N

N

Embracing Imperfections: Hardware-compatible Neural
Networks for Neuromorphic Computing
Atreya Majumdar

» To cite this version:

Atreya Majumdar. Embracing Imperfections: Hardware-compatible Neural Networks for Neuro-
morphic Computing. Artificial Intelligence [cs.Al]. Université Paris-Saclay, 2023. English. NNT:
2023UPASTO77 . tel-04149169

HAL Id: tel-04149169
https://theses.hal.science/tel-04149169
Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-04149169
https://hal.archives-ouvertes.fr

—
<
o
@
—
@)
@)
)
Ll
)
LLl
W
Ll
T
—

™~
™~
o
—
n
<
o
)
)
o
o
o
|_
Z
Z

[]
universite
PARIS-SACLAY

Embracing Imperfections:
Hardware-compatible
Neural Networks for

Neuromorphic Computing
Accepter les imperfections : réseaux de neurones
matériels pour le calcul neuromorphique

Thése de doctorat de l'université Paris-Saclay

Ecole doctorale n°575 : Electrical, Optical, Bio-Physics and Engineering (EOBE)
Spécialité de doctorat : Electronique, Photonique et Micro-Nanotechnologies
Graduate School : Sciences de l'ingénierie et des systemes

Référent : Faculté des Sciences d'Orsay

Thése préparée au Centre de Nanosciences et de Nanotechnologies,
(Université Paris-Saclay, CNRS), sous la direction de Damien QUERLIOZ,
Chargé de recherche au C2N

Thése soutenue a Paris-Saclay, le 22 mai 2023, par

Atreya MAJUMDAR

Composition du jury
Membres du jury avec voix délibérative

Dafiné RAVELOSONA Président
Directeur de recherche, Université Paris-Saclay
Louis HUTIN Rapporteur & Examinateur

Ingénieur chercheur (HDR), CEA-LETI

Grenoble, France

Damien DELERUYELLE Rapporteur & Examinateur
Professeur a I'INSA, Lyon, France

Alice MIZRAHI Examinatrice
Ingénieure chercheure, Thales Research and Technology,

France

Luis LOPEZ DiAZ Examinateur
Professeur a la Universidad de Salamanca

Espagne

Jean-Michel PORTAL Examinateur
Professeur a la Institut Matériaux Microélectronique Na-

nosciences de Provence (IM2NP)

ECOLE DOCTORALE

«® i Physique et ingénierie:
universite . Electrons, Photons,
PARIS-SACLAY | Sciences du vivant (EOBE)

Titre : Accepter lesimperfections : réseaux de neurones matériels pour le calcul neuromorphique
Mots clés : réseaux de neurones, memristors, apprentissage, neuromorphique, imperfections,

Réseaux neuronaux bayésiens

Résumé : Les récents développements en ap-
prentissage profond ont repoussé les limites
des possibilités avec de grands modeles de lan-
gage présentant des capacités exceptionnelles,
des modeéles pour la vision par ordinateur et
le traitement du langage naturel dépassant les
performances humaines. Cependant, ce pro-
gres se fait au détriment d'une consomma-
tion d'énergie immense lors de la formation
de ces modeéles a grande échelle. De ce point
de vue, l'avancée n'est pas durable, surtout
compte tenu des préoccupations de change-
ment climatique qui planent sur notre époque.
L'énormité de la consommation d'énergie peut
étre attribuée a l'architecture des ordinateurs
conventionnels, qui n'est pas optimisée pour la
consommation d'énergie pour les applications
d'apprentissage profond. D'autre part, le cer-
veau humain excelle dans cet aspect en effec-
tuant des taches complexes de reconnaissance
de motifs avec un budget énergétique qui est
des ordres de magnitude inférieurs a celui de
son homologue informatique. La différence dé-
coule de la maniere fondamentalement diffé-
rente dontles calculs sont effectués dans le cer-
veau; pour cette thése, nous nous concentrons
spécifiquement sur I'aspect de la co-localisation
du calcul et de la mémoire, qui est présent
dans le cerveau humain via les neurones et les
synapses. En revanche, dans l'architecture de
von Neumann d'un ordinateur moderne, la mé-
moire et les unités arithmétiques et logiques
sont physiquement séparées, et une grande
quantité d'énergie est dépensée dans le trans-
fert d'informations entre ces unités. L'informa-
tiqgue en mémoire avec les technologies de mé-
moire émergentes est une piste prometteuse a
cet égard, ou la co-localisation de la mémoire
et du traitement peut étre réalisée, en particu-
lier pour le type de calculs effectués dans les ré-
seaux de neurones. Néanmoins, cette solution
présente des défis en termes de performance
car ces nouvelles classes de mémoires ont des
imperfections différentes. Pour les mises en
ceuvre conventionnelles de réseaux de neu-

rones avec des mémoires analogiques, ces im-
perfections peuvent considérablement affecter
leurs performances. Le théme central de cette
thése est d'embrasser de telles imperfections
pour les réseaux de neurones compatibles avec
le matériel. Dans le chapitre 2, nous examinons
spécifiquement l'impact de ces non-idéalités
dans le contexte de la formation des réseaux
de neurones. Nous proposons un modele de
dispositif basé sur la physique pour la mé-
moire a base d’'HfOx qui correspond aux résul-
tats expérimentaux et peut étre incorporeé dans
des cadres d'apprentissage en profondeur. Des
simulations de réseaux de neurones binaires
avec ce modele de dispositif montrent que I'ap-
prentissage est possible méme sous le bruit
et les variabilités intrinséques a une telle mé-
moire. Dans le chapitre 3, nous explorons I'im-
pact des imperfections et des contraintes dé-
coulant a la fois du niveau de dispositif et de cir-
cuit surla performance d'inférence des réseaux
de neurones. Nous démontrons la robustesse
des circuits de calcul en mémoire a base d'H-
fOx qui implémentent des réseaux de neu-
rones binaires face a des contraintes telles que
la taille limitée du tableau, I'alimentation élec-
trique irréguliere et la variabilité des dispositifs.
Avec le chapitre 4, nous exploitons la stochasti-
cité des nanodispositifs spintroniques, qui est
généralement considérée comme une imper-
fection pour des applications plus convention-
nelles. Ce chapitre propose les réseaux de neu-
rones binaires bayésiens qui peuvent étre réa-
lisés avec de tels dispositifs. Nous soulignons
I'utilité de ces réseaux : 'immunité a la surajus-
tement et la quantification de l'incertitude dans
certains scénarios pour une tache illustrative a
deux lunes et un ensemble de données médi-
cales. Les résultats présentés dans cette thése
montrent qu'avec des innovations dans les al-
gorithmes, les circuits et les dispositifs de mé-
moire, les imperfections peuvent étre véritable-
ment embrassées et qu'un avenir conscient de
I'énergie et axé sur I'lA peut étre envisagé.

ECOLE DOCTORALE

® .
universite
PARIS-SACLAY

Physique et ingénierie:
Electrons, Photons,
Sciences du vivant (EOBE)

Title: Embracing Imperfections : Hardware-compatible Neural Networks for Neuromorphic Com-

puting

Keywords : Neural Networks, Memristors, Learning, Neuromorphic, Imperfections, Bayesian Neu-

ral Networks

Abstract : Recent developments in deep lear-
ning have pushed the limits of possibilities
with large language models exhibiting outs-
tanding capabilities, models for computer vi-
sion, and natural language processing excee-
ding human-level performance. However, this
progress comes at the expense of immense
power consumption while training such large-
scale models. From this perspective, the ad-
vance is not sustainable, especially conside-
ring the climate change concerns looming over
the present day. The enormity of the energy
consumption can be attributed to the architec-
ture of conventional computers, which is not
optimized for energy consumption for deep
learning applications. On the other hand, the
human brain excels at this aspect by perfor-
ming complex pattern recognition tasks with
a power budget that is orders of magnitude
less than its computing counterpart. The diffe-
rence arises from the fundamentally different
way computation is done in the brain; for this
thesis, we specifically focus on the co-location
aspect of computing and memory, which is
present in the human brain via the neurons
and the synapses. In contrast, in the von Neu-
mann architecture of a modern computer, the
memory and arithmetic-logic units are physi-
cally separated, and a large amount of energy
is expended in the shuttling of information bet-
ween these units. In-memory computing with
emerging memory technologies is a promising
lead in this regard, where the co-location of me-
mory and processing can be achieved, espe-
cially for the type of computations performed
in neural networks. Nevertheless, this solution
presents challenges in terms of performance
as these novel classes of memories have dif-

ferent imperfections. For conventional imple-
mentations of neural networks with analog me-
mories, these imperfections can considerably
affect their performance. The central theme of
this thesis is to embrace such imperfections
for hardware-compatible neural networks. In
chapter 2, we specifically look at the impact
of these non-idealities in the context of trai-
ning neural networks. We propose a physics-
based device model for HfOx-based memory
that matches experimental results and can be
incorporated within deep learning frameworks.
Simulations of Binarized Neural Networks with
this device model show that learning is pos-
sible even under noise and variabilities intrin-
sic to such memory. In chapter 3, we explore
the impact of imperfections and constraints ari-
sing from both the device and circuit levels on
the inference performance of neural networks.
We demonstrate the robustness of HfOx-based
in-memory computing circuits that implement
binarized neural networks to constraints such
as limited array size, irregular power supply,
and device variability. With chapter 4, we har-
ness the stochasticity of spintronics nanode-
vices, which is typically considered an imper-
fection for more conventional applications. This
chapter proposes the Bayesian Binary Neural
Networks that can be realized with such de-
vices. We highlight the usefulness of such net-
works : immunity to overfitting and the quan-
tification of uncertainty under some scenarios
for an illustrative two moons task and a medi-
cal dataset. The results presented in this thesis
show that with innovations in algorithms, cir-
cuits, and memory devices, imperfections can
be truly embraced, and an energy-conscious,
Al-driven future can be envisioned.

iv

To the countless researchers, teachers, and students of science and technology

whose names have been forgotten by history and will be forgotten.

ACKNOWLEDGEMENTS A

Acknowledgements

The first time I visited C2N was on the Good Friday of 2019. I saw the shining building of our lab
for the first time amidst large empty areas that were under construction. Over the next three
and a half years, I saw how this empty part of the plateau turned into a bustling campus full
of institutes, offices, restaurants, and student residences. Over these three and a half years, I
also worked on my doctoral research. And research, as it is today, is fundamentally collabora-
tive, where a significant contribution comes from collaborators and colleagues. In that regard,
the first person whom I would like to thank is my supervisor Dr. Damien Querlioz. I am truly
grateful for your considerate, encouraging, and effective supervision. Discussing research with
you has been a fantastic experience, and I would greatly miss our weekly meetings. One of my
fondest memories of these years is our discussion in Crete, overlooking the beautiful Mediter-
ranean Sea. Thank you, especially for your support during the lockdown period; it was much
less stressful than it could have been due to your constant support.

Also, many thanks to Prof. Damien Deleruyelle, Dr. Louis Hutin, Dr. Dafiné Ravelosona,
Prof. Luis Lépez Diaz, Dr. Alice Mizrahi, and Prof. Jean-Michel Portal for accepting to take part
in my PhD committee and carefully reviewing this manuscript. Moreover, I found the questions
and discussions during my thesis defense exciting and thought-provoking.

The projects done in this thesis were highly collaborative in nature. And as such, it involved
the participation of many researchers of diverse backgrounds, and I learned a lot from them.
The first project involved collaborating with Dr. Marc Bocquet, and I am grateful to you for
your support and prompt response to all my questions. Prof. Jean-Michel Portal has played an
instrumental role in the first two of my projects, and my understanding of circuits increased
significantly from the discussions with you. For my second project, I particularly collaborated
with two fantastic PhD researchers, Dr. Mona Ezzadeen and Fadi Jebali. Mona, I greatly en-
joyed the long discussion and brainstorming sessions with you, and I will always cherish the
nice publications we produced together. I would like to particularly thank Fadi for his help in
making me understand the circuits part of the second project. The third project was a unique
experience as I collaborated with brilliant theoretical and experimental physicists. I learned
much about Spintronics from Dr. Liza Herrera Diez and Prof. Luis Lépez Diaz. Liza, thank you
for being such a joyful and energetic presence in the lab, and I enjoyed our discussions about
art and literature. In this project, I also collaborated with the brilliant researcher Djohan Bon-
net. One of my favorite scientific moments in the lab was figuring out with you, the correct
metrics for the estimation of uncertainty. I thoroughly enjoyed interacting and working with
you, and I hope our paths cross again.

The lab is like a second home for researchers, and I was truly blessed to have a beautiful lab.
But it’s the people of the lab who truly made it feel like home. I feel grateful to have had amazing
colleagues throughout my time. Bogdan, it has been fantastic knowing you, and I thank you for

your assistance with the initial things at the lab, for inspiring my passion for Deep Learning

vi ACKNOWLEDGEMENTS

and for being a wonderful friend. The pizza dinner at your place was a nice bonding moment
for everyone in the group. Thank you, Maxence, for being such a fun and supportive person!
You lit up the lab’s atmosphere and were a compassionate and supportive friend. I owe many of
my accomplishments to Tifenn; thank you for teaching me the ropes of PyTorch and Binarized
Neural Networks, which later became the foundations of my PhD thesis. Thank you, Axel, for
all your patience and practical help with the first two projects. I loved interacting with such an
excellent yet down-to-earth person. Before the pandemic hit us, talking to and working with all
four of you was very fun. I missed your presence at the lab quite a lot.

It is not easy acknowledging the contribution of two of my best friends at the lab, Kamel
and Xing, just because of the sheer amount of things I need to mention! I have many marvel-
lous memories with both of you- from finishing challenging hikes in the Alpes to swimming
in the warm Mediterranean Sea to discussing intense research. Surviving the multiple lock-
downs would have been significantly more difficult without your presence. Kamel, thank you
for teaching me to play football; you really rekindled my old love. Thank you also for sharing the
very different kind of humor we possess. It was incredible how sometimes we could read each
other’s minds. And Xing, you are among the most courageous, smart, and considerate people I
have ever met. Your cool, composed, hard-working personality is a massive inspiration for me.
I sure hope that we can keep in touch.

Next, I would like to acknowledge the next generation of researchers in the group. Clément,
thank you for always being there for my circuit-related questions and teaching me much about
French culture, especially food. Thank you, Marie, for being such a great friend with whom
I could freely discuss research and other fun topics. Your spiritful attitude contributes to the
good mood of the group. One of the best memories during my PhD was when you presented a
part of my first project! Thank you, Thibaut, for the nice moments at the lab; you were amazing
as an officemate. Maryam, it was really fun knowing you and I enjoyed all our interactions.
I would like to both thank and wish the very best to Thomas, both Adriens, Theo, and Akib
for their contribution to the group and for their upcoming PhD journeys. I hope all of you
enjoy your doctoral research days as much as I did in Integnano. I want to thank Bastien for
the few days you spent at our lab and became a close colleague. Above all, I believe in all
the upcoming projects in the group involving medical datasets, Eq-Prop in hardware, forward-
forward algorithm, and the Ising machine. I am looking forward to the published results of
those projects. I want to acknowledge Naim for being a cherished friend and allowing me to
discuss science and engineering in my mother tongue. The four months you spent at our lab
was a very special time for me, and I hope we keep in touch.

I would also like to thank my other friends in Integnano, firstly, Rohit. I shared the most
amount of time at the office with you. I appreciate your kind nature, interesting sense of hu-
mor, and sharing common love for Biryani at Cafe Sunderban. Tanvi, well, it’s also hard to
acknowledge you! I got a friend and elder sister in you, which I never imagined I would find in

this foreign land. I greatly cherished our discussions about food (although it annoyed Kamel)

ACKNOWLEDGEMENTS vii

and life in Germany. Thank you, Gyan, for being the Dutch friend I was missing from my life
after my masters. It was great fun in all our interactions, and I would like to especially thank
you for organizing and actively taking part in various group activities. Thank you, Song, for
our occasional chats; it was nice to know you. Subhajit, thank you for being a good friend; I
appreciate our frank discussions about differences in industry and academia.

I also had the incredible opportunity to befriend others at C2N outside our research group.
I met Arup da at the 2019 end-of-year lunch, and since then, you have been such a remarkable
presence during the first half of my PhD. I greatly appreciate the hospitality and care that you
and Dipanita di showered on me. Thank you, Ritwik da, for help on many fronts; life at the lab
would have been very different without you. I will miss the breaks when I can discuss many
things at your office. Finally, I thank my closest friend in France, Sukanya. You meant a lot
to me, and I will never forget the many experiences we shared. From going for long walks
during the depressing lockdowns to cooking sumptuous meals from all over India to sharing
happiness, and sadness; you are one of the most precious friends to me whom I got to know in
France. I hope we meet in the future very soon.

I also want to thank all the people working at the C2N who contribute to making the lab run
smoothly. Many thanks to Christophe Chassat and Alain Péan from IT, Lydia Andalon, Melissa
Legendre, Léa Lemmaitre, Sylvie Lamour, and Bernadette Laborde from the administration,
Sophie Bouchoule, Emilia Davodeau, and Jean-Christophe Ginefri from the doctoral school.
Thanks also to the employees cleaning the lab every morning.

I feel very fortunate to find a family in the Bengali people residing in and around Paris.
Centering around our great festival of Durga puja, we formed a close-knit family of people of
different ages and backgrounds. Pabitra da and Debasmita di have been like guardians to me
with their warm and welcoming presence. I will miss visiting your house in the lovely neigh-
borhoods of Bures-sur-Yvette. I am grateful to Avigyan da and Atreyee di for all the beautiful
memories we had together (not to forget the arrival of Arnaa, too!). You seldom find such amaz-
ing, kind-hearted people with whom you can connect on many aspects. Thank you for being
my favorite people! Rohan da and Soumi di, thank you for being such incredible hosts for me.
I loved our discussions at your place about anything and everything about life, people, and
ChatGPT!I can’'t imagine a dull moment when I was in your company, and I would continue to
cherish all those moments. Upasika, Anambar da, and Anwesh, how fun of a ride it has been to
talk and laugh with you! It was tough saying goodbye to all of you. Sipra mashi, thank you for
being such a lively person; I really look up to you in terms of your outlook on life. Performing
theatre and other cultural activities with all of you will be some of the most memorable mo-
ments of my life. Saheli di, Dibya da, Subrata da, Rajesh da, Sonima di, thank you all for making
life on the plateau much more enjoyable in the first half of my PhD. Thank you, Kanka da, for
your support; l hope we meet again soon.

I'want to end the acknowledgments by first thanking my family. Maa, Baba, bon, bhai, kaka,

kamma, and thakun, this would not have been possible without your incredible support and

viii ACKNOWLEDGEMENTS

love. Your sacrifice, advice, and encouragement have been instrumental in completing my doc-
toral studies. And last but not least, I would like to thank Tista for being an absolutely amazing
partner in my PhD journey. Your presence has been like a shelter of warmth and comfort for
me, and it goes without saying that this wouldn’'t have been possible without you. Being a fellow
PhD researcher, you truly understood what this journey feels like and stood by me throughout.

Thank you for being there, thank you everything.

Contents

Introduction 1

1 Hardware implementation of deep learning

1.1 Abrief history of memory and computing

1.1.1 Developmentofcomputing

1.1.2 History of computer memory and storage 12

1.1.3 Memoryinamodern computer 14

1.2 Theriseofdeeplearning. 15
1.2.1 Theriseandfallof Al 15

1.2.2 Renaissance of Al: the deep learning revolution 18

1.2.3 Supervisedlearning e 20

1.3 Neuromorphiccomputing. i 27
1.3.1 Memoryrequirements ofdeeplearning 27

1.3.2 Inspirationfromthebrain. 30

1.4 In-memory computing with emerging memory technologies 32
1.4.1 Filling the gap in memory hierarchy 32

1.4.2 Emerging memory technologies 33

1.5 Hardware-based neuralnetworks 37
1.5.1 Memoryarchitectures e 38

1.5.2 Neural network dedicated hardware 39

1.6 Challenges in learning: imperfections in resistive memories. 43
1.6.1 Non-linearityand asymmetry. 43

1.6.2 Intra-device and inter-device variability 44

2 Learning with imperfect Resistive RAM 49
2.1 Background e 50
2.2 Hafnium Oxide ReRAM Technology 53
2.2.1 Thetechnology 53
2.22 Weak RESETregime, 53

2.3 Device Characterization and Modeling 54

2.3.1 Tunnelinggap-basedmodel 54

CONTENTS

232 Meanmodel e 55
2.3.3 NoiSe componentsttt 55
2.3.4 Fittingthe parameters 58
2.3.5 Comparison of experiments and simulation 60
2.3.6 Algorithm fordevicemodel 61
2.4 Implementation within a Deep Learning Framework 63
2.4.1 Binarizedneuralnetworks. oL, 63
2.4.2 Trainingin ReRAM-based BNNs 64
2.4.3 Frameworkimplementation 65
2.4.4 Algorithm for learning with devicemodel 67
2.5 Neural Network SimulationResults 69
2.5.1 The tasks and the architecture 69
2.5.2 Impactofimperfections, 69
2.6 Conclusion i e 70
Implementation of BNN inference immune to circuit-based constraints 71
3.1 Circuits and Binarized Neural Networks 72
3.1.1 Imperfections in inference circuit 73
3.2 Implementation of BNN with ReRAM bridges and capacitive neurons 76
321 Circuito e 76
3.2.2 Measurement of errorand errormodel Lo L. 78
3.2.3 Neural networkinference 81
3.3 Aself-powered memristor-based BNN 83
3.3.1 Extreme-edge Al 83
3.3.2 Circuit e e e 83
3.3.3 Divide-and-conquer mappingstrategy 86
3.3.4 Errorinthecircuitinference 89
3.3.5 Neuralnetworkinference 90
34 Conclusion o e 101

Bayesian binary neural networks for uncertainty quantification in medical tasks 103

4.1 Theoreticalbackground 104
4.1.1 Bayesian interpretation of probability 104
4.1.2 Bayesiandeeplearning 106

4.2 Memristor-based probabilisticML o oo L. 110
4.2.1 Bayesianmachine 111
422 MCMConchip e e 111
4.2.3 Bayesian neural networkonchip. 111

4.3 Bayesian binaryneuralnetworks L L o o oL 114

4.3.1 Architectureandinference, 114

CONTENTS xi

4.4 Uncertainty quantification o 115
4.4.1 Safety-critical applications, 115

4.4.2 Quantification of uncertainty L oL, 117

45 TwoMoonsdataseto 119
4.5.1 Thedatasetandmethods 119

4.5.2 Uncertainty quantification 121

4.5.3 Impactofdatasetsize 121

4.5.4 Impactoflabelnoise 123

4.6 Medicaltask e 127
4.6.1 Thedatasetandmethods 128

4.6.2 Impactofdatasetsize 128

4.6.3 Uncertainty under realistic scenarios 130

4.7 Spintronics-based implementation, 134
4.7.1 Candidate SyStems ot ittt e 134

4.7.2 Device-based inference simulations 137

4.8 Conclusion e e 140
Conclusions and future work 141
Synthese (en francais) 147
List of publications 153
Training Bayes BiNN 155

Bibliography 179

CONTENTS

Introduction

“The beginning is the most important part of the

work.”

Plato

2 INTRODUCTION

PRESEN TLY, we are at a critical juncture where on the one hand, we are experiencing the ag-

gravated effects of climate change. One of the key reasons for this is the emission caused
during the generation of electricity from fossil fuels [1]. On the other hand, we are making rapid
progress in artificial intelligence (AI), with the large language models already showing prelim-
inary indications resembling artificial general intelligence [2]. The recent progress takes us a
step closer to the promises of Al that involve discovering drugs for acute diseases, self-driving
cars, and other path-breaking innovations.

However, there is a cost to this: to develop, train and use the state-of-the-art deep learning
models, existing computers expend a lot of energy. This type of computation, typically done
in data centers with many Graphics Processing Units and other dedicated accelerators, is not
usually optimized for their power consumption. Training a single model consumes more power
than the amount consumed by 100 households in the United States in a year [3]. This number
would only grow continuously with the ever-increasing model size and computational com-
plexities. The resultant carbon footprint would be humongous, and this development is not
sustainable from an environmental point of view.

If we consider the computation process at an architectural level, the bottleneck in terms
of energy consumption is related to the shuttling of data between the memory and logic units.
During the training process of a neural network, three main operations are performed: shut-
tling data to and from memory and performing multiplication and addition operations in the
processing unit. Among these operations, the transmission of information is energetically the
most expensive. This computer architecture, called the von Neumann architecture, fundamen-
tally differs from another system adept at pattern recognition tasks: the human brain. It can
perform vision, natural language processing, logical deduction, and planning with an energy
budget that is orders of magnitude less than what is typically consumed by a modern deep
learning model. The brain computes differently: the connectivity is massive with substantial
redundancy, the learning rules are local, the information is propagated in electro-chemically
induced voltage spikes, and the logic and memory elements are co-located in the form of neu-
rons and synapses. The field of neuromorphic computing aims to emulate or mimic the brain
in terms of these aspects to perform more efficient computation. This thesis is about neu-
romorphic computing with architectural inspiration and attempts to mimic biology from the
in-memory or near-memory computing perspective.

In particular, I investigate resistance-based emerging memory technologies for neural net-
works since they provide a more energy-efficient, CMOS-compatible, non-volatile substrate to
perform computation near the memory than their more conventional counterparts (SRAM or
DRAM). Low-power, non-volatile memories are well-suited for edge applications where power
efficiency is prioritized. Additionally, their non-volatile nature is particularly advantageous for
equipment that is not constantly used since no power is needed to store a state. Despite such
advantages, emerging memories such as oxide-based resistive memories, phase change mem-

ories, and magnetic random access memories suffer from imperfections that can dramatically

INTRODUCTION 3

affect the performance of neural networks. In this thesis, I investigate and present hardware-
compatible neural networks which are tolerant to such imperfections to a reasonable extent
and can even embrace them for performing computation. I attempt to answer the following

questions in the second, third, and fourth chapters.
* Chapter 2 How can we learn with imperfect oxide-based filamentary resistive memory?

e Chapter 3 What is the impact of errors and constraints arising at the circuit level on the

inference of neural networks?

* Chapter 4 Can we harness the stochastic nature of stochastic devices to perform proba-

bilistic computing? And what additional advantages could it have?

More specifically, in Chapter 1, I lay the foundation of the thesis by elaborating on the back-
ground of my research. I start by describing the advancements made in computers and com-
puter memory that subsequently facilitated the development of Al, especially deep learning. I
chronicle the rise and fall of Al and the post-2000s resurgence. A detailed description of neural
networks in supervised learning follows this. The ever-increasing sizes of models and the as-
sociated required computational prowess and their environmental consequences are then dis-
cussed. The concept of neuromorphic computing is introduced as a possible solution to this.
After that, emerging memory technologies are discussed as the ideal candidates for in-memory
computing systems capable of implementing neural networks in hardware. In this context, the
different existing ideas about the hardware realization of neural networks are discussed in de-
tail. The chapter concludes with a thorough discussion about imperfections in these kinds of
memories, especially those that offer hindrances to learning, such as device-to-device variabil-
ity, cycle-to-cyle variability, asymmetry, and nonlinearity.

The second chapter is a study done in collaboration with Dr. Marc Bocquet from the Aix-
Marseille University that was published in the journal IEEE Transactions on Electron Devices
and was also presented at the CVPR 21 (conference on computer vision and pattern recogni-
tion) and the Neal 2022 (Gottingen, Germany) conferences, both as posters [4]. This chapter
is about implementing learning in the weak RESET regime of HfOx-based filamentary resistive
RAM using binarized neural networks. I start this chapter by presenting the background of this
work, focussing on the importance of on-chip learning and emphasizing the main issues that
make it challenging. Next, we introduce the memory technology and detail its co-integration
with CMOS and the significance of the weak RESET regime that enhances the endurance of
such memory devices, a crucial parameter for on-chip learning. Next, the main focus of this
chapter is presented, where I developed a model that considers the different types of variabili-
ties to explain the variation in resistance. Furthermore, I fitted the model to the experimental
data and compared the simulations. After this, I describe binarized neural networks as an algo-
rithm suitable for learning with such noisy memory. Then I outline the training process details
and illustrate how I incorporated our device model within the PyTorch deep learning frame-

work to simulate learning with these devices. The simulations are done to learn the MNIST

4 INTRODUCTION

and CIFAR-10 datasets, and the test accuracies exemplify the robustness to different types of
imperfections. I conclude the chapter by highlighting how this approach can be generalized to
the simulation of other memory technologies.

Chapter 3 is about the inference in binarized neural networks with constraints from circuit-
level implementation. This chapter is based on two scientific articles, one is under revision,
and the other is under preparation. The first and second studies presented here were done in
collaboration with Dr. Mona Ezzadeen and Fadi Jebali from Aix-Marseille University. In the
first section of this chapter, I introduce general ideas related to the circuit-based implemen-
tation of binarized neural networks and illustrate the significant sources of errors originating
from electronic circuits and memories. Next, I present the first study, detailing the circuit used
to implement inference in binarized neural networks, the sources of errors, and their analyses.
These errors are incorporated into neural network simulations to test how robust the predic-
tion accuracies are to such errors. For the second study, I motivate the scenarios under which
this type of circuit could be used: edge applications where the power originates from an en-
ergy harvesting system with irregular performance. Then, I present the circuits designed and
characterized at the Aix-Marseille University, fabricated in CEA-Leti Grenoble, and present the
associated errors and constraints related to the design. Here, I proposed and demonstrated an
approach that circumvents array-size-related constraints at the cost of a slight degradation in
accuracy. Finally, I use the experimentally characterized error for neural network simulations
to show that the binarized neural networks exhibit robust computation even under a low power
supply. This chapter highlights the suitability of binarized neural networks for inference, even
with different levels of imperfection and constraints, which is especially promising for edge
applications.

Chapter 4 differs from the earlier two chapters in that it accepts the imperfection and in-
stead utilizes it for computation. In this context, I discuss Bayesian Binary Neural Networks,
the probabilistic analog of binary neural networks where only the weights are binarized. This
is a study in progress for which we are starting to prepare a manuscript, and it was presented
as a poster at the MagnEFi 2022 conference in Crete, Greece. I begin the chapter by reviewing
the theory behind probability-based computing, focussing on ideas related to Bayesian deep
learning methods. Next, I discuss some recent studies where the concept of probability-based
computing has been realized with emerging memory devices. These ideas give us a glimpse at
the potential of this computing paradigm. After that, I discuss the Bayesian Binary Neural Net-
works theory, emphasizing its differences from its deterministic analog. Here, I introduce the
idea of quantifying uncertainty, which is one of the main advantages of using Bayesian Neu-
ral Networks and is essential for safety-critical applications. I use this type of neural network
for a toy example, the two moons dataset, and demonstrate some scenarios under which our
neural network provides robustness or more insight than the deterministic network. After this,
I utilized this algorithm to learn actual medical tasks, the MIT-BIH dataset for arrhythmia de-

tection, and showcased its unique advantages. Finally, we end this chapter by discussing some

INTRODUCTION 5

spintronics-based possible systems that could be used for realizing this algorithm and present

results related to performing inference with them.

INTRODUCTION

Chapter 1

Hardware implementation of deep

learning

“If T have seen further, it is by standing on the shoulders of

giants.”

Sir Isaac NEWTON

8 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

THIS CHAPTER serves as a preface to the new ideas and results presented in this thesis. We

start by looking back at the past; the historical developments that led to the technology
today. After that, the present is discussed: the state-of-the-art and its shortcomings, and from
there, the necessity of the research presented in this thesis is motivated.

After discussing the history of computing and memory, it introduces deep learning as a
consequence of modern memory-compute capabilities and the abundance of data. Then, it
highlights the problems and challenges that deep learning will encounter in the near future
and, with this background, introduces brain-inspired or neuromorphic computing. It reviews
the development of neuromorphic computing in the light of implementing deep neural net-
works in hardware with brain-inspired principles that aim to address the energy constraints
deep learning faces. Finally, it elaborated on the challenges encompassing the hardware im-

plementation related to the various imperfections present in emerging technologies.

1.1 Abrief history of memory and computing

The scientific and technological progress of our race is evident from the fact that it took us
about 4000 years from the invention of the wheel to the first successful airplane launch, but
only just 66 years between the first airplane and the landing on the moon by Neil Armstrong.
Many of these advancements were facilitated by the rapid progress made in terms of computing
technology; the invention of the modern computer allowed us to automate complicated tasks
and do large-scale calculations fast.

The modern computer we use so ubiquitously is the result of technological progress span-
ning centuries. It required simultaneous developments in multiple fields of science, includ-
ing physics, mathematics, electronics, and computer science. Each successive generation of
computing technology expanded the boundaries of our capabilities, thereby creating newer
opportunities that were previously unimaginable. The cyclic nature of the necessity-invention
cycle propelled growth at an exponential rate as well as the need for computational power and
memory.

