1 inM∗.

In this way, we guarantee that all the subgraphs represented by 1 in the matrixM∗ will exist in

the released version of G. Also, we may find in the set some subgraphs that should not exist.

Whilst, if we are interested in guaranteeing that all the subgraphs represented by 0 inM∗ do

not exist in the released version of G, then the order need to be reversed as follows:

1. Add all the missing edges for the subgraphs represented by 0 inM and 1 inM∗.

2. Ensure that all the subgraphs represented by 0 inM andM∗ do not exist in the graphs

after Step (1).

3. Remove one or more edges from each subgraph represented by 1 inM and 0 inM∗.

By following this order, the set is clean from all undesirable subgraphs, but it may also

miss some subgraphs that should appear in G.

3.4 .3.2 Toward a BP mechanism

After explaining the operation f and its reliable privacy guarantee as well as the drawbacks

of implementing g in the privacy domain, we will determine the implementation’s privacy

guarantee in this subsection.

Lemma 2. Let δ′ be the rate of subgraphs in G that does not reflect their values inM∗. Let G, G ′ and S
be three sets of graphs where G and G ′ are two neighboring sets that differ in just one sampled subgraph

and S is a possible output of g applied on G and G ′. g respects the inequation

Pr[g(G) = S] ≤ eϵ.Pr[g(G ′) = S] + δ (3)

if

δ′ ≤ δ

eϵ − 1
(4)

Proof. To prove the Lemma 2, we have to prove that:

Pr[g(G) = S ]− δ

Pr[g(G ′) = S ] ≤ eϵ (5)
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The left-hand side part of the inequation can be written in the following way:

Pr[g(M11) = S11]× ...× Pr[g(Mnm) = Snm]− δ

Pr[g(M′
11) = S11]× ...× Pr[g(M′

nm) = Snm]

Let SGdi f be the only subgraph that differs between G and G ′. The status of SGdi f in G,G ′

and S can be indicated by the binary valuesMij,M′
ij and Sij. Then, the above fraction can be

reduced to:

Pr[g(Mij) = Sij]

Pr[g(M′
ij) = Sij]

− δ

Pr[g(M′
11) = S11]× ...× Pr[g(M′

nm) = Snm]

All the probabilities are less than or equal to 1. Thus:

Pr[g(M′
11) = S11]× ...× Pr[g(M′

nm) = Snm] ≤ Pr[g(M′
ij) = Sij]

Consequently, we can assume that

Pr[g(Mij)=Sij]

Pr[g(M′ij)=Sij]
− δ

Pr[g(M′11)=S11]×...×Pr[g(M′nm)=Snm]
≤

Pr[g(Mij)=Sij]

Pr[g(M′ij)=Sij]
− δ

Pr[g(M′ij)=Sij]

which leads to
Pr[g(G) = S ]− δ

Pr[g(G ′) = S ] ≤
Pr[g(Mij) = Sij]− δ

Pr[g(M′
ij) = Sij]

≤ eϵ

Therefore, to prove the Inequation 5, it is enough to prove that

Pr[g(Mij) = Sij]− δ

Pr[g(M′
ij) = Sij]

≤ eϵ (6)

To continue our proof, we have to find all possible values of these probabilities. In this step of

the proof, we can see the importance of the orders in the second stage. We will continue this

proof based on the first order listed, but the second order will also lead to the same final result.

We can list four possible values to the probabilities in Equation 6:

• Case 1: Pr[1→ 0] is the probability that f flips the binary value in the matrix. Nevertheless,

because these flips are performed at first by the operation g, based on the first order,

then there is a probability δ′ that the following flip will cancel the current one, thus:

Pr[1→ 0] = q− δ′.

• Case 2: Pr[0→ 0] is the probability that f doesn’t flip the value. But some following flips

performed by g may cause the appearance of the subgraph in G, thus: Pr[0→ 0] = p− δ′.

• Case 3: Pr[1 → 1] is the probability that f doesn’t flip the value. Based on the order of

flips in g, all the upcoming flips will be performed by adding edges so that no flip can

cause the drop of this subgraph from G, thus: Pr[1→ 1] = p.

• Case 4: Pr[0→ 1] is the probability that f flips the binary value in the matrix. In this case

too, no further flip could drop this subgraph, thus: Pr[0→ 1] = q.
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In this way, we have computed the four possible values for the probability. The next step is

to show that by using any two of these values in Equation 6, the result remains lesser than eϵ:

• Pr[1→1]−δ
Pr[0→1] = p−δ

q ≤
p
q = eϵ

• Pr[0→1]−δ
Pr[1→1] = q−δ

p ≤
q
p = 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr[1→0]−δ
Pr[0→0] = q−δ′−δ

p−δ′ ≤
q
p if:

p(q− δ′ − δ) ≤q(p− δ′)

pδ′ + pδ ≥qδ′

δ ≥δ′ × q− p
p

(7)

q− p ≤ 0 and δ ≥ 0, then the Inequation 7 is always true, thus:
Pr[1→0]−δ

Pr[0→0] ≤
q
p = 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr[0→0]−δ
Pr[1→0] = p−δ′−δ

q−δ′ ≤
p
q if:

q(p− δ′ − δ) ≤p(q− δ′)

qδ′ + qδ ≥pδ′

δ ≥δ′ × p− q
q

(8)

Then, the only inequation that should be verified to ensure that G can be released under

(ϵ, δ)-BP is: δ′ ≤ δ× q
p−q . By substituting p and q by their values, we get:

δ′ ≤ δ

eϵ − 1

Theorem 3. Let g be the operation that implements the flips made by f (M) in G, we say that g is

(ϵ, δ)-BP if there exists a policy P = (T , GS, IQ) that applies on G and composed of the Universe T , the

discriminative secret graph GS and IQ that denotes all the possible G under the constraints Q.

Proof. T contains all the possible graphs from the anonymized version of the set G. GS =

(VS, ES) is a discriminative secret graph where VS = T and eS ∈ ES connects two vertices that

should be indistinguishable for the public. In this work, eS will connect any two vertices of GS

that represent two graphs that differ by just one subgraph sampled in our mechanism. Two

graphs that differ by one or more edges but resemble in all the sampled subgraphs do not

form a discriminative pair. They might be distinguishable, and the two vertices representing

them in GS are not connected by an edge eS. Therefore, the discriminative secret graph GS is

not complete. In other words, ES is the set of edges that connects two vertices representing a

difference in the status of one or more sampled subgraphs. By proving that our mechanism’s
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discriminative secret graph is not complete, we have demonstrated that our mechanism does

not respect the DP definition requirements.

We can assume that our mechanism is under the Attribute version of BP. The Attribute

Definition in BP describes a mechanism that aims to hide any changes made to any attribute in

a set of tuples, which is literally what we aim to do by protecting any modifications done to the

element of the matrixM by manipulating the existence and non-existence of its corresponding

subgraph in the released set of graphs.

Finally, the constraint Q is related to the Inequation 4: δ′ ≤ δ
eϵ−1 beside any constraint

provided by the data owner. Therefore, if G respects this inequation, then G ⊂ IQ.■

By proving that g respects:

• the BP Inequation in Equation 3,

• a well defined Policy P,

we have proved that the mechanism is (ϵ, δ)-BP.

3.4 .4 Anonymization Algorithm

This section details our mechanism by applying the Blowfish Privacy for sequentially releasing

graphs discussed in the previous section.

Figure 34: Process Diagram.

The process is depicted in Figure 34. To note that we should possess all the graphs before

starting the anonymization process. To proceed, we sample a number of subgraphs from a

Union Graph G∪, based on some criteria. For example, in our implementations, we will focus
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on the high correlated subgraphs. These are the subgraphs that exist in the most graphs in

the set of graphs G: a subgraph that exists in 90% of graphs has a much higher possibility

of being sampled than a subgraph that exists in 50% of the graphs. Based on these sampled

subgraphs, we create a matrixM, as in Figure 30b, with binary attributes showing the status

of each subgraph in each graph. Then, we apply the flipping probability to the values of

the attributes. In this section, we will adapt the first order of implementation explained in

Subsection 3.4 .3.1; for this reason, all the 1 −→ 0 flips should be performed first by suppressing

the edge that occurs the least in the sampled subgraphs to minimize the effect of this flip on

other subgraphs. When all the 1 −→ 0 flips are performed, the 0 −→ 1 flips are applied by

adding all the subgraph’s missing edges. If all the required flips are completed, we can start to

release the noisy graphs.

In summary, our proposed mechanism is composed of these steps:

1. Sampling a number of subgraphs of K vertices.

2. Creating a matrix that represents the existence of the sampled subgraphs in each graph of

the set.

3. Applying the operation f by anonymizing the matrix under the requirements of

Differential Privacy.

4. Applying the operation g by adding/suppressing edges in the set of graphs.

In the following subsection, we will propose an algorithm to apply the operation and the

implementation.

3.4 .4.1 Applying The Algorithm

The list of sampled subgraphs is converted into a matrixM, as explained in the Definition 2.

M will be subject to the flipping operation f , as in Figure 32 where the binary output of the

algorithm relies on the probabilities p and q shown in Lemma 1.

The main algorithm takes as input the original set of graphs G, a number of subgraphs

that we estimate representing the Background Knowledge or Public Knowledge of this set, and

the probability p. The output is the noisy version of the set G∗. The algorithm adapts the first

order explained in Subsection 3.4 .3.1, which focuses on well representing the 1s of the matrix

M∗ in the released graphs. In step 1, we sample a number of subgraphs based on the data

provided by the Union Graph G∪ and the set of Background Knowledge subgraphs. Each edge

in G∪ contains data concerning the graphs where this edge exists. In the second step, the logical

matrixMn×m is created where each row represents a subgraph, and each column represents a

graph of G and each binary valueMij represents the existence of subgraph SGi in graph Gj.

In steps 3-7, the algorithm creates the noisy matrixM∗ by applying the function Flip. This

function takes a binary value and a probability of p as input; it generates a random number of

rnd between 0 and 1; if rnd is higher than p, then the binary value is flipped.
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Algorithm 1: Main Algorithm
Require: G, {SGBK}, p
Ensure: G∗
{SG1, ..., SGn} ← SampleSG(G∪, {SGBK})
Mn×m ← BuildLogicalMatrix(G, {SG})
for i← 1 to n do

for j← 1 to m do
M∗

ij ← Flip(Mij, p)
end for

end for
G∗ = G
for i← 1 to n do

for j← 1 to m do
ifMij == 1 & M∗

ij == 0 then
G∗i ← DropSG(SGi, G∗j )

end if
end for

end for
for i← 1 to n do

for j← 1 to m do
ifM∗

ij == 1 then
G∗i ← AddSG(SGi, G∗j )

end if
end for

end for

1: function FLIP(val, p)
2: rnd := random(0, 1)
3: if rnd ≤ p then
4: val∗ := val
5: else
6: if val :== 0 then
7: val∗ := 1
8: else
9: val∗ := 0

10: end if
11: end if

return val∗

12: end function

In steps 9-15, the algorithm drops all the subgraphs that should be deleted based on the

flipping process. While in steps 16- 22, the algorithm adds the corresponding subgraphs, even

if these subgraphs are already in the original graph because steps 9-15 might have caused the

drop of some of these subgraphs unintentionally.

AddSG searches for all the edges that should be in the subgraph SGi and adds all of

these edges that do not exist in the graph G∗j . While the DropSG function sorts all the

edges of SGi, then deletes the one having the least weight in the Union Graph G∪. The

edges’ weight is calculated while creating the Union Graph based on the required type of

the subgraphs’ sampling, for example, sampling the high correlated subgraphs or the least
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correlated subgraphs.

In is important to note that before releasing, we have to compute δ′ = FaultSg
n×m where FaultSg

is the number of subgraphs in G that doesn’t reflex their binary values inM∗ and n×m is the

number of elements inM∗.

Finally, we have to verify the Inequation 4. In case the inequation is verified, then it is

safe to release the graphs under the guarantee of (ϵ, δ)-BP. Otherwise, the mechanism must be

re-executed, or the data owner may decide to increase the relaxation parameter δ.

3.4 .4.2 Discussion

In this subsection, we will discuss three issues. The first one is: Is it possible to have a different

result by re-executing the mechanism without changing any of the inputs ϵ, δ, and K? Actually,

yes, it is possible. Any BP or DP algorithms are called a randomized algorithm which means.

They employ a degree of randomness as part of their logic. In our case, the two probabilities

p and q are concerned with this randomness. The value of these probabilities will remain the

same as the ϵ is not changed. However, even if the probabilities and the original matrix did

not change, each value in this matrix is subjected to a flip with a probability of q. The group of

subgraphs that should be flipped and the rate of subgraphs in this group that will not be flipped

practically because of other flips, as explained in Subsection 3.4 .3.1 and especially in Figure 33,

cannot be controlled by the mechanism. Therefore, if δ′ is not respecting the Inequation 4, then

maybe a re-execution will fix the problem. However, if many re-executions did not help, this is

an indicator that the relaxation parameter δ provided by the data owner is very small for this

dataset and should be increased.

The second issue is about how n the number of sampled subgraphs may impact the result.

Any increase in the number of sampled subgraphs means more manipulation in the edges. That

is because the number of subgraphs that should be added or removed will increase, leading to

a big increase in the added edges and a smaller increase in the removed edges, especially if we

are removing just one edge for each subgraph. Overall, the rise in the value of n will lead to

more privacy and less utility.

The third issue is why we have chosen to remove just one edge from each subgraph that

should be dropped. In Figure 33, we have explained how deleting one edge may effect a

subgraph that should be added but does not exist in the final result. When deleting two or

more edges from each subgraph, the possibility of this impact increases, so the rate δ′. Hence,

the possibility that the Inequation 4 is not respected becomes higher, forcing the data owner to

re-execute the mechanism or increase the relaxation parameter δ.
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function ADDSG(SGi, G∗j )
for each edge e in SGi do

if e not in G∗j then
add(e) to G∗j

end if
end for
return G∗j

end function

function DROPSG(SGi, G∗j )
Sort all edges of SGi based on
their weights in G∪
#G∪ = G1 ∪ G2 ∪ ...∪ Gn
emin := edge of SGi with
minimum weight
drop(emin) from G∗j

return G∗j
end function

3.4 .5 Experiments

This section will present our experiments’ results to evaluate our approach both in terms of

utility and privacy. We implement our algorithm in Python on the "Autonomous Systems

AS-733" dataset [90, 91] containing 733 releases, 6474 vertices, and 13895 edges in the largest

release, and we conducted experiments on an Intel Core i7 2.4 GHz PC with 8GB RAM.

As well as our algorithm, we will apply an edge-DP algorithm called TmF [125] that adds

noise to each graph without considering the correlations. We will compare the results of both

algorithms based on many privacy and utility measures.

3.4 .5.1 Trade-off Between Privacy and Utility

When applying DP or BP mechanisms, one of the data owners’ issues is choosing the privacy

parameters to set an acceptable trade-off between privacy and utility. This subsection proposes

a method for the data owners applying our mechanism and the TmF mechanism to choose ϵ.

The values we have used for the privacy parameter ϵ of our algorithm are: 0.1, 0.2, 0.5

and 1. The TmF mechanism has two privacy parameters ϵ1 and ϵ2. In [125], they fix the value

of ϵ2 = 0.1, while ϵ1 is related to the number of nodes | V |: ϵ1 = coe f × ln(| V |), where

coe f = 1, 2 and 3. In our work, we add also the value 0.5 to the values of coe f .

In this subsection, we use the confusion matrix as a method for the data owners to choose

ϵ for our BP mechanism and ϵ1 for the TmF mechanism. We extract a number of subgraphs

from each original graph and project them on original and private versions of the graph to find

isomorphic subgraphs. We compare the number of subgraphs found in all the versions and

compute the ratio of:

• True Positive: Subgraphs that appear in both original and released versions.

• False Positive: Subgraphs appear in the released version but do not exist in the original

one.

• True Negative: Subgraphs that exist neither in the original graph nor in the released one.

• False Negative: Subgraphs that exist in the original graph but do not appear in the

released one.
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Figure 35: Confusion matrix for sampled subgraphs in every graph and its noisy
versions based on K (number of vertices for each subgraph) and privacy parameter.

In Figure 45, we consider the percentage of True Positive and True Negative as the ratio

of utility, while the rate of False Positive and False Negative isis the ratio of privacy. It is up

to the data owners to choose the privacy parameter based on how much privacy they want

in their released graphs. For the BP mechanism, increasing ϵ means more utility and less

privacy. Increasing coe f for ϵ1 in the TmF mechanism also leads to less privacy, but this drop in

privacy is quicker than the decline in the BP mechanism. We can then say that our mechanism

maintains a more balanced trade-off between privacy and utility than TmF while changing each

mechanism’s privacy parameters.

3.4 .5.2 Measuring Privacy

In these experiments, we are focusing on protecting the high correlated subgraphs. By high

correlated, we mean the subgraphs that frequently appear in the original graphs. Therefore, we

have sampled 1000 high correlated subgraphs. We consider the scenario that an adversary has

generated the Intersection graph from our released graphs. Then we compare the percentage of

these 1000 subgraphs that appear in the Intersection graphs generated from the released graphs

under our mechanism and TmF mechanism. Higher numbers mean more high correlated

subgraphs are not protected.

Figure 36 shows that the percentages of high correlated subgraphs that our mechanism

failed to protect in the Intersection of the released graphs are much smaller than these of the

TmF mechanism. It also shows that increasing the number of nodes in the sampled subgraphs

from 3 to 5 leads to a smaller portion. The reason is that a higher number of nodes in a subgraph

means a higher number of edges, which increases the possibility that one of these edges is

removed in the Intersection, which is enough to consider this subgraph as protected.
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(a) Our BP mechanism (b) TmF mechanism
Figure 36: Percentage of sampled high correlated subgraphs unprotected in Intersection
graphs.

Also, in Figure 36, we can notice that a higher ϵ increases the percentage of failure for both

algorithms and the three K values. That is reasonable because having a higher ϵ means that the

value of probability p has increased. In contrast, the value of q has decreased, which leads to a

decline in the number of flips. Therefore an rise in the number of unprotected subgraphs can be

predictable.

3.4 .5.3 Kullback–Leibler Divergence for Union and Intersection Graphs

In this subsection, we use Kullback–Leibler (KL) Divergence to compare the distributions of

degrees of nodes between the Union of the original graphs and the Union of the released graphs

under our mechanism and TmF mechanism. We generate the Union of the original graphs then

the Union of the released graphs. Each edge in these Unions is weighted by the number of

times it appears in the graphs. For example, an edge that appears in 35 graphs, its weight in the

Union is 35. We create two lists of edges W∪ containing all the edges and their weights in the

original Union and W ′∪ for the edges of the Union of released graphs.

DKL(W ′∪ ||W∪) =| ∑
e∈EW′∪

W ′∪[e]× log
W ′∪[e]
W∪[e]

| (1)

where EW ′∪ are all the edges listed in list W ′∪ and W ′∪[e] is the weight of edge e.

For the second KL Divergence, we generate the weighted Intersections of the original and

the released graphs. Then we create two lists W∩ and W ′∩ containing the edges that appear in

at least one of the two Intersections. The weight of each edge in W∩ is the number of times it

appears in the original graphs, while its weight in W ′∪ is the number of times it appears in the

released graphs.

