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CHARGE AND SPIN CONTROL OF ELECTRONS AND
HOLES IN SILICON QUANTUM DOT ARRAYS



Fatti non foste a viver come bruti,
ma per aver virtute e canoscenza.

You were not born to live like brutes,
but to pursue virtue and knowledge.

Dante Alighieri

Dio mi ha dato un cervello,

se non lo usassi gli mancherei di rispetto.
God gave me a brain,
if I didn’t use it I would disrespect him.

Michele Salvemini
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ABSTRACT

This PhD thesis deals with the experimental investigation of charge and spin dynamics
in silicon-based quantum dot arrays, confining either electrons or holes.
The work presented was carried out in collaboration with the CEA-LETT, where the sam-
ples were fabricated on 300-mm SOI (Silicon-On-Insulator) substrates using an industrial-
level CMOS platform. With this technology, quantum dots are confined inside silicon
nanowires etched in the SOI. The compatibility of these quantum devices with microelec-
tronics production lines can eventually play a key role in the development of a large-scale
quantum computing platform based on semiconductor quantum bits (qubits).
In this prospect, the development of efficient and scalable qubit readout and manipula-
tion schemes is a crucial step. To this aim, I have focused on the development of solutions
that can simplify the control and readout circuitry.
Ideally, one would like to manipulate the spin of an electron, or of a hole, via a simple
modulation of the gate voltage (in the range of tens of GHz), and to read the spin state via
aradiofrequency reflectometry technique (typically in the range of several hundred MHz
or even above), which can be implemented by connecting a gate, or an ohmic contact, to
an LC resonator. Such an idea has motivated several experiments carried out within the
framework of this thesis.

Afirst experiment was carried out on an n-type array with 2x3 quantum dots. It compares
two readout schemes based on gate reflectometry. The first one, based on a dispersive
readout mechanism, requires no additional control gates, facilitating the scale-up to
large qubit arrays. The second one, based on charge-sensing readout, requires additional
readout components, and hence additional control gates. On the other hand, this second
scheme is less sensitive to the tunnel coupling between neighbouring quantum dots. As
shown in this thesis, it also allows for fast charge detection, a necessary condition for
single-shot qubit readout.

Regarding spin manipulation, in this thesis I was able to measure signatures of electron
spin resonance induced by an electric-field modulation. This observation confirmed
the existence of a spin-orbit coupling mechanism for electrons, already reported in an
earlier experiment carried out before the beginning of my thesis. However, the spin-orbit
interaction turned out to be too weak to enable the observation of Rabi oscillations.

Holes in silicon have an intrinsically stronger spin-orbit coupling than electrons. There-
fore, holes are better suited for electrically-driven spin manipulation. In this thesis, I
present an experimental study on a p-type device with six gates, demonstrating inde-
pendent and simultaneous single-shot readout of the charge states of two quantum dots
defined by the two central gates. The readout is carried out by means of rf reflectometry
through two large hole quantum dots positioned at the ends of the silicon channel and
acting as charge sensors.

In a following experiment, an extension of the same readout technique was applied to a
four-gate p-type device in which we have been able to demonstrate the coherent electrical
control of a qubit based on a single hole and to achieve a coherence time close to 100
microseconds, well beyond the state-of-the-art.
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In order to minimize the number of control and readout gates, we studied and demon-
strated the functionality of an elementary building block consisting of a double quantum
dot defined in a p-type device with two gates. The first dot hosted a hole spin qubit and
the second one was used for the readout of that qubit via dispersive reflectometry. The
readout scheme used did not require any coupling to a Fermi reservoir, thereby offering
an extremely compact and potentially scalable solution.

Throughout this thesis, I implemented spin-to-charge conversion based on energy-
selective readout (a method commonly known as "Elzerman readout") or Pauli spin
blockade in a triplet-singlet transition between two adjacent quantum dots. The first
method requires a sufficiently low electronic temperature, well below the energy gap
between the two spin states. The second one can be applied in a wider range of tempera-
tures, or at lower magnetic fields, which allows for longer spin relaxation times.

In conclusion, this thesis work has largely focused on the exploration of different possi-
ble solutions for the readout of spin qubits in silicon nanowire SOI devices containing
linear or bilinear arrays of quantum dots. In particular, my interest has focused on the
development of solutions compatible with future large-scale integration.



RESUME

Cette these de doctorat traite de 'étude expérimentale de la dynamique de charge et
de spin dans des réseaux quantiques a base de silicium, confinant des électrons ou des
trous.

Ces travaux ont été effectués en collaboration avec le CEA-LETI ou les échantillons sont
réalisés en utilisant une plateforme de fabrication de niveau industriel a partir de sub-
strats SOI (Silicon-On-Insulator) de 300 mm. Dans la technologie employée, les boites
quantiques sont confinées a l'intérieur de nanofils de Silicium gravés dans le SOI. La
compatibilité de ces dispositifs quantiques avec les lignes de production de la microélec-
tronique pourrait jouer un role clé dans le développement d'une plate-forme de calcul
quantique a grande échelle basée sur des bit quantiques (qubits) semi-conducteurs.
Dans cette perspective, le développement de schémas de lecture et de manipulation
efficaces et compatibles avec le passage 4 1'échelle est une étape cruciale. A cette fin, je
me suis concentré sur des solutions qui cherchent de simplifier la circuiterie de controle
et lecture.

Idéalement, on voudrait manipuler le spin d'un électron, ou d’un trou, par une simple
modulation de la tension d'une grille dans la gamme de la dizaine de GHz, et de lire I'état
de spin par une technique de réflectométrie a la radiofréquence (typiquement plusieurs
centaines de MHz ou méme au-dessus), qui peut étre réalisé en connectant une grille, ou
un contacte Ohmic, a un résonateur LC. Une telle idée a a motivé plusieurs expériences
effectuées dans le cadre de ce travail de these.

Une premiere expérience a été réalisée avec un réseau de 2x3 boites quantiques de
type n. Elle compare deux schémas de lecture basés sur la réflectométrie de grille. Le pre-
mier, basé sur un mécanisme de lecture dispersive, ne requiert aucune grille de controle
additionnel, facilitant ainsi la mise a I'échelle de grands réseaux de qubit. Le deuxiéme,
basé sur une lecture a détection de charge, nécessite des composants de lecture supplé-
mentaires, ce qui comporte des grilles de controle additionnels. En revanche, ce deuxiéme
schéma est moins sensible aux niveaux de couplage entre boites quantiques voisines.
Comme montré dans cette these, il permet aussi la détection rapide de la charge, une
condition nécessaire pour la lecture en mode « single-shot » des qubits.

Concernant la manipulation de spin, dans cette thése j’ai pu mesurer des signatures de la
résonance de spin d’électrons induites par une modulation de champs électrique. Cette
observation a confirmé I'existence d'un mécanisme de couplage spin-orbite pour les
électrons, déja rapporté dans une expérience antérieure effectuée avant le début de ma
these. Cependant, cette interaction spin-orbit s’est révélé trop faible pour pour permettre
I'observation des oscillations de Rabi.

Les trous dans le Silicium possédent un couplage spin-orbit intrinseéquement beaucoup
plus fort que celui des électrons. Par conséquent, les trous sont mieux adaptés a une
manipulation de spin par des champs électriques. Dans cette thése je présente une étude
d’'un dispositif a six grilles de type p, démontrant une lecture single-shot indépendante
et simultanée des états de charge de deux boites quantiques définies par les deux grilles
centrales. La lecture est effectuée par réflectométrie a travers deux grosses boites de trous
positionnées aux deux extrémités du canal de Silicium et agissant comme détecteurs

vii
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de charge. Dans une expérience successive, une extension de la méme technique de
lecture est appliquée a un dispositif de type p a quatre grilles dans lequel nous avons
pu démontrer le controdle électrique cohérent d’'un qubit basé sur un trou unique et des
temps de cohérence proches de la centaine de microsecondes, largement au-dela de I'état
de l'art.

Dans le bit de minimiser le nombre de grilles de controle et lecture, nous avons étudié
et démontré la possibilité de réaliser une brique élémentaire constituée par une double
boite quantique définie dans un dispositif de type p avec deux grilles. La premiére boite
joue le réle du qubit de spin et la deuxieéme sert a la lecture du qubit par réflectométrie
dispersive. Le schéma de lecture utilisé ne nécessite aucun couplage avec des réservoirs
de Fermi, offrant ainsi une solution compacte et potentiellement compatible avec un
passage a I’échelle.

Tout au long de cette these, j’ai implémenté la conversion spin-to-charge basée soit
sur un filtrage en énergie (selon la méthode communément connue comme "lecture
Elzerman") soit sur le blocage de Pauli dans une transition triplet-singlet entre deux
boites quantiques adjacentes. La premiere méthode exige une température électronique
suffisamment basse, bien inférieur a I'écart d’énergie entre les deux états de spin. La
deuxieme méthode est applicable dans une plus large gamme de températures, ou a des
champs magnétiques plus faibles, ce qui permet d’avoir des temps de relaxation de spin
plus longs.

En conclusion, ce travail de these a été largement focalisé sur I'exploration de différentes
solutions possibles pour la lecture de qubit de spin dans des dispositifs SOI a nanofil de
Silicium contenant un réseau linéaire ou bilinéaire de boites quantiques. En particulier, je
me suis intéressé a la problématique de rendre ces solutions compatibles avec une future
intégration a large échelle.



INTRODUCTION

The fact that materials are made of atoms is the fundamental limitation and it’s not that
far away...We're pushing up against some fairly fundamental limits so one of these days
we’re going to have to stop making things smaller."

G. Moore

Nature isn't classical, dammit, and if you want to make a simulation of nature, youd better
make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t
look so easy.

R.P. Feynman

When people ask me "what do you do for living?" I usually answer that "I play with single
electrons in electronic devices, similar to the ones that are embedded in your phone. Fun-
damentally the idea is to use a similar technology for quantum computing application".
Then when I start talking about spins my interlocutor usually starts to be lost.

Already being able to isolate and move single electrons, while observing their displace-
ment in real time, it is already very exciting. However this is only the starting point for
achieving more ambitious goals.

In this introduction I'll briefly review why silicon has been the dominant semiconductor
platform till nowadays and how spins in semiconductors can be used to build a processor
based on the law of quantum mechanics.

1.1. FROM CLASSICAL TO QUANTUM COMPUTING

In the second half of last century silicon has been the key element for the development of
modern microelectronic industry. Silicon is the second most present element on earth
(after oxygen), and the eighth in the universe by mass. This wide availability, combined
with low manufacturing costs has made it the perfect candidate for large scale production
of electronic based devices.

Nevertheless, it must be said that the first transistor, that was based on a bipolar junction,
has been realized in germanium. In the very early years of the semiconductor industry
germanium was the dominant semiconductor material for transistors, rather than silicon,
due to higher mobility properties. In fact, without any treatment, the mobility of silicon is
limited because electrons can be easily trapped at the silicon surface.
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In the late 50s Mohammed M.Atalla, an engineer from Bell labs, discovered a technique
to clean the Si surface, paving the way to modern semiconductor industry.

He understood that the formation of a thermally grown silicon dioxide (SiO) layer greatly
reduces the electronic concentration at the surface. This led him also to the invention of
the first MOSFET (Metal Oxide Semiconductor Field Effect Transitor).

It has been estimated that since then = 10°> MOSFETs have been produced, drastically
changing our daily lives.

The MOSFET was the first generation of transistor that could be miniaturized and mass
produced.

In 1965 Gordon Moore, one of the co-founders of Intel anticipated that the number of
components per integrated circuit would increase exponentially with time. More pre-
cisely, he argued that it would double every year[1]. The first commercial microprocessor
using MOS technology was released by Intel in 1971 (Intel 4004) and the transistor size
was around 10 ym. In 1975 Moore revised his forecast to doubling every two years [2].
This empirical trend, known as the Moore’s law, has been followed until early 2000s and it
has been slowing down in the last two decades. The last generation of IPhone make use
of the processor Apple A14 Bionic, which is the first commercially available product to be
manufactured on a 5 nm process node' (in Taiwan), with MOS 2000 times smaller than
just 50 years ago.

We are close to approach some fundamental limits in the shrinking of these nano devices.
In a 2007 interview, Moore himself admitted that "...the fact that materials are made of
atoms is the fundamental limitation and it's not that far away...We're pushing up against
some fairly fundamental limits so one of these days we're going to have to stop making
things smaller."

Quantum tunnelling effects through the gate oxide layer are already an issue on 7 and
5 nm process node transistors and are becoming increasingly difficult to manage using
existing semiconductor processes. Moreover, as transistors become smaller, problems
with heat dissipation and power consumption might be a dramatic limitation.

While we are getting closer and closer to the end of the Moore’s law, we are currently in
the middle of what is called the second quantum revolution [3].

The first quantum revolution originates from a deep understanding of quantum mechan-
ics and its implication in condensed matter physics helped us to understand chemical
interactions, to develop the concept of electronic bands in solid-state systems, to un-
derstand electrical conduction, light emission and absorption etc. All electronic and
optoelectronic devices rely on this knowledge. They are omnipresent in our daily life.
This second quantum revolution is based on an interdisciplinary collaboration between
fundamental research and industrial development. In the past years more and more
companies, such as IBM, Intel, Microsoft, Amazon, AliBaba and many others are investing
on quantum information technology. New professional figures as quantum engineers,
are simultaneously emerging.

Even though nowadays we are able to simulate quite complex problems on a simple
laptop, there are some kinds of problems whose complexity would be far beyond the
reach of even the most powerful supercomputer. That's the case, for example of the
factorization of a large integer number M. With a classical algorithm the computational

Historically, the process node name referred to geometrical features such as the gate length. Most recently, due
to various marketing and discrepancies among foundries, the number itself has lost the exact meaning it once
held. Recent technology nodes refers purely to a specific generation of chips made in a particular technology,
without any correspondence with the transistor geometry.
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time grows exponentially with M. The difficulty of this problem is at the core of widely
used algorithms in cryptography (RSA [4]). By using the Shor algorithm [5] on a quantum
computer, instead the factorization time would grow only polynomially with M.

A quantum bit (or qubit) embeds a 2-level system whose state can be set in a quantum

%, where |0) and |1) are the basis state of the qubit (e.g. the
spin states of an electron).

In fact, while the classical information is encoded on a binary state 0 or 1, the quantum
information is encoded on the wavefunction of a quantum state. When considering the
wavefunction of a multi-qubit system, that’s essentially a statistical distribution of all the
possible measurement outcomes, we know from the quantum mechanics principles that
all the possible states co-exist until they collapse into a defined state when measuring. A
classical computer is instead always in a well defined state.

The advantage of quantum computation originates from the intrinsic nature of a multi-
qubit wavefunction that allows many computations to be carried out simultaneously,
instead than trying all of them one by one.

Such a different computation paradigm would help in a wide variety of fields as for ex-
ample in machine learning [6][7], optimization problems[8], materials science, quantum
chemistry [9][10] and simulation of quantum systems [11] [12][13].

superposition |V) =

It must be said that having a large number of high fidelity qubits is a very hard scientific
and technological challenge. To preserve its coherence a qubit needs to be sufficiently
isolated from the surrounding environment. That’s the case of ion traps, where a coher-
ence time of more than one hour has been achieved [14].

At the same time, to run a quantum computation the qubits should also interact with
each other and therefore they should also couple with their surrounding environment,
which leads to decoherence on the qubit wavefunction.

We should accept to work with noisy and imperfect qubits. Therefore, running practical
quantum computations requires to be able to deal with errors. This is not a dramatic
limitation if we consider that also classical computers make use of error correction algo-
rithms.

The quantum error correction would be realized by distributing the logical information
over a certain number of physical qubits. This qubit overhead allows to detect and correct
€errors.

One of the less demanding quantum error correction techniques is the so-called surface
code [15]. The physical qubit overhead for each logical qubit would depend strongly
on the error rate. For example, to achieve a sufficient logic error rate to successfully
execute the Shor’s algorithm, it has been estimated that with a qubit error rate of 0.05%,
approximately 3600 physical qubits would be required for each logical qubit.

Nowadays we are still far from having millions of qubits to run fault-tolerant quantum
computation. Nevertheless in the last 20 years several advances have been realized in the
field and now we are entering in the so called era of Noisy Intermediate Scale Quantum
(NISQ) [16]. A NISQ processor is defined as a system that is too noisy to achieve the
thresholds and scaling necessary for fault-tolerant quantum computation but that is
sufficiently isolated from the environment and controllable that it has the potential to
achieve a “quantum advantage” over a classical computer.

Nowadays, using the most powerful supercomputer we are able to simulate systems of
roughly 50 qubits [17]. Google has recently claimed to have achieved quantum supremacy
[18] (or quantum advantage), using a circuit with 53 superconducting qubits. The algo-
rithm they run had the task of sampling the output of a pseudo-random quantum circuit.
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Even though this supremacy has been debated[19], what is sure is that their technology is
quite impressive and they might be able to perform some more useful tasks in the near
term.

Also another recent claim of quantum supremacy has been made by the group of Jianwei
Pan, who is also the lead scientist of Chinese quantum space program (QUESS:Quantum
Experiments at Space Scale)[20].

Their experiment consists in sampling the output probability of a 50-photon interfer-
ometer [13], problem also known as Boson sampling [21]. They state that the sampling
rate they achieved is faster than the simulation of a supercomputer by a factor of ~ 104,
This is, in my opinion, a perfect example of quantum simulation, more than quantum
computation though.

What is sure is that the field of quantum computing is making remarkable progress,
generating great excitement in the scientific community.

1.2. QUANTUM COMPUTING WITH SPINS IN SEMICONDUCTOR
QUANTUM DOTS

The idea of using the spin degree of freedom of electrons in semiconductor quantum dots
dates back to 1997 with the proposal of Daniel Loss and David DiVincenzo [22].

When dealing with electron (or hole) spins we are dealing with a two-level quantum
system and we can therefore use the spin as the basis to encode an elementary bit of
quantum information, i.e. a so-called qubit.

The first pioneering works with the spin of electrons in quantum dots [23][24][25] have
been realized in GaAS-AlGaAs heterostructures. However, the interaction with the nuclear
spins through the hyperfine coupling induces a rapid dephasing of the electron spin (tens
of ns), imposing a severe limitation on qubit scale-up.

This problem can be avoided by choosing a host material with zero nuclear spin.

The problem of the coupling with nuclear spin can be partially solved by working with
group-IV semiconductors, as for example carbon, silicon and germanium, whose isotopes
are for the most part nuclear spin free.

Actually silicon is widely available in nature in its natural form, composed of three dif-
ferent isotopes with the following composition: 28Si (92.2%), 2°Si (4.7%), and 3°Si (3.1%).
Hyperfine interaction is still playing a role in natural silicon due to the presence of 2%Si.
This isotope can be removed thanks to a procedure where first the isotopes are separated
in the form SiF, (silicon tetrafluoride), then they are converted into SiH, (silane), ob-
taining ingots of polycrystalline silicon-28,-29, and-30. Finally these ingots are used for
growing monocrystals of purified 28Si [26].

The realization of 28Si devices led to the development of electron spin qubits with much
longer spin dephasing (T, = 120 us) an coherence times (T "M =22 ms) [27]). To date,
the best silicon qubits have surpassed the threshold required for quantum error correc-
tion, with single-qubit fidelities above 99.9%(28] and two-qubit gate fidelities of 99.5%
[29].

Recently, several advances have also been made in the implementation of two-qubit gates
in silicon. Two spins belonging to two separate quantum dot can be entangled relying
on their exchange interaction. This allows to realize controlled logical operations as for
example a CNOT gate. The first experimental realization of a two-qubit gate in silicon
has been reported in 2015 [30] and few other demonstrations have been reported more
recently [31][32][33][34][35][29][36].
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Another approach consists in encoding the qubit in the nuclear spins of implanted
dopants. This idea dates back to 1998 [37], when Bruce Kane proposed the realization of
spin qubits encoded in the nuclear spin of phosphorous dopants properly implanted in a
silicon MOS device. Nuclear spins with coherence times up to 30 seconds [38] have been
demonstrated using this approach.

Remarkably, not only the nuclear spin, but also the electron spin of the dopant can be
used to store the quantum information. Two-qubit logic gates between electrons stored
in dopants were demonstrated in Refs. [39][40].

Recently also SiGe/Ge/SiGe planar heterostructures are emerging as a promising al-
ternative system [41]. In particular, the group of Delft managed, in only a couple of years,
to demonstrate single[42], two[43],four [44] qubit in Ge and six-qubit processor in Si [45].
This rapid development has been possible thanks to the unique properties of holes con-
fined in such a material, such as low effective masses, high mobility and low charge
disorder. The small holes effective masses lead to large orbital level spacings in quantum
dots, allowing to relax lithographic fabrication requirements. In this way relatively large
quantum dots (diameter of = 100 nm) can be defined and tuned to contain only a single
hole[42],

Moreover holes (both in Si and in Ge) offer the possibility of realizing electrically-driven
spin resonance thanks to their intrinsically strong spin-orbit coupling [46][47]. This
avoids the use of additional hardware such as micromagnets [28][48] or a microwave
antenna [49][27], as it is usually the case for electron spin qubits in silicon.

In this thesis I focus on silicon based quantum dots, confining either electrons or holes.

There is an increasing worldwide effort on silicon-based qubits. Indeed, besides long spin
coherence, silicon offers the advantage of relying on a very well estabilished technology.
The hope is that, once the elementary building blocks for a scalable architecture are
developed, industrial grade fabrication will facilitate large-scale integration.

Some first demonstrations have already been realized on industry-standard (300 mm) Si
and Si-on-insulator (SOI) wafers using CMOS fabrication process[46][50]1[51]1[52][47].

1.3. THESIS OVERVIEW

In this thesis I studied MOSFET based on SOI technology fabricated at CEA-LETI, with
both electrons and holes. The manuscript is structured as following:

e In Chap. 2 Iintroduce the basic properties of semiconductor quantum dots.
Particular attention is devoted to to understand the response obtained when per-
forming the readout with RF reflectometry.

In this chapter I also discuss the two main techniques to realize spin-to-charge
conversion and I explain how to manipulate the spin state through an electric or
magnetic field.

* In Chap. 3 I explain the principles behind the construction of the experimental
setup, focusing on the noise filtering. In particular, I describe in detail a compact
platform to filter the noise on the DC lines. The chapter ends discussing the process
flow leading to the construction of our quantum devices.

* In Chap. 4 I discuss the device characterization based on their transport properties
(i.e. by reading current). In particular, I investigate how to speed up the low-
temperature characterization in the perspective of an electrical screening on the
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full wafer scale.

In the second part of the chapter I analyze a p-type device with five gates in series,
focusing on the dependence of the transistor parameters from the position of the
gate relative to the reservoir. It has been found that the further away is the gate
from the reservoir, the better is the mobility extracted from the transconductance
characteristic. This, together with the experimental data of Chap. 6, let us think
that qubits next to a doped contact region have a higher level of disorder which can
impact their performances.

In Chap. 5 Iinvestigate charge and spin properties in a 3 x 2 bilinear array of electron
quantum dots, using both gate reflectometry and RF charge-sensing simultaneously,
when possible. I study in particular a regime where the interdot tunneling is spin
dependent, due to Pauli spin blockade (PSB). I report some experimental signatures
of electric-dipole spin resonance, demonstrating the presence of a weak spin-orbit
coupling of electrons in silicon.

In Chap. 6 I present 3 different experiments in arrays of hole quantum dots. In the
first experiment I dicuss the use of two charge-sensors to simultaneously probe the
dynamics of each dot.

In the second experiment I discuss the demonstration of a spin-qubit, read with an
RF charge-sensor via energy-selective readout.

The last experiment consists in the realization of a compact qubit layout where
readout is performed by means of gate-coupled RF reflectometry. In this case the
spin-to-charge conversion is realized through PSB.

Chap. 7 concludes the thesis, summarizing the main results and offering an outlook
on future research directions and perspectives for the scalability of qubit arrays.
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QUANTUM COMPUTATION WITH
SPINS IN QUANTUM DOTS

Any fool can know. The point is to understand

Albert Einstein

This chapter introduces the theoretical framework necessary for the discussion of the
experimental results presented in this thesis. Here I consider the basic aspects of quantum
dots in semiconductors [1][2][3], and their use as spin qubits. In particular, I discuss how
such spin qubits can be initialiazed, manipulated and measured, through either transport
or dispersive measurements.

2.1. SEMICONDUCTOR QUANTUM DOTS

A semiconductor quantum dot (QD) is a small charge island, where electrons or holes
can be isolated thanks to an interplay between the electrostatic field applied and the
interfaces between materials.

The size of the quantum dot, usually between 10 and 100 nm, determines its level spacing.
The physical distance between the quantum dots, their size and energetic structure
determines the mutual interaction between nearby quantum dots.

2.1.1. A SINGLE ELECTRON TRANSISTOR

Here we start considering a single quantum dot in a MOSFET-like device. In such a plat-
form it is possible to control the displacement of a single electron and it is commonly
referred to as single electron transistor (SET).

The SET can be modelled as a charge island underneath the gate, capacitively coupled
with the reservoirs and the gate itself. If sufficiently small, this charge island, made of
electrons (or holes) in a potential well, can behave as an artificial atom, or quantum dot.
Our quantum dot devices are fabricated on 300 mm silicon-on insulator (SOI) wafers,
using a transistor technology close to what is commoly referred to as fully-depleted SOI
(FDSOD) [4].

Electrons are confined at the Si-SiO, interface, in an analogue manner to classical tran-
sistors. The spacers instead are deliberately longer than in conventional transistors. In
this way the potential applied mainly acts underneath the gate. This, together with the
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12 2. QUANTUM COMPUTATION WITH SPINS IN QUANTUM DOTS

increased access resistances, allows local charge confinement, as can be understood from
the schematic of the potential landscape of the device of Fig. 2.1 b).

When going down to low temperature , i.e. below a few Kelvin, the thermal energy kg T is
smaller than the energy level spacing in the quantum dot. As a result we can distinguish
quantized energy levels and, consequently, observe single-electron tunneling.

The Si channel is undoped and hence no carriers are present at zero gate voltage. We
need a positive (negative) potential to accumulate electrons (holes) below the gate.

In other semiconductor platforms, as highly doped materials or III-V semiconductors, in
the conduction channel there is a 2-D electron gas and, conversely, a negative (positive)
potential is needed to deplete locally the channel from electrons (holes), leaving a small
charge island.

In the simplest physical picture, the SET can be described with a classical capacitive

model, as depicted in Fig. 2.1, where C; is the capacitance between the source and the
dot, Cg is the one between the dot and the gate and Cy is the one between the dot and

the drain.
a) e cy b) E
Dot
source ‘Hﬁﬂ“ drain o depletion
T g
ﬂ gate B

Figure 2.1: a) Schematic of the circuit in a three-terminal single electron transistor. b) Potential landscape of the
device. The access barriers confine electrons, thus defining the charge island between the Fermi seas of source
and drain.

increasing Vg

source

In order to add one electron to the quantum dot we should provide enough energy to
overtake the electrostatic repulsion of the dot. The amount of energy that must be spent
in order to increase by one the charge population in the capacitor defines the charging
energy E:

&2

E.=
7 Cror

2.1)

where Cyg; = Cs+ Cg + Cg = el £

Since the dot is also capacitively coupled to source and drain the potential applied on
it is only a fraction of the one applied on the gate. The conversion factor between the
gate voltage applied and the effective electrochemical potential applied on the dot is the
so-called lever-arm parameter a = |e|Cg/Co;.

We can assume to have a planar dot with area A, and see the dot and the gate as the
two plates of a capacitor. The gate capacitance therefore is given by Cg = eoerg and the
charging energy can be rewritten as a function of the gate capacitance E, = eclg.

The dot area can then be estimated as:

ex d
Ec eger

(2.2)
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where € is the vacuum permittivity, d = 6 nm is the thickness of the gate oxide (SiO) of
our devices, with dielectric constant €, = 3.9.

The amount of charges confined in the quantum dot can be considered fixed assum-
ing that the tunnel resistance with source and drain R are thick enough to have negligible
quantum fluctuations of the energy on the measurement timescale (R > h/ ¢%), condition
easily satisfied with large spacers. Moreover thermal fluctuations should be much lower
than Ec, condition usually satisfied at few Kelvin.

The single electron functionality has already been achieved also at room temperature
[5](6]. Anyways, for a reliable room temperature operation of a silicon SET, its charging
energy E. should be at least 4kp T = 100 meV and consequently, the dot diameter should
be of few nm (see eq. 2.2).

When sweeping the gate voltage under a drain-source bias, at low temparature we can
observe quantized transport, as shown in Fig. 2.2 c). This can be understood considering
that when an energy level of the dot falls inside the bias window, transport between source
and drain is allowed (Fig. 2.2 b). Otherwise transport is blocked, and this is commonly de-
fined as the Coulomb blockade regime (Fig. 2.2 a)). The first experimental observations of
Coulomb blockade dates back to 1989 in silicon nanowires [7] and GaAS heterostructures
(8].

a)  rw)N b) N N
LU(N+1)
LL(N) g
I r
HS “D ?_v’ P-( ) L Ly
L(N-1)
LL(N-1)
L I 1 I
D A
c) £ E add
=)
e
8 (N-3[| N-2 || N-1 N || N+1
5
\DO

v

gate voltage Vg

Figure 2.2: a) Coulomb blockade, there is no energy level within the bias window and current is blocked.

b) Resonant tunneling condition. c) Expected current I (in arbitrary units) as a function of gate voltage Vg,
assuming that only one energy level contributes to transport and that the tunneling rates with the reservoirs are
constant. Image from Ref. [1].

In Fig. 2.2 c) all peaks show the same intensity of current. This corresponds to assume
that:
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* for each peak only one energy level (or a costant number of energy levels, as it is
the case for a metallic SET) contributes to the conduction.

¢ the couplings with the reservoirs I's, I'p are constant.

Experimentally the first assumption may hold only at very low bias and very low tempera-
ture, in fact the orbital level spacing is usually in a range between 100 ueV and few meV.

The second one instead would hold only for a dot with size and position independent
from electron number and shape of the confining potential, which is almost never the
case in realistic experiments. The coupling with the reservoir is in fact intrinsically de-
pendent on the size of the dot, or more precisely on the size of its wave function, that
increases with increasing electron number.

As we will see in the following section the spacing between the peaks is not constant in
the quantum regime, where the energy necessary to add one electron, i.e. the addition
energy E,q4, is the sum of charging energy E. and the orbital level spacing Ay.
MOreover, the peaks width is broadened both by temperature and tunneling with the
reservoir.

A measurement of the spacing between two peaks in gate voltage AV (that’s the easiest
parameter to measure) and a measurement of the addition energy E, ;4 gives the gate-
lever arm parameter a. Conversely, a measurement of a and AV, gives the addition

energy Eqq4.
For each couple of Coulomb peaks then:

CICAVG = Eadd (2.3)

2.2. QUANTUM DOT SPECTROSCOPY

So far the discussion has been entirely classical. However, we have to take in account that
the quantum dot obeys quantum mechanics laws and it can be modeled as a particle
confined in a potential well. Therefore its energy levels are quantized.

For small quantum dots in fact the discreteness of the energy levels of the electrons be-
comes pronounced, like those in atoms and molecules, so one can talk about “artificial
atoms and molecules”.

The simplest model which combines both the Coulomb blockade effect and the energy
spectrum of a quantum dot is the constant-interaction model ([3], [9]). The key assump-
tions in this model are:

¢ the quantized levels can be calculated regardless of the number of electrons in the
dot.

* The Coulomb interactions among the electrons in the dot and between electrons in
the dot and the environment can be parameterized in terms of a constant capaci-
tance Cyo;.

This model provides an analytic expression of the chemical potential u(N) for a certain
electronic configuration:

(N-Np—1/2)¢*> Cg
UN=ENn+——F— —e——
Ctot Ctot
In this definition the integer N is the number of electrons for a certain gate voltage Vg
and N is the number of electrons at Vg = 0.

Ve
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The single-particle state E for the N — th electron depends on the characteristics of the
confinement potential.
The main result of this model is the definition of the addition energy:

((N) = (t(N = 1) = Ec + A = Egqa

with Ay = Ey— En_1.
By considering the quantum dot as a particle in a 2D box with surface A its level spacing
can be calculated as [6]:

A2ZD _ 2mh?

y=—
8spin8valleyMm* A

where gspin(vailey) take into account the double degeneracy of spin (valley) state of each
level and m* is the effective mass of the electrons. In silicon the conduction band edges
are spheroids oriented along the equivalent [100] directions in the Brillouin zone, with
mass parameters my, = 0.92m, and mr = 0.19m, [10], giving an average effective mass of

(2.4)

m* = (mym2)3 =0.32m,.
By considering a 3D dot instead the level spacing is expected to decrease with increasing
filling N[3]:

1 1/3 2 232
A3D—( ) T 2.5)

N =
3m2N 8spin8valleym* A

Realistic quantum dots in semiconductor are not perfect 2D structure and, even though
they are mainly squeezed in the channel plane a dependence of the level spacing from
the electron filling N is still expected.

Being proportional to the inverse of the dot area, the orbital level spacing is significant for
small dots. For example given A = 20 x 20 nm? we expect Ay = 1 meV.

For high filling the dot also increases in size, and the orbital level spacing usually becomes
negligible compared to E.. In such a regime the dot behaves following the classical pic-
ture, where E;44 = E,. This is commonly referred to as the metallic regime for a quantum
dot.

A measurement of the addition energy as a function of gate voltage in a Si QD is shown in
Fig. 2.3. The extra addition energy needed to add the fifth and thirteenth electron can be
attributed to complete filling of the first and second orbital shells.

The orbital structure of the dot can be understood considering that in silicon there is
a double valley degeneracy such that the first orbital (s-type) can be filled twice with 2
electrons of opposite spin and therefore we need 4 electrons to fill the first orbital shell.
Similarly, the second orbital shell has a double degeneracy that, combined with twofold
spin degeneracy and twofold valley degeneracy, is such that we need 8 electrons to fill the
second shell [11].

The most intuitive way to measure the addition energy E, 44 is to measure the current as
a function of gate voltage V; and bias voltage V.

A measurement of the addition energy in V,;; indeed can be directly converted in eV and,
together with the peak spacing AVj; it also provides the a-factor (using formula 2.3).
Due to the shapes they acquire (see Fig. 2.4), the blockaded regions in the two-axis stabil-
ity diagram (Vg vs V) are called Coulomb diamonds.

A scheme of the QD energy diagram corresponding to different points on the edges of a
Coulomb diamond is presented in Fig. 2.4. For clarity in the figure the electrochemical
potentials ug is fixed and only i is moved by eV, following the application of a bias
voltage.
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Figure 2.3: Addition energy as a function of the electron number N in a silicon device. The two valleys are nearly
degenerate and therefore the orbital and valleys degeneracy are multiplied together. From Ref. [11]

JTECH S—

Eadd

" avg(N)

Figure 2.4: a) At zero bias the conduction is allowed only when s = u(N) = ug4; b) Along the left edge of the
diamond the electrochemical potential of the dot is aligned with the drain p; = p(N); ¢) On the diamond tip
the bias matches the addition energy us — ug = (N + 1) — u(N); d) Along the right edge of the diamond the
electrochemical potential of the N + 1-th electron in the dot is aligned with the source ps = (N +1).

From figure 2.4 b), d) it can be understood that the edges of the diamonds correspond to
the physical situation where the energy level of the dot is aligned with the Fermi energy of
one of the reservoirs.

The tip of the diamond is the point where the bias eV, matches E,;, (Fig. 2.4 c).

