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Abstract

We are interested in the theoretical properties of Stochastic Recurrent Equa-
tions (SRE) and their applications in finance. These models are widely used in
econometrics, including financial econometrics, to explain the dynamics of vari-
ous processes such as the volatility of financial returns. However, the probability
structure and statistical properties of these models are still not well understood,
especially when the model is considered in infinite dimensions or driven by non-
independent processes. These two features lead to significant difficulties in the
theoretical study of these models. In this context, we aim to explore the existence
of stationary solutions and the statistical and probabilistic properties of these so-
lutions.

We establish new properties on the trajectory of the stationary solution of
SREs, which we use to study the asymptotic properties of the quasi-maximum
likelihood estimator (QMLE) of GARCH-type (generalized autoregressive condi-
tional heteroskedasticity) conditional volatility models. In particular, we study the
stationarity and statistical inference of semi-strong GARCH(p, ¢) models where the
innovation process is not necessarily independent. We establish the consistency of
the QMLE of semi-strong GARCHs without assuming the commonly used condi-
tion that the stationary distribution admits a small-order moment. In addition,
we are interested in the two-factor volatility GARCH models (GARCH-MIDAS);
a long-run, and a short-run volatility. These models were recently introduced by
Engle et al. (2013) and have the particularity to admit stationary solutions with
heavy-tailed distributions. These models are now widely used but their statistical
properties have not received much attention. We show the consistency and asymp-
totic normality of the QMLE of the GARCH-MIDAS models and provide various
test procedures to evaluate the presence of long-run volatility in these models. We
also illustrate our results with simulations and applications to real financial data.

Finally, we extend a result of Kesten (1975) on the growth rate of additive se-
quences to superadditive processes. From this result, we derive generalizations of
the contraction property of random matrices to products of stochastic operators.
We use these results to establish necessary and sufficient conditions for the exis-
tence of stationary solutions of the affine case with positive coefficients of SREs in
the space of continuous functions. This class of models includes most conditional
volatility models, including functional GARCHs.

Keywords: Inference Without Moments, Iterated Function Systems, Lya-
punov exponent, Multiplicative Component GARCH, Residual Bootstrap, Subad-
ditive sequence, Tests on boundary parameters.
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Résumé

Nous nous intéressons a 1’étude des propriétés théoriques des équations récur-
rentes stochastiques (SRE) et de leurs applications en finance. Ces modéles sont
couramment utilisés en économétrie, y compris en économétrie de la finance, pour
styliser la dynamique d’une variété de processus tels que la volatilité des rende-
ments financiers. Cependant, la structure de probabilité ainsi que les propriétés
statistiques de ces modéles sont encore mal connues, particuliérement lorsque le
modeéle est considéré en dimension infinie ou lorsqu’il est généré par un processus
non indépendant. Ces deux caractéristiques entrainent de formidables difficultés
a ’étude théorique de ces modéles. Dans ces contextes, nous nous intéressons a
I’existence de solutions stationnaires, ainsi qu’aux propriétés statistiques et prob-
abilistes de ces solutions.

Nous établissons de nouvelles propriétés sur la trajectoire de la solution station-
naire des SREs que nous exploitons dans I’étude des propriétés asymptotiques de
I'estimateur du quasi-maximum de vraisemblance (QMLE) des modéles de volatil-
ité conditionnelle de type GARCH. En particulier, nous avons étudié la station-
narité et I'inférence statistique des modéles GARCH(p, ¢) semi-forts dans lesquels
le processus d’innovation n’est pas nécessairement indépendant. Nous établissons
la consistance du QMLE des GARCH (p, ¢) semi-forts sans hypothéses d’existence
de moment, couramment supposée pour ces modeéles, sur la distribution station-
naire. De méme, nous nous sommes intéressés aux modéles GARCH a deux fac-
teurs (GARCH-MIDAS); un facteur de volatilité a long terme et un autre a court
terme. Ces récents modéles introduits par Engle et al. (2013) ont la particu-
larité d’avoir des solutions stationnaires avec des distributions a queue épaisse.
Ces modeéles sont maintenant fréquemment utilisés en économétrie, cependant,
leurs propriétés statistiques n’ont pas recu beaucoup d’attention jusqu’a présent.
Nous montrons la consistance et la normalité asymptotique du QMLE des modéles
GARCH-MIDAS et nous proposons différentes procédures de test pour évaluer la
présence de volatilité a long terme dans ces modéles. Nous illustrons nos résultats
avec des simulations et des applications sur des données financiéres réelles.

Enfin, nous étendons le résultat de Kesten (1975) sur le taux de croissance des
séquences additives aux processus superadditifs. Nous déduisons de ce résultat des
généralisations de la propriété de contraction des matrices aléatoires aux produits
d’opérateurs stochastiques. Nous utilisons ces résultats pour établir des conditions
nécessaires et suffisantes d’existence de solutions stationnaires du modéle affine a
coefficients positifs des SREs dans ’espace des fonctions continues. Cette classe
de modeéles regroupe la plupart des modeéles de volatilité conditionnelle, y compris

les GARCH fonctionnels.

Mots clés: Inférence sans moments, Systémes stochastiques de fonctions
itérées, Exposant de Lyapunov, GARCH a composantes multiplicatives, Boot-
strap, Processus sous-additif, Tests Statistiques.
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Chapter T

Introduction

Abstract
This thesis focuses on the study of the theoretical properties of stochastic re-
currence equations and their applications in financial econometrics. We are
interested in the existence of stationary solutions as well as the statistical and
probabilistic properties of these solutions. In particular, we will study the
stationarity and statistical inference of semi-strong Generalised AutoRegres-
sive Conditional Heteroskedasticity (GARCH) (p, q) models, where the inno-
vation process is not necessarily independent. We will also focus on two-factor
GARCH volatility models, one long-run and one short-run volatility. We will
illustrate our results with simulations and applications to real financial data.
Finally, we will study the contraction property of products of random operators,
with an application to the study of the existence of a stationary solution for
conditional volatility models in the space of continuous functions (fGARCH).

Contents
1 Context . . . . o s
2 Main results . . . . L e




2 CHAPTER 1. INTRODUCTION

1 Context

In recent years, autoregressive processes of the form
Xt = \Ij (Ot,Xt_l) = ‘Ilt (Xt—1)7 t S Z7 (11)

where W(6,-) is an operator on a Polish space (F, d) to itself and (6;) is a strictly
stationary and ergodic process, have attracted much attention. This equation, commonly
called Iterated Function Systems (IFS), includes a wide range of models. Among them
we can mention the Stochastic Recurrence Equation (SRE) introduced by Kesten (1973),
where ' = R%, 0, = (A,, B;) where A, is a matrix d X d and B; is a vector d x 1, and
U(#,-) is the affine operator such that

Xt == AtXt—l + Bt7 te Z. (12)

SREs include AutoRegressive-Moving-Average (ARMA) and GARCH processes, see Eq.
(1.12). A class of bivariate SREs is also often used to draw images of two-dimensional
fractals, such as Barnsley’s fern, see figure 1.1, Koch’s flake or the dragon curve. The
construction procedure is as follows: consider a finite sequence of affine transformations

of R? ie. (a;b;),i = 1,...,k, for some k > 1, where (a;) are matrices 2 x 2 and
(b;) are vectors in R%. Let us assume that a; are contracting matrices, i.e. that their
respective spectral radii p; are strictly less than 1. Considering positive weights py, ..., px,

with p; + -+ + pr = 1, we can define the Markov chain (X;) moving in R?: starting
from x, the chain proceeds by randomly choosing ¢ with probability p; and moving to
X1 = a; X, + b;. The fractal image is obtained by plotting the trajectory (X;) over
the plane from an arbitrarily large n to reduce the effect of initialisation to approximate
the stationary distribution. For more details on fractal SREs, see Barnsley (2014). The
class of AutoRegressive (AR) models with ARCH errors introduced by Weiss (1984) is an
example of processes that verify (1.1) and which are not SREs. A special case of these
processes is the AR(1) model with ARCH errors defined by :

X, =aX, a1 +\/B+AX] m, teZ (1.3)

where (n,) are independent and identically distributed random variables (iid), o € R,
S > 0and A > 0. The model (1.3) was considered in Borkovec and Kliippelberg (2001)
and Borkovec (2000). Other examples of IFS applications can be found in Buraczewski
et al. (2016, Examples 1.0.1 to 1.0.5) and in Diaconis and Freedman (1999).

1.1 Stationarity

Because of their widespread use, the theoretical properties of the class of models
(1.1) have also attracted much interest over the last 50 years. In the univariate case
of SREs (1.2) with iid innovations (A;, B;) € R?, the existence of stationary solutions
has been studied by, among others, Kesten (1973), Vervaat (1979), Goldie (1991) and
Goldie and Maller (2000). The latter paper provides a complete characterisation of the
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Barnsley's fern

Figure 1.1 — Barnsley fern with 10.000 points with the parameters (see Barnsley (2014, table
3.8.3 and figure 3.8.3)):

(o, a9, . ag) = [ (000 0:00 0.85 0.04 0.20 —0.26 015 0.8
182,838 =\ 000 016 )'\ —004 085 '\ 023 o022 )'\ 026 024

buvbsbo = (g )+ (06 ) (16 ) (e ) o

(p1,p2,p3,pa) = (0.01,0.85,0.07,0.07)

problem by giving a set of necessary and sufficient conditions. In the multivariate iid
case, the weakest conditions for the existence of a stationary solution are due to Bougerol
and Picard (1992b). Under an irreducibility condition of the model, they show that if
Elog™ Ay and Elog™ By are finite, then the equation (1.2) admits a strictly stationary
and non-anticipative solution (X;), i.e. X, is 0 (6, k < t)-measurable if and only if

1 " o1
= lim —log(Ay"”) = inf ~Elog(| A, A, Aul)) <0, (1.4)

n—-+oo N

where A =1 and A" = |At—1 -+ At_g11| for any integer & > 0. The proof of this
result relies in part on another property established in the same article. Commonly called
the contraction property of product random matrices, this property states that if
(Ay) is strictly stationary and ergodic, and Elog™ Ay is finite, then

v(A) <0 as. if A =50 as. when n— . (1.5)

This property is commonly used to establish the necessity of (1.4) for the existence of
stationary solutions of GARCH-type models.

For the general model (1.1), Elton (1990, Theorem 3) (see also Bougerol (1993, The-
orem 3.1)) established a sufficient condition for the existence of stationary solutions. As
for the affine model in finite dimensions, this result relates the sign of the Lyapunov co-
efficient v(W¥), defined below, of the process (¥;) to the existence of stationary solutions.



4 CHAPTER 1. INTRODUCTION

The contraction of (¥;) occurs when:

1 n
~(P) := limsup — log Aé ) <0, (1.6)
n—+oo T
where Ay = A(W}) = SUD,, 1ycFuy 20 W, with A/” =1 and AP = A(¥,0---0

W, ;1) for any integer £ > 0. For the model (1.3), it can be noted that the sufficient
condition for the existence of a stationary solution proposed by Borkovec and Kliippel-
berg (2001, Eq. 3.2) implies (1.6). To our knowledge, there is no result establishing the
necessity of equation (1.6) in the general context of (non-affine) IFS or for affine opera-
tors W, in infinite dimension. Functional ARCH/GARCH models in which the volatility
process is a curve constitute a new class of models in which W, is an affine operator in
an LP space or in the space of continuous functions. A functional GARCH process of or-
der (1,1) (fGARCH(1,1)) in C[0, 1] is a sequence (r; : t € Z) of random elements, where
(r¢(u) : u € ]0,1]) is a continuous function on [0, 1], satisfying:

Ty = oy, C"? =0+ 0"’1371 + Ba‘thl =0+ /71&('7 S)Uffl(S)dS =0+ 7,01, (1.7)

where (1, :t € Z) is a sequence of iid random functions in C[0,1], 0 is a positive
function and the integral operators o and §, i.e. (ax)(u) = [ a(u, s)z(s)ds and (Bz)(u) =
[ B(u, s)x(s)ds are positive, i.e. they map nonnegative functions to nonnegative function.
~,(u, s) = a(u,s)n?_(s) + B(u, s) is an element of C[0, 1]>. We can see that (o?) defined
in (1.7) verifies (1.1) with F' = C[0,1], 8, =, and ¥, = 0 + ,(-). The f{GARCHs were
introduced by Hormann et al. (2013) and Aue et al. (2017) to model the dynamics of
the conditional intra-day volatility curve based on the structure of the classical GARCH
models. Sufficient conditions for the existence of stationary solutions for different classes
of these models have been established in Aue et al. (2017), Hormann et al. (2013), Kiithnert
(2020) and in Cerovecki et al. (2019). The latter paper considers the f{GARCH(p, ¢) in
L%([0,1]). In this setup, the authors note that one of the main challenges in establishing
the necessity of (1.6) is to extend the contraction property of random matrices (1.5) to
operator processes (¥;). To our knowledge, this extension has not yet been established.

1.2 Tails

An important property of the marginal distribution of the stationary solution (X)
of Equation (1.2) comes from Kesten (1973). Under relatively weak assumptions, he
establishes in the univariate iid case that this distribution has a power tail law, in the
following sense:

P(|X]|>x) ~cx™, x— oo, (1.8)

where ¢ and « are strictly positive constants. In particular, this result implies that
X has moments of order s < a. The work of Goldie (1991) shows that the property
(1.8) can be generalized to the iid cases of Model (1.1) under regularity conditions on ¥,
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which are not necessarily restricted to the affine case (1.2). The work of Borkovec and
Kliippelberg (2001) on the model (1.3) also gives similar results. More generally, in the
iid case, under (1.6) and some regularity assumptions on Wq, it can be shown that the
stationary solution of (1.1) admits a small-order moment. This moment property is often
used in the statistical inference of models of type (1.1) , such as GARCH type models
with iid innovation. See Berkes et al. (2003) or Francq and Zakoian (2004) for the classical
GARCH(p, q). However, when (0,) is stationary and ergodic, though not independent, we
show on a class of GARCH models with two volatility factors that the strictly stationary
solution may admit no-moment.

1.3 Motivation

As we can see, the theoretical properties of Model (1.1) are not well understood when
the sequence (8,) is not identically distributed or when the affine model (1.2) is considered
in infinite dimensions. Many econometric models that fall under the (1.1) framework
belong to one of these two categories. For example, the {GARCH and the semi-strong
GARCH models proposed by Lee and Hansen (1994), in which the innovation process
follows a non-iid martingale difference process. The multiplicative-component GARCH
models (GARCH-MIDAS) of Engle et al. (2013) are another class of IFS that are not
generated by an iid sequence. Another example is GARCH-X models, which are IFS
driven by a sequence of innovations and covariates that are generally non-iid.

A simple example of GARCH-X is given by the process:

2 2 2 / / 2 2
€=0m, o, =w+ta€ | +po; +rnx =wF+Tx 1+ (ami_, + F)oi,

Here, @, is a vector of r exogenous covariates, such as daily trading volume, macro-
economic data or other market data, and 7 is a vector of parameters associated with
these covariates. In these models, the volatility process depends on the covariate process,
in addition to the squares of past returns. This additional information allows for better
forecasts of the squared returns. These different examples motivate the study of affine
SREss in infinite dimensions or IFS models driven by non-iid innovations.

2 Main results

Chapter 3: Exponential control of the trajectories of Iterated Function
Systems and application to semi-strong GARCH(p,q) models.
We know, from Elton (1990), that if there exists an element ¢ in F' such that:

Eln" d(Ao(c),c) and Eln™ Ay are finite, (1.9)

then the condition (1.6) is sufficient to guarantee the existence of a stationary solution
(X;) to the equation (1.1). If (6;) is iid and E(A,)* and Ed (¥y(c),c)" are finite for a

certain r > 1 and v > 0, we can show that the marginal distribution of this solution
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admits a moment of small order, as follows:
there exists s > 0, such that Ed(X,¢)® < oo. (1.10)

When the independence assumption is violated, we show by examples that the property
(1.10) is not always true. In this context, the main result of this chapter provides a
property on the trajectory of the stationary solution that is weaker than (1.10). The full
statement of this result can be found in Theorem 3.2. It states that for any integer ¢,

1. limsup ld(XHn,c) =0 and 2. limsupllnd(Xt,n,c) =0 a.s. (1.11)
n—oo N n—soo N

This property can be interpreted as an exponential control of the trajectory. We explain

why the property in equation (1.10) implies (1.11), but that the converse is not true.

Section 3 is entirely devoted to the proof of this result. One of the distinctions made

between 1. and 2. in (1.11) is that their proofs use different arguments. The proof of

(1.11) uses new methods and relies in part on the subadditive ergodic theorem of Kingman
(1973).

Section 4 of the chapter is devoted to the inference of the following GARCH(p, q)

models:
€ = vhm,,
ht = wp + Z;’Izl CYgiE?fi + 21521 ﬁojhtfj, VteZ

where En? =1, wg > 0,a0; 20 (i = 1,...,¢9) and By; = 0 (j = 1,...,p). By rewriting
the model in a multivariate autoregressive form, we justify that Model (1.12) is a special
case of (1.1), where 6; = m,. If (n,) is iid, we know by Berkes et al. (2003, Lemma
2.3) (see also (1.10)) that the stationary solution (e;) of the (strong) GARCH admits a
small order moment. The classical proof of the consistency and asymptotic normality
of the Quasi-Maximum Likelihood Estimator (QMLE) of these models is based on this
property (see Berkes et al. (2003) and Francq and Zakoian (2004)). Based on the work of
Francq and Zakoian (2004), Escanciano (2009) relaxes the iid condition, but keeping the
assumption of the existence of moment, and establishes the consistency of the QMLE of
the semi-strong GARCH models, i.e. when (n),) verifies:

(1.12)

(m,) is stationary and ergodic, (1.13)
17 is non-degenerate and E [nf | .7-",5,1] =1as., '

where F;_; is the filtration generated by (€;_1,€; 2,...). This assumption is obviously
weaker than the iid condition. An explicit construction of such a process which is not
reduced to the iid case is proposed in the appendix 5.5 of the chapter. As noted above,
we know that the existence of this moment is not guaranteed without the independence
assumption and thus in particular under (1.13).

Given that €,...,€, is a realisation (of length n) of the semi-strong GARCH pro-
cess (1.12), for the value 8y = (w,aq,...,0q4, 51, . .. ,ﬁp)T of the parameter belonging
to a space of parameters ® CJ0, 400 [x [0, 00 [PT9. Conditionally on the initial values
€0,..-,€l_q; Ga, ... ,&%_p, the conditional Gaussian quasi-likelihood is given by
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= 1 €’
LnOZLn Oa sy €En) = -—% )
R R | T
Where the &7 are recursively defined , for t > 1, by 67 = 67,(0) = w + Y.L, €2,

1530'75 _j- The QMLE of the parameter 6, is defined as any measurable solution 0
of

A

0, = argmaxL,(0) (1.14)

0
Using the property (1.11), we relax the moment assumption made by Escanciano (2009)
by establishing the strong consistency of the QMLE (0,,) of the semi-strong GARCH
models, without moment condition on €;. This result is based on the classical assumptions
considered in Francq and Zakoian (2004), as well as on the following additional condition,

log™ n, is integrable. (1.15)

This assumption is verified by most classical distributions. It prevents the marginal
distribution of innovations from admitting too much mass around 0.

The proof of consistency follows the steps i) — iv) of that of Theorem 2.1 of Francq
and Zakoian (2004), with important modifications on the arguments. The property (1.11)
is used in step 7) instead of the existence of a small order moment to show the asymptotic
negligibility of the initial values in the definition of the quasi-likelihood. New techniques,
as well as the condition (1.15), are used in steps iii) and iv) to circumvent the fact that
the standard limit criterion based on the expectation of the criterion cannot be defined
without the existence of a small order moment.

The asymptotic normality of the QMLE of semi-strong GARCHs remains difficult to
establish due to the absence of moment. We discuss at the end of the chapter why this
property might not hold.

Chapter 4: Inference on GARCH-MIDAS models without any small-order
moment.

Recent developments in the financial econometric literature suggest that the dynamics
of volatility may be better described by multi-component models. Engle and Lee (1999)
introduced a long-run and short-run volatility model with additive components. In recent
years, a class of models called GARCH-Mixed DAta Sampling (MIDAS), proposed by
Engle et al. (2013), has gained popularity for its ability to capture the dependencies
between daily stock returns and low-frequency (e.g. monthly, quarterly) explanatory
variables. Instead of modelling conditional volatility as the sum of two components, these
models specify volatility as the product of long- and short-term components. A GARCH
component with unit variance (short term) fluctuates around a long term component with
regular time variation that is a function of the explanatory variables, as in the model (1.16)
and figure (2.2) below. For similar approaches, see also the work of Conrad and Engle
(2021), Conrad and Schienle (2020) and their references.

The probabilistic structure and statistical properties of GARCH-MIDAS models have
not received much attention. Preliminary results can be found in Wang and Ghysels
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Euronext 100

Short and long term volatilities

- - I |
— Long-term
Short-term
LR AT

2008-01-21 —f
2008-10-06 =
2020-03-12 —f

Figure 1.2 — Decomposition of short- and long-term volatilities for the Euronext 100 stock
index from 31.12.1999 to 16.02.2023 using the GARCH-MIDAS model with N = 22 and
@ = 250.

(2015). The aim of this chapter is to address some important econometric and statistical
issues related to such models. In the chapter we consider the following two-factor model:

{ Ty = Ti€t, Tt2 = 1 + Qo Z?:l 901<190)R‘/t*“ (116)

_ 2 __ 2 2
€ = 0T, Op = Wo + Qo€;_q + ﬁOUtfl

where (1) is iid, En? = 1, ag > 0, wo > 0, ag > 0, By > 0, RV; = SN 12, is a volatility
performed on a sliding window, () and N are positive integers and g is a real. The ¢;(+)
are positive weights. Engle et al. (2013) suggests for example the Beta weights:

=@+ npet
Sl = 5/(Q + 1)yt
The figure 2.2 above shows the decomposition of the volatility of the Euronext

100 returns from 1999 to 2023 using the GARCH-MIDAS Beta weighted model
with N = 22 and @ = 250 and the parameter (wp, o, o, a0,J) estimated at

wi(Yo) Yo € (0, 00) (1.17)
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(0.0285,0.128,0.815,0.056, 2.932).

The parameterisation used in (1.16) is somewhat more general than that of Engle et al.
(2013). Indeed, we do not require that the short-term volatility o; has a finite variance.
The equation (1.16) can be rewritten in the following autoregressive form:

r, = Ari_q + by, (1.18)
where ry = (r7,...,77_,11)', by = (¢7,0,_,) and Ay = A(e;) is a companion type matrix.
We can see that (1.18) is an SRE generated by the GARCH (1,1) (non-iid) ().

Assuming that aosup,<;<, i(vo) > 0, we guarantee that the long-run volatility is not
degenerate. Under this assumption and other regularity conditions, the first result of the
chapter establishes that the model (1.16) admits a strictly stationary solution if and only
if 7(A) < 0. More surprisingly, we show that this stationary solution verifies:

Ejry|* =00 forall s > 0. (1.19)

These results show that the trajectories of returns that satisfy the model are not
explosive but can be very erratic, unlike one-factor GARCH-type processes for which
there are at least a small moment. This property leads to formidable difficulties for
statistical inference. Wang and Ghysels (2015) studied the asymptotic distribution of the
QMLE under the assumption that E|r;|* is finite for some s > 0. As noted above, this is
a key assumption for showing the consistency and asymptotic normality of the QMLE of
GARCH models. To our knowledge, the asymptotic properties of the QMLE have never
been established without an assumption implying the existence of a small-order moment.
However, in our framework, the property (1.19) shows that this moment condition does
not hold. One of the main motivations of the chapter was to establish the asymptotic
properties of GARCH-MIDAS models with the difficulty induced by (1.19). Under some
relatively weak regularity and identifiability assumptions, we show the strong consistency
of the QMLE (9n) and its asymptotic normality:

Vn(0, — 60) 5 N(0, (5, — 1)),

where k, := En} and J := F (%VQW(OO)VQW(OOD is a positive-definite matrix.
The proof of the consistency partly uses the control property (1.11), established in the
chapter 3, and some arguments used in the proof of consistency of the QMLE of the semi-
strong GARCH. The proof of asymptotic normality consists in establishing a sequence of
properties, such as the existence and invertibility of the asymptotic covariance matrix J,
taking into account the absence of moments.

Chapter 4 also presents test procedures to detect the existence of a long-run volatility
component, i.e. the null hypothesis Hy : ag = 0. Because of the non-identifiability of the v
parameter under Hy, usual tests such as the Wald test may have non-standard asymptotic
distributions. Therefore, we consider two approaches. In the first, we set ¥ to a value
¥*. In this approach, statistical tests with and without bootstrap are proposed. In the
second approach, we estimated all parameters by QMLE, including ¢, and estimated the
critical value of the resulting Wald test by a bootstrap procedure based on the residuals.
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The theoretical validity of the first method is established in Proposition 4.2 and Theorem
4.3.

In our simulations, we observed that the second method outperforms the first one,
in which the power of the tests depends on the value of ¥*. We also found that the
asymptotic distributions of the statistical tests of the first method without bootstrap are
not well approximated in finite samples. Conrad and Schienle (2020) proposed a test of
the model based on the score, not requiring a bootstrap. However, a moment assumption
is made on the returns process and furthermore, the parameterisation used in their paper
does not imply an identifiability issue.

The chapter ends with numerical applications: our simulations show that the lack of
moments does not significantly affect the estimation of the parameters in a finite sample.
In addition, the applications conducted on stock market indices NASDAQ, CACA40,
DAX, and HSI, provide evidence of the existence of long-run volatility in these processes.

Chapter 5: On the growth rate of superadditive processes and the stability
of functional GARCH models.

This chapter is divided into two parts. The main motivation of the first part is to
provide an extension of the property of Kesten (1975) on random walks with station-
ary increments and to derive the contraction property of products of random operators.
Kesten’s result states that if (z;) is a stationary process, then

liminfn= 'S, >0 a.s. on {8, = sz — 00 lorsque n — co}. (1.20)
k=1

This result shows that the random walk cannot diverge to infinity at a rate smaller than
n. The property (1.5) of Bougerol and Picard (1992b), established under additional
ergodicity and integrability conditions, is a partial extension of Kesten’s property to
products of random matrices. The result of Kesten (1975) is often expressed using notions
from ergodic theory. To share this expression, let us briefly recall some definitions and
basic notions of ergodic theory we will use, as well as a brief review of the literature to
contextualize.

A dynamical system is a quadruplet (€2, B, u, T'), where (€2, B, 1) is a probability space
and T : Q — () is a measurable application which preserves pu, that is, for any A € B,
w(T71(A)) = u(A). A set I in B is said to be invariant if g (IAT~(I)) = 0 We say that
T is ergodic if, for any invariant set I, u(I) =0 or p(l) = 1..

A process (S,,)n>1 is said to be superadditive if for all n, s, S,, + S;07T" < 8,5 a.s.
These processes were introduced by Hammersley and Welsh (1965) and one of the most
important contributions to the asymptotic properties of these processes is the sub-additive
ergodic theorem of Kingman (1973) which establishes the almost sure convergence of
(n™18,), under the integrability of S~. This result generalises the Birkhoff’s well-known
ergodic theorem on additive processes, i.e. when for all n,s, S, + Ss0T" = S, s a.s.
The result of Kesten (1975) says that if (S,,), is additive then

liminfn~'S, >0 a.s. on {8, — co,n — oo}. (1.21)



2. MAIN RESULTS 11

This property holds even if S is not integrable. This result has found many applications
in ergodic theory and was a precursor to the study of recurrence of random walks with
stationary increments.

One of the main results of the chapter 5, established in Theorem 5.1, generalises the
property (1.21) to superadditive processes. In this theorem, we show that if (S,), is
superadditive, then

liminfn™'S, >0 a.s. on liminf{S, > 0}. (1.22)

This result is obtained under weaker conditions than those of Kesten. Indeed, it suffices to
note that liminf{S,, > 0} is the set of w € Q such that (.S,,) is positive for n large enough,
and thus includes the set where (S,,) diverges to infinity. Our proof relies on new tech-
niques based on concepts from ergodic theory and differs from those used by Kesten and
Bougerol-Picard. Several stronger versions of the property (1.22) are proposed through
the theorems 5.2 and 5.3 as well as the corollaries 5.1 and 5.2. However, they require
additional conditions. We also discuss the necessity and optimality of these assumptions
throughout the chapter. These results state that the condition that the sequence (S,,) is
strictly positive from a certain period can be weakened in some cases. In Theorem 5.2 we
show that if E is an invariant subset of {sup,cy Sn > 0} N liminf{S,, > 0}, then

liminfn 'S, >0 a.s. on E. (1.23)
n—oo
Noting that €2 is invariant, a direct consequence of this result is that if, almost surely, the
sequence (S,,) takes at least one strictly positive value and is non-negative from a certain
time, then liminfn='S, >0 a.s.
Let A € B et E’ be the set of elements of A such that the sequence (S, : T" € A) is
positive from a certain period. Theorem 5.3 states that if ST is integrable, then

limn™'S, >0 as.on E'.