DKL(W ′∩ ||W∩) =| ∑
e∈EW′∩

W ′∩[e]× log
W ′∩[e]
W∩[e]

| (2)

In Figure 37a, KL Divergence of Union graphs under the TmF mechanism is much higher

than those under the BP mechanism for K = 3, 4, and 5. That is because TmF adds and removes

a large number of edges all over each graph, and all these manipulations affect the Union graphs,
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(a) Union graphs (b) Intersection graphs
Figure 37: KL Divergence for Union and Intersection graphs. (The above values in
horizontal axis are the values of ϵ for our algorithm. The bottom values represent coe f
for TmF mechanism.)

leading to this high KL Divergence for TmF. On the other hand, our mechanism focuses on

manipulating the edges that create high correlated subgraphs. All other edges are not affected

by our algorithm; hence, the KL Divergence under our mechanism is much smaller than the KL

divergence of TmF.

In Figure 37b, we see that KL Divergence for TmF is smaller than KL Divergence for our

algorithm. This chart proves the motivation for this work. As we have explained, using a DP

mechanism on sequentially released graphs will cause the injection of much noise, as shown in

Figure 37a. Still, most of the noise disappears when generating the released graphs’ Intersection,

which may lead to a serious privacy breach.

We also notice from the two charts in Figure 37 that a higher K leads to a higher KL

Divergence, which means more privacy and less utility. It can be explained as a result of adding

a high number of edges for each sampled subgraph that should be added to K = 5 nodes, for

example, compared to K = 3.

3.4 .5.4 Centrality Measures

The majority of the studies on social networks focus on extracting the most important

individuals (vertices) in the network. We will prove that the effect of our mechanism on

the list of most important individuals is negligible.

To find the most important individuals, we study the centrality of the vertices, and

according to the purpose of each study, we choose the type of centrality measures. Linton C.

Freeman said in 1978 [59]: "There is certainly no unanimity on exactly what centrality is or

on its conceptual foundations, and there is little agreement on the proper procedure for its

measurement," which is still true today. However, we can define it as a measurement of the

extent to which an individual interacts with other individuals in the network. We compare the

100 most important nodes of the original graphs, the BP version, and the TmF version based on

four centralities:

• Degree: It is the number of vertices at a distance one for each vertex. In our case, where
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the graph is a simple undirected graph, we can define the degree simply as the number

of edges connected to each vertex. The degree centrality [27] of a vertex v is defined as

CD = deg(v). In many social studies, people with the most connections are the most

important individuals in the network.

• Farness: The farness of a node v is the sum of all shortest-paths of v to all other nodes.

The closeness [128] is the reciprocal of the farness : C(v) =
1

∑y d(y, v)
where d(y, v) is the

distance between vertices v and y. In this case, the most important vertices are the closest

ones to all other nodes. Thus, we can rely on these individuals to spread information to

all other nodes sequentially.

• Betweenness[6]: This centrality quantifies the number of times a vertex occurs on a

geodesic; in other words, it is the number of times a vertex appears in the shortest path

between two other nodes.

This centrality was proposed by Freeman [58], and his idea was that actors who exist

between other individuals might control the interactions between these individuals. Then,

this centrality quantifies the control of a vertex on the communication of other vertices.

Therefore, in this case, the most important individuals have a high probability of occurring

in the shortest path of two vertices randomly chosen.

The betweenness centrality of vertex v is defined as CB(v) = ∑i<j
spij(v)

spij
where spij is the

number of shortest paths between vertices i and j, and spij(v) is the number of shortest

paths between vertices i and j that pass through v.

• Eigenvector [26]: This centrality measures the influence of the vertex in the graph. It

depends on the number and the quality of the connections. Therefore, a vertex v1, with

number of connections less than a vertex v2, may outrank v2 if the quality of its connections

is higher. The centrality score of vertex v can be defined as: xv = ∑i∈N(v) xi = ∑i Avixi

where N(v) is a set of the neighboring nodes of v, A is the non-negative adjacency matrix

of the graph.

The main idea of releasing multiple graphs sequentially instead of releasing just one graph

is to improve the utility of the released data. For this reason, we compare the 100 most important

nodes between each graph and its released versions to measure each graph’s utility instead

of just the Union and the Intersection graphs. Then we count the common nodes in these 100

nodes to determine the number of most important nodes unaffected by the anonymization

mechanism.

In Figure 38, we compute the mean of the common nodes counts for all the graphs in each

release. We consider this mean as a measure of utility for the set of released graphs. The number

of common important nodes of our algorithm for K = 3, 4, and 5 are incredibly close; then, we

choose to use the number of common important nodes for just K = 4. Figure 38a shows that

our algorithm highly preserves the most important nodes. Approximately more than 90% of

the most important nodes are preserved in our algorithm’s released graphs. While in Figure
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(a) BP algorithm (b) TmF algorithm
Figure 38: Number of common nodes for the 100 most important nodes based on four
centralities.

38b, we see that the algorithm does not preserve most of the important nodes, especially for

coe f = 0.5. That changes when coe f increases, but in most cases, our utility is still much higher

than the utility provided by TmF. We can explain that difference in utility due to focusing just on

manipulating the edges related to particular subgraphs (in our experiments, the high correlated

subgraphs) we aim to protect, while the TmF mechanism is manipulating edges all over the

graph.
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SUBCHAPTER 3.3.5

Differential Privacy for Active Attacks

on Dynamic Graphs

3.5 .1 Introduction

Graphs are data that abstract a number of nodes (individuals, servers, routers,...) and the

relations between them called edges. Dynamic graphs, also called multi-released or sequentially

released graphs are even more valuable than static ones. A static graph shows the relation

between many individuals in a community as several edges presenting the fact that, for example,

at least one call has taken place between two of the individuals in a month. Instead, in a dynamic

graph, we show this relation daily for a month. In other words, in this case, the dynamic graph

is presenting 30 static graphs. Dynamic graphs represent more accurate data than statics’, but

with each progress, the challenges grow.

Static graphs already have many privacy issues that should be taken into consideration

before sharing the graphs. These issues rise and become more complex in the dynamic graphs.

Actually, in our previous subpart, we have treated one of these threats in dynamic graphs.

In that subpart, we have discussed the scenario of an adversary taking advantage of the

multiple graphs released by creating the Intersection and the Union graph of these graphs to

expose some relations between individuals that should remain confidential. We have focused

on protecting the subgraphs with high occurrences or very low occurrences in the set of released

graphs. We have proved that edge-Differential Privacy, a technique based on adding and

removing some edges from the original graph, cannot provide the desired protection to these

subgraphs.

We have proposed a three steps solution based on Blowfish Privacy, an extension of

Differential Privacy. The first step required sampling of the subgraphs that we aim to protect in

the set of graphs. In the second step, we create a table, every row represents one of the sampled

subgraphs, and every column represents one of the graphs in the set. Each cell is filled by 1,

if the subgraph of that row exists in the graph of that column, or 0 otherwise. We proposed a

probability under Blowfish Privacy to flip some of these cells from 0 to 1 or vice versa. The third

step consists of applying in the graphs the changes that occurred in the second step. This step is

done by adding the missed edges for the flips from 0 to 1. Then to remove some edges for the
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subgraphs that have flipped from 1 to 0.

Dealing with active attacks becomes more complicated in online dynamic graphs than

offline ones and much more challenging than in static graphs. This subpart proposes a technique

to protect the individuals in online dynamic graphs exposed to active attacks. Our approach

is based on the idea of Hypergraph, where a Hypernode called Detention Node will hide the

nodes suspected of being Sybil by applying a catch and release mechanism based on Differential

Privacy.

3.5 .2 Preliminaries

A dynamic or sequentially released graph G is composed of a set of static graphs {G1, G2, ..., Gi}
where each static graph Gi = {Vi, Ei} is composed of a number of nodes Vi and edges Ei

representing the connections between the nodes. Gi is dedicated to the connections that take

place in the time interval [ti−1, ti], for this reason, it doesn’t show any node that didn’t exist

before the timestamp ti. It’s also important to mention that each node has a unique id that

doesn’t change between Gi and Gi+1.

3.5 .3 Active Attack on Sequentially Released Graphs

Passive attacks wait for the release of the anonymized graph and benefit from two types of

knowledge to breach the privacy of individuals in the dataset. The first type is the auxiliary

or the background knowledge. It’s based on information known by the adversary about

one or more individuals in the graph. For example, if we know that a traveler arrived

yesterday to the town and on a dynamic published graph representing the town residents

and their communications, one new node was added. We are sure that it represents this traveler.

The second type is foreground knowledge, where the adversary performs some data science

techniques to extract some information to breach the privacy of individuals by linking them to

their representative nodes and find more about their connection with other individuals. For

example, we notice that a high percentage of nodes that appear for a short period in the graph

then disappear have created relationships with a specific node. We can analyze that these nodes

are tourists and the particular node is Alex, the touristic guide in the town. Now that we have

found him in the graph, we focus more and more on background and foreground knowledge

about him to reveal more about his personal and professional life.

Meanwhile, the first step of the active attacks is performed even before the data owner

generates the original graph representing the community. The adversary creates fake accounts

or identities in the community to be presented in the graph. Then, they benefit from these

nodes, called Sybil nodes, to connect to some victims and explore their nodes in the graph to

find out more about their relations with other individuals.

Therefore, they create their own foreground knowledge in the original dataset, try to

retrieve it from the published dataset, and then use it to reveal the real identity of the victims.
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In this subpart, we focus on defending the individuals against the active attack on dynamic

graphs formed of three steps which were highly inspired from [36] with some modifications.

The first step is creating Sybil subgraphs where the attacker inserts a small number of nodes in

several releases. By that process, a tempo-structural pattern is created relating each Sybil node

to a specific release. S = {S1, S2, ..., Sn} is the set of Sybil nodes forming one of the subgraphs

injected by the adversary. Each Si has two important characteristics: the first release r(Si) = Gj

in which Si was injected and a set of degrees of Si representing its degree in each graph from its

first appearance till the current graph: Deg(Si) = {degj(Si), degj+1(Si), ..., degc(Si)} where j is

the index of the graph where Si was included for the first time and c is the index of the current

graph. These two characteristics are crucial to start the second step of the attack.

To make the second step easier, it’s also important to have a mechanism to set the edges

between the nodes in the Sybil subgraph called inter-Sybil connection. In [17], they suggest to

include an edge between Si and Si+1 then to include with probability 0.5 between Si and all

other nodes in the Sybil subgraph. The standard results in random graph theory [25] imply that

this form of subgraphs, with high probability, has no non-trivial automorphism. In other words,

each Sybil node in this subgraph has a different characteristic from the other Sybil nodes, and it

won’t be confused with other nodes in the subgraph.

Sybil subgraph retrieval is the second step where the adversary tries to identify the Sybil

subgraph in the released versions of the graphs. The adversary profits from their knowledge

about the characteristics of the Sybil nodes and the structure of the subgraphs to retrieve them.

First, a Sybil node Si is chosen, then the adversary collects all the possible candidate nodes in

the published graph that could be the actual Si. We assume that a node x in Gc is a candidate to

be the Sybil node Si if:

• r(x) ≥ r(Si). In [36], the two first appearances should be in the same graph. Still, we

are considering the possibility that the data owner could apply a privacy-preserving

mechanism that might hide the new node for some releases before allowing its appearance

to make it harder for the adversary to assume the original graph where this node was

included for the first time.

• the set of degrees Deg(x) should be close to Deg(Si) where, for example, for the current

graph, degc(Si)− θ ≤ degc(x) ≤ degc(Si) + θ, where θ is a tolerance threshold. And the

same condition should be true for all other degrees existing in Deg(x).

x and all other nodes that fit these two conditions form a set of candidates XSi =

{x1
Si

, ..., xm
Si
}.

The second part of this step extends each candidate from a single node to a subgraph

until just one candidate subgraph resembles the Sybil one. Therefore, we can assume that this

candidate is the real Sybil subgraph.

Using a Breadth-First-Search or Depth-First-Search techniques, we can list in Syblist all the

nodes in the Sybil graph starting from Si (The Sybil node chosen in the first part of this step).

Let S2
i be the second Sybil node in Syblist. Each candidate x in XSi should have at least one node
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in its ego network that fulfills the two conditions listed in the first part when compared to S2
i .

In this case, x and its neighbor form a candidate subgraph in XSi . If more than one neighbor

fulfills the conditions, then x will form a candidate subgraph with each of these neighbors. If

none of these neighbors fulfill the conditions, then x is removed from XS2
i
. For each other Sybil

node in Syblist, each subgraph candidate is extended or removed in the same way, but with

one more condition. For S4
i , for example, the extended subgraph should form an isomorphic

subgraph to the one formed by S1
i , S2

i , S3
i and S4

i . After the last node in Syblist, the candidate

graphs have the same number of nodes as the Sybil graph. If just one candidate graph remains

in Syblist, then this is considered as the Sybil graph. If more than one remains, more Sybil nodes

are required to be injected in the coming graphs, and the same process is applied until one

candidate remains. The third and last possibility is when all the subgraph candidates failed to

resemble the Sybil subgraph. In this case, the adversary should increase the value of θ. In this

way, more subgraphs will be considered candidates, increasing the possibility of finding the

Sybil one.

When the Sybil subgraph is retrieved, the adversary could initiate the third step. This

step aims to link individuals that the adversary knows they exist in the dataset to their actual

nodes. It uses the Sybil subgraph to attack several individuals by contacting them using the fake

accounts that form the Sybil subgraphs. One or more Sybil nodes reach each victim, and a set of

candidate victim nodes is created. After each release, this set is updated until the adversary has

complete confidence that a specific node represents the individual victim.

3.5 .4 Node-Detention Differential Privacy

This section represents our solution for protecting the graph from Sybil nodes using the same

example of the traveler in the pandemic era. Thus, the first question is when the traveler can

get into the plane to travel to our country? Approaches as SybilGuard, SybilLimit, and some

similar ones, even if his PCR result is positive or he is from a high-risk country, he is allowed to

get on the plane and enter the country. Still, they provide a platform for their citizens listing

the new arrivals with positive results from high-risk areas and urge their citizens to stay far

from them. Edge-DP also lets the traveler control his connections by deciding who can meet

and who is forbidden to meet. Anyway, for the two previous approaches, the infected traveler

has entered society and presents a health risk.

For this reason, node-DP has suggested a much more strict solution. Any person from a

high-risk area or who has positive results will be forbidden to enter the country. This approach

represents high protection for society but has many drawbacks. What if the traveler is a citizen

and wants to return to his country from his country of residence? What if he’s a doctor or a

nurse that will help to fight Covid? What if he’s a businessman that will help the economy of

the country in this pandemic? This last solution provides a high level of protection but in many

cases also presents a significant loss for the economic, health, or touristic sectors and a legal

challenge for the authorities by banning a fellow citizen from entering his own country.

The solution for us is simple. We prepare quarantine facilities that accommodate any
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traveler with a positive PCR or coming from a high-risk area. His exit from these facilities is

decided based on his new PCR results and the number of days he has been quarantined. Getting

out of these facilities doesn’t mean he will never come back. Whenever the health authorities

have some suspicions about him because someone from his surroundings was infected or was

in a place at the same time with a covid patient, he will be required to do a new PCR test.

If it’s positive, all his relatives, close friends, and co-workers must do the test. All the

infected are quarantined in the facilities. The others must stay at home for a while till we are

entirely sure they are Covid free.

When we are confident that this quarantined group gets rid of Covid, they are free to leave

the facilities and their home.

That’s very similar, with tiny differences, to our idea of dealing with new nodes in each

graph that are suspicious of being Sybil nodes. We create a hyper node that we call the detention

node vDET where nodes could be hidden where some of their characteristics are suspicious. A

probability Pcatch computed under DP is used to decide if the new node vi will be hidden or not

in a published graph G∗j . If Pcatch is higher than a threshold θcatch than vi is hidden inside vDET.

If vi has been hidden in graph G∗j , then for G∗j+1, a probability Prelease is computed based on

three parameters:

• the suspicions about the characteristics vi in graph Gj+1,

• the quality of the connections: having more connections to suspects give vi increase the

suspicions about vi,

• the ¨criminal record¨ of vi.

In the next section, while proposing a mechanism to apply our approach, we give a possible

definition of suspicions and ¨criminal record¨ based on many features.

Let’s say vi was released, but new suspicions have been raised in a graph Gt. If Pcatch−gang is

higher than θcatch−gang, vi should be hidden in G∗t . Let’s say vi is a Sybil node, and the adversary

makes an extreme move via v− i as connecting to a very high number of nodes to identify that

vi is their Sybil node. If vi was the only node that appears in G∗t−1 and is hidden in G∗t , therefore

the adversary can be sure that vi is a Sybil node.

For this reason, when Pcatch−gang(vi) > θcatch−gang, we check if vi is related to a gang of k

nodes than all the k nodes are hidden. If not, the mechanism should choose k− 1 suspicious

nodes unrelated to any other gang and group with vi. The gang members should be hidden or

on probation, hiding their ids but letting them be visible in the published graph G∗t .

In future graphs, if Prelease−gang of each hidden member of the gang is higher than

θrelease−gang, then the whole gang is released.

The crucial difference between our technique and node-DP is that, in the latter, when a

node is deleted, all its edges are also deleted. Thus, the ego network and the degree of all its

neighbor nodes are affected. In our approach, the only edges that are hidden are those linking

the nodes inside vDET. All the edges connecting the hidden node vi with a free node v f appear
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as linking v f with the detention node vDET without the possibility for the public of specifying

the corresponding node inside vDET.

Figure 39: The types of nodes and edges

From here, we can list four types of nodes:

• Detention node vDET is a special type of hyper node that could hold many nodes inside

of it. The id, the number, and the edges connecting these nodes are hidden. We have just

one detention node in every released graph.

• Hidden node is a node hidden inside the vDET so the public cannot see it.

• Free node is the normal node that the public can see.

• On-probation node is the same as a free node, but its id is hidden from the public.

The types of nodes implies that we can also list three types of edges:

• Free edge is an edge between two free nodes: e(vi, vj) ∈ E f if vi, vj /∈ vDET where E f is

the set of free edges.

• Semi-free edge is an edge between a free and a hidden node. The public can see that the

edge is linking a free node to the detention node but cannot know the Id of the hidden

node: e(vi, vj) ∈ Es f if just one of vi and vj is in vDET where Es f is the set of semi-free

edges.

• Hidden edge is an edge hidden from the public linking two hidden nodes: e(vi, vj) ∈ Eh

if vi, vj ∈ vDET where Eh is the set of hidden edges.

Our approach aims to ensure a high level of uncertainty for the adversary when trying to

re-identify the Sybil nodes in the published graphs. When adding a new node to a graph Gj,

it’s uncertain in which published graph it will appear for the first time. Even after releasing

the new nodes, they could be hidden again whenever they are suspicious so that the adversary

couldn’t have more than 1/k confidence about which node is the Sybil one.
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Figure 40: Two neighbor graphs G1 and G2 differing by just Node 8.

3.5 .4.1 Neighbor Graphs in Node-Detention Differential Privacy

As we can see in Figure 40, we consider that two graphs are neighbors if one node differs by

being free in one of the graphs and hidden in the other one. Let G1 be the graph where Node 8

is free, and G2 be the graph where Node 8 is hidden.

