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Abstract

Continuous seismograms record time series of ground motion and are considered as
a goldmine of information on active geological objects such as volcanoes or faults.
However, the complexity and size of seismic data challenge the efficient and success-
ful mining of the interesting information, hidden within a large amount of data. Au-
tomatic algorithms scanning continuous data streams can help overcome these chal-
lenges and might reveal new types of seismic signals, offering new insights about ac-
tive geological objects. In this work, we develop a novel strategy based on machine
learning, which infers meaningful and continuous patterns from seismograms and
identifies groups of seismic signals in a data-driven fashion. The proposed strategy,
which involves hierarchical waveform clustering, breaks up into three major steps:
(1) a scattering network retrieves a rich and stable data representation of the con-
tinuous seismogram, (2) we lower the dimensionality of the data representation by
extracting the most relevant features describing continuous temporal patterns, and
(3) we perform hierarchical agglomerative clustering in the feature space, revealing
hierarchical groups of similar signals in a tree-like structure. With this strategy we
blindly identify a seismic burst of more than 200 similar low-magnitude earthquakes
in the continuous seismogram recorded in a noisy urban environment. Besides iden-
tifying patterns and signal clusters related to various seismic sources, we are also
able to infer medium changes due to freezing and thawing processes directly from
the continuous seismogram of a single station. The continuous data-driven patterns
describe also the stationarity of the seismic wavefield. An application to seismic data
recorded in the vicinity of the Klyuchevskoy volcano, Russia, highlights the strong
non-stationary character of seismic tremors, witnessing a constant change of the vol-
canic system. In general, hierarchical waveform clustering can deliver a quick and
data-driven overview over the seismic signals and patterns present in the seismo-
grams. Identifying blindly patterns related to medium changes seems possible and
more studies and applications are needed for a generalization. We conclude that
hierarchical waveform clustering might be a helpful tool in searching for tectonic
background signals in vast amount of seismic time series.
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Résumé

Les sismogrammes sont des séries temporelles du mouvement du sol considérées
comme une mine d’informations sur les objets géologiques actifs tels que les volcans
ou les failles. Cependant, la complexité et le volume de ces données rendent diffi-
cile une extraction efficace d’informations intéressantes. Des algorithmes automa-
tiques appliqués aux données continues peuvent aider à surmonter ces difficultés
et pourraient révéler de nouveaux types de signaux sismiques, offrant de nouvelles
perspectives de recherche sur les objets géologiques actifs. Dans ce travail, nous
développons une nouvelle stratégie basée sur l’apprentissage machine pour inférer
des structures de signal significatives et continues à partir de sismogrammes, en par-
ticulier, des groupes de signaux sismiques. La stratégie proposée utilise le regroupe-
ment hiérarchique de formes d’onde, et comporte trois étapes principales : (1) un
réseau diffusif permet une représentation riche et stable des données sismiques con-
tinues, (2) nous réduisons la dimensionnalité de la représentation des données en
extrayant les éléments les plus pertinents décrivant les modèles temporels continus,
et (3) nous effectuons un regroupement agglomératif hiérarchique à partir des don-
nées réduites, révélant des groupes hiérarchiques de signaux similaires dans une
structure arborescente. Grâce à cette stratégie, nous montrons qu’il est possible de
mettre en évidence des essaims sismiques de plus de 200 séismes similaires de faible
magnitude dans des sismogrammes continus enregistrés dans un environnement
urbain bruyant. Outre l’identification de groupes de signaux liés à diverses sources
sismiques, nous déduisons également un changement de milieu dû à des proces-
sus de gel et de dégel directement à partir de données continues receuillies par
une seule station. Ces caractéristiques continues basées sur les données fournissent
également une excellente description du caractère stationnaire du champ d’ondes
sismiques. Finalement, une application aux sismogrammes enregistrées à proximité
du volcan Klyuchevskoy met en évidence le caractère fortement non stationnaire des
trémors volcaniques, et témoigne d’une évolution constante du système volcanique.
En général, le regroupement hiérarchique des formes d’onde peut fournir un aperçu
rapide et orienté données des signaux sismiques et des structures présentes dans
les sismogrammes. L’identification automatique de structures liées à des change-
ments de propriétés du milieu semble possible et d’autres études et applications
sont nécessaires pour une généralisation à d’autres cas d’étude. Le regroupement
hiérarchique des formes d’onde s’avère être un outil utile pour la recherche de sig-
naux tectoniques faibles dans les grandes séries temporelles sismiques enregistrées
dans les observatoires sismologiques et volcaniques.
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Chapter 1

Introduction

Since the first observed teleseismic earthquake in 1889, seismology went through
many transformations regarding instrumentation, experiment designs, data process-
ing and driving research questions (for a historical review see e.g. Dewey and Byerly,
1969). In the early days, the instruments had limited sensitivity and the recorded
data were investigated and processed by hand (Lay and Wallace, 1995). Often, only
earthquake recordings were considered of interest and the recorded ground motion
before or after an event were ignored. For instance, only a few studies before 1950
addressed the nature of the ambient seismic wavefield due to limitations in instru-
mentation and processing techniques (for a review see e.g. Bonnefoy-Claudet, Cot-
ton, and Bard, 2006). A major milestone was the introduction of the World Wide
Standardized Seismographic Network (WWSSN) in the 1960s monitoring nuclear
tests (Oliver and Murphy, 1971). This global network of seismographs established
procedures which are common nowadays such as data sharing and the continuous
recording of ground motion. Observations provided by this network elucidated the
plate tectonic theory and the structure of the Earth’s crust (Isacks, Oliver, and Sykes,
1968). In the following decades, many different types of network and array designs
of different scales have been proposed such as the global network GEOSCOPE or
the rolling array USArray. On the one hand the continuous recordings of ground
motion and the different array designs improved our knowledge around classical
seismological research questions regarding the physical process of an earthquake.
On the other hand it also created unforeseen applications of seismology with new
research questions such as environmental seismology (see e.g. Larose et al., 2015) or
cryoseismology (see e.g. Podolskiy and Walter, 2016).

1.1 Knowledge gain by identifying known signals

The capability to derive knowledge and models from observational data is an im-
portant factor for many scientific disciplines including seismology. In the early days
the amount of data was so little that the data treatment was manageable by hand.
Moreover, seismic data was mainly used to study earthquakes which can be eas-
ily recognized in seismograms by human experts. The introduction of continuous
recordings and arrays produced quantities of data that demanded automatized tools
helping seismologists to retrieve the relevant information for the task at hand (e.g.
earthquake detection for building earthquake catalogs). The design of these autom-
atized tools are often based on what we currently know about the signal of interest.
For instance, the short-term-average long-term average (STA/LTA) method is a tool
for earthquake detection by utilizing the transient and large-amplitude character
of earthquakes which has been observed for many years beforehand (Allen, 1978).
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Joswig (1990) proposed an alternative approach to the STA/LTA, exploiting differ-
ent known signal characteristics of earthquakes. Recently, supervised deep learning
gained much attention in identifying earthquake signals thanks to the large amount
of training data provided by earthquake catalogs (see Mousavi and Beroza, 2022, for
a recent review). The continuous improvement of those methods helped in building
very detailed catalogs from a growing amount of data, resulting in a knowledge gain
regarding earthquake processes. In turn, the knowledge gain and new observations
helped to improve the automatic tools.

1.2 Knowledge gain by identifying unknown signals

Besides gaining knowledge by exploiting the known signals, the identification of
new and unknown signals reveal new insights, too. An interesting case is the de-
tection of non-volcanic tremors in Japan in the early 2000s by Obara (2002). Due
to its similar signal characteristics to volcanic tremors, the new signal was named
non-volcanic tremor and soon similar signals were reported around other subduc-
tion zones and transform faults (see e.g. Rubinstein, Shelly, and Ellsworth, 2009).
Generally, this signal class can be described as a continuous long-lasting vibration of
low-amplitude, mostly observable in the frequency range of 2 to 8 Hz. The discovery
of non-volcanic tremors shed new light on the physical processes occurring around
plate boundaries and fault zones, since these signals originate from the deeper part
of the faults (Shelly, Beroza, and Ide, 2007). Still today, the underlying mechanism
is poorly understood. Non-volcanic tremors have been reported for some transform
faults such as the Alpine Fault and the San Andreas Fault (Nadeau and Dolenc, 2005;
Wech et al., 2012). For other transform faults such as the North Anatolian Fault, stud-
ies searched for non-volcanic tremors in seismic time series and reported null results
(Pfohl et al., 2015; Bocchini et al., 2021). There could be many reasons for the absence
of tremors in the data. It could be simply the case that the physical constraints of the
North Anatolian Fault does not support tremor sources or that the instruments are
not recording tremor signals due to its weak amplitude. It is also likely that the pro-
cessing tools scanning the seismic time series for tremors are not well adapted to the
general detection of tremors, since the design of these tools are based on our limited
understanding of tremors and the few observations recorded at other fault zones.
The poor signal characteristics led even to the confusion of train generated signals
with tremors (Hutchison and Ghosh, 2017; Inbal et al., 2018). The example of non-
volcanic tremors motivates the need of methods which are able to identify unknown
patterns in continuous seismograms in a data-driven fashion (that is solely derived
from the data itself). We are confident that the increasing amount of data and the
increasing sensitivity of the instruments provide overseen but relevant information,
improving our understanding of active geological objects such as fault systems or
volcanoes.

The scope of the presented work is to design and test tools which identify in-
teresting patterns in seismic time series in a data-driven fashion. Chapter 2 intro-
duces the proposed strategy for seismic data exploration. Chapter 3 discusses the
first application where we reveal the hierarchical structure of seismic signal classes
recorded in an urban environment close to a fault zone (Steinmann et al., 2022).
Chapter 4 shows the second application where we identify blindly the seismic im-
print of a medium change in the continuous seismogram (Steinmann, Seydoux, and
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Campillo, 2022). Chapter 5 analyzes a seismic dataset recorded in the vicinity of a
volcano and uncovers the ever-changing nature of a tremor-dominated wavefield.
Chapter 6 summarizes the main outcome of this thesis, leading to new ideas and
research questions.
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Chapter 2

Towards clustering seismic
waveform data

The main question which arises is: how to design a tool which identifies signals and
patterns we might have never seen before? Compared to the example of STA/LTA for
earthquake detection, we do not have any information on how a relevant or interest-
ing signal could look like. Therefore, the tool should be able to pick up something
"interesting" in a data-driven fashion. A common approach would be to compare
all the recorded signals of a given dataset and group them based on their similarity
or dissimilarity. A method of machine learning (ML), called clustering, groups ob-
jects based on similarity measurements. Objects are grouped in the same cluster, if
the similarity is high and objects are grouped in different clusters, if the similarity is
low. Usually the objects are described with a set of characteristics – called features
– and the similarity measurement takes place in the feature space. This similarity
measurement could be any type of distance d ∈ R between two objects x, y ∈ K in
the feature space K:

d(x, y) = |x − y|, (2.1)

where | · | denotes a norm, usually the Euclidean norm. If we apply that idea
to seismic time series, we could define a sliding time window and a cluster anal-
ysis assigns clusters to all the windows according to the similarity measurement.
Ideally, windows containing similar seismic signals are then grouped in the same
cluster. This data-driven analyses – which we call from now on waveform cluster-
ing – would reveal reoccurring patterns in the seismic time series we might have
never seen before. The concept sounds simple but the devil lies in the details and,
therefore, the present chapter is centered on how exactly we design this approach.

We start with the general concept of clustering and how this task can be solved in
different ways. Then, we motivate the need to transform the seismic waveform data
into a representation adapted to the task of clustering. For this purpose, we intro-
duce the concept of a scattering network and dimensionality reduction methods. At
this point, we covered all the details of our proposed strategy (shown in Figure 2.1)
and we put it in the context of similar approaches, which have been developed in
the past. At last, we introduce shortly manifold learning techniques, which offer an
interesting and promising way to explore continuous seismograms a bit differently
to the waveform clustering approach.

2.1 The world of clustering

The aim of clustering is to gain new knowledge about a given data set by revealing
and exploring its underlying structure. Given the general description and vaguely
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FIGURE 2.1: The proposed strategy for exploring continuous seismo-
grams. For detailed explanation consider Section 2.2 and Figure 2.5
for the scattering network, Section 2.3 for the matrix factorization and

Section 2.1.2 for hierarchical clustering.
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defined goal of clustering, it is evident that the realization of such a task is ambigu-
ous and subject to many details. Therefore, a whole zoo of clustering algorithms
exists nowadays with a variety of distance measurements and objective functions.
Choosing the appropriate clustering algorithm is a challenging task and requires a
minimum amount of domain and data knowledge such as the underlying distribu-
tion of the data. However, there is no established general guideline in choosing the
one and only clustering algorithm and, often, it is recommended to test different
types of algorithms. Clustering is a tool for data exploration and knowledge dis-
covery. It is not an automated end-to-end approach but rather an interactive multi-
objective optimization task based partially on trial and error. In a similar mindset,
Vladimir Estivill-Castro wrote in a positioning paper about clustering: "Clustering
is in the eye of the beholder" (Estivill-Castro, 2002). In the following lines we will
introduce some different strategies for clustering and argue why we choose agglom-
erative hierarchical clustering.

2.1.1 Many ways to solve the clustering task

Figure 2.2 from Ezugwu et al. (2022) shows a possible hierarchical taxonomy of the
most common clustering algorithms. At the top clustering can be divided into hi-
erarchical and partitional clustering approaches. Hierarchical clustering builds a hi-
erarchy of clusters with either a bottom-up (agglomerative) or top-down approach
(divisive). In agglomerative hierarchical clustering, clusters consists of single objects
and are then iteratively merged until all objects are unified in a single cluster. It is
the opposite case for the divisive approach: a cluster containing all objects is itera-
tively divided into smaller clusters until each cluster contains one object. For both
approaches, the decision to merge two clusters is based on a so-called linkage crite-
rion which measures the dissimilarities between all clusters at each iteration. Most
commonly, the two clusters showing the smallest dissimilarity are merged. We will
discuss different linkage criteria and their properties more in detail later. A so-called
dendrogram visualizes the clustering process and reveals which clusters are merged
at what distance. By applying a distance threshold to the dendrogram, one can ob-
tain all merged clusters until the set threshold.

As a visual example of agglomerative hierarchical clustering consider Figure 2.3.
Seven objects (A to F) are described by a two-dimensional feature space and we as-
sume that the distance in this feature space represents a similarity measurement. By
eye, we could identify three clusters of different population sizes: A and B; C; and D,
E and F. The right hand-side of Figure 2.3 shows a sketch of a possible dendrogram
revealing the hierarchical clustering process. Instead of providing a single clustering
solution, the dendrogram shows us the underlying structure of the whole data set.
For example, the dendrogram tells us that A and B are very close to each other since
they merge at a very low distance. Since A and B are far away from the other objects,
they merge at a very large distance with the remaining data. Note that the sketch
aims at visualizing the general concept of agglomerative hierarchical clustering and
it does not take into account the different types of linkage criteria and distances.

Compared to hierarchical clustering, partitional clustering provides a single par-
titioning of the data set without producing a hierarchical structure of the data such
as the dendrogram. Therefore, it returns less information than hierarchical cluster-
ing. However, it can handle a larger amount of data, since the construction of the
dendrogram is computationally expensive (Jain, Murty, and Flynn, 1999). The most
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famous example for partitional clustering is k-Means which finds k clusters with
objects belonging to the clusters with the nearest mean (centroid). The number of
clusters k has to be pre-determined, which is one of the main drawbacks of k-means.
Based on a given number of clusters k, k-Means initializes randomly k centroids and
then adjusts these centroids iterativaly by minimizing the within-cluster variances
and maximizing the variability between the clusters. The random initialization of
the centroids is another drawback, since the final result can vary largely depending
on the initial positions. The iteration stops when the centroids are stable in space or
a stopping criterion is met. k-means is considered a hard partitioning strategy where
the data is divided into distinct clusters and each object belongs to only one cluster.
Fuzzy clustering provides a different strategy where clusters can overlap and objects
are assigned to multiple clusters with a degree of membership. The fuzzy version of
k-Means is called fuzzy C-means. Fuzzy approaches are an interesting choice if the
dataset does not show clear boundaries between different sets of objects.

For a more complete overview of different clustering approaches and how they
compare, we refer to Jain, Murty, and Flynn (1999), Jain (2010), and Ezugwu et al.
(2022). For this work, we use agglomerative hierarchical clustering since the dendro-
gram seems to be an interesting and helpful tool to explore the content and structure
of the data. Moreover, seismic data is known for its large class imbalances such as
between earthquakes and the ambient seismic wavefield. Therefore, k-means which
obtains clusters of similar sizes would be an inappropriate choice. Nevertheless, we
want to emphasize that hierarchical clustering is a choice we made and other ap-
proaches might reveal also interesting and perhaps different patterns. However, it
is out of the scope of this work to explore and compare all possible clustering ap-
proaches.

2.1.2 About agglomerative hierarchical clustering

The linkage criterion is the main driving parameter behind agglomerative hierar-
chical clustering. It measures the dissimilarity D(U, V) between all cluster U =
{u1, . . . uN} and V = {v1, . . . vM} and merges the two cluster U and V for which
D(U, V) is minimal. At each step cluster U and V with the smallest D are merged
and a new cluster replaces U and V. Due to the newly formed cluster, the similarity
measurement D between all clusters has to be updated and again the two closest
clusters are merged. In the agglomerative approach this process is repeated until all
objects are unified in a single cluster. In the following we will introduce only the
most common examples for the many different realizations of the linkage criterion.

The single linkage criterion

The most simple and straightforward approach is the single linkage criterion. Given
two clusters U and V with its respective objects ui and vj and a distance measure-
ment d, the cluster dissimilarity D of the single linkage approach is given as:

D(U, V) = min
ui∈U,vj∈V

d(ui, vj) (2.2)

In other words, the distance between the two clusters U and V is given by the
smallest distance of all pairwise distances of its objects. Therefore, the single linkage
criterion is also often called nearest neighbor method. In the context of agglomera-
tive clustering, this criterion merges the two clusters with the nearest neighbor. This
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FIGURE 2.2: Taxonomy of clustering after Ezugwu et al. (2022)
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FIGURE 2.3: An illustration of hierarchical clustering without consid-
ering the linkage criterion or type of distance measurement

definition and equation 2.2 show already the main drawback of this method. Two
large and distinct clusters would merge as soon as one member of one cluster would
be close to one member of the other cluster - hence, the naming: single linkage. This
causes poorly separated clusters to be chained together (the well-known chaining
effect of single linkage) and long and thin clusters are constructed. Due to these
drawbacks and its lack of robustness, the use of single linkage is often not recom-
mended (see e.g. Baker, 1974; Milligan and Isaac, 1980).

The complete linkage criterion

The opposite realization of the single linkage criterion would be the complete link-
age where the dissimilarity between two clusters is defined by the largest distance of
all pairwise distances of its objects. Therefore, it is often called the furthest neighbor
method. The dissimilarity measurement can be written as:

D(U, V) = max
ui∈U,vj∈V

d(ui, vj) (2.3)

D(U, V) can be also described as the diameter of the newly formed cluster S
resulting from the merge of U and V. Compared to single linkage which finds
elongated clusters, the complete linkage approach builds many clusters with small
within-cluster dissimilarities. A major drawback of this method is that two similar
clusters are lately merged when one of their pairwise distances is large. Therefore,
complete linkage is often referred to be space-dilating and single linkage is referred
to be space-contracting. The two extreme end-members of a linkage criterion show
that a compromise between the two might be the better choice for most applications.
The centroid and Ward’s method would fall into that category. In the following we
will introduce the Ward’s method, since this is our choice for the presented work.
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The Ward’s method

The Ward’s method, which has been introduced in Ward Jr (1963), merges two clus-
ters at each iteration with a more complex objective function. This linkage criterion
merges two clusters which result in the smallest amount of increase of the within-
cluster variances including the newly formed cluster. Therefore, the Ward’s method
has to calculate at each step all possible cluster merges and its within-cluster vari-
ance. In that sense, it shares similarities with the objective function of k-means but
it is applied in a hierarchical and not partitional clustering process. According to
Müllner (2011), the objective function which minimizes the change of variance can
be written as:

D(U, V) =

√
2#U#V

#U + #V
∥cU − cV∥2 (2.4)

with #X being the cardinality of a cluster X, cX being the centroid of a cluster X
and the Euclidean distance ∥ · ∥2. Note that this criterion gives a measurement of
the variance of the newly formed cluster based on the Euclidean distance between
the centroids of the merged clusters. According to Kuiper and Fisher (1975), the
Ward’s method is well-suited for data with spherical multivariate normal distribu-
tions. However, it runs into difficulties if the clusters have unequal diameters or
if the cluster’s shape is more ellipsiodal than spherical (Kaufman and Rousseeuw,
2009).

The introduction of the different linkage criteria has shown that all approaches
come with different characteristics making them suitable for different types of data.
Depending on the type of data, one criterion might perform better than the others
and the criterion itself also imposes a certain structure on the data. However, single
and complete linkage are rarely a good choice and mostly a criteria between the
two extremes such as the Ward’s method is more appropriate. In this work, we
only apply the Ward’s method, however, we want to point out that other interesting
linkage criteria such as the centroid’s method also exist and have not been tested in
this work.

2.2 Waveform data representation with the scattering network

Until this point, we discussed the general idea of clustering and the concept of ag-
glomerative hierarchical clustering – our choice of clustering for this work. In the
specific case of waveform clustering, we would like to assign clusters with a sliding
window to continuous seismograms (as indicated by the sliding window in Fig-
ure 2.1). Unfortunately, the waveform data itself is not adapted to the task of clus-
tering for two main reasons. Firstly, the waveform data is a representation sensitive
to translation, i.e. the representation contains information about the position of a
signal in time. This is problematic for clustering, since this property results in large
distance measurement for the same signal shifted in time. Usually, a signal shifted in
time is considered still the same signal and should ideally result in a distance mea-
surement of zero, i.e. they are identical and located in the same cluster. Secondly, the
waveform data is an unstable representation regarding small signal deformations.
A distance measurement taken on two signals, where one is a slight compressed or
dilated version of the other, would return large values and the two highly similar
signals would be located in different clusters. For these two reasons, it is crucial to
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find a translation invariant representation which is stable towards small deforma-
tions and, thus, adapted to the task of clustering. The amplitude spectrum of the
Fourier transform is translation invariant but not stable towards small deformations
of the signal. Due to its non-localized sine waves the Fourier transform is unsta-
ble towards deformations, in particular for higher frequencies (Bruna and Mallat,
2013). The wavelet transform replaces the sine waves by localized waveforms and,
thus, the wavelet coefficients deliver a stable representation regarding the deforma-
tion of the signal. However, the wavelet transform is not translation invariant. By
adding non-linear averaging operators to the wavelet transform, we can create an
architecture, which resembles a Convolutional Neural Network (CNN) and outputs
a translation invariant representation. However, the non-linear averaging operator
destroys important information about the signal. By repeating the wavelet trans-
form in combination with the averaging non-linear operators, we can recover most
of the lost information in higher order coefficients and create a representation which
is translation invariant and stable to small deformations. The described architecture
is called a scattering network and has been mainly introduced in Bruna and Mallat
(2013) and Andén and Mallat (2014). In this work, we choose to represent seismic
waveform data as scattering coefficients produced by the scattering network.

