
HAL Id: tel-04148643
https://theses.hal.science/tel-04148643

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming and analysis of critical real-time systems
Julien Forget

To cite this version:
Julien Forget. Programming and analysis of critical real-time systems. Embedded Systems. Université
de Lille, 2023. �tel-04148643�

https://theses.hal.science/tel-04148643
https://hal.archives-ouvertes.fr

Mémoire d’Habilitation à Diriger des Recherches

Préparé au sein de l’Université de Lille

Spécialité Informatique

Présenté et soutenu par

Julien Forget

Le Lundi 12 Juin 2023

Programming and analysis of critical real-time systems

Devant le jury composé de :
Sebastian Altmeyer Examinateur
Alan Burns Rapporteur
Laure Gonnord Examinatrice
Giuseppe Lipari Garant
Christine Rochange Rapportrice
Marc Pouzet Président

École doctorale MADIS

Acknowledgements

I would first like to thank Alan Burns, Marc Pouzet, and Christine Rochange, for reviewing my
manuscript. I learnt a lot from their work, I hope they learnt a few things in return reading this
document. Many thanks to Sebastian Altmeyer for making the trip from Germany and for our
stimulating discussions. My gratitude to Laure Gonnord for her comeback to the source, as well
as for her guidance in dire times.
This work would not exist without my collaborators. Frédéric Boniol and Claire Pagetti

kindly guided my first steps as a researcher. Emmanuel Grolleau and Pascal Richard helped
me unravel the inner workings of the real-time community. Ph.D. students and post-docs have
been the main drive for my research activities: many thanks to Antoine Bertout, Andrei Florea,
Frédéric Fort, Sandro Grebant, Jordy Ruiz and Rémy Wyss. Our trio with Clément Ballabriga
and Giuseppe Lipari was the most stimulating research environment I could have hopped for.
A warm thank you to my colleagues from SyCoMoRES, SEAS, and Polytech, for countless
scientific and non-scientific discussions, and for being such uniformly caring persons.

To my family, my southwestern second family, mymexican-connection, my adoptive northern
family: I am so grateful that you are part of my life.

i

Contents

Contents iii

1 Overview 1
1.1 Context . 1
1.2 Contributions . 2

1.2.1 Programming with Prelude . 2
1.2.2 High-level timing analysis . 3
1.2.3 Low-level timing analysis . 4

1.3 Reading this document . 4

I Introduction 7

2 Background on real-time systems 9
2.1 Prelude, a synchronous data-flow language with real-time primitives 9

2.1.1 Informal presentation . 9
2.1.2 Formal semantics . 13
2.1.3 Compilation overview . 15

2.2 High-level timing analysis of a real-time task set 15
2.2.1 Real-time attributes . 16
2.2.2 Precedence constraints . 16
2.2.3 Scheduling . 18

2.3 Low-level timing analysis of a single task . 19
2.3.1 Control-flow analysis . 19
2.3.2 Hardware analysis . 20
2.3.3 Value analysis . 21
2.3.4 WCET bound computation . 21

II Contributions 23

3 Programming real-time systems with Prelude 25
3.1 Implementation on multi-core with distributed memory 25

3.1.1 Motivation . 26
3.1.2 Model . 26
3.1.3 Code generation . 27
3.1.4 Comparing memory architectures . 29
3.1.5 Related works . 31
3.1.6 Conclusion . 32

3.2 Partial delays specification . 32

iii

CONTENTS

3.2.1 Motivating example . 32
3.2.2 Incomplete program specification . 33
3.2.3 Program concretisation . 35
3.2.4 Related works . 37
3.2.5 Conclusion . 37

3.3 Multi-mode multi-periodic systems . 38
3.3.1 Motivating example . 38
3.3.2 Language extension . 40
3.3.3 Clock calculus . 41
3.3.4 Evaluation . 44
3.3.5 Related works . 44
3.3.6 Conclusion . 44

4 High-level timing analysis 47
4.1 Real-time scheduling . 47

4.1.1 Scheduling tasks with simple precedence constraints 47
4.1.2 Scheduling tasks with extended precedence constraints 48
4.1.3 Conclusion . 51

4.2 End-to-end constraints analysis . 51
4.2.1 Motivating example . 51
4.2.2 End-to-end properties definition . 53
4.2.3 End-to-end properties verification . 55
4.2.4 Related works . 57
4.2.5 Conclusion . 57

4.3 Task clustering . 57
4.3.1 Problem definition . 58
4.3.2 Guiding principles . 59
4.3.3 Independent tasks, uniprocessor . 59
4.3.4 Dependent tasks, uniprocessor . 63
4.3.5 Dependent tasks, multiprocessor . 65
4.3.6 Related works . 68
4.3.7 Conclusion . 69

5 Low-level timing analysis 71
5.1 Symbolic Worst-Case Execution Time analysis 71

5.1.1 Control Flow Tree . 72
5.1.2 Context-sensitive execution time . 73
5.1.3 Symbolic computation . 76
5.1.4 Experiments . 77
5.1.5 Related works . 79
5.1.6 Conclusion . 80

5.2 Relational abstract interpretation of assembly code 80
5.2.1 Motivating example . 81
5.2.2 Target language . 81
5.2.3 The POLYMAP domain . 82
5.2.4 Abstract interpretation . 84
5.2.5 Experiments . 89

iv

CONTENTS

5.2.6 Related works . 90
5.2.7 Conclusion . 90

III Perspectives 93

6 Conclusion 95
6.1 Summary . 95
6.2 Future research projects . 95

6.2.1 Modular WCET analysis (short term) 95
6.2.2 Synthesis of Prelude programs (medium term) 96
6.2.3 Formally verified real-time programs (long term) 97

IV Appendices 99

A Main symbols and acronyms 101
Programming with Prelude . 101
High-level timing analysis . 101
Low-level timing analysis . 103

Bibliography 105

v

1. Overview

This document summarizes my research since my appointment as an associate professor in
2010 at the University of Lille. Since then, I have been doing my research in the CRIStAL
laboratory (Centre de Recherche en Informatique, Signal et Automatique de Lille), and I have
been teaching at the Polytech Lille engineer school. I was a member of the following research
teams, chronologically:

1. The DaRT team (until 2011), whose focus was on high performance systems on chip;

2. The Émeraude team (until 2021), whose focus was on software systems embedded on
heterogeneous hardware platforms;

3. The SyCoMoRES team (since 2021), whose focus is on modular analysis and development
of real-time systems.

My research as an associate professor concerns the development of real-time systems. I
focused on three main topics in this context. First, I studied programming languages dedicated
to the development of critical real-time systems, and their compilation. Second, I studied high-
level timing analysis of real-time systems modeled as a set of concurrent tasks. Third, I studied
low-level timing analysis of the code of a single real-time task. Work presented in this document
is the result of my collaborations with several colleagues from CRIStAL, Onera Toulouse, the
University of Lyon, and the University of Poitiers.

1.1. Context

Real-time systems are computer systems that are required not only to produce the correct output
values, as a reaction to the system inputs, but also to produce these values at the correct time.
We can distinguish two subclasses of real-time systems: hard real-time systems, where failing
to respect some constraints may have catastrophic consequences, and soft real-time systems,
where failures only cause a degradation in the quality-of-service of the system. In my work, I
focus on hard real-time systems. The flight-control system of an airplane, or the autonomous
driving system of a car, are good examples of hard real-time systems.

Real-time systems are a sub-class of reactive systems, their behaviour consists in indefinitely
repeating the following sequence: wait for inputs from sensors, compute a reaction, send outputs
to actuators. At the highest level of abstraction, a real-time system can be represented as a set
of concurrent tasks, where each task either senses, computes, or actuates.

Each task is subject to real-time constraints. Periodicity constraints dictate the rate at which
tasks must be repeated. Deadline constraints are usually derived from periodicity constraints
and define the latest date at which each repetition of a task, also called a job, must complete.
Real-time constraints typically stem from the physical characteristics of the device under control.
The rate at which a device must be controlled is upper-bounded by the maximum rate at which
the sensors and actuators of the system can operate (e.g. the maximum samples per second of

1

https://www.cristal.univ-lille.fr/equipes/sycomores/

1. Overview

a LIDAR). It is lower-bounded by the minimum rate required by the control/command laws
of the system (e.g. the minimum rate to ensure the stability of an airplane). Since different
sensors and actuators have different capabilities, and since the control/command of a system is
usually structured as a collaboration of several laws, different tasks of the systems are subject
to different real-time constraints. Choosing the actual task rates amounts to a compromise
between the quality of the control/command laws and the overall computation demand. Once
real-time constraints are set, reacting faster than these constraints usually does not improve
the quality of the system. Instead, the main focus of hard real-time systems development is to
ensure that the constraints will always be met, so as to ensure the system safety.

1.2. Contributions

The programming of hard real-time systems involves several research domains, which are
traditionally studied by separate research communities. An important part of my work focuses
on the connection between these domains, through the development of the Prelude language
and its compiler. This section outlines my contributions and the three main domains they cover.

1.2.1. Programming with Prelude

Because real-time systems are critical, development based on formal methods has become popu-
lar in this domain. Formal models (e.g. timed-automata [AD94], timed-petri nets [Wan12], or
synchronous programs [Ben+03]), provide unambiguous specifications of the system behaviour
and enable to mathematically prove safety and security properties for it. Formally defined
compilation chains (e.g. synchronous languages compilers [Hal+91; Bou+17]), automate the
translation from a high-level formal model to lower-level code, and preserve the semantics of
the formal model in the corresponding low-level code. This ensures that the properties proved
on the model are still valid in the generated low-level code.
Synchronous languages [Ben+03] have proved successful for the development of critical

embedded systems. Their structure is particularly well-adapted to the specification of reactive
systems. Their formally defined semantics and compilers improve the system safety and
security. However, they traditionally lack primitives to specify real-time constraints. Prelude is
a synchronous language dedicated to the programming of real-time systems, which was designed
during my Ph.D. thesis. It extends synchronous data-flow languages, such as Lustre [Hal+91],
with language constructs to specify real-time constraints. Its compiler generates multi-threaded
C code, to be executed by a real-time operating system. This document presents several
extensions to my initial work on Prelude. They are summarized below.

Implementation on multi-core with distributed memory The Prelude compiler initially
generated code for a mono-core hardware platform with the MarteOS operating system [RH01].
It has since then been extended to support several different types of hardware platforms and
operating systems. In particular, during the internship of Frédéric Fort, the Prelude compiler
was extended to generate code for a multi-core hardware with distributed memory (a larger
central memory, along with smaller scratchpad memories for each core), with the Erika real-time
operating system1.

1http://erika.tuxfamily.org/drupal/

2

http://erika.tuxfamily.org/drupal/

1.2. Contributions

Partial delays specification In collaboration with colleagues from Onera Toulouse (Frédéric
Boniol, Claire Pagetti, Rémy Wyss), the Prelude language was extended to support incomplete
specifications. A new operator was introduced to enable to specify communications with flexible
non-deterministic communication semantics (either synchronized or not). The compiler then
chooses among several possible deterministic implementations, its objective being to satisfy
end-to-end latency constraints.

Multi-mode multi-periodic systems In the Ph.D. of Frédéric Fort, we extended Prelude
to support the programming of multi-mode real-time systems. In such a system, each mode
corresponds to a different behaviour, to a different set of computation tasks, with different
real-time constraints. The Prelude language and its clock calculus have been extended to support
mode automata where tasks of the same mode can have different periodicity constraints.

1.2.2. High-level timing analysis

The Prelude compiler translates the input program into a C program structured as a set of
concurrent real-time tasks. In order to ensure that the task set will always respect its real-
time constraints at run-time, a timing analysis must be performed. This consists of several
sub-analyses applied at different abstraction levels. High-level timing analysis considers a
system modeled as a set of concurrent tasks, where each task is characterized solely by its
real-time characteristics. Low-level timing analysis focuses on the code executed by one task
and mostly abstracts from other tasks. The following contributions to high-level timing analysis
are presented in this document.

Real-time scheduling Real-time scheduling considers a set of tasks characterized by their
periods, deadlines, and worst-case execution time, and ensures that all tasks will meet their
deadlines during execution. In collaboration with colleagues from the University of Poitiers (Em-
manuel Grolleau, Pascal Richard) and from Onera Toulouse (Frédéric Boniol, Claire Pagetti), we
studied the scheduling of dependent tasks, that is to say tasks related by precedence constraints,
as it is the case for task sets generated by the Prelude compiler.

End-to-end constraints analysis While periodicity and deadline constraints are per-task
constraints, end-to-end constraints involve a chain of tasks. For instance, an end-to-end latency
constraint imposes an upper-bound to the total delay from the start time of the first task of the
chain to the completion time of the last task of the chain. In collaboration with colleagues from
Onera Toulouse (Frédéric Boniol, Claire Pagetti, RémyWyss), we proposed a general framework
for the analysis of such properties.

Task clustering In a Prelude program, each functionality of the system is implemented as a
node. The Prelude compiler then translates each node into a separate real-time task. However,
for complex industrial systems, mapping each functionality to a different task would produce a
large number of tasks, incurring a significant time and memory overhead. In the Ph.D. thesis of
Antoine Bertout, we studied the task clustering problem, where the objective is to reduce the
number of real-time tasks used in the node-to-task mapping, while preserving schedulability.

3

1. Overview

1.2.3. Low-level timing analysis

High-level timing analysis requires as input theWorst-Case Execution Time (WCET) of each task.
This information is provided by a low-level timing analysis, which considers the code executed
by a single task in order to determine its WCET.WCET analysis is most often performed by static
analysis of the task code. Due to the difficulty of the considered problem, WCET computation
by static analysis makes simplifications that yield an over-approximated, yet safe, value. Even
though the higher-level of abstraction of source code would simplify WCET analysis, compiler
optimizations have a huge impact on WCET, and this impact is hard to predict, thus binary
code is usually analysed instead. The following contributions to low-level timing analysis are
presented in this document.

Symbolic WCET computation Traditional WCET analysis produces a constant numeric
upper-bound to the WCET. Thus, if some parameters of the program change (e.g program
inputs, loop bounds, cache size, ...), the analysis must be re-run. An alternative approach is
to produce a parametric WCET formula. In collaboration with colleagues from the CRIStAL
laboratory (Clément Ballabriga, Giuseppe Lipari), we proposed a new approach to parametric
WCET analysis based on symbolic computation. The original motivation of this work was
to enable the design of adaptive real-time systems in Prelude: we compute off-line a WCET
formula, instantiate the formula on-line, and adapt the system behaviour if the WCET reaches a
certain threshold. Such an adaptive behaviour can be specified using the multi-mode extensions
of Frédéric Fort.

Relational abstract interpretation of assembly code Abstract interpretation is a static
analysis technique that provides a sound over-approximation of the possible behaviours of a
program. Relational abstract interpretation establishes relations (e.g. linear relations) between
variables of the program under analysis. Abstract interpretation is usually performed on the
program source code. Instead, in collaboration with colleagues from the CRIStAL laboratory
(Clément Ballabriga, Giuseppe Lipari), and from the University of Lyon (Laure Gonnord), and in
particular during the post-doc of Jordy Ruiz, we proposed an abstract interpretation technique
for the analysis of assembly code. The original motivation of this work was to establish relations
between software parameters appearing in WCET formulae produced by our symbolic WCET
analysis.

1.3. Reading this document

The structure of this document does not follow the chronology of my research, but instead
groups my contributions by research domains: programming real-time systems with Prelude
(chapter 3), high-level timing analysis (chapter 4), and low-level timing analysis (chapter 5).
The document summarizes the main research results, but it is not a comprehensive presentation
of my work. The reader should refer to my cited publications for more details. In particular:

• Proofs and intermediate lemmas are not presented, only the main theorems are provided;

• The presentation of related works is succinct and limited to works that are the most
tightly related to my contributions;

• When possible, formal definitions are replaced by illustration through examples.

4

1.3. Reading this document

A Conclusion subsection is provided at the end of the presentation of each contribution. It
highlights the main contribution, detailing where it was published, collaborations, tutored
students, and funded research projects.
Glossaries listing the main symbols and acronyms used in each chapter are provided in the

appendix part of this document.

5

Part I.

Introduction

7

2. Background on real-time systems

This chapter provides a description of the background on which my contributions on real-time
systems rely.
The development of hard real-time systems usually involves several development teams,

each separately responsible for the development of a subset of the system tasks. These tasks
are then assembled together to form the complete system, at which point real-time properties
and inter-task communication schemes are integrated. In Section 2.1, I present the Prelude
language, which I designed and developed during my Ph.D. thesis for specifying how real-time
tasks are integrated together to form a complete real-time system. In Section 2.2, I recall classic
definitions and results on real-time task models and their scheduling. In Section 2.3, I provide a
short summary on the Worst-Case Execution Time analysis of a task.

2.1. Prelude, a synchronous data-flow language with real-time
primitives

Prelude builds upon synchronous data-flow languages, such as Lustre [Hal+91]. It inherits
their clean and formal semantics, and extends them with language concepts dedicated to the
description and management of real-time constraints. This section presents the core language
defined during my Ph.D. thesis.
The Prelude compiler translates the input program into a set of concurrent and inter-

dependent C tasks. The compilation process is defined formally, so as to ensure that the
program semantics is preserved throughout the compilation (semantics preservation is only
proved on paper, not with a proof assistant such as e.g. [Bou+17]). The generated code is
independent of the target Operating System. Several options for the compiler back-end have
been developed since the initial compiler release, in order to support various types of hardware
architectures: single-core, multi-core, centralized memory, as well as distributed memory.

2.1.1. Informal presentation

Data-flow The data-flow nature of Prelude is reminiscent of Lustre, and illustrated in Fig-
ure 2.1. When the program receives new input values, it reacts by computing new output values.
Variables and expressions denote infinite sequences of values called flows. Figure 2.1 details the
values of each flow, for each reaction of the node main.

Computations described in the program equations (the let...tel block) are implicitly
repeated indefinitely. In the example of Figure 2.1, whenever the program receives new values
for the input flows a and b, it computes the new value of output flow o as the sum of the new
values of a and b. Note that computation order depends on data-dependencies and on real-time
constraints, not on text order (the node body is a set of unordered equations, not of sequential
instructions): we need values for variables on the right-hand side of an equation to compute
values for variables on the left-hand side. Execution order is determined by the compiler and
the scheduler, based on the program data-dependencies and real-time constraints.

9

2. Background on real-time systems

imported node add(a,b:int) returns(o:int) wcet 6;

imported node plus_one(a:int) returns(o:int) wcet 3;

node main(a,b: int)

returns(o, p: int)

let

o=add(a,b);

p=0 fby (plus_one(o));

tel

a 0 2 4 6 8 . . .
b 1 3 5 7 9 . . .
o 1 5 9 13 17 . . .
p 0 2 6 10 14 . . .

Figure 2.1.: The data-flow semantics of a Prelude program

Nodes are the structuring unit of the language, much like functions/procedures in procedural
languages: a Prelude program consists of a set of nodes that can be instantiated (called) in the
equations of other nodes. The main node is the entry point of the program, it communicates
with the program environment by acquiring its inputs from sensors and applying its outputs
on actuators. Because it is designed as an architecture description language, Prelude does not
include arithmetic or logic operators. Instead, computations are performed by imported nodes

(add, plus_one), whose behaviour is described outside the Prelude program. Imported nodes
are the leaves of the nodes hierarchy, which will ultimately be translated into tasks/threads in
the generated low-level code.

The program of Figure 2.1 consists of a single non-leaf node (the main node), although there
can be several non-leaf nodes in general. This node instantiates two imported nodes (add
sums its arguments and plusone adds one to its argument). The program also uses the builtin
operator fby, which is the delay operator: the value of expression cst fby e is cst for the
first reaction followed by the value of e at its previous reaction.

Synchronous real-time Real-time constraints can be specified in Prelude as illustrated in
Figure 2.2. The programmer either declares the rate of a flow explicitly (c: int rate(40,0))
or lets it be inferred by the compiler. A rate declaration specifies the period of a flow along with
its phase, thus defining the dates at which the flow produces values. In the example, inputs a, b
have period 40, while input c has period 20.

Due to the data-flow nature of the language, the execution rate of a node depends on that of
its inputs. More precisely, when instantiating an imported node, all its inputs are required to be
synchronous, that is to say they must have the same rate. This rate is also the execution rate
of the node instance. In the example of Figure 2.2, the execution rate of node instance add in
node main is (40,0), because both its inputs have rate (40,0). This is also the rate of its outputs.
Trying to apply add to a and c would cause a compilation error, since they do not have the
same period: for instance, the value of a cannot be accessed at date 20, while the value of b can.

Worst-case execution times (WCET) are specified in the declaration of imported nodes. The
programmer must also specify a WCET for each input (sensor) and output (actuator) of the

10

2.1. Prelude, a synchronous data-flow language with real-time primitives

imported node add(a,b:int) returns(o:int) wcet 6;

imported node plus_one(a:int) returns(o:int) wcet 3;

sensor a wcet 5; sensor b wcet 5; sensor c wcet 4;

actuator o wcet 1; actuator p wcet 1;

node main(a,b: int rate (40,0); c: rate (20,0))

returns(o, p: int)

let

o=add(a,b);

p=0 fby (plus_one(c));

tel

date 0 20 40 60 80 . . .
a 0 1 2 . . .
b 2 4 6 . . .
c 1 3 5 7 9 . . .
o 2 5 8 . . .
p 0 2 4 6 8 . . .

Figure 2.2.: A program with inputs with two different rates

main node. WCETs are only used for the schedulability analysis of the program (see Section 4.1
for details), they are not enforced at execution.

Rate transitions Rate transition operators are used to combine flows that have different
rates, as illustrated in Figure 2.3. In expression e*^k the operator ∗̂ over-samples expression
e, duplicating each value of e k times. Conversely, in e/^k the operator /ˆ under-samples e,
keeping only one out of k successive values of e. In the example, the compiler infers that the
rate of swap is (50, 0) (because its input i has rate (50,0)), and that the rate of id is (150, 0)
(because vf has the same rate as swap, and thus vf/^3 has rate (150,0)). Since flow vs has rate
(150,0), it is oversampled before being passed as input to swap so as to be synchronous with (i).
A delay (fby) is also applied, to avoid overconstraining the deadline of id. Without this delay,
id would have to complete no later than the deadline of swap. The imported nodes swap and id
are defined outside Prelude such that swap(i, j) = (j, i), and id(i) = i.

11

2. Background on real-time systems

imported node swap(i, j: int) returns (o, p: int) wcet 10;

imported node id(i: int) returns (o: int) wcet 15;

sensor i wcet 5; actuator o wcet 5;

node sampling(i: rate(50,0)) returns (o)

var vf, vs;

let

(o, vf)=swap(i, (5 fby vs)*^3);

vs=id(vf/^3);

tel

date 0 50 100 150 200 250 300 . . .
i 0 1 2 3 4 5 6 . . .
vf 0 1 2 3 4 5 6 . . .
vs 0 3 6 . . .
o 5 5 5 0 0 0 3 . . .

Figure 2.3.: Rate transition operators

Phase offsets The phase of an expression e can be shifted by a fraction q using the construction
e~>q. This effectively shifts every value of e by q multiplied by the period of e.

Activation conditions In addition to activation rates (periods and phases), Prelude supports
Boolean activation conditions à la Lustre (see Figure 2.4). Expression e when c only keeps
the values of e when c is true. Expression merge(c,e1,e2) merges two expressions that have
complementary activation conditions: when c is true the expression is equal to e1, when c

is false it is equal to e2. For instance, in Figure 2.4, node add is evaluated only if c is true,
otherwise plusone is evaluated. Again, because the language is data-flow, the activation
condition of an imported node instance is that of its inputs. Note that flows ctrue and cfalse
have complementary activation condition, ie either one produces a value or the other does, but
not both. They are merged to compute the flow o which always produces values at rate (40,0).

12

2.1. Prelude, a synchronous data-flow language with real-time primitives

imported node add(a,b:int) returns(o:int) wcet 6;

...

node main(a,b: int rate (40,0); c: bool) returns(o: int)

var ctrue, cfalse;

let

ctrue=add(a when c,b when c);

cfalse=plus_one(a whennot c);

o=merge(c,ctrue,cfalse);

tel

date 0 40 80 120 160 . . .
a 0 1 2 3 4 . . .
b 2 4 6 8 10 . . .
c T T F T F . . .
ctrue 2 5 11 . . .
cfalse 3 5 . . .
o 2 5 3 11 5 . . .

Figure 2.4.: Activation conditions

2.1.2. Formal semantics

The Prelude model of flows and clocks is based on the tagged-signal model [LSV96]. A flow

is defined as a set of pairs (vi, ti)i∈N, where vi is a value in some set V and the tag ti (in N)
represents a date associated to vi. Tags define the order in which values are produced. Intuitively,
the value vi is the value carried by the flow in interval [ti, ti+1), where ti+1 is the smallest tag
in the flow that is greater than ti. The clock of a flow is its projection on N. Two flows are
synchronous iff they have the same clock.

The formal definition of real-time constraints in Prelude relies on a dedicated class of clocks
called Strictly Periodic clocks, defined as follows:

Definition 2.1.1 (Strictly Periodic Clock). A strictly periodic clock is denoted as a pair (n, p),
with n, p in N, and:

• The infinite sequence of tags generated by (n, p), denoted (n, p)#, is defined as follows:
(n, p)# = {n ∗ i+ p | i ∈ N}.

• π(n, p)= n is the period and φ(n, p)= p is the offset of (n, p).

Operators on strictly periodic clocks are illustrated in Figure 2.5. The acceleration (∗.),
deceleration (/.), and phase offset (→.), are defined as follows:

Definition 2.1.2 (Strictly Periodic Clock Operators). Let (n, p) be a strictly periodic clock, and
k be in N. Then, by definition:

(n, p) ∗. k = (n/k, p)

(n, p) /. k = (n ∗ k, p)
(n, p)→ . k = (n, p+ k)

13

2. Background on real-time systems

ck

ck /. 2

ck→ . 2

ck ∗. 2

c
T F F T F T T

ck on true(c)

Figure 2.5.: Strictly periodic clocks and clock operations

Prelude combines strictly periodic clocks, which define the activation rate of a flow, with
Boolean clocks, which define the activation condition of a flow. To formalise Boolean clocks,
we adapt the definition of the clock operator on from [CP03] as follows.

Definition 2.1.3. Let ck be a clock, c be a flow whose values are of some enumerated type ty,
and C ∈ ty. Then, by definition:

(ck on C(c))# = {t | t ∈ ck# ∧ (C, t) ∈ c#}

We will now detail the formal semantics of the language operators. We let ŝ denote the
clock of flow s. The term ⋄#(s0, . . . , sn) denotes the flow resulting from the application of
the operator ⋄ on flows s0, . . . , sn. The formal semantics of Prelude operators is detailed in
Figure 2.6 (opf denotes an operator over scalars from the compiler target language). The relation
x div y ⇔ y mod x = 0 reads as “x divides y”. The denotational semantics of Prelude is rather
standard and can be found in [For09].

op#(s0, . . . , sn) = {(opf (v0, . . . , vn), t) | (v0, t) ∈ s#0 , . . . , (vn, t) ∈ s#n }
∗∧#(s, k) = {(v, t+ i ∗ π(ŝ)/k) | (v, t) ∈ s#, i ∈ [0..k)}
/∧#(s, k) = {(v, t) | (v, t) ∈ s# ∧ (t− φ(ŝ)) div (π(ŝ) ∗ k)}
∼>#(s, k) = {(v, t+ k) | (v, t) ∈ s#}
fby#(v, s) = {(v, t0)} ∪ {(vi, ti+1)|(vi, ti) ∈ s#} (t0 the smallest tag in s)

when#(s, c, C) = {(v, t) | (v, t) ∈ s#, t ∈ (ŝ on C(c))#}

merge#(c, s0, s1) = s#0 ∪ s#1

Figure 2.6.: Semantics of Prelude operators

Note that the semantics of some operators is well-defined only if the clock of its operands
respect some specific clock constraints. For instance, merge# requires flows that do not bear

14

2.2. High-level timing analysis of a real-time task set

values at the same dates. Node application requires arguments that are synchronous, i.e. that
have the same clock. ∗∧#(s, k) is defined iff k div π(ŝ), etc. The clock calculus (see below) is
responsible for checking such clock constraints and inferring the clocks of the program.

2.1.3. Compilation overview

The structure of the Prelude compiler follows the classic decomposition into a front-end, which
checks the program validity, and a back-end, which translates a valid input program into C code.
The front-end starts with a standard syntax analysis, and ML-like type inference [Pie02]. Then it
performs two analyses that are specific to synchronous data-flow languages: clock calculus and
causality analysis. The causality analysis checks that the program data-dependencies do form
immediate cycles (cycles that do not contain at least one delay), its definition is similar to that of
Lustre [HRR91]. The clock calculus computes a clock for each element of the program (variables,
expressions, etc). In doing so, it verifies that clock synchronization constraints are respected,
which ensures that flow values are only accessed at dates at which they are well-defined. The
clock calculus is implemented as a type inference system, where the usual types are replaced
by clock types, and with some noticeable differences such as subtyping rules, and arithmetic
simplifications of periodic clock expressions. For more details, refer to [For+08; For09].
The back-end consists of two steps. First, the program is translated into a Task Set interme-

diate representation. Basically, each imported node is translated into a real-time task, where
periods and offsets are deduced from clocks, while deadlines and WCETs are deduced from the
corresponding declarations in the program. In addition, tasks are related by data-dependencies
due to the program causality constraints. For instance, Figure 2.7 represents the task graph
obtained for the program of Figure 2.3. Boxes represent tasks, edges represent data-dependencies
and are annotated with operators that detail how tasks communicate. Tasks i, o and swap have
period 50, while task id has period 150. The task relative deadlines are equal to their periods.
Data-dependencies have a causal semantics, which means that a task producing data must
complete before task(s) consuming this data can start.

swap
/ˆ3

fby . ∗ˆ3
id

i
o

Figure 2.7.: Task graph for the program of Figure 2.3

In the second step of the back-end, the task set is translated into C code. This includes a
fairly trivial generation of a data-structure describing the characteristics of each task (akin to a
Process Control Block). More importantly, a tailor-made communication protocol is generated
for each inter-task data-dependency to ensure that task communications respect the synchronous
semantics. The code generated for each protocol depends on the operator annotations on the
corresponding data-dependency. See [For09] for more details on the compiler back-end.

2.2. High-level timing analysis of a real-time task set

The code generated by Prelude is structured as a set of real-time tasks. This section recalls
classic definitions for real-time tasks and provides an introduction to real-time scheduling.