Definition 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs where V1 = V2 and E1 = E2. Let

V1 = Vh1 ∪Vf 1 and V2 = Vh2 ∪Vf 2 where Vh1 and Vf 1 (Vh2 and Vf 2) are the set of the hidden nodes and

free nodes respectively in G1 (in G2). And Vh1 ∩Vf 1 = Vh2 ∩Vf 2 = ∅. The two graphs are neighbors if

and only if

Vf 1∆Vf 2 = Vh1∆Vh2 = {vd}

In other words, in the two neighboring graphs, one and only one node differs between the

sets of hidden nodes between the first and the second graph, and it’s the same node that differs

between the set of free nodes also.

3.5 .4.2 Global Sensitivity of Node-Detention Differential Privacy

The most critical advantage NDDP has over node-DP is the relatively low global sensitivity.

The global sensitivity computes the maximum number of edges that could be affected by

adding or removing one element from the graph. In this way, we have an indicator of the noise

needed to cover the affected edges.

In edge-DP, the concerned element is an edge. Then it’s evident that the number of

affected edges is just one. While for the node-DP, the concerned element is a node. By adding or

removing a node, the number of affected edges is related to the degree of this node. For example,

if we add a node with a degree of 15, then 15 edges were added to the graph. In the worst-case

scenario, we add a node with the highest possible degree, which is the number of nodes in the

graph beside the new node. The global sensitivity for Node-DP is ∆ fnode−DP =| V | −1.

In NDDP, the concerned element, the same as node-DP, but instead of adding or removing

the node and affecting all its edges, we just hide it, and the only edges that are completely

hidden with the node are thus relating it to other hidden nodes. In this way, the maximum

number of edges affected is related to the number of hidden nodes in the graph instead of the

total number of nodes.

In Figure 40, the only edges that were hidden from the public by hiding Node 8 in G2 are

those linking Node 8 to hidden nodes. Then the maximal difference in the number of hidden

103



3. Differential and Blowfish Privacy for social networks

edges between the two neighbors is the number of hidden nodes in the graph where Node 8 is

free. In our example, the global sensitivity of NDDP is 2, while global sensitivity of node-DP

would be the highest possible degree of Node 8, which is 7.

In general, global sensitivity of NDDP could be computed by considering two neighbor

graphs G1 and G2. The node that differ between these two graph is vdi f , which is free in G1 and

hidden in G2. In a worst-case scenario, vdi f is connected to all the hidden nodes in G1 and their

number is | Vh1 |.
In G2, vdi f is hidden, thus, | Vh2 |=| Vh1 | +1. And all its edges connected to other hidden

nodes are also hiddens. In the worst-case scenario, the number of these edges is | Vh1 | and

that’s the global sensitivity.

Therefore, to compute the global sensitivity, having two neighbor graphs G1 and G2, we

focus on the graph where vdi f is free; it’s the graph with the lowest number of hidden nodes.

The global sensitivity is the maximum possible number of edges between vdi f and the hidden

nodes; in other words, it’s the number of hidden nodes in that graph.

For this reason, the global sensitivity of NDDP is

∆ fNDDP = min(| Vh1 |, | Vh2 |)

while that of node-DP is | V | −1 which is, usually, much higher than min(| Vh1 |, | Vh2 |). On

the other side, the global sensitivity of edge-DP is indeed very low. Still, we have explained in

the Related Work section how edge-DP could not prevent Sybil nodes from being injected into

the graph and forming a threat to the privacy of the individuals.

3.5 .5 Discussion

3.5 .5.1 Adding Edge-Differential Privacy

As we have explained in the Subsection 3.2.5.3 and Table 2, edge-DP cannot by itself protect the

individuals in an online dynamic graph. It’s because a Sybil node will be allowed to appear

in the published graph whenever the adversary injected it, and then adding some noise to

its original degree might not be enough to prevent the adversary from retrieving it with high

confidence.

While our approach is detected to this type of protection, we notice that the only edges

affected by our algorithm are those connecting two hidden nodes, and the edges connecting

a free node to a hidden node are partially affected. Therefore, the adversary is entirely sure

that an edge relating to two free nodes in the published version is a real edge. In addition, the

degree of any free node is also the real degree of that node. When a node has all its neighbors

free, the adversary fully exposes this neighbor list.

For this reason, we recommend using our approach with any edge-DP mechanism that

adopts a non-interactive approach (a mechanism that returns a noisy graph instead of a noisy

query result).
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The composite theorem [55] gives us the possibility of dividing the privacy parameter

ϵ into ϵ1 and ϵ2. ϵ1 for the mechanism intending in manipulating the edges and ϵ2 for our

mechanism. In that way, the anonymization procedure is considered (ϵ1, ϵ2)-NNDP.

3.5 .6 A Mechanism of Node-Detention Differential Privacy

This section proposes a mechanism to apply the NDDP, relying mainly on the exponential

mechanism. When a graph has one or more new nodes, the mechanism should decide which

nodes will be published and which will be hidden in the detention node.

The exponential mechanism, as we have explained in the Background section, relies on

three parameters: the privacy parameter ϵ provided by the data owner, the quality score q that

we will compute for each step of our mechanism in this section, and finally the global sensitivity

GS based on the quality scores.

Before computing these two parameters, we should notice that the adversary doesn’t know

the characteristics of the graph release that they are trying to insert the Sybil nodes in. But they

see the structure of the previously published graphs. The adversary always aims to insert the

Sybil nodes with unique characteristics to retrieve them in the second stage of the attack easily.

In our mechanism, we will focus on the degree of the nodes, but any other feature could be

considered instead of the degree in other mechanisms.

The adversary has two ways to choose the degree of the nodes. The first one is arbitrary,

and hoping that the degree is not very common in the graph. The second one is based on the

previously published graphs. These graphs are indeed noisy, but the noise should not affect

the degrees severely because the utility of the graphs would be highly affected in this case.

Therefore, computing the average degree of the previous releases and the number of times each

degree occurs in the earlier graphs might give the adversary a good idea of what degrees to

choose and what to eliminate. For example, is it common to have isolated nodes or to have

nodes with a maximum degree? Is it rare to have nodes with more than 1000 degrees or less

than 5 degrees? Answering these questions would help the adversary in choosing the degrees

of their Sybil nodes.

This mechanism is based on the idea of anomaly detection. We put ourselves in the

adversary’s shoes, and for each node, we ask: is it a degree that, as adversaries, would we use it

for our Sybil node or not? The more likely the answer would be yes, the more the quality we

give to the node is higher, leading to a higher chance of being hidden in the published version.

The answer to the previous question is based on an analysis that we think the adversary

has done on the previously published graphs. But the other way is that they have chosen the

degrees arbitrarily without any study on the published data. Our advantage here is that we

have the original graph before starting our privacy mechanism. When the adversary makes

decisions about the node degrees, they know nothing about the original graph. For this reason,

when computing the quality of the nodes, we consider the two possibilities. A part of this score

will be linked to our analysis of previous graphs, and the other part is related to analyzing the

current graph. In this way, even if the Sybil degrees were arbitrary, we forbade the adversary
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from retrieving them in the published version of the current graph.

3.5 .6.1 Quality Components

In the coming subsections, we explain how we propose to apply the four stages of our

mechanism: the First Capture, the First Release, the Gang Capture, and the Gang Release.

In each of these stages, we use the exponential mechanism to decide the status of each node in

the published versions. Each exponential mechanism needs a quality score as an input. The

quality scores have four components that recur in each score.

We will explain these four components based on each node’s characteristics and its relations

with other nodes.

3.5 .6.1.1 Clustering based on degrees

When a Sybil node has a unique characteristic, it will help the adversary retrieve it from the

published graphs. For this reason, we apply the Kernel Density Estimation (KDE) to cluster

the nodes based on their degrees. The clustering is based on 1-Dimensional data; thus, we can

consider the clusters as integrals.

KDE creates several minima and maxima. Each minima is considered as a border between

two integrals, and each integral has a maxima. Each node is inside an integral based on its

degree. The absolute difference between the degree of a node deg(vi) and maxima of its integral

maxima(vi) is a component in the quality score. The higher difference gives an indicator that

the number of nodes having the same degree is low. Then, if it’s a Sybil node, it’s easier for the

adversary to retrieve it.

Then, the first component is:

qc(v)Gj =| deg(v)−maxima(v) |

where maxima(v) is the maxima of the integral where v exists based on its degree in graph Gj.

It’s important here to clarify for the reader that this quality is not about uniqueness, where

if a node has a unique degree, then it’s suspicious. But it’s closeness; more a node has a

degree (even if unique) close to the degrees of numerous other nodes, that makes this node less

suspicious.

For example, in an interval between 20 and 30, and the maxima is 23. Having a unique

node of degree 24 doesn’t make it suspicious more than two nodes of degree 28. The unique

node is close to the maxima; then many nodes have the degrees 22, 23, and 25. Thus the degree

24 is not an anomaly. While two nodes of degree 28 might be considered suspicious because

they are far away from the main gathering in this interval, thus it’s easier for the adversary to

find them if they are Sybil nodes. Even if their degrees are anonymized, the adversary could

discover them with higher confidence than the unique node of degree 24.

It’s always important to remember that the goal of privacy-preserving mechanisms is not

exclusively privacy, but it’s about a balanced trade-off between privacy and utility. Therefore,

the adversary would expect that by applying edge-DP, the original degree of its Sybil node
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has changed by, for example, ±2 most probably. An actual value of an anonymized published

degree of 28 is most likely between 26 and 30. As those degrees are far from the maxima, then

the number of nodes in this area is low, and it’s easier for the adversary to find if these nodes are

their malicious nodes or not. While the unique node of anonymized degree 24 most probably,

has an original degree between 22 and 26. It’s a crowded area where it’s not easy to find if this

is the Sybil node or not. For this reason, a unique node could be more trusted than multiple

nodes far from the maxima.

3.5 .6.1.2 Profile Quality

Each node has a profile helping us to know its history. Precisely as a person’s medical history

is vital to deal with their possible Covid infections, their history of vaccination or diseases

determines if quarantine is required.

We apply the same concept to the nodes. We create a vector Q(v) containing the qualities

of the node v in the previous graphs. Thus, after the release of the published version G∗j−1, we

could update the vector by adding the quality of v in that graph.

Q(v) =< q(v)G f , ..., q(v)Gj−1 >

where G f is the first graph where v appears.

The quality profile qp(v)Gj is the second component of v for the graph Gj:

qp(v)Gj =
1

| Q(v) |

|Q(v)|

∑
i=1

q(v)Gi

| Q(v) | −(i− 1)

This component has two functions: the first is computing the quality of v in Gj, and the second

is computing the quality of any neighbor node of v in Gj (the fourth component).

3.5 .6.1.3 Connection Quality

The connection score is the third component of the quality score. This component examines the

relations of the node. Going back into our example about the Covid pandemic, let’s say that the

records show that most of the traveler’s family members that come back from the same country

some days ago were infected. In that case, there should be a higher possibility of imposing a

quarantine on the traveler than if his family members were not infected.

The connection score component has the same goal of investigating the relations of new

and old members of the graph. In our mechanism, we use three statuses and a score for each of

them, as we can see in Table 8. The data owner might have statuses or other scores to use, but

the scores should always be positive.

Neighbour Status Score
Hidden 2

New 1
Free 0.5

Table 8: Sensitive data associated to the nodes.
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Let’s say that v has ten neighbors in Gi, where 5 of them were free in G∗i−1, three were

hidden, and two new nodes. Then,

Connscore(v) = {score : Nneighbours} = {2 : 3, 1 : 2, 0.5 : 5}

Therefore, the connection quality is

qconn(v)Gj =
|Connscore(v)|−1

∏
l=0

(scoreNneighbours)[l] = 23 × 12 × 0.55 = 0.25

3.5 .6.1.4 Neighboring Quality

The fourth component has the same concept as the connection quality in investigating the

connections of vi. But in this component, we focus on the qualities of the neighbors, not their

status in the last published graph. It’s essential to check the statuses of the neighbors of vi, but

it’s also important to compute their qualities.

Thus, we compute the mean of the qualities of v’s neighbor:

qn(v)Gj =
∑|No(v)|

i=1 qp(No(v)[i])gj−1

| No(v) |

where No(v) is the set of neighbors that are old nodes.

These four qualities listed and explained are engineered features to compute an anomaly

score for a given node. Now, we can start by proposing the four stages of our mechanism.

3.5 .6.2 Anonymization of First Graph G1

In the first graph, we cannot categorize the nodes as new and old. All of the nodes are new, and

their quality vector Q is still empty.

Therefore, the only component available is qc based on the difference between the degree

of the node and its integral maxima.

q(v)G1 = qc(v)G1

The set of neighboring graph N(G1) of G1 is the set of graphs that differ by just one node of

G1. Then, it’s similar to the node-DP in the first graph as we don’t yet have detention node and

hidden nodes.

The global sensitivity of q(v)G1 is the maximum difference in the distance between the

degree of v and its interval’s maxima in G1 and any graph of N(G1). This difference is based

on two possibilities. When a node is added or deleted in a neighbor graph G′1, the value of

maxima(v) will change, or even v will change its interval. Then, the global sensitivity is:

GS(q(v)G1) = max
G′1∈N(G1)

| q(v)G1 − q(v)G′1
|

The rest of the anonymization mechanism for G1 is similar to what we will explain in Subsection

3.5 .6.5.
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3.5 .6.3 First Capture

The First Capture is a step in the mechanism applied on the new nodes in the current graph Gj

where j > 1. It will provide a list of new nodes that should be hidden. In this subsection, we

compute our suggested quality score and global sensitivity for this mechanism. The quality

of each new node vnew is composed of three components already explained. The component

missed in this quality is the profile quality qp as the quality vector of this node is still empty.

q1(vnew)Gj = qc(vnew)Gj × qconn(vnew)Gj × qn(vnew)Gj

To compute the global sensitivity GS(q1(vnew)Gj), we create a set of published graphs

G ′∗ = {G′∗1 , ..., G
′∗
j−1} that differ from the real set of published graphs G∗ = {G∗1 , ..., G∗j−1} by just

one node vdi f f that is hidden in one set and free in the other set. vdi f f differs in the last graphs

of the set G∗j−1 and G
′∗
j−1 ∈ N(G∗j−1) where N(G∗j−1) is the set of graphs that differ by just vdi f f

from G∗j−1, where vdi f f is free in one graph and hidden in the other.

By this difference, two qualities are affected. First, qconn could change by

max( scorehidden
score f ree

, score f ree
scorehidden

). The second component is qn that computed the mean of the quali-

ties of the neighbours of vnew. qn changes based on the modifications that happens on the

quality of the node vdi f f that differs between Gj−1 and its neighbour graph, and also the quali-

ties of the nodes that are in the same time neighbours of vdi f f in Gj−1 and neighbours of vnew in

Gj. Therefore,

GS(q1(vnew)Gj) = qc(vnew)Gj ×max(
scorehidden

score f ree
,

score f ree

scorehidden
)× max

G′∗j−1∈N(G∗j−1

| qn(vnew)Gj − qn(vnew)G′j
|

where G′j and Gj are the same but they differ by the last published graph G∗
′

j−1 and G∗j−1.

Finally, the probability that vnew is hidden in the published version of Gj is

P(exp(Gj, V
Gj
new, q1, ϵ) = vnew) =

exp
( ϵq(Gj,vnew)1

2GS(q1)

)
∑

v′new∈V
Gj
new

exp
( ϵq(Gj,v′new)

1

2GS(q1)

)
where V

Gj
new is the set of new nodes in graph Gj. vnew is hidden if P(exp(Gj, V

Gj
new, q1, ϵ) =

vnew)1 > θ f irst−capture where θ f irst−capture is a threshold set by the data owner. Higher threshold

gives more protection to the graph from sybil nodes but less utility by hidden a greater number

of new nodes.

3.5 .6.4 First Release

In this subsection, we are focusing on hidden nodes in Gj−1 that have never been free in any

prior releases. After introducing the fake account in a previous release, the adversary is unsure

if the node representing this account is still hidden or a free node. For this reason, they still try

to give a remarkable degree to the node in the same way as the first creation to identify the

Sybil node in case it is already free. Here, the quality contains the four components explained

previously with an additional element related to the number of releases hr(vh) where vh was

hidden.
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q(vh)
2
Gj

=
hr(vh)

qc(vh)Gj × qp(vh)Gj × qconn(vh)Gj × qn(vh)Gj

The global sensitivity of q2 for two neighboring sets of published graphs similar to the

previous subsection:

GS(q2, vh) = max
G′∗j−1∈N(G∗j−1)

| q(vh)
2
Gj
− q(vh)

2
G′j
|

The exponential probability is:

P(exp(Gj, V
Gj
h , q2, ϵ) = vh)2 =

exp
( ϵq(Gj,vh)

2

2GS(q2)

)
∑

v′h∈V
Gj
h

exp
( ϵq(Gj,v′h)

2

2GS(q2)

)
where V

Gj
h is the set of nodes hidden in the detention node in G∗j−1 and waiting their First

Release.

vh is released from the detention node and will be a free node in G∗j if

P(exp(Gj, V
Gj
new, q2, ϵ) = vnew)2 > θ f irst−release where θ f irst−release is a threshold set by the data

owner.

3.5 .6.5 Gang Capture

In every release, some nodes might be suspicious without being new nodes. Then, for each

release, a privacy mechanism for old nodes should be applied.

Identical quality scores and global sensitivities as those in the First Capture are also used

in the Gang Capture. If the probability is higher than θGang−Capture, then the node should be

hidden. But we assume this is not enough to prevent the adversary from identifying their Sybil

nodes.

While the adversary is still unsure about the Sybil node they have implemented in a

previous graph, they might try to perform an extreme move and then benefit from the list of

nodes that were free in the last graph and hidden in the currently published one. Suppose the

list contains a small number of nodes. In that case, the adversary might recognize their Sybil

nodes, especially if the other newly hidden ones don’t have close characteristics to the Sybil

nodes. In this way, the adversary can retrieve the Sybil nodes and being one step closer to find

their Sybil subgraphs.

For this reason, we add another layer of protection based on the idea of node gangs. When

the mechanism returns that an old node vs is a suspect and should be hidden in this graph, we

check if it is already linked to a gang or not. If the answer is yes, all the members that are also

suspects are hidden while the remaining members are put on probation. A node is on probation

when it’s not in the detention node, but its id is hidden.

If vs isn’t associated with any gang, we choose k− 1 nodes unassociated to a gang and

having the closest quality scores to vs. In this way, we hide the suspected nodes of the gangs

and keep the highest possible utility by leaving the other members outside the Detention. At

the same time, the protection of the hidden nodes’ ids of this gang was not affected because the
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ids of the free members are also hidden. Thus, the adversary cannot differentiate between the

gang members to find their Sybil node.

3.5 .6.6 Gang Release

The exponential probability for the Gang Release is similar to that of the First Release. But

to release a gang, all its hidden members should have a probability greater than θgang−release.

Sometimes, it’s difficult for all the hidden members to get an enough high probability to be

freed if the threshold has a high value. Then, it’s recommended to have a θgang−release relatively

low.

