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Summary

Neurocognitive speech perceptual processing is classically conceived as a hierarchy of computations –

typically including acoustic or multi-sensory feature extraction, pre-lexical categorization, lexical access,

prosodic and syntactic integration, up to final comprehension stages. It is increasingly considered that

neural communication within and across these various stages is based on synchronization processes and

operates thanks to chunking and selection mechanisms exploiting neural oscillatory dynamics at various

frequencies.

In contrast to classical models of speech perception such as the TRACE or SHORTLIST models,

which achieve segmentation solely through the decoding of the spectro-temporal content of the speech

input, recent neuroscience research in speech perception advocates for a clear separation between two

processing pathways: a decoding pathway and a temporal control pathway. The latter proposal has given

rise to several neuro-computational models, which, for segmentation, rely solely on the processing of the

acoustic envelope enabling syllabic rhythm tracking from the speech signal. In this sense, they are entirely

“bottom-up” segmentation models.

However, several studies have shown that reliable speech perception can not be achieved only through

bottom-up processes. For instance, clear evidence for the role of top-down temporal predictions has been

provided by Aubanel and Schwartz (2020). Their study showed that speech sequences embedded in noise

were better processed and understood by listeners when they were presented in their natural, irregular

timing than in timing made isochronous, without changing their spectro-temporal content. The strong

benefit in intelligibility displayed by natural syllabic timing, both in English and in French, was interpreted

by the authors as evidence for the role of top-down temporal predictions for syllabic parsing.

The objective of the present thesis is to address the question of the fusion of bottom-up and top-down

processes for speech syllabic segmentation. Our contribution is the COSMO-Onset model, a Bayesian

hierarchical model of speech perception, involving a speech segmentation module with an original top-down

mechanism for syllabic onset prediction, involving lexical temporal knowledge. We use the model to explore

the respective roles of bottom-up envelope processing and top-down linguistic predictions and how they

can be efficiently combined for syllabic segmentation. On a first set of experiments on simplified, synthetic

stimuli, we show that while purely bottom-up onset detection is sufficient for word recognition in nominal

conditions, top-down prediction of syllabic onset events allows overcoming challenging adverse conditions,

such as when the acoustic envelope is degraded, leading either to spurious or missing onset events in the

sensory signal. On a second set of experiments on real speech stimuli from the Aubanel and Schwartz

(2020) experiment, we show that the COSMO-Onset model succesfully accounts for the complementary

roles of isochrony and naturalness in speech perception in noise.
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Résumé

Le traitement neurocognitif de la perception de la parole est classiquement conçu comme une hiérarchie

de calculs - comprenant typiquement l’extraction de caractéristiques acoustiques ou multi-sensorielles, la

catégorisation pré-lexicale, l’accès lexical, l’intégration prosodique et syntaxique, jusqu’aux étapes finales

de compréhension. On considère de plus en plus que la communication neuronale au sein et entre ces

différentes étapes est basée sur des processus de synchronisation et fonctionne grâce à des mécanismes de

découpage et de sélection exploitant la dynamique oscillatoire neuronale à diverses fréquences.

Contrairement aux modèles classiques de perception de la parole tels que les modèles TRACE ou

SHORTLIST, qui réalisent la segmentation uniquement par le décodage du contenu spectro-temporel de

l’entrée de la parole, les recherches récentes en neurosciences sur la perception de la parole préconisent

une séparation claire entre deux voies de traitement : une voie de décodage et une voie de contrôle

temporel. Cette dernière proposition a donné lieu à plusieurs modèles neuro-computationnels qui, pour la

segmentation, reposent uniquement sur le traitement de l’enveloppe acoustique permettant le suivi du

rythme syllabique à partir du signal de parole. En ce sens, il s’agit de modèles de segmentation entièrement

“bottom-up”.

Cependant, plusieurs études ont montré qu’une perception fiable de la parole ne peut être obtenue

uniquement par des processus “bottom-up”. Par exemple, des preuves claires du rôle des prédictions

temporelles ”top-down” ont été fournies par Aubanel and Schwartz (2020). Leur étude a montré que les

séquences vocales intégrées dans le bruit étaient mieux traitées et comprises par les auditeurs lorsqu’elles

étaient présentées dans leur timing naturel et irrégulier que dans un timing rendu isochrone, sans changer

leur contenu spectro-temporel. Le fort bénéfice en intelligibilité affiché par le timing syllabique naturel,

tant en anglais qu’en français, a été interprété par les auteurs comme une preuve du rôle des prédictions

temporelles descendantes pour l’analyse syllabique.