This property shows that, in the integrability case, conditionally on A, the positivity
condition involves only the values of (S,,) with indices in (n: T" € A). We deduce from
these results that if 7" is ergodic and (A,,),>1 is a positive submultiplicative process, i.e.,
(—InA,) is a superadditive process, then for any A € B such that u(A) > 0:

1. if p(liminf,{A, < 1}) > 0, then v := limsup,, n'log A,, is almost surely constant

inRety<0 a.s.,

2. if Elog™ A is finite and, almost surely, the sequence (A, : T" € A) is strictly less
than 1 from a certain period, then

v =limn 'log A, =limn'ElogA, = infn 'Elog A, <0 a.s.
The statement of this result can be found in the corollary 5.3. Noting that (Aé")) i

S
a special case of sub-multiplicative process, these properties generalise the property (1.5)
to products of random operators and, more generally, to sub-multiplicative processes.
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The second part of the chapter focuses on the study of the stationarity of SREs with
positive coefficients in the space F' of continuous functions with compact support. The
model is as follows

hi =6(n,_1) +v(n_1)hi1r = ¥y (hia), (1:24)

where (n,) is a strictly stationary ergodic process in F'. By denoting F); the set of
positive functions of F', §(-) is a measurable function with values in F'; and ~(-) take values
in the space of continuous linear operators which maps the elements of F'; to F,. This
class of models encompasses most conditional volatility models, including the continuous
fGARCH.

The main result of the second part is Theorem 5.4. It establishes, under relatively
weak assumptions, necessary and sufficient conditions for the existence of positive strictly
stationary solutions to Equation (1.24) by relating the sign of the Lyapunov coefficient
(¥) of (¥;) to this existence. The proof of this result uses the contraction properties
established earlier and new arguments to overcome other technical difficulties, which we
will discuss in the chapter.

In the corollary 5.5 we derive necessary and sufficient conditions for the existence of
positive strictly stationary solutions for f{GARCH models (1.7).

These results are, to our knowledge, the first to establish the necessity of (1.6) for the
existence of stationary solutions for models of type (1.24) when the dimension of F' is not
finite. More discussion of this topic is given in the chapter.



Chapter 2

[ntroduction (Francais)

Abstract
Cette thése s’intéresse a 1’étude des propriétés théoriques des équations récur-
rentes stochastiques et de leurs applications en économétrie financiére. Nous
nous intéressons a l'existence de solutions stationnaires, ainsi qu’aux propriétés
statistiques et probabilistes de ces solutions. En particulier, nous allons étudier
la stationnarité et I'inférence statistique des modéles Generalized AutoRegres-
sive Conditional Heteroskedasticity (GARCH) (p, q) semi-forts, dans lesquels
le processus d’innovation n’est pas nécessairement indépendant. Nous nous
intéresserons également aux modéles GARCH a deux facteurs de volatilité, un
facteur de volatilité a long terme et un & court terme. Nous illustrerons nos
résultats avec des simulations et des applications sur des données financiéres
réelles. Enfin, nous nous intéresserons a la propriété de contraction des pro-
duits d’opérateurs aléatoires, avec une application a 1’étude de la stationnarité
des modéles de volatilité conditionnelle dans ’espace des fonctions continues

(fGARCH).
Contents
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1 Contexte

Au cours des derniéres années, les processus autorégressifs de la forme
Xt = \Ij (Ot,Xt_l) = ‘Ilt (Xt—1)7 t S Z7 (21)

ou ¥(0,-) est un opérateur d'un espace polonais (F, d) dans lui méme et (6;) est un
processus strictement stationnaire et ergodique, ont attiré beaucoup d’attention. Cette
équation, communément appelé Iterated Function Systems (IFS) regroupe une grande
variété de modeéles. Parmis eux, on peut citer les Stochastic Recurrence Equation (SRE)
introduits par Kesten (1973), dans lesquels F' = R?, 0, = (A4, B;) ol A; est une matrice
d x d et By est un vecteur d x 1, et W(0,-) est 'opérateur affine tel que

Xt == AtXt—l + Bt7 te Z. (22)

Les modeéles SREs incluent notamment les processus de type AutoregRessive-Moving-
Average (ARMA) et de type GARCH, voir Eq. (2.13). Une classe de SREs bivariés
est également souvent utilisée pour dessiner des images de fractales en deux dimensions,
telles que la fougére de Barnsley, voir figure 2.1, le flocon de Koch ou la courbe du
dragon. La procédure de construction est la suivante: considérons une séquence finie
de transformations affines de R?, c’est-a-dire (a;,b;),i = 1,...,k, pour certains k > 1,
ou (a;) sont des matrices 2 x 2 et (b;) sont des vecteurs dans R?. Supposons que les
a; sont des matrices contractantes, c’est-a-dire que leurs rayons spectraux respectifs p;
sont strictement inférieurs a 1. En considérant des poids positifs py,...,px, avec p; +
-+++ pr = 1, on peut définir la chaine de Markov (X;) se déplagant dans R?: & partir
de z, la chaine procéde en choisissant ¢ au hasard avec une probabilité de p; et en se
déplagant vers X1 = a;X; + b;. L'image fractale est obtenue en représentant le nuage
de points (X;) dans le plan a partir de d'un n arbitrairement grand afin de réduire l'effet
I'initialisation pour s’approcher de la distribution stationnaire. Pour plus de détails sur
les SREs fractales, voir Barnsley (2014). La classe des modéles AutoRégressifs (AR) avec
un bruit suivant un modéle ARCH introduite par Weiss (1984) constitue un exemple de

processus vérifiant (2.1) et qui ne sont pas des SREs. Un cas particulier de ces processus
est le Modéle AR(1) avec bruits ARCH(1) défini par :

X, =aX; 1 +/B+AX;m, te€Z, (2.3)

ou (m,) sont des variables aléatoires indépendantes et identiquement distribuées (iid),
a€R,>0et A>0. Le modéele (2.3) a été étudié dans Borkovec and Kliippelberg
(2001) et Borkovec (2000). D’autres exemples d’applications des IFS peuvent étre trouvés
dans Buraczewski et al. (2016, Examples 1.0.1 a 1.0.5) et dans Diaconis and Freedman
(1999).
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Fougere de Barnsley

Figure 2.1 — Fougere de Barnsley obtenue avec 10 000 points avec les paramétres (voir Barnsley
(2014, table 3.8.3 and figure 3.8.3)):

(o, a0, a9, 80) = ( (000 0:00 0.85 0.04 0.20 —0.26 —0.15 0.28
12438 = {1\ 000 016 /'\ —0.04 085 /'\ 023 022 )'\ 026 024

ebabab) = (00 ) (V6 ) (16 ) (03 )) =

(p1,p2,p3,pa) = (0.01,0.85,0.07,0.07)

1.1 Stationnarité

En raison de leur utilisation généralisée, les propriétés théorique des modéles (2.1) a
également suscité beaucoup d’intérét au cours des 50 derniéres années. Dans le cas univarié
des SREs (2.2) avec des innovations 8, = (A;, B;) € R? iid, l'existence de solutions
stationnaires a ¢té étudiée, entre autres, par Kesten (1973), Vervaat (1979), Goldie (1991)
et Goldie and Maller (2000). Ces derniers fournissent une caractérisation compléte du
probléme en proposant un ensemble de conditions nécessaires et suffisantes. Dans le cas
iid multivarié, les conditions les plus faibles sur 'existence de solution stationnaire sont
dues & Bougerol and Picard (1992b). Sous une condition d’irréductibilité du modéle, ils
montrent que si Elog™ Ag et Elog™ By sont finies, alors I'equation (2.2) admet une solution
strictement stationnaire et non anticipative (X,), c’est-a-dire que X, est o (0, k < t)-
measurable, si et seulement si

1 n .. 1
v:= lim —log(A{") = H;fi —Elog(||AnA,—1--- A4]]) <O, (2.4)
n>1n

n—-+oo N

ol AEO) =1et A,Ek) = ||AyA; 1+ Ay_ky1|| pour tout entier £ > 0. La preuve de ce
résultat repose en partie sur une autre propriété établie dans le méme article. Communé-
ment nommeée propriété de contraction de produit de matrices aléatoires, cette
propriété affirme que si (A;) est strictement stationnaire et ergodique, et que Elog® Ay
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est finie, alors
v(A) <0 ps. si Al =0 p.s. lorsque n — occ. (2.5)

Cette propriété, est couramment utilisée pour établir la nécessité de (2.4) pour l'existence
de solutions stationnaires de modéles de type GARCH.

Pour le modéle général (2.1), une condition suffisante d’existence de solutions station-
naires a été établie par Elton (1990, Théoréme 3) (voir aussi Bougerol (1993, Théoréme
3.1)). Comme dans le modéle affine en dimension finie, ce résultat lie le signe du coef-
ficient de Lyapunov ~(¥), défini ci-dessous, du processus (¥,;) a l'existence de solutions
stationnaires. La contraction de (¥,) est obtenue quand

1 n
~(T) := limsup — log A" < 0, (2.6)
n—+oo T
o Ay = A(Wy) = SUDP,, syere as —d(qlté?;zzit)(“)) avec A =1 et AP = AW, 00

W, 1) pour tout entier £ > 0. Pour le modéle (2.3), on peut noter que la condition
d’existence d’une solution stationnaire proposée par Borkovec and Kliippelberg (2001, Eq.
3.2) implique (2.6). Cependant, a notre connaissance, il n’existe pas de résultat établissant
la nécessité de 1’équation (2.6) dans le contexte général des IF'S (non affines) ou pour des
opérateurs affines ¥, en dimension infinie. Les modéles ARCH/GARCH fonctionnels
dans lesquels le processus de volatilité est une fonction constituent une nouvelle classe
de modéles dans lesquels W, est un opérateur affine dans un espace LP ou dans celui des
fonctions continues. Un processus GARCH fonctionnel d’ordres (1,1) (fGARCH(1,1))
dans C[0, 1] est une séquence (r;:t € Z) d’éléments aléatoires ou r; est une fonction,
(ri(u) : u € [0, 1]), continue sur [0, 1] satisfaisant:

ro=om, o, =0+ar; +Bo; =06+ /’)’t(-, s)or (s)ds =0+ v,001, (2.7)

ou (n, : t € Z) est une séquence iid de fonctions aléatoires dans C[0, 1], § est une fonc-
tion positive et les opérateurs intégraux « et 3, c’est-a-dire (az)(u) = [ a(u,s)z(s)ds
et (Bz)(u) = [ B(u, s)x(s)ds, sont positifs, c’est-a-dire qu'’ils font correspondre des fonc-
tions non négatives a des fonctions non négatives. v,(u, s) = a(u, s)n?_,(s) + B(u, s) est
un élément de C[0,1]2. On peut en effet remarquer que (o?) définie dans (2.7) vérifie
(2.1) avec F = C[0,1], 8; = m, et ¥, = 6 + ~,(-). Les f{GARCH ont été introduit par
Hormann et al. (2013) et Aue et al. (2017) pour modéliser la dynamique de la courbe
de volatilité conditionnelle en s’inspirant la structure des modeéles GARCH classiques.
Des conditions suffisantes d’existence de solutions stationnaires pour différentes classes
de ces modéles ont été établies dans Aue et al. (2017), Hormann et al. (2013), Kiihnert
(2020) et dans Cerovecki et al. (2019). Ce dernier article considére le {GARCH(p, ¢) dans
I'espace L*([0,1]). Dans ce contexte, les auteurs remarquent qu'un des principaux défis
pour établir la nécessité de (2.6) est d’étendre la propriété de contraction des matrices
aléatoires (2.5) aux processus d’opérateurs (¥,). A notre connaissance, cette extension
n’a jusqu’a présent pas été établie.
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1.2 Queue de distribution

Une propriété importante de la distribution marginale de la solution stationnaire (X)
de I’équation (2.2) nous vient de Kesten (1973). Sous des hypothéses relativement faibles,
il établit dans le cas iid du modéle univarié que la queue de cette distribution est une loi
a queue de puissance, dans le sens suivant :

P(|X]|>x) ~cx™®, x— oo, (2.8)

ol ¢ et a sont des constantes strictement positives. Ce résultat implique en particulier
que X a des moments d’ordre s < «. Les travaux de Goldie (1991) démontrent que la
propriété (2.8) peut étre généralisée aux cas iid du modele (2.1), sous certaines hypothéses
de régularité sur ¥; qui ne sont pas nécessairement limitées au cas affine (2.2). Les
travaux de Borkovec and Kliippelberg (2001) sur le modeéle (2.3) fournissent également
des résultats similaires. Plus généralement, on peut montrer dans le cas iid, sous (2.6) et
quelques hypothéses de régularité sur ¥q, que la solution stationnaire de (2.1) admet un
moment de petit ordre. Cette propriété de moment est souvent utilisée dans I'inférence
statistique des modéles (2.1) tels que ceux de type GARCH a innovation iid, voir Berkes
et al. (2003) ou Francq and Zakoian (2004) pour le GARCH(p, q) classique. Cependant,
lorsque (6;) est stationnaire et ergodique, mais non indépendante, nous démontrerons sur
une classe de modéeles GARCH & deux facteurs de volatilité que la solution strictement
stationnaire peut n’admettre aucun moment.

1.3 Motivation

Comme nous venons de le remarquer, les propriétés théoriques du modéle (2.1) restent
peu connues lorsque (6,) est non-iid ou lorsque le modéle affine (2.2) est considéré en
dimension infinie. Plusieurs classes de modéles de volatilité conditionnelle appartenant
a (2.1) s’insérent dans ces deux catégories. On peut citer les f{GARCH et les modéles
GARCH semi-forts introduits par Lee and Hansen (1994) et dans lesquels le processus
des innovations suit un processus a différence martingale non-iid. Les modéles GARCH
a deux facteurs de volatilité (GARCH-MIDAS) de Engle et al. (2013) constituent une
autre classe de modeéles IFS qui ne sont pas engendrés par une séquence iid. Un autre
exemple est donné par les modeles GARCH-X qui sont des IFS pilotés par une séquence
d’innovations et de covariables généralement non iid. Un exemple simple de GARCH-X
est donnée par le processus de la forme

e¢=om ol=wtae [ +Bor +rx=wt+TEi 1+ (ani | +B)or, (2.9)

ou x; = (X1, ..., x,) est un vecteur de r covariables exogenes telles que le volume quoti-
dien des transactions, des données macro-économiques ou d’autres données de marchées.
Dans ces modeles le processus de volatilité dépends d’un processus de covariables en plus
des carrés des rendement passés. Cette information supplémentaire permet d’avoir de
meilleurs prévisions du carré des rendements. Ces différents exemples motivent 1’étude
des équations SRE affines en dimension infinie ou des IF'S conduites par des innovations
non iid.
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2 Synthése des principaux résultats

Chapitre 3: Controle exponentiel de la trajectoire des IFS et application
aux modéles GARCH(p,q) semi-forts.
Nous savons, d’aprés Elton (1990), que s'il existe un élément ¢ dans F telle que:

Eln™ d(Ao(c),c) et EIn™ Ag sont finis, (2.10)

alors la condition (2.6) est suffisante pour garantir 1'existence d’une solution stationnaire
(X;) al'équation (2.1). Si (6;) est iid et que E(A,)" et Ed (¥y(c), )" sont finis pour un
certain » > 1 et w > 0, on peut montrer que la distribution marginale de cette solution
admet un moment de petit ordre, de la maniére suivante:

il existe s > 0, tel que Ed(X,¢)® < oo. (2.11)

Dans le cas ot 'hypothése d’indépendance n’est pas vérifiée, nous montrons par des
exemples que la propriété (2.11) n’est pas toujours vraie. Dans ce contexte, le résultat
principal de ce chapitre propose une propriété sur la trajectoire de la solution stationnaire,
plus faible que (2.11). L’énoncé complet de ce résultat se trouve dans le théoréme 3.2. 11
affirme que pour tout entier relatif ¢,

1. limsup ! Ind(Xiin,c) =0 et 2. limsup ! Ind(X;_,,c)=0 p.s. (2.12)
n—oo N n—soo N

Cette propriété peut étre interprétée comme un controle exponentiel de la trajectoire.

Nous avons donné des justifications sur le fait que le résultat en (2.11) implique (2.12)

mais que la réciproque n’est pas toujours vraie. La section 3 est entiérement consacrée a la

preuve de ce résultat. Une des distinctions entre les points 1. et 2. vient du fait que leurs

preuves utilisent des arguments différents. La preuve de ce résultat utilise des méthodes

nouvelles et repose en partie sur le théoréme sous-additif ergodique de Kingman (1973).

La section 4 du chapitre est dédiée a l'inférence des modéles GARCH(p, ¢) semi-forts
suivants:

€ = vhn,,
ht = wp + 2321 0501'6?_1- + Z?zl B()jhtfja Vte Z

ot Enf = 1, wop > 0,0 = 0 (i = 1,...,9) et By; = 0 (j = 1,...,p). Le modele
(2.13) est un cas particulier de (2.1) ou 6, = n,. Lorsque (n,) est iid, nous savons par
Berkes et al. (2003, Lemma 2.3) (voir aussi (2.11)) que la solution stationnaire (€;) du
GARCH fort admet un moment de petit ordre. La preuve classique de la consistance
et de la normalité asymptotique du Quasi-Maximum de Vraisemblance (QMV) de ces
modeéles repose sur cette propriété (voir Berkes et al. (2003) et Francq and Zakoian (2004)).
En se basant sur les travaux de Francq and Zakoian (2004), Escanciano (2009) relache
I’hypothése d’indépendance, mais en faisant I’hypothése de l'existence de moment, et
¢tablit la consistance du QMV des modéles GARCH semi-fort, c’est a dire quand (n,)

(2.13)
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vérifie:

(m,) est stationnaire et ergodique, 2.14)

n? est non dégénérée et E [nf | .7-},1} =1ps, 2
ou F;_; est la filtration engendrée par (€;,_1,€;_o,...). Cette hypothése est bien évidem-
ment plus faible que la condition d’iid. Une construction explicite d’'un tel processus qui
n’est pas réduit au cas iid est proposée dans I’Annexe 5.5 du chapitre. Comme nous
I’avons dit plus haut, nous savons que l'existence de ce moment n’est pas garantie sans
I'hypothése d'indépendance et donc en particulier sous (2.14).

En considérant que €1, . .., €, constituent une réalisation (de longueur n) du processus
GARCH semi-fort (2.13), pour la valeur 8y = (w, a1, ..., 04, F1, ... ,ﬁp)T du paramétre
appartant & un espace de parameétres @ CJ0, +o0 [x [0, 00 [PT?. Conditionnellement aux
valeurs initiales €, ..., €, &(2], e ,&ffp , la quasi-vraisemblance gaussienne condition-
nelle est donnée par

! 1 €’
L,(0)=L,(0;€,...,€)=|] —=exp <—%) ;
g \/2r6? 267

N ~ 2 , . P 2 -
ou les o} sont récursivement définies, pour t > 1, par 67 = 67(0) = w + Y.L, Oz,et ;

Bjat _;- Le QMV du parameétre 8y est défini comme toute solution mesurable 0 de

A

0, = argmaxL,(0) (2.15)
0cO

En utilisant la propriété (2.12), nous relachons 'hypothése de moment faite par Escan-
ciano (2009) en établissant la consistance forte du QMV (8,,) des modeéles GARCH semi-
forts, sans condition de moment sur €;. Ce résultat est basé sur les hypothéses classiques
considérées dans Francq and Zakoian (2004), ainsi que sur la condition supplémentaire
suivante,

log™ m, est intégrable. (2.16)

Cette hypothése est vérifiée par la plupart des distributions classiques. Elle empéche la
distribution marginale des innovations d’avoir trop de masse autour de 0.

La preuve de la consistance suit les étapes i) — iv) de celle du théoréme 2.1 de Francq
and Zakoian (2004), avec des modifications importantes sur les arguments utilisés. La
propriété (2.12) est utilisée dans I'étape i) a la place de I'existence d’'un moment de petit
ordre pour montrer la négligeabilité asymptotique des valeurs initiales dans la définition
de la quasi-vraisemblance. De nouvelles techniques, ainsi que la condition (2.16), sont
utilisées dans les étapes #ii) et iv) pour contourner le fait que le critére standard limite
basé sur l'espérance du critére ne peut pas étre défini sans l’existence d’'un moment de
petit ordre.

La normalité asymptotique du QMV des GARCH semi-forts reste difficile a établir
en raison de ’absence de moment. Nous discutons & la fin du chapitre des raisons pour
lesquelles cette propriété pourrait ne pas étre vérifiée.

Chapitre 4: Inférence des modéles GARCH-MIDAS sans moment de petit
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ordre.

Les récents développements dans la littérature en économétrie financiére suggerent
que la dynamique de la volatilité pourrait étre mieux décrite par des modéles & plusieurs
composantes. Engle and Lee (1999) ont introduit un modéle de volatilité & composantes
additives, a long et & court terme. Ces derniéres années, une classe de modeéles ap-
pelée GARCH-Mixed Data Sampling (MIDAS), proposée par Engle et al. (2013), a gagné
en popularité pour sa capacité a capter les dépendances entre les rendements bour-
siers quotidiens et les variables explicatives a basse fréquence (par exemple, mensuelles,
trimestrielles). Au lieu de modéliser la volatilité conditionnelle comme la somme de deux
composantes, ces modeéles spécifient la volatilité comme le produit de composantes a long
et & court terme. Une composante GARCH a variance unitaire (a court terme) fluctue
autour d’une composante a long terme a variation temporelle réguliére qui est fonction de
variables explicatives, comme par exemple dans le modéle (2.17) et la figure 2.2 ci-dessous.
Pour des approches similaires, voir également les travaux de Conrad and Engle (2021),
Conrad and Schienle (2020) et leurs références.

Euronext 100

Volatilités a court et a long terme

— Long-terme
— Court-terme|
LU B LU

=

2008-01-21 —
2008-10-06 =
2020-03-12 —

Figure 2.2 — Décomposition des volatilités a court et long terme pour l'indice boursier
Euronext 100 de 1999-12-31 a 2023-02-16 avec le modele GARCH-MIDAS avec N = 22
et @ = 250.
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La structure probabiliste, ainsi que les propriétés statistiques des modéles GARCH-
MIDAS, n’ont pas regu beaucoup d’attention jusqu’a présent. Des résultats préliminaires
peuvent cependant étre trouvés dans Wang and Ghysels (2015). L’objectif du chapitre
4 est d’aborder certaines questions économétriques et statistiques importantes liées & de
tels modeéles. Dans le chapitre, nous considérons le modéle a deux facteurs suivant :

{ re=me, TE=1+0a9>%, i(9)RVi s, (2.17)

_ 2 _ 2 2
€ = 0Ty, Op = Wo + Qp€;_q + 50‘77%1

ot (1) est iid avec En? = 1, ag > 0, wy > 0, ag > O et By > 0, RV; = SV 'r2 , est une

(2
volatilité réalisée sur une fenétre glissante, ) et N sont des entiers positifs, ¥ est un réel
et les p;(+) sont des pondérations positives. Engle et al. (2013) suggére par exemples les

pondérations Béta:

o _t-i@+npe
SO {1 —5/(Q + 1)}t

La figure 2.2 ci-dessous montre la décomposition de la volatilité du Euronext 100 de
1999 a 2023 avec le modéle GARCH-MIDAS a pondération Béta avec N = 22 et () = 250
et du parameétre (wy, o, Bo, ag, Po) estimeés a (0.0285,0.128,0.815,0.056, 2.932).

La paramétrisation utilisée est légérement plus générale que celle de Engle et al. (2013).
En effet, nous n’imposons pas nécessairement que la volatilité & court terme o; soit a
variance finie. Nous nous sommes intéressés en premier lieu a la stationnarité du modéle.
I'équation (2.17) peut étre réécrite sous la forme autorégressive suivante :

@i(Yo Yo € (0, 00) (2.18)

ry = At'r't,1 + bt, (219)

our = (rf,....17 1) b = (6,0,_,) et Ay = A(e) est une matrice de type com-
pagnon. On peut remarquer que (2.19) est une SRE engendrée par le GARCH (1,1)
(non-iid) (e;).

En supposant que agsup;<;<, @i(¥) > 0, on garantit que la volatilité¢ & long terme
n’est pas dégénérée. Sous cette hypothése, et avec d’autres conditions de régularité, le
premier résultat du chapitre établit que le modeéle (2.17) admet une solution strictement
stationnaire si et seulement si 7(A) < 0. De maniére plus surprenante, nous montrons
que cette solution stationnaire vérifie:

Elri|* =00  pour tout s > 0. (2.20)

Ces résultats montrent que les trajectoires des rendements satisfaisants le modéle ne
sont pas explosives mais peuvent étre trés erratiques, contrairement aux processus de type
GARCH pour lesquels au moins de petits moments existent. Cette propriété entraine de
formidables difficultés pour I'inférence statistique. Wang and Ghysels (2015) ont étudié la
distribution asymptotique du QMV du modéle sous 'hypothése que E|r;|® est finie pour
un certain s > 0. Comme nous 'avons remarqué plus en haut, c’est une hypothése clé
pour montrer la consistance et la normalité asymptotique du QMV des modéles GARCH.
A notre connaissance, les propriétés asymptotiques du QMV n’ont jamais été établies
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sans une hypothése qui implique 'existence de moment. Dans notre cadre, la propriété
(2.20) montre cependant que cette condition de moment n’est pas vérifiée. Une des prin-
cipales motivations du chapitre 4 a été d’établir les propriétés asymptotiques des modeles
GARCH-MIDAS avec la difficulté induite par (2.20). Sous quelques hypothéses, relative-
ment faibles, de régularité et d’identifiabilité, nous montrons la consistance forte du QMV

~

(6,,) ainsi sa normalité asymptotique:
(0, — 60) 5 N(0, (5, — 1)),

ou Kk, = Enf et J:=F (%Vg%(eo) th(Oo)> est une matrice définie-positive. La
preuve de la consistance utilise en partie la propriété de controle (2.12), établie dans le
chapitre 3, et quelques arguments utilisés dans la preuve de la consistance du QMV des
GARCH semi-forts. La preuve de la normalité asymptotique consiste & établir une suite
de propriétés, comme ’existence et I'inversibilité de la matrice de covariance asymptotique
J, en tenant compte de ’absence de moments.

Le chapitre 4 présente également des procédures de test pour détecter 'existence d’une
composante de volatilité a long terme, c’est-a-dire I’hypothése nulle Hy : ag = 0. A cause
de la non-identifiabilité du paramétre 9 sous H,, les tests habituels tels que le test de
Wald peuvent avoir des distributions asymptotiques non standard. Ainsi, nous avons
envisagé deux approches. Dans la premiére, nous avons fixé ¥ a4 une valeur 9*. Dans
cette approche, des statistiques de test avec et sans bootstrap sont proposées. Dans la
seconde, nous avons estimé tous les parameétres par QMV, y compris 1, et avons estimé
la valeur critique du test de Wald résultant par une procédure de bootstrap basée sur les
résidus. La validité théorique de la premiére méthode est établie dans la proposition 4.2
et le théoréme 4.3.

Durant nos simulations, nous avons observé que la seconde méthode sur-performe la
premiére, dans laquelle la puissance des tests dépend de la valeur de 9¥*. Nous avons aussi
remarqué que les distributions asymptotiques des statistiques de test de la premiére méth-
ode sans bootstrap ne n’est pas bien approximées a échantillon fini. Conrad and Schienle
(2020) ont proposé un test du modéle basé sur le score, ne nécessitant pas de bootstrap.
Cependant, une hypothése de moment est faite sur le processus de rendement et de plus,
la paramétrisation utilisée dans leur article n’implique pas de probléme d’identifiabilité.

Le chapitre 4 se termine par des applications numériques: nos simulations montrent
que l'absence de moment, n’a pas trop d’impact sur l'estimation des paramétres a
échantillon fini. Les applications réalisées sur les indices boursiers NASDAQ, CACA40,
DAX et HSI confirment la présence de volatilité a long terme sur ces processus.

Chapitre 5: Sur le taux de croissance des processus super-additifs et la
stabilité des f{GARCHs dans C°.

Ce chapitre est divisé en deux grandes parties. La motivation principale de la premiére
est de proposer une extension de la propriété de Kesten (1975) sur les marches aléatoires a
termes stationnaires et d’en déduire la propriété de contraction des produits d’opérateurs
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aléatoires. Le résultat de Kesten affirme que si (z;) est un processus stationnaire, alors

liminfn™'S, >0 p.s. dans {S,, := sz — oo lorsque n — oo}. (2.21)
k=1

Ce résultat démontre que la marche aléatoire ne peut diverger vers l'infini a un taux plus
petit que n. La propriété (2.5) de Bougerol and Picard (1992h), établie sous des condi-
tions supplémentaires d’ergodicité et d’intégrabilité, est une extension partielle de cette
propriété aux produits de matrices aléatoires. Le résultat de Kesten (1975) est souvent
exprimé en utilisant des notions de la théorie ergodique. Pour partager cette expression,
rappelons brievement quelques définitions et notions de base de la théorie ergodique que
nous allons utiliser, ainsi qu’'une petite revue de la littérature pour contextualiser.