Another issue that we can face in this stage is the scenario where the user (adversary or

honest) of an account has stopped using it for good then the degree of the node vd0 is 0. It might

be the reason to keep the other gang members on probation for a long time.

Our solution is based on the idea of identity swap. Let’s take the scenario where a gang is

hidden in a previously published graph mainly because of a set of nodes Vd0 having 0 degrees

and the gang still in the detention node. First, we perform the exponential probabilities in the

current graph to check if the gang is eligible to be freed. If not, we review the nodes responsible

for that result. If all of them have a 0-degree in this graph and the last z original graphs, the

identity swap occurs.

We pick the node vis with the highest exponential probability P1 when it was hidden and

perform an identity swap with vd0 ∈ Vd0. Thus, now the node having 0 degrees has the id vis,

and the node eligible to be freed has the id vd0. The gang is freed in the currently published

graph with its secretly new members, while the public doesn’t know that some members are

new with swapped identities.

This scenario is not always necessary. In any exponential mechanism, we have some

randomness conditioned on the quality scores. Then, there is some possibility that the

probability for the 0-degree node is high enough not to experience the Gang Capture or to

perform a Gang Release, especially that we have recommended that θgang−release should not be

high.

3.5 .6.7 State machine diagram

After listing and explaining all the parts of the mechanism, we will recap them by drawing a

state machine diagram showing all the possible statuses of a node and how they could shift

from one status to another:

• We start with a new node. In this status, the node has two options; it will be hidden in the

published version of the graph if the First Capture step outputs this decision; otherwise, it

will be a free node.

• A hidden node in the last published graph has three options in the current graph:

111



3. Differential and Blowfish Privacy for social networks

Figure 41: A state machine diagram for all the possible statuses of the node.

– It could become a free node if the First Release algorithm (applied if the node was not

free in any previously published graph) returns this decision, or the Gang Release

algorithm (applied if the node was free previously in at least one published graph

and now, it’s a member of a gang) returns this decision, and none of the other gang

members is suspicious.

– In case one member at least is suspicious, the freed nodes of this gang are put on

probation.

– If the First Release or the Gang Release algorithm decides that the nodes are still

suspicious, the user will stay hidden in the detention node.

• A free node in the last published graph also has three options in the current one:

– If the Gang Capture algorithm detects an anomaly in the current characteristics of

the node, then the node is hidden in the detention.

– Otherwise, the node will remain free if it’s not related to any gang or all the fellow

members in the gang are not suspicious.

– If at least one gang member is suspicious; then our innocent node is put on probation.

• The fourth status is on probation. This status means that, in the last published graph,

the node is not suspicious, but it’s a member in a gang where at least one member is

suspicious. As the node was not suspicious, then, as any free node, the Gang Capture

algorithm will be applied to it. The options for the current graph are as follow:

– The algorithm returns that the node has become suspicious and should be hidden.
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Figure 42: Process Diagram of the Detention Differential Privacy.

– The algorithm returns that the node is still not suspicious, but other gang members

will remain hidden. Thus, the node will still be on probation.

– The algorithm returns that all the gang members are not suspicious anymore. The

node and all his fellow gang members are free.

3.5 .7 Process Diagram

The diagram in Figure 42 shows the decision-making that the mechanism passes through for a

node vi to decide its status in the published version. The first question is if it’s a new node or

not. If the answer is yes, then the First Capture mechanism is applied. If the output is greater

than the threshold θ f irst−catch, thus, the mechanism should hide the node. If not, the mechanism

waits until all the new gangs are formed for this graph and checks if vi is chosen as a gang

member. Its status is on probation if it’s a member; otherwise, it’s a free node. If it’s an old

node, the mechanism checks its status in the last published graph. The Gang Capture would be

applied regardless of vi being free or on probation if it weren’t hidden. If the output is higher

than θgang−catch, we check if vi is a gang member. If it’s not, we create a new gang, but vi will be

hidden in both cases. If the output is less than θgang−catch, the mechanism checks if it’s a gang

member to decide if it should be free or on probation.

In that way, we have covered the possibilities of vi being new or old and free or on probation

in the last published graph. We still have the case of being hidden. In this scenario, we check if

it’s a gang member. Then we decide which part of the mechanism should be applied between

the First Release and the Gang Release. If the output is less than the required threshold, the

node will stay in Detention in both cases. The difference is when the output is higher than the

threshold. In the First Release case, the node is directly freed, while in the Gang Release case,

we check if all the members are free, then vi is free also; otherwise, vi is on probation.
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3.5 .8 Experiments

In this section, we present the results of our experiments to evaluate the NNDP on dynamic

graphs both in terms of utility and privacy. We implement our algorithm in Python on the

"Reddit Hyperlink Network" dataset [83] containing daily releases between January 2014 and

April 2017. The dataset contains 55863 subreddits (communities on Reddit.com) as nodes and

858490 edges representing hyperlinks connecting the subreddits. We conducted experiments on

an Intel Core i7 2.4 GHz PC with 8GB RAM.

Besides our algorithm, we will also apply an edge-DP algorithm called TmF [125] which

adds noise to each graph independently from other graphs by adding and removing edges

before releasing an anonymized graph (non-interactive approach). For the node-DP, as we

have mentioned in the Related Work section, none of the node-DP mechanisms adapts to the

non-interactive mechanism. For this reason, we created two baseline node-DP algorithms to

compare their results to the NNDP results.

3.5 .8.1 The baseline node-DP algorithms

The naive algorithm is based on randomly deleting nodes from the original graph. The second

algorithm is based on an exponential mechanism where the quality is based on the uniqueness

of the degree. A node with a unique degree in the graph has a higher probability of being

removed than a node that shares the same degree with other nodes. A higher number of nodes

sharing the same degree leads to a lower probability of one of them being removed.

The second algorithm is based on the exponential mechanism, which is a well-known

DP mechanism. But the first one is based on a random mechanism; thus, we have to prove it

respects the node-DP requirements. For each node in the original graph, we randomly generate

a number between 0 and 1. If this number is smaller than a threshold θ, the node is removed

from the anonymized version.

Let’s consider two neighbor original graphs G1 and G2 = G1 ∪ {vdi f f } that differ by just

one node. Let S be a subgraph of G2. First, we apply the random mechanism R on the two

original graphs. Then, we compute the probability that the output graph has the same nodes as

S. As the nodes are similar in G1 and G2 except for vdi f f , we can conclude that by dividing the

two probabilities, we are dividing the probabilities that the status of vdi f f in the anonymized

version of G1 (or G2) is still the same in S:

P[R(G1) −→ S]
P[R(G2) −→ S]

=
P[R(G1)[vdi f f ] −→ S[vdi f f ]]

P[R(G2)[vdi f f ] −→ S[vdi f f ]]

whereR(G1)[vdi f f (R(G2)[vdi f f ) represents the status of the node vdi f f as exists or doesn’t exist

in the anonymized graphR(G1) (R(G2) respectively).

That’s because any other node v in G1 and G2 has the same status, thus, has the same

probability:

P[R(G1)[v] −→ S[v]] = P[R(G2)[v] −→ S[v]] = 1

.
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To prove that a mechanism is node-DP, we should demonstrate that the division of those

two probabilities has an upper bound that we can compute and that we call it eϵ.

In the case of this random algorithm, we can list two scenarios. The first is that vdi f f exists

in S, and the second is that the node doesn’t exist. In both scenarios, vdi f f exists in G2 and

doesn’t exist in G1.

In the first scenario:

P[R(G1)[vdi f f ] −→ S[vdi f f ]]

P[R(G2)[vdi f f ] −→ S[vdi f f ]]
=

0
θ
= 0

As we are just removing nodes, a node that doesn’t appear in the original graph has zero chance

of existence in the anonymized version. Then in this first scenario, vdi f f exists in S, there is no

possibility thatR(G1) has the same nodes as S.

In the second scenario,

P[R(G2)[vdi f f ] −→ S[vdi f f ]]

P[R(G1)[vdi f f ] −→ S[vdi f f ]]
=

θ

1
= θ

Then the highest upper bound in the two scenarios is eϵ = θ ≤ 1. Therefore, ϵ should

be positive (which is always the case) to consider that the algorithm satisfies the node-DP

requirements.

3.5 .8.2 Privacy parameters

The TmF mechanism has two privacy parameters ϵ1 and ϵ2. In [125], they fix the value of

ϵ2 = 0.1, thus we did the same in our experiments. ϵ1 is related to the number of nodes | V |:
ϵ1 = coe f × ln(| V |). The values under the horizontal (x) axis represent the values of coe f ,

and at the same time, they represent the second privacy parameter in NNDP as explained

in Subsection 3.5 .5.1. The first baseline node-DP is random and doesn’t rely on a privacy

parameter; thus, its results will be presented as a horizontal line in the charts.

3.5 .8.3 Utility metrics

One of the most known methods to measure the utility of an anonymized graph is to compare

the original graph with the anonymized one on the base of the most important nodes in the

graph. The more these nodes are still the same in the two graph versions, the more we can

assume that the privacy-preserving algorithm provides high utility to the published data.

In our previous work [3], we have explained and used four centralities to choose the most

important nodes: degree, farness, betweenness, and eigenvector. In these experiments, we use

the same centralities.

It is not possible to compute and compare in a precise way the centralities between two

graphs that differ in the number of nodes, especially for betweenness and closeness centralities.

Therefore, comparing the original graphs and their published version isn’t practical for the

node-DP and NNDP mechanisms.
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(a) Degree centrality (b) Betweenness centrality

(c) Closeness centrality (d) Eignevector centrality
Figure 43: Number of common nodes for the 100 most important nodes based on four
centralities.

For this reason, we have compared the published graphs (the free nodes and their edges

in the case of NNDP) with their corespondent subgraph in the original graph. Then, the goal

of experiments in this subsection is not to find out the number or the rate of important nodes

hidden or removed by the anonymized methods. But the objective is to study the impact of

these privacy-preserving techniques on the nodes that appear in the published graph (nodes

that are not hidden or removed). We apply this study by comparing the 100 most important

nodes in both the published graphs and their counterparts subgraphs in the original graphs.

The charts in Figure 43 show that the two baseline node-DP mechanisms have obvious

less utility in the scope of most important nodes in the original graph and published graph.

As expected, the edge-DP surpasses the NNDP mechanism, but this out-performance is small

compared to the difference between the node-DP and the edge-DP.

3.5 .8.4 Encountering the active attack

In this subsection, we simulate an active attack on the four anonymized versions of the published

graph (anonymized by TmF, the two node-DP algorithms, and the NNDP). We will choose

some new nodes as Sybil nodes; we will try to retrieve them from the anonymized graphs. The

rate of successful retrieve indicates how much vulnerable the privacy-preserving algorithm is

against an active attack.

We perform two types of active attacks:
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(a) Attacks based on random degrees (b) Planned attacks
Figure 44: The percentage of attacks prevented by each algorithm.

• the random: we choose the Sybil nodes arbitrarily,

• the planned: we first check the previous releases to find the rarest degrees. These degrees

should not be very far from the other degrees so they don’t form apparent suspicions. We

choose the nodes having these degrees in the current graph as Sybil nodes.

The results of the simulation attacks shown in Figure 44 confirms that an edge-DP algorithm

doesn’t have the potential to prevent the retrieval of the Sybil subgraphs from the published

graphs.

By node-DP 1, we mean the baseline privacy-preserving mechanism based on random

removing of nodes and their edges, and node-DP 2 is the second baseline mechanism based on

exponential mechanism. The latter surpasses the former significantly in preventing the success

of the second step of the attack. NNDP and node-DP have very close performance facing the

attacks based on random degrees, while our mechanism outperforms the node-DP in the case

of planned attacks. We think this out-performance is because we are studying the previously

published graphs similar to the attacker, which gives us a higher potential to detect suspicious

nodes than node-DP 2, relying on just the uniqueness of the degree.

3.5 .8.5 Confusion Matrix

In this subsection, we use a confusion matrix to measure the efficiency of the two node-DP and

the NNDP mechanisms. We compute the percentage of four categories:

• True positive: The nodes are appearing in the published graphs and are innocent nodes.

• False positive: The nodes are appearing in the published graphs and are Sybil nodes.

• True negative: The nodes removed or hidden and are Sybil nodes.

• False negative: The nodes removed or hidden and are innocent nodes.

The edge-DP is not a part of this experiment as it doesn’t remove or hide any node. For

the other mechanisms, we compute the mean of the percentages of the Sybil nodes hidden

or removed in each release (true positive) and the mean of the percentages of innocent nodes
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(a) Percentage of hidden or removed Sybil nodes. (b) Percentage of innocent published nodes.
Figure 45: Confusion matrix for the two baseline node-DP and NNDP mechanisms.

published in the releases (true negative). We don’t have to compute the two other categories as

they are just the complements of these two: the percentage of false-positive is equal to 100 - the

percentage of true positive, and the same concept for the false and true negative.

The two charts in Figure 45 show these two means based on the mechanism and the privacy

parameter ϵ. As we can notice, the NNDP outperforms the two baseline mechanisms in both

categories, which ensures a high utility for the NNDP outputs.
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4.1 Introduction

The emergence of data outsourcing promoted by the services provided by cloud computing,

has led to the promulgation of privacy regulations [30] to protect the confidentiality of personal

information. These regulations direct data providers to abide by strict rules of anonymization

before the release of data containing Personally Identifiable Information (PII). Data providers

should anonymize not only the identifying values but also the associations that link individuals

to their sensitive values as an adversary may be able to combine his/her background knowledge

[143, 151] to information in the released dataset to breach privacy.

A particularly challenging problem for data anonymization is dealing with transactional

data. Most anonymization methods assume homogeneous, independent and identically

distributed (i.i.d.) data; ¨flattening¨ transactional data to satisfy this model results in wide,

sparse data that does not anonymize well with traditional techniques. While there have

been some approaches for generalization-based anonymization, bucketization techniques (e.g.,

Anatomy) pose new challenges. In particular, bucketization provides the opportunity to

learn correlations between data items, but also a risk of identifying individuals because of

dependencies inferred from such correlations. We present a method that balances these issues,

retaining the ability to discover correlations in the data, while hiding dependencies that would

enable correlations to be used to link specific values to individuals. We introduce a correlation

anonymization constraint that ensures correlations do not allow data to be linked to a specific

individual, and an elastic safe grouping algorithm that meets this constraint while preserving

data correlations. We evaluate the utility loss on a transactional rental dataset.

4.2 Related Work

4.2.1 Correlation in literature

The correlation problem in data anonymization has been a topic of interest for some time. The

works described in [80, 98, 159] are good examples of attacks that identify correlation problems

in anonymization techniques allowing attackers to use their background knowledge or their

extracted foreground knowledge to breach privacy.

In [159], the authors consider correlation as foreground knowledge that can be mined

from anonymized data. They use the possible worlds model to compute the probability of

associating an individual with a sensitive value based on a global distribution. In [80], a Naïve

Bayesian model is used to compute association probability. They used exchangeability [12]

and DeFinetti’s theorem [138] to model and to compute patterns from the anonymized data. In

[98], the authors deal with background knowledge that can be mined from the data. In their

paper, they focus mainly on what we consider as negative correlations, which limits the ability

to handle positive and exposed correlations.

In [154, 11], the authors provide solutions to cope with the correlation problem by either

bounding it to the privacy constraint as in [11] or hiding highly correlated values, outliers in
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the dataset [154]. Unlike these techniques that are specifically defined for correlations between

quasi-identifying attributes and sensitive values in non-transactional datasets, we consider that

those correlations, where multiple tuples are related to the same individual, result in possible

linking of a particular sensitive values to a particular individual when correlated in the same

group or across several groups. Wang et al. propose in [155] a bucketization technique that

creates flexible QI-groups based on the importance of the sensitive value. By doing so, the

authors reduce the impact of correlations that spread across groups but fail to consider the intra

group correlations; correlations between the values in the same group. In a similar work to

ours [65], Gong et al. propose a (k, l)-diversity privacy constraint to anonymize a dataset that

contains multiple tuples for the same individual. Their technique ensures that there are at least

k individuals for an identifying set of sensitive attribute values in addition to l well-represented

identifying sets of sensitive attribute values. This is similar to our assumptions, having k distinct

individuals and at the same time maintaining l-diverse QI-groups, the only difference is that

this technique uses generalization to ensure that these constraints are met.

In [57], the authors propose a knowledge-based sequential anonymization algorithm

(KSAA) for privacy preservation when different anonymized views of the same original

dataset are published. They present a bottom-up anonymization algorithm, KSAA, that uses

generalization to protect against background knowledge attacks. KSAA clusters tuples and

generates QI-groups satisfying the privacy model in the current view. It checks, in a second

step, if the privacy constraint is satisfied when several views are joined together. In our work

and unlike KSAA, we do not hide the correlations we expose them instead and make sure

that they cannot be used to link an individual to his/her identifying and sensitive values.

Differential privacy [53] approaches release privatized data by adding noise to the released data

or query results. The noise is calibrated so that the impact of any individual on the outcome

is small relative to the noise added, thus effectively hiding any individual in the noise. Since

differentially private mechanisms add independent and identically distributed noise, they

are vulnerable against correlations where an adversary is able to filter out the noise While

this is a strong privacy definition, for many uses this approach is impractical, as the noise,

while typically small, is potentially unbounded. We opt for bucketization, which keeps values

intact but provides protection against linking sensitive data to individuals. We extend our

previous work [10] to address correlations that explicitly violates the targeted privacy goal

while minimizing the loss in data utility.

4.2.2 Privacy approaches and algorithms

Two attack models can be classified: Linkage and probabilistic attacks. As its name indicates,

the linkage attacks model occurs when the adversary is trying to relate an individual victim to

a record in the published dataset (record linkage), to a sensitive attribute (attribute linkage), or

the whole table (table linkage) in the case of Existential Uncertainty.

The second model, called probabilistic attack, aims at providing the adversary with vital

information to ensure a significant variation in his/her prior and the posterior of beliefs.
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Record Attribute Table Probalistic
k-anonymity ✓
(ϵ, m)-
anonymity

✓

l-diversity ✓ ✓
t-closeness ✓ ✓
δ-presence ✓
ESG ✓ ✓ ✓

Table 9: Privacy techniques and attack models

k-anonymity [151] requires that every tuple in the dataset is indistinguishable in their

quasi-identifiers from k− 1 other tuples by generalizing these attributes to ensure this similarity.

This definition can deal with record linking.

Machanavajjhala et al. [111] propose the l-diversity definition relying on distributing the

sensitive attributes in a way that is called "well-represented", three definitions of this term

were suggested. The simplest one is that in each group containing all the tuples with the

same generalized quasi-identifiers, these tuples have at least l different sensitive attributes. In

this way, l-diversity deals with attribute linking by avoiding the lack of diversity of sensitive

attributes for an equivalence class or a QI-group.

Proximity breach occurs when the adversary may not learn the exact numeric value of the

sensitive attribute linked to an individual. Nevertheless, suppose the victim is linked to an

equivalence class with all (or the majority) of the sensitive values are in a small interval. In that

case, the adversary could estimate a proximate sensitive value for this individual with high

confidence. (ϵ, m)-anonymity citejiexing2008 requires that for every sensitive value x in the

QI-group, at most 1/m other values are in the interval [x− ϵ, x + ϵ].

