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Résumé : Les récents développements en ap-
prentissage profond ont repoussé les limites
des possibilités avec de grandsmodèles de lan-
gage présentant des capacités exceptionnelles,
des modèles pour la vision par ordinateur et
le traitement du langage naturel dépassant les
performances humaines. Cependant, ce pro-
grès se fait au détriment d’une consomma-
tion d’énergie immense lors de la formation
de ces modèles à grande échelle. De ce point
de vue, l’avancée n’est pas durable, surtout
compte tenu des préoccupations de change-
ment climatique qui planent sur notre époque.
L’énormité de la consommation d’énergie peut
être attribuée à l’architecture des ordinateurs
conventionnels, qui n’est pas optimisée pour la
consommation d’énergie pour les applications
d’apprentissage profond. D’autre part, le cer-
veau humain excelle dans cet aspect en effec-
tuant des tâches complexes de reconnaissance
de motifs avec un budget énergétique qui est
des ordres de magnitude inférieurs à celui de
son homologue informatique. La différence dé-
coule de la manière fondamentalement diffé-
rente dont les calculs sont effectués dans le cer-
veau ; pour cette thèse, nous nous concentrons
spécifiquement sur l’aspect de la co-localisation
du calcul et de la mémoire, qui est présent
dans le cerveau humain via les neurones et les
synapses. En revanche, dans l’architecture de
vonNeumann d’un ordinateurmoderne, lamé-
moire et les unités arithmétiques et logiques
sont physiquement séparées, et une grande
quantité d’énergie est dépensée dans le trans-
fert d’informations entre ces unités. L’informa-
tique en mémoire avec les technologies de mé-
moire émergentes est une piste prometteuse à
cet égard, où la co-localisation de la mémoire
et du traitement peut être réalisée, en particu-
lier pour le type de calculs effectués dans les ré-
seaux de neurones. Néanmoins, cette solution
présente des défis en termes de performance
car ces nouvelles classes de mémoires ont des
imperfections différentes. Pour les mises en
œuvre conventionnelles de réseaux de neu-

rones avec des mémoires analogiques, ces im-
perfections peuvent considérablement affecter
leurs performances. Le thème central de cette
thèse est d’embrasser de telles imperfections
pour les réseaux de neurones compatibles avec
le matériel. Dans le chapitre 2, nous examinons
spécifiquement l’impact de ces non-idéalités
dans le contexte de la formation des réseaux
de neurones. Nous proposons un modèle de
dispositif basé sur la physique pour la mé-
moire à base d’HfOx qui correspond aux résul-
tats expérimentaux et peut être incorporé dans
des cadres d’apprentissage en profondeur. Des
simulations de réseaux de neurones binaires
avec cemodèle de dispositif montrent que l’ap-
prentissage est possible même sous le bruit
et les variabilités intrinsèques à une telle mé-
moire. Dans le chapitre 3, nous explorons l’im-
pact des imperfections et des contraintes dé-
coulant à la fois du niveau de dispositif et de cir-
cuit sur la performance d’inférence des réseaux
de neurones. Nous démontrons la robustesse
des circuits de calcul en mémoire à base d’H-
fOx qui implémentent des réseaux de neu-
rones binaires face à des contraintes telles que
la taille limitée du tableau, l’alimentation élec-
trique irrégulière et la variabilité des dispositifs.
Avec le chapitre 4, nous exploitons la stochasti-
cité des nanodispositifs spintroniques, qui est
généralement considérée comme une imper-
fection pour des applications plus convention-
nelles. Ce chapitre propose les réseaux de neu-
rones binaires bayésiens qui peuvent être réa-
lisés avec de tels dispositifs. Nous soulignons
l’utilité de ces réseaux : l’immunité à la surajus-
tement et la quantification de l’incertitude dans
certains scénarios pour une tâche illustrative à
deux lunes et un ensemble de données médi-
cales. Les résultats présentés dans cette thèse
montrent qu’avec des innovations dans les al-
gorithmes, les circuits et les dispositifs de mé-
moire, les imperfections peuvent être véritable-
ment embrassées et qu’un avenir conscient de
l’énergie et axé sur l’IA peut être envisagé.
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Abstract : Recent developments in deep lear-
ning have pushed the limits of possibilities
with large language models exhibiting outs-
tanding capabilities, models for computer vi-
sion, and natural language processing excee-
ding human-level performance. However, this
progress comes at the expense of immense
power consumption while training such large-
scale models. From this perspective, the ad-
vance is not sustainable, especially conside-
ring the climate change concerns looming over
the present day. The enormity of the energy
consumption can be attributed to the architec-
ture of conventional computers, which is not
optimized for energy consumption for deep
learning applications. On the other hand, the
human brain excels at this aspect by perfor-
ming complex pattern recognition tasks with
a power budget that is orders of magnitude
less than its computing counterpart. The diffe-
rence arises from the fundamentally different
way computation is done in the brain ; for this
thesis, we specifically focus on the co-location
aspect of computing and memory, which is
present in the human brain via the neurons
and the synapses. In contrast, in the von Neu-
mann architecture of a modern computer, the
memory and arithmetic-logic units are physi-
cally separated, and a large amount of energy
is expended in the shuttling of information bet-
ween these units. In-memory computing with
emerging memory technologies is a promising
lead in this regard, where the co-location ofme-
mory and processing can be achieved, espe-
cially for the type of computations performed
in neural networks. Nevertheless, this solution
presents challenges in terms of performance
as these novel classes of memories have dif-

ferent imperfections. For conventional imple-
mentations of neural networks with analogme-
mories, these imperfections can considerably
affect their performance. The central theme of
this thesis is to embrace such imperfections
for hardware-compatible neural networks. In
chapter 2, we specifically look at the impact
of these non-idealities in the context of trai-
ning neural networks. We propose a physics-
based device model for HfOx-based memory
that matches experimental results and can be
incorporatedwithin deep learning frameworks.
Simulations of Binarized Neural Networks with
this device model show that learning is pos-
sible even under noise and variabilities intrin-
sic to such memory. In chapter 3, we explore
the impact of imperfections and constraints ari-
sing from both the device and circuit levels on
the inference performance of neural networks.
We demonstrate the robustness of HfOx-based
in-memory computing circuits that implement
binarized neural networks to constraints such
as limited array size, irregular power supply,
and device variability. With chapter 4, we har-
ness the stochasticity of spintronics nanode-
vices, which is typically considered an imper-
fection formore conventional applications. This
chapter proposes the Bayesian Binary Neural
Networks that can be realized with such de-
vices. We highlight the usefulness of such net-
works : immunity to overfitting and the quan-
tification of uncertainty under some scenarios
for an illustrative two moons task and a medi-
cal dataset. The results presented in this thesis
show that with innovations in algorithms, cir-
cuits, and memory devices, imperfections can
be truly embraced, and an energy-conscious,
AI-driven future can be envisioned.
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Introduction

“The beginning is the most important part of the

work.”

Plato



2 INTRODUCTION

PRESENTLY, we are at a critical juncture where on the one hand, we are experiencing the ag-

gravated effects of climate change. One of the key reasons for this is the emission caused

during the generation of electricity from fossil fuels [1]. On the other hand, we are making rapid

progress in artificial intelligence (AI), with the large language models already showing prelim-

inary indications resembling artificial general intelligence [2]. The recent progress takes us a

step closer to the promises of AI that involve discovering drugs for acute diseases, self-driving

cars, and other path-breaking innovations.

However, there is a cost to this: to develop, train and use the state-of-the-art deep learning

models, existing computers expend a lot of energy. This type of computation, typically done

in data centers with many Graphics Processing Units and other dedicated accelerators, is not

usually optimized for their power consumption. Training a single model consumes more power

than the amount consumed by 100 households in the United States in a year [3]. This number

would only grow continuously with the ever-increasing model size and computational com-

plexities. The resultant carbon footprint would be humongous, and this development is not

sustainable from an environmental point of view.

If we consider the computation process at an architectural level, the bottleneck in terms

of energy consumption is related to the shuttling of data between the memory and logic units.

During the training process of a neural network, three main operations are performed: shut-

tling data to and from memory and performing multiplication and addition operations in the

processing unit. Among these operations, the transmission of information is energetically the

most expensive. This computer architecture, called the von Neumann architecture, fundamen-

tally differs from another system adept at pattern recognition tasks: the human brain. It can

perform vision, natural language processing, logical deduction, and planning with an energy

budget that is orders of magnitude less than what is typically consumed by a modern deep

learning model. The brain computes differently: the connectivity is massive with substantial

redundancy, the learning rules are local, the information is propagated in electro-chemically

induced voltage spikes, and the logic and memory elements are co-located in the form of neu-

rons and synapses. The field of neuromorphic computing aims to emulate or mimic the brain

in terms of these aspects to perform more efficient computation. This thesis is about neu-

romorphic computing with architectural inspiration and attempts to mimic biology from the

in-memory or near-memory computing perspective.

In particular, I investigate resistance-based emerging memory technologies for neural net-

works since they provide a more energy-efficient, CMOS-compatible, non-volatile substrate to

perform computation near the memory than their more conventional counterparts (SRAM or

DRAM). Low-power, non-volatile memories are well-suited for edge applications where power

efficiency is prioritized. Additionally, their non-volatile nature is particularly advantageous for

equipment that is not constantly used since no power is needed to store a state. Despite such

advantages, emerging memories such as oxide-based resistive memories, phase change mem-

ories, and magnetic random access memories suffer from imperfections that can dramatically
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affect the performance of neural networks. In this thesis, I investigate and present hardware-

compatible neural networks which are tolerant to such imperfections to a reasonable extent

and can even embrace them for performing computation. I attempt to answer the following

questions in the second, third, and fourth chapters.

• Chapter 2 How can we learn with imperfect oxide-based filamentary resistive memory?

• Chapter 3 What is the impact of errors and constraints arising at the circuit level on the

inference of neural networks?

• Chapter 4 Can we harness the stochastic nature of stochastic devices to perform proba-

bilistic computing? And what additional advantages could it have?

More specifically, in Chapter 1, I lay the foundation of the thesis by elaborating on the back-

ground of my research. I start by describing the advancements made in computers and com-

puter memory that subsequently facilitated the development of AI, especially deep learning. I

chronicle the rise and fall of AI and the post-2000s resurgence. A detailed description of neural

networks in supervised learning follows this. The ever-increasing sizes of models and the as-

sociated required computational prowess and their environmental consequences are then dis-

cussed. The concept of neuromorphic computing is introduced as a possible solution to this.

After that, emerging memory technologies are discussed as the ideal candidates for in-memory

computing systems capable of implementing neural networks in hardware. In this context, the

different existing ideas about the hardware realization of neural networks are discussed in de-

tail. The chapter concludes with a thorough discussion about imperfections in these kinds of

memories, especially those that offer hindrances to learning, such as device-to-device variabil-

ity, cycle-to-cyle variability, asymmetry, and nonlinearity.

The second chapter is a study done in collaboration with Dr. Marc Bocquet from the Aix-

Marseille University that was published in the journal IEEE Transactions on Electron Devices

and was also presented at the CVPR 21 (conference on computer vision and pattern recogni-

tion) and the Neal 2022 (Göttingen, Germany) conferences, both as posters [4]. This chapter

is about implementing learning in the weak RESET regime of HfOx-based filamentary resistive

RAM using binarized neural networks. I start this chapter by presenting the background of this

work, focussing on the importance of on-chip learning and emphasizing the main issues that

make it challenging. Next, we introduce the memory technology and detail its co-integration

with CMOS and the significance of the weak RESET regime that enhances the endurance of

such memory devices, a crucial parameter for on-chip learning. Next, the main focus of this

chapter is presented, where I developed a model that considers the different types of variabili-

ties to explain the variation in resistance. Furthermore, I fitted the model to the experimental

data and compared the simulations. After this, I describe binarized neural networks as an algo-

rithm suitable for learning with such noisy memory. Then I outline the training process details

and illustrate how I incorporated our device model within the PyTorch deep learning frame-

work to simulate learning with these devices. The simulations are done to learn the MNIST
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and CIFAR-10 datasets, and the test accuracies exemplify the robustness to different types of

imperfections. I conclude the chapter by highlighting how this approach can be generalized to

the simulation of other memory technologies.

Chapter 3 is about the inference in binarized neural networks with constraints from circuit-

level implementation. This chapter is based on two scientific articles, one is under revision,

and the other is under preparation. The first and second studies presented here were done in

collaboration with Dr. Mona Ezzadeen and Fadi Jebali from Aix-Marseille University. In the

first section of this chapter, I introduce general ideas related to the circuit-based implemen-

tation of binarized neural networks and illustrate the significant sources of errors originating

from electronic circuits and memories. Next, I present the first study, detailing the circuit used

to implement inference in binarized neural networks, the sources of errors, and their analyses.

These errors are incorporated into neural network simulations to test how robust the predic-

tion accuracies are to such errors. For the second study, I motivate the scenarios under which

this type of circuit could be used: edge applications where the power originates from an en-

ergy harvesting system with irregular performance. Then, I present the circuits designed and

characterized at the Aix-Marseille University, fabricated in CEA-Leti Grenoble, and present the

associated errors and constraints related to the design. Here, I proposed and demonstrated an

approach that circumvents array-size-related constraints at the cost of a slight degradation in

accuracy. Finally, I use the experimentally characterized error for neural network simulations

to show that the binarized neural networks exhibit robust computation even under a low power

supply. This chapter highlights the suitability of binarized neural networks for inference, even

with different levels of imperfection and constraints, which is especially promising for edge

applications.

Chapter 4 differs from the earlier two chapters in that it accepts the imperfection and in-

stead utilizes it for computation. In this context, I discuss Bayesian Binary Neural Networks,

the probabilistic analog of binary neural networks where only the weights are binarized. This

is a study in progress for which we are starting to prepare a manuscript, and it was presented

as a poster at the MagnEFi 2022 conference in Crete, Greece. I begin the chapter by reviewing

the theory behind probability-based computing, focussing on ideas related to Bayesian deep

learning methods. Next, I discuss some recent studies where the concept of probability-based

computing has been realized with emerging memory devices. These ideas give us a glimpse at

the potential of this computing paradigm. After that, I discuss the Bayesian Binary Neural Net-

works theory, emphasizing its differences from its deterministic analog. Here, I introduce the

idea of quantifying uncertainty, which is one of the main advantages of using Bayesian Neu-

ral Networks and is essential for safety-critical applications. I use this type of neural network

for a toy example, the two moons dataset, and demonstrate some scenarios under which our

neural network provides robustness or more insight than the deterministic network. After this,

I utilized this algorithm to learn actual medical tasks, the MIT-BIH dataset for arrhythmia de-

tection, and showcased its unique advantages. Finally, we end this chapter by discussing some
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spintronics-based possible systems that could be used for realizing this algorithm and present

results related to performing inference with them.



6 INTRODUCTION



Chapter 1

Hardware implementation of deep

learning

“If I have seen further, it is by standing on the shoulders of

giants.”

Sir Isaac NEWTON



8 CHAPTER 1: HARDWARE IMPLEMENTATION OF DEEP LEARNING

THIS CHAPTER serves as a preface to the new ideas and results presented in this thesis. We

start by looking back at the past; the historical developments that led to the technology

today. After that, the present is discussed: the state-of-the-art and its shortcomings, and from

there, the necessity of the research presented in this thesis is motivated.

After discussing the history of computing and memory, it introduces deep learning as a

consequence of modern memory-compute capabilities and the abundance of data. Then, it

highlights the problems and challenges that deep learning will encounter in the near future

and, with this background, introduces brain-inspired or neuromorphic computing. It reviews

the development of neuromorphic computing in the light of implementing deep neural net-

works in hardware with brain-inspired principles that aim to address the energy constraints

deep learning faces. Finally, it elaborated on the challenges encompassing the hardware im-

plementation related to the various imperfections present in emerging technologies.

1.1 A brief history of memory and computing

The scientific and technological progress of our race is evident from the fact that it took us

about 4000 years from the invention of the wheel to the first successful airplane launch, but

only just 66 years between the first airplane and the landing on the moon by Neil Armstrong.

Many of these advancements were facilitated by the rapid progress made in terms of computing

technology; the invention of the modern computer allowed us to automate complicated tasks

and do large-scale calculations fast.

The modern computer we use so ubiquitously is the result of technological progress span-

ning centuries. It required simultaneous developments in multiple fields of science, includ-

ing physics, mathematics, electronics, and computer science. Each successive generation of

computing technology expanded the boundaries of our capabilities, thereby creating newer

opportunities that were previously unimaginable. The cyclic nature of the necessity-invention

cycle propelled growth at an exponential rate as well as the need for computational power and

memory.

In computing terms, memory refers to the information a certain calculation needs to exe-

cute. Fundamentally, a computer is composed of two primary components: the memory unit,

which stores information, and the arithmetic-logic unit, which performs operations on that

information. The memory required for computation strongly correlates with the task’s com-

plexity, as depicted in fig. 1.1. If we focus on some distinct events in the history of human

civilization: the invention of the abacus, the conceptualization of the Analytical engine, the

first general-purpose computer by Charles Babbage in 1837, the first landing of a human on

the moon in 1969, the solution of the protein folding problem by the deep learning program

AlphaFold 2, and the release of the large language model-based ChatGPT in 2022, we see that

the memory associated with each of these developments, as well as the computational needs

increase exponentially. Another thing to notice here is that the time difference between such
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Figure 1.1: Timescales and the associated memory for some of humanity’s most important in-
ventions or events. The Sumerian abacus, considered one of the foremost calcu-
lating machines, appears in archaeological evidence as early as 2700 BCE. Charles
Babbage invented the Analytical engine, considered the first general-purpose com-
puter, in 1837. In 1969, Neil Armstrong became the first astronaut to land on the
moon, embarking upon the Apollo 11 spacecraft, which had the Apollo Guidance
Computer as the main computing unit. The 50-year-old protein folding problem,
one of the biggest questions in structural biology, was solved by the AlphaFold 2
deep learning algorithm in the year 2022 at the CASP 14 event. In 2022 OpenAI re-
leased ChatGPT, an online bot based on the large language model GPT3 that can
answer questions from a human prompt. In this figure, the associated memory for
the deep learning models has been calculated based on the total number of param-
eters present, which essentially gives a lower limit on the required memory because
training such models requires more memory than just the parameters.

major advances is shortening, signifying the speed of these developments.

With this importance of computer memory in mind, let us look at the historical develop-

ment of computers and the role memory has played in them.

1.1.1 Development of computing

A typical smartphone today can store up to 4 billion bytes of data and can function like a desk-

top computer. To understand the root of the invention of such technological components, we

turn the pages of history to study the progress made in the early days when the computer had

mechanical parts, unlike today.
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1.1.1.1 Mechanical calculators

The abacus is the earliest instrument that can be called a calculator or, very broadly, a com-

puter. As shown in fig. 1.2(a), the abacus consists of several movable columns of beads, and a

single arrangement of the beads denotes a single number. This device allows for calculations

such as addition, subtraction, multiplication, division, and even taking the square or cube root

of a number. Such computations are performed by manually moving the beads [5]. Another

early prototype of the modern calculator was invented by the French inventor Blaise Pascal in

1643 (fig. 1.2(b)) [6]. The Pascal calculator relied on a set of gears and springs to implement

Figure 1.2: Computers through the ages. (a) An abacus, the first ever calculating device used
as early as 2400 BCE by the Babylonians. (b) The Pascal calculator. (c) A model of
Charles Babbage’s Analytical engine. (d) The ENIAC computer. (e) John von Neu-
mann posing with the EDVAC computer. (f) The IBM 704 mainframe computer oc-
cupies a whole room.

simple arithmetic operations on numbers represented by the wheels’ position. While these de-

vices are capable of efficiently performing arithmetic operations, they are not programmable,

thus rendering them unsuitable for automation purposes. The Jacquard loom machine is one

of the earliest examples of an instrument where a textile loom could be programmed to func-

tion in a certain way. The machine is essentially a control mechanism for the loom in which a

chain of punched cards are used as the input for a pattern, and the loom patterns automatically

[7].

However, all the aforementioned examples are quite far from modern computers. The first

design of a general-purpose computer, albeit mechanical, was proposed by Charles Babbage in

1837, named the Analytical engine (fig 1.2(c)). This was the first computer to have integrated
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memory in the form of counter wheels, a dedicated arithmetic logic unit, a control flow that

enabled loops and conditional branching, an input system with punched cards, and even a

printer for producing the output [8]. After that, there were more instances of mechanical or

electro-mechanical computers, but all of them had constraints intrinsic to mechanical systems,

like speed issues and mechanical wear-and-tear. Furthermore, these were analog computers

and consequently were less robust to noise and inefficient.

1.1.1.2 Electronic computers

It took more than a century after this for the first digital, electronic, programmable computer to

emerge. In 1945, the Electronic Numerical Integrator and Computer, or ENIAC, was completed

at the United State army’s Ballistic Research Laboratory [9]. The construction of this computer,

shown in fig. 1.2 (d), was enabled by the developments in electronics in the earlier half of the

twentieth century. In particular, the invention of the thermionic vacuum tube paved the way

for performing logic efficiently [10]. A technological successor to ENIAC was EDVAC (Electronic

Discrete Variable Automatic Computer), which was completed in 1949 at the Moore School of

Electrical Engineering in Pennsylvania [11]. The celebrated engineer John von Neumann was

involved with this project as a consultant (fig. 1.2(e)), and he proposed in his monograph First

Draft of a Report on the EDVAC the architecture-level organization of a computer [12]. This

came to be known as the von Neumann architecture, and it represented a computer architec-

ture with several components: a memory unit, an independent arithmetic logic unit, a control

unit, and mechanisms for input and output. Later in this chapter, we shall discuss this archi-

tecture more in the context of the energy efficiency of a modern computer. The type of internal

memory used for these computers were mercury-filled tube-based delay lines, a type of acous-

tic memory [13].

The next generation of computers was heralded by the invention of the magnetic core

memory when Jay Forrester utilized the hysteresis property of magnetic cores. The main advan-

tage of this was that it was truly random access, unlike its predecessors which had a serialized

relay of information. The earliest computer to use this was Whirlwind I in 1951 [14], the first

computer ever to produce real-time output and function in parallel mode. The year 1954 saw

the advent of the first mass-produced computer IBM 704 (fig. 1.2(f)), which was a digital main-

frame computer with hardware capable of performing floating-point arithmetic. The following

decades saw the development of transistors and integrated circuits, replacing vacuum tubes

totally. These rapidly decreased the computer’s cost and size and culminated in the invention

of the first personal desktop computer, IBM-PC, in 1966 [15, 16].

The history of computers shows us that the advancement of computers didn’t happen in

a vacuum, and the technological progress of memory devices was closely intertwined with it.

With this in mind, let us delve into the history of the development of computer memory itself.
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1.1.2 History of computer memory and storage

Computer memory is any system or device storing information for immediate computations.

Storage memory, on the other hand, refers to the device that can preserve information over

a much longer time period and that is not necessary for computations very frequently. For

example, in a smartphone, the memory is where the operating system and application software

are stored, whereas the storage consists of photos, videos, and documents. Thus, a computer

needs a hierarchy of different types of memories to function.

Punched cards can be considered the earliest forms of memory that a computer could use.

In these cards, the information was encoded in the form of holes in cards of stiff paper [17]. A

typical characteristic of these early forms of memory was the physical state of the device used

to encode the information. A fundamental problem with these is that the physical dimension

required to represent a single bit of data is quite big, and thus, the access speed is limited by the

arrangement of the data. The design of Babbage’s Analytical engine used the rotational state of

counter wheels (fig. 1.3(a)) for internal memory and punched cards to input information.

Figure 1.3: Memories of yesterdays and today. (a) Counter wheels played the role of main
memory in Charles Babbage’s proposed Analytical engine. (b) The magnetic drum
memory, along with the read-write heads attached to the cylinder. (c) The William-
Kilburn tube, which is a modified Cathode ray tube. (d) The magnetic core memory
with the toroids is arranged in four grids and connected by wires for reading and
writing. The commercially available forms of (e) Dynamic Random Access Memory
(DRAM) and (f) Static Random Access Memory (SRAM). (g) NAND Flash memory
inside a USB stick. (h) The hierarchy of memory and storage in modern computers
(adapted from [18])

As shown in fig. 1.3(b), magnetic drum memory was one of the earliest devices to use mag-
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netism to store data. These were large metallic cylinders with ferromagnetic coating on them,

and the magnetic polarity of the film represented the data. There were multiple parallel read-

write heads to read and write information from and on the drums as the drum rotated; thus,

the access speed was limited by the rotation speed of the drum. Nevertheless, this form of

memory was used until as late as the 1960s [19]. An earlier version of this utilized capacitors

to achieve the same, but a major drawback was that those needed to be refreshed periodically.

A similar memory device is the magnetic tape data storage, which also had a long latency ow-

ing to its physical shape but has superior data storage density and endurance (the ability to

endure many cycles of switching of memory bits), both of which are important attributes by

themselves and are the reasons for its survival even to this day for data archiving.

In the early years of 1940, the success of delay lines in early RADAR systems inspired the

development of mercury-based delay lines as a memory device. In this technology, a tube filled

with mercury, a quartz transducer, and a receiver comprised a memory device. The transducer

was able to produce acoustic waves in the tube, which propagated and were received at the

other end. The presence or absence of a wave denoted a bit in such memories, and a single

tube typically stored about 1000 bits of data with an access time of just over 200 µs [20]. The

mercury-tube delay lines were used in the UNIVAC I (Universal Automatic Computer I), which

was the successor to the ENIAC, and the first digital general-purpose computer manufactured

for business applications [21].

Apart from latency, data storage density, and read and write times, the fashion in which data

is accessed is another important metric. Conventionally, there are two different types: sequen-

tial access memory (SAM) and random access memory (RAM). In sequential access memories,

the data is stored in a sequence, so there’s always a substantial time needed to find specific

data. On the contrary, RAM enables the access of data in any order. The delay line memories

were of the first kind owing to their intrinsic sequential nature and thus were not suitable for

situations that necessitated random access. Around the same time, the William-Kilburn tube

was also invented as a random access memory. This tube (fig. 1.3(c)) is a customized Cathode

ray tube, where the electron beam could create a charge well in the face of this tube, and a read

plate was used to sense the absence or presence of that well representing the memory. This was

random access since the electron beam could position itself anywhere on the screen quickly,

and thus any bit of data could be accessed at a time. This system also required periodic refresh

due to the leakage of charge, and the data read was also destructive [22].

The next major development came in the form of magnetic core memories. A single bit of

this memory comprised a core, a magnetic toroid with an electric wire connected to it. The

current flow magnetized the core, the direction of the magnetization depending upon the di-

rection of the current and encoding a single bit. This state would be preserved even when no

current flows through the core, owing to the hysteresis property of ferromagnets. Such cores

were arranged in a grid (fig. 1.3 (d)) with wires connected to facilitate the reading, writing, and

selection of a single core. The success of this memory can be attributed to its random access
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nature, robustness, and the lower access time of 5 µs compared to the delay-line memories

[14, 19].

1.1.3 Memory in a modern computer

Further advancements in computer memory and storage happened hand-in-hand with the

progress of transistor technology. The main advantages of transistors are that they are smaller,

faster, less power-hungry, and cheaper than the existing solutions of that time. In the year 1966,

at the IBM Thomas J. Watson Research Center, the field effect transistor memory or DRAM (dy-

namic Random Access Memory) was invented. It was built on a semiconductor process with a

single silicon transistor and a capacitor in a cell, and the two memory states are represented by

the charged or uncharged state of the capacitor. The capacitor circuit element suffers from the

leakage of the charge, and hence, this also needs periodic refresh like the Williams tube (fig. 1.3

(e)) [23], from which it derives the ’dynamic’ in its name.

Although DRAM is cheap and has a low area overhead, the data access is slower (10-100 ns),

which is not desirable in certain cases, like in cache memory or in internal registers. SRAM, or

Static Random Access Memory, invented in the early 1970s, is the choice of memory in such

cases. A single SRAM cell consists of 6 transistors and hence can have a significantly lower

memory density and be more expensive compared to a DRAM which has a single transistor

per cell. However, the on-chip location of SRAM, coupled with the fact that it has a small array

size with less number of wires and consequently less delay, the memory can be accessed much

quicker (a few ns) (fig. 1.3 (f) [18].

Despite the fact that DRAM and SRAM are crucial elements of computer memory, they are

volatile; that is, the cell loses its memory when the power supply is turned off and thus cannot

be used for storage. Dr. Fujio Masouka, working at Toshiba in the year 1987, invented the

Flash memory, a non-volatile, electronically programmable memory [19]. A single cell of such

a memory consists of a floating gate transistor, where an additional insulated gate lies between

the control gate and the MOSFET channel. The presence or absence of charge in this gate

represents the memory states. Since it is electrically insulated, the memory is stored even in the

absence of a voltage supply. The NAND flash cell is typically used for storage due to its cheaper

cost and high memory density. It is the principal building block for solid-state drives (SSDs),

smartphone storage, and USB sticks, as shown in fig. 1.3 (g). Although it is more expensive than

the conventional hard-disk drive (HDD), which is magnetic storage with mechanically moving

parts, the SSD is faster, smaller, less noisy, more durable, and more energy-efficient.

A computer is a complex device that requires different types of memory storage, each with

specific requirements for various applications. The range of storage options spans from the

cache memory, which requires speed over size, to the hard disk drive storage, which prioritizes

a large size over access speed. Fig. 1.3 (h) details the complete memory hierarchy present in the

modern computer that has been discussed in this section. The timescales span from less than

a nanosecond to about a couple of milliseconds, and the memory capacity extends from 100s
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of kB to more than 10s of TB. Within the extent of these huge time and memory scales, there are

gaps that different emerging memory technologies are trying to bridge. We shall discuss such

memory later in this chapter. It must be emphasized that the rapid development of transistor

technology is enabling the integration of more and more transistors on a single chip, and that,

in turn, is giving us access to smaller and more powerful computers. The IBM 704 mainframe

computer, with a memory of about 18.4 kB, occupied a whole room, whereas a typical smart-

phone today has a RAM of 8 GB. Moore’s law summarizes this in the form of the statement that

the number of transistors on a microchip doubles every two years [24, 25]. Amongst the many

benefits that were derived from this, the progress in the field of AI is quite significant.

1.2 The rise of deep learning

The exponential development of technology has been driven by the fact that development in a

single very important domain affects several others, which continues the same way to produce

an avalanche. The huge advancements in computing power, memory capacity, and the avail-

ability of an astronomical amount of data have led to the resurgence of deep learning, a special

class of artificial intelligence (AI) algorithms.

We start this section with a short history of AI. Then we move on to specifically focus on the

resurgence of this field with the support of memory capabilities. Then finally, we discuss the

basic ideas behind the deep learning algorithm.

1.2.1 The rise and fall of AI

The modern form of AI that we observe today arose from innovations in different science and

technology domains. Algorithmically, the earliest progress could be traced back to the first half

of the 19th century when the least square regression and gradient descent methods were for-

mulated, which have been the backbone of the deep learning algorithms, even today [26, 27].

But, it wasn’t until the summer of 1956 that the field of AI was formalized at the Dartmouth

workshop in the United States of America [28]. Amongst the organizers were John McCarthy,

who was the person to coin the term AI to this domain, Nathaniel Rochester, the chief architect

of the IBM 701 computer, and Claude Shannon, who is considered the father of information

theory. In the conference, topics like creativity, abstraction, computer architecture, computa-

tional theory, neural networks, and natural language processing were discussed, which remain

relevant even today [29].

Developments in these aspects were driven mostly by mathematicians and computer sci-

entists, but there was another line of progress that contributed equally. These were attempts by

a group of biologists who took inspiration from the nervous system of animals to build bottom-

up model for intelligence. Warren McCulloch and Walter Pitts proposed a simple model of

neurons based on its topology where a single neuron accumulates the inputs that it receives
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weighted by the synaptic connection strengths and applies a non-linearity to it to produce the

output [30]. This model, shown in fig. 1.4, is widely used in neural networks. Biophysicists

Alan Hodgkin and Andrew Huxley extended this idea by introducing the concept of dynamics,

which, as it turns out, is a crucial aspect of biological neurons [31]. The Canadian neuropsy-

chologist Donald Hebb took this idea of dynamics to suggest a simple learning algorithm based

on the temporal correlation of connected neurons, which came to be known as Hebbian learn-

ing [32].

Figure 1.4: The analogy between a biological neuron (a) and an artificial neuron (b) as proposed
by McCulloch and Pitts. Through their respective synapses, the dendrites bring in
electrical voltage pulses to the cell body, where the signal undergoes processing and
eventually propagates through the axon onto the next set of neurons. In an artifi-
cial neuron, the inputs x1, x2, x3, x4 are summed up after being weighted up by their
respective weights w1, w2, w3, w4, and then passed through a non-linear activation
function to output y .

The question of having the correct learning rule bugs researchers even today and the bio-

plausibility of a certain learning rule is often debated. In [30], McCulloch and Pitts discussed

ideas that led to the first implementation of a perceptron by Frank Rosenblatt, which is the

most rudimentary form of a neural network [33], and the structure is as shown in fig. 1.4(b).