L’objectif de la présente thèse est d’aborder la question de la fusion des processus “bottom-up” et

“top-down” pour la segmentation syllabique de la parole. Notre contribution est le modèle COSMO-Onset,

un modèle hiérarchique bayésien de la perception de la parole, impliquant un module de segmentation de

la parole avec un mécanisme descendant original pour la prédiction de l’apparition syllabique, impliquant

des connaissances temporelles lexicales. Nous utilisons le modèle pour explorer les rôles respectifs du

traitement “bottom-up” de l’enveloppe et des prédictions linguistiques “top-down”, et comment ils peuvent

être combinés efficacement pour la segmentation syllabique. Dans une première série d’expériences sur des

stimuli synthétiques simplifiés, nous montrons que si la détection purement “bottom-up” du début de la

parole est suffisante pour la reconnaissance des mots dans des conditions nominales, la prédiction “top-

down” des événements syllabiques du début de la parole permet de surmonter des conditions défavorables

difficiles, comme lorsque l’enveloppe acoustique est dégradée, ce qui conduit à des événements de début

de parole parasites ou manquants dans le signal sensoriel. Sur une deuxième série d’expériences sur des

stimuli de parole réels provenant de l’expérience d’Aubanel and Schwartz (2020), nous montrons que le

modèle COSMO-Onset rend compte avec succès des rôles complémentaires de l’isochronie et du naturel

dans la perception de la parole dans le bruit.
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semaines plus tard, je savais que ce labyrinthe allait être mon lieu de travail

de doctorant, et que les deux monsieurs susmentionnés, mes chers encadrants.
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encore pour sa qualité à facilement répérer les typos, de quelque nature que ce
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vii

que ce soit dans les moments difficiles ou dans les moments pas si difficiles. Pour

tout ça alors, one love for life.

Je remercie également tous les amis d’ici et d’ailleurs pour leur soutien

inconditionnel durant toute ma thèse.
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Introduction

Speech perception and speech segmentation

Speech is achieved by letting the airflow from our lungs through our mouth and

nasal cavity. This air stream is controlled by organs such as the tongue, lips, jaw,

and larynx. It produces an acoustic wave, which conveys information about what

is considered as a “first level of articulation/combination” (Martinet, 1960) that

are phonemes embedded inside syllables. These elements aggregate into a higher

second level of articulation which are the words that ensure contact with the

external world (Berwick et al., 2013; Phillips, 2003; Smith, 2006). We then use

our creativity to combine various words to form meaningful sentences, obeying

specific syntactic constraints and embedded in adequate prosody (Jackendoff,

2003).

The hierarchical construct of speech, linearized as a continuous acoustic

signal, must be processed, also hierarchically, by a perceptual system in order to

understand the message it conveys (Benesty et al., 2008; Juang & Chen, 1998;

O’shaughnessy, 2000; Rabiner, Schafer, et al., 2007). This ultimate goal involves

a series of categorization processes that enable the association of continuous

signals with discrete representations at various linguistic levels (Samuel, 2011;

Werker & Tees, 1992). Crucially, such categorization processes require solving

in some way the fundamental problem of segmentation, enabling to parse the

continuous signal into discrete units, identifying relevant temporal events such as

syllable boundaries (Miller & Eimas, 1995; Paget, 2013; Pisoni, 1985; Samuel,

2011).

Neural oscillation-based models of speech

segmentation

Classical speech perception models inspired by interaction-activation processes

such as TRACE or SHORTLIST (McClelland & Elman, 1986; McClelland &

Rumelhart, 1981; Norris, 1994; Norris & McQueen, 2008), as well as automatic

speech recognition models based on pattern-matching, such as Hidden Markov

1
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Models (HMMs) or Deep Neural Networks (DNNs) (Gales & Young, 2008; Girin

et al., 2021; Hinton et al., 2012; Nassif et al., 2019; Rabiner, 1989; Young et al.,

2002), achieve segmentation through decoding the speech input directly from

its spectro-temporal content. To do so, they rely on computational processes

associating phonetic-prosodic, lexical and syntactic-semantic knowledge.

However, recent studies in speech neuroscience focusing on speech perception

suggest a distinction between segmentation and decoding processes. Through

synchronization processes between different populations of neurons operating in

different frequency bands (typically the gamma band within 40–100 Hz, the theta

band within 4–8 Hz, and the delta band within 1–3 Hz), the human brain would

exploit neuronal oscillations to perform the temporal segmentation of incoming

acoustic signals (Buzsaki, 2006; Buzsáki & Draguhn, 2004; Ding et al., 2016;

Engel & Singer, 2001; Fries, 2015; Ward, 2003).