In computing terms, memory refers to the information a certain calculation needs to exe-
cute. Fundamentally, a computer is composed of two primary components: the memory unit,
which stores information, and the arithmetic-logic unit, which performs operations on that
information. The memory required for computation strongly correlates with the task’s com-
plexity, as depicted in fig. 1.1. If we focus on some distinct events in the history of human
civilization: the invention of the abacus, the conceptualization of the Analytical engine, the
first general-purpose computer by Charles Babbage in 1837, the first landing of a human on
the moon in 1969, the solution of the protein folding problem by the deep learning program
AlphaFold 2, and the release of the large language model-based ChatGPT in 2022, we see that
the memory associated with each of these developments, as well as the computational needs

increase exponentially. Another thing to notice here is that the time difference between such

1.1 A BRIEF HISTORY OF MEMORY AND COMPUTING 9

®
4 R s
109 ,‘(I'I'I,l'li!llil'lr\‘u\
- - &
— Protein folding problem
m Invention of the p,aczlca:y ,;Salg/zd by
abacus ~ 4700 IphaFol
9
-O ¥ years ago
Y = 10°-
)
© >
—
O (@) cnaéssnrAf;om
8 E 103 » becon‘w’espubhc
1)
) ey -
< q) “Analytical machine’ landing on the
E 0 by Charles Babbage moon 1969
1837
1 O - in °
[I I | |
-10° -102 —10° —100

Figure 1.1: Timescales and the associated memory for some of humanity’s most important in-
ventions or events. The Sumerian abacus, considered one of the foremost calcu-
lating machines, appears in archaeological evidence as early as 2700 BCE. Charles
Babbage invented the Analytical engine, considered the first general-purpose com-
puter, in 1837. In 1969, Neil Armstrong became the first astronaut to land on the
moon, embarking upon the Apollo 11 spacecraft, which had the Apollo Guidance
Computer as the main computing unit. The 50-year-old protein folding problem,
one of the biggest questions in structural biology, was solved by the AlphaFold 2
deep learning algorithm in the year 2022 at the CASP 14 event. In 2022 OpenAl re-
leased ChatGPT, an online bot based on the large language model GPT3 that can
answer questions from a human prompt. In this figure, the associated memory for
the deep learning models has been calculated based on the total number of param-
eters present, which essentially gives a lower limit on the required memory because
training such models requires more memory than just the parameters.

major advances is shortening, signifying the speed of these developments.
With this importance of computer memory in mind, let us look at the historical develop-

ment of computers and the role memory has played in them.

1.1.1 Development of computing

A typical smartphone today can store up to 4 billion bytes of data and can function like a desk-
top computer. To understand the root of the invention of such technological components, we
turn the pages of history to study the progress made in the early days when the computer had
mechanical parts, unlike today.

10 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

1.1.1.1 Mechanical calculators

The abacus is the earliest instrument that can be called a calculator or, very broadly, a com-
puter. As shown in fig. 1.2(a), the abacus consists of several movable columns of beads, and a
single arrangement of the beads denotes a single number. This device allows for calculations
such as addition, subtraction, multiplication, division, and even taking the square or cube root
of a number. Such computations are performed by manually moving the beads [5]. Another
early prototype of the modern calculator was invented by the French inventor Blaise Pascal in

1643 (fig. 1.2(b)) [6]. The Pascal calculator relied on a set of gears and springs to implement

Mechanical systems

Figure 1.2: Computers through the ages. (a) An abacus, the first ever calculating device used
as early as 2400 BCE by the Babylonians. (b) The Pascal calculator. (c) A model of
Charles Babbage’s Analytical engine. (d) The ENIAC computer. (e) John von Neu-
mann posing with the EDVAC computer. (f) The IBM 704 mainframe computer oc-
cupies a whole room.

simple arithmetic operations on numbers represented by the wheels’ position. While these de-
vices are capable of efficiently performing arithmetic operations, they are not programmable,
thus rendering them unsuitable for automation purposes. The Jacquard loom machine is one
of the earliest examples of an instrument where a textile loom could be programmed to func-
tion in a certain way. The machine is essentially a control mechanism for the loom in which a
chain of punched cards are used as the input for a pattern, and the loom patterns automatically
[7].

However, all the aforementioned examples are quite far from modern computers. The first
design of a general-purpose computer, albeit mechanical, was proposed by Charles Babbage in
1837, named the Analytical engine (fig 1.2(c)). This was the first computer to have integrated

1.1 A BRIEF HISTORY OF MEMORY AND COMPUTING 11

memory in the form of counter wheels, a dedicated arithmetic logic unit, a control flow that
enabled loops and conditional branching, an input system with punched cards, and even a
printer for producing the output [8]. After that, there were more instances of mechanical or
electro-mechanical computers, but all of them had constraints intrinsic to mechanical systems,
like speed issues and mechanical wear-and-tear. Furthermore, these were analog computers

and consequently were less robust to noise and inefficient.

1.1.1.2 Electronic computers

It took more than a century after this for the first digital, electronic, programmable computer to
emerge. In 1945, the Electronic Numerical Integrator and Computer, or ENIAC, was completed
at the United State army’s Ballistic Research Laboratory [9]. The construction of this computer,
shown in fig. 1.2 (d), was enabled by the developments in electronics in the earlier half of the
twentieth century. In particular, the invention of the thermionic vacuum tube paved the way
for performinglogic efficiently [10]. A technological successor to ENIAC was EDVAC (Electronic
Discrete Variable Automatic Computer), which was completed in 1949 at the Moore School of
Electrical Engineering in Pennsylvania [11]. The celebrated engineer John von Neumann was
involved with this project as a consultant (fig. 1.2(e)), and he proposed in his monograph First
Draft of a Report on the EDVAC the architecture-level organization of a computer [12]. This
came to be known as the von Neumann architecture, and it represented a computer architec-
ture with several components: a memory unit, an independent arithmetic logic unit, a control
unit, and mechanisms for input and output. Later in this chapter, we shall discuss this archi-
tecture more in the context of the energy efficiency of a modern computer. The type of internal
memory used for these computers were mercury-filled tube-based delay lines, a type of acous-
tic memory [13].

The next generation of computers was heralded by the invention of the magnetic core
memory when Jay Forrester utilized the hysteresis property of magnetic cores. The main advan-
tage of this was that it was truly random access, unlike its predecessors which had a serialized
relay of information. The earliest computer to use this was Whirlwind I in 1951 [14], the first
computer ever to produce real-time output and function in parallel mode. The year 1954 saw
the advent of the first mass-produced computer IBM 704 (fig. 1.2(f)), which was a digital main-
frame computer with hardware capable of performing floating-point arithmetic. The following
decades saw the development of transistors and integrated circuits, replacing vacuum tubes
totally. These rapidly decreased the computer’s cost and size and culminated in the invention
of the first personal desktop computer, IBM-PC, in 1966 [15, 16].

The history of computers shows us that the advancement of computers didn't happen in
a vacuum, and the technological progress of memory devices was closely intertwined with it.

With this in mind, let us delve into the history of the development of computer memory itself.

12 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

1.1.2 History of computer memory and storage

Computer memory is any system or device storing information for immediate computations.
Storage memory, on the other hand, refers to the device that can preserve information over
a much longer time period and that is not necessary for computations very frequently. For
example, in a smartphone, the memory is where the operating system and application software
are stored, whereas the storage consists of photos, videos, and documents. Thus, a computer
needs a hierarchy of different types of memories to function.

Punched cards can be considered the earliest forms of memory that a computer could use.
In these cards, the information was encoded in the form of holes in cards of stiff paper [17]. A
typical characteristic of these early forms of memory was the physical state of the device used
to encode the information. A fundamental problem with these is that the physical dimension
required to represent a single bit of data is quite big, and thus, the access speed is limited by the
arrangement of the data. The design of Babbage’s Analytical engine used the rotational state of

counter wheels (fig. 1.3(a)) for internal memory and punched cards to input information.

A g

LU R LRI

Latency Processor Core

L1
/Cache,

SRAM /L2 Cache

L3 Cache

eDRAM of emerginhg
~10ns .

memories

- W -0
y \
DRANY Main Memory Volatile ™
~100ns y N Slatil
. A on-vol
Emerging rrll/emorles N ~100GB

~10ps NAND Flash Solid-State Drive E

4 . . >10TB
~ms/ Hard Disk Drive

Figure 1.3: Memories of yesterdays and today. (a) Counter wheels played the role of main
memory in Charles Babbage’s proposed Analytical engine. (b) The magnetic drum
memory, along with the read-write heads attached to the cylinder. (c) The William-
Kilburn tube, which is a modified Cathode ray tube. (d) The magnetic core memory
with the toroids is arranged in four grids and connected by wires for reading and
writing. The commercially available forms of (e) Dynamic Random Access Memory
(DRAM) and (f) Static Random Access Memory (SRAM). (g) NAND Flash memory
inside a USB stick. (h) The hierarchy of memory and storage in modern computers
(adapted from [18])

As shown in fig. 1.3(b), magnetic drum memory was one of the earliest devices to use mag-

1.1 A BRIEF HISTORY OF MEMORY AND COMPUTING 13

netism to store data. These were large metallic cylinders with ferromagnetic coating on them,
and the magnetic polarity of the film represented the data. There were multiple parallel read-
write heads to read and write information from and on the drums as the drum rotated; thus,
the access speed was limited by the rotation speed of the drum. Nevertheless, this form of
memory was used until as late as the 1960s [19]. An earlier version of this utilized capacitors
to achieve the same, but a major drawback was that those needed to be refreshed periodically.
A similar memory device is the magnetic tape data storage, which also had a long latency ow-
ing to its physical shape but has superior data storage density and endurance (the ability to
endure many cycles of switching of memory bits), both of which are important attributes by
themselves and are the reasons for its survival even to this day for data archiving.

In the early years of 1940, the success of delay lines in early RADAR systems inspired the
development of mercury-based delay lines as a memory device. In this technology, a tube filled
with mercury, a quartz transducer, and a receiver comprised a memory device. The transducer
was able to produce acoustic waves in the tube, which propagated and were received at the
other end. The presence or absence of a wave denoted a bit in such memories, and a single
tube typically stored about 1000 bits of data with an access time of just over 200 us [20]. The
mercury-tube delay lines were used in the UNIVAC I (Universal Automatic Computer I), which
was the successor to the ENIAC, and the first digital general-purpose computer manufactured
for business applications [21].

Apart from latency, data storage density, and read and write times, the fashion in which data
is accessed is another important metric. Conventionally, there are two different types: sequen-
tial access memory (SAM) and random access memory (RAM). In sequential access memories,
the data is stored in a sequence, so there’s always a substantial time needed to find specific
data. On the contrary, RAM enables the access of data in any order. The delay line memories
were of the first kind owing to their intrinsic sequential nature and thus were not suitable for
situations that necessitated random access. Around the same time, the William-Kilburn tube
was also invented as a random access memory. This tube (fig. 1.3(c)) is a customized Cathode
ray tube, where the electron beam could create a charge well in the face of this tube, and a read
plate was used to sense the absence or presence of that well representing the memory. This was
random access since the electron beam could position itself anywhere on the screen quickly,
and thus any bit of data could be accessed at a time. This system also required periodic refresh
due to the leakage of charge, and the data read was also destructive [22].

The next major development came in the form of magnetic core memories. A single bit of
this memory comprised a core, a magnetic toroid with an electric wire connected to it. The
current flow magnetized the core, the direction of the magnetization depending upon the di-
rection of the current and encoding a single bit. This state would be preserved even when no
current flows through the core, owing to the hysteresis property of ferromagnets. Such cores
were arranged in a grid (fig. 1.3 (d)) with wires connected to facilitate the reading, writing, and

selection of a single core. The success of this memory can be attributed to its random access

14 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

nature, robustness, and the lower access time of 5 us compared to the delay-line memories
(14, 19].

1.1.3 Memory in a modern computer

Further advancements in computer memory and storage happened hand-in-hand with the
progress of transistor technology. The main advantages of transistors are that they are smaller,
faster, less power-hungry, and cheaper than the existing solutions of that time. In the year 1966,
at the IBM Thomas J. Watson Research Center, the field effect transistor memory or DRAM (dy-
namic Random Access Memory) was invented. It was built on a semiconductor process with a
single silicon transistor and a capacitor in a cell, and the two memory states are represented by
the charged or uncharged state of the capacitor. The capacitor circuit element suffers from the
leakage of the charge, and hence, this also needs periodic refresh like the Williams tube (fig. 1.3
(e)) [23], from which it derives the 'dynamic’ in its name.

Although DRAM is cheap and has a low area overhead, the data access is slower (10-100 ns),
which is not desirable in certain cases, like in cache memory or in internal registers. SRAM, or
Static Random Access Memory, invented in the early 1970s, is the choice of memory in such
cases. A single SRAM cell consists of 6 transistors and hence can have a significantly lower
memory density and be more expensive compared to a DRAM which has a single transistor
per cell. However, the on-chip location of SRAM, coupled with the fact that it has a small array
size with less number of wires and consequently less delay, the memory can be accessed much
quicker (a few ns) (fig. 1.3 (f) [18].

Despite the fact that DRAM and SRAM are crucial elements of computer memory, they are
volatile; that is, the cell loses its memory when the power supply is turned off and thus cannot
be used for storage. Dr. Fujio Masouka, working at Toshiba in the year 1987, invented the
Flash memory, a non-volatile, electronically programmable memory [19]. A single cell of such
a memory consists of a floating gate transistor, where an additional insulated gate lies between
the control gate and the MOSFET channel. The presence or absence of charge in this gate
represents the memory states. Since it is electrically insulated, the memory is stored even in the
absence of a voltage supply. The NAND flash cell is typically used for storage due to its cheaper
cost and high memory density. It is the principal building block for solid-state drives (SSDs),
smartphone storage, and USB sticks, as shown in fig. 1.3 (g). Although it is more expensive than
the conventional hard-disk drive (HDD), which is magnetic storage with mechanically moving
parts, the SSD is faster, smaller, less noisy, more durable, and more energy-efficient.

A computer is a complex device that requires different types of memory storage, each with
specific requirements for various applications. The range of storage options spans from the
cache memory, which requires speed over size, to the hard disk drive storage, which prioritizes
alarge size over access speed. Fig. 1.3 (h) details the complete memory hierarchy present in the
modern computer that has been discussed in this section. The timescales span from less than

a nanosecond to about a couple of milliseconds, and the memory capacity extends from 100s

1.2 THE RISE OF DEEP LEARNING 15

of kB to more than 10s of TB. Within the extent of these huge time and memory scales, there are
gaps that different emerging memory technologies are trying to bridge. We shall discuss such
memory later in this chapter. It must be emphasized that the rapid development of transistor
technology is enabling the integration of more and more transistors on a single chip, and that,
in turn, is giving us access to smaller and more powerful computers. The IBM 704 mainframe
computer, with a memory of about 18.4 kB, occupied a whole room, whereas a typical smart-
phone today has a RAM of 8 GB. Moore’s law summarizes this in the form of the statement that
the number of transistors on a microchip doubles every two years [24, 25]. Amongst the many
benefits that were derived from this, the progress in the field of Al is quite significant.

1.2 Therise of deep learning

The exponential development of technology has been driven by the fact that development in a
single very important domain affects several others, which continues the same way to produce
an avalanche. The huge advancements in computing power, memory capacity, and the avail-
ability of an astronomical amount of data have led to the resurgence of deep learning, a special
class of artificial intelligence (AI) algorithms.

We start this section with a short history of Al. Then we move on to specifically focus on the
resurgence of this field with the support of memory capabilities. Then finally, we discuss the

basic ideas behind the deep learning algorithm.

1.2.1 Therise and fall of Al

The modern form of Al that we observe today arose from innovations in different science and
technology domains. Algorithmically, the earliest progress could be traced back to the first half
of the 19th century when the least square regression and gradient descent methods were for-
mulated, which have been the backbone of the deep learning algorithms, even today [26, 27].
But, it wasn't until the summer of 1956 that the field of Al was formalized at the Dartmouth
workshop in the United States of America [28]. Amongst the organizers were John McCarthy;,
who was the person to coin the term Al to this domain, Nathaniel Rochester, the chief architect
of the IBM 701 computer, and Claude Shannon, who is considered the father of information
theory. In the conference, topics like creativity, abstraction, computer architecture, computa-
tional theory, neural networks, and natural language processing were discussed, which remain
relevant even today [29].

Developments in these aspects were driven mostly by mathematicians and computer sci-
entists, but there was another line of progress that contributed equally. These were attempts by
a group of biologists who took inspiration from the nervous system of animals to build botfom-
up model for intelligence. Warren McCulloch and Walter Pitts proposed a simple model of

neurons based on its topology where a single neuron accumulates the inputs that it receives

16 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

weighted by the synaptic connection strengths and applies a non-linearity to it to produce the
output [30]. This model, shown in fig. 1.4, is widely used in neural networks. Biophysicists
Alan Hodgkin and Andrew Huxley extended this idea by introducing the concept of dynamics,
which, as it turns out, is a crucial aspect of biological neurons [31]. The Canadian neuropsy-
chologist Donald Hebb took this idea of dynamics to suggest a simple learning algorithm based
on the temporal correlation of connected neurons, which came to be known as Hebbian learn-
ing [32].

Dendrites Axon

1 W1
W.
X 2
W, — —_—
x3 /
Wy (b)
Xy

Figure 1.4: The analogy between a biological neuron (a) and an artificial neuron (b) as proposed
by McCulloch and Pitts. Through their respective synapses, the dendrites bring in
electrical voltage pulses to the cell body, where the signal undergoes processing and
eventually propagates through the axon onto the next set of neurons. In an artifi-
cial neuron, the inputs x1, X2, X3, x4 are summed up after being weighted up by their
respective weights w;, w», ws, wy, and then passed through a non-linear activation
function to output y.

The question of having the correct learning rule bugs researchers even today and the bio-
plausibility of a certain learning rule is often debated. In [30], McCulloch and Pitts discussed
ideas that led to the first implementation of a perceptron by Frank Rosenblatt, which is the
most rudimentary form of a neural network [33], and the structure is as shown in fig. 1.4(b).

It can do a classification or regression task where the N inputs x;, X2,..., Xy are fed into the

1.2 THE RISE OF DEEP LEARNING 17

perceptron, where the output y is calculated by taking their linear combination with weights
wy, Wo,..., Wy, and after passing through a non-linear function, which was the Heavyside step
function in the original perceptron formulation. The nonlinearity is an important ingredient
as a linear setup could learn functions that were linear, which isn’t the case most of the time
in reality. Learning a good mapping from the input to the output corresponds to learning an
appropriate set of wy, w»,..., wy, which are referred to as the synaptic parameters because
of their functional resemblance to biological synapses. The learning rule for the perceptrons
in the simple delta rule is based on the gradient descent algorithm [34]. In this algorithm, a
loss metric is defined, which quantifies how far the perceptron is from giving a correct output.
Then the parameters are updated in a way that minimizes this metric. This is in contrast to
the bio-plausible Hebbian learning and solely depends on the iterative arithmetic updates of
the parameters of the system. Although the very first implementation of the perceptron was in
software on the IBM 704 computer, eventually, a machine was designed called the Mark I per-
ceptron in 1958. It was connected to 400 photocells in a 20x20 grid, which was then connected
to neurons, and the synaptic weights were implemented by potentiometers whose resistance
value encoded the weights. The update of the weights was carried out by electrical motors [35].
This physics-based implementation is surprisingly not dissimilar to the hardware implemen-
tation of neural networks today, broadly speaking.

This methodology of reducing pattern recognition tasks to simple networks where the out-
put is connected to the input by mathematical operations was termed as Connectionism. Ini-
tially, the promise behind such an algorithm was huge, and scientists and media alike pub-
licized that general artificial intelligence was just within reach; however, before the 70s, this
came to an end. A book called Perceptrons was published in the year 1969, highlighting their
severe limitations and criticizing the hyperbolic predictions associated with it [36]. This book
What followed was almost two decades worth of disinterest, lack of funding, and research in Al,
which is referred to as a period of Al winter [37].

In the 1980s, several developments aroused the interest in Al research anew. In contrast
with Connectionism, another Al philosophy relied on symbolic reasoning, such as using deci-
sion trees with if-else branchings based on some logic to reproduce intelligence. This gave birth
to expert systems, a class of computer systems that could emulate the decision-making process
in very specific domains [38]. The cause of connectionism was also revived by the physicist
John Hopfield in 1982, who proposed Hopfield networks which were a novel, efficient, and bio-
realistic implementation of neural networks [39]. From the theoretical side, George Cybenko
proved the universal approximation theorem, which stated that an artificial neural network
(ANN) with a single hidden layer is able to approximate any continuous function for inputs
within a specific range of values [40]. A hidden layer in a neural network refers to an additional
set of neurons between the inputs and outputs, which aims to learn intermediate values, sim-
plifying the classification task in the successive layer. The deep neural network is a network

that has one or more such hidden layers of neurons. David Rumelhart and Geoffrey Hinton

18 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

introduced the method of backpropagation as a method to learn the parameter values of such
multi-layered networks [41].

Nevertheless, the general interest in ANNs was also short-lived, as, by the beginning of
the 90s, many of the new developments failed to offer practical solutions. The expert systems
couldn’t generalize to other tasks, and it was very hard to manipulate or improve systems based
on symbolic computations. However, other machine learning methods like the support vector
machine (SVM) or the K-nearest neighbors were extensively used during this time. After this, it

would take about two decades for the resurgence of ANNs to take place.

1.2.2 Renaissance of Al: the deep learning revolution

The following decades witnessed the sheer dominance of computing power in the context of
Al applied to domains where human expertise was considered superior. Riding the wave of
Moore’s law, computers became powerful in the count of memory as well as processing speed,
and a direct result of this could be seen in the defeat of the famous Gary Kasparov to the IBM
computer called Deep Blue in a game of chess in the 1997 [42]. Another noteworthy accom-
plishment of Al during this period included the proof of Robin’s conjecture in theoretical com-
puter science by the Al automatic theorem prover known as EQuational Prover in the very same
year [43]. In 2005 and 2007, significant demonstrations were made by autonomous vehicles in
the DARPA Grand Challenge and DARPA Urban Challenge, respectively [44, 45].

However, these achievements relied on machine learning techniques that were not based
on deep learning. The first major breakthrough that ushered in the era of deep learning was
when Krizhevsky et al. won the large-scale ImageNet competition in 2012 by a big margin us-
ing a Graphics Processing Unit (GPU)-accelerated Convolutional Neural Network (CNN) [46].
What followed was a surge in interest and funding in deep learning algorithms. In 2019, Yann
LeCun, Geoffrey Hinton, and Yoshua Bengio were awarded the Turing Award, the highest award

in computer sciences. This resurgence could be attributed to three major aspects

* Big data: Since the early 2000s, the ubiquity of the internet, the spread of usage of mul-
timedia and social media, along with the advent of new technologies like the Internet of
Things, there has been an abundance of data available [47]. This wealth of data, known
as Big data, supplied deep learning with information that it could leverage effectively be-
cause, as opposed to other machine learning methods, the performance of deep learning

scales with the amount of data fed.

* Development of algorithms: Despite the fact that most of the building blocks of the
modern deep learning landscape had been around for some time, access to faster com-
puters with bigger memory has facilitated new implementations or the invention of alto-
gether new algorithms. Deep CNNs, Recurrent Neural Networks (RNN), Long short-term
memory (LSTM), Transformers, Generative Adversarial Networks (GAN), and Graph Neu-

ral Networks (GNN) are some examples of such algorithms which are directed toward

1.2 THE RISE OF DEEP LEARNING 19

different applications [48-53].

Other than this, different aspects in training were invented which were crucial in the
good performance of such networks like the implementation of Batch Normalizations,

the Adam optimizer, the cosine annealing learning rate scheduler scheme, etc. [54-56].

* Development of memory and compute: Many of the algorithms listed above date back
to the late 1990s, when they failed to perform owing to the mismatch between the re-
quired compute/memory and the existing standards. By the early 2010s, computers had
grown powerful enough to showcase the effectiveness of these algorithms. A huge part
of the computation in neural networks is matrix multiplication. Around the same time,
a specialized device emerged that was able to do this specifically very fast in a massively
parallel fashion. This device, the Graphics Processing Unit, remains one of the key hard-

ware necessary to perform state-of-the-art deep learning [57]. Presently, more special-

ized hardware such as the Tensor Processing Unit (TPU) and other accelerators are being
developed [58].

L RERES X My favorite football
RO PR A club is Mohun Bagan
[RUETEIRICE

(b)

(€)

m el E}D _E

®

Residue-residue edges

Figure 1.5: A collage of applications of DL today. (a) Image segmentation is a computer vi-
sion task where the network learns to separate different components in an image
semantically. (b) Google Translate transcribes one language into another using nat-
ural language processing. (c) Tesla’s autopilot system amounts to international level
2 in terms of vehicle automation. (d) AlphaFold 2 algorithm predicts the 3D crys-
tal structure from the input amino acid sequence. (e) The AlphaTensor algorithm
found an efficient way to multiply two matrices that have dimensions larger than
2x2. (f) Speech recognition task: the sound signal is converted to text.

Today, deep learning can be found in a plethora of applications, as shown in fig. 1.5. At

20 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

the time of writing this thesis, large language models have caused a significant buzz in the Al
community, particularly with the recent release of the GPT-4 model, which has shown some in-
dications of potential artificial general intelligence. [2]. Computer vision or image recognition
has been at the forefront of this revolution. At this point, it is considered a practically solved
problem with the recent neural networks surpassing human-level performance for numerous
tasks [59]. Fig. 1.5 (a) shows an example of computer vision: image segmentation, where the
system can correctly identify and separate objects semantically in an image from the camera
attached to a car. Natural language processing, specifically machine translation, has experi-
enced huge success with websites like Google Translate (fig. 1.5 (b)) and DeepL providing al-
most human-level performance. Autonomous vehicles (fig. 1.5 (c)) are also seen as another
domain where DL holds a lot of promise, with companies like Tesla and Ford investing mas-
sively in this research. In recent years, DL applications have pervaded other science domains
as well. The protein folding problem is a 50-year-old challenge in structural biology, where the
task is to predict the correct 3D geometry of a protein given only its amino acid sequence. In
2020, the AlphaFold 2 algorithm (fig. 1.5 (d)) by DeepMind achieved a great level of accuracy
at the CASP 14 competition in predicting the correct crystal structure of proteins [60]. Another
algorithm from DeepMind, called AlphaTensor, has discovered novel mathematical algorithms
that can efficiently implement matrix multiplication in more than two dimensions (fig. 1.5 (e))
[61]. Speech recognition is an application that exemplifies the end-to-end nature of deep neu-
ral networks (fig. 1.5 (f)). In the past, many conventional machine learning techniques relied
on the hand-crafting of features to perform pattern recognition tasks. In contrast, neural net-
works can be used as end-to-end systems where the features are automatically learned, and the
mapping is done directly from one type of data to another. For example, in image recognition,
it learns the mapping between the image pixel values and the labels, or in speech recognition,
the mapping between the sound signal and the text output. Next, we would venture into the
details of such deep neural networks in the context of supervised learning, which is able to

learn a special class of pattern recognition tasks.

1.2.3 Supervised learning

Learning algorithms can be classified in various ways in terms of the task they do, how the data
is presented, and such. A fundamental classification divides them into three categories, with a
glimpse of a fourth one appearing on the horizon.

This classification is based on the interaction between the system, the data available, and
the kind of task it is trying to achieve. In supervised learning, the data consists of examples with
labels; in other words, a single data point consists of an input and output pair, and the system
has to learn a representation that maps the input (called features) to the output. Unsupervised
learning is the learning paradigm where the data lacks such labels, and the system has to learn
patterns underlying the data. The third categorization, Reinforcement learning, has a setup

where the system can interact with its environment through actions. Here, learning takes place

1.2 THE RISE OF DEEP LEARNING 21

through the system, getting rewarded for actions that contribute positively to the achievement
of its goals or by getting punished for the opposite. In this thesis, we are going to look at only
supervised learning tasks, specifically the ones related to image classification.

Self-supervised learning is emerging as a new type of learning that uses unlabeled data
to train an algorithm to learn useful representations of the data. This approach is becoming
increasingly popular in the field of deep learning because it can help to reduce the amount of
labeled data required for training, which can be time-consuming and expensive to obtain. In
self-supervised learning, the algorithm is trained to predict a missing piece of information in
the data, which is typically achieved by masking part of the input and then asking the model
to predict what the missing piece should be. This approach can be used to train models for
a wide range of tasks, including image classification, object detection, and natural language

processing [62, 63].

1.2.3.1 The deep neural network

In an image classification task, we have training data that contains the pixel values of all the
images and their corresponding labels. Let the pixels for the n" image be denoted by x's, and
their corresponding labels (or targets) by ¢". The task boils down to finding an appropriate
network that learns how to find the correct label for a given image.

The whole operation of a neural network happens in two phases: the feed-forward prop-
agation phase, also called inference, and the backward propagation phase, where the actual
training takes place.

A neural network has two major components, as described earlier: the neural activations or
neurons and the synaptic weights or simply weights, which are the parameters of the network.
In a feed-forward, fully connected architecture, all the neurons of a layer are connected to all
the neurons of the next layer by the synaptic weights w as depicted in fig. 1.6. The weights and
architecture are collectively referred to as the model. The different layers are supposed to learn
features at various levels of abstraction, and the potential to utilize more layers gives a neural

network an edge over the perceptron, which is nothing but a single-layered neural network.

22 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

L=L(yt)
. aL
Output units v = f(z) dy,
7= Z Were oL 0L ay,
KEH2 621 6y1 621
daL Z JaL
— AT Wit 23—
Hidden Ve = f (&) i I€Eoutputs 9z
units H2 Z = Z Wik Yj L AL Oy,
JE 0z 0yy 0z

}—iilcideHl’]1 y; = f(z) aL Z " oL
units oy, jk
z; = z Wi X; Vi e 0z
i€input oL B oL 6y,-
9z 0y; 9z
Input units
(a) Inference (b) Training

Figure 1.6: Anatomy of a fully-connected neural network. (a) The inference or the feedforward
part of the network shows how the neuronal values are calculated, starting from the
input in the very first layer to the final output prediction. In the neural network
shown, there are two hidden layers. The preactivation zs are calculated by the lin-
ear combination of the inputs of that layer, weighted by the synaptic weights, and on
that, the activation function f is applied to get the neuronal activation values ys. (b)
Training or backward propagation phase is shown for the same network. Here, the
reversed direction of the arrows represents the backward direction of propagation
of the error signal. The chain rule is used to calculate the gradients for the preacti-
vations and activations, which are then used to calculate the weight updates.

Forward propagation or inference

In this step, shown in fig. 1.6 (a) first, the pre-activation from one layer to another is cal-

culated by taking the linear combination of the inputs of that layer x; weighted by the
synaptic parameters w; ;. This pre-activation value z; is then passed through a non-linear

function f called the activation function to yield the output y;.

zj:Zwijxi (1.1)
i

yi=f) 02

1.2 THE RISE OF DEEP LEARNING 23

Here, the xo term is always set to 1, and the wyp; term is called the bias. The choice of
the non-linear function is also a design choice; typically, the ReLU activation function is
used for it. Other choices could be the hyperbolic tangent or the sigmoid function. In the

output layer, a softmax function is typically used. Thus,

f(x) =ReLU(x) = max(0, x) (1.3)

The application of the batch normalization process makes neural networks learn faster and
more stable. In batch normalization, the neuronal pre-activations are normalized over a batch
of values [54]. In this context, a batch, or more specifically, a minibatch, is a small part of the
whole training data. Because of a dataset’s huge size, we only feed a part of the data, called the
batch, to our network in a single step. The batch normalization bounds the value of the pre-
activations to a smaller range and, in turn, makes the loss function landscape smoother, which

facilitates learning [64].

24 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

Batch normalization

Let a single batch of pre-activations (z;) have m data points, and let the mean and stan-

dard deviations of this batch be represented by u5 (% 7;1 zj)andop (ﬁ Z;’il (zj —,uB)Z).

Then the batch normalized values are given by
Zj — HUB
ZBNj = T
\/Ogte€

Here, € is a small positive term to maintain numerical stability.

(1.4)

The training process occurs in an iterative manner, where the whole dataset is shown to the
network in small batches, and when it has seen the entirety once, we say it has gone through
a single epoch. One of the most important metrics for a classification task is the accuracy of
prediction. This is usually represented as a percentage of the number of correct predictions
made. Since a neural network has a huge number of parameters that it can learn, it is very
prone to overfit to that data, which means that instead of learning the essential features of
the data, it almost 'memorizes’ the details of the whole training dataset. To diagnose this, we
preserve a part of the data called the testing dataset or test dataset and do not present it during
the training phase when we only present to it the training dataset. If a network has learned the
features well, it will perform similarly on the seen and the unseen datasets. All the accuracies
reported in this thesis are the test dataset accuracy unless otherwise mentioned. It is also best
practice to have a validation dataset which is used for hyperparameter tuning of the neural
network.

Initialization of our model, that is, setting the initial values of the weights, is also an im-
portant aspect. Setting them too high can lead to exploding gradients, and too low can lead to
vanishing gradients, both of which are detrimental to learning. The initial values of the weights
are usually set randomly using a normal distribution with zero mean and a variance propor-
tional to the number of neurons they are connected to [65, 66].

With a random initialization of the weights, the network produces random predictions in
the form of outputs in the first iteration. To fix this, it is necessary to define a metric that quan-
tifies how bad this prediction is, and this metric is called the loss or objective function L. This
measures how far a prediction is from the true target label, and it is named so because the
objective of the learning is to minimize the value of this function by tuning the values of the
weights. The decrease in the loss function, or conversely, the increase in the test accuracy,
means that our network is learning.

In the training phase, this is precisely what we do: we use the gradient descent algorithm
to change the values of the parameters in a way that attempts to find the global minimum of
our loss function [67]. Like in a univariate minimization problem, we take the derivative of

the function with respect to the variable; here also, we take the gradient of the loss function

1.2 THE RISE OF DEEP LEARNING 25

with respect to the synaptic weights. Then we descend or change our weights to decrease the
value of the function. Our network is composed of a different set of values linked with each
other by functional mapping, and this gradient has to be propagated backward from the loss
function to all the weights of the network. The backpropagation algorithm achieves this by the
repeated application of the chain rule from differential calculus [68]. It is to be noted here that
this is only possible because the functions and linear transforms that we use are continuous,
so a well-defined derivative exists for all points.

The choice for the loss function also impacts our training, and it is typically task-dependent.
For regression tasks, where the output is not a single label but a continuous real value, the Mean
Square Error (MSE) loss is used, which takes the square of the difference between the actual
output and the expected output, averaged over the whole batch. In our classification task, the
cross entropy loss is used, which, for a single image input for C output classes, has the following
form
C

L(y,t)=-) tilog(yi) (1.5)

i=1

This specific form of the loss function is related to the way in which the outputs are repre-
sented in a classification task. Unlike a regression task, where the system has to predict a real
number, a classification task involves predicting the output class, which in themselves are not
numerical quantities, but just semantic categories. The one-hot encoding is typically used for
a classification task where the output is represented by a C-dimensional vector whose all en-
tries are zero except for the index of the class to which the output belongs, which is set to unity.
Equation 1.5 is designed to punish the network by producing a high value when the prediction
for an index is 0 when the expected output is 1 or vice-versa.