15

2. Background on real-time systems

In the classic model of the real-time scheduling theory [BW01], a real-time task is character-
ized by its duration (Worst-Case Execution Time), its repetition period, and its deadline (relative
to its period). In order to take the functional semantics of the program into account, we also
add data-communications to this model. To ensure the functional determinism of the program,
we need to control the order in which communicating tasks execute. Typically, data-production
must precede data-consumption, so data-communications induce precedence constraints. As a
consequence, we consider a dependent task model, that is to say tasks whose start time depends
on the completion time of other tasks.
For more details on real-time scheduling, the reader unfamiliar with this topic can refer to

my introductory course at École Temps Réel 2017 [For17].

2.2.1. Real-time attributes

The software architecture of a real-time system can be defined as a set of tasks denoted S=
{τi(Oi, Ci, Di, Ti)}0≤i<n. Oi is the first release date of the task τi, also called offset in the
literature. Ti is the period of the task and defines the exact duration between two successive
releases of the task. We denote τi.k the kth (k ≥ 0) repetition, or job, of τi. The job τi.k is
released at the date oi.k= Oi+kTi. Di is the relative deadline of the task, every job τi.k must be
completed before its absolute deadline di.k= oi.k +Di. We denote J the set of jobs (generated
by S). Finally, Ci is the worst-case execution time (WCET) of the task and represents the longest
possible processing time required to compute a job of τi. These definitions are illustrated in
Figure 2.8. Additionally, we define the hyperperiod H of a task set as the least common multiple
(lcm) of the task periods.

Oi, oi.0

Ci

di.0Di

oi.1

Ci

di.1Di

oi.2

0

Ti Ti

Figure 2.8.: Real-time attributes

2.2.2. Precedence constraints

Precedence constraints impose constraints on the relative execution order of tasks. In the
following, we distinguish simple and extended precedence constraints.

2.2.2.1. Simple precedence constraints

Precedence constraints that relate tasks with the same period are called simple precedence

constraints. They are formalized by a relation→⊆ S × S , where τi → τj states that for all
k ∈ N, τi.k must complete before τj.k starts. As such, precedence constraints define a partial
order between tasks. We assume that the graph of precedence constraints is acyclic (a Direct
Acyclic Graph, or DAG), otherwise the system is not causal, meaning that there exists no
execution order that respects all the precedence constraints. We define the predecessors of
a task τi as preds(τi)= {τj |τj → τi} and its successors as succs(τi)= {τj |τi → τj}. We let
τi

∗→ τj denote the transitive closure of→.

16

2.2. High-level timing analysis of a real-time task set

2.2.2.2. Extended precedence constraints

Prelude programs are often made up of several computation chains. Tasks within a chain all
have the same period, while tasks of different chains may have different periods. The different
computation chains eventually join, since they must collaborate to implement the complete
system behaviour. Such junctions imply communications between tasks of different periods.

Precedence constraints that relate tasks with different periods are called extended precedence

constraints. In that case, only a subset of the jobs of the related tasks are concerned by the
constraint. We let τi.k → τj.k′ denote a precedence constraint from τi.k to τj.k′ . We define the
predecessors of a job τi.k as preds(τi.k) = {τj.k′ |τj.k′ → τi.k} and its successors as succs(τi.k) =
{τj.k′ |τi.k → τj.k′}. We use a precedence matrix Mi,j∈ M (with 0 ≤ i < |S|, 0 ≤ j < |S|), to
specify the pairs (p, q) such that τi.p → τj.q . Precedence matrices represent sets of precedence
constraints that follow patterns repeated periodically. Let N<n denote the set of natural integers
strictly smaller than n. Let lcm(n, n′) denote the least common multiple of n and n′.

Definition 2.2.1. Let τi and τj be two tasks. Let H = lcm(Ti, Tj). A precedence matrix M
associated to tasks τi, τj , is such thatM ⊆ N<H/Ti

×N<H/Tj
, where for all (p, q), (p′, q′) ∈M2,

p = p′ ⇒ q = q′ and p′ > p⇒ q′ ≥ q. Then, τi
Mi,j−−−→ τj denotes a precedence relation defined

as follows:

∀(p, q) ∈Mω, τi.p → τj.q

withMω ≡ {(n, n′)|∃k ∈ N, (m,m′) ∈M, (n, n′) = (m,m′) + (k
H

Ti
, k

H

Tj
)

This definition is illustrated in Figure 2.9. Intuitively, M lists all job precedence constraints
over one hyperperiod of the related tasks. The pattern is then repeated indefinitely.

0 2 4 6 8
(a)M = {(0, 0)}

0 2 4 6 8 10 12
(b) M = {(0, 2)}

0 2 4 6 8 10 12
(c) M = {(0, 0)}

0 2 4 6 8 10 12
(d)M = {(0, 0), (2, 1)}

Figure 2.9.: Some communication patterns (τi
M−→ τj)

17

2. Background on real-time systems

2.2.3. Scheduling

Real-time scheduling consists in finding an order for the execution of a set of tasks, such that the
set of real-time constraints of the tasks is respected. It involves two related parts. First, defining
a scheduling policy, that is to say an algorithm whose purpose is to choose which task to execute
at each step of the execution. Second, given a scheduling policy, performing a schedulability
analysis, prior to execution, to ensure that the task set will respect all its constraints when
scheduled with that policy.
In the following, we focus on preemptive, on-line, priority-based scheduling policies. A

scheduling policy is preemptive if it allows interrupting a job during its execution and resuming
it later. With on-line scheduling, the scheduler computes the schedule as execution progresses,
based on the chosen scheduling policy. Most on-line scheduling policies are priority-based,
meaning that they only define how to assign priorities to tasks and that the scheduler then
always chooses to execute the highest priority task ready for execution. With a fixed-task

priority scheduling policy, the priority of a task remains unchanged during the whole system
execution. With a fixed-job priority scheduling policy, the priority can differ between jobs of the
same task, but remains unchanged for a given job. Given a priority assignment Φ, we define two
functions sSΦ, eSΦ : J → N, where sSΦ(τi.k) is the start time and eSΦ(τi.k) is the completion
time of τi.k in the schedule produced by this assignment. In the sequel, S and Φ are omitted
when clear from context. We say that a schedule obtained for a dependent task set under a
given priority assignment is feasible if it respects all the temporal constraints of the task set and
all its job precedence constraints. More formally:

Definition 2.2.2. Let S = ({τi}0≤i<n,→) be a dependent task set and Φ be a priority assign-
ment. Let σSΦ be the schedule of S under Φ. σSΦ is feasible if and only if:{

∀τi.k, e(τi.k) ≤ di.k ∧ s(τi.k) ≥ oi.k

∀τi.k → τj.k′ , e(τi.k) ≤ s(τj.k′)

A task set is schedulable by a given scheduling policy if and only if the schedule produced by
that policy is feasible. A scheduling policy P is optimal within a certain class of policies (e.g.
the class of fixed-task policies) if the following holds: if a task set is schedulable by some policy
of this class, then it is schedulable by P .

In monocore1, Liu and Layland [LL73] proposed the rate-monotonic (RM) fixed-task priority
policy, where tasks with a shorter period are affected a higher priority, and the earliest-deadline-
first (EDF) fixed-job priority policy, where jobs with a shorter absolute deadline are affected
a higher priority. RM is optimal within the class of fixed-task priority policies for periodic
task sets with Ti = Di and Oi = 0. It can be extended to the deadline-monotonic policy (DM)
[LW82], to schedule optimally a set of tasks with Di ≤ Ti and Oi = 0. For the case where
Oi ≥ 0, an optimal algorithm was defined by Audsley in [Aud91]. EDF is optimal within the
class of fixed-job priority policies, for jobs with arbitrary offsets and deadlines.
A schedulability test determines whether a task set is schedulable with a given scheduling

policy. A schedulability test is called sufficient if all task sets considered schedulable by the
test are indeed schedulable. A schedulability test is called necessary if all task sets considered
unschedulable by the test are indeed unschedulable. Schedulability tests that are both sufficient
and necessary are referred to as exact.
1To avoid overburdening this introduction, multicore scheduling will be discussed later in the document.

18

2.3. Low-level timing analysis of a single task

2.3. Low-level timing analysis of a single task

High-level timing analyses require as input an upper bound to the execution time of each task.
Deriving such upper bounds is an undecidable problem in the general case, as it can be reduced
to the halting problem. However, programming conventions for real-time systems require the
number of iterations of loops and recursions to be explicitly bounded, thus making execution
time upper-bounds computable. It remains nevertheless a difficult problem, because it requires
to identify the worst case input software-hardware configuration, which leads to theWorst-Case
Execution Time (WCET). The software-hardware state space is usually too large to be explored
exhaustively, thus WCET analysis produces approximate results. Ideally, a WCET value should
be safe, in the sense that it must be greater than all possible execution times of the task, and
should also be tight to avoid hardware resource over-provisioning. The right trade-off between
safety and tightness depends on the application domain; the critical real-time domain favors
safety.

There exists several different approaches to WCET analysis, a survey of which can be found
in [Wil+08]. They can be categorized as either measurement-based, typically unsafe but less
pessimistic and complex, or static, typically safe but more pessimistic and complex. As my work
targets critical real-time system, in the following I will focus on static WCET analysis.

Static analysis can be applied to either source code or binary code. Source code analysis is
generally easier, thanks to the higher level of abstraction of the program. However, it requires
to make assumptions about the (complex) compiler behaviour, thus machine code analysis is
often favored for WCET analysis. In my work, I focus onmachine code analysis.

Static WCET analysis consists of four main steps. Control-flow analysis (CFA) studies the
different possible execution paths of the program. Hardware analysis determines the execution
time of a path on the considered hardware. Value analysis studies the values computed by the
program, providing information useful both for CFA (e.g. loop bounds) and hardware analysis
(e.g. instruction addresses needed for cache analysis). Finally, the bound computation puts all
information of the previous steps together to estimate a safe over-approximation of the WCET.

2.3.1. Control-flow analysis

A Control Flow Graph (CFG) is the traditional model used to represent the possible execution
paths of a machine code program. In a CFG, each node or basic block corresponds to a sequence
of instructions with no jump or jump target, while edges represent jumps. Figure 2.10 details
an example of Arm program, with the corresponding C code as comment for better readability,
and the CFG representing it. CFG construction from machine code is a difficult problem, but it
is out of the scope of the work presented in this manuscript.

19

2. Background on real-time systems

1 @ ... @ /* A */

2 str r0 , [fp, #-32] @ /* A */

3 @ ... @ /* A */

4 ldr r3 , [fp, #-32] @ /* A */

5 cmp r3 , #10 @ if (n <= 10) /* A */

6 bgt .L2 @ { /* still A */

7 @ ... @ /* C */

8 b .L3 @ } /* C */

9 .L2: @ else {

10 @ ... @ /* B */

11 .L3: @ }

12 @ ... @ /* D */

13 ldr r3 , [fp, #-32] @ /* D */

14 cmp r3 , #-1 @ if (n <= -1) /* D */

15 bgt .L4 @ { /* still D */

16 @ ... @ /* F */

17 b .L5 @ } /* F */

18 .L4: @ else {

19 @ ... @ /* E */

20 .L5: @ }

21 @ ... @ /* G */

(a) Arm program

A

B

C

D

E

F

G

(b) CFG

Figure 2.10.: Control-flow representation

A CFG represents a superset of the set of paths that are actually feasible in the corresponding
program. A path that is structurally feasible in the CFGmay be infeasible if we take the semantics
of the program into account. For instance, in Figure 2.10, pathA.B.D.F.G is structurally feasible
in the CFG, but semantically infeasible in the program (n cannot be greater than 10 and smaller
than -1).

Control-flow analysis (CFA) provides information on semantically infeasible execution paths,
to be combined with the purely structural information provided by the CFG. The more informa-
tion it can extract, the tighter the WCET bound gets. There exists many CFA approaches, for
instance detection of mutually exclusive branch constraints [HW02], detection of infeasible
paths across several loop iterations [RCM17], or analysis of loop bounds and their iteration
structures [Wil+08].

2.3.2. Hardware analysis

In its simplest form, hardware analysis provides the execution time of each instruction of an
instruction set on the target hardware. However, on modern hardware the execution time of
an instruction can be subject to large variations caused by various optimization components:
caches, pipeline, branch prediction, . . .Hardware analysis consists of a set of sub-analyses whose
objective is to determine the state of the different hardware components at each program point.
The execution time of a program instruction is then derived based on the hardware state at that

20

2.3. Low-level timing analysis of a single task

point.
Hardware analysis is performed on an abstract conservative model of the actual hardware,

whichmeans that execution time predicted based on themodel is never less than actual execution
time on the concrete hardware. As different execution paths may lead to the same program
point, the exact hardware state usually cannot be derived. Instead, weaker invariants on it are
established, typically using abstract interpretation [CC77]. WCET analysis tools usually include
at least hardware analyses for the instruction cache [Fer+99], and the pipeline (e.g. [RS09]).

2.3.3. Value analysis

To produce accurate information, CFA and hardware analysis both require information on
the values computed by the program. As we analyse machine code, these values are stored in
registers or in memory. Value analysis infers properties on the content of processor registers,
and memory addresses accessed by the program. Abstract interpretation is a popular approach
to value analysis as it provides a safe over-approximation of the possible values computed at
each program point. It is most noticeably used to infer loop bounds (e.g. [GEL05]), and to infer
instruction addresses (e.g. [The+03]), required for cache analysis.

2.3.4. WCET bound computation

The final step of WCET analysis consists in combining information provided by CFA, hardware
analysis and value analysis, to compute an upper-bound to the WCET. There are mainly two
approaches to WCET bound computation: tree-based (also called structure-based), and implicit-

path enumeration (IPET).
A tree-based approach represents the program to analyse as a tree (akin to an abstract syntax

tree), and computes theWCET bound by a recursive evaluation on the tree structure. Essentially:

• The WCET of a sequence of nodes is the sum of the WCET of the nodes;

• The WCET of an alternative between nodes is the maximum of the WCET of the nodes;

• The WCET of a loop multiplies the WCET of the loop body by the loop bound.

For instance, theWCET for the program of Figure 2.10 would be computed as: tA+max(tB, tC)+
tD +max(tE , tF) + tG (where tI denotes the WCET of basic block I).

In IPET, the information and constraints provided by CFA, hardware analysis and value
analysis, are all combined into a single Integer Linear Program (ILP) and the WCET bound is
obtained by solving this ILP. Essentially:

• A timing te is associated to each node of the CFG. It is an upper bound to the WCET of
the corresponding basic block, inferred by hardware analysis.

• An execution count xe is associated to each node and edge of the CFG. It represents the
number of execution of the node or edge during a complete program execution;

• The goal function of the ILP is to maximize the term
∑

i∈CFG xi ∗ ti, thus obtaining an
upper-bound to the WCET.

21

2. Background on real-time systems

Constraints related to the CFG structure are expressed as constraints on execution counts. For
instance, for the program of Figure 2.10 the following ILP constraints would be deduced from
the CFG: xA = xG = 1, xA = xA→B + xA→C , xB = xA→B, . . . Constraints obtained by CFA
or value analysis, are also expressed as constraints on execution counts. For instance, for the
previous program, an infeasible path analysis would add the constraint xA = xB + xF .
IPET has become a popular WCET analysis technique, thanks to its generality; indeed,

results of new analyses can easily be integrated as ILP constraints. Its main drawback is its
high complexity (potentially exponential in the program size). On the contrary, tree-based
approaches have low complexity (a low-degree polynomial in the size of the tree), but struggle
to integrate constraints provided by CFA. The popular WCET analysis tools Heptane [HRP17],
OTAWA [Bal+10] and AiT [Abs] are currently based on IPET.

22

Part II.

Contributions

23

3. Programming real-time systems with
Prelude

This chapter summarizes my contributions on Prelude that are posterior to my Ph.D. thesis. First,
I summarize extensions of the compiler back-end that target multi-core hardware platforms
(Section 3.1). Then, I present two extensions to the language definition and to the compiler
front-end: the introduction of a new operator to support incomplete specifications (Section 3.2),
and support for mode-automata (Section 3.3).

3.1. Implementation on multi-core with distributed memory

Over the last decade, the code generation of Prelude has been extended to target several
types of hardware platforms and Operating Systems. The available code generation options
are summarized in Table 3.1. Centralized memory corresponds to a hardware architecture
with a large shared memory, and a smaller cache memory for each core. Distributed memory

corresponds to a hardware architecture with a large shared memory, and a smaller private
locally addressable memory for each core (typically a scratchpad memory).
MarteOS [RH01] on unicore was the first code generation target, implemented during my

Ph.D. thesis. The code generation was then adapted so as to generate OS-independent code.
Porting Prelude to a new target OS now only requires to implement a small set of OS-specific
functions (task creation, and communication primitives).

SchedMCore [Cor+11], was the first multi-core target. SchedMCore runs on top of an existing
Operating System, and allows to run a set of tasks written in C using various real-time multicore
scheduling policies (somewhere between a pure simulator and a true hard real- time execution
environment).
The code generation was then adapted to enable execution on standard Linux, relying

on the SCHED_DEADLINE scheduling policy and on the ptask API1 to enforce real-time
constraints. Due to unbounded latencies in the Linux kernel, this is not a truly hard real-time
port. Nevertheless, it enables easy prototyping and testing of real-time applications.
A distributed memory target was then implemented. This required to significantly extend

the code generation, so as to explicitly handle copies between core local memories and the
global shared memory. The first port [Pag+18b], referred to as Sequencer in Table 3.1, targeted
an architecture with no real OS. Instead, the task schedule was generated offline and tasks were
executed by a simple sequencer. Finally, we ported code generation to Erika, a true real-time
Operating System2. In the remainder of this section, I present our work on code generation for
distributed memory architectures.

1Ptask is a Periodic Real-Time Task interface to pthreads: https://github.com/glipari/ptask
2http://erika.tuxfamily.org/drupal/

25

https://github.com/glipari/ptask
http://erika.tuxfamily.org/drupal/

3. Programming real-time systems with Prelude

OS unicore multicore centralized mem. distributed mem.
MarteOS ✓ ✓

SchedMCore ✓ ✓ ✓
Linux ✓ ✓ ✓

Sequencer ✓ ✓ ✓
Erika ✓ ✓ ✓ ✓

Table 3.1.: Code generation for Prelude on different platforms

3.1.1. Motivation

Implementing real-time tasks on a multi-core platform is hard, mainly because cores share
access to a central memory. This leads to contentions, which cause significant execution delays
that are hard to predict, because they require to finely analyse task codes, task interferences
and the contention resolution mechanisms [PC10].
In order to simplify the analysis of task interferences, the PRedictable Execution Model

(PREM) [Pel+11] advocates to decouple communication phases from computation phases. For
instance, the AER task model [Dur+14], a declination of the PREM model, splits each task
of the system into three phases. The Acquisition phase loads task data and instructions from
the main memory into the core local memory. Then, the Execution phase performs the task
computations using only local memory. Finally, the Restitution phase copies the results of the
E-phase back into the main memory, for use by other tasks. This simplifies timing analysis
because: 1) communication phases are clearly identified, so the system scheduler can schedule
communications [AP14a; Mai+17] and avoid contentions; 2) worst-case execution time analysis
(WCET) of computation phases does not need to take bus contentions into account [Pel+11].

Manually implementing a PREM-compliant program is tedious, unintuitive and error-prone.
Instead, we propose an extension of the Prelude compiler that automatically generates PREM-
compliant code. The synchronous semantics is close to the PREM model, making the translation
into PREM natural. We target a multi-core platform with distributed memory: one shared main
memory plus one private scratchpad memory (SPM) for each core. According to a predefined
distribution of tasks onto cores, the compiler generates a separate C code for each core. The
main advantage of this approach is to simplify the development process, by automating the
translation from the high-level specification in Prelude to the low-level implementation in C. In
particular, concerns related to task communications become the responsibility of the compiler.

3.1.2. Model

First, we define the considered hardware and software model.

3.1.2.1. Distributed memory

We consider a multi-core hardware architecture with distributed memory. Each core ρi has
access to a global shared memory denotedMG and to a private scratchpad memory denoted
Mi . We assume a static allocation of code and data to SPMs. Compared to a cache-based
architecture, in our case distributed memory is apparent in the program code (local memory
is explicitly addressable). Thus, memory transfers between private and global memories are
handled by the Prelude compiler. This implies more predictable memory accesses without

26

3.1. Implementation on multi-core with distributed memory

Phase Dependency
EA

RA τA → τC
EB

RB τB → τC
AC τB → τC , τA → τC
EC τC → τD
ED τC → τD

Table 3.2.: Phases and related data-dependencies

overburdening the programmer.

3.1.2.2. Multi-phase tasks

The translation of the Prelude program into a set of real-time tasks remains unchanged compared
to previous works. Here, we consider a task set as the starting point for the code generation
(for readers unfamiliar with the definition of a real-time task set, see Section 2.2 for more
details). Following the AER model of [Dur+14], each task τi is divided into three phases. In
the Acquisition phase (Ai), data is copied fromMG intoMi. The Execution phase (Ei) then
executes using onlyMi. Finally, in the Restitution phase (Ri), the results of the Execution
phase are copied back fromMi intoMG. In our implementation, not all tasks have A and E
and R phases. Tasks without incoming data-dependencies, have no A-phase. Tasks without
outgoing data-dependencies have no R-phase. Similarly, A/R phases are removed when all
predecessors/successors are located on the same processor.

Figure 3.1 shows a simple example, that will be used as an illustration in further sections. The
program consists of four tasks/nodes (τA, τB, τC , τD) distributed on two processors (ρ0, ρ1). The
program is multi-periodic (periods 5, 6, 10). Phases and the data-dependencies they implement
are depicted in Table 3.2. For instance, τC copies both its inputs during AC . Since τC and τD
are colocated (i.e. located on the same core), their data-dependencies are directly handled by
EC and ED . In this example, none of the tasks have three phases.

A

B
C D

ρ1, T=5

ρ1, T=6

ρ0, T=10 ρ0, T=5

Figure 3.1.: Running example

3.1.3. Code generation

Figure 3.2 details the files involved in the production of an executable for a Prelude program.
The Prelude program is compiled into one C file per core and one C file for the global memory
MG. The code of each core contains one function per phase allocated to that core, and related
communication and synchronisation code (see Figure 3.3 for instance). TheMG code contains

27

3. Programming real-time systems with Prelude

data shared for inter-core communication purposes. In addition, the C application contains
some code that is not generated by Prelude: 1) for each task, a user-provided imported function,
to be executed during the corresponding E-phase; 2) the OS specific code that integrates the
generated files into the final application. The compilation of the C code produces one binary
per core ρi, to be stored inMi, which contains the instructions and local data of ρi. Shared
communication data is stored intoMG.

Prelude program

Generated
files (C)

Generated
files (C)

Generated
files (C)

ρ0
ρ1
. . .

OS +
integration (C)

Imported
functions (C)
Imported

functions (C)
Imported

functions (C)

ρ0
ρ1
. . .

BinariesBinariesBinariesρ0
ρ1
. . .

Figure 3.2.: Files involved in the production of the executable code

So as to illustrate the structure of the generated code, Figure 3.3 details the code generated
for tasks τA, τC . For each input or output of each task, the compiler allocates a working variable
inMi that is only accessed by the phases of that task (variables suffixed by _loc or _out). It
allocates a communication buffer for each τi → τj (variables suffixed by _buff). If τi and τj are
located on the same core, the buffer resides inMi (e.g. C_D_buff inM0), otherwise it resides
inMG (e.g. A_C_buff).

In the E-phase code, the call to the imported function only operates on working variables (e.g.
Line 16). Before this call, we copy input data from communication buffers into working variables.
After this call, we copy output data from working variables into communication buffers. For
intra-core communications, these copies are directly performed by the E-phase (Line 17). For
inter-core communications, they are performed by the A/R-phases (Lines 7 Column 1, and
8 Column 2). We use the OS-specific functions read_val and wrive_val to perform copies
betweenMi andMG.

1 // core 0

2 void C_A() {

3 wait_sem(sem_A_C);

4 if (must_wait_B_C())

5 wait_sem(sem_B_C);

6
7 a_loc = read_val(A_C_buff, A_C_idx);

8 b_loc = read_val(B_C_buff, B_C_idx);

9
10 A_C_idx += 1;

11 if (must_change_B_C())

12 B_C_idx += 1;

13 }

14
15 void C_E() {

16 c_out = C(a_loc, b_loc);

17 C_D_buff = c_out;

18 post_sem(sem_C_D);

19 }

// core 1

void A_E() {

a_loc = A();

}

void A_R() {

if (must_write_A_C())

write_val(A_C_buff, a_loc);

if (must_post_A_C())

post_sem(sem_A_C);

}

Figure 3.3.: C code for τA and τC

28

3.1. Implementation on multi-core with distributed memory

Table 3.3.: Size of memories for the experiments
Memory (SPM architecture) Size

Data SPM ρ0: 5kB, ρ1: 4kB
Instruction SPM ρ0: 12kB, ρ1: 8kB

Main 2kB
Memory (cache architecture) Size

Data cache 2kB
Instruction cache 4kB

Main 29kB

We do not detail here how the Prelude compiler generates the code of the inter-task commu-
nication protocols depending on the rate transition operators involved. It remains as detailed
in [For09]. To summarize, during that step the compiler determines for each τi → τj :

• The size of the communication buffer i_j_buff (e.g. C_D_buff has size 2);

• A function must_change_i_j, which tells when to change the cell of i_j_buff jobs of
τj read from (e.g. must_change_C_D always returns true);

• A function must_write_i_j, which tells for each job of τi whether it must write in
i_j_buff or not (e.g. must_write_A_C alternates between true and false, meaning that
only one out of two successive jobs of τA writes in the buffer);

• A function must_wait_i_j, which tells if τj must wait on the communication semaphore;

• A function must_post_i_j, which tells if τi must post on the communication semaphore.

3.1.4. Comparing memory architectures

The original code generation of Prelude, implemented during my Ph.D. thesis, targets an
architecture with centralized memory. As a consequence, we can now use the Prelude compiler,
with its new distributed code generation target, to compare the performance of an application
on a hardware platform with centralized memory against the same platform with distributed
memory instead.
In order to allow the comparison between different hardware architectures, we rely on an

FPGA development board, a Cyclone III by Altera with two NIOS-II softcores, depicted in
Figure 3.4. The data and instruction ports connect the cores to the Avalon Interconnect Fabric,
a crossbar which serves as a hub to access shared resources of the board. Each core has access
to a tightly-coupled memory for data and to another for instructions. These memories serve as
scratchpad memories (Mi). Processors share access to an on-chip shared RAM (MG). Finally,
processors are also connected through the Avalon to an on-chip mutex (used to implement
semaphores), on-board IOs and timers.
In addition to the scratchpad architecture we just detailed, we implement a cache-based

architecture on the FPGA. It features a cache for each core, with access performances similar
to the scratchpads. The FPGA has tight space limitations, its memory sizes are reported in
Table 3.3. Space reserved for SPM in the scratchpad-based architecture is instead reserved for
the main memory in the cache-based architecture.

29

3. Programming real-time systems with Prelude

NIOS
CPU 0

Instr.
scratchpad 0

Data
scratchpad 0

NIOS
CPU 1

Instr.
scratchpad 1

Data
scratchpad 1

Avalon Interconnect Fabric

Timers
CPU 0

Timers
CPU 1 Shared RAM Mutex

IO

Figure 3.4.: The hardware design.

We perform experiments on the Rosace case study [Pag+14]. We compare the different
hardware architectures through the response time of each task of Rosace. Figure 3.5 shows
the speedup of PREM code on the SPM-based architecture with respect to non-PREM on the
cache-based architecture (e.g. speedup of 2means that SPM+PREM is twice as fast as cache+non-
PREM). We provide results for different RAM clock speeds: either the same as the global clock
(red), 4 times slower (green) or 8 times slower (blue, which corresponds to observed latencies
on an external SRAM on similar boards). We provide mean results for 20 executions for each
configuration (variance is very low).

The observed speedup is proportional to the RAM clock. When the shared RAM is the slowest,
the average speedup is 6.29 with a standard deviation of 2.19. When the shared RAM has the
same clock as the global clock, the SPM implementation barely outperforms the cache one. The
average speedup is 1.09 with a standard deviation of 0.31.

30

3.1. Implementation on multi-core with distributed memory

2 4 6 8 10 12

engine

delta_th_c

delta_e_c

Va_control_25

Vz_control_25

aircraft_dynamics

Vz_filter

Va_filter

altitude_hold

Va_c

h_c

h_filter

q_filter

az_filter

elevator

Same clock
Clock divided by 4
Clock divided by 8

Figure 3.5.: Observed speedup (higher is better)

3.1.5. Related works

Before our publications The majority of works on PREM task models concerns schedu-
lability analysis [Yao+12; AP14a; AP14b; WP14; AWP15; Mel+15; Bec+16; Yao+16; Mai+16;
Mai+17; RDP17]. Schedulability analysis is out of the scope of our work, instead we focus on
code generation.
Other works have focused on the development of PREM-compliant applications. OS-level

support or hardware drivers for the execution of PREM tasks have been proposed in [WP13;
Cap+17; Tab+16; Tab+17]. Automated production of PREM-compliant code has also been
considered, by C-code refactoring in [MDC14; Mat+18], by compilation from C-code [SP17],
also for a hardware target with GPU kernels [FBM18].
Our work is orthogonal to these approaches, in that we start from a high-abstraction syn-

chronous language, which naturally fits with the hypotheses of the PREM model. Compilation
of synchronous languages for distributed hardware platforms was studied in [ALGM96; GLS99;
GNP06], but with a single execution thread per CPU. Compilation into multi-thread/multi-task
code was proposed for control-flow synchronous languages in [YYR11; Yip+16] and for Scade
in [Pag+18a].

After our publications The analysis and implementation of PREM-compliant applications
remains an active topic. For instance, compilation from a high-level language into PREM-

31

3. Programming real-time systems with Prelude

compliant code has recently been studied for SCADE in [Sch+20], and for ForeC in [HGJ19].

3.1.6. Conclusion

The main highlights concerning this work are listed below:

• A first version of the multi-phase code generation, with off-line scheduling, was presented
at the RTNS’18 conference [Pag+18b];

• The multi-phase code generation was then adapted for execution with an on-line sched-
uler and validated on a real hardware architecture, as presented at the RTCSA’19 confer-
ence [FF19];

• This work was a collaboration with a colleague from Onera (Claire Pagetti);

• This work was the main topic of the internship of Frédéric Fort (03/2018-08/2018), which
I supervised.