The previous approaches and their extensions focus on the local distribution of each

equivalence class, neglecting the importance of global distribution. Thus, t-closeness [95] is

proposed to deal with two problems that l-diversity fails to consider. The first one is the semantic

closeness of the values. A class of 3 tuples having the same generalized quasi-identifiers is

considered 3-diverse if it contains three different locations, at least for the sensitive attribute. If

we link Bob to this class and all three locations are in the same city, we have unveiled that Bob

was in that city.

Another problem is the distribution of the sensitive values in the whole table versus in one

class. For example, if a location appears in 10% of sensitive attributes in the entire dataset and

appears two times (50%) in a class of 4 tuples. Then, linking an individual to this class will

increase the probability of being in this location from 10% to 50%.

By focusing on the global distribution, t-closeness can confront the challenges of the

probabilistic attack. But one objective to publish the table is to analyze the correlation between

some QI attributes and the sensitive attribute. Since t-closeness restricts that each QI-group has

nearly the same distribution as the distribution of the entire table, the desired goal cannot be

achieved. Hiding the safe corrlations is also the disadvantage of the safe grouping appraoch

that motivates us to propose the Elastic Safe Grouping.
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These privacy approaches are based on the idea that the adversary knows that the victim

exists in the dataset, tries to identify him/her, and linking its id to the correct sensitive value.

Another type of privacy violations could be when the adversary is uncertain and tries to disclose

the existence or absence of an individual in the private dataset. The basic idea of δ-Presence [124]

is that the probability for an adversary to identify any individual as being in the anonymized

table should be in a range δ = (δmin, δmax) that defines the level of trade-off between the utility

and privacy.

Our approach, called Elastic Safe Grouping (ESG), relies on Anatomy and l-diverstiy to

encounter record and attribute linkages, respectively. Concerning the probabilistic attack, ESG

ensures that the global distribution exposes just safe correlations for better utility with the same

privacy guarantees of the Safe Grouping. Thus, ESG encounters probabilistic attacks also as we

have mentioned in Table 9.

Numerous algorithms and tools were proposed to realize these privacy approaches. For

record linkage, Incognito [87] presents several optimal bottom-up algorithms based on Full-

domain generalization and Record suppression, and the size of the QI-group is computed

according to the rollup property [60]. µ-argus [74] achieves k-anonymity by checking the low-

dimensional combinations of identifying values and applying subtree generalization and cell

suppression.

For attribute linkage, InfoGain Mondrian [88] is based on Multidimensional Generalization

to create a k-anonymous and l-diverse dataset with the consideration of some data mining tasks.

Top-Down disclosure.

For table linkage, SPALM and MPALM [124] lean on Full-domain and Multidimensional

Generalizations, respectively, and benefit from the anti-monotonicity property of the δ-presence

approach to hide the presence of individuals in datasets.

For Probabilistic attack, all the algorithms lies on adding noise as ϵ-Differential Privacy

[51], Cross-Training Round Sanitization [33], and αβ Algorithm [137]. In Section 4.7, we prove

that our algorithm satisfies an extension of Differential Privacy called Blowfish privacy, which

confirms that our work also can deal with probabilistic attacks.

Also, many tools were proposed to apply the privacy approaches. TIAMAT [42] is a tool for

interactive analysis of anonymization techniques, mainly k-anonymity. It allows data publishers

to analyze the accuracy and runtime performance of various k-anonymization techniques and

find suitable parameter settings for anonymization. ARX Data Anonymization [130] Tool

implements a set of techniques that can handle a broad spectrum of data anonymization tasks.

It supports many privacy and risk models, methods for transforming data, and methods for

analyzing the usefulness of output data.

4.3 Preliminary Definitions

Table 10 summarizes the set of notation used in this chapter. Given a table T with a set of

attributes {A1, ..., Ab}, t[Ai] refers to the value of attribute Ai for the tuple t. Let U be the set of

individuals of a specific population, ∀u ∈ U we use Tu to denote the set of tuples in T related to
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T a table containing individuals
related tuples

ti a tuple of T
u an individual described in T
Tu a set of tuples related to indi-

vidual u
A an attribute of T
Aid an identifying attribute of T
As a sensitive attribute of T
QIj a quasi-identifier group
T∗ Anonymized version of table

T
Table 10: Notations

the individual u. Attributes of a table T that we deal with in this paper are divided as follows;

Identifier (Aid) represents an attribute that can be used (possibly with external information

available to the adversary) to identify the individual associated with a tuple in a table. We

distinguish two types of identifiers; sensitive and non-sensitive. For instance, the attribute

Security Number is a sensitive identifier; as such it must be suppressed (encrypted). Non-sensitive

identifiers are viewed as public information and include both direct identifiers such as User

ID in Figure 6a, and quasi-identifiers that in combination may identify an individual (such as

<Gender, Birthdate, Zipcode>, which uniquely identifies many individuals.)

Sensitive attribute (As) contains sensitive information that must not be linkable to an

individual but does not inherently identify an individual. In our example (Figure 6a), the

attribute Location is considered sensitive and should not be linked to an individual.

4.4 Attack Model

The adversary relies on two types of Knowlege: Foreground and Background. The Foreground

Knowledge is based on the correlations that can be found in the published dataset.

An adversary can obtain additional information from the published dataset in the form of

global distribution, which can lead to individual privacy breach.

The table in Figure 6b satisfies 3-diversity. Let’s say we have 10 Qi-groups containing

tuples for Carl_U3, in 9 of them we don’t have 19.60;35.40 as a sensitive value. They co-exist

just in QI2. The adversary can predict with conficdence of 90% that 19.60;35.40 in QI2 is

not linked to Carl_U3. Then the probability of linking this sensitive value to one of the two

remaining identities is PR(v19.60;35.40 | vU1) = PR(v19.60;35.40 | vU4) = 0.9× 0.5 = 0.45 which

is higher then 1/l where l = 3 which is considered a privacy breach. With more Background

or Foreground Knowledge linked to U1 or U4, one of these two probabilities may increase to

allow the adversary to link one of the two vid with that sensitive value with high certainty.

The same learning could be done on the relation of a QI attribute with sensitive attribute

in an attempt to link the id of the tuple containing the QI attribute with one of the sensitive

attributes. In our example this linkage attack cannot be done, but if we take a dataset of patients
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and their diseases, the adversaries can easily link a quasi-identifier or a non-sensitive value to

a sensitive value using Background or Foreground Knowledge. For example, breast cancer is

related with females in 0.99% of the cases. Heart attacks is related to men with 70% of cases. The

flu is very common in US in February and in Australia in August. The osteoporosis is related

with women in 80% of cases. 98% of people diagnosed with Parkinson are above 40 years old.

The adversary can get this knowlege by doing some research on some medical websites or can

get close numbers from doing some data mining from the published dataset. Thus they will

be able to exclude the link between a tuple containing the age, the sex and the country of an

individual with some sensitive values and increase the probability of this link between that

tuple and some other sensitive values.

From this example, the knowledge can be modelled in two formats. First, as a set

of tuples < u, vs, con f (u, vs) > where u is the identification of an individual, vs is a

sensitive attribute and con f (u, vs) is a confidence score that links u to vs. And the second

format is < vns, vs, con f (vns, vs) > where vns is a non-sensitive attribute. For example,

< U1, 19.60; 35.40, 0.45 > means that the adversary can link RoanU1 and the location 19.60; 35.40

with a 45% confidence. While < Male, HearAttack, 0, 7 > means that the adversary can link the

non-sensitive attribute ’Male’ with the sensitive attribute ’Heart Attack’ with 70% confidence.

From This example also we can see how the adversary take advantages from inter-group

dependencies to form his/her Foreground Knowledge. The problem is that the majority of

the privacy techniques focus on the local distribution which means the distribution of QI

and sensitive attributes in the QI-groups to ensure that no intra-group dependencies will let an

adversary get important Foreground Knowledge from the group. But it’s rare to find a technique

dealing with inter-group dependencies in the global distribution.

Safe grouping hides the correlations to forbid the adversary from gaining Foreground

Knowledge. Our motivation in this work is to propose an approach that allows the adversary

to expose the correlations and prevent him/her from taking advantage of these correlations.

The idea is that if some individuals co-exist in one QI-group, then, in any other QI-group, all of

them will also co-exist, or none of them will exist. In that way, it is possible to gain Foreground

Knowledge from the correlations between the non-sensitive and sensitive attributes. But, at

the same time, it’s hiding the correlations between the individuals and the sensitive attribute.

Suppose we take the same example discussed in this section. Let’s say that the three ids U1, U3,

and U4 co-exist in 10 QI-groups where the location 19.60;35.40 is mentioned in 9 of them. This

foreground Knowledge can’t help in linking the location with one of the ids. These rules are not

applied to the non-sensitive attributes, than the correlations between them and the sensitive

attributes could be exposed for a better utility.

4.5 Strength and Weaknesses of Safe Grouping

Safe grouping ensures that an individual’s tuples are grouped in one and only one QI-group that

is at the same time ℓ-diverse, respects a minimum diversity for identifying attribute values, and

all subsets Tu for an individual u in QIj have an equal number of tuples. The formal definition
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of safe grouping is given as follows.

Definition 5 (Safe Grouping). Given a table T, safe grouping is satisfied on T iff

1. ∀u ∈ U, the subset Tu of T is contained in one and only one quasi-identifier group QIj (1 ≤ j ≤ m)

such that QIj respects ℓ-diversity and contains at least k subsets Tu1 , ..., Tuk where u1, ..., uk are k

distinct individuals of the population and,

2. Pr(ui1 |QIj) = Pr(ui2 |QIj) ≤ 1/ℓ where

ui1 , ui2 , i1 ̸= i2 are two distinct individuals in QIj with (1 ≤ i ≤ k) and Pr(ui|QIj) is the

probability of ui in QIj.

This definition gives Safe Grouping the ability to hide the correlations that could link an

identifying value to a specific sensitive value. For example, the adversary has Background

Knowledge that Roan has rented ten cars last year, 9 of them were from the same location

20.09,45.11. If the User ID U1 exists in 10 Qi-group wherein 9 of them the location 20.09,45.11

coexists with U1, the adversary could conclude that U1 is the User ID of Roan with high

probability. Safe Grouping suggests grouping all the tuples of Roan with the tuples of Lisa and

Bob, for example, in the same QI-group. In that way, the adversary could not benefit from the

Background Knowledge because they could not find an inter-group correlation between U1

and 20.09,45.11, leading to link U1 to Roan. In a case where 20.09,45.11 is very rare in other

Qi-groups, the adversary may predict that the tuples of Roan exist in this specific QI-group.

But they cannot link Roan to U1 with a probability higher than 1/3 because they could not

distinguish it from the User IDs or Lisa and Bob.

We now study the strength and weaknesses of safe grouping under two scenarios. In

the first, we assume that the original data is anonymized and shared with others for analysis

purposes. An adversary will try to infer individuals’ sensitive values from the anonymized

dataset. We assume that the adversary knows that a particular significant correlation exists in

the dataset and wants to use it to link the individual to his/her identifying and sensitive values

in the anonymized dataset to gain greater confidence in an individual’s value that is inherent in

simply knowing the correlation.

In the second, we assume that the adversary is able to learn significant correlations and use

them to link an identifying value to a particular individual. We use βu to denote the background

knowledge of an adversary related to the correlation of u’s tuples in the dataset. For instance,

Pr(u, vid|T∗, βu) represents the probability of linking u to his/her identifying value vid given,

the anonymized dataset T∗, and the adversary’s knowledge of the correlation of u’s related

tuples in T∗.

4.5.1 Assumption 1: adversary knows the correlations

The adversary knows that the identifying value of an individual u correlates with some other

values in the dataset; e.g., individual u is using the renting service frequently, or more seriously

when the adversary knows the correlation between the identifying value of u and a particular
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sensitive value; e.g., an individual u is continuously renting from location vs. In both cases, a

privacy breach might occur if the adversary can link u to his/her corresponding identifying

value vid in the dataset. This could happen when the same identifying and sensitive values

correlate across QI-groups.

We demonstrate, in the following, that safe grouping protects against such disclosure.

Lemma 3 (Membership Disclosure). Given an anonymized dataset T∗ that satisfies safe grouping, an

adversary cannot link an individual u, ∀u ∈ U, to his/her identifying value vid in T∗ with a probability

Pr(u, vid|T∗, βu) greater than 1/k.

Proof. Since safe grouping is used, the identifying value vid of individual u exists in one and

only one QI-group, QI. The probability of linking u to vid, Pr(u, vid|T∗, βu) is no more than

Pr(u, vid|QI, βu), which is equal to |Tu|
|QI| , Pr(u, vid|QI, βu) =

|Tu|
|QI| where ∀t ∈ Tu, t[Aid] = vid. In

addition, there are at least k− 1 individuals grouped in QI such that |QI| ≥ ∑k
i=1 |Tui | = k× |Tu|

where, according to safe grouping, ∀u1, u2, two distinct individuals in QI, the number of tuples

for u1, |Tu1 | is equal to the number of tuples for u2, |Tu2 |, thus the probability of linking u1 or u2

to their identifying values v1id and v2id respectively is at most equal to 1/k.

Alternatively, let us now assume a stronger adversary; an adversary capable of linking an

individual u to his/her identifying value vid in T∗. If T∗ satisfies safe grouping, the probability

of linking u to his/her sensitive value vs is at best equal to 1/ℓ.

Lemma 4 (Attribute Disclosure). Given an anonymized table T∗ that satisfies safe grouping, an

adversary with the ability to link an individual u to his/her identifying value vid in T∗, cannot link u to

his/her sensitive value with a probability Pr(u, vs|T∗, βu) greater than 1/ℓ.

Proof. Pr(u, vs|T∗, βu) can be written as Pr(u, vid|T∗, βu) ×Pr(vid, vs|T∗, βu) where, Pr(u,

vid|T∗, βu) is the probability of linking an individual u to the identifying value vid assuming

knowledge of the correlation βu and Pr(vid, vs|T∗, βu) is the probability of linking the identifying

value vid to the sensitive value vs. Pr(u, vid|T∗, βu) is equal to 1 since the adversary is able to link

u to his/her identifying value. Safe grouping, however, groups all of the individual’s tuples in

one and only one QI-group, and thus Pr(u, vs|T∗, βu) is re-written as Pr(vid, vs|QIj) =
cj(vid,vs)

cj(vid)
.

Now, given that safe grouping separates the dataset, in a similar way to anatomy, into two tables

TQIT and TSNT where only the link between the tuples in the TQIT and TSNT is anonymized,

Pr(vid, vs|QIj) is computed as cj(vid)×Pr(t,vs|QIj)

cj(vid)
where Pr(t, vs|QIj) is the probability of linking

the tuple t for which t[Aid] = vid, to the sensitive value vs. This leads to a probability

Pr(t, vs|QIj) =
cj(vs)

|QIj| that is less than or equal to 1/ℓ.

4.5.2 Assumption 2: adversary learns the correlations

The adversary learns the correlations from the anonymized table; e.g., an individual’s

identifying value vid correlates with location vs. For instance, this would happen in an

anatomized table when both, the identifying value and the sensitive value correlate across
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several QI-groups (e.g., in Figure 6b, the identifying value U1 correlates with location 20.09; 45.11

in QI1, QI2, and QI3). A privacy breach might occur if the adversary can use the learned

knowledge to link the identifying value vid to an individual u.

Works described in [159, 80, 98] provide an in-depth study on how to estimate the strength

of the association between sensitive and non-sensitive values in post-anonymization based

on their correlations. They demonstrated that some significant correlations in the data could

be measured (i.e., estimating the probability of associating a quasi-identifying value with a

sensitive value in an anonymized table) as such the resulting score would exceed the allowed

privacy threshold.

In a dataset that satisfies safe grouping, none of these significant correlations can be learned

from the dataset where Pr(vid, vs) = Pr(vid, vs|QIj) = 1/ℓ. While this is a good indicator from

a privacy perspective, it is, however, expensive in terms of utility. Safe grouping and other

proposed techniques [143, 151, 95, 53], unfortunately, sacrifice some of the data utility by losing

these correlations for the sake of privacy.

In the next section, we show how sparing some of these correlations; keeping them exposed,

can be achieved without risking data privacy.

4.6 Exposing Safe Correlations

4.6.1 Safe correlations

A significant correlation is considered safe if an adversary cannot use his/her knowledge of

this correlation (or his/her ability to learn it from the anonymized table) to link an individual u

to his/her identifying value. Formally:

Definition 6 (Safe Significant Correlation). A significant correlation between an identifying value

vid and a sensitive value vs is safe if ∀u ∈ U, Pr(u, vid|T∗) ≤ 1/k and Pr(vid, vs|T∗) ≤ 1/ℓ .

In other words, a correlation between an identifying and sensitive value is safe if both the

probability of a user having that particular identifying value is low, and the correlation between

the identifying and sensitive values is below 1/ℓ.

While exposing significant correlations results in better utility for aggregate analysis, it

tends to be difficult to achieve without threatening individuals’ privacy in a rigid bucketization

technique. In fact, the use of a bucketization technique such as anatomization or even safe

grouping, creates QI-groups that are either unsafe; exposing significant correlations to the

adversary, or of large sizes reducing the utility of the dataset.

In the following, we define a privacy constraint that allows us to expose significant

correlations and ensure their safety by creating flexible QI-groups in a way that preserves

both privacy and utility. The basic idea is that if an identifying value in a particular QI-group,

appears multiple times in several QI-groups in T∗, then there are k− 1 identifying values that

must appear the same number of times. This ensures that the correlation known to the adversary
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does not “single out” a specific identifying value. Our Correlation Anonymization constraint is

formally defined as follows:

[Correlation Anonymization] Let T∗ be a anonymized table, and D(Aid) be the domain

of values of Aid, ∀QIj ∈ T∗ for (1 ≤ j ≤ m), we say that a significant correlation between an

identifying value vid and a sensitive value vs is safely anonymized in T∗ i f f

1. ∀vid ∈ D(Aid), if vid ∈ πAid QI1 ∩ ...∩ πAid QIj, ∃Vid ⊆ D(Aid),

a set of identifying values, such that Vid = {vid, vid1 , ..., vidk−1} and Vid = πAid QI1 ∩ ... ∩
πAid QIj. In other words,

πAid QI1 ∩ ...∩ πAid QIj =


Vid if ∃vid ∈ πAid QI1

∩ ...∩ πAid QIj

∅ otherwise

(1)

2. ∀vid1 , vid2 , Pr(vid1 |QIj) = Pr(vid2 |QIj) where Pr(vidi |QIj) is the probability of having vidi

in QIj, and

3. ∀vid ∈ D(Aid), Pr(vid, vs|T∗) ≤ 1/l.