The derivative of this function with respect to the parameters of the network is what com-

prises the training signal, known as the gradient.

26 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

Backward propagation or training

Let us consider the neural network shown in fig. 1.6. In the backward propagation phase,

we start calculating the gradients from the final layer. The update for the weight wy; is
proportional to %, and the sign is negative since we intend to minimize the loss func-
tion. The proportionality constant « is called the learning rate since this determines the

rate or speed at which the network learns. Thus, the equation for the update is

oL
Wik = Wr]— O ——. (1.6)
0 Wiy
The derivative term in this equation cannot be directly calculated, as L is calculated based
on the target f; and output y;. This output y;, in turn, depends on z;, the linear combina-
tion of the weights wy;, and inputs of this layer y. The chain rule is used to calculate this

as

0L 0L 9z _ oL oL dy,

.,
B “oz7 " ay,07F " Ty,) 1.7
6Wkl aZl aLUkl azl Yk aJ/l aZl Yk ylf (Zl)yk ()

using equ. 1.1, equ. 1.2 and equ. 1.5.
Next, we move on to the previous layer to determine the updates for the weights w .
Unlike the final layer, the gradients from the previous layers also contribute downstream,

and hence we need to take a sum over all the contributions. Thus,

oL 0L 0z
aw]'k 2 azk 6w]k

5L, G oL ., oL,
ey oy 2 iz = Y w20y
(1.8)

This way, the updates to the weights are calculated for each layer of the network until the

-y oL

Ozk

very first layer.

The backpropagation algorithm is an effective way of learning the parameters of our net-
work as it scales well to the size of a network and where other optimization techniques fail.
Although with this method, convergence to the global minimum is not guaranteed, with some
modifications, this algorithm can train a network considerably well. The stochastic gradient
descent is the simplest way of implementing this. Here, a small subset of the training data, se-
lected randomly, enables the descent of our network along the gradient computed on it. The
Adam optimizer improves on this by considering the gradients’ history, which makes learning
faster and better by effectively reducing noise [69].

The equations described above showcased the backpropagation in a fully connected net-
work setting, but it works similarly with any differential operation. In the case of convolutional
neural networks, the multiply and sum operation is replaced by convolutions where the role of

the weights is served by kernels or filters. Throughout this thesis, we used the PyTorch deep

1.3 NEUROMORPHIC COMPUTING 27

learning framework for our neural network simulations [70]. The advantage of using deep
learning frameworks is that they come equipped with specialized modules that can perform
automatic differentiations when the structure of the network is specified. So, we need to de-
fine the forward propagation part, technically called the computational graph, and the package
automatically can do the backward propagation step.

However, this training algorithm is not without some demerits. Firstly, it is highly non-
bio-plausible; the connectivity in the nervous system doesn’t suggest the feasibility of such an
algorithm. In the brain, the update signals are local in nature, and the neural circuitry has
no simple provision for this signal to propagate backward [71]. Additionally, in backprop, the
differentiability of the neuronal values, the transport of exact error signals, and the usage of
the same weights for the forward and backward parts seem to go against biological feasibil-
ity. There have been alternative algorithms proposed to replace backprop, like Equilibrium
propagation, Feedback alignment, and the more recent Forward-forward. Still, they are yet to
convincingly exhibit the performance or efficiency of backpropagation [72-74].

Secondly, it can be noted from equ. 1.7 and equ. 1.8 that the update equations all involve
the weight values, the derivative of the activation function evaluated at the preactivation, the
activations, and the gradients from a subsequent layer. In software, these are just values stored
in memory, but from a hardware point of view, we need to store these values, access them,
and perform computations on them. The architectural overhead for achieving this is extremely
high, to the point of being impractical. This difficulty scales with the size of the neural network,
as larger and more complex neural networks would hinder the hardware implementation even
further.

1.3 Neuromorphic computing

1.3.1 Memory requirements of deep learning

The success of deep learning can be attributed largely to the availability of an astronomical
amount of data. This, in turn, enables the usage of complex models with a large number of pa-
rameters that almost always leads to better performance in terms of accuracy and other met-
rics. However, this comes at a cost: the memory requirements to store the model and the energy
requirements to perform the operations, especially during the training phase, scale poorly with
the model size.

Since the performance of a neural network scales directly with its size and complexity, we
see an ever-increasing trend in terms of the number of parameters, and the total number of
floating-point operations done, the rate of which is measured by Flop/s (Floating-point opera-
tions per second). In fig. 1.7 (a), we see this very clearly in the plot for the number of parameters
count for the deep learning models in the latter half of the 2010s. The blue and red points show
the number of parameters for models designed for computer vision and natural language pro-

28

CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

1078 Baidu RecSys
10000 L J
Transformer Size: 240x /2 yrs 278 Baidu RecSys
. []
1000- Al HW Memory: 2x /2 yrs GShard
T L]
2 GPT-3
] B
2 100
£
5 Microsoft T-NLG
o A100-80 (80GB))
[v] MegatronlmM @
s 10 o
‘6 @ V100 (32G68) @ TPUV3 (3208) I A100 (40G8)
TPUVZ (1 PT-2
g ® 7100 (12GW) ° e Py
& v
BERY ALBERT
B L]
0.1 lnapt.ion va u.m:mox Transformer c".' X MEBCTRA
ResNet50 DenseNet °
() | e
0.01 - - - - -
2016 2017 2018 2019 2020 2021
YEAR
104
AlphaGoZego e GPT-3
« Language . y
Vi AlphaZero @ Megatron-
) oo ! o BERT
107 « Games Neural machine® 7
Speech translation ®/ 9 GPT-2
o
.
- * Other %" & BERT
> 100
©
w
2
(=%
=
& 10
c
.0 7 T
© ’
= 0 Doep belief networks 4
o @
§ Doubling every 24 months e~ =
(Moore's law == e
106 TD-Gammom v2.1 M e MLP-based neural
° -
LeNet-5 _ - = network breaks
- o ch MNIST record
10 S -
NETtak _ - © RNN for speech
» — Y - >
ALVINN Pre-GPU computing GPU computing
(b) 1010 1 1 1 1 1 1 1]
1985 1990 1995 2000 2005 2010 2015 2020 2025
Year

Figure 1.7: Trend in memory and computational performance for deep learning models. (a)
The evolution of the total number of parameters that a model needs over time. The
plot shows the count for the state-of-the-art computer vision (blue points), natu-

ral language procession (red points),

recommender systems (black points), as well

as the maximum memory capacity for Al-hardware (green points) (Adapted from
[75]). (b) The same trend for the computational performance, measured in Flop/s
days for vision, language, speech, and game models. The computation in the y-axis
measures the computational performance as well as the total quantity of compute
needed (in terms of days). Two different slopes can be seen based on the usage of
GPUs, where the previous compute doubled every 24 months, and now it is dou-
bling every two months (Adapted from [76]).

1.3 NEUROMORPHIC COMPUTING 29

cessing. The NLP models are all based on the transformer architecture, and the number of
parameters in such models is increasing by a staggering rate of 240 times in 2 years. In con-
trast, we see from the green points that the memory capacity of hardware dedicated to Al, such
as the Nvidia Tesla V100 GPU or the Tensor Processing Units (TPUs), is increasing at a much
lower rate of 2 times in 2 years that is in accordance with Moore’s law [75].

As we examine more recent advancements like GPT-4, Google PalLM, and larger recom-
mender system models, it becomes clear that this trend is diverging even more, indicating that
we are quickly approaching a saturation point with conventional memory. The scenario for
computing for deep learning resonates similarly, as we can see from fig. 1.7 (b). In the "pre-GPU
era,’ the required number of operations was doubling every two years, in sync with Moore’s law,
but the usage of GPUs has led to the capability of using bigger and more complex models, and
the Flop/s days are doubling every two months for very recent models [76]. The PFlop/s days
measure not only the computational performance but also how long the computation runs,
therefore measuring the quantity of computation as well. Thus, the gap between the existing

hardware capabilities and the memory and compute requirements is growing bigger by the day.

von Neumann
bottleneck
—_ — i E Processing
(a)
Operation: Energy | Relative Energy Cost
(pJ)
8b Add 003 || Common carbon footprint benchmarks
16b Add 0.05
l in Ibs of CO2 equivalent
32b Add o1 |l
16b FP Add 0.4 - Roundtrip flight b/w NY and SF (1
I passengSr) ¢ (‘ 1,984
32b FP Add 09 |
8b Mult 0.2 |- Human life (avg. 1 year) I 11,023
32b Mult 3.1 I_ American life (avg. 1 year) . 36,156
16b FP Mult 1.1 |- US car including fuel (avg. 1 lifetime)
32b FP Mult 37 | Transformer (213M parameters) w/
neural architecture search
32b SRAMRead (8kB) | 5 || NNNIN
(b) [32b DRAM Read o0 | ()

1 10 102 10% 104

Figure 1.8: Energy consumption and its consequences. (a) In conventional computing archi-
tectures, the memory storage unit and arithmetic-logic processing unit are physi-
cally separated, and information needs to be constantly shuttled through them via
a bus. This imposes a limitation in terms of computing efficiency and is called the
von Neumann bottleneck. (b) The relative energy costs of single operations (add,
multiply) for different precisions and data access from SRAM and DRAM [77]. (c)
The relative carbon footprints of neural networks and other major sources of CO,
emission. Training a transformer model with 213 million parameters has a carbon
footprint that is about six times that of an average lifetime of a car in the United
States.

30 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

This avalanche of memory and compute needs is not only an issue for the stagnation in
development; there is a massive cost to this as well, with consequences for our environment.
A major part of the energy consumed for a neural network to function is in its training phase.
The process of finding the optimal set of parameters can take a long time, even with multiple
GPUs, and the process of hyperparameter tuning can make this even longer. From fig. 1.8, we
note the carbon footprint of a modern deep learning model (in this case, a Transformer with
neural architecture search), and comparing it with that of other major sources of CO, emission,
we observe the orders of magnitude difference [78].

To understand where the majority of energy consumption is, we take a closer look at the
relative energy costs for different operations relevant to neural network calculations. The op-
erations are dominated by multiplications and additions, but, from fig. 1.8 (b), we find that the
energies for these are substantially lower than what is needed for accessing or reading the data
from the cache (SRAM) or from memory (DRAM) [77].

This difference in energy is attributed to the manner in which information is accessed on a
modern computer. In [12], John von Neumann outlined the blueprint on which modern com-
puters are based; the memory and processing units are separated in space, and a bus shuttles
data to-and-from between them. This transport of data causes a bottleneck in terms of effi-
ciency in compute and is termed von Neumann bottleneck (fig. 1.8 (a)). In a single iteration
of training of neural networks, the parameters and activations are read, and using those val-
ues; the updates are calculated and applied to the parameters and then stored. Hence, a lot
of back-and-forth information is happening during this process, leading to massive energy ex-

penditure.

1.3.2 Inspiration from the brain

On the other hand, the original inspiration for neural networks, the human brain excels at en-
ergy efficiency. It consumes a power of 20 W to perform all the tasks a human being can do,
which is similar to that of a light bulb [79]. Traditionally the modern computer has been devel-
oped for specializing in tasks like fast, very accurate calculations, whereas the brain excels at
computer vision, speech, language processing, and other pattern recognition tasks. These two
domains of tasks are, in essence, very different from each other, and from this point of view, it
comes as no surprise that they two function fundamentally differently.

The differences between the human brain and the modern computer can be summarized

as follows.

* Architecture: The neurons in the brain serve as the processing units that transform in-
coming signals, while the synapses between those neurons are the analogs for the mem-
ory elements. Since they are co-located, the need to shuttle information between the
processing units and memory elements is eliminated. On the other hand, in the von Neu-

mann architecture of computers, the memory component is physically isolated from the

1.3 NEUROMORPHIC COMPUTING 31

arithmetic/logic unit.

* Information signal: In the nervous system, the information is propagated in the form of
voltage pulses called the action potential. The successive opening and closing of ionic
channels modulate the cell membrane voltage that is responsible for the transport of the
signal through a neuron. Due to the ionic origin of this process, typical timescales are of
the order of milliseconds. In the case of computers, the transport of data occurs through
the flow of electrical current, and hence, all operations are much faster in the order of
us or ns. Also, the action potential is highly sparse in time compared to how electrical

signals are transmitted in computers.

e Structural organization: Human brain has about 10'! units of neurons, and each of
them is connected to about 10,000 other neurons, on average, making the count for the
number of synapses to be of the order of 10'°. The largest neural networks of today have
a parameter count of less than 10'2, but the key difference lies in their organization. The
networks of neurons self-organize into patterns that are dynamic in nature. Formation of
new memories and forgetting is related to the strengthening and weakening of synaptic

connections [80].

* Precision: Because of the substrate and nature of the processing, the brain is inherently
noisy, and the information is propagated at low precision, which is very different from

the highly accurate precision of computers.

In 1981, Richard Feynman, Carver Mead, and John Hopfield taught a course at Caltech
called the "Physics of Computation” [81]. While John Hopfield went on to develop the Hopfield
networks, and Feynman contributed to the theoretical development of quantum computers,
Carver Mead, one of the pioneers of VLSI (Very Large Scale Integrated) circuits, initiated the
field of neuromorphic engineering [39, 82, 83].

The field of Neuromorphic computing or engineering aims to mimic the nervous system
(hence the term 'neuro'morphic) for performing efficient computations. At the outset, the goal
was twofold: to develop a biological system in silicon that would enable us to study the brain’s
biology and to advance the development of specialized, energy-efficient computers. Misha
Mahowald, a student of Carver Mead, developed the Silicon retina, which was an electronic
micro-power chip that could produce a binocular map of distance to objects in a visual field
[84, 85]. Scientific and engineering endeavors have proceeded along this line in the form of
emulating neurological components through silicon-based electronic circuitry. Many different
types of neuromorphic silicon circuits have been developed that have the ability to integrate
and fire like neurons and thus could be used for spiking neural networks [86]. Spiking neural
networks are a class of neural networks where the input is encoded in the form of spikes (either
their frequency or interval between spikes), and the neurons act typically as leaky integrate-

and-fire elements [87].

32 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

Another direction of research has emerged that takes a more top-down approach to neuro-
morphic computing that follows biology at a more architectural level and integrates the logic
and memory components. This non-von Neumann architecture falls under a specific type of
computing called in-memory computing or near-memory computing because of the proximity
of the memory and computing elements. This approach facilitates the hardware implementa-
tion of neural networks that can substantially reduce the energy inefficiency problems that are

inherent in conventional software-based implementations.

1.4 In-memorycomputing with emerging memory tech-

nologies

1.4.1 Filling the gap in memory hierarchy

We are at a point in time when Moore’s law is saturating; as transistors are scaled to lower di-
mensions, the problem of dissipation of heat and of growing leakage and variability hinder
the performance of traditional CMOS [88]. These are significant obstacles in the development
of hardware specialized for deep learning, in addition to the energy-related constraints men-
tioned earlier in this chapter.

The term in-memory computing is an umbrella term for numerous types of computations,
including applications such as reservoir computing, combinatorial optimization, etc. [89]. In
the context of this thesis, we are specifically looking into brain-inspired hardware implemen-
tation of non-spiking deep learning neural networks.

Broadly, there are two classes of memories that are associated with in-memory computing;
charge-based and resistance-based. The charge-based memories are already discussed in sec-
tion 1.1 and are the SRAM, DRAM, and Flash memories (shown in fig. 1.3). The physical process
underlying a state of memory is related to the presence or absence of charges.

Let us look at some metrics relevant to computing in these charge-based memories:

Type of memory Access speed (ns) Area (F?) Volatility
SRAM (cache) <5ns 140 Volatile
DRAM 50 ns 20 Volatile
Flash 20 us 4 Non-volatile
Hard drive 5ms <1 Non-volatile

In the above table, F denotes the minimum feature size of that type of memory, and F?
represents the associated area of a single unit.

We note that there is a gap of at least 2 orders of magnitude between the DRAM and Flash
memories, and this is where the resistance-based memories come into the picture. This emerg-

ing class of memories can bring the best of both worlds in terms of fast speed, low area over-

1.4 IN-MEMORY COMPUTING WITH EMERGING MEMORY TECHNOLOGIES 33

head, and non-volatility, all of which are essential requirements for the hardware implementa-

tion of deep learning.

1.4.2 Emerging memory technologies

Resistive memories, also called memristors (memory-resistors), are devices whose resistance
state depends on the history of electrical current and are non-volatile in nature. The possibility
of the existence of a fourth circuit element, the memristors (besides the resistor, capacitor, and
inductor), was theoretically proposed by Leon Chua from symmetry-based arguments in 1971
[91]. According to his vision, the memristance connects the magnetic flux and the electrical
charge and would have dimensions the same as the resistance. However, when actual physi-
cal systems started being identified as memristors, the involvement of the magnetic flux was
not apparent. In [92], the authors demonstrated that this memristance arises in nanoscopic
systems where the current-voltage characteristics show hysteresis.

The coming decades saw a rise in the research of such materials, and today there are four
main types of such resistive memory technologies: Filamentary/interfacial/resistive switching
materials (ReRAM or RRAM), Phase change materials (PCM), Spin-transfer torque magnetic
random access memory (MRAM), and Ferroelectric field effect transistors (FeFET) based on

Ferroelectric random access memory (FeRAM). Let us discuss these in more detail.

1.4.2.1 Resistive switching materials

These devices are typically metal-insulator-metal (MIM) heterostructures where the metal lay-
ers are called top and bottom electrodes (fig. 1.9 (a)), and the voltage pulse is applied between
them. The insulator is, in many cases, a non-stoichiometric oxide (HfOy, TiOy, TaOy). The non-
stoichiometry is related to the absence of oxygen atoms, called oxygen vacancies, and these
vacancies interact with the electric field in the dielectric to yield the memristive behavior. In
a virgin state, the stack has a high resistance, and to produce such behavior, initially, it needs
to be formed. This is done by applying a large electrical voltage that causes a soft electrical
breakdown to form a filament made up of oxygen vacancies.

Upon application of a positive voltage to the top electrode, the defects undergo field-induced
migration and diffusion to the lower electrode and start forming a conductive filament. And
when this filament connects the top and bottom electrodes, a SET transition occurs, and the
device goes to a low resistance state (LRS). If the polarity of the voltage is reversed, the op-
posite process starts happening; that is, the filament starts getting destroyed, and when this
connection is broken, a RESET transition happens to switch the device from the LRS to a high
resistance state (HRS). This is schematically shown in fig. 1.9 (a) and (b), where the first fig-
ure shows the formation of the conductive filament, and the second shows the current-voltage
(I-V) characteristics. The I-V graph shows a pinched hysteresis loop, which is a signature of

the filamentary switching phenomenon. Interfacial resistive switching has also been demon-

34 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

Current
.

(b) s

Top transition

electrode Vigset HRS N
Dielectric layer

Condut:tivey : Veer Voltage
filament ‘
Bonom Res} \ LRS
electrode transition

(d) Resis}ance

Crystallization Reset state

Top electrode \

Chalcogenide

layer fAmorphization
Active region

Bottom

electrode . Set state

Vin Voltage
Resistance
AP state
Free (f)
layer
Tunnel l
layer I P state
Pinned
I >
ayer Voltage
Polarization

(h) +P,
Top
electrode f
. 1 N
Ferroelectric
layer -V /¥ I[+V. Voltage
Bottom

electrode

Figure 1.9: Zoo of emerging memory devices. (a, b) Illustration and current-voltage character-
istic of a bipolar RRAM. The transition from HRS to LRS occurs with positive volt-
age due to the formation of a filament connecting the top and bottom electrodes.
Resetting the device to HRS occurs with a negative voltage, indicating disconnec-
tion of the voltage-induced filament. (c, d) Structure and resistance change of a
PCM device, where a voltage pulse causes a decrease in resistance through increased
crystallization and an increase in resistance above the melting-point voltage (Vm)
through increased amorphization. (e, f) MTJ and resistance-voltage characteristic
of an STT-MRAM, showing low and high resistance for parallel (P) and antiparallel
(AP) states, respectively, which can be achieved with positive and negative voltages.
(g, h) FeRAM structure and polarization-voltage hysteresis showing permanent po-
larization of the ferroelectric layer caused by electrical dipole orientation. A voltage
above the coercive voltage (V¢) results in positive remnant polarization (P;), and the
opposite for a negative voltage. (Adapted from [90]).

1.4 IN-MEMORY COMPUTING WITH EMERGING MEMORY TECHNOLOGIES 35

strated, where the vacancies get either attracted or repelled at the interface uniformly, leading
to the different resistance states [93].

An advantage of such a class of materials is that the technology for the fabrication is quite
mature, so it is easier and cheaper to produce. This technology is so developed at this point
that commercial microcontroller units are available based on them [94]. Some drawbacks are
that because the underlying physics relies on nanoionic mechanisms, the process can be noisy
and unreliable. The issue of noise is even worse for analog memories where intermediate re-
sistance states are utilized [95]. In the next chapter, we discuss and present our investigations
on this matter. Other disadvantages include typically low endurance, the necessity of the initial

forming step, and high inter-device variability.

1.4.2.2 Phase change materials

This type of material typically comprises a Chalcogenide (a compound with at least one Chalco-
gen element and a metal), the most widely used being Ge,SbyTes [96]. Applying a voltage
causes local Joule heating in these materials, changing the physical state from amorphous to
crystalline. Starting from a pristine state, which is amorphous, if a low voltage pulse (called the
SET pulse) is applied, there is Joule heating-induced crystallization. On the application of high
amplitude shorter voltage pulses (called the RESET pulse), the temperature in the material ex-
ceeds the melting point to cause local melting and consequently amorphization (fig. 1.9 (d))
[97]. In these materials, the crystalline state has much lower resistance owing to the large con-
centration of carriers, and the amorphous state has high resistance because of the Fermi-level
pinning at mid-gap [98].

The heterostructure of the PCM cell is shown in fig. 1.9 (c), where the bottom electrode is
connected to a tungsten plug with narrower dimensions to confine the current and heat, lead-
ing to a hemispherical shape of the molten or amorphous region. Since the mechanism for this
class of materials depends largely on the contact area and current, it scales well in the sense
that smaller devices consume less power [99]. PCM is more reliable than ReRAM,; it is usually
much less noisy and has a higher endurance as the LRS and HRS are linked to the crystalline
and amorphous states of the materials, which are thermodynamically stable. It is also techno-
logically mature, and ST Microelectronics has developed embedded memory cells with PCM
integrated with 28 nm FDSOI (fully-depleted silicon on insulator) transistors that can be used
for automotive microcontroller applications [100]. One of the biggest problems with this tech-
nology is that it suffers from resistance drift, which is the passive increase in resistance and
the threshold voltage most prominently seen in the HRS at room temperature. It is caused by
the thermally-activated structural relaxation process in which there are atom-level rearrange-
ments in the amorphous phase [101]. Also, the requirement of high voltage for the RESET leads
to high power consumption.

Although resistive switching mechanisms are very different for ReRAM and PCM, both excel
at certain categories. The OFF/ON ratio, which is the ratio of the resistances in the HRS and

36 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

LRS, is usually high, allowing for few programming errors and multi-level switching. Both of
them are considerably faster in switching time (~10 ns) and have better endurance than Flash

memories [90].

1.4.2.3 Magnetic random access memory

The building block of an MRAM cell is a magnetic tunnel junction (MT]), which is a spintronics-
based heterostructure with a thin insulator layer sandwiched between two ferromagnetic metal-
lic layers; the typical choices for the insulator are MgO and for the ferromagnet being CoFeB
[102]. As shown in fig. 1.9 (e), the magnetization of one of the layers is structurally fixed, called
the pinned layer or reference layer, while the other layer’s magnetization is free to change upon
programming, and is called the free layer. Thus, the two layers can have parallel (P) or an-
tiparallel (AP) magnetizations that define the LRS and HRS, respectively, due to the tunneling
magnetoresistance effect [103].

In the first generation of MRAMs, the orientation of the magnetization was switched by
the application of a magnetic field. Still, it had many problems, including the need to apply
a high current to generate the magnetic field. The spin transfer torque (STT) effect is used in
the second generation of MRAMs (also called STT-MRAM), in which a spin-polarized current
applies a torque on the magnetization of the free layer to change its orientation [104]. Fig. 1.9
(f) shows that if the layers are in the AP state, a positive voltage can {flip it to the P state by
the conservation of magnetic momentum, and the reverse polarity of voltage and current can
achieve the opposite. This alternative to field-induced switching uses a much lower power and
is more scalable.

MRAMs can exhibit a low switching time (~ns) or a high endurance (>10'), both of which
cannot be obtained simultanously for STT-MRAM and earlier technologies. Moreover, since
the principal mechanism is based on tunneling, the resistance is exponentially dependent on
the thickness of the barrier. Due to this dependence, it is crucial to achieving precision in the
fabrication process, and even small variations can significantly impact the performance of the
device. As aresult, the fabrication of such devices is more difficult than other types of memories
[105]. Thus, small differences in thickness can lead to substantial differences in performance.
Some of the main drawbacks of this technology are the small ON/OFF ratio, the existence of
only two resistance states, and the tradeoff between fast switching and reliability. Another fun-
damental problem is that the barrier height between the two states depends on the dimensions
of the MT]J. So if we scale it to a limit where the barrier height is comparable to the thermal en-
ergy at room temperature (about 26 meV), the device would be stochastic. Nevertheless, this
type of memory is also commercially available now in the form of both as standalone or as em-
bedded memory [106]. The third generation of MRAM is based on the spin-orbit torque (SOT)
mechanism for switching, in which the write current passes a heavy metal layer placed under-
neath the MT]J, and a torque induced by the spin-orbit coupling switches the state [107, 108].
Due to the fundamentally different mechanism for switching, SOT-MRAM is superior to STT-

1.5 HARDWARE-BASED NEURAL NETWORKS 37

MRAM in terms of write speed and can simultaneously achieve low switching speed and high

endurance at the cost of increased area [109].

1.4.2.4 Ferroelectric random access memory

The FeRAM is structurally similar to a DRAM where the dielectric of the capacitor is replaced
by a ferroelectric material such as PZT or doped HfO, [110]. The heterostructure is shown in
fig. 1.9 (g), and we see in fig. 1.9 (h) that a voltage sweep can change the polarization of the
material in a non-volatile manner. The polarization in a ferroelectric material is caused by the
alignment of its atomic dipoles, which can be oriented in one of two directions. When an elec-
tric field is applied to the material, it causes a change in the alignment of the dipoles, which
changes the polarization state. This change in polarization can be detected and used to store
information. Therefore, the FeERAM is in itself not a resistance-based non-volatile memory. To
read the two states as resistance values, a ferroelectric field effect transistor (FeFET) has to be
used where the ferroelectric is sandwiched between the source-drain conduction region of the
device and the gate electrode. The resistive switching effect is achieved by a change in the
dielectric polarization which changes the channel resistance. Also, the perovskite-based FeR-
AMs have a very high endurance (>10'*) owing to the very minimal internal structural change
during the switching process. Also, it requires much less power for operation compared to
conventional memory technologies like DRAM and Flash. However, it is a relatively new type
of technology and needs more research to overcome the following issues. There is significant
inter-device variability originating from the polycrystalline ferroelectric films, which becomes

worse with scaling, and the retention is reduced at higher temperatures [111].

1.5 Hardware-based neural networks

Due to the scalability, energy efficiency, speed, and endurance of these resistive technologies,
they are ideal candidates to be used as the neural network synaptic parameters in the context of
hardware implementation. Another common advantage of these four types of resistive mem-
ories is that they are compatible with the existing CMOS technology; they can be very easily
integrated with the back end of line (BEOL) of transistors. In the fabrication process of an inte-
grated circuit (IC), the transistors are first patterned on the semiconductor substrate. This part
is known as the front end of line (FEOL). After that, the electronic components need to be con-
nected with the wires of the wafer, and this happens in the next layer called BEOL, where several
layers of metal (usually copper or aluminum) and the in-between insulators are deposited to
form the stage contacts, interconnecting wires, and vias. The metal layers are named M1, M2,
... starting from the bottom, and the resistive memory device is usually fabricated between two
of such layers. This integration of the memory heterostructure within the metal layers is shown

in fig. 1.10 for the four types of memories discussed in the last section.

38 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

(@)

c d)

(
LA A

Transistor level 2um

(
I
/

)
| E v
wrw
Figure 1.10: Back end of line (BEOL) integration of resistive switching memories for RRAM (a),
PCM (b), MRAM (c), and FeRAM (d) (Adapted from [4, 112-114]).

1.5.1 Memory architectures

The memory devices need to be organized in the form of an array to store, read, and program
memory states. One possibility is to integrate them in the form of a crossbar architecture, where
the simplest arrangement (called the 1R configuration) consists of a single resistor in a memory
cell arranged in a matrix. Two orthogonal lines overlap in this structure, and a memory device is
present at each intersection. Thus, the two lines are connected to the two ends of each resistor
and are called the bitline (BL) and the word line (WL), and because of the absence of any access
transistor, cell size can be theoretically as small as possible, that is, 4 F2.

However, a major issue with this architecture is the presence of sneak paths: to program
a particular device, a voltage needs to be applied across its corresponding BL and WL. To do
so, the WL for that device is set to the programming voltage (for the SET process) while the
corresponding BL is grounded, and the voltage of half the programming voltage is applied to
all the other lines. As a consequence, there are some cells, called half-selected cells, in the
same row and column as the selected device, which receive half the programming voltage, and
a current flows through these sneak paths, leading to wastage of energy [115].

Another type of architecture that can be used to mitigate this is the 1T1R (1 transistor 1
resistor) grid architecture, where each memory cell has co-located transistor and memory. As
shown in fig. 1.11 (d), the non-volatile memory is integrated with a transistor (typically in the
BEOL as shown in fig. 1.10) where the BL connects to one end of the resistor, the WL to the gate

of the transistor, and the source line (SL) to the source side of the transistor. These transistors

1.5 HARDWARE-BASED NEURAL NETWORKS 39

are known as access transistors as turning them on or off leads to the access or selection of a
particular memory cell. Fig. 1.11 (a), (b), and (c) show how the SET, RESET, and read are done
for a bipolar switching resistive device. To access the selected cell (shown in the pink box) in the
figure, a voltage is applied at the WL to turn on the access transistor in the selected cell. For the
SET process, simultaneously, a voltage is applied to the BL of that cell (for RESET, the voltage is
applied at the SL), and all the other lines are kept grounded. This way, during programming, the
cells which are required to be written are only accessed. Similar to the programming, the read
is done by applying a low voltage at the BL and measuring the output using a sense amplifier.

Even this architecture is not without its demerits, as switching memory devices requires a
certain magnitude of current, and the dimensions of the connected transistor limit that. Thus,
larger transistors are typically needed, which take up more area and are costlier to fabricate
[18].

A more compact architecture has been proposed that includes a selector element con-
nected in series with the memory called the 1S1R configuration (fig 1.11 (e)). The selector unit,
in this case, is a type of diode that, by default, doesn't allow current to flow through it below
a certain voltage difference. Thus, the previously half-selected cells would still have no sneak
paths through them. A key challenge is that a conventional diode would only work for unipo-
lar switching, typically only found in phase change memories [116], and newer technologies
involving bipolar diodes need to be developed. Companies like Micron and Intel have made
significant progress on this front, and they even have commercially available products employ-

ing this configuration [117, 118].

1.5.2 Neural network dedicated hardware

The training and inference of modern neural networks are typically done in data centers that
employ conventional computers with multiple GPUs. Because the computations usually are
not optimized for the specific type of calculations and information access, the energy con-
sumptions can reach exceedingly high values [78]. There has been development in terms of
hardware dedicated to deep learning applications. For example, Google has developed its very
own ASIC (Application Specific Integrated Circuit) called Tensor Processing Unit (TPU). Ten-
sors are a generalization of matrices in higher dimensions, and in deep learning, the data has
more than two dimensions (e.g. in convolutional networks, the input has a dimension for
height, width, channels, and batch). TPUs offer a more natural way of computing with such
high-dimensional units and, although based on DRAMs, can provide a considerable amount of
energy efficiency [58].

It is important to note that these factors are primarily taken into account in cloud com-
puting, where performance quality takes precedence over other attributes such as power con-
sumption and speed. Hence, these solutions may not be suitable for low-power embedded
applications, where Microcontroller units (MCUs) are not powerful enough to train neural net-

works. Microcontroller units (MCUSs) are purpose-specific computers with small memory and

40 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

Vser VReseT

o Tl 0 ofl} o

I AR Y
. i

Selecteld Cell Selected Cell
(a) St BL (b) st BL T

VRFA[)

0 00 I
WL

0

il

Selecteld Cell

=
GRISIES

Ty
(c) = sL B

L

RAM or PCM

o o % P
Al

¥
N . =
}5__\:) | E/ B ector

(€)

Figure 1.11: Memory architectures. (a) the SET, (b) the RESET, and the (c) Read operations in a
1T1R configuration. A particular cell is selected by applying voltages at the WL, the
BL for SET (or SL for RESET), and the other lines grounded. The access transistor
allows only the selected cell to be written to prohibit sneak paths. The read is done
similarly to the SET with a much lower voltage and the output being read by a sense
amplifier circuit. (d) The device-transistors integration is shown explicitly where
the WL and SL are connected to the gate and the source of the transistor, respec-
tively, and the BL to one end of the resistor. (e) The 1S1R configuration showing
the series connection of the memristors with the selector element. (Adapted from
[18])

are not powerful enough to train neural networks. However, they can support inference of
some networks. In [119], an MCU was used to run a compressed network where SRAM and

Flash memories were used to store the data and parameters respectively, and it could reach

1.5 HARDWARE-BASED NEURAL NETWORKS 41

more than 70% top-1 accuracy on the ImageNet dataset with a power budget of the order of a
couple of Watts.