3.2. Partial delays specification

Prelude ensures, through the language structure and the compiler static analyses, that the
program semantics, and in particular the semantics of data-communications, are completely
deterministic. While this improves the reliability of critical systems, this also requires the
system developer to design a completely deterministic program, which can be difficult for large
systems. In some cases, the developed system is such that its specification can support some
degree of freedomwithout jeopardizing its reliability. Thus, requiring a completely deterministic
specification can actually lead to overspecification, in the sense that the developer has to make
arbitrary choices to fulfill the determinism requirement.

We proposed to extend Prelude to support incomplete specifications. The designer can specify
that some communications can either be immediate or delayed. It is then up to the compiler
to choose where to introduce delays in the program, in a way that breaks causality cycles and
satisfies some specified latency requirements.

3.2.1. Motivating example

Let us consider the simplified mono-periodic Flight Control System depicted in the Figure 3.6.
Its objective is to control the position, speed and attitude of the vehicle through its control
surfaces. The right part of the figure depicts the control of the ailerons, while the left part
depicts the control of the elevators. Vertices depict computation nodes, while edges depict
data-communications between nodes. Plain edges stand for immediate communications, which
induce a precedence constraint from the data-producer to the data-consumer. Dashed arrows
stand for less constrained communications that do not induce precedence constraints.

32

3.2. Partial delays specification

a_orderAL

a_angleAAF

y_accYAF

LtLe_order EL

e_angle EAF

z_acc ZAF

LgL
o_a_angleo_e_angle

o_z_acc

r_e_angle

o_y_acc
GL

p_order

r_a_angle

lg_fb

r_lg_acc r_lt_acc

lt_fb

d1

d2

EL elevator law
EAF elevator angle filter
ZAF z acceleration filter
LgL longitudinal law

GL guidance law

AL aileron law
AAF aileron angle filter
YAF y acceleration filter
LtL lateral law

Figure 3.6.: A simplified flight control system

Variable a_angle corresponds to the current angle of the aileron and is acquired by node
AAF (Aileron angle filter). This node consolidates the data and sends its output o_a_angle
(the observed angle) to the function AL (Aileron law). AL controls the aileron and maintains
the required angle r_a_angle. According to the observed angle and the required angle, it
sends an order a_order that enables to reach safely the required angle. Thus, the command
of the aileron surface is implemented by the computation path L1 = a_angle→ o_a_angle

→ a_order. We use the term functional chain for such a computation path that starts with a
sensor acquisition and ends with an actuator order. L1 corresponds to the discretisation of a
command law and communications must all be immediate for the computation to be correct.
The elevator law behaves similarly.

The control laws of the ailerons and of the elevators communicate through the nodes LtL and
LgL, to ensure that the orders sent to the different actuators (ailerons and elevators) are consistent.
This consolidation step does not require strict synchronization between the two control laws,
a function can compute using data produced by another node during the previous reaction
instead of the current reaction (delayed communication). Still, the comparison and consolidation
must be done on sufficiently “fresh” data, thus the number of delayed communications that
the functional chain L2 = z_acc→ o_z_acc→ d2→ r_a_angle→ a_order can tolerate is
upper-bounded by a maximum latency constraint.
The guidance law (GL), computes the acceleration to apply in order to reach the position

p_order ordered by the pilot. This corresponds to the chain L3 = p_order→ r_lt_acc→
r_a_angle→ a_order. Again, this law is loosely coupled with the other laws and communi-
cations between them can be delayed. Note also that inter-law communications form cycles,
for instance r_lg_acc→ lg_fb. Thus, at least one communication per cycle must be delayed
to ensure that the program remains causal, otherwise we cannot find an execution order that
satisfies all the precedence constraints induced by immediate communications.
To summarize, some communications can be implemented as either immediate or delayed

communications. At the same time, the number of delayed communications in a functional chain
is upper-bounded by maximum latency constraints, and lower-bounded by causality constraints.
Our extension consists in allowing the programmer to specify that some communications can be
either immediate or delayed, and ensuring by compilation that latency constraints and causality
constraints are met.

3.2.2. Incomplete program specification

Prelude is extended with a new operator denoted dc (for “don’t care”) to specify communi-
cations that are allowed to be either immediate or delayed. We call such communications

33

3. Programming real-time systems with Prelude

dc-communications. We also enable the specification of maximum latency constraints. This
work only supports the use of operator dc in monoperiodic systems, so latencies are expressed
as a number of reactions. The language syntax is reduced to the following:

vars ::= id | vars, id
e ::= cst | id | (e, e) | cst fby e | id(e) | cst dc e
eqs ::= vars = e; | eqs∗
topDecl ::= node id(vars)(vars) [var vars;] let eqs tel

| imported node id(vars) returns (vars) wcet n;
| req (vars) < k

prog ::= decl∗

Example 3.2.1. We illustrate this syntax with the following program, corresponding to the
example of Figure 3.6.

req (z_acc, o_z_acc, d2, dc2, r_a_angle, a_order) < 1; --L2

req (p_order, r_lt_acc, dc6, r_a_angle, a_order) < 4; --L3

node FCS_dc(a_angle, y_acc, e_angle, z_acc, p_order)

returns (a_order, e_order)

var o_e_angle, o_a_angle, r_a_angle, o_y_acc, r_e_angle, o_z_acc,

lg_fb, r_lg_acc, d1, d2, r_lt_acc, lt_fb, dc1, dc2, dc3, dc4,

dc5, dc6;

let

o_a_angle = AAF(a_angle);

o_z_acc = ZAF(z_acc);

o_z_acc = ZAF(z_acc);

o_y_acc = YAF(y_acc);

o_e_angle = EAF(e_angle);

(lg_fb, d2, r_e_angle) = LgL(dc1, o_z_acc, dc4);

(r_a_angle, lt_fb, d1) = LtL(dc2, o_y_acc, dc6);

(r_lt_acc, r_lg_acc) = GL(dc3, dc5, p_order);

a_order = AL(o_a_angle,r_a_angle);

e_order = EL(r_e_angle, o_e_angle);

dc1 = 0 dc d1; dc2 = 0 dc d2;

dc3 = 1 dc lt_fb; dc4 = 0 dc r_lg_acc;

dc5 = 1 dc lg_fb; dc6 = 0 dc r_lt_acc;

tel

The program first specifies maximum latency constraints on two functional chains (L2,
L3). Then, the node FCS_dc assembles all the nodes of the different laws. For immediate
communications (plain edges in Figure 3.6), the data-consumer directly takes as input the output
of the data-producer. For dc-communications (dashed edges in Figure 3.6), we apply operator
dc on the output of the data-producer before feeding it to the data-consumer.

In this work we extend the Prelude compiler so that it performs a source-to-source trans-
formation that replaces each dc operator either by fby or by the identity (i.e. removes the dc

34

3.2. Partial delays specification

operator). First, we formalize the behaviour of operator dc using a non-deterministic semantics.
Since the language is monoperiodic and contains no sampling operators, we do not consider
clocks in this semantics and represent flows as sequences of values. Given a set of values V and
a set of values E in V∗, let E.s denote the flow whose head is non-deterministically chosen
among the values in E and whose tail is s. We abusively denote v.s instead of {v}.s when clear
from context. We let

∏n
i=1Ei = E1 × . . . × En denote the Cartesian product of the sets Ei.

We also define:
< E1.s1| . . . |En.sn >= ∪1≤i≤nEi. < s1| . . . |sn >

The semantics of flow expressions is as follows:

cst# = cst.cst#

op#(E1.s1, . . . , Em.sm) = ∪t∈(∏m
i=1 Ei){opf (t)}.op

#(s1, . . . , sm)

fby #(cst, s) = cst.s#

dc #(cst, s) =< fby #(cst, s)|s# >

Example 3.2.2. We detail the set of values that can be produced at each reaction of the following
program (node plus simply sums its inputs).

imported node plus (i1,i2) returns (o);

node ex (i) returns (o)

var v1, v2;

let

v1 = 0 dc i;

v2 = 1 fby v1;

o = plus(v1, v2);

tel

i 5 3 7 . . .
v1 {0, 5} {5, 3} {3, 7}
v2 {1} {0, 5} {5, 3}
o {1, 6} {3, 5, 8, 10} {6, 8, 10, 12}

3.2.3. Program concretisation

Program concretisation is the compilation step that translates a program with dc operators into
a program without. This amounts to choosing one behaviour among the different possible ones
specified by the program non-deterministic semantics, effectively producing a deterministic
program.

Definition 3.2.1. A program is concrete if and only if it contains no dc operators. Otherwise it
is abstract.

Let a denote an abstract program. Let dc(a) = {dc1, . . . , dcn} denote the set of dc op-
erators in a ordered by appearance in the program text. Let c = (dci 7→ op)a, denote
the program resulting from the substitution of dci by op in a (with op ∈ { fby , id}). Let
(dc1 7→ op1, . . . , dcj 7→ opj)a, denote the composition of program substitutions (with dc1, . . . ,
dcj in dc (a)).

35

3. Programming real-time systems with Prelude

Definition 3.2.2. Let c be a concrete program and a be an abstract program such that dc (a) =
{dc1, . . . , dcn}. We say that c is an instance of a iff there exists a set of substitutions dc1 7→
op1, ..., dcn 7→ opn such that:

p = (dc1 7→ op1, ..., dcn 7→ opn)a

In the following, a[b1, . . . , bn] denotes the instance p = (sub1, . . . , subn)a such that:{
subi = dci 7→ id if bi = 0

subi = dci 7→ fby otherwise

Example 3.2.3. The abstract program of Example 3.2.2 has two instances ex0 = ex[0], ex1 =
ex[1], shown below.

node ex0 (i) returns (o)

var v1, v2;

let

v1 = i;

v2 = 1 fby v1;

o = plus(v1, v2);

tel

node ex1 (i) returns (o)

var v1, v2;

let

v1 = 0 fby i;

v2 = 1 fby v1;

o = plus(v1, v2);

tel

Let x 0←− x′ denote that the variable x′ immediately depends on the variable x. Let x 1←− x′

denote a delayed dependency. The latency of a functional chain corresponds to the number of
delayed dependencies in the chain:

Definition 3.2.3. Let c be a concrete program. Let C = (x1, . . . , xn) be a functional chain of c.
The latency of C in c is denoted Latc(C) and computed inductively as follows:

Latc(x1, . . . , xn) =

{
1 + Latsys(x1, . . . , xn−1) if xn−1

1←− xn

Latsys(x1, . . . , xn−1) if xn−1
0←− xn

Latc(x) = 0

Example 3.2.4. In Example 3.2.3, considering C = (i, v1, v2, o), we have Latex0(C) = 1 and
Latex1(C) = 2.

Definition 3.2.4. A program is considered to be a valid instance of an abstract program iff:

• It respects the latency requirements specified in the abstract program;

36

3.2. Partial delays specification

• It is causal.

The problem of finding a valid instance for an abstract program amounts to a pseudo-
Boolean problem, which we solve using SAT4J [LBP10]. Let a be an abstract program, and
c = a[b1, . . . , bn] be an instance of a. For any functional chain C of a, letB(C) denote the subset
of b1, . . . , bn corresponding to the dc operators involved in C. Then, finding a valid instance c
for a amounts to finding a solution to the following pseudo-Boolean constraints:

• For any requirement Lata(C) < k, we must have:

(
∑

bi∈B(C)

bi) < k − Lata(C)

• For any cycle C in the data-dependencies of a (which can be enumerated using classic
graph algorithms such as [Tar73]), we must have:

(
∑

bi∈B(C)

bi) + Lata(C) > 0

Example 3.2.5. The abstract program for the Flight Control System in Example 3.2.1 has four
valid instances, FCS_dc[101111], FCS_dc[101011], FCS_dc[101010], FCS_dc[101101].

Experiments showed that the resolution scales to large programs. For an avionic application
with 3994 imported nodes, 16186 variables, and 2000 latency requirements, it take less than 25s.

3.2.4. Related works

Before our publications In software architecture description languages such as AADL
[FGH06],Marte [OMG07] or SysML [OMG10], communication patterns can be either immediate
or delayed, but not undeterministic.
Undeterministic communication operators have been considered for Simulink3, and also

in other synchronous languages [MH96], but compilation is out-of-scope of these works. An
important specificity of our work is that even though the initial specification is undeterministic,
it is then translated into a deterministic one.

After our publications In [Ioo+20] authors use a fby? operator, that has the same semantics
as the dc operator, and that is also later translated into a deterministic communication. Their
objective is to balance the load of a synchronous program over a multi-periodic real-time
schedule.

3.2.5. Conclusion

The main highlights concerning this work are listed below:

• This work was published at the APLAS’12 conference [Wys+12];

• This work is a collaboration with colleagues from Onera Toulouse (Frédéric Boniol, Claire
Pagetti, Rémy Wyss).

3https://www.mathworks.com/help/simulink/slref/ratetransition.html

37

https://www.mathworks.com/help/simulink/slref/ ratetransition.html

3. Programming real-time systems with Prelude

3.3. Multi-mode multi-periodic systems

In this work, we are interested in the programming of real-time applications that exhibit a multi-
moded behaviour. In such a system, each mode produces a different behaviour, characterised
by a different set of tasks to execute. For instance, the behaviour of an aircraft control can
be decomposed into take-off, cruise, and landing modes. Synchronous State Machines (SSM)
have been proposed in [CPP05] as a way to program multi-moded systems with Synchronous
Languages. The purpose of this work is to extend Prelude with SSM.

3.3.1. Motivating example

As a motivating example, Figure 3.7 presents the implementation of the control software of an
Unmanned Aerial Vehicle (UAV) based on [KS03; HHK03]. The system perceives its environment
via a GPS and an Inertial Navigation System (INS). In addition, it receives via a wireless
communication an enabling signal specifying in which mode it shall execute (isEnabled) and
a destination point (waypoint). The system actuates via servo motors. The application has two
modes. In the Estimate mode, the UAV preserves its previous course and measurements serve
only to update the UAV position. In the Actuate mode, the UAV computes orders for the servo
motors so as to reach the current waypoint.

Figure 3.7 shows the corresponding program written using SSM with Prelude. Recall that
node execution rates are determined by the rate of their inputs. So, for instance control has
period 10, while servo_driver has period 20, even though both nodes are executed within
the same mode Actuate. The SSM semantics requires the two modes to compute the same
set of non-local flows (pos and servos). The automaton switches from mode Estimate to
mode Actuate when expression isEnabled is true, and from Actuate to Estimate when
not isEnabled is true. In other words, Mode Change Requests (MCR) are emitted at rate
(10, 0).

Because flows and transitions are multi-periodic, not all flows should react to MCRs at the
same rate. For instance, if at instant 10 the automaton is in state Estimate and isEnabled

evaluates to true, most of the dataflows will immediately become computed according to
equations of state Actuate. The only exception is servos, which will still be computed by its
equation in state Actuate, until time 20 (non-included).

Figure 3.8 shows an excerpt of the automaton transpilation, which replaces automata con-
structs by the usual when and merge synchronous operators (see [CPP05] for details on the
transpilation process). Flow state_X is true when the automaton is in stateX . Flow servos_X

defines the value of servos when the automaton is in state X . The output flow servos is
obtained by merging the flows that define its values in the two automaton states (flow pos is
computed similarly).

38

3.3. Multi-mode multi-periodic systems

node main(GPS: GPSMessage rate(10,0); INS : INSMessage rate(10,0);

isEnabled: bool rate(10,0); waypoint: real[4] rate(10,0))

returns(servos: ServoMessage)

var pos;

let

automaton

| Estimate ->

unless isEnabled then Actuate;

var GPS_f, INS_f, pos_f;

GPS_f,INS_f,pos_f = h_f(GPS,INS, init_pos fby* pos);

pos = filter(GPS_f, INS_f, pos_f);

servos = init_servos fby* servos;

| Actuate ->

unless not isEnabled then Estimate;

var GPS_c, INS_c, pos_c, waypoint_c, controls;

GPS_c,INS_c,pos_c,waypoint_c =

h_c(GPS, INS, init_pos fby* pos, waypoint);

pos,controls = control(GPS_c,INS_c, pos_c,waypoint_c);

servos = servo_driver(controls/^2);

end

tel

Figure 3.7.: A multi-mode synchronous automaton

...

prev_state = Estimate fby state;

state = merge(prev_state, Estimate->s_Estimate, Actuate->s_Actuate);

s_Estimate =

if isEnabled when Estimate(state) then Actuate

else Estimate;

s_Actuate =

if not (isEnabled when Actuate(state)) then Estimate

else Actuate;

servos = merge(state, Estimate->servos_Estimate,

Actuate->servos_Actuate);

servos_Estimate = (init_servos fby servos) when Estimate(state);

servos_Actuate = servo_driver(controls/^2);

...

Figure 3.8.: Automaton transpilation excerpt

39

3. Programming real-time systems with Prelude

3.3.2. Language extension

In the state machines of [CPP05], all flows within a state must have the same rate, i.e. only
mono-rate states are allowed. Our objective is to transpose state machines to Prelude, and
in doing so to extend them to support programs with multi-rate states. We rely on the same
transpilation process as [CPP05] to translate automata constructs. Our work focuses on the
extension of the semantics and clock calculus of operators when and merge.
We want to extend the definition of the clock operator ck on C(c) to allow ck and c to

have different periods. To this intent, we introduce the concept of clock views. The clock
ck on C(c, w) denotes the clock ck sub-sampled on condition c, such that it produces tags only
if c, perceived according to view w, is equal to C . A view is a clock that specifies the rate at
which the condition is observed. The semantics of the on operator with views is defined as
follows.

(ck on C(c, (n, p)))# = {t | t ∈ ck#, ∃(C, t′) ∈ c#, t′ mod n = p, t′ ≤ t < t′ + n}

Consider for instance the clock (2, 0) on true(c, (6, 0)) depicted in Figure 3.9. The clock first
produces tags 0, 2 and 4 because c is true at date 0. The fact that c is false at date 3 is ignored
because the view (6, 0) considers c only at tags that are multiples of 6. The next tag produced
by the clock is 18, because at dates 6 and 12 c is false, and values of c at instants 9 and 15 are
ignored. The figure shows that changing the view, for instance clock (2, 0) on true(c, (12, 0)),
produces a different set of tags.
Formally, the semantics of Prelude flow operators remains exactly that presented for the

core language in Figure 2.6, we just extend the semantics of the on clock operator. As shown
in Figure 3.9, x when C(c,w) filters x on the clock x̂ on C(c, w) (only the introduction of the
clock view is new here), while the merge still merges flows with complementary clocks.

(3, 0)

c
T F F T F T T

(2, 0) on true(c, (6, 0))

(2, 0) on true(c, (12, 0))

x (2, 0)
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

x' = x when true(c,(6,0))
x0 x1 x2 x9

y' ((2, 0) on false(c, (6, 0)))
y3 y4 y5 y6 y7 y8

merge(c,x',y')
x0 x1 x2 y3 y4 y5 y6 y7 y8 x9

Figure 3.9.: Clocks and clock views

Clock views play a key role in the implementation of mode changes. A Mode Change Request

40

3.3. Multi-mode multi-periodic systems

(MCR) is an event that triggers a mode change. In our case, MCRs are emitted by automata
transitions. Let us illustrate the relation between the triggering of a transition, the automaton
state, and clock views, on the example of Figure 3.8. The automaton state is defined by the
variable state, which has clock (10, 0). Outgoing transition conditions of state S (either
Estimate or Actuate) have clock (10, 0) on S(state, (10, 0)). Thus a MCRs may arrive each
10 time units. A MCR instantly updates the value of the variable state. However this state
change is observed by tasks depending on their view. The Mode Change Promptness (MCP)
is the amount of time a task requires to react to a MCR. In our work, views allow to reason
about the MCP of tasks. For instance, task control in Figure 3.7 has view (10, 0) while task
servo_driver has view (20, 0). Task control will respond to a change of state immediately,
while servo_driver can in some cases respond with a delay of 10 time units. Thus, views
provide an upper-bound to task worst-case Mode Change Promptness.

3.3.3. Clock calculus

In order to support our extended on clock operator, we define a clock calculus based on
refinement typing [FP91]. In a refinement typing system, types may be ascribed with predicates.
For instance (/) would have type a:int→ b:{ν:int | ν ̸= 0} → {ν:int | ν = a/b}, meaning
“a function taking an argument a of type int and an argument b of type int whose value is not
equal to 0, returning an int whose value is equal to a/b”. In our clock calculus, we use linear
integer arithmetic predicates and rely on the Z3 SMT solver [DMB08] to check the satisfiability
of these predicates.

The refinement typing process is divided into two passes. In the first pass, only the structure
of types is inferred. This pass is very similar to classic Hindley-Milner typing, except that types
are annotated with refinement holes, i.e. refinement placeholders. In the second pass, refinement
holes are replaced by actual type refinements. Inference rules use bi-directional typing [DK21].
Synthesis judgements H ⊢ e ⇒ t mean that in environment H , the type t is associated to
expression e. Checking judgements H ⊢ e⇐ t′ mean that in environmentH , the type t′ is valid
for expression e (even though e might be associated to a different type t). This is usually done
by first producing a judgement H ⊢ e ⇒ t and then verifying the subtyping relation t′ <: t.
The subtyping relation is defined as follows.

Definition 3.3.1. {ν:t | r0} <: {ν:t | r1} ⇔ ∀ν : t. r0 =⇒ r1

3.3.3.1. Clock system

The structure of the clock types of the Prelude clock calculus is shown below. A clock cal-
culus environment H maps variables of the program to their clock types. In addition to the
classic functional (x:ckr → cke) and product clock types (cke × cke), we have refined clocks
({ν:ckc | r}). Note that refinements are not entirely within the logic of linear arithmetic due
to divisibility constraints. We will show in Section 3.3.3.3 how we can reduce this non-linear
problem to a linear one. The type pck is the type for all periodic clocks.

41

3. Programming real-time systems with Prelude

H ::= ∅ | H;x:cke
cke ::= x:ckr → cke | cke × cke | ckr
ckr ::= {ν:ckc | r}
ckc ::= pck | ckb on c(C, ckr)

r ::= r ∧ r | p = a | a div p | p ≥ a | true
p ::= π(ν) | φ(ν)
a ::= k | π(x) | φ(x) | a+ a | a− a | a ∗ k | a/k

x : Identifier k : Constant

Refinement types tend to be quite verbose, thus in the following we use {ν:ckc | ⟨n, p⟩ ∧ r}
as a shorthand for the clock type {ν:α | (π(ν) = n) ∧ (φ(ν) = p) ∧ r}.

3.3.3.2. Clock inference

During the first pass of the clock calculus, namely the Structural Clock Calculus, the structure of
types is inferred, yielding types where refinements are unknown and represented by refinement

holes (denoted ⋆ below).

Example 3.3.1. Consider the following two equations:

x = i when c;

y = x *^ 2;

Assume that the environment contains the following bindings:

H(i) = {ν:pck | ⋆0}
H(c) = {ν:pck | ⋆1}

The structural clock calculus produces the judgements below. Note how the inferred clocks
only represent the global clock structures, only stating that both expressions involve the same
clock condition. The relation between the periods and the phases of the different clocks are
unspecified. They will only be introduced by the next pass of the clock calculus (refinement
clock calculus).

H ⊢ i when c
S⇒ {ν:pck on true(c, {ν:pck | ⋆2}) | ⋆3}

H ⊢ x *^ 2
S⇒ {ν:pck on true(c, {ν:pck | ⋆4}) | ⋆5}

In the Refinement Clock Calculus pass, type refinements are inferred in place of refinement
holes. Figure 3.10 details the corresponding inference rules. Rule Var states that the clock type
of variables can be accessed from the environment. Rule Cst states that constants may have any
clock type. The rule Appl infers a clock for the function and its argument. Then it verifies that
the argument clock is a subtype of the expected clock. The clock of the function application is
the output clock of the function where the placeholder name (x) has been substituted by the
actual (a) within refinements.

42

3.3. Multi-mode multi-periodic systems

Var
H;x:σ ⊢ x⇒σ

Cst
H ⊢ c⇒σ

Appl
H ⊢ f⇒x:ckc → cke H ⊢ a⇐ckc

H ⊢ f(a)⇒cke[x := a]

Figure 3.10.: Inference rules of the refinement clock calculus

The initial environment of the refinement clock calculus provides the (functional) clock type
of each operator of the language. Thus, it details the constraints, expressed in terms of clock
refinements, relating the clocks of its inputs and outputs. Most notably, it defines the constraints
relating their periods and offsets, and also the constraints on their views. For instance, the type
for the when operator is detailed below. It takes an argument e of any clock and an argument c
with offset equal to e but arbitrary period because n is free. It returns a clock with period and
offset equal to e but which is only present when c perceived along view w equals C . View w
has an offset equal to the offset of e and a period that is divisible by the periods of e and c. Note
that there is no unique solution for the period of the view. The clock calculus will choose this
period during the view closing phase.

when : ∀α.e:{ν:α | true} → c:{ν:α | ⟨n, φ(e)⟩} → {ν:α on C(c, w) | ⟨π(e), φ(e)⟩}
where w = {ν:pck | ⟨n′, φ(e)⟩ ∧ π(e) div π(ν) ∧ π(c) div π(ν)}

Example 3.3.2. Consider the equations of Example 3.3.1. The type structures have already
been inferred, now we need to add the refinements. The clock environment now contains
information on clock periods and offsets (obtained from the input declarations in the program):

H(i) = {ν:pck | ⟨20, 0⟩}
H(c) = {ν:pck | ⟨10, 0⟩}

We obtain the judgement below for the first equation. The expression has the same period
and phase as i. However, there is no unique solution for the period n of the view w, we only
know that it must be divisible by both π(i) and π(c). The period will be obtained in the final
step of the clock calculus (view closing).

H ⊢ i when c
S⇒ {ν:pck on true(c, w) | ⟨π(i), φ(i)⟩}

w = {ν:pck | ⟨n, φ(i)⟩ ∧ π(i) div π(ν) ∧ π(c) div π(ν)}

We obtain the judgement below for the second equation. Note how operator *^ modifies the
period of the output (π(x)/2), but the period of the view remains unchanged. Intuitively, an
expression cannot view a clock condition faster than its sub-expressions.

H ⊢ x *^ 2⇒{ν:pck on true(c, w′) | ⟨π(x)/2, φ(x)⟩}
w′ = {ν:pck | ⟨π(w), φ(w)⟩}

43

3. Programming real-time systems with Prelude

3.3.3.3. View closing

Constraints of the form π(i) div π(ν) are nonlinear. However, these constraints only appear
within refinements of views and can be simplified to linear ones as follows. First, as an additional
constraint to the clock calculus, we impose that all user-defined node inputs must have rate
annotations, and that the clocks of all expressions and variables must derive from the clocks of
the node inputs (except for constants, which must have explicit clock annotations). Then, it
can be verified that the structure of the inference rules of the refinement clock calculus along
with the previously mentioned assumptions guarantee that the dependencies between view
refinements form a forest where each root of the forest is a view with decidable constraints.
Therefore, we can close views (i.e. compute their periods and offsets) by a breadth-first traversal
of the forest. At each step, we propagate previously computed periods and offsets, removing
nonlinearity from the unclosed views. The solver is then responsible for finding the lowest
possible period and offset.

Example 3.3.3. Example 3.3.2 introduced the following views:

w = {ν:pck | ⟨n, φ(i)⟩ ∧ π(i) div π(ν) ∧ π(c) div π(ν)}
w′ = {ν:pck | ⟨π(w), φ(w)⟩}

Propagating constants from the typing environment yields the following clocks, with decidable
constraints. Clock solutions are provided on the right:

w = {ν:pck | ⟨n, 0⟩ ∧ 20 div π(ν) ∧ 10 div π(ν)} ⇒ {ν:pck | ⟨20, 0⟩}
w′ = {ν:pck | ⟨π(w), φ(w)⟩} ⇒ {ν:pck | ⟨20, 0⟩}

3.3.4. Evaluation

The implementation of the new clock calculus in the Prelude compiler represents around 1500
new lines of OCaml code. Compared to the previous clock calculus (as defined in [For+08]), the
new clock calculus incurs a noticeable but still very reasonable overhead in compilation time.
For instance, the compilation time of the ROSACE case study [Pag+14] increases from 10ms to
50ms (including the constraints resolution time of Z3).

3.3.5. Related works

Mode change protocols have been studied extensively by the real-time scheduling community
(see [RC04] for a survey). However, these works focus on the timing analysis of the system, and
do not consider the semantics of the corresponding program.
As mentioned previously, synchronous state machines [CPP05; Tal+06] lack the ability to

specify real-time constraints. Many other languages provide constructs to specify multi-mode
applications. In the real-time domain, this includes AADL [Ber+08], Giotto [HHK03], and
Statecharts [Har87]. However, these languages opt for one specific mode change protocol, while
our language allows to specify which mode change protocol to use in a program.
Finally, clock calculus based on refinement typing was studied for Signal in [TJS15].

3.3.6. Conclusion

The main highlights concerning this work are listed below:

44

3.3. Multi-mode multi-periodic systems

• This work has been published at the SAC’22 conference [FF22];

• The extended clock calculus was implemented in the Prelude compiler;

• This work is pivotal in the ANR PRCE Corteva project4 (2018-2022, leader CRIStAL);

• This work is the main topic of the Ph.D. thesis of Frédéric Fort (10/2018-03/2022). The
thesis is advised by Giuseppe Lipari, tutored by myself, and funded by the ANR Corteva
project;

• Frédéric Fort currently has a post-doctoral position at IRT Saint-Exupery in Sophia
Antipolis.

4https://corteva.cristal.univ-lille.fr/

45

https://corteva.cristal.univ-lille.fr/

4. High-level timing analysis

This chapter summarizes my contributions to the timing analysis of multi-rate dependent tasks.
First, it summarizes my contributions on real-time scheduling (Section 4.1). After that, I present
my work on two other kinds of high-level timing analyses. First, the analysis of end-to-end
constraints is presented in Section 4.2. Second, Section 4.3 presents my work on task clustering,
that is to say techniques to reduce the number of tasks used to implement a system.

4.1. Real-time scheduling

When we started working on Prelude, the integration of the separate tasks into a complete
system often required to manually sequence the task set offline. The advent of reliable real-time
operating systems has enabled to replace the manual task sequencing by a multi-task imple-
mentation, where tasks are scheduled concurrently online by the operating system. However,
common real-time scheduling policies, namely RM, DM and EDF, do not support dependent
tasks as is. Therefore, the determinism of task communications was usually ensured manu-
ally by the programmers. For instance, the dependent tasks can first be ordered manually, by
sequencing them inside another larger grain task, then the operating system schedules this
partially “pre-scheduled” task set. This is unfortunately tedious and time consuming. The
purpose of our work was to investigate scheduling policies that directly support dependent
tasks.