User ID Vin Number GID GID Location

Bob_U5 05d7f4f9496* 1 1 19.10;38.13

Elyse_U2 0038da44c64* 1 1 19.72;33.96

* 0036153c476* 1 1 19.29;36.15

* 0038da44c64* 1 1 19.72;33.96

Roan_U1 0061d4a8248* 2 2 20.09;45.11

Lisa_U4 0e352814d34* 2 2 19.60;35.40

Carl_U3 0038da44c64* 2 2 19.72;33.96

Roan_U1 05d7f4f9496* 3 3 20.09;45.11

Lisa_U4 000cf44c9b3* 3 3 19.47;43.71

Carl_U3 0061d4a8248* 3 3 19.57;44.70

Roan_U1 0036153c476* 4 4 20.09;45.11

Lisa_U4 000cf44c9b3* 4 4 19.60;35.40

Carl_U3 0e352814d34* 4 4 19.57;44.70

Figure 46: Correlation anonymization example

Correlation anonymization ensures that the intersection of any two or more QI-groups on

their identifying attribute Aid, yields either a set of k identifying values or an empty set. This

is achieved while preserving the uniform distribution of individuals’ related tuples in the QI-

groups to cope with the inter-dependencies in each of the QI-groups (as in safe grouping) and

diversifying the sensitive values in the QI-group to prevent linking non-sensitive to sensitive

information.
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Lemma 5. Correlation anonymization privacy constraint exposes only safe correlations in an anonymized

table T∗.

Proof. ∀u ∈ U, ∀vid, vs, an identifying value and a sensitive value in T∗, if a significant

correlation exists between vid and vs in T∗, then vid and vs either correlate in the same QI-

group or across QI-groups. Given that the correlation anonymization constraint is satisfied

on T∗, if vid, and vs correlate in the same QI-group, there exists k− 1 other identifying values

that correlate with vs since each and every QI-group in T∗ contains at least identifying values

for k individuals. Therefore Pr(u, vid|T∗) ≤ 1/k and Pr(vid, vs|T∗) ≤ 1/l due to bucketization.

Alternatively, if vid and vs correlate across QI-groups, e.g., ∀QIi, QIj, QI-groups in T∗, correlation

anonymization guarantees that ∀vid ∈ πAid QIj ∩ πAid QIj, ∃Vid such that, vid ∈ Vid, where Vid is

a set containing k− 1 identifying values that correlate with vid across the QI-groups in T∗, and

thus Pr(u, vid|T∗) ≤ 1/k and Pr(vid, vs|T∗) ≤ 1/l due to bucketization.

Figure 46 is an example of an anonymized table T∗ that respects the correlation

anonymization privacy constraint. Let us assume that an adversary knows that the individual

Roan rents frequently from location 20.09; 45.11. We can notice that such a correlation is exposed;

location 20.09; 45.11 is correlated across QI-groups QI2, QI3, and QI4 in TSNT. The same applies

for Roan_U1 that is correlated in QI-groups QI2, QI3, and QI4 in TQIT. However, since the

privacy constraint is satisfied, these same correlations apply equally to two other identifying

values, Lisa_U4 and Carl_U3 making Pr(Roan, Roan_U1|T∗, βRoan) ≤ 1/3;

the only reason the adversary can attribute this to Roan is prior knowledge.

4.6.2 Elastic safe grouping (ESG)

We present in this section an elastic safe grouping algorithm (ESG) that achieves correlation

anonymization. As its name implies, the algorithm simulates an elastic behavior where

individuals’ tuples are grouped, spread over several sub-groups, and then merged again to create

ℓ-diverse QI-groups. Technically, the algorithm is based on a divide-and-conquer strategy;

dividing buckets composed of at least k identifying values into sub-groups to expose safe

correlations, and merging (if necessary) these sub-groups to create ℓ-diverse QI-groups.

The algorithm breaks down into three main stages. In the first stage, the table is divided

into buckets of δ ≥ k identifying values (i.e., in a similar manner to the safe grouping algorithm

described in [9, 10]). By doing so, we group tuples of each of the identifying values in one

and only one bucket along with tuples of at least k− 1 other identifying values. In the second

stage, each bucket is divided into sub-groups based on the identifying value with the minimum

number of tuples in the bucket. This reduces the size of the QI-groups, exposing safe correlations

since each identifying value correlates with at least k− 1 other identifying values. In the final

stage, ℓ-diverse QI-groups are created. Sub-groups that are not ℓ-diverse are merged together

to create ℓ-diverse QI-groups.
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Algorithm 2: Elastic safe grouping algorithm
Require: T, k, ℓ
Ensure: T∗ = {TQIT , TSNT}

1: Hash the tuples in T by their Aid values, {Tu}
2: Sort the set of {Tu} based on their number of tuples in an ascending order

# {Tu|∀Tui , Tuj , i ≤ j, |Tui | ≤ |Tuj |}
3: δ := max(k, l)
4: z := |U|

δ
5: QI-groups[] := {}
6: sub-groups[] := {}
7: for i := 0 to z do
8: Create a Bucket Bi of δ Aid values from {Tu}

# Remaining tuples are kept in the last bucket
9: QI-groups← Divide(Bi)

10: end for
11: for each QIj in QI-groups do
12: for each tuple t ∈ QIj do
13: insert tuple (t[A1], ..., t[A], ...t[Am], j) into TQIT
14: end for
15: for each random value vs of As ∈ QIj do
16: insert tuple (j, vs) into TSNT
17: end for
18: end for

1: function DIVIDE(Bucket B) # takes a bucket B of δ identifying values and returns a set of QI-groups
2: QI-groups[] := {}
3: tmp[] := {}
4: min := |Tu0 | # Tu0 since the elements in the bucket B are sorted
5: c := 0
6: while c < min− 1 do
7: sub-group[] := {}
8: for each Tu in B do
9: remove a random tuple tu from Tu

10: sub-group← tu # add tu to the sub-group
11: end for
12: MergeOrCreate(sub-group)
13: c := c + 1
14: end while
15: Ensure uniform distribution of identifying values in B
16: MergeOrCreate(B)
17: Suppress remaining tuples in tmp

return QI-groups
18: end function

Algorithm 2 describes the core of ESG. It takes a table T, two privacy constraints, k (number

of identifying values) and ℓ, and returns an anonymized table T∗. In the first two steps, the

algorithm hashes the table based on the identifying values and sorts it in an ascending order

starting from the value that has the minimum number of tuples. In Step 7 to 11, the algorithm

creates z buckets, divides each bucket into sub-groups, and creates from these sub-groups, QI-

groups that respect the ℓ-diversity privacy constraint. Once QI-groups are identified, the

algorithm separates in Step 11 to 18, the table T into two distinct tables TQIT and TSNT and

inserts tuples of each of the created QI-groups into TQIT and TSNT accordingly while randomly

shuffling the sensitive values.
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4.6.2.1 Dividing buckets

The Divide function divides a bucket B, in Step 6 to 14, into sub-groups such that the total

number of created sub-groups depends on min, which is the number of tuples of the first

identifying value in the bucket |Tu0 |. Tu0 is the set that contains the least number of tuples since

individuals’ tuples in each of the buckets are sorted in an ascending order. A sub-group is

formed in Step 8 to 11, by randomly removing a tuple tu from each individual’s related tuples

Tu in the bucket B and adding it to sub-group.

The Divide function ensures in Step 14, that the remaining identifying values in the bucket

B are uniformly distributed. That is hiding, encrypting or suppressing some identifying values

to ensure that the probability of linking an individual u to his/her identifying value is equal

to the probability of linking u to any other identifying value in the QI-group. The Divide

function creates after that the last sub-group. For example, let us assume that a bucket B contains

identifying values of three distinct individuals, u0, u1, and u2 having |Tu0 | = 2, |Tu1 | = 3,

and |Tu2 | = 3. B = {Tu0 = {tu0 , tu0}, Tu1 = {tu1 , tu1 , tu1}, Tu2 = {tu2 , tu2 , tu2}}. The function

divides the bucket into two sub-groups, sub-group1 and sub-group2 since |Tu0 | = 2. It creates first

sub-group1 = {tu0 , tu1 , tu2}, anonymizes in Step 15 some of the identifying values remaining in

the bucket B to ensure their uniform distribution, and creates sub-group2 = {tu0 , tu1 , t∗u1
, tu2 , t∗u2

}.
t∗u is used to denote a tuple in which the identifying value vid = tu[Aid] is anonymized.

1: procedure MERGEORCREATE(sub-group)
2: if sub-group is ℓ-diverse then
3: QI-groups← sub-group
4: else
5: tmp := tmp

⋃
sub-group

6: if tmp is ℓ-diverse then
7: QI-groups← tmp
8: tmp[] := {}
9: end if

10: end if
11: end procedure

4.6.2.2 Creating QI-groups

QI-groups are created using the procedure MergeOrCreate, which takes a sub-group and verifies

its ℓ-diversity. In Step 5 in the MergeOrCreate procedure, sub-groups that do not meet the

ℓ-diversity constraint are stored in a temporary buffer tmp. This process is repeated sequentially

for the sub-groups in the bucket until tmp satisfies ℓ-diversity. Before moving to the next bucket,

if ℓ-diversity is still not met in tmp, all the tuples in the buffer are then suppressed. This process

increases the size of the QI-group for the sake of privacy but also retains as many tuples as

possible.

Let n be the total number of tuples in T, ESG produces m QI-groups such that, m ≤ n
δ ,

where δ = max(k, l).

Proof. The Divide function in ESG produces at most
z
∑

i=1
min(Bi) QI-groups (assuming that all
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QI-groups are ℓ-diverse) where, min(Bi) is a function that returns the minimum number of

tuples of an individual in Bucket Bi. Now, if
z
∑

i=1
min(Bi) ≤ n

δ , then

z
∑

i=1
min(Bi) ≤ n

|U| ×
|U|
δ

z
∑

i=1
min(Bi) ≤ n

|U| × z

1
z ×

z
∑

i=1
min(Bi) ≤ n

|U|

1
z ×

z
∑

i=1
min(Bi) ≤ 1

|U| ×
|U|
∑

y=1
|Tuy |

The last statement in our equation compares two values in a cumulative moving average

since {min(Bi)}, (∀i, 1 ≤ i ≤ z) is a subset of {|Tuy |}, ∀y, 1 ≤ y ≤ |U|, {min(B)} ⊆ {|Tu|} and
z
∑

i=1
min(Bi) ≤

|U|
∑

y=1
|Tuy |. Thus, for |U| ≥ z, the value 1

|U| ×
|U|
∑

y=1
|Tuy | is continuously greater than

1
z ×

z
∑

i=1
min(Bi).

4.6.3 The anonymization process

Figure 47: Process Diagram of the elastic safe grouping

In Figure 47, we explain the process of our algorithm. We can divide it to three stages.

In the first one; the users are sorted in descending order based on the number of tuples then

divided into buckets of δ users each, where δ = max(K, l), for example in Table 48a, δ = 3 as

we can see in Figure 48a.

In the second stage, each bucket is divided into sub-groups based on the identifying value

with the minimum number of tuples in the bucket. For example, in Figure 48c, 3 sub-groups of

size 3 where each sub-group contains one tuple from u1, u3 and u4.

In the third stage, we check if the sub-group is l-diverse. If it’s not, then the sub-group is

sorted in tmp sequentially till tmp is l-diverse. If all the sub-groups related to a bucket are treated

and the tmp is not l-diverse than all its tuples are suppressed. Finally, each l-diverse QI-group

is created wether directly from sub-groups or from the buffer tmp.
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4.6.4 Analysis of elastic safe grouping algorithm

Given n as the total number of tuples in the table, the number of distinct individuals |U| in T,

|Tu|, which is the number of tuples per individual u, the following estimates the complexity of

ESG.

The cost of the sorting step (Step 2 in Algorithm 1) is n× log(n). In the Divide function,

we estimate the value of min (Step 6 in the Divide function) to be the average number of tuples

per individual denoted by n
|U| (see property 4.6.2.2). The cost of MergeOrCreate procedure is in

a worst case, equal to δ, which is the cost of merging a QI-group of size δ with temp (Step 5 in

the MergeOrCreate procedure). So now, to sum up, the cost of ESG is as follows:

T (n) = n× log n + z× ( n
|U| × 2δ)

= n× log n + |U|
δ × ( n

|U| × 2δ)

= n× log n + 2n

4.7 Achieving Blowfish Privacy

In this section, we prove that our mechanism achieves Blowfish Privacy [71], an extension of

Differential Privacy [55]. Differential and Blowfish Privacy are widely used privacy techniques

in many domains as data mining[? ], deep learning [? ], image classification [? ], location [? ],

graphs, social networks and Call Details Records anonymization [? 3]. These two approaches

can confront probabilistic attacks. We benefit from this proof as a confirmation that our

algorithm has the same ability.

The key difference between the two definitions is that the set of neighbors in Blowfish

depends on a policy P that determines the set of discriminative pairs as well as the constraints

known about the database.

Blowfish Privacy required that a privacy-preserving mechanism has the potential to hide

the existence or non-existence of a row in a dataset. To prove this ability:

• we define a range of outputs S,

• we list all the possible scenarios of adding (or deleting) one row to the dataset,

• we compute the probability Pr[ESG(D)→ S] that the output of our mechanism applied

on the original dataset is in the range S, then the same probability but applied on D′,

• we prove the existence of an upper bound ϵ for the distance of these two probabilities

and prove that this upper bound holds up for all the scenarios of the row addition (or

deletion).

In the coming subsection, we list all the possible scenarios of adding a tuple to the dataset.

These scenarios focus on the status of the bucket containing the tuples of the same individual

related to the added tuple. We compute an upper bound ϵ and prove it holds up for all the

cases.
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4.7.1 Determining the privacy paramater ϵ

In this subsection, we show that our mechanism respects the Blowfish Privacy inequation

shown in Equation 1. For this reason, we have to determine an upper bound to the possible

effect on the output that takes place when adding or removing one tuple from the original

dataset.

Let’s say we have two datasets D = {t1, ..., tn}, D′ = {t1, ..., tn+1} where ti is a tuple

containing quasi-identifier and sensitive attributes, ti is connected to one of the users in the

Universe and tn+1 is connected to one of those appearing in D.

To assume that our mechanism ESG respects the differential private inequation, we have

to compute the privacy parameter ϵ in the following inequation:

Pr[ESG(D)→ S]
Pr[ESG(D′)→ S]

≤ eϵ (1)

It means that if the QI-group QIj of ESG(D) is formed of 4 tuples: 2 belonging to one user

and the other 2 belonging to 2 different users, then the QI-group QIj of any output in the range

S should have the same structure even if the tuples don’t belong to the same users as in QIj of

ESG(D). The structure doesn’t take into consideration the excluded identifying values in these

groups (Excluded identifying values are those switched by *).

Therefore, the range of S is based on the output of ESG(D), thus, it’s obvious that

Pr[ESG(D)→ S] = 1. Then, to achieve the upper bound eϵ, we should compute the minimal

value of Pr[ESG(D′)→ S].

First, we assume that we are adding a tuple {tn+1} to D′. This tuple is definitely added to

one of the buckets as shown in Figure 48. The process of dividing the buckets into sub-groups is

based on the identifying value with the minimum number of tuples min
u∈Bi

(| Tu |) for all users

in the bucket Bi. Then min
u∈Bi

(| Tu |) is the factor that controls the number of sub-groups created

from each bucket, for example in Table 48a, B1 and B2 will be divided into 3 and 1 sub-groups

respectively.

The first step in computing Pr[ESG(D′) → S] and its lower bound is to calculate the

probability that adding tn+1 to D′ doesn’t affect min
u∈Bi

(| Tu |) of any bucket.

In Table 48a, 3 sub-groups will be created from B1 and 1 sub-group from B2. While the two

remaining tuples from U5 will be excluded (Aid → u∗) as we can see in Table 48b .

In Table 48c, B1 will create also 3 sub-groups. B1 has more than one individual (in this

example, all of them) with the minimum number of tuples min
u∈B1

(| Tu |) = 3. In this case,

regardless of the individual related to tn+1, min
u∈B1

(| Tu |) will remain 3, because at least one

individual still has just 3 tuples. Thus, as we can see in 48d, the only change is in the number of

u∗ which doesn’t affect the possibility of the output to be in range S.

In Table 48e, the new tuple is related to U5 which requires to sort the individuals again

based on the number of their tuples. After sorting, u5, u1 and u4 are in B1 while u4 and u2 are in

B2. Neither min
u∈B1

(| Tu |) nor min
u∈B2

(| Tu |) were affected by adding tn+1 to u5. For this reason, as

Table 48f shows us, the structure of the output is similar to that of ESG(D) even if the identity
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Users u1 u3 u4 u5 u2

|Tuples| 3 3 3 3 1
Buckets B1 B2

(a) Buckets of dataset D.

u1 u3 u4 u5 u2 u∗

3 3 3 1 1 2

(b) Number of tuples for
each individual in S.

Users u1 u3 u4 u5 u2

|Tuples| 4 3 3 3 1
Buckets B1 B2

(c) First case of D′.

u1 u3 u4 u5 u2 u∗

3 3 3 1 1 3

(d) Output of the
first case of D′.

Users u5 u1 u3 u4 u2

|Tuples| 4 3 3 3 1
Buckets B1 B2

(e) Second case of D′.

u5 u1 u3 u4 u2 u∗

3 3 3 1 1 3

(f) Output of the
second case of D′.

Users u1 u3 u4 u5 u2

|Tuples| 3 3 3 3 2
Buckets B1 B2

(g) Third case of D′.

u1 u3 u4 u5 u2 u∗

3 3 3 2 2 1

(h) Output of the
third case of D′.

Figure 48: Four Scenarios of adding a new tuple belonging to one of the users.

of the individuals has changed. Thus the output is in S.

In Table 48g, tn+1 is related to u2 which increments min
u∈B2

(| Tu |) from 1 to 2. Thus, the

structure of the output will be affected which put it outside the range S.

In conclusion, based on the third, we should compute the probability Prmin that tn+1 doesn’t

belong to an individual having min
u∈Bi

(| Tu |) tuples in any bucket unless another individual have

the same number of tuples in the same bucket.

For each bucket Bi, the probability that tn+1 doesn’t affect its min
u∈Bi

(| Tu |) is:

pri =


1 if | TUa |=| TUb |= min

u∈Bi
(| Tu |)

|U|i−1
|U|i Otherwise

where | U |i is the number of individuals in Bi. The first condition presents the case where

more than one individuals have the minimum number of tuples min
u∈Bi

(| Tu |); otherwise, the

second condition is met if tn+1 is related to any individuals in Bi except the last one.

Then, we can compute Prmnt as:

Prmnt =
|B|

∑
i=1

pri

where | B | is the number of buckets.

The second step in the algorithm is to make sure that the sub-group is l-diverse to create a

QI-group. Otherwise, the sub-group might merge with another sub-group to create a QI-group.

Thus, we have to compute the probability Prdiv that the sub-group sg containing tn+1 in D′ will

create the same QI-group that it has created in D. This event could be sub-divided into 4 events:

• Pr′div: the case were sg isn’t l-diverse in D, and still not l-diverse in D′. The minimal

value of this probability could be reach when, for example in D, sg merge with another
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sub-group sg1 to become l-diverse and create a QI-group while in D′ it doesn’t merge or

merge with a sub-group different than sg and creates a different QI-group. In this case

Pr′divmin
= 0.

• Pr′′div: the case were sg is l-diverse in D but not in D′. Pr′′div = 0 because sg in D′ will not

merge and don’t create a QI-group or merge with another sub-group and create a different

QI-group.

• Pr(3)div: the case were sg is not l-diverse in D but it is in D′. Pr′′′div = 0 for the same logic

mentioned for Pr′′div.