Although still a matter of debate, there is a growing consensus on the potential

causal role of brain rhythms not only in the perception and understanding of

speech (Poeppel & Assaneo, 2020) but also in language acquisition (Goswami,

2022). Two influential models relating speech perception and brain rhythms have

been proposed by Ghitza (2011) and Giraud and Poeppel (2012), both suggesting

similar mechanisms. In the latter for instance, the speech input would initially

be parsed according to syllabic rhythm thanks to neural oscillatory processes in

the theta band (4–8 Hz). Inside syllabic chunks, the acoustic spectro-temporal

analysis would be conveyed by gamma oscillations at around 40 Hz. Further

prosodic/syntactic parsing and binding would rely on lower frequency processes

in the delta range (1–3 Hz). Of importance here, several studies have particularly

shown the regularity of the syllabic rhythms over languages in the world (Cutler,

1994; Greenberg et al., 2003; Pellegrino et al., 2011; Ramus et al., 1999), which

would be associated with the intrinsic neuronal properties of the theta band

(Ding et al., 2017; Goswami & Leong, 2013).

These theoretical proposals gave rise to a number of recent neuro-computa-

tional models of speech perception exploring the possibilities offered by neural

oscillations to address issues related to speech segmentation (Hovsepyan et al.,

2020; Hyafil, Fontolan, et al., 2015; Räsänen et al., 2018; Yildiz et al., 2013). The

common point between all these models is that they use a sensory, input-driven,

and hence bottom-up approach, where slow modulations of the speech signal

envelope would be tracked by endogenous cortical oscillations. This enables

parsing speech into intermediate speech units such as syllables, which would be

the pivot decoding unit within the continuous acoustic speech stream (Greenberg,

1998; Grosjean & Gee, 1987; Kolinsky et al., 1995; Meynadier, 2001; Rosen,

1992).
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The role of top-down information in speech

segmentation

In ideal conditions, where listeners would not face any speech degradation, these

entirely bottom-up models are expected to perform adequately, relying on their

oscillatory nature and adaptive ability to track the speech rhythm in a large

range around natural speech rhythm.

However, in practice, they show a rather limited performance which could

be due to their specific sensory-driven nature. Indeed, several studies have

shown the importance of feedback processing from higher-order cortical regions

(Bastos et al., 2015; Fontolan et al., 2014), which may be involved in higher-

order speech processing stages such as syntactic and semantic levels or contextual

information integration on a relatively longer temporal range (Pefkou et al., 2017).

It seems likely that top-down predictions exploiting the listener’s knowledge of

the timing of natural speech (e.g., lexical or prosodic information) could improve

the efficiency of purely bottom-up segmentation (M. H. Davis & Johnsrude, 2007;

Kösem & Van Wassenhove, 2017; Meyer, 2018; Zekveld et al., 2006).

Recently, clear evidence for the role of top-down timing predictions has

been provided by Aubanel and Schwartz (2020). Their study showed that speech

sequences embedded in a large level of noise were better processed and understood

by listeners when they were presented in their natural, irregular timing than

in timing made isochronous without changing their spectro-temporal content.

The strong benefit in intelligibility displayed by natural syllabic timing, both in

English and in French, was interpreted by the authors as evidence for the role of

top-down temporal predictions for syllabic parsing.

In the field of psycho-linguistics also, since the pioneer development of the

TRACE model (McClelland & Elman, 1986), the question of the role of feedback

processes in speech perception and comprehension has been the focus of intense

discussions (McClelland et al., 2006; Norris et al., 2016), and led to many devel-

opments in the Bayesian framework (Hohwy, 2017; Kamper et al., 2017). Recent

findings confirm that recurrence plays a crucial role in perceptual processing

in the human brain (e.g., Donhauser & Baillet, 2020; Kietzmann et al., 2019;

Spoerer et al., 2020).