4.1.1. Scheduling tasks with simple precedence constraints

In [CSB90], Chetto et al. proposed a technique to schedule dependent task sets with simple
precedence constraints on a uniprocessor hardware platform. They propose to encode precedence
constraints in the task real-time attributes. The encoding is defined as follows:

O∗
i = max(Oi, max

τj∈preds(τi)
(O∗

j)) (4.1)

D∗
i = min(Di, min

τj∈succs(τi)
(D∗

j − Cj)) (4.2)

Intuitively, a task must finish early enough for its successors to have sufficient time to complete
before their own deadline (Equation 4.2 defining D∗

i). In addition, we must ensure that a
task is not released before its predecessors (Equation 4.1 defining O∗

i). Authors proved that,
for fixed-job policies, the encoded task set is equivalent to the original task set in terms of
schedulability:

Theorem 4.1.1 (From [CSB90]). Let S = {τi(Oi, Ci, Di, Ti)} be a dependent task set with simple

precedence constraints. Let S∗ = {τ ′i(O∗
i , Ci, D

∗
i , Ti)} be a set of independent tasks such that O∗

i

and D∗
i are given by Equations 4.1, 4.2:

S is schedulable with a fixed-job priority scheduling policy if and only if S∗ is.

47

4. High-level timing analysis

As a corollary, since EDF is optimal in the class of fixed-job priority scheduling policies, S is
schedulable if and only if S∗ is schedulable with EDF. The encoding of the complete task set
proceeds by iterating the encoding process over a topological traversal of the precedence graph.
In [For+10], we extended this result to fixed-task scheduling policies. First, we proved that

the encoding-based method also works for tasks without offsets, when scheduled with DM.

Theorem 4.1.2. Let S = {τi(0, Ci, Di, Ti)} be a dependent task set with simple precedence

constraints. Let S∗ = {τ ′i(0, Ci, D
∗
i , Ti)} be a set of independent tasks such that D∗

i is given by

Equation 4.2:

S is schedulable with a fixed-task priority scheduling policy if and only if S∗ is schedulable with
DM.

For tasks with offsets, DM is not an optimal scheduling policy (even without precedence
constraints). Instead, we adapt Audsley’s scheduling policy [Aud91] to account for precedence
constraints. This consists of two parts: 1) adjusting offsets according to Equation 4.1; 2) adapting
Audsley’s priority assignment so that a task always gets a higher priority than its successors.
Also, since we manipulate deadlines relative to release times, we have to modify deadlines as
follows:

D∗
i = Di +Oi −O∗

i (4.3)

The corresponding policy is detailed in Algorithm 1 (priority 1 is the highest priority). The
only differences compared to the original algorithm are lines 1 (adjusting offsets), and 5 (checking
task dependencies). Priorities are assigned starting from the lowest priority and up to the highest
priority. At each step, the algorithm tries to find a task that is feasible if we assign it this priority.
If no tasks can be assigned that priority, then the task set is unschedulable. The test at line 5
ensures that a task has higher priority than its successors.
We established the optimality of this policy:

Theorem 4.1.3. Let S = {τi(Oi, Ci, Di, Ti)} be a dependent task set with simple precedence

constraints. Then:

S is schedulable with a fixed-task priority scheduling policy if and only if it is schedulable with

the policy of Algorithm 1.

4.1.2. Scheduling tasks with extended precedence constraints

To schedule tasks with extended precedence constraints, we also rely on precedence encoding.
However, the encoding is more complicated because we need to consider in detail which jobs of
the tasks are related by precedence constraints.

4.1.2.1. Fixed-task priority

Let us first consider fixed-task scheduling policies. Let τi
Mi,j−−−→ τj be an extended precedence

constraint. The fixed-task priority nature of the scheduling policy means that, even though
some jobs of τi and τj may not be subject to precedence constraints, we still have to assign a
higher priority to all jobs of τi, with respect to jobs of τj . Thus, we reuse the scheduling policy
defined previously for fixed-task priority scheduling with simple precedence constraints (the

48

4.1. Real-time scheduling

Algorithm 1 Scheduling policy for a task set S with simple precedence constraints and arbitrary
offsets
1: S∗ ← adjust(S)
2: for lvl = |S| to 1 do
3: assigned← false
4: for τi ∈ S∗ do
5: if ∀τj ∈ succs(τi), Φ(j) > lvl then
6: if respects_deadline(τi, lvl) then
7: Φ(i)← lvl
8: S∗ ← S∗\{τi}; assigned← true
9: break the current loop
10: end if
11: end if
12: end for
13: if assigned=false then the system is not feasible
14: end if
15: end for

extension of Audsley’s policy detailed in Algorithm 1). The only modification concerns the
adjustment of release dates:

O∗
i = Oi +max(0,max

Mi,j

(max
(n,n′)∈Mi,j

((O∗
j + nTj)− (Oi + n′Ti)))) (4.4)

Then, as a straightforward generalization of Theorem 4.1.3, we have:

Theorem 4.1.4. Let S = {τi(Ti, Ci, Oi, Di)} be a dependent task set, with extended prece-

dence constraints defined by a set of precedence matrices M = {Mi1,j1 , . . . ,Mil,jl}. Let S∗ =
{τ ′i(Ti, Ci, O

∗
i , D

∗
i)} be a set of independent tasks such thatO∗

i andD
∗
i are given by Equations 4.4,

4.3:

S is schedulable with a fixed-job priority scheduling policy if and only if S∗ is schedulable with
Algorithm 1.

4.1.2.2. Fixed-job priority

Let us now consider fixed-job scheduling policies. Let τi
Mi,j−−−→ τj be an extended precedence

constraint. With fixed-job priority scheduling, we can now modify the precedence encoding, so
that deadlines and release dates of jobs of τi that are unrelated to jobs of τj are not adjusted.
Since job precedence constraints expressed with precedence matrices follow periodic patterns,
the sequence of adjusted attributes of successive jobs is also periodic. To represent such periodic
values, we use periodic words, where each value of the word corresponds to the deadline, or
release date, of a job. Let (u)ω denote the infinite sequence of integers consisting of the infinite
repetition of the finite sequence of integers u. Let us also introduce the following notations:

• For a finite word v, |v| denotes its length;

• w[n] denotes the nth value of the periodic wordw, i.e forw = (u)ω , we havew[n] = u[(n)
mod |u|];

49

4. High-level timing analysis

• The minimum of two periodic words w = min(wi, wj) is such that for all n, we have
w[n] = min(wi[n], wj [n]). In case |wi| ≠ |wj |, we unfold wi and wj over length
lcm(|wi|, |wj |), before computing the pointwise minimum;

• The maximum of two periodic words is defined similarly.

The deadline word dwi and offset word owi of τi are obtained as follows:

owj = max
τi∈preds(τj)

owi,j (4.5)

dwi = min
τj∈succs(τi)

dwi,j (4.6)

Where, for all τi
Mi,j−−−→ τj , for all n, n′, in N, we have:

owi,j [n
′] = max

(n,n′)∈Mω
i,j

(Oj , owi[n] + nTi − n′Tj) (4.7)

dwi,j [n] = min
(n,n′)∈Mω

i,j

(Di − (owi[n]−Oi), owj [n
′] + n′Tj + dwj [n

′]− Cj − owi[n]− nTi)

(4.8)

Example 4.1.1. Let τi(0, 1, 2, 2) and τj(0, 1, 3, 3) be two tasks with τi
M−→ τj and M =

{(0, 0), (2, 1)} (this corresponds to the tasks of Figure 2.9d). We get the following adjusted
attributes:

dwi = (2.2.1)ω owi = (0)ω

dwj = (3)ω owj = (0.1)ω

Although formulae 4.7,4.8 are defined over an infinite number of jobs, we can compute owi,j

and dwi,j over finite lengths. When computing periodic words for the complete task set, we
start with words of size 1, and then expand their size when needed. When the encoding is
complete, word sizes are bounded as follows:

Property 1. Let S be a dependent task set, with extended precedence constraints defined by a set

of precedence matrices M = {Mi1,j1 , . . . ,Mil,jl}. For all task τi of S , the size of both owi and

dwi is upper-bounded by lcm({Tj})/Ti, where {τj} is the set of tasks in the connected component

of τi.

Finally, we establish the optimilaty of this encoding approach:

Theorem 4.1.5. Let S = {τi(Ti, Ci, Oi, Di)} be a dependent task set, with extended prece-

dence constraints defined by a set of precedence matrices M = {Mi1,j1 , . . . ,Mil,jl}. Let S∗ =
{τ ′i(Ti, Ci, owi, dwi)} be a set of independent tasks such that owi and dwi are given by Equa-

tions 4.5, 4.6:

S is scheduling with a fixed-job priority scheduling policy if and only if S∗ is schedulable with EDF.

50

4.2. End-to-end constraints analysis

4.1.3. Conclusion

The main highlights concerning this work are listed below:

• The schedulability analysis of tasks with simple and extended precedence constraints,
with a fixed-task priority scheduler, was presented at the RTAS’10 conference [For+10];

• The schedulability analysis of tasks with extended precedence constraints, with a fixed-job
priority scheduler, was presented at the ETFA’11 conference [For+11];

• This work is a collaboration with colleagues from the University of Poitiers (Emmanuel
Grolleau, Pascal Richard) and from Onera Toulouse (Frédéric Boniol, Claire Pagetti);

• The precedence encoding techniques developed in this work have been integrated in
Prelude, and in the work on task clustering presented in Section 4.3.

Related works, before our publications Scheduling simple precedence constraints has
been a well-understood problem since the 90’s [CSB90; SS94]. Surprisingly though, our work
was the first to propose a schedulability analysis for simple precedence constraints with a
fixed-task priority scheduler (i.e. to transpose the results from fixed-job priority scheduling). It
was also the first to consider extended precedence constraints.

Related works, after our publications The problem of scheduling dependent tasks can be
considered a closed research topic in unicore, and the focus has now shifted to multicore (where
it is known as DAG scheduling). A recent survey on multicore dependent task scheduling can
be found in [Ver20].

4.2. End-to-end constraints analysis

Over the past five decades, the real-time community has developed an extensive set of scheduling
algorithms and analysis techniques to ensure that, at system execution, each task completes
before its deadline. In this section, I present my work on a different type of real-time analysis,
called end-to-end analysis, which analyses the time required for performing a chain of tasks,
from input acquisition to output production.

Control-command systems development typically starts by specifying a high-level model of
the system, such as a Matlab/Simulink model, or a Prelude program in our case. The model is
then translated into lower-level code, typically C, either manually or using code generation
tools. In our approach, we perform the end-to-end analysis at the model level (i.e. at the task-set
level), which simplifies the analysis by abstracting from implementation details. Furthermore,
we can detect an end-to-end constraint violation during the model conception and modify
the model accordingly, which is less error-prone and less time-consuming than performing
corrections on the final implementation.

4.2.1. Motivating example

The notion of end-to-end constraints is illustrated on a subset of the longitudinal Flight Control
System (Figure 4.1) extracted from the Rosace case-study [Pag+14]. It corresponds to a subset
of the example presented previously in Figure 3.6, but in a multi-periodic version. This system

51

4. High-level timing analysis

controls the angle of the control surface (order) based on: the current surface angle (angle),
the current aircraft vertical speed (vz), the current aircraft altitude (altitude) and the altitude
required by the pilot (required altitude). The software architecture consists of six tasks that
make up three computation chains. Tasks operate at three different rates (30ms, 40ms, 60ms)
and some tasks of different rates communicate.

Altitude Hold
Law (hHL)

Altitude
Filter (hF)

Vz Control Law
(vzL)

Elevator Control
Law (EL)

Elevator
Filter (EF)

Vz Filter
(vzF)

observed
altitude
(o_h)

required
altitude

(r_h)

required
vertical speed

(r_vz)

observed
angle (o_angle)

observed
vertical speed

(o_vz)

required
angle

(r_angle)
order

angle

vz

altitude
(h)

period = 60 ms period = 40 ms period = 30 ms

Figure 4.1.: Vertical speed control from Rosace

The most widely considered end-to-end constraints are latency constraints. As an example, let
us consider the navigation computation chain (r_h, hHL, vzL, EL, order). The time elapsed
between a pilot order (required altitude) and the modification of the control surface angle
(order) is required to be less than 1s. Assuming that the control surface requires 400ms to reach
an ordered angle, the end-to-end latency of the computation chain must thus be less than 600ms.
A possible temporal behaviour of this chain is detailed in Figure 4.2. Arrows stand for

backwards data-dependencies, for instance τorder.4 depends on τr_h.0. Arrows between two jobs
of the same task correspond to internal delays (like the fby synchronous operator). The worst-
case latency of a pair of dependent task instances (τorder.p,τr_h.q) is when τr_h.q is executed at
the beginning of its period and τorder.p is executed at the end of its period. Then, we consider
the worst-case latency for each input paired with the first output that depends on it (e.g. we
ignore the latency of (τorder.5,τr_h.0)). The behaviour described in this diagram satisfies the
600ms latency constraint: the worst-case latency is 150ms, achieved for (τorder.4,τr_h.0) and
(τorder.6,τr_h.1).

Figure 4.2.: Chain from r_h to order

52

4.2. End-to-end constraints analysis

4.2.2. End-to-end properties definition

In this section we present a small language dedicated to the specification of end-to-end real-time
constraints and use this language to define some classic end-to-end constraints. The complete
constraints language is detailed in Figure 4.3. Constraints are defined with respect to some
(transitive) dependence τj ←∗ τi, and involve the following terms :

• etime(τi.p) denotes the earliest completion time, and ltime(τi.p) the latest completion
time, of job τi.p;

• τi.rlv(p) denotes the pth relevant job of τi. The job τi.p is relevant to τj iff some job of τj
depends on it;

• τj.last(rlv(p)) denotes the last job of τj that depends on τi.rlv(p)

• τj.first(rlv(p)) denotes the first job of τj that depends on τi.rlv(p)

xS ::= x | x− 1 | x+ 1 | k ∈ N
idx ::= rlv(xS) | idx− 1 | idx+ 1

| last(idx) | first(idx)
date ::= etime(τtask.idx) | ltime(τtask.idx)
duration ::= date− date | minx∈N(date− date)

| maxx∈N(date− date)
formula ::= duration <= k ∈ N

Figure 4.3.: End-to-end constraints specification language

For instance, in the example of Figure 4.2, for the dependence vzL←∗ EL, we have rlv(0) =
2, meaning that τvzL.0 and τvzL.1 are unused (irrelevant). Then, first(0) = 4 and last(0) =
5, because τvzL.rlv(0)=2 is first used by τEL.4 and last used by τEL.5. We can then use this
constraints language to define classic end-to-end properties, as detailed below.

Best-case latency The latency of a functional chain can be defined informally as the time
needed for an input value to propagate to an output value (also called first-to-first delay in
[Fei+08]). The best-case latency (BCL) of a pair of dependent values is achieved when a relevant
input is read at the latest and its first successor output is produced at the earliest. Considering
all pairs of dependent values, we get the following definition.

Definition 4.2.1. Let τn ←∗ τ1:

BCL(τ1, τn) = max(0,min
x∈N

(etime(τn.first(rlv(x)))− ltime(τ1.rlv(x))))

Worst-case latency To define the worst-case latency (WCL) of a chain, we need to consider
all of its pairs of dependent values. However, as illustrated in Figure 4.4, we also need to consider
unused values: since τvz.2 is irrelevant, if the value of vz changes during its third sampling
period (i.e. for τvz.2) and provided it remains unchanged until the fourth sampling period (i.e.

53

4. High-level timing analysis

for τvz.3), then order will be impacted only at its fifth period (i.e. for τorder.4). This leads us to
the definition below.

Definition 4.2.2. Let τn ←∗ τ1:

WCL(τ1, τn) = max
x∈N∗

(ltime(τn.first(rlv(x)))− etime(τ1.rlv(x−1)+1))

� �� �� �� ���

�� ��

����� ���	� ���
� �����

��	� ��	� ��	�

��
�	�
��
�	�

��� ��� ���

��� 	��

����� ���	� ���
�

��
�	�
��
�	�
��
�	�

��	�

���

���

��

� �� �� �� ��� ��� ��� ���

��	�

���	�
���	�
���	�
���	�

Figure 4.4.: Chain from vz to order

Freshness Let τn ←∗ τ1. At any time t, the freshness is the difference t− t1, where t1 is the
reading date of the value of τ1 used to compute the current value of τn (also called last-to-last

delay in [Fei+08]). Consequently, a freshness constraint Freshness(τ1, τn) ≤ ∆f requires that, at
every time t, the value of τ1 used to compute the current value of τn has been read no earlier than
t−∆f . Let us consider the chain (vz, ..., order) depicted Figure 4.4. We have τorder.2 ← τvz.0.
Considering that τvz.0 is acquired at t ∈ [0, 30) and that τorder.2 is produced at t′ ∈ [60, 90),
then the freshness of τorder.3, that is t′ − t, is bounded as follows: 60− 30 < t′ − t < 90− 0.
The worst-case freshness (WCF) is achieved for the pair (τvz.3, τorder.5) and is 180− 90 = 90.
More formally:

Definition 4.2.3. Let τn ←∗ τ1:

WCF (τ1, τn) = max
x∈N

(ltime(τn.last(rlv(x)))− etime(τ1.rlv(x)))

Reactivity The reactivity of a chain between two tasks τ1 and τn characterizes the minimal
duration of any value change on τ1 such that this change is eventually propagated to τn. For
instance, Figure 4.4, shows that τvz.2 does not impact any occurrence of order. Let us consider
the following scenario: (1) τvz.1 is read at the earliest, i.e. at 30; (2) the value of vz changes just
after 30 but then gets back to its previous value just before 120; (3) τvz.3 is read at the latest, i.e.
at 120. In this scenario, the variation on the value of vz goes “unnoticed” by the system, because
τvz.2 is not a relevant occurrence of vz.

Definition 4.2.4. Let τn ←∗ τ1. WCR(τn, τ1) =

max
x∈N

(ltime((ττ1.rlv(x+1)))− etime(ττ1.rlv(x)))

54

4.2. End-to-end constraints analysis

4.2.3. End-to-end properties verification

Our verification procedure is applied to a set of periodic dependent tasks with implicit deadlines
{τi(0, Ci, Di = Ti)}, where dependence constraints are defined by dependence matrices.
Dependence matrices define dependence relations between jobs in the exact same way as
precedence matrices define precedence relations between jobs (see Section 2.2.2).
To enable the verification of end-to-end properties on a given task set, we only need to

specify how to compute the different terms of the constraints language (relevant jobs, earliest
completion times, etc).

4.2.3.1. Transitive dependence relation

First, we focus on how to determine which pair of jobs of a functional chain are dependent, that
is to say, how to compute the transitive closure of the dependence relation based on dependence
matrices.

Definition 4.2.5. Let M1, M2, be dependence matrices. τi
M1◦M2

←∗ τj denotes a dependence
relation defined as follows:

∀p, q ∈ N2, ττi.p ←∗ ττj .q iff ∃t ∈ N|(p, t) ∈Mω
1 , (t, q) ∈Mω

2

Algorithm 2 describes a procedure to compute the composition of two dependence matrices,
using the following auxiliary functions:

• unfold(M,n, To, Ti) unfolds precedence matrixM over duration n;

• pat_size(M,To, Ti) returns the duration covered by one pattern of M . It is equal to
|M | ∗To. For instance, in Figure 4.2, for (r_h, ..., order), we have pat_size(M, 30, 60) =
4 ∗ 30 = 120;

• closure(M1,M2) takes two precedence matrices M1,M2 and returns the precedence
matrix consisting of the pairs (p, q) such that there exists t with (p, t) ∈M1 and (t, q) ∈
M2.

Algorithm 2 Procedure C for composing M1 withM2

Require: τi
M1◦M2← τj

hp← lcm(pat_size(M1, Ti, Tj), pat_size(M2, Ti, Tj))
M ′

1 ← unfold(M1, hp, Ti, Tj)
M ′

2 ← unfold(M2, hp, Ti, Tj)
return closure(M ′

1,M
′
2)

In the following, we consider that the composition is computed with Algorithm 2. To compute
the dependence matrix of a whole functional chain, we also need to account for internal task
delays.

55

4. High-level timing analysis

Definition 4.2.6. Let τa
M1

←∗ τb and τb
M2← τc. Let delb(c, a) denote the internal delay in τb,

when processing data from τa to τc. We have τa
M
←∗ τc, with:

M = M ′
1 ◦M2

M ′
1 = {(p, q)|∃p′, p = p′ + delb(c, a), (p

′, q) ∈M1}

4.2.3.2. Completion times

We abstract from actual execution dates and from execution times, and only consider best and
worst-cases. Thus, we let etime(τi.p) = Ti ∗ p and ltime(τi.p) = Ti ∗ (p+ 1). This leads to a
safe over-approximation of end-to-end properties. In a way, this is similar to how synchronous
languages abstract from real-time to simplify programming. Furthermore, as shown in [Fei+08;
MMTS13], the contribution of task periods to end-to-end delays is far more important than that
of task execution times.

To compute completion times in our formulas, we also need to compute the indices of relevant
jobs, and the indices of their successors. This is done based on the following definition.

Definition 4.2.7. LetM be a dependence matrix. We define an equivalence relation ∼ onM
and a partitioning ofM into subsets [M]i as follows:

• ∀(p, q), (p′, q′) ∈M2, ((p, q) ∼ (p′, q′)) ≡ (q = q′)

• M/ ∼ is the quotient ofM by ∼ (its set of equivalence classes);

• ∀i, 1 ≤ i < |(M/ ∼)|, ∀(p, q), (p′, q′) ∈M2:

[M]i ∈ (M/ ∼)
(p, q) ∈ [M]i ∧ (p′, q′) ∈ [M]i+1 ⇒ q < q′

Additionally:

• Let in([M]i) be such that for all (p, q) ∈ [M]i, q = in([M]i);

• Let outs([M]i) denote the first projection of [M]i.

For instance, for the precedence matrixM = {(3, 1), (4, 2), (5, 4), (6, 4)}, we have [M]1 =
{(3, 1)}, [M]2 = {(4, 2)}, [M]3 = {(5, 4), (6, 4)}. We also have in([M]3) = 4 and outs([M]3) =
{5, 6}.

Then, for τn
M
←∗ τ1, ∀q ∈ N∗, we have:

rlv(x) = in([Mω]x)

last(rlv(q)) = max(outs([Mω]q))

first(rlv(q)) = min(outs([Mω]q))

To verify that an end-to-end property holds, according to the formulas of our constraints
language we need to consider every pair of dependent values of the concerned tasks. However,
since dependence constraints are defined by dependence matrices, to check a formula of our
language we only need to check the formula for each relevant input in one pattern of the

56

4.3. Task clustering

dependence matrix. Finally, the complexity of the verification of an end-to-end property is
stated below.

Theorem 4.2.1. Let (τ1, . . . , τn) be a functional chain where data-dependencies are specified by

dependence matrices. Any formula of the constraints language (Figure 4.3) for this functional chain

can be verified with complexity O(lcm1≤k≤n(Tk)× n).

4.2.4. Related works

Before our publications Following initial work in [Fei+08], end-to-end properties analysis
has been studied extensively over the past decade. In [Raj+10; Moh+13; Mub+15], it has
been studied for register buffer communications, where the producer task writes in the buffer
when it completes and the consumer task reads from it when it starts. Synchronous/causal
communications have also been studied in [GTW11; Bec+16; Kha+16].

After our publications End-to-end analysis has recently been studied in new settings,
in particular: with sporadic tasks [Dür+19], taking the schedule into account [KBS20], or
considering the Logical Execution Time model [BDN18].

4.2.5. Conclusion

The main highlights concerning this work are listed below:

• The analysis of end-to-end latency properties was first presented at the SAC’13 confer-
ence [Wys+13];

• A more systematic approach to the analysis of general end-to-end properties (as presented
in this section) was published at the ETFA’17 conference [FBP17];

• This work is a collaboration with colleagues from Onera Toulouse (Frédéric Boniol, Claire
Pagetti, and Rémy Wyss).

4.3. Task clustering

A real-time system is usually designed as a set of functionalities, or nodes in Prelude. Implement-
ing such a design requires to map functionalities to real-time tasks. The most straightforward
solution consists in mapping each functionality to a different task. However, complex indus-
trial systems such as flight control systems can consist of up to 1000 functionalities [Bon+08].
Such a large number of tasks would incur a significant processing time overhead in context
switching [Lee06] and an important memory footprint. The thesis of Antoine Bertout studied
the task clustering problem, i.e. how to compute a functionality-to-task mapping where several
functionalities are mapped to (clustered in) the same task. Clustering several functionalities
implies to choose only one deadline for the cluster, which effectively reduces the deadlines of
some functionalities and may cause the system to become unschedulable. The objective of the
task clustering is to reach a minimal number of tasks, while preserving the schedulability of the
system.

57

4. High-level timing analysis

4.3.1. Problem definition

From a schedulability point-of-view, functionalities can be considered as finer grain tasks. Then,
mapping functionalities to tasks amounts to clustering several tasks into a single one, thus
the term task clustering. The input of our task clustering problem is a set of periodic tasks
with constrained deadlines, i.e. S = {τi(Ci, Di, Ti)}0≤i≤n with Di ≤ Ti. The output of the
clustering has the same formal definition, though the number of tasks and their attributes are
changed.
The clustering of two tasks produces a new task, as defined below.

Definition 4.3.1. Clustering τi and τj , where Di ≤ Dj , produces a task τij with the following
parameters:

Cij = Ci + Cj (4.9)
Tij = Ti = Tj (4.10)

Dij =

{
Dj if (Dj − Cj ≤ Di) ∨ (Rj − Cj ≤ Di) (4.11c)
Di otherwise (4.11d)

Note that in our work we only cluster tasks of the same period. The WCET of the cluster is
simply the sum of the WCETs of its constituents. Concerning the deadline, settingDij = Di

ensures that if the cluster meets its deadline, then so do its constituents (since Di is the
smallest of the two). Case 4.11c is not always applicable, but induces a less pessimistic deadline.
It also requires to execute τi before τj in the cluster (while the order can be arbitrary in
case 4.11d). In the following, we let τi′ and τj′ denote the respective portions corresponding to
the clustered tasks inside τij . The following property states that clustered tasks respect their
original constraints as long as the cluster respects its own.

Theorem 4.3.1. Let S = ({τx(Cx, Dx, Tx)}1≤x≤n) and S ′ = (S \ {τi, τj} ∪ {τij)} be two task
sets, where τi and τj are two tasks of S with Di ≤ Dj , Ti = Tj . Let Φ be a priority assignment

for S ′. Then:

S ′ schedulable under Φ⇒ ∀τij.k,

{
eΦ(τi′.k) ≤ di.k ∧ eΦ(τj′.k) ≤ dj.k

sΦ(τi′.k) ≥ oi.k ∧ sΦ(τj′.k) ≥ oj.k

The choice of the deadline for the cluster has an impact on the schedulability of the task
set. Indeed, when setting Dij = Di, we effectively reduce the deadline for τ ′j , compared to its
non-clustered counterpart τj . Even if the task set does not immediately become unschedulable,
this kind of clustering makes the task set harder to schedule, thus further clusterings become
less likely to yield schedulable task sets. On the contrary, in case we set Dij = Dj , which
is only allowed when the conditions of Equation 4.11c are satisfied, the clustering does not
degrade the schedulability of the task set. Such a clustering is called a zero-cost clustering.

We define the notion of valid cluster below, and let the set of all valid clusters of S be denoted
C(S). Then, we state the clustering problem.

Definition 4.3.2. Let S = {τi(Ci, Di, Ti)}0≤i<n and S ′ = {τ ′i(C ′
i, D

′
i, T

′
i)}0≤i<n′ be two task

sets with n′ ≤ n. We say that S ′ is a valid cluster for S iff:

• S schedulable⇒ S ′ schedulable;

58

4.3. Task clustering

• S ′ can be obtained by applying to S a succession of clusterings performed as defined in
Definition 4.3.1.

Definition 4.3.3 (Clustering problem). Given a task set S = ({τx(Cx, Dx, Tx)}1≤x≤n), the
clustering problem consists in finding the element of C(S) with the least cardinality.

We can easily establish that the clustering problem is at least as hard as co-NP-complete
problems. Indeed, solving the clustering problem requires to perform schedulability tests as
the clustering progresses. It is well-known that the testing feasibility for periodic tasks with
constrained deadlines is a co-NP-complete problem [LW82; BRH90]. In the following, we detail
heuristics whose objective is to produce a valid cluster whose cardinality is as close as possible
to the theoretical minimum.

4.3.2. Guiding principles

In this section, we examine a set of guiding principles that we applied to design our clustering
heuristics. First, the overall structure of our heuristic is as follows. We start from an initial task
set where each task is considered as a cluster with one element. We progressively try to group
more and more clusters together to minimize the cardinality of the task set. At each step, we try
to group one cluster with another. To select the best clustering candidate, we rely on a heuristic
cost function that estimates which candidate is the most likely to lead to the minimal clustering.
Formulated that way, the clustering becomes an optimisation problem and can thus be solved
using classic heuristics based on cost functions, such as for instance Greedy Best-First Search,
A∗, or Simulated Annealing. In our experiments, we rely on Greedy BFS.

Second, we note that when a task set is unschedulable, applying a clustering to it also yields
an unschedulable task set, since this will yield an even more constrained task set. This is tightly
related to the notion of sustainable schedulability introduced by Baruah and Burns in [BB06]. In
a nutshell, a task set deemed unschedulable remains so when some of the task parameters are
changed by one of the following means: (i) increasing the execution time; (ii) decreasing the
period; (iii) decreasing the deadline. Thus, it is useless to apply further clusterings to a task set
that was deemed unschedulable.
We need a schedulability test to determine valid task clusterings. In the following, we only

consider exact or sufficient tests. This ensures that the task sets obtained after clustering are
schedulable, even though this reduces the chance to obtain the minimum number of clusters.
We can distinguish two types of schedulability tests: Boolean schedulability tests and response
time tests. On the one hand, Boolean tests give a Boolean answer, determining only whether a
task set is schedulable or not. On the other hand, exact tests based on response time analysis

(RTA, e.g. [JP86]) provide worst response time for each task. We favor RTA tests, because they
provide insight on how close the task set is to becoming unschedulable, and thus can be used as
cost functions for our heuristics.

