This PhD thesis deals with the experimental investigation of charge and spin dynamics in silicon-based quantum dot arrays, confining either electrons or holes. The work presented was carried out in collaboration with the CEA-LETI, where the samples were fabricated on 300-mm SOI (Silicon-On-Insulator) substrates using an industriallevel CMOS platform. With this technology, quantum dots are confined inside silicon nanowires etched in the SOI. The compatibility of these quantum devices with microelectronics production lines can eventually play a key role in the development of a large-scale quantum computing platform based on semiconductor quantum bits (qubits). In this prospect, the development of efficient and scalable qubit readout and manipulation schemes is a crucial step. To this aim, I have focused on the development of solutions that can simplify the control and readout circuitry. Ideally, one would like to manipulate the spin of an electron, or of a hole, via a simple modulation of the gate voltage (in the range of tens of GHz), and to read the spin state via a radiofrequency reflectometry technique (typically in the range of several hundred MHz or even above), which can be implemented by connecting a gate, or an ohmic contact, to an LC resonator. Such an idea has motivated several experiments carried out within the framework of this thesis.

A first experiment was carried out on an n-type array with 2×3 quantum dots. It compares two readout schemes based on gate reflectometry. The first one, based on a dispersive readout mechanism, requires no additional control gates, facilitating the scale-up to large qubit arrays. The second one, based on charge-sensing readout, requires additional readout components, and hence additional control gates. On the other hand, this second scheme is less sensitive to the tunnel coupling between neighbouring quantum dots. As shown in this thesis, it also allows for fast charge detection, a necessary condition for single-shot qubit readout. Regarding spin manipulation, in this thesis I was able to measure signatures of electron spin resonance induced by an electric-field modulation. This observation confirmed the existence of a spin-orbit coupling mechanism for electrons, already reported in an earlier experiment carried out before the beginning of my thesis. However, the spin-orbit interaction turned out to be too weak to enable the observation of Rabi oscillations.

Holes in silicon have an intrinsically stronger spin-orbit coupling than electrons. Therefore, holes are better suited for electrically-driven spin manipulation. In this thesis, I present an experimental study on a p-type device with six gates, demonstrating independent and simultaneous single-shot readout of the charge states of two quantum dots defined by the two central gates. The readout is carried out by means of rf reflectometry through two large hole quantum dots positioned at the ends of the silicon channel and acting as charge sensors. In a following experiment, an extension of the same readout technique was applied to a four-gate p-type device in which we have been able to demonstrate the coherent electrical control of a qubit based on a single hole and to achieve a coherence time close to 100 microseconds, well beyond the state-of-the-art. v vi

RÉSUMÉ

Cette thèse de doctorat traite de l'étude expérimentale de la dynamique de charge et de spin dans des réseaux quantiques à base de silicium, confinant des électrons ou des trous. Ces travaux ont été effectués en collaboration avec le CEA-LETI où les échantillons sont réalisés en utilisant une plateforme de fabrication de niveau industriel à partir de substrats SOI (Silicon-On-Insulator) de 300 mm. Dans la technologie employée, les boîtes quantiques sont confinées à l'intérieur de nanofils de Silicium gravés dans le SOI. La compatibilité de ces dispositifs quantiques avec les lignes de production de la microélectronique pourrait jouer un rôle clé dans le développement d'une plate-forme de calcul quantique à grande échelle basée sur des bit quantiques (qubits) semi-conducteurs. Dans cette perspective, le développement de schémas de lecture et de manipulation efficaces et compatibles avec le passage à l'échelle est une étape cruciale. À cette fin, je me suis concentré sur des solutions qui cherchent de simplifier la circuiterie de contrôle et lecture. Idéalement, on voudrait manipuler le spin d'un électron, ou d'un trou, par une simple modulation de la tension d'une grille dans la gamme de la dizaine de GHz, et de lire l'état de spin par une technique de réflectométrie à la radiofréquence (typiquement plusieurs centaines de MHz ou même au-dessus), qui peut être réalisé en connectant une grille, ou un contacte Ohmic, à un résonateur LC. Une telle idée a a motivé plusieurs expériences effectuées dans le cadre de ce travail de thèse.

Une première expérience a été réalisée avec un réseau de 2×3 boîtes quantiques de type n. Elle compare deux schémas de lecture basés sur la réflectométrie de grille. Le premier, basé sur un mécanisme de lecture dispersive, ne requiert aucune grille de contrôle additionnel, facilitant ainsi la mise à l'échelle de grands réseaux de qubit. Le deuxième, basé sur une lecture à détection de charge, nécessite des composants de lecture supplémentaires, ce qui comporte des grilles de contrôle additionnels. En revanche, ce deuxième schéma est moins sensible aux niveaux de couplage entre boîtes quantiques voisines. Comme montré dans cette thèse, il permet aussi la détection rapide de la charge, une condition nécessaire pour la lecture en mode « single-shot » des qubits. Concernant la manipulation de spin, dans cette thèse j'ai pu mesurer des signatures de la résonance de spin d'électrons induites par une modulation de champs électrique. Cette observation a confirmé l'existence d'un mécanisme de couplage spin-orbite pour les électrons, déjà rapporté dans une expérience antérieure effectuée avant le début de ma thèse. Cependant, cette interaction spin-orbit s'est révélé trop faible pour pour permettre l'observation des oscillations de Rabi.

Les trous dans le Silicium possèdent un couplage spin-orbit intrinsèquement beaucoup plus fort que celui des électrons. Par conséquent, les trous sont mieux adaptés à une manipulation de spin par des champs électriques. Dans cette thèse je présente une étude d'un dispositif à six grilles de type p, démontrant une lecture single-shot indépendante et simultanée des états de charge de deux boîtes quantiques définies par les deux grilles centrales. La lecture est effectuée par réflectométrie à travers deux grosses boîtes de trous positionnées aux deux extrémités du canal de Silicium et agissant comme détecteurs vii viii RÉSUMÉ de charge. Dans une expérience successive, une extension de la même technique de lecture est appliquée à un dispositif de type p à quatre grilles dans lequel nous avons pu démontrer le contrôle électrique cohérent d'un qubit basé sur un trou unique et des temps de cohérence proches de la centaine de microsecondes, largement au-delà de l'état de l'art.

Dans le bût de minimiser le nombre de grilles de contrôle et lecture, nous avons étudié et démontré la possibilité de réaliser une brique élémentaire constituée par une double boîte quantique définie dans un dispositif de type p avec deux grilles. La première boîte joue le rôle du qubit de spin et la deuxième sert à la lecture du qubit par réflectométrie dispersive. Le schéma de lecture utilisé ne nécessite aucun couplage avec des réservoirs de Fermi, offrant ainsi une solution compacte et potentiellement compatible avec un passage à l'échelle.

INTRODUCTION

The fact that materials are made of atoms is the fundamental limitation and it's not that far away...We're pushing up against some fairly fundamental limits so one of these days we're going to have to stop making things smaller."

G. Moore

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

R.P. Feynman

When people ask me "what do you do for living?" I usually answer that "I play with single electrons in electronic devices, similar to the ones that are embedded in your phone. Fundamentally the idea is to use a similar technology for quantum computing application". Then when I start talking about spins my interlocutor usually starts to be lost. Already being able to isolate and move single electrons, while observing their displacement in real time, it is already very exciting. However this is only the starting point for achieving more ambitious goals. In this introduction I'll briefly review why silicon has been the dominant semiconductor platform till nowadays and how spins in semiconductors can be used to build a processor based on the law of quantum mechanics.

FROM CLASSICAL TO QUANTUM COMPUTING

In the second half of last century silicon has been the key element for the development of modern microelectronic industry. Silicon is the second most present element on earth (after oxygen), and the eighth in the universe by mass. This wide availability, combined with low manufacturing costs has made it the perfect candidate for large scale production of electronic based devices. Nevertheless, it must be said that the first transistor, that was based on a bipolar junction, has been realized in germanium. In the very early years of the semiconductor industry germanium was the dominant semiconductor material for transistors, rather than silicon, due to higher mobility properties. In fact, without any treatment, the mobility of silicon is limited because electrons can be easily trapped at the silicon surface. In the late 50s Mohammed M.Atalla, an engineer from Bell labs, discovered a technique to clean the Si surface, paving the way to modern semiconductor industry. He understood that the formation of a thermally grown silicon dioxide (SiO 2 ) layer greatly reduces the electronic concentration at the surface. This led him also to the invention of the first MOSFET (Metal Oxide Semiconductor Field Effect Transitor). It has been estimated that since then ≃ 10 22 MOSFETs have been produced, drastically changing our daily lives.

The MOSFET was the first generation of transistor that could be miniaturized and mass produced.

In 1965 Gordon Moore, one of the co-founders of Intel anticipated that the number of components per integrated circuit would increase exponentially with time. More precisely, he argued that it would double every year [1]. The first commercial microprocessor using MOS technology was released by Intel in 1971 (Intel 4004) and the transistor size was around 10 µm. In 1975 Moore revised his forecast to doubling every two years [2]. This empirical trend, known as the Moore's law, has been followed until early 2000s and it has been slowing down in the last two decades. The last generation of IPhone make use of the processor Apple A14 Bionic, which is the first commercially available product to be manufactured on a 5 nm process node1 (in Taiwan), with MOS 2000 times smaller than just 50 years ago.

We are close to approach some fundamental limits in the shrinking of these nano devices. In a 2007 interview, Moore himself admitted that "...the fact that materials are made of atoms is the fundamental limitation and it's not that far away...We're pushing up against some fairly fundamental limits so one of these days we're going to have to stop making things smaller." Quantum tunnelling effects through the gate oxide layer are already an issue on 7 and 5 nm process node transistors and are becoming increasingly difficult to manage using existing semiconductor processes. Moreover, as transistors become smaller, problems with heat dissipation and power consumption might be a dramatic limitation.

While we are getting closer and closer to the end of the Moore's law, we are currently in the middle of what is called the second quantum revolution [3].

The first quantum revolution originates from a deep understanding of quantum mechanics and its implication in condensed matter physics helped us to understand chemical interactions, to develop the concept of electronic bands in solid-state systems, to understand electrical conduction, light emission and absorption etc. All electronic and optoelectronic devices rely on this knowledge. They are omnipresent in our daily life. This second quantum revolution is based on an interdisciplinary collaboration between fundamental research and industrial development. In the past years more and more companies, such as IBM, Intel, Microsoft, Amazon, AliBaba and many others are investing on quantum information technology. New professional figures as quantum engineers, are simultaneously emerging.

Even though nowadays we are able to simulate quite complex problems on a simple laptop, there are some kinds of problems whose complexity would be far beyond the reach of even the most powerful supercomputer. That's the case, for example of the factorization of a large integer number M . With a classical algorithm the computational 1 3 time grows exponentially with M . The difficulty of this problem is at the core of widely used algorithms in cryptography (RSA [4]). By using the Shor algorithm [5] on a quantum computer, instead the factorization time would grow only polynomially with M . A quantum bit (or qubit) embeds a 2-level system whose state can be set in a quantum superposition |Ψ〉 = α|0〉+β|1〉 α 2 +β 2 , where |0〉 and |1〉 are the basis state of the qubit (e.g. the spin states of an electron). In fact, while the classical information is encoded on a binary state 0 or 1, the quantum information is encoded on the wavefunction of a quantum state. When considering the wavefunction of a multi-qubit system, that's essentially a statistical distribution of all the possible measurement outcomes, we know from the quantum mechanics principles that all the possible states co-exist until they collapse into a defined state when measuring. A classical computer is instead always in a well defined state. The advantage of quantum computation originates from the intrinsic nature of a multiqubit wavefunction that allows many computations to be carried out simultaneously, instead than trying all of them one by one. Such a different computation paradigm would help in a wide variety of fields as for example in machine learning [6] [7], optimization problems [8], materials science, quantum chemistry [9][10] and simulation of quantum systems [11] [12] [13].

It must be said that having a large number of high fidelity qubits is a very hard scientific and technological challenge. To preserve its coherence a qubit needs to be sufficiently isolated from the surrounding environment. That's the case of ion traps, where a coherence time of more than one hour has been achieved [14]. At the same time, to run a quantum computation the qubits should also interact with each other and therefore they should also couple with their surrounding environment, which leads to decoherence on the qubit wavefunction. We should accept to work with noisy and imperfect qubits. Therefore, running practical quantum computations requires to be able to deal with errors. This is not a dramatic limitation if we consider that also classical computers make use of error correction algorithms. The quantum error correction would be realized by distributing the logical information over a certain number of physical qubits. This qubit overhead allows to detect and correct errors. One of the less demanding quantum error correction techniques is the so-called surface code [15]. The physical qubit overhead for each logical qubit would depend strongly on the error rate. For example, to achieve a sufficient logic error rate to successfully execute the Shor's algorithm, it has been estimated that with a qubit error rate of 0.05%, approximately 3600 physical qubits would be required for each logical qubit. Nowadays we are still far from having millions of qubits to run fault-tolerant quantum computation. Nevertheless in the last 20 years several advances have been realized in the field and now we are entering in the so called era of Noisy Intermediate Scale Quantum (NISQ) [16]. A NISQ processor is defined as a system that is too noisy to achieve the thresholds and scaling necessary for fault-tolerant quantum computation but that is sufficiently isolated from the environment and controllable that it has the potential to achieve a "quantum advantage" over a classical computer. Nowadays, using the most powerful supercomputer we are able to simulate systems of roughly 50 qubits [17]. Google has recently claimed to have achieved quantum supremacy [18] (or quantum advantage), using a circuit with 53 superconducting qubits. The algorithm they run had the task of sampling the output of a pseudo-random quantum circuit. 1. INTRODUCTION Even though this supremacy has been debated [19], what is sure is that their technology is quite impressive and they might be able to perform some more useful tasks in the near term. Also another recent claim of quantum supremacy has been made by the group of Jianwei Pan, who is also the lead scientist of Chinese quantum space program (QUESS:Quantum Experiments at Space Scale) [20]. Their experiment consists in sampling the output probability of a 50-photon interferometer [13], problem also known as Boson sampling [21]. They state that the sampling rate they achieved is faster than the simulation of a supercomputer by a factor of ≃ 10 14 . This is, in my opinion, a perfect example of quantum simulation, more than quantum computation though. What is sure is that the field of quantum computing is making remarkable progress, generating great excitement in the scientific community.

QUANTUM COMPUTING WITH SPINS IN SEMICONDUCTOR

QUANTUM DOTS

The idea of using the spin degree of freedom of electrons in semiconductor quantum dots dates back to 1997 with the proposal of Daniel Loss and David DiVincenzo [22]. When dealing with electron (or hole) spins we are dealing with a two-level quantum system and we can therefore use the spin as the basis to encode an elementary bit of quantum information, i.e. a so-called qubit.

The first pioneering works with the spin of electrons in quantum dots [23][24] [25] have been realized in GaAS-AlGaAs heterostructures. However, the interaction with the nuclear spins through the hyperfine coupling induces a rapid dephasing of the electron spin (tens of ns), imposing a severe limitation on qubit scale-up. This problem can be avoided by choosing a host material with zero nuclear spin. The problem of the coupling with nuclear spin can be partially solved by working with group-IV semiconductors, as for example carbon, silicon and germanium, whose isotopes are for the most part nuclear spin free. Actually silicon is widely available in nature in its natural form, composed of three different isotopes with the following composition: 28 Si (92.2%), 29 Si (4.7%), and 30 Si (3.1%). Hyperfine interaction is still playing a role in natural silicon due to the presence of 29 Si. This isotope can be removed thanks to a procedure where first the isotopes are separated in the form SiF 4 (silicon tetrafluoride), then they are converted into SiH 4 (silane), obtaining ingots of polycrystalline silicon-28,-29, and-30. Finally these ingots are used for growing monocrystals of purified 28 Si [26]. The realization of 28 Si devices led to the development of electron spin qubits with much longer spin dephasing (T * 2 = 120 µs) an coherence times (T C P MG 2 =22 ms) [27]). To date, the best silicon qubits have surpassed the threshold required for quantum error correction, with single-qubit fidelities above 99.9% [28] and two-qubit gate fidelities of 99.5% [29]. Recently, several advances have also been made in the implementation of two-qubit gates in silicon. Two spins belonging to two separate quantum dot can be entangled relying on their exchange interaction. This allows to realize controlled logical operations as for example a CNOT gate. The first experimental realization of a two-qubit gate in silicon has been reported in 2015 [30] and few other demonstrations have been reported more recently [31][32] [33][34] [35][29] [36].

1.3. THESIS OVERVIEW 1 5
Another approach consists in encoding the qubit in the nuclear spins of implanted dopants. This idea dates back to 1998 [37], when Bruce Kane proposed the realization of spin qubits encoded in the nuclear spin of phosphorous dopants properly implanted in a silicon MOS device. Nuclear spins with coherence times up to 30 seconds [38] have been demonstrated using this approach. Remarkably, not only the nuclear spin, but also the electron spin of the dopant can be used to store the quantum information. Two-qubit logic gates between electrons stored in dopants were demonstrated in Refs. [39][40].

Recently also SiGe/Ge/SiGe planar heterostructures are emerging as a promising alternative system [41]. In particular, the group of Delft managed, in only a couple of years, to demonstrate single [42], two [43],four [44] qubit in Ge and six-qubit processor in Si [45]. This rapid development has been possible thanks to the unique properties of holes confined in such a material, such as low effective masses, high mobility and low charge disorder. The small holes effective masses lead to large orbital level spacings in quantum dots, allowing to relax lithographic fabrication requirements. In this way relatively large quantum dots (diameter of ≃ 100 nm) can be defined and tuned to contain only a single hole [42], Moreover holes (both in Si and in Ge) offer the possibility of realizing electrically-driven spin resonance thanks to their intrinsically strong spin-orbit coupling [46][47]. This avoids the use of additional hardware such as micromagnets [28][48] or a microwave antenna [49][27], as it is usually the case for electron spin qubits in silicon.

In this thesis I focus on silicon based quantum dots, confining either electrons or holes. There is an increasing worldwide effort on silicon-based qubits. Indeed, besides long spin coherence, silicon offers the advantage of relying on a very well estabilished technology. The hope is that, once the elementary building blocks for a scalable architecture are developed, industrial grade fabrication will facilitate large-scale integration. Some first demonstrations have already been realized on industry-standard (300 mm) Si and Si-on-insulator (SOI) wafers using CMOS fabrication process [46][50] [51][52] [47].

THESIS OVERVIEW

In this thesis I studied MOSFET based on SOI technology fabricated at CEA-LETI, with both electrons and holes. The manuscript is structured as following:

• In Chap. 2 I introduce the basic properties of semiconductor quantum dots.

Particular attention is devoted to to understand the response obtained when performing the readout with RF reflectometry.