From the positive (m,) and negative (m_) slopes of the diamonds and E,;; we can there-
fore estimate separately the capacitive couplings of the dot with the two reservoirs C,, Cs,
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and the gate capacitance Cg.

lel m_(1-my)

Cs=
Eaqga m-—my
el m
Cqg=- — (2.6)
Eqga m——my
e mym-_
AL ..

Eqga m——my

2.3. COULOMB PEAKS LINESHAPES FOR DIFFERENT TRANSPORT

REGIMES

The current level of the Coulomb peaks is also dependent on the tunneling rates I';,I'4
with the reservoirs. Since the dot size increases by filling in more electrons, also the
overlap of its wavefunction with the two reservoirs increases and therefore the tunnel
couplings. For a system with i electrons we can define unique parameters for each
electronic configuration, as for instance Fg”,l“g).

Another effect of increasing the size of the dot is to increase the capacitive coupling
between the the dot and the reservoirs, leading to an increase in the total capacitance
c) . Even Cg) is proportional to the dot area, that increases with 7, but it does not
@

{0, therefore o™ = C{’/C'), is expected to decrease with

increase much as compared to C
increasing electron filling i.

2.3.1. LINEAR TRANSPORT

The theory beyond the different conductance regimes for a QD is discussed in detail in
Refs. [9][3][12]. Here we consider the linear resonant regime, where only one energy level
at a time may enter in the bias window (V;5 < Ay). Depending on the energy scales given
by temperature (kg T) and tunneling (k') we can analyze different transport regimes.
We'll consider what happens by going down in temperature.

At high temperature the discrete nature of the electron charge cannot be appreciated,
meaning that when kg T > E;, Ay, the SET behaves as a classical field-effect transistor.
In this regime the conductance does not depend on the number of electrons, and is
given by the Ohm’s law for the conductances across the barriers with source and drain
contacts. The current increases linearly till reaching a saturation regime (above threshold
voltage). At high temperature the conductance is just the Ohmic sum of the two barrier
conductances.

Goo=(1/Gs+1/Gg) P ox (1/Ts+1/Tg) " 2.7

Going to cryogenic temperature kg T < E;44.

When the coupling with the reservoir is sufficiently low, i.e when hI' <« kg T, we are in
the weak coupling regime. This is usually already the case at 4.2K (* He temperature),
where kpT/h =80 GHz. Depending on the energy level spacing of the QD Ay and tem-
perature, with bias eV;; <« A we can distinguish between two main conductance regime:

° I Ay < kgT, eVsy < Ay. Classical coulomb blockade or metallic regime.
ag (Vg = V)

G=G cosh™?
max 2.5kgT

(2.8)
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Where Vg“) is the value of the gate voltage on resonance. The peaks full width at half
maximum (FWHM) is linear with kg T and it is FWHM= 4.375kgT.

The peak height is independent of temperature in this regime, and equal to half the
high temperature value G,,4x = Goo/2. This is because, due to Coulomb blockade, a
new electron can hop onto the dot only if another electron has tunneled out and
therefore the tunnel probability is halved.

o hI' < kpT < AN, eVyg < An. Quantum Coulomb blockade regime, or single-level
transport regime.

ay (V" - vg)

G=G? cosh™?
2kgT

max

(2.9)

Here the FWHM is still linear with respect to T (FWHM= 3.5k T).
If we consider that only a single level in the dot participates in the conduction, then

the peak amplitude is given by ij;)ax = 4,ng (l/l“gi) + 1/1“2))‘1 [9].
Differently from the classical regime the peak maximum G4y is inversely pro-
portional to temperature. This temperature dependence allows to distinguish a

quantum peak from a classical peak.

An important assumption for the above description of tunneling in both the quantum
and classical Coulomb blockade regimes is that the barrier conductances are small:
Gs,q < €*/ h. The charge is well defined under this condition and quantum fluctuations
in the charge number can be neglected. This statement is equivalent to the requirement
that only first order tunneling has to be taken into account.

When the tunneling with the reservoirs is dominant compared to thermal effects (kp T <
hT'), and considering only first order tunneling (eVsy <« hI' < Ay) we are in the coherent
or strong coupling regime. In this regime the maximum conductance of each peak can be
expressed as [13]:

2 -1
G—e(1+1) 2.10)

The on-resonance peak height is equal to the quantum of conductance ?2/ 7, multiplied
by a factor that depends on the symmetry of the tunnel rates Fg’) and 1“51’).

2.3.2. NON LINEAR TRANSPORT

Experimentally we often find that, when applying source-drain bias, the current inside
a Coulomb diamond is not null due to an interplay between multiple energy levels con-
tributing to the conduction and thermal excitations.

Finite temperature effects for a double junction system are studied in detail in Ref. [14],
as well as the distinction between "inelastic" (different electrons participate to multiple
tunneling) and "elastic" (the same electron tunnels through a virtual state) co-tunneling.
The two physical situations are schematized in Fig. 2.5.

At very low bias voltage (eV;s < Ay) only elastic co-tunneling is allowed by energy conser-
vation [15]. For higher bias (eV;; > Ap) inelastic co-tunneling is usually the dominant
process, and the extra energy required is provided by the bias voltage.



2.3. COULOMB PEAKS LINESHAPES FOR DIFFERENT TRANSPORT REGIMES 19

When kgpT,eV;s < E, the expression of the inelastic co-tunneling current is given in
[14][16]:

v, h LR Y PPN LA/ T 2.11
(dS)_Gezasad(Es+Ed) ((B )+(27'[)) ds (2.11)
where 0,04 are the conductances through the reservoirs barrier. The current results
from stochastic single electrons tunneling across the barriers between the dot and the
two reservoirs.

If ns and ng electrons have crossed the two barriers then Eg, E; are the change in charging
energy for the single electron transitions, respectively (ns, ng) — (ns+1, ng) and (ns, ng) —
(ns,ng + 1) (see Fig. 2.5 b),c)).

The equation 2.11 is valid if kg T < E;, Eg.

Inside the Coulomb blockade region the current is Vgs.

When the bias voltage overtakes the addition energy, i.e. Vs>V, rf = Egqq/e the current
starts to be linear with V:

Tx Goo(Vigs = Vo)

meaning that it is determined by the series tunnel conductance of the two reservoirs Goo.
Therefore the threshold value V, ¢, where the currents starts to be linear with Vg, pro-
vides the addition energy.

When the source-drain bias applied eV, > A we can neglect elastic tunneling effects.
That's the case of the analysis in Sec. 4.6 where eq.2.11 is applied to extract the addition
energy.

a) b) o T
Is pe o :

Io

Ho

Elastic co-tunneling Inelastic co-tunneling Inelastic co-tunneling
Electron process hole process

Figure 2.5: a) Elastic cotunneling: even if the system is in Coulomb blockade electrons can tunnel through the
potential barrier with the reservoirs if kg T = A . b),c) inelastic co-tunneling process for electrons and holes.

2.3.3. THEORY OVERVIEW

As usually happens in physics, when dealing with reality there are further aspects that
should be added to the theoretical model.

For our quantum dot devices we list some of the deviations that should be taken in
account:

e Real quantum dot devices do not have perfect parabolic potentials. They usually
contain potential fluctuations due to impurities in the substrate.
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* The shape of the gate is not always symmetric in the plane of the active channel
and this can impact quantum dot properties[17], in particular for what concern
spin dependent tunneling.

* The quantum dot thickness in the z-direction is not zero but typically 5-10 nm [3].

* By increasing Vi; we not only lift the confinement potential, but we also vary its
shape.

* In the experiments often the bias applied is not symmetric, but it is applied to only
one of the the reservoirs, while the other one is kept grounded.
The system can be schematized as a voltage divider (with R; = R, the resistances
between dot and the two reservoirs) and therefore the effective gate voltage applied

(if R = Ry) is V;f - Vi + V4s/2. This effect can be corrected by subtracting the
bias V;,/2 to the gate voltage.

Nevertheless, the constant interaction model and other more advanced theories give the
same qualitative picture. The experiments described will clearly confirm the common
aspects of the different theories.

2.4. DISPERSIVE READOUT FOR SPIN QUBIT

In the perspective of a large-scale, semiconductor-based, quantum processor it will prob-
ably be necessary to read the state of quantum dots far away from the reservoirs, and to
reduce as much as possible the hardware required for the qubit readout.

Whereas transport measurements are not appropriate for a local readout of many dots,
radio-frequency reflectometry (RFR) [18] is a suitable candidate to overcome these prob-
lems. It essentially consists in monitoring small variation of capacitance in the device,
mainly due to resonant transitions between quantum dots or between a dot and a reser-
voir.

The technique can be understood starting from a simple transmission line. By sending an
oscillating signal with amplitude V;, on the gate, because of the impedance mismatch
between our cables (Zy = 50 Q) and the nanodevices we use (typically Z = 100 kQ), a
portion of the signal is reflected, with amplitude V; given by:

Z-7

V= V 2.12
r Z+ 7 in ( )

The incoming and outgoing waves can be separated through a directional coupler and
then it’s possible to measure only the signal reflected by the electrode where the rf excita-
tions are applied (see Fig. 2.6 a)).

The large impedance mismatch (Z > Z) results in a poor sensitivity to small variation of
Z. The matching condition (Z = Zj) instead is where the greatest sensitivity occurs.

One way to achieve this matching condition is to plug an inductance on one of the elec-
trodes (on a gate or a reservoir). The parasitic capacitance Cy is provided by the coupling
of the electrode with the surrounding environment. It is mainly affected by the wire
bonding and the sample holder geometry and materials.

The electrostatic coupling between the electrodes (gate or reservoir) in the load also gives
a small capacitive contribution called geometrical capacitance Cg, typically of the order
of tens of aF, that can be included in C p (they are summed in parallel). The impact ofa
double dot device on the reflectometry signal will be clarified in Sec. 2.5.

We can treat the load impedance as a purely resistive contribution Ry, for the moment.
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d)

Reff

Figure 2.6: a) Scheme of the readout circuit. The dashed line highlights the device. b) Simplified scheme where
the device capacitance Cg is included in Cp. c) Near the resonant frequency w = 1/,/LC) the circuit can be
approximated as a RLC series, with Ryfp = TI}?L' d) If there are charge transitions in the load we have to
consider the contribution of an additional quantum capacitance C, that shifts the resonant frequency to

wo =1/, /L(Cp+CQ).

As sketched in the circuit diagram of Fig. 2.6 b), this circuit can be schematized as an RLC
circuit, where L is the value of the inductance plugged on the electrode.
The total impedance of this circuit can be written as:

Z:j(,()L+ T 1
JoCp+ g

In practical cases wCy, Rr > 1 (typical orders of magnitude w ~ 100 MHz, C, =100 fF and
Rr =100 kQ respectively), and in close proximity to the resonant frequency the overall
impedance can be approximated as the one of an RLC series circuit (Fig. 2.6 c):

Z=Rerr+jowL+
/SIS0,
with Rerr = L/(CpRy) typically of the order of few tens of Q. This overall impedance is

minimized when w = 1/,/LC), and consequently the signal reflected off the resonator too.
The matching can still be improved, indeed on resonance the residual impedance is

L

7=
R.Cp

One could think to add a resistance to compensate the residual mismatch, but that would
dissipate the energy delivered to the device.

A better option is to plug a further matching capacitor Cys in parallel with the RLC circuit
that, if chosen properly improves the matching. Indeed, after applying such a capacitor
in parallel the effective impedance of the matched circuit becomes

-1
1

. 1
JOL+ Repy+ TaC,

Z=|jwCy+
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The matching condition in this case is reached when:

VIC,
7= - Z (2.13)
Cm

With practical values of an inductor of L = 300 nH and a parasitic capacitance of C, ~ 0.5
pF we would need Cj = 10 pF to achieve the desired 50 Q2 matching.

2.5. QUANTUM CAPACITANCE

So far the load of the circuit has been considered as a purely resistive object. When dealing
with quantum dot devices we should consider an additional capacitive contribution,
associated with charge tunneling in the device. This additional parametric capacitance
Cpar Is in parallel with the geometrical capacitance Cg given by the electrostatic coupling
between the electrodes, which we have previously included in the parasitic capacitance
Cp (see Fig. 2.6 d)).

Therefore the total capacitance reads:

Cror=Cg + Cpar

In this way, when there are tunneling resonances in our device, the resonator frequency is
slightly shifted. This is enough to appreciate differences in amplitude and phase (or I and
Q) of the reflected signal.

We consider a tunnel-coupled double quantum dot (DQD) where the two dots QDji i
= 1,2 are connected to an rf gate electrode via gate capacitances Cg; and to grounded
charge reservoirs via Cp; (Fig. 2.7).

The expression of the device capacitance C;,; can be obtained simply by differentiating
the total charge in the DQD as a function of gate voltage [19].

We first expand the total gate charge in the DQD as a function of the gate coupling factors,
a; = Cg;i/(Cp; + Cg; + Cy;) and the average electron occupation probability (n;) in QD{, .
We further assume the weak DQD coupling limit, i.e. C;, < Cp; + Cg;. The total charge in
the DQD reads:

Q1 +Q2=) a;(Cp; Vg +e(ny)). (2.14)
i
where V; is the gate voltage applied.

The total capacitance can be obtained by differentiating eq. 2.14 with respect to Vg:

d
Ctot = —(le‘jGQZ) = CG + Z ea
i

d{n;)
! dVg

(2.15)

We obtain, as expected, a gate voltage independent term, i.e. the geometrical capacitance:
Cg = a1Cp + a2Cp» and a gate voltage dependent term, i.e. the parametric capacitance
Cpar (VG) .

If we consider the gate current

d(Q1+Q2 av,
= % = Coy—2 (2.16)

1
¢ dt
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Figure 2.7: DC equivalent circuit of a DQD. The tunnel barriers, indicated by rectangles, consist of a capacitor in
parallel with a resistor.

we note that for interdot charge transitions % =— % [18]. Moreover we can rewrite
a' = (a2 — a1) and therefore I can be expressed as:
[A%e! d{ny)
Ig=Cc—— +ea’ 2.17
¢=Ce— ar (2.17)

At this point, if we apply a sinusoidal modulation on the gate voltage, at the resonant
frequency f; of the tank circuit, it will induce an oscillatory variation of the DQD energy
difference € = u; — up = ea’ (Vg — Vg), where VG0 is the gate voltage offset at which the
difference is zero.

For a small oscillating gate voltage applied (with respect to the energy difference AE

between the ground and excited DQD state) we can write % = ﬁ and the gate current
can be expressed as:

d(nz)\ dVg
Ig=|Cg+(ea)> ——| == 2.18
G G+ (ea’) e ) ar (2.18)
where the second term in the parentheses defines the parametric capacitance:
d{ny)
Cpar = (eoc’)z—de2 2.19)

The problem is now reduced to understanding how the population (n,) of the dot QD2
varies with the energy detuning e. In order to do this it is necessary to introduce a physical
model for the DQD.

2.6. DOUBLE QUANTUM DOT ENERGY DIAGRAM

2.6.1. CHARGE QUBIT
We start considering a DQD with only one electron. This provides a two level system,
where the two possible charge states |n;, np) are [1,0) and |0, 1).

We can write the Hamiltonian representing this system considering two states with energy
difference € and with an overlap between the wavefunctions that we can describe as an
off-diagonal tunnel coupling energy t:

—€/2 t
H_( t +€e/2

(2.20)
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and the corresponding eigenenergies are:

1
Eeg = iE\/62+(2t)2 (2.21)
An analogue calculation can be done, for example, considering a hydrogen molecule,
where the coupling between two atomic orbitals give raise to bonding (ground state) and
antibonding state (excited state, where the two atoms are separated).

Let’s now consider the time-averaged excess electron in the dot 2, as the sum of the
average number of electrons in ground and excited state, each one with its own probabil-

1ty:

(n2) = (n2)gPg + (n2)ePe (2.22)
where the average excess of charges in each state is[19]:
(ny) —1(1+20Ee’g)—1 14 ——° (2.23)
2 e'g_z Oe _2 _‘/€2+(2t)2 )

We can define the energy difference between ground and excited state AE = /€2 + (21)2,
the probability difference AP = Pg — P,, and substitute the average excess of charges in
each dot2.22 in 2.19, finding the expression of the parametric capacitance for a charge
qubit:

_(ea)? | @03 | @DeoApP
T 2020 | AEB AE e
Co Cr

(2.24)

par

The first term is the so-called quantum capacitance, related to the curvature of the energy
band of each state with energy E; [20][21], or in other terms

0°E;
Co Z_Pi?; (2.25)
14

is the sum of the curvature of each i state, weighted by its occupation probability P;. This
is the term usually relevant at equilibrium and when the states posses a dispersion over
energy.
The occupation probabilities follow the Boltzmann distribution where the occupation
probability of each state is:
e~ EilksT

p; 7 (2.26)
Where Z =Y ; e Fi’k8T is the canonical partition function, necessary to renormalize the
probabilities.
The second term of eq. 2.24, called tunneling capacitance, is relevant when non adiabatic
processes, such as resonant excitations, occur at a rate comparable with the reflectometry
probing frequency.
In the general case the tunneling capacitance [22] can be expressed as:

0P;
Cro Z(nzh-g 2.27)
i



2.6. DOUBLE QUANTUM DOT ENERGY DIAGRAM 25

Using the Boltzmann distribution of eq. 2.26 (§ = EIT) we can calculate the analyti-
cal expression of the charge distribution. Considering two singlets states with energies

_ L AE.
Eeg=%5:

AE(e) ﬁ 7AE(€)ﬁ
e 2 —e 2
APs(e) = Pg — P, =

=tanh (AE(G) )

2.28
2kpT ( )

Z

2.6.2. SPIN QUBIT

The physical picture of spin states in a DQD changes completely when they share two or,
more generally, an even number of charges.

Two charges in the same dot indeed can only form a spin singlet S(0,2) (total spin number
S =0), due to the Pauli exclusion principle. When the charges are in two separate dots in-
stead we have to consider four possible spin states, i.e the antysimmetric singlet |S(1,1,))
and three symmetric triplets | T'(1,1)).

We therefore find five energy states:

1S(1, 1)) = LD 2|1,r>

|To(1, 1)) = L2701

IT: (L, D)y =1,1) (2.29)
IT-(1,1,)) =11, 1)

15(0,2)) =10, 1)

For simplicity here we neglect the presence of any valley state (present only for electrons)
and of the excited triplet | T'(0,2)), assuming that they are lying up in energy compared to
the other five states.

In absence of magnetic field, interdot tunnel coupling, and assuming the same g-factor
for the two dots, all the |1,1) spin states are degenerate. The tunnel coupling energy
t and the g-factor difference defines the splitting between [S(1,1)) and |Tp(1,1)). The
degeneracy between the triplet states instead is broken when a magnetic field is applied.
If we consider a system made of electrons in silicon, we can do the following assumptions:

* The g-factor is the same for both the QDs.
» The spin-orbit coupling, that couples triplet and singlet states tso, is negligible.

* We neglect nuclear field anisotropy. As a consequence, in the limit of same g-factor,
the effective magnetic field seen by the two dots is the same.

Under the assumptions above the states |S(1,1)) and | Ty(1, 1)) are still degenerate for high
detuning e, also in presence of a magnetic field. For € = 0 instead their splitting is given by
the tunnel coupling energy ¢. We use this simplified picture to describe the physics of the
electron device described in Chap. 5.

Now we consider what happens when the Zeeman splitting of the spins in the two dots is
different.

In III-V heterostructures the difference in Zeeman energy AE 7 between the two QDs is
given by an anisotropic nuclear magnetic field [23].
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In silicon-based electron quantum dots the nuclear field is weak, or not existent in the
ideal case of isotopically purified 2Si. Two QDs having the same g-factor, see the same
magnetic field and therefore, in order to distinguish them, the magnetic field anisotropy
is usually introduced artificially with a local micromagnet [24][25][26].

When dealing with holes the splitting between S(1,1) and Tp(1,1) is provided by the
difference of g factor between the two dots [27][28].

We then consider the general Hamiltonian for a holes DQD with two charges.

With holes we also have to take in account that the strong spin-orbit couples singlet and
triplet states [27], through the term f5¢. In the energy diagram of Fig. 2.8 this coupling is
translated into a further anti-crossing between energy states.

The 5x5 Hamiltonian of the system can be written in both the singlet-triplet basis of eq.
2.29 or in the single spin basis. We choose to write it here in the singlet-triplet basis
{§(0,2), S(1,1), T+ (1, 1), To(1,1), T—(1, D)}:

+% t tso 0 tso
t -5 0 3AgupB 0
H=|tso 0 -£+1Y gusB 0 0 (2.30)
0 3AgugB 0 -£ 0
tso 0 0 0 —£- 1Y gusB

where}. g=g1+ g2 and Ag = g1 - &.
We can use such Hamiltonian to simulate the energy levels of the system as shown in Fig.
2.8.

—50{s(i1) ——

r(1,1)
—-100
-100 -75 =50 =25 0 25 50 75 100
£ (uev)
tso (ueV) I | 2
t(uev) L] | 4

g I | 2.00
9: I ] 1.20

BMMINN 0 ]060

Figure 2.8: Energy diagram simulation of a DQD for an even-odd charge configuration. The interactive sliders
for the t50, t, 81, 82 and B parameters allow for real time update of the energy levels diagram. The python code
for this simulation can be found in [29]. The difference in g-factor is responsible of the curvature of the Tj state
near the anticrossing with the singlet states.

Remarkably, when there is a difference in the two dot g-factors also the Tj state acquires a
curvature. It comes from the electric dipole due to the coupling with S(1,1) via the off-
diagonal terms %Agu B, which eventually implies a second-order coupling with S(0,2).
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This additional curvature of the T is the key for the readout of the qubit described in Sec.
6.6 and it is particularly evident in Fig. 6.22.

Moreover, according to the energy diagram of Fig. 2.8 it is possible that also the states
T_, T, acquire a curvature due to their interaction with other states through the spin-orbit
coupling term fg0.

In this case the full dispersive response should be calculated using the formula of the
quantum capacitance 2.25.

When doing charge-sensing instead the only important thing is the difference of oc-
cupation probabilities between the two charge states:

AP =Py — Pyz = Pg + Pr— + Py + P, — Pe 2.31)

where each occupation probability is weighted over a five states partition function Z.

2.7. SPIN READOUT

The two spin states of a particle in a QD don’t show any appreciable difference in their
capacitive response. At the same time measuring the magnetic moment of a single par-
ticle (either electron or hole) is a very hard task, simply because it is very small. In free
space the electron magnetic moment is of the order of 10723 J/ T. Usually a cyclotron is
necessary to measure such a magnetic moment [30]. A direct spin readout is still out of
reach in semiconductor QDs platforms.

What we can do is read charges through either transport, charge-sensing measurement or
gate reflectometry. We therefore need an efficient way to make transport spin-dependent,
i.e. to realize spin-to-charge conversion.

We'll discuss two techniques for spin readout, both used across this thesis. The first tech-
nique, described in the following section, relies on a single QD coupled with a reservoir
and requires a charge sensor to reveal a single tunneling event that allows to discriminate
if the spin loaded was |1) or |]).

However, relying on N reservoirs for the measurement of N quantum dot would hardly be
a scalable solution.

In the perspective of scaling-up to complex architectures, a more suitable readout ap-
proach is the one based on Pauli spin blockade (PSB), simply because it relies on two
QDs instead than a dot and a reservoir. With this approach one QD is used as the readout
qubit and the other one as an ancillary qubit, halving the number of dots available for the
computation. As we will see across this thesis the PSB regime can be detected with both
gate-based dispersive readout and charge-sensing.

Another advantage of PSB readout is that it is more suitable to work at higher temperature,
as demonstrated by the fact that the few demonstrations of "hot" spin qubits (T =1
K) in silicon relied on this technique [31][32]. The negative impact of temperature on
measurements based on energy-selective readout will be discussed in Sec. 6.5.1.

2.7.1. ENERGY-SELECTIVE TUNNELING READOUT

This technique, also named Elzerman readout [33], makes use of a single QD coupled
with a Fermi sea. It requires an odd number of charges in the dot, in order to be able to
load a spin |1) or ||) with equal probability.

Under a magnetic field the spin states are split by the Zeeman energy Ez = gugB, where
g is the Landé factor and up the bohr magneton. If the Zeeman splitting exceeds the
thermal energy (Ez > kg T) it is possible to tune the energy of the dot such that the |1)
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and ||) spin states lie respectively above and below the Fermi energy of the reservoir.
A three-step pulsing sequence is necessary in order to empty the dot, load a random spin
and measure it:

* Empty stage: The electrochemical potential of the dot is above the Fermi level and
we remove its spin.

* Load stage: The electrochemical potential of both the spin states is below the Fermi
level of the reservoir and we can load a random spin. This stage should last less
than the spin relaxation time 7;.

* Read stage: Only the excited spin state should be above the reservoir Fermi energy.
If the tunneling is faster than T, the favourable relaxation path is to first tunnel
into the reservoir and successively tunnel back into the dot as a spin down. If the
spin was initially in its ground state instead nothing happens.

A charge sensor is necessary to realize spin-to-charge conversion in the measurement
stage.

A scheme of the measurement procedure is shown in Fig. 2.9. This scheme is taken from
Ref. [33], where the experiment has been realized on a GaAs/AlGaAs heterostructure,
where g is negative and therefore the |{) spin state is the ground state.

T
Ml

Figure 2.9: Schematic energy diagrams during the measurement cycle. From left to right the QD is emptied, then
arandom spin is loaded and then measured. This cycle is repeated many times in order to obtain a statistics
on the initial population of the dot. Black vertical lines indicate the tunnel barriers and the shaded blue boxes
indicate the Fermi sea of the reservoir. From ref. [33].

Er

This measurement scheme also allows to measure the spin relaxation time 7; by varying
the duration of the load stage and measuring the spin population as a function of the
time spent in the loading stage. We'll use this spin readout technique in Chap. 6.

2.7.2. PAULI SPIN BLOCKADE READOUT

This technique fundamentally relies on the Pauli exclusion principle [34], stating that two
particles occupying the same orbital level must have anti-parallel spin. Differently from
the previous readout mechanism a DQD is necessary to demonstrate this technique. The
DQD should be prepared in an (odd, odd) or ("1,1")-like charge configuration. Then, by
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changing the gate voltages, the charge ground state can be moved to an (even-even) or
("0,2")-like configuration. If the spins of the charges in the separate dots have the same
orientation interdot tunneling is forbidden by the Pauli principle.

Starting from the first demonstration in 2002 [35] in GaAs, this technique has been widely
used in many different semiconductor QD platforms [36][37][38][39][40].

Most of the demonstrations of this technique relied on measuring a spin dependent
current through two dots in series, that is suppressed when the spins within the DQD are
parallels.

Without a charge sensor the first charge transitions are not always visible through trans-
port measurement, because of low tunnel coupling with the reservoir, and it is therefore
not always possible to know a priori when we are dealing with a ("1,1") < ("0,2") transi-
tion.

Historically the common way to identify PSB is by measuring the so-called bias triangles.
Fundamentally, when applying bias, transport is allowed not only when the energy levels
of two dots are aligned with the Fermi energy of the reservoirs (elastic tunneling), but also
when there is an energy mismatch between the initial and final state (inelastic tunneling).
Therefore, when applying source drain bias, some conduction areas with a triangular
shape are formed, the edges of these triangles correspond to the situation where the
energy level of one of the two dots is aligned with the reservoir, the tip corresponds to
the case where the energy difference between the dots is equal to the bias. Hence when
one of the two dot energy level is brought out of the bias window transport is no more
allowed.

Experimentally many different features can be observed in these triangles, depending on
the energetic structure of the dots (presence of excited states), spin-mixing mechanisms
and the different coupling of the two dots with the reservoir. More details about the theory
[41] of bias triangles and a collection of experimental measurements can be found in Refs.
(1121.

In Fig. 2.10 we consider a ("1,1") « ("0,2") transition in the case where the tunneling
with the two reservoirs is symmetric and when the bias applied is higher than the orbital
splitting. In the left diagram a positive bias is applied on the source and electrons flow
from the right (drain) to the left (source) reservoir through the dots. Since the right dot
ground state is in an antysimmetric S(0, 2) spin state, transport to the (1, 1) state is always
allowed.

Conversely in the diagram on the right the bias applied is negative and the electrons flow
is from source to drain and hence the transition involved is from ("1,1") — ("0,2"). In this
case when the spins in the two dots are parallel transport is forbidden by Pauli blockade.
A spin-flip is necessary to allow transport in this case and, depending on how fast is this
spin-flip mechanism, in realistic cases it is possible to observe either a decrease or a full
suppression of the current at the base of the triangles.

Here the bias applied is higher than the orbital splitting between the S(0,2) and T(0, 2).
When the upper excited state falls below the ("1,1") energy level the spin can occupy
a different orbital in the right dot and no more spin selection rules are involved. This
explains why it can be observed a revival of the current in the blockaded triangles.

During this thesis I have almost always worked with dots isolated from the reservoirs.
Without having access to transport measurement we found that PSB can also be detected
by measuring a magnetic field dependent interdot tunneling time, as it will be explained
in Sec. 5.5.2.

In Sec. 6.6 it will also be demonstrated that, instead of relying on transport or charge-
sensing measurement, it is also possible to detect dispersively the spin-dependent trans-
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Figure 2.10: Theoretical source drain current as a function of gate voltages V1 and V2 in the cases of positive
(left) and negative (right) bias, corresponding respectively to a ("0,2") — ("1,1") transitionand toa ("1,1") —
("0,2"). The red color indicates the regions where transport is allowed. The dashed lines in the right diagram
represent the limits of the bias triangles in the absence of PSB. The bottom energy diagrams (corresponding to
the points indicated by a star in the upper diagrams) show the transport mechanism at the bases of triangles,
explaining the current suppression when Vsp <0.

port through the DQD, offering a potentially scalable solution for spin readout in larger
qubit arrays.

2.8. SPIN-ORBIT COUPLING

The spin-orbit coupling (SOC) is a relativistic effect that couples the orbital motion of the
electron to its spin.

Fundamentally an electron moving in an electric field experiences in its reference frame
an effective magnetic field that couples to its spin.

The spin-orbit hamiltonian can be derived directly from the Dirac equation in the non
relativistic approximation [42]. For a particle moving in an electrostatic potential V it can
be written as:

Hso=————0-(pxV,V) (2.32)

4mZc?

where my is the particle effective mass, c the speed of light. The vectors here are indicated
inbold: o = (ox,0y,0) is a vector of of spin 1/2 Pauli matrices and p is the canonical
momentum operator.

Another way to see the Hamiltonian 2.32 is that a charge with a mass my and moving
with a velocity vector v = p/my in an electric field E = (1/e)V, V, sees in its own reference
frame an effective magnetic field Bsp = p x E/(my c2).

In an atom this internal magnetic field acting on the spin depends on the orbital the
electron occupies. Since both the momentum of a particle and the electric field get larger
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when approaching the nucleus of an atom, the spin-orbit interaction is higher the closer
we get to the atomic core. First orbitals exhibit therefore the strongest spin-orbit interac-
tion and a similar logic leads to stronger spin-orbit interactions for heavier elements.

In crystals instead the local electric fields can be associated with asymmetric confin-
ing potentials that give rise to a spin-orbit interaction. This spin-orbit contribution
associated with structural inversion asymmetry (SIA) is known as the Rashba SOC [43].
Only in an ideal symmetric quantum well with symmetric doping, this contributions
would be zero.

In structures that exhibit bulk inversion asymmetry, such as in the zinc-blende structure
of GaAs, the local electric fields lead to another contribution to the spin-orbit interaction,
acting on the growth direction. This effect is known as the Dresselhaus contribution to
the spin-orbit interaction [44].

Even though this contribution is null in centrosymmetric crystals such as Si and Ge, a
local electric field due to interface inversion asymmetry [45][46] might still play a role.
This contribution often is also called the Dresselhaus term because it has an analogue
representation in the spin-orbit Hamiltonian 2.33.

In a 2D system, assuming that the confining field is along the growth direction z (corre-
sponding to the main crystallographic axis [0,0,1]), the spin-orbit hamiltonian of eq. 2.32
can be rewritten as [1]:

Hgo = w(Pny)+ﬁ(—pxe+pry) (2.33)

where a and  (m/s) quantifies respectively the magnitude of the Rashba and Dresselhaus
terms of SOC.

Both terms are much smaller, by = 3 orders of magnitude, in Si[47][48] than for example in
GaAs[1]. The low SOC leads to much longer spin relaxation time T; in Si than in GaAs. On
the other hand in Si this may represent an issue when trying to couple the electron spin
with an external AC electric field. The SOC indeed allows the direct electrical spin manip-
ulation, that in a silicon nanowire is much more efficient for holes than for electrons and
usually a micromagnet is required to enable artificial SOC of electrons in silicon[49][50].

In QDs, the confinement is such that the momentum of a particle, on average, is zero in
any direction, i.e. (px) = (py) =0.
This leads to the result that for two spins on the same orbital:

(nl,1|Hsolnl, |) = (n,lpxyln, D{ loxyl 1) =0 (2.34)

where n and [ label the principal and the orbital quantum number in the QD orbital.
Consequently, the spin-orbit Hamiltonian of eq. 2.33 does not couple different spins on
the same orbital but couples only states with different orbitals and spin components [51].
This means that pure spin states are replaced by pseudo-spin states, that are admixtures
of both orbital and spin states.

The hybridization between spin and orbital states allows an external electric field to
couple to the pseudo-spin states of the same Kramers doublet through SOC.

The hybridization between spin and orbital states in a QD is strongly dependent on
the energetic band structure of the crystal. The conduction band has an s-like character
and, excluding valley states, it has only spin degeneracy and therefore no SOC is expected,
since two electrons in the conduction band would lie on the same orbital. The SOC could
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be enabled by the mixing between different orbitals or, in the case of electrons in silicon,
orbital and valley states [52], [53]. As shown in Ref. [54] this mixing can be controlled by
tuning the tunnel barrier between the QDs.

When dealing with holes confined in silicon or germanium nanowire, the SOC is in-
trinsically strong, due to the mixing between the heavy holes and light holes band.
Indeed, under strong confinement, the band structure is modified compared to the one
of the bulk material, as shown in Ref. [55]. When considering the valence band it should
be taken in account a further degeneracy in the total angular momentum due to its p-like
character [42].

The orbital angular momentum l=1 and the spin angular momentum s=1/2 generate six
states characterized by total angular momentum quantum numbers j and m;:

. 3 N 3\ |3 N 1\ |1 N 1

[7:mj) ‘2"2>"2"2>"2"2>
When considering spin-orbit interaction the energy of states with j=1/2 is lowered down.
This is called the split-off band and it is usually negligible in bulk materials.
The other two bands with j = 3/2 follow a different parabolic dispersion relation and,
since their curvature is related to the effective mass these represents the heavy holes (HH),
with m; = £3/2, and light holes band (LH), with m; = +1/2.
The confinement in a nanowire lead to strong HH-LH mixing [55][56]. This mixing is the
main reason why SOC is stronger for holes than for electrons confined in a nanowire. This
intrinsic contribution to the SOC can be included as a Rashba-like term in eq. 2.33 and it
is often referred to as direct Rashba SOC [56] because of this analogy.

2.9. SPIN MANIPULATION

Electron spin states can be manipulated by electron spin resonance (ESR). The transition
between two spin states (|1) and [|)) can be induced by applying an oscillating magnetic
field which has an orthogonal component to the external magnetic field and whose energy
is equal to the energy difference between two spin states. The splitting in energy between
two spins is given by the Zeeman energy Ez = gupBo, which increases linearly with the
external magnetic field. The Landé g-factor can instead be modified by varying the static
magnetic field direction [57][46].