4.3.3. Independent tasks, uniprocessor

In this section, we present our results for the task clustering problem for independent tasks on
a uniprocessor hardware platform.

4.3.3.1. Heuristic

We experimented with different cost functions, listed below.

59

4. High-level timing analysis

• Deadline-based density (favor task sets with the highest remaining scheduling margin):

min
n∑

i=1

Ci

Di

• Response-time-based density (more precise, but high time-complexity to compute Ri):

min

n∑
i=1

Ri

Di

• Laxity over the hyper-period (laxity weighted with task periods):

max

n∑
i=1

(Di − Ci) ·
H

Ti

• Random (to compare with other cost functions).

As described in Algorithm 3, we recursively enumerate clusterings. At each recursive call,
we first try to apply a zero-cost clustering on each generated child. If the zero-cost condition
is respected we make a recursive call with the new cluster, if not, we accumulate a 3-tuple
containing the task set and indices of the two tasks we want to group in a buffer. Then, we
compute a set of valid children, and choose the most promising child according to the heuristic
cost function. This heuristic can be used with different schedulability tests. The choice of
the schedulability test depends on the considered scheduling policy (fixed-task or fixed-job
scheduling policy), but also on the complexity we want to achieve.

4.3.3.2. Experimental results

Experiments are performed on a quad-core Intel Xeon, 2.4 GHz, 32Go RAM. We apply our
heuristic to randomly generated task sets. Each task utilization (Ui =

Ci
Ti
) is computed following

the classic UUnifast [BB04] method. We denote as u the overall utilization factor of the processor.
Each task period Ti is uniformly distributed between a set of a maximum of 10 different periods
by task set using method [GM01], ensuring that the simulation can be limited to a reasonable
hyper-period. Concerning WCETs, we take Ci = Ti × Ui. For deadlines, following [GM01] we
take Di = round((Ti − Ci)× rand(d1, d2)) + Ci with 0 ≤ d1 ≤ d2.

First, we show the number of clusters obtained depending on the initial number of tasks of the
task set and on the processor utilization. Figure 4.5 shows the results for DM, while Figure 4.6
shows the results for EDF. The number of clusters cannot be lower than 10 (the number of
different periods of the task set). Each point corresponds to the average value obtained over
1000 task sets. The cost function used in these experiments is the response-time-based density.
We observe that the task clustering reduces the number of tasks by at least a factor 10, and the
number of clusters increases with the utilization of the task set.

60

4.3. Task clustering

Algorithm 3 Task clustering algorithm
Function clustering(S)
Require: S = ({τi}0≤i<n): initial set of tasks in non-decreasing deadline order
children← ∅

▷ Try zero-cost clustering.
for i = n− 1 to 0 do

for j = i− 1 to 0 do
if Ti == Tj then

if (Ci + Cj ≤ Dj) ∧ ((Dj − Cj ≤ Di) ∨ (Rj − Cj ≤ Di)) then
S′ ← {S \ {τi, τj}} ∪ τij return clustering(S’)

else
children← {children ∪ (S, i, j)}

end if
end if

end for
end for
childrenSched← ∅

▷ Find valid children
for all (M,x, y) ∈ children do

if Cx + Cy ≤ min(Dx, Dy) then ▷ Check for non-negative laxity (optimisation)
M ′ ← {M \ {τx, τy}} ∪ τxy
if schedulable(M ′) then

childrenSched← childrenSched ∪{M ′}
end if

end if
end for

▷ continue with child with highest cost
if childrenSched ̸= ∅ then return clustering(highestCost(childrenSched))
else

return S
end if

61

4. High-level timing analysis

100 200 300 400 500
5

10

15

20

25

30

Minimal clustering

Tasks before clustering

Ta
sk
sa

fte
rc

lu
st
er
in
g

u=0.20
u=0.30
u=0.40
u=0.50
u=0.60
u=0.70
u=0.80

Figure 4.5.: Task clustering with DM (dmin = 0, dmax = 1)

50 100 150 200 250 300

10

20

30

40

Minimal clustering

Tasks before clustering

Ta
sk
sa

fte
rc

lu
st
er
in
g

u=0.20
u=0.30
u=0.40
u=0.50
u=0.60
u=0.70
u=0.80
u=0.90

Figure 4.6.: Task clustering with EDF (dmin = 0, dmax = 1)

As a second set of experiments, we compared the impact of different cost functions on the
efficiency of the clustering. Results are depicted in Figure 4.7 for DM (results for EDF have similar
trends. We show the number of clusters obtained depending on the density of the initial task set.
The cost function being compared are: purely random (random), minimal response-time-based
density (RTDensity), minimal deadline-based density (MinDensity), maximal deadline-based
density (MaxDensity). The maximal deadline-based density is meant as a reference to compare
with other cost functions. We observe that the number of clusters increases with density. We
also observe that the choice of the cost function does not have a very significant impact on the
number of clusters.

62

4.3. Task clustering

0 1 2 3 4 5 6

10

20

30

40

50

Regroupement total

Density of the initial task set

Ta
sk
sa

fte
rc

lu
st
er
in
g

RTDensity
MinDensity
MaxDensity
random

Figure 4.7.: Comparing cost functions with DM as a function of density (n = 300)

4.3.4. Dependent tasks, uniprocessor

In this section, we present our results for the task clustering problem for dependent tasks on a
uniprocessor hardware platform.

4.3.4.1. Adapting the heuristic

Our results apply to tasks with constrained deadlines, no offset, and simple precedence con-
straints. Precedence constraints restrict the possible clusterings of the task graph, as illustrated
in Figure 4.8 (tasks related by a red dashed arrow cannot be clustered together). A cluster is
valid if and only if, in addition to being schedulable, one of the following conditions is satisfied:

• There exists a precedence constraints between the two. In that case, we order the tasks
inside the cluster according to the precedence constraint (e.g. τ1 before τ3);

• Tasks are isolated in the sense that they have no precedence constraint with the rest of
the task graph;

• Tasks are independent (there is not transitive precedence relation between them) and one
of them is isolated (e.g. τ1 and τ9).

τ3

τ1

τ2τ4

τ5
τ6

τ7

τ8

τ9

Figure 4.8.: Infeasible task clusterings

63

4. High-level timing analysis

The real-time attributes of a cluster are computed as previously. Provided that tasks are
ordered according to their precedence constraints in their cluster, clustered tasks respect their
original constraints as long as the cluster respects its own.

Theorem 4.3.2. Let S = ({τi}0≤i<n},→) be a dependent task set, and τi, τj be two tasks of S
with Ti = Tj . Let S ′ = (S \ {τi, τj} ∪ {τij}). Then:

S ′ schedulable under Φ⇒


∀τij.k, e(τi′.k) ≤ di.k

∀τij.k, s(τi′.k) ≥ oi.k

∀τi.k → τj.k, e(τi′.k)) ≤ oj.k

Unfortunately, schedulability preservation in the case of Equation 4.11c (i.e. when (Rj−Cj ≤
Di)) does not hold for dependent tasks. This is illustrated in Figure 4.9. We assume that τi → τj
and τi → τk. After the clustering, we have τij → τk and the system becomes unschedulable.
Even though this implies that we cannot benefit from zero-cost clustering as before (i.e. we
must always check schedulability after a clustering), checking the condition of Equation 4.11c
is still beneficial, since it yields a less constrained deadline.

0 2 4 6 8 10 12 14 16

τi
Ci

τk
Ck

τl
Cl

τj
Cj

(a) Schedule before the clustering
0 2 4 6 8 10 12 14 16

τij
Ci Cj

τk
Ck

τl
Cl

(b) Schedule after the clustering

Figure 4.9.: Schedulability not preserved due to constraint τij → τk

The heuristic used to cluster dependent tasks is very similar to the one previously proposed
for independent tasks. The main notable differences are the following:

• We check that the clustering does not yield unfeasible precedence constraints (such as
the red arrows of Figure 4.8);

• We favor zero-cost clustering of isolated tasks;

• When clustering tasks related by a precedence constraint, we order them accordingly in
the cluster;

• We rely on precedence encoding (from Section 4.1.1) to check schedulability. We also
apply the cost functions on the encoded task set.

64

4.3. Task clustering

4.3.4.2. Experimental results

Experiments are performed with the same hardware settings, and with the same real-time
attributes generation mechanisms as for independent tasks (Section 4.3.3.2). The generation of
precedence constraints is performed according to two criteria. First, tasks are partitioned into a
desired number of groups, where each group is called a precedence level of the task set. Then,
we choose the probability for each pair of tasks belonging to two successive levels to be related
by a precedence constraint.
Figure 4.10 shows the impact of the precedence probability for a fixed number of tasks and

levels. We observe that the number of clusters increases with the probability of precedence
constraints, which seems logical since precedence constraints reduce the number of feasible
clusterings.

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

Total clustering

% probability of precedence constraints

ta
sk
sa

fte
rc

lu
st
er
in
g

EDF
DM

Figure 4.10.: Impact of the probability of precedence constraints on the task clustering (n = 200,
u = 0.7, dmin = 0, dmax = 0.8); number of levels is 0.9 times the number of tasks

Tables 4.1, 4.2 show the number of clusters obtained for varying numbers of levels and
precedence probability (the other parameters are the same as for Figure 4.10). We observe that
the number of levels has a limited impact on the number of clusters, while the precedence
probability has a more significant impact. Note that the number of levels of task graphs found
in case studies of the literature (e.g. Rosace [Pag+14]) are around 0.5 times the total number of
tasks, with a precedence probability around 0.25. We also observe that results are significantly
worse for EDF. This is mainly because we had to disable the optimization based on response
time analysis, due to the high complexity of its computation.

4.3.5. Dependent tasks, multiprocessor

In this section, we present our results for the task clustering problem for dependent tasks
on a multiprocessor platform. We assume a platform with identical processors, meaning that
all processors have the same characteristics and compute at the same speed. We consider
partitioned scheduling, meaning that each task is assigned to one fixed processor for the whole
execution of the system.

65

4. High-level timing analysis

0.25 0.50 0.75
0.4 12 15 18
0.5 11 15 18
0.6 11 15 18
0.7 11 14 18

Table 4.1.: Varying the number of levels and
precedence probability with DM

0.25 0.50
0.4 23 23
0.5 24 24
0.6 24 26
0.7 24 25

Table 4.2.: Varying the number of levels and
precedence probability with DM

4.3.5.1. Scheduling

Since we consider partitioned scheduling, task are partitioned between the processors. Our
partitioning strategy, is a slight adaption of that of [BBW11]. It partitions tasks based on the
critical path of the task set (the chain of tasks whose sum of WCETs is the highest). It first
assigns all tasks of the critical path, called a flow, to one processor. These tasks are then removed
from the task set and the process iterates until all tasks are assigned. If the number of processors
is reached before all tasks are assigned, the remaining tasks are assigned to the processors with
the objective of keeping the processors utilization balanced. The original strategy of [BBW11]
is targeted for a task set where all tasks have the same period. In order to support multiple
periods, we weigh paths by their periods and define the weightWj of a chain j as follows. Then
the critical path is the chain of maximal weight in the task graph.

Wj =
∑

τi∈ chain j

Ci

Tj
(4.12)

The precedence encoding technique presented in Section 4.1.1 is targeted for uniprocessor.
Unfortunately, it cannot directly be transposed to partitioned scheduling, because some de-
pendent tasks might be assigned to different processors. Instead, to encode inter-processor
precedence constraints, the release date of a task τi assigned to processor mk is adjusted as
follows:

O∗
i = max(Oi, max

τj∈preds(τi),τj /∈mk

D∗
j) (4.13)

This encoding is sufficient, since a task will always execute before its successors, but not
necessary, in the sense that adjusted release dates might be unnecessarily small [WGD14].

4.3.5.2. Heuristic

Due to precedence constraints, clustering two tasks on one processor can impact tasks on
another processor, so we cannot simply apply the clustering strategy proposed for uniprocessor
separately on each processor. The clustering procedure for multiprocessor is described in
Algorithm 4. We distinguish flows, depending on whether the tasks of a flow have precedence
constraints with the other flows (interdependent flow) or not (independent flow). Independent
flows can be clustered as described previously for the uniprocessor case. We iterate the procedure
clusterDepNonRec on interdependent flows until no further clustering is feasible. Procedure
clusterDepNonRec differs from the uniprocessor clustering procedure in that: 1) it performs a
single clustering; 2) it adjusts release dates for inter-flow precedence constraints according to
Equation 4.13; 3) it checks the feasibility of all flows after the clustering.

66

4.3. Task clustering

Algorithm 4Multiprocessor task clustering algorithm
Function clustering(G)
Require: (S,→): initial task set
F ← partition(S)
invalid← false
for all Flow ∈ F do

if ! schedulable(Flow) then ▷ After encoding
invalid← true

end if
end for
if ! invalid then
F ind ← independent(F)
Fdep ← dependent(F)

▷ Process independent flows
for all Flow ∈ F ind do

Flow ←clusterDep(Flow)
end for

▷ Process interdependent flows
CurrentF low ← Fdep[0]
idxF low ← 0
nbInfeasibleClustering ← 0
while nbInfeasibleClustering < |Fdep| do

CurrentF low′ ←clusterDepNonRec(CurrentF low)
if |CurrentF low′| = |CurrentF low| then ▷ No feasible clustering

nbInfeasibleClustering ++
else

nbInfeasibleClustering = 0
Fdep[idxF low]← CurrentF low′

end if
idxF low ++
CurrentF low ← F [idxF low mod |Fdep|]

end while
end ifreturn F ind ∪ Fdep

67

4. High-level timing analysis

4.3.5.3. Experimental results

For generating task utilization in multiprocessor, we use the RandFixedSum method [ESD10].
The other parameters of the task set are generated as in previous experiments. Figure 4.11 shows
the number of clusters obtained for increasing processor utilizations. The precedence probability
is set to 0.25 and we show results for a number of levels equal to 0.4 and 0.6 multiplied by the
number of tasks. Each point corresponds to the average for 100 generated task sets. Experiments
were performed with EDF, using the “Offset Analysis” test of [PL05]. As expected, the number
of clusters grows with the processor utilization. The clustering is however significantly worse
than in uniprocessor. One reason is that the minimal number of clusters is likely to be higher
in multiprocessor: it can be up to the number of different periods multiplied by the number
of processors for unfavorable partitionings. Another reason is that the partitioning generates
some flows with very high utilization or density, making the clustering significantly harder. We
can also observe in this figure that the number of levels has a limited impact on the efficiency
of the task clustering.

2 2.5 3 3.5 4 4.5 5

20

40

60

80

100

processor utilization

ta
sk
sa

fte
rt
he

cl
us
te
rin

g

0.4 levels
0.6 levels

Figure 4.11.: Impact of processor utilization on the task clustering (n = 200, p = 0.25, dmin = 0,
dmax = 1)

4.3.6. Related works

Before our publications The most closely related works are found in the domain of em-
bedded systems design. For instance, [Mzi+13] regroup tasks to reduce the required number of
task priorities, [KCH00] regroup tasks that share resources, [SKW00; KWS03] regroup tasks to
reduce communications. Runnable-to-task mapping is identified as a key step of the development
in AUTOSAR and is studied in [ZG11; ZDN12; Woz+13; FLN13]. However, these works do not
consider the impact of the clustering on schedulability.

After our publications Runnable-to-task mapping in AUTOSAR remains an active research
domain. Most notably, minimizing the number of clusters while preserving schedulability has
been studied in [Bou+15; KCC20], where clustering of tasks with different periods is allowed.

68

4.3. Task clustering

4.3.7. Conclusion

The main highlights concerning this work are listed below:

• A proper definition of the task clustering problem and a first heuristic for the case with a
uniprocessor and independent tasks was published at the SAC’14 conference [BFO14b];

• Several improvements to the heuristic were then proposed in a publication at the RTNS’14
conference [BFO14a];

• This work started during the internship of Antoine Bertout (2012/3-2012/8);

• This work was the main topic of the Ph.D. thesis of Antoine Bertout (10/2012-10/2015).
The thesis was advised by Richard Olejnik, tutored by myself, and co-funded by the
Nord-Pas-de-Calais region and by the LIFL laboratory (now CRIStAL);

• Antoine Bertout is now Associate Professor at the University of Poitiers, since 2017.

69

5. Low-level timing analysis

In this chapter, I present my work on WCET analysis, which consists of two main contributions.
First, we proposed a new parametric WCET analysis. While standard WCET analysis produces
a constant upper-bound to the WCET, parametric WCET analysis produces a formula, where
parameters of the formula are parameters of the program (e.g. loop bounds). Second, we
proposed an abstract interpretation procedure that analyses assembly code and establishes
linear relations between data locations (memory values and register values) accessed by the
program. This enables to produce more accurate estimations of loop bounds than previous
works, and thus to produce tighter WCET estimates.

5.1. Symbolic Worst-Case Execution Time analysis

With traditional WCET analysis, if any program parameter that has an effect on the WCET (e.g.
loop bounds) is changed, it is necessary to re-run the analysis. Thus, it is difficult to analyze the
impact of different parameter values on the final WCET estimate. For instance, the developer
may want to know the impact of the number of iterations of a certain loop on the WCET, the
impact of the cache size, etc. To answer these questions, it would be necessary to run the
analysis several times with different parameter values, which could be a very time consuming
process.
An alternative approach is to calculate directly a parametric WCET formula instead of a

constant value. If the parameter changes, it is possible to recompute the WCET by simply
substituting the parameter value into the formula. Thus, it is possible to quickly explore the
parameters space. Furthermore, parametric WCET simplifies the analysis process when third-
party software is involved, since the developer can provide a parametric WCET along with the
component, that can be adapted to the target system.

In addition, if the obtained formula is simple enough, it can be used to efficiently implement an
adaptive real-time system. We can compute off-line a WCET formula that depends on dynamic
parameters and instantiate this formula on-line, at which point parameter values become known.
As a result, with low overhead, we can obtain a tighter estimate of the task WCET and take
better scheduling decisions.
Finally, large execution time values may happen only very rarely, for instance for unlikely

combinations of input data. By using parametric WCET analysis, it is possible to design the
system according to an upper bound that is safe for the vast majority of executions of the
system, and then evaluate a parametric WCET formula at run-time to trigger an alternate, less
time-consuming computation when the formula returns a value exceeding the safe bound (and
thus remain under the safe bound). Such an adaptive behaviour can for instance be specified in
Prelude using the multi-mode extensions proposed by Frédéric Fort.
The following sections present our approach to parametric WCET analysis, which is based

on symbolic computation.

71

5. Low-level timing analysis

b1

b2

b3

b4

b5

b6

(a) CFG representation

Seq

Loop(b1)

b1

b5

b1 Alt b3

Seq

b6 Loop(b2)

b2Seq

b2 b4

(b) CFT representation

Figure 5.1.: A program with two nested loops.

5.1.1. Control Flow Tree

A popular approach for performing WCET analysis is to apply the Implicit Path Enumeration
Technique (IPET) [LMW95] on the Control Flow Graph of the program. IPET encodes WCET
computation as an Integer Linear Programming (ILP) problem that is then solved with standard
ILP-solving techniques. Instead, we represent a program as a tree and perform the WCET
analysis by a recursive analysis of that tree. The main benefit of a tree-based approach is that
recursive WCET analysis is more amenable to symbolic computation than IPET.
In our approach, we represent a program as a Control Flow Tree (CFT), instead of a CFG. A

CFT also represents the possible execution paths of a program, but with a tree structure instead
of a graph. As an example, Figure 5.1b shows the tree corresponding to the CFG of Figure 5.1a.
The set of Control-flow Trees T is defined inductively as follows:
Definition 5.1.1. Let n,m ∈ N∗, t1, . . ., tn, ∈ T n. A control-flow tree t ∈ T is one of:

• Leaf (b), which represents the execution of basic block b;

• Alt(t1, . . . , tn), which represents an alternative between the execution of trees t1, . . ., tn;

• Seq(t1, . . . , tn), which represents a sequential execution of trees t1, . . ., tn;

• Loop(h, t1, n, t2), which represents a loop with header h, that repeats the execution of its
loop body t1, with a maximum number of iterations n, and exits from the loop executing
the tree t2.

In [BFL17], we proposed a procedure to translate a CFG into a CFT, which works for any
CFG without irreducible loops (i.e. loops with multiples entries). Any execution path in the
input CFG is also an execution path in the corresponding Control-flow Tree produced by this
procedure. However, some paths that are valid in the tree may not be valid in the CFG, therefore,
the two representations are not equivalent. Still, the translation is safe, since the presence of
additional paths in the CFT can only lead to an over-approximation of the WCET. Experiments
show that the over-approximation is very small in practice (see Section 5.1.4).
We make a few additional definitions. First, we let time(b) denote the WCET of basic block

b. Its computation is out of the scope of our work, and relies on OTAWA [Bal+10] in our
experiments. Second, we define a lattice on the loops of a CFT as follows:

72

5.1. Symbolic Worst-Case Execution Time analysis

• We let lh denote the loop corresponding to the tree whose root is the loop node with
header h;

• We let Lt denote the set of loops of CFT t;

• We say that loop lh contains loop lh′ and denote lh′ ⊑ lh iff lh′ is a sub-tree of lh;

• ⊤ is a loop such that for all loop lh, lh ⊑ ⊤. In other words, ⊤ is a fictive loop whose
body is the whole CFT;

• ⊥ is such that for all lh, ⊥ ⊑ lh. In other words, ⊥ is a fictive empty loop;

• (Lt ∪ {⊤,⊥},⊑) is the loop lattice;

• l1 ⊔ l2 denotes the least upper of l1 and l2;

• l1 ⊓ l2 denotes the greatest lower bound of l1 and l2.

5.1.2. Context-sensitive execution time

The main drawback of a tree-based WCET analysis, is that it lacks means to incorporate the
results of auxiliary software and hardware analyses (e.g. cache analysis). In order to cope with
this drawback, we enrich the control-flow tree with context annotations designed to represent
the result of extra-CFT analyses, that will help us reduce the pessimism in WCET estimation.

5.1.2.1. Context annotations

A context annotation, attached to a CFT node, constrains the conditions under which a sub-tree
can be executed. In this work, annotations only represent constraints related to loops. Note
that with IPET-based approaches, this information would be represented as an ILP constraint.
We will detail the role of context annotations in parametric WCET in Section 5.1.3.

Definition 5.1.2. An annotation on tree t is denoted ann(t, l,m), where l contains t, andm
is a positive integer. This annotation represents the following constraint: m is the maximum
number of times t can be executed each time l is entered.

We motivate the need to represent context-sensitive information on two examples. First, let
us consider a triangular loop: a for loop i = 1..10, containing an inner for loop j = i..10. The
maximum iteration count for each loop considered separately is 10, but the inner loop body can
be executed at most

∑10
i=1 i times. Knowing this information will enable us to produce a tighter

WCET estimation. To model this example, we have a Leaf (b) node representing the block inside
the inner loop. This node has an annotation (Leaf (b), louter, 55) where louter represents the
outer loop. This annotation represents the fact that, due to the triangular loop, the block b can
be executed at most

∑10
j=1 j = 55 times in a complete execution of louter .

As a second example, we consider the instruction cache analysis by categorization (see
e.g. [Fer+99]). In this approach, blocks can be categorized as persistent with respect to a loop,
meaning that the block will stay in the cache during the whole execution of the loop (only the
first execution results in a cache miss). For instance, in the control-flow tree of Figure 5.2a, let
us assume that the block corresponding to Leaf (b4) is persistent. For every complete execution
of loop lb2 , b4 can only cause a cache miss once. Thus the execution time of b4 must account

73

5. Low-level timing analysis

Loop(b2)

b2Seq

b2 b4

(a) Tree before annotation

Loop(b2)

b2Seq

b2 Alt

b4h b4m (b4m, lb2 , 1)

(b) Tree after annotation

Figure 5.2.: Context annotations

for the cache miss only once per complete execution of loop lb2 . To model this example, we
proceed in two steps. First, we modify the CFT by splitting the block b4 from Figure 5.2a into
two leaves, representing respectively the cache hit and cache miss cases. This is shown in
Figure 5.2b: Leaf (b4m) corresponds to the miss and Leaf (b4h) to the hit. Then, we add an
annotation (b4m, lb2 , 1) to represent the fact that b4m can be executed only once per execution
of loop lb2 .

5.1.2.2. Abstract WCET

With context annotations, the WCET of a tree whose execution is iterated inside a loop can
vary at each iteration. We introduce the concept of multi-WCET to represent the set of WCETs
associated with a tree node. Multi-WCETs are defined usingmulti-sets (or bags), a generalization
of sets where multiple instances of the same element are allowed. The number of instances of a
given element in a multiset is called its multiplicity. A multi-WCET is a multi-set over N, where
the smallest element has an implicit infinite multiplicity. To simplify the presentation, in the
following the elements of a multi-WCET are assumed to be sorted non-increasingly. We make
the following definitions on multi-WCET:

Definition 5.1.3. LetW# denote the set of multi-WCET. Let η, η′ ∈W# and let n ∈ N. The
following notations and operations are defined on multi-WCETs:

• η[n], denotes the (n + 1)-th greatest element of η. For instance, if η = {4, 3} then
η[0] = 4, η[1] = η[2] = η[3] = · · · = 3;

• η|n denotes the multi-WCET that contains the n greatest elements of η (i.e. η[0], . . . , η[n−
1]), and zero as its smallest element;

• η ⊎ η′ is a modified version of the traditional multi-set sum, which we will denote ⊎trad.
Like ⊎trad, ⊎ sums multiplicities. The difference is as follows. Letminη ,minη′ denote
respectively the smallest elements of η and η′. Then, we have: η⊎η′ = η⊎trad η′\{k|k ≤
max(minη,minη′). So for instance, {8, 8, 4} ⊎ {9, 8, 3, 2} = {9, 8, 8, 8, 4};

• η⊗ k denotes the multi-WCET for which each member has k times the multiplicity it has
in η;

• η′′ =η ⊕ η′ is the multi-WCET such that: ∀i ∈ N, η′′[i] = η[i] + η′[i].

74

5.1. Symbolic Worst-Case Execution Time analysis

The abstract WCET of a CFT is now defined as follows:

Definition 5.1.4. For any tree t, its abstract WCET is a pair α = (l, η), where l is a loop and η
is a multi-WCET. The presence of an integer n in η means that the code associated with t may
have an execution time n, but only once, each time l is entered.

In our cache example from Figure 5.2b, the abstract WCET computed for the Alt node would
be (lb2 , {time(b4m), time(b4h)}), meaning that the WCET of that node is time(b4m) for the
first iteration of loop lb2 and then it is time(b4h) for all subsequent iterations of the loop. Note
that, if we exit and re-enter the loop, the WCET of the Alt node will again be time(b4m), then
time(b4h), time(b4h), etc.

The abstract WCET ω(t) of a CFT t can be computed inductively as follows:

• ω(Leaf (b)) = (⊤, {time(b)})

• ω(ann(t, l2, n)) = (l1 ⊓ l2, η1|n)
where (l1, η1) = ω(t).

• ω(Alt(t1, . . . , tn)) = (l1 ⊓ · · · ⊓ ln, η1 ⊎ · · · ⊎ ηn)
where (l1, η1) = ω(t1), . . . , (ln, ηn) = ω(tn);

• ω(Seq(t1, . . . , tn)) = (l1 ⊓ · · · ⊓ ln, η1 ⊕ · · · ⊕ ηn)
where (l1, η1) = ω(t1), . . . , (ln, ηn) = ω(tn);

• ω(Loop(h, t1, n, t2) =

{
(l2, ({

∑n−1
i=0 η1[i]})⊕ η2) if lh ≡ l1

(l1 ⊓ l2, η ⊕ η2) otherwise
where (l1, η1) = ω(t1) and (l2, η2) = ω(t2) and η[i] =

∑i·n+n−1
j=i·n η1[j];

Example 5.1.1. Let us consider an Alt node with two children t1 and t2, such that ω(t1) =
(l, {5, 4, 2, 1}) and ω(t2) = (l, {6, 2}). The WCET for the Alt node is 6 (from t2), the second
WCET is 5 (from t1), then 4, and so on. As such, we compute the abstract WCET for the Alt
node by taking the union of the multi-WCET components of the two children abstract WCET.
Therefore, in our example, ω(t) = (l, {6, 5, 4, 2}).

Example 5.1.2. Let us consider a Seq node with two children t1 and t2, such that ω(t1) =
(l, {5, 4}) and ω(t2) = (l, {2, 1}). The WCET of the Seq node is 5 + 2 = 7, the second WCET
is 4 + 1 = 5. As such, we compute the abstract WCET for the Seq node by adding elements of
the same ranks. In the example, ω(t) = (l, {7, 5}).

Example 5.1.3. Let us consider a node Loop(h, t1, n, t2), with ω(t1) = (lh, {5, 4, 3}) (case
lh ≡ l1), n = 2, and let t2 be empty. Then the WCET for one execution of the loop is always
5 + 4 = 9 (the sum of the n first ranks of the multi-WCET) and we have ω(t) = (⊤, {9}).

Example 5.1.4. Let us consider a node Loop(h, t1, n, t2), with ω(t1) = (l1, {5, 4, 3, 2}) (case
lh ̸≡ l1), n = 2, and let t2 be empty. Then the WCET of the loop is 5 + 4 = 9 (the sum
of the first n ranks of the multi-set), while the second WCET is 3 + 2 = 5 (the sum of the
subsequent n ranks of the multi-set), and subsequent WCETs are always 2 + 2 = 4. Therefore,
ω(t) = (l1, {9, 5, 4}).

75

5. Low-level timing analysis

The soundness of the CFT basedWCET analysis is stated by the following theorem. MakeCFT
corresponds to the procedure that translates a CFG into a CFT. gpaths(G) denotes the set of all
possible execution paths of CFG G. We overload notation time(.) and let time(p) denote the
total WCET of the execution path p.

Theorem 5.1.1. Let G be a CFG. Let t = MakeCFT(G). Let (l, η) = ω(t). We have:

∀p ∈ gpaths(G), time(p) ≤ η[0]

5.1.3. Symbolic computation

In this section we study the problem of computing the abstract WCET of a tree when some
parameters of the tree are unknown. We show that, using simple syntactic sugaring, our
definition of ω(t) produces formulae akin to arithmetic expressions. Then we rely on existing
work on symbolic computation of arithmetic expressions to simplify abstract WCET formulae.
The simplification step is mainly useful in case of on-line formula instantiation, to reduce the
memory and execution time overhead.
First, we introduce several operators on abstract WCET, which act as syntactic sugar, to be

able to express WCET computation as arithmetic computation.