Un systéme dynamique mesuré est un quadruplet (2, B, 1, T') ot (€2, B, i) est un espace
probabilisé et T" : €2 — ) est une application mesurable qui préserve u, c’est-a-dire
que pour tout A € B, u(T-'(A)) = u(A). Un ensemble I € B est dit invariant si
wu(IAT=Y(I)) = 0. Nous dirons que T est ergodique si pour tout ensemble invariant I,
pu(l) =0ou u(l) =1.

Un processus (S,,),>1 est dit super-additif si pour tout n, s, S, +Ss0T™ < S, s p.s.
Ces processus ont été introduits par Hammersley and Welsh (1965) et 1'une des con-
tributions les plus importantes sur les propriétés asymptotiques de ces processus est le
théoréme ergodique sous-additif de Kingman (1973) qui établit la convergence presque
stire de (n™1S,),, sous 'hypothése d’intégrabilitée de S~. Ce résultat généralise le théoréme
ergodique trés connu de Birkhoff sur les processus additifs, c.a.d quand pour tout n, s,
S,+S;0T" = 8,5 p.s. Le résultat de Kesten (1975) dit que si (S,,), est additif alors

liminfn 'S, >0 p.s. dans {S, — oo,n — 0o} . (2.22)

Cette propriété reste vraie méme lorsque S| n’est pas intégrable. Ce résultat a trouvé
de nombreuses applications en théorie ergodique et a été principalement précurseur dans
I’étude de la récurrence des marches aléatoires stationnaires.

L’un des principaux résultats du chapitre 5, établi dans le théoréme 5.1, généralise
la propriété (2.22) au processus super-additif. Nous montrons dans ce théoréme que si
(S.,)n est super-additif alors

liminfn 'S, >0 p.s. dans liminf{S, > 0}. (2.23)

Ce résultat est établi sous des conditions plus faibles que celles de Kesten, qui suppose que
(S,,) diverge vers 'infini. En effet, il suffit de remarquer que lim inf{.S,, > 0} est I’ensemble
des w € Q tel que la (S,,) est positive pour n assez grand. Notre preuve repose sur des
techniques nouvelles, basées sur des concepts de la théorie ergodique, et différe de celles
utilisées par Kesten et Bougerol-Picard. Différentes versions plus fortes de la propriété
(2.23) sont proposées a travers les théorémes 5.2 et 5.3 ainsi que les corollaires 5.1 et 5.2.
Elles requiérent toutefois des conditions supplémentaires. Nous discutons également de
la nécessité et de 'optimalité de ces hypothéses tout au long du chapitre. Ces résultats
stipulent que ’hypothése que la suite (S,,) soit strictement positive a partir d'un certain
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rang peut étre affaiblie dans certains cas. Dans le théoréme 5.2, nous montrons que si F
est un sous-ensemble invariant de {sup,,cy S, > 0} Nliminf{S,, > 0}, alors

liminfn™'S, > 0 p.s. dans E. (2.24)
n—oo
En remarquant que {2 est invariant, une conséquence directe de ce résultat est que si,
presque stirement, la séquence (S,,) prend au moins une valeur strictement positive et
qu’elle est positive (ou nulle) a partir d’un certain rang alors liminf n=1S, > 0 p.s.
Soit A € B et E’ 'ensemble des éléments de A tels que la séquence (S, : T" € A) est
positive a partir d’un certain rang. le théoreme 5.3 établit que si S| est intégrable, alors

limn™'S, >0 p.s. dans E'.

Cette propriété montre, sous ’hypothése d’intégrabilité, que dans A, la condition de
positivité ne fait intervenir que les valeurs de (S,,) avec des indices dans (n : T™ € A).
Nous déduisons de ces résultats que si T est ergodique et que (A,),>1 est un processus
positif sous-multiplicatif, c’est-a-dire que (—InA,,) est un processus super-additif, alors
pour tout A € B tel que p(A) > 0:

L si p(liminf,{A, < 1}) > 0, alors v := limsup, n~tlog A, est presque siirement
constante dans R et v < 0 p.s.,

2. si Elog® A est finie et, presque stirement, la séquence (A,, : T" € A) est strictement
inférieure a 1 a partir d’'un certain rang, alors

v =limn 'logA, =limn 'ElogA, = infn 'Elog A, <0 p.s.

L’énoncé de ce résultat se trouve dans le corollaire 5.3. En remarquant que (A(()n))

est un cas particulier de processus sous-multiplicatif, ces propriétés généralisent la pro-
priété (2.5) aux produits d’opérateurs aléatoires et, plus généralement, aux processus
sous-multiplicatifs ergodiques.

La deuxiéme partie du chapitre 5 se concentre sur I’étude de la stationnarité des SREs
a coefficients positifs dans l'espace F' des fonctions continues & support compact. Le
modéle s’écrit :
= 3(m,2) 42 = 0 (), 22

ot (m;) un processus strictement stationnaire ergodique dans F. En notant F.
I'ensemble des fonctions positives de F, §(-) et v(-) sont des fonctions mesurables re-
spectivement & valeurs dans F; et dans l’espace des opérateurs linéaires continus qui
envoient les éléments de F, dans F,. Cette classe de modéles regroupe la plupart des
modéles de volatilité conditionnelle, y compris les f{GARCH continus.

Le résultat principal de la deuxiéme partie est le théoréme 5.4. Il établit, sous des
hypothéses relativement faibles, des conditions nécessaires et suffisantes d’existence de
solutions positives strictement stationnaires a l’équation (2.25) en reliant le signe du
coefficient de Lyapunov (W) de (¥,) a cette existence. La preuve de ce résultat utilise
les propriétés de contraction établies précédemment et des arguments nouveaux pour
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surmonter d’autres difficultés techniques, que nous détaillerons dans le chapitre.

Nous déduisons dans le corollaire 5.5 des conditions nécessaires et suffisantes
d’existence de solutions positives strictement stationnaires pour les modeéles f{GARCH
dans C([0, 1]) introduits par Aue et al. (2017) et Hormann et al. (2013).

Ces résultats sont, a notre connaissance, les premiers de ce type a établir la nécessité
de (2.6) dans l'existence de solutions stationnaires pour les modéles de type (2.25) lorsque
la dimension de F' n’est pas finie. Plus de discussions a ce sujet sont apportées dans ce
chapitre.
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1 Introduction

Since Kesten (1973), the theoretical properties of the Stochastic Recurrence Equation
(SRE) X; = A; X1 + B, has received much attention. This equation gathers a large
class of classical econometric processes such as the GARCH and ARMA models, and
their numerous variants. Brandt (1986) proposed a sufficient condition of existence and
uniqueness of a strictly stationary solution in the case where (A;, B;); is stationary and
ergodic. Under an irreducibility condition, Bougerol and Picard (1992b) established that
this condition is also necessary when the sequence (A;, B;) is independent and identically
distributed (iid). The probabilistic properties of the stationary solution of SRE model in
the iid case are well known. In the scalar case, Kesten (1973) showed that P(+X; > z) ~
c+x”% as x — oo for some positive constants c+. A thorough study of SRE models, in
particular their tail behavior, is presented in Buraczewski et al. (2016). The SRE model
is the affine mapping particular case of the so-called Stochastic Iterated Function Systems
(IFS) X = W (0, X¢—1). Most of the theoretical properties established for SRE models
(stationary, tail properties) can be extended to IFS equations.

One important application of SREs in time series analysis is the study of the station-
arity properties of GARCH processes. Assuming iid innovations, Bougerol and Picard
(1992a) deduced from Brandt (1986) a necessary and sufficient condition for the existence
of a unique stationary solution of a general GARCH(p, ¢) model. In recent years, the iid
assumption on the innovations has often been replaced by a less restrictive conditional
moment assumption (the model is then called « semi-strong » GARCH). See Escanciano
(2009) for the classical GARCH(p, ¢) model, Francq and Thieu (2019) and Han and Kris-
tensen (2014) for GARCH-X models. The GARCH-MIDAS models of Engle et al. (2013)
constitute other class of IFS models which are not driven by an iid sequence. Another
example is given by GARCH-X models which are IFS driven by a-generally non iid—
sequence of innovations and covariates. This motivates studying IF'S equations driven by
non iid innovations.

However, strict stationarity generally does not suffice for establishing the asymptotic
properties of estimators, such as the Quasi-Maximum Likelihood Estimator (QMLE).
To our knowledge, all existing works on the QML inference of IFS models assume the
existence of a small-order moment of the observed process. Surprisingly, however, the
strictly stationary solutions of IF'S equations with non-iid innovations may not admit any
finite moment.

The aim of this chapter is to establish that the stationary trajectories of the IFS
equations enjoy an exponential control property. We also show that this property is
sufficient to establish the consistency of the QMLE of semi-strong GARCH models.

The rest of the chapter is organized as follows. In Section 2 we present our main
result and Section 3 is devoted to its proof. Section 4 investigates the estimation of the
semi-strong GARCH(p, ¢) model. Complementary proofs are displayed in the appendices.
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2 Stochastic IFS without moments

Let (F, &) be a measurable space and (F,d) a complete and separable metric space
(Polish space). Let (6;),., be a stationary and ergodic process valued in E, and let
U : E x F — F a function such that  — W (0, ) is Lipschitz continuous for all § € FE.
Let

A= ATy = sup d (W (1), ¥y (22))

r1,22€F,x1#£T2 d(xl’xQ)

where ¥, = U(0,,-). Let AEO) =1 and AET) =AW,0---0W; . y) forall r > 0.

Consider the IFS
-Xt =v (et,Xt_l) = \I’t (-Xt—l) s for all ¢ e’z (31)

A solution (X) of (3.1) is said to be causal if, for every ¢, X, is o (0, k < t)-measurable.

Under a slightly different form, the following result has been established by Elton
(1990, Theorem 3) and Bougerol (1993, Theorem 3.1), see also Straumann and Mikosch
(2006, Theorem 2.8) and the review of Diaconis and Freedman (1999).

Theorem 3.1. Assume the following conditions hold: (i) there exists a constant ¢ € F
such that Eln™ d (®y(c),c) < oo, (i) Eln" Ay < co and (iii) limrﬁoo%lnA[(f) <0 a.s.
Then there exists a unique stationary (causal and ergodic) solution (X;),., to Equa-
tion (3.1).

Moreover we have:

forall teZ, d(Xyc) Z d(¥,_n(c),c) < oo a.s. (3.2)

Note that (In A(()T))r>1 is a sub-additive sequence. Therefore, by the sub-additive er-
godic theorem of Kingman (1973), the limit in assumption (iii) exists.

For the reader’s convenience and because we have not been able to find Equation (3.2)
exactly under this form, we provide a proof for Theorem 3.1 in the appendix.

In L, space with iid driven sequences, a consequence of theorem 3.1 is that the sta-
tionary solution is L,-approximable, see Hormann and Kokoszka (2010, Definition 2.1).
This property is often used to study the theoretical properties of non-linear time series,
such as the IFSs in (3.1), see Hormann and Kokoszka (2010), Berkes et al. (2009), Hor-
mann (2008). However, in the general setup this property is difficult to apply because
this L,-approximable notion requires the existence of higher-order moments.

Remark 3.1. If (8,) is iid, it is possible to prove in particular cases, including the affine
mapping, that d(X;,c) has a power-law tail, see Buraczewski et al. (2016, Theorem
5.3.6). More generally, it can be shown that, under the conditions of Theorem 3.1, there
exists s > 0 such that Ed(X,¢)® < oco. This small moment property is often used in
the statistical inference of IF'S models, for example, to prove the consistency of GARCH
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models and its derivatives (see Berkes et al. (2003) for GARCH model and Francq et al.
(2018) for EGARCH and Log-GARCH model). If (8,) is not iid, the examples below show
that the stationary solution may not admit any small-order moment.

Example 3.1. Let § € (0,1) and let (z¢)iez be an iid non negative real process with

Ez, = 1—;5 and Ez? = oo. The process (0;), defined by 0, = > 16z for all t € Z

satisfies EQ; = % and is such that for all t € Z, ®, =1+ o, H§:1 0:_j1 ewists a.s.
Moreover (x;) is the unique stationary solution of

ry = Otmt_l + 1, te”Z. (33)

Note that x; > Hleet_jﬂ > 5k(k;1)(zt_k+1)k for all k € N*. For all s >

sk(k—1)

0, we thus have Ex§ > ES— 2 (20)** = oo for k such that sk > 2.

The previous example is simple but probably a little artificial. We now give an example
of commonly used econometric models, for which it was recently proven that the strictly
stationary solution does not admit any finite moment.

Example 3.2. Consider the following GARCH-MIDAS model of Engle et al. (20153)

Ty = \/TtO¢),

Ty =a+bry, (3.4)

2
2 _ i1 2
o, =l—a—-f+a—+poi,

where (M) is a zero mean and unit variance iid sequence, « >0, 3 >0, a+<1,a>0
and b > 0. Noting that €, := om, is « GARCH process, we see that (1) follows a SRE

Ti=a+br; | =a+ (be; )T

driven by a non iid sequence €. It can be shown that, when b < 1, the process (r;) is
strictly stationary but, when 1, has a unbounded support, then

for any s >0, El|ry® = oc.

See Proposition /.1 for the proof of the previous result.

We now state our main result, which provides a way to circumvent the non existence
of small order moments for models such as those of Examples 3.1 and 3.2. Section 4 will
be devoted to the statistical study of a class of econometric models where the existence
of moments is not guaranteed.

Theorem 3.2. Under the conditions of Theorem 3.1, if (i) P(d(X1,¢) = 0) < 1 then:
forall teZ
1. limsup + Ind(X 4, ¢) =0 and 2. limsup 2 Ind(X,_,,¢) =0 a.s.

n—oo n—oo

The condition (i) of the theorem means that d(X, ¢) is not almost surely zero. In the
case where d( X, ¢) = 0 a.s., it is easy to see that the limit superior become —co. Theorem
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3.2 can be interpreted as an exponential control of the trajectory of the stationary solution.
Note that the property EIn* d(X,¢) < oo (a weaker condition than the existence of a
small-order moment) implies the results of Theorem 3.2 (see Appendix 5.2). However,
the converse is false, see Example (a) of Tanny (1974). Note that in the general case of a
stationary and ergodic sequence (Z;) such that P(Z; > —o0) > 0, we show in Appendix
5.3 that: 1 )

(i) limsup ﬁZn =0 a.s. or (4) limsup EZ" =00 a.s. (3.5)

n—o0 n—oo

Theorem 3.2 shows that the sequence (d(Xy, ¢)); belongs to case (i) of Eq. (3.5).
As a consequence of the previous theorem, we obtain the following result. Its proof is
provided in Appendix 5.4.

Corollary 3.1. Under the conditions of Theorem 3.2, almost surely

1
lim — In" d(X;,n,c) exists and is equal to 0,
and if EIn™ d(X 1, ¢) < oo then
: 1 . :
lim — Ind(X 4, c) exists and is equal to 0. (3.6)

3 Proof of the main result

To show Theorem 3.2, we first define a SRE which bounds the distance between X,
and c.
Note that, by Kingman (1973),

1 1 1
lim ~InA{” = inf —~EInA{? = lim ~Eln A} a.s., (3.7)

r—oo T reN* r r—oo I

so by i) of Theorem 3.1 there exists a positive integer ry such that Eln Aém) <0. It
can be shown that E [ln ((A(()TO) + u))] ‘2 Eln A(()TO), see Straumann and Mikosch (2006,

proof of Theorem 2.10). Therefore 3 up > 0, In(ug) < 7 :=E [ln <(A((]T°) + uo)ﬂ < 0.
We thus have, for all v € [y, 0),

E [m (5@)(1\5{0) + uo)ﬂ — v (3.8)

with 0(v) = exp(v —79) > 1.
Now, for any integer p € [0,y — 1], define (a,.(v), b, +)iez by

ro—1

a0 (v) = S(0)(Af, + o), and by = 14~ AL A (Wypp k(c),0).
k=0
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By Assumptions (i) and (i7) of Theorem 3.1 and by the elementary inequality
In (3" a;) <lnn+>." In"a; for non-negative {a;};_, , we have Eln* a,;(v) < oo
and Eln"b,,(v) < oo. Therefore, in view of (3.8), there exists a unique stationary
solution (z,+(v)): to the equation

2pt(V) = ap(v)2pi-1(v) + by . (3.9)

Note that by Brandt (1986)

zp:(v) = Z (1:[ a,p,t_i(v)) byi_g (3.10)

By iterating Equation (3.9) we have

zpt :Z (Ha’l’t i ) pt—q t <Hapt z )Zpt (n+1)( ), Vn > 1. (3.11)
q=0 0

By (3.10) and (3.11), ([T @p,t—i(v)) Zpi—(n+1)(v) is the remainder of a convergent series,
hence it almost surely converges to 0. i.e.

(1:[ "’p,tk(v)> Zpi-n(v) "0 as. (3.12)

We now give a technical lemma linking the processes (X;) and (2,+(v));.

Lemma 3.1. For allv € [y,0), 0<p<ry—1, andt € Z, we have

d( X rottp, €) < 2p1(V) a.s. (3.13)

Proof of Lemma 5.1. For any integer n, let ¢ and m denote the quotient and remainder
of the Euclidean division of n by ro: n = gro +m. By sub-multiplicativity we have

AE” (H Agmzm) tml;m, with HAtmz)ro -1

For all ¢ € N, we then obtain

(g+1)ro—1

ro—1
S A (W, (c).0) < (H Af‘i%) A A (W gy (€ ).

n=qro m=0
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It follows that

oo (g+1)ro—1

S AMA(W (0)0) =" D> AW, (0),0)
n=0 q=0 n=qro
[e'e] ro—1
<H At 17'0) At (3r0d(‘11t*q7”0*m(c)>c)'
q:O i=0 m=0

Since 6(v) > 1 and ug > 0, we obtain

g—1 a ro—1
(m)
(H a’p:t’i(v)> pit—q = <H rot—l—p z'ro) A(rot—l—p)—qrod (\Il("“ot“‘l’)—qm—m(c)’ C) :
1=0

=0 m=0

In view of the last two inequalities, together with (3.10) and (3.2), we have

[e.e]

zpt Z rot—i-p T0t+P n( ) ) > d(Xroter?C)?

which proves (3.13). O

Let Aff denote the set of affine maps from R into R. An element f,, of Aff can be
written as
fap(z) =az+b, x€R, where (a,b) € R?
Lemma 3.2. Let us define a function ® from Aff to Ry by ®(f,,) = |a| + [b].
1. Forany x, |z[ 21, [£,5(2)] < B(fo)lxl

2. If |d| > 1 then ®(f,,0 foa) < P(fup)P(fea)-

Since Lemma 3.2 is elementary, its proof is skipped. Note that ® is the 1-norm in the
vector space of affine maps.

Lemma 3.3. Forallp € {0,...,ro—1} andt € Z, lettmg Qp(t) = rot + p, we have
1. limsup%ln d(X g, t+n):¢) <0, 2. hmsup Ind(Xg,@-n),c) <0 as.

n—oo n—oo

In the previous lemma we distinguished cases 1. and 2. because their proofs are
different.

Proof of Lemma 3.5. We start by proving Point 1. Let f, be the random affine map
defined by

fi(@) =ay(v)x + by,
for all z € R. Define also the maps

7t,n:ftoft—1”'oft—n+1 and Ct,n:ft+noft+n—1"'oft+1



34 CHAPTER 3. IFS AND SEMI-STRONG GARCH

for all (t,n) € Z x N*. Note that,
Con = Venm Zpt(V) = Ve (Zpr-n(v)) a0d 2140 (0) = Co(2pi(v) as. (3.14)
Since b,; > 1, by 2.) of Lemma 3.2
(Uin)n = (0 P(yy))n and (Win)n = (0 P(Cp))n (3.15)

are sub-additive sequences. By already used arguments, we have
Elln®(v,)| = E[In®(¢; 1) = E|In ®(f,)| < oco. In view of (3.14) and 1. of Lemma 3.2,

1 1 1
limsup —In 2,44, (v) < limsup —w;,, + limsup —Inz,;(v) a.s.
n—00 n—oo N n—oo N

Because z,,(v) does not depend on n, we have limsup X In z,,(v) = 0 a.s. Therefore

n—oo
: 1 :
limsup —In z, 4, (v) < limsup —w;, a.s. (3.16)
n—oo n n—oo n

Since for any n € N*, w;, and w;, have the same law, by (3.15) and Kingman

sub-additive ergodic theorem,

1 1
lim sup —w,,, = limsup —Eu;,, = limsup —u;,, a.s. (3.17)
n—oo N n—oo 1 n—oo N

On the other hand, in view of (3.11), we have by the positivity of the coefficients,

CI)(’Yt,n—&—l) = Z (H ap,t—i(”)) bpi—q + (H a'p,t—i(v)> e zp,t(v) a.s.

q=0 \i=0

Therefore

lim w,,, =Inz,:(v) as.,
n—oo

which entails 1
limsup —u;,, =0 a.s. (3.18)
n

n—oo

By (3.16), (3.17) and (3.18) we get

1
limsup —Inz,,(v) <0 a.s.,
n—oo I

which implies, by Equation (3.13), Point 1. of the lemma
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For the second point, by (3.13), (3.12), (3.8) and the ergodic theorem, we have

1 1
limsup — Ind(X g, t-n), c) <limsup —Inz,; ,(v)
n

n—oo T n—00
1 n—1
<l —1 —i —n
<o ([0
1 n—1
~ it (H “”’t"'@))
< —-va.s.
For all v € [v9,0). Letting v — 0~ we get the result. 0

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2.  Forall t € Z, let t' € Z and p/, 0 < p’ < ry — 1 such that
t = rot’ + p’. Note that

{t+kkeNyc ] {ro(t'+k) +pkeN}

0<p<ro—1

The previous relation and the first point of Lemma 3.3 imply that

1 1
limsup — Ind(Xypn,c) < max (lim sup 0.0+ Ind(X g, #4n); c))

n—soco N 0<p<ro—1 n—00 Qp

1
< (C max (lim sup — In d(XQp(t/+n),c)) <0 a.s.,
n

OSPSTO -1 n—o00

for C' = maXop<p<rg—1 (supnzo m) .
We now show that this inequality is reduces to an equality. Let us argue by contradic-

tion. Suppose that P <lim sup%ln d( X 1n,0) < 0) > (. Since lim Sup%hl d(Xiin,c) is

n—o0 n—oo

almost surely constant by ergodicity, it follows that lim sup % Ind(Xn,c) < K <0 a.s.

n—oo

for some constant K. Thus, d(X ¢4y, c) < exp(Kn) from some (random) ng a.s. This im-
plies that (d(Xt4n,¢)), converges to 0 a.s. This contradicts the fact that (d(Xin,c)), is
strictly stationary and not almost surely equal to zero. This concludes the proof of the
first point of the theorem.

Without using a proof by contradiction, we could conclude by showing the inequality
in the opposite sense. We argue as follows. By the condition (i) of Theorem 3.2, we have
P(Ind(X4,¢) > K) > 0 for some real K. It follows from Birkhoff’s ergodic theorem that

n’121{1nd(xt+mc)zf<} — P(Ind(X1,¢) > K) >0 a.s as n— 0.
k=1
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Thus, almost surely, the set {n: Ind(X,,c) > K} is not finite. This implies that

1 1
limsup — Ind(X 4y, ¢) > liminf —K = 0.

n—oo 1 n—o0o N

The second point of the theorem follows with similar arguments. O]

4 Inference for semi-strong GARCH(p,q)
Consider the GARCH (p, ¢) model
€ = \/Enw

ht = wy + 2321 0501'6?71- + Z?zl B(thtfj; Vte Z

where wy > 0,a0; 20 (i =1,...,q) and By; > 0 (j = 1,...,p). When (n,) is iid, Model
(3.19) is a standard strong GARCH, for which the statistical inference has been thoroughly
studied. In particular Berkes et al. (2003) and Francq and Zakoian (2004) studied the
(gaussian) QMLE under the stationarity of (€;), and Jensen and Rahbek (2004) explored
the asymptotic behavior of the QMLE in the explosive case. There are alternative methods
to inference for GARCH-type models, such as the Laplacian QMLE, which differ from
the standard QMLE. A paper by Bardet et al. (2017) shows that the asymptotic theory
of the Laplacian-QMLE works well in a wide range of econometric models, including
GARCH models. In the stationary framework, Escanciano (2009) proved the consistency
and asymptotic normality of the QMLE without iidness for (n,), but had to assume that
Ele:|* < oo for some small s > 0. The aim of this section is to relax this extra moment
assumption.

(3.19)

4.1 Property of the strictly stationary solution

Let
ann; -0 aogni Poni o Bopmy won;
A, = Iy O(g-1)xp and b; = Og—1
Qo1 s Qg Bot e 50p wo
Op—1)xq I, 0p—1

with standard notations.

Model (3.19) is a special case of (3.1) where we use the notations X; =
(,...,€ oo, b2 . hE ) 0= (A by), U(0,2) = Az +b, and d(z,y) = ||z — y| for
any norm || - || on RPT9. Remark that A,ET) = |A A1 .. A

In the sequel, we do not assume that (n,) is iid, we only assume that it is stationary
and ergodic. If Eln* ? < oo, Theorem 3.1 applies with ¢ = 0,,,. Therefore, in view
of (3.7), there exists a unique non-anticipative strictly stationary solution (€;) to Model
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(3.19) if
(A) = inf “E(In|AoA 1... A i)
Y = el 7 0AA-1-.-A_prq1
1
= lim —In||AgA_1... A_, 1] <0 as.
r—o0 T

By Theorem 3.2, it follows that the strictly stationary solution of (3.19) satisfies

lim sup S Ine, =0, limsup ! Ine; , =0 as., (3.20)
n—oo 1 n—oo T
for all t € Z.

In the GARCH(1,1) case, it is easy to check that v (A) = Eln(agim? + Bo1). For
general GARCH(p, q) of the form (3.19), it seems impossible to compute ~y (A) explicitly.
The issue has been discussed in several papers, see Bougerol and Picard (1992a, page 117)
and Buraczewski et al. (2016, pages 148 and 149). Both papers recommend estimation
by computer simulations.

4.2 QML estimator

Let {€:};_, be a sample of size n of the unique non-anticipative strictly stationary
solution of Model (3.19). The vector of parameters

0= (017"'a0p+q+1)T = (waaly"'aaqvﬁla"wﬁp)’r

belongs to a parameter space ©® C|0, 400 [x [0, 00 [PT?. The true value of the parameter is
unknown and is denoted by 8y = (wo, g, - - - , @0, Bo1s - - - » ﬁop)T. Conditionally on initial
values €g,...,€ 4, Ogy - -, &ffp, the Gaussian quasi-likelihood is defined by

n

1 €?
L.(0)=L,(0;¢€q,...,€,) :H exp <—T‘f_2) ,
¢

=2
1\ 2o

where the &7 are defined recursively, for ¢ > 1, by

=6i=...=67 =c (3.21)

with ¢ = w or €. The standard estimator of the GARCH parameter 6 is the QMLE
defined as any measurable solution 6,, of

0, = argmax/L,(0) = argminin(e) (3.22)
6cO® 6cO®
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where 1,(8) = n=* 320" 4, and {, = ,(8) = ;—% +1Iné?.

Let Ag(z) = D1 ;2" and By(z) = 1 — Z§=1 B;z9. Tt is not restrictive to assume
that ¢ > 1. By convention Bg(z) = 1 if p = 0. Let F,_; be the o-field generated by
(€11, €2, ...). To show the strong consistency, the following assumptions will be made.

A3.1 ) € © and O is compact.
A3.2 v(Ap) <0 and VO € O, Z§:1 By < 1.

A3.3 (n,) is stationary and ergodic, n? has a non-degenerate distribution with 4)
E[n? | F,-1]=1as. and ii) Elnn? > —oo.

A3.41fp >0, Ag,(z) and By, (z) have no common root, Ag, (1) # 0, and ag,+ By, # 0

Remark 3.2. Assumptions A3.1, A3.2 and A3.4 are standard (see Francq and Za-
koian (2004) for comments on these assumptions). Condition A3.3 i) is obviously less
restrictive than the iid assumption with finite second-order moments. In Appendix 5.5,
we provide an explicit example of semi-strong GARCH based on a non-iid martingale
difference innovation satisfying A3.3 ¢). This assumption was first used by Lee and
Hansen (1994) for the inference of GARCH models. Escanciano (2009) established the
consistency of the QMLE under this assumption, with a small-order moment condition
on the observed process instead of our assumption A3.3 7). Note that the latter as-
sumption precludes densities with too much mass around zero, but is satisfied by most
commonly used distributions. It is also weaker than the regularity condition on the 7,
law (limy_ot P {n2 <t} =0, for some p > 0) used by Berkes et al. (2003) .