It can do a classification or regression task where the N inputs x1, x2, . . . , xN are fed into the
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perceptron, where the output y is calculated by taking their linear combination with weights

w1, w2, . . . , wN , and after passing through a non-linear function, which was the Heavyside step

function in the original perceptron formulation. The nonlinearity is an important ingredient

as a linear setup could learn functions that were linear, which isn’t the case most of the time

in reality. Learning a good mapping from the input to the output corresponds to learning an

appropriate set of w1, w2, . . . , wN , which are referred to as the synaptic parameters because

of their functional resemblance to biological synapses. The learning rule for the perceptrons

in the simple delta rule is based on the gradient descent algorithm [34]. In this algorithm, a

loss metric is defined, which quantifies how far the perceptron is from giving a correct output.

Then the parameters are updated in a way that minimizes this metric. This is in contrast to

the bio-plausible Hebbian learning and solely depends on the iterative arithmetic updates of

the parameters of the system. Although the very first implementation of the perceptron was in

software on the IBM 704 computer, eventually, a machine was designed called the Mark I per-

ceptron in 1958. It was connected to 400 photocells in a 20£20 grid, which was then connected

to neurons, and the synaptic weights were implemented by potentiometers whose resistance

value encoded the weights. The update of the weights was carried out by electrical motors [35].

This physics-based implementation is surprisingly not dissimilar to the hardware implemen-

tation of neural networks today, broadly speaking.

This methodology of reducing pattern recognition tasks to simple networks where the out-

put is connected to the input by mathematical operations was termed as Connectionism. Ini-

tially, the promise behind such an algorithm was huge, and scientists and media alike pub-

licized that general artificial intelligence was just within reach; however, before the 70s, this

came to an end. A book called Perceptrons was published in the year 1969, highlighting their

severe limitations and criticizing the hyperbolic predictions associated with it [36]. This book

What followed was almost two decades worth of disinterest, lack of funding, and research in AI,

which is referred to as a period of AI winter [37].

In the 1980s, several developments aroused the interest in AI research anew. In contrast

with Connectionism, another AI philosophy relied on symbolic reasoning, such as using deci-

sion trees with if-else branchings based on some logic to reproduce intelligence. This gave birth

to expert systems, a class of computer systems that could emulate the decision-making process

in very specific domains [38]. The cause of connectionism was also revived by the physicist

John Hopfield in 1982, who proposed Hopfield networks which were a novel, efficient, and bio-

realistic implementation of neural networks [39]. From the theoretical side, George Cybenko

proved the universal approximation theorem, which stated that an artificial neural network

(ANN) with a single hidden layer is able to approximate any continuous function for inputs

within a specific range of values [40]. A hidden layer in a neural network refers to an additional

set of neurons between the inputs and outputs, which aims to learn intermediate values, sim-

plifying the classification task in the successive layer. The deep neural network is a network

that has one or more such hidden layers of neurons. David Rumelhart and Geoffrey Hinton
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introduced the method of backpropagation as a method to learn the parameter values of such

multi-layered networks [41].

Nevertheless, the general interest in ANNs was also short-lived, as, by the beginning of

the 90s, many of the new developments failed to offer practical solutions. The expert systems

couldn’t generalize to other tasks, and it was very hard to manipulate or improve systems based

on symbolic computations. However, other machine learning methods like the support vector

machine (SVM) or the K-nearest neighbors were extensively used during this time. After this, it

would take about two decades for the resurgence of ANNs to take place.

1.2.2 Renaissance of AI: the deep learning revolution

The following decades witnessed the sheer dominance of computing power in the context of

AI applied to domains where human expertise was considered superior. Riding the wave of

Moore’s law, computers became powerful in the count of memory as well as processing speed,

and a direct result of this could be seen in the defeat of the famous Gary Kasparov to the IBM

computer called Deep Blue in a game of chess in the 1997 [42]. Another noteworthy accom-

plishment of AI during this period included the proof of Robin’s conjecture in theoretical com-

puter science by the AI automatic theorem prover known as EQuational Prover in the very same

year [43]. In 2005 and 2007, significant demonstrations were made by autonomous vehicles in

the DARPA Grand Challenge and DARPA Urban Challenge, respectively [44, 45].

However, these achievements relied on machine learning techniques that were not based

on deep learning. The first major breakthrough that ushered in the era of deep learning was

when Krizhevsky et al. won the large-scale ImageNet competition in 2012 by a big margin us-

ing a Graphics Processing Unit (GPU)-accelerated Convolutional Neural Network (CNN) [46].

What followed was a surge in interest and funding in deep learning algorithms. In 2019, Yann

LeCun, Geoffrey Hinton, and Yoshua Bengio were awarded the Turing Award, the highest award

in computer sciences. This resurgence could be attributed to three major aspects

• Big data: Since the early 2000s, the ubiquity of the internet, the spread of usage of mul-

timedia and social media, along with the advent of new technologies like the Internet of

Things, there has been an abundance of data available [47]. This wealth of data, known

as Big data, supplied deep learning with information that it could leverage effectively be-

cause, as opposed to other machine learning methods, the performance of deep learning

scales with the amount of data fed.

• Development of algorithms: Despite the fact that most of the building blocks of the

modern deep learning landscape had been around for some time, access to faster com-

puters with bigger memory has facilitated new implementations or the invention of alto-

gether new algorithms. Deep CNNs, Recurrent Neural Networks (RNN), Long short-term

memory (LSTM), Transformers, Generative Adversarial Networks (GAN), and Graph Neu-

ral Networks (GNN) are some examples of such algorithms which are directed toward
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different applications [48–53].

Other than this, different aspects in training were invented which were crucial in the

good performance of such networks like the implementation of Batch Normalizations,

the Adam optimizer, the cosine annealing learning rate scheduler scheme, etc. [54–56].

• Development of memory and compute: Many of the algorithms listed above date back

to the late 1990s, when they failed to perform owing to the mismatch between the re-

quired compute/memory and the existing standards. By the early 2010s, computers had

grown powerful enough to showcase the effectiveness of these algorithms. A huge part

of the computation in neural networks is matrix multiplication. Around the same time,

a specialized device emerged that was able to do this specifically very fast in a massively

parallel fashion. This device, the Graphics Processing Unit, remains one of the key hard-

ware necessary to perform state-of-the-art deep learning [57]. Presently, more special-

ized hardware such as the Tensor Processing Unit (TPU) and other accelerators are being

developed [58].

Figure 1.5: A collage of applications of DL today. (a) Image segmentation is a computer vi-
sion task where the network learns to separate different components in an image
semantically. (b) Google Translate transcribes one language into another using nat-
ural language processing. (c) Tesla’s autopilot system amounts to international level
2 in terms of vehicle automation. (d) AlphaFold 2 algorithm predicts the 3D crys-
tal structure from the input amino acid sequence. (e) The AlphaTensor algorithm
found an efficient way to multiply two matrices that have dimensions larger than
2£2. (f) Speech recognition task: the sound signal is converted to text.

Today, deep learning can be found in a plethora of applications, as shown in fig. 1.5. At
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the time of writing this thesis, large language models have caused a significant buzz in the AI

community, particularly with the recent release of the GPT-4 model, which has shown some in-

dications of potential artificial general intelligence. [2]. Computer vision or image recognition

has been at the forefront of this revolution. At this point, it is considered a practically solved

problem with the recent neural networks surpassing human-level performance for numerous

tasks [59]. Fig. 1.5 (a) shows an example of computer vision: image segmentation, where the

system can correctly identify and separate objects semantically in an image from the camera

attached to a car. Natural language processing, specifically machine translation, has experi-

enced huge success with websites like Google Translate (fig. 1.5 (b)) and DeepL providing al-

most human-level performance. Autonomous vehicles (fig. 1.5 (c)) are also seen as another

domain where DL holds a lot of promise, with companies like Tesla and Ford investing mas-

sively in this research. In recent years, DL applications have pervaded other science domains

as well. The protein folding problem is a 50-year-old challenge in structural biology, where the

task is to predict the correct 3D geometry of a protein given only its amino acid sequence. In

2020, the AlphaFold 2 algorithm (fig. 1.5 (d)) by DeepMind achieved a great level of accuracy

at the CASP 14 competition in predicting the correct crystal structure of proteins [60]. Another

algorithm from DeepMind, called AlphaTensor, has discovered novel mathematical algorithms

that can efficiently implement matrix multiplication in more than two dimensions (fig. 1.5 (e))

[61]. Speech recognition is an application that exemplifies the end-to-end nature of deep neu-

ral networks (fig. 1.5 (f)). In the past, many conventional machine learning techniques relied

on the hand-crafting of features to perform pattern recognition tasks. In contrast, neural net-

works can be used as end-to-end systems where the features are automatically learned, and the

mapping is done directly from one type of data to another. For example, in image recognition,

it learns the mapping between the image pixel values and the labels, or in speech recognition,

the mapping between the sound signal and the text output. Next, we would venture into the

details of such deep neural networks in the context of supervised learning, which is able to

learn a special class of pattern recognition tasks.

1.2.3 Supervised learning

Learning algorithms can be classified in various ways in terms of the task they do, how the data

is presented, and such. A fundamental classification divides them into three categories, with a

glimpse of a fourth one appearing on the horizon.

This classification is based on the interaction between the system, the data available, and

the kind of task it is trying to achieve. In supervised learning, the data consists of examples with

labels; in other words, a single data point consists of an input and output pair, and the system

has to learn a representation that maps the input (called features) to the output. Unsupervised

learning is the learning paradigm where the data lacks such labels, and the system has to learn

patterns underlying the data. The third categorization, Reinforcement learning, has a setup

where the system can interact with its environment through actions. Here, learning takes place
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through the system, getting rewarded for actions that contribute positively to the achievement

of its goals or by getting punished for the opposite. In this thesis, we are going to look at only

supervised learning tasks, specifically the ones related to image classification.

Self-supervised learning is emerging as a new type of learning that uses unlabeled data

to train an algorithm to learn useful representations of the data. This approach is becoming

increasingly popular in the field of deep learning because it can help to reduce the amount of

labeled data required for training, which can be time-consuming and expensive to obtain. In

self-supervised learning, the algorithm is trained to predict a missing piece of information in

the data, which is typically achieved by masking part of the input and then asking the model

to predict what the missing piece should be. This approach can be used to train models for

a wide range of tasks, including image classification, object detection, and natural language

processing [62, 63].

1.2.3.1 The deep neural network

In an image classification task, we have training data that contains the pixel values of all the

images and their corresponding labels. Let the pixels for the nth image be denoted by xn
i s, and

their corresponding labels (or targets) by t n . The task boils down to finding an appropriate

network that learns how to find the correct label for a given image.

The whole operation of a neural network happens in two phases: the feed-forward prop-

agation phase, also called inference, and the backward propagation phase, where the actual

training takes place.

A neural network has two major components, as described earlier: the neural activations or

neurons and the synaptic weights or simply weights, which are the parameters of the network.

In a feed-forward, fully connected architecture, all the neurons of a layer are connected to all

the neurons of the next layer by the synaptic weights w as depicted in fig. 1.6. The weights and

architecture are collectively referred to as the model. The different layers are supposed to learn

features at various levels of abstraction, and the potential to utilize more layers gives a neural

network an edge over the perceptron, which is nothing but a single-layered neural network.
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Figure 1.6: Anatomy of a fully-connected neural network. (a) The inference or the feedforward
part of the network shows how the neuronal values are calculated, starting from the
input in the very first layer to the final output prediction. In the neural network
shown, there are two hidden layers. The preactivation zs are calculated by the lin-
ear combination of the inputs of that layer, weighted by the synaptic weights, and on
that, the activation function f is applied to get the neuronal activation values ys. (b)
Training or backward propagation phase is shown for the same network. Here, the
reversed direction of the arrows represents the backward direction of propagation
of the error signal. The chain rule is used to calculate the gradients for the preacti-
vations and activations, which are then used to calculate the weight updates.

Forward propagation or inference

In this step, shown in fig. 1.6 (a) first, the pre-activation from one layer to another is cal-

culated by taking the linear combination of the inputs of that layer xi weighted by the

synaptic parameters wi j . This pre-activation value z j is then passed through a non-linear

function f called the activation function to yield the output y j .

z j =
X

i
wi j xi (1.1)

y j = f (z j ) (1.2)
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Here, the x0 term is always set to 1, and the w0 j term is called the bias. The choice of

the non-linear function is also a design choice; typically, the ReLU activation function is

used for it. Other choices could be the hyperbolic tangent or the sigmoid function. In the

output layer, a softmax function is typically used. Thus,

f (x) = ReLU(x) = max(0, x) (1.3)

The application of the batch normalization process makes neural networks learn faster and

more stable. In batch normalization, the neuronal pre-activations are normalized over a batch

of values [54]. In this context, a batch, or more specifically, a minibatch, is a small part of the

whole training data. Because of a dataset’s huge size, we only feed a part of the data, called the

batch, to our network in a single step. The batch normalization bounds the value of the pre-

activations to a smaller range and, in turn, makes the loss function landscape smoother, which

facilitates learning [64].
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Batch normalization

Let a single batch of pre-activations (zi ) have m data points, and let the mean and stan-

dard deviations of this batch be represented byµB ( 1
m

Pm
i=1 z j ) andæB ( 1

m°1
Pm

i=1(z j°µB )2).

Then the batch normalized values are given by

zB N j =
z j °µBq
æ2

B +≤
(1.4)

Here, ≤ is a small positive term to maintain numerical stability.

The training process occurs in an iterative manner, where the whole dataset is shown to the

network in small batches, and when it has seen the entirety once, we say it has gone through

a single epoch. One of the most important metrics for a classification task is the accuracy of

prediction. This is usually represented as a percentage of the number of correct predictions

made. Since a neural network has a huge number of parameters that it can learn, it is very

prone to overfit to that data, which means that instead of learning the essential features of

the data, it almost ’memorizes’ the details of the whole training dataset. To diagnose this, we

preserve a part of the data called the testing dataset or test dataset and do not present it during

the training phase when we only present to it the training dataset. If a network has learned the

features well, it will perform similarly on the seen and the unseen datasets. All the accuracies

reported in this thesis are the test dataset accuracy unless otherwise mentioned. It is also best

practice to have a validation dataset which is used for hyperparameter tuning of the neural

network.

Initialization of our model, that is, setting the initial values of the weights, is also an im-

portant aspect. Setting them too high can lead to exploding gradients, and too low can lead to

vanishing gradients, both of which are detrimental to learning. The initial values of the weights

are usually set randomly using a normal distribution with zero mean and a variance propor-

tional to the number of neurons they are connected to [65, 66].

With a random initialization of the weights, the network produces random predictions in

the form of outputs in the first iteration. To fix this, it is necessary to define a metric that quan-

tifies how bad this prediction is, and this metric is called the loss or objective function L. This

measures how far a prediction is from the true target label, and it is named so because the

objective of the learning is to minimize the value of this function by tuning the values of the

weights. The decrease in the loss function, or conversely, the increase in the test accuracy,

means that our network is learning.

In the training phase, this is precisely what we do: we use the gradient descent algorithm

to change the values of the parameters in a way that attempts to find the global minimum of

our loss function [67]. Like in a univariate minimization problem, we take the derivative of

the function with respect to the variable; here also, we take the gradient of the loss function
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with respect to the synaptic weights. Then we descend or change our weights to decrease the

value of the function. Our network is composed of a different set of values linked with each

other by functional mapping, and this gradient has to be propagated backward from the loss

function to all the weights of the network. The backpropagation algorithm achieves this by the

repeated application of the chain rule from differential calculus [68]. It is to be noted here that

this is only possible because the functions and linear transforms that we use are continuous,

so a well-defined derivative exists for all points.

The choice for the loss function also impacts our training, and it is typically task-dependent.

For regression tasks, where the output is not a single label but a continuous real value, the Mean

Square Error (MSE) loss is used, which takes the square of the difference between the actual

output and the expected output, averaged over the whole batch. In our classification task, the

cross entropy loss is used, which, for a single image input for C output classes, has the following

form

L(y, t ) =°
CX

i=1
ti log(yi ) (1.5)

This specific form of the loss function is related to the way in which the outputs are repre-

sented in a classification task. Unlike a regression task, where the system has to predict a real

number, a classification task involves predicting the output class, which in themselves are not

numerical quantities, but just semantic categories. The one-hot encoding is typically used for

a classification task where the output is represented by a C -dimensional vector whose all en-

tries are zero except for the index of the class to which the output belongs, which is set to unity.

Equation 1.5 is designed to punish the network by producing a high value when the prediction

for an index is 0 when the expected output is 1 or vice-versa.

The derivative of this function with respect to the parameters of the network is what com-

prises the training signal, known as the gradient.
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Backward propagation or training

Let us consider the neural network shown in fig. 1.6. In the backward propagation phase,

we start calculating the gradients from the final layer. The update for the weight wkl is

proportional to @L
@wkl

, and the sign is negative since we intend to minimize the loss func-

tion. The proportionality constant Æ is called the learning rate since this determines the

rate or speed at which the network learns. Thus, the equation for the update is

wkl := wkl °Æ
@L
@wkl

. (1.6)

The derivative term in this equation cannot be directly calculated, as L is calculated based

on the target tl and output yl . This output yl , in turn, depends on zl , the linear combina-

tion of the weights wkl , and inputs of this layer yk . The chain rule is used to calculate this

as

@L
@wkl

= @L
@zl

@zl

@wkl
= @L
@zl

yk = @L
@yl

@yl

@zl
yk =° tl

yl
f 0(zl )yk , (1.7)

using equ. 1.1, equ. 1.2 and equ. 1.5.

Next, we move on to the previous layer to determine the updates for the weights w j k .

Unlike the final layer, the gradients from the previous layers also contribute downstream,

and hence we need to take a sum over all the contributions. Thus,

@L
@w j k

=
X

k

@L
@zk

@zk

@w j k
=

X

k

@L
@zk

y j =
X

k

@L
@yk

@yk

@zk
y j =

X

k

@L
@yk

f 0(zk )y j =
X

k
(
X

l
wkl

@L
@zl

) f 0(zk )y j

(1.8)

This way, the updates to the weights are calculated for each layer of the network until the

very first layer.

The backpropagation algorithm is an effective way of learning the parameters of our net-

work as it scales well to the size of a network and where other optimization techniques fail.

Although with this method, convergence to the global minimum is not guaranteed, with some

modifications, this algorithm can train a network considerably well. The stochastic gradient

descent is the simplest way of implementing this. Here, a small subset of the training data, se-

lected randomly, enables the descent of our network along the gradient computed on it. The

Adam optimizer improves on this by considering the gradients’ history, which makes learning

faster and better by effectively reducing noise [69].

The equations described above showcased the backpropagation in a fully connected net-

work setting, but it works similarly with any differential operation. In the case of convolutional

neural networks, the multiply and sum operation is replaced by convolutions where the role of

the weights is served by kernels or filters. Throughout this thesis, we used the PyTorch deep
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learning framework for our neural network simulations [70]. The advantage of using deep

learning frameworks is that they come equipped with specialized modules that can perform

automatic differentiations when the structure of the network is specified. So, we need to de-

fine the forward propagation part, technically called the computational graph, and the package

automatically can do the backward propagation step.

However, this training algorithm is not without some demerits. Firstly, it is highly non-

bio-plausible; the connectivity in the nervous system doesn’t suggest the feasibility of such an

algorithm. In the brain, the update signals are local in nature, and the neural circuitry has

no simple provision for this signal to propagate backward [71]. Additionally, in backprop, the

differentiability of the neuronal values, the transport of exact error signals, and the usage of

the same weights for the forward and backward parts seem to go against biological feasibil-

ity. There have been alternative algorithms proposed to replace backprop, like Equilibrium

propagation, Feedback alignment, and the more recent Forward-forward. Still, they are yet to

convincingly exhibit the performance or efficiency of backpropagation [72–74].

Secondly, it can be noted from equ. 1.7 and equ. 1.8 that the update equations all involve

the weight values, the derivative of the activation function evaluated at the preactivation, the

activations, and the gradients from a subsequent layer. In software, these are just values stored

in memory, but from a hardware point of view, we need to store these values, access them,

and perform computations on them. The architectural overhead for achieving this is extremely

high, to the point of being impractical. This difficulty scales with the size of the neural network,

as larger and more complex neural networks would hinder the hardware implementation even

further.

1.3 Neuromorphic computing

1.3.1 Memory requirements of deep learning

The success of deep learning can be attributed largely to the availability of an astronomical

amount of data. This, in turn, enables the usage of complex models with a large number of pa-

rameters that almost always leads to better performance in terms of accuracy and other met-

rics. However, this comes at a cost: the memory requirements to store the model and the energy

requirements to perform the operations, especially during the training phase, scale poorly with

the model size.

Since the performance of a neural network scales directly with its size and complexity, we

see an ever-increasing trend in terms of the number of parameters, and the total number of

floating-point operations done, the rate of which is measured by Flop/s (Floating-point opera-

tions per second). In fig. 1.7 (a), we see this very clearly in the plot for the number of parameters

count for the deep learning models in the latter half of the 2010s. The blue and red points show

the number of parameters for models designed for computer vision and natural language pro-
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Figure 1.7: Trend in memory and computational performance for deep learning models. (a)
The evolution of the total number of parameters that a model needs over time. The
plot shows the count for the state-of-the-art computer vision (blue points), natu-
ral language procession (red points), recommender systems (black points), as well
as the maximum memory capacity for AI-hardware (green points) (Adapted from
[75]). (b) The same trend for the computational performance, measured in Flop/s
days for vision, language, speech, and game models. The computation in the y-axis
measures the computational performance as well as the total quantity of compute
needed (in terms of days). Two different slopes can be seen based on the usage of
GPUs, where the previous compute doubled every 24 months, and now it is dou-
bling every two months (Adapted from [76]).
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cessing. The NLP models are all based on the transformer architecture, and the number of

parameters in such models is increasing by a staggering rate of 240 times in 2 years. In con-

trast, we see from the green points that the memory capacity of hardware dedicated to AI, such

as the Nvidia Tesla V100 GPU or the Tensor Processing Units (TPUs), is increasing at a much

lower rate of 2 times in 2 years that is in accordance with Moore’s law [75].

As we examine more recent advancements like GPT-4, Google PaLM, and larger recom-

mender system models, it becomes clear that this trend is diverging even more, indicating that

we are quickly approaching a saturation point with conventional memory. The scenario for

computing for deep learning resonates similarly, as we can see from fig. 1.7 (b). In the ’pre-GPU

era,’ the required number of operations was doubling every two years, in sync with Moore’s law,

but the usage of GPUs has led to the capability of using bigger and more complex models, and

the Flop/s days are doubling every two months for very recent models [76]. The PFlop/s days

measure not only the computational performance but also how long the computation runs,

therefore measuring the quantity of computation as well. Thus, the gap between the existing

hardware capabilities and the memory and compute requirements is growing bigger by the day.

Figure 1.8: Energy consumption and its consequences. (a) In conventional computing archi-
tectures, the memory storage unit and arithmetic-logic processing unit are physi-
cally separated, and information needs to be constantly shuttled through them via
a bus. This imposes a limitation in terms of computing efficiency and is called the
von Neumann bottleneck. (b) The relative energy costs of single operations (add,
multiply) for different precisions and data access from SRAM and DRAM [77]. (c)
The relative carbon footprints of neural networks and other major sources of CO2

emission. Training a transformer model with 213 million parameters has a carbon
footprint that is about six times that of an average lifetime of a car in the United
States.
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This avalanche of memory and compute needs is not only an issue for the stagnation in

development; there is a massive cost to this as well, with consequences for our environment.

A major part of the energy consumed for a neural network to function is in its training phase.

The process of finding the optimal set of parameters can take a long time, even with multiple

GPUs, and the process of hyperparameter tuning can make this even longer. From fig. 1.8, we

note the carbon footprint of a modern deep learning model (in this case, a Transformer with

neural architecture search), and comparing it with that of other major sources of CO2 emission,

we observe the orders of magnitude difference [78].

To understand where the majority of energy consumption is, we take a closer look at the

relative energy costs for different operations relevant to neural network calculations. The op-

erations are dominated by multiplications and additions, but, from fig. 1.8 (b), we find that the

energies for these are substantially lower than what is needed for accessing or reading the data

from the cache (SRAM) or from memory (DRAM) [77].

This difference in energy is attributed to the manner in which information is accessed on a

modern computer. In [12], John von Neumann outlined the blueprint on which modern com-

puters are based; the memory and processing units are separated in space, and a bus shuttles

data to-and-from between them. This transport of data causes a bottleneck in terms of effi-

ciency in compute and is termed von Neumann bottleneck (fig. 1.8 (a)). In a single iteration

of training of neural networks, the parameters and activations are read, and using those val-

ues; the updates are calculated and applied to the parameters and then stored. Hence, a lot

of back-and-forth information is happening during this process, leading to massive energy ex-

penditure.

1.3.2 Inspiration from the brain

On the other hand, the original inspiration for neural networks, the human brain excels at en-

ergy efficiency. It consumes a power of 20 W to perform all the tasks a human being can do,

which is similar to that of a light bulb [79]. Traditionally the modern computer has been devel-

oped for specializing in tasks like fast, very accurate calculations, whereas the brain excels at

computer vision, speech, language processing, and other pattern recognition tasks. These two

domains of tasks are, in essence, very different from each other, and from this point of view, it

comes as no surprise that they two function fundamentally differently.

The differences between the human brain and the modern computer can be summarized

as follows.

• Architecture: The neurons in the brain serve as the processing units that transform in-

coming signals, while the synapses between those neurons are the analogs for the mem-

ory elements. Since they are co-located, the need to shuttle information between the

processing units and memory elements is eliminated. On the other hand, in the von Neu-

mann architecture of computers, the memory component is physically isolated from the
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arithmetic/logic unit.

• Information signal: In the nervous system, the information is propagated in the form of

voltage pulses called the action potential. The successive opening and closing of ionic

channels modulate the cell membrane voltage that is responsible for the transport of the

signal through a neuron. Due to the ionic origin of this process, typical timescales are of

the order of milliseconds. In the case of computers, the transport of data occurs through

the flow of electrical current, and hence, all operations are much faster in the order of

µs or ns. Also, the action potential is highly sparse in time compared to how electrical

signals are transmitted in computers.

• Structural organization: Human brain has about 1011 units of neurons, and each of

them is connected to about 10,000 other neurons, on average, making the count for the

number of synapses to be of the order of 1015. The largest neural networks of today have

a parameter count of less than 1012, but the key difference lies in their organization. The

networks of neurons self-organize into patterns that are dynamic in nature. Formation of

new memories and forgetting is related to the strengthening and weakening of synaptic

connections [80].

• Precision: Because of the substrate and nature of the processing, the brain is inherently

noisy, and the information is propagated at low precision, which is very different from

the highly accurate precision of computers.

In 1981, Richard Feynman, Carver Mead, and John Hopfield taught a course at Caltech

called the "Physics of Computation" [81]. While John Hopfield went on to develop the Hopfield

networks, and Feynman contributed to the theoretical development of quantum computers,

Carver Mead, one of the pioneers of VLSI (Very Large Scale Integrated) circuits, initiated the

field of neuromorphic engineering [39, 82, 83].

The field of Neuromorphic computing or engineering aims to mimic the nervous system

(hence the term ’neuro’morphic) for performing efficient computations. At the outset, the goal

was twofold: to develop a biological system in silicon that would enable us to study the brain’s

biology and to advance the development of specialized, energy-efficient computers. Misha

Mahowald, a student of Carver Mead, developed the Silicon retina, which was an electronic

micro-power chip that could produce a binocular map of distance to objects in a visual field

[84, 85]. Scientific and engineering endeavors have proceeded along this line in the form of

emulating neurological components through silicon-based electronic circuitry. Many different

types of neuromorphic silicon circuits have been developed that have the ability to integrate

and fire like neurons and thus could be used for spiking neural networks [86]. Spiking neural

networks are a class of neural networks where the input is encoded in the form of spikes (either

their frequency or interval between spikes), and the neurons act typically as leaky integrate-

and-fire elements [87].
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Another direction of research has emerged that takes a more top-down approach to neuro-

morphic computing that follows biology at a more architectural level and integrates the logic

and memory components. This non-von Neumann architecture falls under a specific type of

computing called in-memory computing or near-memory computing because of the proximity

of the memory and computing elements. This approach facilitates the hardware implementa-

tion of neural networks that can substantially reduce the energy inefficiency problems that are

inherent in conventional software-based implementations.

1.4 In-memory computing with emerging memory tech-

nologies

1.4.1 Filling the gap in memory hierarchy

We are at a point in time when Moore’s law is saturating; as transistors are scaled to lower di-

mensions, the problem of dissipation of heat and of growing leakage and variability hinder

the performance of traditional CMOS [88]. These are significant obstacles in the development

of hardware specialized for deep learning, in addition to the energy-related constraints men-

tioned earlier in this chapter.

The term in-memory computing is an umbrella term for numerous types of computations,

including applications such as reservoir computing, combinatorial optimization, etc. [89]. In

the context of this thesis, we are specifically looking into brain-inspired hardware implemen-

tation of non-spiking deep learning neural networks.

Broadly, there are two classes of memories that are associated with in-memory computing;

charge-based and resistance-based. The charge-based memories are already discussed in sec-

tion 1.1 and are the SRAM, DRAM, and Flash memories (shown in fig. 1.3). The physical process

underlying a state of memory is related to the presence or absence of charges.

Let us look at some metrics relevant to computing in these charge-based memories:

Type of memory Access speed (ns) Area (F2) Volatility

SRAM (cache) <5 ns 140 Volatile

DRAM 50 ns 20 Volatile

Flash 20 µs 4 Non-volatile

Hard drive 5 ms <1 Non-volatile

In the above table, F denotes the minimum feature size of that type of memory, and F2

represents the associated area of a single unit.

We note that there is a gap of at least 2 orders of magnitude between the DRAM and Flash

memories, and this is where the resistance-based memories come into the picture. This emerg-

ing class of memories can bring the best of both worlds in terms of fast speed, low area over-
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head, and non-volatility, all of which are essential requirements for the hardware implementa-

tion of deep learning.

1.4.2 Emerging memory technologies

Resistive memories, also called memristors (memory-resistors), are devices whose resistance

state depends on the history of electrical current and are non-volatile in nature. The possibility

of the existence of a fourth circuit element, the memristors (besides the resistor, capacitor, and

inductor), was theoretically proposed by Leon Chua from symmetry-based arguments in 1971

[91]. According to his vision, the memristance connects the magnetic flux and the electrical

charge and would have dimensions the same as the resistance. However, when actual physi-

cal systems started being identified as memristors, the involvement of the magnetic flux was

not apparent. In [92], the authors demonstrated that this memristance arises in nanoscopic

systems where the current-voltage characteristics show hysteresis.

The coming decades saw a rise in the research of such materials, and today there are four

main types of such resistive memory technologies: Filamentary/interfacial/resistive switching

materials (ReRAM or RRAM), Phase change materials (PCM), Spin-transfer torque magnetic

random access memory (MRAM), and Ferroelectric field effect transistors (FeFET) based on

Ferroelectric random access memory (FeRAM). Let us discuss these in more detail.

1.4.2.1 Resistive switching materials

These devices are typically metal-insulator-metal (MIM) heterostructures where the metal lay-

ers are called top and bottom electrodes (fig. 1.9 (a)), and the voltage pulse is applied between

them. The insulator is, in many cases, a non-stoichiometric oxide (HfOx, TiOx, TaOx). The non-

stoichiometry is related to the absence of oxygen atoms, called oxygen vacancies, and these

vacancies interact with the electric field in the dielectric to yield the memristive behavior. In

a virgin state, the stack has a high resistance, and to produce such behavior, initially, it needs

to be formed. This is done by applying a large electrical voltage that causes a soft electrical

breakdown to form a filament made up of oxygen vacancies.

Upon application of a positive voltage to the top electrode, the defects undergo field-induced

migration and diffusion to the lower electrode and start forming a conductive filament. And

when this filament connects the top and bottom electrodes, a SET transition occurs, and the

device goes to a low resistance state (LRS). If the polarity of the voltage is reversed, the op-

posite process starts happening; that is, the filament starts getting destroyed, and when this

connection is broken, a RESET transition happens to switch the device from the LRS to a high

resistance state (HRS). This is schematically shown in fig. 1.9 (a) and (b), where the first fig-

ure shows the formation of the conductive filament, and the second shows the current-voltage

(I-V) characteristics. The I-V graph shows a pinched hysteresis loop, which is a signature of

the filamentary switching phenomenon. Interfacial resistive switching has also been demon-
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Figure 1.9: Zoo of emerging memory devices. (a, b) Illustration and current-voltage character-
istic of a bipolar RRAM. The transition from HRS to LRS occurs with positive volt-
age due to the formation of a filament connecting the top and bottom electrodes.
Resetting the device to HRS occurs with a negative voltage, indicating disconnec-
tion of the voltage-induced filament. (c, d) Structure and resistance change of a
PCM device, where a voltage pulse causes a decrease in resistance through increased
crystallization and an increase in resistance above the melting-point voltage (Vm)
through increased amorphization. (e, f) MTJ and resistance-voltage characteristic
of an STT-MRAM, showing low and high resistance for parallel (P) and antiparallel
(AP) states, respectively, which can be achieved with positive and negative voltages.
(g, h) FeRAM structure and polarization-voltage hysteresis showing permanent po-
larization of the ferroelectric layer caused by electrical dipole orientation. A voltage
above the coercive voltage (VC) results in positive remnant polarization (Pr), and the
opposite for a negative voltage. (Adapted from [90]).
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strated, where the vacancies get either attracted or repelled at the interface uniformly, leading

to the different resistance states [93].