The oscillating magnetic field can be generated by an alternate current I, flowing through
a stripline, acting as an antenna, as schematized in Fig. 2.11 a). The frequency of the AC
current should match the Larmor frequency f = %

Fundamentally the AC magnetic field provides photons matching the Zeeman splitting
and allowing coherent spin oscillations. This is the technique historically used in standard
nuclear magnetic resonance, with the difference that here the spin belongs to an electron
(or a hole) and not to the nuclei. Many recents experiments have exploited this technique
[38][58] [59].

The intensity of B, proportional to I,., determines instead the speed of the Rabi oscilla-
tions between |1) and |]) spin.

In the perspective of a scalable spin qubit architecture, the use of magnetic fields to
control the spin is unpractical, because it is nearly impossible to localize the magnetic
field in order to affect only one qubit and not its neighbors.

Another drawback of using a stripline as an antenna could be the heating induced by the
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current flowing through it. However, this issue can be solved by using a superconducting
antenna.

a)

E;=815B,

Figure 2.11: Two possible schemes for electron spin manipulation on a n-type double array of QDs, as the one
of Chap. 5. In black are represented the field lines a) A metal stripline lies on top the dielectric covering the
array. An AC current flowing through it provides the alternating magnetic field necessary for electron-spin
resonance (ESR). A large static magnetic field By parallel to the Si nanowire split spin degeneracy by the Zeeman

energy Ez = gupBp. ESR occurs when the AC frequency equals ETZ . b) Alternative scheme for electron-spin
manipulation. The ESR stripline in a) is replaced by properly oriented micromagnets with magnetization M.
The micromagnets create a magnetic-field gradient along z, perpendicular to the static field By. As a result, a
gate-voltage modulation laterally shaking the electron wave function in the QD provides the oscillatory magnetic
field needed for electron-spin resonance. In other words, the micromagnets generate a synthetic SOC. Image
from [60].

As explained in the previous section, the SOC allows the direct coupling between an
electric field, that can be applied on the gate confining the QD, and the spin.

The spin manipulation through an electric field is usually denoted as electric dipole spin
resonance (EDSR) and it is the technique used in the experiments described in Secs. 5.7,
6.5,6.6. EDSR has also the practical advantage that high frequency electric fields are often
easier to apply and localize than magnetic fields,

The SOC mechanism is usually intrinsically strong for holes in a silicon nanowire. Con-
versely, when dealing with electrons in silicon, a synthetic SOC can be induced with a
local micromagnet, as shown in Fig. 2.11 b). The mechanism of EDSR with a micromagnet
was first presented in [50] for a 1D quantum dot.

The SOC is induced by the gradient in the local magnetic field of the micromagnet. As
can be understood from eq. 2.32, the SOC can be induced also by a local gradient in the
electrostatic field VV that allows the electron spin to couple with electric fields.
Another way to see this synthetic SOC is that when we apply an oscillating gate voltage
the electron wavefunction starts jiggling in a magnetic field gradient, experiencing an
oscillating magnetic field that would couple directly to its spin.

In a similar manner the gradient in the local magnetic field can also be induced naturally
by the inhomogeneity of the Overhauser field induced by the nuclei, as can be the case in
GaAs [61].

In the perspective of scaling up the architecture of Fig. 2.11 b), we should also consider
the independent control of each spin in multiple QDs (addressability), i.e. the Zeeman
energy, and hence the Larmor frequency, of each electron (hole) should be different. In
order to discriminate the Larmor frequencies, the g-factor of each electron (hole) or the
local magnetic field felt by each electron should be different. The magnetic field gradient
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produced by the micromagnet guarantee individual addressability, as well as enabling
electrical spin control.
When dealing with holes the g-factor of each QD is intrinsically different, ensuring that
each dot has a different Larmor frequency. The strong variability of holes g-factor is due to
the fact that the HH-LH mixing mechanism has a strong dependence from the magnetic
field direction [42][57].

2.10. ACTIVE INTERFEROMETRY MEASUREMENT OF A QUANTUM

DOT

In this section I describe an experiment that highlight the core principles of gate-based
reflectometry. Here we demonstrate that, through an interferometric technique, it is
possible to read small capacitance variations in the device without an LC resonator.
Interferometry was initially introduced as an extreme-impedance measurement tech-
nique[62].

The impedance of the device under test (DUT) Z, that here is the gate impedance, in our
case is usually between tens to few hundreds of kQ, much larger than the characteristic
impedance of the cables Z, = 50 Q and therefore nearly all the signal is reflected off the
device (see 2.12). It is therefore very hard to reach the sensitivity necessary to measure the
small variation of the reflected signal V; + § V- due to an additional quantum capacitance
in the DUT, on top of a way bigger signal (6 V; <« V}).

With the interferometric technique we demonstrate here we show that, by cancelling out
the reflected signal with another wave, it is instead possible to read small variation of
such a signal on top of a small amplitude quasi-flat signal (6 V, > V;, = 0)[63][64].

As explained in Sec. 2.4 the matching condition can be achieved with an LC resonator.
A scalable version of this technique to readout many qubits demands a considerable
engineering effort. The interferometry technique instead does not need any active com-
ponent at the sample level and is tunable in-situ. Nevertheless in a many qubit system the
electronics at the base temperature stage of the cryostat would be quite invasive, since we
need two directional coupler for each readout line.

We demonstrate the use of this technique by sensing single charge transport through a
QD in a silicon-on-insulator nanowire p-type transistor.

In the setup of Fig. 2.12 a), the RF signal is first split into two paths. The left path is sent
through a manual phase shifter, a pass-band filter, 40 dB of attenuation, and finally to
the coupled port of a directional coupler. The signal then, reflected off from the gate of
the device, passes back through the directional coupler and then to a second directional
coupler. This last coupler combines the reflected signal S(#) with the cancellation signal
from the right port of the power splitter C(#). This second signal arrives at the coupler after
passing through a variable attenuator, a pass-band filter, and 40 dB of fixed attenuation.
The signals are first summed with a directional coupler and then amplified and measured
with an IQ mixer.

We may say that such a system is the electrical equivalent of a Mach-Zender interferome-
ter.

The setting of the interferometric measurement essentially consist of two or three steps:

1. Find a frequency wq such that the the reflected signal S(¢,w) = AsT'(w)sin(wt +
wty(w)) and the cancellation wave C(¢,w) = Acsin(wt) are dephased by 7. The
term ty(w) is the delay between the two signals S(f,w) and C(t,w). It is due to the
difference between their paths and by the phase acquired after the reflection. For
a frequency w = wp the maximum phase mismatch is reached when wq fy(wg) =
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Figure 2.12: a) Schematic of the interferometry setup. b) Measurement of the amplitude and phase of the
demodulated signal for optimal phase mismatch and different amplitudes of the cancellation signal.

@2n+1)m.

2. Match the amplitude of the two signals, i.e. AsT'(wg) = Ac, by tuning the amplitude
of the cancellation signal. At this point S(#) + C(#) = 0.

3. Optionally the phase shifter can be used to readjust the phase of the reflected signal
without changing the working frequency. In our case this was comfortable because
the signal wasn't stable in time, because of very small fluctuations in the room
temperature electronics.

Once the cancellation is optimized, the total signal C(#) + S(#) is almost nullified.

At this point we are ready to measure the QD charge transitions that, as in the gate
reflectometry, can be detected if the tunneling rate is of the same order as the probing
frequency [65].

The big advantage of this technique over lumped element or distributed LC resonators is
that the working frequency can be tuned at will, since we are not obliged to match any
resonator frequency. In principle this could allow to detect dispersively charge transitions
with tunnel rate of several GHz, while in the gate reflectometry case the sensitivity range is
mainly determined by the ratio between the timescale of the probing tone and the charge
dynamics to be probed.

Moreover the amplitude and phase characteristics resembles the ones of an LC resonator,
as shown in Fig. 2.12 b). In analogy, we can define an effective Q-factor:

_f
- 3%

where A f is the FWHM of the amplitude signal. In the figure 2.12 b) it is shown a case
where Q = 5900. We manage to reach an effective Q-factor of= 40000. Unfortunately, even

Q
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though we observed that the magnitude of both phase and amplitude signal increases
linearly with Q, increasing the value of this Q-factor does not improve significantly the
signal-to-noise ratio (SNR) of the measurement.

In Fig. 2.13 it is shown a measurement of a Coulomb diamond in current, compared with
the interferometric measurement. The three measurements are recorded simultaneously.
The data presented are collected using an integration time of 100 ms per point. We can

a) current (A) b) Phase (rad) ) Amplitude (dBV)
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Figure 2.13: a) Measurement of Coulomb diamonds in current. The potential is applied on the source, as can be
noticed by observing that the transitions with the source are nearly horizontal in Vg. b,c) Phase and amplitude
of the interferometric signal. For these measurements Q = 10000.

observe only the transition line of the QD with the source, indicating that the dot wave
function (and hence the tunneling rates) is not symmetric.

There are two key limitations in the current setup. The first one is a poor signal-to-noise
ratio (SNR), such that we have to use an integration time of 100 ms, slowing down signifi-
cantly the measurement compared for example to RF gate reflectometry.

The second limitation is the significant drift over time in the RF signal. We currently
attribute this drift to the lack of phase stable cables at room temperature and the poor
stability of our phase shifter and variable attenuators. This issue could be solved by plac-
ing the variable attenuator and the phase shifter inside the cryostat, where temperature
fluctuations are negligible, and controlling them electrically.

Lastly we propose to combine the technique described with RF reflectometry. This
would mean to use a cancellation signal on top of the signal reflected off by an LC res-
onator. Amplifying the reflectometry signal might allow to increase its SNR and hence the
readout fidelity. However, empirically we found that with this technique the SNR of the
interferometry enhanced phase signal is around 2, which is not astonishing, but might
still be beneficial in terms of qubit readout fidelity. Further research is required to assess
the benefits of this technique when combined with RF reflectometry.
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METHODS AND MATERIALS

The journey of a thousand miles begins with one step.

Lao-Tze

In this chapter I describe the experimental setup used during my thesis. The electronic
setup is partially at room temperature and partially inside a He homemade dilution
refrigerator.

Particular attention is devoted to the the compact design of a noise filtering platform for
the DC lines and its impact on the electronic temperature.

In the end I explain the main steps and the motivations behind the fabrication process of
the devices made by CEA-Leti.

3.1. EXPERIMENTAL SETUP

The experimental setup mainly consists of a home made 3He dry refrigerator (shown in
Fig. 3.1) and all the instrumentation necessary for electric and dispersive measurements.
A dry, or cryogen-free, dilution refrigerator relies on a pulse tube (PT) for the primary
cooling of the cryostat, in place of liquid nitrogen or liquid * He used in a so-called wet
cryostat.

The primary cooling of the cryostat allows to reach = 3.5 K. At such a temperature the 3He
can start to condense and circulating in a close loop, allowing further cooling till =300
mK.

Inside the cryostat we wired 24 DC lines and 6 AC lines (2 for reflectometry in-out and 4
for pulsing).

A superconducting single-axis magnet is anchored at the second stage of the pulse tube
(at = 3.5K) and the sample holder is in a cavity inside such a magnet, but thermally con-
nected with the lowest stage of the cryostat. The magnetic field is always in the vertical
direction of Fig. 3.1 and to control the relative position between the sample and the field
orientation the only degree of freedom is to physically tilt the sample.

Alternatively 3-axis magnets are available on the market.

A schematic of the setup at the different stages of the cryostat is shown in Fig. 3.2.
Through the years such a setup has been improved continuously. Here the last version of
the setup is shown, used for the double charge-sensing experiment described in Chap. 6.
We use an ultra high frequency lock-in (UHF-LI) from Zurich Instruments for both the
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3.5 K plate
(second
stage of PT)

8T
superconducting
magnet

-—'r' - - \\«\2}'

1
400mK plate  sample
holder

Figure 3.1: Picture of the homemade dry 3He dilution fridge (named Tritonito). Each plate is at a different
temperature and is thermally insulated from the others by thin wall stainless steel tubes or fiber glass tubes. The
pulse tube (PT) used for the primary cooling of the cryostat is also separated in the first two thermally insulated
temperature stages, allowing stronger cooling power in the second stage. Credits to ulian Matei.

generation and the demodulation of the reflectometry tone. The printed circuit board
(PCB), surrounded by a green dashed line in the setup scheme, is the one shown in Fig.
3.3 b), which allows frequency multiplexing for the reflectometry tone. This means that
we are able to feed 4 resonators with a single RF tone carrying 4 different frequencies
and then we can demodulate the reflected signals at 4 different frequencies with the
UHEF-LI. The SMP ( Sub Miniature Push-on) connectors and the RF cabling indeed are
quite invasive (see Fig. 3.3 b) and, while we cannot save any space for what concern the
pulsing lines (4 in this case), it is crucial to save space at least on the readout lines.

The reflectometry tones are pass band filtered (PBF) at room temperature and attenuated
at different stages of the fridge to suppress thermal noise, as explained in Sec. 3.3.3.

The reflectometry tones are then added with the DC signals using a bias-tee, i.e. a diplexer,
mounted on a sample holder.

Such a bias-tee behaves as a low-pass filter from the DC side, where there is a resistor
(R =300 kQ) and as a high-pass filter from the RF side, where there is a capacitor(C = 220
pF). The cutoff frequency of the bias-tee can be calculated as f; = ﬁ. In general the
value of the cutoff frequency at low temperature is higher than the one expected from the
specs, because of the decreased value of the resistor at cryogenic temperatures.

The signal reflected by the device (RF out) is then separated from the incoming signals
(RF in) using a directional coupler (Mini-circuits ZEDC-15-2B).

The signal is then amplified using a cryogenic amplifier from Low Noise Factory (LNF —
LNCO0.2_3A), with a gain of =~ 32 dB for a frequency range between 300 and 500 MHz. At
this point the signal reflected by the resonator can be demodulated and analyzed using
the UHFLI.
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Figure 3.2: Schematic of the experimental setup from room temperature (right) to the sample (left). The
electronics in the PCB is sourrounded by a green dashed line for clarity. RF lines used for pulsing are highlighted
in red. All the DC lines are filtered and the AC lines attenuated. Each AC line is combined with a DC signal by a
bias-tee.

An arbitrary waveform generator (AWG) is used to send pulses of different shapes and
duration to the gates.

These pulses are crucial to move quickly between different charge states of the quantum
dot and eventually we can sum them with a microwave signal (in the GHz range) to drive
the spin of electrons or holes.

The pulses and microwave signals are combined using a diplexer (ZDSS-3G4G-S+), as
shown for the G4 line.

The UHF-LI has an integrated AWG and this is practical because we can use the same
UHF-LI also to trigger the microwave burst and, eventually, use the same trigger to turn
on-off the reflectometry tone.

In an analogue manner to the RF tone also the pulses are attenuated and added with the
DC voltages using bias-tees (R = 300 kQ, C = 10 nF).

The DC voltages are generated at room temperature using a rack of low noise digital
to analog converters (DAC) from iTest company (BE2142).

The DC lines are further low-pass filtered at the lowest stage of the cryostat using a series
of low-pass filters, as it will be explained in detail in Sec. 3.3.2.

Finally current flowing through the device can be read from either source or drain. Such a
current is amplified at room temperature, using a low noise transimpedance amplifier
(TIA) with variable gain (Femto DLPCA-200), and converted into a voltage. The voltage
signal can then be read using a digital multimeter (dmm) and reconverted into a current
by knowing the gain of the amplifier, which is typically 102.

Eventually, the source/drain contact can be grounded if current measurement are no
longer necessary.
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3.2. SAMPLE PREPARATION

We receive our devices in a 300 mm wafer, composed of 298 dies with dimensions of
~ 13 x 16mm? , of which 48 are processed with electron beam lithography and are the
ones of interest.

These dies are nominally identical and all the devices with one to four gates are tested in
an automatic probe station (there are only 6 needles on our probe station).

From the room temperature characteristics we can guess which device is more suitable to
be studied. Nevertheless, to have something more accurate than a guess, a low tempera-
ture screening would be necessary as for example using a cryogenic probe station (see
Fig. 4.1).

We then cut the wafer in dices using a diamond pen. After doing a small cut, by applying
a small pressure, the wafer breaks straight along the silicon crystalline axis.

After dicing we need to further cut the part where there is the sample of interest in order
to fit it in the sample holder, where the space for the sample has an area of 5 x 5mm?.
The sample holder is a printed circuit board. In Fig. 3.3 a),b) we show the two PCB used
respectively in the experiments described in Chap. 5 and in section 6.6 and the one used
for the other experiments of chapter 6.

.
.

.
.
.

Figure 3.3: Two PCBs used respectively in the experiments of Chaps. 5, 6.6 and in 6. In a) there are two RF lines
for reflectometry and two for pulsing (SMP connectors are in the four corners on the back of the PCB). In b) one
reflectometry line (bottom connector) is split into four lines on the PCB, while the other four (out of six) RF lines
are used for pulsing.

The main improvement of the new PCB is the possibility of multiplexing the 1f lines,
allowing 4 lines for reflectometry readout. The possibility of multiplexing the reflectome-
try lines without significant cross-talk is a fundamental step towards the scaling of this
readout technique.

3.3. NOISE FILTERING

The most relevant noise sources are Flicker noise (often referred to as 1/ f noise) and
thermal noise.

The 1/ f noise generally dominates at low frequencies and hence is the dominant noise
source for DC voltages.

The thermal noise is instead dominant for AC voltages.
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Figure 3.4: a) One-stage RC filter, b) two-stage RCL filter, and c) the Minicircuits 7 stage LC filter, also called
n-filter. The attenuation as a function of frequency is measured at 4.2 K. From Ref. [1].

3.3.1. DC NOISE

Here it is described in detail a compact filter for 24 DC lines, placed in the coldest stage of
the cryostat.

In principle the low frequency noise can be cut just by using low-pass filters stacked in
series. However these filters re-open at high frequencies because of parasitic effects. An
example of the typical behaviour of 3 different low-pass filters is shown in Fig. 3.4. Many
strategies have been developed to cut high frequency noise, such as metal powder filters,
relying on skin damping effect [2], thermo-coaxial filters[3], PCB based metal powder
filters [4] and PCB filters based on lumped-elements.

The metal-powder filters rely on the fact that, because of skin damping effect, the re-
sistance of the material increases with the signal frequency (R « v/(w)) and the high
frequency are therefore heavily attenuated.

We use lumped-element components mounted on a PCB. Stacking many low-pass filters
together allows to attenuate the noise also in the re-opening window of the other filters.

The two main objectives that justify the development strategy of these cryogenic fil-
ters are the minimization of electrical noise and electronic temperature.

We realized two versions of the filters with dimensions a 86x63 mm? and 99x44mm?.
These dimensions could be further reduced, but a bigger space between the components
helps to avoid ground loops and to reduce the heating due to the electrical signal passing
through.

3.3.2. KIKASS FILTERS: PCB LAYOUT

Two differents PCBs have been designed in order to cover different frequencies range.
The idea is to stack the two PCBs together through a micro-D connector with male input
and female output. However the two boards can also be used independently.

The only difference in the design of the two boards are the footprints for the soldering of
different components.

The so-called KiKass RC board is designed to cut low frequencies, filtering a range between
100 kHz and 80 MHz. The KiKass RF board is instead designed to cut higher frequency
noise.

The KiKass RC PCB makes use of a 7 stage pi-filter LFCN 80+ with a cutoff frequency of 80
MHz and 2 RC filter.

The RC filter mounted on the central part of the board are realized with C = 2.2 nF and
R =500 Q, giving a cutoff frequency of f,=144 kHz.

The last RC filters are instead realized with C=1 nF and R=1.2 kQ, giving a cutoff frequency
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I

Figure 3.5: Schematics of a 4 copper layer PCB with different type of vias. We used blind vias for interconnection
between components. The through hole vias are plated and are used to share a solid ground between different
layers and to avoid thermal gradient between the different layers of the board.

of f.=132 kHz. The re-opening of the filter due to parasitic effect is dominated by the
capacitors. The choice of two close cutoff frequency values with different combination
of the components values ensure that re-opening of one of the two filters for a certain
frequency will be compensated by the attenuation of the other filter.

The KiKass RF PCB makes use of three 7 stages pi-filter with cutoff frequencies of respec-
tively 80 MHz, 1.45 GHz, 5 GHz.

The components used have been previously tested at 4 K and they still offer performances
close to their specs at room temperature. In the following tab we list the names of these
components.

type of component KiKass RC
n-filter (f. = 80 MHz) LFCN 80+ KiKass RF n-filters (f¢)
R (500 Q) RR05P499KDCT-ND LFCN 80+ 80 MHz
R (1.2 k) RR0O5P1.2KDCT-ND LFCN 1450+ 1.45 GHz
C (2.2 nF) C1206C222J5GAC AUTO || LFCN 5000+ 5GHz
C(nF) C1206C102J5GAC AUTO

These components are selected based on their small size, availability, and performance at
extremely low temperatures.

We opted for a 4 copper layers design, as schematized in Fig. 3.5.

The space between different layers is filled with FR4, an electrical insulator.

The conducting layers are plated with electroless nickel, covered by a thin layer of gold,
which protects the nickel from oxidation. This technique is widely used in PCBs manifac-
turing (Electroless nickel immersion gold, or ENIG).

The surface-mounted components are placed on the external layers. In particular, 12 DC
lines are in the front layer (label F1-F12) and 12 are in the bottom one (label F13-F24). A
top view of the two boards is shown in Fig. 3.6.

The connections between components belonging to the same line are realized through
blind vias, i.e. vias that pass through an inner layer and go back to the outer one only for
the connection with the next component (see Fig. 3.5). This provides a better thermaliza-
tion of the electrons and shielding from electromagnetic interferences.

A good thermalization of the inner layers is also favoured by many through hole vias. Also
these vias are plated with ENIG, favouring a better thermalization of the inner layers. The
other aim of these vias is to provide a strong common ground for all the layers.

We decided to not use any solder mask (usually green layer on top of the PCB) on our
boards. These masks are just an help for the manual soldering but prevent the ground
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a) Low frequency filters fc=130 kHz b) High frequency filters fc=80 MHz
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Figure 3.6: a) KiKass RC board, designed to filter low frequency noise; b) KiKass RF board, for high frequency
noise. The connections between the components are in the inner layer of the board. The labels for the lines
F1-1, F12-1 indicates the input side of the board. There are other 12 lines on the other side of the board.

Figure 3.7: a) Bottom side of the board with the metal cage around. b) Inner side of the board cage. The big
holes are for screwing the cage and the board together. A small vent hole in each groove allows vacuum to enter
inside the cage, and is also helpful for the cooling of the board.

plane to be exposed and hence to thermalize.

Moreover a metal enclosure can be mounted on top of the PCB.

It is a Faraday cage and provides shielding from electromagnetic interferences.
Eventually it can be done with highly conductive gold-plated copper, providing a further
aid for an efficient cooling of the PCB.

This cage can be directly screwed on the mounting holes of the board, providing a solid
thermal contact (Fig. 3.7).

In the inner part of the cage three small grooves are necessary to reserve few mm of space,
corresponding the components height. Also a small vent holes is present in each groove,
in order to help vacuum to enter the and to cool the board. Some lateral holes allows to
attach the board enclosure directly to the lowest temperature plate of the fridge, again to
help the thermalization.

Finally it is also important to pay attention to the wiring of the lines carrying the DC
signals to the filters. A useful trick to further reduce the DC voltage noise before the filters



50 3. METHODS AND MATERIALS

is to use shielded twisted pair cables[5], i.e. two insulated loom of copper wires twisted
together in a double spiral shape. One of the wire is used for transmitting the voltage
and the other one as a ground reference. In this way some part of the noise signals is in
the direction of data signals while the other parts are in the opposite directions. Thus
the external waves cancel out due to the different twists. In this way a better immunity
against noise is obtained.

3.3.3. THERMAL NOISE

At high temperature (more than 4K) the phonon temperature, is usually equal to the
electronic temperature of the device under test.

When going down to low temperatures, around hundreds of mK, electrons and phonons
are decoupled and the phonon temperature can be seen just as a lower bound for the
electron temperature.

A proper cooling of the electron allows to reduce the thermal noise.

The thermal noise is essentially given by the blackbody radiation, that in one dimensional
cables is known as Johnson-Nyquist noise.

The Planck’s law provides the energy of a one-dimensional blackbody:

hf

U = e

(3.1
Such an energy can be seen also as the noise power per unit of frequency (J=W/Hz), or
power spectral density.

In the classical limit 2f <« kpT one recovers the original Johnson-Nyquist formula
U= kB T.

In a coaxial cable connecting room temperature electronics to base temperature circuits,
thermal photons propagate in both directions. To reduce the spectral density of thermal
radiation a series of attenuators is installed at each stage of the cryostat.

Actually such a noise could be either filtered or attenuated. It has been shown that at-
tenuators perform better than non attenuating filters regarding the performance of a
superconducting qubit [6].

An attenuator effectively acts as a beam splitter. If for example we use an attenuator
of A; =20 dB, i.e a factor 100 in power, the attenuator transmit 1/ A; of the incident signal
and adds blackbody radiation on the rest of the signal (1 —1/A;), with the energy given
by the temperature at this stage (U; (T, f)). Differently from the signal, the blackbody
radiation propagates in both the directions.
The noise power density at a certain stage of the cryostat with attenuation i can therefore
be expressed as

vi=22 - Sy, (3.2)

14 Al Al 4 .

where U;_, is the noise power in the previous stage of the cryostat. The attenuation is
expressed in terms of power ratio.
An important remark here is that for kHz frequency the approximation U = kg T holds
well also for temperatures of few hundreds mK. When considering higher frequencies
instead we should use the formula 3.1.

3.4. EFFECTIVE ELECTRONIC TEMPERATURE WITH DC FILTERS

We measured the electron temperature in a Bluefors dilution refrigerator, that can go
down to 10 mK. We realized this measurement to evaluate the performances of the filters
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described in the previous section.

In order to extract the electron temperature we consider a transition between a quantum
dot and its nearby lead. The device we refer to here is the same p-type device used for the
qubit described in Sec. 6.5.

The device has 4 gate (Gy,2,3,4) in series separated by 40 nm each. A big quantum dot
is accumulated below gates G3, G4 in order to sense charge transition of the small dot
accumulated below gate G,. The sensor tuning procedure is explained in 6.1.

The transition is detected through an RF charge sensor on the reservoir, as it will be
explained in Chap. 6. The transition used is shown in Fig. 3.8 a). The width of the
transisition is given by the Fermi energy distribution of the holes in the lead[7][8][9].

1
fle) = ———— (3.3)

l1+e *87T

The experimental data and their fits (black solid lines) for 3 different temperatures (using
eq. 3.3) are shown in Fig. 3.8 b). In order to realize these fits we first have to measure the
lever-arm parameter along the dot-lead direction €. By assuming that at the highest tem-
perature measured (650 mK) the electronic temperature is equal to the mixing chamber
(MC) temperature, the lever-arm can be extracted by fitting the charge signal with the
Fermi function 3.3. We can use the lever-arm found, i.e. @ =0.38+£0.1eV/V, to fit the
same curves at lower temperature.
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Figure 3.8: a) Charge sensor signal corresponding to a transition between a big quantum dot, accumulated
below gate 3 and 4, and its lead. The signal is measured through an RF charge sensor on the drain and is sensitive
to charge shift in the dot accumulated below gate Go. The red arrow indicates the direction of the dot-lead
axis €. b) Normalized phase corresponding to the same transition at different temperatures. Black lines fit the
data with a Fermi function. c) Electron temperature measured in correspondence of the mixing chamber (MC)
temperature.

The values of the effective temperature extracted from the fit are plotted together with the
temperature of the mixing chamber (Fig. 3.8 c)).

We can observe that below 150 mK the electronic temperature starts to be decoupled from
the temperature of the phonons.

Many of the experiment described in this thesis are performed in a *He refrigerator, whose
base temperature is between 350 and 450 mK. At the wiring and filtering level there is not
a huge different between the setup of Fig. 3.2 and the one used for the experiment of Fig.
3.8. Therefore for many experiments, when not explicitly stated, we'll assume that the
electronic temperature is the same as the fridge temperature.




52 3. METHODS AND MATERIALS

3.5. DEVICE FABRICATION

In this section it is described the detailed process flow that leads to our quantum dot
devices. It is worth to remark that the details reported here are specific for the device
described in Chap. 5, and few steps of the fabrication might slightly change for other kind
of devices. Nevertheless the main step of the process are always essentially the same.

Our quantum dot devices are fabricated on 300 mm silicon-on insulator (SOI) wafers,
adapted from a commercial fully-depleted SOI (FDSOI) transistor technology [10]. A
fully depleted SOI MOSFET has a very thin top silicon layer, in this way the channel is
completely depleted from the majority carriers. Since the SOI layer is much smaller than
the depletion width of the device its potential is tightly controlled by the gate. Starting

300mm SOI wafers a)
Tsi/Taox = 12nm/145nm

Active mesa patterning

Thermal oxidation b) \
High-k/MG stack dep. & patterning

1.9nm HfO,/5nm TiN/50nm Poly Si

64nm pitch

15t spacer |
25nm SiN

Raised S/D epi

18nm Si

LDD implant and anneal
2" spacer
HDD implant and anneal

Salicide and BEOL

Figure 3.9: Left: Summary of the fabrication process. Right: Visual representation of the main step of the
process flow from top to bottom: a) starting from silicon (blue) on top of SiO> yellow). b) The silicon layer is
etched, leaving only the active silicon channel (mesa patterning). c¢) The metal gate (green) is created on top
of the undoped Si channel. d) First spacers (light blue) are deposited, in order to protect Si channel from ion
implantation.

with a blank SOI wafer (Fig. 3.9 a)) (12 nm Si / 145 nm SiO>), the active mesa patterning is
performed in order to define a thin, undoped nanowire via a combination of deep-ultra-
violet (DUV) lithography and etching (Fig. 3.9 b)).

With the current mask set the channel width can be varied between 80 and 120 nm. How-
ever, these dimensions can be further reduced using a step of resist trimming prior to
silicon etch.

Then, a 6 nm thick SiO, gate oxide is grown via thermal oxidation. Typically this process
consumes roughly 3 nm of Si, and after the thickness of the silicon nanowire is around 10
nm.

To define the metal gate, a 5 nm thick layer of TiN followed by 50 nm of n-doped polysili-
con is deposited (Fig. 3.9 c)).

Then, 25-nm thick SigN, spacers between gates and source/drain(S/D) regions are formed
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(Fig. 3.9 d). The spacers are crucial to protect the undoped channel from the ion implan-
tation.

In standard devices, spacers are relatively small (= 10 nm) so that the junctions lie at the
edge of the gate or slightly overlap it (with a compromise to find to avoid "short-channel”
effects). For our purposes, we make them much larger than usual to offset the position of
the charge reservoirs and define tunnel barriers between dot and reservoirs [11]. Indeed
wide spacers allows better gate-defined quantum dot confinement, since a thin and un-
doped SOI region separates the dot from the reservoirs.

Afterwards, raised S/D contacts are regrown to 18 nm to reduce access resistances.

Then, to obtain low access resistances, S/D are doped in two steps: first with lightly-
doped drain (LDD) implant (using As at moderate doping conditions) and consecutive
annealing to activate dopants, and then with highly-doped drain (HDD) implant (As
and P at heavy doping conditions). In between LDD and HDD an additionnal spacer is
deposited to offset them and create some kind of dopant concentration gradient from
S/D to channel (in microelectronics, this limits hot carrier effects).

It is worth to remark here that p-type dopants (Boron in our case) usually diffuse more
than n-type dopants, reducing the mobility close to the reservoir contacts, as it will be
shown in Sec. 4.9.

The gate and lead contact surfaces are then metalized to form NiPtSi (salicidation). In
this way the contacts are ready to be connected to the bonding pads on the external part
of the wafer.

These interconnections to bonding pads, are made using a standard copper based back-
end-of-line process (done by ST microelectronics). In this process the device is also
encapsulated in a protective glass of SiO; and SiN.

The device in the end is buried 2-3 ym below the wafer surface.

Furthermore, this technology can be extended to realize multi-gate devices, with N
gates in series or 2xN arrays with the gates on the opposite sides of the silicon channel
[12][13]1[10][14]. The gate patterning can be done by etching the gates using electronic
beam litography (EBL). For example a long gate of Lg = 280 nm can be cut in 4 gate of 40
nm, with 40 nm spacing in between each of them.

These linear an bilinear arrays of gates (or even 3-d structures in the future) may allow to
develop quantum dot based quantum computing platforms of increasing complexity.
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QD CHARACTERIZATION FROM
ROOM TEMPERATURE TO 4K

The only true wisdom is in knowing you know nothing

Socrates

In this chapter I discuss the problem of a systematic characterization and benchmarking
of qubit devices, focusing on some extraction methods for a fast and systematic evaluation
of the QD properties. Furthermore I will present a study of the gate dependent mobility
in a five-gate device, demonstrating that the more a gate is far away from source/drain
contacts the better is its mobility. This justifies the experimental strategy of the following
chapters of working with QDs as isolated as possible from the reservoirs.

4.1. A SYSTEMATIC CHARACTERIZATION OF QUANTUM DOT DE-

VICES

In the first part of this chapter I discuss the problem of performing QD measurements
over a large number of samples using a fast and systematic approach.

The procedures we are going to describe can help acquiring statistical information on
the QD electronic properties, as well as identifying just QDs having the lowest amount of
charge traps, dopants or any other kind of defects.

I show also how to obtain information about the size and the energy-level spacing of a
QD.

Systematic measurements of 300 mm wafers are a common routine in semiconductor
industry, where automated probe station are available since a long time. Instead only
recently the Finnish company Bluefors has developed an automated probe station for
cryogenic measurements (Fig. 4.1) of a 300 mm wafer, reaching temperatures down to 2
K.

In fact, even though commercial cryogenic probe station were available even before, they
weren't designed to measure 300 mm wafers.

The work described in the following has been part of my internship at CEA-LETI. Al-
though the measurements of this chapter are performed in a liquid helium dewar, they
serve as a test bench to guide the development of systematic procedures for wafer-scale
characterization at low temperature in the Blufors probe station.
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Figure 4.1: Cryogenic probe station designed for measurements of 300 mm wafers.

4.2. ROOM TEMPERATURE CHARACTERIZATION AND COMPARI-

SON WITH LOW TEMPERATURE PROPERTIES AT HIGH BIAS

We first discuss the useful transistor parameters that are used by the microelectronics
industry in order to quantify the device performance.

Normally industries target high mobility and large Ion/IoFF ratio.

This allows to operate at low gate voltage Vg, and therefore to decrease power consump-
tion and to mitigate self-heating issues.

For quantum dot devices instead these problems are not relevant yet. We are interested in
evaluating the reproducibility of the fabrication process, as well as defining the properties
that defines a good QD.

We also want to compare the device properties at low temperature and at room tempera-
ture. As we will see in Sec. 4.9 the analysis of the mobility as a function of temperature
allows to determine the concentration of neutral defects, which might eventually have a
negative impact at the level of the spin qubit coherence time.

In the first part of this chapter we study single gate CMOS-like device, where, as ex-
plained in Sec. 3.5, the long spacer that separates the gate from the reservoirs allows local
confinement of charges at low temperatures.

At room temperature the QD device behaves as a standard transistor, while at low temper-
ature a similar behaviour is restored only when the bias applied is much bigger than the
addition energy (eV;s > E 454 =1 —10 meV). We then compare the I(V) characteristics
at low and room temperature by keeping fixed V;; = 50 mV.

I first define the main parameters we want to measure:

* Threshold voltage Vy: it tell us the minimum V;; needed to create a conducting
path between the source and drain terminals. It is worth to remark that there are
many different extraction techniques for this value, e.g. using eq. 4.4 or 4.8. The
definition of this parameter is not unique, and its value will be slightly different
depending on the extraction method.