Assumption A3.2 implies that the roots of By (2) are outside the unit disc. Therefore,
by the second inequality of (3.20), we can define (o?) = {?(0)} as the (unique) strictly
stationary, ergodic and non-anticipative solution of

q p
ol =w+ Z i€l + Z ﬁjafﬂ-, Vt, (3.23)
i=1 j=1

see Appendix 5.6.
Note that o2 (6y) = h;. Let

n 2
ln(e) =1, (9, €ns €n—1--- 7) =n"' thv by = et(g) = % + IHO'?.
t=1 t

We are now able to establish the strong consistency of the QMLE.

~

Theorem 3.3. Let (8,,) be a sequence of QMLE satisfying (3.22), with any initial con-
dition (3.21). Then, under A3.1-A3.4, 6,, — 6y a.s. as n — oo.

1. Knowing that E (In*(n?)) < oo by A3.3 i), to establish A3.3 i) it is therefore sufficient to
prove that E (In"(n})) < co. Using E (In"(n})) = [;° P(1n+(n%) > s)ds = [;° P(ln(%) > s)ds =
I P(# > exp(s))ds = [, P(n} < exp(—s))ds, we have under the condition of Berkes et al. (2003) that

1
P(n? < exp(—s)) = o(exp(—us)) when s — oo, which gives the result.




4. INFERENCE FOR SEMI-STRONG GARCH 39

Remark 3.3. Escanciano (2009) established the asymptotic normality of the QMLE under
the assumption that a small-order moment exists. This moment condition is mainly used
to justify the existence of the asymptotic covariance of the QMLE. To the best of our
knowledge, the asymptotic normality has never been shown without an hypothesis that
implies the existence of a small-order moment. In some cases, the asymptotic covariance
matriz may not exist without a finite moment of sufficiently large order (see Francq and
Zakoian (2007, Section 3.1)). The study of the asymptotic distribution of the semi-strong
GARCH without any moment condition is left for future work.

Proof of Theorem 3.3. The proof relies on the following intermediate results.

i) lim sup [1,(8) — 1,(0)| =0, a.s.

n—o0 0cO®
ii) if 02(0) =02(6y) a.s., then 6 =8,
’LZZ) if 6 7é 00, then E{fl(e) — 61(00)} > 0,
iv) any 6 # 60, has a neighborhood V(@) such that
lim inf ( inf  1,(0%) — in(eo)) >0 a.s.

n—00 6*cV(0)NO

To prove i), note that Francq and Zakoian (2004, Equation (4.7)) show that almost
surely,

sup ln(e)—In(H)‘\{sup 2}071 Zp {Sup }Cn Zp,

0cO oce W

for some constants C' > 0 and 0 < p < 1 (independent of n). The point i) thus follows by
Cesaro lemma, since the first inequality of (3.20) implies that p'e? — 0 a.s. as t — oo:

hinj;jp % In pket2+k <Inp+ h?j}ip % Ine’, =Inp<O0.
The proof of i) uses the same arguments as those of step i) in Theorem 2.1 of Francq
and Zakoian (2004).

Now let us turn to the proof of ii). For strong GARCH models it is known that
El1(6y) is finite. This may not be the case in our framework. This is why we give an
alternative proof of iii). We will first establish the existence of E{¢,(6) — (1(8y)}. Let
W(0) = 02(0y)/02(0) and, for K > 0, A = [K~!, K], write

(,(0) — €,(80) = g(Wi(6), 1) Iw, 0)cax + 9(Wi(0), ) L, (0)c ac,

where, for x > 0,y > 0, g(z,y) = —logz + y(z — 1). Introducing the negative part
r~ = max(—x,0) of any real number z, we thus have
(:(0) — £(80) = g(Wi(0), n7)Iw,0rear — {9(We(0), 1))} T, oyeas . (3.24)

Noting that W;(@) is F;_;- measurable and by A3.3 i), E[g(W,(0),n?) | Fii1] =
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g(W,(0),1), the expectation of the first term in the r.h.s. of (3.24) is well-defined and
satisfies

Elg(Wi(0),m7) lw,)cax] = Elg(W(8), 1)1, 6)ea ] =0

since g(x,1) > 0 for any x > 0, with equality only if = 1. By 4i) we have that W;(0) = 1
a.s. if and only if 8 = 8,. We thus have, by Beppo-Levi’s theorem,

lim E[g(W(0), ;) 1w, 0)car) = Elg(Wi(6),1) lim Dy, g)ca,]
K—oo K—oo

To deal with the expectation of the second term in the r.h.s. of (3.24) we use the fact
that for y > 0, g(z,y) > g(1/y,y). It follows that

—E [{g(Wt(O)m?)}_ ]IWt(O)eA%] > —E [{g(l/n?,n?)}_ ﬂWt<e>eA§<} —0

as K — oo,

because, by A3.3 i), E [{g(l/nf,nf)}_] < oo and thus the convergence holds by

Lebesgue’s dominated convergence theorem. This completes the proof of Step iii).
Now we prove iv). As for Step iii), the possible non existence of E/;(0), requires a
modification of the standard proof. For any 8 € ® we have

L,(8) = 1,(60) > 1,(8) — 1,(80) — [1.(8) — L,(6)] — [1.(80) — 1.(80)|.
Hence, using i)

lim inf ( inf

n—00 6 eV ()N @

n—00 0*cVv(6)N @ n—oo 6cO®

:liminf( inf (3.25)
n—00 6*ecV ()N @

Zliminf( inf ) 2 lim sup sup [1,(0) — 1,(0)|
Vi

For any € € © and any positive integer k, let V4 (0) the open ball of center € and radius

1/k. We have

liminf( inf) RACHES™ (00)> >h£f_l)gjlfnze* inf ~ £,(0%) —(,(8). (3.26)

n—00 0" eV ()N eVi(0)NO©

By arguments already given, under A3.3 ii),

- (e*e&ﬁz)m@@(@*) - ftwo))_ < E(g(1/n}.m)) " < oo.
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Therefore E (infg-cy, (o0 £:(0%) — £4(80)) exists in RU {+oc}, and the ergodic theorem
applies (see Francq and Zakoian (2019, Exercises 7.3 and 7.4)). From (3.26) we obtain

liminf( inf ln(G*)—ln(00)>2E( inf ét(e*)—gt(eo)).

n—00 0%V (0)NO 0"V, (0)N©

The latter term into parentheses converges to £,(6) — ¢,(68y) as k — oo, and, by standard
arguments using the positive and negative parts of
infocv, 0)ne €+(0") — €:(80), we have that

Jim E (e*e‘gl(g)me ((07) — ft(HO)) =E{6(6) — (:(60)},

which by i) is strictly positive. In view of (3.25), the proof of iv) is complete.

Now we complete the proof of the theorem. The set © is covered by the union of
an arbitrary neighborhood V(6y) of 8y and, for any 8 # 6, by neighborhoods V' (8)
satisfying ). Obviously, infg-cv(9,)ne 1,(6") <1,(8y), a.s. Moreover, by compactness
of ©, there exists a finite subcover of the form V(6,),V(01),...,V(0x). By ), for

1 =1,..., M, there exists n; such that for n > n,,

inf 1(0")>1(0 5.
e*e\}?ei)me n(07) > 1.(60), a.s

Thus for n > max;—1__(n;),

inf 1,(0") > 1,(0y), a.s.

,,,,,

from which we deduce that §n belongs to V (6,) for sufficiently large n.

]
5 Appendix: Complementary Proofs
5.1 Proof of Theorem 3.1
Proof. For allt € Z and n € N, let
Xt,n =V (0t7 thl,nfl) (327)

with X, = c¢. Note that

Xt,n - wn (0t7 atfla ) 0t7n+1)

for some measurable function v, : (E", Bgn) — (F,Br), with the usual notation. For
all n, the sequence (X,),., is thus stationary and ergodic. If for all ¢, the limit X; =
lim,, o X, exists a.s., then by taking the limit of both sides of Equation (3.27), it can
be seen that the process (X}) is solution of Equation (3.1). When it exists, the limit is
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a measurable function of the form X; = (0y,0;_1,...)? and is therefore stationary and
ergodic. The existence of lim,,_,. X, has been proven by Elton (1990). He showed that,
a.s., the sequence (X tm)neN is a Cauchy sequence in the complete space F'.

By iterating equation (3.27) we have

Xt,n =W;o0---oW;_, (C)

If follows that
d (X X)) < AP Vd(®,_iy (0),0) .

For n < m, we thus have

m—n—1
d (Xt,m7 Xt,n) S Z d (Xt,mfk; Xt,mfkfl)
k=
m—n—1
< S ATV i ()0 (3.28)

Note that

. 1/ 1 ,
lim sup In (Al(fj)d (T (c) ,c)) " —lim sup — <ln AY +1nd (¥, (c) ,c)) <0

j—00 j—00

under (i) and (ii), by using Kingman’s sub-additive ergodic theorem (see Kingman (1973))
and Francq and Zakoian (2019, Exercises 4.12). We conclude, from the Cauchy criterion
for the convergence of series with positive terms, that

D AT (0).0)
j=1

is a.s. finite, under (i) and (ii). It follows that (X,),y is a.s. a Cauchy sequence in F.
The existence of a stationary and ergodic solution to Equation (3.1) follows.

Assume that there exists another stationary process (X;) such that X; = ¥, (X;_,).
For all N > 0, we have

d(X, X7) < ANV (X v, X y) - (3.29)

Since AN — 0 as. as N = oo, and d (Xi—n, X;_y) = Op(1) by stationarity, the
right-hand side of Equation (3.29) tends to zero in probability. Since the left-hand
side does not depend on N, we have P (d (X, X;) >¢) = 0 for all ¢ > 0, and thus

2. For the measurability of X, one can consider X, ,, as functions of (6;,0:_1,--- ) and argue that
in metric space, a limit of measurable functions is measurable.
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P(X: = X7) = 1, which establishes the uniqueness. In view of Equation (3.28), we have

d(X;,c) <Y AVd(®,_;(c),c)

7=0

and Equation (3.2) follows. O

5.2 Proof of the comment of Theorem 3.2
For all € > 0, since P(Ind(X,¢) > €) = P(In* d(X 1, ¢) > ¢), then

ZP "I d(X 4m, €) ZP “'Intd(X1,c) > €)
g/ Pt 'In* d(X1,c) > €)dt
0

= / P(e'In"d(Xq,¢) >t)dt
0
=e¢ 'ElnTd(X4,c) < co.

It follows by the Borel-Cantelli lemma that limsupn~'Ind(X;,,,c) < 0 a.s. The second
result is obtained by the same arguments.

5.3 Proof of Equation (3.5)

The condition on Z; implies that P(Z; > K) > 0 for some real K. It follows from
Birkhoff’s ergodic theorem that n=' Y7 _ 11z, 5xy — P(Z; > K) >0 a.s. as n — oc.
Thus, almost surely, the set {n: Z, > K} is not finite. This implies that lim sup %Z =

n—oo

limsup £Z,1;z,>k} a.s. Since ~Z,1ix<z,<op — 0 a.s as n — oo, it follows that
n—o0

limsup £ Z, = limsup + Z; a.s. Therefore, Eq. (3.5) follows from Tanny (1974, Theorem

15?*}00 n—o0
5.4 Proof of Corollary 3.1

We have for all n > 1,

sup max (0, Ind(X 1k, ¢)) = max(0,sup Ind(X i, ¢)).

k>n k>n

It follows that

1 1
limsup — In" d(X 4, ¢) = max(0, limsup — Ind(X ., ¢)) = 0 a.s.
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Since, in addition, In* d(X,,,c) is non-negative, lim,, % In" d(X 4, c) exists and is
equal to 0 a.s. We get lim,, %anr d(X;_n,c) by the same arguments. which gives the
first part of the corollary.

For  (3.6), we have Ind(Xiin,¢) = InTd(Xim,¢) — In"d(Xsyn,c). Since
ﬁanr d(X;_pn,c) converges a.s to 0 and ﬁln_ d(X;_n,c) also converges a.s to 0 as
|n| — oo (see for instance Francq and Zakoian (2019, Exercice 2.13)) then |le| Ind(Xiyn,c)

converges a.s to 0 as |n| — oo.

5.5 Construction of a semi-strong GARCH

We first define a non iid martingale difference process. Consider a sequence (@;);ez of
iid random variables with standard normal distribution. Since for all z € Ry, x;v/22—2 ~
N (—2,2z), using the moment-generating function of the Gaussian distribution, we have

E lexp(xV/2z — 2)| = 1. (3.30)

If (z¢) is a positive process, independent of (x;), we also have Enp? = 1, where n? =
exp (wt\/Q_zt — zt). This is the case if, for instance, z; follows a causal AR(1) model of
the form z; = ¢z; 1 + u, with ¢ € (0,1) and wu, iid with positive variance. It is easy to
see that Cov(z1, zg) # 0, and thus

Cov {In(n}), In(n5) } = 2B{x1/Z1@0\/20} — E{m1v/22120}
— E{Zlmo\/Q_Zo} + E{leo} — E21E20
= Cov{zy, 20} #0.

It follows that (n?) is not iid. We now define (n,). Let (r;) be an iid sequence of
Rademacher variables (uniform distribution on {—1, 1}), independent of the two sequences

(;) and (u;). We thus define (n,) by n, = ri\/n?.
Let (F;) be the canonical filtration of (n,), i.e. F; = o (n;, k <t). Define a second

filtration H; = o (Tg, Tpr1, Ups1, k < t). Since F; C H; and r; is independent of H;_, we
have

Eln, | Fior] =E{E[n, | Hia] | Fra}
= E{exp([x:v2z; — 24 /2)E vy | Hia] | Fio1}
=0.
Define a new filtration Z, = o (g, Tg, urs1, k < t). Since F; C I;, z¢ is Zy_1-
measurable, and @, is independent of Z; i, by (3.30) we have
= [773 | Ft—l} =E{E [77? | It—l} | Fi-1}
= E{E [exp(mt \V/ 221} — Zt) | It_1:| | E—l} =1.

We thus have shown the existence of a non degenerate unit martingale difference
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sequence, that is a stationary and ergodic sequence (mn,) satisfying the conditions

E[n/] <oo, En|Fa]=0, E[n;|F]=1(n7) arenot iid.

It is then easy to define a semi-strong GARCH with innovations (n,) .

5.6 Proof of the existence of a unique strictly stationary solution
to (3.23)

Rewrite (3.23) in vector form as

2 2
o; =c¢ + Baj 4,

where
02'% W+Z 1a1€t1 Bi B2 - By
=] 7|, e= , B= 1 ool :
a%,'pﬂ 0 0 o 1 0

| = 0. By Assumption

ol

we have by the second inequality of (3.20) that limsup,,_,, = In|lc
A3.2, we deduce that

| <O.

0l

1 1 1
hrnsup—lnHB” 4|l <limsup —In ||B"]| + limsup — lan
n

n—oo n—o0 n—oQ

From this, we deduce by the Cauchy rule that the series &7 := >0, Bl converges
almost surely. We note that (67) is a strictly stationary, ergodic and non-anticipative
solution of (3.23).

To show the uniqueness, assume that there exists another stationary process (o2*) of
(3.23). For all n > 0, we have ||g?x — 67| = ||B"a? ,x — B"6; | < |B"|||le?,*|| +
| B"||||6;_, - Since ||B™|| — 0 a.s. as n — oo and ||gt7n*|| and ||o‘f7n\| converges in law
by stationary, Slutsky s theorem entails that ||@?* — &7 converges in law to 0 as n — oo.
Since ||@?* — &72| does not depend on n, we conclude that ||g?+ — 67|| = 0 a.s.
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1 Introduction

Despite their ability to capture a number of empirical characteristics of financial re-
turns, the restrictive features of « one-factor » classical GARCH models are well known.
The parameter 5 in a GARCH(1,1) has to be close to 1 to ensure high volatility persis-
tence, but this may induce undesirable restrictions on the marginal distribution of the
returns. Moreover, parameters governing the short-run effect of shocks (« in the usual
GARCH(1,1) parametrization, as in the equation of o2 in Model (4.1) below) also impact
the long-run response through the coefficients (a3%) of the asymptotic expansion of the
volatility as a function of the past squared returns. This lack of flexibility, in particular
the necessity to disentangle short and long run impacts of shocks, has motivated the intro-
duction of alternative volatility specifications in the econometric and finance literatures.
Additive component GARCH models were introduced by Ding and Granger (1996), and
Engle and Lee (1999) but, in recent years, multiplicative component GARCH processes
have attracted more attention. In such models, called GARCH-mixed-data sampling
(GARCH-MIDAS), the volatility is decomposed into the product of two factors which
may receive different interpretations, generally in terms of « short run » (high frequency)
and « long run » (low frequency) components. To cite just a few recent references, the
reader is referred to Engle et al. (2013), Wang and Ghysels (2015), Amado and Terésvirta
(2017), Conrad et al. (2018), Conrad and Engle (2021).

While GARCH-MIDAS volatility models are widely used in applied works, some of
their theoretical properties remain unexplored. An exception is the paper by Wang and
Ghysels (2015) who consider stationarity and ergodicity, as well as asymptotic theory
for the Quasi-Maximum Likelihood (QML) estimator, under assumptions we will further
discuss. In this chapter, we consider three issues: first, the existence of small-order mo-
ments for the strictly stationary solution of the two-component volatility model, second,
the consistency and asymptotic normality of the QML estimator, and third, testing the
existence of a long-run volatility. The first two issues are closely related because all ex-
isting proofs of the consistency and asymptotic normality of QML estimators in standard
GARCH models rely on the existence of small-order moments. The third issue was also
considered by Conrad and Schienle (2020) who proposed a score-based test in a general
multiplicative component model.

One characteristic of most commonly used GARCH-type models is that strict station-
arity entails the existence of a small-order moment. Hence, even if stationary solutions
(r¢) of standard GARCH models are generally characterized by heavy-tails (a desirable
property for the modelling of financial returns), there exists a sufficiently small power
s (depending on both the volatility parameters and the innovations distribution) such
that E|r;|* < oco. In a sense, this means that such one-factor volatility models are too
constrained, as the conditions ensuring stability of the dynamics produce unexpected re-
strictions on the marginal distributions. By contrast, the models we consider in this paper
have the surprising property of admitting strictly stationary solutions that do not have
any power moment (unless a very restrictive condition is imposed on the errors distribu-
tion). This heavyness of the tails of the marginal distribution entails formidable statistical
difficulties for proving the consistency and asymptotic normality of the QML estimator.



2. STATIONARITY AND EXISTENCE OF MOMENTS 49

Indeed, the existence of a small moment for the observed process is crucial to derive the
asymptotic properties of the QMLE in most GARCH-type models (see for instance Francq
and Zakoian (2019, Section 7.4)). In particular, contrary to the standard GARCH case,
the proof of the consistency cannot rely on the existence of a limiting QML criterion.
To circumvent the absence of moments, we use a property of exponential control of the
trajectories which will be detailed below.

The rest of the chapter is organized as follows. In the next section we study the
existence of strictly stationary solutions to the GARCH-MIDAS volatility model and their
moment properties. Section 3 considers the estimation by QML of the model parameters.
In Section 4 we propose tests for the existence of a long-run volatility. Two approaches are
considered to handle the problem of unidentified parameters under the null and bootstrap
procedures are proposed. Numerical and empirical results are presented in Section 5.
Section 6 concludes. Proofs are given in the Appendix.

2 Model and an unexpected property of the stationary
solution

We study in this chapter a class of GARCH-MIDAS processes (r;) defined by

{ T = Tt€, 7‘3 =14ag ZZQzl @z(ﬂO)R%—“ (41)

_ 2 2 2 9
€ = 0y, OF = wo + ey + Boos

where oy is the positive square root of o7, (1;) is an iid sequence with En? = 1, ag > 0, wy >
0,ap > 0and By > 0, RV, = vagol r?_, is a rolling window realized volatility, @ and N are

positive integers, and p;(1y) are positive weights, depending on some d-variate parameter

Y. For the specification of the functions ¢; used to smooth the realized volatilities Engle
et al. (2013), under a slightly different parametrization ', suggest exponential weights

191'

0
D e (0.00) (4.2)
Z]Q:l /196

vi(o)

or Beta weights

{1—i/(Q+1)}0!
> {1-j/(Q+ 1)}t

1. Engle et al. (2013) considered a unit-variance GARCH(1,1) equation, 67 = 1 — ag — B + ape?_; +
Boo?_, for the short-run volatility and introduced an intercept m in the equation of 72. This choice is
guided by the necessity to identify short- and long-run volatilities. The alternative identifiability condition
we adopt here is a unit intercept, m = 1, in the long-term volatility dynamics. This constraint is not
restrictive, whereas imposing a unit-variance for the short-run volatility requires cvg+ 58y < 1, which is not
necessary for strict stationarity. Note that Engle et al. (2013) also allow for an intercept in the equation
of ry.

2. In these examples, the weight parameter ¢, is scalar, and therefore is not shown in bold.

i) = Yo € (0,00). 7 (4.3)
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The standard GARCH(1,1) is obtained for ap = 0. For ag > 0, the volatility component
72 is often referred to as the long-run volatility (for large q), while the short-run volatility
o2 is a function of the normalized (long-run detrended) squared returns 72 /72 ..

Model (4.1) can be written under the following form, which will be used throughout,

{ Ty = Ty€y, Tt2 =1+ Qo Zgzl (ﬁi(ﬁO)T?fi’ (44)

_ 2 _ 2 2
€ = O, Op = Wo + Qe + 50%71

where the ¢;(19)’s are nonnegative, with at least one stricly positive coefficient. Model
(4.4) is the model we focus on, and is more general than the GARCH-MIDAS for which
we have ¢ = N + @ — 1. Without loss of generality assume that > 7 | ¢;() = 1.

Next, we turn to the existence of strictly stationary solutions to Model (4.4).

Let §; = agn? + By. Under the assumption

A4.1 v:=Elogd <0,
the GARCH(1,1) equation in (4.4) admits the strictly stationary, non anticipative and

ergodic solution '
€t = Oy, 0t2 = Wy (1 -+ Z H(St]> . (45)

i=1 j=1
Note that A4.1 is less restrictive than the condition ap+ 5y < 1 used in Wang and Ghysels
(2015).
It is known that, for r > 0,

E(0?") < oo if and only if E6} < 1. (4.6)

Note that oy, and thus ¢;, cannot admit moments of any order when 9§, is not almost surely
bounded by 1, i.e. when

A4.2 P(6, > 1) £ 0.
Indeed, for ¢ > 0 such that P(d; > 1+ ¢) > 0, we have

Edf > (14+¢)"P(6y >141) = o0

as 7 — oco. Note that A4.2 is satisfied when 7? is not bounded and aq # 0.7 It follows
from (4.6) that E(67") = oo for r large enough. This is a well-known property dating back
to Kesten (1973), see also Mikosch and Starica (2000).

Write (4.4) in matrix form as

r, = A+ by, (4.7)

3. This assumption is therefore very mild. Moreover, it can be verified in practice by estimating
P65 > 1).
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where ¢y = (r7,...,77 1), by = (€,0,_,)" and A; = A(e) is a companion-like matrix:
app1(Bo)e; ... aoPe-1(F0)e;  andy(Fo)e;
1 . 0 0
A = : : :
0 .. 1 0

Noting that, under A4.1, the sequence (A, b) is strictly stationary and ergodic, Equation
(4.7) admits, by Brandt (1986, Theorem 1), the strictly stationary solution

= b + Z (H At+1—j> b (4.8)
i=1 \j=1

under the assumption

A4.3 v4 <0, where v4 = limg_ .o %Elog |ArAr_1... Aq]| <O.
Note that the top-Lyapounov exponent 4 involved in A4.3 is well defined in [—o0, c0)
because Elog® || A;|| < oo, in view of (4.9) below. Wang and Ghysels (2015) obtained
explicit conditions entailing A4.3 for particular sub-models. The next assumption guar-
antees that the long and short-run volatilities 7, and o, are not degenerate.

A4.4 ay > 0 and ag > 0.

According to Lemma 2.3 in Berkes et al. (2003), the strictly stationary solution €; of the
standard GARCH(1,1) equation satisfies

Ele:|* < oo for some s > 0. (4.9)

The following proposition shows that, surprisingly, this feature does not extend to the
solution (r;) of the GARCH-MIDAS model (4.4).

We start by proving the following lemma, of independent interest as it concerns the
GARCH(1,1) process (€).

Lemma 4.1. Assume A4.1-A4.2. For all integer k > 2, all real numbers p; > 0 and
integers ij, j =1,...k, there exists K € (0,00] such that

Eler—i [ €—ir—is | - - [€—iy—mip [P* = KE[eq [P T77P5
The right-hand side, and thus the left-hand side, of the inequality is infinite when py +
-+ + pg 18 large enough.

Proposition 4.1. There exists a strictly stationary and ergodic solution (r;) to (4.4) if
and only if both A4.1 and A4.3 are satisfied. If in addition A4.2 and A4.4 hold, this
solution does not admit any moments, in the sense that

Elri® =00  forall s > 0. (4.10)

Note that Wang and Ghysels (2015) showed that E|ry|*> = oo, under slightly more
restrictive assumptions on the distribution of 7, (see their Proposition 3.9).
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It

0 200 400 600 800 1000

Figure 4.1 — Simulation of r, = /1 4 0.1r?_,¢; with ¢, = /14 0.05¢2_;m;, n; ~ N(0,1).

Remark 4.1. Without Assumption A4.2, the GARCH-MIDAS process may admit mo-
ments at any order. Indeed, suppose that §; € [0, 1] with probability 1. It follows that,
for any s > 0, E|6;|* < 1 using (4.5). Since || is bounded when §; < 1, both o2 and €?
admit finite moments at any order. If in addition € is bounded with probability 1 (which
holds when |§;] < & < 1 with probability 1), let A the upper bound of the matrices A,
componentwise. If the spectral radius of A is less than one, then Assumption A4.3 is
satisfied and, by (4.8), r? admits moments at any order.

Example 4.1 (Trajectory of a process without any finite moment). Figure /.1 displays a
simulated trajectory of the simplest version of Model (4.4), which we know, from Propo-
sition /.1 that it is a strictly stationary process without any finite moment. Other sim-
ulations have been carried out, but the absence of any finite moment is, to say the least,
difficult to detect on the trajectories.

3 QMLE without moment assumption on the observed
process

In this section, we study the estimation of the true parameter value 6, =
(wo, g, Bo, ag, 95) in Model (4.4), assuming the functions ¢; are known and such that
7 ¢i(-) = 1. We start by introducing a consequence of the strict stationarity which
will replace the existence of a small moment in the proof of the consistency and asymptotic
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normality (CAN) of the QMLE.

3.1 Exponential control of the trajectories

Wang and Ghysels (2015) studied the asymptotic distribution of the QMLE of the
GARCH-MIDAS under the assumption that

E|r¢|® < oo for some s > 0. (4.11)

This is a key assumption to show the CAN of the QMLE of GARCH (see Berkes et al.
(2003) and Francq and Zakoian (2004)). To the authors’ knowledge, the consistency of the
QMLE has never been shown without an assumption that implies (4.11). Proposition 4.1
however entails that (4.11) cannot be assumed in our framework.

To circumvent the failure of the small-order moment assumption, we will use the
following Lemma, which is a consequence of Theorem 3.2.

Lemma 4.2. Under A4.1 and A4.3, the strictly stationary solution of (4.4) satisfies

1 1
lim sup — log 7“t2+k =0, limsup—logr?, =0 a.s. (4.12)

forallt € Z.

This property can be interpreted as an exponential control of the trajectories. It is
easy to see that (4.11) implies (4.12)," but the converse is false.”

Assume that the observations ry,...,r, constitute a realization (of length n) of the
two-factor GARCH process defined by (4.4), for the value 6, of the parameter. Let © a
compact subset of (0,00) x [0,00)% x [0,1) x R and assume 6, € ©. For initial values

T0y--.,T—q, 04, and for @ € O, the conditional Gaussian quasi-likelihood is given by
- 1 r?
L(0)=L,(0;r1,....m) = || —— Tt
( ) ( 771, T ) ];11: 27T7~'t25't2 exXp ( 27:1525'752) )

where the 72 and 67 are recursively defined, for ¢ > 1, by

q
7~—t2 = 7~'t2(0) =1+ az qbi(i?)rf_i,
i=1

2

r

~2  ~2 o ~2 ~2 ~2 _ 't
0y = 0y (9) =w+tae_+po;,, €= 72
t

4. See for instance Exercise 4.12 in Francq and Zakoian (2019).

5. Let a sequence (X;) of identically distributed random variables such that E|X;| < co but EX}? = oco.
Then r, = elXt1/2 satisfies (4.12) because k~'logr?,, = k~'[X;1x| — 0 a.s. (see for instance Exercise
2.13 in Francq and Zakoian (2022)). On the other hand (4.11) is not satisfied because E|r|* = Ees1X¢l/2 >
1E(s|X4]/2)? = oo, for any s > 0.
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A QMLE of 6y is defined as any measurable solution of

—~ - 1 e - -
0, = arg max L, (0) = arg min — Z (:(0) := arg minl, (),
4SC) 6c®@ N 0c®

7 _r? ~2 ~92
where £,(0) = =tz + log 77 + log 6.
t-t

3.2 Asymptotic properties of the QMLE

To establish the strong consistency of the QMLE, we need the following additional
assumptions.