In this chapter I also discuss the two main techniques to realize spin-to-charge conversion and I explain how to manipulate the spin state through an electric or magnetic field.

• In Chap. 3 I explain the principles behind the construction of the experimental setup, focusing on the noise filtering. In particular, I describe in detail a compact platform to filter the noise on the DC lines. The chapter ends discussing the process flow leading to the construction of our quantum devices.

• In Chap. 4 I discuss the device characterization based on their transport properties (i.e. by reading current). In particular, I investigate how to speed up the lowtemperature characterization in the perspective of an electrical screening on the 6 1. INTRODUCTION full wafer scale.

In the second part of the chapter I analyze a p-type device with five gates in series, focusing on the dependence of the transistor parameters from the position of the gate relative to the reservoir. It has been found that the further away is the gate from the reservoir, the better is the mobility extracted from the transconductance characteristic. This, together with the experimental data of Chap. 6, let us think that qubits next to a doped contact region have a higher level of disorder which can impact their performances.

• In Chap. 5 I investigate charge and spin properties in a 3×2 bilinear array of electron quantum dots, using both gate reflectometry and RF charge-sensing simultaneously, when possible. I study in particular a regime where the interdot tunneling is spin dependent, due to Pauli spin blockade (PSB). I report some experimental signatures of electric-dipole spin resonance, demonstrating the presence of a weak spin-orbit coupling of electrons in silicon.

• In Chap. 6 I present 3 different experiments in arrays of hole quantum dots. In the first experiment I dicuss the use of two charge-sensors to simultaneously probe the dynamics of each dot.

In the second experiment I discuss the demonstration of a spin-qubit, read with an RF charge-sensor via energy-selective readout.

The last experiment consists in the realization of a compact qubit layout where readout is performed by means of gate-coupled RF reflectometry. In this case the spin-to-charge conversion is realized through PSB.

• Chap. 7 concludes the thesis, summarizing the main results and offering an outlook on future research directions and perspectives for the scalability of qubit arrays.

.

QUANTUM COMPUTATION WITH

SPINS IN QUANTUM DOTS

Any fool can know. The point is to understand

Albert Einstein

This chapter introduces the theoretical framework necessary for the discussion of the experimental results presented in this thesis. Here I consider the basic aspects of quantum dots in semiconductors [1][2] [3], and their use as spin qubits. In particular, I discuss how such spin qubits can be initialiazed, manipulated and measured, through either transport or dispersive measurements.

SEMICONDUCTOR QUANTUM DOTS

A semiconductor quantum dot (QD) is a small charge island, where electrons or holes can be isolated thanks to an interplay between the electrostatic field applied and the interfaces between materials. The size of the quantum dot, usually between 10 and 100 nm, determines its level spacing. The physical distance between the quantum dots, their size and energetic structure determines the mutual interaction between nearby quantum dots.

A SINGLE ELECTRON TRANSISTOR

Here we start considering a single quantum dot in a MOSFET-like device. In such a platform it is possible to control the displacement of a single electron and it is commonly referred to as single electron transistor (SET).

The SET can be modelled as a charge island underneath the gate, capacitively coupled with the reservoirs and the gate itself. If sufficiently small, this charge island, made of electrons (or holes) in a potential well, can behave as an artificial atom, or quantum dot.

Our quantum dot devices are fabricated on 300 mm silicon-on insulator (SOI) wafers, using a transistor technology close to what is commoly referred to as fully-depleted SOI (FDSOI) [4].

Electrons are confined at the Si-SiO 2 interface, in an analogue manner to classical transistors. The spacers instead are deliberately longer than in conventional transistors. In this way the potential applied mainly acts underneath the gate. This, together with the 2. QUANTUM COMPUTATION WITH SPINS IN QUANTUM DOTS

• for each peak only one energy level (or a costant number of energy levels, as it is the case for a metallic SET) contributes to the conduction.

• the couplings with the reservoirs Γ S , Γ D are constant.

Experimentally the first assumption may hold only at very low bias and very low temperature, in fact the orbital level spacing is usually in a range between 100 µeV and few meV.

The second one instead would hold only for a dot with size and position independent from electron number and shape of the confining potential, which is almost never the case in realistic experiments. The coupling with the reservoir is in fact intrinsically dependent on the size of the dot, or more precisely on the size of its wave function, that increases with increasing electron number.

As we will see in the following section the spacing between the peaks is not constant in the quantum regime, where the energy necessary to add one electron, i.e. the addition energy E ad d , is the sum of charging energy E c and the orbital level spacing ∆ N . MOreover, the peaks width is broadened both by temperature and tunneling with the reservoir.

A measurement of the spacing between two peaks in gate voltage ∆V G (that's the easiest parameter to measure) and a measurement of the addition energy E ad d gives the gatelever arm parameter α. Conversely, a measurement of α and ∆V G , gives the addition energy E ad d .

For each couple of Coulomb peaks then:

α∆V G = E ad d (2.3)

QUANTUM DOT SPECTROSCOPY

So far the discussion has been entirely classical. However, we have to take in account that the quantum dot obeys quantum mechanics laws and it can be modeled as a particle confined in a potential well. Therefore its energy levels are quantized.

For small quantum dots in fact the discreteness of the energy levels of the electrons becomes pronounced, like those in atoms and molecules, so one can talk about "artificial atoms and molecules". The simplest model which combines both the Coulomb blockade effect and the energy spectrum of a quantum dot is the constant-interaction model ([3], [9]). The key assumptions in this model are:

• the quantized levels can be calculated regardless of the number of electrons in the dot.

• The Coulomb interactions among the electrons in the dot and between electrons in the dot and the environment can be parameterized in terms of a constant capacitance C t ot .

This model provides an analytic expression of the chemical potential µ(N ) for a certain electronic configuration:

µ N = E N + (N -N 0 -1/2)e 2 C t ot -e C g C t ot V G
In this definition the integer N is the number of electrons for a certain gate voltage V G and N 0 is the number of electrons at V G = 0.

QUANTUM DOT SPECTROSCOPY
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The single-particle state E N for the Nt h electron depends on the characteristics of the confinement potential.

The main result of this model is the definition of the addition energy:

µ(N ) -µ(N -1) = E c + ∆ N = E ad d with ∆ N = E N -E N -1 .
By considering the quantum dot as a particle in a 2D box with surface A its level spacing can be calculated as [6]:

∆ 2D N = 2πħ 2 g spi n g v al l e y m * A (2.4)
where g spi n(v al l e y) take into account the double degeneracy of spin (valley) state of each level and m * is the effective mass of the electrons. In silicon the conduction band edges are spheroids oriented along the equivalent [100] directions in the Brillouin zone, with mass parameters m L = 0.92m e and m T = 0.19m e [10], giving an average effective mass of

m * = (m L m 2 T ) 1 3 = 0.32m e .
By considering a 3D dot instead the level spacing is expected to decrease with increasing filling N [3]:

∆ 3D N = 1 3π 2 N 1/3 2π 2 ħ 2 g spi n g v al l e y m * A (2.5)
Realistic quantum dots in semiconductor are not perfect 2D structure and, even though they are mainly squeezed in the channel plane a dependence of the level spacing from the electron filling N is still expected.

Being proportional to the inverse of the dot area, the orbital level spacing is significant for small dots. For example given A = 20 × 20 nm 2 we expect ∆ N ≃ 1 meV. For high filling the dot also increases in size, and the orbital level spacing usually becomes negligible compared to E c . In such a regime the dot behaves following the classical picture, where E ad d ≃ E c . This is commonly referred to as the metallic regime for a quantum dot.

A measurement of the addition energy as a function of gate voltage in a Si QD is shown in Fig. 2.3. The extra addition energy needed to add the fifth and thirteenth electron can be attributed to complete filling of the first and second orbital shells. The orbital structure of the dot can be understood considering that in silicon there is a double valley degeneracy such that the first orbital (s-type) can be filled twice with 2 electrons of opposite spin and therefore we need 4 electrons to fill the first orbital shell. Similarly, the second orbital shell has a double degeneracy that, combined with twofold spin degeneracy and twofold valley degeneracy, is such that we need 8 electrons to fill the second shell [11].

The most intuitive way to measure the addition energy E ad d is to measure the current as a function of gate voltage V G and bias voltage V d s .

A measurement of the addition energy in V d s indeed can be directly converted in eV and, together with the peak spacing ∆V G it also provides the α-factor (using formula 2.3). Due to the shapes they acquire (see Fig. 

C s = |e| E ad d m -(1 -m + ) m --m + C d = - |e| E ad d m + m --m + C g = |e| E ad d m + m - m --m + (2.6)

COULOMB PEAKS LINESHAPES FOR DIFFERENT TRANSPORT

REGIMES

The current level of the Coulomb peaks is also dependent on the tunneling rates Γ s , Γ d with the reservoirs. Since the dot size increases by filling in more electrons, also the overlap of its wavefunction with the two reservoirs increases and therefore the tunnel couplings. For a system with i electrons we can define unique parameters for each electronic configuration, as for instance Γ (i ) s , Γ (i ) d . Another effect of increasing the size of the dot is to increase the capacitive coupling between the the dot and the reservoirs, leading to an increase in the total capacitance

C (i ) t ot . Even C (i )
g is proportional to the dot area, that increases with i , but it does not increase much as compared to C (i ) t ot , therefore

α (i ) = C (i ) g /C (i )
t ot is expected to decrease with increasing electron filling i .

LINEAR TRANSPORT

The theory beyond the different conductance regimes for a QD is discussed in detail in Refs. [9][3] [12]. Here we consider the linear resonant regime, where only one energy level at a time may enter in the bias window (V d s < ∆ N ). Depending on the energy scales given by temperature (k B T ) and tunneling (hΓ) we can analyze different transport regimes. We'll consider what happens by going down in temperature.

At high temperature the discrete nature of the electron charge cannot be appreciated, meaning that when k B T ≫ E c , ∆ N , the SET behaves as a classical field-effect transistor. In this regime the conductance does not depend on the number of electrons, and is given by the Ohm's law for the conductances across the barriers with source and drain contacts. The current increases linearly till reaching a saturation regime (above threshold voltage). At high temperature the conductance is just the Ohmic sum of the two barrier conductances.

G ∞ = (1/G s + 1/G d ) -1 ∝ (1/Γ s + 1/Γ d ) -1 (2.7)
Going to cryogenic temperature k B T ≪ E ad d . When the coupling with the reservoir is sufficiently low, i.e when hΓ ≪ k B T , we are in the weak coupling regime. This is usually already the case at 4.2K ( 4 He temperature),

where k B T /h ≃ 80 GHz. Depending on the energy level spacing of the QD ∆ N and temperature, with bias eV sd ≪ ∆ N we can distinguish between two main conductance regime: Where V (i ) g is the value of the gate voltage on resonance. The peaks full width at half maximum (FWHM) is linear with k B T and it is FWHM≃ 4.375k B T . The peak height is independent of temperature in this regime, and equal to half the high temperature value G max = G ∞ /2. This is because, due to Coulomb blockade, a new electron can hop onto the dot only if another electron has tunneled out and therefore the tunnel probability is halved.

• hΓ, ∆ N ≪ k B T , eV sd ≪ ∆ N . Classical coulomb blockade or metallic regime. G = G max cosh -2 α (i ) g (V (i ) g -V G ) 2.
• hΓ ≪ k B T ≪ ∆ N , eV sd ≪ ∆ N . Quantum Coulomb blockade regime, or single-level transport regime. G = G (i ) max cosh -2 α (i ) g (V (i ) g -V G ) 2k B T (2.9)
Here the FWHM is still linear with respect to T (FWHM≃ 3.5k B T ).

If we consider that only a single level in the dot participates in the conduction, then the peak amplitude is given by

G (i ) max = e 2 4k B T (1/Γ (i ) s + 1/Γ (i ) d ) -1 [9]
. Differently from the classical regime the peak maximum G max is inversely proportional to temperature. This temperature dependence allows to distinguish a quantum peak from a classical peak.

An important assumption for the above description of tunneling in both the quantum and classical Coulomb blockade regimes is that the barrier conductances are small: G s,d ≪ e 2 /h. The charge is well defined under this condition and quantum fluctuations in the charge number can be neglected. This statement is equivalent to the requirement that only first order tunneling has to be taken into account.

When the tunneling with the reservoirs is dominant compared to thermal effects (k B T ≪ hΓ), and considering only first order tunneling (eV sd ≪ hΓ ≪ ∆ N ) we are in the coherent or strong coupling regime. In this regime the maximum conductance of each peak can be expressed as [13]:

G = e 2 ħ 1 
Γ (i ) s + 1 
Γ (i ) d -1
(2.10)

The on-resonance peak height is equal to the quantum of conductance e 2 /ħ, multiplied by a factor that depends on the symmetry of the tunnel rates Γ (i ) s and Γ (i ) d .

NON LINEAR TRANSPORT

Experimentally we often find that, when applying source-drain bias, the current inside a Coulomb diamond is not null due to an interplay between multiple energy levels contributing to the conduction and thermal excitations. Finite temperature effects for a double junction system are studied in detail in Ref. [14], as well as the distinction between "inelastic" (different electrons participate to multiple tunneling) and "elastic" (the same electron tunnels through a virtual state) co-tunneling.

The two physical situations are schematized in Fig. 2.5. At very low bias voltage (eV d s < ∆ N ) only elastic co-tunneling is allowed by energy conservation [15]. For higher bias (eV d s > ∆ N ) inelastic co-tunneling is usually the dominant process, and the extra energy required is provided by the bias voltage. • The shape of the gate is not always symmetric in the plane of the active channel and this can impact quantum dot properties [17], in particular for what concern spin dependent tunneling.

• The quantum dot thickness in the z-direction is not zero but typically 5-10 nm [3].

• By increasing V G we not only lift the confinement potential, but we also vary its shape.

• In the experiments often the bias applied is not symmetric, but it is applied to only one of the the reservoirs, while the other one is kept grounded.

The system can be schematized as a voltage divider (with R 1 = R 2 the resistances between dot and the two reservoirs) and therefore the effective gate voltage applied

(if R 1 = R 2 ) is V e f f g = V G + V d s /2
. This effect can be corrected by subtracting the bias V d s /2 to the gate voltage.

Nevertheless, the constant interaction model and other more advanced theories give the same qualitative picture. The experiments described will clearly confirm the common aspects of the different theories.

DISPERSIVE READOUT FOR SPIN QUBIT

In the perspective of a large-scale, semiconductor-based, quantum processor it will probably be necessary to read the state of quantum dots far away from the reservoirs, and to reduce as much as possible the hardware required for the qubit readout. Whereas transport measurements are not appropriate for a local readout of many dots, radio-frequency reflectometry (RFR) [18] is a suitable candidate to overcome these problems. It essentially consists in monitoring small variation of capacitance in the device, mainly due to resonant transitions between quantum dots or between a dot and a reservoir. The technique can be understood starting from a simple transmission line. By sending an oscillating signal with amplitude V i n on the gate, because of the impedance mismatch between our cables (Z 0 = 50 Ω) and the nanodevices we use (typically Z ≃ 100 kΩ), a portion of the signal is reflected, with amplitude V r given by:

V r = Z -Z 0 Z + Z 0 V i n (2.
12)

The incoming and outgoing waves can be separated through a directional coupler and then it's possible to measure only the signal reflected by the electrode where the rf excitations are applied (see Fig. 2.6 a)).

The large impedance mismatch (Z ≫ Z 0 ) results in a poor sensitivity to small variation of Z . The matching condition (Z = Z 0 ) instead is where the greatest sensitivity occurs. One way to achieve this matching condition is to plug an inductance on one of the electrodes (on a gate or a reservoir). The parasitic capacitance C p is provided by the coupling of the electrode with the surrounding environment. It is mainly affected by the wire bonding and the sample holder geometry and materials. The electrostatic coupling between the electrodes (gate or reservoir) in the load also gives a small capacitive contribution called geometrical capacitance C G , typically of the order of tens of aF, that can be included in C p (they are summed in parallel). The impact of a double dot device on the reflectometry signal will be clarified in Sec. 2.5. We can treat the load impedance as a purely resistive contribution R L for the moment. The matching condition in this case is reached when:

Z = LC p C M = Z 0 (2.13)
With practical values of an inductor of L ≃ 300 nH and a parasitic capacitance of C p ≃ 0.5 pF we would need C M ≃ 10 pF to achieve the desired 50 Ω matching.

QUANTUM CAPACITANCE

So far the load of the circuit has been considered as a purely resistive object. When dealing with quantum dot devices we should consider an additional capacitive contribution, associated with charge tunneling in the device. This additional parametric capacitance C par is in parallel with the geometrical capacitance C G given by the electrostatic coupling between the electrodes, which we have previously included in the parasitic capacitance C p (see Fig. 2.6 d)). Therefore the total capacitance reads:

C t ot = C G +C par
In this way, when there are tunneling resonances in our device, the resonator frequency is slightly shifted. This is enough to appreciate differences in amplitude and phase (or I and Q) of the reflected signal.

We consider a tunnel-coupled double quantum dot (DQD) where the two dots QDi i = 1,2 are connected to an rf gate electrode via gate capacitances C Gi and to grounded charge reservoirs via C Di (Fig. 2.7).

The expression of the device capacitance C t ot can be obtained simply by differentiating the total charge in the DQD as a function of gate voltage [19]. We first expand the total gate charge in the DQD as a function of the gate coupling factors, α i = C Gi /(C Di +C Gi +C m ) and the average electron occupation probability 〈n i 〉 in QDi , .

We further assume the weak DQD coupling limit, i.e. C m ≪ C Di +C Gi . The total charge in the DQD reads:

Q 1 +Q 2 = i α i (C Di V G + e〈n i 〉). (2.14)
where V G is the gate voltage applied.

The total capacitance can be obtained by differentiating eq. 2.14 with respect to V G :

C t ot = d (Q 1 +Q 2 ) dV G = C G + i eα i d 〈n i 〉 dV G (2.15)
We obtain, as expected, a gate voltage independent term, i.e. the geometrical capacitance: where the average excess of charges in each state is [19]:

C G = α 1 C D1 + α 2 C D2
〈n 2 〉 e,g = 1 2 1 + 2 ∂E e,g ∂ϵ = 1 2 1 ± ϵ ϵ 2 + (2t ) 2 (2.23)
We can define the energy difference between ground and excited state ∆E = ϵ 2 + (2t ) 2 , the probability difference ∆P = P g -P e , and substitute the average excess of charges in each dot 2.22 in 2.19, finding the expression of the parametric capacitance for a charge qubit:

C par = (eα ′ ) 2 2(2t )      (2t ) 3 ∆E 3 ∆P C Q + (2t )ϵ ∆E ∂∆P ∂ϵ C T      (2.24)
The first term is the so-called quantum capacitance, related to the curvature of the energy band of each state with energy E i [20][21], or in other terms

C Q ∝ i P i ∂ 2 E i ∂ϵ 2 (2.25)
is the sum of the curvature of each i state, weighted by its occupation probability P i . This is the term usually relevant at equilibrium and when the states posses a dispersion over energy.