An advantage of such a class of materials is that the technology for the fabrication is quite

mature, so it is easier and cheaper to produce. This technology is so developed at this point

that commercial microcontroller units are available based on them [94]. Some drawbacks are

that because the underlying physics relies on nanoionic mechanisms, the process can be noisy

and unreliable. The issue of noise is even worse for analog memories where intermediate re-

sistance states are utilized [95]. In the next chapter, we discuss and present our investigations

on this matter. Other disadvantages include typically low endurance, the necessity of the initial

forming step, and high inter-device variability.

1.4.2.2 Phase change materials

This type of material typically comprises a Chalcogenide (a compound with at least one Chalco-

gen element and a metal), the most widely used being Ge2Sb2Te5 [96]. Applying a voltage

causes local Joule heating in these materials, changing the physical state from amorphous to

crystalline. Starting from a pristine state, which is amorphous, if a low voltage pulse (called the

SET pulse) is applied, there is Joule heating-induced crystallization. On the application of high

amplitude shorter voltage pulses (called the RESET pulse), the temperature in the material ex-

ceeds the melting point to cause local melting and consequently amorphization (fig. 1.9 (d))

[97]. In these materials, the crystalline state has much lower resistance owing to the large con-

centration of carriers, and the amorphous state has high resistance because of the Fermi-level

pinning at mid-gap [98].

The heterostructure of the PCM cell is shown in fig. 1.9 (c), where the bottom electrode is

connected to a tungsten plug with narrower dimensions to confine the current and heat, lead-

ing to a hemispherical shape of the molten or amorphous region. Since the mechanism for this

class of materials depends largely on the contact area and current, it scales well in the sense

that smaller devices consume less power [99]. PCM is more reliable than ReRAM; it is usually

much less noisy and has a higher endurance as the LRS and HRS are linked to the crystalline

and amorphous states of the materials, which are thermodynamically stable. It is also techno-

logically mature, and ST Microelectronics has developed embedded memory cells with PCM

integrated with 28 nm FDSOI (fully-depleted silicon on insulator) transistors that can be used

for automotive microcontroller applications [100]. One of the biggest problems with this tech-

nology is that it suffers from resistance drift, which is the passive increase in resistance and

the threshold voltage most prominently seen in the HRS at room temperature. It is caused by

the thermally-activated structural relaxation process in which there are atom-level rearrange-

ments in the amorphous phase [101]. Also, the requirement of high voltage for the RESET leads

to high power consumption.

Although resistive switching mechanisms are very different for ReRAM and PCM, both excel

at certain categories. The OFF/ON ratio, which is the ratio of the resistances in the HRS and
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LRS, is usually high, allowing for few programming errors and multi-level switching. Both of

them are considerably faster in switching time (ª10 ns) and have better endurance than Flash

memories [90].

1.4.2.3 Magnetic random access memory

The building block of an MRAM cell is a magnetic tunnel junction (MTJ), which is a spintronics-

based heterostructure with a thin insulator layer sandwiched between two ferromagnetic metal-

lic layers; the typical choices for the insulator are MgO and for the ferromagnet being CoFeB

[102]. As shown in fig. 1.9 (e), the magnetization of one of the layers is structurally fixed, called

the pinned layer or reference layer, while the other layer’s magnetization is free to change upon

programming, and is called the free layer. Thus, the two layers can have parallel (P) or an-

tiparallel (AP) magnetizations that define the LRS and HRS, respectively, due to the tunneling

magnetoresistance effect [103].

In the first generation of MRAMs, the orientation of the magnetization was switched by

the application of a magnetic field. Still, it had many problems, including the need to apply

a high current to generate the magnetic field. The spin transfer torque (STT) effect is used in

the second generation of MRAMs (also called STT-MRAM), in which a spin-polarized current

applies a torque on the magnetization of the free layer to change its orientation [104]. Fig. 1.9

(f) shows that if the layers are in the AP state, a positive voltage can flip it to the P state by

the conservation of magnetic momentum, and the reverse polarity of voltage and current can

achieve the opposite. This alternative to field-induced switching uses a much lower power and

is more scalable.

MRAMs can exhibit a low switching time (ªns) or a high endurance (>1014), both of which

cannot be obtained simultanously for STT-MRAM and earlier technologies. Moreover, since

the principal mechanism is based on tunneling, the resistance is exponentially dependent on

the thickness of the barrier. Due to this dependence, it is crucial to achieving precision in the

fabrication process, and even small variations can significantly impact the performance of the

device. As a result, the fabrication of such devices is more difficult than other types of memories

[105]. Thus, small differences in thickness can lead to substantial differences in performance.

Some of the main drawbacks of this technology are the small ON/OFF ratio, the existence of

only two resistance states, and the tradeoff between fast switching and reliability. Another fun-

damental problem is that the barrier height between the two states depends on the dimensions

of the MTJ. So if we scale it to a limit where the barrier height is comparable to the thermal en-

ergy at room temperature (about 26 meV), the device would be stochastic. Nevertheless, this

type of memory is also commercially available now in the form of both as standalone or as em-

bedded memory [106]. The third generation of MRAM is based on the spin-orbit torque (SOT)

mechanism for switching, in which the write current passes a heavy metal layer placed under-

neath the MTJ, and a torque induced by the spin-orbit coupling switches the state [107, 108].

Due to the fundamentally different mechanism for switching, SOT-MRAM is superior to STT-
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MRAM in terms of write speed and can simultaneously achieve low switching speed and high

endurance at the cost of increased area [109].

1.4.2.4 Ferroelectric random access memory

The FeRAM is structurally similar to a DRAM where the dielectric of the capacitor is replaced

by a ferroelectric material such as PZT or doped HfO2 [110]. The heterostructure is shown in

fig. 1.9 (g), and we see in fig. 1.9 (h) that a voltage sweep can change the polarization of the

material in a non-volatile manner. The polarization in a ferroelectric material is caused by the

alignment of its atomic dipoles, which can be oriented in one of two directions. When an elec-

tric field is applied to the material, it causes a change in the alignment of the dipoles, which

changes the polarization state. This change in polarization can be detected and used to store

information. Therefore, the FeRAM is in itself not a resistance-based non-volatile memory. To

read the two states as resistance values, a ferroelectric field effect transistor (FeFET) has to be

used where the ferroelectric is sandwiched between the source-drain conduction region of the

device and the gate electrode. The resistive switching effect is achieved by a change in the

dielectric polarization which changes the channel resistance. Also, the perovskite-based FeR-

AMs have a very high endurance (>1014) owing to the very minimal internal structural change

during the switching process. Also, it requires much less power for operation compared to

conventional memory technologies like DRAM and Flash. However, it is a relatively new type

of technology and needs more research to overcome the following issues. There is significant

inter-device variability originating from the polycrystalline ferroelectric films, which becomes

worse with scaling, and the retention is reduced at higher temperatures [111].

1.5 Hardware-based neural networks

Due to the scalability, energy efficiency, speed, and endurance of these resistive technologies,

they are ideal candidates to be used as the neural network synaptic parameters in the context of

hardware implementation. Another common advantage of these four types of resistive mem-

ories is that they are compatible with the existing CMOS technology; they can be very easily

integrated with the back end of line (BEOL) of transistors. In the fabrication process of an inte-

grated circuit (IC), the transistors are first patterned on the semiconductor substrate. This part

is known as the front end of line (FEOL). After that, the electronic components need to be con-

nected with the wires of the wafer, and this happens in the next layer called BEOL, where several

layers of metal (usually copper or aluminum) and the in-between insulators are deposited to

form the stage contacts, interconnecting wires, and vias. The metal layers are named M1, M2,

... starting from the bottom, and the resistive memory device is usually fabricated between two

of such layers. This integration of the memory heterostructure within the metal layers is shown

in fig. 1.10 for the four types of memories discussed in the last section.
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Figure 1.10: Back end of line (BEOL) integration of resistive switching memories for RRAM (a),
PCM (b), MRAM (c), and FeRAM (d) (Adapted from [4, 112–114]).

1.5.1 Memory architectures

The memory devices need to be organized in the form of an array to store, read, and program

memory states. One possibility is to integrate them in the form of a crossbar architecture, where

the simplest arrangement (called the 1R configuration) consists of a single resistor in a memory

cell arranged in a matrix. Two orthogonal lines overlap in this structure, and a memory device is

present at each intersection. Thus, the two lines are connected to the two ends of each resistor

and are called the bit line (BL) and the word line (WL), and because of the absence of any access

transistor, cell size can be theoretically as small as possible, that is, 4 F2.

However, a major issue with this architecture is the presence of sneak paths: to program

a particular device, a voltage needs to be applied across its corresponding BL and WL. To do

so, the WL for that device is set to the programming voltage (for the SET process) while the

corresponding BL is grounded, and the voltage of half the programming voltage is applied to

all the other lines. As a consequence, there are some cells, called half-selected cells, in the

same row and column as the selected device, which receive half the programming voltage, and

a current flows through these sneak paths, leading to wastage of energy [115].

Another type of architecture that can be used to mitigate this is the 1T1R (1 transistor 1

resistor) grid architecture, where each memory cell has co-located transistor and memory. As

shown in fig. 1.11 (d), the non-volatile memory is integrated with a transistor (typically in the

BEOL as shown in fig. 1.10) where the BL connects to one end of the resistor, the WL to the gate

of the transistor, and the source line (SL) to the source side of the transistor. These transistors
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are known as access transistors as turning them on or off leads to the access or selection of a

particular memory cell. Fig. 1.11 (a), (b), and (c) show how the SET, RESET, and read are done

for a bipolar switching resistive device. To access the selected cell (shown in the pink box) in the

figure, a voltage is applied at the WL to turn on the access transistor in the selected cell. For the

SET process, simultaneously, a voltage is applied to the BL of that cell (for RESET, the voltage is

applied at the SL), and all the other lines are kept grounded. This way, during programming, the

cells which are required to be written are only accessed. Similar to the programming, the read

is done by applying a low voltage at the BL and measuring the output using a sense amplifier.

Even this architecture is not without its demerits, as switching memory devices requires a

certain magnitude of current, and the dimensions of the connected transistor limit that. Thus,

larger transistors are typically needed, which take up more area and are costlier to fabricate

[18].

A more compact architecture has been proposed that includes a selector element con-

nected in series with the memory called the 1S1R configuration (fig 1.11 (e)). The selector unit,

in this case, is a type of diode that, by default, doesn’t allow current to flow through it below

a certain voltage difference. Thus, the previously half-selected cells would still have no sneak

paths through them. A key challenge is that a conventional diode would only work for unipo-

lar switching, typically only found in phase change memories [116], and newer technologies

involving bipolar diodes need to be developed. Companies like Micron and Intel have made

significant progress on this front, and they even have commercially available products employ-

ing this configuration [117, 118].

1.5.2 Neural network dedicated hardware

The training and inference of modern neural networks are typically done in data centers that

employ conventional computers with multiple GPUs. Because the computations usually are

not optimized for the specific type of calculations and information access, the energy con-

sumptions can reach exceedingly high values [78]. There has been development in terms of

hardware dedicated to deep learning applications. For example, Google has developed its very

own ASIC (Application Specific Integrated Circuit) called Tensor Processing Unit (TPU). Ten-

sors are a generalization of matrices in higher dimensions, and in deep learning, the data has

more than two dimensions (e.g. in convolutional networks, the input has a dimension for

height, width, channels, and batch). TPUs offer a more natural way of computing with such

high-dimensional units and, although based on DRAMs, can provide a considerable amount of

energy efficiency [58].

It is important to note that these factors are primarily taken into account in cloud com-

puting, where performance quality takes precedence over other attributes such as power con-

sumption and speed. Hence, these solutions may not be suitable for low-power embedded

applications, where Microcontroller units (MCUs) are not powerful enough to train neural net-

works. Microcontroller units (MCUs) are purpose-specific computers with small memory and
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Figure 1.11: Memory architectures. (a) the SET, (b) the RESET, and the (c) Read operations in a
1T1R configuration. A particular cell is selected by applying voltages at the WL, the
BL for SET (or SL for RESET), and the other lines grounded. The access transistor
allows only the selected cell to be written to prohibit sneak paths. The read is done
similarly to the SET with a much lower voltage and the output being read by a sense
amplifier circuit. (d) The device-transistors integration is shown explicitly where
the WL and SL are connected to the gate and the source of the transistor, respec-
tively, and the BL to one end of the resistor. (e) The 1S1R configuration showing
the series connection of the memristors with the selector element. (Adapted from
[18])

are not powerful enough to train neural networks. However, they can support inference of

some networks. In [119], an MCU was used to run a compressed network where SRAM and

Flash memories were used to store the data and parameters respectively, and it could reach
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more than 70% top-1 accuracy on the ImageNet dataset with a power budget of the order of a

couple of Watts.

However, even such energy efficiency is not sufficient for extreme edge computing appli-

cations. In extreme edge computing, data processing, and analysis are performed on the edge

devices with an ultra-low power budget. Such devices are located near the data source or the

end-user, and this allows for faster processing and reduced latency, which is particularly impor-

tant for applications that require real-time processing, like IoT devices. In this context, neural

networks implemented using emerging memory devices in crossbar architectures show great

promise for AI-based extreme edge computing applications, owing to their low-energy, low-

area, fast, and in-memory computing-compatible nature.

Typically in this type of implementation, the memory devices are arranged in the form of an

array together with access transistors. Such matrices of analog non-volatile memories are very

suitable for implementing neural networks since, by virtue of Ohm’s law and Kirchoff’s law, they

can naturally implement the multiply and accumulate operation of a single layer. This idea is

illustrated in fig. 1.12: the input is applied to the WL of the crossbar in the form of voltages. At

the intersection of the i th WL and j th BL, there is a resistive memory with a certain conductance

Gi j , and by Ohm’s law, the current through it simply given by I = Vi Gi j . At the BL, Kirchoff’s

current law accumulates the current from all the WLs as I j =
P

i Vi Gi j . In fig. 1.12 (a), the role

played by the voltage Vi , conductance Gi j , and the output current I j is analogous to the neu-

ral network layer shown in fig. 1.12 (b) in terms of the input xi , synaptic weight Wi j and the

preactivation z j . The non-linear function needs to be applied using some other devices or cir-

cuitry. Another caveat of this approach is that a single conductance can only encode a positive

value, whereas the weights of a neural network can have any sign. To circumvent this, a differ-

ential conductance pair of G+
i j and G°

i j is used to represent a single weight Wi j , and the final

measured current is the difference between the current from the positive and negative arms

(as shown in fig. 1.12 (c)), allowing for an effective negative contribution from the conductance

pair unit.

There have been several demonstrations of this idea with different forms of novel non-

volatile memories. ReRAMs with oxide-based resistive elements have been used to train per-

ceptrons [120]. Orders of magnitude reduction in power consumption compared to conven-

tional computers were reported on a face classification task using ReRAM [121]. Another study

was able to implement a HfOx-based neural network capable of in-situ training to learn a com-

pact version of the MNIST dataset to get an accuracy close to the software baseline [122]. In

another work, a hybrid training algorithm was utilized to implement a convolutional neural

network for the MNIST task which reported an energy efficiency of more than two orders of

magnitude while achieving software-comparable accuracies [123].

Phase change memories have been also explored for such realizations, although the num-

ber of scientific articles has been less in number. A mixed-precision in-memory approach was

used to solve a set of 5,000 linear equations accurately using PCRAM [124]. Another work uti-
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lized a mixed hardware-software implementation to achieve test accuracies for MNIST, MNIST-

backrand, CIFAR-10, and CIFAR-100 datasets equivalent to software and showed that such re-

alization could be done faster and with much less energy than GPUs [125]. Recently, a new

approach has emerged for implementing in-memory neural networks. This approach utilizes a

crossbar array of MRAM, with a resistance summation scheme employed for the accumulation

process. This scheme addresses the issue of high energy consumption caused by low resistance

of MRAMs during the MAC operation [126].

Figure 1.12: Mapping a neural network to a matrix of non-volatile analog memories. (a, b) If the
inputs of the layer are applied as voltages at the WL, and the outputs are measured
as currents in the BL, then the conductances of the memory cells play the role of
the synaptic weights by virtue of Ohm’s law and Kirchoff’s current law. (c) The dif-
ferential conductance pair is used to allow for both positive and negative values of
the weight.

While the technologies employed in the aforementioned studies show great promise for

enabling low-power and fast neural network implementation, it is worth noting that they were

predominantly symmetric, substantially linear, and had limited variability. The robustness of

these studies to different types of variabilities has not been illustrated convincingly. Since the

matrix multiplication is done directly with analog weights, the noise in the memory can sig-

nificantly impact the networks’ performance. This is most prominent in filamentary switch-

ing memory devices as the variation of the resistance depends on nanoscopic physics, which

is very sensitive to atomic fluctuations [127, 128]. With phase change memories, the resis-
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tance drift phenomenon can potentially erase a programmed neural network over time [101].

Also, unlike in software, the conductances/resistances need to be updated by the application of

voltage, and for these classes of materials, the I-V characteristics can be highly non-linear and

asymmetric, making it more difficult to map networks reliably. The device-to-device variability

of the memristors is another crucial impediment in this regard. The HRS tends to show a wide

distribution of states, making it complicated to program devices reliably. Also, since the com-

putations are based on the flow of current, the IR drops caused by the current flowing through

the connecting wires can change the calculation of activation values.

It is imperative to mention at this point the difference between inference and training hard-

ware. In inference hardware, the training is done offline, which means in software. The trained

weight values are then transferred to hardware by programming the devices to the intended

resistance values. This is suitable for applications where no further online training is needed

after the deployment of the model. However, in scenarios where training has to occur on-chip,

specialized training hardware needs to be used. The major difference in training hardware is

that the updates need to be calculated and applied to the weights, apart from doing the feed-

forward calculations for inference. The distinction between the two different types of hardware

is done here to emphasize that they suffer from different aspects of imperfections, which shall

be discussed in the next section.

1.6 Challenges in learning: imperfections in resistive mem-

ories

In this section, we will provide a detailed review of the imperfections that are inherent in emerg-

ing resistance-based memories. Moreover, we will analyze their significance in the context of

the hardware implementation of neural networks. Firstly, we discuss non-linearity and asymmetry-

related issues, which specifically pose difficulty to training hardware since updates to resis-

tances are involved. The inference process is usually immune to this sort of imperfection. Then,

we discuss intra and inter-device variabilities which plague both kinds of hardware.

1.6.1 Non-linearity and asymmetry

The resistive switching phenomenon is related to different types of physical changes in mate-

rials; the presence or absence of oxygen vacancy filaments in the case of ReRAM materials, the

ordered or disordered state in a PCM, the relative magnetization of MTJs in MRAM, and the

dielectric polarization in FeRAMs. All of these have vastly different physical origins, as are the

mechanisms that facilitate conduction, or the lack thereof.

For the purpose of this thesis, we mainly focus on filamentary switching-based materi-

als. In this class of materials, the switching occurs through the formation and dissolution of

the oxygen vacancy-based conducting filament. However, the exact details of the underlying
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mechanisms are not entirely elucidated. Particularly in the HRS, when the filament does not

connect the top and bottom electrodes, the conduction happens via quantum mechanical tun-

neling [129]. This type of transport mechanism is highly non-linear in terms of voltage, which

is apparent if we observe the current-voltage(I-V) characteristics of the oxide-based resistive

memories. In fig. 1.13 (a), (b), and (c), the I-V plots for HfOx, TiOx, and TaOx are shown respec-

tively, and the non-linearity is quite evident in both the LRS and HRS.

The SET and RESET processes in such memristors occur through the filaments’ formation

and dissolution, which are separate processes. The SET transition is usually controlled by a

compliance current which defines the resistance of the LRS and, internally, the thickness of

the conducting filament. On the other hand, the RESET process happens by the destruction of

this filament by the dissolution of oxygen vacancies, which has different kinetics than the SET.

Thus, we see an asymmetry in the SET and RESET processes; they might happen at different

positive and negative voltages (like in fig. 1.13 (c)). Also, the stability of the two states can

be very different. The HRS is usually noisier than the LRS, and it is notoriously difficult to

understand the physical origin of this noise. Even for PCM, the resistance drift effect is also

more pronounced in the HRS (RESET state), as shown in fig. 1.13 (e).

These kinds of imperfections can have a significant impact on programming memory de-

vices as synaptic parameters in a neural network. In software, the weight values are directly up-

dated by ¢W , but a voltage needs to be applied to change the device resistance/conductances

in hardware. And since the response of the resistance to the applied voltage is non-linear, the

updates cannot be applied precisely in a simple manner. The asymmetry of the two states also

makes learning or programming very difficult since the variation of resistance is not the same

for positive and negative voltage pulses. This can be seen in fig. 1.13 (d), where the conductance

is alternately increased (potentiated) and decreased (inhibited) by the application of positive

and negative voltage pulses. The potentiation shows a much abrupt increase, then saturation,

while the inhibition happens progressively.

1.6.2 Intra-device and inter-device variability

Variability is another type of imperfection that is commonly found in oxide-based memristors.

It is chiefly of two types: intra-device and inter-device. The former is linked to the variations in

a single device, whereas the latter concerns the variability among different devices.

The intra-device variability again can be of two types; it can be the noise in the resistance

state when we are reading the current over a period of time, or it can be a cycle-to-cycle type

of variability where if the device is subjected to the same voltage pattern (be it a voltage sweep

or a SET), the output responses differ over the different cycles. Fig. 1.14 (a) and (b) show the

read current when a voltage of 10 mV is applied as a function of time. Depending upon the

number of defects and the impact of fluctuation of charge near the filament, different types of

noises can be observed in such devices. Here, fig. 1.14 (a) shows pink noise, which has a power

spectrum that varies inversely with the frequency, and fig. 1.14 (b) shows Random Telegraphic
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Figure 1.13: Non-linear and asymmetric behavior in resistive memories. (a)HfOx-based,
(b)TiOx-based, and (c)TaOx-based resistive memories’ current-voltage character-
istics showing non-linearity in both LRS and HRS and asymmetry in SET-RESET
transitions [130–132]. (d) Potentiation and inhibition characterization with posi-
tive and negative voltage pulses exhibiting asymmetry of the two different transi-
tions [132]. (e) The PCM resistance drift effect is more pronounced in the HRS than
in the LRS [133].

Noise (RTN) [134], which are sudden jumps between two discreet resistance states.

Fig. 1.14 (c) shows that the voltage sweeps over a device do not always yield the same IV

trace, and even the switching voltages can be very different in different cycles [135]. The com-

pliance current (also called SET current or ISET ) is the fixed current to which a device is sub-

jected in the SET operation, and this is the parameter that defines the LRS. In fig. 1.14 (d),

we see that when a single device is SET to LRS with different SET currents, the device is not

programmed to the same conductance value each time. Rather, the LRS has a Gaussian distri-

bution whose mean and standard deviations are coupled and depend on ISET [136].

The inter-device variability or the device-to-device variability refers to variation in-between

different devices. A point to be emphasized here is that this variation is not because of fabrication-

related variabilities and is due to the intrinsic nanoscopic nature of the switching mechanism.

Fig. 1.14 (e) and (f) show the distribution of the conductance and resistance states for the LRS

and HRS, respectively, over different devices. The earlier figure illustrates the Gaussian nature

and SET current dependence of the LRS, which is similar to the cycle-to-cycle variation. On the
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Figure 1.14: Intra-device and inter-device variability, (a) and (b) demonstrates the different
types of noise (pink and RTN) that can be present in the same device when the
current of the device is read at a constant voltage of 10 mV over a period of time (c)
Cycle-to-cycle variability in the I-V characteristics of oxide memristors; 100 volt-
age sweeps exhibit different responses in the current. (d) Distribution of the LRS
for different SET programming conditions, in particular, the ISET . (e) and (f) the
inter-device variability in the LRS and HRS, showing a Gaussian and log-normal
distribution, respectively. The mean conductance of the LRS can be modulated by
the ISET current (Adapted from [134–138]).

other hand, the later figure shows a log-normal distribution for the HRS [137, 138].

The intra-device and inter-device variabilities are significant challenges for realizing hardware-

based neural networks. This is because all traditional deep learning algorithms rely on uniform,

highly precise operations, and the presence of noise or device-to-device variability is contra-

dictory to that.

On top of all these, there are circuit-related constraints as well. For example, in an IC array,

there are resource constraints limiting the total number of inputs or the noisy behavior of cer-
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tain elements under low-power conditions. The conventional deep learning algorithms do not

work perfectly with such constraints, and there is a need to rethink our algorithms, redesign

our circuits, and reoptimize our devices so that they work in tandem with our coveted goal of

the hardware implementation of deep learning.

In this thesis, chapter 2 focuses on the implementation of learning in the weak RESET

regime of HfOx-based filamentary resistive RAM using binarized neural networks. The memory

technology is introduced, and its co-integration with CMOS is discussed, along with the signif-

icance of the weak RESET regime that enhances the endurance of such memory devices, a cru-

cial parameter for on-chip learning. Then a physics-based model for the resistance evolution is

developed, taking into account different types of variabilities, and is fitted to the experiments.

This device model is then incorporated within the PyTorch framework to simulate learning with

these devices. The simulations are done to learn the MNIST and CIFAR-10 datasets, and the

test accuracies exemplify the robustness of this approach to different types of imperfections.

To summarize, this chapter highlights the potential to generalize this approach for simulating

other memory technologies and emphasizes the importance of studying the impact of imper-

fections on its performance.

Chapter 3 discusses the inference in binarized neural networks and its constraints from

circuit-level implementation. First, we introduce the general ideas related to the circuit-based

implementation of binarized neural networks and highlight the significant sources of imperfec-

tions originating from electronic circuits and memories. Then we present two different studies

based on the circuit-level realization of binarized neural networks. For the first study, we detail

the circuit used to implement inference in binarized neural networks, the sources, and analy-

ses of the errors. Those errors are then incorporated into neural network inference simulations,

and the resilience of the prediction accuracy to such errors is investigated using the MNIST and

CIFAR-10 datasets. The next part presents the second study, which follows a similar structure

to the first. In this work, an approach is proposed and demonstrated to circumvent array-size-

related constraints at the cost of a slight degradation in accuracy. A significant source of errors

in this circuit is due to the unreliable solar cell that supplies power to it. Finally, the experi-

mentally characterized error is used in neural network simulations to demonstrate that bina-

rized neural networks exhibit robust computation even under an irregular power supply. This

chapter highlights the suitability of binarized neural networks for inference, even with different

levels of imperfection and constraints, which are especially promising for edge applications.

Chapter 4 introduces a novel approach to computing that leverages the imperfection of

emerging memories. Specifically, the focus is on Bayesian Binary Neural Networks, which are

the probabilistic analog of binary neural networks. The chapter begins by reviewing the theory

behind probability-based computing and some recent work on probability-based computing

with emerging memory devices. The theory of Bayesian Binary Neural Networks is then intro-

duced, with a focus on its differences from its deterministic analog. The concept of quantifying

uncertainty is also introduced, as it is one of the main advantages of using Bayesian Neural
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Networks. A toy example, the two moons dataset, is used to demonstrate the advantages of

this type of neural network. This is followed by an actual medical task, the MIT-BIH dataset for

arrhythmia detection, where the benefits of the Bayesian Binary Neural Network over the con-

ventional network are showcased. Finally, spintronics-based physical systems that could be

used for realizing this deep learning algorithm are discussed, and results related to performing

inference are presented.



Chapter 2

Learning with imperfect Resistive RAM

With four parameters, I can fit an elephant, with

five, I can make him wiggle his trunk.

John von NEUMANN
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THE IMPLEMENTATION of current deep learning training algorithms is power-hungry, ow-

ing to data transfer between memory and logic units. Oxide-based resistive memories

(ReRAMs) are outstanding candidates for implementing in-memory computing, which is less

power-intensive. Their weak RESET regime is particularly attractive for learning, as it allows

tuning the resistance of the devices with remarkable endurance. However, the resistive change

behavior in this regime suffers from many fluctuations and is particularly challenging to model,

especially in a way compatible with tools used for simulating deep learning. In this work,

we present a model of the weak RESET process in hafnium oxide ReRAM and integrate this

model within the PyTorch deep learning framework. Validated on experiments on a hybrid

CMOS/ReRAM technology, our model reproduces both the noisy progressive behavior and the

device-to-device (D2D) variability. We use this tool to train Binarized Neural Networks for the

MNIST handwritten digit recognition and CIFAR-10 object classification tasks. We simulate our

model with and without various aspects of device imperfections to understand their impact on

the training process. The framework can be used in the same manner for other types of mem-

ories to identify the device imperfections that cause the most degradation, which can, in turn,

be used to optimize the devices to reduce the impact of these imperfections. This chapter is

adapted from a publication in the journal IEEE Transactions on Electron Devices by the author

of this thesis [4]. The experimental characterizations were done at Aix-Marseille University by

Pr. Marc Bocquet.

2.1 Background

The advance of machine learning algorithms holds remarkable prospects in terms of benefits

to society [139]. However, as extensively discussed in the previous chapter, this progress comes

at the cost of a considerable energy budget [140]. The bulk of this energy consumption is at-

tributed to the shuttling of information between the memory and logic units of the computing

system [141], a bottleneck that the use of in-memory computing can circumvent. For such de-

signs, oxide-based ReRAMs, or memristors, are a major breakthrough. Their fast, low-power,

non-volatile switching and full compatibility with the CMOS process lend quite well towards

the realization of energy-efficient, adaptable synaptic weights [142, 143]. Unfortunately, owing

to their dependence on the nanometer-scale physics of atoms and ions, oxide-based ReRAMs

are usually very difficult to model accurately, which is a challenge for designing in-memory

neural networks.

Oxide-based ReRAM devices switch through the formation and dissolution of conductive

filaments of oxygen vacancies (fig. 2.1(a)). They function based on a combination of trans-

port, thermal, and electrochemical effects; a multiplicity of mechanisms of atomic movement

can coexist within the same device, giving rise to different regimes, depending on the state of

the device and bias conditions [144]. Additionally, the devices exhibit fluctuations that resist

simple modeling [127, 128]. In recent years, considerable progress has been made in model-
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ing these devices in the regimes relevant for embedded and standalone memory applications

[144–148]. On the other hand, a programming regime known as weak RESET (programmed

with a low voltage)[149, 150] remains vastly unexplored, as this regime, presenting exacerbated

fluctuations, has no usage for conventional memory applications. Remarkably, recent works

suggest that this regime might be extremely useful for artificial intelligence (AI) and neuromor-

phic applications, allowing such systems to do learning using little power and area [150, 151].

Although studies about low voltage switching[152], device models[153], and noise[154, 155]

have been carried out in the past, a comprehensive study integrating all these aspects has not

been done. To investigate this lead convincingly and design systems, an accurate model of the

weak RESET process is needed. Additionally, the model needs to be compatible with the very

specific frameworks used for designing neural networks (PyTorch, TensorFlow, etc.), optimized

for operating on graphics processing units (GPUs) and to perform automatic differentiation

and were not designed to include device effects such as noise and variability [70, 156].

In this work, we propose an efficient analytical behavioral model for the weak RESET regime

of HfOx-based ReRAM, including device fluctuations, and implement it within a deep-learning

framework to model synaptic parameters. We provide and validate this model with exten-

sive measurements, using multiple statistical quantities, on a hybrid HfOx ReRAM/CMOS inte-

grated circuit.

This device model is specifically optimized for integration within deep learning frame-

works. This feature allows us to investigate the behavior of such devices in the context of

neural network training. We implement this model within PyTorch, a deep-learning frame-

work, by adapting the optimizer. We present simulation results of binarized neural network

(BNN), a quantized form of more traditional neural networks for which the weak RESET regime

of ReRAMs is particularly attractive, using fully connected and convolutional architecture for

MNIST and CIFAR-10 tasks, respectively. Finally, using these simulations, we study the impact

of device imperfections on network performance.
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Figure 2.1: (a) Illustration of the progressive dissolution of the conducting filament by recom-
bining oxygen ions and vacancies under the influence of consecutive RESET pulses.
Also, the increment (¢ ewmean) and fluctuation terms (¢ ewRT N /¢ ewpi nk ) of our de-
vice model (described in Section 2.3) are shown schematically. (b) SEM image of
an HfOx-based ReRAM device integrated into the BEOL of our technology. (c) Pro-
gressive evolution of the resistance of two measured devices with consecutive weak
RESET pulses of amplitude 1 V and writing time of 0.1 µs.
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2.2 Hafnium Oxide ReRAM Technology

2.2.1 The technology

For this work, we rely on measurements of a hafnium oxide (HfOx)-based OxRAM technology.

The memory stack has a TiN/HfOx(10 nm)/Ti(10 nm)/TiN composition where the TiN layers

serve as the electrodes [157]. Our nanodevices are integrated within the back-end-of-line of a

130 nm commercial CMOS process, between metal levels four and five, as shown in fig. 2.1(b).

Such integration of logic and memory facilitates the implementation of energy-efficient in-

memory computing. Each memory device is associated with an NMOSFET, allowing precise

control of the programming conditions, such as the compliance current, which enables the

formation of the conducting filaments [145]. After an initial electroforming step, the device

can switch between low-resistance (LRS) and high-resistance states (HRS) depending on the

polarity of the applied voltage pulses. The switching between LRS and HRS is attributed to

the gradual formation and dissolution of the conductive oxygen-vacancy filaments within the

oxide.