However, even such energy efficiency is not sufficient for extreme edge computing appli-
cations. In extreme edge computing, data processing, and analysis are performed on the edge
devices with an ultra-low power budget. Such devices are located near the data source or the
end-user, and this allows for faster processing and reduced latency, which is particularly impor-
tant for applications that require real-time processing, like IoT devices. In this context, neural
networks implemented using emerging memory devices in crossbar architectures show great
promise for Al-based extreme edge computing applications, owing to their low-energy, low-
area, fast, and in-memory computing-compatible nature.

Typically in this type of implementation, the memory devices are arranged in the form of an
array together with access transistors. Such matrices of analog non-volatile memories are very
suitable for implementing neural networks since, by virtue of Ohm’s law and Kirchoft’s law, they
can naturally implement the multiply and accumulate operation of a single layer. This idea is
illustrated in fig. 1.12: the input is applied to the WL of the crossbar in the form of voltages. At
the intersection of the i WL and j™ BL, there is a resistive memory with a certain conductance
Gij, and by Ohm’s law, the current through it simply given by I = V;G;;. At the BL, Kirchoff’s
current law accumulates the current from all the WLs as I; = }; V;G;;. Infig. 1.12 (a), the role
played by the voltage V;, conductance G;j, and the output current I; is analogous to the neu-
ral network layer shown in fig. 1.12 (b) in terms of the input x;, synaptic weight W;; and the
preactivation z;. The non-linear function needs to be applied using some other devices or cir-
cuitry. Another caveat of this approach is that a single conductance can only encode a positive
value, whereas the weights of a neural network can have any sign. To circumvent this, a differ-
ential conductance pair of Glf“j and Gi_j is used to represent a single weight W;;, and the final
measured current is the difference between the current from the positive and negative arms
(as shown in fig. 1.12 (c)), allowing for an effective negative contribution from the conductance
pair unit.

There have been several demonstrations of this idea with different forms of novel non-
volatile memories. ReRAMs with oxide-based resistive elements have been used to train per-
ceptrons [120]. Orders of magnitude reduction in power consumption compared to conven-
tional computers were reported on a face classification task using ReRAM [121]. Another study
was able to implement a HfOy-based neural network capable of in-situ training to learn a com-
pact version of the MNIST dataset to get an accuracy close to the software baseline [122]. In
another work, a hybrid training algorithm was utilized to implement a convolutional neural
network for the MNIST task which reported an energy efficiency of more than two orders of
magnitude while achieving software-comparable accuracies [123].

Phase change memories have been also explored for such realizations, although the num-
ber of scientific articles has been less in number. A mixed-precision in-memory approach was

used to solve a set of 5,000 linear equations accurately using PCRAM [124]. Another work uti-

42 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

lized a mixed hardware-software implementation to achieve test accuracies for MNIST, MNIST-
backrand, CIFAR-10, and CIFAR-100 datasets equivalent to software and showed that such re-
alization could be done faster and with much less energy than GPUs [125]. Recently, a new
approach has emerged for implementing in-memory neural networks. This approach utilizes a
crossbar array of MRAM, with a resistance summation scheme employed for the accumulation
process. This scheme addresses the issue of high energy consumption caused by low resistance
of MRAMs during the MAC operation [126].

V; Ohm’s law:
=] = ViGyj
(a) / U
v, & Memory cell
-—)
=
WL
BL .
-—)
= Kirchoff’s law:
3 lj= z ViGij
i

11 g

Figure 1.12: Mapping a neural network to a matrix of non-volatile analog memories. (a, b) If the
inputs of the layer are applied as voltages at the WL, and the outputs are measured
as currents in the BL, then the conductances of the memory cells play the role of
the synaptic weights by virtue of Ohm'’s law and Kirchoff’s current law. (c) The dif-
ferential conductance pair is used to allow for both positive and negative values of
the weight.

While the technologies employed in the aforementioned studies show great promise for
enabling low-power and fast neural network implementation, it is worth noting that they were
predominantly symmetric, substantially linear, and had limited variability. The robustness of
these studies to different types of variabilities has not been illustrated convincingly. Since the
matrix multiplication is done directly with analog weights, the noise in the memory can sig-
nificantly impact the networks’ performance. This is most prominent in filamentary switch-
ing memory devices as the variation of the resistance depends on nanoscopic physics, which

is very sensitive to atomic fluctuations [127, 128]. With phase change memories, the resis-

1.6 CHALLENGES IN LEARNING: IMPERFECTIONS IN RESISTIVE MEMORIES 43

tance drift phenomenon can potentially erase a programmed neural network over time [101].
Also, unlike in software, the conductances/resistances need to be updated by the application of
voltage, and for these classes of materials, the I-V characteristics can be highly non-linear and
asymmetric, making it more difficult to map networks reliably. The device-to-device variability
of the memristors is another crucial impediment in this regard. The HRS tends to show a wide
distribution of states, making it complicated to program devices reliably. Also, since the com-
putations are based on the flow of current, the IR drops caused by the current flowing through
the connecting wires can change the calculation of activation values.

It is imperative to mention at this point the difference between inference and training hard-
ware. In inference hardware, the training is done offline, which means in software. The trained
weight values are then transferred to hardware by programming the devices to the intended
resistance values. This is suitable for applications where no further online training is needed
after the deployment of the model. However, in scenarios where training has to occur on-chip,
specialized training hardware needs to be used. The major difference in training hardware is
that the updates need to be calculated and applied to the weights, apart from doing the feed-
forward calculations for inference. The distinction between the two different types of hardware
is done here to emphasize that they suffer from different aspects of imperfections, which shall

be discussed in the next section.

1.6 Challengesinlearning: imperfections in resistive mem-
ories

In this section, we will provide a detailed review of the imperfections that are inherent in emerg-
ing resistance-based memories. Moreover, we will analyze their significance in the context of
the hardware implementation of neural networks. Firstly, we discuss non-linearity and asymmetry-
related issues, which specifically pose difficulty to training hardware since updates to resis-
tances are involved. The inference process is usually immune to this sort of imperfection. Then,

we discuss intra and inter-device variabilities which plague both kinds of hardware.

1.6.1 Non-linearity and asymmetry

The resistive switching phenomenon is related to different types of physical changes in mate-
rials; the presence or absence of oxygen vacancy filaments in the case of ReRAM materials, the
ordered or disordered state in a PCM, the relative magnetization of MTJs in MRAM, and the
dielectric polarization in FeRAMs. All of these have vastly different physical origins, as are the
mechanisms that facilitate conduction, or the lack thereof.

For the purpose of this thesis, we mainly focus on filamentary switching-based materi-
als. In this class of materials, the switching occurs through the formation and dissolution of

the oxygen vacancy-based conducting filament. However, the exact details of the underlying

44 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

mechanisms are not entirely elucidated. Particularly in the HRS, when the filament does not
connect the top and bottom electrodes, the conduction happens via quantum mechanical tun-
neling [129]. This type of transport mechanism is highly non-linear in terms of voltage, which
is apparent if we observe the current-voltage(I-V) characteristics of the oxide-based resistive
memories. In fig. 1.13 (a), (b), and (c), the I-V plots for HfOy, TiOy, and TaOy are shown respec-
tively, and the non-linearity is quite evident in both the LRS and HRS.

The SET and RESET processes in such memristors occur through the filaments’ formation
and dissolution, which are separate processes. The SET transition is usually controlled by a
compliance current which defines the resistance of the LRS and, internally, the thickness of
the conducting filament. On the other hand, the RESET process happens by the destruction of
this filament by the dissolution of oxygen vacancies, which has different kinetics than the SET.
Thus, we see an asymmetry in the SET and RESET processes; they might happen at different
positive and negative voltages (like in fig. 1.13 (c)). Also, the stability of the two states can
be very different. The HRS is usually noisier than the LRS, and it is notoriously difficult to
understand the physical origin of this noise. Even for PCM, the resistance drift effect is also
more pronounced in the HRS (RESET state), as shown in fig. 1.13 (e).

These kinds of imperfections can have a significant impact on programming memory de-
vices as synaptic parameters in a neural network. In software, the weight values are directly up-
dated by AW, but a voltage needs to be applied to change the device resistance/conductances
in hardware. And since the response of the resistance to the applied voltage is non-linear, the
updates cannot be applied precisely in a simple manner. The asymmetry of the two states also
makes learning or programming very difficult since the variation of resistance is not the same
for positive and negative voltage pulses. This can be seen in fig. 1.13 (d), where the conductance
is alternately increased (potentiated) and decreased (inhibited) by the application of positive
and negative voltage pulses. The potentiation shows a much abrupt increase, then saturation,

while the inhibition happens progressively.

1.6.2 Intra-device and inter-device variability

Variability is another type of imperfection that is commonly found in oxide-based memristors.
It is chiefly of two types: intra-device and inter-device. The former is linked to the variations in
a single device, whereas the latter concerns the variability among different devices.

The intra-device variability again can be of two types; it can be the noise in the resistance
state when we are reading the current over a period of time, or it can be a cycle-to-cycle type
of variability where if the device is subjected to the same voltage pattern (be it a voltage sweep
or a SET), the output responses differ over the different cycles. Fig. 1.14 (a) and (b) show the
read current when a voltage of 10 mV is applied as a function of time. Depending upon the
number of defects and the impact of fluctuation of charge near the filament, different types of
noises can be observed in such devices. Here, fig. 1.14 (a) shows pink noise, which has a power

spectrum that varies inversely with the frequency, and fig. 1.14 (b) shows Random Telegraphic

1.6 CHALLENGES IN LEARNING: IMPERFECTIONS IN RESISTIVE MEMORIES 45

HfO, Tio, TaO,

@) 150u 7

—
O
~
—
(g
~

: Current (A)
Current (A)
3 3
2
m
(2}
m
)—(
-
A
1]
AS
(2]
m
-
| Current | (A)
=)
IS

Voltage (V)
5 2 HRS 10°
10° 10°
10% 107
1504 4 3 2 1 0 1 2 3 4 10 05 00 05 10 15
Voltage (V) Voltage (V)
d e
0.8 —+— Simulation data :- ._....lllll. 3
E 10°k -
o ol ’ ! ! g F
g 0.6 $ § [®m RESET state 1
£os S10F | @ SETstate E
304 g f]
503 0E 3
002 [0 00800000 O0OCOGOIOOOGOEOTS]
“o 200 400 600 800 S I IR RN
Pulse Number 10° 10’ 10° 10° 10°

Time [s]

Figure 1.13: Non-linear and asymmetric behavior in resistive memories. (a)HfOx-based,
(b)TiOx-based, and (c)TaOx-based resistive memories’ current-voltage character-
istics showing non-linearity in both LRS and HRS and asymmetry in SET-RESET
transitions [130-132]. (d) Potentiation and inhibition characterization with posi-
tive and negative voltage pulses exhibiting asymmetry of the two different transi-
tions [132]. (e) The PCM resistance drift effect is more pronounced in the HRS than
in the LRS [133].

Noise (RTN) [134], which are sudden jumps between two discreet resistance states.

Fig. 1.14 (c) shows that the voltage sweeps over a device do not always yield the same IV
trace, and even the switching voltages can be very different in different cycles [135]. The com-
pliance current (also called SET current or Isg7) is the fixed current to which a device is sub-
jected in the SET operation, and this is the parameter that defines the LRS. In fig. 1.14 (d),
we see that when a single device is SET to LRS with different SET currents, the device is not
programmed to the same conductance value each time. Rather, the LRS has a Gaussian distri-
bution whose mean and standard deviations are coupled and depend on Isgr [136].

The inter-device variability or the device-to-device variability refers to variation in-between
different devices. A point to be emphasized here is that this variation is not because of fabrication-
related variabilities and is due to the intrinsic nanoscopic nature of the switching mechanism.
Fig. 1.14 (e) and (f) show the distribution of the conductance and resistance states for the LRS
and HRS, respectively, over different devices. The earlier figure illustrates the Gaussian nature

and SET current dependence of the LRS, which is similar to the cycle-to-cycle variation. On the

46 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

I
[{e]
5
(&)}

T

t [s]

0.10 |SET= 160IJA

0.08 lseT = 85UA

lser = 42[JA .

Current (A)
Probability
o
o
(2]

2 A4 0 1 2 3 U0 25 50 75 100 125
Applied Voltage (V) Conductance (uS)

w
o

0.6 - - Measurement
- =+ Experimental - Normal fit ——Model

N
wn
T

n
o
T

Log (Ryrs)
p=213
0=0.96

Probability density
S o

(€)

v
T

o

"0 25 50 75 100 125 150 20 21 22 23 24
Conductance [uS] Resistance

Figure 1.14: Intra-device and inter-device variability, (a) and (b) demonstrates the different
types of noise (pink and RTN) that can be present in the same device when the
current of the device is read at a constant voltage of 10 mV over a period of time (c)
Cycle-to-cycle variability in the I-V characteristics of oxide memristors; 100 volt-
age sweeps exhibit different responses in the current. (d) Distribution of the LRS
for different SET programming conditions, in particular, the Isgr. (e) and (f) the
inter-device variability in the LRS and HRS, showing a Gaussian and log-normal
distribution, respectively. The mean conductance of the LRS can be modulated by
the Isg7 current (Adapted from [134-138]).

other hand, the later figure shows a log-normal distribution for the HRS [137, 138].

The intra-device and inter-device variabilities are significant challenges for realizing hardware-
based neural networks. This is because all traditional deep learning algorithms rely on uniform,
highly precise operations, and the presence of noise or device-to-device variability is contra-
dictory to that.

On top of all these, there are circuit-related constraints as well. For example, in an IC array,

there are resource constraints limiting the total number of inputs or the noisy behavior of cer-

1.6 CHALLENGES IN LEARNING: IMPERFECTIONS IN RESISTIVE MEMORIES 47

tain elements under low-power conditions. The conventional deep learning algorithms do not
work perfectly with such constraints, and there is a need to rethink our algorithms, redesign
our circuits, and reoptimize our devices so that they work in tandem with our coveted goal of
the hardware implementation of deep learning.

In this thesis, chapter 2 focuses on the implementation of learning in the weak RESET
regime of HfOx-based filamentary resistive RAM using binarized neural networks. The memory
technology is introduced, and its co-integration with CMOS is discussed, along with the signif-
icance of the weak RESET regime that enhances the endurance of such memory devices, a cru-
cial parameter for on-chip learning. Then a physics-based model for the resistance evolution is
developed, taking into account different types of variabilities, and is fitted to the experiments.
This device model is then incorporated within the PyTorch framework to simulate learning with
these devices. The simulations are done to learn the MNIST and CIFAR-10 datasets, and the
test accuracies exemplify the robustness of this approach to different types of imperfections.
To summarize, this chapter highlights the potential to generalize this approach for simulating
other memory technologies and emphasizes the importance of studying the impact of imper-
fections on its performance.

Chapter 3 discusses the inference in binarized neural networks and its constraints from
circuit-level implementation. First, we introduce the general ideas related to the circuit-based
implementation of binarized neural networks and highlight the significant sources of imperfec-
tions originating from electronic circuits and memories. Then we present two different studies
based on the circuit-level realization of binarized neural networks. For the first study, we detail
the circuit used to implement inference in binarized neural networks, the sources, and analy-
ses of the errors. Those errors are then incorporated into neural network inference simulations,
and the resilience of the prediction accuracy to such errors is investigated using the MNIST and
CIFAR-10 datasets. The next part presents the second study, which follows a similar structure
to the first. In this work, an approach is proposed and demonstrated to circumvent array-size-
related constraints at the cost of a slight degradation in accuracy. A significant source of errors
in this circuit is due to the unreliable solar cell that supplies power to it. Finally, the experi-
mentally characterized error is used in neural network simulations to demonstrate that bina-
rized neural networks exhibit robust computation even under an irregular power supply. This
chapter highlights the suitability of binarized neural networks for inference, even with different
levels of imperfection and constraints, which are especially promising for edge applications.

Chapter 4 introduces a novel approach to computing that leverages the imperfection of
emerging memories. Specifically, the focus is on Bayesian Binary Neural Networks, which are
the probabilistic analog of binary neural networks. The chapter begins by reviewing the theory
behind probability-based computing and some recent work on probability-based computing
with emerging memory devices. The theory of Bayesian Binary Neural Networks is then intro-
duced, with a focus on its differences from its deterministic analog. The concept of quantifying

uncertainty is also introduced, as it is one of the main advantages of using Bayesian Neural

48 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

Networks. A toy example, the two moons dataset, is used to demonstrate the advantages of
this type of neural network. This is followed by an actual medical task, the MIT-BIH dataset for
arrhythmia detection, where the benefits of the Bayesian Binary Neural Network over the con-
ventional network are showcased. Finally, spintronics-based physical systems that could be

used for realizing this deep learning algorithm are discussed, and results related to performing

inference are presented.

Chapter 2

Learning with imperfect Resistive RAM

With four parameters, I can fit an elephant, with

five, I can make him wiggle his trunk.

John von NEUMANN

50 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

THE IMPLEMENTATION of current deep learning training algorithms is power-hungry, ow-
ing to data transfer between memory and logic units. Oxide-based resistive memories
(ReRAMs) are outstanding candidates for implementing in-memory computing, which is less
power-intensive. Their weak RESET regime is particularly attractive for learning, as it allows
tuning the resistance of the devices with remarkable endurance. However, the resistive change
behavior in this regime suffers from many fluctuations and is particularly challenging to model,
especially in a way compatible with tools used for simulating deep learning. In this work,
we present a model of the weak RESET process in hafnium oxide ReRAM and integrate this
model within the PyTorch deep learning framework. Validated on experiments on a hybrid
CMOS/ReRAM technology, our model reproduces both the noisy progressive behavior and the
device-to-device (D2D) variability. We use this tool to train Binarized Neural Networks for the
MNIST handwritten digit recognition and CIFAR-10 object classification tasks. We simulate our
model with and without various aspects of device imperfections to understand their impact on
the training process. The framework can be used in the same manner for other types of mem-
ories to identify the device imperfections that cause the most degradation, which can, in turn,
be used to optimize the devices to reduce the impact of these imperfections. This chapter is
adapted from a publication in the journal IEEE Transactions on Electron Devices by the author
of this thesis [4]. The experimental characterizations were done at Aix-Marseille University by

Pr. Marc Bocquet.

2.1 Background

The advance of machine learning algorithms holds remarkable prospects in terms of benefits
to society [139]. However, as extensively discussed in the previous chapter, this progress comes
at the cost of a considerable energy budget [140]. The bulk of this energy consumption is at-
tributed to the shuttling of information between the memory and logic units of the computing
system [141], a bottleneck that the use of in-memory computing can circumvent. For such de-
signs, oxide-based ReRAMs, or memristors, are a major breakthrough. Their fast, low-power,
non-volatile switching and full compatibility with the CMOS process lend quite well towards
the realization of energy-efficient, adaptable synaptic weights [142, 143]. Unfortunately, owing
to their dependence on the nanometer-scale physics of atoms and ions, oxide-based ReRAMs
are usually very difficult to model accurately, which is a challenge for designing in-memory
neural networks.

Oxide-based ReRAM devices switch through the formation and dissolution of conductive
filaments of oxygen vacancies (fig. 2.1(a)). They function based on a combination of trans-
port, thermal, and electrochemical effects; a multiplicity of mechanisms of atomic movement
can coexist within the same device, giving rise to different regimes, depending on the state of
the device and bias conditions [144]. Additionally, the devices exhibit fluctuations that resist

simple modeling [127, 128]. In recent years, considerable progress has been made in model-

2.1 BACKGROUND 51

ing these devices in the regimes relevant for embedded and standalone memory applications
[144-148]. On the other hand, a programming regime known as weak RESET (programmed
with a low voltage)[149, 150] remains vastly unexplored, as this regime, presenting exacerbated
fluctuations, has no usage for conventional memory applications. Remarkably, recent works
suggest that this regime might be extremely useful for artificial intelligence (Al) and neuromor-
phic applications, allowing such systems to do learning using little power and area [150, 151].
Although studies about low voltage switching[152], device models[153], and noise[154, 155]
have been carried out in the past, a comprehensive study integrating all these aspects has not
been done. To investigate this lead convincingly and design systems, an accurate model of the
weak RESET process is needed. Additionally, the model needs to be compatible with the very
specific frameworks used for designing neural networks (PyTorch, TensorFlow, etc.), optimized
for operating on graphics processing units (GPUs) and to perform automatic differentiation
and were not designed to include device effects such as noise and variability [70, 156].

In this work, we propose an efficient analytical behavioral model for the weak RESET regime
of HfOx-based ReRAM, including device fluctuations, and implement it within a deep-learning
framework to model synaptic parameters. We provide and validate this model with exten-
sive measurements, using multiple statistical quantities, on a hybrid HfOy ReRAM/CMOS inte-
grated circuit.

This device model is specifically optimized for integration within deep learning frame-
works. This feature allows us to investigate the behavior of such devices in the context of
neural network training. We implement this model within PyTorch, a deep-learning frame-
work, by adapting the optimizer. We present simulation results of binarized neural network
(BNN), a quantized form of more traditional neural networks for which the weak RESET regime
of ReRAMs is particularly attractive, using fully connected and convolutional architecture for
MNIST and CIFAR-10 tasks, respectively. Finally, using these simulations, we study the impact

of device imperfections on network performance.

52 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

s o I e g

twaﬂp l
HID: —
RESET
s ook el e
Electric field —)
O
Ny o -
=0 =0
Oxygen o Oxygen Lattice oxygen

after
recombination

4= Motion { \ Recombination
AWmean >0

(@)

vacancy ion

AWRTN / AWpink

PRI T T T T (N TR TN T N T T T S A |

PRI I B

0

(c)

Figure 2.1: (a) llustration of the progressive dissolution of the conducting filament by recom-
bining oxygen ions and vacancies under the influence of consecutive RESET pulses.
Also, the increment (AWpeaqn) and fluctuation terms (AWrrN/AWy;nk) of our de-
vice model (described in Section 2.3) are shown schematically. (b) SEM image of
an HfOx-based ReRAM device integrated into the BEOL of our technology. (c) Pro-
gressive evolution of the resistance of two measured devices with consecutive weak
RESET pulses of amplitude 1 V and writing time of 0.1 us.

1 l 1 11 I 1 1 I 1 11 I
4000 6000 8000 10000

Pulse number t

2000

2.2 HAFNIUM OXIDE RERAM TECHNOLOGY 53

2.2 Hafnium Oxide ReRAM Technology

2.2.1 The technology

For this work, we rely on measurements of a hafnium oxide (HfO4)-based OxRAM technology.
The memory stack has a TiN/HfOx(10 nm)/Ti(10 nm)/TiN composition where the TiN layers
serve as the electrodes [157]. Our nanodevices are integrated within the back-end-of-line of a
130 nm commercial CMOS process, between metal levels four and five, as shown in fig. 2.1(b).
Such integration of logic and memory facilitates the implementation of energy-efficient in-
memory computing. Each memory device is associated with an NMOSFET, allowing precise
control of the programming conditions, such as the compliance current, which enables the
formation of the conducting filaments [145]. After an initial electroforming step, the device
can switch between low-resistance (LRS) and high-resistance states (HRS) depending on the
polarity of the applied voltage pulses. The switching between LRS and HRS is attributed to
the gradual formation and dissolution of the conductive oxygen-vacancy filaments within the

oxide.

2.2.2 Weak RESET regime

The weak RESET regime is stimulated by applying low voltage negative pulses, and pulse times
are shorter than traditional RESET. It makes the switching smoother, which enables the finer
tuning of resistance at the cost of a reduced HRS/LRS ratio. Measurements in fig. 2.1(c) show
that repeated 1 V weak RESET pulses lead to a progressive increase in the cell resistance, albeit
in a noisy manner. In this Figure, the resistance is read at a very low voltage (0.1 V) after each
weak RESET pulse so that a very low read current flows through the device, and, therefore,
there is no read disturb effect. We choose the weak RESET regime of operation to achieve high
endurance in our devices. This is essential for learning tasks, as individual devices are required
to be programmed reliably for many cycles. Fig. 2.2 shows the outstanding endurance of two
complementary devices, each with resistances Rp; and Ry, that are programmed in the weak
RESET, for more than 10'° cycles. This is orders of magnitude more than when devices are used
with traditional higher-voltage RESET [157], and orders of magnitude more of what is needed
for practical learning tasks (e.g., 10* cycles for the CIFAR-10 object recognition task).

However, the resistance increase due to the weak RESET seen in fig. 2.1(c) is particularly
noisy and in a way that appears non-trivial. Cells in the weak RESET regime are, therefore,
reminiscent of biological synapses, which also modulate their conductivity (weight) during
the learning process in a way that is often believed to be noisy [158]. Recently, it has been
shown that ReRAM cells in weak RESET could indeed be used to do learning for a type of neu-
ral network called binarized neural networks (BNNs), which are more resilient to noise and less

energy-consuming than analog neural networks [150, 151].

54 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

: T IIIIIIII T IIIIIII| T IIIIIII| T IIIIIIII T IIIIIII| L} IIIIIIII T llllllt
10 1 10
— 05f 1 =
3 -] 3
o 0.0 F -+ prog 0 J10 a
~ 171 p m
2 [prog 'l] ~
& 0.5 F . I~
@ .
o C]
-1.0F 10.1
—-1.5 IR B RTTT! R SEAT I TT] S AN T R SR T ET] B S wl S WA TT] S:
104 10° 10° 107 108 10° 1010 101!

Cycles (-)

Figure 2.2: Endurance measurement on two complementary devices programmed with weak
RESET pulses of width 1 ps and SET compliance current of 200 pA: median value
of log resistance ratio (Rpr/Rpyp), extracted over 10k rounds for measurement of a
pair of devices over 5 x 10'° cycles.

2.3 Device Characterization and Modeling

2.3.1 Tunneling gap-based model

In this section, we introduce our device model for resistance in the weak RESET regime. To
model the weak RESET behavior, we take the established approach of using the tunneling gap
between the partially dissolved oxygen-vacancy filament and the electrode (fig. 2.1(a)), wgap
as the state parameter [145, 146]. For practical purpose, we use the dimensionless quantity v,
defined as

W= Wgap! Wo, 2.1

where wy is a length scale associated with the standard size of the filament. Owing to its quan-

tum mechanical origin, the resistance of the device associated with the tunneling gap i is
R(i) = Ryexp(w), 2.2)

where Ry is the resistance of the device in LRS, i.e, when the tunneling gap is zero. The model
does not include filament diameter, which appears to have a second-order effect during the
weak RESET process. The variations in the tunneling gap i give rise to its progressive RESET
behavior. It also leads to noise which is a consequence of invasive biasing and is not related to
the read noise [159]. Fig. 2.3(a) shows an example of i extracted from measurements, showing

both its increasing trend and its noise when successive weak RESET pulses are applied.

2.3 DEVICE CHARACTERIZATION AND MODELING 55

0.0F —— Piecewise linear fit N
TPITY EEPEFEEYIIY S U S
10 10 10

Inv. pulse number f

. 1 1 1 | L | —3lul
0 1000 2000 3000 4000 5000 6000 10
(@) Pulse number t (b)

Figure 2.3: (a) Piecewise linear fit of the mean model to the 0 of a device (different than
fig. 2.1(c)). The parameters m;, t*, c; and my are extracted from this fit. (b) Power
spectral density of i averaged over 64 devices showing the presence of a (1/f?)
trend for low frequencies and a pink-noise like (1/f) response for higher frequen-
cies.

2.3.2 Mean model

We observe in our devices (fig. 2.3) the existence of two regimes for our quantity of interest
iw; the initial more progressive increase and the subsequent noisier and less monotonic parts.
Hence, in our model, the stable, background contribution, @,,.4, is described by a piecewise
linear model as a function of the pulse number ¢, parameterized by the device-dependent pa-

rameters my, c1, t* and m; as

Mean model equation

_ myt+c r<t*
Wmean = (2.3)
mot+(my—mp)t*+cy t=t*

The first regime (¢ < t*), where the increase of resistance is steeper and less noisy, is physi-
cally related to conditions where the heating due to the Joule effect is more pronounced, com-
pared to the later one (¢ = t*), where the resistance of the device is higher. Under this condition,

the resistance increase is much less monotonic and prone to more noise.

2.3.3 Noise components

We first compute the power spectral density (PSD) of i extracted from measurements to char-
acterize the fluctuations in the value of the resistance. As shown in fig. 2.3(b), the PSD averaged
over 64 devices exhibits both a 1/f? and a 1/ f contribution. The 1/ f? part is consistent with
the Random Telegraph Noise (RTN) that we find in our devices (fig. 2.3(a)) [160]. On the other
hand, the 1/ f dependence indicates the existence of pink noise. Both types of noise are re-
lated to the switching process and are independent of the passive noise we would get during

read-out only. In our model, we capture these two types of noise by the quantities i, and

WRTN-

56 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

2.3.3.1 RIN

RTN can be found in the second regime of the mean model (fig. 2.3(a)) and is attributed to the
perturbations related to the creation and destruction of oxygen vacancies in non-stoichiometric

hafnium oxide [159]. The RTN component (ivgry) is modeled as a two-state Markov process

Simulation of RTN

WrTN = aX, (2.4)

where X is a random variable taking a value of zero or one depending upon the re-
sistive contribution from the fluctuations of the vacancies, and a is the amplitude of the
resistance jumps [161]. The probabilities of switching from zero to one and vice-versa are
given by Pp;gp and Pjoy, which are asymmetric. Hence, the transition matrix T, of the

Markov process is defined as T12 = Ppjgn and T21 = Pjoy.

2.3.3.2 Pinknoise

On the other hand, the pink noise might be related to the dynamically changing defect states
in the oxide [162]. It is modeled using an approach where the values can be sequentially gen-
erated, which is more suitable for the GPU-based implementation expected for deep learning

frameworks [163]. In this method, the pink noise is generated in the following manner.

2.3.3.3 Sequential generation of pink noise

Simulation of pink noise

Firstly, pole number of white Gaussian random numbers, w, (r = 0,1, ..., pole) are gen-

erated. These values are then passed through a low-pass FIR filter with coefficients (b;,),
which are the impulse response values so that the generated noise is pink in its PSD. Thus,
mathematically the pink noise component is described by
pole
i}plnk = Z brwr, (2'5)
r=0

where « is a scaling factor.

Since we are simulating the update of the state variable v for each device, the number of
pulses applied to them can vary. Hence, we need this method to generate new pink noise values
sequentially. We always have pole number of pink noise values stored for all devices. Then, if

n pulses are applied to a device, the first » numbers from the store are removed, and the same

2.3 DEVICE CHARACTERIZATION AND MODELING 57

/
/
/
N

w

N

logip(avg. PSD)

o

0-* 1073 102 1071
Inv. pulse number f

=

Figure 2.4: Power spectral density of the simulated pink noise values generated sequentially for
different pole values. The density is averaged over 1000 instances and plotted as a
function of the inverse pulse number f. The black line represents the ideal behavior
where the density varies with the inverse of f, and the simulations match this more
with higher values of pole.

number of values are appended. This method ensures that we are not generating new numbers
unnecessarily, which is computationally expensive. On the other hand, because of this, we can
apply at most pole number of pulses. Essentially the parameter pole relates to the temporal
correlation of the pink noise sequence, which tends to infinity in an ideal case. Fig. 2.4 shows
the power spectral density for the sequential pink noise generation algorithm for different pole
values.

The power spectra of the simulated pink noise sequences follow the f~! law for the higher
values of f, which corresponds to low values of pulse numbers, which is expected since the
pole values here only range from 2 to 45. The deviation for low values of f is not detrimental
because, as we see in fig. 2.3(b), the low f limit is dominated by the 1/ f2 noise. Also, the long-
term variation is dominated by the piecewise linear increase, which is captured by the mean-
model aspect. We choose a pole value of 15 because it preserves the f~! nature up to a value
of 10~2 with a reasonable computational time.

The variation of our state variable i is then obtained by the superposition of these three

components as

58 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

W = Wmean + WRTN + wpink' (2.6)

The physical impact of the variation of these three terms is shown schematically in fig. 2.1(a).
In addition, ReRAM devices are subject to important device-to-device (D2D) variability due to
the various possible topologies of the conductive filaments and dynamic perturbations, which

can considerably impact neuromorphic applications and should be modeled carefully.

2.3.4 Fitting the parameters

To account for the device-to-device variability, we fit our mean model to the experiments on
64 devices integrated into a memory array, as shown in fig. 2.5. In this figure, we see the D2D
variability can be very high for i; wherein the range of values, pulse number at which the
change of regime occurs ¢*, and the slopes (c; and c¢») can all vary significantly. To incorporate

this into our model, we plot the statistical distribution of these parameters.

2.3 DEVICE CHARACTERIZATION AND MODELING

59

[0X0]= P B B

0

2500 5000
Pulse number t

0 2500 5000
Pulse number t

0.0

0

2500 5000
Pulse number t

0 2500 5000
Pulse number t

P S I T i

PRI B B

0

2500 5000
Pulse number t

0 2500 5000
Pulse number t

0

2500 5000
Pulse number t

0 2500 5000
Pulse number t

0.4

= 0.2:

00H + v v w Ly v L

0

2500 5000
Pulse number t

0 2500 5000
Pulse number t

0.0

0 2500 5000
Pulse number t

0 2500 5000
Pulse number t

(e v v L va by

0 2500 5000
Pulse number t

0 2500 5000
Pulse number t

0 2500 5000
Pulse number t

0 2500 5000
Pulse number t

OO0H v v v v 1w v v w10y
0 2500 5000
Pulse number t
0.75F
0.50F
0.25F
0.00H « v v v L i il
0 2500 5000

Pulse number t

0 2500 5000
Pulse number t

0 2500 5000
Pulse number t

Figure 2.5: Piecewise linear fit of the mean model to a set of devices. The mean model with a
piece-wise form is meant to capture the two regimes, the initial progressive increase
and the consequent noisier and less steep increase.