All these theoretical claims are compatible with the predictive coding frame-

work (Friston, 2005; Friston & Kiebel, 2009; Rao & Ballard, 1999), which

hypothesizes that the brain is inherently predictive, exploiting internal states

to make inferences about upcoming sensory data. This framework provides

an interpretation of neuronal activity in which top-down predictions would be

interleaved and integrated with bottom-up sensory processing. Top-down infor-

mation from various stages of the speech perception process would be fed back
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to lower processing stages, possibly exploiting the beta band (15–20 Hz) which

is assumed to be a relevant channel for providing such descending predictions

(Arnal, 2012; Arnal & Giraud, 2012; Cope et al., 2017; Engel & Fries, 2010;

Rimmele et al., 2018; Sohoglu et al., 2012). However, the exact manner in which

top-down, feedback processes interact with bottom-up, feedforward processes

remains unclear.

The fusion of bottom-up information and top-down

knowledge for speech perception

In fact, the question of the combination of bottom-up information extraction and

top-down predictions from higher linguistic levels is actually not new. It is at the

heart of all modern speech recognition architectures, such as the classical Hidden

Markov Models (HMM) in which bottom-up acoustic cues are associated with

top-down state transition probabilities in phonetic decoding or word recognition

(Gales & Young, 2008; Rabiner et al., 1989) or more sophisticated architectures

such as hierarchical HMMs (Murphy, 2002) or multi-scale HMMs enabling to

incorporate hierarchical linguistic structures in language processing (Eyigöz et al.,

2013). It is also central in recent neural speech recognition models, including

recurrent architectures implementing top-down feedback in the decoding process

(Graves et al., 2013); see a recent review by C. Kim et al. (2020).

Still, while the importance of top-down predictions has been largely discussed

in the literature, it has been mainly focused on the mechanisms involved in the

decoding process, and not on the segmentation process per se. And as far as

models of speech perception based on neural oscillations are concerned, there is

currently, to the best of our knowledge, no neuro-computational model incorpo-

rating top-down knowledge capable of accounting for behavioral data highlighting

the role of top-down predictions in speech processing and understanding such as

the ones provided in the study by Aubanel and Schwartz (2020).

Thesis objective

The objective of this thesis is to address the question of the fusion of bottom-up

and top-down processes for speech syllabic segmentation. We approach this

question in a Bayesian computational framework, which enables us to efficiently

introduce, conceptualize and compare computational processes expressed in a

unified probabilistic formalism (Bessière et al., 2008).

For this aim, we will explore the respective roles of bottom-up envelope

processing and top-down linguistic predictions and how they can be efficiently

combined for syllabic segmentation. A specific focus will be set on exploring
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how top-down knowledge could help to overcome the impairments of bottom-

up processing systems in the context of speech perception when the signal is

degraded.

To address these questions, we introduce COSMO-Onset, a variant of the

COSMO framework developed over the years to simulate speech communica-

tion processes in a perceptuo-motor framework (Barnaud, Bessière, et al., 2018;

Laurent et al., 2017; Moulin-Frier et al., 2015; Moulin-Frier et al., 2012; Patri

et al., 2015). The present variant does not incorporate at this stage the whole

perceptuo-motor loop developed and studied in previous COSMO papers. Instead,

it concentrates on the auditory pathway, detailing two mechanisms of interest for

the present study: first, a hierarchical decoding process combining the phonetic,

syllabic, and word levels, and, second and most importantly in the present context,

a syllabic parsing mechanism based on event detection, operating on the speech

envelope. COSMO-Onset is a Bayesian speech perception model associating a

decoding module to process the spectro-temporal content of the speech input and

a temporal control module enabling the segmentation of the speech input into con-

stituent linguistic units. The decoding module has a hierarchical structure similar

to classical psycholinguistic models like TRACE (McClelland & Elman, 1986),

with three layers of representations (acoustic features, syllable, and word identity)

usually considered in the context of isolated word recognition. The temporal

control module associates a bottom-up mechanism for syllabic onset detection

with an original top-down mechanism for syllabic onset prediction, involving

temporal knowledge from higher linguistic levels (e.g., lexical or prosodic).

With this model, we explore the dynamics of speech segmentation resulting

from the combination of such bottom-up and top-down temporal mechanisms.

The fusion architecture has been developed in relation to the observed weaknesses

of the existing neuro-computational models of speech perception. Hence, COSMO-

Onset is developed to address the current limits of these purely bottom-up parsing

systems.

Organization of the thesis

The present document is organized as follows:

Chapter 1, Oscillation-based models of speech perception We present a

systematic review of the main neuro-computational models of speech perception by

quickly providing an overview of neural oscillations and their relations to cognition

in general, and to speech perception in particular. Then, we go through the

main oscillatory-based speech perception models and present a key experimental

paradigm to evaluate the potential role of top-down temporal prediction. We end
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this chapter with a critical review of the literature which leads us to state the

questions addressed in the current thesis.