2.2.2 Weak RESET regime

The weak RESET regime is stimulated by applying low voltage negative pulses, and pulse times

are shorter than traditional RESET. It makes the switching smoother, which enables the finer

tuning of resistance at the cost of a reduced HRS/LRS ratio. Measurements in fig. 2.1(c) show

that repeated 1 V weak RESET pulses lead to a progressive increase in the cell resistance, albeit

in a noisy manner. In this Figure, the resistance is read at a very low voltage (0.1 V) after each

weak RESET pulse so that a very low read current flows through the device, and, therefore,

there is no read disturb effect. We choose the weak RESET regime of operation to achieve high

endurance in our devices. This is essential for learning tasks, as individual devices are required

to be programmed reliably for many cycles. Fig. 2.2 shows the outstanding endurance of two

complementary devices, each with resistances RBL and RBLb , that are programmed in the weak

RESET, for more than 1010 cycles. This is orders of magnitude more than when devices are used

with traditional higher-voltage RESET [157], and orders of magnitude more of what is needed

for practical learning tasks (e.g., 104 cycles for the CIFAR-10 object recognition task).

However, the resistance increase due to the weak RESET seen in fig. 2.1(c) is particularly

noisy and in a way that appears non-trivial. Cells in the weak RESET regime are, therefore,

reminiscent of biological synapses, which also modulate their conductivity (weight) during

the learning process in a way that is often believed to be noisy [158]. Recently, it has been

shown that ReRAM cells in weak RESET could indeed be used to do learning for a type of neu-

ral network called binarized neural networks (BNNs), which are more resilient to noise and less

energy-consuming than analog neural networks [150, 151].
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Figure 2.2: Endurance measurement on two complementary devices programmed with weak
RESET pulses of width 1 µs and SET compliance current of 200 µA: median value
of log resistance ratio (RBL/RBLb), extracted over 10k rounds for measurement of a
pair of devices over 5£1010 cycles.

2.3 Device Characterization and Modeling

2.3.1 Tunneling gap-based model

In this section, we introduce our device model for resistance in the weak RESET regime. To

model the weak RESET behavior, we take the established approach of using the tunneling gap

between the partially dissolved oxygen-vacancy filament and the electrode (fig. 2.1(a)), wg ap

as the state parameter [145, 146]. For practical purpose, we use the dimensionless quantity ew ,

defined as

ew = wg ap /w0, (2.1)

where w0 is a length scale associated with the standard size of the filament. Owing to its quan-

tum mechanical origin, the resistance of the device associated with the tunneling gap ew is

R( ew) = R0 exp( ew), (2.2)

where R0 is the resistance of the device in LRS, i.e, when the tunneling gap is zero. The model

does not include filament diameter, which appears to have a second-order effect during the

weak RESET process. The variations in the tunneling gap ew give rise to its progressive RESET

behavior. It also leads to noise which is a consequence of invasive biasing and is not related to

the read noise [159]. Fig. 2.3(a) shows an example of ew extracted from measurements, showing

both its increasing trend and its noise when successive weak RESET pulses are applied.
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Figure 2.3: (a) Piecewise linear fit of the mean model to the ew of a device (different than
fig. 2.1(c)). The parameters m1, t*, c1 and m2 are extracted from this fit. (b) Power
spectral density of ew averaged over 64 devices showing the presence of a (1/ f 2)
trend for low frequencies and a pink-noise like (1/ f ) response for higher frequen-
cies.

2.3.2 Mean model

We observe in our devices (fig. 2.3) the existence of two regimes for our quantity of interest

ew ; the initial more progressive increase and the subsequent noisier and less monotonic parts.

Hence, in our model, the stable, background contribution, ewmean is described by a piecewise

linear model as a function of the pulse number t , parameterized by the device-dependent pa-

rameters m1, c1, t* and m2 as

Mean model equation

ewmean =
(

m1t + c1 t < t*

m2t + (m1 °m2)t*+ c1 t ∏ t*.
(2.3)

The first regime (t < t*), where the increase of resistance is steeper and less noisy, is physi-

cally related to conditions where the heating due to the Joule effect is more pronounced, com-

pared to the later one (t ∏ t*), where the resistance of the device is higher. Under this condition,

the resistance increase is much less monotonic and prone to more noise.

2.3.3 Noise components

We first compute the power spectral density (PSD) of ew extracted from measurements to char-

acterize the fluctuations in the value of the resistance. As shown in fig. 2.3(b), the PSD averaged

over 64 devices exhibits both a 1/ f 2 and a 1/ f contribution. The 1/ f 2 part is consistent with

the Random Telegraph Noise (RTN) that we find in our devices (fig. 2.3(a)) [160]. On the other

hand, the 1/ f dependence indicates the existence of pink noise. Both types of noise are re-

lated to the switching process and are independent of the passive noise we would get during

read-out only. In our model, we capture these two types of noise by the quantities ewpi nk and

ewRT N .
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2.3.3.1 RTN

RTN can be found in the second regime of the mean model (fig. 2.3(a)) and is attributed to the

perturbations related to the creation and destruction of oxygen vacancies in non-stoichiometric

hafnium oxide [159]. The RTN component ( ewRT N ) is modeled as a two-state Markov process

Simulation of RTN

ewRT N = aX , (2.4)

where X is a random variable taking a value of zero or one depending upon the re-

sistive contribution from the fluctuations of the vacancies, and a is the amplitude of the

resistance jumps [161]. The probabilities of switching from zero to one and vice-versa are

given by Phi g h and Plow , which are asymmetric. Hence, the transition matrix T , of the

Markov process is defined as T12 = Phi g h and T21 = Pl ow .

2.3.3.2 Pink noise

On the other hand, the pink noise might be related to the dynamically changing defect states

in the oxide [162]. It is modeled using an approach where the values can be sequentially gen-

erated, which is more suitable for the GPU-based implementation expected for deep learning

frameworks [163]. In this method, the pink noise is generated in the following manner.

2.3.3.3 Sequential generation of pink noise

Simulation of pink noise

Firstly, pole number of white Gaussian random numbers, !r (r = 0,1, ..., pole) are gen-

erated. These values are then passed through a low-pass FIR filter with coefficients (br ),

which are the impulse response values so that the generated noise is pink in its PSD. Thus,

mathematically the pink noise component is described by

ewpi nk =Æ
poleX

r=0
br!r , (2.5)

where Æ is a scaling factor.

Since we are simulating the update of the state variable ew for each device, the number of

pulses applied to them can vary. Hence, we need this method to generate new pink noise values

sequentially. We always have pole number of pink noise values stored for all devices. Then, if

n pulses are applied to a device, the first n numbers from the store are removed, and the same
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Figure 2.4: Power spectral density of the simulated pink noise values generated sequentially for
different pole values. The density is averaged over 1000 instances and plotted as a
function of the inverse pulse number f . The black line represents the ideal behavior
where the density varies with the inverse of f , and the simulations match this more
with higher values of pole.

number of values are appended. This method ensures that we are not generating new numbers

unnecessarily, which is computationally expensive. On the other hand, because of this, we can

apply at most pole number of pulses. Essentially the parameter pole relates to the temporal

correlation of the pink noise sequence, which tends to infinity in an ideal case. Fig. 2.4 shows

the power spectral density for the sequential pink noise generation algorithm for different pole

values.

The power spectra of the simulated pink noise sequences follow the f °1 law for the higher

values of f , which corresponds to low values of pulse numbers, which is expected since the

pole values here only range from 2 to 45. The deviation for low values of f is not detrimental

because, as we see in fig. 2.3(b), the low f limit is dominated by the 1/ f 2 noise. Also, the long-

term variation is dominated by the piecewise linear increase, which is captured by the mean-

model aspect. We choose a pole value of 15 because it preserves the f °1 nature up to a value

of 10°2 with a reasonable computational time.

The variation of our state variable ew is then obtained by the superposition of these three

components as
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ew = ewmean + ewRT N + ewpi nk . (2.6)

The physical impact of the variation of these three terms is shown schematically in fig. 2.1(a).

In addition, ReRAM devices are subject to important device-to-device (D2D) variability due to

the various possible topologies of the conductive filaments and dynamic perturbations, which

can considerably impact neuromorphic applications and should be modeled carefully.

2.3.4 Fitting the parameters

To account for the device-to-device variability, we fit our mean model to the experiments on

64 devices integrated into a memory array, as shown in fig. 2.5. In this figure, we see the D2D

variability can be very high for ew ; wherein the range of values, pulse number at which the

change of regime occurs t*, and the slopes (c1 and c2) can all vary significantly. To incorporate

this into our model, we plot the statistical distribution of these parameters.
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Figure 2.5: Piecewise linear fit of the mean model to a set of devices. The mean model with a
piece-wise form is meant to capture the two regimes, the initial progressive increase
and the consequent noisier and less steep increase.

Fig. 2.6(a)-(d) shows the distribution of the parameters of our mean model. The distribu-

tions of the m1, t*, c1, and m2 parameters can be well fitted using an exponential, a lognormal,

a Gaussian, and an exponential distribution, respectively. The variation in the absolute value

of the resistance is done by sampling the initial resistance R0 (Eq. 2.2) from a Gaussian distri-

bution whose parameters are extracted from the experimental initial LRS distribution of the

devices (fig. 2.6(e)). This makes sure that even if we are only dealing with the variations in

the state parameter ew , the absolute resistances also bear the same variability as the devices.

Table 2.1 lists the extracted parameters used for our simulations. The parameters m1 and m2

describe the monotonic progressive increase of the filament gap and follow an exponential law,
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Figure 2.6: The statistical distribution of the extracted parameters over the 64 devices. The re-
spective slopes for the two regimes m1 and m2 both follow exponential distributions
(a) and (d). The threshold pulse number t* follows a log-normal distribution (b),
whereas both the initial intercept c1 (c) and the initial resistance (e) follow Gaussian
distributions.

highlighting that some devices are relatively insensitive to weak RESET. The Gaussian distribu-

tion of R0 and c1 is connected to the Gaussian distribution of the LRS.

The parameters used to generate the noise (cycle-to-cycle variation) are fine-tuned so that

the experiments and simulations in fig.2.7(b) and (c) match. The values are summarized in

Table 2.2. The obtained values naturally replicate the noise levels observed in both regimes of

the mean model.

2.3.5 Comparison of experiments and simulation

Figure 2.7: Comparison of experiments and simulations over 64 devices. (a) Scatter plots of ew
as a function of the number of applied weak RESET pulses. Also, the evolution of
ew for a single device is shown for both. (b) Histograms of changes in ew after each

pulse. (c) Average power spectral density of ew following Lorentzian distributions.
(d) Average cross-correlation between the devices.

Fig. 2.7 shows that the resulting model, integrating D2D, reproduces all measured aspects

of the experiments with outstanding accuracy. Fig. 2.7(a) shows the individual trajectories in

the weak RESET process of 64 measured and 64 simulated devices. Fig. 2.7(b) shows that the

distribution of the changes in ew after each weak RESET pulse follows the same Lorentzian dis-

tribution in both the experiments and simulations. It is centered at zero, which implies that
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Table 2.1: Device-to-device variation: Parameters for RTN, mean model components, and the
initial resistances that characterize the variability between devices and extracted
from fig. 2.6. The probability density functions had the following forms:
funi f or m(x; a1, a2) = 1

a2°a1
, a1 ∑ x ∑ a2.

fexponenti al (x; x0,∏) = 1
∏ exp

°
° x°x0

∏

¢
, x ∏ x0.

fGaussi an(x;µ,æ) = 1
æ
p

2º
exp

h
° 1

2

≥
x°µ
æ

¥2i
.

flog nor mal (x; s,æ) = 1
sx

p
2º

exp
h
° 1

2

≥
log (x/æ)

s

¥2i
, x ∏ 0.

Component Model param. Distr. Distr. param.
RTN amplitude a Uniform a1=0, a2=0.5

m1 Exponential x0=3.74e-5,
∏=6.56e-4

Mean model c1 Gaussian µ=5.29e-3,
æ=5.32e-2

t* Log-normal s=0.80,
æ=542.5

m2 Exponential x0=1.64e-34,
∏=2.89e-5

Resistance R0 Gaussian µ=6988≠,
æ=381.7≠

the fluctuations dominate over the monotonic changes arising from the mean model, which

would have caused a bimodal distribution of positive values. The narrow peaks and wide tails

of the Lorentzian distribution represent the more frequent pink noise and the less frequent

RTN-induced fluctuations. Fig. 2.7(c) shows the mean spectral power spectrum of fig. 2.7(a),

and fig. 2.7(d) shows the mean cross-correlation of ew between the 64 devices, where ti and t j

are the pulse numbers to the i th and j th devices, defined as:

Cr oss Cor r. (|ti ° t j |) =
X

al l ti ,t j

ew(ti ) ew(t j ). (2.7)

The average cross-correlation between the 64 devices measures the D2D variability captured

by our model, which also agrees with the experiments. The mean auto-correlation at zero shift

is about 10,000, which is twice the average cross-correlation at zero shift, indicating that the

inter-device variability is larger than the intra-device one. Overall, the model, therefore, seems

ideal to mimic ReRAM cells.

2.3.6 Algorithm for device model

Our final goal is to integrate this model within the PyTorch framework. To that end, we need an

algorithmic setting for the aforementioned model. The following pseudo-code represents how
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Table 2.2: Cycle-to-cycle variation: Parameters for RTN and pink noise that account for the
noise on the resistance of devices.

Component Model param. Value
RTN Phi g h 0.0008

Plow 0.002
Pink noise Æ 0.025

pole 15

the resistances change in our devices based on the number of applied pulses (RESET function).

Algorithm 1 The RESET function. The inputs to the function are the number of pulses to apply
n, the number of pulses already applied to the device t , the RTN state X , the transition matrix
T , the pink noise state represented by !0, !1, ..., !pole . The parameters of this function are
of two types; the device-specific ones m1, c1, t*, m2, R0, a, and the general parameters Phi g h ,
Plow , Æ, pole
Inputs: n, t , X , T , !0, !1, ..., !pole , m1, c1, t*, m2, R0, a, Phi g h , Plow , Æ, pole.
Outputs: Resistance R, updated values of t , X , and !0, !1, ..., !pole .

1: Mean model: t √ t +n
2: if t < t* then
3: ewmean √ m1t + c1

4: else if t ∏ t* then
5: ewmean √ m2t + (m1 °m2)t
6: end if
7: RTN: T √ T n+1

8: if X=0 then
9: X √ 1 with probability T12

10: else if X=1 then
11: X √ 0 with probability T21

12: end if
13: ewRT N √ aX
14: Pink noise: Generate n new !new

r values (see Appendix) for r = 0,1,2, ...,n ° 1 and then
append the new values such that there are pole number of pink noise states.

15: ewpi nk √Pn°1
r=0 br!

new
r +Ppole

r=n br!r

16: ew = ewmean + ewRT N + ewpi nk

17: R = R0exp( ew)
18: return R, t , X , and !0, !1, ..., !pole
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Figure 2.8: Principle of operation of a Binarized Neural Network (BNN) showing the forward
pass (inference) and backward pass (learning or training). The inference depends
only on the binarized weights W bi n

i j , whereas the training involves updating the real

weights W r eal
i j .

2.4 Implementation within a Deep Learning Framework

Artificial neural networks (ANN) are networks of neurons, connected by synapses, laid hierar-

chically: the neuronal activations of a layer are computed from the neurons of the previous

layer. The value of neuron activation is computed by taking the sum over the previous acti-

vations weighted by their corresponding synaptic values and then applying a non-linear func-

tion. Learning a task aims to find an optimum set of values for the synaptic connections, called

weights. To that end, analog memory cells have been used as the weights owing to their ability

to adapt conductances [125].

2.4.1 Binarized neural networks

However, to train ANNs, precise values of these weights need to be stored and updated since the

weights and activations can take any real value. This is a problem for ReRAM-based implemen-

tation in the weak RESET regime, as inter-device and intra-device variabilities are ubiquitous
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in such nano-devices, as seen in section 2.3. An alternative approach is to use BNNs, where

both the neuronal activations and synaptic weights take binary values (+1 and -1) [164, 165].

Despite this simplicity of representation, BNNs can approach state-of-the-art accuracy on vi-

sion tasks [164]. During inference, that is, calculating the network output given the input, their

arithmetic is extremely simple. A simple XNOR operation replaces the product of the activa-

tion and the weight. Also, the accumulation of the products can be simply done by counting

the number of ones, called the population count. Both of these can be implemented using rela-

tively simple, low power-consuming circuitry [157]. The advantage of binarization is both from

the reduced read-out complexity and the fact that low-precision synapses and weights can be

used for inference.

During the training phase i.e., when the network learns the optimum values of the weights,

a hidden, real-valued weight is also associated with the synapses [164, 165]. As shown in fig. 2.8,

the binarized weight W bi n
i j connecting the neuron a j of the previous layer to the neuron ai of

the next layer relates to the hidden real weight, W r eal
i j , as

W bi n
i j = si g n(W r eal

i j ), (2.8)

and the binarized activation is given by

ai = si g n(POPCOU N T (X NOR(W bi n
i j , a j )°¢)), (2.9)

where ¢ is a threshold that serves the role of shifting in batch normalization of the activation

values. During the inference phase, only the binarized weights need to be calculated. On the

other hand, for learning, the hidden real weights need to be updated by a learning rule but not

explicitly read. We utilize this by avoiding using energy-intensive circuits that are required to

read the analog resistance state that plays the role of the real weights. Following the approach

of [150], we employ a differential 2T2R structure within a crossbar array (fig. 2.9(a)), in which

the two resistances RBL and RBLb account for a single real synaptic weight as

W r eal
i j = log10 (RBL/RBLb) . (2.10)

As shown in [166] and [167], the 2T2R scheme based on the ratio of two resistances provides a

lower error rate compared to 1T1R which is crucial for the device to operate in the weak RESET

regime. The 2T2R structure also allows performing training relying solely on RESET pulses.

2.4.2 Training in ReRAM-based BNNs

In the training phase, to update the real weight, the ReRAM devices are programmed using

weak RESET pulses on either of the two devices. If the BNN learning rule suggests increasing

the real weight by ±W r eal
i j , we apply weak RESET pulses to the BL device, therefore increasing

W r eal
i j . Conversely, if ±W r eal

i j is negative, we apply weak RESET pulses to the BLb device, there-
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Figure 2.9: (a) Schematic of the 2T2R memory array used for implementing BNNs. (b) Circuit
of the sense amplifier used to extract the binary weight from a 2T2R synapse, along
with equations showing how the resistances RBL and RBLb connect with the real
(W r eal

i j ) and binary (W bi n
i j ) weights.

fore reducing W r eal
i j . In both cases, the number of pulses is chosen proportionally to ±W r eal

i j .

Due to the differential 2T2R nature of the synapses, this training technique requires only RESET

pulses. For the tasks we have performed, we have seen that the progressivity of the RESET pro-

cess is sufficient; however, for more complex tasks, this might not be enough. In that case, we

can apply a reprogramming strategy, proposed in [150], to bring back the system where proper

RESET is applicable.

For the inference, the sign of this real hidden weight has to be read, and this can be achieved

by an energy-efficient and fast circuit called pre-charge sense amplifier [157, 168]. It com-

pares RBL and RBLb to give an output of +1 when the former is larger and -1 for the opposite.

Fig. 2.9(b) shows how the real and binarized weights are computed in the circuit.

2.4.3 Framework implementation

The frameworks normally used for designing neural networks, such as PyTorch and Tensor-

Flow, model synapses as floating-point real weights. When a neural network is trained, sophis-

ticated optimization algorithms, called optimizers, such as adaptive moment estimation, opti-

mize these weights values by making noiseless, highly precise, and deterministic updates [55].

To test our vision, i.e., to design a physical model where synapses are implemented by ReRAM,

and the weights are updated using weak RESETs, we adapted the PyTorch deep learning frame-

work in three important ways. First, in deep learning frameworks, the synaptic parameters
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Figure 2.10: (a) Integration of device simulation and neural network learning within the Py-
Torch framework. The device resistances act as the synaptic weights in a differ-
ential manner. They are updated according to the device model from the updates
provided by the network in the backward pass. (b) The equations for the mean,
RTN, and pink noise components inside the RESET function that models the pro-
gramming of ReRAMs within the PyTorch adaptive moment estimation optimizer.

Figure 2.11: Impact of noise and device-to-device variability on the performances of the bina-
rized neural networks for the (a) MNIST and (b) CIFAR-10 tasks. The plots show
the test accuracy during training for five different cases - without device simula-
tion (blue), without both D2D variation and noise (pink), with D2D variation but
without noise (green), without D2D but with the full noise and mean model sim-
ulation (brown), and the full simulation incorporating both the D2D variability,
mean model and noise (black).

are stored as tensors with dimensions appropriate to the corresponding architecture. In our

approach, these parameters are now modeled by an added dimension that accounts for the de-

vice state variables. These are the different parameters that are needed to store the number of
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pulses that have been previously applied to a device and to generate pink and telegraph noise

(pulses already applied t , RTN state variable X and !r s).

Secondly, the parameters of the neural network are typically initialized according to cer-

tain pre-defined initialization schemes [65, 169]. In our case, as the synaptic parameters are

linked with the device resistances, we initialize the devices by sampling through the distribu-

tions mentioned in Table 2.1.

Finally, the in-built optimizers provide updates that are real-valued floating-point num-

bers. But, in ReRAM-based networks, we can only modify the resistances by the application of

a discrete number of voltage pulses. Thus, the updates given by PyTorch’s adaptive moment

estimation methods are discretized by multiplication by a suitable learning rate and rounding

down to integer values. These pulses then produce the synaptic updates following the model

of section 2.3.

The scheme of integrating our device model into the PyTorch framework is schematically

shown in fig. 2.10(a). Synaptic weights are initialized as device resistance values in a differen-

tial manner incorporating the D2D variability explored in section 2.3. The network does the

forward pass on the input and calculates the updates for the weights, which are then converted

to integer-valued pulses numbers n that are to be applied to the devices. Using the number

of pulses and the device-based parameters, the new device resistance states are calculated as

shown in fig. 2.10(b).

The RTN, pink noise, and mean model components are calculated separately. The RTN

state variable is calculated from exponentiating the transition matrix T to the nth power. Pink

noise values are generated by drawing n new Gaussian white random numbers and combin-

ing them with the existing (pole °n) values. And, for the mean model component, the pulse

number n is simply added to the number of pulses already applied t . Now, with the new device

resistances and the new synaptic weights, the network continues onto the next forward pass.

2.4.4 Algorithm for learning with device model
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Algorithm 2 The learning algorithm with the device model. This is how we incorporate the
device model into our learning procedure. Wreal and Wbin are the vectors of real and binarized
weights, respectively. The BL and BLb resistances of the differential cells are represented by
RBL and RBLb. The update to the real weight is denoted by U, and the corresponding number
of pulses to be applied, n. (x, y) represents the input-output pairs corresponding to a batch
of training data, and ¥ is the learning rate. ’cache’ denotes the intermediate values that are
required to be stored for the backpropagation.
Initialization: R0, m1, t*, c1, m2 for all the weights of our networks are initialized by sampling
values from the distributions presented in fig. 2.6 and Table. 2.1. The initial mean model state
(t) and RTN state for all devices (X) is set to 0. The pink-noise states (!r s) are generated as
mentioned in APPENDIX 2
Inputs: (x, y), ¥, RBL, RBLb, t, X, ,!0,...,!pol e , m1, c 1, t *, m2, R0, a, Phi g h , Pl ow , Æ, pole.
Outputs: RBL, RBLb,t, X,!0,...,!pol e

1: W
r eal √ log10

°
RB L/RB Lb

¢

2: W
bi n √ Sign

°
W

r eal
¢

3: ŷ,cache √ Forward
°
x,W

bi n
¢

4: C √ Cost(ŷ,y)
5: @W C √ Backward(C , ŷ,W

bi n ,cache)
6: U √ Optimizer(@W C )
7: n √ HardTanh(min =°pole,max = pole, Int(¥U ))
8: for n in n do
9: if n ∏ 0 then

10: RBL , t , X ,!0, ... √ RESET(n, t , X ,T,!0, ...,m1,c1, t*,m2,R0, a,Phi g h ,Plow ,Æ, pole)
11: else
12: RBLb , t , X ,!0, ... √ RESET(|n|, t , X ,T,!0, ...,m1,c1, t*,m2,R0, a,Phi g h ,Plow ,Æ, pole)
13: end if
14: end for
15: return RBL, RBLb, t, X,!0,...,!pol e
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2.5 Neural Network Simulation Results

2.5.1 The tasks and the architecture

We now test our device model, integrated into PyTorch, on two pattern recognition tasks. First,

we train a fully connected (FC) BNN with one hidden layer of 3,000 units for solving the MNIST

handwritten digit recognition benchmark. We then train a convolutional BNN to solve the

CIFAR-10 object-recognition task. The architecture uses 3x3 kernels for convolutions (Conv),

and 2x2 for MaxPool (MP) and reads: [Conv384, Conv384, MP, Conv768, Conv768, MP, Conv1536,

Conv512, MP, FC(1024-1024-10)]. Figs. 2.11(a) and (b) show PyTorch simulations of the train-

ing process of binarized neural network for the MNIST and CIFAR-10 tasks, respectively. Test

accuracies of 98% and 90% on the MNIST and CIFAR-10 tasks, respectively, were achieved with-

out device simulations (ideal floating-point synapses). Including the full device simulation in

the BNN training simulation makes it four times slower, the bottleneck being the sequential

generation of pink noise.

2.5.2 Impact of imperfections

Incorporating the ReRAM model allows testing of how various aspects of the ReRAM imper-

fections affect the training performance. We first performed simulations, including the device

model, but where the noise and the D2D variability were artificially deactivated (see Figs. 2.11(a)-

(b)). We observe that the network can reach the baseline accuracy for both tasks. Thus, our

BNN scheme is robust to the non-linearity of the devices, which is a major advantage with

regard to non-binarized techniques [150]. Also, this result highlights that the conversion of

floating-point updates to a discrete number of pulses had little effect on the final accuracy.

Figs. 2.11(a) and (b) also show that upon the introduction of noise(both RTN and pink) only,

a point accuracy degradation of 1% and 2.5% for the MNIST and CIFAR-10 tasks is obtained.

Adding D2D variability, the respective degradation of point accuracies are 3% and 10%. Also, to

identify the impact of the noise independently, we performed simulations with only the noise

components artificially deactivated. For MNIST, we find a point degradation of 0.3%, whereas,

for the CIFAR-10, it is 10%. For both tasks, the inclusion of the D2D variability, therefore, caused

degradation of test accuracy, although it is more prominent in the CIFAR-10 task (Figs.2.11(a)-

(b)).

These results highlight that neural networks have the potential to fully benefit from the

advantageous properties of weak RESET (progressivity, high endurance) without suffering from

its high level of fluctuations. Also, via this kind of modeling, we explored the effects of D2D

variability, noise, and non-linearity in greater detail than is possible with only experimental

studies.
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2.6 Conclusion

In this work, we presented a model of the weak RESET behavior of HfOx ReRAM and its fluctu-

ations and its integration within a deep learning framework for simulations of hardware neural

networks on GPUs. The results suggest the outstanding potential of the weak RESET regime in

such conditions. This work also explores the various aspects of ReRAM device imperfections

on neural network performance.

Using the proposed framework, future work will investigate the design of more advanced

neural networks on difficult tasks and how neural network design can be optimized for robust-

ness to the fluctuations of ReRAM technology. Our modified PyTorch optimizer could also be

adapted to all kinds of emerging devices considered for neuromorphic applications.



Chapter 3

Implementation of BNN inference

immune to circuit-based constraints

One of the basic rules of the universe is that

nothing is perfect. Perfection simply doesn’t

exist.....Without imperfection, neither you nor I

would exist.

Stephen HAWKING

IN THE previous chapter, we explored the possibility of learning neural network models us-

ing noisy memristive devices as synaptic weights. Although we successfully demonstrated

that the backpropagation algorithm could cope with non-ideal behavior, our focus was primar-

ily on memory while assuming that all other computations occurred perfectly.

However, in this chapter, we take a systems-level approach to investigate the implementa-

tion of binarized neural networks (BNNs), which involves considering not only memory but all

other circuits involved in the computation. Our goal is to assess the impact of various imper-

fections on inference. We focus on implementing neural networks that are already pre-trained

with a set of weights programmed into memory, using our circuits for inference.

We present two different studies that employ complementary differential resistive devices

as synaptic weights for a BNN. We begin by highlighting the different mathematical operations

required for inference and emphasizing aspects that cause errors in the inference of the BNNs.

The two projects presented in this chapter are collaborative works. The fabrication of the cir-

cuits was done at Université Grenoble Alpes (CEA-LETI, Grenoble), and the design and electri-

cal characterizations were done by Pr. Jean-Michel Portal, Fadi Jebali, and Dr. Mona Ezzadeen.

The author of this thesis performed the neural networks simulations with the experimentally

measured and modeled errors and also did the inference result-related analyses. The work in

this chapter culminated in the realization of two journal articles, one of which is under prepa-

ration (titled "Powering AI at the Edge: A Robust, Memristor-based Binarized Neural Network
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CONSTRAINTS

with Near-Memory Computing and Miniaturized Solar Cell"), and the other is under review (ti-

tled "Implementation of Binarized Neural Networks Immune to Device Variation and IR Drop

Employing Resistive RAM Bridges and Capacitive Neurons"). This chapter is adapted from both

of these articles.

3.1 Circuits and Binarized Neural Networks

In non-binarized artificial neural networks (ANNs), the inference step involves computing the

output neuronal activations yi for a given layer, based on the synaptic weights Wi j , inputs a j ,

and batch normalization threshold ¢i and scaling parameter æi . The inference equation is

given by:

yi = fact

µP
j Wi j ·a j °¢i

æi

∂
. (3.1)

Here, fact is the activation function, and ¢i and æi represent the threshold and scaling pa-

rameters, respectively, which are related to the batch normalization operation. These param-

eters are pre-determined using the running mean and running standard deviation calculated

from the training set.

Traditional implementations of ANNs with memristors rely on Ohm’s and Kirchoff’s laws

for multiplication and accumulation (MAC), respectively. However, this approach is highly sus-

ceptible to resistance variability and IR drop in the connecting wires, which can lead to perfor-

mance degradation. This is because the values being multiplied or added can theoretically take

any real value, and even small imperfections in the values can result in significant deviations

during calculation.

In contrast, the activations and the weights of a BNN are all binarized to two values, +1 and

-1. This quantization greatly reduces the computational complexity and has two major impli-

cations in the context of the hardware implementation of neural networks. Firstly, since we

are bound to only two values for the weight, we can map our device resistance to these values

in a manner that makes it more robust to noise. As a simple example, we can set a threshold

resistance value, and if the device resistance is higher than that, we refer to that weight as +1;

otherwise, it is -1. This quantization ensures that our weight values are less affected by small

fluctuations in resistance as long as they remain above or below the threshold value. Secondly,

the MAC operations can be replaced by simple logic gates as we are dealing with only two val-

ues. This is beneficial from the point of view of energy since in the implementation of ANNs,

although Ohm’s law and Kirchoff’s law take care of the MAC operation, specialized readout

circuitries are needed for them to function effectively. These specialized circuits, which often

involve analog-to-digital conversions, are power-hungry and have a large area overhead, and

thus are not desirable for the hardware-based implementation of neural networks.

Let us look at the various mathematical operations in BNN and how simple electronic cir-
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cuits can implement them. For the multiplication between the binarized weights W bi n
i j and

activation a j , since each of them can take only two values, there can be a total of four combi-

nations.

Weight Input Output

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

If we replace -1 with 0, this would give us the exact truth table as an XNOR gate, allowing us

to use the XNOR gate to implement the multiplication. In the same vein, the accumulation

process involves counting the total number of 1’s amongst all the outputs, which are either 1 or

0. This is the population count or the popcount (PC) operation, and we shall see in this chapter

how this can be done using energy and area-efficient circuitry.

After the MAC, we need to consecutively apply the batch normalization and the activation

function. Since the outputs are also binary, the activation function is the sign function. Another

point to be noted here is that since we apply the scale-invariant sign function, we only need to

use the threshold value since the scaling has no impact on the output. Effectively, this means

that for batch normalization, the PC value needs to be compared with the threshold value Ti .

Then the sign function would output +1 if the MAC value is higher than the threshold and -1

otherwise. This can be achieved in a circuit by using a comparator whose one end gets the PC,

and the other end gets the corresponding value of Ti . Putting all of this together, we find the

final equation for the output yi to be

yi = si g n(POPCOU N T (X NOR(W bi n
i j , a j )°Ti )). (3.2)

However, even such implementation is not totally immune to imperfections; the occur-

rence of errors pays the cost of energy efficiency. As we shall see, the true strength of BNNs lies

in the fact that they are quite robust to these issues.

3.1.1 Imperfections in inference circuit

The imperfections leading up to an error can be categorized into two types; the first type relates

to the variabilities present in the resistance of the memory devices. The second source is the

variability or the non-ideal behavior of transistors. To ensure robust behavior from our memory

devices, we program them in a 2-transistor, 2-resistor (2T2R) arrangement instead of a 1T1R

arrangement. In the projects we pursued, the devices are programmed in a complementary

fashion in LRS-HRS or HRS-LRS pairs. Noise in such devices can invert this pairing and result

in a different weight than what was intended.