The occupation probabilities follow the Boltzmann distribution where the occupation probability of each state is:

P i = e -E i /k B T Z (2.26)
Where Z = i e -E i /k B T is the canonical partition function, necessary to renormalize the probabilities.

The second term of eq. 2.24, called tunneling capacitance, is relevant when non adiabatic processes, such as resonant excitations, occur at a rate comparable with the reflectometry probing frequency.

In the general case the tunneling capacitance [22] can be expressed as:
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Using the Boltzmann distribution of eq. 2.26 (β = 1 k B T ) we can calculate the analytical expression of the charge distribution. Considering two singlets states with energies E e,g = ± ∆E 2 :

∆P S (ϵ) = P g -P e = e ∆E (ϵ) 2 β -e -∆E (ϵ) 2 β Z = t anh ∆E (ϵ) 2k B T (2.28)

SPIN QUBIT

The physical picture of spin states in a DQD changes completely when they share two or, more generally, an even number of charges. Two charges in the same dot indeed can only form a spin singlet S(0,2) (total spin number S = 0), due to the Pauli exclusion principle. When the charges are in two separate dots instead we have to consider four possible spin states, i.e the antysimmetric singlet |S(1, 1, )〉 and three symmetric triplets |T (1, 1)〉.

We therefore find five energy states:

               |S(1, 1)〉 = |↑,↓〉-|↓,↑〉 2 |T 0 (1, 1)〉 = |↑,↓〉+|↓,↑〉 2 |T + (1, 1)〉 = |↑, ↑〉 |T -(1, 1, )〉 = |↓, ↓〉 |S(0, 2)〉 = |0, ↓↑〉 (2.29) 
For simplicity here we neglect the presence of any valley state (present only for electrons) and of the excited triplet |T (0, 2)〉, assuming that they are lying up in energy compared to the other five states.

In absence of magnetic field, interdot tunnel coupling, and assuming the same g-factor for the two dots, all the |1, 1〉 spin states are degenerate. The tunnel coupling energy t and the g-factor difference defines the splitting between |S(1, 1)〉 and |T 0 (1, 1)〉. The degeneracy between the triplet states instead is broken when a magnetic field is applied.

If we consider a system made of electrons in silicon, we can do the following assumptions:

• The g-factor is the same for both the QDs.

• The spin-orbit coupling, that couples triplet and singlet states t SO , is negligible.

• We neglect nuclear field anisotropy. As a consequence, in the limit of same g-factor, the effective magnetic field seen by the two dots is the same.

Under the assumptions above the states |S(1, 1)〉 and |T 0 (1, 1)〉 are still degenerate for high detuning ϵ, also in presence of a magnetic field. For ϵ = 0 instead their splitting is given by the tunnel coupling energy t . We use this simplified picture to describe the physics of the electron device described in Chap. 5.

Now we consider what happens when the Zeeman splitting of the spins in the two dots is different.

In III-V heterostructures the difference in Zeeman energy ∆E Z between the two QDs is given by an anisotropic nuclear magnetic field [23].
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This additional curvature of the T 0 is the key for the readout of the qubit described in Sec.

6.6 and it is particularly evident in Fig. 6.22. Moreover, according to the energy diagram of Fig. 2.8 it is possible that also the states T -, T + acquire a curvature due to their interaction with other states through the spin-orbit coupling term t SO .

In this case the full dispersive response should be calculated using the formula of the quantum capacitance 2.25.

When doing charge-sensing instead the only important thing is the difference of occupation probabilities between the two charge states:

∆P = P 11 -P 02 = P g + P T -+ P T + + P T 0 -P e (2.31)
where each occupation probability is weighted over a five states partition function Z .

SPIN READOUT

The two spin states of a particle in a QD don't show any appreciable difference in their capacitive response. At the same time measuring the magnetic moment of a single particle (either electron or hole) is a very hard task, simply because it is very small. In free space the electron magnetic moment is of the order of 10 -23 J /T . Usually a cyclotron is necessary to measure such a magnetic moment [30]. A direct spin readout is still out of reach in semiconductor QDs platforms.

What we can do is read charges through either transport, charge-sensing measurement or gate reflectometry. We therefore need an efficient way to make transport spin-dependent, i.e. to realize spin-to-charge conversion.

We'll discuss two techniques for spin readout, both used across this thesis. The first technique, described in the following section, relies on a single QD coupled with a reservoir and requires a charge sensor to reveal a single tunneling event that allows to discriminate if the spin loaded was |↑〉 or |↓〉. However, relying on N reservoirs for the measurement of N quantum dot would hardly be a scalable solution.

In the perspective of scaling-up to complex architectures, a more suitable readout approach is the one based on Pauli spin blockade (PSB), simply because it relies on two QDs instead than a dot and a reservoir. With this approach one QD is used as the readout qubit and the other one as an ancillary qubit, halving the number of dots available for the computation. As we will see across this thesis the PSB regime can be detected with both gate-based dispersive readout and charge-sensing. Another advantage of PSB readout is that it is more suitable to work at higher temperature, as demonstrated by the fact that the few demonstrations of "hot" spin qubits (T ≃ 1 K) in silicon relied on this technique [31][32]. The negative impact of temperature on measurements based on energy-selective readout will be discussed in Sec. 6.5.1.

ENERGY-SELECTIVE TUNNELING READOUT

This technique, also named Elzerman readout [33], makes use of a single QD coupled with a Fermi sea. It requires an odd number of charges in the dot, in order to be able to load a spin |↑〉 or |↓〉 with equal probability. Under a magnetic field the spin states are split by the Zeeman energy

E Z = g µ B B
, where g is the Landé factor and µ B the bohr magneton. If the Zeeman splitting exceeds the thermal energy (E z ≫ k B T ) it is possible to tune the energy of the dot such that the |↑〉 2.7. SPIN READOUT 2 29 changing the gate voltages, the charge ground state can be moved to an (even-even) or ("0,2")-like configuration. If the spins of the charges in the separate dots have the same orientation interdot tunneling is forbidden by the Pauli principle.

Starting from the first demonstration in 2002 [35] in GaAs, this technique has been widely used in many different semiconductor QD platforms [36][37] [38][39] [40].

Most of the demonstrations of this technique relied on measuring a spin dependent current through two dots in series, that is suppressed when the spins within the DQD are parallels.

Without a charge sensor the first charge transitions are not always visible through transport measurement, because of low tunnel coupling with the reservoir, and it is therefore not always possible to know a priori when we are dealing with a ("1, 1") ↔ ("0, 2") transition.

Historically the common way to identify PSB is by measuring the so-called bias triangles. Fundamentally, when applying bias, transport is allowed not only when the energy levels of two dots are aligned with the Fermi energy of the reservoirs (elastic tunneling), but also when there is an energy mismatch between the initial and final state (inelastic tunneling). Therefore, when applying source drain bias, some conduction areas with a triangular shape are formed, the edges of these triangles correspond to the situation where the energy level of one of the two dots is aligned with the reservoir, the tip corresponds to the case where the energy difference between the dots is equal to the bias. Hence when one of the two dot energy level is brought out of the bias window transport is no more allowed. Experimentally many different features can be observed in these triangles, depending on the energetic structure of the dots (presence of excited states), spin-mixing mechanisms and the different coupling of the two dots with the reservoir. More details about the theory [41] of bias triangles and a collection of experimental measurements can be found in Refs.

[1] [2]. In Fig. 2.10 we consider a ("1, 1") ↔ ("0, 2") transition in the case where the tunneling with the two reservoirs is symmetric and when the bias applied is higher than the orbital splitting. In the left diagram a positive bias is applied on the source and electrons flow from the right (drain) to the left (source) reservoir through the dots. Since the right dot ground state is in an antysimmetric S(0, 2) spin state, transport to the (1, 1) state is always allowed.

Conversely in the diagram on the right the bias applied is negative and the electrons flow is from source to drain and hence the transition involved is from ("1, 1") → ("0, 2"). In this case when the spins in the two dots are parallel transport is forbidden by Pauli blockade.

A spin-flip is necessary to allow transport in this case and, depending on how fast is this spin-flip mechanism, in realistic cases it is possible to observe either a decrease or a full suppression of the current at the base of the triangles.

Here the bias applied is higher than the orbital splitting between the S(0, 2) and T (0, 2). When the upper excited state falls below the ("1, 1") energy level the spin can occupy a different orbital in the right dot and no more spin selection rules are involved. This explains why it can be observed a revival of the current in the blockaded triangles.

During this thesis I have almost always worked with dots isolated from the reservoirs. Without having access to transport measurement we found that PSB can also be detected by measuring a magnetic field dependent interdot tunneling time, as it will be explained in Sec. 5.5.2. In Sec. 6.6 it will also be demonstrated that, instead of relying on transport or chargesensing measurement, it is also possible to detect dispersively the spin-dependent trans-
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when approaching the nucleus of an atom, the spin-orbit interaction is higher the closer we get to the atomic core. First orbitals exhibit therefore the strongest spin-orbit interaction and a similar logic leads to stronger spin-orbit interactions for heavier elements.

In crystals instead the local electric fields can be associated with asymmetric confining potentials that give rise to a spin-orbit interaction. This spin-orbit contribution associated with structural inversion asymmetry (SIA) is known as the Rashba SOC [43].

Only in an ideal symmetric quantum well with symmetric doping, this contributions would be zero.

In structures that exhibit bulk inversion asymmetry, such as in the zinc-blende structure of GaAs, the local electric fields lead to another contribution to the spin-orbit interaction, acting on the growth direction. This effect is known as the Dresselhaus contribution to the spin-orbit interaction [44].

Even though this contribution is null in centrosymmetric crystals such as Si and Ge, a local electric field due to interface inversion asymmetry [45][46] might still play a role. This contribution often is also called the Dresselhaus term because it has an analogue representation in the spin-orbit Hamiltonian 2.33.

In a 2D system, assuming that the confining field is along the growth direction z (corresponding to the main crystallographic axis [0,0,1]), the spin-orbit hamiltonian of eq. 2.32 can be rewritten as [1]:

H SO = α(p x σ y ) + β(-p x σ x + p y σ y ) (2.33) 
where α and β (m/s) quantifies respectively the magnitude of the Rashba and Dresselhaus terms of SOC.

Both terms are much smaller, by ≃ 3 orders of magnitude, in Si [47][48] than for example in GaAs [1]. The low SOC leads to much longer spin relaxation time T 1 in Si than in GaAs. On the other hand in Si this may represent an issue when trying to couple the electron spin with an external AC electric field. The SOC indeed allows the direct electrical spin manipulation, that in a silicon nanowire is much more efficient for holes than for electrons and usually a micromagnet is required to enable artificial SOC of electrons in silicon [49][50].

In QDs, the confinement is such that the momentum of a particle, on average, is zero in any direction, i.e. 〈p x 〉 = 〈p y 〉 = 0. This leads to the result that for two spins on the same orbital:

〈nl , ↑ |H SO |nl , ↓〉 = 〈n, l |p x,y |n, l 〉〈↑ |σ x,y | ↓〉 = 0 (2.34)
where n and l label the principal and the orbital quantum number in the QD orbital. Consequently, the spin-orbit Hamiltonian of eq. 2.33 does not couple different spins on the same orbital but couples only states with different orbitals and spin components [51]. This means that pure spin states are replaced by pseudo-spin states, that are admixtures of both orbital and spin states.

The hybridization between spin and orbital states allows an external electric field to couple to the pseudo-spin states of the same Kramers doublet through SOC.

The hybridization between spin and orbital states in a QD is strongly dependent on the energetic band structure of the crystal. The conduction band has an s-like character and, excluding valley states, it has only spin degeneracy and therefore no SOC is expected, since two electrons in the conduction band would lie on the same orbital. The SOC could 32 2. QUANTUM COMPUTATION WITH SPINS IN QUANTUM DOTS be enabled by the mixing between different orbitals or, in the case of electrons in silicon, orbital and valley states [52], [53]. As shown in Ref. [54] this mixing can be controlled by tuning the tunnel barrier between the QDs.

When dealing with holes confined in silicon or germanium nanowire, the SOC is intrinsically strong, due to the mixing between the heavy holes and light holes band. Indeed, under strong confinement, the band structure is modified compared to the one of the bulk material, as shown in Ref. [55]. When considering the valence band it should be taken in account a further degeneracy in the total angular momentum due to its p-like character [42].

The orbital angular momentum l=1 and the spin angular momentum s=1/2 generate six states characterized by total angular momentum quantum numbers j and m j :

j , m j = 3 2 , ± 3 2 , 3 2 , ± 1 2 , 1 2 , ± 1 2 
When considering spin-orbit interaction the energy of states with j=1/2 is lowered down. This is called the split-off band and it is usually negligible in bulk materials.

The other two bands with j = 3/2 follow a different parabolic dispersion relation and, since their curvature is related to the effective mass these represents the heavy holes (HH), with m j = ±3/2, and light holes band (LH), with m j = ±1/2. The confinement in a nanowire lead to strong HH-LH mixing [55][56]. This mixing is the main reason why SOC is stronger for holes than for electrons confined in a nanowire. This intrinsic contribution to the SOC can be included as a Rashba-like term in eq. 2.33 and it is often referred to as direct Rashba SOC [56] because of this analogy.

SPIN MANIPULATION

Electron spin states can be manipulated by electron spin resonance (ESR). The transition between two spin states (|↑〉 and |↓〉) can be induced by applying an oscillating magnetic field which has an orthogonal component to the external magnetic field and whose energy is equal to the energy difference between two spin states. The splitting in energy between two spins is given by the Zeeman energy E Z = g µ B B 0 , which increases linearly with the external magnetic field. The Landé g -factor can instead be modified by varying the static magnetic field direction [57][46].

The oscillating magnetic field can be generated by an alternate current I ac flowing through a stripline, acting as an antenna, as schematized in Fig. 2.11 a). The frequency of the AC current should match the Larmor frequency f = E Z h . Fundamentally the AC magnetic field provides photons matching the Zeeman splitting and allowing coherent spin oscillations. This is the technique historically used in standard nuclear magnetic resonance, with the difference that here the spin belongs to an electron (or a hole) and not to the nuclei. Many recents experiments have exploited this technique [38][58] [59]. The intensity of B ac , proportional to I ac , determines instead the speed of the Rabi oscillations between |↑〉 and |↓〉 spin.

In the perspective of a scalable spin qubit architecture, the use of magnetic fields to control the spin is unpractical, because it is nearly impossible to localize the magnetic field in order to affect only one qubit and not its neighbors. Another drawback of using a stripline as an antenna could be the heating induced by the 2. QUANTUM COMPUTATION WITH SPINS IN QUANTUM DOTS produced by the micromagnet guarantee individual addressability, as well as enabling electrical spin control. When dealing with holes the g-factor of each QD is intrinsically different, ensuring that each dot has a different Larmor frequency. The strong variability of holes g-factor is due to the fact that the HH-LH mixing mechanism has a strong dependence from the magnetic field direction [42][57].

ACTIVE INTERFEROMETRY MEASUREMENT OF A QUANTUM DOT

In this section I describe an experiment that highlight the core principles of gate-based reflectometry. Here we demonstrate that, through an interferometric technique, it is possible to read small capacitance variations in the device without an LC resonator. Interferometry was initially introduced as an extreme-impedance measurement technique [62]. The impedance of the device under test (DUT) Z , that here is the gate impedance, in our case is usually between tens to few hundreds of kΩ, much larger than the characteristic impedance of the cables Z 0 = 50 Ω and therefore nearly all the signal is reflected off the device (see 2.12). It is therefore very hard to reach the sensitivity necessary to measure the small variation of the reflected signal V r + δV r due to an additional quantum capacitance in the DUT, on top of a way bigger signal (δV r ≪ V r ). With the interferometric technique we demonstrate here we show that, by cancelling out the reflected signal with another wave, it is instead possible to read small variation of such a signal on top of a small amplitude quasi-flat signal (δV r > V r ≃ 0) [START_REF] Vlachogiannakis | An I/Q-mixer-steering interferometric technique for high-sensitivity measurement of extreme impedances[END_REF] [START_REF] Tuca | Interferometer Scanning Microwave Microscopy: Performance Evaluation[END_REF].

As explained in Sec. 2.4 the matching condition can be achieved with an LC resonator. A scalable version of this technique to readout many qubits demands a considerable engineering effort. The interferometry technique instead does not need any active component at the sample level and is tunable in-situ. Nevertheless in a many qubit system the electronics at the base temperature stage of the cryostat would be quite invasive, since we need two directional coupler for each readout line. We demonstrate the use of this technique by sensing single charge transport through a QD in a silicon-on-insulator nanowire p-type transistor. In the setup of Fig. 2.12 a), the RF signal is first split into two paths. The left path is sent through a manual phase shifter, a pass-band filter, 40 dB of attenuation, and finally to the coupled port of a directional coupler. The signal then, reflected off from the gate of the device, passes back through the directional coupler and then to a second directional coupler. This last coupler combines the reflected signal S(t ) with the cancellation signal from the right port of the power splitter C (t ). This second signal arrives at the coupler after passing through a variable attenuator, a pass-band filter, and 40 dB of fixed attenuation. The signals are first summed with a directional coupler and then amplified and measured with an IQ mixer. We may say that such a system is the electrical equivalent of a Mach-Zender interferometer. The setting of the interferometric measurement essentially consist of two or three steps:

1. Find a frequency ω 0 such that the the reflected signal S(t , ω) = A S Γ(ω)si n(ωt + ωt 0 (ω)) and the cancellation wave C (t , ω) = A C si n(ωt ) are dephased by π. The term t 0 (ω) is the delay between the two signals S(t , ω) and C (t , ω). It is due to the difference between their paths and by the phase acquired after the reflection. For a frequency ω = ω 0 the maximum phase mismatch is reached when ω 0 t 0 (ω 0 ) =

METHODS AND MATERIALS

The journey of a thousand miles begins with one step.

Lao-Tze

In this chapter I describe the experimental setup used during my thesis. The electronic setup is partially at room temperature and partially inside a 3 He homemade dilution refrigerator. Particular attention is devoted to the the compact design of a noise filtering platform for the DC lines and its impact on the electronic temperature.

In the end I explain the main steps and the motivations behind the fabrication process of the devices made by CEA-Leti.

EXPERIMENTAL SETUP

The experimental setup mainly consists of a home made 3 He dry refrigerator (shown in Fig. 3.1) and all the instrumentation necessary for electric and dispersive measurements.