Chapter 2, COSMO-Onset: The conceptual model We present COSMO-

Onset, at the conceptual level, by describing the model architecture and its main

interacting components, leaving out all specific details for further elaboration in

the following chapters.

Chapter 3, COSMO-Onset: The illustrated model We present the first

variant of the COSMO-Onset model, specifying all the components presented in

Chapter 2. We then present the simulations on a representative set of “toy”

stimuli and situations, elaborated for the purpose of illustrating the key concepts

which allow assessing the role of the top-down onset prediction component.

Chapter 4, A study of the oscillation-based syllabic segmentation

model by Räsänen et al. (2018) In order to deal with real speech stimuli,

we present the oscillation-based model developed by Räsänen et al. (2018). We

first evaluate it on a French corpus for syllabic onset detection and extend it to

the detection of P-centers on the same French corpus. We then use it not only

to assess whether isochrony plays a role or not in speech perception but also to

evaluate its robustness to noise.

Chapter 5, A syllable recognition model using Random Forests Still,

evolving towards a variant of COSMO-Onset able to deal with real speech,

we present and evaluate a machine learning algorithm able to perform unit

recognition.

Chapter 6, COSMO-Onset: Adapting to real speech We present an

adaptation of COSMO-Onset for real speech input, capitalizing on the mod-

els/tools described in the last two previous chapters enabling us to deal with

real speech. As in chapter 3, we first describe the model architecture and then

present the main simulation results on a real speech corpus.

Chapter 7, Conclusion and Discussion We discuss the main findings of

this thesis and the perspectives that it provides.



Chapter 1

Oscillation-based models of

speech perception

The last decade has seen an increasing number of models of speech perception

based on neural oscillations. This is a direct consequence of the fact that methods

and evidence for the role of neural oscillations in speech perception are becoming

increasingly ubiquitous.

At their core, all these models share the general assumption that the speech

signal has some kind of oscillatory characteristics, and that brain neuronal

populations would be able to track these oscillations in the acoustic signal, which

would then hierarchically structure the speech decoding process over time.

In this section, we will review the literature on recent models of speech

perception based on neural oscillations. We will start with two phenomenolog-

ical/conceptual models, which are the two seminal works of Ghitza (2011) on

the one hand and Giraud and Poeppel (2012) on the other. These will lay down

the general principles at the core of every oscillatory model. Following Giraud

& Poeppel’s work, there have been two recent contributions that provide neuro-

computational models, namely those by Hyafil, Fontolan, et al. (2015) on coupled

cortical theta and gamma oscillations, and by Hovsepyan et al. (2020), which

presents a decoding module strongly inspired at the architectural and technical

levels by the hierarchy of nonlinear dynamical systems previously developed

by Yildiz et al. (2013) for birdsong modeling. In parallel, it is interesting to

consider the more functional model developed by Räsänen et al. (2018), which is

based on linear signal processing techniques. All of these models bring together

several fundamental principles highlighting the importance of neural oscillations

in speech perception.

In this Chapter, we begin with a quick primer on neural oscillations in general.

We then proceed to describe the natural rhythms of speech and their relation to

neural oscillations, before reviewing the main oscillation-based models of speech

7
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perception. Finally, we present an experimental paradigm that we consider as

central for evaluating our proposed model and discuss more precisely the main

assumptions and expectations of our work.

1 Neural oscillations: a quick overview

It is no secret that we are surrounded by many cyclic sequences of events. No

huge effort is required to observe that the sun rises and goes down in a kind of

regular manner, the church bell rings periodically, analog clocks tick at every

second, the human heart beats at regular intervals (Clarke et al., 1976), plants

have their own rhythms (Damineli et al., 2022), music is rhythmic, and its rhythm

has often been compared to the rhythm in language (Bispham, 2006; Fiveash,

Bedoin, et al., 2021; Hickok et al., 2015; Kotz et al., 2018; Patel & Daniele, 2003),

etc. Interestingly, the human brain also features many rhythms. These rhythms

are ubiquitous and are believed to play an important role in human cognitive

processes, from memory, to attention, to thoughts, and even to consciousness

(Baars & Gage, 2013; Buzsaki, 2006; Buzsáki & Draguhn, 2004; Cannon et al.,

2014).