In a 2T2R cell, there are two access transistors, each connected to a Resistive random access

memory (ReRAM) device in a complementary fashion. The relative states of the two devices
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represent either the +1 or the -1 state of the synaptic weight. The two resistances are called RBL

and RBLb , as they connect to the bit line (BL) and bit line bar (BLb) of the circuit, and if the

resistance pairs are programmed to be in HRS-LRS state, the synaptic weight has a value of +1,

and similarly, it encodes the value -1 for the LRS-HRS pair.

Figure 3.1: Comparison of 2T2R robustness to 1T1R and ECCs. (a) Experimentally measured bit
error rate of a 2T2R array as a function of the bit error rate obtained with individual
(1T1R) ReRAM devices under the same programming conditions. (b) The Bit error
rate obtained with Single Error Correction Double Error Detection (SECDED) ECC
as a function of the error rate of the individual devices for different word and data
sizes (Adapted from [157]).

The superiority of the 2T2R approach, in terms of robustness to errors, is shown in fig. 3.1

where the bit error rate in a test chip with HfOx-based ReRAMs is presented along with the er-

ror rates of a 1T1R cell under the same conditions of programming [157]. In fig. 3.1 (a), the red

experimental data points lie lower than the y = x line signifying that we have fewer errors in

the 2T2R cells. Fig. 3.1 (b) also shows the comparison with an ECC where a Single Error Cor-

rection Double Error Detection (SECDED) ECC code is used, and it approaches the ideal 2T2R

behavior for a word size of 8 and data size of 4. However, this type of ECC requires decoding cir-

cuits that comprise hundreds to thousands of logic gates, increasing the area and energy costs

significantly.

The reason why the 2T2R is more robust to errors can be understood as follows. In the

1T1R architecture, the resistance is only compared with respect to a single reference resistance,

whereas in 2T2R, we have two resistances programmed to opposite resistance states, and only

their relative value dictates the state. An error occurs when the fluctuation of the resistance
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drives it to be in the other regime. It is much more likely for a single resistor’s fluctuation to

cross the reference value than for two resistors programmed at two extremes to cross each

other. This is what makes the 2T2R more robust than the 1T1R memory cells.

The other source of erroneous behavior stems from the non-ideal behavior of transistors.

Transistor mismatch is a type of variability that is one of the most significant contributors to

errors in such systems. The mismatch is a type of transistor variability that arises due to the

natural variations in the electrical properties of multiple transistors that are intended to be

identical. Mismatch can occur in various electrical properties of the transistors, such as their

threshold voltage, channel length, or mobility. These variations cause differences in the way

that the transistors operate and can result in performance differences in circuits that use these

transistors.

In this chapter, we present two different circuit-implementation of BNNs and investigate

the impact of errors on inference accuracy. The remaining sections of this chapter will be or-

ganized as follows: first, we describe the details of the circuit being used to implement BNNs,

specifically highlighting the cause and sources of errors. Then, we present the experimental

error measurements and the associated error model that gives us a mathematical handle that

is used for our neural network inference simulation. We finish each section showing the degra-

dation in performance with these errors and take a deeper dive into the types of errors and how

they relate to the circuit attributes.
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Figure 3.2: The BNN circuit implementation. (a) Optical microscopy photograph showing the
BNN test chip, which includes implementations of neurons with 5, 9, and 23 inputs.
The inset shows a detailed view of the 23-input neuron version. (b) The global ar-
chitecture of the BNN circuit used in the test chip features 2T2R ReRAM cells that
employ complementary coding to ensure robust XNOR operation. The popcount
and threshold use fully differential coding with capacitive bridges to enhance the
comparison margin. (c) Schematic of the proposed bit cell. The weights stored in
the ReRAM 2T2R cell, and the activation input, applied on the BL/BLB, are both
coded in a complementary fashion. An inverter gate generates the final XNOR value
at the bottom of the SL.

3.2 Implementation of BNN with ReRAM bridges and ca-

pacitive neurons

3.2.1 Circuit

In this work, the overall implementation of BNN is based on a fully-differential capacitive neu-

ron with 2T2R synapses wired in a resistive bridge configuration. A test chip was fabricated in a

130 nm CMOS technology with co-integrated ReRAM memory cells in the BEOL between metal

layers four and five, with the aim of computing equ. 3.2 in an efficient manner. In fig. 3.2 (a),
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a micro-photograph of this circuit is shown with the neuron having 23 inputs. The circuit has

two main components: a ReRAM array that stores the weights and a capacitive neuron circuit

at the bottom of this array. Also, there are shift registers that control multiplexers, which give

direct access to the memory cells for the purpose of electrical characterizations. To extract the

error rates, a scan chain retrieves the XNOR values in parallel and outputs them serially. The

capacitive divider bridge is designed with capacitors of capacitance 105 femtofarad.

Equ. 3.2 has four main components: the XNOR between the weight and the input, the pop-

ulation count (popcount), the threshold, and finally, the sign function. We now discuss their

circuit implementations individually.

3.2.1.1 In-memory XNOR operation

The weights of a neuron are contained in a single row of a ReRAM array, as illustrated in fig. 3.2

(b). Our work utilizes a 2T2R (two transistors - two resistors) ReRAM cell architecture (fig. 3.2

(c)), where the cells are connected in series to form a resistive bridge. The synaptic weights,

Wi j , are encoded in a complementary manner in the two ReRAM cells of the 2T2R structure.

Depending on the synaptic weight value, either the left (R) or the right (RB) ReRAM cell is pro-

grammed to a High Resistance state, while the complementary ReRAM is programmed to a Low

Resistance state. This causes the source line SL to be pulled towards either the left or the right

bit line, depending on the synaptic weight value. The input neuron values are presented in

a complementary fashion on the two bit lines, meaning that depending on the input neuron

value, either the left or the right bit line is at the lowest voltage. As a result, the source line nat-

urally follows an exclusive OR (XOR) between the weight and the neuron input, which allows

the memory array to perform XOR operations directly within memory. Finally, the source line

voltages are used as inputs to the inverter gates located at the bottom of each SL to output the

XNOR values.

The in-memory XNOR operation is highly reliable and is only expected to fail in rare cir-

cumstances, specifically when the device programmed into a low-resistance state has a higher

resistance than the device programmed into a high-resistance state. However, this situation

has a very low probability of occurring since both devices would have to be improperly pro-

grammed, as mentioned above. Additionally, the nonlinearity of the inverter amplifies the sig-

nal, leading to clean binary outputs, which enhances the robustness of our approach to vari-

ability.

Compared to other implementations, a unique advantage of this approach is that the two

devices are connected in series, ensuring that the current paths in the memory array always

include a high-resistance device [157, 166]. As a result, the in-memory XNOR operation relies

on a low current, regardless of the input and weight values, making our approach naturally

immune to IR-drop effects.
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3.2.1.2 The near-memory Popcount, threshold, and sign operations

The popcount and the sign operation after thresholding are performed near-memory by uti-

lizing a switched-capacitor addition circuit and a comparator, as illustrated in fig. 3.2 (b), fol-

lowing an approach that is inspired by the SRAM-based works of [170, 171]. The switched-

capacitor circuit is highly energy-efficient, as it doesn’t require direct current to be applied,

unlike in in-memory MAC designs utilizing Kirchoff’s current law, and instead only consumes

energy when the capacitors are switched.

The popcount circuit, which is based on a fully differential approach with two capacitive

bridges connected to complementary inputs, ultimately leads the voltages of two capacitive

bridges to be at

VPC = m
n

VDD (3.3)

and

VPC B =VDD ° m
n

VDD , (3.4)

where m is the popcount value, which is the number of XNOR outputs that are equal to one,

n is the total number of XNOR outputs connected to each capacitive bridge, and VDD is the

source voltage. An activation aj is set to one by the comparator only when more than half of

the XNOR values are equal to one (i.e., m > n
2 ). Therefore, without any further modification,

the circuit implements a neuron (equ. 3.2) with a threshold T j of n
2 .

Statistically, for neural network inference, it has been shown that a threshold-setting ca-

pability of ±5% around the mean value of n
2 is necessary and usually enough to achieve high

accuracy. To provide this capability, a total of b = 2£b0.05nc capacitors were added to each

bridge in a complementary manner. These additional capacitors are connected to the source

line of additional columns in the ReRAM array, where the thresholds are programmed. A point

to note in equ. 3.3 is that the voltage VPC is inversely related to the total number of XNOR out-

puts, so for high values of n, this voltage can be too low for the comparator.

3.2.2 Measurement of error and error model

To validate this circuit, experimental measurements were done on the 23-input circuit for dif-

ferent values of the read voltages and the compliance current, which dictates how low the LRS

shall be. The XNOR error percentages were calculated, and it was seen that there were no er-

rors for read voltages higher than 0.3 V and compliance currents larger than 110 µA. For the

lower compliance current and read voltage values, the resistance states were measured, and it

was seen that in this regime, the LRS and HRS states are widely overlapping, causing errors. A

remarkable thing to notice here is that even for low values of the preactivation ¢ (which is the

difference between the Popcount and the threshold), the circuit had no errors. This is because

the voltage difference between the two capacitive bridges always remained adequately large,

and there was no output neuron activation error.
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However, in circuits with larger input numbers and low ¢ values, errors may arise due to

low voltage differences at the comparator inputs. To address this, extensive Monte Carlo simu-

lations were performed on circuits with BNN sizes up to 513 input neurons and clock periods

ranging from 4 to 20 ns, covering the full range of possible popcount and threshold combina-

tions (preactivation ¢ values). These simulations considered both global and local sources of

variability, including mismatch, at three standard deviations, with 1,000 runs performed for

each case. To account for ReRAM variability, the source line measured distributions were di-

rectly injected, which correspond to error-free XNOR operations at a compliance current of

200 µA and a read voltage of 0.6 V at the XNOR inverter’s inputs.

Fig. 3.3 (a), (b), and (c) illustrate the extracted error distributions for the 33, 257, and 513-

input neurons and their corresponding Gaussian fits. The output remains error-free for neu-

rons up to 33 inputs with a clock period of 6 ns or higher, which aligns with our measured re-

sults. The smallest¢ value needed for 33 inputs corresponds to a voltage difference of 34 milliV.

However, for larger neuron sizes, the smallest voltage difference decreases, reaching only 2 mV

for 513 inputs, leading to higher error rates for small ¢ values. Nonetheless, the Gaussian error

distributions stay narrow for clock periods equal to or greater than 6 ns. The fig. 3.3 (d) dis-

plays the standard deviation values obtained for various neuron sizes and clock periods. It is

observed that the standard deviation decreases as the clock period increases since more time

is available for the clear and capacitive divider voltage settling. Based on these results, we set

our minimum clock period to a value of 6 ns.

With these results, we developed a mathematical model to generate the error distribution

for an arbitrary number of neurons. This is necessary since the number of neurons in our

neural network is typically much higher than 513.

Consider a neuron a j with N inputs (including the bias terms), where n1 of each input are

expected to lead to a one XNOR value. We focus on the case where n1 ∑ bN /2c for simplicity,

such that a j is expected to be one (or derivation can be easily adapted to the other case). We

denote p as the probability of a single 2T2R-based XNOR operator giving an erroneous output.

We extracted p for various programming conditions and read voltages from the experimental

measurements. We obtain P({f0=i}) the probability of having i XNOR outputs turning from a

correct zero state to an erroneous one state, and P({f1=j}) the probability of having j XNOR

outputs turning from a correct one state to an erroneous zero state, using binomial laws

P ({ f 0 = i }) =
√

N °n1

i

!
£pi £ (1°p)N°n1°i (3.5)

P ({ f 1 = j }) =
√

n1

j

!
£p j £ (1°p)n1° j . (3.6)

We also introduce P({CN(x)=1}), the probability of the capacitive neuron (CN) giving an

output of one when x XNOR outputs equal to one, obtained for various neuron sizes and clock
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Figure 3.3: Monte Carlo simulations of neuron operation. (a) - (c) Simulated neuron error rate,
as a function of the preactivation (¢) and of the clock period, for neuron sizes of
(a) 33 inputs, (b) 257 inputs, and (c) 513 inputs (not counting the bias terms). Error
rates are plotted with a Gaussian fit. These simulations include transistor variability
using the foundry design kit and the resistance distributions with a read voltage of
0.6 V and compliance current of 200µA. (dd) The standard deviation of the Gaussian
fit of the simulated neuron error rate for different neuron sizes and clock periods

periods from the Gaussian distributions of fig. 3.3 (d). Then, we can compute the probability of

the neuron output a j being equal to one instead of zero by

P ({a j = 1|n1 ∑ bN /2c}) =
N°n1X

i=dN /2e°n1

P ({ f0 = i })
min(n1,n1+i°dN /2e)X

j=0
P ({ f1 = j })£P ({C N (n1 + i ° j ) = 1}))

+
bN /2cX

i=0
P ({ f0 = i })

n1X

j=max(0,n1+i°bN /2c)
P ({ f1 = j })£P ({C N (n1 + i ° j ) = 1})

(3.7)

Using this model, we can compute the error probabilities for any value of N , for all the
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different values of n1, which play the role of ¢.

3.2.3 Neural network inference

To evaluate the performance of our BNN circuit at the neural network scale, we incorporated

the error model introduced in the previous section (and described by eq. 3.7) into the PyTorch

[172] deep learning simulation framework. Inferences are performed for multiple program-

ming conditions, read voltages, and clock periods on the MNIST handwritten digit recognition

and the CIFAR-10 image recognition datasets.

During the neural network inference, we perform the MAC operation normally and then

take the probability value computed from the error model corresponding to the preactivation

¢ values. This is the probability of having an error in that particular output. For example, for

a ¢ of value -2, we get an error probability of 0.1 for a particular clock period from our error

model; then, the sign of that output would be flipped with a probability of 0.1.

Fig. 3.4 (a) shows the obtained test recognition rate, along with error-free baselines. For

the MNIST task, negligible accuracy degradation is reported for all compliance current values.

Even for the most critical configuration (a 6 ns clock period, a read voltage of 0.2 V, and a com-

pliance current of 40 microamperes), the accuracy degradation is only 0.2 point percent for a

baseline accuracy of 98.3%.

CIFAR-10 image recognition is a much more challenging task. Fig. 3.4 (b) shows the ac-

curacy loss, compared to a software precision baseline of 90.6%, for various conditions. The

accuracy loss (in percentage points) is low, although it is higher than in the MNIST case. Even

for a read voltage of 0.2 V and a standard compliance current (110 microamperes), we observe

only 0.9 point percent precision loss for a clock period of 20 ns (1.4 point percent for a clock

period of 8 ns and 2.3 point percent for a clock of 6 ns). Overall, the compliance current has a

remarkably low impact on the accuracy: only a truly low value of 40 microamperes substantially

degrades the accuracy.

Errors are not considered for the first and last layers since the respective inputs and outputs

of those layers are not binarized. For the MNIST task, we used a fully connected network with

three hidden layers of 1,025 neurons each. For the more challenging CIFAR-10 task, we used an

architecture based on the binarized Visual Geometry Group (VGG) structure, consisting of six

convolutional layers followed by three fully connected layers [173].

In conclusion, this study implemented a BNN circuit based on a 2T2R ReRAM array with

a capacitive output neuron. Experimental measurements and computer simulations show the

robustness of this approach to imperfections related to both ReRAMs and transistors. Neural

network simulation for the MNIST and CIFAR-10 tasks shows that the degradation in accu-

racy is low even for low compliance current and short clock periods. These neural network

simulations reveal that due to the intrinsic tolerance of binarized neural networks to errors, it

can be favorable to choose low read voltages and programming currents, as they respectively

promote energy efficiency and device endurance, with low impact on network-level accuracy.
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For a clock period of 6 nanoseconds, our 513 inputs BNN circuit provides an appealing peak

energy efficiency of 96 TOPS/W and 449.3 TOPS/W for, respectively, a 130-nanometer and a

22-nanometer implementation.

Figure 3.4: Neural network simulation results with errors. Inference accuracy for the (a) MNIST
and (b) CIFAR-10 datasets as a function of XNOR error probability for different clock
periods. Markers indicate the inference accuracies for ICC =40 microamperes, 60
microamperes, and 80 microamperes with Vr ead =0.3 V.
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3.3 A self-powered memristor-based BNN

3.3.1 Extreme-edge AI

Artificial intelligence (AI) has become increasingly prevalent in embedded applications, in-

cluding patient monitoring, building, and industrial safety [174]. To optimize security and

minimize energy consumption resulting from communication, it is preferable to conduct the

majority of data processing at the edge of such systems [175]. However, integrating AI into

extreme-edge environments presents a challenge due to its high power consumption, which

often necessitates its deployment to the "cloud" or "fog" [176, 177]. The use of memristor-

based systems offers a promising solution to this problem, as they can significantly reduce AI

energy consumption [139, 178]. This makes it feasible to create self-powered edge AI systems

that can derive their energy from the environment rather than requiring batteries.

As highlighted in the previous section, the most energy-efficient memristor-based AI cir-

cuits rely on analog-based in-memory computing to perform the fundamental operation of

neural networks,(MAC) [120, 125, 179]. However, this concept is difficult to implement in prac-

tice due to the high variability of memristors, imperfections of analog CMOS circuits, and volt-

age (IR) drop effects. To address these challenges, memristor-based AI systems require highly

complex peripheral circuits that are optimized for specific supply voltages [123, 126, 180–184].

Unfortunately, this requirement for stable voltage directly contradicts the characteristics of

miniature energy harvesters such as tiny solar cells or thermoelectric generators, which pro-

duce fluctuating voltage and energy. As a result, the realization of self-powered memristor-

based AI systems presents a significant obstacle.

In this study, we present a new approach to memristor-based binarized neural networks

that can effectively handle power supply issues. We employed a hybrid memristor/CMOS pro-

cess to design, fabricate, and test a circuit that includes four 8,192-memristor arrays, utilizes

a 2T2R method to store synaptic weights, employs multiplication within a robust differential

sense amplifier, and applies a simple digital circuit for accumulation. To demonstrate the cir-

cuit’s resilience, we connected it to an III-V semiconductor-based solar cell optimized for en-

ergy harvesting under low illumination conditions. Our findings reveal that the circuit per-

forms as well as it does with a lab-bench power supply under illuminations higher than 1 sun.

Even when exposed to illuminations as low as 0.08 suns, the circuit remains functional with a

moderate decrease in neural network accuracy. Our circuit is capable of adapting to the power

supply by automatically switching between exact and approximate computing, indicating its

versatility in handling power supply variations.

3.3.2 Circuit

Since this is another implementation of BNN, the computations necessary for inference are

exactly the same as equ. 3.2, and this circuit also needs to be able to perform the same calcula-
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Figure 3.5: Overview of the memristor-based BNN circuit (a) Optical microscopy image of the
fabricated die, showing four memory modules and their associated digital circuitry
and power management unit. (b) Zoomed image of one of the memory modules.
(c) Scanning electron microscopy of a cut of a hybrid CMOS/memristor circuit,
showing a memristor between metal levels four and five. (d) Schematic of a mem-
ory module showing the co-located ReRAM and their access transistors, the level
shifters for the columns and rows, and the XPCSAs connected to the ReRAM array.
(e) Schematic of the level shifter, used for shifting digital voltage input to medium
voltages needed during programming operations or nominal voltage during reading
operations of the memristors. (f) Schematic of the differential pre-charge sense am-
plifier PCSA used to read the binary memristor states, with embedded XNOR func-
tion, to compose an XPCSA.

tions in or near memory. The memory array is similar to the implementation presented in the

last section, with HfOx-based ReRAM integrated with a low-power 130 nm CMOS process node

shown in fig. 3.5 (a), (b) and (c).
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The design choices in this study are aimed at achieving the most reliable operation in the

presence of an unreliable power supply, following the differential strategy proposed by Hirtzlin

in [157]. Our approach involves utilizing two memristors per synaptic weight, programmed in

a complementary manner, with one memristor in a low resistance state and the other in a high

resistance state (as depicted in fig.3.5 (d)). One obstacle is that the forming process necessitates

voltages up to 4.5 V, while our CMOS process’s typical voltage is just 1.2 V. To address this issue,

we integrated level shifter circuits into the peripheral circuitry of the memory arrays (as shown

in fig. 3.2 (e)), which are capable of withstanding high voltages. These circuits leverage thick-

oxide transistors to increase the voltage of the on-chip signals that instruct the programming of

memristors. Additionally, we have incorporated a dedicated logic-in-memory precharge sense

amplifier (PCSA) to execute the multiplication, which simultaneously reads the state of the

two memristors representing the weight and performs an XNOR with its input (as illustrated

in fig.3.5 (f) where X represents the input) [168]. Moreover, power supply voltage fluctuations

affect both branches of the sense amplifier symmetrically, further enhancing the robustness

of our design. Therefore, unlike other analog in-memory computing implementations that

require finely controlled supply voltage, our approach eliminates the need for compensation

and calibration circuits.

In this study, the resistances are connected in parallel, and the memory state of a cell is

connected to their relative resistances. This differential approach provides increased circuit re-

silience by minimizing the impact of memristor variability. Specifically, even if the memristors

deviate significantly from their programmed values, the sense amplifier will produce the cor-

rect output as long as the relative resistances of the two devices preserve their relative order in

terms of magnitude.

As shown in fig. 3.5 (f), the reading of the weight and the subsequent XNOR operation is

done in a single step with a circuit block that combines an XNOR gate and a PCSA circuit and

is called the XPCSA. The XPCSA operates by pre-charging BL and BLb to a voltage VDD and

then letting it discharge through their corresponding memristors and the XNOR layer. Due to

the difference in resistances, the time constants of the discharge are different, and it allows the

latch in the PCSA to acquire the XNOR value.

In our memory array having 64 rows, the first six rows contain the threshold value, where

the topmost row encodes the most significant bit of this value. The rest 58 rows are used for the

synaptic weights. First, the threshold value is loaded, and then the popcount operation is done

by going through the rows and subtracting one from the threshold value whenever the XNOR

value equals one. This is done using a decounter, and the final sign operation is performed

by comparing the value of the decounter to zero, which yields the final binarized output. In

this setup, with maximum voltage, the only source of errors is the variability of the ReRAMs or

failures in their programming.
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3.3.3 Divide-and-conquer mapping strategy

A resource-based constraint of our circuit is that it has only the provision to have 58 input rows

(since the other 6 are dedicated to the thresholds). On the other hand, typically, the number of

inputs in a neural network is much higher, and the value itself varies across different layers. In

this section, we describe the Divide-and-conquer strategy that we use to map neural networks

to our chip, taking into account this particular resource constraint of the array. Our solution

involves partitioning the inputs and performing the popcount operation on each partition in-

dividually, producing a partial output. These partial outputs are then combined to obtain the

final output of that layer. Fig. 3.6 shows the general idea of this concept, where (a) shows the

ideal scenario where the number of rows in the array nr ow s is equal to the number of inputs

of that layer ni nput s . This is not realistic, and typically the number of rows is less in number

and has a fixed value, whereas, for a real neural network, the input sizes of different layers are

not the same. In fig. 3.6 (b), we show our proposed solution to this, where we divide our input

into partitions, each with nr ow s number of units. We compute each of their outputs individ-

ually and, finally, combine them to compute the final output. The specific implementation

techniques differ between fully connected and convolutional architectures, and we provide a

detailed account of these strategies below.

Figure 3.6: Illustration of the Divide-and-conquer mapping strategy. (a) The mapping of our
network to the circuit when the number of rows nr ow s and the number of inputs
of the neural network ni nput s are the same. (b) Our Divide-and-conquer mapping
strategy for a more realistic circuit with a fixed number of rows (64 is shown in this
case).
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Divide-and-conquer in fully connected architecture

Figure 3.7: Schematic for the Divide-and-conquer strategy for a fully connected architecture.
(a) A conventional fully connected layer of a neural network where the popcount
operation is performed over ni nput values of neurons. (b) Our Divide-and-conquer
approach for the same neural network layer. The input layer is divided into N parti-
tions with nr ow s neurons in each, independently connected to output layers. These
intermediate output layers are combined in a ’majority wins’ function to produce
the final output. Here, the popcount is over nr ow s values.

The neural network operation of calculating the output from ni nput number of inputs,

without any circuit consideration, has the following form

Xout , j = sign

√
ni nputX

i=1
X NOR

°
Wj i , Xi n,i

¢
°T j

!
. (3.8)

In our case, the number of values over which we can perform the popcount operation is

fixed by the number of rows present in our array (nr ow s). Therefore, as shown in fig. 3.7, we

divide the ni nput into N partitions with nr ow s units in each (hence, N = ni nput

nr ow s
). If W r

j i , X r
i n,i ,

and T r
j represents the weights, inputs, and thresholds for the r th partition, the output is then

calculated as
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Xout , j = sign
µ NX

r=1
sign

√
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i=1
X NOR

≥
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i n,i

¥
°T r

j

!∂
. (3.9)

In fig. 3.7, the summation of the intermediate outputs and the following sign function is

represented by the ’majority wins’ function: if the +1s are in the majority among the outputs, it

yields +1 and -1 otherwise. Since we are combining the intermediate outputs in this manner,

N must be an odd number; otherwise, some outputs could have an equal number of +1s and

-1s. We achieve this by choosing ni nput s such that N is odd.

The Divide-and-conquer strategy is used for the first hidden layer with 1,102 neurons as

input in the fully connected architecture. For our array, among the 64 rows, a total of six rows

are reserved to represent the threshold value, leaving a total of 58 rows available for the input

values, which leads to N being equal to 19.

The Divide-and-conquer mapping strategy keeps the total number of weights in the net-

work the same as a conventional implementation. Still, it involves a loss of information as

it performs the summation in parts, and we suffer a slight degradation in accuracy (98.0% to

97.2% on MNIST).

Divide-and-conquer in convolutional architecture

For convolutional neural networks, the popcount operation is performed differently. In our

approach, we use filters with dimensions of 3£3£NC to convolve over the input feature map,

where NC represents the number of channels. To address the resource constraints of our array,

we partition the input feature maps along the channel dimension and apply the appropriate

number of corresponding filters, as shown in fig. 3.8. Unlike in the case of fully connected

neural networks, the number of channels in each partitioned feature map, denoted by Ndi v , is

not equal to nr ow s . Instead, owing to the 3£3 filter shape, Ndi v is given by the expression:

Ndi v =
jnr ow s

9

k
. (3.10)

The total number of partitions is given by N = NC
Ndi v

, and the number of popcount operations

performed in each block is 3£3£Ndi v . The intermediate outputs obtained from each division

are combined in the same way as in the fully connected network to generate the output feature

map. For the same reasons as the fully connected architecture, we choose the total number of

filters NC such that the total number of partitions N is odd.

For the convolutional (feature-extracting) part of our network, we used a value of Ndi v = 6

because of our nr ow s size of 58 and eq. 3.10, and for the fully connected (classifier) part we used

mapping as described in the previous section. Table 3.1 lists the number of partitions used for

each of the layers:

In this architecture as well, the total number of filters, or in other words, learnable weights,

are preserved as compared to an undivided architecture, although with some degradation of
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Figure 3.8: Schematic for the Divide-and-conquer strategy for a convolutional architecture. (a)
In a conventional convolutional architecture, the input feature map with a channel-
wise dimension of NC is convolved with a filter of dimensions 3£3£NC to produce
the output feature map. Here, the popcount is done over 9NC values. (b) In our
Divide-and-conquer strategy, both the input feature maps and the filters are divided
along the channel dimension into N partitions, each with Ndi v channels. Subse-
quently, the convolutions are performed on each of them, and the outputs are com-
bined using a majority function to yield the final output. The popcount is performed
over 9Ndi v values in this case.

accuracy (90.0% to 86.6%).

3.3.4 Error in the circuit inference

To verify the compatibility of our circuit with energy harvesters, we connected it to a minia-

ture (5 mm £5 mm) AlGaAs/GaInP heterostructure solar cell. This type of solar cell, fabricated

following the procedure of [185], with a 1.73 eV bandgap, performs better than conventional

silicon-based cells under low-illumination conditions, making it particularly suitable for ex-

treme edge applications. Energy harvesters are usually connected to electronic circuits through

sophisticated voltage conversion and regulation circuits. Here, to demonstrate the robustness

of our system, we connect it directly to the solar cell. This demonstration is possible as the max-

imum voltage provided by our solar cell (1.25 V under 1 sun illumination) matches the nominal

supply voltage of our CMOS technology (1.2 V), unlike silicon solar cells, whose maximum volt-

age is only 0.7 V and would require voltage conversion for use under low illumination.
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Type of layer NC N

Conv 198 33
Conv 354 59
Conv 738 123

FC 406£3£3 63
FC 1102 19

Table 3.1: The number of channels/neurons used in the different layers of our simulated con-
volutional network and the corresponding number of partitioned blocks in our
Divide-and-conquer mapping strategy.

We measure the circuit’s performance under the illumination of a lamp producing four dif-

ferent intensities: 8 suns, 0.8 suns, 0.36 suns, and 0.08 suns. Under the illumination of 1.5 suns,

the circuit performs almost equivalently when powered by a 1.2 V lab bench supply. Fig. 3.9

shows the error probabilities of the circuit output neurons for the different illumination lev-

els as a function of the preactivation ¢, which is the difference between the popcount and the

threshold. No errors were found for |¢| > 5, and since the cause of these errors is the errors in

the weights (ReRAM issue), the probability of an error is higher when the popcount and thresh-

old values are similar. This is so because there is an error in the output when the expected

output is +1, whereas the measured output is -1, or vice-versa, and this change of sign is more

likely when the ¢ value is close to zero, which is the crossover point between the two values.

The measurements are shifted with respect to the¢= 0 because, in our circuit, this case is con-

sidered to have an output of -1, and in this case, the true point of symmetry of ¢ is between 0

and -1. Another issue we observed is that the measurements are asymmetric, so we didn’t fit

a Gaussian as we did in the previous section. We used an exponential fit for the two branches

separately and used the average value of the fit parameters to get the shown fits in fig. 3.9. We

use this error model to simulate the real errors of our circuit for the neural network simulations.

3.3.5 Neural network inference

We now evaluate the performance of our circuit on neural networks using the Divide-and-

conquer mapping scheme we presented earlier. To assess the accuracy of our hardware, we

incorporated the error rates measured experimentally as a function of preactivation value and

illumination (fig.3.9) into neural network simulations. Table 3.2 lists the obtained accuracy on a

fully-connected neural network trained on MNIST and a convolutional neural network trained

on CIFAR-10. Remarkably, the MNIST accuracy is hardly affected by the errors in the circuit:

even under very low illumination of 0.08 suns, the MNIST accuracy drops by only 0.7 percent-

age points. Conversely, bit errors in our circuit significantly reduce the accuracy of the more

challenging CIFAR-10 task. Under 0.08 suns, the accuracy drops from the software baseline of

86.6% to 73.4%. The difference with the MNIST is that neurons tend to have low preactivation
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Figure 3.9: BNN inference output neuron error probability as a function of the difference be-
tween popcount and threshold, the preactivation ¢ for different illumination levels
and fits for the error models used in the neural network simulations.

when solving CIFAR-10, as the differences between classes are more subtle.

Solar cell illumination MNIST Accuracy CIFAR-10 Accuracy

Baseline 97.2% 86.6%
8 suns 97.1% 83.6%

0.8 suns 96.9% 78.2%
0.36 suns 96.9% 78.3%
0.08 suns 96.5% 73.4%

Table 3.2: Simulated accuracy of solar-cell power in a fully-connected (MNIST task) and a con-
volutional (CIFAR-10 task) binarized neural network under various illuminations.
The software baseline assumes no bit error.

To further understand the impact of low illumination on neural network performance, we

plotted the t-distributed stochastic neighbor embedding (t-SNE) representation of the MNIST

test dataset in fig. 3.10 [186]. This method represents each image as a point in a two-dimensional

space, with similar images corresponding to nearby points and dissimilar images correspond-

ing to distant points. In the left image, we marked in black the correctly classified images by a

neural network under 8 suns illumination but not under 0.8 suns. Interestingly, these images

tend to be on the edges of the clusters corresponding to the different digit classes or even out-

liers that do not belong in a cluster. This suggests that the images the network starts misclas-

sifying under 0.8 suns illumination tend to be subtle or atypical cases. The right image shows

that this effect is even more pronounced under 0.08 suns illumination, with a few images in-

side clusters also being misclassified. Fig. 3.11 presents the same analysis for the CIFAR-10

dataset. The same trend that images wrongly classified due to low illumination tend to be edge
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or atypical cases is seen, although it is less unequivocal than in the MNIST case.

For the neural network simulations, we used a fully connected and convolutional neural

network architecture for the MNIST handwritten digit recognition task and the CIFAR-10 im-

age classification tasks. Except for the input to the first layer, the activations and weights of the

network were binarized, following the binarized neural network implementation [187]. The

fully connected (FC) network had two hidden layers with 1,102 and 64 neurons. In contrast,

the convolutional architecture was based on the VGG-16 network. It consisted of 3x3 kernels

for convolutions (Conv), batch normalizations (BN), and nxn for MaxPool (MPn) and reads:

[Conv 198, BN, Conv 198, MP 2, BN, Conv 354, BN, Conv 354, MP2, BN, Conv 738, BN, Conv 406,

MP3, FC(1102-1102-10)]. The number of hidden layer units and convolutional filters was cho-

sen in accordance with the dedicated mapping technique described previously, such that the

total number of blocks is always odd when a block size of 58 is used.