2.2.1 The mathematical design of the scattering network

In the following lines, we will define mathematically the scattering network. Con-
sidering a wavelet ψ(t), we can define a set of filter bank ψλ(t) = λψ(λt) by di-
lating the original wavelet ψ(t) - also called mother wavelet - with a set of dila-
tion factors λ ∈ R. In the frequency domain the set of wavelet banks would be
ψ̂λ(ω) = ψ̂(ω/λ). The dilation factor λ can then be defined as

λ = 2
k
Q , k = {0, 1, ..., JQ − 1} (2.5)

with Q ∈ N being the number of wavelets per octave and J ∈ N being the number
of octaves. This definition of the dilation factor provides a logarithmic grid of the
center frequencies for the set of wavelet filter banks.

By convolving a time series x(t) ∈ R with a set of wavelet filter banks ψλ(t) and
taking the modulus, we obtain a real-valued time-frequency representation Wλ(t) of
the time series called a scalogram:

Wλ(t) = |x(t) ⋆ ψλ(t)| (2.6)

This is the first convolutional layer of the scattering network with the convolu-
tion operator ⋆. In Andén and Mallat (2014) the authors introduce a low-pass filter
ϕ(t) to retrieve the first-order scattering coefficients:

S1x(t, λ) = Wλ(t) ⋆ ϕ(t) = |x(t) ⋆ ψλ(t)| ⋆ ϕ(t) (2.7)

The low pass filter smooths the representation and makes it more stable to small
deformation of the signal. However, it also removes other small scale structures of
the signal which might be important for classification or clustering tasks. This infor-
mation is recovered by repeating the convolution and modulus operation, retrieving
higher-order scattering coefficients. Note that the set of dilation factors λ can differ
with the layer of the scattering network. With two sets of wavelet filter banks, ψλ1(t)
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FIGURE 2.4: Sketch of a three-layer scattering network, retrieved
from Andén and Mallat (2014)

at the first layer and ψλ2(t) at the second layer, we can calculate the second-order
scattering coefficients:

S2x(t, λ1, λ2) = ||x(t) ⋆ ψλ1(t)| ⋆ ψλ2(t)| ⋆ ϕ(t) (2.8)

By repeating this operation many times, we can retrieve higher-order scattering
coefficients which add more and more information. However, Andén and Mallat
(2014) already concluded that the information gain beyond second-order scatter-
ing coefficients is marginal compared to the increasing computational costs. There-
fore, we limit ourselves here to a two layer scattering network recovering first- and
second-order scattering coefficients.

Figure 2.4 provides a general sketch of a three-layered scattering network and
Figure 2.5 shows a two-layered scattering network applied to continuous seismic
data. At each layer of the network we retrieve the scattering coefficients Sx and the
scalograms U(x) are forwarded to the next layer. Note that this architecture resem-
bles a convolutional neural network with the difference that each layer produces an
output and the neurons are restricted to wavelets. Andén and Mallat (2014) also pro-
pose to output a time-averaged descriptor S0x of the input signal before calculating
the first-order scattering coefficients. In this work we disregard S0x, since S1x and
S2x already provide a highly redundant representation of the data.

2.2.2 A scattering network with Morlet wavelets

We restrict the wavelets of the scattering network to Morlet wavelets as initially
proposed in Bruna and Mallat (2013) and Andén and Mallat (2014). The Morlet
wavelet ψ(t) with a center frequency f is a complex exponential multiplied with a
Gaussian window:

ψ(t) = exp(−i2π f t) exp(−t2/a2) (2.9)

While f are the center frequencies defining the modulation of the Morlet wavelet,
a defines the exponential drop-off of the waveform. We define a as a function of the
bandwidth d and the center frequency f , which in turn depends on the Nyquist
frequency fN of the signal x(t) and the dilation factor λ:
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aj =
d
f
=

d
λ fN

(2.10)

2.2.3 Becoming translation invariant with pooling

We choose ϕ(t) to be a pooling operation which ensures a stable and translation in-
variant representation for each window. The pooling operation retrieves a single
value for each scale in the scalogram and, thus, acts as a low pass filter and down-
sampling operation (Dumoulin and Visin, 2016). There are many different types of
pooling operation, filtering different types of information. In Seydoux et al. (2020)
the authors applied the scattering network with an average pooling, which averages
the scattering coefficients and collapses the time axis within the sliding window.
Other possibilities are maximum pooling or median pooling where either the maxi-
mum or median value is taken for each scale in the scalogram. In this work, we will
consider average, median and maximum pooling as potential filters.

2.2.4 Collecting the scattering coefficients into a data matrix

The scattering network produces scattering coefficients at each layer and they have
to be collected and organized before clustering. Clustering is usually applied to a
data matrix, where the columns correspond to the observations and the rows cor-
respond to the features describing each observation. In our case of waveform clus-
tering, the data matrix contains the scattering coefficients where the columns cor-
respond to the sliding window in time and the rows contain the scattering coeffi-
cient retrieved at each layer. For a visual description for this procedure consider
Figure 2.5. The scattering network is applied with a sliding window on one contin-
uous seismogram and we collect the first- and second-order scattering coefficients
for each window. Using three component seismograms, we apply this approach
for each channel and concatenate the first- and second-order scattering coefficients
of all three channel in columns. This way we create a data matrix for continuous
three component seismograms which is the basis for all the following tasks (see Fig-
ure 2.1).

2.3 Feature extraction for clustering

With the scattering coefficients we finally found a translation-invariant representa-
tion stable towards small signal deformations. Unfortunately, this representation
comes with a new and unwanted property regarding clustering tasks: it is high-
dimensional. In fact, high-dimensional data is very problematic for many machine
learning tasks and this phenomena was coined the curse of dimensionality by Bell-
man (1966). In our specific case, we want to use agglomerative hierarchical clus-
tering which relies on distance measurements where a close neighbor shares more
similarities with an object than a far away neighbor. The general notion and in-
tuition we have about distance and neighborhood in a two- or three-dimensional
space does not translate easily into higher-dimensional space (Domingos, 2012). For
a wide variety of data distributions and distance measurements in a large number of
dimensions, the ratio of a distance to the closest and furthest neighbor to an object
tends to be almost 1 (Aggarwal, Hinneburg, and Keim, 2001). Thus, a distance mea-
surement in a high-dimensional space is not able to tell us what is close and what



2.3. Feature extraction for clustering 15

FIGURE 2.5: A detailed view on a two-layered scattering network
applied to continuous three-component seismograms with a sliding
window. The dashed line in the 1st-order scalogram indicates the
data row which is convolved with the 2nd-layer wavelet banks. The
blue boxes in the scattering coefficient matrix show schematically
where these specific scattering coefficients are stored. The complete
strategy for hierarchical waveform clustering is presented in Fig-

ure 2.1.
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is far and the notion of neighborhood becomes meaningless. Moreover, with the in-
creasing number of dimensions, we also increase the number of neighbors with the
same distance. Therefore, clustering algorithms which use distance measurements
such as agglomerative hierarchical clustering are sensitive to these problems and can
create meaningless results if applied to high-dimensional data.

2.3.1 Reducing the number of dimensions

The solution to the curse of dimensionality is to extract a low-dimensional represen-
tation with the most relevant information (features) and perform the clustering task
within that subspace (feature space). In a perfect world, this low-dimensional repre-
sentation corresponds to the data’s intrinsic lower dimension, which is the minimum
number of variables to describe fully the data. For instance, in our case, the scatter-
ing coefficients provide a redundant representation, since the first-order wavelets are
densely spaced with overlapping frequencies. However, we often do not know the
data’s high-dimensional structure and, thus, reducing the dimensions of a dataset
means a loss of information. Therefore, dimensionality reduction techniques have
to make compromises about what type of information to preserve. This compromise
results in a variety of methods focusing on the preservation of different structures in
the data. For instance, the methods could be divided into two groups aiming either
at preserving the pairwise distance structure between all data points or at preserv-
ing local over global distances. Preserving pair-wise distances is important if we
utilize clustering as a next step. This is particular true for hierarchical clustering
which computes pair-wise distances for measuring dissimilarity. Methods which
aim at preserving local structures over global structures are great tools for visual-
ization since they can compress a lot of structure in only two or three dimensions.
However, their distortion of global structures makes them less suitable for cluster-
ing tasks, since we lose information about inter-cluster relations. In the following
we introduce the principal and independent component analysis (PCA/ICA) which
perform a matrix factorization and reduce the dimensions linearly with the aim of
preserving pair-wise distances.

2.3.2 Matrix factorization

Assume that we collected the scattering coefficients of a seismic time series in a data
matrix X ∈ RmxRn with n samples in time and m coefficients per time step (see
the scattering coefficient matrix in Figure 2.1 and Figure 2.5). Matrix factorization
describes the data matrix X as a product of two matrices A ∈ RmxRk and Y ∈
RkxRn:

X = AY, (2.11)

where Y describes the k-dimensional feature space and A is the linear operator
providing the mapping between the high-dimensional data and the low-dimensional
feature space. In the hierarchical waveform clustering approach we utilize both ma-
trices for exploring the content of the data (see Figure 2.1). Equation 2.11 can be
solved in many ways under different conditions, resulting in a large variety of suit-
able algorithms.

Matrix factorization is also a common framework used in applications for blind
source separation, aiming at unmixing a set of signals into its original source signals
with little or no information. The original source signals in Y are multiplied with
the mixing matrix A, yielding the recorded signals in X. A classic example of blind
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source separation is the cocktail party problem where a person at a cocktail party
- listening to all the simultaneously speaking people - tries to identify one voice
speaking. This problem is relatively simple for humans, however, in digital signal
processing it poses a difficult task.

2.3.3 Principal Component Analysis (PCA)

One of the most common matrix factorization is the principal component analysis
(PCA). PCA tries to find a set of orthogonal unit vectors (orthonormal basis) which
explains most of the data’s variance. The first principal component finds the axis
in the data space which maximizes its variance without any constrain of orthogo-
nality. The second principal component finds an orthogonal axis to the first one,
while also maximizing the variance. This can continue until the retrieved principal
components explain the total variance of the data set. Note that the first component
explains the greatest variance, the second component the second-greatest variance
and so on. Thus, the explained variance ranks the principal components. The princi-
pal components are the eigenvectors of the data’s covariance matrix and, therefore,
the eigendecomposition of the data’s covariance matrix or the singluar value decom-
position (SVD) of the data matrix deliver the principal components. The SVD states
that the data matrix X can be decomposed as following:

X = UΣVT, (2.12)

with U ∈ RmxRm containing m orthonormal vectors called the left singular vec-
tors of X, V ∈ RnxRn containing n orthonormal vectors called the right singular
vectors of X and the positive diagonal matrix Σ ∈ RmxRn containing the singular
values of X. Regarding equation 2.11, the principal components are the k rows of Y
and the pseudo-inverse of A contain the right singular vectors of X.

2.3.4 Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) is considered a generalization of PCA,
since it relaxes the constrain of orthogonality and it has a stronger definition of in-
dependence regarding its components (Comon, 1994). Two variables are considered
statistically independent if the realization of one does not affect the probability dis-
tribution of the other. Principal components are uncorrelated but not necessarily sta-
tistically independent. Independent components are statistically independent and,
therefore, also uncorrelated.

Independence and non-Gaussianity

ICA solves equation 2.11 by maximizing the independence of its components. It
maximizes the independence by maximizing the non-Gaussianity of each compo-
nent. To understand better the relation between independence and non-Gaussianity,
imagine a two-dimensional point cloud which is Gaussian on both axis. All the set
of two axes we would draw through this point cloud would show the same inde-
pendence and, thus, ICA trying to maximize the independence of two components
would fail (Hyvärinen and Oja, 2000). Therefore, the aim of ICA trying to maximize
the independence can be understood as the maximization of the non-Gaussianity
of the sources. For the same reason, ICA can retrieve at maximum one Gaussian
component, since this problem would be unsolvable with more than one Gaussian
component. This approach can also be justified with the mindset of blind source
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separation and the central limit theorem, which states that the sum of a sufficient
number of distributions tend to be Gaussian. Thus, a strongly non-Gaussian signal
is unlikely the sum of many signals with different distributions.

How to maximize independence?

In order to maximize the independence of the components, we need a measurement
of non-Gaussianity. One type of measurement would be the fourth-order cumu-
lant, also called kurtosis, which is easy to implement and to understand. However,
it is not a robust measurement since it is sensitive to outliers (Hyvärinen and Oja,
2000). A more robust measurement is the so-called negentropy, which is based on
entropy. Entropy can be interpreted as the degree of information that the obser-
vation of a variable reveals. The value of Entropy is large for unpredictable and
unstructured variables. Since Gaussian variables have the largest entropy among
all random variables of equal variance, the entropy serves as a good estimation of
non-Gaussianity in ICA. The negentropy is a modified differential entropy which is
always non-negative. It is zero if and only if the variable is Gaussian. In terms of
statistical properties, it is an optimal estimator for Gaussianity, however, it is diffi-
cult to compute since it needs the probability density function (PDF) of the variable.
Therefore, algorithms such as FastICA use an estimation of the PDF, which makes
the computation much simpler. For the sake of completeness, we want to men-
tion that also other method exists to estimate the ICA. However, introducing all the
different approaches is out of the scope here and in this work, we will use the Fas-
tICA approach with the negentropy measurement. As a preprocessing step, FastICA
whitens the data and reduces the dimensionality with a PCA. Since the independent
components in Y and the mixing matrix A are unknown, ICA is not able to provide
an ordering or scaling (including the sign) of the components. Any scalar value, we
would multiply with the components, could be added as a division to the mixing
matrix and ,similarly, we could change freely the order of the components.

Visual comparison of PCA and ICA

Figure 2.6 shows a comparison of PCA and ICA applied to data retrieved from
Student-t distributions, which are bell-shaped as Gaussian distributions but with
heavier tails. The two variables x and y are observations based on a mixing of
two Student-t distributions with a low number of degrees of freedom. While PCA
finds orthogonal components, which maximizes the variance, ICA identifies non-
orthogonal directions of maximal non-Gaussianity and, thus, unmixes the mixed
observations into its underlying Student-t distributions.

2.4 State of the art: seismic waveform clustering

We have outlined and explained the complete strategy shown in Figure 2.1. A scat-
tering network transforms the continuous seismogram with a sliding window into
a clustering-adapted representation. PCA or ICA retrieve the most relevant features
from the high-dimensional data matrix, which are then used for agglomerative hi-
erarchical clustering. Following the idea of exploring continuous seismograms in a
data-driven fashion with waveform clustering, some strategies were proposed and
tested in the recent years. To our knowledge, Köhler, Ohrnberger, and Scherbaum
(2010) were the first ones who proposed a method which scans and labels contin-
uous seismograms in a data-driven fashion. A sliding window scans through the
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FIGURE 2.6: PCA and ICA applied to a two dimensional dataset con-
sisting of the variable x and y, which are mixtures of two Student-t

distributions.

seismogram and calculates a set of hand-designed features such as amplitude ratios
for each window. Then, self organizing maps pick the most relevant features and
find groups of similar signals based on a similarity measurement with the selected
features. With that approach they are able to identify long-term changes in the am-
bient seismic wavefield and different types of short-term events related to volcanic
activity such as volcanic-tectonic earthquakes and rockfalls. Johnson et al. (2020) an-
alyzed continuous seismic time series recorded by a dense array and identified dif-
ferent classes of weak ground motion with methods of unsupervised learning. For a
sliding window of 1 s they calculate the spectrograms, retrieve the most relevant fea-
tures with a principal component analysis (PCA) and group the windows based on
a k-means clustering. With that method, they find 5 classes of weak ground motion
and study their temporal and spatial occurrence. Snover et al. (2020) analyzed con-
tinuous seismic data recorded by a dense seismic array in Long Beach, California, to
find signal classes related to urban activity. As in Johnson et al. (2020), they calculate
spectrograms for a sliding window. However, instead of using a linear transforma-
tion such as PCA to retrieve the most relevant features, they train an auto-encoder
to reduce the number of dimensions in a non-linear way. The data points in the
learned low-dimensional representation are then clustered with k-means. In a pro-
cedure called deep embedded clustering, they learn the auto-encoder and clustering
simultaneously by optimizing the clustering and reconstructions loss. Seydoux et al.
(2020) clusters continuous single station seismograms recorded in the vicinity of a
landslide event in Greenland. Their approach is able to detect blindly precursory
events before the landslide occurs. Instead of spectrograms, they utilize scattering
coefficients calculated by a learnable deep scattering network. The mentioned stud-
ies focused on partitioning clustering and few studies applied hierarchical clustering
approaches to seismic data. Unglert, Radić, and Jellinek (2016) tested agglomerative
hierarchical clustering on self organizing maps and principal components retrieved
from spectrograms in a seismo-volcanic context. They conclude that the hierarchical
clustering in combination with PCA is the better choice for seismic signal clustering
and data exploration. The above mentioned studies used and explored the whole
seismic time series without any pre-selection criteria. However, note that there are



20 Chapter 2. Seismic waveform clustering

also studies which pre-select certain parts of the time series and apply a feature gen-
eration and clustering algorithm only on the selection. This pre-selection can be
based on an earthquake catalog (see e.g. Sick, Guggenmos, and Joswig, 2015; Holtz-
man et al., 2018) or STA/LTA trigger (see e.g. Jenkins et al., 2021). The pre-selection is
useful if the signal of interest is known and the pattern recognition tool is supposed
to find patterns within that certain class of signals.

How does the presented thesis relate to the state of the art?

The goal of the presented thesis is the data-driven exploration of continuous seismo-
grams but provides an alternative approach with three major differences compared
to the mentioned studies. Firstly, we utilize the scattering network for generating a
novel representation for seismic time series. Most studies have either utilized hand-
designed features or spectrograms as a data representation for waveform clustering.
As mentioned earlier, spectrograms are not stable to small signal deformations and
hand-designed features are less suited for exploring unknown or poorly defined sig-
nals, since they are based on expert and domain knowledge. Therefore, we propose
the scattering coefficients, providing a broader description of the signal than the
hand-designed features and more stability for small signal deformation than spec-
trograms.

Secondly, we utilize hierarchical clustering as an interactive exploration tool.
Other studies have mainly focused on end-to-end approaches which deliver one
cluster solution for interpretation (Snover et al., 2020; Seydoux et al., 2020). Unglert,
Radić, and Jellinek (2016) have utilized hierarhical clustering but in our opinion they
did not harness its full potential in retrieving multiple clustering solutions with the
dendrogram.

Thirdly, we try to interpret the feature space given by PCA or ICA as an addi-
tional source for data exploration analysis. Mostly, PCA was applied to retrieve a
low dimensional representation for clustering, but its principal components were
rarely used for data exploration. To our knowledge, ICA has been utilized for un-
mixing directly seismic time series (e.g. Ciaramella et al., 2004) but not in the context
of feature extraction for seismic data. In general, the proposed strategy introduces
concepts new to Seismology and helps exploring the data from different angles with-
out providing the one and only cluster solution.

2.5 Manifold learning for visualization

Both PCA and ICA perform a linear mapping from the high-dimensional input data
to the lower-dimensional feature space, while aiming at preserving the pair-wise
distances between all data points. Preserving pair-wise distances results in keep-
ing dissimilar data points far apart but it can miss important local structures where
similar data points are close to each other, especially, if the high-dimensional data
is distributed near or on a complex non-linear manifold. Real world data such as
seismograms often describe complex processes with non linear effects and, thus, we
can assume that the scattering coefficients are distributed non-linearly on or near a
manifold which we do not know. Non-linear methods such as manifold learning
can account for this complexity and keep similar points close to each other. There
is a large variety of non-linear dimensionality reduction techniques such as self-
organizing maps, kernel PCA, t-distributed stochastic neighbor embedding (t-SNE),
Laplacian Eigenmaps and many more. A more recent manifold learning technique
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is uniform manifold approximation and projection (UMAP), which seems to be very
promising tool in visualizing and clustering high-dimensional data.

As a visual introduction to manifold learning and how they compare to PCA,
consider Figure 2.7 retrieved from the original paper of UMAP (McInnes, Healy,
and Melville, 2018). PCA, t-SNE, UMAP and other non-linear techniques have been
applied to various well-known datasets. For example, MNIST is a database contain-
ing 70.000 images of handwritten digits from 0 to 9, commonly used for image pro-
cessing and recognition tasks. These images are vectorized and then fed into one of
the methods to retrieve a two-dimensional representation. Data points representing
the same number are shown the same color. PCA is able to assign the handwritten
digits to different areas but the boundaries are fuzzy and the clusters are not well
separated. t-SNE and UMAP do a much better job in clustering the different digits.
The same holds true for the other dataset such as Fashion MNIST. This comparison
highlights the potential of manifold learning techniques. Without going into fur-
ther details, the inner workings of UMAP is based on topological data analysis and
Riemannian Geometry, providing a complex but safe and sound mathematical back-
ground (see the original paper for more details McInnes, Healy, and Melville, 2018).
It shares similarities with t-SNE, which has been used extensively for visualizations
since its appearance in the 2000s (Maaten and Hinton, 2008). However, compared to
UMAP, t-SNE performs poorly in preserving global structures and its computation
time is much slower (Becht et al., 2019). We mention these techniques more as an
outlook and will show an application of UMAP later in Chapter 5.

2.5.1 Hyperparameters of UMAP

Manifold learning techniques such as UMAP come with a set of hyperparameters
to tune, which impact the found embedding. As with PCA and ICA one hyper-
parameter is the number of dimensions or components. The more dimensions we
keep, the more information we retrieve. The other hyperparameters are the number
of neighbors and the minimum distance, which draw the focus either towards pre-
serving local or global structures. In the following we provide a very short intuitive
description of what these parameters control.

Number of neighbors

This parameter limits the number of neighboring points when UMAP learns the
local manifold structure. A low number draws the focus to local structure while
losing the bigger picture. A large number draws the focus on the global structure
while losing finer details.