A dry, or cryogen-free, dilution refrigerator relies on a pulse tube (PT) for the primary cooling of the cryostat, in place of liquid nitrogen or liquid 4 He used in a so-called wet cryostat. The primary cooling of the cryostat allows to reach ≃ 3.5 K. At such a temperature the 3 He can start to condense and circulating in a close loop, allowing further cooling till ≃ 300 mK.

Inside the cryostat we wired 24 DC lines and 6 AC lines (2 for reflectometry in-out and 4 for pulsing).

A superconducting single-axis magnet is anchored at the second stage of the pulse tube (at ≃ 3.5K ) and the sample holder is in a cavity inside such a magnet, but thermally connected with the lowest stage of the cryostat. The magnetic field is always in the vertical direction of Fig. 3.1 and to control the relative position between the sample and the field orientation the only degree of freedom is to physically tilt the sample. Alternatively 3-axis magnets are available on the market.

A schematic of the setup at the different stages of the cryostat is shown in Fig. 3.2.

Through the years such a setup has been improved continuously. Here the last version of the setup is shown, used for the double charge-sensing experiment described in Chap. 6.

We use an ultra high frequency lock-in (UHF-LI) from Zurich Instruments for both the The components used have been previously tested at 4 K and they still offer performances close to their specs at room temperature. In the following tab we list the names of these components.

type of component KiKass RC π-filter ( f c = 80 MHz) LFCN 80+ R (500 Ω) RR05P499KDCT-ND R (1.2 kΩ) RR05P1.2KDCT-ND C (2.2 nF) C1206C222J5GAC AUTO C (1 nF) C1206C102J5GAC AUTO KiKass RF π-filters ( f c ) LFCN 80+ 80 MHz LFCN 1450+ 1.45 GHz LFCN 5000+
5 GHz

These components are selected based on their small size, availability, and performance at extremely low temperatures. We opted for a 4 copper layers design, as schematized in Fig. 3.5. The space between different layers is filled with FR4, an electrical insulator.

The conducting layers are plated with electroless nickel, covered by a thin layer of gold, which protects the nickel from oxidation. This technique is widely used in PCBs manifacturing (Electroless nickel immersion gold, or ENIG). The surface-mounted components are placed on the external layers. In particular, 12 DC lines are in the front layer (label F1-F12) and 12 are in the bottom one (label F13-F24). A top view of the two boards is shown in Fig. 3.6.

The connections between components belonging to the same line are realized through blind vias, i.e. vias that pass through an inner layer and go back to the outer one only for the connection with the next component (see Fig. 3.5). This provides a better thermalization of the electrons and shielding from electromagnetic interferences. A good thermalization of the inner layers is also favoured by many through hole vias. Also these vias are plated with ENIG, favouring a better thermalization of the inner layers. The other aim of these vias is to provide a strong common ground for all the layers. We decided to not use any solder mask (usually green layer on top of the PCB) on our boards. These masks are just an help for the manual soldering but prevent the ground 50 3. METHODS AND MATERIALS is to use shielded twisted pair cables [5], i.e. two insulated loom of copper wires twisted together in a double spiral shape. One of the wire is used for transmitting the voltage and the other one as a ground reference. In this way some part of the noise signals is in the direction of data signals while the other parts are in the opposite directions. Thus the external waves cancel out due to the different twists. In this way a better immunity against noise is obtained.

THERMAL NOISE

At high temperature (more than 4K) the phonon temperature, is usually equal to the electronic temperature of the device under test.

When going down to low temperatures, around hundreds of mK, electrons and phonons are decoupled and the phonon temperature can be seen just as a lower bound for the electron temperature.

A proper cooling of the electron allows to reduce the thermal noise. The thermal noise is essentially given by the blackbody radiation, that in one dimensional cables is known as Johnson-Nyquist noise. The Planck's law provides the energy of a one-dimensional blackbody:

U ( f , T ) = h f e h f /k B T -1 (3.1)
Such an energy can be seen also as the noise power per unit of frequency (J=W/Hz), or power spectral density.

In the classical limit h f ≪ k B T one recovers the original Johnson-Nyquist formula

U ≃ k B T .
In a coaxial cable connecting room temperature electronics to base temperature circuits, thermal photons propagate in both directions. To reduce the spectral density of thermal radiation a series of attenuators is installed at each stage of the cryostat. Actually such a noise could be either filtered or attenuated. It has been shown that attenuators perform better than non attenuating filters regarding the performance of a superconducting qubit [6].

An attenuator effectively acts as a beam splitter. If for example we use an attenuator of A i = 20 dB, i.e a factor 100 in power, the attenuator transmit 1/A i of the incident signal and adds blackbody radiation on the rest of the signal (1 -1/A i ), with the energy given by the temperature at this stage (U i (T, f )). Differently from the signal, the blackbody radiation propagates in both the directions. The noise power density at a certain stage of the cryostat with attenuation i can therefore be expressed as

U i = U i -1 A i + (1 - 1 A i )U i (3.2)
where U i -1 is the noise power in the previous stage of the cryostat. The attenuation is expressed in terms of power ratio. An important remark here is that for kHz frequency the approximation U = k B T holds well also for temperatures of few hundreds mK. When considering higher frequencies instead we should use the formula 3.1.

EFFECTIVE ELECTRONIC TEMPERATURE WITH DC FILTERS

We measured the electron temperature in a Bluefors dilution refrigerator, that can go down to 10 mK. We realized this measurement to evaluate the performances of the filters 3.5. DEVICE FABRICATION 3 53 (Fig. 3.9 d). The spacers are crucial to protect the undoped channel from the ion implantation.

In standard devices, spacers are relatively small (≃ 10 nm) so that the junctions lie at the edge of the gate or slightly overlap it (with a compromise to find to avoid "short-channel" effects). For our purposes, we make them much larger than usual to offset the position of the charge reservoirs and define tunnel barriers between dot and reservoirs [11]. Indeed wide spacers allows better gate-defined quantum dot confinement, since a thin and undoped SOI region separates the dot from the reservoirs. Afterwards, raised S/D contacts are regrown to 18 nm to reduce access resistances.

Then, to obtain low access resistances, S/D are doped in two steps: first with lightlydoped drain (LDD) implant (using As at moderate doping conditions) and consecutive annealing to activate dopants, and then with highly-doped drain (HDD) implant (As and P at heavy doping conditions). In between LDD and HDD an additionnal spacer is deposited to offset them and create some kind of dopant concentration gradient from S/D to channel (in microelectronics, this limits hot carrier effects).

It is worth to remark here that p-type dopants (Boron in our case) usually diffuse more than n-type dopants, reducing the mobility close to the reservoir contacts, as it will be shown in Sec. 4.9.

The gate and lead contact surfaces are then metalized to form NiPtSi (salicidation). In this way the contacts are ready to be connected to the bonding pads on the external part of the wafer. These interconnections to bonding pads, are made using a standard copper based backend-of-line process (done by ST microelectronics). In this process the device is also encapsulated in a protective glass of SiO 2 and SiN. The device in the end is buried 2-3 µm below the wafer surface.

Furthermore, this technology can be extended to realize multi-gate devices, with N gates in series or 2×N arrays with the gates on the opposite sides of the silicon channel [12][13][10] [14]. The gate patterning can be done by etching the gates using electronic beam litography (EBL). For example a long gate of L g = 280 nm can be cut in 4 gate of 40 nm, with 40 nm spacing in between each of them. These linear an bilinear arrays of gates (or even 3-d structures in the future) may allow to develop quantum dot based quantum computing platforms of increasing complexity.

QD CHARACTERIZATION FROM ROOM TEMPERATURE TO 4K

The only true wisdom is in knowing you know nothing

Socrates

In this chapter I discuss the problem of a systematic characterization and benchmarking of qubit devices, focusing on some extraction methods for a fast and systematic evaluation of the QD properties. Furthermore I will present a study of the gate dependent mobility in a five-gate device, demonstrating that the more a gate is far away from source/drain contacts the better is its mobility. This justifies the experimental strategy of the following chapters of working with QDs as isolated as possible from the reservoirs.

A SYSTEMATIC CHARACTERIZATION OF QUANTUM DOT DE-

VICES

In the first part of this chapter I discuss the problem of performing QD measurements over a large number of samples using a fast and systematic approach.

The procedures we are going to describe can help acquiring statistical information on the QD electronic properties, as well as identifying just QDs having the lowest amount of charge traps, dopants or any other kind of defects. I show also how to obtain information about the size and the energy-level spacing of a QD. Systematic measurements of 300 mm wafers are a common routine in semiconductor industry, where automated probe station are available since a long time. Instead only recently the Finnish company Bluefors has developed an automated probe station for cryogenic measurements (Fig. 4.1) of a 300 mm wafer, reaching temperatures down to 2 K.

In fact, even though commercial cryogenic probe station were available even before, they weren't designed to measure 300 mm wafers. The work described in the following has been part of my internship at CEA-LETI. Although the measurements of this chapter are performed in a liquid helium dewar, they serve as a test bench to guide the development of systematic procedures for wafer-scale characterization at low temperature in the Blufors probe station. 

ROOM TEMPERATURE CHARACTERIZATION AND COMPARI-SON WITH LOW TEMPERATURE PROPERTIES AT HIGH BIAS

We first discuss the useful transistor parameters that are used by the microelectronics industry in order to quantify the device performance.

Normally industries target high mobility and large I ON /I OF F ratio. This allows to operate at low gate voltage V G , and therefore to decrease power consumption and to mitigate self-heating issues.

For quantum dot devices instead these problems are not relevant yet. We are interested in evaluating the reproducibility of the fabrication process, as well as defining the properties that defines a good QD.

We also want to compare the device properties at low temperature and at room temperature. As we will see in Sec. 4.9 the analysis of the mobility as a function of temperature allows to determine the concentration of neutral defects, which might eventually have a negative impact at the level of the spin qubit coherence time.

In the first part of this chapter we study single gate CMOS-like device, where, as explained in Sec. 3.5, the long spacer that separates the gate from the reservoirs allows local confinement of charges at low temperatures. At room temperature the QD device behaves as a standard transistor, while at low temperature a similar behaviour is restored only when the bias applied is much bigger than the addition energy (eV d s ≫ E ad d ≃ 1 -10 meV). We then compare the I (V G ) characteristics at low and room temperature by keeping fixed V d s = 50 mV.

I first define the main parameters we want to measure:

• Threshold voltage V t h : it tell us the minimum V G needed to create a conducting path between the source and drain terminals. It is worth to remark that there are many different extraction techniques for this value, e.g. using eq. 4.4 or 4.8. The definition of this parameter is not unique, and its value will be slightly different depending on the extraction method.

• Subthreshold swing SS, measured in mV/dec. A dec (decade) corresponds to a 10 times increase of the current I , and the SS is the required increase in V G to increase In the subthreshold region, the drain current has an exponential dependence on gate voltage, reflecting a thermally activated carrier concentration [1]. The I (V G ) relation can be expressed as I ∝ e eV G nk B T where e is the elementary charge, k B is the Boltzmann's constant, V G the gate voltage applied, and n is the subthreshold ideality factor. Then the expression of SS can be obtained by taking the derivative of V G with respect to log I :

SS(T ) = n dV G d l og (I ) = n k B T e l n10 (4.1)
At room temperature the ideal value of the SS (for n=1) is expected to be approximately 60 mV/dec. However, given the complexity of the fabrication, a transistor is very likely to contain various kinds of defects resulting from interface traps, residual impurities, strain, charges in the oxide, surface roughness etc. Despite the existence of different types of disorder, the interface traps density is the main parameter used to quantify the degradation of SS for FD-SOI transistors. The interface traps distributed on the Si/SiO 2 interface generate an additional parasitic capacitance C I T , connected in series with the silicon oxide capacitance C OX . Moreover, the depletion capacitance C D [2], connected in series with C OX should also be taken into account.

The ideality factor n quantifies the impact of these additional capacitances over the transport and can be expressed as [3]:

n = 1 + C I T +C D C OX (4.
2)

• I on can be defined as the current at V G = V t h + 500 mV.

• I o f f can be defined as the current at V G = V t h -500 mV.

• The device resistance can be calculated in strong inversion (V G ≫ V t h ) simply with the Ohm's law: R = V d s /I on .

Here V t h is evaluated by taking the tangent of the I (V G ) curve where its slope is maximized, and then taking the intercept with the V G axis as V t h , as shown by the dashed lines of Fig.

4.2.

For bias V d s ≫ E ad d our QD devices behave standard transistors and we can compare the same parameters at room temperature and at low temperature. In Fig. 4.2 it is shown the comparison between the room temperature I (V G ) curve and the one measured at 4 K (both with V d s = 50 mV), for a device with channel width W =70 nm and gate length L g = 50 nm.

From the two I (V G ) curves we measured the threshold voltage V t h , which increases from 70 to 480 mV at 4.2 K. An increase of V t h at low temperature can be understood thinking that many charges are frozen in the impurities present in the channel and higher the Coulomb oscillations (valley) at different bias. This method relies on finding the diamond axis from a few I (V G ) measurements at finite source/drain bias voltage. A measurement of the current along a diamond axis, where transport is ruled by eq. 2.11, allows to determine E (i ) ad d . In the following I'll describe each method in detail, evaluating pro and cons of each of them.

COULOMB PEAK ANALYSIS AT ZERO BIAS

At 4.2K we are very likely in a regime where the tunnel coupling rates are negligible compared to temperature (k B T ≫ ħΓ). In this regime, the peak width is determined solely by temperature. However we observed that the peak width in V G increases with the number of electrons N in the QD. This is due to a V G -dependent lever-arm. Therefore by measuring the width of each peak we can obtain the lever-arm parameter α (i ) , which is found to decrease with N . In order to fit the peaks all together, we can rewrite one of the equations 2.8 or 2.9 as a sum of peaks, each one with its own amplitude A (i ) and width σ (i ) ∝ α (i ) βk B T . We use the following fitting function:

N i =0 A (i ) cosh -2 I (V G ) = α (i ) (V (i ) G -V G ) βk B T (4.3)
Where the parameter β takes the value 2.5 or 2 depending on whether the QD level spacing is smaller (classical limit of eq. 2.8) or larger (quantum limit of eq. 2.9) than k B T , respectively.

With few considerations about the dot size and temperature, we can understand that we are always in the classical Coulomb blockade regime (k B T ≫ ∆ N ).

To appreciate the quantized level spacing of the dot its size must be such that its energy level spacing is bigger than the thermal broadening of the Fermi distribution of the reservoirs, i.e 3.5 k B T . For a temperature of 4.2 K we have 3.5k B T≃ 1.2 meV, and to appreciate the level spacing the corresponding dot diameter (using eq. 2.4) should be ≤ 20 nm, which is a realistic estimate when the dot is in the few-electron regime. However, in these quantum dot devices we cannot observe the few-electron regime in transport. This is due to the fact that in the few-electron regime the tunnel rates through the barriers become too small, preventing measurable currents.

For the first observable transitions we can estimate the dot area from the spacing between adjacent peaks ∆V G using eq. 2.2. We measured ∆V G ≃ 10 mV, which tells that the expected dot diameter is ≃ 60 nm.

Assuming that the dot is a planar disc we can calculate the expected level spacing using eq. 2.4, which provides ∆ N ≃ 130 µeV, smaller than the thermal energy.

In practice at a temperature of 4.2 K, considering the tunnel barrier and the size of the dot studied here, we are in the classical Coulomb blockade regime (eq. 2.8) for all the peaks observed and we can assume β = 2.5.

In order to fit N Coulomb peaks with eq. 4.3, in principle we need to fit 3N parameters, i.e. (A (i ) , α (i ) ,V (i ) G ) for i = 1, ..., N . The peak position V (i ) G can be easily measured as the maximum of each conductance peak and fed as input to the fitting function. Therefore 

E (i ) ad d = α i (V (i +1) G -V (i ) G ).
This method in principle is the fastest one, since it requires only a single, high resolution measurement of the linear conductance as a function of gate voltage. Moreover on other devices, with smaller dots and/or tunnel barriers, it would be possible to observe the few-electron regime, where eventually only one energy level contributes to transport. In this case the fitting model should take into account a transition between quantum (β = 2) and classical (β = 2.5) Coulomb blockade regime when increasing V G . Another drawback of this method is that the model may fail for very high electron filling, because when hΓ ≫ k B T the weak coupling model fails.

A possible generalization of this method could be to use a self-adapting fit function, able to analyze each peak and to choose the model (weak coupling classical or quantum, or coherent regime) that minimizes the standard deviation of the fit.

DIAMOND RECONSTRUCTION METHOD

In A few line cuts at different V d s can be sufficient to reconstruct the the diamond edges through a linear fit of the points found. The V d s values corresponding to the intercepts of these lines provide the addition energies.

An example of diamond reconstruction is shown in Fig. 4.5, for another sample with L g = 310 nm, W = 80 nm. The results obtained for the same sample of Fig. 4.4 will be shown in Sec. 4.8, where the 3 methods are compared. Figure 4.5 shows a comparison between the diamonds reconstructed from line cuts and the corresponding full measurement of current vs (V G , V d s ). This method, differently from the previously described one, keeps on working when a few mV source-drain bias voltage is applied, regardless of the type of conduction regime and 4.8. SUMMARY OF THE MEASUREMENT PROCEDURE 4 69 Also a symmetric source-drain bias would be beneficial for this technique, as well as for the diamond reconstruction.

SUMMARY OF THE MEASUREMENT PROCEDURE

Here it is described the whole measurement protocol at high level, giving hints about how to possibly improve it.

1. In order to perform the peak analysis in a voltage range of interest we first need to know the position of the first detectable peak (FPP). An important remark is that the first peak we observe in current does not necessarily correspond to the first electron in our system. Usually a silicon quantum dot with only few electrons is still strongly decoupled from the reservoir and therefore, even if transport is energetically allowed, the current level is well below the detection limit. In order assess the number of electrons in the dot a charge sensor is necessary [9]. However, implementing charge-sensing on large scale measurement over-complicate the problem and it is not the goal of this characterization.

It is convenient to look for the first peak in current with high bias (≃ 5 -10 mV).

For smaller bias indeed the current of the first observable peaks may be hidden in the noise. For example the first peak observed in the linear regime (Fig. 4.3 a)) is actually the 5-th transition that we are able to observe. Since we need to know only where to start the measurement, and not the precise peak position, this measurement can be performed quickly and with relatively low resolution (i.e 1 mV step in V G ).

2. The FPP can then be given as input parameter to decide the gate voltage range of interest for a fine resolution measurement near zero bias (linear regime).