Fig. 2.6(a)-(d) shows the distribution of the parameters of our mean model. The distribu-

tions of the m;, t*, ¢, and m, parameters can be well fitted using an exponential, a lognormal,

a Gaussian, and an exponential distribution, respectively. The variation in the absolute value

of the resistance is done by sampling the initial resistance Ry (Eq. 2.2) from a Gaussian distri-

bution whose parameters are extracted from the experimental initial LRS distribution of the

devices (fig. 2.6(e)). This makes sure that even if we are only dealing with the variations in

the state parameter i, the absolute resistances also bear the same variability as the devices.

Table 2.1 lists the extracted parameters used for our simulations. The parameters m; and m;

describe the monotonic progressive increase of the filament gap and follow an exponential law,

60 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

0.0015

—— Exponential fit —— Lognorm. fit Gauss. —— Exponential fit
fit

30000
1000
0.0010

20000

10000

Normalized
frequency

8
6
0.0005 4
2
0

0 0.0000 0 0.00000
0.000 0.002 0.004 0 109&) 2000 -0.1 00 0.1 0.000000 0.000065 0.000130 7000

(a) m (b) t () « (d ~m) Ro

Figure 2.6: The statistical distribution of the extracted parameters over the 64 devices. The re-
spective slopes for the two regimes m; and m;, both follow exponential distributions
(@) and (d). The threshold pulse number #* follows a log-normal distribution (b),
whereas both the initial intercept c; (c) and the initial resistance (e) follow Gaussian
distributions.

highlighting that some devices are relatively insensitive to weak RESET. The Gaussian distribu-
tion of Ry and c¢; is connected to the Gaussian distribution of the LRS.

The parameters used to generate the noise (cycle-to-cycle variation) are fine-tuned so that
the experiments and simulations in fig.2.7(b) and (c) match. The values are summarized in
Table 2.2. The obtained values naturally replicate the noise levels observed in both regimes of

the mean model.

2.3.5 Comparison of experiments and simulation

i) 20F . . 151 - —~ oF .
= X Single device N il Lorentzla‘n fit 8 —— Experiment = 4000[
= E QLG Q
g % ﬂ_ 1 Fit = + z 3
= ° 9 ot @ 2000F
2 £ S-E 2
™3 S 3 o o
LLi = 8 z
gkl 1 1 L -2000 =L 1 1 1 1 1
20F 28 . i .
2 - —— Simulation g 4000
= £ L C1 o, G
S : 1 — Fgeg |8
e~ [} -
° oF @ 2000
8 .]
= 13 SE S
[} o or
.g =z -2F é
«n Ll il o) _3il | | il -2000 =L L L 1 1 |
2000 4000 6000 8000 10000 <04 02 00 02 0.4 07 1070 102 10 0 2000 4000 6000 8000 10000
(a) Pulse number t (b) Aw (C) Inv. pulse number f (d) [ti -]

Figure 2.7: Comparison of experiments and simulations over 64 devices. (a) Scatter plots of w
as a function of the number of applied weak RESET pulses. Also, the evolution of
w for a single device is shown for both. (b) Histograms of changes in iv after each
pulse. (c) Average power spectral density of i following Lorentzian distributions.
(d) Average cross-correlation between the devices.

Fig. 2.7 shows that the resulting model, integrating D2D, reproduces all measured aspects
of the experiments with outstanding accuracy. Fig. 2.7(a) shows the individual trajectories in
the weak RESET process of 64 measured and 64 simulated devices. Fig. 2.7(b) shows that the
distribution of the changes in i after each weak RESET pulse follows the same Lorentzian dis-

tribution in both the experiments and simulations. It is centered at zero, which implies that

2.3 DEVICE CHARACTERIZATION AND MODELING 61

Table 2.1: Device-to-device variation: Parameters for RTN, mean model components, and the
initial resistances that characterize the variability between devices and extracted
from fig. 2.6. The probability density functions had the following forms:
funiform(x; ay, az) = ﬁ; ap=X=a.

. _1 X=X
fexponential(xy X0, A) = 7 €Xp (— 1 °),x = Xp.

_\2
fcaussian(x; 4, 0) = #ﬁ exp [- %(%))

flognormal(X; 5,0)= sx\l/ﬂ exp [- %(IOLSX/U))Z] ,x=0.
Component | Model param. Distr. Distr. param.
RTN amplitude a Uniform a;=0, a,=0.5
my Exponential | x(=3.74e-5,
A1=6.56e-4
Mean model 1 Gaussian ©=5.29e-3,
0=5.32e-2
t* Log-normal 5=0.80,
0=542.5
my Exponential | xp=1.64e-34,
A=2.89e-5
Resistance Ry Gaussian 1=6988 Q,
0=381.7 Q)

the fluctuations dominate over the monotonic changes arising from the mean model, which
would have caused a bimodal distribution of positive values. The narrow peaks and wide tails
of the Lorentzian distribution represent the more frequent pink noise and the less frequent
RTN-induced fluctuations. Fig. 2.7(c) shows the mean spectral power spectrum of fig. 2.7(a),
and fig. 2.7(d) shows the mean cross-correlation of w between the 64 devices, where ¢; and ¢;

are the pulse numbers to the i and j devices, defined as:

CrossCorr.(Iti—tj)= Y w(t)w(t)). 2.7)

all Li,t;

The average cross-correlation between the 64 devices measures the D2D variability captured
by our model, which also agrees with the experiments. The mean auto-correlation at zero shift
is about 10,000, which is twice the average cross-correlation at zero shift, indicating that the
inter-device variability is larger than the intra-device one. Overall, the model, therefore, seems
ideal to mimic ReRAM cells.

2.3.6 Algorithm for device model

Our final goal is to integrate this model within the PyTorch framework. To that end, we need an

algorithmic setting for the aforementioned model. The following pseudo-code represents how

62 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

Table 2.2: Cycle-to-cycle variation: Parameters for RTN and pink noise that account for the
noise on the resistance of devices.

Component | Model param. | Value

RTN Phign 0.0008

Piow 0.002

Pink noise a 0.025
pole 15

the resistances change in our devices based on the number of applied pulses (RESET function).

Algorithm 1 The RESET function. The inputs to the function are the number of pulses to apply
n, the number of pulses already applied to the device ¢, the RTN state X, the transition matrix
T, the pink noise state represented by wo, w1, ..., @pe1e. The parameters of this function are
of two types; the device-specific ones my, ci1, t*, m, Ry, a, and the general parameters Phigh,
Piow, @, pole

Inputs: n, t, X, T, wg, 0y, ..., Wpole, M1, C1, t*, my, Ry, a, Phigh, Piow, @, pole.

Outputs: Resistance R, updated values of ¢, X, and wy, w1, ..., @poe-

Mean model: t — t+n
if t < t* then
Wmean <— M1t +C1
else if r = ¢* then
Wimean < Mot + (M —mp)t
end if
M: T — Tn+1
if X=0 then
X — 1 with probability T;»
else if X=1 then
X «— 0 with probability T»;
: end if
: LT}RTN —aX
: Pink noise: Generate n new w/**" values (see Appendix) for r = 0,1,2,...,n—1 and then
append the new values such that there are pole number of pink noise states.
15: wpink - Z,,?:_(% byw?®" + ngize brw;
16: W = Wmean + WRTN + Wpink
17: R = Roexp(iv)
18: return R, ¢, X, and wo, w1, ..., Wpole

— = =

2.4 IMPLEMENTATION WITHIN A DEEP LEARNING FRAMEWORK 63

Inference

a; = sign(popcount XNOR(W)™, a;) — A)

>ll3”

wreal « W&eal + Learning rule (Wi'}i")

Learning
- 00 (0.0) - 1 / 1
real bin
Wij a;, Wl]

Figure 2.8: Principle of operation of a Binarized Neural Network (BNN) showing the forward
pass (inference) and backward pass (learning or training). The inference depends
only on the binarized weights Wf}’”, whereas the training involves updating the real

weights Wl.rje“l.

2.4 Implementation within a Deep Learning Framework

Artificial neural networks (ANN) are networks of neurons, connected by synapses, laid hierar-
chically: the neuronal activations of a layer are computed from the neurons of the previous
layer. The value of neuron activation is computed by taking the sum over the previous acti-
vations weighted by their corresponding synaptic values and then applying a non-linear func-
tion. Learning a task aims to find an optimum set of values for the synaptic connections, called
weights. To that end, analog memory cells have been used as the weights owing to their ability

to adapt conductances [125].

2.4.1 Binarized neural networks

However, to train ANNs, precise values of these weights need to be stored and updated since the
weights and activations can take any real value. This is a problem for ReRAM-based implemen-

tation in the weak RESET regime, as inter-device and intra-device variabilities are ubiquitous

64 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

in such nano-devices, as seen in section 2.3. An alternative approach is to use BNNs, where
both the neuronal activations and synaptic weights take binary values (+1 and -1) [164, 165].
Despite this simplicity of representation, BNNs can approach state-of-the-art accuracy on vi-
sion tasks [164]. During inference, that is, calculating the network output given the input, their
arithmetic is extremely simple. A simple XNOR operation replaces the product of the activa-
tion and the weight. Also, the accumulation of the products can be simply done by counting
the number of ones, called the population count. Both of these can be implemented using rela-
tively simple, low power-consuming circuitry [157]. The advantage of binarization is both from
the reduced read-out complexity and the fact that low-precision synapses and weights can be
used for inference.

During the training phase i.e., when the network learns the optimum values of the weights,
ahidden, real-valued weight is also associated with the synapses [164, 165]. As shown in fig. 2.8,
the binarized weight Wf}m connecting the neuron a; of the previous layer to the neuron a; of

the next layer relates to the hidden real weight, V\/i’je“l , as
bi ; !
I/Vl.j’” = szgn(Wl.rje“), 2.8)
and the binarized activation is given by
a; = sign(POPCOUNT(XNOR(W}", aj) - A), (2.9)

where A is a threshold that serves the role of shifting in batch normalization of the activation
values. During the inference phase, only the binarized weights need to be calculated. On the
other hand, for learning, the hidden real weights need to be updated by a learning rule but not
explicitly read. We utilize this by avoiding using energy-intensive circuits that are required to
read the analog resistance state that plays the role of the real weights. Following the approach
of [150], we employ a differential 2T2R structure within a crossbar array (fig. 2.9(a)), in which

the two resistances Rp; and Rp;j; account for a single real synaptic weight as
W/ =log,o (RpL/ RpLp).- (2.10)

As shown in [166] and [167], the 2T2R scheme based on the ratio of two resistances provides a
lower error rate compared to 1T1R which is crucial for the device to operate in the weak RESET

regime. The 2T2R structure also allows performing training relying solely on RESET pulses.

2.4.2 Training in ReRAM-based BNNs

In the training phase, to update the real weight, the ReRAM devices are programmed using
weak RESET pulses on either of the two devices. If the BNN learning rule suggests increasing
the real weight by Wl.rje“l , we apply weak RESET pulses to the BL device, therefore increasing
I/Vl.’je“l . Conversely, if § Wirje“l is negative, we apply weak RESET pulses to the BLb device, there-

2.4 IMPLEMENTATION WITHIN A DEEP LEARNING FRAMEWORK 65

| wh = sign(wjie!) |

out

Column decoder
vdd

Bilidinmmiiy
R{THTAIN)

SLy

W,

SLy
WL,

ond] P
e ®

Row decoder
v
2

1
BL, BLby| [BL, BLb, B—L,l— —B—Lb; | :
Column decoder : R :
(a) BL Blb (b) Wi;e‘” = log(i)
Rpp™ |

Figure 2.9: (a) Schematic of the 2T2R memory array used for implementing BNNs. (b) Circuit
of the sense amplifier used to extract the binary weight from a 2T2R synapse, along
with equations showing how the resistances Rg; and Ry, connect with the real
(Wi’je“l) and binary (Wl.l}i) weights.

fore reducing Wl.’je“l. In both cases, the number of pulses is chosen proportionally to § Wl.rje“l.
Due to the differential 2T2R nature of the synapses, this training technique requires only RESET
pulses. For the tasks we have performed, we have seen that the progressivity of the RESET pro-
cess is sufficient; however, for more complex tasks, this might not be enough. In that case, we
can apply a reprogramming strategy, proposed in [150], to bring back the system where proper
RESET is applicable.

For the inference, the sign of this real hidden weight has to be read, and this can be achieved
by an energy-efficient and fast circuit called pre-charge sense amplifier [157, 168]. It com-
pares Rpy and Rpy, to give an output of +1 when the former is larger and -1 for the opposite.

Fig. 2.9(b) shows how the real and binarized weights are computed in the circuit.

2.4.3 Framework implementation

The frameworks normally used for designing neural networks, such as PyTorch and Tensor-
Flow, model synapses as floating-point real weights. When a neural network is trained, sophis-
ticated optimization algorithms, called optimizers, such as adaptive moment estimation, opti-
mize these weights values by making noiseless, highly precise, and deterministic updates [55].
To test our vision, i.e., to design a physical model where synapses are implemented by ReRAM,
and the weights are updated using weak RESETs, we adapted the PyTorch deep learning frame-

work in three important ways. First, in deep learning frameworks, the synaptic parameters

66

CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

PyTérch
, n pulses
(L)
® Ty S ;
Device
of resistance 1 — Phion Dhioh
pulses RESET function values T = (o -)
to apply IS 4 Piow 1 — Diow
| Mean model | 5| o
o P(high - low) = (T™)y,
RN g P(low - high) = (T™);;
F_
+) wl 3 . o
A Updated)| | 2 wl, = Z bywnew + Z bywlD
arameiers parameters || XZ| £ =0 ren+l
e | (— | for device B
simulation simulation é | t® = G- 4

(@)

Figure 2.10:

100

(b)

(a) Integration of device simulation and neural network learning within the Py-
Torch framework. The device resistances act as the synaptic weights in a differ-
ential manner. They are updated according to the device model from the updates
provided by the network in the backward pass. (b) The equations for the mean,
RTN, and pink noise components inside the RESET function that models the pro-
gramming of ReRAMs within the PyTorch adaptive moment estimation optimizer.

92F

90F

Test accuracy (%)

88F

86
1

100

MNIST CIFAR-10

90
80
70

Without device simulation 60

Without D2D, without noise
With D2D, without noise
Without D2D, with noise

Full silmulation | | 30

50

40

Test accuracy (%)

T[T [T T [T r [T [T [T r T orrs

(a)

Figure 2.11:

ok

I PRI I PR ST TN TR S AN TN ST TN TN NN SO SO S S
5 10 15 20 25 100 200 300 400

Epochs (b) Epochs

Impact of noise and device-to-device variability on the performances of the bina-
rized neural networks for the (a) MNIST and (b) CIFAR-10 tasks. The plots show
the test accuracy during training for five different cases - without device simula-
tion (blue), without both D2D variation and noise (pink), with D2D variation but
without noise (green), without D2D but with the full noise and mean model sim-
ulation (brown), and the full simulation incorporating both the D2D variability,
mean model and noise (black).

are stored as tensors with dimensions appropriate to the corresponding architecture. In our

approach, these parameters are now modeled by an added dimension that accounts for the de-

vice state variables. These are the different parameters that are needed to store the number of

2.4 IMPLEMENTATION WITHIN A DEEP LEARNING FRAMEWORK 67

pulses that have been previously applied to a device and to generate pink and telegraph noise
(pulses already applied ¢, RTN state variable X and w,s).

Secondly, the parameters of the neural network are typically initialized according to cer-
tain pre-defined initialization schemes [65, 169]. In our case, as the synaptic parameters are
linked with the device resistances, we initialize the devices by sampling through the distribu-
tions mentioned in Table 2.1.

Finally, the in-built optimizers provide updates that are real-valued floating-point num-
bers. But, in ReRAM-based networks, we can only modify the resistances by the application of
a discrete number of voltage pulses. Thus, the updates given by PyTorch’s adaptive moment
estimation methods are discretized by multiplication by a suitable learning rate and rounding
down to integer values. These pulses then produce the synaptic updates following the model
of section 2.3.

The scheme of integrating our device model into the PyTorch framework is schematically
shown in fig. 2.10(a). Synaptic weights are initialized as device resistance values in a differen-
tial manner incorporating the D2D variability explored in section 2.3. The network does the
forward pass on the input and calculates the updates for the weights, which are then converted
to integer-valued pulses numbers 7 that are to be applied to the devices. Using the number
of pulses and the device-based parameters, the new device resistance states are calculated as
shown in fig. 2.10(b).

The RTN, pink noise, and mean model components are calculated separately. The RTN
state variable is calculated from exponentiating the transition matrix T to the n™ power. Pink
noise values are generated by drawing n new Gaussian white random numbers and combin-
ing them with the existing (pole — n) values. And, for the mean model component, the pulse
number 7 is simply added to the number of pulses already applied ¢. Now, with the new device

resistances and the new synaptic weights, the network continues onto the next forward pass.

2.4.4 Algorithm for learning with device model

68 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

Algorithm 2 The learning algorithm with the device model. This is how we incorporate the
device model into our learning procedure. W™ and WP are the vectors of real and binarized
weights, respectively. The BL and BLb resistances of the differential cells are represented by
Rgr, and Rgyp. The update to the real weight is denoted by U, and the corresponding number
of pulses to be applied, n. (x, y) represents the input-output pairs corresponding to a batch
of training data, and 7 is the learning rate. ’cache’ denotes the intermediate values that are
required to be stored for the backpropagation.

Initialization: Ry, m,, t*, c;, m for all the weights of our networks are initialized by sampling
values from the distributions presented in fig. 2.6 and Table. 2.1. The initial mean model state
(t) and RTN state for all devices (X) is set to 0. The pink-noise states (w,s) are generated as
mentioned in APPENDIX 2

Inputs: (x,y), n, ReL, Rp1p, t, X, , wy,..., Wpole, My, C1, t*, ma, Ry, a, Phigh, Piow, @, pole.
Outputs: Rgy, Rppp,t, X, wo,..., Wpole

1: Wreal — logm (RBL/RBLb)

2: Wbin — Sign(wreal)

3: ¥, cache — Forward(x, W?i")

4: C—Cost(y,y)

5: 0w C — Backward(C,¥, WPbin cache)

6: U — Optimizer(0wC)

7: n— HardTanh(min = —pole,max = pole, Int(nU))

8: for nin ndo

9: if n =0 then
10: Rp, t, X, wyp,... — RESET(n, t, X, T, wy, ..., my, C1, t*, My, Ry, a, Phigh,Plow,a,pole)
11: else
12: Rpip, t, X, wy,... — RESET(|n|, t, X, T, wy, ..., m1, c1, t*, My, Ry, a, Ph,-gh,Plow, a,pole)
13: end if
14: end for
15: return Rpp, Rpp, t, X, wo,..., @pole

2.5 NEURAL NETWORK SIMULATION RESULTS 69

2.5 Neural Network Simulation Results

2.5.1 The tasks and the architecture

We now test our device model, integrated into PyTorch, on two pattern recognition tasks. First,
we train a fully connected (FC) BNN with one hidden layer of 3,000 units for solving the MNIST
handwritten digit recognition benchmark. We then train a convolutional BNN to solve the
CIFAR-10 object-recognition task. The architecture uses 3x3 kernels for convolutions (Conv),
and 2x2 for MaxPool (MP) and reads: [Conv384, Conv384, MP, Conv768, Conv768, MP, Conv1536,
Conv512, MP, FC(1024-1024-10)]. Figs. 2.11(a) and (b) show PyTorch simulations of the train-
ing process of binarized neural network for the MNIST and CIFAR-10 tasks, respectively. Test
accuracies of 98% and 90% on the MNIST and CIFAR-10 tasks, respectively, were achieved with-
out device simulations (ideal floating-point synapses). Including the full device simulation in
the BNN training simulation makes it four times slower, the bottleneck being the sequential

generation of pink noise.

2.5.2 Impact of imperfections

Incorporating the ReRAM model allows testing of how various aspects of the ReRAM imper-
fections affect the training performance. We first performed simulations, including the device
model, but where the noise and the D2D variability were artificially deactivated (see Figs. 2.11(a)-
(b)). We observe that the network can reach the baseline accuracy for both tasks. Thus, our
BNN scheme is robust to the non-linearity of the devices, which is a major advantage with
regard to non-binarized techniques [150]. Also, this result highlights that the conversion of
floating-point updates to a discrete number of pulses had little effect on the final accuracy.

Figs. 2.11(a) and (b) also show that upon the introduction of noise(both RTN and pink) only,
a point accuracy degradation of 1% and 2.5% for the MNIST and CIFAR-10 tasks is obtained.
Adding D2D variability, the respective degradation of point accuracies are 3% and 10%. Also, to
identify the impact of the noise independently, we performed simulations with only the noise
components artificially deactivated. For MNIST, we find a point degradation of 0.3%, whereas,
for the CIFAR-10, it is 10%. For both tasks, the inclusion of the D2D variability, therefore, caused
degradation of test accuracy, although it is more prominent in the CIFAR-10 task (Figs.2.11(a)-
(b)).

These results highlight that neural networks have the potential to fully benefit from the
advantageous properties of weak RESET (progressivity, high endurance) without suffering from
its high level of fluctuations. Also, via this kind of modeling, we explored the effects of D2D
variability, noise, and non-linearity in greater detail than is possible with only experimental

studies.

70 CHAPTER 2: LEARNING WITH IMPERFECT RESISTIVE RAM

2.6 Conclusion

In this work, we presented a model of the weak RESET behavior of HfOy ReRAM and its fluctu-
ations and its integration within a deep learning framework for simulations of hardware neural
networks on GPUs. The results suggest the outstanding potential of the weak RESET regime in
such conditions. This work also explores the various aspects of ReRAM device imperfections
on neural network performance.

Using the proposed framework, future work will investigate the design of more advanced
neural networks on difficult tasks and how neural network design can be optimized for robust-
ness to the fluctuations of ReRAM technology. Our modified PyTorch optimizer could also be

adapted to all kinds of emerging devices considered for neuromorphic applications.

Chapter 3

Implementation of BNN inference

immune to circuit-based constraints

One of the basic rules of the universe is that
nothing is perfect. Perfection simply doesn’t
exist.....Without imperfection, neither you nor I

would exist.

Stephen HAWKING

IN THE previous chapter, we explored the possibility of learning neural network models us-

ing noisy memristive devices as synaptic weights. Although we successfully demonstrated
that the backpropagation algorithm could cope with non-ideal behavior, our focus was primar-
ily on memory while assuming that all other computations occurred perfectly.

However, in this chapter, we take a systems-level approach to investigate the implementa-
tion of binarized neural networks (BNNs), which involves considering not only memory but all
other circuits involved in the computation. Our goal is to assess the impact of various imper-
fections on inference. We focus on implementing neural networks that are already pre-trained
with a set of weights programmed into memory, using our circuits for inference.

We present two different studies that employ complementary differential resistive devices
as synaptic weights for a BNN. We begin by highlighting the different mathematical operations
required for inference and emphasizing aspects that cause errors in the inference of the BNNs.
The two projects presented in this chapter are collaborative works. The fabrication of the cir-
cuits was done at Université Grenoble Alpes (CEA-LETI, Grenoble), and the design and electri-
cal characterizations were done by Pr. Jean-Michel Portal, Fadi Jebali, and Dr. Mona Ezzadeen.
The author of this thesis performed the neural networks simulations with the experimentally
measured and modeled errors and also did the inference result-related analyses. The work in
this chapter culminated in the realization of two journal articles, one of which is under prepa-

ration (titled "Powering Al at the Edge: A Robust, Memristor-based Binarized Neural Network

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
72 CONSTRAINTS

with Near-Memory Computing and Miniaturized Solar Cell"), and the other is under review (ti-
tled "Implementation of Binarized Neural Networks Immune to Device Variation and IR Drop
Employing Resistive RAM Bridges and Capacitive Neurons"). This chapter is adapted from both
of these articles.

3.1 Circuits and Binarized Neural Networks

In non-binarized artificial neural networks (ANNSs), the inference step involves computing the
output neuronal activations y; for a given layer, based on the synaptic weights W;;, inputs a;,
and batch normalization threshold A; and scaling parameter o;. The inference equation is

given by:

LjWij-aj-A;

i

Vi = fact (3.1

Here, f,.: is the activation function, and A; and o; represent the threshold and scaling pa-
rameters, respectively, which are related to the batch normalization operation. These param-
eters are pre-determined using the running mean and running standard deviation calculated
from the training set.

Traditional implementations of ANNs with memristors rely on Ohm’s and Kirchoff’s laws
for multiplication and accumulation (MAC), respectively. However, this approach is highly sus-
ceptible to resistance variability and IR drop in the connecting wires, which can lead to perfor-
mance degradation. This is because the values being multiplied or added can theoretically take
any real value, and even small imperfections in the values can result in significant deviations
during calculation.

In contrast, the activations and the weights of a BNN are all binarized to two values, +1 and
-1. This quantization greatly reduces the computational complexity and has two major impli-
cations in the context of the hardware implementation of neural networks. Firstly, since we
are bound to only two values for the weight, we can map our device resistance to these values
in a manner that makes it more robust to noise. As a simple example, we can set a threshold
resistance value, and if the device resistance is higher than that, we refer to that weight as +1;
otherwise, it is -1. This quantization ensures that our weight values are less affected by small
fluctuations in resistance as long as they remain above or below the threshold value. Secondly,
the MAC operations can be replaced by simple logic gates as we are dealing with only two val-
ues. This is beneficial from the point of view of energy since in the implementation of ANNSs,
although Ohm’s law and Kirchoff’s law take care of the MAC operation, specialized readout
circuitries are needed for them to function effectively. These specialized circuits, which often
involve analog-to-digital conversions, are power-hungry and have a large area overhead, and
thus are not desirable for the hardware-based implementation of neural networks.

Let us look at the various mathematical operations in BNN and how simple electronic cir-

3.1 CIRCUITS AND BINARIZED NEURAL NETWORKS 73

cuits can implement them. For the multiplication between the binarized weights W}}i " and

activation a;, since each of them can take only two values, there can be a total of four combi-

nations.
Weight Input Output
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

If we replace -1 with 0, this would give us the exact truth table as an XNOR gate, allowing us
to use the XNOR gate to implement the multiplication. In the same vein, the accumulation
process involves counting the total number of 1’s amongst all the outputs, which are either 1 or
0. This is the population count or the popcount (PC) operation, and we shall see in this chapter
how this can be done using energy and area-efficient circuitry.

After the MAC, we need to consecutively apply the batch normalization and the activation
function. Since the outputs are also binary, the activation function is the sign function. Another
point to be noted here is that since we apply the scale-invariant sign function, we only need to
use the threshold value since the scaling has no impact on the output. Effectively, this means
that for batch normalization, the PC value needs to be compared with the threshold value Tj.
Then the sign function would output +1 if the MAC value is higher than the threshold and -1
otherwise. This can be achieved in a circuit by using a comparator whose one end gets the PC,
and the other end gets the corresponding value of T;. Putting all of this together, we find the

final equation for the output y; to be
yi = sign(POPCOUNT(XNOR(WiI}i", ay)-T)). 3.2)

However, even such implementation is not totally immune to imperfections; the occur-
rence of errors pays the cost of energy efficiency. As we shall see, the true strength of BNNs lies

in the fact that they are quite robust to these issues.

3.1.1 Imperfections in inference circuit

The imperfections leading up to an error can be categorized into two types; the first type relates
to the variabilities present in the resistance of the memory devices. The second source is the
variability or the non-ideal behavior of transistors. To ensure robust behavior from our memory
devices, we program them in a 2-transistor, 2-resistor (2T2R) arrangement instead of a 1T1R
arrangement. In the projects we pursued, the devices are programmed in a complementary
fashion in LRS-HRS or HRS-LRS pairs. Noise in such devices can invert this pairing and result
in a different weight than what was intended.

In a2T2R cell, there are two access transistors, each connected to a Resistive random access

memory (ReRAM) device in a complementary fashion. The relative states of the two devices

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
74 CONSTRAINTS

represent either the +1 or the -1 state of the synaptic weight. The two resistances are called Rpy,
and Rpyp, as they connect to the bit line (BL) and bit line bar (BLb) of the circuit, and if the
resistance pairs are programmed to be in HRS-LRS state, the synaptic weight has a value of +1,
and similarly, it encodes the value -1 for the LRS-HRS pair.

@ (b)

LI 1 N 1) B N B L) b LI L 1 N 1 S R
10-1 2T2R: y ECC:SECDED 7~
— ldeal 2T2R 89 " — Ideal 2T2R
102
’-|\ _3 ’,”” |’ ,l:bw IC ,,”” ,/’,
74
© 10747
— /A4 s
= 107° ~High Ic
o .l 4 9 i (word data
g 107° / ' size , size
o — (128,120)
1077 G Yy (32,26)
; ./,’//+ ,,///+ ’
10-8 e Measure e — (8,4)
107* 107° 1072 107! 107* 107° 1072 107!

Error rate 1T1R (-) Error rate 1T1R (-)

Figure 3.1: Comparison of 2T2R robustness to 1T1R and ECCs. (a) Experimentally measured bit
error rate of a 2T2R array as a function of the bit error rate obtained with individual
(IT1R) ReRAM devices under the same programming conditions. (b) The Bit error
rate obtained with Single Error Correction Double Error Detection (SECDED) ECC

as a function of the error rate of the individual devices for different word and data
sizes (Adapted from [157]).

The superiority of the 2T2R approach, in terms of robustness to errors, is shown in fig. 3.1
where the bit error rate in a test chip with HfOx-based ReRAMs is presented along with the er-
ror rates of a 1T1R cell under the same conditions of programming [157]. In fig. 3.1 (a), the red
experimental data points lie lower than the y = x line signifying that we have fewer errors in
the 2T2R cells. Fig. 3.1 (b) also shows the comparison with an ECC where a Single Error Cor-
rection Double Error Detection (SECDED) ECC code is used, and it approaches the ideal 2T2R
behavior for a word size of 8 and data size of 4. However, this type of ECC requires decoding cir-
cuits that comprise hundreds to thousands of logic gates, increasing the area and energy costs
significantly.

The reason why the 2T2R is more robust to errors can be understood as follows. In the
1T1R architecture, the resistance is only compared with respect to a single reference resistance,
whereas in 2T2R, we have two resistances programmed to opposite resistance states, and only

their relative value dictates the state. An error occurs when the fluctuation of the resistance

3.1 CIRCUITS AND BINARIZED NEURAL NETWORKS 75

drives it to be in the other regime. It is much more likely for a single resistor’s fluctuation to
cross the reference value than for two resistors programmed at two extremes to cross each
other. This is what makes the 2T2R more robust than the 1T1R memory cells.

The other source of erroneous behavior stems from the non-ideal behavior of transistors.
Transistor mismatch is a type of variability that is one of the most significant contributors to
errors in such systems. The mismatch is a type of transistor variability that arises due to the
natural variations in the electrical properties of multiple transistors that are intended to be
identical. Mismatch can occur in various electrical properties of the transistors, such as their
threshold voltage, channel length, or mobility. These variations cause differences in the way
that the transistors operate and can result in performance differences in circuits that use these
transistors.

In this chapter, we present two different circuit-implementation of BNNs and investigate
the impact of errors on inference accuracy. The remaining sections of this chapter will be or-
ganized as follows: first, we describe the details of the circuit being used to implement BNNs,
specifically highlighting the cause and sources of errors. Then, we present the experimental
error measurements and the associated error model that gives us a mathematical handle that
is used for our neural network inference simulation. We finish each section showing the degra-
dation in performance with these errors and take a deeper dive into the types of errors and how

they relate to the circuit attributes.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
76 CONSTRAINTS

| g
I|||ll|l||||||||”|"”l”

Rg = wj
SL = XOR(in, Wii)
XNOR(in;,w;)

Figure 3.2: The BNN circuit implementation. (a) Optical microscopy photograph showing the
BNN test chip, which includes implementations of neurons with 5, 9, and 23 inputs.
The inset shows a detailed view of the 23-input neuron version. (b) The global ar-
chitecture of the BNN circuit used in the test chip features 2T2R ReRAM cells that
employ complementary coding to ensure robust XNOR operation. The popcount
and threshold use fully differential coding with capacitive bridges to enhance the
comparison margin. (c) Schematic of the proposed bit cell. The weights stored in
the ReRAM 2T2R cell, and the activation input, applied on the BL/BLB, are both
coded in a complementary fashion. An inverter gate generates the final XNOR value
at the bottom of the SL.

3.2 Implementation of BNN with ReRAM bridges and ca-

pacitive neurons

3.2.1 Circuit

In this work, the overall implementation of BNN is based on a fully-differential capacitive neu-
ron with 2T2R synapses wired in a resistive bridge configuration. A test chip was fabricated in a
130 nm CMOS technology with co-integrated ReRAM memory cells in the BEOL between metal
layers four and five, with the aim of computing equ. 3.2 in an efficient manner. In fig. 3.2 (a),

3.2 IMPLEMENTATION OF BNN WITH RERAM BRIDGES AND CAPACITIVE NEURONS 77

a micro-photograph of this circuit is shown with the neuron having 23 inputs. The circuit has
two main components: a ReRAM array that stores the weights and a capacitive neuron circuit
at the bottom of this array. Also, there are shift registers that control multiplexers, which give
direct access to the memory cells for the purpose of electrical characterizations. To extract the
error rates, a scan chain retrieves the XNOR values in parallel and outputs them serially. The
capacitive divider bridge is designed with capacitors of capacitance 105 femtofarad.

Equ. 3.2 has four main components: the XNOR between the weight and the input, the pop-
ulation count (popcount), the threshold, and finally, the sign function. We now discuss their

circuit implementations individually.