Minimum distance

This parameter controls how closely UMAP is allowed to bring data points together.
A low number results in a more dense and clumpier representation and preserves
better the local structure of the data. A large number avoids putting points close to
each other and draws a broader picture of the data.
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FIGURE 2.7: Different linear and non-linear techniques for dimen-
sionality reduction applied to various databases, retrieved from

McInnes, Healy, and Melville (2018)
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Chapter 3

Hierarchical exploration of
continuous seismograms with
unsupervised learning

René Steinmann, Léonard Seydoux, Michel Campillo
Article published in JGR: Solid Earth

The following chapter covers the first application of hierarchical waveform clus-
tering to single station data recorded in the vicinity of the North Anatolian Fault,
Turkey. This work marks the beginning of my PhD which started with the learnable
scattering network presented in Seydoux et al. (2020). We realized that non-learnable
Gabor wavelets preserve already most of the interesting structure in the seismic data
without the need for learning the wavelet. Therefore, we moved away from the end-
to-end approach and turned towards a more exploratory analysis with hierarchical
clustering. We chose this dataset since it contains a burst of similar small magni-
tude earthquakes (a repeating pattern with low SNR) and different types of seismic
signals with anthropogenic origin. At this stage, we did not yet focus much on the
temporal patterns revealed by ICA, but we already noted that these independent
components contain interesting information and could be used for data exploration.
Time moved on since then and personally, I would rather disagree with some state-
ments given in this article. For example, we describe the Ward’s method as adapted
to the seismic signal class distribution, which I would not totally agree with today.
Ward’s method definitely delivers interesting results, but its mathematical defini-
tion favors even-sized Gaussian-distributed clusters. In particular the feature space
retrieved with ICA does not provide cluster shapes which are Gaussian.

3.1 Abstract

Continuous seismograms contain a wealth of information with a large variety of
signals with different origin. Identifying these signals is a crucial step in under-
standing physical geological objects. We propose a strategy to identify classes of
signals in continuous single-station seismograms in an unsupervised fashion. Our
strategy relies on extracting meaningful waveform features based on a deep scat-
tering network combined with an independent component analysis. Based on the
extracted features, agglomerative clustering then groups these waveforms in a hier-
archical fashion and reveals the process of clustering in a dendrogram. We use the
dendrogram to explore the seismic data and identify different classes of signals. To
test our strategy, we investigate a two-day-long seismogram collected in the vicinity
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of the North Anatolian Fault, Turkey. We analyze the automatically inferred clus-
ters’ occurrence rate, spectral characteristics, cluster size, and waveform and enve-
lope characteristics. At a low level in the cluster hierarchy, we obtain three clusters
related to anthropogenic and ambient seismic noise and one cluster related to earth-
quake activity. At a high level in the cluster hierarchy, we identify a seismic burst
that includes around 200 events with similar waveforms and high-frequent signals
with correlating envelopes and an anthropogenic origin. The application shows that
the cluster hierarchy helps to identify particular families of signals and to extract
subclusters for further analysis. This is valuable when certain types of signals, such
as earthquakes, are under-represented in the data. The proposed method may also
successfully discover new types of signals since it is entirely data-driven.

3.2 Introduction

Continuous seismograms contain a rich amount of information as a large variety of
signals can be observed therein. Determining the origin of these different signals
is crucial in understanding the physical geological objects. For example, faults and
plate boundaries accommodate the tectonic loading by releasing energy in different
fashions (Ide et al., 2007), the most known and well-understood signals being earth-
quakes, radiating seismic waves visible in most seismograms. Based on their signal
characteristics, seismologists developed many tools to detect earthquakes in seis-
mograms such as the short time average to long term average STA/LTA (e.g. Allen,
1978). Only 20 years ago, a new signal with tectonic origin has been discovered
and designated as a non-volcanic tremor because of the similarities with volcanic
tremors (Obara, 2002). However, non-volcanic tremors are often of weak ampli-
tude with poorly defined signal characteristics; their detection is a more challenging
task than detecting earthquakes. Other than signals with tectonic origin seismome-
ters also record the oceanic microseisms (for a recent review see e.g. Ebeling, 2012),
rockfalls and other mass movements (e.g. Lacroix and Helmstetter, 2011; Deparis et
al., 2008), ground and air traffic (e.g. Riahi and Gerstoft, 2015; Meng and Ben-Zion,
2018) or other kind of human-induced sources (such as church bells in Diaz, 2020).
The mixing of all these sources renders a complex seismic wavefield that makes the
analysis and interpretation of seismic records difficult, especially if seismic data are
the only data available.

As a response to this problem, seismologists have developed many processing
tools for exploring these complex seismic data. Since the 1970s seismology bene-
fits from artificial intelligence developments, bringing machine-learning-based so-
lutions for exploring seismic data and recognizing patterns (e.g. Allen, 1978). More
recently an unsupervised learning strategy called clustering was utilized to explore
seismic data and find families of similar signals (Köhler, Ohrnberger, and Scherbaum,
2010; Holtzman et al., 2018; Mousavi et al., 2019; Seydoux et al., 2020; Johnson et
al., 2020; Snover et al., 2020; Jenkins et al., 2021). In contrast to supervised learn-
ing strategies, clustering does not rely on a labeled training set and human expert
knowledge (Goodfellow, Bengio, and Courville, 2016). Thus, clustering seismo-
grams can help identifying families of signals which are not yet discovered or are
poorly defined such as non-volcanic tremors.

In the present paper, we introduce a new strategy to use clustering as an explo-
ration tool for continuous seismograms. Our strategy follows the idea that seismic
signals are grouped in a hierarchy of classes following a specific similarity measure-
ment, as schematized in Figure 3.1. Note that this illustration aims at sketching
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the concept rather than being complete or accurate. We consider the similarity be-
tween classes of signals to be measured on a set of signal characteristics that can
be human-defined (such as mean frequency and signal duration) or learned with
machine-learning tools, as we propose in the present paper. In the first place, one
can imagine the seismic signal classes to split into long-term and short-term signals
based on the duration of a signal (Figure 3.1). In the class of long-term signals, one
could use a similarity measure based on frequency content to separate the primary
from secondary microseism. We see that building a tree of classes lets us explore the
data on different levels and that different signal characteristics may be relevant at
each node of the tree.

The sketch presented in Figure 3.1 also illustrates the problems of designing a
class hierarchy by hand. The labels used in this sketch are the ones we created as
seismologists based on our domain knowledge. That is problematic for those classes
of signal that do not have a proper definition of signal and source properties, such
as non-volcanic tremors. Moreover, some splittings, such as between earthquakes
and explosions, ask for a more complex similarity measure which is hard to design
by hand. Hierarchical clustering produces precisely this kind of tree, called a den-
drogram, based on the exploration of the similarity of signals present in the input
data. Therefore, we propose to represent continuous seismograms as a dendrogram
and utilize it to explore the content of the data and identify different types of seismic
signals. We want to emphasize that clustering identifies groups of similar objects,
but it does not provide any meaningful labels, such as the labels in Figure 3.1. In an
extra step, the found clusters can be labelled by analyzing the inherent properties of
the clusters.

In the following section, we present the workflow to build a dendrogram from
continuous single-station data. We introduce the concept of hierarchical clustering
and how we transform continuous seismograms to a meaningful input (features) for
the hierarchical clustering. In section 3, we introduce a data set to apply and test the
proposed workflow. In section 4, we show and discuss briefly the resulting dendro-
gram. Section 5 is about navigating through the dendrogram and interpreting the
clusters at different levels.

3.3 Method

A sketch of the hierarchical clustering workflow is depicted in Figure 3.2. In the
following lines, we start with the concept of clustering in general and hierarchical
clustering in particular. Then, we explain how we transform seismograms into a
meaningful input for the cluster analysis.

3.3.1 Hierarchical clustering

In general, cluster analysis groups objects based on their similarity to each other
(e.g. Xu and Wunsch, 2008). Objects in the same cluster are more similar to each
other than objects in separated clusters. The similarity between objects is measured
on a set of certain characteristics called features. Finding the most relevant features
for this task will be discussed later.
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FIGURE 3.1: Illustration of a possible hierarchy of seismic signals
found in seismograms. The different branches represent how a signal
class splits into different sub-classes depending on a given similarity
measure. Here the different classes of signals are thought in a hier-
archical way, based on arbitrary properties (e.g. duration, frequency
range or signal’s structure). This scheme aims at illustrating the ex-
pected behavior of an optimal clustering algorithm, but does not de-
pict the potential issues related to clustering such as overlapping be-

tween different classes of signals or imbalance between classes.

ZNE

Deep 
scattering 
spectrum

First 
layer

Mixing matrix

Second 
layer

Wavelet 
transform

Wavelet 
transforms

Temporal 
pooling

Component 
concatenation

Collection Reduction

20
-s

ec
 s

lid
in

g 
w

in
do

w

20
 s

ec
on

ds

First 
layers

Second 
layers

F dimensions C dimensions 

Hierarchical 
clustering

with ICA
Clusters 

N
 o

bs
er

va
ti
on

s

Eu
cl

id
ea

n 
di

st
an

ce

F dimensions 

b. DEEP SCATTERING 
SPECTROGRAM

c. FEATURE 
MATRIX

d. DENDROGRAM 
AND CLUSTERING

a. CONTINUOUS 
SEISMOGRAMS

E N Z

E,N,Z

FIGURE 3.2: Proposed workflow for hierarchically exploring con-
tinuous seismograms. (a) Input continuous three-component seis-
mograms, as detailed in Section 3.4. (b) Deep scattering spectrogram
of the seismograms, with a temporal resolution of about 20 s and a
high number of dimensions, detailed in Section 3.3.2. (c) The feature
matrix extracted from the deep scattering spectrogram with indepen-
dent component analysis, following the description in Section 3.3.3.
(d) Dendrogram calculated from a similarity measurement in the fea-

ture space, as explained in Section 3.3.1.
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Various algorithms exist to find groups of objects in a data set. This study uti-
lizes hierarchical clustering with a bottom up approach, namely agglomerative clus-
tering. Hierarchical clustering relies on a similarity matrix, which defines the simi-
larity (e.g., a specific distance in the feature space) between all objects in a data set
(Johnson, 1967). With a bottom-up approach, all objects start in a singleton cluster.
The clusters start merging based on the similarity matrix until all objects unify in
a single global cluster. This process is summarized in a dendrogram, revealing the
hierarchical structure of the entire data set. Such a strategy fits very well the nature
of seismic data as depicted in Figure 3.1.

The agglomerative clustering outcome depends mainly on the applied metric,
which drives the merging of the cluster. In our approach, we use the Ward’s method
(Ward Jr, 1963). Given a distance d (here considered Euclidean), the Ward’s method
aims at grouping objects xi into clusters such that the within-cluster variance re-
mains minimal after merging different clusters. The within-cluster variance σ quan-
tifies the spread of each cluster in the feature space (for more details see Appendix 3.A
of this chapter). By minimizing the overall variance, ∑K

c=1 σc with K being the num-
ber of clusters, the Ward’s method allows for clusters of variable population sizes
and variances. Thus, it may highlight clusters of high density located in the vicinity
of more spread, low-density clusters. Therefore, Ward’s method is suitable for the
expected seismic data partition, where often ambient seismic noise outweighs sig-
nals with a tectonic origin.

It is worth mentioning that hierarchical clustering especially with the Ward’s
method can be computationally expensive. However, algorithms have been im-
proved over time and became more efficient. In this study we utilize the python
package fastcluster, which has a time complexity of O(N2D) with N elements in
RD and a memory complexity of O(ND) (Müllner, 2013). More recently, the use of
hyperbolic embeddings for preserving the hierarchical structure of the data seems
to be a promising way to reduce even further the computational costs (Chami et al.,
2020).

3.3.2 Finding an appropriate representation of seismograms: the deep
scattering spectrum

In order to detect and identify classes of signals in continuous seismograms with
hierarchical clustering, the seismograms have to be transformed into a meaningful
input for the cluster analysis. For that purpose, we calculate features for fixed win-
dows of the seismogram. Thus, each window will be assigned a cluster based on
the features for this window. Note that this process simplifies the complexity of seis-
mic data, since multiple types of signals can occur simultaneously. Common cluster
analysis such as hierarchical clustering neglect this fact and can only assign a sin-
gle cluster to an object. Besides the choice of the applied metric within hierarchical
clustering, the choice of features is another important factor, which determines the
outcome of the cluster analysis. Finding the most relevant features should be done
according to the task at hand and can be done thanks to prior knowledge on the data
or by defining proper algorithms to learn the most relevant features. We distinguish
classical machine-learning algorithms that rely on human-defined features (Maggi et
al., 2017; Malfante et al., 2018) or representation-learning algorithms where the fea-
tures are learned from the data to optimize a given task (LeCun, Bengio, and Hinton,
2015; Ross et al., 2018; Rouet-Leduc et al., 2020). While classical machine learning
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provides less accuracy in most cases, it provides interpretability since the features
are known, which is an interesting aspect. Most algorithms that rely on representa-
tion learning are less easy to interpret since the features are more abstract, but they
also provide more accurate results. In the present paper, we propose to use a hybrid
approach between classical and representation learning algorithms that combines
the advantages of both.

A time-frequency representation such as the spectrogram is one way to create a
set of features for classifying seismic signals (Johnson et al., 2020; Snover et al., 2020;
Jenkins et al., 2021). However, Andén and Mallat (2014) showed that a spectrogram
generated by the Fourier transform is not ideal for classification purposes since it
is not stable to time-warping deformations, especially at short periods compared
with the duration of the analyzing window. They introduce another time-frequency
representation called a deep scattering spectrum which is computed by a scattering
network. This type of network implements a cascade of convolutions with wavelet
filters, modulus function, and pooling operations (see Figure 3.2a and b). Deep scat-
tering spectra are locally translation invariant and preserve transient phenomena
such as attack and amplitude modulation. These characteristics are beneficial when
it comes to classifying any time series data. In Andén and Mallat (2014) and Peddinti
et al. (2014), the authors have successfully classified audio data based on the deep
scattering spectrum. The authors of Seydoux et al. (2020) have brought that repre-
sentation into seismology and showed that small precursory signals of a landslide
could be detected and classified in an unsupervised fashion. Other successful deep-
learning classifiers inspired by deep scattering networks are presented in Balestriero
et al. (2018) and Cosentino and Aazhang (2020).

We use the strategy presented in Seydoux et al. (2020) for calculating the deep
scattering spectrum. Considering the continuous input signal x(t) ∈ RC (where C is
the number of channels), the scattering coefficients S(ℓ) of order ℓ are obtained from
the following cascade of wavelet convolutions and modulus operations (i.e. wavelet
transforms):

S(ℓ)
(

t, f (1)n1 , f (2)n2 , . . . , f (ℓ)nℓ

)
= max

[t,t+dt]

∣∣∣ϕ(ℓ)
(
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)
⋆
∣∣∣. . . ⋆

∣∣∣ϕ(2)
(

f (2)n2

)
⋆
∣∣∣ϕ(1)

(
f (1)n1

)
⋆ x

∣∣∣∣∣∣∣∣∣∣∣∣,
(3.1)

where ⋆ stands for the temporal convolution, | · | represents the modulus opera-
tor and ϕ(i)( f (i)ni ) is the wavelet filter at the layer i of the scattering network, with
center frequency fni . Here fni refers to one of the center frequencies of the layer i
indexed by ni = 1 . . . Ni, where Ni is the total number of wavelets at layer i. In
contrast to the Fourier transform, the center frequencies of the wavelets are placed
logarithmically. In this study, we only consider a scattering network with 2 layers
(as depicted in Figure 3.2) since Andén and Mallat (2014) argued that more layers do
not necessarily introduce new valuable information. The first layer in the network
creates N1 scalograms per channel of the seismic station. In the second layer another
wavelet transform is applied to each scalogram of the first layer. Thus, the second
layer contains N1 ∗ N2 scalograms. A maximum pooling operation is then applied
over each scalogram to retrieve the scattering spectrum. The entries of the scatter-
ing spectrum pooled from the first layer scalogram are called first-order scattering
coefficients. The entries of the scattering spectrum pooled from the second layer
scalogram are called second-order scattering coefficients, which contain important
information about the attack and modulation of a signal. While the scalograms still
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have the same sampling rate in time as the input data, the temporal pooling col-
lapses the time dimension of the scalogram and produces a scattering spectrum for
each input window. Note that each input channel from the seismic station is treated
separately and their deep scattering spectrum are concatenated into a deep scatter-
ing spectrum vector with the size 3 ∗ N1 + 3 ∗ N1 ∗ N2 for a three-component seismo-
gram. For each input window, a deep scattering spectrum vector is created, which
are then merged into the deep scattering spectrogram. The final sampling rate of the
deep scattering spectrogram is defined by the size of the input window. In Seydoux
et al. (2020), the authors initialize Gabor wavelets with amplitudes and derivatives
on a certain sets of knots and interpolate then with Hermite cubic splines. With re-
spect to the clustering loss, they learn the parameters on these knots governing the
shape of the wavelets. In this study, we directly use the initialized Gabor wavelets
with zero phase shift and do not apply any learning of the wavelets. This choice was
made principally because we do not perform a fixed cluster analysis in our study,
but an exploration of the data instead where a loss function is harder to define. For
the interested reader we refer to Andén and Mallat (2014) and Seydoux et al. (2020).

3.3.3 Features extraction from deep scattering spectrogram

The deep scattering spectrum can have more than 1,000 dimensions and, thus, the
conditions for clustering are not favorable (Kriegel, Kröger, and Zimek, 2009). In-
deed, distances in very high-dimensional spaces give little information about the
structure of the data (the so-called curse of dimensionality; Bellman, 1966). In addi-
tion, the representation is known to be highly redundant since the wavelet filters of
the first layer are often considered with a strong frequency overlap in order to pro-
vide a dense first-order representation. Therefore, it is recommended to reduce the
dimensions before clustering. In our case, we use an independent component anal-
ysis (ICA) to reduce the dimension of the representation. In the following remarks,
we explain the basic concept of ICA. For the interested reader we refer to Comon
(1994).

ICA is introduced as a statistical tool for blind source separation and feature
extraction. The generative model of the ICA can be described as:

x = sA, (3.2)

where x ∈ RN×F are the N observations of dimension F, A ∈ RF×C is the mix-
ing matrix, and s ∈ RC×N are the unmixed sources (namely, the C unmixed sources
obtained from ICA). The observations x are therefore a linear combination of the
independent sources s, with the mixing weights gathered in A. A test of statistical
independence is required to solve Equation 3.2 while ensuring the sources s to be in-
dependent. This concept is illustrated in Figure 3.2, where the unmixed sources are
considered as features in our workflow (therein called feature matrix). These sources
are obtained from applying the unmixing matrix, the pseudo inverse of the mixing
matrix A, to the deep scattering spectrogram. Among the different strategies, we can
look for a minimum of mutual information, or similarly, a maximization of the non-
Gaussianity. In our study, we apply the FastICA algorithm from the scikit-learn
Python library, which uses the negentropy as a measure of non-Gaussianity (Hyväri-
nen and Oja, 2000). This analysis is similar to the principal component analysis, with
the difference that the independent components are not orthogonal. In addition,
there is no information about the variance explained by the different independent
components, and are therefore delivered unsorted by the algorithm.
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FIGURE 3.3: Geological context and seismic data used in the present
study. (a) Map of the North Anatolian fault zone showing sta-
tion DC06 (black triangle), the seismic burst (red dots) including the
largest event (red star) and other seismic activity (blue dots); all de-
tected with a template matching strategy. The geological faults that
ruptured after 1900 (black lines) are adapted from Emre et al. (2011).
(b) Cumulative detections of the seismic burst (in red) and other seis-
mic activity (in blue) obtained with template matching. (c) Continu-
ous spectrogram of the east-component of station DC06, with a vi-
sual identification of (A) oceanic microseism, (B) a non-stationary
monochromatic noise source, and (C) daily high-frequency activity.

3.4 Data

We test our proposed workflow on continuous three-component seismic data from
the station DC06 of the DANA experiment in Turkey (see for instance Poyraz et al.,
2015, and the map shown in Figure 3.3a). Originally, the experiment was conducted
to investigate the crustal structure beneath the western segment of the North Ana-
tolian Fault. We choose the data set for mainly two reasons. First of all, the data
set contains both seismic and anthropogenic activity, which is a typical situation in
most seismological studies. Second of all, an existing template matching catalog
provides labels for the seismicity in this area. The catalog was built following the
methodology in Beaucé et al. (2019).

We choose to analyze the seismic data from the 25th to the 27th of July 2012.
During the period of these two days, a high rate of localized seismicity with 148 cat-
aloged events occurred on and around the northern strand of the North Anatolian
fault (see Figure 3.3a and b). In this study, we refer to this high rate of seismicity as
a seismic burst. The catalog explains the series of events with 17 templates having
their hypocenters close to each other (Figure 3.3a, red dots). Since the seismic burst
causes a repeating pattern in the seismogram with short time-warping deformations
due to slight changes of the hypocenters, it is an interesting study case for our pro-
posed method. Station DC06 is close to the seismic burst and records the time period
of interest without data gaps. Thus, we choose the three-component seismograms
of this station. The sampling rate of the data is 50 Hz.
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The spectrogram of the east component of station DC06 is presented in Fig-
ure 3.3c. The oceanic microseism is visible around 0.2 Hz, where we can observe
the dispersive nature of the oceanic gravity waves. At around 1.5 Hz we can iden-
tify a nonstationary monochromatic noise source, which seems to be more active
during the first day. At frequencies higher than 3 Hz we can see increased activity
during daytime, most likely induced by anthropogenic seismic sources. The event
with the largest magnitude of the burst is also easy to spot during the evening of the
25th in the spectrogram.

3.5 Results

3.5.1 Feature space

Firstly, we use the continuous three-component seismograms to calculate the deep
scattering spectrogram with a two-layered scattering network (as detailed in Equa-
tion 3.1). The network parameters are physics-driven and can be adjusted according
to the goal. In this study, the first layer contains 24 Gabor wavelets with center
frequencies between the Nyquist frequency of the seismogram (25 Hz) and 0.78 Hz
with a spacing of 4 wavelets per octave. The second layer contains 14 Gabor wavelets
with center frequencies between 25 Hz and 0.19 Hz with a spacing of 2 wavelets per
octave. This setup results in 24 wavelet transforms per channel in the first layer
and 336 (24 ∗ 14) wavelet transforms per channel in the second layer. Because the
deep scattering spectrum is a concatenation of the first- and second-order scattering
coefficient of each input channel, the total number of scattering coefficients is 1080
(dimension F in Figure 3.2). For the temporal pooling operation, we apply max-
imum pooling, since we are interested in detecting and classifying non-stationary
events such as the seismic burst. If the focus of classification is the background
noise, average pooling might be the better choice (as suggested in Seydoux et al.,
2020). The moving pooling window is 20.48 s large and does not overlap. Hence, the
time resolution of the deep scattering spectrogram is also 20.48 s.