 Subthreshold swing SS, measured in mV/dec. A dec (decade) corresponds to a 10
times increase of the current I, and the SS is the required increase in V; to increase
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the current by a factor of 10.

In the subthreshold region, the drain current has an exponential dependence on
gate voltage, reflecting a thermally activated carrier concentration [1]. The I(V;)

eVg

relation can be expressed as I < e™ 57 where e is the elementary charge, kg is
the Boltzmann’s constant, V;; the gate voltage applied, and n is the subthreshold
ideality factor. Then the expression of SS can be obtained by taking the derivative
of Vi with respect to log I:

_ dVg _ kgT
SS(T)_ndlog(I)_n( - )lnlO (4.1)

At room temperature the ideal value of the SS (for n=1) is expected to be approxi-
mately 60 mV/dec.

However, given the complexity of the fabrication, a transistor is very likely to contain
various kinds of defects resulting from interface traps, residual impurities, strain,
charges in the oxide, surface roughness etc.

Despite the existence of different types of disorder, the interface traps density is the
main parameter used to quantify the degradation of SS for FD-SOI transistors. The
interface traps distributed on the Si/SiO; interface generate an additional parasitic
capacitance Cj7, connected in series with the silicon oxide capacitance Cpx. More-
over, the depletion capacitance Cp [2], connected in series with Cox should also be
taken into account.

The ideality factor n quantifies the impact of these additional capacitances over the
transport and can be expressed as [3]:

Cir+C
n=1+-Lr=b 4.2)

Cox

e I,, can be defined as the current at V; = Vyj, + 500 mV.

Io ¢y can be defined as the current at Vi = Vi, — 500 mV.

* The device resistance can be calculated in strong inversion (Vg > V;,) simply with
the Ohm’s law: R = Vy/ 1.

Here Vyy, is evaluated by taking the tangent of the I(V;;) curve where its slope is maximized,
and then taking the intercept with the Vg axis as Vy;,, as shown by the dashed lines of Fig.
4.2.

For bias V5 > E ;44 our QD devices behave standard transistors and we can compare the
same parameters at room temperature and at low temperature.

In Fig. 4.2 it is shown the comparison between the room temperature (V) curve and the
one measured at 4 K (both with V;; = 50 mV), for a device with channel width W=70 nm
and gate length Lg= 50 nm.

From the two (V) curves we measured the threshold voltage V;j, which increases from
70 to 480 mV at 4.2 K. An increase of V;, at low temperature can be understood thinking
that many charges are frozen in the impurities present in the channel and higher V; is
needed to open the conductive channel.

A model to calculate analytically V;;, taking in account both freezeout and field-assisted
ionization in the Poisson-Boltzmann equation is presented in [4]. Electron scattering
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Figure 4.2: Comparison between the source current /g measured at room temperature and in the helium bath.
For both V,;; = 50 mV. The values of V;, are respectively 70 mV and 480 mV.

in the channel is reduced at low temperature, as a consequence the channel resistance
decreases, varying from 108 kQ) at room temperature to 84 kQ at 4.2 K.

For what concerns the subthreshold swing we measured a value of 173 mV/dec at room
temperature, and 96 mV/dec at 4.2 K. As expected the I(V;) curve is steeper at low tem-
perature [5], and hence the SS is lower. The main factor affecting this parameter is the
temperature-dependent occupation of interface charge traps.

4.3. COULOMB-DIAMOND ANALYSIS METHODS

In the previous section we used a high bias V;; > E, ;4. By studying the behaviour of the
device at lower bias (VtE;44), as explained in Sec. 2.2, we can measure the energy-level
spacing of the dot, as well as its size and the gate lever-arm parameter a.

We could extract the addition energy and the gates and reservoir lever-arm through an
analysis of Coulomb diamonds, using formulas 2.6. The main problem is that an accurate
measurement of many Coulomb diamonds can be extremely time consuming.

The measurement of the Coulomb peak position in gate voltage Vg) is trivial and the
problem is reduced to extract either E ) or a? for each electronic configuration.

a
I developed three analysis methods with the goal to reduce as much as possible the
measurement time.

* Coulomb peak analysis at zero bias: This method is based on the assumption that
the broadening of the Coulomb peaks is dominated by temperature (kg T > il).
It relies on fitting each Coulomb peak with eq. 2.8 or 2.9 to determine the filling-
dependent lever-arm a'?.

* Diamond reconstruction method: This method relies on finding the edges of the
diamonds from a few I(V) measurements at different source/drain bias voltages. A
reconstruction of the diamond edges allows to measure directly the addition energy
Efl’ji 4 of each diamond, defined as the bias energy eV, such that the two edges
intercept.

* Line cut across the Coulomb valley The diamond axis is defined by the minima of
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the Coulomb oscillations (valley) at different bias. This method relies on finding the
diamond axis from a few I(V;) measurements at finite source/drain bias voltage. A
measurement of the current along a diamond axis, where transport is ruled by eq.

2.11, allows to determine E®
add

In the following I'll describe each method in detail, evaluating pro and cons of each of
them.

4.4, COULOMB PEAK ANALYSIS AT ZERO BIAS

At 4.2K we are very likely in a regime where the tunnel coupling rates are negligible
compared to temperature (kg T > Ail'). In this regime, the peak width is determined solely
by temperature.

However we observed that the peak width in V;; increases with the number of electrons
N in the QD. This is due to a V5-dependent lever-arm.

Therefore by measuring the width of each peak we can obtain the lever-arm parameter
a'”, which is found to decrease with N.

In order to fit the peaks all together, we can rewrite one of the equations 2.8 or 2.9 as a

. . . 1 . ; (@)
sum of peaks, each one with its own amplitude A% and width o ﬁ‘}‘C;T. We use the

following fitting function:

N aD (W - Vg)
Y ADcosh™2 | 1(Vg) = ——5— 4.3)

i=0 BkpT

Where the parameter f takes the value 2.5 or 2 depending on whether the QD level spac-
ing is smaller (classical limit of eq. 2.8) or larger (quantum limit of eq. 2.9) than kgT,
respectively.

With few considerations about the dot size and temperature, we can understand that we
are always in the classical Coulomb blockade regime (kg T > Ap).

To appreciate the quantized level spacing of the dot its size must be such that its en-
ergy level spacing is bigger than the thermal broadening of the Fermi distribution of
the reservoirs, i.e 3.5 kp T. For a temperature of 4.2 K we have 3.5kpT= 1.2 meV, and to
appreciate the level spacing the corresponding dot diameter (using eq. 2.4) should be
< 20 nm, which is a realistic estimate when the dot is in the few-electron regime.
However, in these quantum dot devices we cannot observe the few-electron regime in
transport. This is due to the fact that in the few-electron regime the tunnel rates through
the barriers become too small, preventing measurable currents.

For the first observable transitions we can estimate the dot area from the spacing between
adjacent peaks AV using eq. 2.2. We measured AV = 10 mV, which tells that the ex-
pected dot diameter is = 60 nm.

Assuming that the dot is a planar disc we can calculate the expected level spacing using
eq. 2.4, which provides Ay = 130 peV, smaller than the thermal energy.

In practice at a temperature of 4.2 K, considering the tunnel barrier and the size of the dot
studied here, we are in the classical Coulomb blockade regime (eq. 2.8) for all the peaks
observed and we can assume f = 2.5.

In order to fit N Coulomb peaks with eq. 4.3, in principle we need to fit 3N parame-
ters, i.e. (A9, a®, VG(”) for i =1,...,N. The peak position Vé‘) can be easily measured as
the maximum of each conductance peak and fed as input to the fitting function. Therefore
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the fitting parameters are reduced to 2N.

The results obtained using this fitting function are plotted in Fig. 4.3.

Fig. 4.3 shows: a) linear conductance measured with applied voltage V;; = 100 ueV,
smaller than the thermal energy at 4 K; b) gate lever-arm «a extracted from the fit of each

peak as a function of gate voltage; c) addition energy calculated as E;’; 4= Qi (VG(”D - Vg)).

This method in principle is the fastest one, since it requires only a single, high reso-
lution measurement of the linear conductance as a function of gate voltage.

Moreover on other devices, with smaller dots and/or tunnel barriers, it would be possible
to observe the few-electron regime, where eventually only one energy level contributes to
transport. In this case the fitting model should take into account a transition between
quantum (f = 2) and classical ( = 2.5) Coulomb blockade regime when increasing V.
Another drawback of this method is that the model may fail for very high electron filling,
because when hI' > kg T the weak coupling model fails.

A possible generalization of this method could be to use a self-adapting fit function, able
to analyze each peak and to choose the model (weak coupling classical or quantum, or
coherent regime) that minimizes the standard deviation of the fit.

4.5. DIAMOND RECONSTRUCTION METHOD

In this section I describe a technique to reconstruct the position of the edges of the
Coulomb diamonds.

This method relies on extracting numerically the transconductance d1/dVg. The posi-
tion of a diamond edge can be defined as the one where dI/dV; has a maximum or a
minimum.

A measurement of the signal in current and its derivative for different source-drain bias
voltages is shown in Fig. 4.4 a), b).

A Coulomb peak generically identifies a region where the charge oscillates between N
and N + 1, and it lies between two blockaded region with a fixed charge of N (on its left)
and N + 1 electrons (on its right).

The vertical dashed lines in Fig. 4.4 identify the edges of a single-electron transport region
corresponding to the N — N + 1 charge transition at Vs = 2.5 mV.

Hence the left flank of a Coulomb peak would correspond to the right edge of the N
electrons blockaded region, whereas its right flank corresponds to the left edge of the
N +1 electrons blockaded region. From Fig. 4.4 a) we can observe that for increasing bias
the single-electron transport regions broaden following the diamond edges, and from the
extrema in dI/dV; we can reconstruct the Vi position of the diamond edges, as shown
in Fig. 4.4 b).

A few line cuts at different V;; can be sufficient to reconstruct the the diamond edges
through a linear fit of the points found. The V,;; values corresponding to the intercepts of
these lines provide the addition energies.

An example of diamond reconstruction is shown in Fig. 4.5, for another sample with
Lg =310 nm, W = 80 nm. The results obtained for the same sample of Fig. 4.4 will be
shown in Sec. 4.8, where the 3 methods are compared.

Figure 4.5 shows a comparison between the diamonds reconstructed from line cuts and
the corresponding full measurement of current vs (Vg, Vys).

This method, differently from the previously described one, keeps on working when a few
mV source-drain bias voltage is applied, regardless of the type of conduction regime and



4.5. DIAMOND RECONSTRUCTION METHOD 63

a)
I/Vy, (A/V x107)
25 4 — data
o] | —fit
15 4
10 4
o
0.35 0.40 0.45 0.50 0.55
Vs (V)
b) a(ev/V)
0.55
0.50 ®
0.45
0.35 +
0.30
0.25 ’
0.20
375 400 425 450 475 500 525 550
Vs (mV)
c) Easa(meV) ¢
o + . .
5 R
'
3
s )
375 400 425 450 475 500 525 550
Vg (mV)

Figure 4.3: a) Linear conductance I/V vs V. The experimental data are in blue, the fit in red. Here V;; = 100
eV, B =2.5. b) Evolution of the gate lever-arm parameter « as a function of V. c) Addition energy as a function
of gate voltage. The measurement of a¥) allows to express the distance between two Coulomb peaks as an
energy: Ez(zlz)jd =g (Vé’“) - Vé’)).



64 4. QD CHARACTERIZATION FROM ROOM TEMPERATURE TO 4K

35
30
25

2.0

I(nA)

05

0.0

O
~—

o
w

dl/dVg (nA/mV)

420 430 440 450 460

Vg (mV)

Figure 4.4: a) Measurement of current I as a function of gate votage, V; for three different source-drain bias

voltage (blue,orange,green), taken at V,;4=0.5,1.5,2.5 mV, respectively. b) Numerical derivative ddTIG of the line

cuts in a). The two vertical green dashed lines pinpoint the position of a maximum and a minimum in the ddTIG
trace at V¢ = 2.5 mV, identifying the V(; position of the diamond edge.

it is therefore more extensively applicable.

On the other hand, the code required for this data analysis is significantly more complex
than the one employed in the previously described method, which involves a rather
simple fit.

The differences in the slopes of the two diamond edges can be associated with an asym-
metric capacitive coupling of the gate with the two reservoirs and/or to an asymmetric
bias applied.

In the case studied here the bias is not symmetrically applied on the two contacts, but
we bias on the drain and measure the current Iy on the source, and the I/V converter is
connected to ground.

If we start with the dot electrochemical potential aligned with the source, after applying
a bias AV, on the drain, the quantum dot electrochemical potential stays close to the
source Fermi level, moving only slightly because of the drain-gate a,, and gate-source
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Figure 4.5: Reconstructed diamonds superimposed to a measurement. The current is plotted in a logarithmic
color scale and it is saturated on purpose (black color for every current less than 0.2 nA) to help in visualizing the
diamonds. For the reconstructed diamonds the bias axis is shifted by 0.6 mV, to compensate for the bias offset
in the experimental measurement. Green points: measured edge positions for different bias voltages (maxima
of dI/dVg). Red points: measured edge position for different bias voltages (minima of d1/d V). Green and red
lines: reconstructed edges.

cross coupling ag-s, and a small gate voltage applied is sufficient to realign them.
Conversely, starting with the dot electrochemical potential aligned with the drain, after
applying AV, to keep the dot aligned with the drain we should apply a gate voltage
eAVi = ag-pAVys, bigger than the previous case.

As a consequence the transition with the ohmic contact where the bias is not applied
(source in this case) will be steeper in the Vi — V, plane since, after a variation of the
drain-source bias, a smaller gate voltage variation is sufficient to realign the electrochemi-
cal potential of the dot with the Fermi energy of the drain. Therefore we can relate the
left edge (red lines in Fig. 4.5) of each diamond to a resonant dot-drain transition and
the right one (green lines) to a resonant dot-source transition, as explained in the energy
diagram of Fig. 2.4.

We note that the reconstruction works better for the less steep diamond edge (red one in
Fig. 4.5). A symmetrical bias therefore would be beneficial when using this technique.

For each edge I impose two constraints in the reconstruction algorithm: on its slope
and on its intercept with the V; axis. The intercept with the V;; = 0 axis must be in
proximity (+0.05 mV) of the peak position measured in the linear conductance regime (at
Vs =100 uV), while the slope must be positive (negative) for the raising (lowering) edge
of the diamond.

From the V; position of the intercepts of all consecutive pairs of diamond edges we
can obtain the addition energies Eé’()j 4 of each charge state i, together with the corre-

sponding gate lever-arm: a' = Zedd.
AvY
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4.6. LINE CUT ACROSS THE COULOMB VALLEY

The first step of this method is to find the axis of each Coulomb diamond, namely the
line connecting its two apexes. To do so we look for the V position of the conductance
minimum at different bias. We make the reasonable assumption that the diamond axis
lies close to the line connecting such minima (valley).

Here I define also V as the projection of the diamond axis on the bias axis V.

Based on the considerations about non linear transport made in Sec. 2.3.2, and more
accurately in references [6][7][8], we can identify two main conductance regimes along
the diamond axis:

1. Vg5 < Egqq the current increases o V;s.
2. V45> Eg44 the current increases o< I'sI'y Vys.

We remark here that the assumptions above are based on an inelastic co-tunneling model,
where kpT > Ay, and therefore multiple levels contributes to conductance and this ex-
plains why the current is not null inside the diamond.

If the coupling with the two reservoirs (and the biasing) had been symmetric, then the
diamond axis would have been vertical as in Fig. 4.6 b). In this case only one measurement
would have been sufficient to identify the V; position of the diamond axis.

Some current vs Vg traces at different bias are shown in Fig. 4.6 c¢). We can observe that
the position of the minima moves with bias, as schematized in Fig. 4.6 a). This is due to
both the asymmetric coupling with the reservoirs and biasing.

a) Asymmetric coupling b) Symmetric coupling

Vds(A.U) ‘
/ diamond axis Vas{A.U)

}
I diamond axis
1

/ 1\
VA, 7 X
) ’ Vg(A.U) : \ . VelAU)
C
14 - 1 N
- ! N /\ 1.5mV

1(A)

“ Q\;/\\i\/\/\/\/\/\/\/\’ 0.5mv
')

520 525 530 535 540 545 550 555 560

Figure 4.6: a) Asymmetric diamond, the diamond axis is defined by the V; position of the minima of current. b)
If coupling with reservoir and biasing had been symmetric, then the diamonds would be isosceles triangles, and
their axis vertical. c) Current traces at different bias V;; =0.5, 1, 1.5 mV for a device with Lg =310 nm, W =80
nm (same as Fig. 4.5). It can be observed that the position of minima and maxima moves with bias.

Looking at Fig. 4.7 we can observe that the I (Vd*s) curve starts to increase linearly (in first
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approximation) with V;_after a certain threshold V; > eE 444, as it would happen across
aresistor.

However, for high bias the current response is still slightly non linear and, depending on
the nature of the coupling with the reservoirs, its slope might either increase ore decrease
with V. Therefore we cannot follow the same procedure used for the extraction of the
threshold voltage, where the tangent is evaluated where the slope is maximized.

Instead the tangent should be taken in the region where the slope is constant (see green
line of Fig. 4.7).

For the data shown we find E; ;4 = 2.5 meV.

This method finds results comparable with the other two.

— I(A)

| — tangent at constant slope

1(nA)

V¥4 (mV)

Figure 4.7: Blue: current signal along diamond axis. Green: tangent evaluated where the slope is constant, the
intercept with the x-axis provides E, ;4 = 2.5 meV.

4.7. SUMMARY OF THE 3 METHODS

Here we compare the results obtained on two similar samples, belonging to the same
wafer, and with same channel width W = 70 nm and gate length Ly = 50 nm (Fig. 4.8 left)
and Lg =60 nm (Fig. 4.8 right).

In Fig. 4.8 we plot the values of the addition energies obtained with the three methods on
these two devices.

I would like to make a few last observation about the characteristic measurement time,
error sources and possible improvements for the three methods:

* Fit of Coulomb peaks at zero bias: this method relies on a single high resolution
measurement and is the fastest one.
Here we observed that the peaks were broadened by temperature (kg T > iI') and
we were in the classical Coulomb blockade conduction regime (kg T > Ap). With
different device geometries and/or temperatures, we may end up in a regime where
the quantized level spacing becomes relevant (kg T <« Apy) and we should use eq.
2.9 instead than 2.8. However, in both cases the linewidth of the Coulomb peak is
determined by temperature.
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Figure 4.8: Values of the addition energies extracted with the three characterization techniques described in
the main text and applied to two nominally identical samples. The V; position of the points is respectively the
position of the Coulomb peaks at =0 bias (blue crosses), at 2 mV (green crosses), and of the current minima
(orange crosses).

With this method here we missed the first five Coulomb peaks that could instead be
observed with higher source-drain bias.

* Diamond reconstruction: this method relies on 3-4 high resolution measurements
at different source-drain bias voltages and it is therefore 3-4 times slower than the
previous one.

It is based on the only assumption that the current variation (i.e. the transcon-
ductance, d1/d V) is maximized at the edge of a Coulomb blockade region. This
method is in principle the most versatile since, contrary to the previous one, it does
not rely on the hypothesis of thermally broadened Coulomb blockade resonances.
Despite this the results obtained with this method revealed a generally larger uncer-
tainty as compared to the other methods.

This can be understood considering that for a noisy signal the noise propagates
dramatically in the derivative. Even though we smooth the experimental signal
before extracting the numerical derivative, sometimes it is still possible to commit
a small mistake in evaluating the edge position.

We might expect to improve this method by measuring directly the transconduc-
tance dI/d Vg, for example by applying a small modulation on the gate voltage 6 Vi
and then demodulating the signal with a low frequency lock-in.

I tried also this last approach and I observed that the quality of the diamond re-
constructed in this way was not remarkably better than the one obtained from the
numerical derivative of the current signal.

* Line cut across the Coulomb valley: this technique is the slowest one, because it
requires a measurement for each diamond. It would therefore be suitable only to
study a small set of diamonds.

Rather than extracting E, ;4 from a linear extrapolation of the I (V;s) characteristic
in the high-voltage range, one could alternatively fit the low-voltage characteristic
to the co-tunneling model of eq. 2.11.
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Also a symmetric source-drain bias would be beneficial for this technique, as well
as for the diamond reconstruction.

4.8. SUMMARY OF THE MEASUREMENT PROCEDURE

Here it is described the whole measurement protocol at high level, giving hints about how
to possibly improve it.

1. In order to perform the peak analysis in a voltage range of interest we first need
to know the position of the first detectable peak (FPP). An important remark is
that the first peak we observe in current does not necessarily correspond to the
first electron in our system. Usually a silicon quantum dot with only few electrons
is still strongly decoupled from the reservoir and therefore, even if transport is
energetically allowed, the current level is well below the detection limit. In order
assess the number of electrons in the dot a charge sensor is necessary [9].

However, implementing charge-sensing on large scale measurement over-complicate
the problem and it is not the goal of this characterization.

It is convenient to look for the first peak in current with high bias (= 5—-10 mV).
For smaller bias indeed the current of the first observable peaks may be hidden in
the noise. For example the first peak observed in the linear regime (Fig. 4.3 a)) is
actually the 5-th transition that we are able to observe.

Since we need to know only where to start the measurement, and not the precise
peak position, this measurement can be performed quickly and with relatively low
resolution (i.e 1 mV step in V).

2. The FPP can then be given as input parameter to decide the gate voltage range of
interest for a fine resolution measurement near zero bias (linear regime).

3. The position of maxima and minima found near zero bias serve as input parameters

for the measurement of E,;4, via the "diamond reconstruction" and the "valley
line cut" methods, respectively.
In fact, the peak positions in current tell us where the diamond edges cross the
Vi axis. Imposing these constraints significantly improves the linear fitting of the
diamond edges. The positions of the current minima, on the other hand, provide
the starting point of the valley line cuts.

Once we have measured the position of maxima and minima in the linear regime we can
choose which method is more suitable for the analysis.

This choice is not trivial and, as discussed in the previous section, different methods may
work better or worse, depending on voltage range of interest, temperature, material of the
device and dot size.

4.8.1. FINAL REMARKS

In the first part of this chapter we discussed three techniques to characterize the proper-
ties of QDs. We tried to find a good trade-off between the precision of the measurements
and their time consumption.
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The diamond reconstruction method appears to suffer from a bigger error and the results
are strongly dependent on the few bias voltages at which the (V) characteristics are
taken. This technique may benefit from symmetric biasing, since I noticed that fitting
uncertainty is significantly larger for steep diamond edges.

The "valley line cut method" instead seems to provide generally more reliable results,
despite the fact that the extraction technique may be refined. Nevertheless it is the most
time consuming, since it requires one line-trace measurement for each diamond.

Overall, fitting the Coulomb peaks in the linear regime (low bias) is the fastest method
and provides reliable results. I would recommend this method for time-efficient massive
characterizations. This method could be readily implemented on the 300-mm cryogenic
probe station recently installed at Leti, which can perform wafer-scale characterizations
down to 2 K. Going below 4 K might be counterproductive though, since we expect this
model to work more accurately in the fully thermally broadened regime.

Finally, I would like to highlight that there is an ongoing research effort to combine ma-
chine learning approaches with measurements of semiconductor QDs [10][11][12] [13].
The increasing expertise and the publicly available machine learning based algorithm
will surely be helpful in the near future for speeding up QD measurements, concerning
both large scale and single device characterization.

4.9. CHARACTERIZATION AND LAMBERT-W FUNCTION BASED
MODELING OF FDSOI FIVE-GATE QUBIT MOS DEVICES
DOWN TO CRYOGENIC TEMPERATURES

In this section we characterize FD-SOI five-gate transistors down to 20 K[14][15].

In order to do so, we propose a model based on the Lambert —W function. The validity of
such a model is demonstrated down to low temperatures, fitting both the drain current
and the Y-function and providing the dependence of subthreshold slope ideality factor,
threshold voltage, low field mobility and access resistance with temperature.

Through this analysis we can highlight the different scattering contributions to the mobil-
ity and we conclude that the mobility of the central gate is the highest one, because it is
the less affected from the scattering with the impurities that are incorporated during the
doping process of the source and drain contacts.

The p-type five-gate device (5G) described here has been fabricated starting from CEA-
LETI FD-SOI NanoWire (NW) process flow, as described in Sec. 3.5 and comes from the
same wafer as the qubit device of Sec. 6.5.

The channel width is W = 75 nm, the gate length is L; = 40 nm and the gate spacing is
Sy =40 nm.

4.9.1. SATURATION OF THE SUBTHRESHOLD SWING

Static measurements of the drain current were performed by sweeping the voltage on
one gate (active gate), while keeping the other gates (external gates) at a fixed potential,
namely Vg oxy =—2V.

Fig. 4.9 a) shows the drain current Ip (V) transfer characteristics for the five gates at
room temperature (with the other gates at Vg ¢x; = —2 V). They have been measured in
linear regime (Vy; = 50 mV). From these Ip (V) curves it can be observed that each gate
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exhibits a different threshold voltage V;;, and a different low field mobility .
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Figure 4.9: (a) Ip(V() in linear and log scale and (b) Y (V) for every gate (with the others set at Vg ¢x; = —2V)
for T=300 K.

Furthermore, access resistances strongly affect the behavior of the device in the strong
inversion regime. In the access resistance of a multi-gate device we should include both
the contributions coming from source/drain resistances and from the external gate chan-
nels. Therefore the extraction was performed exploiting the Y -function method, which is
known to eliminate series resistance effects[16][17].

The Y -function is defined as the ratio between the drain current Ip and the square root

of the transconductance g, = %3:
Y (Vo) = —2= = (Vg - Vi) Cox oV (4.4)
Gl =—F—=WG— Vin oxHMoVD .
V8m "\ L, rf

where W is the device width, L.¢r the effective gate length, Cox is the gate oxide capaci-
tance per unit area, g is the mobility of the active channel and Vp, the bias applied.
The gate oxide capacitance per area is a known parameter and can be calculated as
Cox = %~ =5.75 ﬁ—f, where d = 6 nm for is the thickness of the gate oxide, and €, = 3.9 is
the relative permittivity of SiO5.

By fitting each 1(V;) trace to the Y-function it is possible to extract the corresponding
mobility pp and threshold voltage Vy,.

Both Ip (Vi) and Y (Vg), are shown in Fig. 4.10, for temperatures ranging from 300 K to 20
K. These data refer to gate 4, but the same analysis has also been performed for the other
gates.

We can observe a steeper subthreshold slope as temperature decreases, and hence a
decreasing subthreshold swing . It can be noticed as well an increase (in absolute value)
of both the threshold voltage and the drain current in strong inversion.

The subthreshold swing SS(T) (defined in eq. 4.2 and shown in Fig. 4.10 c)), follows
the Boltzmann limit, i.e. it shows a linear behavior with temperature, down to T=70-80
K, before saturating to a value around 20 mV/dec[18]. The trend is roughly the same for
each gate.
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Figure 4.10: The gate voltage refers to gate 4, while setting the other gate voltages to -2 V. Experimental (fitting)
traces are shown as solid (dashed) lines. (a) Ip (V) in linear and log scale and (b) Y (V;) curves, for different
temperatures. ¢) Subthreshold swing as a function of temperature for the 5 gates.

The saturation of the subthreshold swing at low temperature has been investigated in
detail in Refs. [19] [3] [20]. Relying on numerical simulations, it was demonstrated that an
exponential band tail in the conduction or valence band and the Fermi-Dirac statistics
lead to saturation of the SS at deep cryogenic temperatures.

These exponential band tails in the conduction and valence band in MOSFET are likely
related to potential-fluctuations-induced disorder [21], crystalline disorder, strain, resid-
ual impurities etc.

The saturation of the SS can be understood considering that the Fermi level approaches
the valence (conduction) band when lowering the temperature [22]. When the Fermi level
falls within the band tail the carriers are degenerate. In this case the Boltzmann statistics
is not valid anymore, and the metallic degenerate statistics prevails.

Therefore eq. 4.2 doesn’t hold at low temperature. An analytical expression of the SS in
this regime is derived in [3].

4.9.2. LAMBERT W-FUNCTION BASED MODELING
The Lambert W-function, LW (z), is defined by the equation:

z=LW(z)e"W®@ (4.5)

where z can be either a real or a complex number.

The LW function allows to model the channel inversion charge Q; (V) using as fitting
parameters both the subthreshold ideality factor n and the threshold voltage V;;, and, by
turn, the drain current characteristic Ip(Vg), for a given mobility pg [23].

Here, we assume that the five gate device can be modeled as five independent gate-
controlled resistances placed in series, whose values depend on V;; (active channel) and
VG,ext (access channels).

The active channel resistance for each gate i is given by:

1
Ren,i (Vg 1o,i» Vini, ni) = (4.6)
%Qi(VG’ Vin,i» i) o, i
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The charge per unit area Q; is modelled with the LW function:

VG=Vih,i
kT

kgT kT
Qi(VG,Vrh,i,ni)=ni.CoxTLW e "q 4.7

where g is the electron charge.
The access resistance is computed as:

Racc(VGext) = Rch,j(VG,ext,ﬂO,j; Vth,jr nj)
+Renk (VGexts Mo,k Vi ) + Ren, i (VG exts o, 1> Vin,i, 141) (4.8)
+Ren,m(VG,exts 40,m> Vin,m> Bm) + Rseries

where Rep i, Ren, j» Ren,k» Ren,1 are the channel resistances of gates i, j, k and [, and Rserjes
is an additional fitting parameter that takes into account the contribution of source and
drain access resistances.

The parameter R, ;.5 determines the current in strong inversion and is therefore com-
mon for all the gates.

Each Ip(Vg) is related to the sum of R.j, + R4 through Ohm’s law:

V,
— B = Ip(Ve) 4.9)
Rch + RAcc

This model successfully fits the drain current from subthreshold to strong inversion
regime, as shown in Fig. 4.10, obtaining po ;, Vp,i, # and R, for each gate.

A standard method to extract the mobility u,; and threshold voltage V;; ; independently
is from the Y -function (for each gate), while the ideality factor can also be estimated from
the SS.

The access resistance R .. can also be derived using the first order attenuation factor 6; =
010 + RaccGm[16], where 01 is the intrinsic mobility reduction factor and G, = % Cox Mo-
010 has been neglected, since in such short channels access resistance effect prevails.

In Fig. 4.11 the parameters extracted using the formulas 4.8,4.6 (panels a)-d)) are com-
pared with the ones extracted using standard methods (i.e. from Y-function, attenuation
factor and subthreshold slope) in panels e)-h).

The values and trends extracted with the two methods are in good agreement.

We can observe that the threshold voltage decreases quasi linearly with temperature,
independently on the gate.

The ideality factor n varies nearly as 1/ T for T<80 K. This is a consequence of the satu-
ration of the SS. Below 80 K the Boltzmann model is not valid anymore and the value of
n is meaningless from a physical point of view. Anyhow it is still shown to validate the
compactness of the W-function model.

4.9.3. EVALUATION OF THE MOBILITY

The low field mobility (inversely proportional to R.j), shows different trends for each gate,
revealing that the central device (gate 3) has a better mobility at low temperature. Such a
mobility gets lower going to the gate closer to the reservoirs. This is a hint that the main
scattering mechanism is with the defects located near source and drain. [24]. We can
have a closer look at the mobility as a function of temperature exploiting the Mathiessen’s
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Figure 4.11: Parameters extracted for the every gate from room T down to 20 K using eq. 4.8 (a)-(d) and standard
extraction methods (e)-(h), i.e. respectively Y-function in e)-f), attenuation factor in (g) and substhreshold slope
in (h). In the plots c),g) the access resistance of each gate is multiplied with the channel width W = 75nm.

rule, which takes into account the temperature dependence of the different contributions
to the mobility [25]:
1 T 300 1
— =t —+
Mo 300upn  Tpc  fnd

where p,p, e and pyq are the contribution coming respectively from phonon scattering,
Coulomb repulsion and scattering with neutral defects.
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Figure 4.12: Experimental (circles) and simulated (dashed line) low field mobility of the central gate (Gate 3) as a
function of temperature. (b) Contribution of different scattering mechanisms to the total mobility

Neutral defects are the limiting mechanism for gates closer to source and drain, whereas
their impact is reduced on the central gate. Indeed, as shown in Fig. 4.12 a) the mobility
of gate 3 increases as the temperature is lowered, consistent with a transport dominated
by phonon scattering.

In Fig. 4.12 b) are reported three contributions to the mobility of each gate, extracted by
fitting each gate mobility as a function of temperature. We highlight that the lower is the
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contribution, the higher is the scattering rate.

Moreover the observation that the mobility gets better in the central gates, because fun-
damentally they are cleaner, justifies the experimental strategy used in the following
chapters, i.e. to use the central gates to accumulate a double dot and the gate close to the
reservoirs (or the reservoirs themselves) for RF charge-sensing.

We systematically observed a different, and generally more irregular, behaviour of the
lateral gates compared to the central ones, both in p-type and n-type devices.

However the boron dopants used in p-type devices tend to diffuse more compared to
n-type dopants (phosphorus in our case). In order to quantify the impact of n-type
dopants compared to p-type ones an analysis analogous to the one described here would
be required on a multi gate n-type device.

13(A)

-1400 -1200 -1000 -800 ~—600 -400 ~-200  ©O -1400 -1200 -1000 -800 600 —-400 ~-200 O
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Figure 4.13: Current I as a function of V; for each gate, measured on the six-gate device of Chap. 6 a) T=300 K
and V;,=5 mV b) T=4 K and V;,=10 mV. The gate not swept are kept at Vg =—-1.5V.

Even when the gates are showing nearly the same behaviour at room temperature, when
cooling down the lateral gates behave differently and often in an irregular way. As an
example in Fig. 4.13 we show the Ip (V) curves of a six-gate p-type device where it can be
noticed the different behaviour of lateral gates G; and Gg in blue and brown, respectively.
We notice that the lateral gates are the ones finally controlling the conduction across the
channel.The device of Fig. 4.13 is the one studied in Secs. 6.1-6.4.

The present analysis shows that the reservoir doping has a significant influence at low
temperatures and it suggests that it may also have a negative impact at the level of qubit
performance. Indeed, by accumulating a quantum dot far away from the reservoirs,
together with a careful tuning of the magnetic field direction, it has been possible to reach
record coherence times for holes in silicon [26].

Since in the perspective of realizing qubit we fundamentally don't care about having good
transistor performances, finally it might be good to relax the level of doping implantation
for the future devices and to study in a rigorous manner the correlation between qubit
coherence times and level of doping implantation.
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ELECTRON SPIN READOUT IN
BILINEAR ARRAYS OF QUANTUM
DOTS

The best that most of us can hope to achieve in physics is simply to misunderstand at a
deeper level

Wolfgang Pauli

Among all solid-state platforms, silicon based spin qubits can rely on the reproducibility
provided by current industrial fabrication standards. Many recent experiments benefited
from the collaboration with industrial partners [1] [2]. Nearly the same fabrication tech-
nique of the device studied in this chapter has also been used in [3][4][5][6][7] (all these
devices belong to the same wafer). We shared these devices coming from CEA-LETI in the
context of the European project MOSQUITO.

We target a fast and scalable readout of qubit arrays. In this chapter two different readout
approaches are compared, in order to probe both charge and spin state of coupled qubits.
In Sec. 5.7 it is demonstrated that it is possible to manipulate electrically the electron
spin. Unfortunately, the spin-orbit interaction turned out to be too weak to enable the
observation of Rabi oscillations.

Finally it is proposed a scheme to extend the discussed charge-sensing readout into
infinitely long bilinear arrays of quantum dots.