A4.5 The support of the law of n? contains three distinct points.

A4.6 (¢i(ﬁ))i:1...,q = (@(’190))2-:1”,7(1 = U= 190.
A4.7 Elogn? > —oo0.

For the volatility of a standard GARCH to be non-degenerate, we know that the
support of the law of 7, must contain three distinct points. To show the identifiability
of the GARCH-MIDAS, we need the slightly stronger assumption A4.5. This is due to
the fact that the volatility of this model can be written as a polynomial of order 2 in
n?_, (instead of order 1 in the GARCH case), with coefficients belonging to the sigma-
field generated by {n,,u <t —2}. Assumption A4.6 is another identifiability condition
which is satisfied, in particular, for the exponential weights ¢;(¥) = 9/ Z?:l 9" (except
when ¢ = 1). The assumption is also satisfied for the Beta weighting schemes (4.3) (with
obvious change of notation). Assumption A4.7, precluding densities with too much mass
around zero, is satisfied by most commonly used distributions. It is not required for the
consistency of the standard GARCH (see Berkes et al. (2003), Francq and Zakoian (2004))
but it is introduced here to circumvent the absence of any moments (Proposition 4.1),
which constitutes the major difficulty of the proof of the next consistency result.

Theorem 4.1. Under Assumptions A4.1, A4.3-A4.7, we have
/O\n — 60y, a.s.asn — oo.

We now turn to the asymptotic normality. We introduce the following additional
assumptions.

A4.8 6, € ©, where © denotes the interior of ©.
A4.9 k, := En} < oco.
Denote by Vg (resp. Vzg,) the partial derivative operator (resp. the second-order

derivative operator) with respect to @ (resp. € and €'). Similarly, we denote by Vy, the
partial derivative with respect to any component 6; of 6.

A4.10 The functions ¢;(-), for i =1,..., ¢, admit continuous second-order derivatives
and the matrix [Vygo1 (o), ..., Vog,(9o)] has full-row rank.

A4.11 Fori=1,...,q, either ¢;(-) = 0 or ¢;(¥g) # 0.
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Assumption A4.8 and A4.9 are also made in the standard GARCH case. Note that
A4.10 and A4.11 are satisfied in the cases of exponential and Beta weights. The next
result establishes the asymptotic normality of the QMLE. Let V() = 02(0)73(9).

Theorem 4.2. Under the Assumptions of Theorem 4.1 and A4.8-A4.11,
Vi(8, — 80) 5 N0, (r, — 1)J7Y),

where

7 = (g Va0 Vi) (4.13)

18 a positive definite matriz.

Despite the absence of moments for the return process (which complicates the proof)
the form of the asymptotic variance is thus the same as in the standard GARCH model
(with obviously a multiplicative component volatility in the definition of J).

4 Testing the existence of a long-run volatility

To test the existence of a long term volatility component, i.e. the null hypothesis Hy :
ag = 0, usual tests such as the Wald test may have non standard asymptotic distributions
due to the presence of the unidentified parameter 9 under the null. Indeed, it is known
that in similar situations (see e.g. Figure 1 in Francq et al. (2010)) the Wald, score and
Likelihood-Ratio (LR) test statistics do not follow the standard distributions ® under the
null. To solve the problem, we consider two approaches. First, we fix the unidentified
parameter to some value 9*. This gives rise to test procedures which have standard, 2
or chi-bar-square, asymptotic distributions under the null, but whose power properties
depend on the arbitrary choice of 9¥*. We thus consider a second approach consisting
in estimating by QMLE all the parameters, including the unidentified parameter 1, and
estimating the critical value of the resulting Wald test by a residual-based bootstrap
procedure. Note that the identifiability problem is not present in the framework of Conrad
and Schienle (2020), in which a score-based test, not requiring the bootstrap, is developed.

4.1 Fixing ¢

The first approach relies on the auxiliary model

re=me, T =14a0y 1 @9, (4.14)
€ = O, O‘t2 = Wy + Oé()E%_l + 600-?_17

where 9" is given, and the unknown parameter is 6y = (wo, ao, So, ag)’. Let En = an(ﬁ*) =
(Wn, O, B, @y)" be the QMLE of 8y. Denote also by 85 = (0, a¢, )" the QMLE of a

6. x2 for the score, chi-bar-square for the Wald and LR statistics due to the positivity constraints on
the estimator of ag.
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standard GARCH(1,1) model. In other words, 5; = (5'0,0)’ is the QMLE of 6y under
Hy. Let e; be the i-th column of the 4 x 4 identity matrix. Let also 7, = Tt/\/f/g(On),
where V;(0) = 52(0)77(0), and

e =r/V,*(6,) = r./5:(00),

n

Rn=n 230 it and R = n~ ' 07, |7¢]*. The Wald, score and likelihood ratio test
statistics are defined respectively by

n a2 ~ 1 1 ~
Wn = = 1 A1_11 ) ']n = Z ~_2V0‘/tv/9‘/t(9n>7
hn=Le\J, e, i Vi

K,

n 15 e ~c\ 1 ~ ~C AC_]_n 1 ~— T RC
Ro= Vol @) (7)) Vel@). 7= 23 = Volivei@,),

and
n

L= " (16 100}
{160 - 1.8.)
Denote by x? the chi-square distribution with one degree of freedom, and the chi-bar-
square distribution %50 + %X% that is the equally weighted mixture of the Dirac measure
at 0 and the x? distribution. The following proposition gives the asymptotic distributions

of the previous test statistics under the null.

Proposition 4.2. Assume A4.1, A4.2, A}.3, A4.5, A4.7, A4.9 and that
(wo, o, o) € (2)(;, where (:)G denotes the interior of the GARCH(1,1) parameter space
O, a compact subset of (0,00)2 x [0,1). Under Hy we have, W, A 200+ 3x3, Ry A %
and L, A %50 + %Xf as n — 0o.

We will see in the numerical section that the finite sample distributions of the test
statistics are not always well approximated by their asymptotic laws. To solve the problem
we will approximate the test statistic distributions by means of a residual-based bootstrap
procedure. Recent papers dealing with similar bootstrap inference procedures are Leucht
et al. (2015), Beutner et al. (2018), Cavaliere et al. (2022).

Because the Wald test was found to be more powerful than the other tests in our
Monte Carlo experiments, we present the resampling scheme and study its asymptotic
behavior for the Wald-type statistic only. The algorithm is the following.

1. On the observations r1, ..., r,, compute the QMLE 0. = (W, a, ZB’\)’ ofa GARCH(1,1)
model and compute the standardized residuals (discarding the first ng values the
alleviate the effect of the initial values) 70 = (¢ — m,)/s,, for t = ng +1,...,n,
where 77, m,, and s,, are respectively the non-standardized GARCH residuals, their
empirical mean and standard deviation. Denote by F;, the empirical distribution of
these standardized residuals. Also compute the QMLE of the auxiliary GARCH-
MIDAS model (4.14). Let @, be the estimator of the parameter a.

2. Simulate a trajectory of length n of a GARCH(1,1) model with parameter EG and
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iid noise (n;) with distribution F,,, compute the QMLE 0 = (W}, ar, n,/\n) of the
GARCH-MIDAS model (4.14).

3. Repeat B times Step 2, and denote by @*!,...,a@*? the bootstrap estimates of a.
Approximate the p-value of the test Hy : ap = 0 against H; : ap > 0 by pj; =
(1+#{aY >a,;7=1,...,B})/(B+1).

To reduce the computational burden of bootstrap procedures, Kreiss et al. (2011) and
Shimizu (2013) proposed to simulate the distribution of the (Q)MLE by using a Newton-
Raphson type iteration. This trick can not be used directly here because 6, belongs to
the boundary of the parameter space under H,, which implies that the Bahadur-type
approximation

V6, —6y) =J! \/_Z V9Vt(90)+013(1)

used for the Newton-Raphson iteration, is not valid when ag = 0. By the arguments of
Francq and Zakoian (2009), it can however be seen that in this case

Vna, —max{e4J_ \/_Z VVQVt(HO) }—l—o(l) a.s.

This suggests replacing @} in Step 2 by

-1 1 ~ ~c
a, = max {64 (J > " z; (ni?—1) EVQVQ(OR),O} . (4.15)
Since White (1982) it is known that the (Q)MLE of a misspecified model generally con-

verges to some pseudo-true value. The resampling algorithm is valid in the following
sense.

Theorem 4.3. Let the assumptions of Proposition /.2 hold. Assume also that the distri-
bution of n; admits a bounded density with respect to the Lebesque measure. Let @} defined
by (4.15). Under Hy, for almost all realization (r;), as n — oo we have, given (1),

Vi 5 Niyso, N~N(0,0%:= (k— e ey), (4.16)
and thus )
n @) gl 1
.= = = —do + =X7-

e4J e

Under Hy : ag > 0, for almost all realization (ry), if /O\G converges to some pseudo-true
value Qg € O such that

1 6
J = Ev—tgvgvtvgv;’ ( OG )
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exists and is invertible and if @, — ag then p* — 0 as n — 0o, where p* = limp_,o, P
a.s.

The previous result thus shows that the distribution of @’ (resp. W) given (r;) well
mimics the (unconditional) distribution of @, (resp. W,,) under Hy when n is large. It is
also expected that in finite samples the bootstrap distribution of y/na’ better approaches
the distribution of y/na, than its asymptotic distribution. The consistency of the boot-
strap is also ensured as soon as liminf,, ., @, > 0 and \/na’ = Op(1), which holds under
the conditions of the theorem, but also under more general conditions.

4.2 Bootstrapping the full Wald test

The asymptotic properties of the test statistics defined in the previous section do not
depend on the fixed value of the parameter 9* in (4.14). However, the illustrations pre-
sented in the numerical section show that the finite sample behavior of the tests depends
on this parameter. In addition, there is no obvious choice of the parameter that one could
recommend to the practitioner. When 1 is estimated by QMLE, together with the other
parameters, the test statistics have non standard asymptotic distributions under the null,
and the bootstrap techniques become particularly appealing. The resampling scheme is
then modified as follows.

1. On the observations ry,...,r,, compute the GARCH(1,1) QMLE 0o = (@, a, B)’
and the standardized residuals 70 ~ F,, exactly as in the previous algorithm. Com-
pute the QMLE of the GARCH-MIDAS model (4.4). Let @, be the estimator of the
parameter a.

2. Simulate a trajectory of length n of a GARCH(1,1) model with parameter ﬁg and

A~k ~ ~x! /

iid noise (n;) with distribution F,,, compute the QMLE 6, = (@:‘Z, ar, prar, 19n>
of the GARCH-MIDAS model (4.4).

3. Repeat B times Step 2, and compute the bootstrap estimated p-value p}; exactly as
in the previous algorithm.

Under Hy, the distribution of @, in the QML estimation of the full GARCH-MIDAS model
(4.4) is an unknown function G,,(6o, F') of the GARCH parameter 8y = (wo, o, 5p)’ and
the distribution F of the noise 7;. The previous residual bootstrap algorithm estimates
Gn(00, F) by G,(0¢, F,). A formal justification, similar to that given in Theorem 4.3,
would certainly rely on the strong consistency of b\G and on the consistency of F},, in
the sense of (4.29), and would require establishing a kind of continuity of G,,(-) and/or
the asymptotic form of GG,, as n — oo. To obtain the latter, techniques used to obtain
the asymptotic distribution of sup-type test statistics, as in Hansen (1996), could be
considered but the problem seems difficult because the parameter is on the boundary
under the null hypothesis (see Andrews (2001)). To our knowledge there is no available
result dealing with sup-tests when the parameter is on the boundary of the parameter
set.

Note that the choice of B has little effect on the size and power of the test. Consider
the test which rejects the null when p};, < 5%. If B = 19 or B = 99, the size is exactly 5%.
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Note also that the bootstrap is a randomized procedure, in the sense that the statistical
decision depends not only on the observations r4, ..., r,, but also on the random bootstrap
trials (for a formal definition, see e.g. Page 98 in Van der Vaart (2000)). Taking a large
value of B (we took B = 999 for the numerical illustrations of Section 5.2) has the
advantage of reducing the test randomness. To assess the performance of the bootstrap
test on Monte-Carlo simulation experiments, the randomness of the procedure is not an
issue. We thus follow the so-called « warp-speed » methodology of Giacomini et al. (2013)
by computing @, on a large number K of Monte Carlo replications of a GARCH-MIDAS
model (4.1). For each of the K Monte Carlo simulations, we generated B = 1 bootstrap
simulation and computed the corresponding bootstrap statistic a. Let £ be the a-
quantile of the K values of @’. The size (resp. power) of the bootstrap test of nominal
level « is then approximated by the proportion of @, > &f_, over the K replications when
ap =0 (resp. ap > 0) in the simulated GARCH-MIDAS model.

5 Numerical results

We first present the results of Monte Carlo experiments. Our objectives are twofold:
i) evaluating the effect of the absence of moments on the accuracy of the QMLE, and
ii) assessing the performance of the QML in detecting and estimating the two volatility
components. Then, we will present an application on real financial data.

5.1 Monte Carlo experiments

The aim of our first Monte Carlo experiment is to study the effect of the absence or
presence of marginal moments on the empirical accuracy of the QMLE. We simulated the
simplest version of model (4.4) with ¢ = 1, ¢;(9¥9) = 1 and parameter 8y = (wy, v, Bo, ao)
given in the column « True » of Table 4.1. For the first data generating process (DGP A)
the noise 7, is V' (0, 1)-distributed, so that A4.2 is satisfied, and the DGP is stationary but
does not admit any moment. For the second data generating process (DGP B) the noise
n; follows an equally weighted mixture of A'(m, 1) and N (—m, 1) distributions truncated
on the interval [—b,b], where m is chosen such that Ep? = 1 and b = /(1 — 1 — )/«
with 0 < ¢+ < 1 — . Since a; < 1 — ¢ as. we have ¢ < bw/t. If © > abw then
ae? < 1, which entails that r; is bounded. For DGP B, we took ¢ = 0.05, so that b = V3,
0<i1<1—pF=02and . > abw = 0.02v/3. This DGP thus admits moments of any
order.

The number of replications of each simulation is R = 1000, with sample sizes n = 2000
and n = 4000. The two DGPs have been estimated by QMLE. Table 4.1 displays the
results of these Monte Carlo experiments. The columns « Min », « Q1 », « Q2 », « Q3 »,
« Max », « Bias » and « RMSE » provide respectively the minimum, the first quartile, the
median, the third quartile, the maximum, the bias and the root mean square error (RMSE)
of the R estimated values of the parameter. The column « MASE » refers to the estimated
standard error based on the asymptotic theory. The i-th Mean Asymptotic Standard
Error (MASE) is defined as the empirical mean over the R replications of the estimated
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n True  Min Q1 Q2 Q3 Max Bias RMSE MASE
DGP A satisfying A4.2 (no moments)

2000 w 0.2 0.023 0.146 0.221 0.343 1.391 0.076  0.206  0.760
a 0.05 0.000 0.037 0.054 0.082 0.240 0.015 0.045 0.043
g 0.8 0.000 0.676 0.781 0.849 0.978 -0.064 0.174  0.642
a 0.1 0.000 0.061 0.089 0.115 0.236 -0.012 0.044  0.046
4000 w 0.2 0.008 0.153 0.210 0.283 0901 0.037 0.139 0.112
a 0.05 0.000 0.038 0.052 0.068 0.253 0.007 0.031 0.024
g 0.8 0.212 0.730 0.790 0.841 0.991 -0.031  0.120  0.098
a 0.1 0.000 0.076 0.096 0.115 0.193 -0.005 0.032  0.029
DGP B that does not satisfy A4.2 (moments at any order)
2000 w 0.2 0.008 0.149 0.227 0.340 1.030 0.073  0.197 0.310
a 0.05 0.000 0.038 0.055 0.081 0.205 0.014 0.041  0.040
g 0.8 0.161 0.680 0.774 0.846 0.992 -0.061  0.167  0.256
a 0.1 0.000 0.067 0.091 0.112 0.187 -0.012  0.039  0.039
4000 w 0.2 0.020 0.154 0.208 0.280 1.010 0.034 0.130  0.107
a 0.05 0.005 0.041 0.061 0.066 0.222 0.006 0.027  0.023
g 0.8 0.160 0.731 0.791 0.838 0.975 -0.028 0.111  0.093
a 0.1 0.000 0.081 0.097 0.113 0.181 -0.005 0.026  0.025

Table 4.1 — Distribution of the QMLE over 1000 replications

standard errors 4/ i(z, i)/n, where 3 is the empirical estimator of the asymptotic variance

Y= (/1,7—1)J_1 of the QMLE. As expected, bias and RMSE decrease when the sample size
increases. The values of RMSE and MASE get closer as the sample size increases, which
means that the empirical distribution of the estimator becomes closer to its asymptotic
distribution. Unsurprisingly, the QMLE turns out to be more accurate when all moments
exist (DGP B) than when there is no moment (DGP A), but the difference in accuracy
is quite small.

In a second set of Monte Carlo experiments, we assess the ability of our estimation
approach to estimate and detect the presence of long-term volatility. We chose to estimate
the GARCH-MIDAS specification of 7; in (4.1), with Beta weights given by (4.3). We thus
simulated 1000 trajectories of size n = 4000 of Model (4.1) with N = 22, @) = 250 and
(wo, g, Bo, Yo, ag) = (0.028,0.115,0.831,2.067,0.056). " For the distribution of 1, we took
a standardized Student distribution with v = 5.41 degrees of freedom®. The estimation

7. These parameters are those estimated on the NASDAQ index considered in Section 5.2, with RVs
computed over one month and one MIDAS lag year, on a set of historical data of size n = 12654 (for our
simulations, we consider the smallest sample size n = 4000).

8. the kurtosis thus corresponds to the empirical kurtosis of the residuals of the model fitted to the
NASDAQ series.
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results are presented in the top panel of Table 4.2. Interestingly, the parameter aq is
estimated with a small bias, and its estimated standard deviation is on average very
close to the observed RMSE. We have redone the estimation exercise on simulations of
a standard GARCH (corresponding to Model (4.4) with ag = 0). The bottom panel of
Table 4.2 shows that at least one half of the estimated values of a are exactly equal to
zero. Unsurprisingly, the estimations of ¥, whose true value is undefined when ag = 0,
are erratic. Figure 4.2 displays a typical example of estimates of the short and long
term volatilities of the two DGPs of Table 4.2. The distinction between the dynamics
of the two DGPs is clear from the figure, and can be confirmed by a formal test of the
null hypothesis Hy : ag = 0. Figure 4.3 shows that the estimation of the volatilities is
fortunately not too sensitive to the choice of the integers N and @ in (4.1). Finally, we
estimated a (misspecified) standard GARCH(1,1) on simulations of a GARCH-MIDAS
(with same parameters as in the first part of Table 4.2). Table 4.3 presents the estimation
results. The columns « Mean » and « SD » stand for the mean and standard deviation
of the estimates over the 1000 replications. It can be noted that the estimated value of
a + [ is always very close to 1, a stylized fact that is often observed on real series. Over
a small sub-period of a randomly chosen simulation, Figure 4.4 graphically compares the
volatility estimates obtained by the correctly specified GARCH-MIDAS model with those
obtained by the misspecified standard GARCH(1,1). Even if the volatility estimation of
the standard GARCH is, as expected, dominated by the GARCH-MIDAS estimation, the
difference is not huge. Table 4.4 confirms that the estimates obtained from the GARCH-
MIDAS model are indeed better, but only slightly better, than those obtained from the
GARCH model, as measured by the QLIK loss defined by

1 — V7?2 N
QLIK == Y == +log 17,
711527'()4»1‘/;f

where V; denotes the true volatility and I//\} denotes the estimated volatility (for the
GARCH or the GARCH-MIDAS). We took 1y = 100 to avoid the effect of the initial
values required to compute the volatility estimates. The reader is referred to Patton
(2011) for arguments in favor of the QLIK loss to compare volatility forecasts/estimates.
We did not use the MSE loss because we know from Proposition 4.1 that ¢ does not
admit any moment.

Table 4.5 gives the empirical relative frequency of rejection of the score, Wald and
LR tests of Section 4.1 for the null of no long-run volatility. The DGP is that used in
Table 4.2, except that ap = 0 (under the null) or ag € {0.01,0.05} (under the alternative).
The number of replications is 1000. Different values of ¥ > 1 are used. With ¢ = 1 all
the RVs involved in (4.1) have the same weight; the larger ¥, the higher the weights of
the most recent RVs. It can be seen from this table that the 3 tests are conservative, but
the size is better controlled with the score test. It can also be seen that the ranking of
the 3 tests, in terms of power, vary a lot with ag, the nominal level, and the parameter ¥.
Other numeric experiments, not presented here, show that the Wald test seems slightly
more powerful than the two other tests when the sample size n is larger. The poor control
of the error of the first kind, as well as the sensitivity to the choice of the fixed parameter
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True  Min Q1 Q2 Q3 Max Bias RMSE MASE
w 0.028 0.009 0.025 0.033 0.042 0.139  0.007 0.016 0.013
« 0.115 0.057 0.103 0.116 0.128 0.203  0.001 0.019 0.020
g 0.831 0.572 0.804 0.828 0.846 0.922 -0.008 0.037 0.033
9 2.067 0.000 1.447 2.122 3.173 68.541  0.743 3.329 5.925
a 0.056 0.000 0.030 0.045 0.064 0.256 -0.005 0.033 0.032
w 0.028 0.010 0.024 0.028 0.034 0.084  0.002 0.009 0.009
a 0.115 0.062 0.105 0.116 0.129 0.204  0.002 0.020 0.021
g 0.831 0.534 0.802 0.823 0.841 0.908 -0.012 0.038 0.033
V UD 0.000 2.067 2.067 2.067 4650.425 10.653 207.455 199.696
a 0 0.000 0.000 0.000 0.013 0.116  0.010 0.020 0.022

Table 4.2 — Distribution of the QMLE of a GARCH-MIDAS, when the DGP is a GARCH-
MIDAS (first part) and when it is a standard GARCH (second part of the table). In the
latter case, the parameter ¥ is undefined (UD).

Min Q1 Q2 Q3 Max Mean SD

w 0.004 0.025 0.033 0.043 0.131 0.036 0.015
Q 0.027 0.092 0.105 0.118 0.170 0.105 0.019
I6] 0.747 0.857 0.873 0.890 0.969 0.872 0.026

a+ B 0876 0968 0979 0989 1.015 0.977 0.017

Table 4.3 — Distribution of the QMLE of a GARCH(1,1) when the DGP is the GARCH-
MIDAS of Table 4.2 (top panel).

9, motivated us to consider the bootstrapped Wald test of Section 4.2. Table 4.6 shows
that this bootstrap test much better controls the error of the first kind, without degrading
the power. Note that these empirical sizes and powers are obtained from the warp-speed
methodology of Giacomini et al. (2013), as explained in Section 4.2, with K = 1000.

5.2 Application to stock indices

We estimated the GARCH-MIDAS model (4.1) with exponential weights on the daily
returns of the CAC 40, DAX, NASDAQ and Hang Seng indices, from 1990-03-01 to 2021-
04-08. Table 4.7 displays the estimated coefficients when N = 65 (corresponding to RVs
over a quarter) and ¢ = 1000 (corresponding to 4 MIDAS lag years). These values were
advocated by Engle et al. (2013). We checked that the short and long term volatilities are
not much modified with other choices of these parameters (in particular with biannual
rolling window RV, i.e. N = 125, and 2 MIDAS lag years, or with N = 22 and @ = 250,
i.e. RVs over one month and one MIDAS lag year). The last column of Table 4.7 displays
the estimated p-values of the bootstrap Wald test of Section 4.2 (with B = 999). The
most noticeable output of that Table is that these p-values are small and the estimated
value of a is always clearly significant, except perhaps for the HSI series, showing the
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Model Min Q1 Q2 Q3 Max Mean SD
MIDAS 0.589 0.956 1.101 1.265 3.285 1.133 0.263
GARCH 0.591 0.959 1.108 1.272 3.301 1.139 0.265

Table 4.4 — Distribution of the QLIK losses over 1000 replications when the GARCH-
MIDAS volatility is estimated by the GARCH-MIDAS model or by the GARCH model.
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Figure 4.2 — Examples of estimated short and long term volatilities when the GDP is a
GARCH-MIDAS (left figure) or a standard GARCH (right figure)

existence of time-varying long term volatilities. Figure 4.5 confirms that the GARCH-
MIDAS parameter estimate a, is well on the right of its estimated distribution under the
null Hy : a = 0. The latter distribution, which is a mixture of a Dirac mass at zero and
a continuous distribution on (0, 00), has been estimated by a Kernel density estimator—
using the reflection method for boundary correction. Figure 4.6 displays the estimated
short and long-term volatilities. The most striking feature of this figure is that long-term
volatility varies strongly, but as expected slowly, over time. The volatilities of the CAC
and DAX indices are surprisingly similar, with in particular a strong increase in long-term
volatility after the 2008 crisis and the recent Covid crisis. The Nasdaq behaves similarly
in the most recent period, but reacted much more to the 2001 recession. The HSI behaves
quite differently, with an increase in long-term volatility after the Asian Crisis of 1997 and
after the Global Financial Crisis of 2008, but with little response to the Covid pandemic.
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Figure 4.3 — Estimated short and long term volatilities of the GARCH-MIDAS model
with N =22 and @ = 250 (left figure) and with N = 44 and @ = 500 (right figure)



5. NUMERICAL RESULTS 65

LO p—
— True
--- GARCH-MIDAS Estimation

< - fhEry | GARCH Estimation
]
Q
E
S w4
©
Q
©
£
o
(0]
2
©
@ A\ ¢
=) b
= !

O p—

100 200 300 400 500 600 700 800
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standard GARCH
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ap U Test 01% 1% 2% 3% 4% 5% 6% % 10% 20%

0 1 R, 0 1 2 33 39 49 6.2 69 101 189
W, 0 0 0 0 0 0 02 04 16 97
L, 0 02 06 14 18 19 2 25 32 66

2 R, 0 08 1.5 3 41 49 54 66 92 192
W, 0 0 0 0 01 01 03 06 21 88
L, 0 02 06 1 18 22 26 27 34 6.1

3 R, 0 04 15 29 38 48 58 66 93 186
W, 0 0 0o 01 01 04 07 12 31 101
L, 0 03 06 12 16 21 24 26 33 59

9 R, 03 08 15 21 32 36 41 51 7.5 159
W, 0 0O 05 14 17 23 32 36 58 126
L, 0o 06 11 18 22 24 27 32 39 6.7

0.01 1 R, 06 25 38 48 53 68 77 86 11.5 208
W, 0 0 01 03 04 06 13 19 49 206
L, 03 19 26 35 43 5 56 65 89 14.6

2 R, 02 22 35 47 56 64 76 85 11.3 208
W, 0 01 02 03 06 1.1 2 3 73 227
L, 05 21 34 41 46 56 63 69 94 164

3 R, 04 22 31 39 47 54 62 72 101 203
W, 0 01 02 04 11 19 3 45 88 243
L, 0.3 22 3 41 49 54 6 6.6 95 15.7

9 R, 04 09 12 14 21 31 35 4 6 15
W, 0 04 12 28 41 55 71 83 122 252
L, 0.3 2 29 37 47 54 H8 63 79 126

0.00 1 R, 11.1 294 374 432 48.1 528 554 H7.1 624 733
W, 0.1 13 46 95 172 251 34 421 61.2 844
L, 17.3 382 469 526 576 604 632 652 709 81

2 R, 9.2 242 326 38.6 41 43.8 47 50.3 552 65.6
W, 0 14 72 179 293 382 481 553 71.3 90.2
L, 244 46.8 549 60.6 65 67.7 70.2 71.8 76.7 85

3 R, 41 146 20.1 234 26.7 28.7 31 33.3 386 51.3
W, 0 2 11.8 259 38.1 47.7 552 619 744 90.6
L, 224 446 53.5 585 615 643 675 69.6 745 83.1

9 R, 06 26 34 49 61 69 82 95 128 232
W, 0 13.6 334 441 524 584 62 66.2 73.2 849
L, 8.8 21.6 27.7 327 36.5 399 433 451 515 623

Table 4.5 — Empirical relative frequency of rejection of the null that there exists no long-
run volatility (i.e. ap = 0) using the score, Wald and LR tests with a fixed value of ¥, for
nominal levels varying from 0.1% to 20%.
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a  01% 1% 2% 3% 4% 5% 6% % 10% 20%

0 02 12 32 36 43 49 65 7.7 109 234
0.01 00 11 42 78 102 115 13.8 156 20.5 36.5
0.05 0.5 5.3 20.7 324 459 56.2 61.2 66.2 752 93.1

Table 4.6 — Empirical relative frequency of rejection of the null that there exists no long-

run volatility (i.e. ap = 0) using the bootstrapped version of the Wald test, for nominal
levels varying from 0.1% to 20%.

w Q@ 15} 0 a p-value

CAC 0.031 0.110 0.846 16.308 0.013 0.003
0.007 0.011 0.017 6.656 0.005

DAX 0.027 0.095 0.867 11.724 0.012 0.010
0.008 0.012 0.018 5.729 0.005

NASDAQ 0.026 0.113 0.840 10.813 0.017 0.001
0.005 0.011 0.015 3.227 0.005

HSI 0.034 0.080 0.884 11.316 0.008 0.031
0.009 0.011 0.016 5.889 0.003

Table 4.7 — GARCH-MIDAS fitted on stock returns. The estimated standard deviations
are displayed in small font, under the estimated values of the coefficients. The last column
gives the bootstrap estimated p-value of the Wald test of Hy : a = 0.
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Figure 4.5 — Bootstrap estimate of the distribution of @, when a = 0 (in blue) and observed

value of @, (red vertical line).
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6 Conclusion

In this chapter, we studied a class of models enabling long and short run volatilities.
We showed that strictly stationary solutions are so heavy tailed that not even a small
power moment exists. The main theoretical novelty with respect to the literature on
GARCH estimation comes from showing that strong consistency and asymptotic normality
of the QMLE hold despite the absence of moments. We also proposed tests of the existence
of a long-run volatility component. Our numerical applications illustrated the ability of
the QML to distinguish and accurately estimate the two components in finite sample,
but also confirmed that a misspecified GARCH model can deliver reliable estimates of
volatility. Other specifications of the long-run variance could be considered in further
work, in particular those including exogenous variables (such as macroeconomic factors)
in the dynamics of 7, as in Conrad and Loch (2015), or Conrad and Schienle (2020)
among many others.