For dimensionality reduction, we apply an independent component analysis us-
ing the FastICA algorithm from the scikit-learn Python library. In this study, we
select the appropriate number of independent components according to the recon-
struction loss between the original data and the reconstructed data after compres-
sion with an ICA (detailed in Appendix 3.B of this chapter). We emphasize that
we look for a trade-off between keeping the most significant amount of information
while using few independent components. From the study of the loss with increas-
ing number of components shown in Appendix 3.B and Figure 3.B.1 therein, we
conclude that keeping ten independent components is a good compromise and con-
stitute our choice in the present study. A visual representation of the ten unmixed
sources building the feature space is depicted in Figure 3.B.2 in Appendix 3.B of this
chapter.

3.5.2 Dendrogram

After transforming the continuous seismic data into a most relevant set of features,
we can use this representation to explore the data with hierarchical clustering. By
controlling the distance threshold, we can extract different numbers of clusters. The
distance threshold sets the boundaries for the possible distances between points
within a cluster. While a larger distance threshold allows larger and fewer clus-
ters to form, a smaller distance threshold extracts smaller but many clusters. Note
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that the distance threshold is only used to extract different cluster solutions based
on the similarity matrix; it is not a hyperparameter affecting the similarity matrix. In
Figure 3.4a we selected a distance threshold of 0.47 in order to show a truncated den-
drogram stopping at 16 clusters. At a distance of 0.9, we extract four main clusters
labeled as A, B, C, and D. Figure 3.4b shows the averaged first-order scattering co-
efficients of these four clusters. These first-order scattering coefficients describe the
frequency characteristics of each cluster. Figure 3.4c presents the normalized cumu-
lative detection rate of each cluster, with the seismic burst detection rate indicated as
a reference. The relative size of each cluster compared to the size of the entire data
set is depicted in Figure 3.4d. In the following remarks, we will analyze each of the
four main clusters from left to right.

Cluster A contains ca. 27 % of the data (Figure 3.4d) and is the first cluster to
split from the whole data set, i.e., cluster A is the furthest away from the center
of the data points (Figure 3.4a). Compared to the other clusters, its scattering co-
efficients for all frequencies are relatively low except for a local maximum around
1.5 Hz (Figure 3.4b). Looking at the corresponding cumulative detection curve (Fig-
ure 3.4c), we see that this cluster is active mainly during the first day until the late
afternoon, which seems to correlate with the monochromatic signal around 1.5 Hz
we have already identified in the spectrogram (Figure 3.3c).

Cluster B contains about 19 % of the data samples (Figure 3.4d) and has rela-
tively large scattering coefficients for frequencies above 10 Hz (Figure 3.4b). The cor-
responding cumulative detection curve indicates that this cluster accumulates less
detections during the beginning of a day than with later times of a day (Figure 3.4c).
Combining these facts leads to the hypothesis that cluster B might be related to sig-
nals with an anthropogenic origin.

Cluster C is the largest cluster with more than 50 % of the data points (Fig-
ure 3.4d). Compared to the other clusters, it also has the lowest scattering coeffi-
cients at all frequencies (Figure 3.4b). Looking at the cumulative detection curve
(Figure 3.4c), we see this cluster shows an almost linear increase starting at the af-
ternoon of the first day, exactly when cluster A becomes almost inactive. The cluster
size and frequency content suggest that cluster C contains mostly ambient seismic
noise data.

Finally, cluster D contains about 4 % of data set (Figure 3.4d) and is the smallest of
the four clusters (Figure 3.4d). The corresponding first-order scattering coefficients
show a local maximum around 5 Hz (Figure 3.4b). Its cumulative detection curve
correlates well with the detections of the seismic burst (Figure 3.4c), with additional
detections before the seismic burst starts. All these observations indicate that cluster
D is probably related to nearby seismic activity in general.

3.6 Discussion

In this section, we will discuss and interpret the dendrogram’s representation and
its clustering solution. While the main focus is on identifying how the seismic burst
occurs in the dendrogram, we will also discuss how the general seismicity is ob-
served through this representation, and interpret the remaining clusters with an-
thropogenic activity and ambient seismic noise. To underpin the statement that the
deep scattering spectrum is a superior representation for the task at hand than the
Fourier-transform spectrum, we also create and interpret a dendrogram based on
the Fourier-transform of the same data set (see Appendix 3.D of this chapter).
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FIGURE 3.4: Dendrogram analysis and statistical characteristics of the
different clusters. (a) Dendrogram calculated in the feature space (see
Sec. 3.3.1 for explanations). The dendrogram is here truncated in or-
der to form 16 clusters. The clusters marked with a letter are consid-
ered the main clusters, and the subclusters are indicated with num-
bers. The numbers in the parenthesis indicate the number of samples
in each cluster. (b, c, d and e) depict random examples of waveforms
for the four main cluster A,B,C and D, respectively. (f) Averaged first-
order scattering coefficients for main clusters A, B, C and D. (g) Nor-
malized cumulative detections of main clusters A, B, C and D, and of
the seismic burst obtained from the multi-station template-matching
catalog. (h) Relative size of the main clusters compared to the size of

the entire data set.
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FIGURE 3.5: Identification of the seismic burst within the main and
subclusters. (a) The distribution of the seismic burst across the four
main clusters. (b) The distribution of the seismic burst across the four
subclusters in the main cluster D. (c) Normalized cumulative detec-
tion curves for the subclusters in the main cluster D. (d) Averaged
first-order scattering coefficients for the subclusters in the main clus-

ter D.

3.6.1 Identification of the seismic burst within the dendrogram

Firstly, we identify all time segments containing onsets of the events of the seis-
mic burst and observe which clusters those time segments belong to. The template
matching catalog contains 148 detections related to this seismic burst. However, we
only associate 136 samples in the feature space with the seismic burst, since one sam-
ple represents about 20 s of waveform data and, thus, can contain multiple events.
Figure 3.5a shows that a large majority of the samples, which contain arrivals of the
seismic burst, fall into cluster D (92.6 %). On the other hand, only 40 % of cluster D
is related to the seismic burst, underpinning the statement that this cluster is related
to general seismic activity. Cluster B and C share the remaining 7.4 % of the burst.
Compared to the large population sizes of clusters B and C, the contribution of the
burst almost vanishes (0.3 and 0.1 %). Cluster A contains no detections of the burst.
While cluster D contains the majority of the seismic burst, the interesting aspect is
to understand what the remaining 60 % samples of this cluster are related to (earth-
quakes from the same source region, different signals, etc). To answer that question,
we investigate the subclusters visible in Figure 3.4a obtained with a distance thresh-
old of 0.47; in particular, we will narrow the focus on the subclusters of cluster D,
namely the four subclusters D.1 to D.4.

Firstly, we look at the distribution of the samples containing the seismic burst
across the four subclusters in main cluster D. From Figure 3.5a, we know that more
than 92 % of the burst was found in cluster D. We observe in Figure 3.5b that this
amount splits into ca. 71.3 % in cluster D.1 and ca. 21.3 % in cluster D.4. The sub-
clusters D.2 and D.3 contain no earthquakes from the seismic burst and will be dis-
cussed later. If we look at the cumulative detection curve of each subcluster in D
(Figure 3.5c), we see that cluster D.1 and D.4 share a very similar temporal pattern.
The corresponding averaged first-order scattering coefficients (Figure 3.5d) explain
why the burst got split into two clusters: across almost all frequencies the larger
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subcluster D.1 shows significantly smaller scattering coefficients than the smaller
subcluster D.4. Hence, the magnitude of the events seems to be the characteristic
that separates the burst into two clusters. Besides, we observe that 56 % of D.1 and
97 % of D.4 can be explained by the cataloged burst. This observation raises the ques-
tion: what are the samples in D.1 and D.4 that cannot be related to the seismic burst
recorded by the catalog? We can answer this question by looking at the waveforms
representing the corresponding data points of subclusters D.1 and D.4.

Figure 3.6a, b and c show the corresponding waveforms of all 204 data points
of the two subclusters D.1 and D.4. For presentation purposes we align the wave-
forms accordingly to their maximum correlation with a template waveform from the
subcluster. For all waveforms we observe the P and S seismic phase arrivals of the
earthquakes. The first 30 waveforms correspond to subcluster D.4. 29 of them are
are also in the catalog (marked orange) while 1 of them is not in the catalog (marked
magenta). The following 174 waveforms are from subcluster D.1. 98 of them are
are also in the catalog (marked light blue) while 76 of them are not in the catalog
(marked blue). The waveforms are very similar to each other on all three channels.
This indicates that these new detections are coming from the same source area. Note
also that the first 30 waveforms representing subcluster D.4 have a better signal-to-
noise ratio than the following waveforms of subcluster D.1. This agrees with our
assumption that the burst is split into two subclusters due to magnitude differences.
The magnitude estimations of the template matching catalog confirms this assump-
tion (see Figure 3.6d). While most of the events located in D.1 range between M0.5
and M1, the events located in D.4 range between M1 and M2.2.

By investigating cluster D and its subclusters D.1 and D.4, we are able to identify
two subclusters representing the seismic burst. While D.1 contains many events with
smaller magnitudes, D.4 contains fewer events with larger magnitudes. Together
the two subclusters contain 92.6 % of the cataloged events and 77 new events, which
have identical P and S wave arrivals as the cataloged ones. The new detections can
be explained by the fact that we utilize a single station method and compare it to
a catalog based on a multi station method. More details and a comparison with
a single station template matching catalog based on station DC06 can be found in
Appendix 3.C of this chapter.

However, 7.4 % of the cataloged detections can not be found in subclusters D.1
or D.4. In the following remarks, we want to analyze the misidentified 7.4 % of cat-
aloged events, which equal ten over 136 events. First of all, we want to know where
these events are located in the feature space. Therefore, we calculate the Euclidean
distance between the misidentified events and the centroids of each cluster in the
feature space (see Figure 3.7a). In magenta, we highlight the distance between the
sample and its respective subcluster. In cyan, we highlight the distance between
the sample and subcluster D.1 containing the low magnitude events of the burst. In
gray, we highlight the distances to all other remaining clusters as a comparison. We
sorted the misidentified ten events according to the distance to the centroid of D.1.
We see that for the first six events, the distance to the centroid of D.1 is smaller than
to the centroid of its respective cluster. The corresponding waveform data also offer
explanations for the misidentification (Figure 3.7b to d). Indeed, the P and S arrivals
are noisy but visible for the first five events. Thus, some events might be misclassi-
fied because samples are grouped with the Ward’s method, which solves iteratively
an objective function considering the Euclidean distance and the within-cluster vari-
ance. In other words, clusters can agglomerate samples which might be closer to the
centroids of other clusters if we consider the pure Euclidean distance. After the first
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FIGURE 3.6: (a,b,c) Waveform data from subcluster D.1 and D.4. The
color code indicates the according subcluster and if the event is men-
tioned by the catalog. (d) Magnitude estimations of the cataloged

events of the seismic burst found in subcluster D.1 and D.4.
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FIGURE 3.7: Analysis of the misidentified earthquake waveforms.
(a) Distances between misidentified data points containing an event
from the catalog and the centroids of all clusters. The magenta points
show the distance between the data point and the centroid of its own
respective subcluster. The cyan points show the distance between the
data point and the centroid of D.1. The gray points show the distance
between the data point and the centroids of the other 14 subclusters.
(b, c, d) Corresponding aligned waveform data sorted according to
the distance to the centroid of D.1 (respectively channels E, N, and Z).
The color coding represents the distance to the centroid of subcluster
D.1. A purple color indicates a larger distance than a light blue color.

five events, when the distance to its respective cluster becomes smaller than the dis-
tance to D.1., the P and S arrivals are not visible anymore, or other large-amplitude
events are present. Here the problem is related to assigning a single cluster to 20 sof
waveform data, which can contain multiple signals.

3.6.2 Neighboring clusters of the seismic burst in the feature space

Having identified most of the seismic burst in two neighboring subclusters already
shows that the representation of the data and the distances between the data points
are meaningful. As a next step, we want to analyze the neighborhood of these two
subclusters to get a better understanding of the data representation. Since D.2 and
D.3 share the same cluster with D.1 and D.4, we know that they are located next to
each other in the feature space. This indicates that subcluster D.2 and D.3 might con-
tain similar signals, such as seismic activity with a different origin than the seismic
burst.

To verify this assumption, we can compare existing earthquake catalogs with the
timestamps of the samples in the subclusters. We extend the local template matching
catalog with a regional catalog limited to events within a radius of 5° around station
DC06. The regional catalog is downloaded from IRIS. For calculating the seismic
phase arrivals at the station, we use the TauP module of ObsPy with the velocity
model of Kennett and Engdahl (1991). We consider a sample related to an event of
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the catalog if the 20 s window of the sample overlaps with the window between the
P wave arrival and the decaying coda.

The waveform data of D.2 and D.3 are presented in Figure 3.8. Figure 3.8a indi-
cates the samples which can be explained by arrivals of a regional or local event, and
Figure 3.8b shows the samples which can not be explained by arrivals of a regional
or local event. Note that one sample in the feature space represents ca. 20 s of wave-
form data and each horizontal waveform displayed in Figure 3.8 contains multiple
consecutive 20 s windows. Subcluster D.2 contains only nine samples corresponding
to two seismic events indicated in blue in Figure 3.8a. The first event represented by
eight consecutive samples at index 0 is a relatively distant M4 event. The other event
represented by a single sample is a quarry blast from a local mine mentioned by the
template matching catalog. At first sight, it might seem unexpected that these two
events are found in the same subcluster. However, subclusters D.2 shows the largest
scattering coefficients for frequencies below 5 Hz (see Figure 3.5d), and its centroid
is the furthest away from the remaining data set as we can see from the inter-cluster
distance matrix presented in Figure 3.A.1 in Appendix 3.A of this chapter. More-
over, the within-cluster variance σc in the top panel of Figure 3.A.1 indicates that the
samples of subcluster D.2 are the most spread out compared to the other subclusters,
This suggests that both events are seen as outliers in the feature space due to their
high amplitudes at lower frequencies.

Moreover, we observe that the catalog can explain 67 % of all samples of D.3 (a
random selection of waveforms are shown in Figure 3.8a). The other 33 % are shown
in Figure 3.8b, and some samples also show seismic phase arrivals (in particular, the
seismograms shown at index six and nine). It is thus likely that the samples shown
in Figure 3.8b contain uncataloged events. While subcluster D.1 and D.4 represent
similar earthquakes from a similar source region, subcluster D.3 shows many kinds
of signals, such as earthquakes with different magnitudes and distances to the sta-
tion. We can interpret subcluster D.3 as an agglomeration of transient signals with
increased energy between 1 and 5 Hz (see Figure 3.5d). Regional and local events
also fall into this category. Thus, in the vicinity of the subclusters D.1 and D.4, re-
lated to the seismic burst, other subclusters containing seismic activity can be found.

3.6.3 Anthropogenic signals with high envelope correlation

After identifying seismic activity in cluster D, we want to draw attention to the re-
maining part of the seismic data set. Seismic activity induces short-term signals
with a characteristic waveform and envelope shape. However, if we want to classify
other types of signals like tremors, anthropogenic noise, or ambient noise, correlat-
ing waveforms are unlikely to be suitable for this task. One key feature of the deep
scattering spectrum is the representation of the waveform’s envelope in the second-
order scattering coefficients (Andén and Mallat, 2014). Consequently, we should
find clusters with weakly correlating waveforms but strongly correlating envelopes.

For that reason, we investigate the correlation coefficient of the waveform (CCW)
and the envelope (CCE) for all subclusters. Firstly, a template is defined by the clos-
est sample to the centroid representing the most typical waveform of a cluster. Then,
we calculate the correlation coefficient of the waveform data CCW and the correla-
tion coefficient of the smoothed envelope CCE between the template and the remain-
ing samples. The envelope is defined by the modulus of the analytic signal, which
is a complex-valued representation of the waveform disregarding the negative fre-
quencies from the Fourier transform. A median-filter smoothens the envelope. The
averaged results are depicted in Figure 3.9a. We firstly observe that CCE is more
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FIGURE 3.9: Interpretation of subcluster B.4. (a) Averaged correlation
coefficient for the waveforms CCW and for the envelopes CCE for all
16 subclusters. (b,c,d) Aligned envelopes for the three channels for
subcluster B.4. (e) Number of detections per hour for subcluster B.4.

(f) Averaged first-order scattering coefficients for subcluster B.4.

significant than CCW for most subclusters. In particular, cluster B.4 shows the most
significant discrepancy between CCE and CCW ; this subcluster is part of cluster B,
which we related to high-frequent urban noise. In Figure 3.9b to d, we align the
envelopes for each channel and each sample in B.4 to depict the shared character-
istics. We see a very symmetric envelope that lasts around 5 s. The envelopes look
very similar on all three components. Figure 3.9e shows a histogram of detections
over the time of the day. We see that this cluster mostly appears during daytime
with a clear peak around 14:00 local time. Figure 3.9f shows the averaged first-order
scattering coefficients for all three channels. The frequencies above 5 Hz are very
pronounced and peak between 10 and 15 Hz. In summary, we see that subcluster
B.4 is related to non stationary urban noise which produced similar envelopes last-
ing 5 s. Nearby road traffic could produce these kind of signals.

3.6.4 Long-lasting signals with low envelope correlation

As the last example, we want to draw attention towards clusters A and C. Both clus-
ters show relatively low correlation coefficients for the envelopes (see Figure 3.9).
Cluster C contains more than half of the data, and the average scattering coefficients
are the lowest for all frequencies compared to the other clusters (see Figure 3.4b and
d). Moreover, the subclusters of C have a relatively low distance to each other, and
their within-cluster variance is relatively low (see Figure 3.A.1 in Appendix 3.A of
this chapter). This indicates that they contain similar signals. Combining these facts,
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FIGURE 3.10: Fourier amplitude of all three channels calculated over
10 min windows in the frequency range of 1.4 to 1.6 Hz together with

the activation of the main cluster A

we conclude that this cluster contains ambient noise without any significant activity
of transient signals.

Cluster A seems to correlate with the monochromatic noise source around 1.5 Hz
(see Figure 3.3c and 3.4c). To prove that cluster A contains only data with increased
activity around 1.5 Hz we depict the occurrence of cluster A and the Fourier ampli-
tude of the three channels filtered between 1.4 and 1.6 Hz as a function of time in
Figure 3.10. In general, an increased amplitude around 1.5 Hz correlates well with
the appearance of cluster A. However, not all samples with an increased monochro-
matic activity fall into cluster A. As with the misidentified events in Figure 3.7, the
problem is related to assigning a single cluster to 20 s of waveform data containing
multiple types of signals. It is also interesting to note that subcluster A.1 and A.3
show larger correlation coefficients for the waveforms than for the envelopes (Fig-
ure 3.9a). This characteristic only applies to these two subclusters and is related to
the dominance of the monochromatic signal.

Cluster A and C show that the dendrogram representation based on features
from the deep scattering spectrum also finds cluster of noise sources without strong
correlation of the waveforms or envelopes.

3.7 Conclusion

In this study, we proposed a new way of exploring the content of continuous seismo-
grams and identifying different types of signals present in the data. Our approach is
based on hierarchical clustering, which offers many cluster solutions with the den-
drogram and, thus, delivers a tool for exploring the data. The hierarchical clustering
is applied to a low-dimensional feature space extracted from the deep scattering
spectrogram of the continuous seismogram. A primary advantage of the workflow
compared to other machine learning algorithms for classifying continuous seismic
data is the interpretability at each step and the deep scattering spectrum, which
seems to be a promising representation of seismic data for classification purposes.

For an application in this study, we chose a 2-day long three-component seis-
mogram containing a nearby seismic burst with 148 cataloged events with similar
waveforms. These labels served as a sanity check for the algorithm. Firstly, we ex-
tracted a cluster solution with four main clusters to get a rough overview of the
data. With the cluster size, the temporal detection, and averaged first-order scat-
tering coefficients, we delivered an interpretation of each cluster and could identify
a cluster containing mostly waveforms related to earthquakes. Inside this specific
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cluster, we found two subclusters containing almost all cataloged events of the seis-
mic burst. While the events of the seismic burst split into two subclusters due to
magnitude differences, 77 uncataloged events with similar waveforms were found.
The case of the seismic burst shows that we can identify a repeating pattern with
slight variations of the waveforms and low SNR in an unbalanced data set. The few
misidentified events highlight the multi-label characteristics of seismograms. Multi-
ple signals can arrive simultaneously and, thus, assigning a single label to a part of
the seismogram does not reflect the whole truth. Integrating this issue into cluster-
ing seismograms is an interesting aspect for future work. Besides the seismic burst,
we also identified signal families with anthropogenic origin and a large cluster con-
taining ambient seismic noise. The different types of signals show that the strategy
is able to group signals with correlating waveforms, envelopes or similar frequency
characteristics.

We want to emphasize here that hierarchical clustering and the dendrogram itself
does not deliver meaningful labels for the clusters. Interpreting the different cluster
solutions with certain characteristics such as the temporal detection curve is a crucial
step towards understanding and revealing the content of the data. Until the point of
hierarchical clustering, the proposed workflow is an unsupervised and data-driven
strategy to find groups of similar seismic signals. After that point, we use the output
of that strategy to do an interpretation and assign meaningful labels to the retrieved
clusters.

As most machine learning algorithms, the proposed strategy relies on a few pa-
rameters to tune. The hyperparameters of the deep scattering network are mainly
physics-driven and depend on the pre-defined task. As with Fourier spectrograms,
we can control the window size and frequencies of interest. For example, low fre-
quent first-order wavelet filters might not be necessary for finding groups of an-
thropogenic signals. Maximum pooling is more interesting than average pooling
if the signals of interest have a transient character such as earthquakes. After de-
signing the deep scattering network, the number of components in the independent
component analysis is an exploratory task. It is a trade-off between keeping crucial
information and producing a low-dimensional representation to avoid the curse of
dimensionality.