• Pr(4)div: the case were sg is l − diverse in D and D′. The minimum probability of this case is

the probability of choosing l distinct sensitives values in sg in D and in D′:

Pr(4)divmin
=

| As
D |!

l!× | As
D |l
×
| As

D′ |!
l!× | As

D′ |l

where | As
D | (| As

D′ |) is the number of sensitive attributes in sg in D (D′ respectively).

Therefore, the minimal value of Prdiv is:

Prdivmin = 0 + 0 + 0 +
| As

D |!
l!× | As

D |l
×
| As

D′ |!
l!× | As

D′ |l

Finally, we can compute the minimal value of Pr[ESG(D′)→ S] as:

Pr[ESG(D′)→ S]min = Prnot−new × Prmnt × Prdivmin

Then:
Pr[ESG(D)→ S]
Pr[ESG(D′)→ S]

≤
l!2× | As

D |l × | As
D′ |l

| As
D |!× | As

D′ |!×∑|B|i=1 pri

Therefore:

ϵ = ln

(
l!2× | As

D |l × | As
D′ |l

| As
D |!× | As

D′ |!×∑|B|i=1 pri

)

4.7.2 Determining the policy

Blowfish Privacy is based on a privacy policy P = (T , G, IQ), where T denotes the domain

of all possible datasets created from a universe of tuples, G = (V, E) is a discriminative secret

graph with V ⊆ T , an edge in graph G connects two nodes that represent two datasets from T
that differ by one and just one tuple and IQ denotes the set of databases that are possible under

the constraints Q that are known about the database.

4.7.2.1 Determining the constraints

It’s not uncommon to have publicly known constraints about our original dataset. Therefore,

logically, the anonymized data should also respect the constraints. But Differential Privacy

doesn’t take into consideration any constraint. This drawback is one of the reasons that
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motivated He et al. [71] to propose the Blowfish Privacy as a generalization of Differential

Privacy.

In our case, we can assume that the public knows that our released dataset should respect

the ℓ-diversity.

Therefore, for each tuple < u, vs, con f (u, vs) >, the confidence score after any release is as

follow: con f ′(u, vs) ≤ max( 1
l , con f (u, vs)) where con f ′(u, vs) is the updated con f (u, vs) after

the release.

In other words, the release does not help the adversary to increase any of his confidence

scores con f (u, vs) in any tuple to exceed an upper bound max( 1
l , con f (u, vs)).

For more explanation, what is meant by the upper bound of con f ′(u, vs) is: if con f (u, vs) is

already greater than 1
l then the release will not increase the confidence score, then con f ′(u, vs)

will be equal to con f (u, vs). If con f ′(u, vs) is less then 1
l , then the release will not allow to the

adversary to get a con f ′(u, vs) that exceeds 1
l .

Thus, this upper bound can be considered as the constraint of the data when applying our

mechanism.

Therefore, by proving that our mechanism respects the inequation of Blowfish Pri-

vacy and by defining the constraint, we have shown that Elastic Safe Grouping is

ln
(

l!2×|As
D |l×|As

D′ |
l×|U|(Universe)

|As
D |!×|As

D′ |!×|U|(D)×∑|B|i=1 pri

)
-Blowfish Private.

4.8 Experiments

We now present a set of experiments to evaluate the efficiency of our approach, both in terms of

computation as well as loss of data utility. We implemented our algorithms in Java based on the

Anonymization Toolbox [76], and conducted experiments with an Intel XEON 2.4GHz PC with

2GB RAM.

4.8.1 Dataset evaluation

# of distinct tuples 109760
# of distinct individuals 2374

# of distinct sensitive values 1306
Table 11: Dataset properties

We performed our experiments on a sample test dataset provided here 1. The generated

dataset simulates rental transactions, containing the attributes UserID, VinNumber and Location.

The attribute UserID is the identifying attribute whereas Location is sensitive. The dataset is of

size 109760 tuples with 2374 distinct individuals. Table 11 shows the properties of the dataset.

1https://github.com/ElieChicha/ESC/blob/main/sourcedata.xlsx
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4.8.2 Utility metrics and measures

We use the following metrics and measures to evaluate the efficiency of our technique in

preserving the data’s utility.

4.8.2.1 Relative confidence error

The relative confidence error (RCE) measures the relative difference in the confidence of the

correlation between an identifying value vid and a sensitive value vs between the original and

anonymized tables.

This captures the impact of privacy protection on the ability to learn interesting and

potentially useful correlations. RCE is defined in the following equation:

RCE(vid, vs) =
|con f (vid, vs|T)− con f (vid, vs|T∗)|

con f (vid, vs|T)

where,

• con f (vid, vs|T) is the confidence of vid and vs in table T,

• con f (vid, vs|T∗) is the observed confidence that shows how often the association between

vid and vs is true across the anonymized table T∗.

We assume that a frequent association between vid and vs in table T can still be identified in

anonymized T∗ (i.e., vid is more likely to be associated with vs in the QI-groups to which it

belongs). The observed confidence is formally defined as follows:

con f (vid, vs|T∗) =
∑m

j=1 f j(vid, vs)

∑m
j=1 gj(vid)

where

f j(vid, vs) =

{
1 if vid and vs are associated in QIj

0 otherwise

and,

gj(vid) =

{
1 if vid exists in QIj

0 otherwise

4.8.2.2 Mean squared group size

The Mean Squared Group Size (MSGS) investigates how likely an identifying value remains

associated with its corresponding sensitive value in post-anonymization [155]. The MSGS is

formally computed as follows:

MSGS(T∗) =
∑m

j=1(|QIj| − 1)2

|T| − 1

Intuitively, the smaller the size of the QI-groups, the smaller the value returned by the

MSGS, which indicates that an identifying value is more likely to be associated with its

corresponding sensitive value in the same QI-group.
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4.8.2.3 Kullback-Leibler divergence

In information theory, Kullback-Leibler (KL) divergence calculates the difference between two

probability distributions. In this paper, we use it to compare the distributions of identifying

attribute Aid values before and after anonymization; before and after anonymizing/suppressing

some of the identifying values and tuples to preserve the privacy constraint. This measure

originates from the observation that, whenever the distribution of identifying values in

the anonymized table diverges from the original distribution, the utility of the data in the

anonymized table will decrease. We denote by PAid,T and PAid,T∗ , the distributions of identifying

attribute Aid values in T and T∗ respectively. KL divergence on T and T∗ is computed as follows:

DKL(PAid,T||PAid,T∗) =
|D(Aid)|

∑
i=1

Pr(vidi |T)× log
Pr(vidi |T)
Pr(vidi |T∗)

where |D(Aid)| is the number of distinct identifying values in Aid , Pr(vid|T) and Pr(vid|T∗) are

the probabilities of the observed value vid in table T and T∗ respectively.

We use a non-linear transformation of KL divergence denoted by DN = 1− e−DKL , to bound

the score of DKL between 0 and 1 and compare it in several anonymization techniques. The

smaller DN value, the closer the distribution PAid,T∗ is to PAid,T.

4.8.2.4 Comparing with the 1:M mechanism

This subsection compares our mechanism with the 1:M mechanism by evaluating each

anonymization’s Information Loss.

In [162], Xiao et al. compare their Anatomy algorithm to a Generalization algorithm. They

use a set of 10 000 count queries applied on a generalized dataset and an anatomized dataset.

The generalization algorithm generalizes the QI attributes into groups. The sensitive

attributes are not manipulated, but it’s impossible to relate the sensitive attribute with its real

corresponding attribute by more than 1
k .

In the conditions of each query, they indicate at least one QI attribute beside the sensitive

attribute. Then they compute the probability p that a tuple in the QI-groups qualifies the range

predicates of the query. Finally, the query result is p× s, where s the number of sensitive queries

having the same value as the one indicated in the query.

This technique is not feasible for the 1:M algorithm because the sensitive attributes are also

generalized in this algorithm. For this reason, we can use two probabilities and multiply their

results by each other to answer the query. The first probability is that a tuple in a QI-group

qualifies the query’s range predicates. The second is that a sensitive attribute in the same QI-

group qualifies the query’s predicates for the sensitive groups. To compute these probabilities,

we can apply the NCP used in the experiments in [65].

Let’s the query be: Select count(*) from Table where colQI1 = q1 and colQI2 = q2 ... and colQIm

= qm and colsens = qsens. In this query we are counting all the tuples containing q1, q2, ..., qm and

qsens. We can apply the query twice and change the value of Table from Rental_Table_Original to

Rental_Table_1M. Normaly, computing the difference between the two results gotten from the
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query, then dividing the difference by the result of the query applied to Rental_Table_Original

will give us the Information Loss.

However, this method is not achievable in the 1:M algorithm because all the table values

are generalized. For this reason, we will compute the Information Loss in another way; we will

rely on the Equation 1 to get the same result expected by using the method of the difference of

two queries’ results:

IL1M =| Qsens | ×NCP(qsens)×
m

∑
i=1

QID− NCP(qi) (1)

where Qsens is the generalization of qsens and

NCP(qsens) =

0 | qsens |= 1

| qsens | / | A | otherwise

and

QID− NCP(qi) =
∑d

j=1 NCP(qi)

d
where d is the number of all possible values for coli.

After getting the information loss of the 1:M algorithm, we should get the loss of our

algorithm to compare the results. The method that we apply to compute the loss is based on the

following equation:

ILESG =
| ∑

g
i=0(n

S
i (qsens)×

nQI
i (q1,...,qm)

nQI
i

)−Org_Res |

Org_Res
(2)

where g is the numbers of groups in the Table, nS
i (qsens) is the number of sensitive attributes

in the ith group of the Sensitive table where the value of the attributes is qsens, nQI
i (q1, ..., qm) is

the number of the tuples in the ith group of the Quasi-Identifier table where the value of the

attributes are (q1, ..., qm), nQI
i is the number of tuples in the ith group in the Quasi-Identifier

table and Org_Res is the result of the query when applied on the original table.

Finally, we compute the mean of all IL1M computed for a set of queries and the mean of

ILESG for the same set, and then we compare the two means to find out which method has a

higher information loss.

We compare the two algorithms by applying ILESG and IL1M on approximately 1000

combinations of attributes. Figure 49 shows that 1:M generalization has a rate of information

loss more than ESG by 1.5 to 2 times generally.

4.8.3 Evaluation results

We elaborated a set of experiments to evaluate the efficiency of our elastic safe grouping and

compared the results with safe grouping and anatomy. These experiments can be summarized

as follows:

• Evaluating the size and the growth of QI-groups in a dataset anonymized using elastic

safe grouping, safe grouping, and anatomy.
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Figure 49: Information Loss of ESG and 1:M generalization

• Studying the impact of elastic safe grouping on preserving the correlations between

identifying and sensitive values.

• Evaluating utility loss in terms of suppressions in a dataset anonymized using elastic safe

grouping and safe grouping.

• Evaluating the performance of elastic safe grouping.

Figure 50: Evaluating the number of QI-groups and the MSGS in ESG and Safe
Grouping

4.8.3.1 Evaluating the growth in number and size of QI-groups

In this section, we examine the growth in number and size of QI-groups. We vary k from 12

to 20 and leave l equal to 10. At each execution, we retrieve the number of QI-groups and the

MSGS.

Let m be the number of the QI-groups produced in post-anonymization. m is computed as

follows:

• using safe grouping, m = |U|
k where, |U| is the number of distinct individuals in T.

• using ESG, |U|δ ≤ m ≤ n
δ where, n is the number of tuples in T.

• using anatomy, m ≈ n
l where, l is the l-diversity privacy constant.

We consider that the smaller the size of the QI-groups, the higher the association of

identifying and QI values is to their sensitive values. The results as shown in Figure 50 shows

that ESG presents a considerable improvement over safe grouping for the number of QI-groups.
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Figure 51: Evaluating the QI-groups numbers in Anatomy, Safe Grouping, and ESG

Alternatively, we compare the results of ESG and anatomy, where at each execution, we

vary l from 12 to 20, and leave k constant (k = 10) since ESG is sensitive to the change of both

l and k because of δ = max(k, l)(see Step 3 in the ESG algorithm). Figure 51 shows that ESG

provides almost the same utility as anatomy; keeping the associations between sensitive and

identifying values suitable for discovery but exposing only safe correlations.

4.8.3.2 Evaluating the impact of ESG on the correlations between identifying and

sensitive values

In this experiment, we use the RCE measure defined in Section 4.8.2.1 to evaluate how

correlations are preserved after the anonymization of the table using both, ESG and safe

grouping. Specifically, we learn significant correlations from the original table T (i.e., correlations

having a confidence greater than or equal to a maxCon f threshold and a support greater than

or equal to a minSup threshold) and compute after that, at each run, their observed confidence

from the anonymized table T∗. Finally, we compare the resulting average RCE measure using

both, ESG and safe grouping algorithms.

Figure 52: Comparing RCE using ESG and safe grouping

Here, we use maxCon f = 0.5 and minSup = 0.0001 to identify 33 significant correlated

identifying and sensitive values from table T. At each run, we vary k from 10 to 24 while l = 10.

The results from Figure 52 show that the error of safe grouping remains almost invariant, since

each of the individuals, has their identifying values stacked in the same QI-group. In ESG,

however, the error is lower and tends to change with k, since some of the groups are merged to
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create l-diverse QI-groups. Summarizing, the results show that significant correlations learned

from the original table are better preserved using ESG.

4.8.3.3 Evaluating utility loss in T∗

In this experimental setup, we evaluate the utility loss when using safe grouping and ESG. Both

algorithms guarantee privacy by either suppressing tuples and/or anonymizing identifying

values.

Figure 53: % of suppressed rows in safe grouping and ESG

Figure 54: Evaluating the number of anonymized Aid values

Figure 55: Comparing KL-divergence between safe grouping and ESG for l = 8, 9, and
10

We perform three separate tests. In the first test, we evaluate the percentage of rows

suppressed to ensure l-diversity in both safe grouping and ESG. In the second, we evaluate the

number of identifying values anonymized (i.e., suppressed/encrypted) to ensure the uniform
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distribution of identifying values in each of the QI-groups (Requirement 2 in our privacy

constraint in Section 4.6.1).

Finally, we compare the divergence in the distributions of Aid values in a dataset

anonymized using ESG and safe grouping. For that matter, we use the DN measure to determine

the difference between the distribution of identifying values in the original table versus the

distribution of identifying values in the anonymized table; anonymized using ESG, and safe

grouping.

Each of the tests is repeated three times per anonymization technique where, in each run,

we vary k from 12 to 20 and leave l constant for l = 8, 10, and 12. At each execution, with given

values for k and l, we compute the percentage of suppressed rows, the number of anonymized

identifying values, and DN .

Test 1: Percentage of suppressed rows

The results from Figure 53 show that for small values of k, safe grouping performs better

than ESG. The former suppresses few to no tuples at all compared to the outcome of ESG as the

latter creates l-diverse QI-groups in each of the buckets. All the remaining QI-groups, the ones

that are not l-diverse, are entirely suppressed (Step 17 in the Divide function). In safe grouping,

however, only a few tuples are suppressed from the QI-group in succession and as long as

l-diversity is not met [9, 10]. This explains why for small values of k, safe grouping retains more

tuples than ESG, but when k increases, QI-groups grow in size thus, more likely l-diverse. As

noticed, for k = 20 the percentage of tuples suppressed in both safe grouping and ESG is almost

the same. Another aspect to show is that when l increases the percentage of suppressed tuples

increases too since the number of QI-groups that respect l-diversity tends to decrease.

Test 2: Number of anonymized identifying values

From Figure 54, we can see that the number of anonymized identifying values increases

with k. This could happen whenever we stack additional identifying values in a QI-group where

both, ESG and safe grouping tend to anonymize more values to ensure the uniform distribution

in the QI-group. For instance, if a bucket B contains identifying values of 4 distinct individuals,

u0, u1, u2, and u4 having |Tu0 | = 1, |Tu1 | = 2, |Tu2 | = 4, and |Tu3 | = 6. For k = 2, two QI-groups

are created, QI1 = {Tu0 , Tu1} and QI2 = {Tu2 , Tu3}. The total number of anonymized identifying

values is equal to 3.

For k = 3, only one QI-group is created in which we add tuples of 4 distinct individuals

QI1 = {Tu0 , Tu1 , Tu2 , Tu3}. The number of identifying values to anonymize is now equal to 9.

Another finding is that there is a negative correlation between the number of anonymized

identifying values and l, since the process of ensuring the uniform distribution of identifying

values is applicable only for l-diverse QI-groups. That is, when l is large, both anonymization

algorithms, safe grouping, and ESG, produce fewer l-diverse QI-groups, and thus, the number

of values to be anonymized tends to decrease. Note that a suitable trade-off between values

of k and l is likely to achieve an acceptable number of anonymized identifying values and

suppressed tuples .

Test 3: Comparing the divergence in the distributions of Aid values in pre- and post-
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anonymization

Here, we summarize our findings regarding the loss in utility due to the suppres-

sion/anonymization of tuples and identifying values. We choose to compute DN of the distri-

butions of identifying values before and after the anonymization of the dataset using both ESG

and safe grouping. The results in Figure 55 show that safe grouping provides less divergence

at the beginning but converges however to reach values produced by ESG when k increases.

Overall, the anonymization cost is relatively small where we can see that the value of DN is at

most equal to 0.02 for l = 12.
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5. Differential Privacy for Image Classification

5.1 Introduction

In this part, we aim to design and develop an anonymous full-duplex image classification

framework under Differential Privacy. We work under the assumption that both the cloud

and the querier are semi-trusted entities; thus, their data should remain safe and confidential.

That is, neither the querier nor the cloud should be able to link a particular individual from the

other party to an image while maintaining, to a certain extent, suitable classification accuracy.

We use Principal Component Analysis (PCA) to transform images into anonymized vectors

(differentially private synopsis of PCA vectors) and we ensure that the individuals in these

vectors remain unidentifiable.

5.2 Related Work

The K-Nearest Neighbors (K-NN) [161] is one of the most popular and influential data mining

algorithms in the literature. However, many adaptive attacks [94] can form a real threat to data

privacy in K-NN based systems. Li et al. propose in [94] a privacy-preserving system based on

Kernel density estimation using Gaussian Kernel instead of K-NN.

Their system, as most of the other related works, uses computation over encrypted data.

They describe four roles:

• The data owners submit encrypted data to the system.

• The queriers submit encrypted queries to receive classification results.

• The host role, possessed by the cloud, stores the incoming encrypted data and hosts the

classification.

• Finally, the Cryptographic Service Provider (CSP) owns both encryption and decryption

keys.

They demonstrate that Distance-Learning attacks under the K-NN system can breach data

privacy if an untrusted data owner is, at the same time, a querier and propose to use Kernel

density estimation instead of K-NN. In this paper, due to the noisy vectors and the sampling,

using K-NN is safe.

The work described in [149] turns the K-means clustering algorithm to a differentially

private algorithm, where noise is added to the centroids in a way that respects the requirements

of Differential Privacy. Differentially private K-Means is divided into two approaches:

interactive and non-interactive.