5.1. THE DEVICE

The device studied in this chapter has six gates partially overlapping a silicon-on-insulator
nanowire (Fig. 5.1), three on the top side of the channel (T} » 3) and three on the bottom
one (Bj2;3). The finger gate structures are etched out of an initially defined single gate
fully covering the nanowire. The gate lengths are Ly = 40 nm, the channel width W =90
nm. Longitudinal and transversal spacings are S; =40 nm and S; = 50 nm, respectively.

The initial idea of this experiment was to use gate reflectometry as in Refs. [8][9], in
order to study each couple of QDs except B; — B,. We noticed that the most regular, clean
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Reflectometry

b) 10pF

EDSR LINE

J— 10nF

TR

112 T3

B1 B2 B3

| -

500 nm

EDSR LINE

Reflectometry

Figure 5.1: a) SEM (scanning electron micrograph) top view of a device nominally identical to the one measured.
b) Schematic of the device with reflectometry setup on T» and B3.The electrical lines on gates T3 and By are
used to send fast microwaves (several GHz) and pulses for electron spin manipulation.

and isolated QDs were the ones below the two central gates. This is because, especially
with a temperature of 350 — 450 mK, the diffusion of the ions deposited during the reser-
voir doping can easily affect the QDs close to them, that are therefore far to be ideal, as
discussed in Sec. 4.9.3.

Moreover, previous studies on a 2x2 array (where each gate is close to a reservoir) showed
that, for a transversal separation of the facing gates of S; = 40 nm, the tunneling with the
reservoirs tends to be still dominant compared to the interdot tunneling. On the other
hand the strong tunnel coupling between lateral gates and reservoirs allows us to realize
an RF charge sensor.

Most of the work described in this chapter has been presented in Ref. [10].

In order to be able to extract standard transitor parameters using measurements of
current, as explained in Sec. 4.2, we need to open the conduction channel between source
and drain. We can measure current by opening either all the top or all the bottom gates.
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Figure 5.2: Quantized transport through the device for V,; =5 mV. In the left plot we keep the upper gates at
Vr=0V and the bottom gate not swept at +1V. In the right plot we keep the lower part of the channel at V=0V
and the top gates not swept at +800 mV.
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Nevertheless with sufficiently high gate voltage we could open a conduction channel also
using 3 consecutive gates that are not on the same side of the channel as for example
By — T, — Bs. With V;4<E ;44 We can observe quantized transport, that is a clear signature
of quantum dot behaviour (see Fig. 5.2).

Moreover we start observing the first Coulomb peaks at lower voltages for the top gates, as
we were expecting also from the lower threshold voltage measured at room temperature
(Vg,; =~ -100 mV for the top gates and Vﬁl ~+100 mV for the bottom ones). The different
behaviour of top and bottom gates can be understood as a result of an asymmetric gate
alignment, indeed the overlap with the Si nanowire is larger for the gates on the top side.
This is evident also in the SEM image (Fig. 5.1 a)) of a device nominally identical to the
one measured.

Another hint of this misalighment comes from the bigger charging energies of the dots in
the bottom gates. From the first detectable Coulomb diamonds we measured E% =13

meV and E% 4 =7meV,as itwould be expected for smaller dots, and hence smaller bottom
gates.

5.1.1. DISPERSIVE READOUT IN BILINEAR QUANTUM DOT ARRAYS ARRAYS

To obtain the LC tank resonators for dispersive readout, we connect surface-mount in-

ductors to gates Tz and B3 (L1, =270 nH, Lp, =220 nH).

A schematic representation of the device layout with the two tank circuits, and their

capacitive model is shown in Fig. 5.3.

The resonant frequencies of our resonators at 400 mK are fy(7>) = 407.2 MHz and

fo(Bs) = 478.2 MHz. Knowing these values we can extract the parasitic capacitances
1

(Cp= L(Tfo)z)’ respectively Cr, = 0.57 pF and Cp, = 0.50 pE

Moreover, as explained by eq. 2.13 we add a matching capacitor of Cy; = 10 pF (value
calculated with eq. 2.13) in parallel with the inductor, in order to improve the matching
(Fig. 5.1 b)). For both the resonators we measured quality factors of Q = 100.
Throughout this chapter, except in Sec. 5.2, we'll use the quantum dot configuration as
shown in the schematic in Fig. 5.3 a), together with the reflectometry circuit b) and the
capacitive models of the two detectors coupled with the QDs in c),d).

5.2. EVALUATE TUNNEL COUPLING WITH GATE-BASED REFLEC-
TOMETRY

Here we evaluate the tunnel coupling of the central double dot with the nearby reservoirs
using gate based reflectometry, with a technique similar to the one used in Ref. [11].

In this experiment the two central QDs, accumulated below gates B, and T3, are in
the few-electron regime (i.e. less than 10 charges in each dot). The top gates are polarized
at V71,13 = +1V, to keep the dot below T, well coupled with the reservoir. Conversely the
bottom gates are polarized at Vg, p, = =300 mV, such that the dot below B is well isolated
and can then be charged and discharged only through one of the top gates. A schematic
configuration of the QDs is showed in Fig. 5.4 a).

We consider an interdot charge transition (ICT) where the interdot tunnel coupling is
lower than the resonator frequency, as can be understood by the fact that we do not
observe any dispersive signal corresponding to it (see Fig. 5.4 b,c). Meanwhile the tunnel
coupling between the dot T, and the the reservoirs (controlled by the gates T, T3) is fast
enough to be resolved dispersively by the tank circuit on 7, [12].
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Figure 5.3: a) Sketch of the studied quantum dot configuration. The two central QDs, accumulated by 7> and
By, are simultaneously probed by means of two RF gate reflectometry setups based on dispersive readout via
T», and charge-sensing readout via a dot defined by B3 and tunnel coupled to the drain (D)) reservoir. Voltage
pulses are applied to B, in order to induce charge transitions between central QDs. b) Reflectometry-setup.
One gate (with a characteristic impedance Z; depending on the charge configuration of the nearby QDs) is
connected to an LC resonator made of a surface-mount inductor and parasitic capacitances. Following a
directional coupler, the reflected rf signal is amplified using a semiconductor amplifier operating at 3.6 K. An
ultra-high frequency digital lock-in demodulates the reflected signal at room temperature. c) Schematic of the
charge-sensing readout scheme, measuring the charge occupation in dots QD; and QD2, which are defined
by gates T» and Bp; S is the sensor dot (below gate B3). d) Schematic of dispersive readout scheme, which can
probe the quantum capacitance associated with tunneling between QD; and QD»>.

We then want to evaluate how long does it take to add or remove one charge from Bs.
We can access the charge dynamics of B, using the dispersive signal coming from the
transition of the dot 7> with one of the nearby dots, that are in strong accumulation and
we can consider them as an extension of the reservoirs.

When we add one charge on B, the T,-lead signal jumps because of an increased Coulomb
repulsion from dot B,. Conversely, if no charge jump has occurred, we can still observe
the 7,-lead signal.

In Fig. 5.4 b), ¢) we plot the resonator phase signal ¢(7») acquired while sending square
wave pulses on gate B, with a total period of 20 ms and 20 us, respectively. The duty cycle
is 50% and the pulse amplitudes are +3.5 mV for both figures.

For slow pulses (i.e. 10 ms on each side of the pulse) we just observe a doubling of the
signal, that corresponds to the time average of the phase of the resonator ¢(75) acquired
on the positive (red dashed line) and negative side of the pulse (white dashed line).
When the pulses are faster than the charging dynamics instead a prolongation of the
T>-lead signal can be observed (Fig. 5.4 c)), due to the fact that the charge in B, has no
time to move elsewhere.

This measurement is useful to understand quickly the order of magnitude of the in-
terdot tunnel rate.

For an accurate measurement we can trigger the acquisition on one of the two sides of
the pulses and evaluate for how long the prolongation of the 7,-lead survives, that is
equivalent to measure how long does it take to load or unload a charge in/out of dot B,.
We sit in the points indicated by the red and white arrows in Fig. 5.4 ¢). In particular, in
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Fig_c4/pulsed_tunnelmeas_dashed2.png

Figure 5.4: a) Electrostatic configuration of the experiment. We pulse on gate By while reading the charge
transition between the dot 7> and its reservoirs through the tank circuit on T3. b,c) Stability diagram of an
interdot charge transition while pulsing. The phase signal obtained is an average of what is measured on the
two sides of the pulse. The dashed lines indicate the signal acquired on the positive (red) and negative (white)
sides of the pulses. Also the ICT (not visible) is highlighted with the same colors for clarity. A scheme of the
pulse sequence (duty cycle 50%) can be found on the bottom right of the plots.

In b) it is shown for comparison that for slow pulses (10 ms on each side) we just observe a doubling of the
signal. For fast pulses of 10 us we can clearly see a prolongation of the T»-lead transition, as indicated by a
white and a red arrow. The arrows indicates the pulse direction and amplitude in correspondence of to the two
prolongations observed.
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the prolongation of the T>-lead pointed at by the red arrow we pulse positively, meaning
that we are adding one electron in By, thus measuring the loading time of the B, dot (Fig.
5.5, left). With the same argument on the other prolongation (pointed by the white arrow)
we measure the dot unloading time (Fig. 5.5, right).

We can fit the phase signals in time with an exponential decay, obtaining sz =0.4 ms and

B,

out = 0.8ms.

T
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Figure 5.5: Measured tunnel rates. The loading time (left) is measured when sending positive pulses, i.e. on the
lower dot lead of Fig. 5.4 b), as indicated by the red arrow. Analogously, the unloading time is measured when
pulsing negatively, i.e. when removing an electron, as indicated by the white arrow on upper dot-lead of Fig. 5.4

From this measurement we understand that we are able to isolate quite well the dot
below B;. At this point we could think to use the dot B; as the information quantum dot
and the dot T3 as an ancillary qubit, necessary for spin-to-charge conversion through
Pauli spin blockade (PSB) as in Refs. [8][13].

In order to perform PSB readout we need to be able to read faster than the spin life-
time 77, otherwise the spin state would relax before being able to measure it. The T;
reported for electrons in silicon can range between hundreds of us and few seconds
[14][15][16][17](18]. The electronic temperature of around 400 mK has a negative impact
on T, which is expected to be to be around tens of ms[14] in the best scenario, but it
might as well be lower. In the present case the readout risks to be too slow, being limited
to study spin transitions with 77<0.8 ms.

Because of the large span of the possible values of T}, having control over the interdot
tunnel coupling is crucial for an efficient spin readout. Ideally we want to cut the access
to the reservoirs, to enhance the qubit coherence, and to tune the interdot coupling with
local gates, for a fast readout.

An additional gate layer to tune the tunnel couplings is realized routinely in academic
clean-rooms, whereas in our process flow it is something ongoing [19] but it has not been
implemented yet on the device discussed here.

In the following we'll see that the main degree of freedom we have to tune the inter-
dot tunnel coupling is to vary the number of charges in the DQD. In particular, we'll study
two ICTs: one transition at relatively high dot filling, where PSB can be observed with both
gate-based dispersive readout and with the charge sensor (Secs. 5.3, 5.4); and another
transition at lower dot filling where the interdot tunnel coupling is too low to study it with
gate-based dispersive readout (Secs. 5.5, 5.6, 5.7).
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5.3. RF CHARGE-SENSING VS DISPERSIVE READOUT MEASURE-

MENT FOR LARGE INTERDOT TUNNEL COUPLING

We now accumulate three QDs below gates T», B, and Bs (see Fig. 5.3 a) ). The other gates
are negatively biased to ensure total charge depletion and isolation of the central dots.
This configuration allows to implement and compare two alternative methods for charge
and spin detection.

We use the quantum dot defined by Bj to sense the charge state of the DQD defined
by T, and B,. To this aim, Bs is tuned to have one level of the charge-sensing dot in
resonance with the electron reservoir on the drain side. In this regime, any change in the
charge occupation of the dots below T> and B; causes shifts in the resonant level and,
correspondingly, capacitance variations that can be detected by rf gate reflectometry (Fig.
5.3 ¢)).

In order to keep the level of the sensor dot resonant with its lead while scanning gates 7>,
and B, we have to consider that the potential applied on a gate also has an effect on the
nearby gates, because of capacitive cross coupling, and we want to compensate for this
effect.

More specifically we tune the gate voltage of the sensor dot depending on the electrostatic
cross coupling (ap,-p, =0.22, aT,-p, = 0.15) with the other two gates, thus keeping fixed
the electrochemical potential of the sensor dot while sweeping the other gates.

The charge-sensing through a dot-reservoir transition is often called a single-electron box
(SEB) [20][21].

An alternative readout scheme consists in directly measuring the reflected signal from an
LCresonator connected to gate T» (Fig. 5.3 d)), as done in the previous section. Differently
from the previous case, now the dot below T> is isolated from the reservoir, ensuring that
the dominant process is interdot tunneling with the B, dot.

This approach is sensitive to charge tunneling resonances between the dots set by 7> and
B, provided the corresponding tunnel rates are at least comparable to the frequency of
the reflectometry tone [12]. Indeed it is mainly sensitive to the quantum capacitance,
which depends on the curvature of the energy states, and hence on the tunnel rates of the
charge transitions between the two QDs, I'j4;—qo¢-

The two readouts can be used simultaneously. Even though the basic principle is the
same, we used them in a completely different way and the RF charge sensor signal, given
by I'got-1eaa (fixed), allows to explore charge transitions where I j5;— 4, (dependent on
dot filling) is way smaller than the RF probe frequency.

The stability diagrams in Fig. 5.6 a),b) clearly show the typical honeycomb pattern of a
DQD, formed by the two QDs accumulated below the gates B, and T». In these plots the
color scale is the phase signal recorded respectively with the RF charge sensor (Fig. 5.6 a))
and with direct gate-based reflectometry (Fig. 5.6 b)).

Moreover we can count charges of the quantum dot below T»>. The numbers in Fig. 5.6 a)
refer to the charges in (By,T5).

Since the capacitive coupling with the sensor is mainly determined by the filling of B, we
decided to work with a fixed number of charges N, N + 1 below B, such that we can fix
our compensation parameters.

5.4. MAGNETOSPECTROSCOPY OF THE DOUBLE QUANTUM DOT

We first studied the interdot charge transition (N +1,7) — (N, 8). In Fig. 5.7 it is shown the
signal recorded simultaneously by the two sensors while we sweep magnetic field and
gate voltages.
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Figure 5.6: Stability diagrams of the central double quantum dot accumulated by gates B, and T». a) Phase
response ¢cg of the charge-sensing readout setup. The two-dimensional plot was obtained by sticking together
four consecutive measurements over adjacent T»-voltage ranges. From one range to the other, the quantum dot
sensor was re-tuned by changing the value of the voltage on B3 in order to compensate the detector shift due to
a change in the charge state of the dot below T». b) Simultaneous dispersive measurement by gate reflectometry
on T». We notice that ¢p ridges with positive slopes, denoting interdot tunneling, are clearly visible only in the
upper part of the plot, and quickly vanish for lower occupation numbers in the upper dot.

We observe that the gate reflectometry signal ¢ p starts to vanish around B = 0.5 T. This
behavior is a typical manifestation of a singlet/triplet PSB [22], which allows us to con-
clude that N (number of charges in B) is even. In fact, for B > 0.5 T the triplet state 7_
becomes the ground state in the (N + 1,7) configuration, while the (NN, 8) configuration
holds a spin-singlet ground state S(0,2)-like (Fig. 5.7 ¢). As a consequence tunneling
from (N +1,7) — (N, 8) is forbidden by spin conservation leading to a vanishing quantum
capacitance, and hence a vanishing dispersive signal ¢ p.

We show here that also the charge sensor signal follows the displacement of the ground
state, but without losing in intensity, since it is only proportional to the charge occupation
of the dots, displaying a shift due to the B-evolution of the T_(1, 1) ground state.

From this measurement we extracted the lever-arm parameter « along the detuning axis
€. The direction of € is indicated by an arrow in the top left corner of the stability diagrams
of Fig. 5.6.

We can calculate at which detuning e* the T_(1, 1) crosses the singlet ground state Sg by
solving the following system of equations

T-(1,1)=¢/2-gupB
{ S = Jez%ﬁ (5.1)
g - 2
yielding :
. t?
Ty (5.2)

We can now observe that both the signals of Fig. 5.7 start to move only for B > 0.5 T, i.e.
when gupB = kpT and gupB = t.
For higher magnetic field (gupB > t) the displacement of the ground state Ae(V) moves
linearly with B:

alAe(V) =gupAB (5.3)
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Figure 5.7: Magnetic-field B dependence of the (N+1,7)-(N,8) interdot charge transition, simultaneously mea-
sured with the two RF gate reflectometry setups. The ¢ p moves toward the (N,8) charge domain and gradually
vanishes. This signals a spin state evolving from a spin-0 singlet to spin-1 T_ triplet state with both spins counter
aligned with B. This means that the multi-electron double-dot state effectively behaves as a two-particle state,
which implies that N is an even number. Due to spin conservation, the T_ ground state cannot couple to the
spin-0 ground state in the (N,8) configuration, which explains the vanishing of ¢ . The corresponding step
in ¢cg (a) consistently moves to the same side but remains always clearly visible despite the vanishing tunnel
coupling. ¢) Energy diagram of a singlet triplet DQD in presence of a magnetic field that split the spin states.
In this diagram it is assumed that the two QDs have the same g-factor. The red point indicates the position of
the crossing point ¢* between the singlet and the T-(1,1) state, i.e. the detuning point where the ground state
changes.

From Fig. 5.7 we extract Ae(V) (in Volt) for a magnetic field variation AB, taken above 0.8
T to be sure to be in the linear regime of eq. 5.3.

Since we know approximately the Lande factor g = 2 for electrons in silicon, we measure
the lever-arm a = 0.28 eV/V along the € direction, that allows to write the horizontal axis
of Fig. 5.7 as an energy.

5.4.1. COMPARISON OF THE TWO FITS

Here I explain how to fit the signal corresponding to the interdot transition (N +1,7) —
(N, 8) for B =0T. In particular, we evaluate the dependence of the two sensor signals on
the energy detuning between the DQD. The detuning axis € is indicated by an arrow in
the top left corner of Fig. 5.6).

The main goal of these fits is to evaluate the tunnel coupling energy ¢, checking the
consistency of the theoretical models with the two readout techniques used.

As explained in Sec. 2.5 the dispersive signal ¢p is mainly dependent on the curvature of
the energy states, while the charge sensor signal depends only on the charge population.
For B =0 T singlet and triplets are degenerate but their population is still not negligible.
Here we write the general fitting formulas, valid also in presence of magnetic field.

In absence of an external perturbation that might induce a further dynamics, we can
neglect tunneling capacitance contributions and fit the dispersive signal using only the
quantum capacitance of eq. 2.25.

It is important to know before the fit if the (1,1)-like state is at positive or negative de-
tuning, in order to choose the proper signs for triplet energies. In our case, as can be
understood from Fig. 5.7, the (1,1)-like charge state, i.e. (N+1,7), is at negative detuning.
Therefore the triplets energies are E1, = €/2 + gupB. Even though the triplets here are
not providing any quantum capacitance contribution, they still play a role in the overall
charge distribution. The relative weight of each energy state is indeed normalized over
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the partition function Z, that in this model is calculated over five energy states:

Z =) Ej=Es, +Es,+Er,+Er_+Er,
i

Substituting the energies of the singlet-triplet states and the Boltzmann occupation
probabilities in eq. 2.25 we find:

L Erept)l? _(E2rep)2
26T _p 2kgT

(212 e

¢p(T, 1) = o €2+ (Zt)2)3/2 Z

(5.4)

that fundamentally quantifies the contribution of the singlets curvatures, weighted with
their thermal population, as a function of the detuninge.

The charge sensor signal ¢p instead can be fitted simply with the occupation proba-
bility 2.31 multiplied by —-—=[23], term that takes in account a further broadening
Ve+21)?

due to the tunnel coupling.

+ €+en?)l/2 € _ (e/2+gugB) _ (e/2-gugB) €+en3)t/2

€ e 2kgT +e 2kT 4 ¢ kgT +e kT —e 2kgT

Vez+ (212 Z

¢cs(T,t) = o
(5.5)
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Figure 5.8: a),b) Simultaneous response of the two detectors for the charge transition (N +1,7) — (N, 8). Red
curves are fits to models [23][24], adapted for a singlet-triplet configuration, accounting for the interdot tunnel
coupling and finite electronic temperature (7, = 0.36 K).

In this particular measurement the fridge temperature was 360 mK'. We use the lever-
arm parameter a = 0.28 eV/V, found from the displacement of the ground state in the
magnetospectroscopy of Fig. 5.7, and we assume the fridge temperature as the effective
electron temperature.

We find a tunnel coupling around #/h = 5.6 GHz, consistent within the error bars of the
two fits.

I This temperature was achieved only during this particular cool-down, the standard base temperature of this
3He dry fridge is usually around 430 — 450 mK
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Even though this transition is showing PSB, we didn’t manage to resolve any depen-
dence in the tunneling time from (N+1,7) to (N,8) with a magnetic fieldupto 2 T.

This means that, even if the transition is spin blocked, the spin-flip time (from ||) to |1))
is below the temporal resolution of the charge detector, i.e. =5us.

Another issue was that, without being able to pulse on gate T», we couldn’t pass through
an intermediate charge state for a proper initialization of the |{) state in one of the two
dots, and hence we couldn’t measure the spin relaxation time T7.

Moreover we cannot read the qubit spin state as in Ref. [8]. Indeed, differently from
holes (Fig. 6.22), the dispersive response of the magnetospectroscopy measurement of
Fig. 5.7 b) does not reveal any curvature of the Ty(1,1,) spin state that could be used for
singlet/triplet readout in the "shallow" ("1,1") configuration. However, it would still be
possible to detect dispersively the different curvature of these states close to the charge
degeneracy point € = 0.

Because of the limitations described above we decided to move to a slower charge transi-
tion, that we cannot resolve with gate-based reflectometry but with a dynamics slower
than the temporal resolution of the charge detector.

5.5. SPIN DEPENDENT TUNNELING

In this section we evaluate how the spin life-time evolves with magnetic field. Here we
move to another ICT at lower filling, i.e. (IV,2) — (IN+1,1) (stability diagram in Fig. 5.9 b).
We first move to this transition keeping the electrostatic configuration of Fig. 5.6, where
the voltages of the other gates were: V1 = —0.3V, V3 =—-0.3V, Vg, = +0.5V, all below the
accumulation threshold (see Fig. 5.2). We could notice, by monitoring the telegraphic
noise on the interdot transition, that the interdot tunneling rate was on a Hz time scale,
observable in real time by naked eye. Such a tunnel rate is probably slower than any spin
life-time, and we decided to increase it.

Even though there were no barrier gate, it was possible to tweak the interdot coupling by
decreasing nearby gates to Vz, = —0.4 Vand Vr, = —0.4 V. The electrostatic repulsion of
these gates pushes the two central dots closer together, increasing the tunnel coupling in
the KHz range, i.e. by 3-4 orders of magnitude.

In order to study this transition we can rely only on the charge sensor. The dispersive
signal from gate reflectometry indeed cannot be resolved because the tunnel rate is way
lower than the frequency of the reflectometry tone. In particular, given a reflectometry
tone at =400 MHz, we start to lose sensitivity for transitions with a tunnel rate lower than
few MHz [12].

5.5.1. EVALUATION OF TUNNEL RATESAT B=0T

At B =0T the S(1,1) and the triplet states are degenerate for |e| > 0, i.e. at the charge
equilibrium. We send a pulse symmetric with respect to € = 0 on gate B,. The pulse
sequence, amplitude (+1 mV) and direction are indicated by green arrows in Fig. 5.9 a),b).

We highlight here that, in order to keep the energy level of the two dots at the same
distance from the reservoirs levels, we should have pulsed along the detuning direction e,
i.e. perpendicularly to the interdot transition. Unfortunately the reflectometry lines are
pass-band filtered by the LC resonator, and we cannot pulse directly on gate T>.

Another option could have been to pulse on gate T3, and hence on T» (T3 is mainly ca-
pacitively coupled with gates T» and Bs), here the problem is that also the detector level
would be affected this way, and we cannot send a counter-pulse to balance this effect
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Figure 5.9: a) Energy level diagram at B = 0 T. b) Stability diagram of the interdot charge transition (N +1,1) —
(N,2). ¢),d) Average charge distribution as a function of time. We send pulses on gate By, symmetrically to the
interdot line. The pulse amplitude (+250 peV) and direction are indicated by the green double arrow in b). The
acquisition is triggered respectively in (N, 2) and (N +1,1). These measurements are averaged over 100 pulse
sequences.

because also on B3 there is an LC resonator for gate reflectometry.
A convenient alternative could have been to place the LC resonators on the reservoirs,
such that we are able to pulse freely on each control gate, as it will be done in Sec. 6.2.

The charge sensor provides a 2-level signal that allows to directly correlate the phase
value ¢¢cs with the population of the DQD. The time-domain traces can be fitted with
t

a simple exponential decay ¢ = ¢pe s, where the characteristic tunneling time 7 is
attributed to transitions from singlet to singlet, where no spin-flip is required.

We measured a charge transfer between the two dots on a time 75 between 30 and 70 us,
for a detuning € between 200 and 250 peV. More importantly, by pulsing symmetrically
with respect to € = 0, we observed the same tunneling time for both the charge transitions
(B=0T), as shown in Fig. 5.9 ¢),d).

From the stability diagram of Fig. 5.9 b) we can also note that the dot-lead transition
of the QD mainly controlled by V7, is nearly horizontal. The fact that it is very slightly
affected by changes in the gate voltage Vg, indicates that the QD is well localized below
gate T,. Conversely, the dot-lead transition of the other QD is affected by changes in both
gate voltages, indicating that the other QD is located in the region between the gates T
and B,.
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5.5.2. SPIN DEPENDENT TUNNELING: MAGNETIC FIELD DEPENDENCE

Subsequently the magnetic field is raised, and we perform the exact same experiment as
in Fig. 5.9. The field is applied perpendicularly to the plane of the Si nanowire.

The symmetry of the system is broken when we activate a magnetic field, due to PSB. In
particular, we observed that tunneling time towards the (0,2)-like charge states increases
with B due to PSB, while the one towards the (1,1)-like states does not depend on B.

In order to identify the PSB region we set B = 1.8 T and send pulses along Vp,, with
a total period of 14 ms and 50 % duty cycle. The acquisition is triggered on the negative
side of the pulse, i.e. in (IV,2), for the first 450 us, in order to identify where the tunneling
is slow. This can be visualized as a trapezoidal light yellow region, corresponding to the
charge state (N + 1, 1), entering in the (NN, 2) region. The metastable PSB region is shown
in Fig. 5.10 a),b) for two different pulse amplitudes of £0.5 mV and +1 mV, respectively.
It can be observed that the tunneling is faster close to the triple points. The typical
blockade triangle is indeed restricted to a narrow trapezoidal area, bounded by state
cotunnelling via the reservoir (close to the triple points), as in Refs. [25][26].
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Figure 5.10: Metastable PSB region for two pulse amplitudes. The magnetic field, perpendicular to the Si
channel, is set at B = 1.8 T. The size of the PSB region is effectively limited by the size of the pulse. A schematic
of the pulse, with the time of acquisition highlighted in brown, can be found in the bottom right corner of the
figures. a) Pulse amplitude Agy = +0.5 mV, and acquisition triggered for 450 us right after pulsing in (N,2); b)
Pulse amplitude Apy = £1mV, and acquisition triggered for 450 us as in a).

It is important to consider that with a temperature of T, = 450 mK, especially at low
field, in (N+1,1) the system is initialized in a thermal mixture of singlet and triplet states.
In Fig. 5.11 we show the calculated occupation probabilities as a function of the magnetic
field, using a simple Boltzmann distribution (see eq. 2.26).

We can do this calculation in the basis of the Zeeman Hamiltonian, which eigenstates are
(LD 1,11, 1,11, D} or, for coherence with the notation used, {T-(1,1,),[1,1),I1,1), T+ (1,1,)}.
This simple calculation is valid if we neglect the nuclear field coming from the residual
29gj isotopes [27][28], that induces a further splitting between |1, |) and ||, 1).

By neglecting also the small difference in the g-factors of the two QDs, we can safely
assume that the ||, 1) and ||, 1) states are degenerate in energy and they can be considered
as the same state, with double weight.

Since we know the characteristic tunneling time 75, we can think to fit the charge occupa-
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Figure 5.11: Calculated occupation probabilities using Boltzmann distribution for T, =450 mK.

tion as a function of time (at finite magnetic field) using the following formula:
G =CPr_e "= + (P + P11)e TS 4 P e7TT+) 4 by (5.6)

that takes in account the contribution of each i state, with tunneling time 7;, weighted
with its occupation probability P;.

The contribution of the T, state starts to be negligible already for B > 0.3 T (see Fig.
5.11) and we'll consider it always negligible in this analysis. Since we know 7 we can fit
the time-domain curves using only the population Pr_ and the T_(1,1) — S(0,2) tunneling
time 77_ as free parameters.

An example of this double exponential fit is shown in Fig. 5.12 b), where we extract
Tr—=15msforB=15T.

In Fig. 5.12 c) we plot the tunneling time 77_, extracted by fitting the charge sensor
phase signal at each magnetic field using eq. 5.6. In panel d) we plot the corresponding
(measured and calculated) occupation probabilities Pr_.

We observed a tunneling time 77_ that increases with magnetic field, as in Ref. [29].

The decay from ||, |) to the singlet (0,2) can be seeen as two-step process. An excita-
tion from ||, |) to either |1, |) or ||, 1), followed by a spin-conserving relaxation to S(0,2).
At relatively large magnetic fields (i.e. above = 1 T) the first process is the slowest one,
dominating the overall dynamics of the (1,1)—(0,2) transition. Figure 5.12 c) shows the
experimental magnetic-field dependence of 77_, and a fit to

1

Bz
77 (B) Toe-8HsB/ksT)

(5.7
with the rate I'y as fitting parameter. We find I'g = 54 KHz.

The fitting formula can be understood considering that, as stated by the detailed balance
condition [30], we expect the ratio between the excitation and relaxation tunnel rates to be
proportional to the ratio of the populations of the excited and ground state at equilibrium:

Texe B P+ Py

=2¢ 8HBBIksT (5.8)
Lrei Py
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Figure 5.12: a) Energy level diagram of a DQD with magnetic field. The two-spin states T,,T— are separated in
energy due to Zeeman splitting. At sufficiently large B, the ground state in the (N+1,1) configuration becomes
a spin triplet T— . As a result, charge relaxation from (N +1,1) to (NN, 2) is suppressed by PSB. b) The blue
trace provides the averaged dynamics of charge relaxation at B = 1.5 T, giving a tunneling time of 77_=1.5 ms,
much longer than the one measured for the opposite pulsing direction, from (N + 1, 1) to (NN, 2), which remains
essentially independent of B. ¢c) Measured B dependence of the tunneling time 77_ from (N +1,1) to (N, 2), as
extracted from fitting the time-domain curves as in b) for different values of B. The orange curve fits the B field
dependence of 77 using formula 5.7 d) Measured B dependence of the population P7_ in (N +1,1) to (N, 2),
extracted by fitting the time-domain curves at different values of B. The orange curve is the expected population
of the T_(1,1) state, shown in Fig. 5.11.

and that 77 = 1/T oyc.

Assuming that I'y (2T';,;) is independent of B is therefore an approximation. More gener-
ally, T'ye; =T, 1is expected to be a polynomial function of B with exponents depending
on the nature of the dominant phonon/photon assisted relaxation process [31][14]. Our
data do not allow us to capture this power-law dependence.

5.6. FAST, HIGH-FIDELITY CHARGE-SENSING OF SPIN DEPEN-

DENT TUNNELING

Here we benchmark the charge readout fidelity of our sensor. The time-domain curves
shown till here, as for example in Fig. 5.9 c),d) and in Fig. 5.12 b), are averaged over 1000
time-domain traces taken with 5 us integration time per data point. s

An example of one of such traces (for B=1.5 T) is shown in Fig. 5.13. Charge tunneling
events are clearly revealed as abrupt changes in ¢¢s, demonstrating fast single-shot de-
tection.

In order to estimate the fidelity, we have measured the phase of the sensor after a delay
time of 6 ms in each charge region (acquisition points indicated by vertical dashed lines in
Fig. 5.13), which largely exceeds 77— (and hence 7g) ensuring that tunneling has occurred
every time before measuring.
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For clearliness we also highlight that the charge signal right after pulsing in (N,2) is lower
than the one observed in (N+1,1) just because of the capacitive coupling between gate B,
(where we apply pulses) and the detector, and no other charge state is involved.
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Figure 5.13: Single-shot trace and corresponding sketch of the voltage pulse on B,. The pulse period is 14 ms.
The sensor quantum dot is tuned in order to maximize the phase jump resulting from the (N,2) — (N +1,1)
charge transition. Here B = 1.5 T and the spin-blockaded reversed transition (N +1,1) — (V,2) occurs on a 2-ms
time scale. The two vertical dashed lines indicate the acquisition times (with 5us integration) for the histogram
of Fig. 5.14. The red dashed line represents the single-shot readout threshold for the two charge states, that we
estimate as the intercept between the two Gaussian distributions of Fig. 5.14.

The histogram of the phase measured over 1000 events in each charge region is shown in
Fig. 5.14. We obtained two distinct distributions that correspond to the charge states (N, 2)
and (N +1,1), which give an average charge readout fidelity of F=97% for an integration
time of 5 us. The overall fidelity is calculated as in Refs. [32][33]:

wrong wrong

Fe1 N(NZ) N(N+1 1) 59

- Niof Ntot (5.9)
(N,2) (N+1,1)

where the ratio N8 /| N'°! is the probability of having an error in identifying a certain
charge state. The error is detected when a point, expected to be in a certain charge region
is above (or below) the readout threshold, which is identified by the overlap of the two
Gaussian distributions of Fig. 5.14 (at ¢ = —9 mrad) .

The main source of noise comes from the thermal noise of the low noise amplifier placed
at the 4K stage of the cryostat.

As we will see in the next chapter with our setup the best way to improve the SNR is simply
to increase the signal of the resonator.

Our fidelity is also limited by thermal excitations. These excitations are clearly visible in
the single-shot trace, in particular from (N +1,1) to (N, 2).

In order to obtain such a signal we tune our detector on the dot-lead transition with the
highest signal-to-noise ratio (SNR=150 for an integration time of 10 ms).

Compared for example to Ref. [4], where a similar readout technique and device are used,
the gate-based charge readout time can be reduced by more than one order of magnitude.
Moreover we highlight that, by doubling the integration time, we could reach a charge
readout fidelity above 99%.
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Figure 5.14: Charge readout fidelity and histogram of the phase values measured at the two charge configurations,
(N,2) and (N +1,1). To acquire this data set, we applied a square-wave voltage pulse to By as indicated in
Fig. 5.9 b), with the same long period as in Fig. 5.13 (14 ms). To ensure full charge relaxation, phase values
were recorded 6 ms after each voltage step region (orange and blue vertical dashed lines in Fig. 5.13), with an
integration time of 7 =5 us. We estimate a corresponding charge readout fidelity of F=97 %.

One last remark about this measurement is that, even if we are measuring a charge
transition ruled by PSB, our capacity to temporally resolve a spin, i.e. the spin readout
fidelity, is limited by the average interdot tunneling time 75. Indeed, after the spin-flip, it
is still necessary to wait a certain 75 for the interdot tunneling event.

In other words we have an average uncertainty of s = 70 us between the spin-flip and
the tunneling event that allows spin-to-charge conversion.

With a tunneling time 7 shorter than the integration time instead we could have assumed
that charge and spin readout fidelity were the same, as for example in Ref. [34], where the
interdot tunneling can be tuned at will.

5.7. ELECTRIC DIPOLE SPIN RESONANCE (EDSR)

A powerful way of manipulating spins in semiconductors is electric dipole induced spin
resonance (EDSR), which uses a high-frequency electric-field to induce coherent spin
rotation.