3. The position of maxima and minima found near zero bias serve as input parameters for the measurement of E ad d , via the "diamond reconstruction" and the "valley line cut" methods, respectively. In fact, the peak positions in current tell us where the diamond edges cross the V G axis. Imposing these constraints significantly improves the linear fitting of the diamond edges. The positions of the current minima, on the other hand, provide the starting point of the valley line cuts.

Once we have measured the position of maxima and minima in the linear regime we can choose which method is more suitable for the analysis. This choice is not trivial and, as discussed in the previous section, different methods may work better or worse, depending on voltage range of interest, temperature, material of the device and dot size.

FINAL REMARKS

In the first part of this chapter we discussed three techniques to characterize the properties of QDs. We tried to find a good trade-off between the precision of the measurements and their time consumption. The diamond reconstruction method appears to suffer from a bigger error and the results are strongly dependent on the few bias voltages at which the I (V G ) characteristics are taken. This technique may benefit from symmetric biasing, since I noticed that fitting uncertainty is significantly larger for steep diamond edges.

The "valley line cut method" instead seems to provide generally more reliable results, despite the fact that the extraction technique may be refined. Nevertheless it is the most time consuming, since it requires one line-trace measurement for each diamond.

Overall, fitting the Coulomb peaks in the linear regime (low bias) is the fastest method and provides reliable results. I would recommend this method for time-efficient massive characterizations. This method could be readily implemented on the 300-mm cryogenic probe station recently installed at Leti, which can perform wafer-scale characterizations down to 2 K. Going below 4 K might be counterproductive though, since we expect this model to work more accurately in the fully thermally broadened regime.

Finally, I would like to highlight that there is an ongoing research effort to combine machine learning approaches with measurements of semiconductor QDs [10][11][12] [13].

The increasing expertise and the publicly available machine learning based algorithm will surely be helpful in the near future for speeding up QD measurements, concerning both large scale and single device characterization.

CHARACTERIZATION AND LAMBERT-W FUNCTION BASED MODELING OF FDSOI FIVE-GATE QUBIT MOS DEVICES DOWN TO CRYOGENIC TEMPERATURES

In this section we characterize FD-SOI five-gate transistors down to 20 K[14] [15]. In order to do so, we propose a model based on the Lambert -W function. The validity of such a model is demonstrated down to low temperatures, fitting both the drain current and the Y -function and providing the dependence of subthreshold slope ideality factor, threshold voltage, low field mobility and access resistance with temperature.

Through this analysis we can highlight the different scattering contributions to the mobility and we conclude that the mobility of the central gate is the highest one, because it is the less affected from the scattering with the impurities that are incorporated during the doping process of the source and drain contacts. The p-type five-gate device (5G) described here has been fabricated starting from CEA-LETI FD-SOI NanoWire (NW) process flow, as described in Sec. 3.5 and comes from the same wafer as the qubit device of Sec. 6.5. The channel width is W = 75 nm, the gate length is L G = 40 nm and the gate spacing is S H = 40 nm.

SATURATION OF THE SUBTHRESHOLD SWING

Static measurements of the drain current were performed by sweeping the voltage on one gate (active gate), while keeping the other gates (external gates) at a fixed potential, namely V G,ext = -2 V. :

Y (V G ) = I D g m = (V G -V t h ) W L e f f C OX µ 0 V D (4.4)
where W is the device width, L e f f the effective gate length, C OX is the gate oxide capacitance per unit area, µ 0 is the mobility of the active channel and V D the bias applied. The gate oxide capacitance per area is a known parameter and can be calculated as C OX = ϵ 0 ϵ r d = 5.75 mF m 2 , where d = 6 nm for is the thickness of the gate oxide, and ϵ r ≃ 3.9 is the relative permittivity of SiO 2 . By fitting each I (V G ) trace to the Y-function it is possible to extract the corresponding mobility µ 0 and threshold voltage V t h . Both I D (V G ) and Y (V G ), are shown in Fig. 4.10, for temperatures ranging from 300 K to 20 K. These data refer to gate 4, but the same analysis has also been performed for the other gates. We can observe a steeper subthreshold slope as temperature decreases, and hence a decreasing subthreshold swing . It can be noticed as well an increase (in absolute value) of both the threshold voltage and the drain current in strong inversion.

The subthreshold swing SS(T) (defined in eq. 4.2 and shown in Fig. 4.10 c)), follows the Boltzmann limit, i.e. it shows a linear behavior with temperature, down to T=70-80 K, before saturating to a value around 20 mV/dec [18]. The trend is roughly the same for each gate. The charge per unit area Q i is modelled with the LW function:

Q i (V G ,V t h,i , n i ) = n i .C OX k B T q LW   e V G -V t h,i n i kT q   (4.7)
where q is the electron charge. The access resistance is computed as:

R Acc (V G,ext ) = R ch, j (V G,ext , µ 0, j ,V t h, j , n j ) +R ch,k (V G,ext , µ 0,k ,V t h,k , n k ) + R ch,l (V G,ext , µ 0,l ,V t h,l , n l ) +R ch,m (V G,ext , µ 0,m ,V t h,m , n m ) + R Ser i es (4.8)
where R ch,i , R ch, j , R ch,k , R ch,l are the channel resistances of gates i , j , k and l , and R Ser i es is an additional fitting parameter that takes into account the contribution of source and drain access resistances. The parameter R ser i es determines the current in strong inversion and is therefore common for all the gates. Each I D (V G ) is related to the sum of R ch + R Acc through Ohm's law:

V d s R ch + R Acc = I D (V G ) (4.9) 
This model successfully fits the drain current from subthreshold to strong inversion regime, as shown in Fig. 4.10, obtaining µ 0,i , V t h,i , n and R acc for each gate.

A standard method to extract the mobility µ 0,i and threshold voltage V t h,i independently is from the Y -function (for each gate), while the ideality factor can also be estimated from the SS. The access resistance R Acc can also be derived using the first order attenuation factor θ 1 = θ 10 + R Acc G m [16], where θ 10 is the intrinsic mobility reduction factor and G m = W L C OX µ 0 . θ 10 has been neglected, since in such short channels access resistance effect prevails. In Fig. 4.11 the parameters extracted using the formulas 4.8,4.6 (panels a)-d)) are compared with the ones extracted using standard methods (i.e. from Y-function, attenuation factor and subthreshold slope) in panels e)-h). The values and trends extracted with the two methods are in good agreement. We can observe that the threshold voltage decreases quasi linearly with temperature, independently on the gate. The ideality factor n varies nearly as 1/T for T<80 K. This is a consequence of the saturation of the SS. Below 80 K the Boltzmann model is not valid anymore and the value of n is meaningless from a physical point of view. Anyhow it is still shown to validate the compactness of the W-function model.

EVALUATION OF THE MOBILITY

The low field mobility (inversely proportional to R ch ), shows different trends for each gate, revealing that the central device (gate 3) has a better mobility at low temperature. Such a mobility gets lower going to the gate closer to the reservoirs. This is a hint that the main scattering mechanism is with the defects located near source and drain. [24]. We can have a closer look at the mobility as a function of temperature exploiting the Mathiessen's rule, which takes into account the temperature dependence of the different contributions to the mobility [25]: 1

µ 0 = T 300µ ph + 300 
T µ C + 1 µ nd (4.10)
where µ ph , µ C and µ nd are the contribution coming respectively from phonon scattering, Coulomb repulsion and scattering with neutral defects. Neutral defects are the limiting mechanism for gates closer to source and drain, whereas their impact is reduced on the central gate. Indeed, as shown in Fig. 4.12 a) the mobility of gate 3 increases as the temperature is lowered, consistent with a transport dominated by phonon scattering. In Fig. 4.12 b) are reported three contributions to the mobility of each gate, extracted by fitting each gate mobility as a function of temperature. We highlight that the lower is the

ELECTRON SPIN READOUT IN BILINEAR ARRAYS OF QUANTUM DOTS

The best that most of us can hope to achieve in physics is simply to misunderstand at a deeper level

Wolfgang Pauli

Among all solid-state platforms, silicon based spin qubits can rely on the reproducibility provided by current industrial fabrication standards. Many recent experiments benefited from the collaboration with industrial partners [1] [2]. Nearly the same fabrication technique of the device studied in this chapter has also been used in [3][4] [5][6] [7] (all these devices belong to the same wafer). We shared these devices coming from CEA-LETI in the context of the European project MOSQUITO.

We target a fast and scalable readout of qubit arrays. In this chapter two different readout approaches are compared, in order to probe both charge and spin state of coupled qubits. In Sec. 5.7 it is demonstrated that it is possible to manipulate electrically the electron spin. Unfortunately, the spin-orbit interaction turned out to be too weak to enable the observation of Rabi oscillations.

Finally it is proposed a scheme to extend the discussed charge-sensing readout into infinitely long bilinear arrays of quantum dots.

THE DEVICE

The device studied in this chapter has six gates partially overlapping a silicon-on-insulator nanowire (Fig. 5.1), three on the top side of the channel (T 1,2,3 ) and three on the bottom one (B 1,2,3 ). The finger gate structures are etched out of an initially defined single gate fully covering the nanowire. The gate lengths are L g = 40 nm, the channel width W = 90 nm. Longitudinal and transversal spacings are S l = 40 nm and S t = 50 nm, respectively.

The initial idea of this experiment was to use gate reflectometry as in Refs. [8][9], in order to study each couple of QDs except B 1 -B 2 . We noticed that the most regular, clean
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Nevertheless with sufficiently high gate voltage we could open a conduction channel also using 3 consecutive gates that are not on the same side of the channel as for example B 1 -T 2 -B 3 . With V d s <E ad d we can observe quantized transport, that is a clear signature of quantum dot behaviour (see Fig. 5.

2).

Moreover we start observing the first Coulomb peaks at lower voltages for the top gates, as we were expecting also from the lower threshold voltage measured at room temperature (V T t h ≃ -100 mV for the top gates and V B t h ≃+100 mV for the bottom ones). The different behaviour of top and bottom gates can be understood as a result of an asymmetric gate alignment, indeed the overlap with the Si nanowire is larger for the gates on the top side. This is evident also in the SEM image (Fig. 5.1 a)) of a device nominally identical to the one measured. Another hint of this misalignment comes from the bigger charging energies of the dots in the bottom gates. From the first detectable Coulomb diamonds we measured E B 2 ad d ≃13 meV and E T 2 ad d ≃7 meV, as it would be expected for smaller dots, and hence smaller bottom gates.

DISPERSIVE READOUT IN BILINEAR QUANTUM DOT ARRAYS ARRAYS

To obtain the LC tank resonators for dispersive readout, we connect surface-mount inductors to gates T Moreover, as explained by eq. 2.13 we add a matching capacitor of C M = 10 pF (value calculated with eq. 2.13) in parallel with the inductor, in order to improve the matching (Fig. 5.1 b)). For both the resonators we measured quality factors of Q ≃ 100. Throughout this chapter, except in Sec. 5.2, we'll use the quantum dot configuration as shown in the schematic in Fig. 5.3 a), together with the reflectometry circuit b) and the capacitive models of the two detectors coupled with the QDs in c),d).

EVALUATE TUNNEL COUPLING WITH GATE-BASED REFLEC-TOMETRY

Here we evaluate the tunnel coupling of the central double dot with the nearby reservoirs using gate based reflectometry, with a technique similar to the one used in Ref. [11].

In this experiment the two central QDs, accumulated below gates B 2 and T 2 , are in the few-electron regime (i.e. less than 10 charges in each dot). The top gates are polarized at V T 1,T 3 = +1 V, to keep the dot below T 2 well coupled with the reservoir. Conversely the bottom gates are polarized at V B 1 ,B 3 = -300 mV, such that the dot below B 2 is well isolated and can then be charged and discharged only through one of the top gates. A schematic configuration of the QDs is showed in Fig. 5.4 a). We consider an interdot charge transition (ICT) where the interdot tunnel coupling is lower than the resonator frequency, as can be understood by the fact that we do not observe any dispersive signal corresponding to it (see Fig. 5.4 b,c). Meanwhile the tunnel coupling between the dot T 2 and the the reservoirs (controlled by the gates T 1 , T 3 ) is fast enough to be resolved dispersively by the tank circuit on T 2 [12]. 

EVALUATE TUNNEL COUPLING WITH GATE-BASED REFLECTOMETRY

RF CHARGE-SENSING VS DISPERSIVE READOUT MEASURE-MENT FOR LARGE INTERDOT TUNNEL COUPLING

We now accumulate three QDs below gates T 2 , B 2 and B 3 (see Fig. 5.3 a) ). The other gates are negatively biased to ensure total charge depletion and isolation of the central dots. This configuration allows to implement and compare two alternative methods for charge and spin detection. We use the quantum dot defined by B 3 to sense the charge state of the DQD defined by T 2 and B 2 . To this aim, B 3 is tuned to have one level of the charge-sensing dot in resonance with the electron reservoir on the drain side. In this regime, any change in the charge occupation of the dots below T 2 and B 2 causes shifts in the resonant level and, correspondingly, capacitance variations that can be detected by rf gate reflectometry (Fig.

c)).

In order to keep the level of the sensor dot resonant with its lead while scanning gates T 2 , and B 2 we have to consider that the potential applied on a gate also has an effect on the nearby gates, because of capacitive cross coupling, and we want to compensate for this effect. More specifically we tune the gate voltage of the sensor dot depending on the electrostatic cross coupling (α B 2 -B 3 = 0.22, α T 2 -B 3 = 0.15) with the other two gates, thus keeping fixed the electrochemical potential of the sensor dot while sweeping the other gates. The charge-sensing through a dot-reservoir transition is often called a single-electron box (SEB) [20][21].

An alternative readout scheme consists in directly measuring the reflected signal from an LC resonator connected to gate T 2 (Fig. 5.3 d)), as done in the previous section. Differently from the previous case, now the dot below T 2 is isolated from the reservoir, ensuring that the dominant process is interdot tunneling with the B 2 dot. This approach is sensitive to charge tunneling resonances between the dots set by T 2 and B 2 , provided the corresponding tunnel rates are at least comparable to the frequency of the reflectometry tone [12]. Indeed it is mainly sensitive to the quantum capacitance, which depends on the curvature of the energy states, and hence on the tunnel rates of the charge transitions between the two QDs, Γ d ot -d ot .

The two readouts can be used simultaneously. Even though the basic principle is the same, we used them in a completely different way and the RF charge sensor signal, given by Γ d ot -l ead (fixed), allows to explore charge transitions where Γ d ot -d ot (dependent on dot filling) is way smaller than the RF probe frequency. The stability diagrams in Fig. 5.6 a),b) clearly show the typical honeycomb pattern of a DQD, formed by the two QDs accumulated below the gates B 2 and T 2 . In these plots the color scale is the phase signal recorded respectively with the RF charge sensor (Fig. 5.6 a)) and with direct gate-based reflectometry (Fig. 5.6 b)). Moreover we can count charges of the quantum dot below T 2 . The numbers in Fig. 5.6 a) refer to the charges in (B 2 ,T 2 ). Since the capacitive coupling with the sensor is mainly determined by the filling of B 2 we decided to work with a fixed number of charges N , N + 1 below B 2 , such that we can fix our compensation parameters.

MAGNETOSPECTROSCOPY OF THE DOUBLE QUANTUM DOT

We first studied the interdot charge transition (N + 1, 7) → (N , 8). In Fig. 5.7 it is shown the signal recorded simultaneously by the two sensors while we sweep magnetic field and gate voltages. Even though this transition is showing PSB, we didn't manage to resolve any dependence in the tunneling time from (N+1,7) to (N,8) with a magnetic field up to 2 T. This means that, even if the transition is spin blocked, the spin-flip time (from |↓〉 to |↑〉) is below the temporal resolution of the charge detector, i.e. ≃ 5µs . Another issue was that, without being able to pulse on gate T 2 , we couldn't pass through an intermediate charge state for a proper initialization of the |↑〉 state in one of the two dots, and hence we couldn't measure the spin relaxation time T 1 . Moreover we cannot read the qubit spin state as in Ref. [8]. Indeed, differently from holes (Fig. 6.22), the dispersive response of the magnetospectroscopy measurement of Fig. 5.7 b) does not reveal any curvature of the T 0 (1, 1, ) spin state that could be used for singlet/triplet readout in the "shallow" ("1,1") configuration. However, it would still be possible to detect dispersively the different curvature of these states close to the charge degeneracy point ϵ = 0. Because of the limitations described above we decided to move to a slower charge transition, that we cannot resolve with gate-based reflectometry but with a dynamics slower than the temporal resolution of the charge detector.

SPIN DEPENDENT TUNNELING

In this section we evaluate how the spin life-time evolves with magnetic field. Here we move to another ICT at lower filling, i.e. (N , 2) -(N + 1, 1) (stability diagram in Fig. 5.9 b). We first move to this transition keeping the electrostatic configuration of Fig. 5.6, where the voltages of the other gates were:

V T 1 = -0.3 V, V T 3 = -0.3 V, V B 1 = +0.5 V,
all below the accumulation threshold (see Fig. 5.2). We could notice, by monitoring the telegraphic noise on the interdot transition, that the interdot tunneling rate was on a Hz time scale, observable in real time by naked eye. Such a tunnel rate is probably slower than any spin life-time, and we decided to increase it. Even though there were no barrier gate, it was possible to tweak the interdot coupling by decreasing nearby gates to V B 1 = -0.4 V and V T 3 = -0.4 V. The electrostatic repulsion of these gates pushes the two central dots closer together, increasing the tunnel coupling in the KHz range, i.e. by 3-4 orders of magnitude. In order to study this transition we can rely only on the charge sensor. The dispersive signal from gate reflectometry indeed cannot be resolved because the tunnel rate is way lower than the frequency of the reflectometry tone. In particular, given a reflectometry tone at ≃ 400 MHz, we start to lose sensitivity for transitions with a tunnel rate lower than few MHz [12].

EVALUATION OF TUNNEL RATES AT B = 0 T

At B = 0 T the S(1,1) and the triplet states are degenerate for |ϵ| ≫ 0, i.e. at the charge equilibrium. We send a pulse symmetric with respect to ϵ = 0 on gate B 2 . The pulse sequence, amplitude (±1 mV) and direction are indicated by green arrows in Fig. 5.9 a),b).

We highlight here that, in order to keep the energy level of the two dots at the same distance from the reservoirs levels, we should have pulsed along the detuning direction ϵ, i.e. perpendicularly to the interdot transition. Unfortunately the reflectometry lines are pass-band filtered by the LC resonator, and we cannot pulse directly on gate T 2 . Another option could have been to pulse on gate T 3 , and hence on T 2 (T 3 is mainly capacitively coupled with gates T 2 and B 3 ), here the problem is that also the detector level would be affected this way, and we cannot send a counter-pulse to balance this effect 98 5. ELECTRON SPIN READOUT IN BILINEAR ARRAYS OF QUANTUM DOTS SOC in our system. Also in this case the SOC is probably enhanced by the hybridization with an excited state (valley or orbital), but further investigation would be required to clarify its exact origin.