Definition 5.1.5. Let t1 and t2 be two control-flow trees. We define a set of operations on
abstract WCET such that:

ω(t1)⊕ ω(t2) = ω(Seq(t1, t2))

ω(t1) ⊎ ω(t2) = ω(Alt(t1, t2))

(ω(t1), ω(t2), h)
n = ω(Loop(h, t1, n, t2))

ω(t1)↓(h,n) = ω(ann(t1, lh, n))

n⊙ (l, η) = (l, η ⊗ n)

k∞ = {k}

Furthermore, we let θ ≡ (⊤, 0∞). We define the following grammar to represent the set of
formulaeW corresponding to the computation of the abstract WCET of a control-flow tree
(w ∈ W):

w ::= const | id | w↓(h,it) | w ⊕ w | w ⊎ w | (w,w, b)it
h ::= b | id
it ::= i | id

The simplest formula is a literal abstract WCET value (const ∈ (LG ×W#)). A formula
can also be a variable corresponding to an unknown WCET value (id). A formula can also be
the sum (w ⊕ w), the product (w ⊎ w) or the repetition of two formulae ((w,w, b)it). Finally, a
formula can also consist of the application of an annotation to a formula (w↓(h,it)). The factor
of a repetition, and the factor of an annotation (it), can either be a constant integer value (i) or
a variable (id). The loop header of an annotation (h) can either be a basic block name (b) or a
variable (id).

Several elements of these formulae can be symbolic values (denoted by id), i.e. variable
parameters: symbolic WCET value (w), symbolic loop iteration bound (it), symbolic loop header

76

5.1. Symbolic Worst-Case Execution Time analysis

(h). When symbolic values appear in a WCET formula, we cannot reduce the formula to a literal
abstract WCET value. However, in many cases the formula can be transformed into a simpler,
yet equivalent formula. For instance, we have: (x⊕ 2⊙ x)⊕ 3⊙ x⊕ y = 6⊙ x⊕ y. Figure 5.3
lists all the rewriting rules we use in order to simplify WCET formulae. Most of the rules are
transpositions of integer arithmetic simplification rules [Coh02] to the case of WCET formulae.
We make the following comments:

• We rely on an order relation ◁ on formulae, so as to ensure that the commutativity rules
are only applied in one direction for two given formulae. Classically, the order relation is
defined based on the syntactic structure of the formulae (see e.g. [Coh02] for details);

• Distributivity is applied in reverse order and only to factor constant terms;

• Concerning the annotation rewriting rule, the strategy consists in reducing the number
of annotation applications;

• Concerning the loop rule, since we have no rule for combining loops, we only extract the
loop exit tree from the loop;

• Combination of constant formulae is not detailed here but is applied as well. For instance,
(l, 2∞)⊕ (l, 3∞) is simplified to (l, 5∞).

Associativity.

(w1 ⊕ w2)⊕ w3 7→ w1 ⊕ w2 ⊕ w3 (5.1)
w1 ⊕ (w2 ⊕ w3) 7→ w1 ⊕ w2 ⊕ w3 (5.2)

(w1 ⊎ w2)⊎3 7→ w1 ⊎ w2 ⊎ w3 (5.3)
w1 ⊎ (w2 ⊎ w3) 7→ w1 ⊎ w2 ⊎ w3 (5.4)

Commutativity.

(w1 ⊕ w2) 7→ (w2 ⊕ w1) if w2 ◁ w1 (5.5)
(w1 ⊎ w2) 7→ (w2 ⊎ w1) if w2 ◁ w1 (5.6)

Distributivity.

(cst1 ⊕ w3) ⊎ (cst2 ⊕ w3) 7→
(cst1 ⊎ cst2)⊕ w3 (5.7)

Neutral element.

w1 ⊕ θ 7→ w1 (5.8)
w1 ⊎ θ 7→ w1 (5.9)

Multiplication.

0⊙ w1 7→ θ (5.10)
(ki ⊙ w1)⊕ w1 7→ (ki + 1)⊙ w1 (5.11)

Annotation.

θ↓(h,it) 7→ θ (5.12)
w1↓(h,it) ⊕ w2↓(h,it) 7→ (w1 ⊕ w2)↓(h,it)

(5.13)

Loop.

(w1, w2, b)
it 7→ (w1, θ, b)

it ⊕ w2 (5.14)

Figure 5.3.: Abstract WCET formula rewriting rules

5.1.4. Experiments

Our symbolic WCET analysis has been implemented in the WSymb tool, available online as
open-source1. It is implemented as a plugin to the OTAWAWCET analysis tool [Bal+10]. In this
1https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb

77

https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb

5. Low-level timing analysis

Bench Source Parameter Algorithm Function

matmult ML Matrix size Matrix multiplication Initialize (twice)

cnt ML Matrix size Matrix sum Sum

fft TB Number of samples FFT main

compress ML Data size Data compression main

lift TB Number of sensors Factory lift control main

adpcm ML Trigo. computation steps ADPCM encoding main

aes_enc TB Data size AES encryption main

powerwindow TB Sensor data input size Car window control main

fbw PB Task activation count fly-by-wire main

audiobeam TB Audio source count Audio beamforming main

mpeg2 TB Video resolution MPEG2 decoding main

Table 5.1.: Benchmarks summary

section, we report the results of our experiments with WSymb. The benchmarks we selected for
our experiments are summarized in Table 5.1. For each benchmark, we mention its source (ML
for Mälardalen2, TB for TACleBench3, or PB for PapaBench4), provide a short description of
the kind of algorithm it performs, and specify the function whose WCET is analyzed. We only
introduce one parameter per benchmark because precision is independent of the number of
parameters in our approach. The analyses have been executed on a PC with an Intel core i5 3470
at 3.2 Ghz, with 8 Gb of RAM. Every benchmark has been compiled with ARM crosstool-NG
1.20.0 (gcc version 4.9.1) with -O1 optimization level.

The results of our experiments are shown in Table 5.2. First, we detail the size of the WCET
formulae computed by our approach. Column CFG shows the number of basic blocks in the
CFG. Column Initial shows the size (the number of operands) of the WCET formula before
simplification, while Column Final shows the formula size after simplification. In most cases,
the size of the non-simplified formula, which also corresponds to the size of the CFT, is close to
the size of the CFG. Differences are due to the presence of structure-breaking instructions (such
as goto, break, continue, return in the middle of a function). This is especially true for the mpeg2,
and to a lesser extent for lift, audiobeam, and fbw benchmarks. For all benchmarks, the size of
the simplified formula is very small and is related to the number of loops whose iteration count
depends on the parameter.

Then, we compare our approach with an IPET approach. Comparison is performed according
to two criteria: WCET analysis time, and pessimism of the resulting WCET. The target hardware
is an ARM processor with a set-associative LRU instruction cache (the data cache is not taken
into account). The processor pipeline is analyzed with the exegraph method [RS09]. The
instruction cache is analyzed using the cache categorization of [Fer+99], and its impact is
represented in the CFT using annotations as explained in Section 5.1.2.1. The target instruction
cache used in the analysis has 64 Kbytes, 16 ways, and blocks of 16 bytes. The instruction
cache miss latency was assumed to be 10 cycles. Each benchmark is analyzed as a standalone
task executed on baremetal. To perform the preliminary steps of the WCET analysis (program
path analysis, CFG building, loop bounds estimation, pipeline and cache modeling), we rely on

2http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3https://github.com/tacle/tacle-bench
4https://github.com/stefanct/papabench

78

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
https://github.com/tacle/tacle-bench
https://github.com/stefanct/papabench

5.1. Symbolic Worst-Case Execution Time analysis

Formula size Time (ms) Pessimism (%)

Bench CFG Initial Final Common WSymb ILP WSymb Min Max MPA

matmult 111 130 5 1105 1 0 0.01 0.00 3.88 0.31
cnt 153 284 3 2278 2 8 0.15 0.00 3.59 30.4
fft 391 453 8 2968 4 16 0.00 0.00 1.51 -

compress 694 906 3 4760 11 40 0.02 0.01 0.03 -
lift 814 1799 5 5130 19 40 1.51 0.05 2.29 -

adpcm 2032 2211 3 10688 67 272 0.01 0.01 0.33 -
aes_enc 2205 2651 2 4914 30 260 0.04 0.03 0.04 -

powerwindow 3738 4453 24 45702 224 4192 0.01 0.01 1.43 -
fbw 10612 27251 2 36940 1198 8960 2.62 0.03 7.05 -

audiobeam 12299 47248 37 56566 1222 12824 0.12 0.00 0.49 -
mpeg2 38612 1658109 3 267332 12221 > 1 week - - - -

Table 5.2.: Benchmarking results

OTAWA (version 1.0). These steps are common to the IPET approach and to our approach. For
the remaining steps, in the case of the IPET approach, we use GNU lp_solve ILP solver5. To
compare the WCET estimates, we instantiate our WCET formula by assigning to the parameter
the constant value used in the IPET experiment.

The Common column represents the time spent byOTAWA for the preliminary steps (common
to IPET and our approach), while theWSymb and ILP columns correspond to the time spent for
the remaining steps. The WCET evaluation time is essentially linear in the size of the CFT in
our approach and noticeably lower than the evaluation time for the IPET approach. Notice that
lp_solve did not find a solution for mpeg2 after one week of execution time. Furthermore, let us
emphasize that computing the WCET for different parameter values with the IPET approach
requires to run the whole analysis (Common+ILP) for each parameter value, while we only need
to do the analysis (Common+WSymb) once and then instantiate the formula for each parameter
value.

WCET pessimism is measured in comparison with the IPET result. The WSymb column
represents the value of the pessimism with our approach for a fixed value of the parameter
(the same value as the one used for the IPET approach). The Min and Max columns represent
respectively the minimum pessimism and maximum pessimism (in percentage) for varying
values of the parameter between 1 and 1000. We observed that, in general, the percentage of
pessimism decreases with the value of the parameter, approximately with an hyperbolic shape.
The pessimism of our approach is much lower than that of the MPA approach (results extracted
from [BEL09] are reported in column MPA). It is also extremely low compared to the IPET
approach. Pessimism in our approach can be attributed to the following causes: (1) the reduced
expressiveness of our CFT annotations (as opposed to ILP constraints) and (2) paths existing in
the CFT but not in the CFG. Experiments show that the amount of pessimism does not depend
on the size of the CFG.

5.1.5. Related works

Before our publications Several parametric/symbolic WCET analyses have been proposed
before. Source code analyses have been proposed in [Viv+01; Moh+05; Cof+07; Moh+11]. One
limitation of source code analysis is the need to account for complex compiler optimizations

5https://sourceforge.net/projects/lpsolve/

79

https://sourceforge.net/projects/lpsolve/

5. Low-level timing analysis

that may change the structure of the Control-Flow Graph. As a consequence, source code
analyses usually make conservative simplifying hypotheses about the compiler behaviour,
which result in a more pessimistic WCET. Binary-level analyses have also been proposed,
based on parametric ILP in [Alt+08], or based on a non-IPET ad-hoc approach in [BEL11].
Further works have focused either on reducing the complexity of the analysis or on improving
its tightness [AAN11a; AAN11b; Če+15]. Tree-based parametric WCET analysis has been
considered in [BB00; CB02], from which our work is inspired. However, in that approach the
WCET of a tree node does not depend on its execution context, resulting in potentially high
overapproximation.
In comparison to these works, our approach is the only one that is simultaneously scalable,

because the complexity of the formula production is polynomial, and tight, thanks to context
annotations.

After our publications Recently, our symbolic WCET computation method was applied
in [Búr+21] to enable the on-line computation of the WCET of query-based monitors, which is
highly dependent on the program inputs.

5.1.6. Conclusion

The main highlights concerning this work are listed below:

• This work was published in the TECS journal (2017) [BFL17];

• The symbolic WCET analysis has been implemented in the WSymb tool, available online
as open-source6;

• This work was pivotal in the ANR PRCE Corteva project7 (2018-2022, leader CRIStAL);

• The ANR JCJC Sywext project8 (2020-2023, leader Clément Ballabriga) is a prolongation
of this work;

• The Ph.D. thesis of Sandro Grebant (10/2020-) is a prolongation of this work. The thesis
is co-advised by Giuseppe Lipari and myself, tutored by Clément Ballabriga, and funded
by Sywext.

5.2. Relational abstract interpretation of assembly code

Parameters of the WCET formulae produced by our symbolic WCET analysis are often related to
one another. For instance, the loop bound of an inner loop can depend on the loop bound of an
outer loop. We would be interested in establishing such properties. To this intent, we developed
a static analysis of assembly code based on abstract interpretation using a polyhedra-based
abstract domain. The analysis is capable of automatically inferring linear relations between
values used in an assembly program. Although our original motivation was the need to enhance
existing WCET analyses, and in particular to improve the computation of upper bounds on the
6https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb
7https://corteva.cristal.univ-lille.fr/
8https://sywext.cristal.univ-lille.fr/

80

https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb
https://corteva.cristal.univ-lille.fr/
https://sywext.cristal.univ-lille.fr/

5.2. Relational abstract interpretation of assembly code

number of iterations of loops, our abstract domain has other potential applications as well, such
as buffer-overflow analysis or infeasible paths analysis for instance.
Most analyses by abstract interpretation proposed in the literature are performed on source

code. Instead, we analyze assembly code. Assembly code analysis offers high fidelity reasoning
about the software behaviour. In comparison, source code analysis requires to make assumptions
about the (complex) compiler behaviour. Combined with assembly code reconstruction from
binary code (e.g. using OTAWA [Bal+10]), assembly code analysis enables the analysis of
software whose source code is unavailable, such as third-party libraries, legacy programs, or
malware. A wide range of applications can benefit from these advantages, including Worst-
Case Execution Time analysis, reverse engineering, binary code rewriting, binary code reuse,
vulnerability detection, and more [CL16]. However, one major challenge is that, while analysis
of source code can reason on program variables, this information is unavailable in the assembly
code. Instead, assembly code analysis must reason at a lower level of abstraction, analysing
properties on data-locations, that is to say registers and memory addresses. We propose to
identify the subset of registers andmemory locations to be represented in the abstract state as the
analysis progresses. This representation enables us to design a relational abstract interpretration
procedure for binary code.

5.2.1. Motivating example

As a motivating example, we present a snippet of C code, inspired from packet processing
network drivers in Figure 5.49. We consider C code to ease the comprehension, however let us
remind that our analysis is performed on assembly code. The send_request function sends a
request in some application-layer protocol that runs over UDP/IP. Lines 12-13 build a packet
composed of a variable-length IP header, a fixed-length UDP header, and a variable-length UDP
payload (some operations on IP or UDP fields have been omitted). Note that the starting address
of the UDP header depends on the size of the IP header (h1->hdr_len). At line 17, we call the
function responsible for putting the payload into the packet. At line 18, the packet is sent using
the send_packet function, which belongs to the lower-level network layer API. This function
does not take the packet size as parameter, since it can be deduced from the header: in lines
2-3, the function parses the packet to obtain the UDP payload size, and the UDP checksum is
computed by iterating over the payload.
To automatically compute a bound on the number of iterations of the loop at line 4, the

analysis has to discover that udp_l equals udp_size (due to line 16). This can be done with
an appropriate use of a relational abstract domain. However, very few of the existing analyses
running on binary code use a relational domain, and to the best of our knowledge, none support
relations between addresses that are not know statically (udp_l, udp_size). Let us emphasize
that such a use of pointers and memory buffers is typical of many embedded systems: for
instance in network packet processing, but also in many device drivers.

5.2.2. Target language

To simplify the presentation, we consider programs of a minimalist assembly language that
we call MEMP (our implementation actually supports the more complex ARM A32 instruction
set). MEMP makes the following simplifying assumptions: all data locations have the same size,
memory accesses are aligned to the word size and are values in Z, there are no integer overflows,
9The original bench listing is available here: https://pastebin.com/C5UPYRx3

81

https://pastebin.com/C5UPYRx3

5. Low-level timing analysis

1 void send_packet(char *buf) {

2 int iphdr_l = ((struct ip*)buf)->hdr_len;

3 int udp_l = ((struct udp*)(buf + iphdr_l))->len;

4 for (int i = 0; i < udp_l; i++) { /* do CRC */ }

5 ethernet_write(buf);

6 }

7

8 void send_request(int iphdr_size, int udp_size) {

9 char buf[1024];

10 if ((iphdr_size >= 20) && (iphdr_size <= 60) &&

11 (udp_size >= 4) && (udp_size <= 100)) {

12 struct ip *h1 = buf;

13 struct udp *h2 = buf + iphdr_size;

14

15 h1->hdr_len = iphdr_size;

16 h2->len = udp_size;

17 fill_packet_payload(buf);

18 send_packet(buf);

19 }

20 }

Figure 5.4.: Network-inspired benchmark

and function calls are inlined (these limitations could be lifted using for instance [BLH12; SP78]).
Its complete syntax is detailed in Figure 5.5. A concrete program state is a pair (R, ∗), whereR
maps registers to their content and ∗ maps addresses to their content.

Programs ::= l1 : I1, l2 : I2, . . . , ln : END
Labels ::= {l1, l2, . . .}
Registers ::= {r1, r2, . . .}
Constants ::= {c1, c2, . . .}
Instructions ::=
r1 ← OPc(r2, r3) | OP r1 r2 r3

r ← c | SET r c

Emulate undefined r | RAND r

r1 ← ∗(r2) | LOAD r1 r2

∗(r1)← r2 | STORE r1 r2

Branch to l if r = 0 | BR r l

Halt | END

Figure 5.5.: Syntax of MEMP

5.2.3. The POLYMAP domain

We introduce the POLYMAP abstract domain to represent (an over-approximation of) the set
of possible concrete states at an execution step of a program of MEMP. POLYMAP relies on

82

5.2. Relational abstract interpretation of assembly code

Polyhedra, although it could be adapted to rely to a different relational domain, e.g. Octagons, to
reduce complexity, as long as that domain supports equality constraints between two variables
of the abstract domain.

Let |S| denote the cardinality of set S. Let Cn denote the set of linear constraints in Zn on a
set of n variables taken in some set V . We denote ⟨c1, c2, . . . , cm⟩ the polyhedron p consisting
of all the vectors in Zn that satisfy constraints c1, c2, . . ., cm (with ci ∈ Cn, 1 ≤ i ≤ m). We
denote dim(p) = n the number of dimensions of p. In the following, the term variable implicitly
refers to polyhedron variables (a.k.a the domain dimensions). This should not be confused
with source code variables, which are never considered. Instead, we analyse the contents of
data-locations, that is to say of registers and memory locations accessed by the program. We
denote:

• P the set of polyhedra;

• s ∈ p when s (with s ∈ Zdim(p)) satisfies the constraints of polyhedron p;

• p⊑⋄p
′ iff ∀s ∈ p, s ∈ p′;

• p′′ = p⊔⋄p′ the convex hull of p and p′;

• p′′ = p⊓⋄p′ the union of the constraints of p and p′;

• vars(p) the set of variables of p, where |vars(p)| = dim(p) by definition;

• proj (p, x1 . . . xk) the projection of p on space x1 . . . xk, with k < |dim(p)|;

• cyl(p, x) the cylindrification of p by x, as defined in [Mon76] (which basically removes x
from the constraints of p);

• p[xi/xj] the substitution of variable xj by xi in p, which first applies cyl(p, xi) and then
substitutes xi for xj in the remaining polyhedra constraints;

• We say that “c holds for p” when p ⊑⋄ ⟨c⟩.

An abstract state in POLYMAP is a triple (p,R♯, ∗♯). The polyhedron p specifies the con-
straints on the variables of the abstract state. The register mappingR♯ maps registers to variables.
We haveR♯(r)= v iff variable v represents the value of register r in p. The address mapping ∗♯
maps address variables to content variables. We have ∗♯(x1) = x2 iff variable x2 represents the
value at the memory address represented by variable x1. These mappings evolve during the
analysis, because the polyhedra variables are not known when starting the analysis. Instead
they are created/removed as the analysis progresses, and so associations are added/removed
from the mappings.

Example 5.2.1. Consider the following abstract state of POLYMAP:

(⟨x2 = x0, x3 = x1, x0 = 4, x1 ≥ 5⟩, {r0 : x0, r1 : x1}, {x2 : x3})

Registers r0, r1, are respectively mapped to variables x0, x1. The content of the address
represented by x2 is represented by x3. Polyhedra constraints state that memory address 4
(x2 = x0 = 4) contains a value greater than 5 (x3 = x1 ≥ 5).

83

5. Low-level timing analysis

The concretization function γ defines the set of concrete states represented by an abstract
state. Intuitively, a concrete state belongs to the concretization of an abstract state iff the values
of its registers and memory respect the constraints of the abstract state (see [Bal+19] for a
formal definition).

Example 5.2.2.

a = ({1 ≤ x1 ≤ 2, x2 = x1, x3 = 1}, {r0 : x1}, {x2 : x3})
γ(a) = {({r0 = 1}, {∗(1) = 1}})

({r0 = 2}, {∗(2) = 1})}

5.2.4. Abstract interpretation

Our analysis proceeds by forward abstract interpretation [CC77], adapted to the analysis of
programs of MEMP. In order to concisely define abstract state transformers we use (p′, [ri :
xi], [xj : xk])(·) as a shorthand for λ(p,R♯, ∗♯).(p ⊓⋄ p′,R♯[ri : xi], ∗♯[xj : xk]), and denote
“−” when a state component remains unchanged. R♯[ri : xi] associates ri to xi inR♯, replacing
the previous association of ri, if any. ∗♯[xi : xk] behaves similarly. Whenever an unbound
polyhedron variable appears in the lambda body, we implicitly assume that it is a fresh variable,
that has never been used before during the analysis.

The complete interpretation procedure is described in Algorithm 5. It applies to a program P
of MEMP. During the interpretation, we keep a subset L of labels of interest. Abstract values are
stored in a map M from labels to abstract values. We assume that loop header labels LW of
P have previously been identified using an existing analysis (e.g. Tarjan’s algorithm [Tar72]).
Figure 5.6 reports a running example, that will be used as illustration throughout the rest of the
section. Procedures to compute the join (⊔), widening (▽), and the transfer function (I)♯ of
instruction I , dictate how to compute the abstract state at some program label based on abstract
states computed at other program labels. They are detailed in the remainder of this section.

1: RAND r0

2: RAND r7

3: SET r1 4

4: SET r2 5

5: ADD r3 r0 r1

6: STORE r3 r1

7: SUB r5 r7 r1

8: BR r5 10

9: STORE r3 r2

10: LOAD r6 r3

11: END

Label Polyhedron Registers Memory

5 p1 = ⟨x1 = 4, x2 = 5⟩ R♯
1 = {r0 : x0, r1 : x1,
r2 : x2, r7 : x7}

6 p2 = p1 ⊓⋄ ⟨x3 = x0 + x1⟩ R♯
2 = R♯

1[r3 : x3]

7 p3 = p2 ⊓⋄ ⟨x4 = x3, x5 = x1⟩ R♯
2 ∗♯1 = {x4 : x5}

8 p4 = p3 ⊓⋄ ⟨x8 = x7 − x1⟩ R♯
3 = R♯

2[r5 : x8] ∗♯1
10 (from 9) p5 = p4 ⊓⋄ ⟨x9 = x2⟩ R♯

3 ∗♯2 = {x4 : x9}
10′ (from 8) p6 = p4 ⊓⋄ ⟨x8 = 0⟩ R♯

3 ∗♯1
unify(10, 10′) p7 = p6[x9/x5] R♯

3 ∗♯3 = {x4 : x9}

10 ⊔ 10′
p8 = p2 ⊓⋄ ⟨x4 = x3, x8 = x7 − x1, R♯

3 ∗♯3x1 ≤ x9 ≤ x2⟩
11 p8 ⊓⋄ ⟨x10 = x9⟩ R♯

3[r6 : x10] ∗♯3

Figure 5.6.: Running example of analysis

84

5.2. Relational abstract interpretation of assembly code

Algorithm 5 Interpret(P)
1: procedure update(ℓ, a, L) ▷ Auxiliary procedure
2: a← antialias(a)
3: if ℓ ∈ LW then ▷ Check if l is a loop header
4: new ← M [l]▽(M [l] ⊔ a

)
5: else
6: new ←M [ℓ] ⊔ a
7: end if
8: if new ̸⊑M [ℓ] then ▷ Abstract value for ℓ changed, propagate
9: M [ℓ]← new ; L← L ∪ ℓ
10: end if
11: end procedure
12:
13: for all (ℓ, I) ∈ P do ▷ Start of main procedure
14: M [ℓ]← ⊥ ▷ Begin with empty abstract states
15: end for
16: M [ℓ1]← ⊤; L← {ℓ1} ▷ Program starting label
17: while L ̸= ∅ do ▷ Fixpoint iteration
18: Pick and remove ℓ from L
19: match P [ℓ]
20: with BR r ℓ′

21: update(ℓ′, (⟨r = 0⟩,−,−)(M [ℓ]), L) ▷ Branching case
22: update(ℓ+ 1, (−,−,−)(M [ℓ]), L) ▷ Not branching case
23: with END

24: skip
25: with _
26: update(ℓ+ 1, ((P [ℓ])♯)(M [ℓ]), L) ▷ Abstract semantics of I
27: end while
28: return M

The following theorem states that the interpretation procedure is sound, in the sense that
it always computes abstract states that over-approximate the set of possible concrete states.
Relation c−→∗ represents the state transitions allowed by the concrete program semantics.

Theorem 5.2.1. Let P be a MEMP program. Let M = Interpret(P). Then, for any concrete state

sinit :
(P ⊢ (l1, sinit)

c−→∗(ℓ, s)) =⇒ (s ∈ γ(M [ℓ]))

5.2.4.1. Aliasing

Aliases play an important role in the analysis. In a general sense, aliasing occurs in a program
when a data location can be accessed through several symbolic names. In our case, we define
the aliasing relation between two variables x1 and x2 of a polyhedron p as follows:

• Cannot alias: whenever ⟨x1 = x2⟩ ∩ p = ∅;

• May alias: whenever ⟨x1 = x2⟩ ∩ p ̸= ∅;

• Must alias, denoted x1 ≡ x2: whenever p ⊑⋄ ⟨x1 = x2⟩.

85

5. Low-level timing analysis

In the following, we assume that abstract states are alias free so as to simplify the analysis
(see [Bal+19] for details on how to enforce this assumption). Still, testing aliasing relations is
required to compute several abstract state transformers.

5.2.4.2. Non-memory instructions

The transfer functions for non-memory instructions are defined below:

• A binary operation (OP) binds the target register (r1) to a variable (x) constrained to be
equal to the combination of the variables bound to the operand registers (R♯(r2),R♯(r3)).
If the constraint cannot be expressed as a linear relation, x remains unconstrained;

• Concerning the branching instruction, the branching condition holds at the target label
(l). Its negation cannot be represented as a linear relation so it is ignored;

• Transfer functions for (SET)♯ and (RAND)♯ are straightforward.

(OP r1 r2 r3)
♯ =

{
(⟨x = OPc(R♯(r2),R♯(r3))⟩, [r1 : x], −)(·) if linear(OPc)

(−, [r1 : x], −)(·) otherwise

(BR r l)♯ =

{
(⟨R♯(r) = 0⟩, −, −)(·) at l
(−,−, −)(·) at current label+1

(SET r1 c)
♯ =(⟨x = c⟩, [r1 : x],−)(·)

(RAND r1)
♯ =(−, [r1 : x],−)(·)

Example 5.2.3. In Figure 5.6, at label 6 (i.e. the label immediately following the ADD operation)
we introduce the constraint x3 = x0 + x1 and the register mappingR♯

1(r3) = x3.

Example 5.2.4. In Figure 5.6, at label 10, when coming from label 8 (i.e. from BR r5 10), we
add the constraint x8 = 0.

5.2.4.3. Memory instructions

Let us now consider the LOAD instruction. If the input state contains a memory address variable
that is equivalent to the load address (note that for alias free states, if such a variable exists, it is
unique), then in the output state the value of the destination register is the value of the memory
value mapped to this address. Otherwise, the value of the destination register is undefined:

(LOAD r1 r2)
♯ =

{
(⟨x = ∗♯(a)⟩, [r1 : x], −)(·) if a ≡ r2

(−, [r1 : x], −)(·) otherwise

Example 5.2.5. In Figure 5.6, at label 10 we have x4 ≡ r3 and ∗♯(x4) = x9, so at label 11 we
introduce the constraint x10 = x9 and the mappingR♯

3[r6] = x10.

Let us now consider the STORE instruction. If there exists an address variable equivalent to
the target register, then there already exists a memory mapping for this address. The previous
content at this address is replaced by the content of the source register (see Replace below).

86

5.2. Relational abstract interpretation of assembly code

Otherwise, we create a new memory mapping (see Create below). An alias free state contains
at most one address variable that must-alias with r1. It may however contain several may-alias
address variables a′. For each such a′, this means that a′ either equals r1, which requires a
Replace , or is different from r1, which has no impact. We apply operator ⊔ on both cases to
manage this uncertainty, and add the constraints for each may-alias address (seeMay below).

(STORE r1 r2)
♯ =

{
λs.Replace(a)(May(s)) if ∃a ∈ varsA(p), a ≡ r1

λs.Create(May(s)) otherwise

With (⃝ denotes function composition):

Replace(a) = (⟨x = R♯(r2)⟩, −, [a : x])(·)
Create = (⟨xi = R♯(r1), xj = R♯(r2)⟩,−, [xi : xj])(·)
May = ⃝

{a∈A|a may-alias r1}
λs.(Replace(a)(s) ⊔ s)

Example 5.2.6. In Figure 5.6, at label 7, we create a new memory mapping ∗♯1(x4) = x5 and
we introduce the constraints x4 = x3, x5 = x1.

Example 5.2.7. In Figure 5.6, at label 10, when coming from label 9, we replace a previous
mapping, x4 is mapped to x9 (instead of x5 previously), and we introduce the constraint x9 = x2.

5.2.4.4. Abstract domain operators

We just detailed how to compute the impact of the execution of an instruction on an abstract
state. Now, we define procedures to merge two abstract states. The join operator ⊔ is used to
handle branching: we join the abstract states corresponding to two different program paths
leading to the same label. The widening operator ▽ is used on loop headers to ensure that the
analysis reaches a fixpoint, despite the presence of loops.

The correspondence between polyhedra variables and data locations is neither predefined nor
fixed. Therefore, a specificity of our analysis is that it may happen that two abstract states use
different variables to designate the same data location. To enable a more accurate comparison of
these two states, we must unify them first, which consists in trying to assign the same variables
in the two states to the same data locations. Unification is used for inclusion testing, and also in
the join and widening operators.