Simply put, neural oscillations are the rhythmic activity of ensembles of

neurons in the brain. The coordinated electrical activity in a group of neurons

gives rise to periodic or quasi-periodic rhythms in the brain. These electrical

signals can be recorded using various invasive and non-invasive techniques, such

as electrophysiology in vitro and in vivo (electroencephalography), optogenetics,

and magnetoencephalography (Cannon et al., 2014; Keil & Senkowski, 2018;

Mitra & Pesaran, 1999). Whether awake or at rest, the rhythms in the brain

are a crucial part of its activity, and their history can be traced back to 1924

when Hans Berger discovered the human electroencephalography (Berger, 1929).

Different types of neural oscillatory responses can be distinguished, each reflecting

different aspects of neural synchronization (David et al., 2006; Tallon-Baudry &

Bertrand, 1999). Evoked oscillations, for instance, are related to the presentation

of an external stimulus. They are precisely phase-locked to this external stimulus

and are displayed by averaging or summing different evoked oscillations over

trials of identical phase; such analyses provide event-related potentials (ERPs)

(Başar et al., 1999; Moratti et al., 2007). Induced oscillations, on the other

hand, can occur independently of external stimulation. Induced oscillations

represent local oscillations in a given range of frequency but without precise

phasing to a reference time instant, internal or external, that is associated with

the presentation of a stimulus (Klimesch et al., 1998).

Several studies have characterized neural oscillations. Even though it is still

not fully established, a convenient classification of the rhythms has been adopted
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Figure 1.1: Example of a typical EEG signal and its decomposition into several os-
cillatory frequencies. On top, the full combined EEG signal, followed respectively
by its delta frequency constituents, theta frequency constituents, and gamma
frequency constituents. Image is taken from (Calderone et al., 2014).

with five gross frequency bands, namely the delta (δ, 1–3 Hz), theta (θ, 4–8

Hz), alpha (α, 9–14 Hz), beta (β, 15–30 Hz), and gamma (γ, > 30 Hz) bands

(Buzsaki, 2006; Clayton et al., 2015). Figure 1.1 shows a typical example of an

electroencephalography signal (the top plot) with its decomposition into three

oscillatory frequencies (the following three plots), respectively the δ (at 1.5 Hz),

the θ (at 7 Hz) and the γ (at 40 Hz).

Various cognitive functions have been proposed for each of these characteristic

bands (Amzica & Steriade, 1998; Başar et al., 2001; Başar et al., 1999; Bastos

et al., 2012; Buzsáki & Draguhn, 2004; Fries, 2015; Lakatos et al., 2008; Schroeder

& Lakatos, 2009). Thus, the delta band, which can be observed in sleeping cats

and humans, has been associated to signal detection and decision making (Başar

et al., 1999; Harmony, 2013; Nácher et al., 2013); the theta band has been

associated with memory (Buzsáki, 1998; Reiner et al., 2014); the alpha band has

been associated to attention and vigilance (Hanslmayr et al., 2011; Klimesch,

2012; Knyazev et al., 2004; Rohenkohl & Nobre, 2011); the beta band has been

associated to motor planning Haegens et al. (2011), Morillon et al. (2019), and

Tzagarakis et al. (2010); and finally, the gamma band has been associated to

feature binding (Csibra et al., 2000; Fries, 2015; Singer, 2001). Although it is

convenient to think that each neural oscillation band is associated with one or

several specific cognitive processes, it is important to be aware that this view is

likely simplistic. Several studies have shown that any of these frequency bands

can be related to various mechanisms, and in different brain regions, depending

on the cognitive process at hand (Ainsworth et al., 2011; Cannon et al., 2014).



10 Oscillation-based models of speech perception

2 The natural oscillations of speech dynamics

Speech is a signal with quasi-oscillatory properties, not only by its physical

nature (Ding et al., 2017; Goswami, 2019; Poeppel & Assaneo, 2020), but also

by its linguistic nature (Beckman, 1992; Cummins, 2015; Gibbon & Gut, 2001;

Ramus et al., 1999). The quasi-rhythmic nature of the speech signal likely comes

from the physical dynamical properties of the articulators driving its content,

particularly from the jaw, providing natural syllabic “frames” embedding the other

articulatory movements according to the frame-content theory of evolution of

speech production (MacNeilage, 1998; MacNeilage & Davis, 2000). More globally,

studying its waveform suggests a potential hierarchy of embedded amplitude

or spectral modulations that can be related to the different linguistic units.