GARCH-MIDAS is a complex model and several difficult questions remain open. In
particular, does stationarity entail the existence of log-moments? It seems difficult to
conjecture the result. On the one hand, it can be shown that (4.12) is equivalent to the
existence of a finite log-moment when (r?) is iid and bounded away from zero®. On the
other hand, Tanny (1974) provided an example of stationary and ergodic sequence (1)
where (4.12) is true and the log-moment is infinite. At least from a theoretical point
of view, it would be interesting to know if this is also the case for GARCH-MIDAS
processes. Other interesting questions concern the practical implications of the absence
of moments. Starting from the general principle that it is better for a model to share
the same characteristics as the data to which it applies, the question is whether financial
returns (or other real time series) are devoid of a finite moment. It is too difficult a problem
to solve here. It seems from our experiments that the existence of moments might not
be detectable from the trajectories (see the graph in Example 4.1). Another interesting
question raised by a referee is the behavior of sample autocorrelations in the absence
of theoretical autocorrelations. From Davis and Resnick (1986), the empirical ACF of
an AR(1) with heavy-tailed iid innovations is known to converge to the AR coefficient.
More recently, Skrobotov et al. (2021) derived the asymptotic distribution of empirical
autocorrelations of powers of absolute returns under heavy-tailed assumptions. Do these
results hold true when innovations follow the GARCH-MIDAS model? The numerical
experiments we have done lead us to believe that the convergence holds but proving the
result is beyond the scope of this paper.

7 Appendix: proofs

7.1 Proof of Lemma 4.1

Let F; be the sigma-field generated by {n,,u < t}. Let p, = E|n | for any p > 0. Note
that p,, € (0, 00] because po = 1 implies that |7 | can not be equal to zero with probability
one. Without loss of generality, assume i3 > 1. We can also assume p,, < oo, otherwise

9. using (i)-(iii) in Tanny (1974)
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the result is trivial. Since o; > oz(l]/ 2|et_1|, for all positive random variable X;_o € F;_o we

have .
_ D1 2
Eler—1["" Xi—o = 1y, B0y 1 Xon > py, a” Ele—of™ Xy—s.

By succesive applications of this inequality, it follows that

E‘Gt*il ‘p1 ‘Et*h*h ‘pQ s |€t*i1*-"*ik |pk
P1\ i2 n
> (Mpla(f ) Eler—iy—in " P2 €1—iy—ip—is " |€0miy—miy |75

[terating the argument, we obtain the result with

Py P2 ity \ B3 prtotpg \
_ 2 2 2
K = <PJ:D1O‘O ) Hop1+p2 Xg o Mpre4pe 1 G .

Under A4.2, E|¢|*" = oo for r large enough and the conclusion follows.

7.2 Proof of Lemma 4.2

First note that X, = r, satisfies the Stochastic Iterated Function Systems (3.1), with
0, = (A by). Note that the assumptions of Theorem 3.1 are satisfied: i) is satisfied
because GARCH possess small order moments, ii) is satisfied with A; the operator norm
of Ay, and iii) is satisfied under A4.3. The lemma is thus a consequence of Theorem 3.2,
since log 77, < 2logd(ry4y, ) with ¢ = 0 and d the euclidean norm.

7.3 Proof of Proposition 4.1

Let us show the first assertion. We begin with the sufficient condition. Under A4.1
and A4.3, the strictly stationary solution is obtained from (4.5) and (4.8) by taking r,
equal to the square root of the first component of r; multiplied by the sign of ;. For the
necessary condition, consider that (4.4) admits a strictly stationary and ergodic solution
(r¢). Note that Kliippelberg et al. (2004) consider the GARCH(1, 1) with the condition
P(m = 0) = 0 but, in their Theorem 2.1, they show without this assumption that, if A4.1
does not hold then o; — oo in probability as t — co. Since for all ¢, r? > o2n?, it follows
that for all M > 0, P(r? > M) > P(o? > M,n? > 1) — P(n? > 1) as t — oo. We know
that P(n? > 1) > 0 because En? = 1. Thus, for all M > 0, there exists ty such that ¢ > ¢,
P(r? > M) > P(n? > 1)/2 > 0. This contradicts the stationarity of (r;) that implies that
for all ¢, P(r? > M) =P(r? > M) — 0 as M — oo The condition A4.3 follows from (4.8)
and the point 1 of Theorem 5.4. Indeed, by (4.9), the assumption A5.2 holds and the

condition (5.35) is satisfied because by + > o, (Hj.:l AtH,j) bii > (..., €6 411) >

wo(ntZ, e 777t2—q+1), a’nd P(n? > 07 cee 777t2—q+1 > 0) = P(U% > O)q > O
Now we show the second assertion, let iy such that ¢y = ¢;,(99) > 0. We have

2 2 2 2 2,292 2
T > 1+ a0¢0€t7i07—t7i0 =1+ aO(bOGtﬂ'o + a0¢06t710€t72i0 + e

We thus have |r:|* > (aod0)*/2|e|*|€r—io)* - - - |€r—io|* for any s > 0 and any k > 1. By
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A4.2, for any s > 0 there exists k > 1 such that E|e|* = oo. The conclusion follows
from Lemma 4.1.

7.4 Proof of Theorem 4.1

Let
2

1 & T
= ﬁ Z€t<0)a gt(e) = 7_2;_2

tYt

+ log af + log Tf,

where 772 = T 20) =1+ az ¢i(9)ri_; and 07 = 07(0) = w + ae;_1(0) + Bo}_, with
€2(0) = r?/7?. Note that o7 is Well defined because

o0

E etkl E tk1<00 a.s.

k=0 k=0

Since limsupy, ., 7 Log (Bkrt e 1) = log 8 < 0 by the second inequality in (4.12), the
convergence of the latter infinite sum follows from the Cauchy rule.
However, contrary to the standard GARCH case, the limiting criterion E¢;(0) might
not be defined, even at 8, because if A4.2 holds the observed process has no moment.
The proof therefore relies on the following intermediate results which, contrary to the
standard GARCH case (see for instance Francq and Zakoian (2019) Section 7.4), do not
involve a limiting criterion :

i) lim sup [1,(8) —1,(8)] =0, a.s.

=0 9O
ii) if 02(0)72(0) = 02(00)72(0y) a.s., then 6 = Oy,
iii) if @ # 60y, then E{((0) — (:(8y)} > 0,
iv) any 6 # 60, has a neighborhood V() such that

1mm(iﬁ MmpL%0>0w&
n—oo  \ 0*€V(0)NO

We first show ). We have

sup [1,(8) — 1,(6)

0cO
o? 2 2 ~2
2‘ 0y — 0 ’ Ty 2|Tt 7'|
log ~2 +t~222+10g~_2 +tri s (-
TPolo} i TPTEO;

< - sup {
DT
Noting that 77 = 72 for t > ¢, the last two terms asymptotically vanish and we have, for
t>q,

jof — 67| < Bloy — &7 ] < B7%og — &yl (4.17)
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Using the inequality |log (z/y)| < |z —y|/(z V y) for x,y > 0, we deduce

sup |1,,(@ <— —i—?"
sup 1,(6) ~1,(6)| Zp ;

where p = supgee < 1 and, in view of (4.17), K is F,-measurable random variable. By
the first inequality in (4.12), we have

1 1

lim sup — log ptrf = log p + lim sup - log rf =logp <0, as.
t—o0 t t—o0 t

from Wthh it follows that p'r? — 0, and then p'(1+77) — 0, a.s. as t — co. By Cesaro’s

lemma = 30" pfH(1+17) — O a.s. Because K is fixed (mdependent of n), the conclusion

follows.
Next we turn to ii). Letting V;(0) = 02(0)7%(0), we have

V (90) 2 2
Vi(6) = {w+a o H+ﬁat1<9>}
X {1 + agy (9)Vie1(80)n7_, + a Z ¢z‘(79)7”tz—i}

=2

=by1(0)n_y + i1 (0)11_y + di1(8),

where b;_1(0),¢,-1(0),d;—1(0) € Fi_o. By Assumption A4.5, V;(0) = V;(0)) entails
bi_1(0) = b_1(6¢),ci1(0) = ¢;_1(6¢) and d;_1(0) = d;_1(0y). First consider the case
$1(99) # 0. The equality b;—1(0) = b;_1(60¢) then implies

724(0) _ aagi(9)

2.(00)  aocodr (Do) (4.18)

Now 72 ,(0) = 72 ,(0) writes

D _{adi(9) — caoi(90)}Veri(Bo)i s = ¢ — 1

which, because V;_;(6y) > 0 and by already given arguments, entails ap;(9¥) = agp;(1),
for i = 1,...,q and ¢ = 1. Because the ¢;(-)’s sum up to 1, we deduce a = ay and
then, by Assumptions A4.4 and A4.6, 9 = . By (4.18) we also have @ = ay. In
view of ¢_1(0) = ¢;-1(0y) we obtain w = wy. In view of d;_1(0) = d;—1(0y) we get
Bo? 1(0) = Byo?_,(0g) from which we deduce 8 = S, by already given arguments. Now
consider the case ¢1(9¢) = 0. The equality b;_1(0) = b;_1(0) then implies ¢ () = 0,
and ¢;_1(0) = ¢;_1(6p) in turn implies 72 ,(0y) = c7? ,(0) with ¢ = ag/«a, which allows
us to conclude by the previous arguments. Step i) is thus established.

The proof of i) and iv) uses the same arguments as those of steps ii7) and iv) in
Theorem 3.3. We also complete the proof with the same arguments used in the conclusion
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of the latter.

7.5 Proof of Theorem 4.2

The proof relies on the following steps. There exists a neighborhood V(6y) of 8, such
that

a) E sup [|[Veli(0)Vyli(0)|| < oo, E su(p | Vool (0)]| < oo
[USUCH

0V (0y)

b) J is invertible and /nVel,(6,) A N(0, (5, — 1)J),

c) sup |n"Y/? Z {vga(e) - Vg@(@)} — 0 in probability as n — oo,
0cV(60) —
sup |[n7! Z {vge,et(e) - vgezl(e)} H — 0 in probability as n — oo,
0cV(60) —

n

yn ! Z \%} 0,(:(67) = J(i,j) a.s. for any 6" between 6,, and 6,.
t=1

We have
Vi(Bo)n7\ 1
Vol (0) =(1— 220 Z 7,V
0 t( ) ( ‘/; ‘/; o0Vt
‘/2(90)77752

V2, 0,(0) = (1 - ) lvgg/vt(e) + (2‘4(00) ) 7 — VeV, V,Vi(6).

Vi Vi

To establish a), by the Holder inequality it thus suffices to show

2p1

Vi(6o) 1 / B
E sup <oo, E sup |[5VeViVuVi(0)|| < o0, (4.19)
0cV(8o) t 0eV(0o)
Vi (00) | 1 2
E sup «(60) <oo, E sup |[|[=VagVi(0)] < oo, (4.20)
ocv60) | Vi 0cV(00) || V2

for some conjugate numbers p;,q; > 1 such that p;* + ¢; ' = 1, with i = 1,2. We have

%VQVZ(O) = %@Vgrf(e) + #@Vgaf(e) and, omitting the dependence with respect to
t t

0, for a,a« > 0 and § € (0,1) (which holds in a neighborhood of 6y),

1
’Tt_QvaTt | < 1/a ‘O-t_QVOtO-t‘ < o ’Ut Y Ut2| < 1/{w(1 - )}a

1
07 *Vaoi| < oy O‘Zﬁket kot VaTi g <E
k>0

Let I the set of the indices i € {1,...,q} such that ¢;(1%) > 0. Using A4.11 and the
continuity of ¢;(-), I is also the set of the indices i € {1,...,¢} such that ¢;(¥) > 0 for
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0 € V(60y), when V(8y) is small enough. We thus obtain for 8 € V()

I Vori |l < D Vo log i(9)])

el

loy?*Vooi || < o2y By llm i Voriaal < D IIVslog di(9)].

k>0 i€l

Moreover, for all sq € (0,1), using /(1 + x) < 2* when z > 0,

o2V s07| = 0,2 Z(/f +1)Mw + al ;)

k>0

k>0
Z (k+1 ( 5k+15t k— 2)30
ﬂ k>0
The inequality ,
7; (60) ¢i(o)
2(0) <1 I :(0) Ve € V(0,), (4.21)

A4.11 and (4.9) entail Esupgeyg,) |€:(8)]° < oo. Tt follows that there exist K € (0, 00)
and p € (0,1) such that, for all ¢; > 1 and sy small enough,

|20 < oo.

<SK+KY kpt

2q1 k=0

sup |e_x—2(0)

-2 2
sup |0t Vgat‘
0eV(0o)

0eV(0o)

2q1

The existence of the second expectation in (4.19) follows.
Let ¢+ > 0 and V(0y) such that 5y/6 < 1+ . For all @ € V(0,), using (4.21) and
already given arguments, there exist a generic K € (0, 00) such that, for sy € (0, 1),

02(90) . BOTtrtz Z(; . i Risg 28
sz(e)gKJrKZ 17%20)1 <SK+EY (1+08%¢_,(8).
t im0 w+ af' s =0

By choosing ¢ such that supgeyg,)(1+¢)5*° < 1 and s; sufficiently small, the expectation
of the supremum over V(8)) of the last sum is finite. The existence of the first expectations

in (4.19) and (4.20) follows, for all values of p; and ps.
Turning to second-order derivatives, we have

1
VooV = V?;ofat + = vee'Tt + =

v Vth Veo; + — VgO't Vot (4.22)
¢

Vi Vi
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The matrix Vi, 77 has the form

0 0 0
Veeri =10 0 P 1V19¢>Z( )i
0 Zgzl Vi ¢i(0 )Tt i aZ 1919’ (’9)7}2—1'

Hence by A4.11 and already used arguments supgey g, ||7'{2 99/Tt H is bounded by a

constant when V(6y) is sufficiently small. We similarly show that supgeyg,) |02V, 0]
admits moments of any order, which, using the triangle and Cauchy-Schwarz inequalities
n (4.22), allows to show the existence of the second expectation in (4.20) and to complete
the proof of a).

Now we turn to b). Suppose there exists a vector & = (1, T9, 73, 14, ) € R4 such

that ’Jx = 0. Then, in view of VV;(0y) = 02(00)VeT2(00) + 72(00)VecZ(0y), we have

0 :$/V9W(90)

_Ut { vGCLO Zgbz 190 7“t 7 +CLOZV9¢Z 190 rt Z}

+ iz {ngo + evaao — aoet,lve log7? | + 07 Vb + ﬁovgaf,l}
::et_mf_l + ft—177,52_1 + gi_1, a.S. (4.23)

where e¢;_1, fi_1,9:—1 € F;_2. By Assumption A4.5, we must have e;_1 = f;_1 = ¢g;_1 = 0,
a.s. Therefore,

0=¢e1 =Vi_10; &' {¢1(90)Veao + agVedi(9g)}
+ ao$1 (90)Vim10;_ &' {Vean — agVelog 7},

from which we deduce

aod1 (o) 'V log 77
:Oéowl {gbl (ﬂo)Vgao + a0V9¢1 (’190)} + a0¢1 (’190)$,V90é0 = C.

We thus have
a0¢1(790)040513/V97t2_1 = Cth—la

that is,
o Z [61(90) o’ {agVegi(P0) + ¢i(F) Voao} — coi(o)] r7; = c.
i=1

By A4.5, it can be shown that any equality of the form > :°, b;r7_, = by, where the b;’s
are real constants, entails b; = 0 for all # > 0. We thus have ¢ = 0 and, since agag > 0,

P1(90) {xa0i (Vo) + aomlsvocbi(ﬁo)} =0, 1=1,...,¢
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First suppose ¢1(¥) # 0. Then, since > i, ¢;(¥o) = 1 and Y I, Vyoi(¥) = 0, we get
zy = 0. Thus @} [Vd1(Do),. .., Vep,(9)] = 0, which by A4.10 entails z; = 0. The
definition of ¢ thus implies o = 0. Turning back to (4.23), we obtain

0= +a30- | + B2 V0 | + $3v50't271) = 23(1 + B)o? | + Y2,

where 1, o € F;_3. Using again A4.5, we deduce x3 = 0 and finally z; = 0. We have
shown that & = 0 and the proof of the first part of ) is now complete. We have

VnVel,(60) = \FZ — 1)V log Vy(8y).

The convergence in distribution follows from the central limit theorem for square inte-
grable stationary and ergodic martingale differences Billingsley (1961)).
Now we turn to ¢). Note that

Vol (0) — Vgl,(0)

2 2
r; T -

= V VilWVWeologV, 4+ [ 1 — = | (VglogV VologV,). 4.24
m,t(t t) 0108 Vi ( V)( 9log Vi — VglogV;) ( )

We have, for ¢ large enough, Vg72 = Vo72. Moreover, 67 = w + aér_; + 57_;, where
gt = rt/%tu thus

Voo, = Vow + & Vea + aVe&_ | + 67 Vel + Vi ;.
Therefore, for ¢ large enough,

Voo; — Veo; = (071 — 67-1)VeB + B{Veo;_1 — Vi, 1}
By (4.17), this entails, for ¢ large enough,

Voo — Vear| < K15,
and, given that 62 and o2 are uniformly bounded below, it is straightforward to deduce
||Vg log o7 — Vg log &7 || < Kp {t + va log o7 H}

By VglogV; = Vglogo? + Vglog 77, we also have

|VologVi = Volog Vi < K5 {t + |[Vologa?}. (4.25)

for large enough t. Noting that V; — V; = (67 — 62)72 for large t, we deduce from (4.24)
that

vaet(e) - vgzz(e)H <K {1+e(0)} {t+ | VologVi[} B
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From the proof of a), we have

E sup |e(8)]"* <ooand E sup [|Velog Vil < oo
0cV(0o) 0€V(60)

for sufficiently small sy € (0,1). By the triangle and Holder inequalities, for K € (0, 00)
and p € (0,1) we then have

E sup
(; 6eV(80)

which entails that ) 7%, supgey (g, va€t<0) - Vggt(H)H is finite almost surely. The con-

vergence in the first part of c¢) follows. The second convergence can be established along
the same lines.
Turning to d) we note that, by a) and the ergodic theorem

‘vgzt(e) - v,,z@(e)”) <KS (1 + K)p* < o,
t=1

n! Z Vgigjﬁt(%) — J(i,j) as. as n— o0.

t=1

For all ¢ > 0, by the same argument, the continuity of the second derivatives and the
dominated convergence theorem, there exists a sufficiently small neighborhood V(8y) of
6, such that

n

.1
lim — Z sup ‘V3i9j€t<9) - Viejft(é’o)

nreo N 0eV(0)

=E sup ‘Vie]gt(0> - Vgigjgt(eo)‘ <e.
6cV(0)

The point d) is thus a consequence of the consistency of En
The proof of the theorem then follows from a Taylor expansion of the criterion around
0, and classical arguments.

7.6 Proof of Proposition 4.2

Conditional on (), the bootstrap statistics a;, and W} remain random because they
depend on €; ~ F),. The proof is standard and uses the same arguments as those of
Theorem 2 and Proposition 2 in Francq and Zakotan (2009).

7.7 Proof of Theorem 4.3

Throughout the proof, we assume a fixed trajectory (r);cz, belonging to a subset of
events of probability one such that (4.25) holds uniformly in 6 € V(8,) and J Z — J as
n — oo. This sequence exists by the arguments used to show ¢) and d) in thepProof of
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Theorem 4.2. We thus have

()" IZ vm@b:w%imt,ﬁom

with @, = (g —1) %VQVt(HO). Conditional on (r;), the previous quantity remains
random because it depends on € ~ F,,. To establish (4.16), by the Wold-Cramer device,
it thus suffices to show that for any A # 0 € R*

% S Ny, 5 N (0, () — DN JN) . (4.26)
t=1

Note that, still conditioning by (r¢).ez, for each n the random variables XN'@q ,,, N'@a,, . . .
are independent and centered, with finite second-order moments. By the Lindeberg’s CLT
for triangular arrays of square integrable martingale increments, it remains to show that

—Z\/ar "Tin) = (k= DANIA >0 asn — oo, (4.27)

and for all e > 0

n

1
— Z E ({AICL},”}Q ]l{\)\’a:t n|>\/ﬁ€}> — 0 as n — 0. (428)
n nl2

t=1

In Lemma A.l in Francq and Zakoian (2022), it has been shown that, for standard
GARCH, the distribution F), of the standardized residuals tends to the (unconditional)
distribution F' of n;. More precisely, for any almost everywhere continuous function h
such that |h(z| < ax? + b where a,b > 0, for almost all realization (r;);cz we have

/h(I)Fn(d{L') — /h(:v)F(dx) as n — oo. (4.29)

It can be assumed that (r;);ez is such that (4.29) holds. Since n; ~ F),, given (r)iez,
under Hy we have

En; =0, Ep*=1 and En

Z " — Enl fori<4

0 k=no+1

as n — oo. For t fixed we then have

Var(Nz,,,) = {A’Vtv@vt(eo)}2 (n _1n :Zn: )" - 1)

1 2
— {vaevt(eo)} (ky—1) asn— oo,
t
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from which (4.27) follows.
Given (r;), when X'3-VV;(6y) # 0 we have

2
E {)‘,mt,n} :H-{|Xa:t,n|2\/ﬁ£}

77?—1\2]1(

For any A > 0 there exists n4 such that if n > n4 then the expectation in the right-hand
side of (4.30) is bounded by

)1 ’
= {)\ Vtv”vt(e")} E

/ne

> . (4.30)

E |n* — 1] 1

=124}

By (4.29), this term tends as n — oo to

A?-1|>A |x2 — 1‘2 F(dx)

which is arbitrarily small when A is sufficiently large. We then obtain (4.28) by the Cesaro
Mean Theorem The convergence (4 16) follows. The second convergence is obtained by
noting that 4 N21 5o ~ 50 + 2)(1

Under H 1 and the condltlons given in the theorem, a careful examination of the proof
of Lemma A.1 in Francq and Zakoian (2022) shows that (4.29) holds if F' denotes the
marginal distribution of r;/04(6¢). It follows that

(7)" IZ vev;w) Op(1),

and thus \/na’ = Op(1). Since y/na, — 0o as n — oo, we have P(y/na’ > \/na,) — 0
as n — 0o.



Chapter 5

On the growth rate of superadditive processes
and the stability of functional GARCH
models

Abstract

We extend the result of Kesten (1975) on the growth rate of random walks with
stationary increments to superadditive processes. We show that superadditive
processes which remain positive after a certain time diverge at least linearly
to infinity. Our proof relies on new techniques based on concepts from ergodic
theory. Different versions of this result are also given, generalizing Lemma
3.4 of Bougerol and Picard (1992) on the contraction property of products
of random matrices. We use our results to provide necessary and sufficient
conditions for the stability of a class of Stochastic Recurrent Equations (SRE)
with positive coefficients in the space of continuous functions with compact
support, including continuous functional GARCH models.
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1 Introduction

Let (Q, B, u, T) a measure-preserving dynamical system, i.e (€2, B, u) is a probability
space and for all A € B, u(T"'(A)) = u(A). A B-measurable sequence {S,},>; with
value in (—o0, 00| is said to be superadditive if

forall n,s e N* S, +S,0T" < S, s a.s. (5.1)

A subadditive sequence is defined as the opposite of a superadditive process. Since their
introduction by Hammersley and Welsh (1965), one of the most significant contributions
to the study of subadditive stochastic processes is the Kingman’s subadditive ergodic
theorem (see Kingman (1973)). Kingman showed that if {S,},>1 is a superadditive
process and S is integrable then n~'S, converges a.s. to a function § : Q@ — R.
Moreover, S~ is integrable and

/Sdu = hm — [ S,du = sup /Sndu € (—o0, +00].
n—oo 1

This result is a generalization of the well-known ergodic theorem of Birkhoff for additive

processes, such that for all n,s e N* S, +S,0T" =S, a.s. For these additive pro-

cesses, even if the integrability condition does not hold, Kesten (1975) (see also Atkinson

(1976)) showed that

liminfn 'S, >0 a.s on the set {S, — oo,n — co}. (5.2)

This well-known result has found numerous applications in ergodic theory and was a
precursor in the study of the recurrence of stationary random walks, see Atkinson (1976),
Berbee (1981) and Schmidt (2006)). A similar result under an integrability condition has
been obtained by Bougerol and Picard (1992b, Lemma 3.4) for the product of random
matrices, which characterizes the case where the so-called top-Lyapunov coefficient is
negative. As in Bougerol and Picard (1992b), this contraction property is often used to
establish necessary and sufficient conditions for the existence of stationary solutions for
Stochastic Recurrence Equations (SRE) in R™.

In this paper, we extend Kesten’s result to superadditive processes by showing that
a superadditive process that stays positive for a certain period grows at least linearly
to infinity. As a corollary, we deduce the lemma 3.4 of Bougerol and Picard (1992h).
Our results provide a characterization of the top-Lyapunov’s exponent sign for a class
of discrete-time dynamical systems. The top-Lyapunov exponent is used to quantify the
stability or instability of a system, and is often associated with stability when it is negative.
For instance, we use our result to provide, under mild conditions, a necessary and sufficient
condition for the existence of stationary solutions of functional GARCH models in the
space of continuous functions introduced by Aue et al. (2017) and Hormann et al. (2013).

The rest of the paper is organized as follows. Section 2 is reserved for the main
results. The study of the existence of stationary solution of functional GARCH models is
the object of Section 3. Section 4 discusses perspectives for future work.
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2 The growth rate of superadditive processes

Let us start with some remainders and conventions. A set I € B is said to be invariant
if w (IAT~(I)) = 0. The invariant o-algebra Z, is the collection of all such invariant sets
I. It is easy to verify that for all A € B, pu(A) =1 implies that A € Z,.

We set Sy = 0 throughout the paper. The convention that inf@ = oo and
sup@ = —oo is used, a sum over an empty set will be equal to zero, and T° = idq.
Pointwise convergence will be denoted by ——. For all measurable functions Y from  to
a measurable space (F, F), and all A € F and (B, C) € B?, we say that:

YeA as on B if p{Y € A}NB) = pu(B),
CCB a.s if 10 <1p a.s.

Remark that results obtained for superadditive processes can be easily adapted for sub-
additive processes. Let us state our main result.

Theorem 5.1. Let {S, },>1 be a superadditive sequence and let 7o = sup,en{n: Sn <
0}. We have
liminfn 'S, >0 a.s on {19 < c}.

Noting that {Ty < co} = liminf{S,, > 0}, Theorem 5.1 includes Kesten’s result for
additive sequences. Unlike Kesten’s assumption that S,, goes to infinity, we only require
that the process is positive for sufficiently large values of n.

We need two technical lemmas before proving the theorem.