Here we experimentally investigate EDSR applied to electrons in silicon. The electrical
manipulation relies on the spin-orbit coupling (SOC), which in silicon is way weaker for
electrons than for holes.

Because of the generally small intrinsic SOC of electrons in silicon QDs, the direct elec-
trical driving is typically weak, and hence most of the demonstrations of EDSR rely on a
synthetic SOC induced through a micromagnet[35][36][37][38]. However, the SOC can
become significant if the electron is allowed to move between orbital configurations
within the quantum dot [39].

So far (to my knowledge) only two demonstrations of EDSR rely on the intrinsic SOC of
electrons in silicon. In the case of Ref. [40] the SOC is enhanced by the hybridization
between spin and valley states, while in the case of Ref. [41] it is enhanced by the hy-
bridization between states with different orbital configurations.

The experiment shown here provides further evidence of EDSR revealing a relatively weak
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SOC in our system.
Also in this case the SOC is probably enhanced by the hybridization with an excited state
(valley or orbital), but further investigation would be required to clarify its exact origin.

We apply pulses to gate Bz, with amplitude Ag, = +1 mV, a total period of 2 ms and
a 50% duty cycle. The gate voltages and pulses are calibrated such that the DQD charge
state oscillates between the (N+1,1) and the metastable (N,2) state, i.e. in the middle of
the PSB region of Fig. 5.10 b). The amplitude of the pulses is calibrated such that the
e-dependent tunneling time is 75 = 70 us, as measured in Fig. 5.9.

For simplicity from now on we’ll refer to these states as (1,1) and (0,2).

Superimposed to the pulse we also send a continuous microwave(uw) excitation, whose
frequency should match the Zeeman splitting Ez = gugB.

We acquire the average phase signal during this two level pulse sequence.

In the range of magnetic field of Fig. 5.15, between 0.4 and 0.7 T, when no spin is driven
the characteristic time of the (1,1) — (0,2) transition is 77 = 200 us, while the reverse
(0,2) — (1,1) transition occurs in 7g = 70 us.

When we don't excite any spin therefore we expect an average population unbalanced to
the (1,1) state (higher phase), in particular we expect to be on average in (1,1) for 1.13 ms
and in (0, 2) for 0.87 ms.

The resonant yw excitation acts predominantly on the spin confined in the dot closer to
B;, which should in fact be located between in the region between B, and T> as discussed
in Sec. 5.5.1. As discussed below, we only observe one clear EDSR, and we thus ascribe it
to the dot closer to gate B,. The other QD (under T>) lies further away from modulated B,
gate, which may explain the absence of the corresponding EDSR signal.

When the DQD is in the (1,1) state the system oscillates between the T_(1,1) and the
Zeeman eigenstate ||, 1), much faster than the interdot tunneling time 75. When we pulse
in the (0,2) charge region the DQD state keeps on oscillating between 7_(1,1) and ||, 1),
until the interdot tunneling event, which occurs within the characteristic tunneling time
Ts =70 us.

The average tunneling time of the (1,1)-(0,2) transition therefore gets reduced under
resonant driving. As a result, we expect a negative signal corresponding to an increased
(0,2) population. In line with the previous consideration the magnitude of the phase
signal observed under resonant driving is of the order of 5—10% of the overall phase signal.

In Fig. 5.15 a),b) we plot the average charge sensor signal during the pulse sequence, as a
function of the excitation frequency and magnetic field (for two different powers of the
microwave excitation and two different magnetic field ranges).

In Fig. 5.16 we plot again the EDSR signal of Fig. 5.15 b). This image actually corresponds
to the original acquisition (after subtracting the background and renormalizing the color
scale).

Indeed these measurement are extremely time consuming, and we tried to reduce their
duration by scanning in a range close to the expected one. The expected Landé g-factor
for electrons decoupled from the environment is g = 2, that means we expect to match
the Zeeman splitting energy around a Larmor frequency of
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Figure 5.15: Frequency of microwaves excitation vs magnetic field. a) yw power=-65 dBm,b) yw power=-45
dBm. Plots acquired continuously while pulsing between (N + 1,1) and (XN, 2) and sending uw excitation for all
the duration of the pulse sequence. The background is subtracted to highlight the EDSR line.
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Figure 5.16: Frequency of microwaves excitation vs magnetic field, same range as Fig. 5.15 b). The frequency
range (x axis) is centered at the expected Larmor frequency (g=2) for each magnetic field. The black double
arrows indicate the expected and observed sidebands, due to the mixing between the excitation frequency and
the reflectometry tones fr,=407.2 MHz and fp,=478.2 MHz.
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The horizontal axis of Fig. 5.16 is centered at the expected Larmor frequency for each
magnetic field. If g = 2 we would expect a vertical line centered around this axis.

We observe that the main signal is at a slightly smaller frequency than the expected one
and it is not vertical, as one would expect for g = 2.

From the Larmor frequency f1(B) = (gugB)/h we can easily extract the g-factor.

For a magnetic field of B = 0.55 T we find a Larmor frequency of f; = 15.251+0.001 GHz,
which provides the electron g-factor g =1.981 +0.001.

We can extract the g-factor also from the slope of the EDSR line in the B vs f plane. We
observe a shift in the Larmor frequency of A f = 31+2 MHz for AB = 107 mT, finding again
the g-factor g = 1.979 + 0.002 GHz, consistent with the one extracted from the Larmor
frequency.

The value obtained is close to the ones of Ref. [42], where it is also used a silicon on
insulator platform, and a g-factor between 1.92 and 1.96 has been reported for a single
dot, depending on the magnetic field direction.

In Fig. 5.16 we can observe four other lines appearing at frequencies different from the
one of the main EDSR line at f. These lines are originated from processes of wave mixing
between the EDSR signal and the two reflectometry tones at frequencies fr, =407.2 MHz
and fp, = 478.2 MHz.

It is well known that a frequency mixer can be built just by injecting the local oscillator
signal (LO) and the intermediate frequency signal (IF) in the gate of a field effect transistor
in saturation regime, which has an exponential (non linear) electrical response. However,
we cannot explain the observed sidebands in these terms, because there is no current
flowing through the device.

An overview of the possible mechanisms leading to nonlinear mixing in QDs can be found
in Refs. [36] [43]. The origin of the nonlinearity can be attributed to: a position dependent
magnetic field gradient, an anharmonic confining potential or a driving magnetic field
not perpendicular to the static magnetic field [44]. According to Ref. [45] the nonlinear
mixing is also expected for strongly interacting dots near the (1,1)-(0,2) charge transition.
However, we are not sure that in our case the weak coupling between the dots is strong
enough to enable the nonlinear mixing between the EDSR signal and the reflectometry
tones.

Although the microscopic origin of the nonlinearity is not fully clear, in analogy with
nonlinear optical elements [46], we can look at this process as generated by an effective
nonlinear susceptibility (y?) .

The energy and momentum conservation conditions give raise to signals at frequen-
cies:

fi=Jfo+ fp2— fr2
f2=fo—fe2+ fr2
fs=fo+ 2+ fr2
Ja=fo—fe2—fr2

This four wave mixing (due an effective third order nonlinearity y®), or 3-photon process,
is at the origin of the sideband at A f = +70 MHz= fgs — fr2 from the main EDSR line. We
would expect also aline at A f = —70 MHz from the main EDSR line but in this case the
nonlinear coupling between the signals is too weak.

The sidebands at f3 4 are outside the observed frequency range.

We are dealing also with three wave mixing (due an effective second order nonlinearity
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@), or two-photon processes, where energy and momentum conservation gives four
sidebands at frequencies:

fs6=foxfr
fr8=fo* B,

5.7.1. DETUNING DEPENDENCE OF EDSR

We did the same experiment as in Fig. 5.15, shining microwaves continuously while
pulsing between the two charge states (N,2) and (N+1,1). The magnetic field is fixed at
B =0.4T and we scan the gate voltage Vp,, while sweeping frequency (see Fig. 5.17).

We observe that the Larmor frequency f; = 11.085 GHz is detuning independent, coher-
ently with a system where the tunnel coupling energy between the dots is small. Indeed, in
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Figure 5.17: Dependence of EDSR signal from gate voltage Vp,. Here B = 0.4 T. The background has been
subtracted, to enhance the signal visibility. The pulse amplitude is kept constant while sweeping Vg, , meaning
that both initialization and readout point are shifted during the measurement.

the limit of very small interdot coupling t < gupB and t < €, also the exchange coupling
between the dot vanishes. In terms of the energy diagram (as the one of Fig. 5.12 a)) this
means to draw the bonding and antibonding states with a crossing (the anticrossing size
is determined by the tunnel coupling energy).

In this case the energy distance between 7_(1,1) and ||, 1) is constant and equal to gupB,
regardless of the energy detuning € and therefore we expect the Larmor frequency to be
independent by e.

Also the average thermal population of T_(1,1) and ||, 1) at equilibrium stays constant
when varying the gate voltage V3, .

In the measurement both the initialization and readout points are shifted when varying
Va, and this results in small variation of intensity in the EDSR signal (partially washed out
by the background subtraction). This can be understood considering that the tunnel rates
(both 75 and 77-) depends on the energy detuning e (controlled by V3,) between two QDs.
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This means that also the average charge population during the the 2 ms pulse sequence,
which is not same as the average population at equilibrium, is detuning dependent.

This plot is a further confirmation that the two QDs are almost completely uncoupled and
we are driving a single-spin transition in the quantum dot below gate B, whose frequency
does not depend on the energy detuning between the two QDs.

5.8. DOUBLE ARRAYS OF QUANTUM DOTS: HOW TO SCALE UP?

In the final section of this chapter we propose a scheme for scaling up the charge-sensing
readout [10] on a bilinear array design as the one studied through this chapter. Finally I
briefly discuss and compare different designs of qubit arrays[1][47].

In the experiments described throughout this chapter we used the transition between a
quantum dot and its nearby reservoir to sense the DQD system nearby. What is actually
required for this sensing technique to work properly is just a transition (that can be sensed
with dispersive readout) of an object that is capacitively coupled with the DQD system
under study. Moreover, to keep the DQD well isolated, it should not be tunnel coupled
with the sensor.

Our proposal is based on the idea that a charge reservoir is not strictly necessary to per-
form RF charge-sensing and also a transition between two QDs could be exploited. When
using dispersive readout the SNR of an interdot transition could be optimized by tuning
the interdot tunneling rate such that the reflectometry response is maximized [12], and
by optimizing the resonator matching.

Avisual representation of the scheme proposed is shown in Fig. 5.18. The architecture
proposed is a double array of split gates, where one array (in red) contains the information
qubits and the other one (in violet) is used for the readout via RF charge-sensing. The
elementary cell of such an architecture (surrounded by the black dashed line) is made of
three information qubits (Qn-1,5,n5+1), One ancillary qubit (AQ) initialized in a spin ||)
state and two QDs (S; and S») for RF charge-sensing.

The spin-to-charge conversion is based on PSB readout and, after fixing the spin state of
the AQ in the ||) state, tunneling would be allowed only if the spin in Qy is in the |) state.
If tunneling is allowed the charge sensor would sense the increased number of charges in
the AQ.

Finally the readout of the spins in Qy-; and Qu4; can be performed through swap
operation with Q and then sequentially reading their spin through PSB.

The elementary cell described can then be replicated infinitely along the array.

One fundamental remark is that for such a scheme to work properly it is crucial to have
local control over the tunnel coupling, as it could be done for example by adding a second
layer of gates positioned in between each nearby gate. Indeed, in order to perform fast
two-qubit logic operations, it is required to have a fast tunnel coupling between each
qubit in the upper array. A fast tunneling between Qu and AQ instead would allow a fast
readout. At the same time we want the sensor to be sensitive only to the state of AQ and
therefore we should suppress the tunnel coupling between qubits Qy,y-1.. and sensing
dots.

In an alternative scheme it would also be possible to connect a common reservoir to the
sensing array and apply the RF charge-sensing readout on transitions between single dots
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Figure 5.18: Proposal of scalable linear qubit register based on FDSOI nanowire technology. Qubit readout is
performed using a parallel array of helper dots. Each repeatable elementary cell consists of three spin qubits
and three helper dots, one used as ancilla qubit (AQ) and the other two (S; and S2) as charge-sensing double
dot, which is tuned to an interdot resonance. Readout of qubit Qy is performed by enforcing electron spin-
dependent tunneling from Qp to AQ. Readout of Qn—1 (Qn+1) is performed by the same process following a
swap operation to exchange Qn_1 (Qn+1) and Qn. Qn+1, Qn, and Q41 can then be consecutively measured
with a small set of swap and spin-measurement operations.

and the common reservoir. This approach would be similar to what has been proposed in
Ref. [47] (Fig. 5.19 b)), relying on undoped Si/SiGe heterostructures. In this case each dot
in the sensing array is connected to two reservoirs, allowing local charge-sensing of the
qubit array, using either transport or dispersive readout.

We now consider another interesting bilinear array, recently presented by Intel [1]. In
this case case the two arrays of QDs are on two separate, closely spaced, and capacitively
coupled nanowires (Fig. 5.19 a)). The readout is performed by monitoring how the current
flowing in the sensing array is affected by spin dependent transitions in the qubit array.
Whereas using two separate nanowires might be an advantage compared to our scheme,
because it inhibits tunneling events between the two arrays, on the other hand the spin-to-
charge conversion is performed using energy-selective readout with the nearby reservoir
and this would hardly be scalable, since it does not allow to read multiple electrons si-
multaneously and does not allow to probe the state of QDs that are far away from the
IeServoir.

Also in this case these problems could be solved by using RF charge-sensing on an interdot
transition in the sensing array, instead than measuring current on a dot-lead transition.

The electrostatic coupling between the sensors and the QDs, and consequently the sen-
sor sensitivity, can be enhanced by the presence of floating gates connecting the two
nanowires (Fig. 5.19 ¢)), as it has been shown in Ref. [6]. This platform is very similar to the
one of [1], except for the presence of floating gates, and again we could think to monitor
spin dependent tunneling between QDs in the qubit array by doing charge-sensing on an
interdot transition in the sensing array.




104 5. ELECTRON SPIN READOUT IN BILINEAR ARRAYS OF QUANTUM DOTS

\,

\ Y

ROGRE
[RIRIR] |

Figure 5.19: a) High-angle annular dark-field scanning transmission electron microscopy image (HAADF-STEM)
of a SIMOS device with a double array of QDs recently presented by Intel [1]. b) False-color SEM image of a
linear array of nine QDs [47], controlled by plunger gates P(1-9) and barrier gates B(1-10) and read by QD-based
charge sensors S1, S2 and S3. c) Schematic layout of the device of Ref. [6]. Two nanowires are connected by
floating gates C1 and C2, that increase the capacitive coupling between QDs belonging to different nanowires,
increasing the sensitivity of the sensing array. d) Schematic layout of the architecture proposed in Ref. [48]. One
elementary cell of NxM QDs encodes the logical qubit. Long-range spin-spin coupling can be achieved via a
superconducting resonator [49].

It is worth to mention here that also the gate-based dispersive readout can be suitable for
a scalable qubit readout, and this will be discussed more in detail in Sec. 6.6.4.

We discussed mainly the problem of a scalable readout, and a double array of gates
combined with dispersive readout seems to be a good solution. However, it is important
to consider that the main limitation of working with qubit arrays is that the interactions
are limited to the nearest-neighbour. It has been proposed that quantum error correction
could be realized in linear arrays [50]. The proposal is based on the nine qubit code
introduced by Shor [51]. A single logical qubit can be realized with a minimum of 14 QDs
(encoding 13 qubits) in a linear arrangement. This encoding scheme requires two qubit
gates between qubits that cannot all be local in a linear arrangement and the nonlocal
interactions must be mediated by SWAP gates.

It is clear that realizing multiple logical qubit on the same array would require a very high
number of SWAP operation that might eventually degrade the qubit performances.

Also in the so-called surface code it takes a minimum of thirteen physical qubits to im-
plement a single logical qubit [52], but a 2-D geometry would significantly reduce the
number of SWAP gates necessary. However, linear and bilinear arrays might be suitable
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for some proof of principle calculations.

In the perspective of scaling up to platform with hundreds of qubits it will be necessary
to entangle qubits that are relatively far away from each other. An interesting proposal
[48] envisions to separate each logical qubit into an elementary cell within which error
correction can be realized (Fig. 5.19 d)). The coupling between spins belonging to differ-
ent elementary cell can be mediated by microwave photons in a superconducting cavity,
as recently demonstrated in Ref. [49] where are entangled spins of electrons that are
separated by more than 4 mm.

Another important problem is the simultaneous manipulation of many qubits . Conven-
tional manipulation techniques of electrons usually rely on an ESR stripline for magnetic
manipulation, or on a micromagnet that enables a synthetic SOC and hence electrical
manipulation. Both these techniques are quite invasive and imposes severe constraints
in terms of scalability.

The easiest approach in terms of hardware is to drive the electron spin electrically, relying
on its intrinsic SOC. As it has been shown in Sec. 5.7, electrons in silicon possess a SOC
that can allow electrical manipulation, but often this effect is too small to allow coherent
driving. In a recent paper it has been demonstrated that the naturally weak SOC in silicon
can be enhanced by controlling the energy quantization of electrons in the nanostructure
[41], enhancing the orbital motion. Another degree of freedom to control the SOC is the
direction of the magnetic field applied [42]. This engineering of the SOC depends heavily
on the energetic structure of a DQD, that can be tuned with a barrier gate to maximize the
hybridization between orbital or valley states, and consequently the SOC. The results of
Ref. [41] paves the way for the electrical manipulation of electrons in silicon on large scale.

There are many different architectures investigated all around the world like linear and
bilinear arrays, but also 2-D [53] and 3-D structures [54].

Investigating all these platforms requires a significant scientific and technological effort
in terms of design, setup, and material optimization.

Undoubtedly building large-scale quantum systems present gigantic challenges. However,
the pace at which the field is growing and the strong effort of both academies and large
tech companies leaves room for optimism.
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HOLE SPIN CONTROL AND
MANIPULATION IN LINEAR ARRAYS
OF QUANTUM DOTS

Physics is like sex: sure, it may give some practical results, but that’s not why we do it.

Richard P. Feynman

In the previous chapter I discussed the electrical control of the electron spin (Sec. 5.7) in
arrays of quantum dots. As previously discussed in Sec. 2.9 the main drawback of working
with the spins of electrons in silicon is the weak spin-orbit coupling. This implies that
an additional hardware is usually required to allow qubit manipulation, as an ESR line or
a micromagnet, imposing constraints for scalability. Although the spin-valley coupling
[1]1[2] or the mixing between orbital states [3] can enhance the SOC of the electrons, this
usually requires additional gates for the tuning of the interdot coupling, not available in
the devices studied.

Holes in silicon offers two main advantages compared to electrons: the intrinsically
stronger SOC due to HH-LH mixing, that enables electrical spin manipulation; and the
strong g-factor variability, which can enable the dispersive readout of a spin qubit.

The chapter starts describing the readout technique that allows remote charge-sensing of
QDs that are more than one gate away from the reservoir. In a first experiment, presented
in Sec. 6.2, we study the dynamics of a DQD transition in a 6-gate array. The two central
dots are probed individually through an RF charge sensor on each reservoirs.

In Sec. 6.3 it is explained in detail how to measure the tunnel rates between the dot and
the sensor.

The knowledge, and possibly the control, of the tunnel rates allows to calibrate the spin
measurements of section 6.4, where the spin-to-charge conversion is realized through
energy-selective readout. By realizing the same readout simultaneously on each dot it
would be possible to study the effect of spin-spin interaction, i.e. the exchange coupling
J, crucial for the implementation of a two qubit logic gate.

Unfortunately this experiment was limited by a small T}, due to the relatively high tem-
perature (T =450 mK) and, as a consequence, also to the high magnetic field required.
By decreasing temperature and using an analogue readout technique on a similar 4-gate
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device (Sec. 6.5) it has instead been possible to demonstrate a hole spin qubit.

Finally, the high susceptibility of the hole g-factor to the surrounding environment is such
that a DQD will be very likely to have a significant g-factor difference Ag. We will see
in Sec. 6.6 that, as a consequence, this enables the readout of the spin state of a single
qubit in a DQD through gate reflectometry. This dispersive qubit readout scheme requires
no coupling to a Fermi reservoir, thereby offering a compact and potentially scalable
solution, whose operation may be extended above 1 K.

6.1. DEVICE TUNING FOR DOUBLE CHARGE-SENSING WITH RESERVOIR-
BASED REFLECTOMETRY

The goal of this experiment is to study the DQD in the center of the array (below gates G3
and Gy4) using two RF charge sensors, that exploit a charge transition between a QD in
G1,6 and one of the two reservoirs.

The tunnel coupling between the QDs and their reservoirs can be tuned by using the gates
G, G5 as barrier gates. We'll describe step by step how to reach the desired configuration.

A scheme of the device layout with the four inductances defining the four tank LC circuits
for reflectometry readout is shown in Fig. 6.1. From now on we'll refer to each quantum
dot, accumulated below gate G;, as QD;.

By scanning the reflected signal as a function of frequency we observe, both in phase and
amplitude, the four resonances corresponding to each LC resonator. As will be discussed
in Sec. 6.5, these resonances are more pronounced by lowering the temperature and they
start to be visible already below 100 K.

We have two kinds of resonant circuits, one connected to gates G; and Gg, which we’ll
refer to as gate reflectometry lines, and one connected to the Ohmic contacts S and D
(reservoir reflectometry lines).

We observed that the shape of the resonances on the gate reflectometry lines are not
significantly affected when the device is in the strong inversion regime (at most they are
shifted in phase), while the ones on the reservoirs are. The amplitudes of the reservoir
reflectometry are affected because the channel resistance is increased in strong inversion.
A comparison between the resonances when the device is in strong inversion, i.e. with all
the gates at -2V (orange lines), and when the channel is empty (blue lines) is shown in Fig.
6.1 b), c). We observed a gate voltage dependent behaviour of the reservoir reflectometry
also in other similar devices.

Even if the additional resistance is the same for source and drain, the residual impedance
onresonance Z = L/(RCp) can be above or below Zy = 50 Q, and the matching with the
50 Q1 lines can either improve or get worse (as in our case).

The active channel of the device studied here has width W = 75 nm, the gate length
is Ly = 40 nm and the gate spacing is Sy = 40 nm.

From the frequency of the resonances we can extract the parasitic capacitances of the four
resonators: C,’ = 0.61 pF,C;, = 0.55 pE, C;® = 0.55 pE, Cj' = 0.56 pE Since the parasitic
capacitance is mainly influenced by the geometry of the board and the length of the
bonding wire, we find very similar values of C,, for the four lines.

For the implementation of the charge sensor we start by accumulating a single quantum
dot below the two lateral gates G; and G» as shown in Fig. 6.2. The other gates are kept at
oVv.



6.1. DEVICE TUNING FOR DOUBLE CHARGE-SENSING WITH RESERVOIR-BASED

REFLECTOMETRY 115
220nH 270nH
a) @ @ @ @
" i i i i -
° ~ D : o Saves cpenec2v
—500 =
1000
B -1300
g
3
2 2000
—2500 TS G1
~3000 o S
3500 \
% = 0 =0 = = =
C f1(MHz)
00175 —! all gates closed
——1 all gates open at -2V
00150
0.0125
~ 0.0100
2
< 0.0075
00050
00025
00000

200 250 300 350 ’ 400 450 500
fr(MHz)

Figure 6.1: a) Scheme of the device layout. On the central gates we can send fast pulses and microwave
excitations together with DC gate voltages. A charge transition between the dots in the lateral gates and the
nearby reservir can be use for RF charge sensing. b,c) Plot of the reflected signal, in phase and amplitude, as a
function of frequency. Four resonances, related to the four tank circuits connected to D,S, G6, G1 are clearly
visible, and are indicated by dashed black lines. The blue and orange lines represent, respectively, the signal
when the channel is empty and in strong inversion.

For low gate voltages we can observe the typical honeycomb pattern of a DQD (not
shown), but we increase the gate voltages until the two dots fully merge. The single-dot
regime can be identified when the dot-lead transition is at -45 degree in the plot Vg; vs
Vgo.

After that, we prepare the same configuration on the other side of the device.

It is worth mentioning here that we can observe the same dot-lead transitions with
both the gate and the reservoir reflectometry. Although we didn’t study quantitatively
their differences, we observed that the SNR is significantly better on the reservoir reflec-
tometries. We calibrated the reflectometry frequencies to maximise the phase signal of
the reservoir reflectometry and, to save time, we stop acquiring the gate reflectometry
signals from now on.

Before trying this configuration, with a single big dot below two gates, we wanted to
monitor the charges of QD3 by using a charge detector between QD; and its reservoir,
while keeping QD» empty. We noticed that an empty gate have a screening effect and
therefore we are obliged to accumulate some charges below them and this is why it is
necessary to use a big single-dot below two gates as a charge sensor.
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Figure 6.2: a) Bottom: Scheme of a six gate device with the position of the big dot coupled to the source. Top:
energy level diagram indicating the condition of resonant tunneling between the dot and the reservoir. b)
Measurement of a single dot controlled by gates G; and G». From the slope of the lines (-45 degree) we can
conclude that both gates have the same degree of control (same lever-arm) over a single big dot lying underneath
the two gates.

We then monitor the two charge detectors when we also charge the central dots QD3 and
QD4. The sensor dots are capacitively coupled to the central dots and there is a jump in
the detector electrochemical potential corresponding to each charge transition in the
QDs.

In particular in the few holes regime each detector is mainly sensitive to the charge state
of the dot nearby and we use the left detector (source) to probe the charge state of QD3
(Fig. 6.3 a)) and the right one (drain) to probe the charge state of QD4 (Fig. 6.3 b))
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Figure 6.3: Stability diagrams: a) Vg, vs Vi, and b) Vi, vs Vi, . a) Shifts in the phase signal ¢ of the charge
sensor on the source allows to count the charges of QD3; b) Shifts in the phase signal ¢ of the sensor on the
drain allows to count the charges of QD4. Black dashed lines are a guide to the eyes to help following the charge
transitions of each QD. The numbers indicate the number of holes in each dot c) Sketch of the QDs and detector
configuration for the simultaneous charge detection.
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It can be observed that, while we are quite sure about the number of charges in QD4, we
can see that not all the charge transition lines of QD3 (highlighted by black dashed lines in
Fig. 6.3 a)) are parallel. In particular the transition from the charge states Ng, =3 —4 —5
are steeper than the others, signature of a different capacitive coupling and hence differ-
ent location or shape of the interacting object.

From this we can guess that we might have either a dopant nearby (closer to the sensor
than QDj3) or that we are forming two corner dots on the opposite side of the gate.

We can also observe another transition on the top right of the plot 6.3 a), which is unrelated
with the transition of the dot. Indeed, by changing the gate voltage of the sensor/barrier
gates V2, Vg5 we observed that these transitions are not moving accordingly with the dot
transitions, signature that they are originated from another object that we don’t want to
investigate.

After probing individually the charge number in each dot we want to study the DQD
formed by QD3 and QD4. To do so we first measured the coupling between the gates. We
find agz—G2 =0.202, @g4—G2 = 0.022, @Gs—G5 = 0.212 and ag3-g5 = 0.014. The knowledge
of the coupling parameters allows to keep fixed the electrochemical potentials of the two
sensors while scanning the voltage of Gs3,G4.

Differently from Chap. 5, the current setup allows to compensate the charge detectors
also while pulsing on QD3 and QDy, by sending counter pulses, on gates G, and Gs,
respectively. This also allows to increase the single-shot charge readout fidelity.

In Fig. 6.4 we show the DQD stability diagrams (in the same ranges as in Fig. 6.3),
measured by each charge detector.

Such maps are collages of 25 consecutive measurement. The individual measurements
are delimited by the black solid lines, that define a square. In each measurement the two
detectors are recalibrated on their minimum in the center of each square. This is strictly
necessary because, despite the gate compensation, the charge detector moves out of its
sensitivity range after one or maximum two charge transitions in the nearby dot.

The detectors are initialized by setting Vi, = —1085 mV and Vg5 = —1390 mV when the
DQD is in the (0,0) charge state. Because of the detectors recalibration small shifts are
visible between each measurement. These are clearly artifact and the charge transitions
are identified by a switch of color within the same measurement.

We can observe that at low holes filling the first interdot charge transitions (ICT) are
not visible on this scale. They can be resolved with a zoom at high resolution, and the
lenghts of the interdot lines are = 0.1 — 0.3 mV for (N,M)<(4, 4).

We experienced an increased level of charge noise in the few-holes regime, where the
quantum dots are more sensitive to Coulomb disorder. Consistently with other studies on
similar devices[4] we have also observed a reduction of charge noise when the number of
holes trapped in the DQD is increased.

The small size of the interdot lines, together with the increased level of charge noise,
compromised reliable studies of the first spin blockaded transitions.

The mutual capacitance C,, determines the change in energy of one dot when an electron
is added to the other dot and sets the distance between two triple points[5]. The mutual
capacitance is a parameter which is experimentally tunable through modifications of the
shape and distance of the two dots [6].

We have to consider that each dot feels simultaneously the attraction from the nearby
gate (at negative voltages) and the Coulomb repulsion from the holes of the sensor dots
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Figure 6.4: a,b) Stability diagrams G3 vs G4, recorded simultaneously from the two charge-detectors. The count
of the charges is the same as in Fig. 6.3. The two plots are a collage of 25 simultaneous measurements (individual
measurements are separated by solid black lines). Small shifts in the signal in correspondence of the black lines
are an artifact due to the re-calibration of the detector.

and from the dot nearby.

While the attractive electrostatic field induced by the nearby gate is more or less kept
constant, the effect of Coulomb repulsion is strongly dependent by the number of charges
in the smaller dots.

Considering that the charges accumulated in the sensor dot |Q| > 30e tend to repel the
nearby dot (with charge |g| < 10e) with a Coulomb force « Q- g, we can understand that
the strength of the repulsion from the reservoir is dominated by the number of charges |g|
in the smaller dot. Empirically this effect is dominant compared to the mutual repulsion
between the two central dots.

The interdot mutual capacitance can therefore be enhanced either by increasing the
filling of the two dots (acting on the electrostatics) or by changing the tunnel barriers. We
tried both the options.

In Fig. 6.5 we increase the filling of the central dots, and for Ng, > 10 and Mg, > 5
we can observe a clear honeycomb pattern.

We observed a very similar phenomenology also in a previous study on another device
from the same batch (studied in Sec. 4.9).

The other way to increase the interdot mutual capacitance is to reduce the tunnel barriers
by applying a negative top gate voltage.

The top gate is a nanowire located 300 nm above the channel and it affects the whole
device.

By applying a negative top gate voltage, all the tunnel barriers are decreased, and conse-
quently the interdot mutual capacitance is increased. In this way the interdot transitions
can be resolved also at low holes filling.

Fig. 6.6 shows the stability diagram in the few holes regime, with a top gate voltage applied
of V1 = =30 V. It demonstrates that by increasing the interdot coupling we can appreciate
the first charge transitions in the DQD.

To better highlight all the charge transitions, we plot the derivative of the phase signal

@p(deg)



6.1. DEVICE TUNING FOR DOUBLE CHARGE-SENSING WITH RESERVOIR-BASED
REFLECTOMETRY 119

a) b)

-820 - -820

-830 10 -830

-840 ‘QB -840 _ 90
—
o 2 o0
s T s 85 o
E -850 ~ £ -850 o
3 59 3 [=)
| 0
-860 1c -860 H -
l 75
-870 -15 -870
-20 70
-880 -880 - - - - =
-920 g 8 -860 -920 -910 -900 -890 -880 —870  —860
G3(mv) G3(mv)

Figure 6.5: a,b) Stability diagrams G3 vs G4 recorded simultaneously from the two charge-detectors. By in-
creasing the dot filling we start observing clear honeycomb pattern. The plots are a collage of 9 measurements
(separated by solid black lines), recorded simultaneously by two separate detectors. Here Ng, > 10 and Mg, > 5.

of the source charge detector as a function of the voltage applied on Gs. The sign of the
derivative is only dependent by the initial detector calibration in each measurements.
Unfortunately this configuration was unstable, due to the slow recombination of charges
in the oxide between the active channel and the top gate.

=740 3
=750 2
-760 1

—

>

E =770 0

~

<

O
-780 -1
=790 -2
—-800 -3

-780 =775 =770 -765 =760 =755 =750 -745 -740

G3(mV)

dps/dGs

Figure 6.6: Stability diagrams G3 vs G4 while applyng a top gate voltage V7 = —30 V. Here we plot the derivative
% of the signal of the left detector, in order to better highlight all the charge transitions. The black lines
separate each individual measurement.

The data shown, once again, highlights the need to have a fine control over the tun-
nel barriers.

Whereas in the present configuration it is not obvious how to control the interdot cou-
pling, the tunnel coupling with the sensor dot can be tuned by varying the filling of the
detector, as will be discussed in Sec. 6.4.
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6.2. PROBING DOUBLE DOT DYNAMICS SIMULTANEOUSLY WITH
DOUBLE CHARGE-SENSING

After having shown how to tune the six gate device to perform simultaneous double
charge-sensing, we move to the analysis of an ICT between QD3 and QD4.

We demonstrate here that with the double charge sensor we can probe in real time (single-
shot) the dynamics of each dot separately, and distinguish if the ICT is mediated by a
reservoir or not.

We examine an ICT where the interdot tunnel rates are of the order of tens of kHz, such
that the charge transitions can be resolved temporally with our detectors, which can
resolve single-shot traces with an integration time down to 1-5 us.

The direct interdot tunneling can be detected as a simultaneous jump by the two detec-
tors. Conversely, when the tunneling is mediated by sequential particle exchange with the
nearby Fermi reservoirs, the signals of the two charge detectors jump at different times,
revealing the sequence of single-hole tunneling processes. As we will see, depending
on the specific electrostatic configuration of the DQD one of the two processes can be
dominant over the other.

We highlight that, for the way the charge detectors are conceived in our experiment, they
are fundamentally sensitive only to the charge state of the closest dot, and only in some
particular situation they can also be sensitive to the state of the dot further away. However,
by combining the information of the two charge sensors we can resolve all of the charge

states involved, as shown in Fig. 6.7.
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Figure 6.7: Stability diagram V3 vs V(54 measured in a) from the charge sensor on the source side ¢g; in b) from
the charge sensor on the drain side ¢pp. In c) we plot the difference between the two signals, which discriminates
all of the four charge states.

The following study shows that, by having only one charge sensor, we might lose precious
information about the DQD dynamics, risking to misunderstand the experimental results.
We'll see that the interdot tunneling process can be strongly affected by the coupling
with the reservoirs and, depending on the relative energy detuning between dots and
reservoirs, different types of dynamics are possible.

To discuss the stability diagram of the DQD we label the corresponding charge states as
(N, M)=(QDs3,QD4). We choose the charge transition (10,5) — (11,4). For simplicity from
now on we'll refer to this ICT as ("0,1") — ("1,0"). As explained in the previous section,
we expect a stronger dot-reservoir coupling for the dot with larger filling, i.e. QD3 in this
case.
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We analyze the charge transition by initializing the system in ("0,1") and applying pulses
"landing" in different regions of the ("1,0") ground state, as indicated by labels a), b), ¢), d)
in Figs. 6.8, 6.9, 6.10, 6.11 a), respectively.

We can reasonably expect that, until the pulse lands in a region where the transition with

the reservoirs are energetically forbidden, there is only one possible relaxation path, i.e.

the direct interdot transition ("0,1") — ("1,0").