A first basic amplitude modulation rhythm, likely related to jaw dynamics as

mentioned previously, is provided by the syllabic rhythm with an average syllable

duration roughly estimated at 250 ms (Greenberg, 1998; Greenberg et al., 2003),

corresponding to a frequency around 4 Hz and related to the theta frequency band

(4 to 8 Hz) in neural responses. Within the syllabic frame containing a variable

number of phonemes, it has been proposed that minimal decoding units related

to acoustic phones could have an average duration roughly estimated at 25 ms,

corresponding to a frequency of 40 Hz, related to the gamma frequency band

(> 30 Hz) for phoneme analysis. At a larger temporal scale, slower delta band

oscillations (1-3 Hz) are related to syllable sequences and words embedded within

prosodic phrases, with duration roughly varying in the interval of 500–2000 ms.

Figure 1.2 shows an example of speech input and its different linguistic contents,

which are hierarchically embedded within each other (higher linguistic units

contain lower linguistic units). These characteristics may be universal; at least,

they are present in many languages of the world (Ding et al., 2017; Fiveash, Falk,

et al., 2021; Luo & Poeppel, 2007; Pellegrino et al., 2011). It thus has been

hypothesized, in light of these ubiquitous relations between brain and speech

rhythms, that brain oscillations may play a crucial role in speech perception

(Ahissar & Ahissar, 2005; Arnal, 2012; Arnal et al., 2015; G. J. Brown et al.,

1996; Chandrasekaran et al., 2009; Ghitza & Greenberg, 2009; Giraud et al., 2007;

Giraud & Poeppel, 2012; Kösem et al., 2018; Kösem & Van Wassenhove, 2017;

Peelle & Davis, 2012; Poeppel & Assaneo, 2020).

Importantly, slow oscillations in the delta and theta frequency bands might

be useful in the temporal organization of speech at various levels, respectively

in syntactic parsing and syllabic chunking. Higher frequency oscillations in the

gamma frequency band might be related to decoding the spectral information of

the speech. Finally, the coupling between slow and high oscillations would give

rise to the neural mechanisms underlying speech perception, as in many other
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Figure 1.2: Example of speech input divided into its linguistic constituents at
different time scales. On top, the speech waveform of the sentence “Can you
believe on Sunday night, David examined five beautiful paintings”. Following
respectively, the phrasal segmentation, the words segmentation, the syllabic
segmentation, and a phonemic segmentation for the last word of the sentence
“paintings”. Image is taken from (Keitel et al., 2018).

cognitive functions such as vision (Calderone et al., 2014; Canolty et al., 2006;

Canolty & Knight, 2010; Fries, 2015; Ward, 2003; Wyart et al., 2012). It has

been shown that the phases of the slow oscillations are much related to high

oscillations powers. Typically, the delta phase is coupled to theta amplitudes,

in a way that the theta amplitude is larger during one phase of the delta and

smaller during the opposite phase. Similarly, theta phase is coupled to gamma

amplitude. The coupling mechanism between these different neural oscillations

can be seen on Figure 1.1.

The interaction between lower and higher processing stages is well within the

predictive coding realm (Friston, 2005; Friston & Kiebel, 2009; Mumford, 1992;

Rao & Ballard, 1999), in which the brain is considered to be a “predictive machine”

where internal states support inferences about sensory stimuli. Importantly,

neural oscillations in the beta band have been hypothesized to be a preferential

channel for the exchange of information from the higher to the lower layers of

processing (Arnal & Giraud, 2012; Engel & Fries, 2010; Rimmele et al., 2018;

Sohoglu et al., 2012).

3 The Dynamic Attending Theory and its

implications for speech

Almost all ecological stimuli can exhibit some degree of temporal regularity. For

M. R. Jones (1976), early psychology researchers did not pay enough attention to

the importance of time as a sensory dimension. The temporal context in which

physical events occur has an influence on how those same events are perceived.

She proposes a general framework, the Dynamic Attending Theory (DAT)

which puts a special emphasis on the temporal aspect of auditory perception,

memory, through attention (M. R. Jones, 1976; M. R. Jones & Boltz, 1989). In
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her seminal paper, M. R. Jones (1976) proposes a general theory of perception

based on two fundamental aspects.

The first is what the author called the “Subjective Representations of the

Physical World”, involving four (4) assumptions:

1. the “physical dimensions” assumption: patterns of the world are best defined

by three spatial dimensions, completed by a time dimension. Importantly,

as the author puts it: “All dimensions are most simply conceived as having

nested, or hierarchical, structure”;

2. the “invariance” assumption: even though the physical dimensions can

change, the hierarchical structure of world patterns is explained in terms of

invariant relations;

3. the “subjective dimensions” assumption: we can somehow assign a subjec-

tive counterpart to each physical dimension;

4. the “subjective pattern structure” assumption: relations that character-

ize subjective pattern structure can be expressed in terms of subjective

dimensions.