3.3.5.1 Visualizing erroneous examples

To understand the nature of the errors, we visualize the test examples where our neural net-

work makes an error in the prediction. In the t-SNE plots of fig. 3.10 and fig. 3.11, we saw that

these errors were mainly near the edges of the clusters for the cases where the prediction was

incorrect for 0.8 suns but correct for 8 suns which meant that these cases have some ambiguity

to them. Whereas the examples where the 0.08 suns made incorrect predictions included both

the images at the edges and more centrally located points, which should mean that those ex-

amples are much clearer. To test this, we plot some examples where the network made errors

for the 0.8 suns and 0.08 suns illuminations and compare them with some random examples

from the datasets.

The MNIST dataset is considered one of the most standard computer vision datasets as it

is relatively easy to get a good prediction accuracy. This is because most of the images are very

clear, and the data is pre-processed, as seen from the examples in fig. 3.12. The majority, if

not all, of these examples, are very clear to us, and there is little ambiguity in which class a

single image would belong to. We compare this to fig. 3.16, which shows examples of mistakes

with 0.8 suns illumination, to observe that this set of examples has a few ambiguous cases, and

generally, the form of the handwritten digits is less standard than what we usually write. Above

each example, we represent the true label and the label predicted by the network as ’t’ and ’p,’

respectively. From this, we learn that all the errors the network makes are not random; it is

sometimes making mistakes where an image looks similar to another image. Some examples

of such cases are the sixth image in the first row (3 predicted as 7), the sixth image in the second

row (7 predicted as 2), the fourth image in the third row (3 predicted as 8), the second image in

the fifth row (6 predicted as 1), etc. Although there are some examples where it makes an error,

the digit is quite clear to the human eye. Now, let’s look at the cases of mistakes with 0.08 suns

illumination in fig. 3.14. We see three different types of images: intelligible ones (like the first

image of the second row and the fourth image of the sixth row), ambiguous ones (examples
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Figure 3.10: t-distributed stochastic neighbor embedding (t-SNE) representation of the MNIST
test dataset. The black data points are incorrectly classified under 0.8 suns (top)
and 0.08 suns (bottom) illumination, but they are correctly classified under 8 suns,
using a binarized fully-connected neural network.

similar to or identical to fig. 3.16), and clear examples. This means that it is making errors in

almost all the cases where it made an error in the 0.8 suns illumination and also in instances

where the image is clearer.

Compared to the MNIST dataset, the CIFAR-10 dataset is more challenging as the images

are now colored and have much more variability than the MNIST. The reason behind this is
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Figure 3.11: t-distributed stochastic neighbor embedding (t-SNE) representation of the CIFAR-
10 test dataset. The black data points are incorrectly classified under 0.8 suns (top)
and 0.08 suns (bottom) illumination, but they are correctly classified under 8 suns,
using a binarized fully-connected neural network.

that for a single digit, say ’0’, there are only a handful of different ways we can write this; hence

all the examples in the dataset with the same label look very similar. On the other hand, the

output classes of the CIFAR-10 dataset are real-world objects like dog, cat, horse, deer, frog,

bird, car, truck, ship, and plane. As we can see from fig. 3.15, which are random images from

the test dataset of CIFAR-10, even for a particular class, the image can significantly differ based

on the type of the object, the background, the angle from which it the photograph is captured,

the picture quality, etc. This makes the dataset more complex and, thus, harder for our net-

work to predict correctly. This is reflected in the fact that we have lower baseline accuracies
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Figure 3.12: Visualization of random MNIST examples from the test dataset where each image
is labeled by the true label ’t.’

and higher degradation when we incorporate the errors. Fig. 3.16 and fig. 3.17 show some ex-

amples from the test set where the network makes mistakes for illuminations of 0.8 suns and

0.08 suns respectively, but the predictions are correct for 8 suns. For the cases with errors un-

der 0.8 suns illumination, we observed common mistakes where the class labels for the true

and predicted labels are swapped commonly. This happens for the plane-ship, cat-dog, and

car-truck (not shown here) pairs and can be understood from the point of view that these often

have very similar backgrounds like the ship and plane both often has blue backgrounds, and

the cat and dogs have household in their backgrounds commonly. In fig. 3.17, for the 0.08 suns

illumination, we see some of the same mistakes as in 0.8 suns, and also some mistakes where

the images are not clear, even to us, like the fourth image in the first row, first, and third images
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Figure 3.13: Visualization of MNIST examples from the test dataset where the network made
an error for illumination of 0.8 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label ’t’ and the predicted label ’p.’

in the fourth row, the first image in the fifth row, etc. The conclusion for the CIFAR-10 mistakes

is not as clear cut as the MNIST because the task’s difficulty makes the prediction highly sen-

sitive to errors, and in our case, both the 0.8 suns and 0.08 suns illumination levels cause too

many errors for the visualization to be truly illustrative.

However, it can be concluded that with less illumination, the network can still perform the

predictions, but it makes mistakes for more complicated or ambiguous cases. Thus our BNN in-

ference circuit can function even in low-light settings, but it would make more mistakes in less

straightforward cases. The reason for this is that for the more ambiguous cases, the magnitude

of the preactivation ¢ values are lower, where the probability of having an error is significantly
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Figure 3.14: Visualization of MNIST examples from the test dataset where the network made an
error for illumination of 0.08 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label ’t’ and the predicted label ’p’

higher. There is a note of caution to be remembered here: interpreting how a neural network

produces an output is a notoriously difficult task, and extensive research is being done in the

field of interpretable deep learning. Hence, the intuition we gain from studying the test exam-

ples might not always represent how a network functions. Especially for the fully connected

architecture, it is doubtful that the network learns from the dataset in a way that is similar to

how humans perceive information. So, the t-SNE-based study is probably more reliable as it

does not depend on human perception.
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Figure 3.15: Visualization of random CIFAR-10 examples from the test dataset where each im-
age is labeled by the true label ’t.’
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Figure 3.16: Visualization of CIFAR-10 examples from the test dataset where the network made
an error for illumination of 0.8 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label ’t’ and the predicted label ’p.’
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Figure 3.17: Visualization of CIFAR-10 examples from the test dataset where the network made
an error for illumination of 0.08 suns but made a correct prediction for 8 suns. Each
image is labeled by the true label ’t’ and the predicted label ’p.’



3.4 CONCLUSION 101

3.4 Conclusion

In this chapter, we presented two studies involving the circuit-level implementation of bina-

rized neural networks dedicated to low-power inference. For the memory, HFOx-based 2T2R

ReRAMs are used for both works, which are integrated with the BEOL of a 130 nm CMOS pro-

cess node. The design of the circuits shows remarkable robustness to the device variabilities

of ReRAM and IR drop, which are significant obstacles in the traditional ReRAM-based imple-

mentation of neural networks.

The first study presented the implementation of inference of BNN, where the neurons were

implemented using switched capacitive bridges and comparators. The chip was validated, and

the probability of errors was measured experimentally, and these errors were used in the in-

ference of simulated neural networks for the MNIST and CIFAR-10 tasks. We show that the

neural network performance is quite robust to device-based errors even under programming

conditions where the circuit is more prone to errors.

The second study concerned non-optimal power sources, relevant for extreme-edge ap-

plications where power harvesters like solar cells can provide less than maximum power. We

show that even under such conditions of low illumination when the supply voltages are less

than what is optimum, our circuit shows very few errors and even those errors are primarily

for low preactivation magnitudes. In this work, we also consider another resource-based con-

straint of the hardware implementation of neural networks: the fixed number of inputs that

can be presented to an array. To mitigate this, we developed the Divide-and-conquer mapping

strategy, where the accumulations are done in parts. We show that this strategy suffers only

from a slight degradation in accuracy. Finally, using this mapping and the bit-errors, we simu-

late neural networks for the MNIST and CIFAR-10 tasks and, using t-SNE plots, show that under

low illumination, the network makes mistakes in more ambiguous or challenging cases.

To conclude, in this chapter, we illustrated that the binarized neural networks are robust to

different kinds of circuit-level imperfection through experimental demonstration and simula-

tions. This makes it a promising candidate for power-efficient, error-tolerant implementation

of neural networks in extreme-edge environments.
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Chapter 4

Bayesian binary neural networks for

uncertainty quantification in medical

tasks

Intelligence takes chance with limited data in an

arena where mistakes are not only possible but

also necessary.

Frank HERBERT

IN THE last two chapters, we discussed neural network implementation that is robust to im-

perfections like noise, non-ideal circuit behavior, or variable power supply. This is be-

cause the deep learning algorithms that we were using relied on deterministic computations.

An alternative approach is to employ probabilistic computing. Instead of aiming for device

variability immunity, this computing paradigm employs it to enable computations based on

probabilities. This type of computation, in the context of machine learning, is a variant of sta-

tistical learning that uses the tool of probability to model mapping from input to output. In

other words, instead of dealing with finding suitable outputs, given some input, in probabilis-

tic computing, we are concerned with finding the probability of a certain output while some

information is given.

The content of this chapter revolves around probabilistic computing in the context of deep

learning. We show how this approach is compatible with a class of materials whose intrinsic

stochasticity could be harnessed for the hardware implementation of such models. First, we lay

the theoretical foundation of this approach to computation by introducing the key ideas and

algorithms behind probabilistic learning. Then, we review some experimentally demonstrated

realizations of such neural networks where the variabilities of emerging memories are em-

braced. After that, we introduce the Bayesian binary neural network (Bayes BiNN), the model

we use for the rest of the chapter. This is followed by a section where we describe the different



104
CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY

QUANTIFICATION IN MEDICAL TASKS

types of uncertainties that we can quantify using this approach and motivate how this estima-

tion of uncertainties is an important attribute of probabilistic models where it outshines the

conventional deterministic implementations. The next two sections describe, respectively, a

toy task and more realistic bio-medical tasks and how our model performs for them. We con-

clude the chapter by proposing some physical systems that are suitable for implementing this

special type of neural network in hardware.

4.1 Theoretical background

The notion of probability and its quantification has been discussed in the history of mathe-

matics since the sixteenth century by the likes of Gerolamo Cardano, Pierre de Fermat, Blaise

Pascal, and Christian Huygens. The probability of an event is simply a measure of how likely

it is for an event to occur. To quantify the probability of an event, the classical or frequentist

interpretation says that it is the limit value of its relative frequency over many trials [188]. If we

conduct N trials, and the event under consideration, say event A, happens n number of times,

then the probability of event A, is given by

P (A) = lim
N!1

≥ n
N

¥
. (4.1)

4.1.1 Bayesian interpretation of probability

This interpretation of probability assumes that there exists an absolute value of the probability

independent of the extent of our belief. However, Thomas Bayes presented a different defi-

nition of probability in 1763 that is more evidence-based [189]. According to Bayes’ interpre-

tation, the probability is considered a ’degree of belief’ in the chance of the occurrence of an

event. This approach is more subjective and cannot be directly measured like the frequentist

approach. Instead, the probability is updated as more evidence becomes available. This update

starts from a prior degree of belief in the event before any evidence is considered, which is then

updated as more information becomes available. The Bayesian interpretation centers around

Bayes’ theorem, which utilizes the sum rule and product rule of probabilities for conditional

events.

Let A be an event, and let E1,E2,E3, ...,En be n mutually exclusive partitions of the whole

sample space. Suppose we only have access to the conditional probabilities P (A|E1), P (A|E2),

P (A|E3),..., P (A|En). Concretely, if the events Ei s are events that cause event A, this can be

interpreted as information about the causal connections. For instance, E1 and E2 might repre-

sent the events of windy and calm weather, respectively, and A can be the event that a person

wears a coat. By observing what the person wears given the weather conditions, we have about

the probabilities P (A|E1) and P (A|E2). Now, if we observe that the person is wearing a coat, can

we infer about the weather? Bayes’ theorem answers this question by inverting the probability
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and finding P (E1|A).

Bayes’ theorem states

P (Ei |A) = P (A|Ei )P (Ei )Pn
i=1 P (A|Ei )P (Ei )

. (4.2)

Let us describe each of the terms in this equation separately.

• Prior P (Ei ): This is the aforementioned prior probability of a causal event happening

independent of any other conditioning. In terms of our example, it is just the probability

of the weather being windy and is totally uncorrelated with the person wearing a coat.

• Likelihood P (A|Ei ): The probability of event A conditioned on the event Ei , or in other

words, what is the likelihood of occurrence of event A when the event Ei has already

occurred. For our example, this is the probability that we get from observing the person

on different days with different wind conditions.

• Evidence
Pn

i=1 P (A|Ei )P (Ei ): This term is the normalization constant that takes into ac-

count all possible ways that event A could have happened.

• Posterior(P (Ei |A)): It is the inverted probability that we calculate. The process of our

probability calculation goes as follows: we have a prior idea about the weather condi-

tions of the area that is given by P (Ei ). We observe the person for some days to note the

proportion of times he is wearing a coat given a certain weather condition to get P (A|Ei ).

Then we use equ. 4.2 to find the posterior value of P (Ei |A). The next time we observe this

person, this posterior probability acts as the prior.

To summarize, we start with a prior idea about the probabilities and update them as new

information gets available. This is operationally quite similar to how we train our neural net-

works, as presented in Chapter 1, where we present new training examples, and to get a better

prediction, we update the network parameters. The Bayes’ theorem can be recast in the form

of a learning task if we consider our event A to be the whole dataset D, the events Ei s to be the

parameters of the model W, then we can rewrite Bayes’ theorem as

P (W|D) = P (D|W)P (W)
P (D)

. (4.3)

Here, D = {X ,Y }{(xi , yi )}N
i=1 is the training dataset with inputs xi , their corresponding out-

put classes being yi 2 {1,2, ...,C } where C is the total number of classes, and N is the size of this

dataset. In learning, the goal is to optimize model parameters W so that our model, denoted

by y = f W(x), can produce the intended output. In order to achieve this using the Bayesian

approach, we define a P (y |x,W) to be the model likelihood, and for classification, the softmax

likelihood for class index c is:
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P (y = c|x,W) =
exp( f W

c (x))
P

c 0 exp( f W
c 0 (x))

(4.4)

For a test input sample x?, the class label probability can be calculated as

P (y?|x?,D) =
Z

P (y?|x?,W)P (W|D)dW. (4.5)

This calculation is the same as what we did for the inference in our supervised learning of

neural networks and is also called inference. It is also known as marginalization, as we are inte-

grating over W. In other words, this output probability is a probabilistic average or expectation

over different models that are sampled from the distribution of weight parameters. Instead

of a deterministic model, as we had until now, if we have a neural network where the weights

are random variables that have associated probability distributions, then equ. 4.3 can be used

to update those probability distributions. In this case, instead of learning the values of the

weights, we learn the values of the parameters of the probability distribution P (W|D).

In general, it is impossible to analytically calculate the denominator term of equ. 4.3 and

hence also P (W|D). To circumvent this problem, different methods are adapted, the variational

inference being one of them, where a variational distribution qµ(W) is used to approximate

P (W|D). Then, the Kullback-Leibler divergence (KL divergence), a measure of distance between

two probability distributions, is used to quantify how good our approximation is. This diver-

gence is minimized by iteration through our dataset [35, 190, 191]. The KL divergence between

two distributions qµ(W) and P (W|D) is calculated by the formula

KL(qµ(W)||P (W|D)) =
Z

qµ(W) log
qµ(W)

P (W|D)
dW. (4.6)

4.1.2 Bayesian deep learning

As of now, we have just stated an alternative way of doing statistical learning. We will gradually

present the advantage of this approach and how it can be superior to the more conventional

approach to deep learning in some contexts. Here, we present some ways in which the Bayesian

approach is applied to deep learning models.

4.1.2.1 Monte Carlo (MC) dropout

Dropout is a regularization technique that prevents overfitting in deep neural networks by ran-

domly dropping out a fraction of nodes during each training iteration. This forces the remain-

ing nodes to learn more robust representations that do not rely on the presence of any single

node [192]. Monte Carlo dropout extends this technique to perform approximate Bayesian in-

ference in deep neural networks. The dropout mask is randomly sampled at each forward pass

during inference, and this is done multiple times (10-100) to obtain a distribution of outputs
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Figure 4.1: MC dropout and MCMC. (a) The Monte Carlo dropout method of doing Bayesian
inference with neural networks. In each iteration, some neuron nodes are masked
at random with some probability, effectively making the model different in each it-
eration ( f W1(x), f W2(x), and f W3(x), here). Thus, for the same input x, we get differ-
ent outputs which give us the distribution of the output probability P (y |x,D). (b)
Markov chain Monte Carlo method is illustrated by a simple example. The distri-
bution parameters µ explore the sample space by a random walk where each step
taken is either accepted or rejected based on a ratio of the current and proposed
states. The resultant frequency distribution of points, when normalized, gives an
approximation of the posterior distribution.

for each input. The mean of these outputs is then used as the final prediction, making it an

effective way to estimate model uncertainty [193, 194]. Fig. 4.1 (a) demonstrates the approach,

whereby three different models f W1(x), f W2(x), and f W3(x) produce different outputs for the same

input due to different active units, and these outputs are gathered to get the final distribution

of outputs P (y |x,D).
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4.1.2.2 Markov chain Monte Carlo (MCMC)

The Markov chain Monte Carlo (MCMC) method generates samples from a difficult-to-sample

probability distribution by constructing a Markov chain that converges to the desired distribu-

tion. In deep neural networks, MCMC can be used to perform Bayesian inference to estimate

model uncertainty. MCMC is initialized with a random set of weights, and at each iteration, a

new set of weights is proposed based on the current state of the chain. The acceptance proba-

bility of the proposed state is computed, and if accepted, it becomes the new state of the chain.

Fig. 4.1 (b) shows an example of the MCMC process. By accumulating all the accepted points,

we can output a distribution for the posterior. MCMC is a powerful and widely used method

for estimating complex probability distributions. [195–199].

4.1.2.3 Variational autoencoder (VAE)

Autoencoder is a type of neural network that efficiently codes unlabelled data [200]. As shown

in fig. 4.2 (a), it consists of an encoder that maps the input data X to a lower-dimensional repre-

sentation called the latent variable Z and a decoder that generates a reconstruction of the orig-

inal input data X 0. Variational Autoencoder (VAE) is a probabilistic variant that learns a prob-

ability distribution over the latent code, enabling flexible modeling of input data [201, 202].

To train VAEs using backpropagation, the reparametrization trick is used, expressing the latent

code as a function of a noise variable, and the mean and variance of the Gaussian distribution

are learned. VAEs have been used for generative modeling, including image and text genera-

tion, anomaly detection, and dimensionality reduction [203, 204]. VAEs can naturally learn a

more regularized latent variable due to their probabilistic nature.

4.1.2.4 Bayes By Backprop (BBB)

Bayes by Backprop is another method used to train Bayesian neural networks [205]. The method

is based on the principle of variational inference, which is a way to approximate the posterior

distribution of a Bayesian model by a surrogate distribution. The key idea of the method is to

introduce a set of variational parameters, which are optimized to approximate the true poste-

rior distribution of weights. These parameters are learned using a gradient-based optimization

method, such as stochastic gradient descent.

The variational parameters are used to define a probability distribution over the weights

in the neural network. Let µ be the variational parameters of the distributions of the weights

W, and qµ(W) be the surrogate variational distribution, then during training, the cost function,

called the variational free energy F (D,µ)is defined as

F (D,µ) = KL(qµ(W)||P (W))°Eq(µ,W)[logP (D|W)]. (4.7)

In equ. 4.7, the cost function is composed of two parts: the likelihood cost, which depends
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on the data D, and the complexity cost, which depends on the prior P(w). This cost function

balances the complexity of the data and the simplicity of the prior. It determines the optimal

values of the variational parameters µ that best fit the data while avoiding overfitting. Fig. 4.2

(b) shows the learning and inference of a Bayesian neural network using this method.

Once the training is complete, the posterior distribution over the weights can be used to

make predictions on new data using equ. 4.5. The predictive distribution is obtained by averag-

ing over the posterior distribution of weights, weighted by their probability under the posterior

distribution.

BBB has been shown to improve the performance of neural networks in a variety of tasks,

including image classification, speech recognition, and reinforcement learning. It also has the

advantage of providing uncertainty estimates for the predictions, which can be useful in safety-

critical applications such as medical diagnosis or autonomous driving, as we will motivate later

in this chapter. Also, since this method is based on the backpropagation algorithm, it is highly

compatible with the neural network implementation of the deep learning frameworks. This

will be our method of choice for the neural network that we will be studying in this chapter.
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Figure 4.2: VAE and BBB. (a) The VAE architecture shows the reparametrization trick. The en-
coder P¡(Z |X ) generates the mean and standard deviation parameters for the latent
variable Z , which is then passed through the decoder network Pµ(X 0|Z ) to generate
the reconstruction of the input. (b) The Bayes through backprop uses a combination
of the backpropagation and Bayes’ theorem to derive the updates to the variational
parameters. The inference of the model is done by sampling through the weight dis-
tributions to get the output distribution. Then equ. 4.7 is used to calculate the loss
function, and then the updates are backpropagated through our network.

4.2 Memristor-based probabilistic ML

In the following section, we will present three recent studies about the implementation of prob-

abilistic computing on hardware using emerging memory technologies.
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4.2.1 Bayesian machine

A Bayesian machine is a non-deep machine learning model that uses Bayesian inference for

predictions. In [206], a memristor-based implementation of Naïve Bayes method for Bayesian

inference was achieved. Given n observations O1,O2, ...,On and the output Y = y , Bayes’ the-

orem (equ.4.2) was used to calculate P (Y = y |O1,O2, ...,On) = P (O1,O2, ...,On |Y = y)P (Y = y).

Then, Naïve Bayes technique was used, which assumes that the observations are conditionally

independent. Thus, the following simplification is obtained

P (Y = y |O1,O2, ...,On) = P (O1|Y = y)P (O2|Y = y)...P (On |Y = y)P (Y = y). (4.8)

This Bayesian machine stored 8-bit probability values in a ReRAM-based memory array us-

ing a complimentary fashion where the LRS-HRS and HRS-LRS pairs respectively denote the 0

and 1 bits, as shown in fig. 4.3 (a). These probability values were converted to a bitstream by

digital ’Gupta’ circuits and fed into an AND gate to perform the stochastic multiplications. The

non-volatile and low-power attributes of memristive devices were utilized for storing the prob-

ability values, and the computations were done by other circuits. The work utilized stochastic

computing, a type of computation that represents continuous values as a sequence of random

bits, allowing for straightforward bit-wise operations to perform complex computations [207].

4.2.2 MCMC on chip

Cycle-to-cycle and device-to-device variability in ReRAMs can be harnessed for probabilistic

computing, as demonstrated in [208]. When a SET operation is performed on a ReRAM, a dif-

ferent conductance state is obtained following a Gaussian distribution. An on-chip demon-

stration of learning the posterior distribution was performed using the MCMC method, utiliz-

ing conductances to represent the weights of the network (fig. 4.3 (b)). A deterministic model

was stored in each row of the array, with its parameters encoded by the conductance difference

between positive and negative sets of devices. The Metropolis-Hastings MCMC algorithm was

used to generate a proposed model at each row based on the previous row’s model [209]. The

ReRAM intrinsic random variability naturally generates each parameter of the proposed model

by performing a SET operation on each device in the row, with a programming current that

samples a new conductance value from a Gaussian distribution centered on the corresponding

device’s previous-row conductance value. After training, the learned posterior distribution in

the array can be used for inference, which is performed by taking the expectation of the outputs

of all the rows over the posterior distribution.

4.2.3 Bayesian neural network on chip

In [112], a Bayesian neural network was implemented where the intrinsic variabilities in fil-

amentary memristors and phase change memories in crossbar arrays were used to store the
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probabilistic weights 1. The conductance of a single memristor is used as a single deterministic

model, and the distribution over a set of them comprises the probability distribution (as shown

in fig. 4.3 (c)). It was trained using the variational inference-based BBB method discussed in the

preceding section. The high conductance state of these memories exhibits variability that can

be modeled by a Gaussian distribution with a mean µ and standard deviation æ, both of which

depend upon the SET programming current. However, the mean and standard deviations are

strongly correlated and cannot be set independently for such devices. This is an obstacle in

the variational inference as all the parameters need to be changed independently. In order to

expand the range of Gaussian distributions, we adopt a method where each sample of a prob-

abilistic weight is stored as the difference between the conductance values of two neighboring

memory cells. This approach proves to be highly effective since the difference between two

Gaussian distributions remains a Gaussian distribution.

Still, the region of space covered by the memristors in theµ-æplane is insufficient to achieve

effective training using the variational inference method. For that reason, a term is added to the

total loss function called the technology loss. This term takes into account the constraints of

the memory technology being used and penalizes the model for having distribution parameter

values outside its domain of possible value.

In this work, it has been demonstrated that implementing Bayesian neural networks using

memristive devices is possible by leveraging the device variabilities to emulate the probability

distributions. This approach has been shown to have advantages over deterministic neural net-

works, particularly in quantifying uncertainties for safety-critical applications like bio-medical

tasks. Later in this chapter, we will explore this aspect in greater detail.

1The author of this thesis had a minor contribution to this work and is a co-author of the article
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Figure 4.3: Probabilistic computing in hardware. (a) The memristor-based Bayesian machine
where the Naïve Bayes method is used for Bayesian inference wherein the probabil-
ity bits are stored in the array, and their multiplication is carried out by stochastic
computing. (b) In-situ MCMC using the variability of memristors to perform the
Metropolis-Hastings sampling algorithm. A single column in the array represents
the posterior probability of a parameter. (c) A Bayesian neural network is imple-
mented where the Gaussian distribution of device variability plays the role of the
probabilistic weights (Adapted from [112, 206, 208]).
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4.3 Bayesian binary neural networks

4.3.1 Architecture and inference

A deterministic binary neural network (BiNN) has binarized values for the synaptic weights and

real values for the activations (unlike the binarized neural network (BNN), which we studied in

section 2.4.1, where both the neurons and synapses are binarized). Its Bayesian counterpart,

the Bayesian binary neural network (Bayes BiNN), replaces the deterministic binarized value

of the weight by a random variable that follows a Bernoulli distribution [210].

Concretely, in the deterministic version, each weight Wbi n is either +1 or -1 and remains

fixed once a network is fully trained. On the other hand, for Bayes BiNN, we learn the probabil-

ity p that the weight would take a value of +1. Mathematically, the j th weight W bi n
j ª Bern(p j )

and so, the probability of sampling a value of +1 is given as

P (W bi n
j =+1) = p j (4.9)

Fig. 4.4 (a) and (b) highlight the differences between the deterministic and Bayesian net-

works. Unlike the fixed weights of the vanilla BNN, the Bayes BiNN learns a joint distribution

over the weights, and for inference, we draw samples from this distribution. Thus, we get mul-

tiple models, and we consider their cumulative output as the output probability distribution.

To compare with BiNN, as described in section 2.4.1, there exists hidden real weights Wr eal ,

the sign of which leads to the binary weight Wbi n . The Bernoulli probability p plays an analo-

gous role to this real weight, as it also generates the binarized value, albeit using probabilities.

For brevity, we shall omit the ’bin’ prefix from here onwards, as we will always be talking about

binary weights.

The training algorithm is based on the Bayes-by-backprop algorithm described in section

4.1.2 and is detailed in appendix 4.8. Effectively, the probability associated with each synaptic

weight p is learned, and for testing, a Monte-Carlo average is taken over the outputs of different

sampled models. If W(c) ª q(W) is the c th sample of the model from the learned posterior q(W),

and C is the total number of samples, then the output probability for the kth class is given as

P (y = k|x) = 1
C

CX

i=1
P (y = k|x,W(c)). (4.10)
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Figure 4.4: Comparison of a binary neural network and its Bayesian analog. (a) The determin-
istic binary neural network where the weight is fixed and is always either -1 or +1.
(b) The Bayes BiNN, where each weight is a random variable following a Bernoulli
distribution with an associated probability parameter. In training, these probabili-
ties are learned. During inference, we sample C models to compute the MC average
for finding the output probability.

4.4 Uncertainty quantification

4.4.1 Safety-critical applications

In this section, we bring into focus the advantage of using the Bayesian approach: the ability

to quantify uncertainty in the prediction of an output. The aspect that conventional neural

networks excel at is the prediction accuracy of a task, but there are many applications where

merely being accurate is not sufficient. There are safety-critical applications in which a single

error in prediction can cause a huge loss in terms of human lives or finance. Bio-medical diag-

nostic applications are one such domain; if the output predictions are wrong, that can lead to a
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completely wrong diagnosis, potentially putting human life in jeopardy. An error in the predic-

tion can arise from a plethora of sources, the two most prominent sources being noise in the

data and testing data which is out-of-distribution with respect to the data on which the model

was trained. The type of uncertainty deriving from the first kind of source is called aleatoric

uncertainty, and the latter is called epistemic uncertainty [194, 211]. In such applications, it is

more desirable that the network also provides some information about the uncertainty of the

output. In that case, a human doctor intervention can be made to make the final decision. For

example, we can consider the Covid-19 pandemic: suppose that the virus has mutated in coun-

try Y to a new variant X which is yet to be identified as a variant in the scientific community.

A person comes back from vacation from country Y, finds himself with Covid-like symptoms,

and takes an RT-PCR test. At this point, the ideal case would be that our model, which has not

been trained on variant X gives a high epistemic uncertainty. The doctors and scientists would

further look into the data to learn more about variant Y. Another case would have been that the

RT-PCR test was not done properly. Instead of providing a wrong output, the model says that

the aleatoric uncertainty is high; that is, it cannot predict confidently if it is a positive case or

not.

Bayesian neural networks provide a natural way to express these types of uncertainties.

As opposed to conventional neural networks, which are only capable of point estimates, these

neural networks learn a distribution over the dataset that can capture the intricacies of the data

much better. In particular, Bayesian neural networks offer advantages over conventional ones

in the following aspects.

• Conventional neural networks are infamous for performing poorly in terms of uncer-

tainty quantification. The softmax outputs, although considered erroneously to be the

output probability, fail to capture the subtleties that are necessary for evaluating uncer-

tainties [211–213].

• Conventional neural networks often overfit small datasets, which is common in medical

applications, leading to highly certain predictions in all scenarios [214, 215].

• Deterministic neural networks cannot distinguish the two different types of uncertainties

since the definition of these uncertainties, as we would see next, requires averages over

distributions [216].

Other safety-critical applications include autonomous vehicles, automated flight control,

using deep learning for providing loans, delivering justice, or taking critical policy decisions

[217–219]. Another key aspect of these applications is the interpretability of models, which

also can be derived from probabilistic neural networks [220, 221]. Now, with the importance

of quantifying the uncertainty ascertained, let us proceed to describe the exact mathematical

formulation that allows us to calculate the two different types of uncertainties.
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4.4.2 Quantification of uncertainty

The total uncertainty in prediction, which is referred to as predictive uncertainty, comprises

two main components: epistemic and aleatoric uncertainty [216, 222]. Epistemic uncertainty

pertains to the degree of uncertainty we have in the model parameters. This can be concep-

tualized as the spread of the posterior weight distribution P (W|D), whereby a wider posterior

distribution indicates higher epistemic uncertainty, while a narrower posterior distribution in-

dicates lower epistemic uncertainty. The origin of this kind of uncertainty stems from the lack

of knowledge about the input example. Semantically, the word ’epistemic’ has the meaning of

being related to knowledge. Concretely, if the input during testing comes from a distribution

that is not the same as the distribution in the training set, the epistemic uncertainty would be

high.

Conversely, aleatoric uncertainty stems from the input itself. In cases where the input in-

stance and fixed weight parameters are provided, high aleatoric uncertainty suggests that the

output estimate is noisy (in the case of regression) or that the class to which it belongs is un-

known or ambiguous (in the case of classification). When aleatoric uncertainty is high, it indi-

cates that there is insufficient information to predict the output value for an input with fixed

weight settings. This can be attributed to unobserved or latent variables that the model is un-

able to capture or noise in the input data that is due to the imperfect data acquisition of the

sensors.

Breaking down the total predictive uncertainty can be crucial because epistemic and aleatoric

uncertainty provides us with different information about the input. A high value of the epis-

temic uncertainty suggests that the test input is an outlier with respect to the distribution of

the training set. This type of uncertainty can be reduced by collecting more training data from

the distribution from which the test data originated. In an ideal scenario, if we had access to

an infinite amount of data, the output for every possible input would be known, the posterior

distributions would be delta functions, and our epistemic uncertainty would collapse to zero.

On the other hand, access to more data does not help with the aleatoric uncertainty. In or-

der to reduce it, we need either more accurate measurements or further knowledge about the

unobserved variables and add them as features.

Another reason for decomposing the predictive uncertainty is that depending upon the ap-

plication, it might be beneficial to prioritize a single type of uncertainty. For example, in rein-

forcement learning, the aim is to explore the state-action space efficiently. Under such cases, it

is favorable to collect data in regions of high epistemic uncertainty. Conversely, if the goal is to

predict the return from different types of stocks, it is more beneficial to prioritize the aleatoric

uncertainty. If the objective is to have a low-risk investment portfolio, we would want to pick

stocks that have a high return but low aleatoric uncertainty. Such kinds of distinctions cannot

be made from the overall predictive uncertainty only; inputs with a high predictive uncertainty

can have significant contributions from the aleatoric part, epistemic part, or even both [223].