We apply pulses to gate B 2 , with amplitude A B 2 = ±1 mV, a total period of 2 ms and a 50% duty cycle. The gate voltages and pulses are calibrated such that the DQD charge state oscillates between the (N+1,1) and the metastable (N,2) state, i.e. in the middle of the PSB region of Fig. 5.10 b). The amplitude of the pulses is calibrated such that the ϵ-dependent tunneling time is τ S = 70 µs, as measured in Fig. 5.9.

For simplicity from now on we'll refer to these states as (1,1) and (0,2). Superimposed to the pulse we also send a continuous microwave(µw) excitation, whose frequency should match the Zeeman splitting E Z = g µ B B . We acquire the average phase signal during this two level pulse sequence.

In the range of magnetic field of Fig. 5.15, between 0.4 and 0.7 T, when no spin is driven the characteristic time of the (1, 1) → (0, 2) transition is τ T -≃ 200 µs, while the reverse (0, 2) → (1, 1) transition occurs in τ S ≃ 70 µs.

When we don't excite any spin therefore we expect an average population unbalanced to the (1, 1) state (higher phase), in particular we expect to be on average in (1, 1) for 1.13 ms and in (0, 2) for 0.87 ms.

The resonant µw excitation acts predominantly on the spin confined in the dot closer to B 2 , which should in fact be located between in the region between B 2 and T 2 as discussed in Sec. 5.5.1. As discussed below, we only observe one clear EDSR, and we thus ascribe it to the dot closer to gate B 2 . The other QD (under T 2 ) lies further away from modulated B 2 gate, which may explain the absence of the corresponding EDSR signal. When the DQD is in the (1,1) state the system oscillates between the T -(1, 1) and the Zeeman eigenstate |↓, ↑〉, much faster than the interdot tunneling time τ S . When we pulse in the (0,2) charge region the DQD state keeps on oscillating between T -(1, 1) and |↓, ↑〉, until the interdot tunneling event, which occurs within the characteristic tunneling time τ S = 70 µs.

The average tunneling time of the (1,1)-(0,2) transition therefore gets reduced under resonant driving. As a result, we expect a negative signal corresponding to an increased (0, 2) population. In line with the previous consideration the magnitude of the phase signal observed under resonant driving is of the order of 5-10% of the overall phase signal.

In Fig. 5.15 a),b) we plot the average charge sensor signal during the pulse sequence, as a function of the excitation frequency and magnetic field (for two different powers of the microwave excitation and two different magnetic field ranges). In Fig. 5.16 we plot again the EDSR signal of Fig. 5.15 b). This image actually corresponds to the original acquisition (after subtracting the background and renormalizing the color scale). Indeed these measurement are extremely time consuming, and we tried to reduce their duration by scanning in a range close to the expected one. The expected Landé g-factor for electrons decoupled from the environment is g = 2, that means we expect to match the Zeeman splitting energy around a Larmor frequency of The horizontal axis of Fig. 5.16 is centered at the expected Larmor frequency for each magnetic field. If g = 2 we would expect a vertical line centered around this axis. We observe that the main signal is at a slightly smaller frequency than the expected one and it is not vertical, as one would expect for g = 2.

f 0 = 2µ B B h ( 5 
From the Larmor frequency f L (B ) = (g µ B B )/h we can easily extract the g-factor.

For a magnetic field of B = 0.55 T we find a Larmor frequency of f L = 15.251 ± 0.001 GHz, which provides the electron g-factor g = 1.981 ± 0.001. We can extract the g-factor also from the slope of the EDSR line in the B vs f plane. We observe a shift in the Larmor frequency of ∆ f = 31±2 MHz for ∆B = 107 mT, finding again the g-factor g = 1.979 ± 0.002 GHz, consistent with the one extracted from the Larmor frequency.

The value obtained is close to the ones of Ref. [42], where it is also used a silicon on insulator platform, and a g-factor between 1.92 and 1.96 has been reported for a single dot, depending on the magnetic field direction.

In Fig. 5.16 we can observe four other lines appearing at frequencies different from the one of the main EDSR line at f 0 . These lines are originated from processes of wave mixing between the EDSR signal and the two reflectometry tones at frequencies f T 2 = 407.2 MHz and f B 2 = 478.2 MHz. It is well known that a frequency mixer can be built just by injecting the local oscillator signal (LO) and the intermediate frequency signal (IF) in the gate of a field effect transistor in saturation regime, which has an exponential (non linear) electrical response. However, we cannot explain the observed sidebands in these terms, because there is no current flowing through the device.

An overview of the possible mechanisms leading to nonlinear mixing in QDs can be found in Refs. [36] [43]. The origin of the nonlinearity can be attributed to: a position dependent magnetic field gradient, an anharmonic confining potential or a driving magnetic field not perpendicular to the static magnetic field [44]. According to Ref. [45] the nonlinear mixing is also expected for strongly interacting dots near the (1,1)-(0,2) charge transition. However, we are not sure that in our case the weak coupling between the dots is strong enough to enable the nonlinear mixing between the EDSR signal and the reflectometry tones.

Although the microscopic origin of the nonlinearity is not fully clear, in analogy with nonlinear optical elements [46], we can look at this process as generated by an effective nonlinear susceptibility (χ (i ) ) .

The energy and momentum conservation conditions give raise to signals at frequencies:

f 1 = f 0 + f B 2 -f T 2 f 2 = f 0 -f B 2 + f T 2 f 3 = f 0 + f B 2 + f T 2 f 4 = f 0 -f B 2 -f T 2
This four wave mixing (due an effective third order nonlinearity χ (3) ), or 3-photon process, is at the origin of the sideband at ∆ f = +70 MHz= f B 2 -f T 2 from the main EDSR line. We would expect also a line at ∆ f = -70 MHz from the main EDSR line but in this case the nonlinear coupling between the signals is too weak. The sidebands at f 3,4 are outside the observed frequency range. We are dealing also with three wave mixing (due an effective second order nonlinearity 102
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This means that also the average charge population during the the 2 ms pulse sequence, which is not same as the average population at equilibrium, is detuning dependent.

This plot is a further confirmation that the two QDs are almost completely uncoupled and we are driving a single-spin transition in the quantum dot below gate B 2 , whose frequency does not depend on the energy detuning between the two QDs.

DOUBLE ARRAYS OF QUANTUM DOTS: HOW TO SCALE UP?

In the final section of this chapter we propose a scheme for scaling up the charge-sensing readout [10] on a bilinear array design as the one studied through this chapter. Finally I briefly discuss and compare different designs of qubit arrays [1][47].

In the experiments described throughout this chapter we used the transition between a quantum dot and its nearby reservoir to sense the DQD system nearby. What is actually required for this sensing technique to work properly is just a transition (that can be sensed with dispersive readout) of an object that is capacitively coupled with the DQD system under study. Moreover, to keep the DQD well isolated, it should not be tunnel coupled with the sensor. Our proposal is based on the idea that a charge reservoir is not strictly necessary to perform RF charge-sensing and also a transition between two QDs could be exploited. When using dispersive readout the SNR of an interdot transition could be optimized by tuning the interdot tunneling rate such that the reflectometry response is maximized [12], and by optimizing the resonator matching.

A visual representation of the scheme proposed is shown in Fig. 5.18. The architecture proposed is a double array of split gates, where one array (in red) contains the information qubits and the other one (in violet) is used for the readout via RF charge-sensing. The elementary cell of such an architecture (surrounded by the black dashed line) is made of three information qubits (Q N -1,N ,N +1 ), one ancillary qubit (AQ) initialized in a spin |↓〉 state and two QDs (S 1 and S 2 ) for RF charge-sensing.

The spin-to-charge conversion is based on PSB readout and, after fixing the spin state of the AQ in the |↓〉 state, tunneling would be allowed only if the spin in Q N is in the |↑〉 state. If tunneling is allowed the charge sensor would sense the increased number of charges in the AQ.

Finally the readout of the spins in Q N -1 and Q N +1 can be performed through swap operation with Q N and then sequentially reading their spin through PSB. The elementary cell described can then be replicated infinitely along the array. One fundamental remark is that for such a scheme to work properly it is crucial to have local control over the tunnel coupling, as it could be done for example by adding a second layer of gates positioned in between each nearby gate. Indeed, in order to perform fast two-qubit logic operations, it is required to have a fast tunnel coupling between each qubit in the upper array. A fast tunneling between Q N and AQ instead would allow a fast readout. At the same time we want the sensor to be sensitive only to the state of AQ and therefore we should suppress the tunnel coupling between qubits Q N ,N -1.. and sensing dots.

In an alternative scheme it would also be possible to connect a common reservoir to the sensing array and apply the RF charge-sensing readout on transitions between single dots 5.8. DOUBLE ARRAYS OF QUANTUM DOTS: HOW TO SCALE UP?
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for some proof of principle calculations.

In the perspective of scaling up to platform with hundreds of qubits it will be necessary to entangle qubits that are relatively far away from each other. An interesting proposal [48] envisions to separate each logical qubit into an elementary cell within which error correction can be realized (Fig. 5.19 d)). The coupling between spins belonging to different elementary cell can be mediated by microwave photons in a superconducting cavity, as recently demonstrated in Ref. [49] where are entangled spins of electrons that are separated by more than 4 mm.

Another important problem is the simultaneous manipulation of many qubits . Conventional manipulation techniques of electrons usually rely on an ESR stripline for magnetic manipulation, or on a micromagnet that enables a synthetic SOC and hence electrical manipulation. Both these techniques are quite invasive and imposes severe constraints in terms of scalability. The easiest approach in terms of hardware is to drive the electron spin electrically, relying on its intrinsic SOC. As it has been shown in Sec. 5.7, electrons in silicon possess a SOC that can allow electrical manipulation, but often this effect is too small to allow coherent driving. In a recent paper it has been demonstrated that the naturally weak SOC in silicon can be enhanced by controlling the energy quantization of electrons in the nanostructure [41], enhancing the orbital motion. Another degree of freedom to control the SOC is the direction of the magnetic field applied [42]. This engineering of the SOC depends heavily on the energetic structure of a DQD, that can be tuned with a barrier gate to maximize the hybridization between orbital or valley states, and consequently the SOC. The results of Ref. [41] paves the way for the electrical manipulation of electrons in silicon on large scale.

There are many different architectures investigated all around the world like linear and bilinear arrays, but also 2-D [53] and 3-D structures [54]. Investigating all these platforms requires a significant scientific and technological effort in terms of design, setup, and material optimization. Undoubtedly building large-scale quantum systems present gigantic challenges. However, the pace at which the field is growing and the strong effort of both academies and large tech companies leaves room for optimism.

HOLE SPIN CONTROL AND MANIPULATION IN LINEAR ARRAYS OF QUANTUM DOTS

Physics is like sex: sure, it may give some practical results, but that's not why we do it.

Richard P. Feynman

In the previous chapter I discussed the electrical control of the electron spin (Sec. 5.7) in arrays of quantum dots. As previously discussed in Sec. 2.9 the main drawback of working with the spins of electrons in silicon is the weak spin-orbit coupling. This implies that an additional hardware is usually required to allow qubit manipulation, as an ESR line or a micromagnet, imposing constraints for scalability. Although the spin-valley coupling [1][2] or the mixing between orbital states [3] can enhance the SOC of the electrons, this usually requires additional gates for the tuning of the interdot coupling, not available in the devices studied. Holes in silicon offers two main advantages compared to electrons: the intrinsically stronger SOC due to HH-LH mixing, that enables electrical spin manipulation; and the strong g-factor variability, which can enable the dispersive readout of a spin qubit.

The chapter starts describing the readout technique that allows remote charge-sensing of QDs that are more than one gate away from the reservoir. In a first experiment, presented in Sec. 6.2, we study the dynamics of a DQD transition in a 6-gate array. The two central dots are probed individually through an RF charge sensor on each reservoirs. In Sec. 6.3 it is explained in detail how to measure the tunnel rates between the dot and the sensor. The knowledge, and possibly the control, of the tunnel rates allows to calibrate the spin measurements of section 6.4, where the spin-to-charge conversion is realized through energy-selective readout. By realizing the same readout simultaneously on each dot it would be possible to study the effect of spin-spin interaction, i.e. the exchange coupling J , crucial for the implementation of a two qubit logic gate.

Unfortunately this experiment was limited by a small T 1 , due to the relatively high temperature (T ≃ 450 mK) and, as a consequence, also to the high magnetic field required. By decreasing temperature and using an analogue readout technique on a similar 4-gate 113 114 6. HOLE SPIN CONTROL AND MANIPULATION IN LINEAR ARRAYS OF QUANTUM DOTS device (Sec. 6.5) it has instead been possible to demonstrate a hole spin qubit. Finally, the high susceptibility of the hole g-factor to the surrounding environment is such that a DQD will be very likely to have a significant g-factor difference ∆g . We will see in Sec. 6.6 that, as a consequence, this enables the readout of the spin state of a single qubit in a DQD through gate reflectometry. This dispersive qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering a compact and potentially scalable solution, whose operation may be extended above 1 K.

DEVICE TUNING FOR DOUBLE CHARGE-SENSING WITH RESERVOIR-BASED REFLECTOMETRY

The goal of this experiment is to study the DQD in the center of the array (below gates G 3 and G 4 ) using two RF charge sensors, that exploit a charge transition between a QD in G 1,6 and one of the two reservoirs.

The tunnel coupling between the QDs and their reservoirs can be tuned by using the gates G 2 ,G 5 as barrier gates. We'll describe step by step how to reach the desired configuration.

A scheme of the device layout with the four inductances defining the four tank LC circuits for reflectometry readout is shown in Fig. 6.1. From now on we'll refer to each quantum dot, accumulated below gate G i , as QD i .

By scanning the reflected signal as a function of frequency we observe, both in phase and amplitude, the four resonances corresponding to each LC resonator. As will be discussed in Sec. 6.5, these resonances are more pronounced by lowering the temperature and they start to be visible already below 100 K.

We have two kinds of resonant circuits, one connected to gates G 1 and G 6 , which we'll refer to as gate reflectometry lines, and one connected to the Ohmic contacts S and D (reservoir reflectometry lines). We observed that the shape of the resonances on the gate reflectometry lines are not significantly affected when the device is in the strong inversion regime (at most they are shifted in phase), while the ones on the reservoirs are. The amplitudes of the reservoir reflectometry are affected because the channel resistance is increased in strong inversion.

A comparison between the resonances when the device is in strong inversion, i.e. with all the gates at -2V (orange lines), and when the channel is empty (blue lines) is shown in Fig. 6.1 b), c). We observed a gate voltage dependent behaviour of the reservoir reflectometry also in other similar devices. Even if the additional resistance is the same for source and drain, the residual impedance on resonance Z = L/(RC p ) can be above or below Z 0 = 50 Ω, and the matching with the 50 Ω lines can either improve or get worse (as in our case).

The active channel of the device studied here has width W = 75 nm, the gate length is L g = 40 nm and the gate spacing is S H = 40 nm.

From the frequency of the resonances we can extract the parasitic capacitances of the four resonators: C D p = 0.61 pF ,C S p = 0.55 pF, C G6 p = 0.55 pF, C G1 p = 0.56 pF. Since the parasitic capacitance is mainly influenced by the geometry of the board and the length of the bonding wire, we find very similar values of C p for the four lines.

For the implementation of the charge sensor we start by accumulating a single quantum dot below the two lateral gates G 1 and G 2 as shown in Fig. 6.2. The other gates are kept at 0 V. It can be observed that, while we are quite sure about the number of charges in QD 4 , we can see that not all the charge transition lines of QD 3 (highlighted by black dashed lines in Fig. 6.3 a)) are parallel. In particular the transition from the charge states N G 3 = 3 → 4 → 5 are steeper than the others, signature of a different capacitive coupling and hence different location or shape of the interacting object. From this we can guess that we might have either a dopant nearby (closer to the sensor than QD 3 ) or that we are forming two corner dots on the opposite side of the gate. We can also observe another transition on the top right of the plot 6.3 a), which is unrelated with the transition of the dot. Indeed, by changing the gate voltage of the sensor/barrier gates V G2 , V G5 we observed that these transitions are not moving accordingly with the dot transitions, signature that they are originated from another object that we don't want to investigate.

After probing individually the charge number in each dot we want to study the DQD formed by QD 3 and QD 4 . To do so we first measured the coupling between the gates. We find α G3-G2 = 0.202, α G4-G2 = 0.022, α G4-G5 = 0.212 and α G3-G5 = 0.014. The knowledge of the coupling parameters allows to keep fixed the electrochemical potentials of the two sensors while scanning the voltage of G 3 ,G 4 . Differently from Chap. 5, the current setup allows to compensate the charge detectors also while pulsing on QD 3 and QD 4 , by sending counter pulses, on gates G 2 and G 5 , respectively. This also allows to increase the single-shot charge readout fidelity.

In Fig. 6.4 we show the DQD stability diagrams (in the same ranges as in Fig. 6.3), measured by each charge detector. Such maps are collages of 25 consecutive measurement. The individual measurements are delimited by the black solid lines, that define a square. In each measurement the two detectors are recalibrated on their minimum in the center of each square. This is strictly necessary because, despite the gate compensation, the charge detector moves out of its sensitivity range after one or maximum two charge transitions in the nearby dot. The detectors are initialized by setting V G2 = -1085 mV and V G5 = -1390 mV when the DQD is in the (0,0) charge state. Because of the detectors recalibration small shifts are visible between each measurement. These are clearly artifact and the charge transitions are identified by a switch of color within the same measurement.

We can observe that at low holes filling the first interdot charge transitions (ICT) are not visible on this scale. They can be resolved with a zoom at high resolution, and the lenghts of the interdot lines are ≃ 0.1 -0.3 mV for (N,M)< (4,4).

We experienced an increased level of charge noise in the few-holes regime, where the quantum dots are more sensitive to Coulomb disorder. Consistently with other studies on similar devices [4] we have also observed a reduction of charge noise when the number of holes trapped in the DQD is increased. The small size of the interdot lines, together with the increased level of charge noise, compromised reliable studies of the first spin blockaded transitions.