In general, the method can be used for various tasks. It is beneficial to get a gen-
eral overview of an unknown data set. If there is a particular target of interest (e.g.,
earthquakes, urban noise sources, tremors), we can navigate the dendrogram and
focus the analysis on a specific branch. The temporal detection curves of the clusters
can be easily correlated with other time series such as GPS displacement or environ-
mental parameters to search for signal classes related to certain physical processes.
A specific interesting application would be the North Anatolian Fault, where seis-
mologists assume the presence of non-volcanic tremors but conventional methods
did only deliver null results so far (Pfohl et al., 2015; Bocchini et al., 2021). In con-
trast to conventional tremor detection algorithm, our approach could identify sig-
nals related to tectonic processes without assuming any signal characteristics. In the
same sense, the dendrogram can reveal clusters/classes human expert knowledge
could not reveal yet and expand the classes of signals we know so far. Moreover, the
method can be helpful to extract particular types of noise for performing ambient
noise cross-correlation potentially enhancing the signal quality.
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Appendices

3.A Within-cluster variance and inter-cluster distance

This section presents the way we calculate the inter-cluster distance dij between clus-
ters i and j and the within-cluster variance σi of cluster i. The inter-cluster distance
are defined by the Euclidean distances between the centroids of the cluster:

dij = ∥µi − µj∥2, (3.3)

where µi = 1
Ni

∑n∈i ŷn represents the centroid of cluster i with the samples ŷn ∈
RC belonging to cluster i, and where ∥ · ∥2 represents the L2 norm. Similarly, the
variance σi of cluster i is defined as:

σi =
1
Ni

Ni

∑
n∈i

∥ŷn − µi∥
2
2. (3.4)

This analysis is inspired from the silhouette analysis (Rousseeuw, 1987) and
helps to understand better the clustering results. The within-cluster variances and
the Euclidean distances between the centroids are depicted in Figure 3.A.1.

3.B Number of relevant independant components

Setting the number of dimensions for a dimensionality reduction technique such as
the ICA is always an exploratory task, and it is appropriate to estimate the informa-
tion loss as a guideline for that. In this study, we use a reconstruction loss ϵ between
the original data x and the reconstructed data x̂(C), obtained from Equation 3.2 with
C independent components, as

ϵ(C) =
∑N

i=0 |xi − x̂(C)i |
N

. (3.5)

Figure 3.B.1 depicts the reconstruction loss ϵ(C) for an increasing number of in-
dependent components (sources) C. The reconstruction loss decreases rapidly with
the first components. With a more significant number of components, the rate of er-
ror decrease becomes smaller. The choice of the number of components is a trade-off
between keeping the dimensions low and retaining most of the information. Thus,
ten independent components seem like a good compromise to us.

The time series of the ten unmixed sources calculated from the data set are shown
in Figure 3.B.2. To see if a single source already shows a clear distinction between
the seismic burst and the rest of the data, we marked in blue the samples containing
at least one earthquake from the burst. It appears that the ninth unmixed source
seems to separate the seismic burst from the rest of the data. This observation raises
the question if other trends, such as the background noise, can be correlated with
specific unmixed sources.
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FIGURE 3.A.1: Inter-cluster distances and within-cluster variances.
(a) Within-cluster variance according to equation 3.4 for all 16 sub-
clusters. (b) Inter-cluster distance according to equation 3.3 between
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FIGURE 3.C.1: Comparison between the earthquake catalog from
clusters D.1 and D.4 (thick brown line), and the single-station (DC06)
template matching catalog (dashed blue line). (a) Normalized cu-
mulative number of events. (b) Cumulative number of events. The
single-station template matching catalog documents about 50% more

events.

If we compare with the spectrogram of Figure 3.3c we see that the second un-
mixed source seems to correlate with the variations around 0.2 Hz and the eighth
unmixed source seems to correlate with the monochromatic noise source around
1.5 Hz. This quick visual inspection shows us that the feature space can already be
physically interpreted, and the ICA separates different signals on its different un-
mixed sources, which is favorable for further analysis by clustering algorithms.

3.C Comparison with Single-station Template Matching

Station DC06 recorded higher signal-to-noise ratio S-waves from the seismicity burst
than the more proximal stations. Therefore, we are able to detect about twice more
events by running the matched-filter search only on station DC06, with respect to the
multi-station (ten stations) matched-filter search. The single-station template match-
ing catalog captures a seismicity pattern similar to clusters D.1 and D.4, but reports
about 50% more events (see Figure 3.C.1). Both the single-station and multi-station
template matching catalogs were built with a detection threshold of eight times the
root-mean-square of the correlation coefficient time series. The 20-second time res-
olution of the clustering method presented in this work sets a hard constraint on
revealing the details of low magnitude seismicity. Nevertheless, we recall that pro-
ducing a fine resolution earthquake catalog is not the first goal of our method, which
instead aims at unraveling signals of different nature with no prior knowledge of the
data set.
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3.D Qualitative Comparison with hierarchical clustering based
on spectrograms

In our study, we use a deep scattering spectrum instead of a Fourier-transform spec-
trum, since it is more suitable for classification purposes (Andén and Mallat, 2014).
In the following lines, we create and interpret a dendrogram based on Fourier-
transform spectral features to verify this claim for seismograms. For the sake of com-
parison, the window size of the Fourier-transform equals the pooling window of the
scattering network, which is 20.48 s. Moreover, the considered frequency range of
the Fourier-transform is adapted to the frequency range of the first order scattering
coefficients. The three-component spectrogram with 1440 spectral coefficients per
time step is then used to calculate ten independent components, which resemble the
feature space for the dendrogram. Thus, we only replaced the scattering coefficients
with spectral coefficients of comparable time and frequency properties.
To compare the clustering outcome, we retrieve 16 subclusters, which can be grouped
into the three main clusters A’,B’ and C’ (see Figure 3.D.1a). The time evolution
curves and the cluster sizes in Figure 3.D.1b and c show if the retrieved main clus-
ters are the same as in Figure 3.4. Cluster A’ matches very well with cluster A in
terms of cluster size and temporal detection curve. Thus, Cluster A’ is also related
to the monochromatic signal. Cluster B’ matches with the detection curve of Cluster
C, however, Cluster B’ contains more data than Cluster C. Thus, Cluster B’ is also
related to ambient signals but possibly contains also additional types of signals. The
normalized detection curve of Cluster C’ matches with Cluster B, however, Cluster
C’ is not even half of the size of cluster B. Hence, Cluster C’ is probably related to
high-frequent urban signals. Cluster D, which is related to general seismicity, does
not appear within the main clusters based on spectral coefficients. In fact, most of the
seismic burst is within cluster B’, which is mainly related to ambient signals (see Fig-
ure 3.D.1d). Hence, we can assume that Cluster C and D are unified here in Cluster
B’. Retrieving subclusters at a lower distance threshold than the three main clusters
could possibly reveal a few subclusters related to the seismic burst. However, 12
out of 16 subclusters contain events from the seismic burst (see Figure 3.D.1e). It is
not possible to identify a few clusters which are purely related to the seismic burst.
Subcluster B’.1 and B’.2 contain ca. 20 % of the cataloged seismic burst respectively,
however, most of the subcluster (>96 %) is not related to the cataloged seismic burst.
This example shows that a deep scattering spectrum delivers a better representation
for classification purposes than a Fourier transform spectrum. This is particularly
true for classifying reoccurring transient signals in a relative large data set such as
the events of the seismic burst within the continuous seismogram.
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AI-based unmixing of medium and
source signatures from
seismograms: ground freezing
patterns

René Steinmann, Léonard Seydoux, Michel Campillo
Article published in Geophysical Research Letters

This chapter covers the second article of my PhD thesis, following the work and
ideas presented in Chapter 3. It applies the hierarchical waveform clustering to a
dataset recorded in the city of Hamburg, Germany. During the recording time of
the dataset, the first centimeters of the surface changes constantly due to freezing
and thawing, while many non-stationary seismic signals with anthropogenic ori-
gin occur. Out of curiosity, we wondered if we would be able to identify a clus-
ter within the dendrogram corresponding to the superficial freezing process. This
was the starting point of this study and it lead us to the conclusion that different
processes are encoded onto the different components found by ICA, isolating the
continuous freezing and thawing process on a single independent component. This
result motivated us to include the feature space more into the data exploration anal-
ysis as it is now depicted in Figure 2.1.

4.1 Abstract

Seismograms always result from mixing many sources and medium changes that
are complex to disentangle, witnessing many physical phenomena within the Earth.
With artificial intelligence (AI), we isolate the signature of surface freezing and thaw-
ing in continuous seismograms recorded in a noisy urban environment. We perform
a hierarchical clustering of the seismograms and identify a pattern that correlates
with ground frost periods. We further investigate the fingerprint of this pattern and
use it to track the continuous medium change with high accuracy and resolution in
time. Our method isolates the effect of the ground frost and describes how it af-
fects the horizontal wavefield. Our findings show how AI-based strategies can help
to identify and understand hidden patterns within seismic data caused either by
medium or source changes.
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4.2 Introduction

Continuous seismograms are time series of the ground motion recorded at a single
location and provide a vast amount of information about processes occurring at the
Earth’s surface and interior. The recorded ground motion at a given location results
from the convolution of the medium’s impulse response — expressed as the Green’s
function — and the seismic waves emitted by various sources, often simultaneously.
Thus, continuous seismograms are goldmines to study the medium’s properties or
sources in time. However, unmixing source or medium changes is often not easy,
especially if source and medium changes coincide. For instance, seismic recordings
in the vicinity of volcanoes, where many different source and medium effects occur,
are challenging and complex datasets to analyze.

To better explore continuous seismic data, seismologists developed many data
processing tools to extract valuable information for the task at hand. For example,
the Short-Term-Average to Long-Term-Average energy ratio (STA/LTA) scans the
continuous recordings for impulsive signals (Allen, 1978). On the other hand, pas-
sive image interferometry can interrogate the medium regularly by exploiting the
ambient seismic signals of a dataset (Sens-Schönfelder and Wegler, 2006). Undoubt-
edly, these tools delivered many new insights into the processes happening at and
inside the Earth. However, it is important to note that the design of the tools and
the related preprocessing favors certain processes in the seismic data. This can be a
problem if the source or medium processes encoded in the seismic data are poorly
understood. For example, non-volcanic tremors were detected about twenty years
ago (Obara, 2002), and still today, the physical mechanism and signal properties of
such events are not well apprehended. Therefore, it remains unclear if these signals
do not exist in specific environments or if the detection tools are not adapted to the
task (Pfohl et al., 2015; Bocchini et al., 2021).

Artificial intelligence (AI) can help overcome those blind spots and discover new
signals or hidden patterns within the data. Recently, clustering gained attention as a
method to identify families of signals in the continuous seismograms (Köhler, Ohrn-
berger, and Scherbaum, 2010; Holtzman et al., 2018; Mousavi et al., 2019; Seydoux
et al., 2020; Johnson et al., 2020; Snover et al., 2020; Jenkins et al., 2021; Steinmann
et al., 2022). In the most common approach, characteristics — often called features
— are calculated for a sliding window. Then, clustering algorithms perform a sim-
ilarity measurement within the set of characteristics and assign a cluster to each
window. Until now, the applications showed that this approach mainly identifies
families of signals related to source processes such as geothermal activity (Holtz-
man et al., 2018), different types of anthropogenic activity (Snover et al., 2020), seis-
mic background activity (Johnson et al., 2020) or precursory signals of a landslide
(Seydoux et al., 2020). To our knowledge, medium changes have been disregarded
so far in this task.

In the present study, we make the first attempts towards inferring not only source
processes but also medium changes from continuous single station seismograms in
a data-driven fashion.

4.3 A thin ground frost layer visible in temperature data and
seismic velocity variations

The study site is located in the city of Hamburg, Germany (Figure 4.1a). Besides
the three broadband sensors WM01, WM02, and WM03, the site includes various
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FIGURE 4.1: Temperature data and location of seismic stations. (a)
Map of the measuring site in Hamburg, Germany, with the three
broadband and three-component seismic sensors WM01, WM02, and
WM03. (b) Temperature time series measured at the surface, 5 cm and
10 cm depth close to station WM02 with a sampling period of 10 min.

meteorological sensors near station WM02. At 5 cm, 10 cm, 80 cm, and 120 cm depth
and at the surface, temperature sensors deliver a measurement every 10 min. Fig-
ure 4.1b depicts the temperature time series at the surface, 5 cm, and 10 cm depth
from January 4 to April 30 in 2018. Until the end of March, the air temperature
ranges between −20 °C and 20 °C indicating a continuous freezing and thawing of
the near-surface. In particular, the end of February is a cold period with freezing
air temperature during daytime and nighttime. However, at 5 cm and 10 cm depth,
the sensors do not reach below 0 °C and do not follow the air temperature as they
do later in March. This is known as the zero-curtain effect: the phase change from
water to ice in the soil releases latent heat, which causes the freezing process to slow
down (Outcalt, Nelson, and Hinkel, 1990). This implies that the ground frost is not
deeper than 5 cm during the coldest period.

The freezing and thawing process on a centimeter scale was well tracked with
seismic velocity variations retrieved from passive image interferometry applied to
the data from the three broadband stations WM01, WM02 and WM03 (Steinmann,
Hadziioannou, and Larose, 2021). Freezing periods caused a velocity increase and
thawing periods caused a velocity decrease. The local seismic wavefield comprises
many non-stationary seismic sources related to the anthropogenic activity, such as
commuter and freight trains in the south, a highway passing in the southeast (la-
beled A1 on Figure 4.1a), a close gravel pit (marked by the two nearby lakes on
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Figure 4.1a) and an industrial neighborhood in the northwest. The combination of
the continuously changing medium due to the freezing and thawing and many non-
stationary seismic sources makes it an interesting study case for our approach to
disentangle the medium from the source effects blindly.

4.4 Seismic pattern detection with hierarchical waveform clus-
tering

We search for the imprint of the ground frost within the continuous three-component
seismograms recorded by a single station with the hierarchical waveform cluster-
ing approach introduced in Steinmann et al. (2022). Hierarchical clustering ob-
serves how a dataset merges into clusters based on some similarity criterion (Estivill-
Castro, 2002). In our case, we calculate the similarity between waveforms from
a set of features derived from a deep scattering spectrogram, as depicted in Fig-
ure 4.2. Firstly, we calculate the deep scattering spectrogram of the continuous three-
component seismograms with a deep scattering network, as introduced in Andén
and Mallat (2014) and adapted to seismology in Seydoux et al. (2020). A deep scatter-
ing network is a deep convolutional neural network, where the convolutional filters
are restricted to wavelets and the activations to modulus operation. We choose Ga-
bor wavelets as originally proposed in Andén and Mallat (2014) and do not learn the
wavelets as the authors did in Seydoux et al. (2020). The output of such a network at
each layer allows building the deep scattering spectrogram representation of a con-
tinuous multichannel seismogram. This representation of time series is relevant for
classification purposes since it preserves signal phenomena such as attack and am-
plitude modulation. Moreover, a deep scattering spectrogram is locally translation
invariant and stable towards small-amplitude time warping deformations (Andén
and Mallat, 2014). Indeed, Steinmann et al. (2022) showed that hierarchical wave-
form clustering performs poorer if the deep scattering spectrogram is replaced by a
Fourier-based spectrogram. We depict a two-layer scattering network in Figure 4.2,
where we apply a sliding window on a single-component seismogram and calcu-
late the first-order scalogram with the wavelet transform. A second wavelet trans-
form is applied to the first-order scalogram creating the second-order scalogram. A
pooling operation collapses the time axis of the scalograms and recovers the first-
and second-order scattering coefficients. For each component of the ground motion
record, we calculate the scattering coefficients and concatenate them. We repeat this
for each window and retrieve the deep scattering spectrogram. The design of the
scattering network (number of wavelets, type of pooling, etc.) can be adapted to the
task at hand and is explained more in detail in Appendix 4.B of this chapter.

Deep scattering spectrograms are redundant and high-dimensional representa-
tions, not directly suited for clustering due to the curse of dimensionality (Bellman,
1966). Therefore, we extract the most relevant characteristics — or features — and re-
duce the number of dimensions with an ICA, a linear operator for feature extraction,
and blind source separation (Comon, 1994). Before applying the ICA, we whiten the
deep scattering spectrogram by equalizing its covariance matrix eigenvalues, allow-
ing us to disregard patterns’ relative amplitudes as much as possible. The number of
most relevant features (or independent components) is often unknown and should
be inferred, which is explained more in detail in Appendix 4.C of this chapter.

Lastly, we perform hierarchical clustering in the low-dimensional feature space
built by the independent components. Clustering aims at grouping objects — here
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FIGURE 4.2: Sketch of the hierarchical waveform clustering ap-
proach. A two-layer scattering network with wavelet transforms,
modulus and pooling operations calculates the deep scattering spec-
trogram. An independent component analysis (ICA) extracts the

most relevant features, which are used for hierarchical clustering.

defined as data points in a given feature space — based on a similarity or dissimilar-
ity measurement. With a bottom-up approach of hierarchical clustering, also called
agglomerative clustering, all objects start in a singleton cluster and merge to larger
clusters until all objects unify in a single cluster (Johnson, 1967). A dendrogram
depicts this process, representing the inter-cluster similarity in a cluster-distance di-
agram. The similarity measurement, which drives the cluster merging, is often a
distance in the feature space between the objects. Thus, the type of distance is the
only choice to be made here and determines the structure of the dendrogram. We
use Ward’s method as a criterion to merge clusters in hierarchical clustering and pro-
duce the dendrogram. Clusters are merged with the objective to keep the increase of
the total within-cluster variance minimal (Ward Jr, 1963). This allows to find cluster
of various size, which fits the nature of seismic data, where ambient seismic activ-
ity often outweighs transient signals. Finally, depending on the truncation distance
explored in the dendrogram, one can obtain a different number of clusters. This al-
lows exploring the dataset’s structure and searching for a cluster of seismic signals
related to the ground frost. The dendrogram is unique to hierarchical clustering and
the main reason why we choose this clustering algorithm instead of others.

4.5 Cluster of signals occurs during ground frost

We show a truncated dendrogram of the continuous three-component seismogram
recorded at station WM01 from January to April 2018 in Figure 4.3a, using a trun-
cation distance to end up with 16 clusters in this case. A data point in the feature
space represents 10 min of continuous waveform data without overlap. Moreover,
the feature space contains 16 independent components, as a trade-off between keep-
ing enough information and low dimensionality (see Appendix 4.C of this chapter
and Figure 4.C.1). Note that finding a cluster related to ground frost effects is an
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exploratory task where we do not know where such a cluster would appear in the
dendrogram nor if it even exists. As suggested in Steinmann et al. (2022), we extract
a few large clusters at a high distance threshold to overview the whole dataset. We
can then focus on certain branches in the dendrogram and extract subclusters hier-
archically to get a more detailed cluster analysis if needed. In our case, we extract
five clusters (hereafter denoted A, B, C, D, and E) at a distance threshold of 0.9 (Fig-
ure 4.3a). In the following lines, we will interpret the clusters and assign meaningful
labels with certain inherent clusters properties such as the normalized cumulative
detections in time (Figure 4.3b–f), the number of detections per hour during the
day (Figure 4.3g–k), the number of detections per weekday (Figure 4.3l–p), and the
first-order scattering coefficients averaged for each input channel (Figure 4.3q–u). In
particular, the normalized cumulative detections in time can help identify a cluster
related to the presence of ground frost since the temperature time series indicate the
periods of freezing air temperature. Note that a detection refers to a 10 min window
of seismic data which is assigned to one of the five clusters.

Cluster A seems to detect in a linear-piecewise way, with no relation to the tem-
perature time series or occurrence of ground frost (Figure 4.3b). This cluster detects
only between 05:00 and 18:00 local time from Monday to Friday (Figure 4.3g and
i). Note that around 09:00 and 12:00, the detections reach a minimum, coinciding
with the typical breakfast and lunch break during workdays. Compared to the other
clusters, the averaged first-order scattering coefficients show larger values for fre-
quencies above 1 Hz with a local maximum around 8 Hz on the vertical component
(Figure 4.3q). The analysis of these parameters indicates that this cluster contains
seismic signals related to anthropogenic sources, mainly active during classical la-
bor hours. The gravel pit with trucks in the direct neighborhood of this measuring
site could be a possible source (Figure 4.1a).

Cluster B seems to detect more continuously than cluster A (Figure 4.3c). It is
active during the daytime, with a few detections during the nighttime (Figure 4.3h).
Interestingly, this cluster peaks at 09:00 and 12:00 when cluster A reaches a minimum
of detections. The weekdays show clearly more detections than the weekends, with
a peak of detection on Fridays when cluster A shows a minimum of detection during
the week (Figure 4.3l and m). The averaged first-order scattering coefficients show
similar frequency characteristics as cluster A. However, cluster B indicates no bumps
around 8 Hz (Figure 4.3r). The analysis of cluster B suggests that this cluster also
relates to anthropogenic activity. Since it shows elevated activity when cluster A
reduces its activity (Fridays and 09:00 and 12:00 local time), it is probably related
to a different anthropogenic seismic source. Because cluster B also contains some
detections during the nighttime and weekends, it possibly contains seismic signals
related to nearby road traffic.

Cluster C is the second-largest cluster of the whole dataset (Figure 4.3a). It de-
tects irregularly at all hours and all days (Figure 4.3d, i and n). During the morn-
ing and afternoon its detection rate decreases (Figure 4.3i). Moreover, the averaged
first-order scattering coefficients show no particular pattern (Figure 4.3s). It is un-
clear what type of seismic signals cluster C contains. We can only note that it is
not related to ground frost since its detections rate does not correlate with freezing
temperatures.

Cluster D activates mainly during two periods (Figure 4.3e). At the beginning
of February, it accumulates 25 % of its size followed by a slight pause. Then, at the
end of February and beginning of March it detects the remaining 75 % of its total
size. The detection periods occur during the coldest temperatures recorded at 5 cm
depth. Therefore, cluster D most likely groups seismic signals related to ground
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frost. Cluster D detects during all hours and all days. However, slightly more de-
tections appear during the weekend and nighttime (Figure 4.3j and o). There are
probably two effects that explain this behavior. Firstly, due to colder temperatures,
ground frost occurs predominantly at night and so do the associated seismic signals
(Figure 4.1b). Secondly, due to anthropogenic activity, the seismic wavefield in an
urban environment changes significantly between day and night and weekdays and
weekends. Thus, the changing wavefield modulates the signature of the ground
frost recorded by continuous seismograms. For instance, a seismogram containing
seismic signals generated by road traffic during ground frost could be found in clus-
ter B or D. Indeed, inside cluster B, we can identify subcluster B.1 as anthropogenic
seismic signals effected by the ground frost (see Figure 4.3a and Figure 4.C.2). This
points out a limitation of clustering: a seismogram containing multiple types of sig-
nals is assigned to a single cluster, which oversimplifies the nature of the data and
has been already noted by Steinmann et al. (2022). The averaged first-order scat-
tering coefficients show no clear and distinct pattern (Figure 4.3t). Cluster D seems
different from Cluster A and B due to lower scattering coefficients for higher fre-
quencies. However, it is unclear how cluster D differs from clusters C and E. We
can note that the averaged first-order scattering coefficients do not deliver a unique
signature related to these signals.