3.2.1.1 In-memory XNOR operation

The weights of a neuron are contained in a single row of a ReRAM array, as illustrated in fig. 3.2
(b). Our work utilizes a 2T2R (two transistors - two resistors) ReRAM cell architecture (fig. 3.2
(c)), where the cells are connected in series to form a resistive bridge. The synaptic weights,
Wi, are encoded in a complementary manner in the two ReRAM cells of the 2T2R structure.
Depending on the synaptic weight value, either the left (R) or the right (RB) ReRAM cell is pro-
grammed to a High Resistance state, while the complementary ReRAM is programmed to a Low
Resistance state. This causes the source line SL to be pulled towards either the left or the right
bit line, depending on the synaptic weight value. The input neuron values are presented in
a complementary fashion on the two bit lines, meaning that depending on the input neuron
value, either the left or the right bit line is at the lowest voltage. As a result, the source line nat-
urally follows an exclusive OR (XOR) between the weight and the neuron input, which allows
the memory array to perform XOR operations directly within memory. Finally, the source line
voltages are used as inputs to the inverter gates located at the bottom of each SL to output the
XNOR values.

The in-memory XNOR operation is highly reliable and is only expected to fail in rare cir-
cumstances, specifically when the device programmed into a low-resistance state has a higher
resistance than the device programmed into a high-resistance state. However, this situation
has a very low probability of occurring since both devices would have to be improperly pro-
grammed, as mentioned above. Additionally, the nonlinearity of the inverter amplifies the sig-
nal, leading to clean binary outputs, which enhances the robustness of our approach to vari-
ability.

Compared to other implementations, a unique advantage of this approach is that the two
devices are connected in series, ensuring that the current paths in the memory array always
include a high-resistance device [157, 166]. As a result, the in-memory XNOR operation relies
on a low current, regardless of the input and weight values, making our approach naturally

immune to IR-drop effects.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
78 CONSTRAINTS

3.2.1.2 The near-memory Popcount, threshold, and sign operations

The popcount and the sign operation after thresholding are performed near-memory by uti-
lizing a switched-capacitor addition circuit and a comparator, as illustrated in fig. 3.2 (b), fol-
lowing an approach that is inspired by the SRAM-based works of [170, 171]. The switched-
capacitor circuit is highly energy-efficient, as it doesn't require direct current to be applied,
unlike in in-memory MAC designs utilizing Kirchoft’s current law, and instead only consumes
energy when the capacitors are switched.

The popcount circuit, which is based on a fully differential approach with two capacitive

bridges connected to complementary inputs, ultimately leads the voltages of two capacitive

bridges to be at
m
Vpc=—Vpp (3.3)
n
and
m
Vpce = Vpp - ;VDDy (3.4)

where m is the popcount value, which is the number of XNOR outputs that are equal to one,
n is the total number of XNOR outputs connected to each capacitive bridge, and Vpp is the
source voltage. An activation g is set to one by the comparator only when more than half of
the XNOR values are equal to one (i.e., m > g). Therefore, without any further modification,
the circuit implements a neuron (equ. 3.2) with a threshold T} of 3.

Statistically, for neural network inference, it has been shown that a threshold-setting ca-
pability of 5% around the mean value of 7 is necessary and usually enough to achieve high
accuracy. To provide this capability, a total of b = 2 x |0.05n] capacitors were added to each
bridge in a complementary manner. These additional capacitors are connected to the source
line of additional columns in the ReRAM array, where the thresholds are programmed. A point
to note in equ. 3.3 is that the voltage Vp¢ is inversely related to the total number of XNOR out-

puts, so for high values of 7, this voltage can be too low for the comparator.

3.2.2 Measurement of error and error model

To validate this circuit, experimental measurements were done on the 23-input circuit for dif-
ferent values of the read voltages and the compliance current, which dictates how low the LRS
shall be. The XNOR error percentages were calculated, and it was seen that there were no er-
rors for read voltages higher than 0.3 V and compliance currents larger than 110 pyA. For the
lower compliance current and read voltage values, the resistance states were measured, and it
was seen that in this regime, the LRS and HRS states are widely overlapping, causing errors. A
remarkable thing to notice here is that even for low values of the preactivation A (which is the
difference between the Popcount and the threshold), the circuit had no errors. This is because
the voltage difference between the two capacitive bridges always remained adequately large,

and there was no output neuron activation error.

3.2IMPLEMENTATION OF BNN WITH RERAM BRIDGES AND CAPACITIVE NEURONS 79

However, in circuits with larger input numbers and low A values, errors may arise due to
low voltage differences at the comparator inputs. To address this, extensive Monte Carlo simu-
lations were performed on circuits with BNN sizes up to 513 input neurons and clock periods
ranging from 4 to 20 ns, covering the full range of possible popcount and threshold combina-
tions (preactivation A values). These simulations considered both global and local sources of
variability, including mismatch, at three standard deviations, with 1,000 runs performed for
each case. To account for ReRAM variability, the source line measured distributions were di-
rectly injected, which correspond to error-free XNOR operations at a compliance current of
200 pA and a read voltage of 0.6 V at the XNOR inverter’s inputs.

Fig. 3.3 (a), (b), and (c) illustrate the extracted error distributions for the 33, 257, and 513-
input neurons and their corresponding Gaussian fits. The output remains error-free for neu-
rons up to 33 inputs with a clock period of 6 ns or higher, which aligns with our measured re-
sults. The smallest A value needed for 33 inputs corresponds to a voltage difference of 34 milliV.
However, for larger neuron sizes, the smallest voltage difference decreases, reaching only 2 mV
for 513 inputs, leading to higher error rates for small A values. Nonetheless, the Gaussian error
distributions stay narrow for clock periods equal to or greater than 6 ns. The fig. 3.3 (d) dis-
plays the standard deviation values obtained for various neuron sizes and clock periods. It is
observed that the standard deviation decreases as the clock period increases since more time
is available for the clear and capacitive divider voltage settling. Based on these results, we set
our minimum clock period to a value of 6 ns.

With these results, we developed a mathematical model to generate the error distribution
for an arbitrary number of neurons. This is necessary since the number of neurons in our
neural network is typically much higher than 513.

Consider a neuron a; with NV inputs (including the bias terms), where n; of each input are
expected to lead to a one XNOR value. We focus on the case where n; < [N/2] for simplicity,
such that a; is expected to be one (or derivation can be easily adapted to the other case). We
denote p as the probability of a single 2T2R-based XNOR operator giving an erroneous output.
We extracted p for various programming conditions and read voltages from the experimental
measurements. We obtain P({fy=i}) the probability of having i XNOR outputs turning from a
correct zero state to an erroneous one state, and P({f;=j}) the probability of having j XNOR

outputs turning from a correct one state to an erroneous zero state, using binomial laws

N — . .
P({fo=1ih= (inl) x plx (1-p)N-m-i (3.5)

P({f1=j})=(}3.1)ijX(l—p)"l_j. (3.6)

We also introduce P({CN(x)=1}), the probability of the capacitive neuron (CN) giving an
output of one when x XNOR outputs equal to one, obtained for various neuron sizes and clock

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED

(a) Neuron size = 33 100 (b) Neuron size = 257 100
12 —— clk=4ns] —— clk=4ns s
e clkmbns] e Clkm6NS I}
= clk=8ns = clk=8ns
— cie10n - 80 00 00 00 00 00 0.0 00 e10m | a0
< s 0.0 0.0 00 00 00 0.0 0.0 < s
= clk=12ns 00 0.0 0.0 0 00 00 00 = clk=12ns
— clk=16ns 0.1 0.0 0.0 00 00 0.0 0.0 —— clk=16ns
—— clk=20ns 11 00 0.0 00 00 0.0 0.0 —— clk=20ns
L 60 52 00 0.0 0.0 00 00 0.0 - 60
169 21 1.3 1.3 05 08 0.7
q 4516/ 25.2 21.7 22.4 19.5 21.1 19.2 2
26.3 28.1 23.4 19.9 22.5 20.8 20.9
70 31 1.1 05 05 1.1
40 09 01 0.0 0.0 0.0 0.0 40
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
20 0.1 00 0.0 0.0 0.0 0.0 20
0 0
a 6 8 10 12 16 20 0.00 0.25 0.50 4 6 8 10 12 16 20 000 0.25 0.50
clk period (ns) Error probability clk period (ns) Error probability
() Neuron size = 513 ()
12 0.0 0.0 - 100 af T T T T T
11 0.0 0.0 0.0 = clk=4ns e — clkmdns
10 0.0 00 0.0 —— clk=6ns] | Clk=6ns i
9 0.0 0.0 0.0 0.0 — clkmBns 3.5 e
8 0.0 0.0 0.0 0.0 0.0 | —
7 0.0 0.0 00 00 0.0 — clk=10ns 80 — clk=10ns
6 0.1 00 0.0 0.0 0.0 — clk=12ns 30F cik=12ns T
s 0.6 0.0 0.0 00 0.0 — clk=16ns — clk=16nS
a 15 03 08 01 05 — k=
3 61 42 30 11 20 clk=20ns L 0 2.5F clk=20ns 4
2 17.5 313.0 10.6 9.6 ©
al 35.4 0359 35.7 32.4 £
1 K 5 34.2 34.0 36.0 o220 7
2 9125 10.7 12.7 °]
3 48 35 21 24 20 40
-a 16 03 01 04 0.0 15pF 1
5 0.2 0.0 00 0.0 0.0
6 0.0 00 0.0 0.0 0.0
7 0.0 00 0.0 00 00 10F 1
-8 0.0 0.0 0.0 0.0 0.0 20
9 0.0 0.0 0.0 0.0 0.0
-10 0.0 0.0 00 00 0.0 05fF b
11 0.0 0.0 0.0 0.0 0.0
12 0.2 0.0 0.0 0.0 0.0 0 L L L L L
% 6 B 10 12 16 20000 025 050 100 200 Neur:r?osize 400 500
clk period (ns) Error probability

Figure 3.3: Monte Carlo simulations of neuron operation. (a) - (c) Simulated neuron error rate,
as a function of the preactivation (A) and of the clock period, for neuron sizes of
(a) 33 inputs, (b) 257 inputs, and (c) 513 inputs (not counting the bias terms). Error
rates are plotted with a Gaussian fit. These simulations include transistor variability
using the foundry design kit and the resistance distributions with a read voltage of
0.6 Vand compliance current of 200 pA. (dd) The standard deviation of the Gaussian
fit of the simulated neuron error rate for different neuron sizes and clock periods

periods from the Gaussian distributions of fig. 3.3 (d). Then, we can compute the probability of

the neuron output a; being equal to one instead of zero by

N—-m min(n,,n,+i—[N/2])
P{aj=1lm <|N/2lh= > P(fo=iD > P{fi=jH*xPUCN(ni +i—j)=1})
i=[N/2]-m j=0
IN/2] ny
+ Y PUfo=i} > P{fi=jH*xPUCN(m +i—j)=1}
i=0 j=max(0,n;+i—|N/2])

(3.7)
Using this model, we can compute the error probabilities for any value of N, for all the

3.2 IMPLEMENTATION OF BNN WITH RERAM BRIDGES AND CAPACITIVE NEURONS 81

different values of n;, which play the role of A.

3.2.3 Neural network inference

To evaluate the performance of our BNN circuit at the neural network scale, we incorporated
the error model introduced in the previous section (and described by eq. 3.7) into the PyTorch
[172] deep learning simulation framework. Inferences are performed for multiple program-
ming conditions, read voltages, and clock periods on the MNIST handwritten digit recognition
and the CIFAR-10 image recognition datasets.

During the neural network inference, we perform the MAC operation normally and then
take the probability value computed from the error model corresponding to the preactivation
A values. This is the probability of having an error in that particular output. For example, for
a A of value -2, we get an error probability of 0.1 for a particular clock period from our error
model; then, the sign of that output would be flipped with a probability of 0.1.

Fig. 3.4 (a) shows the obtained test recognition rate, along with error-free baselines. For
the MNIST task, negligible accuracy degradation is reported for all compliance current values.
Even for the most critical configuration (a 6 ns clock period, a read voltage of 0.2 V, and a com-
pliance current of 40 microamperes), the accuracy degradation is only 0.2 point percent for a
baseline accuracy of 98.3%.

CIFAR-10 image recognition is a much more challenging task. Fig. 3.4 (b) shows the ac-
curacy loss, compared to a software precision baseline of 90.6%, for various conditions. The
accuracy loss (in percentage points) is low, although it is higher than in the MNIST case. Even
for a read voltage of 0.2 V and a standard compliance current (110 microamperes), we observe
only 0.9 point percent precision loss for a clock period of 20 ns (1.4 point percent for a clock
period of 8 ns and 2.3 point percent for a clock of 6 ns). Overall, the compliance current has a
remarkably low impact on the accuracy: only a truly low value of 40 microamperes substantially
degrades the accuracy.

Errors are not considered for the first and last layers since the respective inputs and outputs
of those layers are not binarized. For the MNIST task, we used a fully connected network with
three hidden layers of 1,025 neurons each. For the more challenging CIFAR-10 task, we used an
architecture based on the binarized Visual Geometry Group (VGG) structure, consisting of six
convolutional layers followed by three fully connected layers [173].

In conclusion, this study implemented a BNN circuit based on a 2T2R ReRAM array with
a capacitive output neuron. Experimental measurements and computer simulations show the
robustness of this approach to imperfections related to both ReRAMs and transistors. Neural
network simulation for the MNIST and CIFAR-10 tasks shows that the degradation in accu-
racy is low even for low compliance current and short clock periods. These neural network
simulations reveal that due to the intrinsic tolerance of binarized neural networks to errors, it
can be favorable to choose low read voltages and programming currents, as they respectively

promote energy efficiency and device endurance, with low impact on network-level accuracy.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
82 CONSTRAINTS

For a clock period of 6 nanoseconds, our 513 inputs BNN circuit provides an appealing peak
energy efficiency of 96 TOPS/W and 449.3 TOPS/W for, respectively, a 130-nanometer and a

22-nanometer implementation.

—= baseline S lc=40pA [lcc=60 pA 0 lcc=80 pA
~&— clk=6ns —@— clk=8ns —&— clk=20ns

(a) MNIST
100 F—e—-
§ 80 L 98.5:
a : 98‘0.
g 60~ 73
O : 97.0:
% 40— 96.5;
Jg’-; : 96.&;_
= 20 -
10-4 10°3 102 101
XNOR error probability
(b) CIFAR-10
:\5 80~
a -
o 60 N
—
3 -
8 -
b4 40 N
T - =
& 20 -— %grlfl,l,lllflolnflfl,l,lllfblrlflfl,ll loTlf

10~ 10~ 10~ 10~
XNOR error probability

Figure 3.4: Neural network simulation results with errors. Inference accuracy for the (a) MNIST
and (b) CIFAR-10 datasets as a function of XNOR error probability for different clock
periods. Markers indicate the inference accuracies for Ic¢c=40 microamperes, 60
microamperes, and 80 microamperes with V,,,;=0.3 V.

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 83

3.3 Aself-powered memristor-based BNN

3.3.1 Extreme-edge Al

Artificial intelligence (Al) has become increasingly prevalent in embedded applications, in-
cluding patient monitoring, building, and industrial safety [174]. To optimize security and
minimize energy consumption resulting from communication, it is preferable to conduct the
majority of data processing at the edge of such systems [175]. However, integrating Al into
extreme-edge environments presents a challenge due to its high power consumption, which
often necessitates its deployment to the "cloud" or "fog" [176, 177]. The use of memristor-
based systems offers a promising solution to this problem, as they can significantly reduce Al
energy consumption [139, 178]. This makes it feasible to create self-powered edge Al systems
that can derive their energy from the environment rather than requiring batteries.

As highlighted in the previous section, the most energy-efficient memristor-based Al cir-
cuits rely on analog-based in-memory computing to perform the fundamental operation of
neural networks,(MAC) [120, 125, 179]. However, this concept is difficult to implement in prac-
tice due to the high variability of memristors, imperfections of analog CMOS circuits, and volt-
age (IR) drop effects. To address these challenges, memristor-based Al systems require highly
complex peripheral circuits that are optimized for specific supply voltages [123, 126, 180-184].
Unfortunately, this requirement for stable voltage directly contradicts the characteristics of
miniature energy harvesters such as tiny solar cells or thermoelectric generators, which pro-
duce fluctuating voltage and energy. As a result, the realization of self-powered memristor-
based Al systems presents a significant obstacle.

In this study, we present a new approach to memristor-based binarized neural networks
that can effectively handle power supply issues. We employed a hybrid memristor/CMOS pro-
cess to design, fabricate, and test a circuit that includes four 8,192-memristor arrays, utilizes
a 2T2R method to store synaptic weights, employs multiplication within a robust differential
sense amplifier, and applies a simple digital circuit for accumulation. To demonstrate the cir-
cuit’s resilience, we connected it to an III-V semiconductor-based solar cell optimized for en-
ergy harvesting under low illumination conditions. Our findings reveal that the circuit per-
forms as well as it does with a lab-bench power supply under illuminations higher than 1 sun.
Even when exposed to illuminations as low as 0.08 suns, the circuit remains functional with a
moderate decrease in neural network accuracy. Our circuit is capable of adapting to the power
supply by automatically switching between exact and approximate computing, indicating its

versatility in handling power supply variations.

3.3.2 Circuit

Since this is another implementation of BNN, the computations necessary for inference are

exactly the same as equ. 3.2, and this circuit also needs to be able to perform the same calcula-

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED

84

CONSTRAINTS

Figure 3.5:

;
lQ
Level Shifters

lcu. 0:63) lcaun [063] ypDC

o e] e (O [e
Rainaan e ﬁ“
AR *—@E H

A A A ‘ g.clo(om]
W ase e
fx}!\{h I“g{‘ }‘Z\{L ; XPCSA = XNOR + PCSA
RS (f) voo PCSA
EAESIE:
L BL, SI{BUS. BL, SL, BLb, BL, B, | | m :‘:h
vooc | Level Shifters st oo
I n — ! X -x
[xpesa | xecsa B xecsa ||voo
|XNORowt 0:63] omos 't B! XNOR

Overview of the memristor-based BNN circuit (a) Optical microscopy image of the
fabricated die, showing four memory modules and their associated digital circuitry
and power management unit. (b) Zoomed image of one of the memory modules.
(c) Scanning electron microscopy of a cut of a hybrid CMOS/memristor circuit,
showing a memristor between metal levels four and five. (d) Schematic of a mem-
ory module showing the co-located ReRAM and their access transistors, the level
shifters for the columns and rows, and the XPCSAs connected to the ReRAM array.
(e) Schematic of the level shifter, used for shifting digital voltage input to medium
voltages needed during programming operations or nominal voltage during reading
operations of the memristors. (f) Schematic of the differential pre-charge sense am-
plifier PCSA used to read the binary memristor states, with embedded XNOR func-
tion, to compose an XPCSA.

tions in or near memory. The memory array is similar to the implementation presented in the

last section, with HfOx-based ReRAM integrated with a low-power 130 nm CMOS process node
shown in fig. 3.5 (a), (b) and (c).

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 85

The design choices in this study are aimed at achieving the most reliable operation in the
presence of an unreliable power supply, following the differential strategy proposed by Hirtzlin
in [157]. Our approach involves utilizing two memristors per synaptic weight, programmed in
a complementary manner, with one memristor in a low resistance state and the other in a high
resistance state (as depicted in fig.3.5 (d)). One obstacle is that the forming process necessitates
voltages up to 4.5V, while our CMOS process’s typical voltage is just 1.2 V. To address this issue,
we integrated level shifter circuits into the peripheral circuitry of the memory arrays (as shown
in fig. 3.2 (e)), which are capable of withstanding high voltages. These circuits leverage thick-
oxide transistors to increase the voltage of the on-chip signals that instruct the programming of
memristors. Additionally, we have incorporated a dedicated logic-in-memory precharge sense
amplifier (PCSA) to execute the multiplication, which simultaneously reads the state of the
two memristors representing the weight and performs an XNOR with its input (as illustrated
in fig.3.5 (f) where X represents the input) [168]. Moreover, power supply voltage fluctuations
affect both branches of the sense amplifier symmetrically, further enhancing the robustness
of our design. Therefore, unlike other analog in-memory computing implementations that
require finely controlled supply voltage, our approach eliminates the need for compensation
and calibration circuits.

In this study, the resistances are connected in parallel, and the memory state of a cell is
connected to their relative resistances. This differential approach provides increased circuit re-
silience by minimizing the impact of memristor variability. Specifically, even if the memristors
deviate significantly from their programmed values, the sense amplifier will produce the cor-
rect output as long as the relative resistances of the two devices preserve their relative order in
terms of magnitude.

As shown in fig. 3.5 (f), the reading of the weight and the subsequent XNOR operation is
done in a single step with a circuit block that combines an XNOR gate and a PCSA circuit and
is called the XPCSA. The XPCSA operates by pre-charging BL and BLb to a voltage VDD and
then letting it discharge through their corresponding memristors and the XNOR layer. Due to
the difference in resistances, the time constants of the discharge are different, and it allows the
latch in the PCSA to acquire the XNOR value.

In our memory array having 64 rows, the first six rows contain the threshold value, where
the topmost row encodes the most significant bit of this value. The rest 58 rows are used for the
synaptic weights. First, the threshold value is loaded, and then the popcount operation is done
by going through the rows and subtracting one from the threshold value whenever the XNOR
value equals one. This is done using a decounter, and the final sign operation is performed
by comparing the value of the decounter to zero, which yields the final binarized output. In
this setup, with maximum voltage, the only source of errors is the variability of the ReRAMs or

failures in their programming.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
86 CONSTRAINTS

3.3.3 Divide-and-conquer mapping strategy

Aresource-based constraint of our circuit is that it has only the provision to have 58 input rows
(since the other 6 are dedicated to the thresholds). On the other hand, typically, the number of
inputs in a neural network is much higher, and the value itself varies across different layers. In
this section, we describe the Divide-and-conquer strategy that we use to map neural networks
to our chip, taking into account this particular resource constraint of the array. Our solution
involves partitioning the inputs and performing the popcount operation on each partition in-
dividually, producing a partial output. These partial outputs are then combined to obtain the
final output of that layer. Fig. 3.6 shows the general idea of this concept, where (a) shows the
ideal scenario where the number of rows in the array n,,,s is equal to the number of inputs
of that layer 7n;,py¢s. This is not realistic, and typically the number of rows is less in number
and has a fixed value, whereas, for a real neural network, the input sizes of different layers are
not the same. In fig. 3.6 (b), we show our proposed solution to this, where we divide our input
into partitions, each with n,,,,s number of units. We compute each of their outputs individ-
ually and, finally, combine them to compute the final output. The specific implementation
techniques differ between fully connected and convolutional architectures, and we provide a

detailed account of these strategies below.

Neots = Moutput Meols = Noutput
| t € > ST
(a) n(p)ui PLO BLb,| BL, BLb, BL, BLb,| 4 (b)
Ot T 1
O Wi rg
R R AR AT
8 : E’_L LR B s 3 I
A T T O T =
U':ﬂ 1R S I O S R T 1 é
S[AY AT TEE | P
O SLo| BLby| [BL, |[SL, [BLb, BL, [sL, N i
R 1 £ OO0 O
oG O 3

Figure 3.6: Illustration of the Divide-and-conquer mapping strategy. (a) The mapping of our
network to the circuit when the number of rows n,4,,s and the number of inputs
of the neural network 7;;,,s are the same. (b) Our Divide-and-conquer mapping
strategy for a more realistic circuit with a fixed number of rows (64 is shown in this
case).

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 87

Divide-and-conquer in fully connected architecture

(b) Divide-and-conquer

Div. input 1
é I
(a) Conventional approach
Input Input ‘
A Output A 6 < Div_input 2
'®) O - Output
P
>0 A A c
~ -~ =
P~ = N g
= s zf—
S = =
= -0 Sllod--. . . S
L J L]
~, L] o E
\ale; v 19 .
- Div. input N

PC summed over: 72;,,,,¢

PC summed over: N, s

Figure 3.7: Schematic for the Divide-and-conquer strategy for a fully connected architecture.
(a) A conventional fully connected layer of a neural network where the popcount
operation is performed over 7, values of neurons. (b) Our Divide-and-conquer
approach for the same neural network layer. The input layer is divided into N parti-
tions with n,,,,s neurons in each, independently connected to output layers. These
intermediate output layers are combined in a ‘'majority wins’ function to produce
the final output. Here, the popcount is over 7,4, s values.

The neural network operation of calculating the output from 7;,,,, number of inputs,

without any circuit consideration, has the following form

Ninput
Xour,j =sign| Y. XNOR(Wji, Xini)—Tj|. (3.8)
i=1
In our case, the number of values over which we can perform the popcount operation is
fixed by the number of rows present in our array (7,4,s). Therefore, as shown in fig. 3.7, we
divide the n;,py; into N partitions with 7,4, units in each (hence, N = W). If eri’ Xl.’n .

and Tjr represents the weights, inputs, and thresholds for the r partition, the output is then

calculated as

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
88 CONSTRAINTS

Xour,j = sign(rzj\llsign(nlmjsXNOR (Whx1,.) - T].’)) (3.9)

In fig. 3.7, the summation of the intermediate outputs and the following sign function is
represented by the ‘'majority wins’ function: if the +1s are in the majority among the outputs, it
yields +1 and -1 otherwise. Since we are combining the intermediate outputs in this manner,
N must be an odd number; otherwise, some outputs could have an equal number of +1s and
-1s. We achieve this by choosing 7;5,pus such that N is odd.

The Divide-and-conquer strategy is used for the first hidden layer with 1,102 neurons as
input in the fully connected architecture. For our array, among the 64 rows, a total of six rows
are reserved to represent the threshold value, leaving a total of 58 rows available for the input
values, which leads to N being equal to 19.

The Divide-and-conquer mapping strategy keeps the total number of weights in the net-
work the same as a conventional implementation. Still, it involves a loss of information as
it performs the summation in parts, and we suffer a slight degradation in accuracy (98.0% to
97.2% on MNIST).

Divide-and-conquer in convolutional architecture

For convolutional neural networks, the popcount operation is performed differently. In our
approach, we use filters with dimensions of 3x3x N¢ to convolve over the input feature map,
where N¢ represents the number of channels. To address the resource constraints of our array,
we partition the input feature maps along the channel dimension and apply the appropriate
number of corresponding filters, as shown in fig. 3.8. Unlike in the case of fully connected
neural networks, the number of channels in each partitioned feature map, denoted by Ny;,, is

not equal to n,4,s. Instead, owing to the 3x3 filter shape, N;, is given by the expression:

n
Naip = | =22 . (3.10)
9
The total number of partitions is given by N = %, and the number of popcount operations

performed in each block is 3 x 3 x Ny;,,. The intermediate outputs obtained from each division
are combined in the same way as in the fully connected network to generate the output feature
map. For the same reasons as the fully connected architecture, we choose the total number of
filters N¢ such that the total number of partitions N is odd.

For the convolutional (feature-extracting) part of our network, we used a value of Ny;;, = 6
because of our 1,4, size 0f 58 and eq. 3.10, and for the fully connected (classifier) part we used
mapping as described in the previous section. Table 3.1 lists the number of partitions used for
each of the layers:

In this architecture as well, the total number of filters, or in other words, learnable weights,

are preserved as compared to an undivided architecture, although with some degradation of

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 89

(a)
Conventional
approach

Ne Convolution (*)

PC summed over:
3x3xN

Output feature
map

Input feature map

PC summed over:

* 3 X3 X Ndil'
Divide-and-conquer Rl Div. i
A iv. input 1
*
)
LY Div. input 2
.. Output feature
¢ map
*
Input feature map -

Div. input N

Figure 3.8: Schematic for the Divide-and-conquer strategy for a convolutional architecture. (a)
In a conventional convolutional architecture, the input feature map with a channel-
wise dimension of N¢ is convolved with a filter of dimensions 3x3 x N¢ to produce
the output feature map. Here, the popcount is done over 9N values. (b) In our
Divide-and-conquer strategy, both the input feature maps and the filters are divided
along the channel dimension into N partitions, each with Ny;, channels. Subse-
quently, the convolutions are performed on each of them, and the outputs are com-
bined using a majority function to yield the final output. The popcount is performed
over 9N,;, values in this case.

accuracy (90.0% to 86.6%).

3.3.4 Error in the circuit inference

To verify the compatibility of our circuit with energy harvesters, we connected it to a minia-
ture (5 mm x5 mm) AlGaAs/GalnP heterostructure solar cell. This type of solar cell, fabricated
following the procedure of [185], with a 1.73 eV bandgap, performs better than conventional
silicon-based cells under low-illumination conditions, making it particularly suitable for ex-
treme edge applications. Energy harvesters are usually connected to electronic circuits through
sophisticated voltage conversion and regulation circuits. Here, to demonstrate the robustness
of our system, we connect it directly to the solar cell. This demonstration is possible as the max-
imum voltage provided by our solar cell (1.25 Vunder 1 sun illumination) matches the nominal
supply voltage of our CMOS technology (1.2 V), unlike silicon solar cells, whose maximum volt-

age is only 0.7 V and would require voltage conversion for use under low illumination.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED

920 CONSTRAINTS
H Type of layer Nc N H
Conv 198 33
Conv 354 59
Conv 738 123
FC 406x3x3 63
FC 1102 19

Table 3.1: The number of channels/neurons used in the different layers of our simulated con-
volutional network and the corresponding number of partitioned blocks in our
Divide-and-conquer mapping strategy.

We measure the circuit’s performance under the illumination of a lamp producing four dif-
ferent intensities: 8 suns, 0.8 suns, 0.36 suns, and 0.08 suns. Under the illumination of 1.5 suns,
the circuit performs almost equivalently when powered by a 1.2 V lab bench supply. Fig. 3.9
shows the error probabilities of the circuit output neurons for the different illumination lev-
els as a function of the preactivation A, which is the difference between the popcount and the
threshold. No errors were found for |A| > 5, and since the cause of these errors is the errors in
the weights (ReRAM issue), the probability of an error is higher when the popcount and thresh-
old values are similar. This is so because there is an error in the output when the expected
output is +1, whereas the measured output is -1, or vice-versa, and this change of sign is more
likely when the A value is close to zero, which is the crossover point between the two values.
The measurements are shifted with respect to the A = 0 because, in our circuit, this case is con-
sidered to have an output of -1, and in this case, the true point of symmetry of A is between 0
and -1. Another issue we observed is that the measurements are asymmetric, so we didn't fit
a Gaussian as we did in the previous section. We used an exponential fit for the two branches
separately and used the average value of the fit parameters to get the shown fits in fig. 3.9. We

use this error model to simulate the real errors of our circuit for the neural network simulations.

3.3.5 Neural network inference

We now evaluate the performance of our circuit on neural networks using the Divide-and-
conquer mapping scheme we presented earlier. To assess the accuracy of our hardware, we
incorporated the error rates measured experimentally as a function of preactivation value and
illumination (fig.3.9) into neural network simulations. Table 3.2 lists the obtained accuracy on a
fully-connected neural network trained on MNIST and a convolutional neural network trained
on CIFAR-10. Remarkably, the MNIST accuracy is hardly affected by the errors in the circuit:
even under very low illumination of 0.08 suns, the MNIST accuracy drops by only 0.7 percent-
age points. Conversely, bit errors in our circuit significantly reduce the accuracy of the more
challenging CIFAR-10 task. Under 0.08 suns, the accuracy drops from the software baseline of
86.6% to 73.4%. The difference with the MNIST is that neurons tend to have low preactivation

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 91

o
>

-@®- 8suns
0.8 suns

-®- 0.36 suns

-@- 0.08 suns

o
w

Error probability
o
|IIII|IIII’T’IIII|IIII

—4 -2 0 2 4
Preactivation A

Figure 3.9: BNN inference output neuron error probability as a function of the difference be-
tween popcount and threshold, the preactivation A for different illumination levels
and fits for the error models used in the neural network simulations.

when solving CIFAR-10, as the differences between classes are more subtle.

H Solar cell illumination MNIST Accuracy CIFAR-10 Accuracy H

Baseline 97.2% 86.6%

8 suns 97.1% 83.6%
0.8 suns 96.9% 78.2%
0.36 suns 96.9% 78.3%
0.08 suns 96.5% 73.4%

Table 3.2: Simulated accuracy of solar-cell power in a fully-connected (MNIST task) and a con-
volutional (CIFAR-10 task) binarized neural network under various illuminations.
The software baseline assumes no bit error.

To further understand the impact of low illumination on neural network performance, we
plotted the t-distributed stochastic neighbor embedding (t-SNE) representation of the MNIST
test datasetin fig. 3.10 [186]. This method represents each image as a point in a two-dimensional
space, with similar images corresponding to nearby points and dissimilar images correspond-
ing to distant points. In the left image, we marked in black the correctly classified images by a
neural network under 8 suns illumination but not under 0.8 suns. Interestingly, these images
tend to be on the edges of the clusters corresponding to the different digit classes or even out-
liers that do not belong in a cluster. This suggests that the images the network starts misclas-
sifying under 0.8 suns illumination tend to be subtle or atypical cases. The right image shows
that this effect is even more pronounced under 0.08 suns illumination, with a few images in-
side clusters also being misclassified. Fig. 3.11 presents the same analysis for the CIFAR-10
dataset. The same trend that images wrongly classified due to low illumination tend to be edge

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
92 CONSTRAINTS

or atypical cases is seen, although it is less unequivocal than in the MNIST case.

For the neural network simulations, we used a fully connected and convolutional neural
network architecture for the MNIST handwritten digit recognition task and the CIFAR-10 im-
age classification tasks. Except for the input to the first layer, the activations and weights of the
network were binarized, following the binarized neural network implementation [187]. The
fully connected (FC) network had two hidden layers with 1,102 and 64 neurons. In contrast,
the convolutional architecture was based on the VGG-16 network. It consisted of 3x3 kernels
for convolutions (Conv), batch normalizations (BN), and nxn for MaxPool (MPn) and reads:
[Conv 198, BN, Conv 198, MP 2, BN, Conv 354, BN, Conv 354, MP2, BN, Conv 738, BN, Conv 406,
MP3, FC(1102-1102-10)]. The number of hidden layer units and convolutional filters was cho-
sen in accordance with the dedicated mapping technique described previously, such that the

total number of blocks is always odd when a block size of 58 is used.