From the perspective of information theory, the entropy of a distribution is the average
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level of uncertainty present in the random variable’s possible outcomes. If we have a random

variable following a uniform distribution, then the entropy of that would be quite high since

information about a single sample would give almost no information about the subsequent

samples; thus, the uncertainty is high. Alternatively, if we have a degenerate distribution that

only takes a single value, then the entropy of that would be zero, as there is literally no uncer-

tainty in the outcome.

With this in mind, we consider the entropy of the output softmax distribution as the predic-

tive uncertainty, which for an input x?, dataset D, and softmax outputs y? is given byH[y?|x?,D]

[224]. This can be decomposed as the sum of two terms as

H[y?|x?,D] = I[y?,W|x?,D]+EWªP (W|D)[H[y?|x?,W]]. (4.11)

In equ. 4.11, I represents the information gain. The authors of [222] interpreted the two

terms in this expression as the epistemic and aleatoric components of the predictive uncer-

tainty H[y?|x?,D]. The second term, EWªP (W|D)[H[y?|x?,W]] is the average entropy of the out-

puts when the weights are fixed, and so, the uncertainty solely derives from the input x?, and

not the weights. Hence, this term can be interpreted as the aleatoric uncertainty, and it quan-

tifies the uncertainty in the predicted class using only a fixed set of weight values. Finally, we

can rearrage equ. 4.11 to have I[y?,W|x?,D]H[y?|x?,D] =H[y?|x?,D]°EWªP (W|D)[H[y?|x?,W]].

This difference term is the epistemic uncertainty since it is the remaining uncertainty from the

probabilistic nature of the model weights and not from the input. A high value of the epistemic

uncertainty signifies that with each sample from the posterior distribution, the model predicts

a different class [223].

4.4.2.1 Calculating aleatoric uncertainty

The calculation of the average entropy or the expectation requires us to evaluate integrals over

all possible model configurations, which is practically impossible. We resort to performing the

Monte Carlo average once more to calculate these values. In MC average for a quantity, we

take samples from the model, calculate that quantity for each of them, and then compute their

average over the different samples. If we have taken C model samples from the variational

distribution. mathematically this can be written as

EWªP (W|D)[H[y?|x?,W]] =°
Z

P (W|D)
hX

k
P (y? = k|x?,W) logP (y? = k|x?,W)

i
dW

º°
Z

q(W)
hX

k
P (y? = k|x?,W) logP (y? = k|x?,W)

i
dW

º° 1
C

X
c

X

k
P (y? = k|x?,W(c)) logP (y? = k|x?,W(c)).

(4.12)
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4.4.2.2 Calculating epistemic uncertainty

In the same vein, the epistemic uncertainty is calculated as the difference as

I[y?,W|x?,D]H[y?|x?,D] =H[y?|x?,D]°EWªP (W|D)[H[y?|x?,W]]

º°
X

k

µ
1
C

X
c

P (y? = k|x?,W(c))
∂

log
µ

1
C

X
c

P (y? = k|x?,W(c))
∂

+ 1
C

X
c

X

k
P (y? = k|x?,W(c)) logP (y? = k|x?,W(c)).

(4.13)

4.5 Two Moons dataset

4.5.1 The dataset and methods

To showcase the advantages of our Bayes BiNN, we first consider a toy dataset called the ’two

moons’ dataset [225]. This is a simple task where we have two classes of data points that inter-

leave with each other in a two-dimensional plane in the form of two semi-circles. This dataset

is shown in fig. 4.5 (a), where the red triangle and blue circle points denote the two classes. This

is a classification task where a set of such points are used to train our model, and the goal is to

classify any test point in that region.

The neural network model used for this task has a fully connected architecture with two

hidden layers, each with 64 neurons, two input neurons providing the x and y coordinates of

a point, and the single output is the prediction for the point to be in the blue circles class. The

softmax output is represented by the color map, which ranges from red (belonging to the red

triangle class) to blue (belonging to the blue circle class). We generate the training dataset from

the scikit learn datasets package using the command sklearn.datasets.make_moons, and use it

to train our model. In this section, we present our findings by comparing the Bayes BiNN to the

deterministic implementation of binary neural networks having the exact same architecture,

following the work of [210]. From here onwards, for all the 2-plots in the x°y plane, the left plot

represents the deterministic version, while the right represents the output from the BayesBiNN

method. During testing, we input all the points in this region of space to yield the color map

we see in the background of fig. 4.5 (a). For the deterministic network, the softmax value of the

output is plotted in the color map, whereas in the Bayes BiNN, the mean of the outputs from

many sampled models is shown.

From fig. 4.5 (a), we observe the following features: both the deterministic and Bayesian

networks learn the decision boundary between the two classes perfectly. The first prominent

difference between the two is in terms of the abruptness of the decision boundary; the deter-

ministic output softmax values jump quite abruptly from 0 to 1 as we move across the bound-

ary. On the other hand, the boundary is wider and much spread out in the case of the Bayesian
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network, and the more gradual change from one class output to another is quite clearly visible.

If we follow the decision boundary further in the regions where there are little to no training

data points, we shall see the breadth of the boundary increase substantially. The mean softmax

value lies between 0.3 and 0.7 in this region, and it means where we have less training data, the

model is uncertain about the output. In contrast, the same region for the deterministic net-

work has the same sharp decision boundary, and significant parts of the region yield output

of 0 or 1. Also, in this area, the boundary appears linear, for which there is simply no infor-

mation from the training dataset. This ties in with the idea that non-probabilistic deep neural

networks are typically prone to overfitting, whereas their probabilistic counterparts handle this

more realistically by producing ambiguous outputs.

Figure 4.5: The two moons dataset. (a) The output of the deterministic and Bayes BiNN with
the same architecture is for the task of classifying two sets of points in a two-
dimensional plane. (b) Outputs corresponding to ten sampled Bayes BiNN models
from the learned distribution.

The Bayes BiNN output is the result of averaging over the outputs from several sampled

models, and this provides a distribution of the output probability. To understand the impact of

this on our Bayesian output, we check the outputs of each individual model. After training, we

have learned the Bernoulli distribution parameter probability p j for a synapse to be in the +1
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state. We use these probabilities to sample from the Bernoulli distribution and get C individual

deterministic models. For the simulation results, we take an average of C =500 samples, ten of

which are shown in fig. 4.5 (b). Firstly, if we just look at the decision boundary, it is very similar

to the deterministic network; the transition between the classes is abrupt. Secondly, let us focus

on two different locations in the ten plots: the top right corner, where there are no training data

points, and the central region, where the two moons interleave. For the central region, for most

of the plots, we can clearly identify the curved decision boundary. Still, the top right portion is

significantly different and appears random in most of the output instances. Since the output

values in this area are randomly varying, the average over many samples yields values close to

0.5 and smoothly changes to 0 or to 1 for the two classes.

4.5.2 Uncertainty quantification

Until now, we have qualitatively discussed how the Bayes BiNN model is good at expressing

uncertainty in our inference. Here, we implement the uncertainty quantification methodology

discussed in the previous section. We use equ. 4.12 and equ. 4.13 to calculate the predictive,

aleatoric, and epistemic uncertainties for all the test points in the region. The results are shown

in fig. 4.6, where now the color map represents the uncertainty value for the particular type of

uncertainty.

The predictive uncertainty in fig. 4.6 in the value range of 0.6-0.75 (shown in yellow) forms

a thick strip that spans along the diagonal of the region, curving between the two classes. The

total uncertainty decreases as we move away from this central region towards where there are

more data points. In the region above the red triangles and below the blue circles, the uncer-

tainty is essentially zero, as there is little doubt as to which class that region would belong to.

We further decompose the total predictive uncertainty into its epistemic and aleatoric com-

ponents to gain further insight. The epistemic uncertainty peaks in three regions; the bigger

two of them lie in the part where there are no data points and a small one exactly between the

two classes. The epistemic uncertainty quantifies the uncertainty in the data arising from the

lack of knowledge, or in this case, lack of data points in those regions. On the other hand, the

aleatoric uncertainty lights up in the parts where the edges of the two moons almost intersect.

This is consistent with the concept of aleatoric uncertainty, which is a measure of the ambi-

guity in the data. These intersecting sections have red and blue points in very close proximity,

and the model is uncertain between the two classes.

4.5.3 Impact of dataset size

We study this dataset under two circumstances that emulate the conditions of more realistic

bio-medical tasks. This type of dataset is typically smaller than other domains, and here, we

highlight how the Bayes BiNN outshines the deterministic network in a small data setting [226,

227].
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Figure 4.6: Uncertainty quantification in the two moons task. The color map shows the pre-
dictive, epistemic, and aleatoric uncertainties in the three plots, respectively. The
predictive uncertainty is decomposed into two components with different sources;
epistemic for regions with no training data points and aleatoric for ambiguous parts.

We perform the same two moons task but with less number of training points and observe

the resulting inference color maps. Fig. 4.7 shows the inference when the number of data points

used for training varied between 10 and 60. For the deterministic network, we note that the

decision boundary is either highly irregular (10, 20, 50) or there are unphysical strips or islands

of regions with a different class (10, 30, 60). This is again due to the propensity of deterministic

models to overfit data. In the inference with 30 data points, there is a single red point isolated

from the others, and that is enough to cause a strip of red to form inside the blue region. On the

other hand, although the Bayes BiNN does not give us perfect inference like in fig. 4.5 (which

had 200 data points), we do not see the artifacts that we see for the deterministic case. The

overall shape of the broad decision boundary is quite realistic, even for the number of data

points as small as 20. Another noteworthy feature of the Bayesian case is that the regions with

high outputs (greater than 0.9 or less than 0.1), i.e. the deep blue and red portions, cover a small

part of the whole area. This reflects that our model has less confidence in its prediction of the

output, which is a suitable conclusion given the lack of sufficient data.

Next, we wanted to evaluate the uncertainty in the inference under such small data condi-

tions. To do so, for each number of data points in the training set, we calculated the uncertain-

ties for the whole region during inference. In fig. 4.8, we plot the uncertainties averaged over

all points in this region as a function of the total number of training data points. As expected,

the predictive uncertainty, which captures the overall uncertainty, decreases as we have more

data points. The epistemic uncertainty also decreases, but the aleatoric component remains

almost constant. This again exemplifies that epistemic uncertainty is related to the availabil-

ity of information or knowledge about the total distribution. With more points, the training

dataset captures the original distribution in a much better way, thus reducing the epistemic

uncertainty. On the other hand, the aleatoric component is related to the ambiguity between

the two classes, which is unaffected by the availability of data in training.
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Figure 4.7: Inference color maps for the two moons task for a small number of training data
points in both deterministic and the Bayes BiNN models. The color map denotes
the output softmax value for the deterministic case, and the average of the output
softmax of models sampled from the trained Bayes BiNN.

4.5.4 Impact of label noise

The success of deep learning algorithms is attributed to a large extent to the quality of the large

quantity and highly processed data that is available today. However, if the data is not perfect,

the performance of conventional deep learning models decreases, especially for small-sized

datasets. Here, we specifically focus on the impact of mistakes in our two moons dataset to

emulate the occurrence of label noise in our training dataset [228, 229]. Label noise in machine

learning refers to the situation where the labels or target values assigned to the training data

points are incorrect. Label noise can arise due to errors in data collection, human annotation

errors, or data corruption during transmission or storage. These errors cause the model to learn
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Figure 4.8: Uncertainties for the two moons task as a function of the total number of training
data points. The black, green, and red lines show the predictive, epistemic, and
aleatoric uncertainties respectively. For a fixed number of data points, the uncer-
tainty plotted is the average uncertainty over the whole domain.

incorrect patterns, resulting in poor generalization and low accuracy when applied to new data.

This can have catastrophic consequences in the medical domain, where labeling of data can be

particularly difficult, and this necessitates the quantification of uncertainty, alongside having a

decent prediction accuracy.

For our experiment, we define the probability of mistakes, pmi st ake : the probability of a

training datapoint being mistakenly classified to the other class. For illustrative experiments,

we consider three scenarios in terms of the size of the training dataset: small (with 20 data

points), medium (100), and large (500). In fig. 4.9, we show the results and the training dataset

for pmi st ake values ranging from 0.05 to 0.3.

For the small data setting (the first column in fig. 4.9), we observe that until for all values of

pmi st ake shown here, the inference color maps show performance degradation. This is because

we have very few data points in the first place, and a few mistakes substantially impact the

training procedure, especially for high values of pmi st ake . However, the Bayes BiNN output is

more continuous and does not usually have the artifacts and irregular boundary shapes like

the deterministic output. Also, the regions of high certainty (more than 0.9 or less than 0.1)

are limited to small parts, whereas for the deterministic, almost the whole plane is panned by

them. Hence, although the Bayes BiNN does not clearly perform better for small data, it still

captures the uncertainty in the small dataset size.

In the third column of fig. 4.9, we observe the other extreme, where we have 500 data points

that define our training dataset distribution concretely. In this case, even for high values of

pmi st ake , the Bayes BiNN inference gives a reasonable output, albeit not perfectly. This is in

contrast to the deterministic case where for high pmi st ake values, the inference color map is

highly irregular but erroneously gives high confidence from the high output softmax values.

Even for a small pmi st ake value of 0.05, we observe unrealistic spikes in the color map, which
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worsens with higher mistake probabilities. The inference for the medium dataset size (middle

column) is somewhat in-between these two in that the irregular nature of the deterministic

inference is always more pronounced, and the Bayesian network, although not always showing

good results, is relatively uncertain.

Figure 4.9: Impact of label noise on the two moons task. The inference color maps for the de-
terministic and Bayes BiNN and the dataset with label mistakes are shown for three
train dataset sizes: 20, 100, and 500 data points. The probability of a single train data
being mistakenly labeled in the other classes, pmi st ake , is varied from 0.05 to 0.3 for
the different dataset sizes.

The inference color maps give us a qualitative picture of how the pmi st ake impacts our pre-

diction quality. Still, to understand the uncertainty, we need to quantify it. We perform the

same uncertainty calculations as done to produce fig. 4.8, except for this, we vary the pmi st ake

for the small, medium, and large number of data points. Fig. 4.10 shows the uncertainty evalu-

ation for the three different dataset sizes. In all three cases, the predictive uncertainty increases
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with pmi st ake ; the Bayes BiNN model can directly reflect the noise in the training data labels.

For a small dataset with 20 data points, the epistemic uncertainty dominates the aleatoric un-

certainty by almost a factor of two. This is expected since we are in a regime with fewer data or

knowledge about our true dataset. If we increase the dataset size to 100, we see that the pre-

dictive uncertainty values remain pretty similar to the 20 data points case, but the epistemic

uncertainty has reduced and is now almost comparable to the aleatoric uncertainty. We see

a reversal in the trend in the large dataset regime where we have 500 data points, where for

pmi st ake values higher than 0.05, the aleatoric uncertainty is higher than the epistemic uncer-

tainty, which has now reduced to be at a level that is less than 0.2, which used to be about 0.35

for pmi st ake =0.4. This trend reversal can be understood from the fact that with 500 data points,

the epistemic uncertainty is significantly reduced because we have more information about the

general dataset distribution. Under this scenario, the noise in the dataset from incorrect label-

ing becomes more prominent, and the aleatoric uncertainty becomes the major contributor to

the predictive uncertainty.

From the experiments shown in this section, it can be concluded that for the two moons

dataset, the Bayes BiNN model gives us more robust, realistic predictions than its determinis-

tic counterpart. Another significant advantage of Bayes BiNN is the ability to decompose the

uncertainty into two components that provide us with different information and can have a

significant impact under more realistic conditions where the dataset size is small, or the train

dataset labels are incorrect.
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Figure 4.10: Uncertainty estimation in the two moons dataset with label noise. The predictive
(black), aleatoric (red), and epistemic (green) uncertainties are evaluated for dif-
ferent values of pmi st ake and for 20, 100, and 500 training data points.

4.6 Medical task
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4.6.1 The dataset and methods

In the previous section, we elaborated on some scenarios where the Bayesian implementation

of neural networks is superior to its deterministic analog. However, we only considered an

illustrative toy task. To assess the scalability of this approach in more practical scenarios, we

conducted a study on a real-world medical dataset. Our focus was on the MIT-BIH Arrhythmia

database, where the aim was to classify heartbeat rhythms.

The MIT-BIH Arrhythmia Database is a collection of electrocardiogram (ECG) recordings

compiled by researchers at the Massachusetts Institute of Technology and Beth Israel Hospital

[230, 231]. It is one of the most widely used datasets for evaluating algorithms that detect and

classify cardiac arrhythmias [232]. The dataset contains 48 half-hour ECG recordings, each of

which includes two simultaneously recorded leads. These recordings were obtained from 47

patients, most of whom had a history of cardiac arrhythmias. The recordings were digitized at

a sampling rate of 360 Hz and annotated beat-by-beat by human experts, who identified the

type of beat (e.g., normal sinus rhythm, premature ventricular contraction, etc).

For our simulations, we perform the following preprocessing on the data. First, we do a

Fourier transform of the ECG sequence for a single heartbeat and then select 32 features using

the scikit-learn package SelectKBest. This is then fed to a fully connected feedforward neural

network with two hidden layers, each with 1,024 neurons. In the whole dataset, twenty different

types of annotations correspond to the heartbeats representing different classes of arrhythmia,

which are different ways the heart can beat. Out of them, we consider five categories that ap-

pear quite frequently, including the regular beats.

• N (Normal beat): This class corresponds to normal sinus rhythm, which is the regular

beating of the heart.

• L (Left bundle branch block beat): Heartbeat characterized by a delay in the activation of

the heart’s left ventricle.

• R (Right bundle branch block beat): Heartbeat that is characterized by a delay in the

activation of the right ventricle of the heart.

• A (Atrial premature beat): Heartbeat that originates in the atrium of the heart rather than

the sinoatrial node (the natural pacemaker of the heart).

• V (Premature ventricular contraction): Heartbeat that originates in the ventricles of the

heart rather than the sinoatrial node.

4.6.2 Impact of dataset size

Similar to the two moons task, we investigate the impact of training dataset size on classifica-

tion accuracy in the small dataset regime. Datasets in the medical domain are typically smaller
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than other domains like computer vision or language processing, and the datasets are exceed-

ingly scarce for rare diseases. We emulate this in the MIT-BIH dataset by considering only a

part of the dataset to train our networks. Usually, in medical datasets, the "normal" class or the

data corresponding to no disease is the most abundant, whereas the rare conditions are less

represented. We balance all the classes in our dataset to prevent this from biasing our results.

We keep the testing dataset size to 1,600 and vary our training dataset size from 50 to 3,300.

The resulting train and test accuracies for the deterministic and Bayesian networks are shown

in fig. 4.11.

Firstly, the training dataset accuracy reaches almost 100% for both networks, so there is

no indication of underfitting. Secondly, we observe that even for a small dataset size of 50 in

which each class is represented only ten times, the Bayesian network reaches an accuracy of

over 99%, and the corresponding accuracy for the deterministic network is less than 91%. It

only approaches the Bayes BiNN accuracy for larger dataset sizes. This is, again, due to the

susceptibility of deterministic networks to overfit to data which is evident from the difference

in train and test accuracies, especially when the dataset is small. A measly dataset size of 50 ex-

poses the network to a tiny part of the training distribution, and it cannot learn the distribution

very well using only point estimates. On the other hand, when we shift the problem to learning

the distribution, it captures the total distribution more naturally. This is the essence of proba-

bilistic learning; the idea of a probability distribution replacing the point estimates allows for

more flexibility, reducing overfitting.

Figure 4.11: Train (dotted line) and test (solid line) accuracies of both deterministic network
(brown) and Bayes BiNN (blue) as the training dataset size is varied from 50 to
3,300. The points represent the average accuracy, and the shaded region around it
denotes one standard deviation.
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4.6.3 Uncertainty under realistic scenarios

The Bayes BiNN architecture prevents overfitting, and the intrinsic probabilistic nature allows

uncertainty quantification. This can be leveraged in many real scenarios to infer about the

predictions or even about the datasets themselves. We explore one such situation where the

test examples have a class not present in the training data. Biological diseases can mutate

relatively fast and take a completely different form in their expression in the human body. This

presents a challenge to the neural network that is trained on previously available data, which

does not contain this newer mutated variant. Conventional neural networks, typically under

such cases, would give wrong answers with high confidence. The ability to decompose the

uncertainties for Bayesian neural networks provides a natural way to solve this.

To replicate such a scenario, we artificially remove the L class from the training dataset,

keeping the test dataset the same. In particular, the reason for choosing this class can be un-

derstood if we look at fig. 4.12, where we plotted the two-dimensional t-SNE representation for

our preprocessed input data for the test dataset, color-coded by the different classes. The green

class L is isolated from the other clusters, with no outlier points closer to the other classes. This

implies that the class in question exhibits distinct characteristics compared to the other classes,

making it an ideal candidate for simulating an unseen class to test our neural network.

We train both our networks with the training dataset without this class, and for both, we get

a test accuracy of about 78%. The other plots in fig. 4.12 show the same t-SNE but with the color

coding representing the uncertainties. For the deterministic case, we compute the ’predictive

uncertainty’ by supposing that we have taken only one sample (C =1) and by using equ. 4.12. If

we focus on the green cluster that represents class L, the epistemic and aleatoric uncertainties

have higher values for most of the points in this cluster. In contrast, the highest uncertainty val-

ues for the deterministic case are more spread out between the L, A, and V classes. We plot the

histogram of these values in fig. 4.13 (a) to look at the class-wise distribution of the calculated

uncertainties. The deterministic network has high uncertainty for all three classes: L, A, and V,

but for the Bayesian uncertainties, the green L class stands out with high values of uncertain-

ties, especially for the epistemic uncertainty. For all other classes, the epistemic uncertainty is

close to zero. As discussed before, epistemic uncertainty captures the uncertainty in the data

about the already learned distribution. Unsurprisingly, this type of uncertainty is significantly

higher for a class that the model has not seen during training.

Another way to investigate the uncertainties is to study the relationship between the cor-

rectness of a prediction and the corresponding uncertainty. This is shown for the deterministic

and Bayesian networks in fig. 4.13 (b), where the green, red, and blue histograms show the

correct, incorrect predictions, along with the unseen class, respectively. In the case of the de-

terministic network, the high values of the predictive uncertainty correspond to both correct

and incorrect predictions and the unseen class. So, simply by looking at the uncertainty value,

it is difficult to infer the confidence of the prediction. On the other hand, the epistemic uncer-

tainty is quite clearly higher for the unseen class and is generally higher for incorrect prediction
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Figure 4.12: The two-dimensional t-distributed stochastic neighbor embedding (t-SNE) plots
for the MIT-BIH test dataset. The color coding in the top left plot represents the
different classes: N, L, R, A, and V. The color coding in the other plots shows the
uncertainty in prediction for the deterministic ’predictive uncertainty’ (top right),
Bayesian epistemic (bottom left), and Bayesian aleatoric (bottom right) for the
same t-SNE plots.

predictions. In the case of aleatoric, the correct predictions have a lower uncertainty than the

unseen and incorrect predictions.

To summarize, uncertainty quantification gives us a handle on the confidence of our pre-

diction in the following way. While testing, if both the aleatoric and epistemic uncertainties are

low, it is very likely that the prediction is correct. On the other hand, if the epistemic uncer-

tainty is low and the aleatoric uncertainty is higher, it signifies that probably the test example is

not the unseen class, but it is an ambiguous example (might be class A or V). Finally, if both the

epistemic and aleatoric uncertainty is high- we can infer that this is an example from a class

not included in the training dataset.

In these simulations, we observed two aspects that differed from the two moons dataset in

the previous section, which needs to be discussed here. Firstly, the epistemic uncertainty we

get for the MIT-BIH arrhythmia classification task is about one order of magnitude less than the

aleatoric uncertainty; in the two moons task, the range of values for the two kinds of uncertain-

ties was similar. Secondly, in the two moons task, the regions of high aleatoric and epistemic
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Figure 4.13: Distribution of uncertainties by class and correctness. (a) Histogram of the differ-
ent uncertainties for both deterministic and Bayes BiNN for the five classes present
in our dataset. (b) Histograms of the same uncertainty values but according to the
correctness in prediction (red for incorrect and green for correct). The unseen class
L predictions are almost always incorrect; hence, they are shown separately (blue).

uncertainties were quite different- the epistemic was higher in the area with no training data

points, and the aleatoric was higher where the two moons overlapped. In the medical task, we

observe that for the unseen data, both the epistemic and aleatoric uncertainties are pretty high.

The possible explanation lies in the datasets’ fundamentally different nature or our train-

ing algorithm. As for the datasets, the two moons task is a simple, almost caricaturish task,
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whereas the MIT-BIH is a traditional benchmark task for neural networks in medical applica-

tions. When we calculated the Bayesian uncertainties for the two moons task, we calculated it

for the whole region. We take x and y points across the entire domain and compute the pre-

diction and uncertainty. On the other hand, we cannot choose the test samples over which we

evaluate our network. Since all the data comes from ECG recordings, any two examples are not

too different. Hence, learning the distribution for the other classes might not be very different

from the particular class it has not seen during training, and this can explain the generally low

value of epistemic uncertainty. Also, this can account for the simultaneous high values of both

aleatoric and epistemic uncertainties; the distinction between ambiguity and lack of knowl-

edge is unclear when all the examples look similar. The other possible explanation pertains to

the algorithm we use for training; the training algorithm has hyperparameters that can signifi-

cantly impact the training, such as the temperature parameter (explained in Appendix. 4.8) or

how we initialize the Bernoulli parameters of the Bayes BiNN. There may be a regime of values

for these hyperparameters wherein the epistemic uncertainty is more pronounced. However,

more simulations must be performed on multiple datasets to assert either of the two hypothe-

ses discussed here.



134
CHAPTER 4: BAYESIAN BINARY NEURAL NETWORKS FOR UNCERTAINTY

QUANTIFICATION IN MEDICAL TASKS

4.7 Spintronics-based implementation

So far in this chapter, we have discussed the probabilistic paradigm of machine learning, fo-

cussing on the Bayesian binary neural networks, which outperform the conventional deter-

ministic network in small datasets and in terms of quantifying uncertainty in a prediction. This

section discusses how this particular kind of neural network aligns well with a specific class of

physical materials, namely Spintronic devices.

Spintronics is the spin-based analog of electronics, where instead of only the charge of elec-

trons, the spin degree of freedom is studied in solid state devices [233, 234]. The spin can be

used for both memory and processing, allowing for a versatile, low-power alternative to the typ-

ical electronic devices [235–237]. For this thesis, we only consider using such devices as mem-

ory. MRAMs are based on magnetic tunnel junctions (MTJs) in which a thin insulating layer is

sandwiched between two ferromagnetic layers. The relative orientation of the spins encodes

the resistance state of the device via the tunneling magnetoresistance effect. If the magneti-

zation states are parallel, the device is more conducting compared to when they are aligned in

the opposite direction. The retention time of a programmed memory device is related to the

stability of the state. Regarding the energy landscape, the parallel and antiparallel states are

the two local minima with a barrier in between. For standard MRAMs, the height of this bar-

rier, EB , is typically much larger than the thermal energy kB T at room temperature (T ), and the

retention time is of the order of 10 years [113]. The height of this barrier is directly related to the

physical dimensions of the MTJ, and if we make them small enough, we can make EB ª kB T .

At this point, the thermal noise drives a rapid and stochastic magnetization switching between

the two states; such systems are also referred to as superparamagnetic tunnel junctions [238].

Thus, nanomagnetic devices can be natural candidates for the weights of the Bayesian Bi-

nary neural network owing to their stochastic nature and the binary nature of the states. Now

we elaborate on the device-related requirements for implementing such networks in hardware

and then discuss some possible candidates for their realization.

4.7.1 Candidate systems

From an algorithmic point of view, a device representing a weight can be derived from any

physical system having the following three features.

• The quantity representing the weight has to have two clearly defined, stable states.

• It has to be stochastic, and the fluctuation rate needs to be higher than the sampling rate.

• It is crucial that the probability can be programmed to any value between 0 and 1. We

investigate later the impact of not fulfilling this criterion completely.

These attributes are represented in fig. 4.14 (a) and (f), wherein a physical system has two

states, "-1" and "+1," energetically separated by a barrier of the order of thermal energy. Fig. 4.14
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Figure 4.14: Device implementation of Bayes BiNN. (a) Energy landscape of a stochastic ele-
ment where the two states, represented by -1 and +1, are local minima and the bar-
rier between them EB ª kB T . (b) A p-bit device with three terminals for the input
Ii and output mi . (c) The output of the p-bit as the input is ramped from -4 to 4. (d)
The proposed DW hopping system in a CoFeB magnetic strip where the DW (red)
is nucleated between two regions (blue) of reduced magnetic anisotropy. (e) The
variation of the programmed probability in terms of the reduction in anisotropy of
the left blue region. (f) The energy landscape for different values of the probability.
(g) and (h) Evolution of the output magnetization with time for the p-bit and DW
hopping systems, respectively, for different biasing conditions [239].
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(f) shows that if we can tune the double-well energy landscape, we can produce different prob-

abilities for the resultant physical variable, which would now follow a Bernoulli distribution

with a certain probability. Here, we discuss two systems that can potentially serve the purpose.

4.7.1.1 p-bits

A probabilistic bit, or p-bit, is a special kind of memory bit that encodes the probability of

being in a state. It is different from the classical bit, which always has a unique value of 0 or 1,

and also from a qubit in a quantum mechanically superposed state of 0 and 1 [239, 240]. An

MTJ can realize this p-bit in either a 1T1R configuration using a SOT-MRAM or as a 3-terminal

device in the STT-MRAM, where the biasing from the input current or the transistor gate voltage

respectively changes the probability value. As shown in the middle panel of fig. 4.14 (g), under

no input to the MTJ, the resistance state of the device fluctuates uniformly between the LRS

and HRS. This corresponds to the 0.5 probability state, which can be changed by the biasing

voltage or current to favor one of the two states, effectively tuning the probability. This is shown

in fig. 4.14 (c), where the output of a p-bit is plotted as the input is ramped from -4 to 4. A

high negative or positive input biases the device quite strongly to one of the states, and on the

other hand, for no input, the two states are equally likely. A p-bit is a three-terminal device, as

depicted in fig. 4.14, where the inputs Ii are used to write the probability state, and the other

two terminals are used to read the output mi .

A major challenge with such memories is that the biasing conditions need to be applied as

long as the p-bit is being used as a weight, which is unsuitable for the power-conscious appli-

cations we are trying to achieve. It will be ideal if there is a way to passively tune the energy

landscape that does not require the continuous application of voltage or current. Another sig-

nificant issue stems from programming the extreme probability values of 0 or 1. The average

output is related to the input as hmi i = tanh(Ii ) and the probability to be in the 1 state, pi ,

is linked to the output as pi = hmi i+1
2 , resulting in the input depending on the probability as

Ii = arctanh(2pi °1). So, to program a state of pi = 1 or pi = 0, we need a positive or negative

infinitely large input, which is practically impossible. In real systems, we are limited by a power

budget that limits the input to Imax , and that subsequently limits how close to the value of 0 or

1 we can program to, which being tanh(Imax )+1
2 or tanh(°Imax )+1

2 .

4.7.1.2 Magnetic domain walls with VCMA

Another more unconventional approach is to utilize magnetic domain walls in a nanomagnetic

strip. Magnetic domains are regions within a material where the atomic magnetic moments

align in a particular direction. In a ferromagnetic material, for example, the magnetic moments

of the atoms are aligned in the same direction, giving rise to a net magnetic moment. However,

the magnetization of a material can be complex and have regions where the magnetization

direction changes. These regions, where the magnetic moments point in different directions,

are called magnetic domain walls (DWs) [241]. These DWs can be stable and be moved by low
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currents, and they can be used as a special class of memory called racetrack memory [242].

Here, we propose a different usage for the DWs: as stochastic elements for encoding the Bayes

BiNN weights.

DWs are pretty sensitive to variations in the local magnetic properties, which can be promi-

nent in nanoscopic systems where the width of a magnetic wire is less than 100 nm. In this

regime, the DW can get easily pinned to a location depending on the local value of the mag-

netic anisotropy or the presence of defects [243]. Also, in such small dimensions, the thermal

energy-driven fluctuations in the position of the DW are quite significant [244, 245]. The idea

here is to utilize such properties of DWs to create a stochastic unit where the stochasticity can

be controlled. This idea was discussed and developed by Pr. Luis López Díaz from the Univer-

sity of Salamanca, who also performed the micromagnetic simulation results shown here. As

shown in fig. 4.14 (d), a DW can be nucleated in a CoFeB magnetic wire of width 64 nm. Then,

two regions of reduced magnetic anisotropy are created beside the DW, which are only 32 nm

apart. These two areas serve as pinning sites for our DW and owing to the small dimensions,

the DW hops between the two pinning sites. Micromagnetic simulations were performed with

such a configuration under room temperature conditions, and the magnetization (mZ )at the

center of the wire was monitored over time, as illustrated in fig. 4.14 (h). Suppose the two re-

gions experience the same reduction in uniaxial magnetic anisotropy (8%). In that case, their

pinning strength is equivalent, and the probability of the domain wall being pinned at either

site is equal. We see this in the central panel of fig. 4.14 (h), where the probability of being in

one of the states is 0.5. Now, if the reduction of anisotropy in the right region is kept the same

and only for the left region is varied from 6% to 10%, we can get a range of probability values;

two of such magnetization evolutions are shown in the left and right panels of fig. 4.14 (h). The

correspondence between the reduction in anisotropy is shown in fig. 4.14 (e), wherein by vary-

ing the reduction of the magnetic anisotropy in the left site, the programmed probability can

be changed from about 0.1 to about 0.9.