Cluster E is the largest cluster of the whole dataset (Figure 4.3a). It detects contin-
uously with a decreased detection rate during February when ground frost occurs,
with more detections during night and weekends (Figure 4.3f, k, and p). Moreover,
the cluster shows lower averaged first-order scattering coefficients at higher frequen-
cies (Figure 4.3u), distinguishing them from clusters A and B but D. The analysis of
cluster E indicates that it groups ambient seismic noise without particular transients
and ground frost. In fact, it appears that cluster D and E summarize the stationary
ambient wave field separated only due to the occurrence of ground frost. Indeed,
the combined clusters seems to detect almost continuously during weekends and
nights (see Figure 4.C.2).

Summarized, the dendrogram delivers a data-driven overview about the con-
tent of the data containing both source and medium effects. We can clearly identify
cluster A and B with anthropogenic seismic sources. Inside cluster B we identified a
small subcluster containing anthropogenic signals effected by the ground frost. We
have reasons to assume that a more detailed cluster solution would reveal a similar
subcluster in A. We can not find a meaningful label for cluster C. The largest part
of the data is located within cluster E: ambient seismic noise, which is not effected
by ground frost. Cluster D seems to be the only cluster related to the freezing of the
surface without particular transient signals from anthropogenic activity. The hierar-
chical clustering approach, together with an interpretation of a cluster solution at a
high distance threshold, allowed us to give a detailed analysis of the content of the
seismic data. In particular, the cumulative detection curve identifies cluster D as of
interest in our study because it relates purely to ground frost. Hence, we do not need
to extract a more detailed cluster solution. In the following lines, we analyze how
the freezing and thawing process is encoded in the data.

4.6 Disentangling the ground-frost from the urban imprint

Hierarchical clustering built the dendrogram within the feature space extracted by
an ICA from the deep scattering spectrogram (Figure 4.2). The features likely reveal
insights about the signature of cluster D and, thus, about the ground frost signature.
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FIGURE 4.3: Results of seismic data clustering from the three-
component broadband station WM01 between 1 January to 1 April
2018. (a) dendrogram with a truncation distance set to obtain 16 clus-
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Steinmann et al. (2022) already showed that single features retrieved from the scat-
tering coefficients with an ICA could reveal interesting patterns in the seismogram.
Therefore, we can likely identify a single feature in our dataset that encodes the
seismic signature of the ground frost. The geometric center of a cluster in the feature
space, also called centroid, can tell us if one feature is more important than other fea-
tures. In our case, we define the geometric center of a cluster as the mean of its data
points in the 16-dimensional feature space. We note that if all features are equally
important in defining a cluster, they should contribute equally to the centroid co-
ordinates. If a few or single features are more important than others, the centroid
should have a stronger contribution from them. We calculate the centroid of cluster
D and take the modulus, since we are only interested in the amplitude information
(Figure 4.4a). We observe that the centroid of cluster D shows a substantial value for
feature 15 (Figure 4.4a) regarding the other features. This suggests that cluster D is
active when large absolute values on feature 15 occur.

We can also observe how feature 15 evolves in time (Figure 4.4b). Feature 15
shows a significant amplitude decrease at the end of February and the beginning of
March. During that time, it seems to mimic the low-frequent trend of the air temper-
ature with a slight offset in time. The beginning of February and mid-March show
smaller amplitude decreases after a few consecutive nights of freezing air tempera-
ture. Unfortunately, we have no ground truth about the occurrence of ground frost.
However, we know that the occurrence of ground frost depends on the amount of
time and the amplitude of freezing air temperature. Moreover, thawing air tem-
peratures during the day counteract the nightly built-up of ground frost. A more
extended and continuous period of freezing air temperature (like the one at the end
of February) results in a thicker layer of ground frost. A colder air temperature can
also decrease the temperature inside the layer of ground frost and, thus, increase its
stiffness and shear wave velocity (Zimmerman and King, 1986; Miao et al., 2019).
These facts, combined with the observation of feature 15 and the air temperature,
suggest that this feature tracks the freezing and thawing process of the surface at
a high-resolution timescale of 10 min. We emphasize that feature 15 is an entirely
data-driven product from a three-component seismogram with minimal processing.
In comparison, Steinmann, Hadziioannou, and Larose (2021) tracked the same freez-
ing and thawing process with data from two seismic stations, heavier preprocessing,
and a time resolution of 2 days.

Since ICA is a linear operator, we can use only feature 15 to reconstruct the scat-
tering coefficients out of the mixing matrix, defined as the pseudo-inverse of the un-
mixing matrix (Comon, 1994). This procedure acts as a filter process since we zero all
features except feature 15. Due to the large size of first- and second-order scattering
coefficients, Figure 4.4c–h show only the first-order original and reconstructed scat-
tering coefficients for all three components. The original coefficients show clearly
the urban imprint in the seismic data: fringes appear during daytime and pause at
the weekends (Figure 4.4c, e and g). No clear pattern appears during ground frost
building periods, such as at the end of February (Figure 4.4b). The reconstructed
coefficients do not contain the fringes due to urban activity since these signals were
probably encoded in one of the muted features (Figure 4.4d, f and h). The filtering
effect reveals a slight amplitude decrease for the horizontal components at frequen-
cies above 1 Hz during the end of February, coinciding with the coldest period of
the dataset. During that time, a faint amplitude decrease can also be observed at the
vertical component. At times with consecutive cold nights such as at the beginning
of February or mid-March, these decreases are also faintly visible. These observa-
tions confirm that the wavefield experiences an energy decrease during ground frost
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with a discrepancy between horizontal and vertical components. Indeed, the ratio of
horizontal and vertical scattering coefficients show a clear broadband high-frequent
decrease at the beginning and end of February for both original and reconstructed
data (Figure 4.4i and j). It appears that the broadband decrease in the ratio becomes
stronger with increasing time or amplitude of the freezing air temperature. The ratio
of horizontal and vertical scattering coefficients resembles the classical Horizontal-
to-Vertical-Spectral-Ratio (HVSR) based on the Fourier transform. The question rises
if the observed change in the seismic data is due to a changing medium caused by
freezing and thawing or due to changes in the seismic sources. First of all, we could
argue that a source change would probably effect all three components similarly,
which is not our case. Moreover, if a temperature related source would appear,
it would probably increase the energy during times of freezing, which also does
not fit our observations. In fact, it was shown before that ground frost can cause
a broadband decrease in the HVSR for higher frequencies (Guéguen et al., 2017).
Our observations suggest that less than 5 cm of ground frost has already an impact
on the seismic wavefield. Indeed, models based on the diffusive field assumption
(Sánchez-Sesma et al., 2011; Piña-Flores et al., 2016; García-Jerez et al., 2016) confirm
an HVSR decrease due to a thin layer of ground frost (see Appendix 4.D and 4.E of
this chapter, and Figure 4.D.1 and 4.E.1) in the supplementary materials). All these
arguments suggest strongly that the revealed signature is indeed due to a medium
change.

4.7 Conclusion

In this study, we made the first attempts towards inferring blindly medium changes
from the wavefield recorded by a single station. For our case study, the medium con-
tinuously changes due to surface freezing and thawing, while anthropogenic activ-
ity creates a complex and non-stationary seismic wavefield. An AI-based approach,
based on the deep scattering network, an ICA and hierarchical clustering, helped us
explore the seismic data and search for possible patterns induced by the ground frost
without assuming how the seismic data could be affected. One of the main outcomes
of this study is that the AI-based approach blindly extracts a feature that isolates
the seismic response due to the medium change and mutes other non-stationary
processes. This opens new possibilities to utilize single station data for monitor-
ing purposes, especially in environments with many source and medium processes
such as permafrost (e.g. Köhler and Weidle, 2019) or volcanoes. AI-based strategies
could complement other passive seismic methods used for permafrost monitoring
(e.g. James et al., 2019; Lindner, Wassermann, and Igel, 2021; Cheng et al., 2022).
This could give new insight into the response of permafrost to climate change given
the decade-long availability of single seismic stations near permafrost areas. Future
research could also investigate if other types of medium changes (e.g., groundwa-
ter fluctuations) could be directly extracted from the seismograms in a data-driven
fashion.

Moreover, the revealed signature combined with the HVSR model indicates that
superficial freezing might impact the modal energy distribution. This effect has
been observed for other high-velocity surface layers at engineering sites (O’Neill and
Matsuoka, 2005). However, to our knowledge, it has not yet been considered in per-
mafrost studies using passive seismic methods. On the one hand, it could corrupt ve-
locity variation measurements retrieved from surface waves in cross-correlograms.
On the other hand, it would also be an opportunity since more modes increase the
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amount of information about the subsurface. Future research is needed to under-
stand better the interaction between different surface wave modes in the presence of
frozen surface layers.

4.8 Open Research

The seismic data was downloaded from Steinmannn, Hadziioannou, and Larose
(2020) and the temperature data were provided by the Meteorological Institute of
Hamburg. The temperature data can be retrieved by contacting the Meteorological
Institute of Hamburg through wettermast. The main code for calculating the scatter-
ing coefficients, features and linkage matrix can be found under zenodo. The work
relies heavily on the python packages ObsPy (Beyreuther et al., 2010), scikit-learn
(Pedregosa et al., 2011a) and SciPy (Virtanen et al., 2020). The map was produced
with map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under
ODbL.
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Appendices

4.A Introduction

The seismic data is sampled with 200 Hz. Because the data was retrieved manually
from the field, three data gaps of ca. 3 h occur in the dataset. Before applying the hi-
erarchical waveform clustering, the data was demeaned and high-pass filtered with
a corner frequency of 0.1 Hz. The data gaps were filled with zeroes. However, the
scattering coefficients of the data gaps were removed before the feature selection.
The supporting information provides details about:

• the design of the deep scattering network

• the number of releveant features retrieved with an ICA

• the cumulative detections for subcluster B.1, B.2 and the combination of cluster
D and E

• the HVSR models with and without a thin layer of ground frost

4.B Design of deep scattering network

We design a deep scattering network with 36 complex-valued Gabor wavelets in the
first layer and 9 Gabor wavelets in the second layer. A modulus operation retrieves
real-valued scalograms. The first layer creates 36 scattering coefficients and the sec-
ond layer creates 324 (as from 36 × 9) scattering coefficients per sliding window and
component. The center frequencies of the first-layer wavelets range from 0.2 to 89 Hz
and the center frequencies of the second layer wavelets range from 0.2 to 50 Hz. The
number of wavelets was chosen specifically to cover a wide range of frequencies
above the oceanic microseism. The upper frequency of the first layer is bounded by
the sampling frequency of 200 Hz. The center frequencies are spaced logarithmically
with four wavelets per octave in the first layer and one wavelet per octave in the sec-
ond layer. The sliding window is set to 10 min to mimic the time resolution of the
temperature data. In contrast to Steinmann et al. (2022), we apply average pooling
instead of maximum pooling to the first and second layer scalograms since we are
not searching for transient signals but changes in the ambient seismic wavefield.

4.C Extracting the most relevant features

After calculating the deep scattering spectrogram, we apply an ICA to retrieve the
most relevant features. The ICA model can be written as:

x = sA, (4.1)

where x ∈ RN×F are the N observations of dimension F, A ∈ RF×C is the mixing
matrix, and s ∈ RC×N are the C independent components, representing the set of
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FIGURE 4.C.1: Reconstruction error for ICA-models with different
number of independent components. The red dot marks the model
we choose for further analysis. The dashed line fits a linear function

based on the last seven points.

features for hierarchical clustering. Equation 4.1 considers the observations x as a
linear combination of the independent components s, with the mixing weights gath-
ered in A. In our case, x are the whitened scattering coefficients. Setting the number
of independent components is an exploratory task that can be seen as a trade-off
between keeping the dimensionality low for clustering and retaining the most cru-
cial data information. We use the reconstruction loss ϵ(C) between the original data
x and the reconstructed data x̂(C), based on the C independent components, as a
guideline for choosing an optimal number for C. The reconstruction loss is defined
as following:

ϵ(C) =
∑N

i=0 |xi − x̂(C)i |
N

. (4.2)

Figure 4.C.1 depicts the reconstruction loss ϵ(C) for an increasing number of
independent components C. The reconstruction loss decreases rapidly with the first
14 components. With more than 14 components, the rate of error decrease becomes
smaller and almost linear. However, a small jump occurs from 14 to 16 components.
Therefore, 16 independent components, marking a kink in the reconstruction error
curve, seem like a good choice to us and are the basis for building the linkage matrix
for the dendrogram.

4.D Inverting for a 1D velocity model

To forward model the effect of ground frost on the HVSR, we need a 1D velocity
model with the shear wave velocity vs, the compressional wave velocity vp, the
thickness of the layer h and the density ρ. Steinmann, Hadziioannou, and Larose
(2021) provides a 1D velocity model to a depth of less than 30 m based on a shear
wave refraction profile. The forward modelled HVSR based on this velocity model
together with the observed HVSR at the three stations at 15 April 2018 are shown in
Figure 4.D.1. We chose this day for an HVSR measurement for two reasons. Firstly,
the time of the year and the temperature data suggest that we do not have any
ground frost (Figure 1a). Secondly, it is a Sunday and, thus, we have better con-
ditions for an equipartitionned wavefield without anthropogenic activity (Figure 3).
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FIGURE 4.C.2: Normalized cumulative detections for other cluster
solutions. Normalized cumulative detections for subcluster B.1 and
B.2 (a) and the cluster-combination of D and E (b). Note that each tick

at the x-axis marks a Monday.

h [m] vs [m/s] vp [m/s] ρ [g/cm3]
172.82 394.54 1255.93 2000
611.60 520.96 2075.66 2000
∞ 947.09 4250.25 2000

TABLE 4.D.1: 1D model of the subsurface at the measuring site based
on the inversion of the HVSR with the diffusive field assumption

It is clear that the modelled HVSR does not fit the observations. Since the two reso-
nance peaks below 1 Hz do not occur in the modelled HVSR, it appears that the ve-
locity model is not deep enough. To update the velocity model, we invert the HVSR
measurements based on the diffusive field assumption (Piña-Flores et al., 2016). We
invert for a three-layer model with the observed HVSR between 0.1 and 1 Hz to fit
the two resonance peaks. The higher frequency content seems unreliable, since the
variations between the stations are too large given the fact that they are only 100 m
apart (see map in Figure 1a). These variations at higher frequencies can be the result
of different installation types. WM01 and WM02 are placed on a concrete slab while
WM03 is inside a shed. We constrain the range of possible shear wave velocity of
the first layer with the values given in Steinmann, Hadziioannou, and Larose (2021).
The updated and deeper velocity model fits better the observations and, thus, is uti-
lized for modelling the effect of the ground frost. The values of the updated model
are presented in Table 4.D.1.

4.E Modelling the effect of a frozen surface on the HVSR

We model the effect of ground frost on the HVSR based on a 1D velocity model and
diffuse wavefield assumption (Sánchez-Sesma et al., 2011; García-Jerez et al., 2016).
Firstly, we derive a 1D velocity model from the inversion of H/V measurements
(Piña-Flores et al., 2016) and constraints from a shear wave refraction profile (Stein-
mann, Hadziioannou, and Larose, 2021). To evaluate the effect of ground frost, we
insert a centimeter thick high-velocity layer at the surface of the 1D model. Different
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FIGURE 4.D.1: The observed HVSR at all three stations, the modelled
HVSR based on the velocity model given in Steinmann, Hadziioan-
nou, and Larose (2021) as the dashed red line and the modelled HVSR

based on the inversion of the HVSR as the red solid line.

thicknesses and shear wave velocities account for different scenarios of the ground
frost. The shear wave velocity of the ground frost depends strongly on the tempera-
ture and composition of the soil. A silt-clay mixture with a high water content as in
our case can reach the eight-fold of its shear wave velocity with temperatures below
−8 °C (Miao et al., 2019). Through the shear wave velocity and a constant Poisson’s
ratio of 0.33 (Zimmerman and King, 1986), we define the compressional wave veloc-
ity. We neglect changes in the density and set it to 2000 kg m−3 for all layers.

Figure 4.E.1 shows the HVSR for different scenarios of ground frost and differ-
ent number of considered surface waves modes. All models confirm the qualitative
observation that the HVSR experiences a broadband decrease above 1 Hz due to a
layer of ground frost with a certain thickness and increased shear wave velocity.
Apart from the broadband decrease at higher frequencies, the two resonance peaks
below 1 Hz do not seem to be effected. With increasing thickness and shear wave ve-
locity the decrease is more pronounced and the maximum decrease moves to lower
frequencies. Note that both parameters show a similar effect on the HVSR. Thus,
it is difficult to disentangle the two effects in actual observations. We observe this
scenario at the end of February and beginning of March marking the coldest and
also the longest period of freezing air temperature (Figure 1b). During that time, the
horizontal component and the HVSR experience the strongest decrease. However,
we cannot say if an increasing thickness or decreasing temperature dominates the
process. The number of surface modes considered in the wavefield has also an effect
on the pattern of decrease. It has already been shown that large stiffness contrasts
or reversal of velocity layers – that is high-velocity layer over low-velocity layer –
can cause modal energy pertubation and dominant higher modes (O’Neill and Mat-
suoka, 2005). Freezing the soil from the surface downwards causes a reversal of
velocity layers and might lead to modal energy pertubation. The broadband high-
frequent HVSR decrease and its dependence on the number of modes suggest that
this effect occurs. This would be important to consider when passive image interfer-
ometry is used for monitoring permafrosts. Dominant higher modes could appear
on cross-correlograms during times of refreezing in autumn and corrupt measure-
ments of velocity variations. A proper wavefield analysis would be needed to un-
derstand this process better, however, it is out of the scope of this work and, thus,
subject to future research.

Overall, the model brings interesting insights to our observations retrieved from
the seismic data. The observations and model agree qualitatively on a broadband
high-frequent HVSR decrease due to ground frost. The decrease is more pronounced
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FIGURE 4.E.1: (a,c,e) The HVSR in the presence of a 3 cm thick frozen
surface layer with varying shear wave velocities and varying num-
ber of Rayleigh and Love wave modes. The shear wave velocity of
the frozen layer ranges between two-fold and eight-fold of the shear
wave velocity of the first layer in the 1D model. The model without
a frozen layer is depicted as a black dashed line. (b,d,f) The HVSR in
the presence of a frozen surface layer with a thickness ranging from 1
to 4 cm and varying number of Rayleigh and Love wave modes. The
shear wave velocity is fixed to the three-fold shear wave velocity of
the first layer. The model without a frozen layer is depicted as a black

dashed line.

for deeper and colder ground frost. Moreover, the model shows that it is difficult to
entangle the interaction between the thickness and temperature of the ground frost
and surface wave modes present in the wavefield. It is also clear that the HVSR of
the seismic data contains many different source and medium effects (Figure 4i) and,
thus, the diffusive wavefield assumption is not valid for the data. This highlights
the strength of our data-driven approach, which isolates a pattern in the continuous
seismograms related to the freezing and thawing process despite all the other source
and medium effects affecting the data.
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Chapter 5

Exploring seismo-volcanic
signatures with machine learning
at Klyuchevskoy, Kamchatka,
Russia

Article in preparation

In the first application of hierarchical waveform clustering, we mainly focused
on the dendrogram for the data exploration task (see Chapter 3). At this stage of the
work, we noted that the independent components (ICs) contain useful information
which might be also usable for data exploration. In the second application, we iden-
tified an interesting pattern in the IC space through the location of the centroids of
the clusters (see Chapter 4). This motivated us to analyze more in depth the IC space
in the following chapter. However, we did not limit ourselves to ICA and, thus, we
also explore other techniques for dimensionality reduction such as PCA and UMAP.
This chapter depicts the limitation of linear techniques such as PCA and ICA and
gives an outlook on how manifold learning techniques such as UMAP might be an
interesting tool for future applications.

5.1 Abstract

We explore and analyze the signal content of continuous three component seismo-
grams recorded in the vicinity of the Klyuchevskoy volcano with methods of ma-
chine learning. A non-learnable wavelet-based network, called scattering network,
retrieves a stable and time-invariant representation of the seismic time series. With
methods of dimensionality reduction, namely manifold learning and principal and
independent component analyzes, we retrieve meaningful signal patterns from this
high-dimensional data representation in a data-driven fashion. The signal patterns
indicate that the recorded wavefield is strongly non-stationary with ever-changing
signal characteristics and no repeating patterns. In particular, the months before the
eruption in April 2016 are characterized by rapid changes of signal characteristics,
while the signal patterns seem more stable after the eruption. Our results confirm
the idea that volcanic tremors are not a single class or a set of classes but a continu-
ously changing signal, witnessing many different types of phenomena. Data-driven
methods as we present in this study hold the potential to provide new information
about known and unknown signal classes, perhaps enhancing our understanding of
volcanic systems. In particular manifold learning techniques seem to be a great tool
to visualize the signal content of large time series in a two-dimensional map.
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5.2 Introduction

Volcanoes are complex active geological objects which are often described with a
conceptual model. Detailed knowledge about the storage and transportation of
magma at different depths remains limited and many different types of instruments
are utilized to close these knowledge gaps. Continuous seismograms are part of
the heterogeneous dataset recorded at volcanic environments where a large vari-
ety of seismic signals with different characteristics are recorded. The identification
of these signals and their underlying physical mechanism contribute to the knowl-
edge gain about the inner workings of a volcano. The seismo-volcanic research
community has established different families of seismo-volcanic signals according
to their observed signal characteristics. The analogous to pure tectonic earthquakes
are the volcanic-tectonic earthquakes (VTs) which have a broadband signature and
usually a clear P and S-wave arrival. Resonances of fluid-filled cracks or conduits
can result in so-called long period events (LPs), which have less high-frequency en-
ergy than the VT events and a less clean signature of phase arrivals (Chouet, 1996).
Both VTs and LPs are transient signals lasting mostly a few seconds. Hybrid events
are a mixture of LPs and VTs and make the boundary between LPs and VTs fuzzy
(White et al., 1998). Other transient signals related to volcanic activity are explo-
sions, tornillos or rockfalls at the flank of a volcano. Besides transient events lasting
a few seconds, volcanoes are also known to produce volcanic tremors which can last
from minutes to years (Konstantinou and Schlindwein, 2003). Their appearance in
frequency and amplitude can vary largely: volcanic tremors can be of monochro-
matic nature, cover a narrow frequency band or glide across different frequencies
(Julian, 1994; Hotovec et al., 2013). Some studies observed a continuous transition
from LPs to tremor episodes and back. This indicates that some types of tremors
can be described as a rapid succession of LPs where no clear onset of an individual
LP is visible in the seismogram (e.g. Latter, 1979; Fehler, 1983). Although all those
mentioned signals belong to human-defined meta-classes, they may have subtle dif-
ferences that witness the dynamic processes of the volcanic system. In particular,
the class of volcanic tremors indicate a non-stationary phase of the volcanic system
and change their signal characteristics accordingly. Moreover, the characteristic of
tremor signals vary from volcano to volcano, making a generalization of this signal
class even more difficult (Konstantinou and Schlindwein, 2003). Studying and ana-
lyzing volcanic tremors is difficult since the seismological processing tools adapted
to earthquake seismology are not well-suited for tremor-like signals. The lack of
sharp amplitude attacks complicates the detection task and the lack of clear phases
complicates the localization of tremor sources. Recent studies have developed a
network-based method with a sliding window to identify and locate the most promi-
nent tremor source within the considered window (Soubestre et al., 2018; Soubestre
et al., 2019).