Unification The unification procedure is detailed in Algorithm 6. It replaces address variables
and address content variables of s♯2 by their equivalent in s♯1 and does the same for register
variables. Function matchVar(v1, v2, p1, p2) is a heuristic that returns true if variable v1 of p1
is equivalent to variable v2 of p210.

Example 5.2.8. In Figure 5.6, when computing unify(10, 10′), s1 corresponds to the state of
10 and s2 to the state of 10′. Trivially,matchVar detects that x4 represents the same address in
both states. Since ∗♯2(x4) = x9 (in s1) and ∗♯1(x4) = x5 (in s2), we replace x5 by x9 in s2.
10Basically, the heuristic tries to express v1 and v2 as linear expressions of some variables common to p1 and p2.

87

5. Low-level timing analysis

Algorithm 6 unify(s♯1 = (p1,R♯
1, ∗

♯
1), s

♯
2 = (p2,R♯

2, ∗
♯
2))

1: (p′2,R
♯′

2 , ∗
♯′

2)← (p2,R♯
2, ∗

♯
2)

2: for all (x1, x2) ∈ Dom(∗♯1)×Dom(∗♯2) do
3: if matchVar(x1, x2, p1, p2) then
4: Replace x2 by x1 and ∗♯2(x2) by ∗

♯
1(x1) in (p′2,R

♯′

2 , ∗
♯
2)

5: end if
6: end for
7: for all r ∈ Dom(R♯

1) ∩Dom(R♯
2) do

8: ReplaceR♯
2(r) byR

♯
1(r) in (p′2,R

♯′

2 , ∗
♯′

2)
9: end for
10: return (p′2,R

♯′

2 , ∗
♯′

2)

Join The join procedure is described in Algorithm 7. Function comLoc filters the register and
address mappings of two states, to keep only locations that are mapped to the same variable in
both states. The join procedure first unifies the two states to join, then joins the two polyhedra,
and finally filters common data locations.

Algorithm 7 (p1,R♯
1, ∗

♯
1) ⊔ (p2,R♯

2, ∗
♯
2)

1: (p′2,R
♯′

2 , ∗
♯
2

′
) = unify((p1,R♯

1, ∗
♯
1), (p2,R

♯
2, ∗

♯
2))

2: p← p1 ⊔⋄ p′2
3: (R♯, ∗♯)← comLoc((R♯

1, ∗
♯
1), (R

♯′

2 , ∗
♯
2

′
))

4: return (p,R♯,)

Example 5.2.9. In Figure 5.6, when computing 10 ⊔ 10′, we obtain identical register and
memory mappings for 10 and unify(10, 10′). The convex hull p5 ⊔⋄ p7 groups the constraints
on x9 (x1 ≤ x9 ≤ x2) and lifts those on x8.

Widening The widening procedure is defined just like ⊔, except that we use a polyhedra
widening operator ▽⋄ (e.g. that of [GR06]) in place of ⊔⋄.

Inclusion Finally, to determine when the analysis reaches a fix-point, we must test abstract
states inclusion: the fix-point is reached when, for all program labels, the analysis computes
an abstract state that is included in the abstract state computed previously at that label. Let
s♯1 = (p1,R♯

1, ∗♯1) and s♯2 = (p2,R♯
2, ∗♯2). The inclusion operator ⊑♯ is defined as follows:

s♯1 ⊑ s♯2 ⇔p′1 ⊑⋄ p2 ∧R♯
2 ⊆ R

♯′

1 ∧ ∗
♯
2 ⊆ ∗

♯′

1

with (p1
′,R♯′

1 , ∗
♯′) = unify(a2, a1)

88

5.2. Relational abstract interpretation of assembly code

5.2.5. Experiments

Our analysis is implemented in the Polymalys tool, available online as open-source11. To
illustrate the benefits of our approach, we compute loop bounds on a set of assembly programs.
We compare the results obtained by Polymalys with state-of-the-art loop bound analysis tools,
namely SWEET [Lis14], PAGAI [HMM12] and oRange [BMS08]. To compute loop bounds with
Polymalys, for each loop header label we create a “virtual” register. We instrument the program
so that the register is set to 0 when entering the loop, and incremented at each loop iteration.
Then, the loop bound is the maximum possible value of that register.

We illustrate the differences between tool capabilities on some synthetic program examples
below (more extensive experiments are available in [Bal+19]). To ease the comprehension, we
provide the C source code.

Example 5.2.10. The following example contains pointer aliasing and pointer arithmetic:

foo() {

int i, bound = 10;

int *ptr = &bound;

ptr++; ptr--; *ptr = 15; k = 0;

for (i = 0; i < bound; i++);

}

PAGAI does not find the loop bound (the loop is considered unbounded), because it does not
infer that ptr = &bound when executing the instruction *ptr=15. Other tools bound the loop
correctly (15 iterations).

Example 5.2.11. The following example contains an off-by-one array access:

1 #define SIZE 10

2 foo(int offset) {

3 int i, bound = 10;

4 int tab[SIZE];

5 if ((offset > SIZE) || (offset < 0))

6 return -1;

7 tab[offset] = 100;

8 for (i = 0; i < bound; i++);

9 }

The off-by-one error (lines 5-6) may cause the array cell assignment (line 7) to overwrite
the bound variable with the value 100. Polymalys correctly detects that the loop may iterate
100 times, while oRange and SWEET detect a maximum of 10 iterations. PAGAI also bounds to
10 iterations, but warns about a possible undefined behavior and unsafe result. Note that the
bound depends on the stack variable allocation layout, which is unknown when analysing the
source code. In our experiments, the compiler allocates the bound variable next to the array.

Example 5.2.12. The following example shows the benefits of a relational domain:

1 #define MAXSIZE 10

2 foo() {

11https://gitlab.cristal.univ-lille.fr/otawa-plugins/polymalys

89

https://gitlab.cristal.univ-lille.fr/otawa-plugins/polymalys

5. Low-level timing analysis

3 int base, end, i;

4 if (end - base > MAXSIZE)

5 end = base + MAXSIZE;

6 for (i = base; i < end; i++);

7 }

Here, we do not know statically the value of end and base. However, due to the if statement
(line 4), Polymalys introduces the constraint end− base ≤ 10. Thus, Polymalys bounds the
loop correctly (10 iterations), while PAGAI, oRange and SWEET do not.

Example 5.2.13. Finally, we report analysis results for the motivating example of Figure 5.4.
Polymalys correctly infers that the loop bound is equal to the maximum size of the UDP payload.
PAGAI, oRange and SWEET fail to provide any bound.

5.2.6. Related works

Our experiments established that in many cases Polymalys is capable of more tightly bound-
ing the number of loop iterations than existing tools (SWEET [Lis14], PAGAI [HMM12] and
oRange [BMS08]).

Computing loop bounds is only one possible application of this abstract interpretation analysis.
The main contribution of our work is actually to automatically discover memory locations
of interest, and to track their contents. To this regard, Value Set Analysis (VSA) [BR04] is the
closest related work. VSA is integrated in many tools for analysing binary programs, such
as CodeSurfer [Bal+05], angr [Sho+16] BAP [Bru+11] and Jakstab [KV10]. VSA is also based
on abstract interpretation of assembly code, but the abstract domain is non-relational. As a
consequence, only constant addresses (or constant offsets to the data-stack) can be identified
as memory locations of interest. Our analysis identifies a wider range of memory locations of
interest and thus infers more properties on the assembly code.

5.2.7. Conclusion

The main highlights concerning this work are listed below:

• This work was published at the VMCAI’19 conference [Bal+19], and received the best
paper award of the conference;

• An extension to efficiently handle arrayswas published in the FMSD journal (2022) [BFR22];

• The abstract interpretation procedure was implemented in the Polymalys tool, available
as open-source12;

• This work was done in collaboration with colleagues from CRIStAL (Clément Ballabriga,
Giuseppe Lipari), and from the University of Lyon (Laure Gonnord);

• The post-doctoral study of Jordy Ruiz (6/2018-6/2019) was a follow-up to this work;

• The internship of Guillaume Person (5/2021-8/2021) was a follow-up to this work;

• The Ph.D. thesis of Sandro Grebant (10/2020-), already mentionned previously, partly
relies on this work;

12https://gitlab.cristal.univ-lille.fr/otawa-plugins/polymalys

90

https://gitlab.cristal.univ-lille.fr/otawa-plugins/polymalys

5.2. Relational abstract interpretation of assembly code

• The Ph.D. thesis of Andrei Florea (10/2022-) is a continuation of this work. The thesis is
advised by Vlad Rusu, tutored by Clément Ballabriga and myself, and jointly funded by
the Haut-de-France region and the University of Lille.

91

Part III.

Perspectives

93

6. Conclusion

In the previous chapters I presented my work on the programming and analysis of critical
real-time systems, carried out since my appointment in 2010 at the University of Lille. My
contributions stem from the development of the Prelude language and its compiler, and extend
over several research domains. This chapter summarizes my main contributions and presents
my future research projects.

6.1. Summary

The development of real-time systems involves a wide range of research areas. An important
part of my work has focused on the connections between these areas.
Chapter 3 presented my work and collaborations on the programming of real-time systems

with Prelude. First, the code generation process of the Prelude compiler was extended to support
multi-core architectures with distributedmemory [Pag+18b; FF19]. Second, the Prelude language
was extended to support communications that may or may not be synchronized [Wys+12].
Third, support for multi-mode real-time systems based on mode automata was presented [FF22].

Chapter 4 presented my work and collaborations on high-level timing analysis. First, we
proposed scheduling policies and associated schedulability tests for the analysis of a set of
real-time tasks with precedence constraints [For+10; For+11]. Second, we proposed a general
method for the analysis of end-to-end timing constraints, that is to say constraints that involve
a chain of tasks [Wys+13; FBP17]. Third, we studied the task clustering problem, which consists
in reducing the number of tasks used to implement a system while preserving the schedulability
of the system [BFO14b; BFO14a].

Chapter 5 presented my work and collaborations on low-level timing analysis. First, we pro-
posed a parametricWorst-Case Execution Time analysis based on symbolic computation [BFL17].
Second, we defined a relational abstract interpretation technique for the analysis of assembly
code [Bal+19; BFR22].

6.2. Future research projects

In future works, I will build on my expertise on the programming of real-time systems to develop
new research directions. In this section I detail one short term (1-3 years), one medium term
(2-4 years), and one long term (4+ years) future research project.

6.2.1. Modular WCET analysis (short term)

In our symbolic WCET computation approach (Section 5.1), elements to be considered as
symbolic values must be identified manually by the programmer. In the Ph.D thesis of Sandro
Grebant (started 10/2020) our objective is to extend the analysis so that it automatically identifies
the arguments of a procedure as parameters and produces a WCET formula that represents the

95

6. Conclusion

WCET of the procedure as a function of its arguments. Intuitively, the formula accounts for the
impact of arguments on the control-flow (conditionnal statements, loops) of the procedure, and
thus on its WCET. This extensions relies on both our work on symbolic WCET computation
and on abstract interpretation of binary code (Section 5.2). First, we are extending the abstract
interpreter to infer conditions of conditionnal statements, and loop bounds, that depend on
procedure arguments. Then, we are extending the symbolic WCET computation to incorporate
this information in the CFT and in the WCET formulae. For instance, we aim at producing
formulae such as (((r0 ≥ 11)⊛ ω(B)) ⊎ ((r0 ≤ 10)⊛ (l, {5})), which states that the WCET
of a procedure is that of basic block B when its first argument (r0) is greater than 11, otherwise
it is equal to 5.
Our next step will be to derive a modular WCET analysis, a feature that no existing WCET

analysis approach currently provides. For instance, let us assume that procedure f calls pro-
cedure g. To compute the formula of f , we will instantiate the WCET formula of g with the
arguments values provided by f . This splits the problem of computing the WCET of a complete
program into separate sub-problems, one for each procedure. This will improve the scalability
of the analysis, because the sub-problems can be solved independently, and also because we
can factorise the analysis of a procedure called several times in the same program.

To achieve this objective, we will extend the CFT formalism and WCET formulae to represent
procedure calls. Considering our current progress, we hope to complete this part during the
Ph.D thesis of Sandro Grebant. We will also extend our abstract interpretation of binary code
to make it compositional. This requires to analyse and represent the impact of a procedure
call on the abstract state of the program. This should be fairly simple for pure functions, i.e.
functions without side-effects, since they only impact the caller through return values. We
could for instance adapt the symbolic relational separate analysis proposed in [CC02] to the
case of binary code. The analysis of impure functions is more difficult, because they can modify
arbitrary memory addresses in the caller stack and also in memory addresses of global variables.
This work will be the main topic of the Ph.D. thesis of Andrei Florea (started 10/2022).

6.2.2. Synthesis of Prelude programs (medium term)

As mentionned in our work on partial delays specification (Section 3.2), designing a completely
deterministic real-time system can be difficult. Instead, we can opt for an initial non-deterministic
specification, which is simpler to devise and avoids overspecification, and delegate the generation
of a deterministic program to the compiler. This can be seen as a form of program synthesis.
In future works, I will consider program synthesis in the following setting. The non-

deterministic input model will consist of a set of communicating nodes subject to real-time
constraints. A minimum and maximum period will be provided for each node1 and end-to-end
constraints will be specified for functionnal chains (such as those of Section 4.2). When generat-
ing the output program, the compiler will automatically insert delays, choose communication
patterns and periods, so that the program is causal and satisfies end-to-end constraints.

I will build on related works to achieve this objective. First, to formalize the non-deterministic
semantics of the initial specification, I will collaborate with colleagues from CRIStAL (David
Nowak and Vlad Rusu). We will rely on their recent work on co-induction [RN22], which
is well-adapted to formalize semantics that apply on sets of flows (non-determinism induces
several possible resulting flows for the same computation). Second, for the compilation step I
1These minimum and maximum values were discussed in the Overview (Chapter 1).

96

6.2. Future research projects

plan to collaborate with colleagues from Inria Paris/ENS (Timothy Bourke, Marc Pouzet), who
recently worked on similar synthesis problems for a Lustre-like language, for partial delays
specification e.g. [Ioo+20], and task chain synthesis (to-be-published). Synthesis of real-time
attributes for functional chains has also been studied in the real-time litterature [GHS94; Li+13;
Bec+16], although less extensively than the real-time analysis of functional chains.

6.2.3. Formally verified real-time programs (long term)

The high-level of abstraction of Prelude simplifies the development of large scale real-time
systems, by abstracting from low-level implementation concerns, which are delegated to the
compiler. Compilation transforms the Prelude program into a set of concurrent communicating
real-time tasks, to be executed by a real-time operating system. Because Prelude targets critical
systems, we want to ensure that the semantics of the generated multi-task program is consistent
with the semantics of the input Prelude program.

While parts of the compilation of Prelude are defined formally on paper, providing a full
correctness proof that relates the source and target semantic models is still an open problem. In
future works, I would like to devise a complete formally verified framework for the development
of real-time systems. The core of this project will consist in devising a Prelude compiler verified
formally with the Coq Interactive Theorem Prover [The22]. Related works on Vélus [Bou+17], a
verified Lustre compiler, will serve as a starting point. However, compared to Prelude, the source
semantics of Vélus does not contain information on production dates, and the target semantics
is single-threaded instead of multi-threaded. The framework will also include a formally verified
real-time operating system (RTOS), as Prelude generates multi-task code. I will collaborate with
colleagues from CRIStAL (2XS team) who developed the Pip Protokernel[2XS22], a minimalist
kernel proved correct in Coq that includes an EDF scheduler [Van+22]. We will rely on the
CompCert compiler [Ler09] to ensure the correctnes of the compilation from C to machine
code. As a result, this will provide a complete proof that ensures that the program executed by
the RTOS behaves as specified by the semantics of the corresponding Prelude program.
As an additional objective, I would like to study the automatic verification of temporal

properties on Prelude programs. The model-checker Lesar [Ray08] has a similar objective, but
it only deals with logical-time, not real-time. In particular, I would like to be able to check
constraints on time-domain performance indicators of control-command systems, such as for
instance the settling time2 of a controller in response to a command. Such properties require
to model the program along with the physical environment it interacts with. Developping a
verification tool with such capabilities would combine nicely with the compilation chain and
RTOS described previously, as properties proved on the Prelude program would provably be
preserved by the corresponding embedded code.

2The time required to settle close to the steady-state value [Pag+14].

97

Part IV.

Appendices

99

A. Main symbols and acronyms

Programming with Prelude

/ˆ Periodic flow undersampling. 13

/. Periodic clock deceleration. 15

π(n, p) The period of clock (n, p). 15

→. Clock phase offset. 15

φ(n, p) The phase of clock (n, p). 15

∗. Periodic clock acceleration. 15

∗̂ Periodic flow oversampling. 13

MG The global shared processor memory. 18

Mi The private scratchpad memory of core i. 18

Ai The acquisition phase of τi. 18

Ei The execution phase of τi. 18

Ri The restitution phase of τi. 18

ρi The core i. 18

AER Acquisition Execution Restitution. 17

PREM PRedictable Execution Model. 17

SPM Scratchpad memory. 18

SSM Synchronous State Machines. 28

UAV Unmanned Aerial Vehicle. 28

101

High-level timing analysis

High-level timing analysis

Ci The worst-case execution time of τi. 37

D∗
i The relative deadline of τi, adjusted to encode precedence constraints. 41

Di The relative deadline of τi. 37

Mi,j The precedence matrix from τi to τj . 38

O∗
i The first release date of τi, adjusted to encode precedence constraints. 41

Oi The first release date of τi. 37

Ti The period of τi. 37

di.k The absolute deadline of τi.k. 37

etime(τi.p) The earliest completion time of job τi.p. 46

τi.k The kth repetition, or job, of τi. 37

ltime(τi.p) The latest completion time of job τi.p. 46

J The job set. 37

S The task set. 37

τi.rlv(p) The pth relevant job of τi. 46

τj.first(rlv(p)) The first job of τj that depends on τi.rlv(p). 46

τj.last(rlv(p)) The last job of τj that depends on τi.rlv(p). 46

oi.k The release date of τi.k. 37

preds(τi) The predecessors of τi. 38

Φ A priority assignment. 39

N<n The set of natural integers strictly smaller than n. 38

succs(τi) The successors of τi. 38

τi The task of index i. 37

τi → τj A precedence constraint from τi to τj . 38

eSΦ(τi.k) The completion time of τi.k in the schedule produced by Φ. 39

sSΦ(τi.k) The start time of τi.k in the schedule produced by Φ. 39

DM Deadline Monotonic. 40

EDF Earliest-Deadline First. 40

102

Low-level timing analysis

lcm Least Common Multiple. 38

RM Rate Monotonic. 40

WCET Worst-Case Execution Time. 37

Low-level timing analysis

(R, ∗) Concrete state with registersR and memory ∗. 74

(p,R♯, ∗♯) Abstract state with polyhedron p, registersR♯ and memory ∗♯. 76

Alt(t1, . . . , tn) An alternative between the execution of CFTs t1, . . ., tn. 64

Leaf (b) The CFT for basic block b. 64

Loop(h, t1, n, t2) A loop CFT with header h, that repeats t1, n times, and exits executing t2. 64

Seq(t1, . . . , tn) A sequential execution of CFTs t1, . . ., tn. 64

γ The concretization function. 76

⟨c1, c2, . . . , cm⟩ The polyhedron for constraints c1, c2, . . . , cm. 76

η ⊕ η′ The point-wise sum of η and η′. 67

η ⊗ k Mulplies the multiplicities in η by k. 67

η ⊎ η′ The multi-set-style sum of multi-WCET η and η′. 67

η|n The n greatest elements of η. 67

⊔⋄ Convex hull (polyhedra join). 76

⊑⋄ Polyhedra inclusion. 76

⊓⋄ Polyhedra intersection (union of polyhedra constraints). 76

W# The set of all multi-WCET. 67

∗♯[xi : xk] Associates xk to xi in ∗♯. 77

ω(t) The abstract WCET of CFT t. 67

proj (p, x1 . . . xk) The projection of p on space x1 . . . xk. 76

R♯(r) The variable for the content of register r. 76

R♯[ri : xi] Associates ri to xi inR♯. 77

(I)♯ The transfer function of instruction I . 77

vars(p) The variables (dimensions) of polyhedron p. 76

103

Low-level timing analysis

time(b) The WCET of basic block b. Also denotes the WCET of an execution path. 64

p[xi/xj] The substitution of variable xj by xi in p. 76

CFG Control-Flow Graph. 64

CFT Control-Flow Tree. 64

ILP Integer Linear Programming. 64

IPET Implicit Path Enumeration Technique. 64

104

Bibliography

Personal publications

Journal papers

[BFL17] Clément Ballabriga, Julien Forget, and Giuseppe Lipari. “Symbolic WCET Compu-
tation”. In: ACM Transactions on Embedded Computing Systems (TECS) 17.2 (Dec.
2017), pp. 1 –26. doi: 10.1145/3147413.

[BFR22] Clément Ballabriga, Julien Forget, and Jordy Ruiz. “Relational abstract interpreta-
tion of arrays in assembly code”. In: Formal Methods in System Design (Oct. 2022),
pp. 1–32. doi: 10.1007/s10703-022-00399-3.

Conferences with proceedings

[Bal+19] Clément Ballabriga, Julien Forget, Laure Gonnord, Giuseppe Lipari, and Jordy Ruiz.
“Static Analysis Of Binary Code With Memory Indirections Using Polyhedra”. In:
VMCAI’19 - International Conference on Verification, Model Checking, and Abstract

Interpretation. Cascais, Portugal, Jan. 2019. doi: 10.1145/3147413.
[BFO14a] Antoine Bertout, Julien Forget, and Richard Olejnik. “A heuristic to minimize the

cardinality of a real-time task set by automated task clustering”. In: Proceedings of
the 29th Annual ACM Symposium on Applied Computing. 2014, pp. 1431–1436. doi:
10.1145/2554850.2554958.

[BFO14b] Antoine Bertout, Julien Forget, and Richard Olejnik. “Minimizing a real-time task
set through task clustering”. In: Proceedings of the 22nd International Conference
on Real-Time Networks and Systems. 2014, pp. 23–31. doi: 10.1145/2659787.
2659820.

[Cor+11] Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire Pagetti.
“Developing critical embedded systems on multicore architectures: the Prelude-
SchedMCore toolset”. In: 19th International Conference on Real-Time and Network

Systems. Nantes, France, Sept. 2011. url: https://hal.archives-ouvertes.
fr/inria-00618587.

[FBP17] Julien Forget, Frédéric Boniol, and Claire Pagetti. “Verifying end-to-end real-time
constraints on multi-periodic models”. In: ETFA2017 - 22nd IEEE International

Conference on Emerging Technologies And Factory Automation. Limassol, Cyprus,
Sept. 2017. doi: 10.1109/ETFA.2017.8247612.

105

https://doi.org/10.1145/3147413
https://doi.org/10.1007/s10703-022-00399-3
https://doi.org/10.1145/3147413
https://doi.org/10.1145/2554850.2554958
https://doi.org/10.1145/2659787.2659820
https://doi.org/10.1145/2659787.2659820
https://hal.archives-ouvertes.fr/inria-00618587
https://hal.archives-ouvertes.fr/inria-00618587
https://doi.org/10.1109/ETFA.2017.8247612

Bibliography

[FF19] Frédéric Fort and Julien Forget. “Code generation for multi-phase tasks on a multi-
core distributed memory platform”. In: 2019 IEEE 25th International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE.
2019, pp. 1–6. doi: 10.1109/RTCSA.2019.8864558.

[FF22] Frédéric Fort and Julien Forget. “Synchronous semantics of multi-mode multi-
periodic systems”. In: 37th ACM/SIGAPP SymposiumOnApplied Computing (SAC’22).
Virtual, Apr. 2022, pp. 1248–1257. doi: 10.1145/3477314.3507271.

[For+10] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, and Claire
Pagetti. “Scheduling Dependent Periodic Tasks Without Synchronization Mecha-
nisms”. In: 16th IEEE Real-Time and Embedded Technology and Applications Sympo-

sium. Stockholm, Sweden, Apr. 2010. doi: 10.1109/RTAS.2010.26.

[For+11] Julien Forget, Emmanuel Grolleau, Claire Pagetti, and Pascal Richard. “Dynamic
priority scheduling of periodic tasks with extended precedences”. In: ETFA2011.
IEEE. 2011, pp. 1–8. doi: 10.1109/ETFA.2011.6059015.

[Pag+18b] Claire Pagetti, Julien Forget, Heiko Falk, Dominic Oehlert, and Arno Luppold.
“Automated generation of time-predictable executables on multi-core”. In: RTNS
2018. Proceedings of the 26th International Conference on Real-Time Networks
and Systems. POITIERS, France, Oct. 2018. doi: 10.1145/3273905.3273907.

[Wys+12] Rémy Wyss, Frédéric Boniol, Julien Forget, and Claire Pagetti. “A synchronous
language with partial delay specification for real-time systems programming”. In:
10th Asian Symposium on Programming Languages and Systems. Kyoto, Japan, Dec.
2012. doi: 10.1007/978-3-642-35182-2_16.

[Wys+13] Rémy Wyss, Frédéric Boniol, Claire Pagetti, and Julien Forget. “End-to-end latency
computation in amulti-periodic design”. In: 28th SymposiumOnApplied Computing

(SAC’13). Coimbra, Portugal, Apr. 2013, pp. 1682–1687. doi: 10.1145/2480362.
2480678.

Invited speaker

[For17] Julien Forget. “Ecole Temps Réel 2017 - Uniprocessor real-time scheduling”. Doc-
toral. Lecture. France, Aug. 2017. url: https://hal.archives-ouvertes.fr/
hal-03193898.

106

https://doi.org/10.1109/RTCSA.2019.8864558
https://doi.org/10.1145/3477314.3507271
https://doi.org/10.1109/RTAS.2010.26
https://doi.org/10.1109/ETFA.2011.6059015
https://doi.org/10.1145/3273905.3273907
https://doi.org/10.1007/978-3-642-35182-2_16
https://doi.org/10.1145/2480362.2480678
https://doi.org/10.1145/2480362.2480678
https://hal.archives-ouvertes.fr/hal-03193898
https://hal.archives-ouvertes.fr/hal-03193898

References

Publications by other authors

References

[2XS22] 2XS-CRIStAL. The Pip Protokernel. 2022. url: https://pip.univ-lille.fr/.
[AAN11a] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. “Precise and efficient

parametric path analysis”. In: SIGPLAN Not. 46.5 (Apr. 2011), pp. 141–150. issn:
0362-1340. (Visited on 04/26/2022).

[AAN11b] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. “Symbolic Worst Case
Execution Times”. en. In: Theoretical Aspects of Computing – ICTAC 2011. Ed. by
Antonio Cerone and Pekka Pihlajasaari. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pp. 25–44. isbn: 978-3-642-23283-1.

[Abs] AbsInt. aiT. Version 22.1. url: https://www.absint.com/ait/.
[AD94] Rajeev Alur and David L Dill. “A theory of timed automata”. In: Theoretical com-

puter science 126.2 (1994), pp. 183–235.
[ALGM96] Pascal Aubry, Paul Le Guernic, and Sylvain Machard. “Synchronous distribution

of Signal programs”. In: System Sciences, 1996., Proceedings of the Twenty-Ninth

Hawaii International Conference on, IEEE. 1996.
[Alt+08] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm. “Parametric Timing Analysis

for Complex Architectures”. In: 2008 14th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications. Aug. 2008, pp. 367–
376.

[AP14a] Ahmed Alhammad and Rodolfo Pellizzoni. “Schedulability analysis of global
memory-predictable scheduling”. In: Proceedings of the 14th International Con-

ference on Embedded Software. ACM. 2014.
[AP14b] Ahmed Alhammad and Rodolfo Pellizzoni. “Time-predictable execution of multi-

threaded applications on multicore systems”. In: 2014 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE. 2014.
[Aud91] Neil C. Audsley. Optimal Priority Assignment And Feasibility Of Static Priority Tasks

With Arbitrary Start Times. Tech. rep. YCS 164. Dept. Computer Science, University
of York, Dec. 1991.

[AWP15] Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. “Memory efficient global
scheduling of real-time tasks”. In: 21st IEEE Real-Time and Embedded Technology

and Applications Symposium. IEEE. 2015.
[Bal+05] Gogul Balakrishnan, RaduGruian, Thomas Reps, and TimTeitelbaum. “CodeSurfer/x86—A

platform for analyzing x86 executables”. In: International Conference on Compiler

Construction. 2005.
[Bal+10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. “OTAWA:

An Open Toolbox for Adaptive WCET Analysis”. In: Software Technologies for Em-

bedded and Ubiquitous Systems. Vol. 6399. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010.

107

https://pip.univ-lille.fr/
https://www.absint.com/ait/

Bibliography

[BB00] Guillem Bernat and Alan Burns. “An approach to symbolic worst-case execution
time analysis”. In: IFAC Proceedings Volumes 33.7 (2000), pp. 43–48.

[BB04] E. Bini and G.C. Buttazzo. “Biasing effects in schedulability measures”. In: 16th
Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004. Proceedings. July
2004, pp. 196 –203.

[BB06] S. Baruah and A. Burns. “Sustainable Scheduling Analysis”. In: Real-Time Systems

Symposium, 2006. RTSS ’06. 27th IEEE International. 2006, pp. 159–168.
[BBW11] G. Buttazzo, E. Bini, and Yifan Wu. “Partitioning Real-Time Applications Over

Multicore Reservations”. In: IEEE Transactions on Industrial Informatics 7.2 (May
2011), pp. 302–315.

[BDN18] Alessandro Biondi and Marco Di Natale. “Achieving predictable multicore execu-
tion of automotive applications using the LET paradigm”. In: 2018 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS). IEEE. 2018, pp. 240–
250.

[Bec+16] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. “Synthesizing Job-Level Dependencies for Automotive Multi-Rate Effect
Chains”. In: The 22th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications. 2016.
[BEL09] S. Bygde, A. Ermedahl, and B. Lisper. “An Efficient Algorithm for Parametric

WCET Calculation”. In: 15th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, RTCSA’09. Beijing, China: IEEE, 2009,
pp. 13–21.

[BEL11] Stefan Bygde, Andreas Ermedahl, and Björn Lisper. “An efficient algorithm for
parametric WCET calculation”. In: Journal of Systems Architecture. Design and
Optimization for Embedded and Real-Time Computing Systems and Applications
57.6 (June 2011), pp. 614–624. issn: 1383-7621.