This configuration is shown in Fig. 6.8. Along the red and green dashed lines in the static
stability diagram (Fig. 6.8 a)) the electrochemical potential of the DQD is aligned with
the one of the reservoirs. In particular, along the red dashed lines the electrochemical

potential of the DQD u(1,0) and u*(1,1) are aligned with the Fermi level of the source.

Along the green dashed lines the electrochemical potentials (0, 1) and p(1,1) are aligned
with the Fermi level of the drain.

This can be better understood by looking at the energy diagrams of the DQD [5] (panels c)
of the figures). In these diagrams the vertical axis represents the energy and the hole DQD
energy levels are lowered by decreasing the gate voltages (i.e. by increasing the number of
holes).

For analogy with panels a),b) we indicate the electrochemical potentials mainly controlled
by gate G3 in red, and the ones mainly controlled by gate G4 in green.

The electrochemical potentials of the single-hole configurations p(1,0) and p(0,1) are
localized in a single quantum dot (QD3 and QD, respectively), and tunneling can be
allowed only with the closest reservoir. The electrochemical potentials of the two-holes
configurations p*(1,1) and u(1, 1) instead are extended over the DQD.

The electrochemical potential u*(1,1), as it will be clear later, represents an unstable
configuration where a hole tunneling from the source can be allowed (as in Figs. 6.10,
6.11), bringing the DQD in a metastable ("1,1") state before reaching the ground state
("1,0").

In these energy diagrams, for simplicity, we move only the position of the electrochemical
potentials of the dots relative to the sensors (fixed), but in principle, because of their
capacitive coupling, also the potential of the sensors varies with gate voltages and the
charge filling of the DQD.

In the case of Fig. 6.8 when we land at point a) we are still in a configuration ("0,1")
and the electrochemical potential 1(0,1) falls below the drain level up (upper green
dashed line in the static measurement), preventing the hole to be unloaded through the
drain. In this case only interdot tunneling is allowed.

In the b) panel of each figure we show the single-shot traces (red for QD3 and green for
QD,) and the average phase signals (blue for QD3 and orange for QD,4) recorded during
the whole pulse sequence with each charge detector. In particular we pulse for 200 us at
the initialization pointI, in ("0,1"), and 200 us at points a),b), ¢), d), in the ("1,0") ground
state.

We note that the interdot tunneling event can be recorded as a simultaneous jump in the
two charge sensors. In this configuration this is the only possible process and, by fitting
the average phase signals with an exponential decay, we measure the typical interdot
tunneling time 73_4 =45+ 5 ps.

When going to the case of Fig. 6.9, the initial electrostatic configuration at point b)
is such that in principle there are two distinct charge relaxation paths, i.e. the direct
interdot tunneling and the indirect transition mediated by the reservoirs, i.e. ("0,1") —



122 6. HOLE SPIN CONTROL AND MANIPULATION IN LINEAR ARRAYS OF QUANTUM DOTS

W L1)=hs  u(1,0)=ug b) c)
oo 7 ao,, ap, ao, Qs
—— ¢c3 averaged 1000 times | Tsa - _
oo | geaveraged 1000tmes | -
1 ota |
070 T - b
o3 : u(1,1)
05 |
5 _ H*(1,1)
om0 @ § -06
w3 Hs Ko
085 & - — 1(0,1)
uq q» “os0 (L,0) ‘/.t/
( 11 ) -0.8 3-4
—0ss
100 09
H
2866 865 864 -863  -862 0 s 100 130 ‘(z::os) 250 %0 B0 400
Vg3 (mV)

Figure 6.8: a) Static charge distribution of the DQD as a function of Vg;, Vg, . b) Single-shot measurements of
the charge distribution of QD4 (green) and QD3 (red), with 5 us integration time per point. In orange (QD4) and
blue (QD3) the time averaged traces. We acquire over the 2-step pulse sequence, i.e. 200 us at point I and 200 us
at point a). c¢) Energy diagram of the DQD at point a) of the stability diagram. In this case interdot tunneling is
the only process allowed.

("0,0" — ("1,0".

We keep on observing simultaneous jumps of the two detectors and hence the interdot
tunneling is still the dominant process.

We can also conclude that the tunnel rate of QD4 with its reservoir is slower than the
interdot tunneling. Moreover, due to the increased energy gap between the two QDs
levels, the average interdot tunneling time 73_4 is shorter than in the case of Fig. 6.8.
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Figure 6.9: a) Static charge distribution of the DQD as a function of VG3,VG4. b) Single-shot measurements of
the charge distribution of QD4 (green) and QD3 (red), with 5 us integration time per point. In orange (QD4)
and blue (QD3) the time averaged traces. We acquire over the 2-step pulse sequence, i.e. 200 us at point I
and 200 ps at point b). c) Energy diagram of the DQD at point b) of the stability diagram. In this case two
tunneling processes are allowed, i.e. the direct interdot tunneling and the process mediated by the reservoirs
("0,1")—("0,0"—("0,1"). We observe that interdot tunneling is still the dominant process.

In the case of Fig. 6.10 the energetic configuration at point ¢) is such that the transi-
tion with both the reservoirs are energetically allowed, providing two possible relaxation
paths plus the direct interdot tunneling.

We observe that the dominant relaxation process in this case involves a metastable ("1,1")
charge state.

The transition ("0,1") — ("1,1") — ("1,0") can be understood by looking at the single-shot
traces. We observed that the first detector to jump is the one measuring QD3 (red trace),
bringing the DQD in a metastable ("1,1") state. After a while also the QD4 charge detector
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Figure 6.10: a) Static charge distribution of the DQD as a function of Vg, Vg, - b) single-shot measurements of
the charge distribution of QD4 (green) and QD3 (red), with 5 us integration time per point. In orange (QD4)
and blue (QD3) the time averaged traces. We acquire over the 2-step pulse sequence, i.e. 200 us at point I
and 200 ps at point ¢). c) Energy diagram of the DQD at point ¢) of the stability diagram. In this case three
tunneling processes are allowed, i.e. the direct interdot tunneling and the processes mediated by the reservoirs
("0,1")—("0,0"—("1,0" and ("0,1")—("1,1")—("1,0"). We observe that the most probable relaxation process is
("0,1"—("1,1") —("1,0"), involving the loading of a hole from the source and the subsequent unloading through
the drain.

jumps, bringing the DQD back to the ("1,0") ground state.

The characteristic time scales of this process are the QD3 loading time through the source
7s-3, which is faster than the integration time (rs-3 <5 ps), and the unloading time of
QDy through the drain, namely 74_p = 15 us.

However, in this configuration the direct interdot tunneling process, denoted by simulta-
neous jumps of the two charge detectors, is not suppressed, still happening = 20% of the
times.

The fact that QDs3, as compared to QDy, has a stronger tunnel coupling to its respec-
tive reservoir is consistent with its larger filling (approximately twice the one of QD4), and
hence the larger extension of its multi-hole wave function.

Indeed, we realized the same experiment in a similar even-odd charge configuration,
but where QDy is at higher filling than QD3, and we found that the dominant relaxation
process was instead ("0,1") — ("0,0") — ("1,0"), involving a first charge transition with
the drain.

For completeness we analyze one last scenario, where the energetic configuration is
such that the unloading of QD4 through its reservoir is forbidden, and the only two pos-
sible relaxation paths are interdot tunneling and the QD3-reservoir mediated process
("0,1") —("1,1") — ("1,0".

By pulsing to point d) (see Fig. 6.11), QD3 begins to exchange charges back and forth with
its reservoir, providing an additional dispersive signal (see red single-shot trace). This
negative dispersive signal can be understood considering that, after a hole is loaded from
the source, the system is in ("1,1") and a hole can be unloaded immediately, bringing
again the system in ("0,1"), as it can be understood from the energy diagram of Fig. 6.11
¢). This process repeats continuously until interdot tunneling.

However, the observation of an additional negative dispersive signal in the red single-shot
trace was quite surprising. Indeed such a signal would be expected when p* (1,1)= us,
condition which is verified far away from point d).

When the DQD is in the ("0,1") state instead interdot tunneling is allowed and then the
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Figure 6.11: a) Static charge distribution of the DQD as a function of Vg,,V(, . b) Single-shot measurements of
the charge distribution of QD4 (green) and QD3 (red), with 5 us integration time per point. In orange (QD4)
and blue (QD3) the time averaged traces. We acquire over the 2-step pulse sequence, i.e. 200 us at point I
and 200 us at point d). c) Energy diagram of the DQD at point d) of the stability diagram. In this case two
tunneling processes are allowed, i.e. the direct interdot tunneling and the process mediated by the reservoir
("0,1M—("1,1")—("1,0"). We observe that the red single shot trace shows a signal corresponding to the resonant
("1,1")«<("0,1") transition, until the interdot tunneling event occurs.

system can reach a stable configuration. This is the dominant process, as can be under-
stood considering that the characteristic tunneling time is still 73_4 =45 +5 us, as the one
extracted in the case a) of Fig. 6.8, where only interdot tunneling is allowed.

With this analysis we detected the presence of metastable charge states by observing the
single-shot live traces during an interdot transition.

The characterization described above can be useful also to determine the dynamics of a
(1,1)—(0,2)-like transition. In such a case a (1,1) state of a system strongly coupled with
its reservoir might reach the ground state (0,2) passing through metastable states as (1,2)
or (0,1). In these cases the sensitivity of a sensor coupled to only one QD does not always
allow to discriminate if the tunneling process is direct or mediated by a reservoir. Ideally
to realize PSB readout the optimal situation would be the one of Fig. 6.8, where only
interdot tunneling is allowed and the spin information cannot be destroyed by tunneling
into the reservoir.

However, the tunneling with a reservoir might also be exploited for the implementation
of alatched PSB readout, especially in cases where the detector is placed symmetrically
with respect to the DQD, and hence it is only sensitive to the total charge on the DQD [7],
or when only one of the two dots is directly coupled to the reservoir [8] [9].

In particular, in the second case one can expect that, because of the different coupling of
the two dots with the reservoirs, states as S(2,0) and T(1,1) would take different times to
decay, for example, to the (2,1) charge state.

In this way, by realizing the readout in (2,1), the spin-relaxation process can be replaced
with a charge-metastable one [8], thus providing a way to increase the contrast of the mea-
surement and the duration of the charge signal, improving the readout fidelity. This im-
provement could be particularly pronounced when the spin-blockade lifetime is smaller
or comparable to the temporal resolution of the charge detector, as for example in ma-
terials like GaAs, where the typical spin-blockade lifetime is about 10 us [10]. A latched
PSB readout can be beneficial at relatively high operation temperatures, where the spin
lifetime can be significantly degraded.
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6.3. MEASURING TUNNEL RATES

When a quantum dot is tuned such that its electrochemical potential is close to the Fermi
level of a reservoir, holes (or electrons) can tunnel back and forth between the quantum
dot and the nearby reservoir. The speed of this process is due to many physical factors
such as the strength of tunnel barrier between the dot and the lead, the wavefunctions
overlap, and the density of state of the leads[11].

The sensing dot can be seen as an effective extension of the reservoir, as in the measure-
ment of the electronic temperature of section 3.4. Its energy spectrum, even though being
quantized, is also broadened by tunneling to the thermally broadened Fermi sea of the
reservoir. We therefore consider the sensor dot as a Fermi reservoir.

Similarly to the analysis of the single-shot counts of Sec. 5.6, we set a threshold to
discriminate between the two states of the detector. Such a threshold is defined as the
intercept between the distributions of the phases corresponding to each charge states, as
in Fig. 5.14 .

If the tunneling events are slower than the integration time, usually between 2 and 10 us
with our setup, we can temporally resolve individual tunneling events from single-shot
live traces.

The technique we are going to describe is widely used when the tunnel rates are below
MHz[12][13], such that each charge state lasts more than the integration time.

The SNR of the detector is what determines how fast we can analyze the tunnel rates. Since
with our setup the main noise source is the the RF amplifier at 3.6K, a higher contrast in
the detector signal is what allows to further decrease the integration time.

The individual tunneling events follow a discrete probability distribution where indi-
vidual events are not correlated. The outcomes of this probability distribution are 0 (dot
empty) and 1 (dot charged).

The statistics of tunneling events between a QD and a single reservoir therefore follow a
Poissonian distribution [14].

The waiting times 7;, and 7,,; for a hole to tunnel into and out of a QD are exponentially
distributed and characterised by the tunnelling-in and -out rates, I';,; and I',;. The distri-
bution of the waiting times can be derived considering, for example, to be initially in the
1 charge state and that the probability of waiting a certain time ¢ before tunneling can be
estimated from the probability P;, (¢) that the hole has not tunnelled out of the dot after
t, multiplied with the likelihood T',,,;d t that it does tunnel out within the infinitesimal
time interval dt.

Therefore the probability of having a tunneling event after certain time ¢ can be obtained
from the following differential equation [15][16]:

Pin(t=0)=1
. 6.1
{ dPZi,;(t) =—Pin(Ooys 6.1

In an analog manner we can write the same differential equation for the dot initially
empty P,,;(f =0) = 1 and a probability of tunneling in at a certain time d¢ given by I'; ,d t
obtaining:

Pin(t) = e~ Tout Poyy(t)=e~'in 6.2)

The tunnelling rates I';,, I'y,,; define the time-scale of the exponentially decaying waiting
times of a hole in or out of the QD. As a consequence also the population of a charge state
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out of equilibrium, i.e. if Py(# =0) =0 or P; (¢ = 0) = 0, would decay to the ground state
(Po,1(f —00) =1) as:

Po(t) =1— e Tout Pi(t)=1-¢ Tin (6.3)

and by fitting the averaged time trace of the charge distribution we can obtain I';;, ¢,;, as
done in Sec. 5.12.

Conversely, when a quantum dot oscillates between two charge states the averaged charge
sensor signal is just proportional to the average charge and, to get some information
about the tunnel rates, we need to resolve individual tunneling events. The probability of
tunneling in-out are still given by eq. 6.2.

Given the exponential distribution of waiting times and the independence of individual
tunnelling events, the tunnel rates can be estimated from the inverse of the mean waiting

time [16]:
_ N
Tinout =< Tinour > e —— (6.4)

N i
ZiilTiﬂ,Out

In Fig. 6.12 it is shown a typical time trace when the QD3 level is aligned with its reservoir.
Here we use an integration time of 10 us, an the two charge states 0 and 1 can be clearly

distinguished. By averaging over all the Tim 1.in We can extract the tunneling rates.

1 2
Tout Tout

¢s(rad)

—0.2 in in
0000 0025 0050 0075 0100 0125 0150 0175
t(s)

Figure 6.12: Example of a time-trace for a slow charge transition, with I'; ,, T o+ = 30 Hz. The dashed line is the

detection threshold. By averaging over all the Tf) ut.in Measured we can extract the tunneling rates.

Here we also plot the distribution of the tunnneling times for another transition, faster
than the one shown before. Fig. 6.13 demonstrates that, as expected, the tunneling events
follow a Poissonian distribution.

In order to fit the probability of having k tunneling events (k=1) after a certain time ¢ we
have to adapt the Poisson distribution as following:

k,—A
P(k,A) = (/UT'Q = Pk=1,)=(rte”"" (6.5)
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The central value of the Poisson distribution (the mode) is the one such that A =k =1, i.e.
at time t=1/r.

The mean value can be calculated again using formula 6.4 on the fitted probability distri-
bution, after normalizing it. The good agreement between the two values demonstrates
that the Poisson model is accurate in describing the statistics of the tunneling events.

In Fig. 6.13 we show the histograms of the experimental data and the fit over the normal-
ized probability distributions.

An important remark is that the average value of the tunneling times is roughly two times
the value of the mode of the probability distribution, and most of the individual tunneling
events are faster than the average tunneling time extracted with eq. 6.4.
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Figure 6.13: a) Portion of the time trace analyzed. b,c) Histogram of the measured 7;;,, 7oy Over 842 tunneling
events in 200 ms, with an integration time of 10 us per point. The solid black lines are the fit with the Poisson
time distribution of eq. 6.5, after normalization. In the legend are reported the values of 7, ¢, extracted from
the Poissonian fit (black) and the mean value of the waiting times extracted from the histogram with formula
6.4. The value of 1/r is the mode of the probability distribution.

Moreover the measurement of the tunneling rates can be used to determine when the
quantum dot is aligned with the Fermi energy of the reservoir and it can provide hints
about the even-odd parity of the quantum dot charge state.

We find that the ratio T"'” = Lin ~ 2 This resultis expected at the Fermi energy, where

FOM[

the ratio of the tunnel rates is proportional to the ratio of the degeneracies between the
initial and final quantum state [16][17].

The impact of degeneracies onto the conductance through a QD has been studied theo-
retically in Ref. [18]. Experimental results demonstrate that the degeneracy influences the
tunnelling dynamics of a QD[16][19], and that this effect can be modelled using a master
equation approach [20].

Moreover, the detailed balance condition [21] [22], states that the ratio between the popu-
lations at equilibrium is equal to the ratio of the tunnel rates between the states. In this
case:

Pol'in = P1lout (6.6)

Considering a QD containing N holes, each of the n degenerate states represents one
possible microstate of the N-holes dot, all sharing the same energy E, with respect to
the reservoir that we fix at Er = 0. After a hole has tunnelled out, the dot contains N — 1
electrons at energy En—. If En_; is m-fold degenerate, this situation can be realized in m
different ways. The partition sum of the QD-reservoir system at the transition N — N -1
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is therefore:
En m En_1

n
Znn-1=) e BT +) e *T (6.7)
k=1 j=1

and the probability of occupying each charge macrostate is given by the sum over each
degenerate microstate into it:

Ey

=1 *pT
PN ZN,N 1 e (6 8)

En—1 :
m kpT
Py-1 ZN,N 1€
and the ratio between the two gives:
P n _ (EN—En—_1) —un+kpTin(n/m)

T 6.9)

PN_1 m

where py = Ey — En-1 is the addition energy.
By including the normalization condition Py + Py_; = 1, results that the occupation
probability is given by a Fermi distribution centered at uy = +kp TIn(n/m) above the
Fermi energy Er = 0.
1
—un+kp Tln(n/m)
l+e kpT

Pn(un) = (6.10)

By considering a state with N = 1 charges we expect it to have two-fold spin degeneracy
and hence n = 2, whereas m = 1 for the non degenerate empty state N — 1=0. We expect
that at the Fermi energy ux = 0 and, using eq. 6.9, the ratio between the two populations
is:

p I;

l_in_, (6.11)

Py Tour

Conversely for a state with two charges we expect the degeneracy is n=1 for N=2 and m=2
for N=1: p r .
RES R A (6.12)
P, rout 2
This analysis is useful to determine the parity of our charge state and it holds not only for
spin-degenerate, but also for orbitally degenerate states, allowing to determine if we are

dealing with a good 2-level system or if further energy states are involved.

6.4. ENERGY-SELECTIVE READOUT OF A HOLE SPIN

We now want to study the spin properties of the holes in the QDs using energy dependent
tunneling between the sensing dots and the two central quantum dots. In the community
this readout technique is usually called energy-selective readout [23] or Elzerman readout
[24].

The energy levels of the two spins are split (AEz = gupB) through a static magnetic field,
oriented along the Si nanowire.

Fundamentally the QD is loaded with a hole with unknown spin, which can be read by
tuning its energy level with respect to the one of the reservoir. This technique requires a
three stage pulse sequence, as shown in Fig. 6.15 and explained in Sec. 2.7.1, necessary to
empty, load and finally read (E,L,R) the hole spin.
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It is crucial to choose properly the tunneling rate between the QD and the reservoir,
dependent on both QD and sensor filling.

The two main conditions to realize this energy-selective readout measurement are indeed
the following:

* Ty < T7, otherwise the excited spin would relax to its ground state before tunnel-
ing to the reservoir.

° T;, > t;, where f; is the integration time. Otherwise it wouldn't be possible to
properly resolve the blip in the charge signal, cororresponding to a hole with spin
[1) tunneling in/out of the reservoir.

We set an automatical routine to measure the tunnel rate of the same dot-reservoir
transition (N = 0 — 1), but varying the hole number in the sensor dot. In this way we can
adjust the tunnel coupling between them. The routine is the following:

* Sit on the sensor signal and identify its direction, indicated by a red dashed line in
Fig. 6.14 a). In the following we’ll measure the tunnel rates and along this direction,
which defines also the read level V}..,4 of the spin measurement of Fig. 6.15.

The direction of the sensor signal in the (G3,G2) or (G4,Gs) planes provides also a
measurement of the capacitive coupling between the gate accumulating the QD
and its sensor, i.e. @g3_G2 OT A G4—G5.

The pink cross indicates the half height of the charge signal and the position of
Viead = 0. The value of the average phase at this point also defines the single-shot
readout threshold.

For clarity we remark that the position of V,.,4 = 0 in Fig. 6.14 c) does not corre-
spond to the Fermi energy Er. This is just because of a time delay in the acquisition
(going upwards in the plot a)) due to a slow time constant. The level of Er for a

QD with only one free charge can be identified when % =2, as explained in the
previous section.

* We measure the signal corresponding to the two charge states in the I/Q plane, to
be sure to deal with a good two level system. Indeed, the appearance of a third
bubble would represent the presence of an unwanted third charge state involved in
the dot-lead charge transition.

We show the bubbles with all the data points collected in the IQ plane in Fig. 6.14 b).
The integration time for each data point is 10 us, and the overall acquisition last 10
seconds, respectively 5 s at V,..,4 = £1 mV, along the direction of the sensor signal
previously measured.

The charge readout fidelity can be estimated from the overlap of the two Gaussian
distributions and it is above 99% for the Y component, and hence for the phase
signal (¢p x arctan(y/x)).

* We measure the tunnel rates while varying the energy gap between the dot and
the lead, along the V44 direction. In Fig. 6.14 c) we show the tunnel rates I';; o+
measured at each V,.,4 point using formula 6.4.

By fitting the charge signal along the V,,,4 axis as a Fermi distribution at 7' = 440 mK we
measure the lever-arm a4 = 0.27 eV/V.

Coherently from what expected from eq. 6.9, we observed that the two rates are equal
for un=1 — Er = kpTIn(2) =27 peV (100 uV) above the Fermi energy Er, where instead
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Figure 6.14: a) Charge sensor signal at the charge transition N =0 — 1. The red dashed line and the pink cross
indicate, respectively, the dot-lead axis and the position of V,,,4 = 0 in the plot c). b) I and Q values measured
over 5 s in each charge region, with an integration time of 10 us per point. c) Measured I';;, (orange), I' gy (blue)
along the direction indicated by the dashed line in a). The position of the Fermi energy Er and the expected
crossing of the two rates Tyt =I'j;; at uy=1 = EF + kg TIn(2) are indicated by black vertical dashed lines.

Tip ~30kHz = 2T o,

By realizing the same measurement for different filling of the sensor dot we observed
that, as expected, the tunnel rates increase by increasing the sensor filling, but without
following a clear trend.

To prepare the spin measurement, in Fig. 6.14 we tuned the filling of the sensor such that
Tin > t; =5 ps. Then we can reasonably expect to resolve the blip in the charge signal
when realizing energy-selective readout.

The averaged charge during the Elzerman pulse sequence is shown in Fig. 6.15 a). For
this measurement it has been applied a magnetic field of B = 1.3 T along the nanowire
direction.

We pulse for #empsy = 20 ps in the N = 0 charge state, then we spend f544 = 10 us in
the N=1 charge state, loading a spin |1) or a spin [|). While varying the read level V the
loading and emptying pulse levels are at +1 mV from V.44 = 0.

When loading a spin up we can observe the characteristic blip during the read stage, as
shown by the green single-shot trace in Fig. 6.15 b). This is the signature of the loading of
a hole with spin up, that goes back to the reservoir and only then another hole, with spin
down, can enter in the QD.

Conversely when it is loaded a spin down nothing happens, as shown by the orange
single-shot trace in Fig. 6.15 b).

As can be understood looking at the average signal between the loading and reading
stage in Fig. 6.15 c), the loading of a spin up (dip in the signal) occurs only in a fraction of
the loading events, while ideally we would like to load one of the two spin states with a 50
% probability.

In particular for the trace shown we can calculate, from the ratio between the charge
signals for N=0,1 (A¢ = 0.5 rad) and the small dip observed (6¢ = 50 mrad), that we can
load a spin up in roughly 10% of the loading events.

Moreover we observed (not shown) that the spin up population is independent by the
time spent in the load stage, for loading times between 5 s and 150 us. This observation
suggests that the spin relaxation time 7} at the load stage is shorter than 5 us.

We believe that we realized the experiment with too high magnetic field, limiting drasti-
cally 77, but at the same time, given the temperature of 440 mK we weren't able to properly
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Figure 6.15: a) Energy-selective readout sequence. Empty and load level are kept fixed while varying the gate
voltage position of the read level V,,,,. The signal is acquired continuously averaging over 10000 sequences.
b) Comparison between two single-shot traces, for the loading of a spin up (green) and down (orange) for
Vieaa=-0.58 mV, indicated by a blue dashed line in a). When loading a spin up the characteristic blip can be
observed, signature of the tunneling out to the reservoir, that leaves the QD temporarily empty until another
hole tunnels back. The blue line is the average of 10000 single-shot traces, zoomed in c). Here the static magnetic
field B = 1.3 T is oriented along the Si nanowire.

resolve the signals of the two spins for lower fields.
Because of the difficulties imposed by a relatively high temperature, the few demonstra-
tions of hot qubits (T = 1 K) in silicon rely on PSB readout [25][26].

6.5. ENERGY-SELECTIVE READOUT OF A HOLE QUBIT

Adopting the strategy described previously, i.e. of using a big quantum dot to enable
remote sensing from the reservoir, it has been possible to demonstrate coherent qubit
oscillations of an isolated quantum dot. Most of the results described in this section
served as a starting point for the characterization of the qubit described in Ref. [27],
where it is discussed in detail the impact of charge noise on the qubit coherence times
and it is revealed the existence of operation sweet spots where the impact of charge noise
is minimized.

The experiment described here has been realized in a Blueforce dilution refrigerator with
base temperature of 20 mK.

The temperature has a significative influence on the signal back reflected from the res-
onator placed on the reservoir. When we measured the electronic temperature in section
3.4, we also measured the magnitude of the phase signal as a function of the mixing
chamber temperature, as shown in Fig. 6.16.

There is no remarkable difference between the setup used for this measurement and the
one used in the experiment of the previous section. In between the two experiments there
is a factor 3 in the magnitude of the phase signal and, since the noise is dominated by the
amplifier noise at 3.6 K, this means also a factor 3 in the SNR.

The increased contrast in the phase signal can be understood considering that in this case
a matching closer to 50 Q is achieved when decreasing temperature. This means that,
even if the shift in the resonance frequency due to the dot-reservoir resonant transition
is roughly the same, the phase (and amplitude) response close to the resonance is way
steeper in frequency at lower temperature, resulting in a higher contrast of the measured
signal.

In Fig. 6.17 a) it is reported a cartoon of the energy levels of the system (lower panel) and a
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Figure 6.16: Contrast in the phase signal recorded for the dot transition N = 0 — 1 (see Fig. 3.4) as a function of
the mixing chamber temperature. The green cross indicates the temperature (440 mK) of the energy-selective
readout experiment described in the previous section, while the red one indicates the temperature of the
experiment described here (20 mK).

schematic representation of the device layout with the charge densities and readout setup.
The detector has been tuned as explained in Sec. 6.1 on a similar p-type device with 4
gates in series, with channel width W = 100 nm, gate length L; = 40 nm and spacing
between each adjacent gate Sy = 40 nm.
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Figure 6.17: a) Scheme of quantum dots configuration and readout. b) Signal recorded by drain reflectometry
while varying the read level V,,,,;. Here B=0.913 T, oriented along the Si nanowire. c) Single-shot traces at
Vieaa = —0.1 mV, for the loading of a spin |1) (orange trace) and ||) (blue trace).

The N =0 — 1 charge transition of the central dot is exploited to realize energy-selective
readout with the drain reservoir, similarly to Sec. 6.4.

We can observe (Fig. 6.17 b)) that, compared to the previous case, the signal, due to
the loading of a spin |1), lasts way longer. For this experiment indeed the typical loading
time of the dot at the read stage is 7;;, = 80 us, much longer than the previous case, where
Tin=5-10 us.

The increased SNR and the longer 7;, at the read stage allow to distinguish the loading
of a spin |1) or ||) with a readout fidelity above 99%, as can be understood from the two
single-shot traces of Fig. 6.17 c).
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Thanks to the strong spin-orbit coupling, typical of holes, it is possible to realize electrical
manipulation of the hole spin.

A microwave burst of duration Tj,s; is applied on the gate controlling the qubit during
the loading stage. At this manipulation point, both spin levels are far detuned below the
electrometer electrochemical potential, preventing any tunneling.

In principle an empty dot can be loaded with a spin |{) or ||) with equal probability.
Compared to the Elzerman sequence now we skip the emptying stage and the hole spin is
initialized in the ||) state by waiting ¢ > 7, in the read stage.

In Fig. 6.18 a) we plot the probability of measuring a spin |1) as a function of the ex-
citation frequency, centered at fy, and the burst duration Ty,,s,. The probability of
loading a spin |1) is extracted by averaging over a 100 single-shot traces.

We observe the typical chevron pattern, demonstrating coherent qubit driving.

For B =0.913 T the resonant frequency is at fy = 19.116 GHz, providing the value of the
hole g-factor: g =1.496.
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Figure 6.18: a) Top panel: scheme of the pulse sequence; a burst of microwave frequencies with duration
Tpurse is applied and then we pulse back for the spin readout and initialization (R stage). Bottom panel:
the measurement of the probability of loading a spin up as a function of the burst duration and frequency
provides the characteristic Chevron pattern. The magnetic field is set at B=0.913 T along the nanowire direction.
The horizontal axis is centered around the Larmor frequency fy = 19.116 GHz. A cut at fp is shown in b),
demonstrating Rabi oscillations with fp,j; = 3.5 MHz c¢) Measurement of T} for B =0.941 T along the nanowire
direction. T,,4;; is the time spent in the loading region after the z-pulse. Above a scheme of the corresponding
pulse sequence. The Ty, axis is in log scale.

When driving in a close proximity to the Larmor frequency fp we can observe the Rabi
oscillations (see Fig. 6.18 b)).

As in Fig. 6.26 d, the envelope of the Rabi oscillations is not well defined and we cannot
estimate precisely the dephasing time TZR“h ! from this measurement, but we can say that
itis above 3-4 us.

From the period of the Rabi oscillations we know the duration of the microwave burst
necessary to realize a full rotation of the hole spin, that is 7; =250 ns and we can prepare
the hole spin in the |1) state. By increasing the time spent in the loading stage T}, i, after
the n-pulse, the excited spin can relax to its ground state before the reading stage.

The probability of loading a spin |1) as a function of the waiting time T,,4;, provides a
measurement of the spin relaxation time T3, as reported in Fig. 6.5 c).

The spin up probability as a function of the loading time can be fitted with an exponential
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decay. For this particular configuration we found 77 = 152 + 12 us.
We also observed a spin relaxation time up to 71 = 1 ms for B=0.4 Tand up to 71 =3 ms
for B = 0.4 T oriented perpendicularly to the channel [27].

We now turn to the estimation of the dephasing time T,’, measured through a Ram-
sey experiment.
We remark here that the two dephasing time, T, and TZR‘”” have a different physical

meaning. Indeed whereas T. ZR“b ! gives an estimation of the dephasing while precessing
between the two poles of the Bloch sphere |1) or [|), T2* instead gives an estimation of
the dephasing acquired starting from the equator of the Bloch sphere, where the qubit

state is initially in a quantum superposition (a(t = 0), B(t = 0) = ——) and evolves as

V)
aB()H-OW)e D)) . : .
1) = , where ¢ is the angle in the equatorial plane of the Bloch
ly(0) Va2(00))2+20(1) ¢ & d P

sphere and 6 is the out-of-plane angle.

By waiting =~ 600 us at the read stage we ensure that the spin is initialized in a |]) state.
Then we pulse to the (former) load stage to avoid a spin |1) to tunnel out. A schematic
of the pulse sequence is shown in Fig. 6.19 b). In order to go from a pure qubit state to a
quantum superposition we need to apply a Hadamard gate. In terms of pulses this means
to apply half rotation of the qubit state, with a pulse of duration 7,/».

After realizing a rotation of the spin state of 7/2, we wait a time T,,,;; during which
the qubit state evolves freely. Finally we apply another /2 rotation and read the spin
state.

After the first rotation the spin, initialized in a superposition state, acquires a phase ¢(t)
in the equatorial plane of the Bloch sphere, due to the coupling with the surrounding
environment, that determines the period of the Ramsey oscillations. The phase acquired
out of the equatorial plane 0(t), destroys the quantum superposition, inducing a damping
of the Ramsey oscillations, therefore providing the typical dephasing time T’

In Fig. 6.19 a) we show the Ramsey fringes as a function of T},4;,; and frequency applied.
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Figure 6.19: a) Measurement of Ramsey fringes for B =0.913 T along the Si nanowire. b) Top panel: scheme of
the pulse sequence for a Ramsey experiment. Bottom panel: line cut at A f=+2.5 MHz, indicated by dashed red
line in a). The fit of the fringes envelope with a Gaussian decay function provides T2* =1.4pus.
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The envelope of the Ramsey fringes, with the microwave excitation frequency detuned by
Af =+2.5 MHz from the Larmor frequency is shown in Fig. 6.19 b). It can be fitted with a

t 2

(=
Gaussian decay function [28] Py = Ae "2~ + B, where A and B are fitting parameters to

account for the measurement and initialization errors. We measure T, = 1.4 ys.

This value of T2* is the highest reported so far for hole based spin qubit [29] [30] [31][32].
Moreover, by varying the magnetic field orientation an enhancement of T, has been
observed up to T > 8 us, for a magnetic field orientation perpendicular to the plane of
the Si nanowire [27].

6.5.1. TEMPERATURE DEPENDENCE OF Tj

In between the two energy-selective readout experiments shown in Secs. 6.4, 6.5, realized
on very similar devices, we found a difference in T3, for similar magnetic fields, of at least
one order of magnitude, while the effective hole temperature in one case (T7=150 us for
B=1Tand Tefr ~ 100 mK) is roughly 4 times lower than in the other one (T;<5 us for
B=1Tand Teyf =450 mK).

It is therefore worth to understand which is the effect of temperature on T7.

When looking at the temperature dependence of T; we should consider that both photons
and phonons contribute to the decay. Their density follows the Bose-Einstein distribution

np(E, kgT) (6.13)

eth/kBT -1

where w; is the Larmor frequency, linearly proportional to the B-field applied. The spin
relaxation rate 1/ 7} is expected to be linearly proportional with the boson density, and
therefore at first order the temperature dependence is the same for phonon and Johnson
noise [33].

At sufficiently low temperatures (fiwy > kg T), from eq. 6.13 the spin lifetime is expected
to depend exponentially on temperature. For B =1 T we can expect T to decrease rapidly
by raising temperature up to 150-250 mK.

At higher temperature (fiw; < kpT) instead we recover the classical limit, where we ex-
pect the boson density to grow linearly with T, and hence we expect Ty (T) o< T~ 1.
However, by including the effects of two phonon processes we expect T} (T) < T2 [34].
The exponential decrease of T; expected at low temperature, together with two-phonon
processes might explain why, with an electronic temperature differing of a factor 4, the
relaxation time T} is degraded by more than one order of magnitude.

We highlight that the processes governing holes spin relaxation are significantly different
from the ones of electrons, where the dominant contribution can be due to spin-valley
coupling. The expected relaxation time for valley relaxation is T; o< B~! for photon
induced decay and T; o« B~ for phonon induced decay [33]. The valley relaxation mech-
anism goes to zero if the magnetic field is parallel to one of the three crystallographic
axes [35], and we expect T} o« B3 for photon induced decay and T; o« B~ for phonon
induced decay.