Lemma 5.1. Let {S,},>1 be a real wvalued superadditive sequence and let To =
sup,en{n: Sn < 0}. We have

liminf S, >0 a.s on {79 < oo}. (5.3)

Proof. Let A = {liminf S,, =0, T < oo}, it is clear that (5.3) is equivalent to p(A) = 0.
We argue by contradiction: suppose that u(A) > 0, let

V=An{S,+S;0T" < 8S,,s forall n,se N}
By countability of N2, we have
p({S, +8Ss0T" < 8,45 forall n,seN}) =1,

so we have u(V) = u(A) > 0. By Birkhoft’s ergodic theorem we have

Gni=n"" Z 1y o T" — g := E*(1y|Z,) a.s as n — oo.
k=1
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Since E*(g) = u(V), then p({g > 0}) = p({liminf g, > 0}) > 0 and so {liminf g, > 0} #
&. Letting w € {liminf g, > 0}, this implies that {k : T%(w) € V} is not finite, and
so there is a strictly increasing sequence of integers {n(w)},>1 such that 7" (w) € V.
Since w' 1= T™"(w) € V and V C {19 < oo}, then 7¢(w') < co. Let p(w) such that
s:=mn,—mny > To(w') + 1. Since s > To(w’) it follows that

S,(w") > 0. (5.4)

The fact that 7" (w) € V implies that
liminf S,,(T""(w)) = 0. (5.5)

By the fact that ' € V, for all n > s,
So(W') + Snes (T (w)) = Ss(w) + Snos 0 T*(w') < Sn(w), (5.6)

It follows by (5.4)-(5.6), that liminf S, (w") > Ss(w’) > 0, which contradicts the fact that
w' € V and thus u(A) = 0. O

The second lemma gives a property on series with terms in {0,1}. Let p > 0 and
let u = {u,}n,>0 a sequence of elements of {0, 1}N. For all n > p, define {v?(u)}°, a
sequence of elements of {n,n —1,---,0, —oco}N by

vi(u) =n and forall k>0 vp(u)=sup{r e N:r <o} ,(u)—p, u, =1}.
Define also ¢"(u) = sup{k : vj(u) > —oc} and s(u) = inf{k : sy > p},

k (5.7)
where s, 1= Zui.
i=0

It is clear that the sequence {v}(u)}52, is decreasing and becomes —oo eventually. Hence,
the largest index k for which v} (u) is finite, denoted as ¢"(u), is well-defined. Note also
that

for all & < ¢"(u), wv;(u)— vy, (u) >p. (5.8)

If >°°° w; > p then s(u) is finite and, since {w,},>o takes values in {0, 1}, there exists
u)

an integer n such that ), _, u, = p, which implies that 22(20 up = p.
Lemma 5.2. Ifliminfn='s, > 0 then

1. for all n > s(u), v, (u) < s(u),

2. liminf n™'¢"(u) > 0.
Proof. For the first part, we have s(u) +1 > p and then
s(u) s(u)

s(u)+1—p s(u)
D, w=) w- ), w=p- ) ow
k=0 k=0

k=s(u)+1—p+1
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It follows that there exists 7o < s(u) 41— p such that u,, = 1. Therefore, if v, (uw) >
s(u), ie s(u) +1 < vp ., (w), thenr0<’vq (w)(w) — p. It follows that rg € {r e N:r <
Uy (W) =P, w, = 1} and thus v}, ., # —oo. This contradicts the definition of ¢"(u).
We thus have shown 1. To show 2, noting that vg(u), vi(u), -, V., (u) is a strictly

decreasing sequence of integers with vjj(u) = n, one has

ol (u) Vg (u) (W)
k=v7 (u)+1 k=vD (u)+1 k=0

Since, by definition, v} (u) is the largest index I below vj'(u) — p such that u; = 1 then
uy, = 0 for all v}, (u) < k < vj(u) — p. We thus have

vy (u) v (u)
Z Uy = Z up < p, foralll < ¢"(u). (5.10)
k=v}, | (u)+1 k=v}(u)—p+1

By the first part of the lemma we have

Vi (w) (W) s(w)
Z o SZuk:p,. (5.11)
k=0 k=0

It follows by (5.9), (5.10) and (5.11) that s, < p(¢™(u) + 1). Therefore,
liminfnt¢"(u) > liminfn*(p~'s, — 1) = p 'liminfn~'s, > 0,
which concludes the proof. ]

We are now ready to give the proof of the theorem.

Proof of Theorem 5.1. The proof does not follow that of Kesten and only uses the ergodic
theorem as an external result. Since the real valued sequence § := {min(S,,n)},> is
superadditive and liminf{S, > 0} = liminf{S, > 0}, and S > § then one can assume
without loss of generality that S is a real valued process. By (5.3), it suffices to prove
that

liminfn™'S, >0 a.s on {liminf S, > 0}. (5.12)
Let B = {liminfn~'S, = 0, liminfS, > 0}. Since on
{liminf S,, > 0}, one has liminfn='S, = 0 or liminfn™'S, > 0 a.s. then to

show (5.12), it is equivalent to prove that u(B) = 0. We argue by contradiction: assume
that u(B) > 0. Let f = liminf n~'S,,. Note that for all w € Q,

flw) = liminf%SnH(w) > timint S22 LW ES1@) ey o

n—oo n
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hence for alla € R, {w: foT(w)>a} C{w: f(w)>a} as. ie.
T'({f>a}) C{f>a} as.
Because u (T7Y({f > a})) = u({f > a}), we have p ({f > a} AT ({f > a})) = 0, and

therefore B
foralla € R, {f >a} €Z,. (5.13)

Let N = {f <0}. Since B C N, then pu(N) > 0. Let v the probability measure in
(2, B) given by the conditional probability given N. By Lemma 5.5, (Q,B,v,T) is a
measure-preserving dynamical system and since v is absolutely continuous with respect
to p then {S, },>1 is a superadditive sequence on (2, B, v, T'). Noting that {f > 0}NN =
{f>0}n{f <0} =2, we have

v(f>0)=p(N)"u({f>0}nN)=0. (5.14)

Let us now show that under the condition pu(B) > 0, one also has v(f > 0) > 0, which
contradicts (5.14). Since {liminf S,, > 0} N N = B, one has

v(liminf S, > 0) = u(N) 'u(B) >0

and thus
there exists n > 0 such that v(liminf S,, > n) > 0. (5.15)

Since
v(liminf S,, > n) = V(Un{]irzlfl Sp>n}) = Tim y(}gﬁ Sk >n),

it follows by (5.15) that

there exists p > 0 such that V(li€r>1f St >mn) > 0. (5.16)
>p

For this p, let
W = {inf S} > n}.
k>p

By Birkhoft’s ergodic theorem we have
hy =mn"" Z lywoT* — h:=E'(lw|T,) v—a.s as n— oo.
k=1

Since E”(h) = v(W) > 0, then v({liminf h, > 0}) = v({h > 0}) > 0. Let
U= {liminfh, >0} N{S,+ Ss0T" < S,s forall n,se N}
By arguments already given, we have

v(U) = v({liminf h, > 0}) > 0. (5.17)
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Let u = {un}n>0 := {Iw o T"}n>0, on U, ie. for all w € U, u¥ = {1y o T"(w) }n>o0-
Define {vi(u)}2,, {¢"(u)}n>0, s(u) and {S,},>1 asin (5.7) with p defined in (5.16).
Note that s(u) < oo and for all n > s(u), ¢"(u) > 1. Remark also that n='s,, = h,, for
all n and thus on U

liminfn~'s, = liminf A, > 0 (5.18)
Since v{(u) = n, then on U
q"(u)—1
for all n > s(u), S =Su, @+ > (Supw=Su,w) (619
k=0

By the first point of Lemma 5.2 one has Sv2n<u>(u) > infi<s()(Si) and by the definition
of U, for all n > s(u) and k < ¢"(u),

Supw) = Sop, @) = Sopw—op,, @ o T on UL

It follows by (5.19) that on U,

q"(u)-1
for all n > s(uw), S, > inf (S;)+ sz(u),vzﬂ(u) o Tk41(w) (5.20)
k=0

1<s(u)

Since on U for all k£ < ¢"(u), Upp w) = 1, le T+ ¢ W and by Eq. (5.8)
vp(u) —vp,  (u) > p, then the definition of W implies that

for all k < ¢"(u), Sur(w) (u) © TV > on U.

P
Vi41

Thus, by (5.20), one has on U

for all n > s(w), S, > inf (S;)+nq"(uw).

T i<s(u)
It follows by (5.18) and the second point of Lemma 5.2, that
f =liminfn~'8, > nliminfn'¢"(u) >0 on U.

Thus v({f > 0}) > v(U) > 0, where the last inequality is due to (5.17). This contradicts
(5.14) and concludes the proof. O

Remark 5.1. Following the result of Theorem 5.1, we can wonder if
limsupn™ 'S, <0 a.s on liminf{S, < 0}.

Howewver, this statement is incorrect. A simple counter-example is the superadditive pro-
cess that is identically equal to —1. A counter-example of non-a.s. constant process can
be constructed. .

1. Let {X,,}22; a positive strictly stationary and ergodic process with a positive finite moment and let
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Theorem 5.1 could be stated in a weaker form if the set where (S,,),>; is not always
non-positive and becomes non-negative for sufficiently large values of n is invariant. This
variant result is the following:

Theorem 5.2. Let {S,},>1 be a superadditive sequence, let T = sup,en{n: S, < 0}
and let E be an invariant subset of {sup, ey Sy >0, T < 0o}. One has

liminfn™'S, >0 a.s on E. (5.21)

Proof of Theorem 5.2. Note that (5.21) is equivalent to pu({liminfn='S, > 0} N F) =
p(E). Letting v = inf,en{n : S, > 0}, one has {v < oo} = {sup,,cn S» > 0} and then
ECc{v<oo,7<oo}. Let P={S,+8S;0T" < S, forall n,s e N} and let

E'=ENPand C(E)=(T(E).

n>0

Since p(P) =1 then P is invariant and u(E’) = u(FE). Hence E’ is also invariant and it
follows by Lemma 5.6, that

W(C(E) = u(E). (5.22)

Since C(E') C E C {v < 00, T < o0}, it follows by Lemma 5.6 that for all w € C(E’) one
has,

S,(w) >0, Sy(w) >0 foralln >7 and T"(w) € C(E') for alln >0
and then on C(E'),
foraln >7oT"+v, S,(w)>8, ,oT°+S,>S,>0. (5.23)
The second last inequality comes from the fact that S, _,oT" > 0 because n—v > 70TV
and TV € C(E') on C(F') C {7 < oo}. It follows by (5.23) that C'(E’) C liminf{S, >
0} N E and thus, by Theorem 5.1, one has
w(C(E)) < p(liminf{S, > 0} N E) = p({liminfn 'S, > 0} N E). (5.24)

Hence, in views of (5.22) and (5.24) we have p({liminfn=1S, > 0} N E) > u(F). Since
{liminfn=1S, > 0} N E C E, it follows that

p({liminfn=*S, > 0} N E) = u(E).

This concludes the proof. O

Remark 5.2. It is clear that the condition sup, cnS» > 0 in Theorem 5.2 is necessary
and cannot be replaced by a weaker condition. Moreover, the invariance assumption can-

a € (0,1). Using the inequality (a+b)* < a®+b" for all a,b > 0, we have {S,, := —(3>_}_, X5)*}02, is su-
peradditive. However, since the ergodic theorem implies that n~! >ory Xk —EX; €(0,00)a.s. asn—
oo then S, — —00 a.s. as n — oo and limsupn =18, = limsupn~ U= (n" 13} X;)* =0 a.s.
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not be weakened without adding a supplementary condition. To illustrate this, we consider
a process from Kesten (1975). Let @ = RN T the left shift operator and P[{(—1)"},] =
P{(=1)"1},.] = 1/2. The sequence S, ({x;}n) := Y200 @, is an additive process. How-
ever, (Sy)n s almost surely bounded on {sup,cn S» > 0} Nliminf{S, > 0} = {[(—1)"],.}.
It can be observed that {[(—1)"],} is not invariant.

Remark 5.3. An interesting consequence of Theorem 5.2 is that

liminfn™'S, >0a.s if supS, >0 p-a.s and p(liminf{S, >0}) =1,  (5.25)

neN

(ieif  p{sup,enSn > 0} Nliminf{S, > 0}) = 1). Indeed, since for all A €
B, wu(A) =1 implies that A € Z,,, then (5.25) follows from Theorem 5.2.

We say that T is ergodic if for all I € Z,,, u(I) € {0,1}.

Corollary 5.1. Let {Sn}nzl_a superadditive sequence. If T is ergodic then liminfn=tS,
15 almost surely constant in R and

liminfn™'S, >0 a.s if and only if p(liminf{S, > 0}) > 0. (5.26)

Proof. For the first point, using (5.13) and the ergodicity of T, we can deduce that for
all @ € R, the function F(a) := p(liminfn=1S, < a) takes its values on {0,1}. Since
F(co0) =1, and a — F(a) is right continuous and non-decreasing on R, we can conclude
that there exists an ag € R such that for all a < ag, F'(a) = 0 and F(ag) = 1. Therefore,
we can conclude that pu(liminfn='S, = ag) = 1, which implies that liminfn=1S, = ag
almost surely.

The necessary condition in (5.26) is trivial. To show the sufficient condition, using
Theorem 5.1, we deduce that p(liminfn=1S, > 0) = u(liminf S, > 0) > 0. Therefore,
in view of Equation (5.13) and the ergodicity of T, it follows that u(liminfn=1S, > 0) =
1. O

In the next theorem, we state the last main result of this section. Let A € B with
p(A) > 0. Let 7 =inf{n > 1: T™ € A}. Define L by L = T7 if 7 is finite, and L = idg
otherwise. Let v be the probability measure given by the conditional probability given
A. By the Poincaré recurrence theorem we know that the set of points w of A for which
T"(w) ¢ A for all n > 1 has zero measure. Therefore, 7 is almost surely finite under v
and then L =T7 v-a.s. We can also define the v-a.s. finite sequence of integers (7,),>1:
T, = 7o L" ! Foralln>0,letv, = ZZZl Ti. It is easy to see that v, is the index k
where T* € A for the n-th time. Therefore (v,) is v-a.s. strictly increasing and grows to
infinity. We have the following:

Theorem 5.3. Let {S, },>1 a superadditive sequence with ST integrable, one has

limn~ 'S, >0 v-a.s on liminf{S, > 0}.
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Noting that (v,) = (n : T™ € A), Theorem 5.3 states that if S| is integrable,
then limn~'S,, > 0 pu-a.s on the intersection of set A and the set where the sequence
(S, : T™ € A) is positive from a certain period. This means that under the set A, the
positivity condition only involves the values of (S,) with indices in (n: T™ € A). Note
also that, under the integrability of ST, this result is more general than Theorem 5.1,
which is obtained by taking A = 2.

In Remark 5.4 below, we show that the integrability condition in Theorem 5.3 is not
superfluous.

We immediately deduce the following result that extends a variant of Kesten’s re-
sult, established by Eskin and Mirzakhani (2018, Lemma C.8), for additive sequences to
superadditive processes.

Corollary 5.2. Suppose that T is ergodic and let {S,}n>1 a superadditive sequence with
ST integrable. Let A € B with u(A) > 0. If, almost surely, the sequence (S, : T™ € A)
15 positive from a certain period, then

limn~ 'S, =limn'ES, =supn'ES, >0 a.s. (5.27)

Proof. The first two equalities in (5.27) follows from Kingman’s subadditive ergodic
theorem. To prove that limn™'S, > 0 a.s., observe that if u({(S, : T" €
A) is positive from a certain period}) = 1, then by Theorem 5.3, y(limn=1S, > 0, A) =
p(A) > 0. This means that p(limn='S, > 0) > 0, which implies the result by already
given arguments. O

The proof of Theorem 5.3 is based on Theorem 5.1 and the following additional result.

Lemma 5.3. We claim that: 1) (0, B,v,L) is a measure-preserving dynamical system
and, ii)

E'r = u(Ups 1 {T% € A})/u(A) < 0. (5.28)
Moreover, iii) (Sy, )n is a superadditive sequence on (2, B,v, L).

Proof. We prove i). Recall that T is almost surely finite under v and L = T7 v-a.s. Thus,
we must show that for all B € B, v(T™ € B)) = v(B). We have

v(T"€B)) =Y v(r=FkT"eB)

= (A7) WA T ¢ A T ¢ ATV e AT € B)
= (A7) w(Xo=1,X1=0 X4 =0,X; =LY =1),

where (X,,Y,) = (LaoT™ 10 T") for all m > 0. It is clear that (X,,Y )n>0 is a
stationary sequence on (0, B, ). Therefore, it is well-known that we can extend that
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sequence into the past to obtain a full stationary process (X, Y n)nez, see for instance
Elton (1990, Lemma 1). Hence

o0

v(T™€B)) = w(A)> u(X =1, X 41 =0, X =0,X,=1Y,=1)
k=1
= pu(A)~ ZN(XO =1,Yo=1U>{X =1})
k=1

p(A) (X0 =1,Y,=1})
v(B).

The second equality is derived from the fact that the sets ({X_x = 1,X 11 =
0,---,X_1 = 0})g>1 are disjoint and their union constitutes Up>1{X _r = 1}. The
third equality follows from the Poincaré recurrence theorem, which implies that {X, =
1} C Ups1{X _ = 1}. The conclusion follows.

The proof of ii) (Eq. (5.28)) uses similarly arqguments. We have

E'r=> v(r>k)=pA)" Y uX p=1,X 441 =0 ,X_4=0)
k=1 k=1

H(A) " p(Uie {X = 1)
= (Ui {T* € A})/u(A),
because i(Ups1{X_ = 1)) = lim, p(Up_ {X_ = 1}) = lim, p(Up_ {Xx = 1}) =

(U { X = 1}) = p(Up {T" € A}).
To show 1ii), first note that,

for allmn,s € N*, L" =T" and v, +vs0 T = v,,s V-a.s. (5.29)

Thus, by superadditivity and the fact that v is absolutely continuous with respect to p, for
all n,s € N*,
S’Un + SvsoL" o " = Svn -+ SUSOT”H oT'n

S Svn-l—vsoT“n
= Svn+s
This concludes the proof. O

v-a.s.

Proof of Theorem 5.5. By superadditivity, for all n, one has v-almost surely S,, — S, >
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Sp—v, © TV where vy, <n < vpyq. Thus

S, = (Sn - SUk) + S'Uk
> Snka o T + Svk

> min  S; 0T + 8,
0<i<vg41—vk

> min S;oLF+ S, byEq (529).
0<i<roLk

> min —S; oLF+ S, v-as.
0<i<roLk

Since, by superadditivity S; > Z;;B S 0T7 v-as. forall 0 < i < 7oL* we have
—S; oLk > (Z;;B —S{ 0T o LF> —(Z]T;é S oT7)o L* v-a.s. Therefore,

T—1
n'S,>-n1(Y) SyoT)oLF+n7'S,,
=0
7—1
> —k_l(z Sy oTY)o L" +v; 1S, v-as.

J=0

The last inequality is due to the fact that v, is v-a.s. strictly increasing, which implies
that & < vy < n. Under the integrablity of S, the Kingman ergodic theorem implies
that limn~1S,, exists p-a.s. Thus the limit also exists v-a.s. Since k grows to infinity
with n, it follows that

T—1
limn 'S, > —limsup k:_l(z ST oT9)o LF + limkinf Ui Se, v-a.s.
n k :
7=0

To conclude, it suffices to show that on liminf,{S,, > 0}, one has v-a.s :

T—1
. . —1 . . —1 — j k
i) hmkmkaHSUk > (), and i) hmksupk (z; S,oToLF=0.
]:
Let us show ). Since v,, = Z;é 7o L* v-as., it follows by Lemma 5.3 and the Birkhoff
ergodique theorem that
lilgn k™ 'vp,, exists and is finite v-a.s. (5.30)

We also have, by Lemma 5.3 and Theorem 5.1, that

limkinf k'S, >0 v-a.s on limkinf{SUk > 0}.
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Therefore, the result follows:

limkinf Vi1 8o, = limkinf(kflvkﬂ)’l(kflSUk) >0 v-a.s on limkinf{Svk > 0}.

Now let us turn to the proof of ii). Since S| is integrable, we have by the Birkhoff
ergodique theorem and the « absolutely continuous » argument that

limn ™! Z S| oT" exists and is finite v-a.s. (5.31)
i=1

Since vy — oo v-a.s., it follows that limy v, —1 Z“’“ ! S| o T' exists and is finite v-a.s.
Letting f = >7", ' 8T oT7, it is no difficult to see that

UkzlsloTi:i Tzls 0T oL"= Zfoszas
i=0 =0 j=0
It follows by (5.30) and (5.31) that
k-1 . vp—1 .
lilgn k! ; folL' = lilgn(k_lvk)(vk_l ZZ; S| o T") exists and is finite v-a.s.
This implies that k' f o L*¥ converges to 0 v-a.s., which concludes the proof. n

The following result, which we state without proof, follows directly from Corollary 5.1
for Point 1. and Corollary 5.2 for Point 2. through the application of the function — log.

Corollary 5.3. Suppose that T is ergodic and let {~,}n>1 € RN be a positive sub-
multiplicative process (i.e for alln,s € N* 0 <~,,, <7, x~v,0T" a.s.). Let Ae B
with p(A) > 0.

1. If p(liminf, {~, < 1}) > 0, then v is almost surely constant in R and

v :=limsupn 'log~y, <0 a.s.

n

2. If Elog™ v, is finite and, almost surely, the sequence (y
than 1 from a certain period, then

. T" € A) is strictly less

v =limn 'log~y, = limn 'Elog~, = infn 'Elog~y, <0 a.s.

Recall that ~ is almost surely constant. The previous corollary is more general than
Lemma 3.4 of Bougerol and Picard (1992b), see the next corollary. Point 1. of Corollary
5.3 does not require any integrability condition, it applies to all sub-multiplicative ergodic
sequences and only needs its values to be negative for n large enough. This result also
enables the characterization of the case where the top-lyapunov exponent of a class of
cocycles on a measure preserving transformation is negative.
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Remark 5.4. IfElog™ ~, is not finite, then the conclusion of Point 2. of Corollary 5.5 is
no longer valid. Indeed, for alln, let o, = e~ 1 -2n where (U )nez 1S @ positive iid sequence

such that Eln™ ug = co. Consider the measure- preservmg dynamical system gwen by the
quadruplet: R% and its Borel o-algebra, the push-forward probability measure Py, of (u,,)
and the shift operator T. It is easy to see that the process (7, )n>1, where v, = [[}_, &y,
s a sub-multiplicative process. We show, in Appendiz 5.1, that there exists a measurable
set A with Py, (A) > 0 such that the sequence (7, : T" € A) converges almost surely to 0
and on the other hand that limsup, n=*log~, > 0. This is because Eln" v, =

Corollary 5.4. (Bougerol and Picard, 1992b, Lemma 3.4) Let {M,},>1 be an ergodic
strictly stationary sequence in the space of the d x d real matrices. We suppose that
E (log™ || Mo)) is finite and that, almost surely, lim, oo || My M,—1 -+ M| = 0. Then

v := inf E(log||M M,y M) <0

neN n

Proof. Let ~, = log||M,M,_1--- M| for all n € N. Note that P(liminf,{vy, < 1}) =1
if lim,, 00y, = 0 a.s. Since {7, }n>1 is a sub-multiplicative sequence, the result follows
from Corollary 5.3 and the Kingman’s subadditive ergodic theorem (see also Furstenberg
and Kesten (1960)). O

3 Stationarity of fGARCH models in C°

In this section, we study the existence of a stationary solution of the functional
GARCH models in the space of continuous functions (see Aue et al. (2017)).

A sequence (r,:t€Z) of random elements where each random object
r; is a curve (ry(u):u € [0,1]) in C[0, 1], the space of continuous functions on [0, 1], is
called a functional GARCH process of orders (1, 1), abbreviated by f{GARCH(1, 1), if it
satisfies the equations

Ty = Oy,

5.32
af =0+ ozrf,l + Baf,l =0+ /’Yt(', S)O'f,l(s)ds =0+ v,0:1, ( )

where (n, : t € Z) is a sequence of independent and identically distributed (iid) random
functions in C[0,1], 0 is a positive function and the integral operators « and (3, i.e.
(az)(u) = [a(u,s)z(s)ds and (Bz)(u) = [ B(u,s)z(s)ds are positive, i.e. they map
nonnegative functions to nonnegative functlon 'yt(u s) = a(u, s)n?_1(s) + B(u, s) is an
element of C[0, 1]2.

By extending our considerations to include strictly stationary and ergodic but non-id
innovations, and by replacing the interval [0, 1] with an arbitrary compact set K, we can
generalize the autoregressive model with non-negative random functional coefficients with
Eq. (5.33) below to include a wide range of conditional volatility models. Furthermore,
by allowing the coefficients §, o, and [ to be stochastic processes rather than constants,



3. STATIONARITY OF FGARCH MODELS IN C° 95

and by dropping the assumption that v = o + § must be an integral operator, we can
obtain even more flexibility in our modeling approach. The model is as follows:

he =0(n_1) + v(M_1)hir, (5:33)
where the positive stochastic curve §; = d (n,) and linear operator v, = v (n,) are mea-
surable functions of n,.

We can see that Model (5.33) include the functional GARCH considered in (5.32).
If K = {1}, we obtain the univariate class of GARCH(1,1) model of He and Terésvirta
(1999) and if K is finite we get the class of multivariate-constant conditional correlation
and univariate asymmetric power GARCH(p,q), see the AR(1) representation of Mainas-
sara et al. (2022).

Across the different normed vector spaces, we will unambiguously use the classical
notation of the norm, || -||. We recall that F' := C(K) equipped with the uniform norm
|z|| = sup{|z(u)|, uw € K} is a Banach space. The space of the linear endomorphisms
in F is equipped with the usual operator norm ||| = sup{||a(z)]|, |lz|| < 1}. Denoting
e : K 5 u > 1, remark that for all positive operator «, ||a| = |ae|. For all z €
F, let infz = inf{|z(u)|, ve K}.

The stationarity of Model (5.32) has been studied in (Aue et al., 2017, Theorem 2.2)
and in (Hormann et al., 2013, Theorem 2.3) when the model is reduced to a pure functional
ARCH. In both papers, they give a sufficient condition for the existence of a stationary
solution. The weakest condition is obtained by Aue et al. (2017). They show that if

—o0 < Elog [o]| <0, (5.34)

then Model (5.32) have a unique, strictly stationary and nonanticipative solution in C[0, 1].

Contrary to the multivariate setup, to our knowledge, necessary and sufficient condi-
tions for the existence of a stationary solution of Model (5.32) have never been established.
As noted by Cerovecki et al. (2019, Remark 1), one of the main challenges in establish-
ing these conditions is to extend the contraction property of random matrices to linear
operators. Since we have established this result in Corollary 5.3, we are ready to provide
necessary and sufficient conditions for the existence of a stationary solution for the gen-
eral functional GARCH models considered in (5.33). To establish theses conditions, the
following assumptions will be made.

A5.1 (n,) is iid.
A5.2 (n,) is strictly stationary and ergodic and E(log™ ||7,]|) is finite.
For all t > 0, let

7%0) = 1dp and 7§") =9,0 074 foralmn>1.
Consider the following assumption.

+oo
P(inf{> 478 , ue K} =0)<1. (5.35)

k=0
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Note that if P(inf{dg(u), u € K} = 0) < 1 then we have (5.35). Since we deal with
volatility curves, it is not restrictive to assume that (5.35) holds. This condition is satisfied
by most commonly used volatility models and ensures that the solutions are positive on
the entire curve in a non-negligible set. Indeed, by iterating (5.33), we can see that any
non-negative solution (h;) of (5.33) satisfies: hy > > 77 8, 1. Thus, (5.35) implies
that P(inf{ho(u), uve K} =0) < 1.

For all t € Z, define w; := >_°5 ~+"8, . € [0, 00]X. Note that the sequence of contin-
uous, positive, and non-decreasing functions (ZZ:O 'ygk)ét_k)n converges pointwise to wy
a.s., even though the limit may not be finite at some points. It is also important to note
that the convergence may not be uniform. Therefore, w; is not necessarily continuous.

Now we state the main result of this section.

Theorem 5.4. Let v = limsup, & 10g(||’7(()n)||).

1. Suppose that (5.35) hold. If A5.1 or A5.2 hold and Equation (5.33) has a positive
stationary solution in F' then
~<0 a.s.

2. Conversely, if E(log™ ||8o|) < oo and v < 0 then (3",_, 7§k)5t,k)n converges in F'
to w; and (wy) is the unique (continuous, positives and non-anticipative) stationary
solution of (5.33).

Remark 5.5.

1. In views of Corollary 5.3, under A5.1, ~ is almost surely constant with value in
[—00,00[. Under A5.2, the subadditive ergodic theorem implies that

) 1 n
~ = lim —log(|v{")

n—+oo N
.1 (n) .1

= lim —El = lim —El :
Jim —Elog(flyg [) = lim —~Elog(|lv, 0 o7l)) (5.36)

1
= Inf ~Elog([ly, - o mll).