Unlike the p-bit-based system, the method to change the magnetic anisotropy can be non-

volatile. This change could be employed by the voltage-controlled magnetic anisotropy effect

in which a gate applies an electric voltage to change the magnetic anisotropy of the material

[246–248]. The non-volatility of this system allows us to program the device only once, and it

would preserve that state with no additional energy cost. However, DWs suffer from other is-

sues related to inhomogeneities in the medium, such as grain distributions or edge roughness,

which are pretty pronounced under such nanoscopic dimensions. More investigations need to

be done to verify the suitability of such devices for usage as stochastic synapses.

4.7.2 Device-based inference simulations

We have discussed the essential features a device must possess to use as a memory device for

our synapses effectively. Any physical system containing such properties can be potentially

used as the synapse in our Bayes BiNN. However, any real system would have non-ideal behav-
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iors, as discussed earlier, and we need to verify the robustness of our implementation to such

imperfections. To do so, we consider a very simple model for programming our devices and

look at the impact of different non-ideal behaviors.

In practice, when performing inference with such novel memory devices, we first train the

network in computers and get the set of optimum values for all the probabilities, ptr s. Then, the

goal is to program these values to the devices exactly. Since we are dealing with a real physical

system, we need to apply some bias to it to write that particular probability state ppr . This bias

can be voltage, current, or magnetic field, depending on the application, and here, we denote

it by B . And once we convert the ptr to B, this biasing quantity is applied to the devices, and

a probability ppr is programmed. In an ideal scenario, we would have ppr = ptr , but it would

not be the case due to the physical constraints. The effect of the bias B on the programmed

probability ppr would depend on the details of the physical system being used. We show this

process schematically in fig. 4.15 (a).

Here, the assumption about B is that it is only possible to generate values between -1

and 1. Hence, we use a simple affine transform of B = 2ptr ° 1, and then we use the ppr =
devi ce(B , par ams) to represent the conversion from the biasing quantity to the programmed

probability where the par ams represents the parameters of the model that are related to the

specific physics of the material. For demonstration, we have chosen a linear model as the

devi ce function between the bias and the probability ppr with an additional noise term as

ppr = 0.5(1+ÆB)+¥N (0,1). (4.14)

In this model, the slope is controlled by the parameter Æ and the noise by ¥, which is the

standard deviation of a Gaussian distribution with zero mean (N (0,¥). The model is shown in

fig. 4.15 (b). The two parameters of this simple model represent two different aspects poten-

tially present in a real system. The parameter Æ denotes how strongly the biasing variable B

changes ppr where a low value means that the probability can be only programmed to a small

range of values around 0.5. As shown in the figure, the green plot for Æ = 0.5 attains neither 0

nor 1 probability value, whereas if Æ∏ 1, then the full range of values is programmable. Hence,

this parameter Æ signifies the range of values of ppr to which this particular system can be

programmed. On the other hand, the parameter ¥, which is the spread of the Gaussian noise,

denotes the accuracy in programming. The probability intended to be programmed ptr is a

real number between 0 and 1, but the bias B is a physical quantity that we apply with a finite

resolution. Consequently, the probability we can program with this is also restricted and will

have a value close to what is intended owing to this granularity. Also, the programming process

can be noisy for other reasons, and both phenomena are captured by the noise parameter ¥.

To study the impact of this realistic device model, we look back at our two moons task.

In fig. 4.15 (c), we present the inference color maps where the probabilities have been pro-

grammed according to the method mentioned earlier. We increase the noise parameter ¥ hor-

izontally rightwards and the slope parameter Æ vertically downwards. These simulations are
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Figure 4.15: Device-based inference. (a) We use the schematic to convert the intended proba-
bilities we get after training ptr to the programmed probability ppr via the gener-
alized biasing variable B . (b) The linear model for an arbitrary device that maps
the bias B to the programmed probability ppr . (c) The inference color maps for
the two moons task using the linear model with different slope parameter values Æ
and the noise parameter ¥. The output shown is the average over 20 MC samples
(nsamples). (d) The same plot as (c) but with nsamples = 200 .

done taking 20 Monte Carlo samples (nsamples), and we observe that the inference is very poor

for Æ = 0.5. It progressively improves with the increase of slope, and for Æ = 2, even with the

highest magnitude of noise ¥ = 0.5, the decision boundary in the inference somewhat resem-

bles the ideal case. However, an increase in the value of Æ signifies that the programmed prob-

ability sharply transitions from 0 to 1, representing a system that has reduced stochasticity.

Under such circumstances, the resolution to which we can tune the bias B would play an im-

portant role as that would dictate how precisely we can program the intermediate probability

values.

If we focus on the row with Æ= 1, we can conclude that the Bayes BiNN system is robust to

the noise and up to a certain level. From this analysis, we can conclude that there is a region
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in the Æ°¥ space where the Bayes BiNN inference is considerably resilient to device imper-

fections. Suppose we increase the number of MC samples over which we average the softmax

outputs to 200. In that case, we see that now for lower values of Æ like 0.75, the inference color

map looks more reasonable, although the probabilities we get are never less than 0.1 or more

than 0.9. Thus, taking more samples can be another way to improve the inference quality when

dealing with such imperfect devices.

4.8 Conclusion

This chapter highlights a new paradigm of performing deep learning with probabilities in the

framework of Bayesian computing. We started the chapter by reviewing Bayesian probabil-

ity and the different deep-learning algorithms with probabilistic flavors. Next, we discussed a

couple of examples where memristive devices are used for computing with probabilities show-

casing the suitability of such materials for probabilistic applications. After that, we introduced

the Bayesian Binary Neural Networks and the quantification of uncertainties in Bayesian neu-

ral networks. Then we applied this to a toy example called the two moons dataset to illustrate

some of its advantages. Then, we explore this algorithm in a more scaled-up version for a more

realistic medical task, the MIT-BIH arrhythmia classification dataset. In the last part of this

chapter, we discussed some potential Spintronics-based physical systems that have the poten-

tial to implement the Bayes BiNNs. We conclude this chapter by exploring a simple device

model with imperfections used to perform inference in the two moons dataset.

The potential of Bayesian neural networks is quite evident from our results, especially in

regimes of small data; the Bayes BiNN outperforms its deterministic analog. The affinity of such

conventional neural networks to overfitting is mitigated naturally when we use probabilities

instead of a fixed weight. This is highly beneficial in situations where the data is scarce, for

example, in medical datasets for extremely rare diseases.

Another important domain in which our network surpasses the deterministic network is

quantifying uncertainty in the prediction. In safety-critical applications, uncertainty evalua-

tion can be as crucial as prediction. The probabilistic nature of Bayes BiNN and other Bayesian

neural nets allows the quantification of the uncertainty in an organic manner. Especially the

decomposition of the aleatoric and epistemic uncertainties can give us insight even into the

source of uncertainty, which can be invaluable in such applications.

To conclude, in this chapter, we have explored the potential of Bayesian Binary Neural Net-

works for the quantification of uncertainty and proposed some real physical systems that can

potentially implement such networks.



Conclusions and future work

“Exploration is in our nature. We began as

wanderers, and we are wanderers still.”

Carl SAGAN
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Summary

As mentioned at the outset of this thesis, our civilization finds itself at a pivotal moment: the

long-awaited promises of artificial intelligence are being rapidly realized, with new develop-

ments emerging almost monthly. However, we are also entering an era in which the impact

of climate change is increasingly evident in our daily lives, and the ever-increasing need for

computational power for deep learning-based applications is worsening the situation. Neuro-

morphic computing offers a power-efficient solution to this by changing the paradigm of com-

putation at an architectural level to mimic the human brain [82]. Utilizing emerging memory

technologies for in or near-memory computing seems to be a promising lead. This novel class

of memory possesses features like power efficiency, non-volatility, and speed that are attractive

for the hardware realization of deep learning algorithms [90].

However, as discussed in chapter 1, the requirements for implementing neural networks in

hardware do not always align with emerging memory technologies’ characteristics. Specifically,

the imperfections, constraints derived from circuits, and dependence on stable power supply

make them unsuitable for edge applications where the low-power, low-latency aspects could

genuinely shine. In this thesis, we concretely investigated the interplay between imperfections

and the performance of neural networks from three different perspectives.

• Learning with imperfect memory. The physics of resistance-based novel memory is

based on the atomic-level phenomenon and is consequently prone to different types of

noises and non-idealities. On the contrary, the training in conventional neural networks

is based on precise values that need to be changed accurately. In chapter 2, we explored

a quantized form of the neural network, the binarized neural network, and studied its

robustness to imperfection.

• Inference with circuit-based constraints. Different limitations crop up in an integrated

circuit where these resistive memories are integrated with other electronic circuits to per-

form the computations necessary for inference. In chapter 3, such limitations and their

impact on neural network performance were investigated.

• Probabilistic neural networks with stochasticity of novel memory. The stochastic na-

ture of spintronics devices at the nanoscale is usually a nuisance for conventional ap-

plications. In chapter 4, we propose ideas to harness this stochastic behavior for prob-

abilistic computation using a specialized algorithm called the Bayesian Binary Neural

Networks.

In chapter 2, we focussed on implementing learning using binarized neural networks in

the weak RESET regime of HfOx-based filamentary resistive RAM. A physics-based model for

resistance variation is developed for this material in the weak RESET regime, which includes

different types of variabilities. The model is fitted to and compared against experimental char-

acterizations. This model is then incorporated within the PyTorch deep learning framework,
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and training of binarized neural network is simulated for the MNIST handwritten digit recog-

nition and CIFAR-10 object detection tasks. The main conclusion of this chapter is that learning

is indeed possible in this regime using binarized neural networks where the quantization pro-

vides robustness to the different variabilities present in filamentary ReRAMs. For this work,

a methodology is also developed to test the contribution of various imperfections to perfor-

mance degradation in neural networks. This methodology can shed light on the specific im-

perfection that affects learning the most. The devices could be optimized for that imperfection

at the fabrication level [4].

This chapter focussed solely on the variabilities of the memory devices, assuming all other

computations are performed perfectly. However, that is not the case: the memory devices

are co-located within integrated circuits. These other electronic circuits are used to read the

weights, compute the MAC and perform the thresholding operation for only the inference pro-

cess. During inference, it is required to program the binarized weights, which are learned from

the training (done separately on software). But due to the variability present in the ReRAMs,

this does not occur ideally. This, along with circuit-related reasons, introduce errors in the

computations of our neural network. The impact of such errors on the inference performance

of neural networks is presented in chapter 3. By inference simulations on the MNIST and

CIFAR-10 tasks, we show that binarized neural networks are robust to such errors in realistic

programming conditions. Further, we looked at array-size-related limitations in the realization

of neural networks and proposed a strategy that can circumvent this with a slight degradation

in performance. In the context of edge applications, we investigated the impact of errors in-

troduced by a non-optimal power supply derived from a solar cell. We showed the resilience

of our network to these errors. This work highlights that even under low power, correspond-

ing to low illumination, the circuit can deliver approximately correct computations that do not

significantly diminish performance.

Finally, in chapter 4, we focus on harnessing an aspect of imperfections, the intrinsic stochas-

ticity for a particular type of computation; the Bayesian Neural Network. We propose the im-

plementation of Bayesian binary neural networks using nanometric stochastic spintronics de-

vices. This class of algorithm is based on the idea of learning probability distributions instead

of point estimates learned in conventional deterministic networks. The main advantage of

Bayesian neural networks is their innate ability to prevent overfitting data, a common prob-

lem for deterministic networks. This issue is aggravated for small datasets, and the impact

can be detrimental with mistakes in data labeling. Another remarkable feature of such neural

networks is the ability to quantify uncertainty in the prediction, which is essential for safety-

critical applications where the prediction uncertainties are as significant as the predictions.

We explored both aspects in this chapter using a toy dataset called the two moons dataset and

a medical task, the MIT-BIH dataset, for arrhythmia classification.

To conclude, the overarching theme of this thesis is to utilize the best of both worlds: com-

bining the energy-efficient, bio-inspired emerging memories with powerful deep learning algo-
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rithms to achieve efficient, environmentally friendly computation adept at pattern recognition.

Perspectives

The three projects presented here revolve around the concept of quantized neural networks

and their realization using imperfect memory devices. In the second chapter, we investigated

learning, where we simulated the device resistance evolution and its impact on the neural net-

work performance. This presents progress toward implementing on-chip learning; however,

other issues exist. If we revisit the learning process in a neural network, the input is fed forward

through the network to produce an output that is then compared to the expected target output.

The loss function measures the ’distance’ between the prediction and expected output. To cal-

culate the update of the model weights, the derivative of the loss function with respect to the

weights needs to be calculated. Implementing all of this computation on-chip is challenging,

mainly because vanilla backpropagation requires the gradients in earlier layers to depend on

the gradients and weights of later layers.

This makes the circuit-based realization difficult since all the values must be stored. There

are two possible directions for solving this issue: one is to design efficient circuits that can

perform backpropagation without significant memory overhead. However, there is another

more bio-realistic alternative: the equilibrium propagation algorithm. Unlike backpropaga-

tion, here, the update rule is local; the weight change depends only on the activation of its

connecting neurons. The device model can be used for simulating equilibrium propagation

similarly to the backpropagation algorithm [72, 249]. Also, the more recently proposed forward-

forward algorithm holds promise in this regard [74]. The Forward-Forward algorithm is another

alternative to backpropagation, where instead of using forward and backward passes, it utilizes

two forward passes. One forward pass involves real or positive data, while the other involves

negative data that does not look like real data. There is an objective function for each layer,

which is supposed to have a high value for the positive data and a low value for the negative

data. In this case, too, the learning could be simulated with the device model proposed in the

chapter in the same manner. The methodology presented in this chapter could be used to sim-

ulate different learning algorithms, which would take us one step closer to on-chip learning.

The two studies presented in chapter 3 established that the inference on the binarized neu-

ral networks could be accomplished on-chip. A natural extension of this would be to imple-

ment the same for ternarized neural networks [250]. The potential for implementing such net-

works with ReRAM has already been demonstrated, and just due to the less quantization, it is

more powerful than its binarized counterpart [251]. However, the impact of errors on inference

accuracy needs to be explored in more detail following the same methodology adopted in this

thesis. Another aspect that needs to be mentioned at this point is related to the architecture of

neural networks. The design of the arrays is done in a manner that makes implementing fully

connected networks natural. For the simulation of convolutional neural networks, we have
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assumed that the same circuits are used, and as a result, we have used the same errors. But,

in reality, the convolution operation and max pooling are practically different from the simple

MAC operations in fully connected networks and require dedicated circuitry. This should be

explored in more detail, and the associated errors should be considered.

For the Bayesian project, the development is still mainly at the algorithmic level. We ex-

plored some scenarios where quantifying the uncertainty and its decomposition to the aleatoric

and epistemic components gives us more insight into the data. The device-based, and then in

the long term, the circuit-based implementation and its related issues need to be addressed. To

successfully implement probabilistic computing, it is crucial to take Monte Carlo samples from

the model distribution and compute their average. This has to be accomplished by circuits in

a manner that is energy efficient and fast to impact applications significantly.

Chapter 1 has highlighted that technological advancement does not occur in a vacuum, es-

pecially in a multidisciplinary field like neuromorphic computing. Progress should be made

simultaneously in terms of physical devices, deep learning algorithms, and our understand-

ing of the neuroscience of the human brain to achieve significant breakthroughs. The exist-

ing device technologies should be optimized to be more compatible with the requirements of

neural networks. Specifically, the variabilities, asymmetry, and nonlinearity aspects should be

reduced as much as possible. At the same time, new types of physics of materials need to be ex-

plored for computation. The reservoir computing algorithm is a promising lead in this regard,

where the physical dynamics of complex systems are utilized for pattern recognition [252, 253].

Photonics-based neuromorphic computing is another different paradigm where instead of cur-

rent, light is used to propagate information and perform computation, and optical RAMs are

used as memory [254, 255]. In the future, circuits integrating both electronic and photonic

elements could potentially be researched, allowing more flexibility in performance.

On the algorithmic front as well the direction of research should not be restricted to pro-

ducing higher performance, and equal emphasis should be given to algorithms that are bio-

realistic, hardware-friendly, and thus energy efficient. Algorithms like equilibrium propaga-

tion, forward-forward, and direct feedback alignment hold high potential in this regard [73].

Currently, extensive research is being conducted on self-supervised computing, and the hard-

ware implementation of this type of learning must be realized soon [62]. Transformers, the

backbone of most large language models today, rely on the attention mechanism, for which the

memory complexity depends quadratically on the maximum input sequence length [51, 256].

This makes it highly memory-hungry, and algorithmic solutions are being researched to solve

this.

In the more biological domain of neuromorphic computing, there has been substantial

progress in implementing spiking neural networks, where the sparsity of representation nat-

urally leads to energy efficiency. However, such algorithms are notoriously hard to train, and

the performance is usually not at par with the backpropagation-based conventional neural net-

works [87, 257]. The development of such algorithms will be crucial in the future, especially as
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we learn more about the biology of the brain.

The human brain originally inspired deep learning, and recent technological developments

have allowed for large-scale computations, enabling deep learning to reach its full potential. It

will not be surprising that progress in all three domains - deep learning, memory technology,

and neuroscience would pave the way for the realization of energy-efficient, neuromorphic

computers, which would play a significant role in improving our lives in the future.
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Introduction et contexte

Actuellement nous nous trouvons à une transition critique où nous subissons les conséquences

du changement climatique, dont l’une des causes principales est les émissions causées lors de

la génération d’électricité à partir de combustibles fossiles [1]. Par ailleurs, nous progressons

rapidement dans le domaine de l’intelligence artificielle (IA), avec de grands modèles de lan-

gage montrant dès à présent des ressemblances avec une intelligence artificielle générale [2].

Les progrès récents sont un pas de plus vers ce que promet l’IA, comme par exemple la dé-

couverte de médicaments pour des maladies graves, la conception des voitures autonomes ou

d’autres innovations révolutionnaires.

Cependant, cela a un coût : pour développer, entraîner et utiliser les modèles d’apprentissage

profond de pointe, les ordinateurs existants consomment beaucoup d’énergie. Ce type de cal-

cul, généralement réalisé dans des centres de données avec de nombreuses unités de traite-

ment graphique et autres accélérateurs dédiés, n’est généralement pas optimisé en termes

de consommation d’énergie. L’entraînement d’un seul modèle consomme plus d’énergie que

celle consommée par 100 foyers aux États-Unis en un an [3]. Ce nombre ne ferait qu’augmenter

continuellement avec la taille des modèles et la complexité des calculs. L’empreinte carbone ré-

sultante serait énorme, et ce développement n’est pas viable d’un point de vue environnemen-

tal.

Si l’on considère le processus de calcul au niveau architectural, le goulot d’étranglement

en termes de consommation d’énergie est lié à la transmission des données entre la mémoire

et les unités logiques. Pendant le processus d’entraînement d’un réseau de neurones, trois

opérations principales sont effectuées : la transmission des données vers et depuis la mémoire,

ainsi que l’exécution des opérations de multiplication et d’addition dans l’unité de traitement.

Parmi ces opérations, la transmission d’information est la plus coûteuse en termes d’énergie.

Cette architecture informatique, appelée architecture de von Neumann, diffère fondamentale-

ment d’un autre système capable de reconnaître des motifs : le cerveau humain. Il peut ef-

fectuer des tâches de vision, de traitement du langage naturel, de déduction logique et de

planification avec une consommation énergétique des ordres de grandeur inférieurs à ce qui

est généralement consommé par un modèle d’apprentissage profond moderne. Le cerveau
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calcule différemment : la connectivité est massive avec une redondance importante, les règles

d’apprentissage sont locales, l’information est propagée par des décharges électrochimiques

induites par des variations de tension, et les éléments logiques et de mémoire sont situés re-

spectivement sous forme de neurones et de synapses. Le domaine du calcul neuromorphique

vise à émuler ou imiter le cerveau pour réaliser des calculs plus efficaces. Cette thèse traite

du calcul neuromorphique avec une inspiration architecturale et tente d’imiter la biologie du

point de vue du calcul en mémoire ou du calcul près de la mémoire.

En particulier, j’étudie les technologies de mémoire émergentes basées sur la résistance

pour les réseaux de neurones, car elles offrent un substrat plus économe en énergie, compatible

avec la technologie CMOS, et non volatil pour effectuer des calculs près de la mémoire par

rapport à leurs homologues plus conventionnels (SRAM ou DRAM). Les mémoires non volatiles

à faible consommation d’énergie conviennent bien aux applications embarquées où l’efficacité

énergétique est priorisée. De plus, leur nature non volatile est particulièrement avantageuse

pour les équipements qui ne sont pas constamment utilisés, car aucune alimentation n’est

nécessaire pour stocker un état. Malgré ces avantages, les mémoires émergentes telles que les

mémoires résistives à base d’oxyde, les mémoires à changement de phase et les mémoires à

accès aléatoire magnétique souffrent d’imperfections qui peuvent affecter considérablement

les performances des réseaux de neurones. Dans cette thèse, j’étudie et présente des réseaux

de neurones compatibles avec le matériel qui sont relativement tolérants à ces imperfections

et peuvent les intégrer pour effectuer des calculs. J’essaie de répondre aux questions suivantes

dans les chapitres deux, trois et quatre :

• Chapitre 2 Comment pouvons-nous apprendre avec une mémoire résistive à base d’oxyde

imparfaite et filamentaire ?

• Chapitre 3 Quel est l’impact des erreurs et des contraintes survenant au niveau du circuit

sur l’inférence des réseaux neuronaux ?

• Chapitre 4 Pouvons-nous exploiter la nature stochastique des dispositifs stochastiques

pour effectuer un calcul probabiliste ? Et quels avantages supplémentaires cela pourrait-

il avoir ?

Résultats

Chapitre 2 Dans le chapitre, nous avons concentré nos efforts sur la mise en œuvre de l’apprentissage

à l’aide de réseaux de neurones binarisés dans le régime de RESET faible de mémoires résistives

à base d’oxyde d’hafnium (HfOx). Un modèle basé sur la physique est développé pour décrire la

résistance de ce type de dispositifs dans le régime de RESET faible, incluant différents types de

variabilités. Le modèle est ajusté et comparé à des caractérisations expérimentales. Ce modèle

est ensuite incorporé dans le framework d’apprentissage profond PyTorch, et l’apprentissage

d’un réseau de neurones binaire est simulé pour les tâches de reconnaissance des chiffres
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manuscrits MNIST et de détection d’objets CIFAR-10. La principale conclusion de ce chapitre

est que l’apprentissage est en effet possible dans ce régime en utilisant des réseaux de neurones

binarisés, où la quantification offre une robustesse aux différentes variabilités présentes dans

les mémoires ReRAM à filament. Pour ce travail, une méthodologie est également développée

pour tester la contribution des diverses imperfections à la dégradation des performances des

réseaux neuronaux. Cette méthodologie peut mettre en lumière l’imperfection spécifique qui

affecte le plus l’apprentissage. Les dispositifs peuvent être optimisés pour cette imperfection

au niveau de la fabrication.

La figure suivante montre l’impact du bruit et de la variabilité d’un appareil à l’autre sur

les performances des réseaux de neurones binarisés pour les tâches (a) MNIST et (b) CIFAR-10.

Les graphiques montrent la précision des tests pendant l’entraînement pour cinq cas différents

: sans simulation de dispositif (bleu), sans variation dispositif à dispositif (D2D) ni bruit (rose),

avec variation D2D mais sans bruit (vert), sans D2D mais avec simulation complète du bruit et

du modèle moyen (marron), et simulation complète incorporant à la fois la variabilité D2D, le

modèle moyen et le bruit (noir).

Chapitre 3

Le dernier chapitre s’est concentré uniquement sur les variabilités des dispositifs de mé-

moire, en supposant que toutes les autres opérations sont effectuées de manière parfaite. Cepen-

dant, ce n’est pas le cas : les dispositifs de mémoire sont co-localisés dans des circuits intégrés.

Ces autres circuits électroniques sont utilisés pour lire les poids, effectuer le calcul Multiplica-

tion et accumulation (MAC) et effectuer l’opération de seuillage uniquement dans le processus

d’inférence. Pendant l’inférence, il est nécessaire de programmer les poids binarisés, qui sont

appris à partir de l’entraînement (réalisé séparément sur un logiciel). Cependant, en raison de

la variabilité présente dans les ReRAMs, cela ne se produit pas de manière idéale. Ceci, ainsi

que les raisons liées au circuit, introduit des erreurs dans les calculs de notre réseau neuronal.

L’impact de ces erreurs sur les performances d’inférence des réseaux neuronaux est présenté

dans ce chapitre. En effectuant des simulations d’inférence sur les tâches MNIST et CIFAR-10,

nous montrons que les réseaux neuronaux binarisés sont robustes à de telles erreurs dans des

conditions réalistes de programmation.
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De plus, nous avons examiné les limitations liées à la taille des matrices dans la réalisa-

tion des réseaux neuronaux et avons proposé une stratégie qui peut contourner cela avec une

légère dégradation des performances. Dans le contexte des applications embarquées, nous

avons étudié l’impact des erreurs introduites par une alimentation non optimale provenant

d’une cellule solaire. Nous avons montré la résilience de notre réseau à ces erreurs. Ce travail

met en évidence que même à faible puissance, correspondant à une faible illumination, le cir-

cuit peut fournir des calculs approximativement corrects sans diminuer significativement les

performances.

La figure suivante montre la représentation de l’intégration stochastique des voisins dis-

tribuée en t (t-SNE) de l’ensemble de données de test MNIST. Les points de données noirs sont

mal classés sous un éclairage de 0,8 soleil (a) et de 0,08 soleil (b), mais ils sont correctement

classés sous un éclairage de 8 soleil, à l’aide d’un réseau neuronal binarisé entièrement con-

necté.

Chapitre 4

Enfin, dans ce chapitre, nous nous concentrons sur l’exploitation d’un aspect des imper-

fections, la stochasticité intrinsèque, pour un type particulier de calcul : le réseau de neurones
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bayésien. Nous proposons la mise en œuvre de réseaux de neurones binaires bayésiens en util-

isant des dispositifs de spintronique stochastiques nanométriques. Ce type d’algorithmes est

basé sur l’apprentissage de distributions de probabilité plutôt que l’estimation ponctuelle ap-

prise dans les réseaux déterministes conventionnels. L’avantage principal des réseaux de neu-

rones bayésiens est leur capacité innée à éviter le surajustement des données, un problème

courant pour les réseaux déterministes. Ce problème est aggravé lors del’utilisation de pe-

tits ensembles de données, et l’impact peut être conséquent en cas d’erreurs d’étiquetage des

données. Une autre caractéristique remarquable de ces réseaux de neurones est leur capacité

à quantifier l’incertitude de la prédiction, ce qui est essentiel pour les applications critiques en

matière de sécurité où les incertitudes de prédiction sont aussi importantes que les prédictions

elles-mêmes. Nous avons exploré ces deux aspects dans ce chapitre en utilisant un ensemble

de données d’exemple appelé le jeu de données des deux lunes et une tâche médicale, le jeu de

données MIT-BIH, pour la classification des arythmies.

Cette figure montre la quantification de l’incertitude dans la tâche des deux lunes. La

carte en couleur montre les incertitudes prédictives, épistémiques et aléatoires respectivement

avec les trois tracés. L’incertitude prédictive est décomposée en deux composantes ayant des

sources différentes : épistémique pour les régions sans données d’entraînement et aléatoire

pour les parties ambiguës. La quantification de l’incertitude est un avantage clé des réseaux

neuronaux bayésiens par rapport aux réseaux déterministes.

Perspectives

Les projets présentés se concentrent sur les réseaux de neurones quantifiés mis en œuvre à

l’aide de dispositifs de mémoire imparfaits. Les défis de l’apprentissage sur puce sont discutés,

notamment la nécessité de calculer les gradients et les poids pour la rétropropagation, ce qui

nécessite une capacité de stockage mémoire importante. Des approches alternatives telles que

l’algorithme de propagation d’équilibre et l’algorithme forward-forward sont suggérées. Le po-

tentiel de mise en œuvre de l’inférence sur puce pour les réseaux neuronaux ternarisés est mis

en évidence, ainsi que la nécessité d’étudier l’impact des erreurs sur la précision de prédic-

tion. L’importance de prendre en compte l’architecture des réseaux de neurones, d’optimiser

les technologies des dispositifs et d’explorer de nouveaux types de matériaux pour le calcul est
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soulignée. La recherche ne devrait pas seulement se concentrer sur la performance, mais aussi

sur des algorithmes bio-réalistes, adaptés au matériel et économes en énergie. La computa-

tion auto-supervisée et la mise en œuvre matérielle de ces méthodes d’apprentissage devraient

être explorées. Dans l’ensemble, les avancées multidisciplinaires concernant les dispositifs

physiques, les algorithmes d’apprentissage profond et la compréhension de la neurosciences

du cerveau humain sont cruciales pour obtenir des avancées significatives dans le domaine du

calcul neuromorphique.
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Training Bayes BiNN

Training of Bayes BiNN amounts to learning the values of the probability p for all the binary

weights of the network. This problem is cast in the mold of a variational inference problem

and solved by a variant of the BBB. In this case, the variational or surrogate distribution is the

Bernoulli distribution, and the prior distribution P (W) is defined as follows. A priori, it is as-

sumed that the weights would be equally likely to be in either of the two states +1 and -1. Hence,

the prior P (W) is a symmetric Bernoulli distribution where each state has a probability of 1
2 . The

approximate posterior distribution, qp(W) or simply q(W) is given by the mean-field symmetric

Bernoulli distribution

q(W) =
WY

j=1
p

1+W j
2

j (1°p j )
1°W j

2 . (15)

Here, W is the total number of synapses in our network. The product is due to the fact that

all the weights are independent of each other and the exponents because the Bernoulli random

variable takes values +1 and -1 (instead of +1 and 0 for the general Bernoulli distribution). The

goal of the training algorithm is to learn the values of these probability parameters, p j s.

For the sake of calculations, equ. 15 needs to be recast in the form of the more general

minimal exponential family distribution [35]. In that form, we have two parameters ∏ and µ,

called the natural and expectation parameters, and defined in terms of the p j s as

∏ j := 1
2

log
p j

1°p j
, µ j := 2p j °1. (16)

The natural parameter for the prior P (W), written as ∏0, is thus 0. Now, we need to define

our optimization criteria, that is, the value that we are trying to minimize. In this case, it is

the Bayesian formulation of the loss-based approach where we combine two terms, the first

of which is the expectation of the loss function over our surrogate posterior q(W), and the lat-

ter is the KL divergence between the posterior and the prior [258, 259]. Mathematically, the

optimization objective is equal to

Eq(W)

∑ NX

i=1
l (yi , f W(xi )

∏
+KL[q(W)||P (W)]. (17)

The xi , yi , f W, N and l denotes the input, the output, the model, the size of the mini-
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batch, and the loss function respectively. This is equivalent to the objective function defined in

equ. 4.7 when the loss function takes the form of the cross-entropy loss.

A recurring theme of difficulty in training binary neural networks stems from the fact that

the learning is a discrete optimization problem for which standard optimizers like Adam do

not perform very well. As a solution to this, in the original publication, the straight-through-

estimator(STE) was used, which served as a proxy to the true gradient [165, 173, 260]. More

recently, another approach was proposed based on the inertia of the model parameters called

the Binary Optimizer (Bop) [261]. In this Bayesian version as well, we are faced with a similar

challenge; to backpropagate through a stochastic node, which can take only discrete value. We

saw in the first section how this problem is solved for a variational autoencoder by using the

Reparametrization trick, but it only works for a continuous distribution (specifically, Gaussian

distribution for VAEs). Instead, the Gumbel-softmax trick is used, where a concrete distribution

is used to relax the discrete variables into a continuous form [262, 263]. If there is a binary

variable Wj 2 {°1,+1}, with P (Wj = +1) = p j =
tanh(∏ j )+1

2 , the corresponding relaxed variable

W
≤ j ,ø

b 2 (°1,1) can be defined as

W
≤ j ,ø

b := tanh((∏ j +± j )/ø). (18)

In this expression, ø > 0 is the temperature parameter that defines how sharply the transi-

tion from -1 to 1 occurs, and in the limit of ø! 0, it behaves exactly like the sign function used

in the STE method of non-Bayesian BiNN. The ± j values come from the Gumbel distribution

as

± j := 1
2

log
≤ j

1°≤ j
. (19)

Here, the ≤ j ªU (0,1) is sampled from a uniform distribution [264]. With this setup, using the

backpropagation algorithm, the learning rule or update equation for the natural parameters ∏

becomes

∏√° (1°Æ)∏°Æ[sØg°∏0]. (20)

In equ. 20, Æ is the learning rate, the symbol Ø signifies the element-wise product and s, g

are defined as

s :=
N (1° (W

≤ j ,ø
b (∏))2)

ø(1° tanh(∏)2)
, (21)

g := 1
N

X

i2N
rWr l (yi , f W(xi ))

ØØØ
Wr =W

≤ j ,ø

b

. (22)

Equ. 22 is the minibatch gradient of the loss function term with respect to the relaxed vari-

able.
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