The mutual capacitance C m determines the change in energy of one dot when an electron is added to the other dot and sets the distance between two triple points [5]. The mutual capacitance is a parameter which is experimentally tunable through modifications of the shape and distance of the two dots [6]. We have to consider that each dot feels simultaneously the attraction from the nearby gate (at negative voltages) and the Coulomb repulsion from the holes of the sensor dots We analyze the charge transition by initializing the system in ("0,1") and applying pulses "landing" in different regions of the ("1,0") ground state, as indicated by labels a), b), c), d) in Figs. 6.8, 6.9, 6.10, 6.11 a), respectively. We can reasonably expect that, until the pulse lands in a region where the transition with the reservoirs are energetically forbidden, there is only one possible relaxation path, i.e. the direct interdot transition ("0, 1") → ("1, 0"). This configuration is shown in Fig. 6.8. Along the red and green dashed lines in the static stability diagram (Fig. 6.8 a)) the electrochemical potential of the DQD is aligned with the one of the reservoirs. In particular, along the red dashed lines the electrochemical potential of the DQD µ(1, 0) and µ * (1, 1) are aligned with the Fermi level of the source. Along the green dashed lines the electrochemical potentials µ(0, 1) and µ(1, 1) are aligned with the Fermi level of the drain.

This can be better understood by looking at the energy diagrams of the DQD [5] (panels c) of the figures). In these diagrams the vertical axis represents the energy and the hole DQD energy levels are lowered by decreasing the gate voltages (i.e. by increasing the number of holes). For analogy with panels a),b) we indicate the electrochemical potentials mainly controlled by gate G 3 in red, and the ones mainly controlled by gate G 4 in green. The electrochemical potentials of the single-hole configurations µ(1, 0) and µ(0, 1) are localized in a single quantum dot (QD 3 and QD 4 respectively), and tunneling can be allowed only with the closest reservoir. The electrochemical potentials of the two-holes configurations µ * (1, 1) and µ(1, 1) instead are extended over the DQD. The electrochemical potential µ * (1, 1), as it will be clear later, represents an unstable configuration where a hole tunneling from the source can be allowed (as in Figs. 6.10, 6.11), bringing the DQD in a metastable ("1,1") state before reaching the ground state ("1,0"). In these energy diagrams, for simplicity, we move only the position of the electrochemical potentials of the dots relative to the sensors (fixed), but in principle, because of their capacitive coupling, also the potential of the sensors varies with gate voltages and the charge filling of the DQD.

In the case of Fig. 6.8 when we land at point a) we are still in a configuration ("0,1") and the electrochemical potential µ(0, 1) falls below the drain level µ D (upper green dashed line in the static measurement), preventing the hole to be unloaded through the drain. In this case only interdot tunneling is allowed.

In the b) panel of each figure we show the single-shot traces (red for QD 3 and green for QD 4 ) and the average phase signals (blue for QD 3 and orange for QD 4 ) recorded during the whole pulse sequence with each charge detector. In particular we pulse for 200 µs at the initialization point I, in ("0,1"), and 200 µs at points a),b), c), d), in the ("1,0") ground state. We note that the interdot tunneling event can be recorded as a simultaneous jump in the two charge sensors. In this configuration this is the only possible process and, by fitting the average phase signals with an exponential decay, we measure the typical interdot tunneling time τ 3-4 = 45 ± 5 µs.

When going to the case of Fig. 6.9, the initial electrostatic configuration at point b) is such that in principle there are two distinct charge relaxation paths, i.e. the direct interdot tunneling and the indirect transition mediated by the reservoirs, i.e. ("0, 1") → 6.3. MEASURING TUNNEL RATES 6 125

MEASURING TUNNEL RATES

When a quantum dot is tuned such that its electrochemical potential is close to the Fermi level of a reservoir, holes (or electrons) can tunnel back and forth between the quantum dot and the nearby reservoir. The speed of this process is due to many physical factors such as the strength of tunnel barrier between the dot and the lead, the wavefunctions overlap, and the density of state of the leads [11]. The sensing dot can be seen as an effective extension of the reservoir, as in the measurement of the electronic temperature of section 3.4. Its energy spectrum, even though being quantized, is also broadened by tunneling to the thermally broadened Fermi sea of the reservoir. We therefore consider the sensor dot as a Fermi reservoir.

Similarly to the analysis of the single-shot counts of Sec. 5.6, we set a threshold to discriminate between the two states of the detector. Such a threshold is defined as the intercept between the distributions of the phases corresponding to each charge states, as in Fig. 5.14 . If the tunneling events are slower than the integration time, usually between 2 and 10 µs with our setup, we can temporally resolve individual tunneling events from single-shot live traces. The technique we are going to describe is widely used when the tunnel rates are below MHz [12] [13], such that each charge state lasts more than the integration time. The SNR of the detector is what determines how fast we can analyze the tunnel rates. Since with our setup the main noise source is the the RF amplifier at 3.6K, a higher contrast in the detector signal is what allows to further decrease the integration time.

The individual tunneling events follow a discrete probability distribution where individual events are not correlated. The outcomes of this probability distribution are 0 (dot empty) and 1 (dot charged). The statistics of tunneling events between a QD and a single reservoir therefore follow a Poissonian distribution [14]. The waiting times τ i n and τ out for a hole to tunnel into and out of a QD are exponentially distributed and characterised by the tunnelling-in and -out rates, Γ i n and Γ out . The distribution of the waiting times can be derived considering, for example, to be initially in the 1 charge state and that the probability of waiting a certain time t before tunneling can be estimated from the probability P i n (t ) that the hole has not tunnelled out of the dot after t , multiplied with the likelihood Γ out d t that it does tunnel out within the infinitesimal time interval d t . Therefore the probability of having a tunneling event after certain time t can be obtained from the following differential equation [15] [16]:

P i n (t = 0) = 1 d P i n (t ) d t = -P i n (t )Γ out (6.1)
In an analog manner we can write the same differential equation for the dot initially empty P out (t = 0) = 1 and a probability of tunneling in at a certain time d t given by Γ i n d t obtaining:

P i n (t ) = e -t Γ out P out (t ) = e -t Γ i n (6.
2)

The tunnelling rates Γ i n , Γ out define the time-scale of the exponentially decaying waiting times of a hole in or out of the QD. As a consequence also the population of a charge state 128 6. HOLE SPIN CONTROL AND MANIPULATION IN LINEAR ARRAYS OF QUANTUM DOTS is therefore:

Z N ,N -1 = n k=1 e - E N k B T + m j =1 e - E N -1 k B T (6.7)
and the probability of occupying each charge macrostate is given by the sum over each degenerate microstate into it: (6.8) and the ratio between the two gives:

     P N = n Z N ,N -1 e - E N k B T P N -1 = m Z N ,N -1 e - E N -1 k B T
P N P N -1 = n m e - (E N -E N -1 ) k B T = e -µ N +k B T l n(n/m) k B T (6.9)
where µ N = E N -E N -1 is the addition energy. By including the normalization condition P N + P N -1 = 1, results that the occupation probability is given by a Fermi distribution centered at µ N = +k B T l n(n/m) above the Fermi energy E F = 0.

P N (µ N ) = 1 1 + e -µ N +k B T l n(n/m) k B T (6.10)
By considering a state with N = 1 charges we expect it to have two-fold spin degeneracy and hence n = 2, whereas m = 1 for the non degenerate empty state N -1=0. We expect that at the Fermi energy µ N = 0 and, using eq. 6.9, the ratio between the two populations is:

P 1 P 0 = Γ i n Γ out = 2 (6.11)
Conversely for a state with two charges we expect the degeneracy is n=1 for N=2 and m=2 for N=1:

P 2 P 1 = Γ i n Γ out = 1 2 (6.12)
This analysis is useful to determine the parity of our charge state and it holds not only for spin-degenerate, but also for orbitally degenerate states, allowing to determine if we are dealing with a good 2-level system or if further energy states are involved.

ENERGY-SELECTIVE READOUT OF A HOLE SPIN

We now want to study the spin properties of the holes in the QDs using energy dependent tunneling between the sensing dots and the two central quantum dots. In the community this readout technique is usually called energy-selective readout [23] or Elzerman readout [24]. The energy levels of the two spins are split (∆E Z = g µ B B ) through a static magnetic field, oriented along the Si nanowire. Fundamentally the QD is loaded with a hole with unknown spin, which can be read by tuning its energy level with respect to the one of the reservoir. This technique requires a three stage pulse sequence, as shown in Fig. 6.15 and explained in Sec. 2.7.1, necessary to empty, load and finally read (E,L,R) the hole spin. It is crucial to choose properly the tunneling rate between the QD and the reservoir, dependent on both QD and sensor filling. The two main conditions to realize this energy-selective readout measurement are indeed the following:

• τ out ≪ T 1 , otherwise the excited spin would relax to its ground state before tunneling to the reservoir.

• τ i n > t c , where t c is the integration time. Otherwise it wouldn't be possible to properly resolve the blip in the charge signal, cororresponding to a hole with spin |↑〉 tunneling in/out of the reservoir.

We set an automatical routine to measure the tunnel rate of the same dot-reservoir transition (N = 0 → 1), but varying the hole number in the sensor dot. In this way we can adjust the tunnel coupling between them. The routine is the following:

• Sit on the sensor signal and identify its direction, indicated by a red dashed line in Fig. 6.14 a). In the following we'll measure the tunnel rates and along this direction, which defines also the read level V r ead of the spin measurement of Fig. 6.15.

The direction of the sensor signal in the (G 3 ,G 2 ) or (G 4 ,G 5 ) planes provides also a measurement of the capacitive coupling between the gate accumulating the QD and its sensor, i.e. α G3-G2 or α G4-G5 . The pink cross indicates the half height of the charge signal and the position of V r ead = 0. The value of the average phase at this point also defines the single-shot readout threshold.

For clarity we remark that the position of V r ead = 0 in Fig. 6.14 c) does not correspond to the Fermi energy E F . This is just because of a time delay in the acquisition (going upwards in the plot a)) due to a slow time constant. The level of E F for a QD with only one free charge can be identified when

Γ i n
Γ out = 2, as explained in the previous section.

• We measure the signal corresponding to the two charge states in the I/Q plane, to be sure to deal with a good two level system. Indeed, the appearance of a third bubble would represent the presence of an unwanted third charge state involved in the dot-lead charge transition. We show the bubbles with all the data points collected in the IQ plane in Fig. 6.14 b).

The integration time for each data point is 10 µs, and the overall acquisition last 10 seconds, respectively 5 s at V r ead = ±1 mV, along the direction of the sensor signal previously measured. The charge readout fidelity can be estimated from the overlap of the two Gaussian distributions and it is above 99% for the Y component, and hence for the phase signal (φ ∝ arctan(y/x)).

• We measure the tunnel rates while varying the energy gap between the dot and the lead, along the V r ead direction. In Fig. 6.14 c) we show the tunnel rates Γ i n,out measured at each V r ead point using formula 6.4.

By fitting the charge signal along the V r ead axis as a Fermi distribution at T = 440 mK we measure the lever-arm α r ead = 0.27 eV/V.

Coherently from what expected from eq. 6.9, we observed that the two rates are equal for µ N =1 -E F = k B T l n(2) ≃ 27 µeV (100 µV) above the Fermi energy E F , where instead + B , where A and B are fitting parameters to account for the measurement and initialization errors. We measure T * 2 = 1.4 µs. This value of T * 2 is the highest reported so far for hole based spin qubit [29] [30] [31] [32]. Moreover, by varying the magnetic field orientation an enhancement of T * 2 has been observed up to T * 2 > 8 µs, for a magnetic field orientation perpendicular to the plane of the Si nanowire [27].

TEMPERATURE DEPENDENCE OF T 1

In between the two energy-selective readout experiments shown in Secs. 6.4, 6.5, realized on very similar devices, we found a difference in T 1 , for similar magnetic fields, of at least one order of magnitude, while the effective hole temperature in one case (T 1 =150 µs for B ≃ 1 T and T e f f ≃ 100 mK) is roughly 4 times lower than in the other one (T 1 <5 µs for B ≃ 1 T and T e f f ≃ 450 mK). It is therefore worth to understand which is the effect of temperature on T 1 .

When looking at the temperature dependence of T 1 we should consider that both photons and phonons contribute to the decay. Their density follows the Bose-Einstein distribution

n B (E , k B T ) ∝ 1 e ħω L /k B T -1 (6.13)
where ω L is the Larmor frequency, linearly proportional to the B-field applied. The spin relaxation rate 1/T 1 is expected to be linearly proportional with the boson density, and therefore at first order the temperature dependence is the same for phonon and Johnson noise [33].

At sufficiently low temperatures (ħω L ≫ k B T ), from eq. 6.13 the spin lifetime is expected to depend exponentially on temperature. For B = 1 T we can expect T 1 to decrease rapidly by raising temperature up to 150-250 mK. At higher temperature (ħω L ≪ k B T ) instead we recover the classical limit, where we expect the boson density to grow linearly with T , and hence we expect T 1 (T ) ∝ T -1 . However, by including the effects of two phonon processes we expect T 1 (T ) ∝ T -2 [34].

The exponential decrease of T 1 expected at low temperature, together with two-phonon processes might explain why, with an electronic temperature differing of a factor 4, the relaxation time T 1 is degraded by more than one order of magnitude.

We highlight that the processes governing holes spin relaxation are significantly different from the ones of electrons, where the dominant contribution can be due to spin-valley coupling. The expected relaxation time for valley relaxation is T 1 ∝ B -1 for photon induced decay and T 1 ∝ B -5 for phonon induced decay [33]. The valley relaxation mechanism goes to zero if the magnetic field is parallel to one of the three crystallographic axes [35], and we expect T 1 ∝ B -3 for photon induced decay and T 1 ∝ B -7 for phonon induced decay. When looking at holes the spin relaxation is dominated by the band mixing between HH and LH bands, that couples the hole spin with phonons [36]. In this case a dependence T 1 ∝ B -9 is expected for Rashba SOI and a dependence T 1 ∝ B -5 is expected for Dresselhaus SOI [37]. However, with the device of Sec. 6.5 we observed B-field dependencies of T 1 between B -2 136 6. HOLE SPIN CONTROL AND MANIPULATION IN LINEAR ARRAYS OF QUANTUM DOTS and B -3 , depending on the field orientation. This may be understood considering that, with respect to bulk phonons (T 1 ∝ B -5 ), the relaxation rate is inversely proportional to the characteristic size of the system, and the dependence on the Larmor frequency, and hence on the magnetic field, is reduced by one power each time the phonons get confined in an additional direction [36]. However, further studies are required in order to clarify holes relaxation mechanism in silicon under different device geometries, confinement potentials and magnetic field directions.

When considering the temperature dependence of the relaxation time T 1 of electrons, we expect a behaviour similar to holes at low temperature, due to the boson density n B , while instead when considering higher temperatures two-phonon processes give raise to a T 1 (T ) ∝ T -9 [33] or T 1 (T ) ∝ T -5 [26] when involving intervalley piezophonons.

GATE REFLECTOMETRY DISPERSIVE READOUT AND COHER-ENT CONTROL OF A HOLE SPIN QUBIT IN SILICON

Most of the results reported in this section have been published in [38]. In this experiment coherent oscillations of a hole spin qubit are read through dispersive readout on the gate. This experiment was carried out in an Oxford Triton dilution refrigerator, with base temperature around 20 mK.

The device is a p-type double gate transistor. In The demonstrated qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering a compact and potentially scalable solution for the readout of many qubit arranged in arrays.

In the stability diagram in Fig. 6.21 it is possible to appreciate only the dispersive signal corresponding to interdot transitions and not the one corresponding to dot-lead transitions. This ensure us that the readout dot has a low tunnel coupling with the nearby reservoir (below MHz, probably kHz [39]).

Without a charge sensor it is not possible to precisely count the charges present in the system. However a rough estimation can be given by comparing the gate voltages of the transition with the threshold voltages (around +1.2 V) at room temperature and the addition voltage in the many hole regime.

In the bottom panel of the stability diagram of Fig. 6.21 the system is in the many hole regime, where the voltage spacing between the DQDs is approximately constant. The typical spacing in gate voltage between two charge states is about 25 mV, consistent with other experiments on similar samples [31,40].

We estimate an order of magnitude of 5 holes in the readout QD (mainly controlled by V R ) and 10-20 holes in the control QD (mainly controlled by V C ). T 0 (1, 1) and S(1, 1) via 1 2 (g * L -g * R )µ B B . This might eventually imply also a second-order coupling with S(0, 2). As a result in the T 0 (1, 1) state it is induced a positive curvature for slightly negative detuning ϵ and a negative curvature for positive ϵ (see blue curve of Fig. 6.22 d). This negative curvature at ϵ > 0 is responsible of the appearance of the second dip in phase for B = 0.46 T (green curve in Fig. 6.22 c). To proper understand the contribution of this curvature we calculated the quantum capacitance contribution of each state, weighted by its Boltzmann occupation probability, as shown in Fig. 6.22 e. Differently from the case of Sec. 5.4.1 also the triplet state T 0 (1, 1) provides a non negligible quantum capacitance contribution and therefore the signal can be fitted by summing each contribution individually, weighted by its population:

∆φ(ϵ) = i 〈∆φ(ϵ)〉 i = φ i (ϵ)P i (ϵ) (6. 14 
)
where

P i (ϵ) = e - E i (ϵ) k B T e f f Z (ϵ)
and φ i is proportional to the energetic curvature . The coupling term t can be extracted by fitting the trace along ϵ for B = 0 T (blue line in Fig. 6.22 c). The lever-arm parameter α, relating ϵ to the energy difference between the electrochemical potentials of the two dots, is estimated by fitting the signal along the detuning line in Fig. 6.22, yielding α ≃ 0.58 eV V . The full width at half maximum (FWHM) of the dispersive signal as a function of temperature allows to estimate the tunnel coupling (supp. info of [38]). Depending on whether thermal populations of the excited states contribute or not to the FWHM, for B=0 T it is equal to 4t in the high temperature limit (k B T ≫ t ), or to 3.2 t in the low temperature limit, (k B T ≪ t ), as can be simulated using eq. 6.14, with energy given by the eigenstates of Hamiltonian 2.30. We estimate t between 6.4 and 8.5 µeV.

The DQD spectrum as a function of ϵ (in Fig. 6.22 d ) is calculated with g * L = 1.62, g * R = 2.12, t = 8 µeV and B = 0.65 T. This model, with the chosen hole temperature T e f f = 250 mK, qualitatively reproduces the emergence of the double-dip structure at B ≃ 0.5 T, as well as its gradual suppression for higher magnetic field, as shown in Fig. 6.22 f. Indeed the increasing of the Zeeman energy results in the losing of population of the singlet ground S g and excited states S e in favour of the new ground state T -(1, 1), which has no curvature.

One last remark is that, with respect to the Hamiltonian (2.30), the term t SO , responsible of anticrossing between the T -, T + and singlet states is negligible (t SO ≪ t ). Significant spin-flip tunnelling terms like t

|T -〉 SO |T -(1, 1)〉 〈S(0, 2)| and t |T + 〉 SO |T + (1, 1)〉 〈S(0, 2)|
would lead to an additional dispersive signal with a strong magnetic field dependence as it has been shown in Ref. [50]. Indeed, it is still possible that such spin-flip tunneling terms might be relevant for orientations of the external magnetic field different from the one investigated here.