3.3.5.1 Visualizing erroneous examples

To understand the nature of the errors, we visualize the test examples where our neural net-
work makes an error in the prediction. In the t-SNE plots of fig. 3.10 and fig. 3.11, we saw that
these errors were mainly near the edges of the clusters for the cases where the prediction was
incorrect for 0.8 suns but correct for 8 suns which meant that these cases have some ambiguity
to them. Whereas the examples where the 0.08 suns made incorrect predictions included both
the images at the edges and more centrally located points, which should mean that those ex-
amples are much clearer. To test this, we plot some examples where the network made errors
for the 0.8 suns and 0.08 suns illuminations and compare them with some random examples
from the datasets.

The MNIST dataset is considered one of the most standard computer vision datasets as it
is relatively easy to get a good prediction accuracy. This is because most of the images are very
clear, and the data is pre-processed, as seen from the examples in fig. 3.12. The majority, if
not all, of these examples, are very clear to us, and there is little ambiguity in which class a
single image would belong to. We compare this to fig. 3.16, which shows examples of mistakes
with 0.8 suns illumination, to observe that this set of examples has a few ambiguous cases, and
generally, the form of the handwritten digits is less standard than what we usually write. Above
each example, we represent the true label and the label predicted by the network as 't and 'p,
respectively. From this, we learn that all the errors the network makes are not random; it is
sometimes making mistakes where an image looks similar to another image. Some examples
of such cases are the sixth image in the first row (3 predicted as 7), the sixth image in the second
row (7 predicted as 2), the fourth image in the third row (3 predicted as 8), the second image in
the fifth row (6 predicted as 1), etc. Although there are some examples where it makes an error,
the digit is quite clear to the human eye. Now, let’s look at the cases of mistakes with 0.08 suns
illumination in fig. 3.14. We see three different types of images: intelligible ones (like the first

image of the second row and the fourth image of the sixth row), ambiguous ones (examples

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 93

0.8 suns incorrect, but 8 suns correct

(@) 100k
~ 50F
£ -
© 0 -_
w -
= C
0 -
+ =501

~100F

700"
t-SNE dim. 1

0.08 suns incorrect, but 8 suns correct

(b) 100F
~ 50F
£ .
© 0-_
m -
= C
n .
& —50F
~100F S
C 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1
=50 0 50 100
t-SNE dim. 1

Figure 3.10: t-distributed stochastic neighbor embedding (t-SNE) representation of the MNIST
test dataset. The black data points are incorrectly classified under 0.8 suns (top)
and 0.08 suns (bottom) illumination, but they are correctly classified under 8 suns,
using a binarized fully-connected neural network.

similar to or identical to fig. 3.16), and clear examples. This means that it is making errors in
almost all the cases where it made an error in the 0.8 suns illumination and also in instances
where the image is clearer.

Compared to the MNIST dataset, the CIFAR-10 dataset is more challenging as the images
are now colored and have much more variability than the MNIST. The reason behind this is

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED

94 CONSTRAINTS
(a) 0.8 suns incorrect, but 8 suns correct
a0~
N 20F
E I
© 0~
w L
% C
& m20r
40. -
.lIlllllllllllllllllllll'lllllllll.lllllllll

-100 -75 -50 -25 0 25 50 75
t-SNE dim. 1

0.08 suns incorrect, but 8 suns correct

P
O
~

40

20

t-SNE dim. 2

o
DAL NN I LR B LA A L AL L

AN EEEEE AN AN FEEEE EREEE NN NN

-100 -75 -50 -25 0 25 50 75
t-SNE dim. 1

Figure 3.11: t-distributed stochastic neighbor embedding (t-SNE) representation of the CIFAR-
10 test dataset. The black data points are incorrectly classified under 0.8 suns (top)
and 0.08 suns (bottom) illumination, but they are correctly classified under 8 suns,
using a binarized fully-connected neural network.

that for a single digit, say '0’, there are only a handful of different ways we can write this; hence
all the examples in the dataset with the same label look very similar. On the other hand, the
output classes of the CIFAR-10 dataset are real-world objects like dog, cat, horse, deer, frog,
bird, car, truck, ship, and plane. As we can see from fig. 3.15, which are random images from
the test dataset of CIFAR-10, even for a particular class, the image can significantly differ based
on the type of the object, the background, the angle from which it the photograph is captured,
the picture quality, etc. This makes the dataset more complex and, thus, harder for our net-

work to predict correctly. This is reflected in the fact that we have lower baseline accuracies

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 95

Random MNIST test examples

t:1

IIIEI /

t:6

t:3 t:4 t:9 t:6 : :
4 t:0 t:7 4
4
E n
!
t:3 t:1 t:3 t4 t:7 t:2

Figure 3.12: Visualization of random MNIST examples from the test dataset where each image
is labeled by the true label 't.’

and higher degradation when we incorporate the errors. Fig. 3.16 and fig. 3.17 show some ex-
amples from the test set where the network makes mistakes for illuminations of 0.8 suns and
0.08 suns respectively, but the predictions are correct for 8 suns. For the cases with errors un-
der 0.8 suns illumination, we observed common mistakes where the class labels for the true
and predicted labels are swapped commonly. This happens for the plane-ship, cat-dog, and
car-truck (not shown here) pairs and can be understood from the point of view that these often
have very similar backgrounds like the ship and plane both often has blue backgrounds, and
the cat and dogs have household in their backgrounds commonly. In fig. 3.17, for the 0.08 suns
illumination, we see some of the same mistakes as in 0.8 suns, and also some mistakes where

the images are not clear, even to us, like the fourth image in the first row, first, and third images

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
96 CONSTRAINTS

0.8 suns incorrect, but 8 suns correct

t4, p:9 t:9, p:3 t:5, p:3 t5, p:3 t:3, p:7
t:5, p:3 t:7, p:9 t:3, p:2 t:5, p:0 t:7, p:2

t:3, p:8 t:2, p:9 t:9, p:1

4
S

Lr=

t:8, p:2 t4, p:9 t:3, p:7

t:3, p:5 t:9, p:4

t:5, p:8

Figure 3.13: Visualization of MNIST examples from the test dataset where the network made
an error for illumination of 0.8 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label 't’ and the predicted label 'p.’

in the fourth row, the first image in the fifth row, etc. The conclusion for the CIFAR-10 mistakes
is not as clear cut as the MNIST because the task’s difficulty makes the prediction highly sen-
sitive to errors, and in our case, both the 0.8 suns and 0.08 suns illumination levels cause too
many errors for the visualization to be truly illustrative.

However, it can be concluded that with less illumination, the network can still perform the
predictions, but it makes mistakes for more complicated or ambiguous cases. Thus our BNN in-
ference circuit can function even in low-light settings, but it would make more mistakes in less
straightforward cases. The reason for this is that for the more ambiguous cases, the magnitude

of the preactivation A values are lower, where the probability of having an error is significantly

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 97

0.08 sunincorrect, but 8 suns correct

t:8, p:4 t:9, p:3 t:4, p:9 t:9, p:3 t:5, p:3

HEAEIE

t:7, p:9 t:5, p:8 t.9, p:7 t:3, p:7

Q[3
)

=

t:8, p:2 t.6, p:4

.
t:5, p:3 t.0, p:9 t:7, p:9 t:5, p:6 t:3, p:8 t:2, p:9

Figure 3.14: Visualization of MNIST examples from the test dataset where the network made an
error for illumination of 0.08 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label 't’ and the predicted label 'p’

C‘]

%

9

higher. There is a note of caution to be remembered here: interpreting how a neural network
produces an output is a notoriously difficult task, and extensive research is being done in the
field of interpretable deep learning. Hence, the intuition we gain from studying the test exam-
ples might not always represent how a network functions. Especially for the fully connected
architecture, it is doubtful that the network learns from the dataset in a way that is similar to
how humans perceive information. So, the t-SNE-based study is probably more reliable as it

does not depend on human perception.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
98 CONSTRAINTS

Random CIFAR-10 test examples

t:ship t:ship t:plane t:frog
< Loab, [
- -
i h

t:cat

t:truck

‘.‘
Al.

titruck

t:horse

Figure 3.15: Visualization of random CIFAR-10 examples from the test dataset where each im-
age is labeled by the true label 't

3.3 A SELF-POWERED MEMRISTOR-BASED BNN 99

0.8 sunsincorrect, but 8 suns correct

t:cat, p:dog ticar, p truck t:bird, p:frog ticat, p:dog t:horse, p:truck t:plane, p:ship

2l

t:dog, p:horse t:cat, p:horse t:bird, p:plane t:car, p:truck t:dog, p:ship t:frog, p:deer

mreEE

t:deer, p:truck t:dog, p:cat t:bird, p:frog t:plane, p:horse t:bird, p:dog t:dog, p:cat

t:car, p:plane t:deer, p:truck t:ship, p:plane t:plane, p:deer t:frog, p:plane t:horse, p:cat

EES Bt

t:cat, p:frog t:deer, p:frog t:plane, p:ship ticat, p:horse t:deer, p:bird t:bird, p:cat

L

t:bird, p:deer t:dog, p:car

t:car, p:ship t:deer, p:horse
; ﬂ |
Figure 3.16: Visualization of CIFAR-10 examples from the test dataset where the network made

an error for illumination of 0.8 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label 't" and the predicted label 'p.’

t:cat, p:frog t:ship, p:plane

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
100 CONSTRAINTS

0.08 suns incorrect, but 8 suns correct

t:car, p:truck t:horse, p:truck t:dog, p:deer t:deer, p:truck t:deer, p:cat t:horse, p:deer

8 0 e/ B2 S

t:plane, p:ship t:cat, p:truck t:dog, p:cat

el

t:car, p:truck t:ship, p:horse t:horse, p:truck t:dog, p:horse t:dog, p:ship t:dog, p:cat

12 W | Sl

t:car, p:truck t:bird, p:horse t:car, p:plane

t:horse, p:dog t:frog, p:plane t:cat, p:dog

|

t:frog, p:cat t:plane, p:truck t:bird, p:cat

t:horse, p:truck t:deer, p:truck t:ship, p:plane t:plane, p:bird t:ship, p:plane t:frog, p:plane

XES™ I

t:horse, p:frog t:car, p:itruck t:dog, p:horse t:car, p:truck t:cat, p:frog t:truck, p:ship

Figure 3.17: Visualization of CIFAR-10 examples from the test dataset where the network made
an error for illumination of 0.08 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label 't’ and the predicted label 'p.’

3.4 CONCLUSION 101

3.4 Conclusion

In this chapter, we presented two studies involving the circuit-level implementation of bina-
rized neural networks dedicated to low-power inference. For the memory, HFOx-based 2T2R
ReRAMs are used for both works, which are integrated with the BEOL of a 130 nm CMOS pro-
cess node. The design of the circuits shows remarkable robustness to the device variabilities
of ReRAM and IR drop, which are significant obstacles in the traditional ReRAM-based imple-
mentation of neural networks.

The first study presented the implementation of inference of BNN, where the neurons were
implemented using switched capacitive bridges and comparators. The chip was validated, and
the probability of errors was measured experimentally, and these errors were used in the in-
ference of simulated neural networks for the MNIST and CIFAR-10 tasks. We show that the
neural network performance is quite robust to device-based errors even under programming
conditions where the circuit is more prone to errors.

The second study concerned non-optimal power sources, relevant for extreme-edge ap-
plications where power harvesters like solar cells can provide less than maximum power. We
show that even under such conditions of low illumination when the supply voltages are less
than what is optimum, our circuit shows very few errors and even those errors are primarily
for low preactivation magnitudes. In this work, we also consider another resource-based con-
straint of the hardware implementation of neural networks: the fixed number of inputs that
can be presented to an array. To mitigate this, we developed the Divide-and-conquer mapping
strategy, where the accumulations are done in parts. We show that this strategy suffers only
from a slight degradation in accuracy. Finally, using this mapping and the bit-errors, we simu-
late neural networks for the MNIST and CIFAR-10 tasks and, using t-SNE plots, show that under
low illumination, the network makes mistakes in more ambiguous or challenging cases.

To conclude, in this chapter, we illustrated that the binarized neural networks are robust to
different kinds of circuit-level imperfection through experimental demonstration and simula-
tions. This makes it a promising candidate for power-efficient, error-tolerant implementation

of neural networks in extreme-edge environments.

CHAPTER 3: IMPLEMENTATION OF BNN INFERENCE IMMUNE TO CIRCUIT-BASED
102 CONSTRAINTS

Chapter 4

Bayesian binary neural networks for
uncertainty quantification in medical

tasks

Intelligence takes chance with limited data in an
arena where mistakes are not only possible but

also necessary.

Frank HERBERT

IN THE last two chapters, we discussed neural network implementation that is robust to im-

perfections like noise, non-ideal circuit behavior, or variable power supply. This is be-
cause the deep learning algorithms that we were using relied on deterministic computations.
An alternative approach is to employ probabilistic computing. Instead of aiming for device
variability immunity, this computing paradigm employs it to enable computations based on
probabilities. This type of computation, in the context of machine learning, is a variant of sta-
tistical learning that uses the tool of probability to model mapping from input to output. In
other words, instead of dealing with finding suitable outputs, given some input, in probabilis-
tic computing, we are concerned with finding the probability of a certain output while some
information is given.

The content of this chapter revolves around probabilistic computing in the context of deep
learning. We show how this approach is compatible with a class of materials whose intrinsic
stochasticity could be harnessed for the hardware implementation of such models. First, we lay
the theoretical foundation of this approach to computation by introducing the key ideas and
algorithms behind probabilistic learning. Then, we review some experimentally demonstrated
realizations of such neural networks where the variabilities of emerging memories are em-
braced. After that, we introduce the Bayesian binary neural network (Bayes BiNN), the model
we use for the rest of the chapter. This is followed by a section where we describe the different

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
104 QUANTIFICATION IN MEDICAL TASKS

types of uncertainties that we can quantify using this approach and motivate how this estima-
tion of uncertainties is an important attribute of probabilistic models where it outshines the
conventional deterministic implementations. The next two sections describe, respectively, a
toy task and more realistic bio-medical tasks and how our model performs for them. We con-
clude the chapter by proposing some physical systems that are suitable for implementing this

special type of neural network in hardware.

4.1 Theoretical background

The notion of probability and its quantification has been discussed in the history of mathe-
matics since the sixteenth century by the likes of Gerolamo Cardano, Pierre de Fermat, Blaise
Pascal, and Christian Huygens. The probability of an event is simply a measure of how likely
it is for an event to occur. To quantify the probability of an event, the classical or frequentist
interpretation says that it is the limit value of its relative frequency over many trials [188]. If we
conduct N trials, and the event under consideration, say event A, happens n number of times,

then the probability of event 4, is given by

P(A) = lim (%) @.1)

N—oo

4.1.1 Bayesian interpretation of probability

This interpretation of probability assumes that there exists an absolute value of the probability
independent of the extent of our belief. However, Thomas Bayes presented a different defi-
nition of probability in 1763 that is more evidence-based [189]. According to Bayes’ interpre-
tation, the probability is considered a 'degree of belief’ in the chance of the occurrence of an
event. This approach is more subjective and cannot be directly measured like the frequentist
approach. Instead, the probability is updated as more evidence becomes available. This update
starts from a prior degree of belief in the event before any evidence is considered, which is then
updated as more information becomes available. The Bayesian interpretation centers around
Bayes’ theorem, which utilizes the sum rule and product rule of probabilities for conditional
events.

Let A be an event, and let Ey, E,, Es, ..., E; be n mutually exclusive partitions of the whole
sample space. Suppose we only have access to the conditional probabilities P(A|E;), P(A|E>),
P(A|E3),..., P(A|E,). Concretely, if the events E;s are events that cause event A, this can be
interpreted as information about the causal connections. For instance, E; and E» might repre-
sent the events of windy and calm weather, respectively, and A can be the event that a person
wears a coat. By observing what the person wears given the weather conditions, we have about
the probabilities P(A|E;) and P(A|E»). Now, if we observe that the person is wearing a coat, can

we infer about the weather? Bayes’ theorem answers this question by inverting the probability

4.1 THEORETICAL BACKGROUND 105

and finding P(E; | A).
Bayes’ theorem states

P(A|E;)P(E;)

P(Ej|A) = " P(AIE)P(E)

4.2)

Let us describe each of the terms in this equation separately.

e Prior P(E;): This is the aforementioned prior probability of a causal event happening
independent of any other conditioning. In terms of our example, it is just the probability

of the weather being windy and is totally uncorrelated with the person wearing a coat.

» Likelihood P(A|E;): The probability of event A conditioned on the event E;, or in other
words, what is the likelihood of occurrence of event A when the event E; has already
occurred. For our example, this is the probability that we get from observing the person

on different days with different wind conditions.

¢ Evidence Z;’:I P(A|E;)P(E;): This term is the normalization constant that takes into ac-

count all possible ways that event A could have happened.

» Posterior(P(E;|A)): It is the inverted probability that we calculate. The process of our
probability calculation goes as follows: we have a prior idea about the weather condi-
tions of the area that is given by P(E;). We observe the person for some days to note the
proportion of times he is wearing a coat given a certain weather condition to get P(A|E;).
Then we use equ. 4.2 to find the posterior value of P(E;| A). The next time we observe this
person, this posterior probability acts as the prior.

To summarize, we start with a prior idea about the probabilities and update them as new
information gets available. This is operationally quite similar to how we train our neural net-
works, as presented in Chapter 1, where we present new training examples, and to get a better
prediction, we update the network parameters. The Bayes’ theorem can be recast in the form
of alearning task if we consider our event A to be the whole dataset D, the events E;s to be the
parameters of the model W, then we can rewrite Bayes’ theorem as

P(D|W)P(W)

Here, D = {X, Y}H(x;, yi)}?i 1 is the training dataset with inputs x;, their corresponding out-
put classes being y; € {1,2,...,C} where C is the total number of classes, and N is the size of this
dataset. In learning, the goal is to optimize model parameters W so that our model, denoted
by y = fW(x), can produce the intended output. In order to achieve this using the Bayesian
approach, we define a P(y|x, W) to be the model likelihood, and for classification, the softmax

likelihood for class index c is:

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
106 QUANTIFICATION IN MEDICAL TASKS

exp(fV)

—_— (4.4)
Yo exp(f)Y (%)

P(y=clx,W) =

For a test input sample x*, the class label probability can be calculated as

P(y*Ix*,D) = fP(y*Ix*,W)P(WID)dW. (4.5)

This calculation is the same as what we did for the inference in our supervised learning of
neural networks and is also called inference. It is also known as marginalization, as we are inte-
grating over W. In other words, this output probability is a probabilistic average or expectation
over different models that are sampled from the distribution of weight parameters. Instead
of a deterministic model, as we had until now, if we have a neural network where the weights
are random variables that have associated probability distributions, then equ. 4.3 can be used
to update those probability distributions. In this case, instead of learning the values of the
weights, we learn the values of the parameters of the probability distribution P(W|D).

In general, it is impossible to analytically calculate the denominator term of equ. 4.3 and
hence also P(W|D). To circumvent this problem, different methods are adapted, the variational
inference being one of them, where a variational distribution gg(W) is used to approximate
P(W|D). Then, the Kullback-Leibler divergence (KL divergence), a measure of distance between
two probability distributions, is used to quantify how good our approximation is. This diver-
gence is minimized by iteration through our dataset [35, 190, 191]. The KL divergence between
two distributions gg(W) and P(W|D) is calculated by the formula

qo (W) AW
P(WI|D)

KL (g (W)[| P(W|D)) = f do(W)log 46)

4.1.2 Bayesian deep learning

As of now, we have just stated an alternative way of doing statistical learning. We will gradually
present the advantage of this approach and how it can be superior to the more conventional
approach to deep learning in some contexts. Here, we present some ways in which the Bayesian

approach is applied to deep learning models.

4.1.2.1 Monte Carlo (MC) dropout

Dropout is a regularization technique that prevents overfitting in deep neural networks by ran-
domly dropping out a fraction of nodes during each training iteration. This forces the remain-
ing nodes to learn more robust representations that do not rely on the presence of any single
node [192]. Monte Carlo dropout extends this technique to perform approximate Bayesian in-
ference in deep neural networks. The dropout mask is randomly sampled at each forward pass

during inference, and this is done multiple times (10-100) to obtain a distribution of outputs

4.1 THEORETICAL BACKGROUND 107

t=1 o Accept 0, =z,
o
t=2 K Accept 0, =z,
Z3 \
t=3 Reject 63 =0,
L]
-
t=n A{mhh e O XY

Figure 4.1: MC dropout and MCMC. (a) The Monte Carlo dropout method of doing Bayesian
inference with neural networks. In each iteration, some neuron nodes are masked
at random with some probability, effectively making the model different in each it-
eration (fW1) fWZ("), and fWS(X), here). Thus, for the same input x, we get differ-
ent outputs which give us the distribution of the output probability P(y|x,D). (b)
Markov chain Monte Carlo method is illustrated by a simple example. The distri-
bution parameters @ explore the sample space by a random walk where each step
taken is either accepted or rejected based on a ratio of the current and proposed
states. The resultant frequency distribution of points, when normalized, gives an
approximation of the posterior distribution.

for each input. The mean of these outputs is then used as the final prediction, making it an
effective way to estimate model uncertainty [193, 194]. Fig. 4.1 (a) demonstrates the approach,
whereby three different models fW1®, fW® and fWs® produce different outputs for the same
input due to different active units, and these outputs are gathered to get the final distribution

of outputs P(y|x, D).

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
108 QUANTIFICATION IN MEDICAL TASKS

4.1.2.2 Markov chain Monte Carlo (MCMCQC)

The Markov chain Monte Carlo (MCMC) method generates samples from a difficult-to-sample
probability distribution by constructing a Markov chain that converges to the desired distribu-
tion. In deep neural networks, MCMC can be used to perform Bayesian inference to estimate
model uncertainty. MCMC is initialized with a random set of weights, and at each iteration, a
new set of weights is proposed based on the current state of the chain. The acceptance proba-
bility of the proposed state is computed, and if accepted, it becomes the new state of the chain.
Fig. 4.1 (b) shows an example of the MCMC process. By accumulating all the accepted points,
we can output a distribution for the posterior. MCMC is a powerful and widely used method

for estimating complex probability distributions. [195-199].

4.1.2.3 Variational autoencoder (VAE)

Autoencoder is a type of neural network that efficiently codes unlabelled data [200]. As shown
in fig. 4.2 (a), it consists of an encoder that maps the input data X to a lower-dimensional repre-
sentation called the latent variable Z and a decoder that generates a reconstruction of the orig-
inal input data X’'. Variational Autoencoder (VAE) is a probabilistic variant that learns a prob-
ability distribution over the latent code, enabling flexible modeling of input data [201, 202].
To train VAEs using backpropagation, the reparametrization trick is used, expressing the latent
code as a function of a noise variable, and the mean and variance of the Gaussian distribution
are learned. VAEs have been used for generative modeling, including image and text genera-
tion, anomaly detection, and dimensionality reduction [203, 204]. VAEs can naturally learn a

more regularized latent variable due to their probabilistic nature.

4.1.2.4 Bayes By Backprop (BBB)

Bayes by Backprop is another method used to train Bayesian neural networks [205]. The method
is based on the principle of variational inference, which is a way to approximate the posterior
distribution of a Bayesian model by a surrogate distribution. The key idea of the method is to
introduce a set of variational parameters, which are optimized to approximate the true poste-
rior distribution of weights. These parameters are learned using a gradient-based optimization
method, such as stochastic gradient descent.

The variational parameters are used to define a probability distribution over the weights
in the neural network. Let 8 be the variational parameters of the distributions of the weights
W, and g9 (W) be the surrogate variational distribution, then during training, the cost function,

called the variational free energy F (D, 8)is defined as
F(D,0) =KL(gg W)||P(W)) — E49,w) [log P(D|W)]. (4.7)

In equ. 4.7, the cost function is composed of two parts: the likelihood cost, which depends

4.1 THEORETICAL BACKGROUND 109

on the data D, and the complexity cost, which depends on the prior P(w). This cost function
balances the complexity of the data and the simplicity of the prior. It determines the optimal
values of the variational parameters @ that best fit the data while avoiding overfitting. Fig. 4.2
(b) shows the learning and inference of a Bayesian neural network using this method.

Once the training is complete, the posterior distribution over the weights can be used to
make predictions on new data using equ. 4.5. The predictive distribution is obtained by averag-
ing over the posterior distribution of weights, weighted by their probability under the posterior
distribution.

BBB has been shown to improve the performance of neural networks in a variety of tasks,
including image classification, speech recognition, and reinforcement learning. It also has the
advantage of providing uncertainty estimates for the predictions, which can be useful in safety-
critical applications such as medical diagnosis or autonomous driving, as we will motivate later
in this chapter. Also, since this method is based on the backpropagation algorithm, it is highly
compatible with the neural network implementation of the deep learning frameworks. This

will be our method of choice for the neural network that we will be studying in this chapter.

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY

110 QUANTIFICATION IN MEDICAL TASKS
(a) Z=Z#+Za-*6 TN
e~N(0,1) Se
S £
> Zu 2 5
85
o g
Decoder | X =

l

Py(X'|12)

(b)

Inference by sampling
from distribution

EEE—

softmax

Learning by Bayes by
backprop

Figure 4.2: VAE and BBB. (a) The VAE architecture shows the reparametrization trick. The en-
coder Py (Z|X) generates the mean and standard deviation parameters for the latent
variable Z, which is then passed through the decoder network Py (X'| Z) to generate
the reconstruction of the input. (b) The Bayes through backprop uses a combination
of the backpropagation and Bayes’ theorem to derive the updates to the variational
parameters. The inference of the model is done by sampling through the weight dis-
tributions to get the output distribution. Then equ. 4.7 is used to calculate the loss
function, and then the updates are backpropagated through our network.

4.2 Memristor-based probabilistic ML

In the following section, we will present three recent studies about the implementation of prob-

abilistic computing on hardware using emerging memory technologies.

4.2 MEMRISTOR-BASED PROBABILISTIC ML 111

4.2.1 Bayesian machine

A Bayesian machine is a non-deep machine learning model that uses Bayesian inference for
predictions. In [206], a memristor-based implementation of Naive Bayes method for Bayesian
inference was achieved. Given n observations Oy, O, ..., O, and the output Y = y, Bayes’ the-
orem (equ.4.2) was used to calculate P(Y = y|0y, Oo,...,Op) = P(04,0o,...,0,1Y = y)P(Y = y).
Then, Naive Bayes technique was used, which assumes that the observations are conditionally

independent. Thus, the following simplification is obtained
P(Y = y|01,03,...,0,) = P(O1]Y = y)P(O2]Y = ¥)...P(O,|Y = y)P(Y = y). 4.8)

This Bayesian machine stored 8-bit probability values in a ReRAM-based memory array us-
ing a complimentary fashion where the LRS-HRS and HRS-LRS pairs respectively denote the 0
and 1 bits, as shown in fig. 4.3 (a). These probability values were converted to a bitstream by
digital 'Gupta’ circuits and fed into an AND gate to perform the stochastic multiplications. The
non-volatile and low-power attributes of memristive devices were utilized for storing the prob-
ability values, and the computations were done by other circuits. The work utilized stochastic
computing, a type of computation that represents continuous values as a sequence of random

bits, allowing for straightforward bit-wise operations to perform complex computations [207].

4.2.2 MCMC on chip

Cycle-to-cycle and device-to-device variability in ReRAMs can be harnessed for probabilistic
computing, as demonstrated in [208]. When a SET operation is performed on a ReRAM, a dif-
ferent conductance state is obtained following a Gaussian distribution. An on-chip demon-
stration of learning the posterior distribution was performed using the MCMC method, utiliz-
ing conductances to represent the weights of the network (fig. 4.3 (b)). A deterministic model
was stored in each row of the array, with its parameters encoded by the conductance difference
between positive and negative sets of devices. The Metropolis-Hastings MCMC algorithm was
used to generate a proposed model at each row based on the previous row’s model [209]. The
ReRAM intrinsic random variability naturally generates each parameter of the proposed model
by performing a SET operation on each device in the row, with a programming current that
samples a new conductance value from a Gaussian distribution centered on the corresponding
device’s previous-row conductance value. After training, the learned posterior distribution in
the array can be used for inference, which is performed by taking the expectation of the outputs

of all the rows over the posterior distribution.

4.2.3 Bayesian neural network on chip

In [112], a Bayesian neural network was implemented where the intrinsic variabilities in fil-

amentary memristors and phase change memories in crossbar arrays were used to store the

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
112 QUANTIFICATION IN MEDICAL TASKS

probabilistic weights . The conductance of a single memristor is used as a single deterministic
model, and the distribution over a set of them comprises the probability distribution (as shown
in fig. 4.3 (c)). It was trained using the variational inference-based BBB method discussed in the
preceding section. The high conductance state of these memories exhibits variability that can
be modeled by a Gaussian distribution with a mean p and standard deviation o, both of which
depend upon the SET programming current. However, the mean and standard deviations are
strongly correlated and cannot be set independently for such devices. This is an obstacle in
the variational inference as all the parameters need to be changed independently. In order to
expand the range of Gaussian distributions, we adopt a method where each sample of a prob-
abilistic weight is stored as the difference between the conductance values of two neighboring
memory cells. This approach proves to be highly effective since the difference between two
Gaussian distributions remains a Gaussian distribution.

Still, the region of space covered by the memristors in the p-o plane is insufficient to achieve
effective training using the variational inference method. For that reason, a term is added to the
total loss function called the technology loss. This term takes into account the constraints of
the memory technology being used and penalizes the model for having distribution parameter
values outside its domain of possible value.

In this work, it has been demonstrated that implementing Bayesian neural networks using
memristive devices is possible by leveraging the device variabilities to emulate the probability
distributions. This approach has been shown to have advantages over deterministic neural net-
works, particularly in quantifying uncertainties for safety-critical applications like bio-medical

tasks. Later in this chapter, we will explore this aspect in greater detail.

IThe author of this thesis had a minor contribution to this work and is a co-author of the article

4.2 MEMRISTOR-BASED PROBABILISTIC ML 113

Observation Observation Obsam-on

AND gate
0, 0, &
H_ —‘_ _ Bkt stream e ‘
=AY,0,0....0, s 3
== W0, 5] 300 "0 10001, ALY,) Serse amplifier (PCSA)
et :
s, -
o < .
bt ot >
x
i

B
-F(Y,IO o\ 0) odr, !
' WL s f
. . " M
® e oo |
8it stream AO,Y,) &= «R{Y,0,0,...0,) T
Bit stream P(Y,) Stochastic v e
multiplier . - I — g x
L}
(a) BayeS|an machine
B [L85 THS] P coremmed |

RS RS Frogrammed O

AOJY) ROJY) AO,Y) AO,Y)

(b) In-situ MCMC o g & B ooz
O POJIY) POJY,) 2 ‘~._
3 =l
O MOJY) PO,Y,)
= all
O PO,Y,)

/
v
v§§1 ;k; l
% - »
ot0)

plgb)

’(V‘9|)C|

% 8
%&' & — 1(v-g,)C,
% 1%
i}

. 8
5 =

P

Figure 4.3:

Probabilistic computing in hardware. (a) The memristor-based Bayesian machine
where the Naive Bayes method is used for Bayesian inference wherein the probabil-
ity bits are stored in the array, and their multiplication is carried out by stochastic
computing. (b) In-situ MCMC using the variability of memristors to perform the
Metropolis-Hastings sampling algorithm. A single column in the array represents
the posterior probability of a parameter. (c) A Bayesian neural network is imple-
mented where the Gaussian distribution of device variability plays the role of the
probabilistic weights (Adapted from [112, 206, 208]).

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
114 QUANTIFICATION IN MEDICAL TASKS

4.3 Bayesian binary neural networks

4.3.1 Architecture and inference

A deterministic binary neural network (BiNN) has binarized values for the synaptic weights and
real values for the activations (unlike the binarized neural network (BNN), which we studied in
section 2.4.1, where both the neurons and synapses are binarized). Its Bayesian counterpart,
the Bayesian binary neural network (Bayes BiNN), replaces the deterministic binarized value
of the weight by a random variable that follows a Bernoulli distribution [210].

Concretely, in the deterministic version, each weight WPin ig either +1 or -1 and remains
fixed once a network is fully trained. On the other hand, for Bayes BiNN, we learn the probabil-
ity p that the weight would take a value of +1. Mathematically, the j™ weight iji " ~Bern(p;)
and so, the probability of sampling a value of +1 is given as

PW}" = +1) = p; 4.9)

Fig. 4.4 (a) and (b) highlight the differences between the deterministic and Bayesian net-
works. Unlike the fixed weights of the vanilla BNN, the Bayes BiNN learns a joint distribution
over the weights, and for inference, we draw samples from this distribution. Thus, we get mul-
tiple models, and we consider their cumulative output as the output probability distribution.
To compare with BiNN, as described in section 2.4.1, there exists hidden real weights W"¢%,
the sign of which leads to the binary weight W??”. The Bernoulli probability p plays an analo-
gous role to this real weight, as it also generates the binarized value, albeit using probabilities.
For brevity, we shall omit the 'bin’ prefix from here onwards, as we will always be talking about
binary weights.

The training algorithm is based on the Bayes-by-backprop algorithm described in section
4.1.2 and is detailed in appendix 4.8. Effectively, the probability associated with each synaptic
weight p is learned, and for testing, a Monte-Carlo average is taken over the outputs of different
sampled models. IfW(©) ~ g(W) is the ¢ sample of the model from the learned posterior (W),

and C is the total number of samples, then the output probability for the k" class is given as

1 C
Ply=kix) = =3 P(y=kix, W), (4.10)
i=1

4.4 UNCERTAINTY QUANTIFICATION 115

Weights
— -1

—_— 41

(a) Binary neural network

Distr. of weights

(b) Bayesian binary neural
networks

U Sampled models)
Y

Figure 4.4: Comparison of a binary neural network and its Bayesian analog. (a) The determin-
istic binary neural network where the weight is fixed and is always either -1 or +1.
(b) The Bayes BiNN, where each weight is a random variable following a Bernoulli
distribution with an associated probability parameter. In training, these probabili-
ties are learned. During inference, we sample C models to compute the MC average
for finding the output probability.