The large variety of known signal classes and their possible subtle changes indi-
cating changes within the volcanic complex motivate the application of exploratory
data analysis to seismic time series recorded in the vicinity of volcanoes. Identify-
ing these subtle changes in signal characteristics in a data-driven fashion can reveal
new insights about the stationary or non-stationary state of a volcano. In the follow-
ing we apply the strategy presented in Chapter 2 to continuous three-component
seismograms recorded in the vicinity of the Klyuchevskoy volcano during an active
period which resulted in an eruption in April 2016. We stop the strategy shown in
Figure 2.1 at the feature generation and utilize both PCA and ICA as techniques for
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exploratory data analysis to identify interesting patterns in the data. Moreover, we
analyze two different pooling operations to understand better how the pooling acts
as a filter of information. This study has multiple aims: (1) understanding better
the representation of the scattering coefficient matrix with respect to the pooling op-
eration, (2) testing PCA and ICA as methods for seismic data exploration and (3)
revealing interesting patterns in the seismic data related to volcanic activity.

5.3 Exploratory data analysis with principal and independent
component analysis

PCA and ICA have been widely applied to various facial recognition tasks with
images (Turk and Pentland, 1991; Draper et al., 2003; Delac, Grgic, and Grgic, 2005).
While PCA finds components which describe global structures of the images such as
lighting from different angles, ICA finds components which describe local structures
such as the mouth or eyebrows. Both methods are also considered blind source sep-
aration techniques, aiming at disentangling a recorded mixed signal into its super-
posed source signals. In particular, ICA is designed as such a method and has been
largely applied in identifying source signals for functional magnetic resonance imag-
ing (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG) time
series data. While it successfully recovered interesting components for fMRI data,
it mostly identified artifacts in the EEG/MEG data due to blinking or facial mus-
cle movements (see e.g. Jung et al., 2000). The authors of Hyvärinen et al., 2010
argue that this is a result of ICA searching for non-Gaussian distributions. The ar-
tifacts have a very non-Gaussian distribution and the interesting brain activity are
more Gaussian, since they resemble amplitude-modulated oscillatory activity. Even
if the brain activity has some degree of non-Gaussianity, the artifacts are super non-
Gaussian and, thus, a higher number of components is needed to recover the in-
teresting signals related to brain activity. As an alternative, the authors of Hyväri-
nen et al., 2010 propose to apply ICA on the short-time Fourier transform (STFT) of
the EEG/MEG time series, which resembles our approach of applying ICA to the
scattering coefficient matrix. With their approach, they are able to identify mod-
ulated signals related to rhythmic brain activity. They conclude that ICA is always
biased towards certain sources. If applied in the time domain, it mostly finds sources
with non-Gaussian amplitudes such as artifacts. If applied in the Fourier domain,
it mostly finds narrow-banded sources. The discussed applications motivates us to
apply PCA and ICA not only as a technique to reduce the dimensions of the scatter-
ing coefficient matrix for clustering but also as a method to explore the data.

5.4 The data and setup of the scattering network

From July 2015 to July 2016 a temporary network called KISS was installed around
the Klyuchevskoy Volcano group (KVG) in Kamchatka, Russia, in order to better
understand the crustal magmatic plumbing system. During that time an eruption
unfolded at Klyuchevskoy in April 2016, preceded and accompanied by a range of
different seismic activity (Shapiro et al., 2017). The authors of Journeau et al. (2022)
detect and locate volcanic tremor sources, revealing a trans-crustal magmatic system
beneath the KVG (see Figure 5.1). The locations cover a wide region and multiple
depths, picturing a large and dynamic trans-crustal magma system. Their results
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strengthen the concept that tremor signals are of dynamic nature, containing inter-
esting information about the state of the volcano. Besides tremors, they also detect
deep long period events (DLPs) and VTs. Their catalogs provide additional infor-
mation aiding the exploration and interpretation of the data with PCA and ICA.

In this study, we analyze the three component continuous seismograms recorded
by station SV13, which is located directly above the tremor and DLP locations (see
Figure 5.1B). We cover the complete operational time period of this station rang-
ing from August 2015 to July 2016. The seismic data is demeaned, detrended and
down-sampled to a sampling frequency of 25 Hz. We set up a two-layered scattering
network with Gabor wavelets (see Figure 5.2). We define a sliding window of 20 min
with 10 min overlap, which corresponds to the same time resolution of the tremor
catalog provided by Journeau et al. (2022). The first layer wavelets are adapted to the
possible frequency content of the tremors; their center frequencies range from 0.78 to
10 Hz with a logarithmic grid (see Figure 5.2a and b). The second layer wavelets start
at much lower frequencies since they gather information about the modulation and
shape of the signal (Figure 5.2c and d). The first layer covers 4 octaves and is densely
spaced with 4 wavelets per octave. The second layer covers 8 octaves and is sparsely
sampled with 1 wavelet per octave.

5.5 Results

5.5.1 Pooling: an information filter

The pooling operation turns the scalograms of the wavelet transform into scatter-
ing coefficients, providing a translation invariant representation of the seismic data.
However, the pooling operation also reduces the information by collapsing the time
axis of the pooling window. Different pooling operations filter the information dif-
ferently, favoring different signal characteristics. Before we apply the scattering net-
work to the complete time series, we analyze the scattering coefficient retrieved with
maximum and median pooling for a 20 min seismogram recorded at station SV13
(Figure 5.3). The dominant signal in this 20 min seismogram is a broadband tran-
sient event arriving after 800 s and lasting for 100 s. Moreover, there are also persis-
tent harmonic tremor signals around 0.8 and 2 Hz with a lower amplitude than the
transient event. Besides the broadband transient and the tremors, we can identify
changing amplitudes at frequencies around 10 Hz. This example shows the variety
of signals of a single seismogram and we must acknowledge that any representation
without time information - such as the Fourier spectrum or scattering coefficients -
will simplify the data. The information retrieved by the scattering coefficients de-
pends largely on the settings of the scattering network: number of wavelets, fre-
quency range of wavelets and pooling operation. Figure 5.3c, d and e show the
median and maximum pooled scattering coefficients together with the Fourier spec-
trum. The first-order maximum pooled coefficients resemble a smoothed Fourier
spectrum (Figure 5.3c). The first-order median pooled coefficients are lower in am-
plitude and contain different local maxima and minima. They show larger ampli-
tude for the two frequency bands with the harmonic tremors and lower amplitudes
in between. The transient event with large amplitudes between 0.2 and 10 Hz seems
to have no influence on the median pooled coefficients. In contrast, the maximum
pooled coefficients have an amplitude distribution which matches much better the
transient event. The type of pooling operation, which transforms the scalogram into
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FIGURE 5.1: Map and tremor and DLP locations retrieved from
Journeau et al. (2022). (A) shows a map of the Klyuchevskoy Volcano
Group (KVG) together with the permanent stations and the tempo-
rary KISS network. The red dashed line marks the fault across the
KVG. (B) shows a zoom onto the black dashed box in (A), (C) shows
a cross-section along the fault with the and (D) shows a cross-section
across the fault. The locations of the tremors are depicted in black and

the locations of DLPs are depicted in purple.
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FIGURE 5.2: Setup of wavelets for the two-layer scattering network.
(a) Amplitude spectra of the first-layer Gabor wavelets. (b) The real
part of the first-layer Gabor wavelets in time-domain. (c) Amplitude
spectra of the second-layer Gabor wavelets. (d) The real part of the

second-layer Gabor wavelets in time-domain.
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scattering coefficients, filters the data and stores different type of information. Me-
dian pooled coefficients contain the information of the background wavefield and
ignore any short lived transients in the seismogram. Maximum pooled coefficients
are sensitive to any type of short-lived transient in the seismogram which mask the
background wavefield. Note also that maximum pooling would save the informa-
tion of two transient events, if they appear in different frequency ranges. Thus, it
could be a representation of a mixture of large amplitude events with different fre-
quency content. Both pooling operations are valid, however, we need to acknowl-
edge that both representations are biased and simplify the nature of the seismic data.
This is important to consider if we apply exploratory data analysis techniques. For
the further analysis, we consider median pooling, since we want to focus on tremor
signal.

5.5.2 Visual analysis of the scattering coefficient time series

Figure 5.4 shows the time series of the median pooled first- and second-order coeffi-
cients of the east component data recorded at station SV13 together with the tremor
and DLP catalog from Journeau et al. (2022). The first-order coefficients are easy to
analyse visually and resemble a STFT (Figure 5.4a). Note that the presentation of
the second-order coefficients is different to the second-order coefficients shown in
Figure 5.3, since we vectorized the coefficients in order to show the time information
(Figure 5.4b). The top of the y-axis shows the scattering coefficients of all f2 with the
highest frequency f1. The bottom shows the scattering coefficients of all f2 with the
lowest frequency f1. Due to the cascading of wavelet operation from first to second
layer, the information of the first layer is encoded in the second layer. Visually, these
coefficients do not seem informative, however, they are important for classification
or clustering tasks (Andén and Mallat, 2014). Generally, the coefficients show larger
amplitudes during intense tremor periods. For instance, the onset of tremor at the
beginning of December 2015 is clearly marked by a rapid amplitude increase.

The visual inspection of the scattering coefficients of the east component indicate
that they contain meaningful and interpretable information related to the tremor ac-
tivity. However, we also realize that the data, in particular the second-order coeffi-
cients, are too large to observe interesting patterns in detail. This demonstrates the
limitations of visual inspections of large datasets and motivates the need for tools
which retrieve the interesting information in a human-readable fashion. Note also
that we only show the east component of the three-component data. The three com-
ponent data increases the data size and a visual analysis becomes even less feasible.

5.5.3 Principal components (PCs)

By applying PCA to the whole scattering coefficient matrix (all three channel and
first- and second-order coefficients), we explore the data as an ensemble and re-
trieve information which are hard to spot by just looking at the whole data matrix.
The explained variance retrieved with a PCA estimates how much information each
principal component (PC) contains and is directly linked to the eigenvalues. Fig-
ure 5.5a shows the cumulative variance ratio with an increasing number of PCs. The
curves show how much additional information is added with an increasing number
of components. If the cumulative variance ratio reaches 1, we have enough com-
ponents to explain all the variance of the original data and we can reconstruct the
original data without any information loss. The first PC explains more than 85 % of
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FIGURE 5.3: Comparison between Fourier spectrum and scattering
coefficients of a seismic signal. (a) shows an example seismogram
with normalized amplitude in time domain. (b) shows its corre-
sponding Fourier spectrogram. (c) shows the Fourier amplitude spec-
trum and the first order median and maximum pooled scattering co-
efficients of the signal shown in (a). (d) shows the second order max-
imum pooled scattering coefficients and (e) shows the second order
median pooled scattering coefficients as a function of the center fre-

quencies f1 and f2.



5.5. Results 77

2016
Sep Oct Nov Dec Feb Mar Apr May Jun Jul

0

20

40de
pt

h 
[k

m
]

c

2016
Sep Oct Nov Dec Feb Mar Apr May Jun Jul

100

101

f 1
 [H

z]

a

2016
Sep Oct Nov Dec Feb Mar Apr May Jun Jul

10.51
8.84
7.43
6.25
5.26
4.42
3.72
3.12
2.63
2.21
1.86
1.56
1.31
1.10
0.93
0.78

f 1
 [H

z]

b

20

30

40

50

60

70

10
*lo

g(
sc

at
. c

oe
ff.

)

FIGURE 5.4: Time series of scattering coefficients and catalogs (a)
Time series of first-order scattering coefficients of the east compo-
nents of SV13. (b) Time series of second-order scattering coefficients
of the east components of SV13. (c) The tremor and DLP catalog as
a function of calendar time and depth. The black dots correspond to
tremor detections and the light magenta crosses correspond to DLP
detections occurring at the 23 and 26 November 2015 and 25 Febru-

ary 2016. The eruption unfolded in April 2016.
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the variance. Thus, we could reconstruct the scattering coefficient matrix with the
first PC and lose about 15 % of information. The second component is already much
less informative with about 5 % explained variance ratio. With increasing number of
components, less and less information is added. This is expected, since PCA orders
the PCs according to their eigenvalues.

Figure 5.5b shows some of the PCs, that is the rows of the feature matrix dis-
played in Figure 2.1. The first 10 PCs show a diverse set of patterns containing slow
and fast variations of its amplitude of arbitrary unit. These patterns are likely related
to interesting information about the seismic wavefield. The 51st to 60th components
appear noisy, indicating less meaningful information than the first 10 components.
It is possible that these components are related to patterns caused by instrumental
noise or random fluctuations in the seismic wavefield. The 201st to 210th compo-
nent are even noisier and less informative. The visual inspection of the components
show that higher-order components contain less and less interesting information
regarding patterns of interest in the seismograms. Often, the explained variance ra-
tio is utilized to justify how many components to keep for further analysis such as
clustering. The visual inspection of the components agrees that the explained vari-
ance ratio seems to be a good indicator for informative components. However, we
would argue that the first 10 components contain interesting information despite
the rapid decreasing explained variance ratio. The discriminative power might lay
within higher-order components, especially for signals occurring rarely in the time
series. This let us conclude that the decision on the number of components for fur-
ther analysis should be based on the explained variance ratio together with a visual
inspection of the components.

The loadings of the components

The PCs show us temporal patterns of the scattering coefficient matrix. To under-
stand better these patterns, we can look at the matrix A, which transforms the scat-
tering coefficients to the PCs (see Equation 2.11). The columns of this matrix contain
the right singular vectors of the centered scattering coefficients, which are parallel to
its eigenvectors. They indicate the direction of the principal axis in the scattering co-
efficient space and are often called loadings in the literature. The loadings help us un-
derstanding what part of the scattering coefficient space is important in constructing
the PCs and which coefficients correlate along the principal axes. Figure 5.6 shows
the loadings assigned to the first- and second-order coefficients to construct the first
10 components and the 51st to 60th components. The blue and red color indicate
which scattering coefficients are correlated along a given principal axis. Two pixels
showing the same color are correlated and two pixels showing a different color are
anti-correlated. The intensity of a color shows us how strongly these pixels are either
correlated or anti-correlated.

The first PC, explaining more than 85 % of the data, shows high correlation be-
tween all scattering coefficients for both scattering coefficients representation. This
means that if we move along this axis, we increase or decrease all scattering coef-
ficients simultaneously. The red colors of the loading pattern of the second-order
coefficients also indicate a high correlation between all coefficients. It seems that the
first PC reflects the variation of broadband energy. The loadings of the second PC
show an anti-correlation between high and low frequencies on all three components
for the first- and second-order scattering coefficients (Figure 5.6). The scattering
coefficients with f1 below 3 Hz are correlated (colored blue) and the scattering coef-
ficients with f1 larger than 3 Hz are correlated (colored red). However, both regimes
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FIGURE 5.5: (a) cumulative variance ratio for the the PCs of the scat-
tering coefficients matrix. The color-coded areas indicate which 30
PCs are shown in (b): the first 10 PCs are shown in blue, the 51st to
60th PCs are shown in orange and the 201st to 210th PCs are shown
in green. The saturated lines show the PCs smoothed by a median

filter considering 51 samples.
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are anti-correlated, indicated by red and blue colors. Therefore, high-frequency and
low-frequency signals are separated along the axis of the second PC. Note that the
loadings of the first 10 components show large alternating amplitudes for the sec-
ond order coefficients with f2 > f1. These scattering coefficients have no physical
meaning, since the envelope frequency f2 is larger than the signal frequency f1. The
alternating patters indicates that they cancel each other out, giving them little im-
portance in the PCA.

The interpretation of the loadings for the first two PCs revealed that the com-
ponents can be related to global signal characteristics in the data. The following 8
components show similar patterns with smooth loading patterns where neighboring
points have similar values. Hence, they seem to contain meaningful and physical in-
formation describing seismic signals. In contrast, the loadings for the 50th PC and
higher are less smooth and neighboring points have large differences. This confirms
the assumption that these components might be related to random wavefield fluctu-
ations or instrumental noise. Our interpretation resembles the interpretation of PCA
applied to facial images where the first components find global image characteris-
tics and higher order components depict complex and not interpretative patterns
(Draper et al., 2003). The authors of Unglert and Jellinek (2017) applied PCA to
spectra of tremor signals recorded by single stations at different volcanoes and, in-
terestingly, their results indicate a similar interpretation for their first two PCs. In
the following, we want to take the interpretation further and compare the PCs to the
appearance of tremors.

Comparison of principal components with the tremor catalog

Figure 5.7 show the tremor catalog in time and depth compared to first three PCs
and their reconstruction of the first-order scattering coefficients of the east compo-
nent. We can reconstruct the scattering coefficients by taking the outer product of
the PCs and the pseudo inverse of the loading matrix A. By zeroing all components
except one, we isolate the reconstruction based on a single component. The compar-
ison of the first PC and its reconstructed first-order scattering coefficients with the
tremor catalog shows how the broadband energy is varying and how it correlates
with the appearance of tremor (Figure 5.7a and b). The first PC marks clearly the
onset of tremors in December and shows that the broadband energy is stable until
mid January. Then, it decreases slowly and unsteady until it reaches its minimum at
the beginning of March, when the catalog indicates an absence of tremors. Interest-
ingly, the broadband energy increases at the beginning of March, before the catalog
indicates the next longer-lasting tremor period later in March. It is possible that the
tremors start earlier than the catalog indicates, since the catalog relies on a certain
amount of tremor energy for localizing the tremor source (Journeau et al., 2022).

Similarly to the first PC, we can reconstruct the scattering coefficients based
solely on the second PC and compare with the tremors (see Figure 5.7c and d).
This comparison shows us which tremor periods contain more than usual high- or
low-frequency content. For example a large part of deep tremors in August and
September contain more low frequency energy. On the contrary, the beginning of
tremor period in December has more high-frequency content. After a slow change,
mid-december to mid-january indicate a balance between high- and low-frequency
energy, since the component is centered around 0. At mid January the amplitude
of the component decreases rapidly correlating with a slight spatial change of the
tremors indicated by the catalog.
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FIGURE 5.6: The loadings of the first 10 PCs and of the 51st to 60th
PC, indicating the direction of the respective PC in the scattering coef-
ficient space. Left column shows the loadings corresponding to first-
order scattering coefficients of all three components E (east), N (north)
and Z (vertical). The columns to the right show the loadings corre-
sponding to second-order scattering coefficients of the east, north and
vertical component, respectively. Red colors indicate positive values

and blue colors indicate negative values.
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The third PC seems to mimic the activity of deep tremors during the beginning
of the recording time (see Figure 5.7e and f). Positive amplitudes of the PC correlate
well with the appearance of deep tremors before December (Figure 5.7e). At later
times, the amplitude variation of this component is much smaller and stays around
0. The loadings of this component show that the east components has a slightly
different pattern than the north and vertical components (PC 3 in Figure 5.6). Indeed,
the spectrograms which correspond to the largest positive values of the third PC
show a strong monochromatic tremor signal around 1 Hz, particularly strong on the
east component (see Figure 5.A.1 in the Appendix of this chapter). The interpretation
of the third component shows that, besides global signal characteristics, we also
find components which correspond to a certain type of tremor signal. We stop the
detailed analysis of the components here, since we just wanted to show that the
PCs find meaningful directions in the scattering coefficients space, making them
interpretive and revealing interesting patterns.

5.5.4 Independent components (ICs)

Compared to PCA, ICA does not rank the components, since no eigenvalues are
attached to them. Therefore, we can not attribute a quantity of information gain for
the individual component such as the explained variance ratio. As an alternative, we
can compute the overall reconstruction loss, measuring the difference between the
original data and the reconstructed data based on a given number of components.
Figure 5.8 shows the decreasing reconstruction error with increasing number of ICs.
Thus, the information gain becomes smaller with increasing number of components.
Around 7 components the curve shows a little kink and the decrease becomes flatter
afterwards. Often, a model around the kink is used for further analysis, since a
larger number of components adds less and less information. However, the choice
of one model is mainly interesting if there is a specific task to solve. In our case of
exploratory data analysis, it is interesting to look at different models, since ICA finds
different solutions for different number of components. In contrast, PCA only adds
components for an increasing number of components, it does not affect the already
found components.

5.5.5 Low number vs. high number of independent components

Figure 5.9 shows the ICs for an ICA model with six components. The components
are not ordered and contain no information about the amplitude or sign. Similarly
to PCA, we obtain a loading matrix which can aid the interpretation of the ICs (Fig-
ure 5.10). For ICA, this matrix is often refereed to as the mixing matrix, since this
matrix is the linear operator which mixes the ICs to retain an estimation of the orig-
inal data. Compared to the PCs shown in Figure 5.5b, we can identify similar type
of patterns within the ICs. For instance, IC 2 resembles the PC 3 but flipped (Fig-
ure 5.9). The similarity of these two components are backed up by the similarity of
their loadings, which reveal that their axes are closely aligned in the scattering coef-
ficient space (see PC 3 in Figure 5.6 and IC 2 in Figure 5.10). On the other hand, we
also retrieve new patterns such as the third IC which is relatively sparse and shows
large amplitudes only in December 2015.