EDSR AND READOUT OPTIMIZATION

After having clarified the nature of the dispersive signal and the energetic structure of the DQD it is possible to discuss the realization of a hole spin qubit. Electric dipole spin resonance (EDSR) [31,40,51] is induced by a microwave voltage 6.6. GATE REFLECTOMETRY DISPERSIVE READOUT AND COHERENT CONTROL OF A HOLE SPIN QUBIT IN SILICON 6 147 the information and readout qubit gate voltages. This fine tuning, as explained in Sec. 6.6.2, is extremely sensitive to gate voltages variations, due to the strong gate voltage dependence of the holes g-factors and, consequently, of the Larmor frequencies. A precise knowledge of the energy spectrum of each couple of manipulation and manipulationreadout dots is required to maximize the sensitivity of each detector. This makes the electrical tuning of the system not straighforward, especially when realizing two-qubit logic operations. To simplify this problem it would be helpful to completely isolate the readout dots from each other. On the hardware side it would be beneficial to integrate the resonator in the back-end of the industrial chip, offering the possibility to engineer the resonant network at the wafer scale, guaranteeing controlled and reproducible qubit-resonator coupling.

Quantum error correction can be realized in linear arrays [62], and therefore the architecture of Fig. 6.28 could be used for the implementation of some proof of principle quantum algorithms.

CONCLUSION

The future belongs to those who prepare for it today.

Malcolm X

Many different qubit platforms based mainly on superconductors, semiconductor, photons and ion traps have been demonstrated in the last 30 years, each of them offering unique advantages and drawbacks. Among these, superconducting qubits seems to be the best candidates, as demonstrated by the latest 53 qubit Sycamore chip from Google [1]. However it must be said that when it was realized the first superconducting qubit [2], spin qubits in semiconductors had just been proposed theoretically by Loss-DiVincenzo [3], in 1997. The first spin qubit [4] (in GaAs) was realized only 8 years later. Since then the engineering of materials, manipulation and readout tools have been considerably developed, leading to semiconductor spin qubit relaxation times (T 1 ) up to one minute [5], qubit operating at more than 1K [6] [7], single- [8][9] [10] and twoqubit [11][12] [13] gate fidelities above the threshold for fault-tolerant quantum computation [14], and architectures with up to six qubits [15]. Now that many of the basic requirements for quantum computation with spin qubits have been fulfilled, the focus is increasingly shifting towards the most relevant challenge: scaling to large-scale quantum systems. The maturity of CMOS technology with silicon allows the realization of semiconductor spin qubit devices based on an industrial scale manufacturing process [16][17] [18], offering a viable path towards the scalability.

Throughout this manuscript I studied qubit arrays based on both electrons and holes in silicon, trying to highlight the differences between them. The main advantage of electrons, expecially in purified 28 Si, are the longer relaxation and coherence times [19], allowing gate operations with higher fidelities. Electron spins can be manipulated either through an electric or magnetic AC field. The magnetic control requires an ESR line to generate the AC magnetic field. The electrical control instead relies on the spin-orbit coupling, that allows the electron magnetic moment to couple with external electric fields. The SOC of electrons in silicon is usually enabled by a micromagnet, but if the SOC is naturally strong, as it is the case for holes, the spin can be controlled simply with an AC electric field applied on the gate. As discussed in Sec. 2.9, the ESR line and the micromagnet are quite invasive and hardly scalable. For this reason we focus solely on the direct electrical manipulation, for both electrons and holes.

In Sec. 4.9 we showed that the hole mobility is increased for gates far away from the reservoirs, mainly due to the diffusion of impurities during the doping process. Even if the two readout schemes are completely different it is reasonable to suspect that the difference between the spin relaxation time T 1 ≃ 150 µs measured in Sec. 6.5 (at B = 0.9 T) and the T 1 ≃ 3 µs of Sec. 6.6 (at B = 0.6 T), might as well be related to the presence of defects near the reservoir, that could affect negatively T 1 .

However further systematical studies are required to benchmark the qubit properties related to each step of the fabrication process, and in particular to the doping level and the physical distance between the qubit and the reservoir.

The observations of Sec. 4.9 motivated us to study qubits as isolated as possible from the reservoirs. This also means to get rid of current measurements and we focused on the dispersive readout, enabled just by an inductor connected to a gate, or to an ohmic contact.

An identical reflectometry setup can be used for both gate-based dispersive readout and RF charge-sensing. The two approaches are compared in Sec. 5.3. The gate-based dispersive readout minimizes the device overhead thereby facilitating scale-up to large qubit arrays. The charge-sensing readout, requires additional readout components but is less sensitive to the strength of the interdot coupling facilitating operation in the few-electron regime. Moreover, as shown in Sec. 5.6, it allows fast single shot readout. The readout through an RF charge sensor is a simpler, faster and generally better approach in my opinion. One could argue that its limitation is the need for a nearby reservoir, as usually done in the literature, that would impose severe limitation for scalability. In Sec. 5.8 we instead propose that it could also rely on an interdot transition, rather than a dot-reservoir one.

In Sec. 5.7 we measured signatures of EDSR. However, because of the weak SOC, the electrical manipulation was too slow to observe coherent Rabi oscillations. The SOC could be enhanced by mechanisms such as orbital or valley-orbit mixing, but this would require an accurate tuning of the DQD energy spectrum [20].

Holes instead offers two main advantages compared to electrons: the stronger spinorbit coupling, that enables coherent electrical spin manipulation; the strong g-factor variability, which can enable the dispersive readout of a spin qubit [21] away from the charge degeneracy point ϵ ≃ 0, as well as guaranteeing individual spin addressability. In Chap. 6 we focus on the study of linear p-type qubit arrays. In Secs. 6.1, 6.2 we studied a linear p-type six-gates array, demonstrating independent and simultaneous single-shot readout of the two quantum dots in the center of the array via remote charge-sensing on the two reservoirs. The remote sensing is enabled by a single quantum dot accumulated with two gates, that is used both as a charge sensor and as a reservoir. In Sec. 6.3 I explain how to measure the tunnel rates with an RF charge sensor. An accurate knowledge of the dot-reservoir tunnel rates is crucial to set the energy-selective readout of the spin state of Sec. 6.4. Unfortunately, the high temperature (T ≃ 450 mK) and the high magnetic field required didn't allow a proper initialization of the spin state. The same reservoir-based RF charge-sensing technique has been applied to study a single 157 quantum dot in another similar p-type four-gate array at lower electronic temperature (T e ≃ 100 mK), demonstrating coherent control of the qubit via an electric field . Further experiment on the same device, varying the magnetic field orientation, revealed the existence of sweet spots where the impact of charge noise is minimized [18]. This led to an extension of the Hahn-echo coherence time up to 88 µs, exceeding by an order of magnitude the best reported values for hole-spin qubits. These findings are encouraging for scalable quantum information processing with hole spin qubits in silicon.

In Sec. 6.6 it is reported the implementation of gate-based RF reflectometry for the dispersive readout a hole spin qubit, using a p-type double gate transistor. The demonstrated qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering a compact and potentially scalable solution. This readout approach ultimately relies on the difference of g-factor ∆g =0.5 between the two dots. With electrons the g-factor variability is way smaller and the dispersive readout of a fully functional electron spin qubit in silicon has not been demonstrated yet.

We demonstrated spin-to-charge conversion based on either PSB (in Chap. 5 and Sec. 6.6) or energy-selective readout (in Secs. 6.4 and 6.5). Given a base temperature of T e = 440 mK the PSB readout has proven to be generally better than energy-selective readout. Indeed the T 1 is degraded with increasing magnetic field and temperature [22][23]. When doing energy-selective readout at T = 440 mK a relatively high magnetic field is required to resolve the spin states, such that the Zeeman splitting is bigger than the thermal broadening of the Fermi reservoir.

Conversely PSB readout allows to work at lower magnetic fields and then to increase T 1 .

Indeed it is just relying on spin dependent interdot tunneling that is not affected by the thermal broadening of a Fermi reservoir and it is still detectable at temperatures up to more than 1K [7][6] .

In our proposals for scaling the charge-sensing (in 5.8) and the gate-based dispersive readout (in 6.6.4) in qubit arrays it is required to turn on and off at will the interaction between information qubits and/or between qubits and sensors.

In the most recent LETI devices it has been added a second layer of gates [24], allowing local control over the tunnel coupling. This is a crucial step towards the scalability of the presented architectures. The local control over the tunnel coupling is also fundamental towards the realization of two qubit logic gates. Indeed it allows to rapidly turn on and off the exchange coupling [25][26] [27], that shifts the Larmor frequencies of each qubit depending on the state of the other one. By exciting at fixed Larmor frequency one qubit (the target qubit) is flipped only if the other qubit (the control qubit) is, for example, in a |1〉 state. This conditional spin operation defines a CNOT gate.

Linear quantum dot arrays, hosting up to 12 qubits [28] [29], have already been demonstrated experimentally. Logic quantum operations so far are limited between the first neighbours in the qubit chain. The number of first neighbours are two in linear chains and at most five in bilinear chains. The number of first neighbours can be increased by using 2-D [14] (8 first neighbours) or even 3-D architectures [30] (26 neighbours).

A qubit elementary cell can be defined as the minimum number of physical qubit that can define a logical qubit and it is estimated that should be composed by at least 13 qubits [31].

In linear (or bilinear) arrays logic operations between qubits that are not first neighbours 158 7. CONCLUSION could be realized through SWAP gates, and hence these platform could be used for some proof of principle demonstrations of quantum algorithms. However, the realization of more complex algorithms in linear arrays would require a very high number of SWAP operations that might eventually degrade the qubit performances and therefore 2-D or 3-D architectures will probably be required. Alternatively, logic qubits belonging to different elementary cells could be entangled by coupling them with photons in superconducting resonators [32][33] [34].

What is sure is that there is still a lot to work on, but after 40 years from the proposal of Richard Feynman [35] (1982) quantum computing is becoming reality and the strong pace at which the field is growing leaves room for optimism. The collaboration between researchers and industries will play a key role in the future development of this technology.

I hope that, by the end of the century, we will talk about an analogue of the Moore law for the scaling of quantum computation platforms. If not, as usual, all the scientific and technological effort on the physics and the fabrication of these complex devices will certainly find other useful applications. I admit we faced many difficulties during my Phd as the initial bad quality of the devices, problems with the cryostats, the transfer of the lab in a new building and also the pandemic, that kept us out of the lab for few months. Only thanks to all the people of the LATEQS team it has been possible to overcome all these difficulties. I will always be grateful to everybody! First of all I want to say thank you to Iulian Matei. He built the cryostat I worked with in the past years. Moreover he was always there, ready to fix problems and to improve the cryostat depending on my needs. I will never forget when, during my first year (and not only), he guided me in the cooldown of Tritonito by phone while he was supposed to relax on the beach.

A very special thanks goes to Silvano De Franceschi, my thesis supervisor. He was the one convincing me to come to Grenoble. I enjoyed our discussions, debates, and sometimes arguments. When he is enthusiastic about something it is often contagious. I learned from him how to think scientifically. Sometimes by playing the role of "the advocate of the devil", through his questions, he always managed to let me understand which other questions should have been addressed to demonstrate my thesis. It has been a pleasure benefiting from his experience and listening him sharing his physics knowledge.

Thank you Alessandro Crippa. Initially he was the post-doc supervising me, in the end we are good friends. He taught me probably more than everybody about the physics of quantum dots and the subtle details of dispersive readout. "OO il quantum". Also Marco Tagliaferri, who joined our group for only one year was very keen in helping the "italian crew" of the lab, thank you Marco.

Thank you Romain Maurand. I liked a lot your very concrete approach to science. Thank you for spending time at my experiment discussing problems and results. I will never forget our discussions while smoking outside CEA, and also about the "big mama fridge".

Together with Iulian, also Xavier Jehl has been extremely helpful during my Phd. Besides helping me with the cryostat maintenance and cooldown he was my referent when I needed to discuss the electronics of the setup. I will never forget all the times when you were coming with an electronic device saying "this guy has almost my age, but it still works well".

During my last year I had the chance to work together with Boris Brun. It was fun working together and I am happy that, also thanks to our collaboration, you manage to realize the qubit of section 6.5 with Nicolas Piot. Good luck for your future. I want to say thank you to Edoardo Catapano. He took time to deeply analyze my data,
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 35 Figure 3.5: Schematics of a 4 copper layer PCB with different type of vias. We used blind vias for interconnection between components. The through hole vias are plated and are used to share a solid ground between different layers and to avoid thermal gradient between the different layers of the board.
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 441 Figure 4.1: Cryogenic probe station designed for measurements of 300 mm wafers.
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 4 current by a factor of 10.
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 4 QD CHARACTERIZATION FROM ROOM TEMPERATURE TO 4K the fitting parameters are reduced to 2N. The results obtained using this fitting function are plotted in Fig. 4.3. Fig. 4.3 shows: a) linear conductance measured with applied voltage V d s = 100 µeV, smaller than the thermal energy at 4 K; b) gate lever-arm α extracted from the fit of each peak as a function of gate voltage; c) addition energy calculated as

  this section I describe a technique to reconstruct the position of the edges of the Coulomb diamonds. This method relies on extracting numerically the transconductance d I /dV G . The position of a diamond edge can be defined as the one where d I /dV G has a maximum or a minimum. A measurement of the signal in current and its derivative for different source-drain bias voltages is shown in Fig. 4.4 a), b). A Coulomb peak generically identifies a region where the charge oscillates between N and N + 1, and it lies between two blockaded region with a fixed charge of N (on its left) and N + 1 electrons (on its right). The vertical dashed lines in Fig. 4.4 identify the edges of a single-electron transport region corresponding to the N → N + 1 charge transition at V d s = 2.5 mV. Hence the left flank of a Coulomb peak would correspond to the right edge of the N electrons blockaded region, whereas its right flank corresponds to the left edge of the N + 1 electrons blockaded region. From Fig. 4.4 a) we can observe that for increasing bias the single-electron transport regions broaden following the diamond edges, and from the extrema in d I /dV G we can reconstruct the V G position of the diamond edges, as shown in Fig. 4.4 b).
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Fig. 4 .

 4 Fig.4.9 a) shows the drain current I D (V G ) transfer characteristics for the five gates at room temperature (with the other gates at V G,ext = -2 V). They have been measured in linear regime (V sd = 50 mV). From these I D (V G ) curves it can be observed that each gate
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 49 Figure 4.9: (a) I D (V G ) in linear and log scale and (b) Y (V G ) for every gate (with the others set at V G,ext = -2 V) for T = 300 K.
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 4411 Figure 4.11: Parameters extracted for the every gate from room T down to 20 K using eq. 4.8 (a)-(d) and standard extraction methods (e)-(h), i.e. respectively Y-function in e)-f), attenuation factor in (g) and substhreshold slope in (h). In the plots c),g) the access resistance of each gate is multiplied with the channel width W = 75nm.
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 412 Figure 4.12: Experimental (circles) and simulated (dashed line) low field mobility of the central gate (Gate 3) as a function of temperature. (b) Contribution of different scattering mechanisms to the total mobility

1 L

 1 2 and B 3 (L T 2 = 270 nH, L B 3 = 220 nH). A schematic representation of the device layout with the two tank circuits, and their capacitive model is shown in Fig. 5.3. The resonant frequencies of our resonators at 400 mK are f 0 (T 2 ) = 407.2 MHz and f 0 (B 3 ) = 478.2 MHz. Knowing these values we can extract the parasitic capacitances (C p = (2π f 0 ) 2 ), respectively C T 2 = 0.57 pF and C B 3 = 0.50 pF.

5 85Figure 5 . 4 :

 554 Figure 5.4: a) Electrostatic configuration of the experiment. We pulse on gate B 2 while reading the charge transition between the dot T 2 and its reservoirs through the tank circuit on T 2 . b,c) Stability diagram of an interdot charge transition while pulsing. The phase signal obtained is an average of what is measured on the two sides of the pulse. The dashed lines indicate the signal acquired on the positive (red) and negative (white) sides of the pulses. Also the ICT (not visible) is highlighted with the same colors for clarity. A scheme of the pulse sequence (duty cycle 50%) can be found on the bottom right of the plots. In b) it is shown for comparison that for slow pulses (10 ms on each side) we just observe a doubling of the signal. For fast pulses of 10 µs we can clearly see a prolongation of the T 2 -lead transition, as indicated by a white and a red arrow. The arrows indicates the pulse direction and amplitude in correspondence of to the two prolongations observed.
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 56 ENERGY-SELECTIVE READOUT OF A HOLE QUBITThe envelope of the Ramsey fringes, with the microwave excitation frequency detuned by ∆ f = +2.5 MHz from the Larmor frequency is shown in Fig.6.19 b). It can be fitted with a Gaussian decay function[28] P ↑ = Ae

Fig. 6 .

 6 20 a), c) we show a cross section and a SEM top view of the device. The transistor channel is a Si nanowire (light blue), 11-nm-thick and 35-nm-wide. It connects p-type, boron-doped source-drain contacts (dark blue). The Si channel lies on a 140-nm-thick SiO 2 buffer layer (pink). The two 35-nm-wide gates (gray) are separated by 35 nm. The Si 3 N 4 spacers (cyan), prevent dopant implantation in the Si channel. The right control gate (G C ) confines a hole quantum dot encoding the spin qubit, whereas the left one (G R ) confines a helper dot, enabling spin readout via gate reflectometry. The phase and amplitude frequency response of the resonator is shown in Fig.6.20 b). From the resonant frequency f 0 = 339 MHz, knowing the nominal value of the inductance L = 220 nF, it can be extracted a parasitic capacitance C p ≃ 1 nF.
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Tout au long de cette thèse, j'ai implémenté la conversion spin-to-charge basée soit sur un filtrage en énergie (selon la méthode communément connue comme "lecture Elzerman") soit sur le blocage de Pauli dans une transition triplet-singlet entre deux boîtes quantiques adjacentes. La première méthode exige une température électronique suffisamment basse, bien inférieur à l'écart d'énergie entre les deux états de spin. La deuxième méthode est applicable dans une plus large gamme de températures, ou à des champs magnétiques plus faibles, ce qui permet d'avoir des temps de relaxation de spin plus longs.

Historically, the process node name referred to geometrical features such as the gate length. Most recently, due to various marketing and discrepancies among foundries, the number itself has lost the exact meaning it once held. Recent technology nodes refers purely to a specific generation of chips made in a particular technology, without any correspondence with the transistor geometry.
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