4.4 Uncertainty quantification

4.4.1 Safety-critical applications

In this section, we bring into focus the advantage of using the Bayesian approach: the ability
to quantify uncertainty in the prediction of an output. The aspect that conventional neural
networks excel at is the prediction accuracy of a task, but there are many applications where
merely being accurate is not sufficient. There are safety-critical applications in which a single
error in prediction can cause a huge loss in terms of human lives or finance. Bio-medical diag-

nostic applications are one such domain; if the output predictions are wrong, that can lead to a

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
116 QUANTIFICATION IN MEDICAL TASKS

completely wrong diagnosis, potentially putting human life in jeopardy. An error in the predic-
tion can arise from a plethora of sources, the two most prominent sources being noise in the
data and testing data which is out-of-distribution with respect to the data on which the model
was trained. The type of uncertainty deriving from the first kind of source is called aleatoric
uncertainty, and the latter is called epistemic uncertainty [194, 211]. In such applications, it is
more desirable that the network also provides some information about the uncertainty of the
output. In that case, a human doctor intervention can be made to make the final decision. For
example, we can consider the Covid-19 pandemic: suppose that the virus has mutated in coun-
try Y to a new variant X which is yet to be identified as a variant in the scientific community.
A person comes back from vacation from country Y, finds himself with Covid-like symptoms,
and takes an RT-PCR test. At this point, the ideal case would be that our model, which has not
been trained on variant X gives a high epistemic uncertainty. The doctors and scientists would
further look into the data to learn more about variant Y. Another case would have been that the
RT-PCR test was not done properly. Instead of providing a wrong output, the model says that
the aleatoric uncertainty is high; that is, it cannot predict confidently if it is a positive case or
not.

Bayesian neural networks provide a natural way to express these types of uncertainties.
As opposed to conventional neural networks, which are only capable of point estimates, these
neural networks learn a distribution over the dataset that can capture the intricacies of the data
much better. In particular, Bayesian neural networks offer advantages over conventional ones

in the following aspects.

* Conventional neural networks are infamous for performing poorly in terms of uncer-
tainty quantification. The softmax outputs, although considered erroneously to be the
output probability, fail to capture the subtleties that are necessary for evaluating uncer-
tainties [211-213].

¢ Conventional neural networks often overfit small datasets, which is common in medical

applications, leading to highly certain predictions in all scenarios [214, 215].

¢ Deterministic neural networks cannot distinguish the two different types of uncertainties
since the definition of these uncertainties, as we would see next, requires averages over
distributions [216].

Other safety-critical applications include autonomous vehicles, automated flight control,
using deep learning for providing loans, delivering justice, or taking critical policy decisions
[217-219]. Another key aspect of these applications is the interpretability of models, which
also can be derived from probabilistic neural networks [220, 221]. Now, with the importance
of quantifying the uncertainty ascertained, let us proceed to describe the exact mathematical

formulation that allows us to calculate the two different types of uncertainties.

4.4 UNCERTAINTY QUANTIFICATION 117

4.4.2 Quantification of uncertainty

The total uncertainty in prediction, which is referred to as predictive uncertainty, comprises
two main components: epistemic and aleatoric uncertainty [216, 222]. Epistemic uncertainty
pertains to the degree of uncertainty we have in the model parameters. This can be concep-
tualized as the spread of the posterior weight distribution P(W|D), whereby a wider posterior
distribution indicates higher epistemic uncertainty, while a narrower posterior distribution in-
dicates lower epistemic uncertainty. The origin of this kind of uncertainty stems from the lack
of knowledge about the input example. Semantically, the word ’epistemic’ has the meaning of
being related to knowledge. Concretely, if the input during testing comes from a distribution
that is not the same as the distribution in the training set, the epistemic uncertainty would be
high.

Conversely, aleatoric uncertainty stems from the input itself. In cases where the input in-
stance and fixed weight parameters are provided, high aleatoric uncertainty suggests that the
output estimate is noisy (in the case of regression) or that the class to which it belongs is un-
known or ambiguous (in the case of classification). When aleatoric uncertainty is high, it indi-
cates that there is insufficient information to predict the output value for an input with fixed
weight settings. This can be attributed to unobserved or latent variables that the model is un-
able to capture or noise in the input data that is due to the imperfect data acquisition of the
Sensors.

Breaking down the total predictive uncertainty can be crucial because epistemic and aleatoric
uncertainty provides us with different information about the input. A high value of the epis-
temic uncertainty suggests that the test input is an outlier with respect to the distribution of
the training set. This type of uncertainty can be reduced by collecting more training data from
the distribution from which the test data originated. In an ideal scenario, if we had access to
an infinite amount of data, the output for every possible input would be known, the posterior
distributions would be delta functions, and our epistemic uncertainty would collapse to zero.
On the other hand, access to more data does not help with the aleatoric uncertainty. In or-
der to reduce it, we need either more accurate measurements or further knowledge about the
unobserved variables and add them as features.

Another reason for decomposing the predictive uncertainty is that depending upon the ap-
plication, it might be beneficial to prioritize a single type of uncertainty. For example, in rein-
forcement learning, the aim is to explore the state-action space efficiently. Under such cases, it
is favorable to collect data in regions of high epistemic uncertainty. Conversely, if the goal is to
predict the return from different types of stocks, it is more beneficial to prioritize the aleatoric
uncertainty. If the objective is to have a low-risk investment portfolio, we would want to pick
stocks that have a high return but low aleatoric uncertainty. Such kinds of distinctions cannot
be made from the overall predictive uncertainty only; inputs with a high predictive uncertainty
can have significant contributions from the aleatoric part, epistemic part, or even both [223].

From the perspective of information theory, the entropy of a distribution is the average

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
118 QUANTIFICATION IN MEDICAL TASKS

level of uncertainty present in the random variable’s possible outcomes. If we have a random
variable following a uniform distribution, then the entropy of that would be quite high since
information about a single sample would give almost no information about the subsequent
samples; thus, the uncertainty is high. Alternatively, if we have a degenerate distribution that
only takes a single value, then the entropy of that would be zero, as there is literally no uncer-
tainty in the outcome.

With this in mind, we consider the entropy of the output softmax distribution as the predic-
tive uncertainty, which for an input x*, dataset D, and softmax outputs y* is given by H[y* |x*, D]
[224]. This can be decomposed as the sum of two terms as

Hly™ [x*, D] = I[y*, W|x*, D] + Ew- powp) [HIy™ Ix*, W]1. (4.11)

In equ. 4.11, [represents the information gain. The authors of [222] interpreted the two
terms in this expression as the epistemic and aleatoric components of the predictive uncer-
tainty H[y*[x*,D]. The second term, Ew. pwp) [H[y* |x*,W]] is the average entropy of the out-
puts when the weights are fixed, and so, the uncertainty solely derives from the input x*, and
not the weights. Hence, this term can be interpreted as the aleatoric uncertainty, and it quan-
tifies the uncertainty in the predicted class using only a fixed set of weight values. Finally, we
can rearrage equ. 4.11 to have I[y*, W|x*, D]H[y* [x*, D] = H[y* |x*, D] — Ew.- pewjp) [H[y™ x*, W]].
This difference term is the epistemic uncertainty since it is the remaining uncertainty from the
probabilistic nature of the model weights and not from the input. A high value of the epistemic
uncertainty signifies that with each sample from the posterior distribution, the model predicts
a different class [223].

4.4.2.1 Calculating aleatoric uncertainty

The calculation of the average entropy or the expectation requires us to evaluate integrals over
all possible model configurations, which is practically impossible. We resort to performing the
Monte Carlo average once more to calculate these values. In MC average for a quantity, we
take samples from the model, calculate that quantity for each of them, and then compute their
average over the different samples. If we have taken C model samples from the variational

distribution. mathematically this can be written as

Ew-~ pewip) [HIy ™ [x*, W]] = —fP(WID)[ZP(y* = kIx*,W)log P(y* = ka*,W)]dW
k
~ —f q(VV)[ZP(y* = kIx*,W)logP(y* = lc|x*,VV)]dW (4.12)
k

1
~-=Y Y Piy* = kix*, W) log P(y* = kix*, W),
c&4

4.5 TWO MOONS DATASET 119

4.4.2.2 Calculating epistemic uncertainty

In the same vein, the epistemic uncertainty is calculated as the difference as

Ily*, Wix*, DIH[y* [x*, D] = H[y* [x*, D] - Ew.. powjp) [HIy* [x*, W]]
1 1
==Y |=Y Py = *,W(C))l (— P(y* = klx*, W
; CZC" (y =kkx)|log C; y" = klx) (4.13)

1
+ EZZP(y* = kIx*, W) log P(y* = k|x*, W),
c k

4.5 Two Moons dataset

4.5.1 The dataset and methods

To showcase the advantages of our Bayes BiNN, we first consider a toy dataset called the 'two
moons’ dataset [225]. This is a simple task where we have two classes of data points that inter-
leave with each other in a two-dimensional plane in the form of two semi-circles. This dataset
is shown in fig. 4.5 (a), where the red triangle and blue circle points denote the two classes. This
is a classification task where a set of such points are used to train our model, and the goal is to
classify any test point in that region.

The neural network model used for this task has a fully connected architecture with two
hidden layers, each with 64 neurons, two input neurons providing the x and y coordinates of
a point, and the single output is the prediction for the point to be in the blue circles class. The
softmax output is represented by the color map, which ranges from red (belonging to the red
triangle class) to blue (belonging to the blue circle class). We generate the training dataset from
the scikit learn datasets package using the command sklearn.datasets.make_moons, and use it
to train our model. In this section, we present our findings by comparing the Bayes BiNN to the
deterministic implementation of binary neural networks having the exact same architecture,
following the work of [210]. From here onwards, for all the 2-plots in the x— y plane, the left plot
represents the deterministic version, while the right represents the output from the BayesBiNN
method. During testing, we input all the points in this region of space to yield the color map
we see in the background of fig. 4.5 (a). For the deterministic network, the softmax value of the
output is plotted in the color map, whereas in the Bayes BiNN, the mean of the outputs from
many sampled models is shown.

From fig. 4.5 (a), we observe the following features: both the deterministic and Bayesian
networks learn the decision boundary between the two classes perfectly. The first prominent
difference between the two is in terms of the abruptness of the decision boundary; the deter-
ministic output softmax values jump quite abruptly from 0 to 1 as we move across the bound-

ary. On the other hand, the boundary is wider and much spread out in the case of the Bayesian

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
120 QUANTIFICATION IN MEDICAL TASKS

network, and the more gradual change from one class output to another is quite clearly visible.
If we follow the decision boundary further in the regions where there are little to no training
data points, we shall see the breadth of the boundary increase substantially. The mean softmax
value lies between 0.3 and 0.7 in this region, and it means where we have less training data, the
model is uncertain about the output. In contrast, the same region for the deterministic net-
work has the same sharp decision boundary, and significant parts of the region yield output
of 0 or 1. Also, in this area, the boundary appears linear, for which there is simply no infor-
mation from the training dataset. This ties in with the idea that non-probabilistic deep neural
networks are typically prone to overfitting, whereas their probabilistic counterparts handle this

more realistically by producing ambiguous outputs.

(@)

Deterministic Bayes BiNN

1.0
1 1 \
0.8
0 0
0.6
0 2 0 2
g
1 1 0.4
0 0 0.2
0 2 0 2 0 2 0 2 0.0

Figure 4.5: The two moons dataset. (a) The output of the deterministic and Bayes BiNN with
the same architecture is for the task of classifying two sets of points in a two-
dimensional plane. (b) Outputs corresponding to ten sampled Bayes BiNN models
from the learned distribution.

The Bayes BiNN output is the result of averaging over the outputs from several sampled
models, and this provides a distribution of the output probability. To understand the impact of
this on our Bayesian output, we check the outputs of each individual model. After training, we

have learned the Bernoulli distribution parameter probability p; for a synapse to be in the +1

4.5 TWO MOONS DATASET 121

state. We use these probabilities to sample from the Bernoulli distribution and get C individual
deterministic models. For the simulation results, we take an average of C=500 samples, ten of
which are shown in fig. 4.5 (b). Firstly, if we just look at the decision boundary, it is very similar
to the deterministic network; the transition between the classes is abrupt. Secondly, let us focus
on two different locations in the ten plots: the top right corner, where there are no training data
points, and the central region, where the two moons interleave. For the central region, for most
of the plots, we can clearly identify the curved decision boundary. Still, the top right portion is
significantly different and appears random in most of the output instances. Since the output
values in this area are randomly varying, the average over many samples yields values close to

0.5 and smoothly changes to 0 or to 1 for the two classes.

4.5.2 Uncertainty quantification

Until now, we have qualitatively discussed how the Bayes BiNN model is good at expressing
uncertainty in our inference. Here, we implement the uncertainty quantification methodology
discussed in the previous section. We use equ. 4.12 and equ. 4.13 to calculate the predictive,
aleatoric, and epistemic uncertainties for all the test points in the region. The results are shown
in fig. 4.6, where now the color map represents the uncertainty value for the particular type of
uncertainty.

The predictive uncertainty in fig. 4.6 in the value range of 0.6-0.75 (shown in yellow) forms
a thick strip that spans along the diagonal of the region, curving between the two classes. The
total uncertainty decreases as we move away from this central region towards where there are
more data points. In the region above the red triangles and below the blue circles, the uncer-
tainty is essentially zero, as there is little doubt as to which class that region would belong to.

We further decompose the total predictive uncertainty into its epistemic and aleatoric com-
ponents to gain further insight. The epistemic uncertainty peaks in three regions; the bigger
two of them lie in the part where there are no data points and a small one exactly between the
two classes. The epistemic uncertainty quantifies the uncertainty in the data arising from the
lack of knowledge, or in this case, lack of data points in those regions. On the other hand, the
aleatoric uncertainty lights up in the parts where the edges of the two moons almost intersect.
This is consistent with the concept of aleatoric uncertainty, which is a measure of the ambi-
guity in the data. These intersecting sections have red and blue points in very close proximity,

and the model is uncertain between the two classes.

4.5.3 Impact of dataset size

We study this dataset under two circumstances that emulate the conditions of more realistic
bio-medical tasks. This type of dataset is typically smaller than other domains, and here, we
highlight how the Bayes BiNN outshines the deterministic network in a small data setting [226,
227].

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
122 QUANTIFICATION IN MEDICAL TASKS

Predictive uncertainty Epistemic uncertainty Aleatoric uncertainty

0.75 0.48 0.36
. 060 L 040 1. 0.30
0.32 0.24

. 0.45 0. :
0.24 0.18

: 030 O. .
0.16 0.12
. 0.15 -0. 0.08 ~° 0.06
-1 0 1 2 0.00 -1 0 1 2 0.00 -1 0 1 2 0.00

Figure 4.6: Uncertainty quantification in the two moons task. The color map shows the pre-
dictive, epistemic, and aleatoric uncertainties in the three plots, respectively. The
predictive uncertainty is decomposed into two components with different sources;
epistemic for regions with no training data points and aleatoric for ambiguous parts.

We perform the same two moons task but with less number of training points and observe
the resulting inference color maps. Fig. 4.7 shows the inference when the number of data points
used for training varied between 10 and 60. For the deterministic network, we note that the
decision boundary is either highly irregular (10, 20, 50) or there are unphysical strips or islands
of regions with a different class (10, 30, 60). This is again due to the propensity of deterministic
models to overfit data. In the inference with 30 data points, there is a single red point isolated
from the others, and that is enough to cause a strip of red to form inside the blue region. On the
other hand, although the Bayes BiNN does not give us perfect inference like in fig. 4.5 (which
had 200 data points), we do not see the artifacts that we see for the deterministic case. The
overall shape of the broad decision boundary is quite realistic, even for the number of data
points as small as 20. Another noteworthy feature of the Bayesian case is that the regions with
high outputs (greater than 0.9 or less than 0.1), i.e. the deep blue and red portions, cover a small
part of the whole area. This reflects that our model has less confidence in its prediction of the
output, which is a suitable conclusion given the lack of sufficient data.

Next, we wanted to evaluate the uncertainty in the inference under such small data condi-
tions. To do so, for each number of data points in the training set, we calculated the uncertain-
ties for the whole region during inference. In fig. 4.8, we plot the uncertainties averaged over
all points in this region as a function of the total number of training data points. As expected,
the predictive uncertainty, which captures the overall uncertainty, decreases as we have more
data points. The epistemic uncertainty also decreases, but the aleatoric component remains
almost constant. This again exemplifies that epistemic uncertainty is related to the availabil-
ity of information or knowledge about the total distribution. With more points, the training
dataset captures the original distribution in a much better way, thus reducing the epistemic
uncertainty. On the other hand, the aleatoric component is related to the ambiguity between

the two classes, which is unaffected by the availability of data in training.

4.5 TWO MOONS DATASET 123

No. of . Deterministic Bayes BINN
data points .

10

20

30

40

50

60

Figure 4.7: Inference color maps for the two moons task for a small number of training data
points in both deterministic and the Bayes BiNN models. The color map denotes
the output softmax value for the deterministic case, and the average of the output
softmax of models sampled from the trained Bayes BiNN.

4.5.4 Impactoflabel noise

The success of deep learning algorithms is attributed to a large extent to the quality of the large
quantity and highly processed data that is available today. However, if the data is not perfect,
the performance of conventional deep learning models decreases, especially for small-sized
datasets. Here, we specifically focus on the impact of mistakes in our two moons dataset to
emulate the occurrence of label noise in our training dataset [228, 229]. Label noise in machine
learning refers to the situation where the labels or target values assigned to the training data
points are incorrect. Label noise can arise due to errors in data collection, human annotation

errors, or data corruption during transmission or storage. These errors cause the model to learn

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
124 QUANTIFICATION IN MEDICAL TASKS

—— Predictive
—— Aleatoric
—— Epistemic

o
un

©
N

OF TTITI[T rrr[T rrr[rrrrprTs

Uncertainty (arb. u.)
o o
N w

o
=

50 100 150 200 250 300
No. of data points

Figure 4.8: Uncertainties for the two moons task as a function of the total number of training
data points. The black, green, and red lines show the predictive, epistemic, and
aleatoric uncertainties respectively. For a fixed number of data points, the uncer-
tainty plotted is the average uncertainty over the whole domain.

incorrect patterns, resulting in poor generalization and low accuracy when applied to new data.
This can have catastrophic consequences in the medical domain, where labeling of data can be
particularly difficult, and this necessitates the quantification of uncertainty, alongside having a
decent prediction accuracy.

For our experiment, we define the probability of mistakes, p,,;srake: the probability of a
training datapoint being mistakenly classified to the other class. For illustrative experiments,
we consider three scenarios in terms of the size of the training dataset: small (with 20 data
points), medium (100), and large (500). In fig. 4.9, we show the results and the training dataset
for pistake values ranging from 0.05 to 0.3.

For the small data setting (the first column in fig. 4.9), we observe that until for all values of
Pmistake Shown here, the inference color maps show performance degradation. This is because
we have very few data points in the first place, and a few mistakes substantially impact the
training procedure, especially for high values of p;,is;qke- However, the Bayes BiNN output is
more continuous and does not usually have the artifacts and irregular boundary shapes like
the deterministic output. Also, the regions of high certainty (more than 0.9 or less than 0.1)
are limited to small parts, whereas for the deterministic, almost the whole plane is panned by
them. Hence, although the Bayes BiNN does not clearly perform better for small data, it still
captures the uncertainty in the small dataset size.

In the third column of fig. 4.9, we observe the other extreme, where we have 500 data points
that define our training dataset distribution concretely. In this case, even for high values of
Pmistake, the Bayes BiNN inference gives a reasonable output, albeit not perfectly. This is in
contrast to the deterministic case where for high p,,;s:qke values, the inference color map is
highly irregular but erroneously gives high confidence from the high output softmax values.

Even for a small p,,;s:qre value of 0.05, we observe unrealistic spikes in the color map, which

4.5 TWO MOONS DATASET 125

worsens with higher mistake probabilities. The inference for the medium dataset size (middle
column) is somewhat in-between these two in that the irregular nature of the deterministic
inference is always more pronounced, and the Bayesian network, although not always showing

good results, is relatively uncertain.

Data points: 20 Data points: 100 Data points: 500

Pavicake = 0.05 Domsseae = 0.05

0000000000
OmNehneunOO

0000000000
44444434444
-]
A
—
(-]
-
> »
[Crew———
1
& o w

-1 [1 2 - 2

Prstare = 0.1

0) Pristare = 0.1
H o 1
g’ I: 1 g:
o5 : 4‘4 [o¢
21 . 9 o
02 03
0.1 g:
00 - - -1 Laisaadasiaatas
1 0 1 2 1 0 1 2 o : B — 2 2800
Povicare = 0.15 Doseate = 0.15

0000000000
OmNwhAR YN0
©000000000
OmNubneuROO

Prristase = 0.2

1.
‘i o
. N
R L

0000000000
OmNwhAO RO
0000000000~
OmNubNe RO

0000000000
OmNwEAR Y NOO
0000000000
OmNwhneuROO

10
09
o8
0.7
0.6
0%
404
0.3
02
0.1
00

0000000000~
OmNubneuROO

Figure 4.9: Impact of label noise on the two moons task. The inference color maps for the de-
terministic and Bayes BiNN and the dataset with label mistakes are shown for three
train dataset sizes: 20, 100, and 500 data points. The probability of a single train data
being mistakenly labeled in the other classes, p,israke, is varied from 0.05 to 0.3 for
the different dataset sizes.

The inference color maps give us a qualitative picture of how the p;,;ssake impacts our pre-
diction quality. Still, to understand the uncertainty, we need to quantify it. We perform the
same uncertainty calculations as done to produce fig. 4.8, except for this, we vary the p;,israke
for the small, medium, and large number of data points. Fig. 4.10 shows the uncertainty evalu-

ation for the three different dataset sizes. In all three cases, the predictive uncertainty increases

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
126 QUANTIFICATION IN MEDICAL TASKS

with pisrake; the Bayes BINN model can directly reflect the noise in the training data labels.
For a small dataset with 20 data points, the epistemic uncertainty dominates the aleatoric un-
certainty by almost a factor of two. This is expected since we are in a regime with fewer data or
knowledge about our true dataset. If we increase the dataset size to 100, we see that the pre-
dictive uncertainty values remain pretty similar to the 20 data points case, but the epistemic
uncertainty has reduced and is now almost comparable to the aleatoric uncertainty. We see
a reversal in the trend in the large dataset regime where we have 500 data points, where for
Pmistake Values higher than 0.05, the aleatoric uncertainty is higher than the epistemic uncer-
tainty, which has now reduced to be at a level that is less than 0.2, which used to be about 0.35
for p,nistake=0.4. This trend reversal can be understood from the fact that with 500 data points,
the epistemic uncertainty is significantly reduced because we have more information about the
general dataset distribution. Under this scenario, the noise in the dataset from incorrect label-
ing becomes more prominent, and the aleatoric uncertainty becomes the major contributor to
the predictive uncertainty.

From the experiments shown in this section, it can be concluded that for the two moons
dataset, the Bayes BiNN model gives us more robust, realistic predictions than its determinis-
tic counterpart. Another significant advantage of Bayes BiNN is the ability to decompose the
uncertainty into two components that provide us with different information and can have a
significant impact under more realistic conditions where the dataset size is small, or the train

dataset labels are incorrect.

4.6 MEDICAL TASK 127
datapoints: 20
0.6~
> r —— Predictive
'E - B —— Aleatoric
=D " —— Epistemic
_,g S 0.4 __/_/\—_/M
&
C N o
I-Illllllllllllllllllll
0.0 0.1 0.2 0.3 0.4
Pmistake
datapoints: 100
0.6
> -
-~
5 [
©
+— 04~
5E
v © r
c -
O 0.2F
I-IIIIIIIIIIIIIIIIIIIII
0.0 0.1 0.2 0.3 0.4
Pmistake
datapoints: 500
0.6
. L
= =
S5 r
© . 0.4
u Q i
Sa |
cC~—02r
D -

0.0 0.1 0.2 0.3 0.4

pmistake

Figure 4.10: Uncertainty estimation in the two moons dataset with label noise. The predictive
(black), aleatoric (red), and epistemic (green) uncertainties are evaluated for dif-

ferent values of p,,;srake and for 20, 100, and 500 training data points.

4.6 Medical task

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
128 QUANTIFICATION IN MEDICAL TASKS

4.6.1 The dataset and methods

In the previous section, we elaborated on some scenarios where the Bayesian implementation
of neural networks is superior to its deterministic analog. However, we only considered an
illustrative toy task. To assess the scalability of this approach in more practical scenarios, we
conducted a study on a real-world medical dataset. Our focus was on the MIT-BIH Arrhythmia
database, where the aim was to classify heartbeat rhythms.

The MIT-BIH Arrhythmia Database is a collection of electrocardiogram (ECG) recordings
compiled by researchers at the Massachusetts Institute of Technology and Beth Israel Hospital
[230, 231]. It is one of the most widely used datasets for evaluating algorithms that detect and
classify cardiac arrhythmias [232]. The dataset contains 48 half-hour ECG recordings, each of
which includes two simultaneously recorded leads. These recordings were obtained from 47
patients, most of whom had a history of cardiac arrhythmias. The recordings were digitized at
a sampling rate of 360 Hz and annotated beat-by-beat by human experts, who identified the
type of beat (e.g., normal sinus rhythm, premature ventricular contraction, etc).

For our simulations, we perform the following preprocessing on the data. First, we do a
Fourier transform of the ECG sequence for a single heartbeat and then select 32 features using
the scikit-learn package SelectKBest. This is then fed to a fully connected feedforward neural
network with two hidden layers, each with 1,024 neurons. In the whole dataset, twenty different
types of annotations correspond to the heartbeats representing different classes of arrhythmia,
which are different ways the heart can beat. Out of them, we consider five categories that ap-

pear quite frequently, including the regular beats.

N (Normal beat): This class corresponds to normal sinus rhythm, which is the regular

beating of the heart.

L (Left bundle branch block beat): Heartbeat characterized by a delay in the activation of

the heart’s left ventricle.

R (Right bundle branch block beat): Heartbeat that is characterized by a delay in the

activation of the right ventricle of the heart.

* A (Atrial premature beat): Heartbeat that originates in the atrium of the heart rather than

the sinoatrial node (the natural pacemaker of the heart).

* V (Premature ventricular contraction): Heartbeat that originates in the ventricles of the

heart rather than the sinoatrial node.

4.6.2 Impact of dataset size

Similar to the two moons task, we investigate the impact of training dataset size on classifica-

tion accuracy in the small dataset regime. Datasets in the medical domain are typically smaller

4.6 MEDICAL TASK 129

than other domains like computer vision or language processing, and the datasets are exceed-
ingly scarce for rare diseases. We emulate this in the MIT-BIH dataset by considering only a
part of the dataset to train our networks. Usually, in medical datasets, the "normal" class or the
data corresponding to no disease is the most abundant, whereas the rare conditions are less
represented. We balance all the classes in our dataset to prevent this from biasing our results.
We keep the testing dataset size to 1,600 and vary our training dataset size from 50 to 3,300.
The resulting train and test accuracies for the deterministic and Bayesian networks are shown
in fig. 4.11.

Firstly, the training dataset accuracy reaches almost 100% for both networks, so there is
no indication of underfitting. Secondly, we observe that even for a small dataset size of 50 in
which each class is represented only ten times, the Bayesian network reaches an accuracy of
over 99%, and the corresponding accuracy for the deterministic network is less than 91%. It
only approaches the Bayes BiNN accuracy for larger dataset sizes. This is, again, due to the
susceptibility of deterministic networks to overfit to data which is evident from the difference
in train and test accuracies, especially when the dataset is small. A measly dataset size of 50 ex-
poses the network to a tiny part of the training distribution, and it cannot learn the distribution
very well using only point estimates. On the other hand, when we shift the problem to learning
the distribution, it captures the total distribution more naturally. This is the essence of proba-
bilistic learning; the idea of a probability distribution replacing the point estimates allows for

more flexibility, reducing overfitting.

100_—

< 98F

X

> C

5 96

(‘U -

L ™ .

8 94+ —— Determin. test acc.

<Lt) - ---- Determin. train acc.
921 —— Bayes BiNN test acc.

n ---- Bayes BiNN train acc.

90 | I O T O T TN N N U A TN U AN N A AN AN AN AN AN |

0 500 1000 1500 2000 2500 3000
Train dataset size

Figure 4.11: Train (dotted line) and test (solid line) accuracies of both deterministic network
(brown) and Bayes BiNN (blue) as the training dataset size is varied from 50 to
3,300. The points represent the average accuracy, and the shaded region around it
denotes one standard deviation.

CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY
130 QUANTIFICATION IN MEDICAL TASKS

4.6.3 Uncertainty under realistic scenarios

The Bayes BiNN architecture prevents overfitting, and the intrinsic probabilistic nature allows
uncertainty quantification. This can be leveraged in many real scenarios to infer about the
predictions or even about the datasets themselves. We explore one such situation where the
test examples have a class not present in the training data. Biological diseases can mutate
relatively fast and take a completely different form in their expression in the human body. This
presents a challenge to the neural network that is trained on previously available data, which
does not contain this newer mutated variant. Conventional neural networks, typically under
such cases, would give wrong answers with high confidence. The ability to decompose the
uncertainties for Bayesian neural networks provides a natural way to solve this.

To replicate such a scenario, we artificially remove the L class from the training dataset,
keeping the test dataset the same. In particular, the reason for choosing this class can be un-
derstood if we look at fig. 4.12, where we plotted the two-dimensional t-SNE representation for
our preprocessed input data for the test dataset, color-coded by the different classes. The green
class Lis isolated from the other clusters, with no outlier points closer to the other classes. This
implies that the class in question exhibits distinct characteristics compared to the other classes,
making it an ideal candidate for simulating an unseen class to test our neural network.

We train both our networks with the training dataset without this class, and for both, we get
atest accuracy of about 78%. The other plots in fig. 4.12 show the same t-SNE but with the color
coding representing the uncertainties. For the deterministic case, we compute the 'predictive
uncertainty’ by supposing that we have taken only one sample (C=1) and by using equ. 4.12. If
we focus on the green cluster that represents class L, the epistemic and aleatoric uncertainties
have higher values for most of the points in this cluster. In contrast, the highest uncertainty val-
ues for the deterministic case are more spread out between the L, A, and V classes. We plot the
histogram of these values in fig. 4.13 (a) to look at the class-wise distribution of the calculated
uncertainties. The deterministic network has high uncertainty for all three classes: L, A, and V,
but for the Bayesian uncertainties, the green L class stands out with high values of uncertain-
ties, especially for the epistemic uncertainty. For all other classes, the epistemic uncertainty is
close to zero. As discussed before, epistemic uncertainty captures the uncertainty in the data
about the already learned distribution. Unsurprisingly, this type of uncertainty is significantly
higher for a class that the model has not seen during training.

Another way to investigate the uncertainties is to study the relationship between the cor-
rectness of a prediction and the corresponding uncertainty. This is shown for the deterministic
and Bayesian networks in fig. 4.13 (b), where the green, red, and blue histograms show the
correct, incorrect predictions, along with the unseen class, respectively. In the case of the de-
terministic network, the high values of the predictive uncertainty correspond to both correct
and incorrect predictions and the unseen class. So, simply by looking at the uncertainty value,
it is difficult to infer the confidence of the prediction. On the other hand, the epistemic uncer-

tainty is quite clearly higher for the unseen class and is generally higher for incorrect prediction

4.6 MEDICAL TASK 131
t-SNE for classes Pred. uncer. determin.
C R ® N C P .
~ 50F w o L ~ 50F 1.5
g - o= . ® R g - o 5
S ofmvTd fielo 4 5 ofmd o
=2 - ‘* Y \Vi = ™ o“:’
n C n C o e
501|||ﬁ||||| _501‘_|||%||||| 0.5
-50 0 50 -50 0 50

t-SNE dim. 1 t-SNE dim. 1

Epis. uncer. Alea. uncer.
~ 50F g 001> sof
£ - : 0010 E - . 1.0
S obmewd 5 okmerd
% C * &g % u ® *‘30.

Qb W 0.005 & b o~ 05
_501‘-|||”||||| _501‘-|||W||||| .
-50 0 50 =50 0 50
t-SNE dim. 1 t-SNE dim. 1

Figure 4.12: The two-dimensional t-distributed stochastic neighbor embedding (t-SNE) plots
for the MIT-BIH test dataset. The color coding in the top left plot represents the
different classes: N, L, R, A, and V. The color coding in the other plots shows the
uncertainty in prediction for the deterministic 'predictive uncertainty’ (top right),
Bayesian epistemic (bottom left), and Bayesian aleatoric (bottom right) for the
same t-SNE plots.

predictions. In the case of aleatoric, the correct predictions have a lower uncertainty than the
unseen and incorrect predictions.

To summarize, uncertainty quantification gives us a handle on the confidence of our pre-
diction in the following way. While testing, if both the aleatoric and epistemic uncertainties are
low, it is very likely that the prediction is correct. On the other hand, if the epistemic uncer-
tainty is low and the aleatoric uncertainty is higher, it signifies that probably the test example is
not the unseen class, but it is an ambiguous example (might be class A or V). Finally, if both the
epistemic and aleatoric uncertainty is high- we can infer that this is an example from a class
not included in the training dataset.

In these simulations, we observed two aspects that differed from the two moons dataset in
the previous section, which needs to be discussed here. Firstly, the epistemic uncertainty we
get for the MIT-BIH