[Ben+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. “The synchronous languages 12 years later”. In:
Proceedings of the IEEE 91.1 (2003), pp. 64–83.

[Ber+08] Dominique Bertrand, Anne-Marie Déplanche, Sébastien Faucou, and Olivier H
Roux. “A study of the aadl mode change protocol”. In: 13th IEEE International

Conference on Engineering of Complex Computer Systems (iceccs 2008). IEEE. 2008,
pp. 288–293.

[BLH12] Stefan Bygde, Björn Lisper, and Niklas Holsti. “Fully bounded polyhedral analysis
of integers with wrapping”. In: Electronic Notes in Theoretical Computer Science

288 (2012), pp. 3–13.
[BMS08] Armelle Bonenfant, Marianne de Michiel, and Pascal Sainrat. “oRange: A tool

for static loop bound analysis”. In:Workshop on Resource Analysis, University of

Hertfordshire, Hatfield, UK. 2008.
[Bon+08] Frédéric Boniol, Pierre-Emmanuel Hladik, Claire Pagetti, Frédéric Aspro, and

Victor Jégu. “A framework for distributing real-time functions”. In: International
Conference on Formal Modeling and Analysis of Timed Systems. 2008, pp. 155–169.

108

References

[Bou+15] Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, and Mohamed
Jmaiel. “Architecture exploration of real-time systems based on multi-objective
optimization”. In: 2015 20th International Conference on Engineering of Complex

Computer Systems (ICECCS). IEEE. 2015, pp. 1–10.
[Bou+17] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet,

and Lionel Rieg. “A formally verified compiler for Lustre”. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
2017, pp. 586–601.

[BR04] Gogul Balakrishnan and Thomas Reps. “Analyzing memory accesses in x86 exe-
cutables”. In: Compiler Construction. Springer. 2004, pp. 2732–2733.

[BRH90] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. “Algorithms and com-
plexity concerning the preemptive scheduling of periodic, real-time tasks on one
processor”. In: Real-Time Systems 2.4 (1990-11), pp. 301–324.

[Bru+11] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. “BAP: A
binary analysis platform”. In: International Conference on Computer Aided Verifica-

tion. Springer. 2011, pp. 463–469.
[Búr+21] Márton Búr, Kristóf Marussy, Brett H Meyer, and Dániel Varró. “Worst-Case

Execution Time Calculation for Query-Based Monitors by Witness Generation”.
In: arXiv preprint arXiv:2102.03116 (2021).

[BW01] Alan Burns and Andrew J Wellings. Real-time systems and programming languages:

Ada 95, real-time Java, and real-time POSIX. Pearson Education, 2001.
[Cap+17] Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, andMarko Bertogna. “SiGAMMA:

Server based integrated GPU arbitration mechanism for memory accesses”. In:
Proceedings of the 25th International Conference on Real-Time Networks and Systems.
ACM. 2017.

[CB02] A. Colin and G. Bernat. “Scope-tree: a program representation for symbolic worst-
case execution time analysis”. In: Proceedings 14th Euromicro Conference on Real-

Time Systems. Euromicro RTS 2002. June 2002, pp. 50–59.
[CC02] Patrick Cousot and Radhia Cousot. “Modular static program analysis”. In: Interna-

tional Conference on Compiler Construction. Springer. 2002, pp. 159–179.
[CC77] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints”. In:
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages

(PLDI’77). ACM. 1977, pp. 238–252.
[CL16] Juan Caballero and Zhiqiang Lin. “Type inference on executables”. In: ACM Com-

puting Surveys (CSUR) 48.4 (2016).
[Cof+07] Joel Coffman, Christopher Healy, FrankMueller, and DavidWhalley. “Generalizing

parametric timing analysis”. In: SIGPLAN Not. 42.7 (June 2007), pp. 152–154. issn:
0362-1340. (Visited on 11/18/2020).

[Coh02] J.S. Cohen. Computer Algebra and Symbolic Computation: Mathematical Methods.
Ak Peters Series vol. 1. Natick, MA, USA: Peters, 2002.

109

Bibliography

[CP03] Jean-Louis Colaço and Marc Pouzet. “Clocks as First Class Abstract Types”. In:
Proceedings of the 3rd International Conference on Embedded Software (EMSOFT’03).
Vol. 2855. Lecture Notes in Computer Science. Philadelphia, USA, 2003, pp. 134–
155.

[CPP05] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “A conservative extension
of synchronous data-flow with state machines”. In: Proceedings of the 5th ACM

international conference on Embedded software. 2005, pp. 173–182.
[CSB90] Houssine Chetto, Marilyne Silly, and T. Bouchentouf. “Dynamic Scheduling of

Real-Time Tasks under Precedence Constraints”. In: Real-Time Systems 2 (1990).
[DK21] Jana Dunfield and Neel Krishnaswami. “Bidirectional typing”. In: ACM Computing

Surveys (CSUR) 54.5 (2021), pp. 1–38.
[DMB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In: Inter-

national conference on Tools and Algorithms for the Construction and Analysis of

Systems. Springer. 2008, pp. 337–340.
[Dur+14] Guy Durrieu, Madeleine Faugere, Sylvain Girbal, Daniel Gracia Pérez, Claire

Pagetti, and Wolfgang Puffitsch. “Predictable flight management system imple-
mentation on a multicore processor”. In: Embedded Real Time Software (ERTS’14).
2014.

[Dür+19] Marco Dürr, Georg Von Der Brüggen, Kuan-Hsun Chen, and Jian-Jia Chen. “End-
to-end timing analysis of sporadic cause-effect chains in distributed systems”. In:
ACM Transactions on Embedded Computing Systems (TECS) 18.5s (2019), pp. 1–24.

[ESD10] Paul Emberson, Roger Stafford, and Robert I Davis. “Techniques for the synthesis
of multiprocessor tasksets”. In: proceedings 1st International Workshop on Analysis

Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010). 2010,
pp. 6–11.

[FBM18] Björn O Forsberg, Luca Benini, and Andrea Marongiu. “HePREM: Enabling pre-
dictable GPU execution on heterogeneous SoC”. In: 2018 Design, Automation &

Test in Europe Conference & Exhibition (DATE) (2018).
[Fei+08] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. “A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Systems under
Different Paths semantics”. In: Proceedings of the IEEE Real-Time System Symposium

Workshop on Compositional Theory and Technology for Real-Time Embedded Systems.
Barcelona, Spain, 2008.

[Fer+99] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. “Cache
Behavior Prediction by Abstract Interpretation”. In: Sci. Comput. Program. 35.2
(1999), pp. 163–189.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture Analysis
& Design Language (AADL): An Introduction. Tech. rep. CMU/SEI-2006-TN-011.
Software Engineering Institute, Carnegie Mellon University, 2006.

[FLN13] H.R. Faragardi, B. Lisper, and T. Nolte. “Towards a communication-efficient map-
ping of AUTOSAR runnables on multi-cores”. In: 2013 IEEE 18th Conference on

Emerging Technologies Factory Automation (ETFA). 2013, pp. 1–5.

110

References

[For+08] Julien Forget, Frédéric Boniol, David Lesens, and Claire Pagetti. “A multi-periodic
synchronous data-flow language”. In: 2008 11th IEEE High Assurance Systems

Engineering Symposium. IEEE. 2008, pp. 251–260.
[For09] Julien Forget. “A Synchronous Language for Critical Embedded Systems with

Multiple Real-Time Constraints”. PhD thesis. Toulouse, France: Université de
Toulouse - ISAE/ONERA, Nov. 2009.

[FP91] Tim Freeman and Frank Pfenning. “Refinement types for ML”. In: Proceedings of
the ACM SIGPLAN 1991 conference on Programming language design and imple-

mentation. 1991, pp. 268–277.
[GEL05] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. “Towards a flow analysis for

embedded system C programs”. In: 10th IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems. 2005, pp. 287–297.
[GHS94] R. Gerber, S. Hong, and M. Saksena. “Guaranteeing end-to-end timing constraints

by calibrating intermediate processes”. In: Real-Time Systems Symposium, Proceed-

ings. 1994.
[GLS99] Thierry Grandpierre, Christophe Lavarenne, and Yves Sorel. “Optimized rapid pro-

totyping for real-time embedded heterogeneous multiprocessors”. In: Proceedings
of the seventh international workshop on Hardware/software codesign. ACM. 1999.

[GM01] Joel Goossens and Christophe Macq. “Limitation of the Hyper-Period in Real-Time
Periodic Task Set Generation”. In: In Proceedings of the RTS Embedded System

(RTS’01. 2001.
[GNP06] Alain Girault, Xavier Nicollin, andMarc Pouzet. “Automatic rate desynchronization

of embedded reactive programs”. In: ACM Transactions on Embedded Computing

Systems (TECS) 5.3 (2006), pp. 687–717.
[GR06] Denis Gopan and Thomas Reps. “Lookaheadwidening”. In: International Conference

on Computer Aided Verification. Springer. 2006, pp. 452–466.
[GTW11] Marc Geilen, Stavros Tripakis, and Maarten Wiggers. “The Earlier the Better:

A Theory of Timed Actor Interfaces”. In: Proceedings of the 14th International

Conference on Hybrid Systems: Computation and Control. Chicago, IL, USA, 2011.
[Hal+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The syn-

chronous data-flow programming language LUSTRE”. In: Proceedings of the IEEE
79.9 (1991), pp. 1305–1320.

[Har87] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science of
computer programming 8.3 (1987), pp. 231–274.

[HGJ19] Nicolas Hili, Alain Girault, and Éric Jenn. “Worst-Case Reaction Time Optimization
on Deterministic Multi-Core Architectures with Synchronous Languages”. In: 2019
IEEE 25th International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA). 2019.
[HHK03] Thomas A Henzinger, Benjamin Horowitz, and Christoph M Kirsch. “Giotto: A

time-triggered language for embedded programming”. In: Proceedings of the IEEE
91.1 (2003), pp. 84–99.

[HMM12] Julien Henry, David Monniaux, and Matthieu Moy. “Pagai: A path sensitive static
analyser”. In: Electronic Notes in Theoretical Computer Science 289 (2012), pp. 15–25.

111

Bibliography

[HRP17] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. “The heptane static worst-
case execution time estimation tool”. In: 17th International Workshop on Worst-Case

Execution Time Analysis (WCET 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2017.

[HRR91] Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. “Generating efficient
code from data-flow programs”. In: Proceedings of the 3rd International Symposium

on Programming Language Implementation and Logic Programming (PLILP ’91).
Passau, Germany, 1991, pp. 207–218.

[HW02] C.A. Healy and D.B. Whalley. “Automatic detection and exploitation of branch
constraints for timing analysis”. In: IEEE Transactions on Software Engineering 28.8
(Aug. 2002), pp. 763–781. issn: 1939-3520.

[Ioo+20] Guillaume Iooss, Marc Pouzet, Albert Cohen, Dumitru Potop-Butucaru, Jean
Souyris, Vincent Bregeon, and Philippe Baufreton. 1-Synchronous Programming

of Large Scale, Multi-Periodic Real-Time Applications with Functional Degrees of

Freedom. Tech. rep. Inria, 2020.
[JP86] Mathai Joseph and P. Pandya. “Finding Response Times in a Real-Time System”.

In: The Computer Journal 29.5 (1986), pp. 390–395.
[KBS20] Tomasz Kloda, Antoine Bertout, and Yves Sorel. “Latency upper bound for data

chains of real-time periodic tasks”. In: Journal of Systems Architecture 109 (2020),
p. 101824.

[KCC20] Fouad Khenfri, Khaled Chaaban, and Maryline Chetto. “Efficient mapping of
runnables to tasks for embedded AUTOSAR applications”. In: Journal of Systems

Architecture 110 (2020), p. 101800.
[KCH00] Saehwa Kim, Sukjae Cho, and Seongsoo Hong. “Schedulability-aware mapping of

real-time object-oriented models to multi-threaded implementations”. In: Seventh
International Conference on Real-Time Computing Systems and Applications, 2000.

Proceedings. 2000, pp. 7–14.
[Kha+16] Jad Khatib, Alix Munier-Kordon, Enagnon Cedric Klikpo, and Kods Trabelsi-

Colibet. “Computing Latency of a Real-time System Modeled by Synchronous
Dataflow Graph”. In: Proceedings of the 24th International Conference on Real-Time

Networks and Systems. Brest, France, 2016.
[KS03] H.Jin Kim and David H. Shim. “A flight control system for aerial robots: algorithms

and experiments”. In: Control Engineering Practice 11.12 (2003). Award winning
applications-2002 IFAC World Congress. issn: 0967-0661.

[KV10] Johannes Kinder and Helmut Veith. “Precise static analysis of untrusted driver
binaries”. In: Formal Methods in Computer Aided Design. 2010.

[KWS03] Sharath Kodase, ShigeWang, and Kang G. Shin. “Transforming Structural Model to
RuntimeModel of Embedded Software with Real-Time Constraints”. In: Proceedings
of the Conference on Design, Automation and Test in Europe: Designers’ Forum -

Volume 2. DATE ’03. Washington, DC, USA: IEEE Computer Society, 2003.
[LBP10] Daniel Le Berre and Anne Parrain. “The SAT4J library, Release 2.2, System De-

scription”. In: Journal on Satisfiability, Boolean Modeling and Computation 7 (2010),
pp. 59–64.

112

References

[Lee06] Edward A Lee. “The problem with threads”. In: Computer 39.5 (2006), pp. 33–42.
[Ler09] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Commun. ACM

52.7 (2009), 107–115. issn: 0001-0782.
[Li+13] Jianjun Li, Ming Xiong, Victor Lee, LihChyun Shu, and Guohui Li. “Workload-

efficient deadline and period assignment for maintaining temporal consistency
under edf”. In: Computers, IEEE Transactions on 62.6 (2013), pp. 1255–1268.

[Lis14] Björn Lisper. “SWEET–a tool forWCET flow analysis”. In: International Symposium

On Leveraging Applications of Formal Methods, Verification and Validation. Springer.
2014, pp. 482–485.

[LL73] Cheng L. Liu and JamesW. Layland. “Scheduling algorithms for multiprogramming
in a hard-real-time environment”. In: Journal of the ACM 20.1 (1973).

[LMW95] Y-TS Li, Sharad Malik, and Andrew Wolfe. “Efficient microarchitecture modeling
and path analysis for real-time software”. In: Proceedings of the 16th IEEE Real-Time

Systems Symposium. Pisa, Italy: IEEE, 1995, pp. 298–307.
[LSV96] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. “Comparing models of

computation”. In: Proceedings of the 1996 IEEE/ACM International Conference on

Computer-aided design (ICCAD’96). San Jose, USA: IEEE Computer Society, 1996,
pp. 234–241.

[LW82] Joseph Y. T. Leung and Jennifer Whitehead. “On the complexity of fixed-priority
scheduling of periodic, real-time tasks”. In: Performance Evaluation 2.4 (1982).

[Mai+16] Cláudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez. “A
closer look into the aer model”. In: Emerging Technologies and Factory Automation

(ETFA), 2016 IEEE 21st International Conference on. IEEE. 2016.
[Mai+17] Cláudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho, and Daniel

Gracia Pérez. “Schedulability analysis for global fixed-priority scheduling of the
3-phase task model”. In: Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA). IEEE. 2017.
[Mat+18] Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and

Andrea Marongiu. “Combining PREM Compilation and ILP Scheduling for High-
performance and Predictable MPSoC Execution”. In: Proceedings of the 9th Inter-

national Workshop on Programming Models and Applications for Multicores and

Manycores. Vienna, Austria, 2018.
[MDC14] Renato Mancuso, Roman Dudko, and Marco Caccamo. “Light-PREM: Automated

software refactoring for predictable execution on COTS embedded systems”. In:
RTCSA. IEEE Computer Society, 2014.

[Mel+15] AlessandraMelani,Marko Bertogna, Vincenzo Bonifaci, AlbertoMarchetti-Spaccamela,
and Giorgio Buttazzo. “Memory-processor co-scheduling in fixed priority systems”.
In: International Conference on Real Time and Networks Systems (RTNS). Lille, France,
2015.

[MH96] Florence Maraninchi and Nicolas Halbwachs. “Compositional semantics of non-
deterministic synchronous languages”. In: European Symposium On Programming.
Springer. 1996, pp. 235–249.

113

Bibliography

[MMTS13] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. “Support for End-to-End
Response-Time and Delay Analysis in the Industrial Tool Suite: Issues, Experiences
and a Case Study”. In: Computer Science and Information Systems 10.1 (2013).

[Moh+05] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and D. Whalley. “ParaScale:
exploiting parametric timing analysis for real-time schedulers and dynamic voltage
scaling”. In: Proceedings of the 26th IEEE International Real-Time Systems Symposium.
San Antonio, TX, USA: IEEE, 2005, pp. 232–242.

[Moh+11] Sibin Mohan, Frank Mueller, Michael Root, William Hawkins, Christopher Healy,
David Whalley, and Emilio Vivancos. “Parametric timing analysis and its applica-
tion to dynamic voltage scaling”. In: ACM Trans. Embed. Comput. Syst. 10.2 (Jan.
2011), 25:1–25:34. issn: 1539-9087. (Visited on 04/27/2022).

[Moh+13] Swarup Mohalik, Devesh B. Chokshi, Manoj G. Dixit, A. C. Rajeev, and S. Ramesh.
“Scalable model-checking for precise end-to-end latency computation”. In: 2013
IEEE International Symposium on Computer-Aided Control System Design (CACSD).
Hyderabad, India, Aug. 2013.

[Mon76] J. D. Monk. “Mathematical Logic. Graduate Texts in Mathematics”. In: vol. 37.
Springer, 1976. Chap. Cylindric Algebras.

[Mub+15] Saad Mubeen, Mikael Sjödin, Thomas Nolte, John Lundbäck, Mattias Gålnander,
and Kurt-Lennart Lundbäck. “End-to-end Timing Analysis of Black-box Models
in Legacy Vehicular Distributed Embedded Systems”. In: 21st IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications. 2015.
[Mzi+13] Rania Mzid, Chokri Mraidha, Asma Mehiaoui, Sara Tucci-Piergiovanni, Jean-

Philippe Babau, and Mohamed Abid. “DPMP: A Software Pattern for Real-time
Tasks Merge”. In: Proceedings of the 9th European Conference on Modelling Founda-

tions and Applications. ECMFA’13. Berlin, Heidelberg: Springer-Verlag, 2013.
[OMG07] OMG. A UML Profile for MARTE. Tech. rep. Object Management Group, Inc, 2007.
[OMG10] OMG. Systems Modeling Language. Tech. rep. Object Management Group, Inc,

2010.
[Pag+14] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. “The

ROSACE case study: From Simulink specification to multi/many-core execution”.
In: 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium

(RTAS). IEEE. 2014, pp. 309–318.
[Pag+18a] Bruno Pagano, Cédric Pasteur, Günther Siegel, and R Knizek. “Amodel based safety

critical flow for the aurix multi-core platform”. In: Proceedings ERTS2, Toulouse,
France (2018).

[PC10] Rodolfo Pellizzoni and Marco Caccamo. “Impact of peripheral-processor interfer-
ence on WCET analysis of real-time embedded systems”. In: IEEE Transactions on

Computers 59.3 (2010), pp. 400–415.
[Pel+11] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco

Caccamo, and Russell Kegley. “A predictable execution model for COTS-based
embedded systems”. In: Real-Time and Embedded Technology and Applications

Symposium (RTAS). IEEE. 2011.

114

References

[Pie02] Benjamin C. Pierce. Types and programming languages. Cambridge, USA: MIT
Press, 2002. isbn: 0-262-16209-1.

[PL05] Rodolfo Pellizzoni and Giuseppe Lipari. “Feasibility Analysis of Real-Time Periodic
Tasks with Offsets”. In: Real-Time Syst. 30.1 (May 2005), pp. 105–128.

[Raj+10] A. C. Rajeev, Swarup Mohalik, Manoj G. Dixit, Devesh B. Chokshi, and S. Ramesh.
“Schedulability and End-to-end Latency in Distributed ECU Networks: Formal
Modeling and Precise Estimation”. In: Proceedings of the Conference on Embedded

Software (EMSOFT’10). Scottsdale, USA, 2010.
[Ray08] Pascal Raymond. “Synchronous program verification with lustre/lesar”. In: Model-

ing and Verification of Real-Time Systems (2008), p. 7.
[RC04] Jorge Real and Alfons Crespo. “Mode change protocols for real-time systems: A

survey and a new proposal”. In: Real-time systems 26.2 (2004), pp. 161–197.
[RCM17] J. Ruiz, H. Cassé, and M. de Michiel. “Working Around Loops for Infeasible Path

Detection in Binary Programs”. In: 2017 IEEE 17th International Working Conference

on Source Code Analysis and Manipulation (SCAM). Sept. 2017, pp. 1–10.
[RDP17] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. “Tightening Contention

Delays While Scheduling Parallel Applications on Multi-core Architectures”. In:
ACM Transactions on Embedded Computing Systems (TECS) 16.5s (Oct. 2017).

[RH01] Mario Aldea Rivas and Michael González Harbour. “MaRTE OS: An Ada kernel for
real-time embedded applications”. In: International Conference on Reliable Software

Technologies. Springer. 2001, pp. 305–316.
[RN22] Vlad Rusu and David Nowak. “Defining Corecursive Functions in Coq Using

Approximations”. In: ECOOP. 2022.
[RS09] Christine Rochange and Pascal Sainrat. “A Context-Parameterized Model for Static

Analysis of Execution Times”. In: Transactions on High-Performance Embedded

Architectures and Compilers II. Ed. by Per Stenström. Vol. 5470. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 222–241.

[Sch+20] Matheus Schuh, Claire Maiza, Joël Goossens, Pascal Raymond, and Benoît Dupont
de Dinechin. “A study of predictable execution models implementation for indus-
trial data-flow applications on a multi-core platform with shared banked memory”.
In: 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE. 2020, pp. 283–295.

[Sho+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. “Sok:(state of) the art of war: Offensive techniques in binary analysis”. In:
2016 IEEE Symposium on Security and Privacy (SP). 2016, pp. 138–157.

[SKW00] M. Saksena, P. Karvelas, and Y. Wang. “Automatic synthesis of multi-tasking im-
plementations from real-time object-oriented models”. In: Third IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing, 2000. (ISORC 2000)

Proceedings. 2000.
[SP17] Muhammad Refaat Soliman and Rodolfo Pellizzoni. “WCET-Driven Dynamic Data

Scratchpad Management With Compiler-Directed Prefetching”. In: 29th Euromicro

Conference on Real-Time Systems (ECRTS 2017). 2017.

115

Bibliography

[SP78] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
New York University. Courant Institute of Mathematical Sciences. Computer-
Science Department, 1978.

[SS94] Marco Spuri and John A Stankovic. “How to integrate precedence constraints
and shared resources in real-time scheduling”. In: IEEE Transactions on Computers

43.12 (1994), pp. 1407–1412.
[Tab+16] Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak,

Rodolfo Pellizzoni, and Marco Caccamo. “A real-time scratchpad-centric os for
multi-core embedded systems”. In: Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), 2016 IEEE. IEEE. 2016.
[Tab+17] Rohan Tabish, Renato Mancuso, Saud Wasly, Sujit S. Phatak, Rodolfo Pellizzoni,

and Marco Caccamo. “A Reliable and Predictable Scratchpad-centric OS for Multi-
core Embedded Systems”. In: RTAS. IEEE Computer Society, 2017.

[Tal+06] Jean-Pierre Talpin, Christian Brunette, Thierry Gautier, and Abdoulaye Gamatié.
“Polychronous mode automata”. In: Proceedings of the 6th ACM& IEEE International

conference on Embedded software. 2006, pp. 83–92.
[Tar72] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal

on computing 1.2 (1972), pp. 146–160.
[Tar73] Robert Tarjan. “Enumeration of the elementary circuits of a directed graph”. In:

SIAM Journal on Computing 2.3 (1973), pp. 211–216.
[The+03] Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randim-

bivololona, Marc Langenbach, Reinhard Wilhelm, and Christian Ferdinand. “An
abstract interpretation-based timing validation of hard real-time avionics soft-
ware”. In: 2003 International Conference on Dependable Systems and Networks, 2003.

Proceedings. 2003, pp. 625–625.
[The22] The Coq team. The Coq proof assistant. Version 8.16. Sept. 5, 2022. url: http:

//coq.inria.fr/.
[TJS15] Jean-Pierre Talpin, Pierre Jouvelot, and Sandeep Kumar Shukla. “Towards refine-

ment types for time-dependent data-flow networks”. In: 2015 ACM/IEEE Interna-

tional Conference on Formal Methods and Models for Codesign (MEMOCODE). IEEE.
2015, pp. 36–41.

[Van+22] Florian Vanhems, Vlad Rusu, David Nowak, and Gilles Grimaud. “A Formal Cor-
rectness Proof for an EDF Scheduler Implementation”. In: 2022 IEEE 28th Real-Time

and Embedded Technology and Applications Symposium (RTAS). IEEE. 2022, pp. 281–
292.

[Ver20] Micaela Verrucchi. “A comprehensive analysis of DAG tasks: solutions for modern
real-time embedded systems”. PhD thesis. University of Modena and Reggio Emilia,
2020.

[Viv+01] Emilio Vivancos, Christopher Healy, Frank Mueller, and David Whalley. “Para-
metric Timing Analysis”. In: Proceedings of the 2001 ACM SIGPLAN workshop on

Optimization of middleware and distributed systems. OM ’01. New York, NY, USA,
Aug. 2001, pp. 88–93. isbn: 978-1-58113-426-1.

116

http://coq.inria.fr/
http://coq.inria.fr/

References

[Wan12] Jiacun Wang. Timed Petri nets: Theory and application. Vol. 9. Springer Science &
Business Media, 2012.

[WGD14] YifanWu, Zhigang Gao, and Guojun Dai. “Deadline and activation time assignment
for partitioned real-time application on multiprocessor reservations”. In: Journal
of Systems Architecture 60.3 (2014), pp. 247–257.

[Wil+08] Reinhard Wilhelm et al. “The worst-case execution-time problem - overview of
methods and survey of tools.” In: ACM Trans. Embedded Comput. Syst. 7 (Jan. 2008).

[Woz+13] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and S. Gerard. “An
optimization approach for the synthesis of AUTOSAR architectures”. In: 2013 IEEE
18th Conference on Emerging Technologies Factory Automation (ETFA). 2013.

[WP13] Saud Wasly and Rodolfo Pellizzoni. “A Dynamic Scratchpad Memory Unit for
Predictable Real-Time Embedded Systems”. In: ECRTS. IEEE Computer Society,
2013.

[WP14] Saud Wasly and Rodolfo Pellizzoni. “Hiding memory latency using fixed priority
scheduling”. In: 2014 IEEE 19th Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS) (2014).
[Yao+12] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.

“Memory-centric scheduling for multicore hard real-time systems”. In: Real-Time

Systems 48.6 (2012), pp. 681–715.
[Yao+16] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo.

“Global Real-Time Memory-Centric Scheduling for Multicore Systems”. In: IEEE
Trans. Comput. 65.9 (Sept. 2016).

[Yip+16] Eugene Yip, Alain Girault, Partha S Roop, and Morteza Biglari-Abhari. “The ForeC
synchronous deterministic parallel programming language for multicores”. In:
2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSOC). IEEE. 2016.
[YYR11] Simon Yuan, Li Hsien Yoong, and Partha S Roop. “Compiling esterel for multi-core

execution”. In: 2011 14th Euromicro Conference on Digital System Design. IEEE.
2011.

[ZDN12] Haibo Zeng and M. Di Natale. “Efficient implementation of AUTOSAR compo-
nents with minimal memory usage”. In: 2012 7th IEEE International Symposium on

Industrial Embedded Systems (SIES). 2012.
[ZG11] Ming Zhang and Zonghua Gu. “Optimization issues in mapping AUTOSAR com-

ponents to distributed multithreaded implementations”. In: 2011 22nd IEEE Inter-

national Symposium on Rapid System Prototyping (RSP). 2011, pp. 23–29.
[Če+15] Pavol Černý, Thomas A. Henzinger, Laura Kovács, Arjun Radhakrishna, and Jakob

Zwirchmayr. “Segment Abstraction for Worst-Case Execution Time Analysis”.
en. In: Programming Languages and Systems. Ed. by Jan Vitek. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2015, pp. 105–131. isbn: 978-3-
662-46669-8.

117

	Contents
	Overview
	Context
	Contributions
	Programming with Prelude
	High-level timing analysis
	Low-level timing analysis

	Reading this document

	Introduction
	Background on real-time systems
	Prelude, a synchronous data-flow language with real-time primitives
	Informal presentation
	Formal semantics
	Compilation overview

	High-level timing analysis of a real-time task set
	Real-time attributes
	Precedence constraints
	Scheduling

	Low-level timing analysis of a single task
	Control-flow analysis
	Hardware analysis
	Value analysis
	WCET bound computation

	Contributions
	Programming real-time systems with Prelude
	Implementation on multi-core with distributed memory
	Motivation
	Model
	Code generation
	Comparing memory architectures
	Related works
	Conclusion

	Partial delays specification
	Motivating example
	Incomplete program specification
	Program concretisation
	Related works
	Conclusion

	Multi-mode multi-periodic systems
	Motivating example
	Language extension
	Clock calculus
	Evaluation
	Related works
	Conclusion

	High-level timing analysis
	Real-time scheduling
	Scheduling tasks with simple precedence constraints
	Scheduling tasks with extended precedence constraints
	Conclusion

	End-to-end constraints analysis
	Motivating example
	End-to-end properties definition
	End-to-end properties verification
	Related works
	Conclusion

	Task clustering
	Problem definition
	Guiding principles
	Independent tasks, uniprocessor
	Dependent tasks, uniprocessor
	Dependent tasks, multiprocessor
	Related works
	Conclusion

	Low-level timing analysis
	Symbolic Worst-Case Execution Time analysis
	Control Flow Tree
	Context-sensitive execution time
	Symbolic computation
	Experiments
	Related works
	Conclusion

	Relational abstract interpretation of assembly code
	Motivating example
	Target language
	The POLYMAP domain
	Abstract interpretation
	Experiments
	Related works
	Conclusion

	Perspectives
	Conclusion
	Summary
	Future research projects
	Modular WCET analysis (short term)
	Synthesis of Prelude programs (medium term)
	Formally verified real-time programs (long term)

	Appendices
	Main symbols and acronyms
	Programming with Prelude
	High-level timing analysis
	Low-level timing analysis

	Bibliography