Interactive approach [149] is based on a query that can be used just once, can serve only

one querier and only for one task. Any mechanism that is based on this approach returns a

noisy result to the user. Each query has a budget α = ∑
i

αi given by the database owner. Each

execution i makes the budget loses αi of its value. The query cannot be executed anymore when

the α budget is less than αi. Hence, this approach has many restrictions on privacy preservation,
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Authors Function Trusted Parties Time
Consuming

Queries Classification

Li et al. Encryption CSP + Trusted data
owner

High Encrypted Kernel Density
Estimation

Nassar
et al.

Partially Ho-
momorphic
Encryption

Cloud + Trusted
data owner

High Non-private K-NN

Our
work

Differential
Privacy

Anonymization
Service + Trusted

data owner

Low Differentially
Private

K-NN + Kernel
Density Estimation +

SVM
Table 12: Comparing related works with our work.

especially if the budget is small where the number of queries could be insufficient. Besides, the

data owner should validate the query. The non-interactive approach algorithms [149] return a

noisy synopsis data set. The querier can send queries to this synopsis to get noisy statistical

data. This approach has no limits nor restrictions to the number and the sender of the queries.

Several other works [122, 152, 64] rely on encryption for privacy. Taheri et al. in [152]

propose a method for face authentication in the encrypted domain. In [64], they propose a

general framework for multi-biometric template protection based on homomorphic probabilistic

encryption. The work in [122] is similar to our proposed approach but relies on partially

homomorphic encryption called Paillier’s encryption. This type of encryption is a public key

scheme; this means that the encryption can be done using a public key, while decryption can

only be done by a trusted party that possesses the private key. The technique, however, assumes

that the cloud is a trusted party, and thus the privacy of the dataset is threatened.

As shown in Table 12, the two other works rely on encryption, and all the works need a

trusted data owner. The trusted data owner is always required, or the system model cannot be

private. The other trusted party is the cryptographic service for the first work, the cloud for the

second (which can cause a severe threat to the dataset), and the anonymization service for our

work. These encryption and decryption tend to be time-consuming. Finally, we consider that

using noise addition techniques like Differential Privacy can provide better performance and

keep the data suitable for classification.

The benefits and disadvantages of other techniques and mechanisms should be studied to

find out their capabilities in this domain, like pixelization, blurring, and PCA-like mechanisms.

Although we think that blurring or pixelization cannot provide the same level of privacy and

utility as Differential Privacy, but this issue needs more study in future works.

5.3 Principal Components Analysis

PCA [129] is a singular value decomposition to reduce data dimensionality. Given data points

in an m-dimensional space, PCA projects them into lower-dimensional space while preserving

as much information as possible. Consider a matrix S(n × m), in this work, each matrix

column represents an image of m features. These features are, for instance, the RGB values

(or the grayscale values) of the image pixels. The features are subtracted from their respective
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empirical means. Assuming a normal (Gaussian) probability distribution of errors, orthogonal

transformations naturally arise. The PCA is an orthogonal transformation (actually a coordinate

rotation) that aligns the transformed axes with the directions of maximum variance:

S = U ∑ VT (1)

where U and V are orthogonal matrices, and ∑ has the set of singular values. U(m×m) has

for columns the eigenvectors of the covariance matrix C of S. The first column of U is the

eigenvector having the largest absolute eigenvalue (the first principal component). The most

significant variance is in the direction of the first principal component. The most significant

variance on the subspace orthogonal to this vector is in the direction of the second principal

components, and so on. The matrix B = UTS is therefore useful for dimensionality reduction of

the original data. In effect, Br = UT
r S, where Ur is the smaller matrix having only the first r < m

columns of U, is a reduced representation of the data. Br is an r× n matrix. Data reconstruction

is governed by Sr = UrBr (an n×m matrix), which is a lossy version of the original data S [16].

In our mechanism, we intend to add enough noise to the PCA vectors of images in a way

that the individuals in the images remain unidentifiable, but at the same time, the vectors can

be used to train the classifier.

5.4 Differentially Private Image Classification Framework

We assume that the first party (the data owner) holds a dataset of face images. The images

belong to different classes, and each image is labeled with its class number. The second party,

which is the end-user, has one face image of an unknown class and wants to predict this class, or

a multi-face image and wants to know how many faces have a specific reaction. In non-private

settings, this would be easy: We use a database with labeled images to train the classifier, and

we predict an unknown image based on the classifier’s result.

Figure 56: General Architecture of a Differentially Private image classification system

In private settings, we want to imagine a man in the middle asking for information about the

image (the query) and the image database (or the classification model). This man in the middle

must not be able to recognize the identity of any subject no matter how many questions he asks.
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Both parties must add noise to make the whole process Differentially Private. We want as a

result that any single image in the database be masked by reducing every image into a noisy

vector. The query image is masked as well. However, to ensure an accurate classification, adding

noise to a database of images and requests must be done using a global privacy parameter.

In our framework (see Fig.56), four types of actors are listed:

• Trusted Data Owner: sends the essential dataset to anonymization service, and later, can send

more images with trusted classification.

• Untrusted Data Owner: sends images to the anonymization service, with untrusted

classification. Trusted and untrusted data owners may request a noisy image from the

synopsis dataset to be sure that the face is unrecognizable. The principal component

vectors, the eigenvectors, and the mean vectors are required to reconstruct images, so the

service keeps the eigenvectors and means vectors on a different cloud.

• Querier: sends one face or multi-face images to the anonymization service with the aim of

getting their classifications.

• Data Host: receives three types of vectors:

1) Trusted data owner vectors (sample noisy images) are used to train the classification

algorithm.

2) Untrusted data owner vectors are classified, and the output is returned to the

anonymization service to check the truthfulness of the data owner classification.

3) Querier vectors are classified, and the output is returned to the querier.

5.4.1 Anonymization service

The service transforms every image in the primary dataset into a vector using PCA and adds

Differentially Private noise to the vectors. It performs safe sampling and returns a synopsis

dataset, and checks the truthfulness of the untrusted data owner classification. The process

breaks down as follows:

The first step is to concatenate a set of images into one matrix S as PCA reduces a set of

images into a set of vectors. Then, we compute the covariance matrix C = 1
m STS; where m is

the number of columns of S.

PCA is turned into a Differentially Private mechanism by adding differential private noise

to C. The noise matrix L is generated by sampling its elements from a probability distribution.

Then, the noisy covariance N is calculated: N = L + C.

To get the vectors of the images, we should first calculate characteristics vectors and values

called respectively eigenvectors u and eigenvalues λ using this equation: (N − ˘λI)u = 0.

Eigenvalues can be found by calculating det(N − ˘λI) = 0, and then the eigenvectors are

calculated. All the eigenvectors will be concatenated in one matrix U, and the PCA matrix P is

computed by multiplying S by U. Each column of P is a PCA vector. If a trusted data owner
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sends the set of images, then the vectors will be sampled to create a synopsis dataset sent to the

cloud.

5.4.2 Privacy-preserving PCA

To make PCA a privacy-preserving mechanism using differential privacy, we should turn

the covariance matrix C into a noisy matrix. Therefore, we generate a noise matrix from a

probability distribution and add it to the covariance matrix. Practically, using C in the PCA

process returns a memory error due to the enormous dimensions of C. For this reason, C is

substituted by a matrix A = 1
m SST where data matrix S ∈ Rn×m. Then each row of the matrix P

is a PCA vector instead of each column.

5.4.2.1 Generating matrix N with Laplacian noise

We choose Laplace distribution [75] to achieve differential privacy. The probability density

function of Laplace distribution Lap(µ, b) is:

P(x | µ, b) =
1
2b

e
−|x−µ|

b (1)

where µ = 0, b = 2d
nα and α is a privacy parameter.

For S ∈ Rn×m, we sample d2+d
2 values from this distribution to fill the upper triangular

part of the noise matrix L then the values of the lower triangle part are copied from opposite

position. Finally, we add the noise matrix L to A.

5.4.2.2 Generating matrix N with Laplacian noise

For a long time, SULQ method [24] was the only Differentially Private approximation to PCA.

This method based on Gaussian distribution guarantees weaker privacy than the differential

privacy known as (α, δ)-differential privacy. Chaudhuri et al. in [31] proved that SULQ is not a

good candidate for effective dimensionality reduction. They proposed a simple modification and

called their method MOD-SULQ. This method, as in SULQ, is based on Gaussian distribution.

First, we compute the parameter of the distribution:

β =
d + 1

nα

√
2 log

(
d2 + d
δ2
√

2π

)
+

1√
αn

(2)

where α is a privacy parameter and δ is a relaxation parameter.

We generate after that a symmetric noise matrix based on the probability density function

of Gaussian distribution N(µ, β2):

P(x | µ, β2) =
1√

2β2π
e
− (x−µ)2

2β2 (3)

where µ = 0. Finally the noise matrix is added to A.
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5.4.3 sampling to create a synopsis dataset

To perform the sampling, we reconstruct some images from noisy vectors whose classifications

were not affected by the added noise.

We compute two distance scores of the noisy image and compare them to two user-defined

thresholds. First, we compare each image to its noisy version. Second, we compare the noisy

image to the mean of the images with the same classification label.

If distance scores are less than these thresholds, we can consider the image as unidentifiable,

and at the same time, its classification was not affected by the noise. Therefore this noisy vector

will be added to our synopsis dataset.

If the data owner is untrusted, then the vectors are classified on the cloud, and the

classification result is compared to the label sent by the data owner for each image. If the

label of the image and the classification result are not identical, then the vector is dropped.

Otherwise, the vector will be a part of the sampling process.

The images sent by data owners are already labeled. Therefore, the sampled vectors are

classified and form the training dataset. If an end-user sends the images, then after applying

the private-preserving PCA process on the images, the noisy vectors are directly sent to the

cloud to be classified.

5.5 Experiments

Our experiments were applied on a dataset of Japanese face images (JAFFE) [106], containing

213 images of 7 facial expressions.

5.5.1 Experimental Settings

We have applied three classification algorithms to test which one returns better results.

The first algorithm is the Support Vector Machine that has proved its superiority among

many other classification methods [38]. SVM is based on transforming the data in input space

into data in featured space in a way that renders the classes linearly separable. Then, a line or a

plane is drawn between the classes, and the classification is based on this line or plane.

The two other classification algorithms K-NN and Kernel Density Estimation, are from the

same family. We have chosen K-NN and Kernel Density Estimation to check if K-NN is more

accurate than the Kernel algorithm; in this case, we can declare that we can apply K-NN in our

model with no concerns about distance-learning attacks in DO-Q Threat Model case [94].

Kernel calculates the influence of every point in each class on a given query relative to

the distance between this point and the query. The Gaussian Kernel formula to calculate the

influence is:

K(|| q− xi ||) =
1

σ
√

2π
e−

1
2σ2 ||q−xi ||2 (1)

where q is the query tuple, xi is the i − th data tuple, σ is a parameter chosen to maximize

accuracy [94] and || . || is the L2 norm.
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In K-NN, which is one of the most popular classification algorithms, the K nearest neighbors

have the same influence on the query; the others have 0 impacts. This shows that choosing the

parameter K is very critical to get the best result from this algorithm [13].

The two most notable observations we have found in the empirical study are: The need

for a minimal privacy parameter (vast amount of noise) to provide privacy for images. Hence,

adding more and more noise is unable to hide facial features.

For the first observation, we have studied the values of the elements inside the matrices

and the vectors:

For a set of images of dimensions n×m, in every image the value x of the pixel ∈ [0, 255],

then data is centered so xc ∈ [−128, 128].

We compute A = Xc.XT
c so xa = x2

1 + x2
2 + ... + x2

(n×m); where Xc is the centered data.

Therefore, xa ∈ [0, (128× n×m)2].

In our experiments n = m = 256, so xa ∈ [0, 7.1013], we have found that to provide enough

privacy to the reconstructed images, we should have m > [0, 7.1013], where n is an element of

the noise matrix, to get this value for m, the privacy parameter α ≤ 10−15.

For the second observation, let’s consider the function used to rebuild the images:

i = vec.U + mean (2)

where vec is the noisy vector of the specified image, U is the matrix containing the eigenvectors,

and mean is the vector containing the means of the dataset.

Then after reshaping i as n×m matrix, the matrix is normalized:

i =
i−min(i)

max(i)−min(i)
× 255 (3)

We assume that reconstructing images using the eigenvectors, the mean, and then normalizing

the matrix makes it impossible for the noise to hide the face or its features.

Figure 57: Image reconstruction based on Laplace noisy vectors.
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From Figure 57, we can see that for a 256× 256 image, the privacy parameter α < 1−−15

is not enough to provide privacy where, regardless of how small α is, the features are still

identifiable.

5.5.2 Evaluating Privacy vs. Accuracy

First, we compare the three classification algorithms, Kernel Density Estimation, SVM, and

K-NN. The latter surpasses the two other algorithms by far, as the accuracy of Kernel Density

Estimation and SVM did not exceed the 50%. Thus, we have focused on K-NN and compared its

performances based on privacy parameter α, probabilistic distributions (Laplace and Gaussian)

and distance functions (Chebyeshev, Euclidean, and Manhattan) used in K-NN.

In Figure 58, we can notice how the accuracy decreases when α decreases. For α = e−10, the

Figure 58: Accuracy Score for K-NN Classification.

accuracy ranges between 0.92 and 1, but in the previous section, we have seen how the noisy

images with α < e−15 are identifiable.

Chebyshev Distance outperforms the two other distances for Laplacian noisy dataset. For α

between e−15 and e−20, the accuracy is 0.9 when using Chebyshev, which forms a good trade-off

between privacy and utility.

For the Noisy Gaussian dataset, the three distance functions have close results. For α

between e−50 and e−15, the accuracy is between 75% and 85%. Hence, for a better trade-off

between privacy and utility, the data owner should apply the Laplace mechanism with a privacy

parameter in the range of [e−50, e−15] using the Chebyshev distance in K-NN classification.
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6. Conclusion

6.1 Recap

In this thesis we present the crucial role played by the digital data in several fields especially

in e-commerce and user-centric social networks businesses and how the heterogeneous data

generated by users can help make more profit. We discuss the risk of privacy breaches while

analysing this data and their possible damages on users and companies at the same time.

We propose many Blowfish and Differential Privacy mechanisms as a solution to help the

companies benefit from three type of data with the minimum risk possible.

In the first use-case, we propose three mechanisms to produce a good balance between

utility and privacy on graph datasets. We detail the types of graphs (static and dynamic), the

types of attacks (passive and active) and types of mechanism (offline and online). Then, we

propose our three mechanisms to cover all these cases.

We have summarized Blowfish privacy, its formal model and the enhanced privacy-utility

trade-off that it brings with respect to its predecessor, Differential Privacy. Then, we enrolled

examples of its application to communication graph databases and their typical queries. We

further studied the idea of privacy as a service with differentiation among different groups of

individuals. We showed that this relaxation is formally feasible and proved its utility through

the enrollment of several queries and computing their sensitivity. We work under the settings of

binary differentiation (standard vs. VIP) and binary communication status (0 or 1). In addition,

we propose a mechanism to provide anonymized results for more sophisticated queries such as

local clustering coefficients, lengths of shortest paths, and some centralities.

Then, we proposed, implemented, and evaluated a BP mechanism to provide privacy

for sequentially released graphs. We have proved that DP cannot ensure strong privacy for

subgraphs in an intersection of several releases. Then we have proposed our solution based

on the BP definition. In the experiments, we have proposed a method for the data owners to

help them calibrating the trade-off of privacy and utility of their graphs. We have proved that

our mechanism preserves the graphs’ utility better than a DP mechanism and provides strong

privacy for subgraphs.

For the third mechanism, we presented an active attack on dynamic graphs. These graphs

are anonymized and published based on an online approach. We explain how edge-DP cannot

deal with active attacks on dynamic graphs and how node-DP has inferior results on the utility

side. Then we propose our mechanism called Node-Detention Differential Privacy (NNDP),

where suspicious nodes are hidden in a hyper node called Detention node for one or more

releases. Our mechanism is a new type of node-DP that differs from others in that it’s the

first to return an anonymized graph instead of the anonymous query result. The experiments

prove that NNDP can provide a very high level of privacy and a very acceptable level of utility

compared to two baseline node-DP mechanisms.

In our second use-case, we proposed a technique that safely exposes significant correlations

between individuals and their sensitive values; correlations bounded by a privacy constant δ to

preserve utility for associations discovery. We adopted a divide-and-conquer strategy to spread
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the correlations safely into several QI-groups and put it into effect in an elastic safe grouping

algorithm. We studied the efficiency of our algorithm by comparing the resulting utility to

safe grouping algorithm and to anatomy. The results of our experiments showed considerable

improvement for associations discovery compared to safe grouping, while compared to anatomy,

results were close.

In the third use-case we focus on image datasets where we have proposed, implemented

and evaluated a private image classification framework based on Differentially Private Principal

Components Analysis. Using this framework, we ensure that the individuals in the image

dataset are kept safe on a semi-trusted cloud service by adding Pifferentially Private noise to the

images’ PCA vectors. User requests are distorted as well to keep the participating individuals

unidentifiable. We elaborated a set of experiments to evaluate the trade-off between the accuracy

and the privacy of the dataset against several classification algorithms, namely K-NN, Kernel

Density Estimation, and SVM. K-NN has shown to be very promising. We identified as well

that a privacy parameter within the range of [e−15, e−20] must be used to balance between the

privacy and accuracy of K-NN using the Laplacian mechanism.

6.2 Future Work

The three mechanisms presented in this thesis for graph anonymization rely on a trusted central

authority. The individuals presented in the graph might not trust the central authority and

refuse to share their row data with it before being anonymized. For this reason, in future work,

we will propose

• a local version of Blowfish Privacy definition for graphs, and apply it on graphs with

multiple levels of privacy by proposing a decentralized mechanism to compute the noise

added to the results of the queries

• a decentralized mechanism to protect particular subgraphs in dynamic graphs where

the nodes composing these graphs decide the status of their subgraphs in the published

version of each release of the dynamic graph

• a decentralized system under a local version of Differential Privacy where other nodes,

especially the neighbors, decide if the status of a node is hidden or free. We will present a

profound study about the challenges and advantages that don’t appear in the centralized

approach. In addition to this, we will focus on the detention node by presenting a deep

study about the idea of having a set of detention nodes in each release instead of just one.

How many detention nodes should we have in each graph? How do we distribute the

suspicious nodes between these detention nodes? What is the form of an edge between

two hidden nodes in two different Detention? What are the drawbacks and the advantages

of having one Detention node versus many Detention nodes?
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For the transactional data, in the near future, we intend to extend our technique to provide

privacy against strong adversaries; adversaries that can combine multiple values in a multi-

dimensional correlation, while preserving the utility of the dataset.

For the image processing, we intend to evaluate the efficiency of our approach in a real

application scenario where collaborative attacks in which some of the data owners may be

semi-trusted as well.

The digital data generated by online users and customers have other types than the ones

focused on in this thesis. Two of these types are locations and texts. Therefore in the future, we

will propose

• a Blowfish Private mechanism for locations that provides useful information after analysis

and ensures that the users’ exact locations could not be exposed. This mechanism also

will consider the correlation problems represented by the recurrences of locations for the

same user that could reveal private data about them.

• a Differential Private mechanism for data mining on unstructured text data that should

provide a good balance between the utility of the collected text content and the privacy of

the users who have written the posts or the replies.
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