2. If (n,) is strictly stationary and ergodic and E(log™ ||7,|) is not finite, the following
example, in the scalar case, shows that it is possible to have a stationary solution
and at the same time v > 0. Let us take m, = uy, 8; = 1/uy, v, = e ‘uy_1/uy,
where (u;) is defined in Remark 5.4. We have >, 20 A BE = (1)) SiSeh <
0o a.s. It is easy to see that this process is a strictly stationary (and ergodic)
solution. However, using the arguments used in Appendiz 5.1, we can see that
v = limsup, +log ' >0 and Elog* ~, = co.

For all ¢ € C[0, 1], we can remark that if

for all w € [0,1], 6(u) > 0, i.e. inf d(u) > 0, (5.37)

u€(0,1]

then (5.35) holds. Therefore, we have the following immediate corollary.
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Corollary 5.5. If Eq. (5.37) hold and A5.1 or A5.2 is verified, Model (5.32) admits
a (unique and non-anticipative) positive and strictly stationary (and ergodic) solution in
C([0,1]) if and only if

1
limsup —log([|vgo - 0ov_ill) <0 a.s. (5.38)
n

n

Moreover, under A5.2, Eq. (5.38) is equivalent to

Elog||v,, 0 - ov4]l] <0 for some n. (5.39)

Proof. Under A5.2, the equivalence between equations (5.38) and (5.39) comes from Eq.
(5.36). Thus, Corollary 5.5 is a direct consequence of Theorem 5.4. O

Since (5.39) is necessary and sufficient under A5.2, which does not require the iid
assumption, it is clear that this condition is weaker than the sufficient condition, Eq.
(5.34), given by Aue et al. (2017).

In order to prove Theorem 5.4, we will use the following general result. It is used,
under A5.1, to address the other challenge mentioned in (Cerovecki et al., 2019, Remark
1), which consists in showing (5.52) from (5.51). Point 2. of Corollary 5.3 is used to
handle this step under A5.2.

Lemma 5.4. Let (x,),>0 and (Y,,)n>0 be real value processes. If (i) (x,)n>0 is identically
distributed, (i) x,+1 and o((xs, Y, q),s < n) are independent and (iii) P(xg = 0) < 1
then

Yy, — 0 a.s when n — oo on G :={x,y, — 0 a.s when n — oo}

By replacing the condition P(xy = 0) < 1 in the previous lemma by the slightly
stronger assumption that x, is not almost surely constant, we can establish the following
more general result:

Yy, — 0 a.s when n — oo on {(x,y,,) converges},

see Proposition 5.1 in Appendix 5.2.
Proof of Lemma 5./. 1t suffices to prove that
for all & > 0, P (lminf {|y,| < e} NG) = P} Ly, 2o < 0} N G) = P(G).
n>1

Define G. = {3, 51 L{jzny,|>c} < 0o} = liminf, {|z,y,| <e}. Note that (i) implies
that
there exists § > 0 such that P(|zy| > ) > 0. (5.40)

Fix ¢ and for this ¢, let’s show first that for all 0 < &’ < e,
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P{D Ly, 2} < 0} NGer) = P(Go). (5.41)

n>1

Since {D 5 Ly, 1276y < 00} C {251 Lijy,2e) < 00} forall & < e, to prove (5.41),
it suffices to show that for all & < de,

P{D 1y, 12er/0p < 00} NGor) = P(Gor). (5.42)

n>1

To prove this, we will use a conditional version of the Borel-Cantelli lemma. Let ¢’ > 0.
Since
20yl 2 01qja 20y Ynl and Ly, only, et = Liwalzo) Loy, 226}

we have
L@y, >e} 2 L{jzn|>6} Ly, > /6}-

Define, for all n > 0, z,, = 1{|mn‘25}1{|yn|25//5}, it follows that

Zzn<oo a.s on Gg. (5.43)

n>1

Let F, = 0((®5, Y1), s < n), for all n > 0. Since y,, is F,_1-measurable and in view of
(ii), @, and F,_; are independent, then, also by (i), for all n > 1,

my, := E(zn|Fuo1) = P(j@o| = 0) 1y, 22753,

hence, by (5.40), {>,51mn < 00} = {3 5 Ly, >e//51 < 00} a.s. This result, the
fact that (F,)n>0 is a sequence of nondecreasing o-algebras, z, is F,-measurable, and
Theorem 1 of Chen (1978) (see also Freedman (1973, Eq. 5 and 6)) imply that

Y Ly, zerysy <00 as on {) z, < ool (5.44)

n>1 n>1

Equation (5.42) is a direct consequence of (5.43) and (5.44). This show (5.41). Since
(G4 /m)meN is a nonincreasing sequence of sets and

G = mle UNZl ﬂnzN {|$nyn| < l/m} = ﬂmzlal/m,
it follows by the monotone convergence theorem and (5.41) that
P(G) = lim P(Gy/m)

= lim P({>  1qy, 5} < 00} NGiym)

m—00 w1
= P{D Ly, 120 <0} NG,
n>1

which completes the proof. O]
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Proof of Theorem 5./.

We prove 1. Let us first consider that A5.1 holds. For all ¢t € Z and n € N, let
Wep =Y 1 »yﬁ’“’at_k. Suppose that (5.33) has a positive stationary solution (h;)cz in F.
By iterating (5.33), it follows that for all n > 0 and t € Z, w;, < h;. This implies
that a.s. (w¢n)n>0 s a sequence of nondecreasing functions bounded by h;. Therefore,
a.s. (W), converges pointwise (with finite limit) to w,;. Noting that for all n and ¢,

(n)

Wy = Wy -1 +7Yy Wy, one has a.s.

w250 when n— oo

Since
(infw_n)'y(()n)e < 'y(()n)'w_n, (5.45)
we have
(infw_,)7 Ve 250 when n— oo a.s. (5.46)

Consider that (5.35) holds. The proof relies on the following intermediate results.

a) there exists ng > 1 such that P(inf wg,, = 0) < 1.
b) limsup(nok) " log([7§™"[) < 0 a.s,
k

¢) limsup(nok + p) " log(|[yIF ™) <0 asforallp=0,1,---ng—1
k

Let us proceed by contradiction to prove a). Suppose that
for all n > 1, infwg, =0 a.s. (5.47)

Foralln > 1, let J; = {u € K : wg,(u) = 0}. The sequence (wo,)n>0 is continuous,
positive, and non-decreasing, therefore, a.s., (J,),>0 is a sequence of non-empty, non-
increasing, random, compact sets. By Cantor’s intersection theorem and Eq. (5.47),
J = N,>0Jn # @ a.s. The sequence (wy),>1 converges pointwise to wy, and almost
surely wg,, = 0 on J for all n > 1. This implies that wo = 0 on J a.s., which contradicts
equation (5.35). This completes the proof of part a).

We now prove b). By iteration, note that for all n > 0,

ho = w1+, (5.48)

It follows that (’yé")h,n) is a sequence of nonincreasing functions, pointwise bounded by
h; and then, almost surely, it converges pointwise. Since, by continuity, hg is almost
surely bounded then limy o P(suphy < K) = 1. It follows by (5.35) that there exists
K > 0 and € > such that P(sup hy < K, inf wg > €) > 0. Noting that

'y(()n)h_nl{suph,ngK, infw_,>et < (K/e) inf'w_n'y(()")e,
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it follows by (5.46) that
'Y(()n)h—nl{suph_n<K, inf w_,>€} ﬂ} 0 as n — oo. (549)

Since the ergodic theorem implies that almost surely, liuph_, <K, infw_,>p = 1 for an
infinite number of n, it follows that the sub-sequence ('yé")h_n © Lsuphon<k, infw_p>c} =

1) converges, almost surely, pointwise to the limit of (’y(()n)h_ ). It follows by (5.49) that
this limit is 0, i.e.

'yé")h_n 20 when n— oo a.s. (5.50)

From this and Eq. (5.48) one has F' 5 hy = wy a.s. It follows by Dini’s Theorem that
(wo,n)n converges uniformly to wy a.s. Hence,

[wo — won| = |V w_n|| — 0 when n— o0 a.s. (5.51)

For all k& > 0, let ) = infw_, k., and y, = ||'y(()"°k)||. Note that (xp, y,(u)) ver-

ifies the conditions of Lemma 5.4 because of a) and the fact that (n,) is iid. Since

i FW _ngeno [0 €]l = 0 fW gk 176" | < 176" w0 o], it follows by (5.51), and
Lemma 5.4 that
||'yén°k)|| —0 when k— oo a.s. (5.52)

Since (||7{*"||),, is a sub-multiplicative sequence, by (5.52) and Point 1. of Corollary 5.3,

we have

. — n . k — n
lim sup(nok) ~ log (1" ) = lim sup(- =)k~ log(lv™ I} < 0 a.s.

This concludes the proof of b). To prove c¢), remark by stationarity and b) that for all
p=0,1,---ng— 1, limsup,(nok) ' log(||7"*"||) < 0. Therefore

—-bp

¢ = limsup(nok + )~ log( |7
k

< lim sup(noh -+ p) " log([[7” ) + limsup(nok + p) " log(Iv 571D (553

)(nok) " log (7PN < 0 a.s.

= lim sup( »

k nok +p

Noting that N = Up<p<n,—1{n0k +p: k € N}, it follows that

1 n . _ n
tim sup - 1og [ < | max (hm sup(nok + 1)~ log (|}’ 0’““”\1)) <0,
n k

0<p<no—1

which gives the first point under A5.1.

We now prove the claim under A5.2. First observe that the iid assumption is only
used, in Lemma 5.4, to derive (5.52) from (5.51). Therefore, all the results showed before
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(5.51) hold under A5.2. Hence, (5.51) implies that
Lintw_ s [V — 0 when &k — oo as.

Therefore, the sequence (||v{"” || : infw_, > ¢}) converges almost surely to 0. The result
follows from arguments used in Remark 5.4 (to define the dynamic system), Appendix
5.1 (to verifies the condition of the corollary) and Point 2. of Corollary 5.3.

We now prove 2. We have ?

. 1 n . 1 n
lim sup — log (|75 [1) < limsup ~{[lv5" | +log™* (|81

1
<+ limsup —log™([|6.))
= <0.

Therefore, by Cauchy’s rule, (wq,,),>1 converges absolutely almost surely. Thus, w, €
F a.s. It is easy to verify that the continuous, positive, stationary process (w;), is non-
anticipative and satisfies (5.33). The proof of the uniqueness is standard, see Appendix
5.1. This completes the proof. O]

4 Perspective

The main result of this chapter extends the result of Kesten (1975) on the growth rate
of sums of stationary sequences to superadditive processes. Our result is established under
weaker conditions than those of Kesten (1975). Using a result from Tanny (1974), Kesten
show in the same paper that if {S,}>°, is an additive sequence, then on {S, — oo},
0 < liminfn=1'S, < limsupn~!S, = 0o a.s. or limn~'8S, exists and limn='S, > 0. An
interesting question that could be considered for further work is to see if this result also
generalizes to superadditive processes. That is, in which cases can the limit superior in
Theorem 5.1 be replaced by a limit.

5 Appendix: Complementary Proofs

5.1 Complement to Remark 5.4

Let 4, = u; Since ug is not almost surely constant then there exists s > 0 such

that P, (dp > s) > 0. Let A = {dy > s}. It is easy to see that ~, 8, = % — 0 a.s.
asn — 0. Thus 4,140 T" = v,15,~s < 7,0, — 0 a.s. It follows that (v, : T" € A)
converges almost surely to 0.

2. For all non negative stationary process (X, ),>1 such that EX; < oo, one has limsup,,_, . n™'X,, =
0. Indeed, for all ¢ > 0, noting that the function f(¢) = P (t*1X1 > e) is decreasing, we have
S P (n_an > 6) < fooo P (e_le > t) dt = e 'EX; < co. The convergence follows from the Borel-

n=1
Cantelli lemma.
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On the other hand, since «,, = Z—Ze_”, then limsup, n~tlog~y, < 0 a.s. implies that
(u,e™™) converges to 0 a.s. However, one has

Z Plue™ > 1) = Z P(In" uy > n) / P(In" uy > t)dt
n=0 n=0

IE]H ’U,()):

It follows by the second Borel-Cantelli lemma that P(lim sup{u,e™™ > 1}) = 1 and then
(zn,e™™) does not converge to 0.

Now we compute EIn*~,. Let a real K > 0 such that P(InT uy < K) > 0. Since
In"y, > InTu; — InTwy, it follows that In" v, > InTwid+ < — In" wolyr o<
Hence EIn" 7y, > Eln™ uyP(In" uy < K) — EIn" wgly+,,<x = 00, because the second
term is finite.

5.2 On the convergence of the product of two independent ran-
dom elements

The following result, which generalises Lemma 5.4 is of independent interest.

Proposition 5.1. Let (x,),>0 and (Y, )n>0 be real value processes. If (i) (xn)n>o0 1S
identically distributed, (i) @,41 and F,, = 0((®s, Y1), s < n), are independent and (iii)
x( is not almost surely constant, then

1. z,y, = 0 aswhen n— oo on {x,y, converges}
2.y, — 0 aswhen n— oo on {x,y, converges}

3. If (x,y,,) converges in probability then the limit is 0.

Proof. For the first point, it suffices to prove that
P ({|limsup x,y,| > 0, x,y,, converges}) = 0. (5.54)

For all ¢ > 0 and t € R, let B(t,e) == (t — ¢, t+¢€). Let z = limsupx,y, and G =
{x,y,, converges}. Note that on G, z is finite and (x,y,) converges to z. We argue
by contradiction: suppose that P ({|z| > 0} N G) > 0. Since this condition implies that
P (G) > 0, let P€ be the conditional probability given G. Noting that P%(|z| > 0) > 0 we
have that the support of z under P contains a non-zero element z,. Thus, for all € > 0
we have PY (z € B(zp,¢)) > 0 i.e.

P({z € B(20,¢)} NG) > 0. (5.55)

The condition (74) implies that the support of @y under P contains at least two different
elements r; and zo. Since 1 # x9, we can assume without loss of generality that x; # 0.
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Let yo = z0/x1, and €, €1, €3, €3 > 0 such that

1) {zy: (2,y) € B(x2,€2) X B(yo,€3)} N B(20,¢€) = 9,

2.56
2) if (z,x) € B(zo,€) X B(x1,€1) then z/x € B(yo, €3). (5.56)

The point 1) in (5.56) comes from the fact that (z,y) — 2y is continuous at (x2,yo) and
ToYo = 2o(x2/x1) # 20. The second point is because (z,2) — z/x, defined on B(z,€) X
B(x1, €) for € small enough, is continuous at (29, x1). Indeed, for 1), take ¢ > 0 and 6 > 0
such that

B(Igyo, 5)} N B(Zo, 60) = .

Choose €3, €3 > 0 such that

(x7y> € B<x2762) X B(y0763)7

we have zy € B(zayo,0) and thus

{zy: (x,y) € B(x2,€2) X B(yo,€3)} N B(20,€0) = D.

Noting that this statement remains true for smaller €j, €5 and €3, let’s fix €5 and €3, and
choose €; smaller than its previous value and take also ¢; such that

(z,x) € B(z0,€) X B(xy,€1).
We thus have z/x € B(yo, €3).

For i € {1, 2}, we have by the strong law of large numbers that

n! Z iz cB(1,a)y — P(xo € B(21,€1)) a.s when n — oo.
k=0

Since P(xy € B(x1,€1)) > 0, then P(S) = 1 where S = {3 }_; Lz eB(a1,a)} — 00} We
have by this result and (5.55) that P (E) > 0 where

E = Sﬂ{z c B(Zo,E(])}mG.

Since on E (zx,y,,) converges to z, which is in the open set B(zy, €y), then there exists
an integer N (random integer) such that if n > N, then x,y, € B(z0,¢). It follows by
1) (5.56) that

Z 1{9%63(002,62)» yr€B(yo,ez)} < 00 a.s on K. (5.57)
k>1

Since on S, and thus on E, x,, € B(x1,€) for infinitely many n, it follows also that

{n: x,y, € B(z,¢€), n € B(x1,€1)}
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is infinite. Therefore, we have by 2) (5.56) that

Z 1y eByoes)y = 0 on E. (5.58)

k>1

To arrive at a contradiction, let’s also show that

Zl{ykeB(yo,ea)} <oo a.s on E.

k>1

In views of (5.57), it is equivalent to show that

D LyeBunen <00 as on {)_ 2z < oo} (5.59)

k>1 k>1

where
Zk = 1{wk63($‘2762)7 YrE€B(yo,e3)} — 1{$keB(1'2752)1yk€B(y0763)}'

To get this result, remark that z,, is F,,-measurable and since y,, is F,,_;-measurable and
x, and F,_; are independent, then for all n > 1

m, ‘= E(Zn|fn_1) = P(wo & B($2752))1{yn63(y0,63)}-

It follows from the converse part of Theorem 1 of Chen (1978) that

ka<oo a.s on {sz<oo}.

k>1 k>1

Noting that

{Z my, < OO} = {Z 1{yk€B(y0763)} < OO} a.s,
k>1 k>1

by the fact that P(xy € B(xs,€3)) > 0, (5.59) follows from the previous result. This
contradicts (5.58) since P(E) > 0, and thus we have (5.54).

The second point follows from the first point and Lemma 5.4.

For the last point, note that the convergence in probability implies convergence on
a sub-sequence (Ty(n)Yy(n)) almost surely. Since (Ty(n), Yp(n)) checks the conditions of
Proposition 5.1, the result follows from the first point. This concludes the proof. m

5.3 Ergodic Lemmas

This results may not be new. Since we have not been able to find it in the literature,
we provide a proof.

Lemma 5.5. Let I € T, with u(I) > 0. Let v be the probability measure in (2, B) given
by the conditional probability given I (i.e for all A€ B, v(A) = u(I)"'u(ANI)). Then
(Q,B,v,T) is a measure-preserving dynamical system, i.e.

for all A€ B, v(T7'(A)) = v(A),
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Proof. For all I € 7, and A € B, because

p(IATN(I)) =0,
TUIAT Y1) =T YI) UIAT () and
THANT ) =T (ANI),

one has
W(THA) 1) = p(TH(A) N (U TAT (D))
= (T4 N (D) U TAT (1)) 0
=T (A NTH(I)) = u(TH(ANT)) '
= u(ANI).
The result follows by dividing by u([). O
Lemma 5.6. For all invariant set I, Let C(I) := (o, T "(I), where T° = Idg. One
has
1. C(I)eZ

2. p(C(I) = p(I)
3. forallw e C(I) andn >0, T"(w) € C(I).

Proof. Let show the first point. If [ € Z then

u (T2(DAT (1)) = p(T (1)U T (1)) — u(T-2(1) N T~ (1)
— W(T NN UT) - p(T7 (1) N 1)
= (T7Y(D)AI) =0,

and then T7'(I) € Z,. Hence, by recurrence, we show that C'(I) is the intersection of
elements of the o-algebra Z,,, and thus C(I) € 7

For the second statement, using (5.60) for A = I, one has u(TY(I)NI) = p(I).
Therefore, by doing the same operation on (\,_, 7 *(I) for n = 1,2,---, one has by
recurrence and the monotone convergence theorem that p (C(1)) = u(I).

For the last one, note that w € C(I) is equivalent to, for allm > 0, T"(w) € I. It follows
that, w € C'(I) implies that for all p > 0 and for all n > 0, T"*P(w) = T"(T?(w)) € I, i.e.
for all p > 0, T?(w) € C(I).

[






Conclusion and perspectives

This thesis focuses on the study of the theoretical properties of stochastic IFSs (It-
erated Function Systems) and their applications in financial econometrics. Despite their
numerous applications in economics and finance, the theoretical properties of IFSs when
considered in infinite dimensions or when driven by a non-independent process are not
well understood.

We know that IFSs driven by non-iid (independent and identically distributed) se-
quences can have stationary solutions with heavy tails marginal distribution, such that
this solution admits no moment, even of small-order. In Chapter 3, we studied these
stationary solutions when the innovation sequences are stationary and ergodic. We estab-
lished a kind of stability property on the trajectory of this solution, which is weaker than
the existence of moments. By exploiting this result, we relaxed the moment existence con-
dition that assumed by Escanciano (2009) and established, under weak assumptions, the
strong consistency of the Quasi-Maximum Likelihood Estimator (QMLE) for semi-strong
GARCH(p, ¢) models with non-independent innovations. In Chapter 4, we focused on the
stationarity and inference of GARCH-MIDAS models, which have the particularity of not
admitting small-order moments. The control property established in Chapter 3 is used
to overcome the difficulties caused by this characteristic for the statistical inference of
these models. We establish the consistency and asymptotic normality of the QMLE and
propose statistical tests to detect the presence of long-term volatility. Our results were
illustrated using both simulated and real financial data. In Chapter 5, we first established
various extensions of the contraction property of random matrices to products of stochas-
tic operators. Our approach is based on concepts from ergodic theory and dynamical
systems. These results were then applied to the study of the stability of affine IFSs in
the space of continuous positive functions with compact support. We provided necessary
and sufficient conditions for the existence of stationary solutions of these models as well
as for functional GARCH models in C(]0, 1]).

Our results contribute to a better understanding of the existence of stationary solutions
and their probabilistic properties, as well as to the inference of a variety of IFS models in
financial econometrics. However, they are far from addressing all the unexplored issues
related to these models. We have identified some of these issues for future potential works:

Tails of IFSs driven by non-iid sequence. We know from Goldie (1991) that
stationary IF'S driven by an idd sequence have a power-tailed marginal distribution under
general regularity conditions. However, we have shown that this property does not hold
when independence is no longer assumed. Therefore, in addition to the stability property
we have proposed, it may be interesting to conduct a thorough study of the tail distribution
of these processes. This could lead to potential applications in risk management in finance,

107
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such as studying the extremes of GARCH-MIDAS models.

Asymptotic normality of the QMLE of semi-strong GARCH. In Chapter
3, We discussed why the asymptotic normality of the QMLE for semi-strong GARCH
models, which has been left hanging, may fail due to the possible non-existence of mo-
ments for these models. As asymptotic distributions are crucial in statistical inference,
it would be interesting to consider alternatives to the QMLE that allows to obtain the
asymptotic properies of estimators. Horvath and Liese (2004) consider L? estimators for
GARCH models and show the consistency and asymptotic normality of these estimators
without any moment assumptions. Similarly, Zhu and Ling (2011) study the self-weighted
quasi-maximum exponential likelihood estimator of ARMA-GARCH without moment as-
sumptions on the observed process. These classes of estimators could be considered as
potential alternatives to QMLE in the inference of semi-strong GARCH.

Multivariate extension and financial applications of GARH-MIDAS. Uni-
variate volatility models are commonly used to model a single financial instruments.
However, in practical applications such as asset management, financial time series are
often considered in a multivariate setting. In this context, a multivariate extension of
the GARCH-MIDAS model can be useful. This can be achieved by decomposing the
conditional covariance matrix into short-term and long-term covariance matrices. Fur-
thermore, since multi-component volatility models have been shown to provide better
long-term volatility forecasts than classical conditional volatility models, we believe that
multivariate multi-component extensions will enable us to obtain better long-term fore-
casts of risk measurements, such as portfolio Value at Risk. The usual one-component
multiplicative form of GARCH models allows to write standard conditional risk measures
as the product of the volatility and a characteristic of the errors distribution (e.g. a quan-
tile in the case of VaR). How the additional volatility component affects the definition of
such risk measures, and how they can be estimated, would also be an important feature
to explore.

Stationarity of f{GARCH in LP spaces. The necessary and sufficient conditions
given in Chapter 5 for the stability of a class of functional GARCH(1,1) models in the
space of continuous functions can be easily extended, in the same space, to higher-order
GARCH(p, ¢) models using the same argument. However, since norms are not equivalent
in the infinite-dimensional setting, it would be interesting to investigate whether these
conditions remain true when considering a different space, such as LP spaces.
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Résumeé : Nous nous intéressons a I'étude des
propriétés théoriques des équations récurrentes
stochastiques (SRE) et de leurs applications en
finance. Ces modeles sont couramment utilisés en
économétrie, y compris en économétrie de la finance,
pour styliser la dynamique d'une variété de processus
tels que la volatilité des rendements financiers.
Cependant, la structure de probabilité ainsi que les
propriétés statistiques de ces modeéles sont encore
mal connues, particuliérement lorsque le modéle est
considéré en dimension infinie ou lorsqu'il est généré
par un processus non indépendant. Ces deux
caractéristiques entrainent de formidables difficultés
a l'étude théorique de ces modeles. Dans ces
contextes, nous nous intéressons a l'existence de
solutions stationnaires, ainsi qu'aux propriétés
statistiqgues et probabilistes de ces solutions.
Nous établissons de nouvelles propriétés sur la
trajectoire de la solution stationnaire des SREs que
nous exploitons dans I'étude des propriétés
asymptotiques de I'estimateur du quasi-maximum de
vraisemblance (QMLE) des modéles de volatilité
conditionnelle de type GARCH. En particulier, nous
avons étudié la stationnarité et I'inférence statistique
des modéles GARCH(p,q) semi-forts dans lesquels
le processus d'innovation n'est pas nécessairement
indépendant. Nous établissons la consistance du
QMLE des GARCH (p,q) semi-forts sans hypothéses
d'existence de moment, couramment supposée pour

Titre : Equations récurrentes stochastiques : structure, inférence statistique et applications financieres

Mots clés : Inférence sans moments, Systémes stochastiques de fonctions itérées, Exposant de Lyapunov,
GARCH a composantes multiplicatives, Bootstrap, Processus sous-additif

ces modeles, sur la distribution stationnaire. De
méme, NoUs Nous sommes intéressés aux modéles
GARCH a deux facteurs (GARCH-MIDAS), un
facteur de volatilité a long terme et un autre a court
terme. Ces récents modéles introduits par Engle et al.
(2013) ont la particularité davoir des solutions
stationnaires avec des distributions a queue épaisse.
Ces modeles sont maintenant fréqguemment utilisés
en économétrie, cependant, leurs propriétés
statistiques n'ont pas recu beaucoup d'attention
jusqu'a présent. Nous montrons la consistance et la
normalité asymptotique du QMLE des modéles
GARCH-MIDAS et nous proposons différentes
procédures de test pour évaluer la présence de
volatilité a long terme dans ces modéles. Nous
illustrons nos résultats avec des simulations et des
applications sur des données financiéres réelles.

Enfin, nous étendons le résultat de Kesten (1975) sur
le taux de croissance des séquences additives aux
processus superadditifs. Nous déduisons de ce
résultat des généralisations de la propriété de
contraction des matrices aléatoires aux produits
d'opérateurs stochastiques. Nous utilisons ces
résultats pour établir des conditions nécessaires et
suffisantes d'existence de solutions stationnaires du
modele affine a coefficients positifs des SREs dans
I'espace des fonctions continues. Cette classe de
modeéles regroupe la plupart des modéles de volatilité
conditionnelle, y compris les GARCH fonctionnels.
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Abstract : We are interested in the theoretical
properties of Stochastic Recurrent Equations (SRE)
and their applications in finance. These models are
widely used in econometrics, including financial
econometrics, to explain the dynamics of various
processes such as the volatility of financial returns.
However, the probability structure and statistical
properties of these models are still not well
understood, especially when the model is considered
in infinite dimensions or driven by non-independent
processes. These two features lead to significant
difficulties in the theoretical study of these models.
In this context, we aim to explore the existence of
stationary solutions and the statistical and
probabilistic properties of these solutions.

We establish new properties on the trajectory of the
stationary solution of SREs, which we use to study
the asymptotic properties of the quasi-maximum
likelihood estimator (QMLE) of GARCH-type
(generalized autoregressive conditional
heteroskedasticity) conditional volatility models. In
particular, we study the stationarity and statistical
inference of semi-strong GARCH(p,q) models where
the innovation process is not necessarily independent.
We establish the consistency of the QMLE of semi-
strong GARCHSs without assuming the commonly

Title : Stochastic recurrent equations: structure, statistical inference, and financial applications

Keywords : Inference Without Moments, Iterated Function Systems, Lyapunov exponent, Multiplicative
Component GARCH, Residual Bootstrap, Subadditive sequence

used condition that the stationary distribution admits
a small-order moment. In addition, we are interested
in the two-factor volatility GARCH models
(GARCH-MIDAS), a long-run, and a short-run
volatility. These models were recently introduced by
Engle et al. (2013) and have the particularity to
admit stationary solutions with heavy-tailed
distributions. These models are now widely used but
their statistical properties have not received much
attention. We show the consistency and asymptotic
normality of the QMLE of the GARCH-MIDAS
models and provide various test procedures to
evaluate the presence of long-run volatility in these
models. We also illustrate our results with
simulations and applications to real financial data.
Finally, we extend a result of Kesten (1975) on the
growth rate of additive sequences to superadditive
processes. From this result, we derive
generalizations of the contraction property of
random matrices to products of stochastic operators.
We use these results to establish necessary and
sufficient conditions for the existence of stationary
solutions of the affine case with positive coefficients
of SREs in the space of continuous functions. This
class of models includes most conditional volatility
models, including functional GARCHs.
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