When looking at holes the spin relaxation is dominated by the band mixing between HH
and LH bands, that couples the hole spin with phonons [36]. In this case a dependence
Ty o« B is expected for Rashba SOI and a dependence T; o< B~° is expected for Dressel-
haus SOI [37].

However, with the device of Sec. 6.5 we observed B-field dependencies of T} between B2
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and B~3, depending on the field orientation. This may be understood considering that,
with respect to bulk phonons (T; «« B™°), the relaxation rate is inversely proportional to
the characteristic size of the system, and the dependence on the Larmor frequency, and
hence on the magnetic field, is reduced by one power each time the phonons get confined
in an additional direction [36]. However, further studies are required in order to clarify
holes relaxation mechanism in silicon under different device geometries, confinement
potentials and magnetic field directions.

When considering the temperature dependence of the relaxation time T; of electrons,
we expect a behaviour similar to holes at low temperature, due to the boson density ng,
while instead when considering higher temperatures two-phonon processes give raise to
a Ti1(T)  T7[33] or T;(T) o< T~ [26] when involving intervalley piezophonons.

6.6. GATE REFLECTOMETRY DISPERSIVE READOUT AND COHER-
ENT CONTROL OF A HOLE SPIN QUBIT IN SILICON

Most of the results reported in this section have been published in [38]. In this experiment
coherent oscillations of a hole spin qubit are read through dispersive readout on the gate.
This experiment was carried out in an Oxford Triton dilution refrigerator, with base tem-
perature around 20 mK.

The device is a p-type double gate transistor. In Fig. 6.20 a), c) we show a cross section
and a SEM top view of the device.

The transistor channel is a Si nanowire (light blue), 11-nm-thick and 35-nm-wide. It
connects p-type, boron-doped source-drain contacts (dark blue). The Si channel lies on a
140-nm-thick SiO, buffer layer (pink). The two 35-nm-wide gates (gray) are separated by
35 nm. The Si3N4 spacers (cyan), prevent dopant implantation in the Si channel.

The right control gate (G¢) confines a hole quantum dot encoding the spin qubit, whereas
the left one (Ggr) confines a helper dot, enabling spin readout via gate reflectometry.
The phase and amplitude frequency response of the resonator is shown in Fig. 6.20 b).
From the resonant frequency fy = 339 MHz, knowing the nominal value of the inductance
L =220 nE it can be extracted a parasitic capacitance C, = 1 nE

The demonstrated qubit readout scheme requires no coupling to a Fermi reservoir, thereby
offering a compact and potentially scalable solution for the readout of many qubit ar-
ranged in arrays.

In the stability diagram in Fig. 6.21 it is possible to appreciate only the dispersive signal
corresponding to interdot transitions and not the one corresponding to dot-lead tran-
sitions. This ensure us that the readout dot has a low tunnel coupling with the nearby
reservoir (below MHz, probably kHz [39]).

Without a charge sensor it is not possible to precisely count the charges present in the
system. However a rough estimation can be given by comparing the gate voltages of
the transition with the threshold voltages (around +1.2 V) at room temperature and the
addition voltage in the many hole regime.

In the bottom panel of the stability diagram of Fig. 6.21 the system is in the many hole
regime, where the voltage spacing between the DQDs is approximately constant. The
typical spacing in gate voltage between two charge states is about 25 mV, consistent with
other experiments on similar samples [31, 40].

We estimate an order of magnitude of 5 holes in the readout QD (mainly controlled by Vg)
and 10-20 holes in the control QD (mainly controlled by V¢).
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Figure 6.20: a) Scheme of the experimental setup and false-color transmission electron micrograph of a double-
gate Si device. In the left circuit the DC voltage is added to the rf signal for dispersive homodyne detection with
alock-in. The incoming and outgoing reflectometry signal are separated by a directional coupler and the output
signal is amplified with a cryogenic amplifier (Caltech). The circuitry of the right gate combines DC voltages for
DQD electrostatic tuning, fast voltage pulses (MHz) and GHz excitations for EDSR. b) Phase response (¢) and
attenuation (A) of the resonator at base temperature T=20mK. ¢) Scanning electron micrograph (SEM) top view
of the device. The different colors in the cross-section and top-view identifies the Si nanowire (light blue), the
source-drain contacts (dark blue), the buried oxide SiO2 (pink), the gates (gray) and the spacers (cyan).

In the large stability diagram it can also be observed a series of nearly horizontal parallel
lines. Such lines repeat quite regularly, even when the silicon channel is completely
pinched off. Consequently, we speculate that these features are related to the charging of
objects extrinsic to the channel.

Furthermore we notice that, for interdot tunnel couplings of few GHz and an effec-
tive temperature of 250 mK (both extracted by fitting the dispersive signal), the interdot
transition lines are expected to be quite thin in gate voltage (see formula 2.24), and are
very likely not resolved in large maps (obtained with large voltage steps).

Since a high resolution is required to observe these features it is beneficial to find some
"tricks" to speed up the measurement. It is possible to act both on the hardware and on
the measurement software.

The communication with the DACs takes = 2 ms for each operation (ask and write), and
getting rid of these dead times significantly speed up the measurements. This can be done
by measuring continuously while applying a voltage ramp [41][42], in this way we can get
rid of the dead times due to the continuous procedure of setting DAC values (write) and
checking if the dac values is correct (ask).

For what concerns the software it is possible to save time by avoiding to measure the
full stability diagram, and measuring only when a signal is expected. Deep learning
techniques are a useful instrument for this purpose, as demonstrated recently by an
increasing effort in applying it for measurement of DQDs stability diagrams[43][44][45]
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Figure 6.21: Dispersively detected charge stability diagram of the device as a function of the two top gate voltages,
V¢ (control gate) and Vg (readout gate). In the bottom panel, both gates are tuned in a strong accumulation
mode, and the many hole regime, characterized by a regular spacing between the interdot transition lines, is
reached. In the upper panel, Vi approaches the gate voltage threshold; as a result, interdot charge transitions
are unequally spaced. The blue square denotes the area zoomed-in in the inset, where B=0T.

and Coulomb diamonds [46] .

These two approaches to speed up the measurement of stability diagrams regards sepa-
rately software and hardware and are absolutely compatible, therefore a cointegration of
the two would be the optimal solution.

6.6.1. MAGNETOSPECTROSCOPY OF THE HOLE DQD

Since we cannot rely on the interaction with a reservoir to realize spin-to-charge conver-
sion, the option left is to realize it through PSB. The first step towards the realization of a
spin qubit is therefore to find an ICT that shows signature of PSB, and hence whose parity
is (even,even)-(odd,odd). As in Sec. 5.4, PSB can be detected through a displacement
of the ground state with magnetic field and, consequently, from the vanishing of the
dispersive signal, corresponding to inhibited interdot tunneling.

In this experiment the magnetic field is oriented along the Si nanowire.

Figure 6.22 b) shows the B-dependence of the phase signal at the detuning line indicated
in Fig. 6.22 a).

We observe the signal displacing towards negative energy detuning, allowing to determine
the parity of the two charge states.

Differently from the case of Fig. 5.7, in Fig. 6.22 b it can be noticed the appearance of a
second peak (see linecut at B =0.46 T in Fig. 5.7 ¢), that is due to the thermally populated
Tp(1,1) state, as it is explained in the following.

We recall that the magnitude of the quantum capacitance contribution to the dispersive
0%E;

0e? *

signal is proportional to the curvature of each energy states ¢;
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Figure 6.22: Magnetospectroscopy of the DQD. (a) Phase shift of the reflected signal as a function of V¢ and Vy
near the interdot transition line under study. The arrow indicates the detuning axis €. (b) Interdot dispersive
signal as a function of a magnetic field B, oriented along the nanowire axis. The phase response diminishes with
B, denoting an interdot charge transition of (0,2) < (1, 1) type. Inset: theoretical prediction of the dispersive
response for a DQD model taking into account thermal spin populations. (c) Line cuts of the plot in panel b)
at the position of the dashed lines. Data are offset for clarity. (d) Schematic of the DQD energy levels close
toa (0,2) < (1,1) transition at finite B = 0.65 T and for Igi - gz,l = 0.5 (e) Thermally-averaged phase response
(A¢); with Teer = 0.25K. (A¢p); is second derivative of the energy-level dispersion of each state i in panel d),
weighted by its occupation probability. Here i labels the different DQD states, i.e. the singlets Sg (green) and Se
(black), and the triplets Ty (blue), T- (red), and T4 (red). (f) Qualitative phase shift resulting from the sum of all
(A¢); from panel e). A double-peak structure emerges at sufficiently high B in qualitative agreement with the
experimental data in panel c). The one-dimensional cuts are taken at B=0, 0.35, 0.5 and 0.85 T.

In the cases studied in Sec. 5.4.1 the only states with a curvature were the ground and
excited singlets, and therefore no contribution was expected from Ty(1,1). This is because
we previously assumed that the two electrons were having the same g-factor and hence
S(1,1) and Ty(1, 1) were degenerate for high detuning in (1,1), even in presence of a mag-
netic field.

When dealing with holes instead this degeneracy is broken by different g-factors for
the left (g;) and the right dot (g5). In the positive detuning regime, this results in four
non-degenerate (1,1) levels corresponding to the following spin-orbit eigenstates: | {}),
MU, 1UM, INM) [47, 48, 49], where the first spin is in the dot below G¢ and the second one
below Gg. At large negative detuning, the ground state is a spin-singlet state S(0,2) and
the triplet states T'(0,2) lie high up in energy.

From the Hamiltonian 2.30' it can be derived the energy diagram of Fig. 6.22 d. The
difference in g-factor (|Ag = 0.5] is such that the excited singlet state S, (in black) and
I, U), U, ) are mutually coupled and hence anticross.

In other words, the origin of the anticrossing is the electric dipole moment that couples

IThe Hamiltonian 2.30 can be written in both the singlet-triplet and single spins basis, as shown in the supp.
info of Ref. [38]. The term tgp is negligible in the present case.
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Tp(1,1) and S(1,1) via %(gz — gz)4pB. This might eventually imply also a second-order
coupling with S(0,2).

As aresult in the Ty(1, 1) state it is induced a positive curvature for slightly negative detun-
ing € and a negative curvature for positive ¢ (see blue curve of Fig. 6.22 d). This negative
curvature at € > 0 is responsible of the appearance of the second dip in phase for B = 0.46
T (green curve in Fig. 6.22 ).

To proper understand the contribution of this curvature we calculated the quantum
capacitance contribution of each state, weighted by its Boltzmann occupation probability,
as shown in Fig. 6.22 e.

Differently from the case of Sec. 5.4.1 also the triplet state Tj(1,1) provides a non negligi-
ble quantum capacitance contribution and therefore the signal can be fitted by summing
each contribution individually, weighted by its population:

Ag(e) = ) (AP(e)); = pi(€) Pi(e) (6.14)

1

__Ej@

kpT,
where P;(€) = % and ¢; is proportional to the energetic curvature .
The coupling term ¢ can be extracted by fitting the trace along ¢ for B=0T (blue line in
Fig. 6.22 c).
The lever-arm parameter a, relating e to the energy difference between the electrochemi-
cal potentials of the two dots, is estimated by fitting the signal along the detuning line in
Fig. 6.22, yielding a = 0.58 &7
The full width at half maximum (FWHM) of the dispersive signal as a function of tempera-
ture allows to estimate the tunnel coupling (supp. info of [38]). Depending on whether
thermal populations of the excited states contribute or not to the FWHM, for B=0 T it is
equal to 4t in the high temperature limit (kg T > 1), or to 3.2 ¢ in the low temperature
limit, (kT < t), as can be simulated using eq. 6.14, with energy given by the eigenstates
of Hamiltonian 2.30.
We estimate ¢ between 6.4 and 8.5 ueV.

The DQD spectrum as a function of € (in Fig. 6.22 d) is calculated with g7 = 1.62, g5 = 2.12,
t =8 peV and B = 0.65 T. This model, with the chosen hole temperature T, = 250 mK,
qualitatively reproduces the emergence of the double-dip structure at B = 0.5 T, as well
as its gradual suppression for higher magnetic field, as shown in Fig. 6.22 f. Indeed the
increasing of the Zeeman energy results in the losing of population of the singlet ground
Sg and excited states S, in favour of the new ground state T- (1, 1), which has no curvature.

One last remark is that, with respect to the Hamiltonian (2.30), the term ¢g0, respon-
sible of anticrossing between the T_, T, and singlet states is negligible (f50 < ).

Significant spin-flip tunnelling terms like tLTO‘> |T_(1,1))(S(0,2)| and tg%) |T,(1,1))(S(0,2)|
would lead to an additional dispersive signal with a strong magnetic field dependence as
it has been shown in Ref. [50].

Indeed, it is still possible that such spin-flip tunneling terms might be relevant for orien-

tations of the external magnetic field different from the one investigated here.

6.6.2. EDSR AND READOUT OPTIMIZATION

After having clarified the nature of the dispersive signal and the energetic structure of the
DQD it is possible to discuss the realization of a hole spin qubit.

Electric dipole spin resonance (EDSR) [31, 40, 51] is induced by a microwave voltage
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modulation applied to gate G¢. A more general discussion about the microscopic origin
the SOC enabling the EDSR can be found in Sec. 2.8.

To detect EDSR dispersively, the resonating states must have different quantum capaci-
tances. The DQD is therefore initially tuned in a "shallow" (1,1) configuration, i.e. close
to the boundary with the (0,2) charge state where the Ty(1,1) state has a curvature. This
detuning point, at € = +0.1 mV, is indicated by a red star in Fig. 6.22 c.

Figure 6.23 shows the dispersive measurement of the EDSR. The microwave excitation
with frequency f¢ is applied continuously, while sweeping the magnetic field.
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Figure 6.23: Phase response as a function of B and microwave frequency fc. B is oriented along the nanowire
direction y, corresponding to 6 = 90° (out of plane angle), = 90° (in plane angle). The linear phase ridge,
denoted by a red arrow, is a characteristic signature of EDSR. It corresponds to a second-harmonic signal, while
the much weaker first harmonic is shown in the lower inset.

We attribute the resonance line to a second harmonic driving process where 24 fc = gupB.
From this resonance condition we extract g = 1.735 + 0.002, in agreement with previous
works [31, 40]. Even though both first and second harmonic excitations can be expected
[52][53], the first harmonic EDSR line (inset of Fig. 6.23) is unexpectedly weak. A com-
parison of the intensity of the two signals requires the knowledge of many parameters
(relaxation rate, microwave power, field amplitude) and it goes beyond the goal of the
present work.

We attribute the observed EDSR line to a resonant transition between the ground state
[J, 1) and the excited spin state |, |}), indeed the microwave excitation drives the first
spin, controlled by gate G¢. A further confirmation that we are not driving other spin
transitions is given by the extrapolated intercept at 0 T of the EDSR transition line in Fig.
6.23, found much smaller (< 100 MHz) than the tunnel coupling energy .

The visibility of the EDSR signal can be optimized by a fine tuning of the gate voltages
and magnetic field orientation. In particular, the interdot signal is found to be heavily
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impacted by the magnetic field orientation.

We observed that for magnetic field direction out of the Si channel plane (i.e 8 # 90°), and
a static magnetic field of B = 0.6 T the pure ICT dispersive signal is enhanced, signature
that the ground state would still be a spin singlet [42].

For this experiment we want to be in a regime where the contrast between the ground
state dispersive signal, and the one of the excited state is maximized. It is therefore bene-
ficial to initialize the system in the ground state 7_(1, 1) that shows no curvature at all,
and excite in a regime where the curvature of the T(1,1) is maximized.

We therefore measure the EDSR signal as a function of the in plane angle , as shown in
Fig. 6.24. The maximum intensity of the EDSR signal has been found for an in plane angle
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Figure 6.24: EDSR phase shift as a function of the in plane angle  of the applied magnetic field B and frequency
fc- The static field is set to B = 0.5 T. The highest signal is found for $=55°, which is the field such that the
curvature of the Ty(1, 1) state is maximized.

B =55°.
We also observed a thin replica of the EDSR signal due to the mixing with the reflectometry
tone, as in Sec. 5.7.

The visibility of the EDSR can be further enhanced by a fine tuning of the gate volt-
age, such that the curvature of the Tp(1,1) state is maximized. Fig. 6.25 shows the ICT
while continuously applying the microwave tone at fc=7.42 GHz. The static field is set at
B =0.52 T. Looking at the blue line cut in Fig. 6.25 b), it can be observed that the double
peak structure of the interdot is maintained in this regime, also when the system is not
excited, due to a residual thermal population of Ty(1,1).

EDSR appears as an additional phase signal around V¢ = 362.5mV and Vg = 1040 mV,
indicated by the black arrow as I/R. This point will be used for the qubit initialization
and readout.

Such EDSR feature is extremely localized in the stability diagram. This can be understood
considering that the hole g-factor exhibits a strong gate voltage dependence [40].

In the inset of Fig. 6.25 it is shown the comparison between the observed EDSR signal and
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Figure 6.25: a) Stability diagram at B = 0.52 T (orientation = 55° and 6 = 90° according to the diagram of Fig.
6.24) with microwaves applied continuously with frequency fc = 7.42 GHz and power P¢ = —80 dBm. In the
stability diagram the increased population of the excited state Tp(1, 1), induced by resonant transitions with
T_(1,1) (purple double arrows in inset), is visible as a localized phase signal at point I/R, indicated by the black
arrow. Point C is the control point, where qubit manipulation is realized. b) Phase shift at Vi = 1039.9 mV as
a function of V¢ without microwave irradiation (blue line), and under on-resonance (red) and off-resonance
(yellow) excitation at fc = 7.42 and 7.60 GHz, respectively. EDSR-stimulated transitions appear as a pronounced
peak whose position and line shape are compatible with our model (inset), using the following parameters
g] =1.575, g, =2.075, t =6peV, B=0.52T and Tefr = 0.25K.

the one calculated with the model described previously, using as parameters g; = 1.575,
gr =2.075, t=6ueV, B=0.52T and Tef = 0.25K.

In the model we assume that for an excitation frequency fc = 7.42 GHz at the point I/R
the population of Ty(1,1) and T-(1,1) is balanced equally by the coherent oscillations.

6.6.3. COHERENT MANIPULATION OF HOLE SPIN QUBIT

After having optimized the EDSR signal we are ready to drive coherent qubit oscillations.
The two-step pulsing sequence used is schematized in Fig. 6.26 a. The spin oscillations
are driven at the control point C (¢ = +1 mV deep in the (1,1) region), where holes are
strongly localized, with negligible interdot tunnel coupling.

A microwave burst of duration 1p,5¢ and frequency fc drives single spin rotations be-
tween [|}|}) and |f}{); the system is then brought back to I/R in the "shallow" (1, 1) regime
for a time t,,j; for readout and initialization.

The reflectometry tone fg is applied during the whole sequence, with duration 73y and
the reflected signal is acquired continuously. This means that it is acquired an average of
the signal in deep (1,1), which gives no dispersive contribution and at I/R (1,1), where the
Tp(1,1) can be sensed dispersively.

Alternatively we could have triggered the acquisition only at the readout point. However
the noise introduced during the manipulation stage at point C is washed out by averaging
over many acquisition cycles.

The magnetic field direction is now set to 8 = 60° and = 0°. Indeed, after a refrig-
erator incident resulting in the warm-up of the sample, the device was cooled down again
and it was found that the EDSR signal was maximized for this magnetic field direction.

We demonstrate coherent single spin control in Fig. 6.26 c. The phase signal is collected
as a function of microwave burst time 7,5, and driving frequency f¢ . The spin state is
initialized at point I/R, waiting a time #,,4;; = 1 pus= T}. From this plot we can extrapolate
precisely the Larmor frequency, being f1.4rmor = 12.865 GHz for B = 0.512 T. The g-factor
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Figure 6.26: Single spin control and dispersive sensing. (a) The pulse sequence alternating between "deep"
(1,1) regime (C) for spin manipulation and "shallow" (1, 1) regime (I/R), close to the (0,2) < (1, 1) transition, for
the readout and resetting of the spin system. A microwave burst rotates the hole spin during the manipulation
stage. The readout tone is continuously applied throughout the sequence period Tj;. (b) Phase shift as a
function of ty,j; for a = 1 mV pulse on V¢ with 7yt = 100ns and f¢ = 14.294 GHz, with B = 0.62 T along
B =0° and 6 = 60°. The phase signal approaches 0 when fy,i; > T1. A simple model yields T; = 2.7 £ 0.7 us. (c)
Dispersive signal A¢ (fc, Thurst), measured with the detuning pulses of panel a) with ty,i; = 1 us. Four maps
have been averaged. (d) Phase response as a function of EDSR burst time at fc = 12.865 GHz. The plot shows
Rabi oscillations with 15 MHz frequency due to coherent spin rotations. Each data point is integrated for 100 ms
and then averaged over 30 traces.

extracted for this new field direction is then g=1.795.

In Fig. 6.26 d we plot the phase signal as a function of 7}, s, demonstrating Rabi os-
cillations with 15 MHz frequency. However, while we expect that the Rabi oscillations
envelope should follow an exponential damping providing the characteristic spin dephas-
ing time TZR“"’ I, the behaviour of the Rabi oscillations is quite irregular. This envelope can
be attributed to random phase accumulation in the qubit state by off-resonant driving
at frarmor * fr due to up-conversion of microwave and reflectometry tones during the
manipulation time. Another possible explanation is the non perfect initialization, since
twair = 1.

We increased slightly the magnetic field to B = 0.62 T (keeping it at 8 = 60° and § = 0°),
obtaining a new larmor frequency at f¢ = 14.294 GHz, providing g = 1.64. We attribute
the change in the g-factor to the new gate voltage readout point I/R found with a map
analogue to the one of Fig. 6.25. In this regime the Rabi oscillations have been mea-
sured again, as shown in Fig. 6.27. The Rabi oscillations can now be fitted using as an
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Figure 6.27: For this plot B = 0.62 T, The fit of the Rabi oscillations provides TZR“bi = 0.45+0.03 ps and
Sfrapi =10.1 MHz. Presented in [54].

exponentially damped sinusoid:

_Thurst
Rabi

Ap=¢o+¢re K @7 fRabiTurst + C) (6.15)

where ¢, ¢1, C, frapi and TZR“b ! are the fitting parameters. From the exponential enve-
lope of Fig. 6.27 it is obtained TZR‘”’" =0.45+0.03us and frgp; = 10.1 MHz.

From the Rabi frequency we can extract 7, = 100 ns, defined as the time necessary
to execute a full rotation of the spin state, i.e. a m-rotation in the Bloch sphere.

Knowing 7, we can initialize the DQD in a quasi-pure |f}|}) state and measure the charac-
teristic spin decay time T; by varying the time spent in the readout point #,,4;-

During this pulse sequence we spend 250 ns at the control point, applying a 7 rotation
with a burst of duration 7, = 100 ns.

The amplitude of the phase shift is normalized by a factor T/ tyais =1+ % since the
signal is acquired during the whole period T},.

The normalized phase signal can then be fitted with an exponential decay, as shown in
Fig. 6.27 b, obtaining T} = 2.7 + 0.7 us.

Moreover we observed that, by varying the position of the 100 ns microwave burst within a
12 us pulse at the manipulation point C, no clear decay of the dispersive signal is detected,
which suggests a spin lifetime longer than 10 us at the manipulation point C, coherently
with the fact that the two dots there are better isolated with respect to the point I/R.
Indeed, when working with isolated dots or a single qubit as in Sec. 6.5 the lower coupling
with the environment can boost significantly the T;.

The measured 7} is compatible with the relaxation times obtained for hole singlet-triplet
states in acceptor pairs in Si [55] and in Ge/Si nanowire DQDs [56]; in both cases T has
been measured at the charge degeneracy point with reflectometry setups similar to ours.

We highlight that T; could be boosted also by varying the magnetic field orientation
[57]. Studies on magnetic field anisotropy can clarify whether 77, together with the effec-
tive g-factors (and hence the dispersive shift for readout) and Rabi frenquency, could be
maximized along a specific direction.
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In a recent experiment [27], on the device of Sec. 6.5, we found a sweet spot for the spin
relaxation where the gate voltage effect on the Larmor frequency is minimized, demon-
strating a decoupling from background charge noise at this angle, leading to extended
coherence reaching 77 up to 1 ms and T. ZEC”" =~ 88 us, almost one order of magnitude
larger than previous reports for spin-orbit qubits.

Moreover in the present setup no great effort has been done to optimize the resonator,
which has a quality factor of Q = 18, that could definitely be improved, thus enhancing
the phase signal. Whereas a parametric amplifier could improve the SNR.

An enhancement in the phase sensitivity could push the implemented readout protocol
to distinguish spin states with a micro-second integration time, enabling single-shot read-
out, as reported in a recent experiment with a gate-connected superconducting resonant
circuit [58].

6.6.4. SCALING GATE REFLECTOMETRY DISPERSIVE READOUT

Using the approach described in the last section of this chapter, which does not require
any coupling with a reservoir, we could think to use gate reflectometry combined with
PSB readout in infinitely long bilinear arrays of split gates. The PSB readout should be
implemented between two quantum dots facing each other, as in Refs. [50][59], instead
than between adjacent qubits as described previously.

A representation of the proposed architecture is shown in Fig. 6.28. As in Sec. 5.8 one array
encodes the information qubits, while the other one contains the helper dots (ancilla
qubits), on which it can be realized gate-based dispersive readout. Nearby information
qubits can be entangled through local exchange gates, that could be realized as local
back-gates, as in Fig. 6.28 or with an upper layer of gates [60].

Figure 6.28: Bilinear array of qubits in a nanowire. Local back gates can provide tunability of the interdot
coupling. The readout of each information qubit can be realized individually through PSB readout with the
facing helper dot, or alternatively by realizing charge-sensing on an interdot transitions in the readout array.
From Ref. [61].

However, using gate reflectometry dispersive readout would imply a fine tuning of both
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the information and readout qubit gate voltages. This fine tuning, as explained in Sec.
6.6.2, is extremely sensitive to gate voltages variations, due to the strong gate voltage
dependence of the holes g-factors and, consequently, of the Larmor frequencies.

A precise knowledge of the energy spectrum of each couple of manipulation and manipulation-
readout dots is required to maximize the sensitivity of each detector. This makes the
electrical tuning of the system not straighforward, especially when realizing two-qubit
logic operations. To simplify this problem it would be helpful to completely isolate the
readout dots from each other.

On the hardware side it would be beneficial to integrate the resonator in the back-end of
the industrial chip, offering the possibility to engineer the resonant network at the wafer
scale, guaranteeing controlled and reproducible qubit-resonator coupling.

Quantum error correction can be realized in linear arrays [62], and therefore the ar-
chitecture of Fig. 6.28 could be used for the implementation of some proof of principle
quantum algorithms.
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CONCLUSION

The future belongs to those who prepare for it today.
Malcolm X

Many different qubit platforms based mainly on superconductors, semiconductor, pho-
tons and ion traps have been demonstrated in the last 30 years, each of them offering
unique advantages and drawbacks.

Among these, superconducting qubits seems to be the best candidates, as demonstrated
by the latest 53 qubit Sycamore chip from Google[1].

However it must be said that when it was realized the first superconducting qubit [2], spin
qubits in semiconductors had just been proposed theoretically by Loss-DiVincenzo[3], in
1997. The first spin qubit [4] (in GaAs) was realized only 8 years later.

Since then the engineering of materials, manipulation and readout tools have been
considerably developed, leading to semiconductor spin qubit relaxation times (77) up
to one minute [5], qubit operating at more than 1K [6] [7], single-[8][9][10] and two-
qubit[11][12][13] gate fidelities above the threshold for fault-tolerant quantum computa-
tion [14], and architectures with up to six qubits[15].

Now that many of the basic requirements for quantum computation with spin qubits
have been fulfilled, the focus is increasingly shifting towards the most relevant challenge:
scaling to large-scale quantum systems.
The maturity of CMOS technology with silicon allows the realization of semiconductor
spin qubit devices based on an industrial scale manufacturing process [16][17][18], offer-
ing a viable path towards the scalability.

Throughout this manuscript I studied qubit arrays based on both electrons and holes in
silicon, trying to highlight the differences between them.

The main advantage of electrons, expecially in purified 28Si, are the longer relaxation and
coherence times [19], allowing gate operations with higher fidelities.

Electron spins can be manipulated either through an electric or magnetic AC field. The
magnetic control requires an ESR line to generate the AC magnetic field. The electrical
control instead relies on the spin-orbit coupling, that allows the electron magnetic mo-
ment to couple with external electric fields. The SOC of electrons in silicon is usually
enabled by a micromagnet, but if the SOC is naturally strong, as it is the case for holes,
the spin can be controlled simply with an AC electric field applied on the gate.
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As discussed in Sec. 2.9, the ESR line and the micromagnet are quite invasive and hardly
scalable. For this reason we focus solely on the direct electrical manipulation, for both
electrons and holes.

In Sec. 4.9 we showed that the hole mobility is increased for gates far away from the
reservoirs, mainly due to the diffusion of impurities during the doping process.

Even if the two readout schemes are completely different it is reasonable to suspect that
the difference between the spin relaxation time T; = 150 us measured in Sec. 6.5 (at
B =0.9T) and the T} = 3 us of Sec. 6.6 (at B = 0.6 T), might as well be related to the
presence of defects near the reservoir, that could affect negatively T7.

However further systematical studies are required to benchmark the qubit properties
related to each step of the fabrication process, and in particular to the doping level and
the physical distance between the qubit and the reservoir.

The observations of Sec. 4.9 motivated us to study qubits as isolated as possible from
the reservoirs. This also means to get rid of current measurements and we focused on
the dispersive readout, enabled just by an inductor connected to a gate, or to an ohmic
contact.

An identical reflectometry setup can be used for both gate-based dispersive readout and
RF charge-sensing. The two approaches are compared in Sec. 5.3. The gate-based disper-
sive readout minimizes the device overhead thereby facilitating scale-up to large qubit
arrays. The charge-sensing readout, requires additional readout components but is less
sensitive to the strength of the interdot coupling facilitating operation in the few-electron
regime. Moreover, as shown in Sec. 5.6, it allows fast single shot readout.

The readout through an RF charge sensor is a simpler, faster and generally better approach
in my opinion. One could argue that its limitation is the need for a nearby reservoir, as
usually done in the literature, that would impose severe limitation for scalability. In Sec.
5.8 we instead propose that it could also rely on an interdot transition, rather than a
dot-reservoir one.

In Sec. 5.7 we measured signatures of EDSR. However, because of the weak SOC, the
electrical manipulation was too slow to observe coherent Rabi oscillations. The SOC
could be enhanced by mechanisms such as orbital or valley-orbit mixing, but this would
require an accurate tuning of the DQD energy spectrum [20].

Holes instead offers two main advantages compared to electrons: the stronger spin-
orbit coupling, that enables coherent electrical spin manipulation; the strong g-factor
variability, which can enable the dispersive readout of a spin qubit [21] away from the
charge degeneracy point € = 0, as well as guaranteeing individual spin addressability. In
Chap. 6 we focus on the study of linear p-type qubit arrays.

In Secs. 6.1, 6.2 we studied a linear p-type six-gates array, demonstrating independent
and simultaneous single-shot readout of the two quantum dots in the center of the array
via remote charge-sensing on the two reservoirs. The remote sensing is enabled by a
single quantum dot accumulated with two gates, that is used both as a charge sensor and
as a reservoir.

In Sec. 6.3 I explain how to measure the tunnel rates with an RF charge sensor. An accurate
knowledge of the dot-reservoir tunnel rates is crucial to set the energy-selective readout
of the spin state of Sec. 6.4. Unfortunately, the high temperature (T =450 mK) and the
high magnetic field required didn't allow a proper initialization of the spin state.

The same reservoir-based RF charge-sensing technique has been applied to study a single



157

quantum dot in another similar p-type four-gate array at lower electronic temperature
(T, =100 mK), demonstrating coherent control of the qubit via an electric field .

Further experiment on the same device, varying the magnetic field orientation, revealed
the existence of sweet spots where the impact of charge noise is minimized[18]. This led
to an extension of the Hahn-echo coherence time up to 88 us, exceeding by an order of
magnitude the best reported values for hole-spin qubits. These findings are encouraging
for scalable quantum information processing with hole spin qubits in silicon.

In Sec. 6.6 it is reported the implementation of gate-based RF reflectometry for the
dispersive readout a hole spin qubit, using a p-type double gate transistor. The demon-
strated qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering
a compact and potentially scalable solution. This readout approach ultimately relies
on the difference of g-factor Ag =0.5 between the two dots. With electrons the g-factor
variability is way smaller and the dispersive readout of a fully functional electron spin
qubit in silicon has not been demonstrated yet.

We demonstrated spin-to-charge conversion based on either PSB (in Chap. 5 and Sec.
6.6) or energy-selective readout (in Secs. 6.4 and 6.5).

Given a base temperature of T, = 440 mK the PSB readout has proven to be generally
better than energy-selective readout.

Indeed the T; is degraded with increasing magnetic field and temperature [22][23]. When
doing energy-selective readout at T = 440 mK a relatively high magnetic field is required
to resolve the spin states, such that the Zeeman splitting is bigger than the thermal broad-
ening of the Fermi reservoir.

Conversely PSB readout allows to work at lower magnetic fields and then to increase 7.
Indeed it is just relying on spin dependent interdot tunneling that is not affected by the
thermal broadening of a Fermi reservoir and it is still detectable at temperatures up to
more than 1K [7][6] .

In our proposals for scaling the charge-sensing (in 5.8) and the gate-based dispersive
readout (in 6.6.4) in qubit arrays it is required to turn on and off at will the interaction
between information qubits and/or between qubits and sensors.

In the most recent LETI devices it has been added a second layer of gates [24], allowing
local control over the tunnel coupling. This is a crucial step towards the scalability of the
presented architectures.

The local control over the tunnel coupling is also fundamental towards the realization of
two qubit logic gates. Indeed it allows to rapidly turn on and off the exchange coupling
[25][26][27], that shifts the Larmor frequencies of each qubit depending on the state of
the other one. By exciting at fixed Larmor frequency one qubit (the target qubit) is flipped
only if the other qubit (the control qubit) is, for example, in a |1) state. This conditional
spin operation defines a CNOT gate.

Linear quantum dot arrays, hosting up to 12 qubits [28] [29], have already been demon-
strated experimentally. Logic quantum operations so far are limited between the first
neighbours in the qubit chain. The number of first neighbours are two in linear chains
and at most five in bilinear chains. The number of first neighbours can be increased by
using 2-D[14] (8 first neighbours) or even 3-D architectures [30] (26 neighbours).

A qubit elementary cell can be defined as the minimum number of physical qubit that can
define alogical qubit and it is estimated that should be composed by at least 13 qubits[31].
In linear (or bilinear) arrays logic operations between qubits that are not first neighbours
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could be realized through SWAP gates, and hence these platform could be used for some
proof of principle demonstrations of quantum algorithms. However, the realization of
more complex algorithms in linear arrays would require a very high number of SWAP
operations that might eventually degrade the qubit performances and therefore 2-D or
3-D architectures will probably be required.

Alternatively, logic qubits belonging to different elementary cells could be entangled by
coupling them with photons in superconducting resonators [32][33][34].

What is sure is that there is still a lot to work on, but after 40 years from the proposal of
Richard Feynman [35] (1982) quantum computing is becoming reality and the strong
pace at which the field is growing leaves room for optimism.

The collaboration between researchers and industries will play a key role in the future
development of this technology.

I hope that, by the end of the century, we will talk about an analogue of the Moore
law for the scaling of quantum computation platforms. If not, as usual, all the scientific
and technological effort on the physics and the fabrication of these complex devices will
certainly find other useful applications.
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