Since ICA is a generalization of PCA, it is not surprising that ICA finds some
components similiar to PCA. However, this changes drastically if we increase the
number of components. Figure 5.11 shows an ICA solution with 50 components
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FIGURE 5.7: Comparison between the catalog describing the tremors
and DLPs and the third PC. (a,c,f) Grey points are tremor detections,
black triangles are tremor detections containing DLP swarms, red tri-
angles are DLP detections. The blue line shows the first PC in time
with blue-shaded area for positive amplitude and red-shaded area
for negative amplitude. (b,d,f) Reconstruction of the first-order coef-
ficients of the east component based on the first, second and third PC,

respectively.
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which are either sparse or noisy. This is very different to the 6 component ICA so-
lution displayed in Figure 5.9 and to the PCA solution from Figure 5.5b. In fact,
not a single component of the 6 component ICA solution can be found in the 50
component ICA solution. This example shows how ICA aims at unmixing different
patterns and maximizing independence between its components. A larger num-
ber of components allows ICA to look for finer details in the patterns and separate
them accordingly on different components. Figure 5.12 reveals more clearly what is
happening with an increasing number of ICs. The components are median filtered
to suppress the noise and to reveal better the long-term trend of each component.
Then, the modulus of the components are normalized by its cumulative sum for
each time step. This reveals how sparse the data representation is. If the represen-
tation is not sparse, one observation in time is equally explained by all components.
Thus, the amplitudes of the components will be of similar value between 0 and 1. If
the representation is sparse, one component dominates and all components except
the dominating one are closer to 0. Moreover, we sort the processed components
by its maximum absolute amplitude in time to reveal a potential evolution in time.
The 6 component ICA model is not a sparse representation and most of the observa-
tions are explained by multiple components. Moreover, all components seem to be
important throughout the time. The 20 component model already becomes sparser
and each component shows a larger localized amplitude at a given time. In partic-
ular, the tremor dominated time period between December and April is described
by a succession of sparse components. This characterization is even stronger for
the 50 component model where almost each component seems to be associated to
a time period. The time period until December is described by ca. 15 sparse com-
ponents, which seem to be important not only at one time period but at multiple.
Then, the start of the main tremor period at the beginning of December is repre-
sented by a rapid succession of components which are only activated once. This
indicates that the seismic signal characteristics are changing rapidly due to the start
of tremors. The quick signal evolution seems to slow down after mid December.
The interplay between a rapid succession of components and a slower change of
components seems to continue until the end of the recording time. Note that some
components are black throughout the whole time, contributing not much informa-
tion. These components are the noisy and Gaussian ones such as component 9 in
Figure 5.11. Nevertheless an overwhelming amount of components contain interest-
ing information for further analysis and interpretation. This shows the limitations of
linear dimensionality reduction technique: a large number of components is needed
to describe the interesting structure of the data. We can easily miss interesting in-
formation if we only retrieve a low number of components. The same holds true for
PCA, where at least 10 components seem to contain interesting information. Non-
linear techniques such as UMAP are able to capture more information on a smaller
number of components by preserving the local structure of the manifold. In the fol-
lowing we only give a short outlook on the potential of these techniques for future
analysis.

5.6 Creating seismic signal maps with PCA and UMAP

Figure 5.13a and c attempt to deliver the broader picture of the data by plotting the
first against the second PC, which accounts for more than 90 % of the data’s variance.
Earlier we related the first PC to the variation of broadband energy and the second
PC to the variation of low- vs. high-frequency content. If we apply this knowledge



5.6. Creating seismic signal maps with PCA and UMAP 85

FIGURE 5.8: Reconstruction error for ICA models with different num-
ber of components.

FIGURE 5.9: ICA model with 6 independent components shown in
grey. The black lines are the components smoothed with a median

filter.

FIGURE 5.10: The columns of the unmixing matrix, indicating the
direction of the respective independent component (IC) in the scat-
tering coefficient space. The left column shows the loadings applied
to the first-order scattering coefficients of all three components. The
right columns show the loadings applied to second-order scattering
coefficients of the east, north and vertical component, respectively.
Red colors indicate positive values and blue colors indicate negative

values.
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FIGURE 5.11: ICA model with 50 independent components shown in
grey. The black lines are the components smoothed with a median

filter.
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FIGURE 5.12: (a) Daily number of tremor detections. The normalized
modulus amplitude of independent compontents from ICA models
with 6 components in (b), 20 components in (c) and 50 components in
(d). The components have been normalized per observation in time.
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to the two-dimensional PC space depicted in Figure 5.13a and c, we can identify
northern area with high-frequency signals, the eastern area with large-amplitude
signals, the southern area with low-frequency signals, and the western area with
low-amplitude signals. We could call it a seismic signal map where different re-
gions correspond to different types of seismic signals. With this map, we can make
two general statements about the data. First of all, the time axis seems to be en-
coded in the seismic data, which is similar to the observation we made with ICA
in Figure 5.12. We have agglomerations of similar color-coded data points which
seem to overlap. Secondly, the cloud of data points shows barely any hard cluster
boundaries, suggesting smooth transition of signal characteristics. Hard clustering
algorithm would not account for these smooth transitions and draw hard bound-
aries through the cloud of data points. An appropriate clustering algorithm for this
dataset would be of fuzzy nature and adaptable to clusters of different shapes and
size. As a sanity check, we marked the data points containing DLP signals (Fig-
ure 5.13c). In a meaningful and good representation, these data samples should be
close to each other, since they contain similar signals. In this case, they are located in
the same region but are also a spread out a little. Note that the data points represent
20 min of waveform data and one DLP lasts only a few seconds, since their source
location are close to the station (see the map in Figure 5.1). Hence, it is likely that
information from other signals dominate the pooling window. The DLP signals are
distributed in a limited area in the north-west, corresponding to low-amplitude and
high-frequency signals. Remember that these terms are relative to the signal con-
tent of the data. If the main signal type are volcanic tremors it is not surprising to
describe DLP swarms of low amplitude and high frequency. We can assume that if
more and uncataloged DLP events exists, they would be located in the neighborhood
of the cataloged events. However, the absence of hard boundaries make it difficult
to identify more DLP events.

UMAP captures ever-changing signal characteristics

The two-dimensional PC space is an informative map but limited in details. Higher-
order components contain also interesting information, which can potentially dis-
criminate different types of signals or create a hard cluster for the DLP events. We
tried to access this information by analysing each component, however, this becomes
quickly overwhelming. Figure 5.13b and d show the two dimensional space found
by UMAP, revealing very interesting structures. We can identify islands and tra-
jectories of data points, which are sometimes continuous and at other times well
separated. If consecutive data points in time are placed close to each other, the sig-
nal characteristics are changing slowly. If consecutive data points in time are placed
far apart, the signal characteristics are changing rapid or even abruptly. We can see
both occurring in the UMAP space but not so well in the PC space. The informa-
tion of the time axis is strongly encoded within the UMAP space, suggesting that
the seismic wavefield is highly non stationary. This delivers a similar picture to the
ICA model with a large number of components, which identified many sparse ICs
activated at different times (see Figure 5.12). To strengthen our point here, we apply
UMAP to the Hamburg dataset presented in Chapter 4 and show that the encoding
of the calendar time seems to be something unique to the volcanic environment (see
Appendix 5.B of this chapter). The locations of the DLP swarms are limited to an
area in the UMAP space, where we could also potentially find similar type of sig-
nals (Figure 5.13d). Note that the UMAP results were retrieved with a minimum
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distance of 0.2 and 50 neighboring points. UMAP shows similar results with similar
conclusions for varying hyperparameters (see Appendix 5.C of this chapter).

5.7 Conclusion

With a scattering network and methods of dimensionality reduction, we analyzed
continuous three component seismograms recorded in the vicinity of the Klyuchevskoy
volcano. The introduction of this chapter stated three aims which we want to revisit
now.

Median vs. maximum pooling

Both pooling operations filter the the data and give a biased but valid view point.
Maximum pooling preserves information about short transients with large ampli-
tude and median pooling preserves information about long-lasting signals without
being sensitive for the amplitude. In this study, we choose median pooling since
we were mainly interested in the information given by the volcanic tremor signals.
However, maximum pooling is the better choice if the signals of interests are of short
duration with a large amplitude such as volcanic-tectonic earthquakes.

Interpretation of the feature space given by PCA and ICA

PCA finds meaningful and interesting components of the scattering coefficient ma-
trix which can be related to either global characteristics such as broadband energy
or specific signal types. The ICA finds similar components to PCA if the number
of components is low. For a larger number of components the representation be-
comes sparser and different time periods were described by different components.
This suggests that ICA does not find global characteristics but separates specific pat-
terns in the data on its ICs. The difference we found in ICA and PCA resembles the
difference when the methods are applied to facial images (Draper et al., 2003). How-
ever, both linear methods PCA and ICA demand a large number of components to
capture all interesting information. Thus, interpretation can be overwhelming and it
seems more difficult to get a bigger picture of the data. Manifold learning techniques
such as UMAP seem to solve this issue by preserving more information on a smaller
number of components. The first results look promising but further research needs
to be done to exploit its full potential.

Insights about the volcanic complex

All methods (PCA, ICA and UMAP) revealed that the recorded seismogram wit-
ness a strongly non-stationary wavefield with ever-changing signal characteristics
and no repeating patterns. In particular, time periods with a high detection rate of
tremors seem to be highly non-stationary. The volcanic complex seems to undergo
a continuous change without going back to its initial state. A comparison to seis-
mic data recorded in an urban environment in the absence of a volcano supports
the interpretation that the ever-changing wavefield characteristic is related to the
volcanic environment. Our results strengthen the concept that volcanic tremors -
which dominate the signal content of our data - should not be considered as a single
class or a set of classes. Instead, volcanic tremors change continuously and define
a spectrum of signal classes with no hard boundaries. The tremor catalog provides
source locations of the tremor signals but only differentiates between two classes of
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FIGURE 5.13: Two dimensional representation of the scattering coef-
ficients (a) PC space based on the first two PCs with color-coded time
axis. (b) UMAP space for with color-coded time axis. (c) PC space
with blue crosses marking the data points containing signals from
cataloged DLP events. (d) UMAP space with blue crosses marking

the data points containing signals from cataloged DLP events.
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tremors: continuous tremor and intermediate tremor dominated by DLP swarms.
Data-driven methods as we present in this study can provide new insights about the
varying signal characteristics and compare different tremor episodes in time. This
is particular interesting for very large time series, witnessing many different types
of tremors. Holtzman et al. (2018) clustered seismic events related to geothermal
activity and found a cyclic behaviour in the spectral properties of these events, indi-
cating cyclic phases in the Geysers geothermal fields. We did not identify any cyclic
behaviour in the volcanic environment of Klyuchevskoy but larger time series might
reveal re-occurring patterns as it is the case for the Geyser.
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Appendices

5.A Example spectrograms representing third PC

5.B UMAP applied to station WM01 in Hamburg, Germany

The ICA-analysis and UMAP applied to the data of station SV13 show an ever-
changing wavefield with no repeating patterns. To strengthen that point, and the
utility of UMAP, we apply UMAP with the same parameters to the scattering coef-
ficients retrieved from station WM01 in Hamburg, Germany (see Chapter 4). Fig-
ure 5.B.1a shows the two-dimensional UMAP space with colors indicating the cal-
endar time. Data points with different calendar times are overlapping mostly and,
thus, the calendar time is not encoded as it is the case for SV13 (see Figure 5.13 for
comparison).

We did not expect a strong encoding of the calendar time in the data, since the
continuous freezing and thawing process and the anthropogenic activity were the
main identified patterns in the data (see Chapter 4). It is very likely that we find
these patterns also in this UMAP representation. Indeed, the freezing process is
visible when we color-code the UMAP space with the temperature recorded at 5 cm
depth (see Figure 5.B.1b). The freezing process indicated by temperature close to 0 °C
does not create a separated cluster but it places data points on unused areas which
are connected to the data points color-coded with warmer temperatures. This is ex-
pected since the freezing and thawing process is continuous, altering also the wave-
field in a slow and continuous fashion. The main characteristic of the dataset be-
comes clear if we color-code the data points with the hour of the day (Figure 5.B.2a-
c). We can identify four clusters characterized by different hours of the day. A small
cluster located in the south-east (Figure 5.B.2a) is clearly showing the effect of the
taper applied to the daily data streams (Figure 5.B.2b). The largest cluster, located
in the east, can be associated with ambient seismic noise recorded mostly at night-
time (Figure 5.B.2c) and during weekends (Figure 5.B.2d). This cluster transitions
towards a smaller cluster at the center of the UMAP space associated with daytime
activity ranging continuously from 5:00 to 16:00 local time (Figure 5.B.2c). Further
west, we have the last cluster of the four identified cluster, which is also related
to daytime activity but with clear pauses around 9:00 in the morning and noon.
With this information we now understand better the temperature imprint shown
in Figure 5.B.1b: the freezing and thawing process modulates the dominating an-
thropogenic seismic imprint in the data. In fact, this confirms exactly our interpre-
tation of the hierarchical clustering result in Chapter 4. Remember that we found
subclusters (cluster D and subcluster B.1) related to the freezing process within the
large ambient seismic noise cluster (cluster D+E) and the smaller urban activity clus-
ter (cluster B). Cluster A, associated with labour activity, showed exactly the same
pauses in the morning hours and at noon as the far-west cluster in the UMAP repre-
sentation.
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FIGURE 5.A.1: Spectrograms of the three-component seismograms of
data points corresponding to large positive values on the third PC
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FIGURE 5.B.1: UMAP results for the scattering coefficient matrix of
station WM01 in Hamburg, Germany (see Chapter 4). In (a) the
UMAP results are color-coded according to the calendar time of each
data point and in (b) the UMAP results are color-coded according to
the temperature measured at 5 cm depth. Both the temperature time
series and the scattering coefficients matrix have the same sampling

rate of 10 min

This short analysis strengthens our interpretation that the ever-changing wave-
field is a unique characteristic of the seismic data recorded in the vicinity of a vol-
cano. Moreover, the results and interpretation of UMAP align with the results and
interpretation of the hierarchical waveform clustering approach, confirming the util-
ity of this manifold learning technique.

5.C Hyperparameter test for UMAP

5.C.1 Case 1: SV13, Kamchatka, Russia

As pointed out in Chapter 2, the number of neighboring data points and the min-
imum distance for putting neighboring points together are the main hyperparam-
eters which control outcome of UMAP. Since we are interested in a visualization
of the high dimensional scattering coefficient matrix, we only retrieve two UMAP
variables. Figure 5.C.1 shows the results of UMAP for 9 different combinations of
the minimum distance and number of neighbors. The data cloud comes in different
shapes with regard to the hyperparameters, but all the examples confirm that the
time axis seems to be encoded in the seismic data. We can confirm that a larger min-
imum distance results in a larger and less clustered data cloud. While a small num-
ber of neighbors seems to produce a round and unstructured data cloud, a larger
number of neighbors results in some elongated shapes and more complex patterns.

5.C.2 Case 2: WM01, Hamburg, Germany



96 Chapter 5. Exploring seismo-volcanic signatures with machine learning

5 0 5 10 15
2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

UM
AP

 v
ar

ia
bl

e 
2

a

0 10 20
hour in the day

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
b

5 0 5 10 15
UMAP variable 1

0

5

10

15

20

25

ho
ur

 in
 th

e 
da

y

c

5 0 5 10 15
UMAP variable 1

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

UM
AP

 v
ar

ia
bl

e 
2

d

weekend
weekday

0

5

10

15

20

ho
ur

 in
 th

e 
da

y

FIGURE 5.B.2: UMAP results for the scattering coefficient matrix of
station WM01 in Hamburg, Germany (see Chapter 4). (a) shows the
two UMAP variables color-coded with the time of the day. (b) shows
the time of the day against the second UMAP variable, color-coded
with the time of the day. (c) shows the first variable against the time
of the day, color-coded with the time of the day. (a) shows the two
UMAP variables with a color-code indicating weekend (Sa.-So.) and

weekday (Mo.-Fr.).
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FIGURE 5.C.1: Different UMAP results with changing hyperparame-
ters for the data recorded at SV13. The results shown in Figure 5.13

correspond to min_dist = 0.2 and n_neighbors = 50.
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FIGURE 5.C.2: Different UMAP results with changing hyperparam-
eters for the data recorded at WM01, Hamburg, Germany. The re-
sults shown in Figure 5.B.1 and 5.B.2 correspond to min_dist = 0.2

and n_neighbors = 50.
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Chapter 6

Conclusion and outlook

6.1 Conclusion

With hierarchical waveform clustering we present a strategy for data-driven explo-
ration of continuous seismograms, aiming at the discovery of overlooked patterns
in seismic time series. The applications focused on three component seismograms
recorded by a single seismic station. The scattering transform proved to be an in-
teresting and meaningful representation of continuous seismograms in regard to
pattern recognition tasks such as clustering or matrix factorization. The scattering
coefficients offer interpretability while still delivering a richer representation than
spectral coefficients based on the Fourier transform. Nevertheless, the second- and
higher-order coefficients can challenge the interpretability. The design of the scatter-
ing network is intuitive and has to be adapted to the task at hand. For instance, the
design of the wavelets is guided by the potential targeted signals in the time series.
Another important choice is the pooling operation which in one way or the other
filters information and favors certain signal characteristics. With PCA and ICA, we
are able to retrieve interesting and meaningful patterns in the time series of scatter-
ing coefficients, which can be either directly used for interpretation or other pattern
recognition tasks such as clustering. While PCA identifies global signal character-
istics, ICA finds sparse components with the potential to separate different seismic
source patterns. In Chapter 4 we even identified blindly a medium change and were
able to isolate the seismic signature of freezing and thawing from the urban seis-
mic activity. These temporal data-driven patterns describe also the stationarity of
the recorded wavefield. The application shown in Chapter 5 challenges the con-
cept of volcanic tremors as one signal class and confirms the ever-changing nature
of these signals, holding information about the current state of the volcanic com-
plex. Besides interpreting component by component, hierarchical clustering offers a
data-driven way to explore the complete low dimensional PC or IC space. Chapter 3
and 4 proofed that the dendrogram offers a meaningful hierarchical overview of all
the recorded signals in the dataset. Within the dendrogram we could identify clus-
ters of similar low-magnitude seismic burst events belonging to the larger cluster of
general seismicity. The presented strategy is in stark contrast to most other unsu-
pervised learning approaches which aim at finding a fixed number of seismic signal
clusters by optimizing an objective function (such as in Snover et al., 2020; Seydoux
et al., 2020). Instead, the main goal of our approach is data exploration which in-
cludes the exploration and interpretation of multiple possible solutions by an ex-
pert. A similar conclusion was drawn in Köhler, Ohrnberger, and Scherbaum (2010):
"Manual inspection of suggested clustering solutions and interpretation based on
expert knowledge is an integral part of this approach. Selecting automatically the
number of clusters based on a validity measure for example, may not tap the full
discrimination potential of the approach."
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6.2 Outlook

Hunting for tectonic signals in plate boundary observatories

The proposed strategy could help to identify new and overseen patterns in many
different types of seismic experiments. However, one very interesting application
considers continuous seismograms from borehole stations within plate boundary
observatories. Rouet-Leduc, Hulbert, and Johnson (2019) observed a continuous
tremor-like chatter in the ambient seismic wave field recorded close to the Casca-
dian subduction zone. Our approach might identify this pattern blindly and would
strengthen the assumption that there is valuable information about tectonic pro-
cesses in the ambient seismic wave field. The approach could also aid in the hunt
for tremors at the NAF with less constraints on the tremor’s signal characteristics.
Recently, Ben-Zion et al. (2022) called for the next generation of plate boundary ob-
servatories at different sites in the world in order to better understand earthquake
processes and their nucleation phase. Pattern recognition algorithms such as hierar-
chical waveform clustering could aid in the search of potentially new tectonic signals
recorded by these observatories.

Another interesting application would follow the idea presented in Holtzman et
al. (2018), which identified a cyclic behaviour of the Geyser due to the signal proper-
ties of the cataloged events. Recent developments in earthquake detection and loca-
tion with deep learning create large catalogs which might be best analyzed and ex-
plored with unsupervised learning methods (Beroza, Segou, and Mostafa Mousavi,
2021). A UMAP representation retrieved from the scattering coefficients of the earth-
quake waveform data might reveal new insights about the earthquake processes,
which are not necessarily encoded in the spatial distribution of the earthquakes.

Towards data-driven descriptors for tremor signals and understanding their
underlying mechanism

With UMAP and ICA we are able to estimate how stationary a wavefield is at a given
time in a data-driven fashion. Until now, we know that something is changing in
the seismogram on a certain timescale. However, we did not yet identify what is
exactly the change and this would be an important step towards understanding the
underlying mechanism for the signal change. Clustering the UMAP space could
help to identify common signal characteristics and connect them to certain areas in
the UMAP space.

Towards detecting medium changes directly from continuous seismograms

Chapter 4 showed the potential of detecting medium changes directly in continuous
seismograms. It seems possible that other medium changes such as groundwater
fluctuations or perhaps even healing processes after large Earthquakes modulate the
ambient seismic wavefield as we have seen for the freezing and thawing process. Ac-
cessing this information directly from the continuous seismograms could give new
insights about the medium changes and how they affect seismic wave propagation.
This would enhance monitoring strategies based on a single station.
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Enhancing the strategy with manifold learning and hierarchical spectral
clustering

Hierarchical waveform clustering is based on relatively simple and easy to inter-
pret tools, which have been studied and utilized since multiple decades. Our work
showed that PCA and ICA capture interesting patterns of the seismograms. How-
ever, due to their linear mapping many components are needed to describe the inter-
esting structure of the data, and this poses difficulties for visualization and interpre-
tation. Moreover, if too many components are retained, clustering algorithms will
again struggle with the curse of dimensionality. The applications of UMAP showed
that manifold learning techniques seem to capture a lot of interesting structure in
only two dimensions. The two-dimensional UMAP space resembles a map for nav-
igating through the individual worlds of each dataset, revealing different islands
of seismic signals and their potential connection. In this thesis, we applied UMAP
mainly for a visual exploration of the dataset and we did not provide an extensive
study on the hyperparameters of UMAP. We believe that UMAP holds a large po-
tential for exploration of large seismic time series and recent examples have even
shown successful application of clustering time series data in UMAP spaces (e.g. Ali
et al., 2019).

Besides using non linear ways to reduce the dimensions, other more advanced
clustering algorithms might offer new insights, too. We utilized hierarchical clus-
tering with the Ward’s method in order to explore the data with the dendrogram.
However, it seems that this approach might not be the best suited method for seis-
mological time series. As pointed out in Chapter 2, hierarchical clustering with the
Ward’s method tends to find even-sized ball-shaped clusters. Seismic time series
often contain large class imbalances such as between the class of Earthquakes and
the ambient seismic wave field. This results in a large point cloud with distributed
outliers in the two dimensional PC representation (see for example Figure 5.13a
in Chapter 5) or sparse independent components (see for example Figure 3.B.2 in
Chapter 3). Density-based hierarchical clustering (HDBSCAN) is an extension of
hierarchical clustering, which is able to identify clusters of various shape and size,
while still offering a dendrogram for data exploration. Recent applications have also
shown that HDBSCAN performs well in the UMAP space, delivering new insights
about the data (Herrmann et al., 2022).

From single station to array data

An extension to array data is another interesting and challenging future research
direction. Adding more stations poses questions about how to organize the data.
Instead of creating a scattering coefficient matrix, it might be more suitable to store
the data as a tensor. Thus, matrix factorization methods such as PCA or ICA would
be replaced by tensor decompositions, which take more computer resources and are
often more difficult to solve. Similarly, hierarchical waveform clustering could be
also adapted to the large amount of data generated by distributed acoustic sensing,
which has the potential to reveal new types of seismicity (Klaasen et al., 2021).
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