The second aspect of the theory concerns the “interaction of organisms with

the real world”, with a fundamental premise, assuming organisms have their own

rhythms which are more or less related to the perceptual rhythms of the physical

objects through their temporal dimension. The first two assumptions (“rhythmic

organisms” and “synchrony”), although motivated by behavioral results, have an

apparent link with neural oscillations, since they state that, intrinsically, there are

biological rhythms, and that these rhythms have perceptual equivalents, leading

to a phenomenon called “entrainment” which enables the tracking of expected

events.

From these bases, the Dynamic Attending Theory, as the name suggests,

is a theory about attention, where the fundamental theoretical proposal is that

attention is not static, that is, constant over time, but rather dynamical, that

is, varying over time. This dynamical nature of attention is related to the

temporal dimension of ecological stimuli, which adds on top of their usual spatial

dimensions; for instance for visual objects, we have the width, height, and depth,

whereas, for auditory stimuli, we have the subjective dimensions of pitch and

loudness. The “entrainment” hypothesis states that internal rhythms are driven

by and synchronize with the external rhythms present in stimuli. Large and

Jones (1999) proposed a model using two fundamental aspects: “self-sustaining

oscillations” and “energy pulse”. The first aspect (“self-sustaining oscillations”)

generates temporal expectancies which are periodic in the absence of external

stimuli, but when coupled with an external stimulus, gets “synchronized” or
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“entrained”. In contrast, the second aspect (“energy pulse”), modeled by a

probability distribution, is concerned by the attention dynamics involved in

model predictions enabling to take into account natural rhythmic fluctuations of

attention.

This simple concept is supported by a multitude of empirical data, which

show that the detection and the discrimination of target stimulus events, together

with response times to target stimulus events, vary depending on how the target

events are related to their temporal context, in other words how aligned are both

the target events and the attending rhythm.

The Dynamic Attending Theory happened to provide a perfect cognitive

psychology conceptual framework for all the findings and proposals that emerged

in the last 30 years about the role of resonant and oscillatory phenomena in the

human brain. Focusing on audition and the processing of acoustic stimuli, it has

been widely explored and tested in the field of music perception (e.g., M. R. Jones

& Boltz, 1989; M. R. Jones et al., 2002; Tillmann et al., 2006; Tillmann & Lebrun-

Guillaud, 2006). In relation to speech perception, a number of studies, inspired

by the DAT, explored the role of rhythmic cueing and/or rhythmic priming on

phonological and syntactical processing, speech production and interaction, and

the remediation of auditory and speech handicaps (e.g., Cason & Schön, 2012;

Hidalgo et al., 2019; Kaya & Henry, 2022; Obleser & Kayser, 2019; Quené & Port,

2005; Schön & Tillmann, 2015). They all converged on the fact that it is possible

to enhance a listener’s or speaker’s performance in various aspects of perception

or production of speech by focusing her attention in time on the regulation of

specific speech events, possibly through the preliminary exposition to rhythmic

stimuli capturing some of the properties of the corresponding speech events. Even

though the Dynamic Attending Theory will not be further mentioned in the

present document–and is seldom mentioned in neuroscience papers–it provides an

underlying pivot of important concepts that will be exploited all along this work.

4 Conceptual oscillation-based models of speech

perception

On this global neuro-behavioral basis, two conceptual models emerged in the

years 2010, which paved the way for most further developments in the field.

4.1 The TEMPO model by Ghitza

4.1.1 Model description

Figure 1.3 shows the most recent version (Ghitza, 2020) of the TEMPO architec-

ture initially proposed by Ghitza (2011). In this model, the speech input first goes
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Figure 1.3: The most recent architecture of the TEMPO model. The segmen-
tation path is the upper part (in blue) with the cascaded oscillators, namely
the delta oscillator to provide temporal frames for words-phrase analysis, the
theta oscillator to provide temporal frames for syllable parsing, and the gamma
oscillator to provide neural codes for later pattern matching. The decoding
path is the lower part (in orange) where pattern matching and recognition are
performed within the different temporal frames controlled by the segmentation
path, from the phonetic constituent to the phrasal constituents, passing through
the syllabic constituents. Image is taken from (Ghitza, 2020).

through a peripheral auditory model, for basic spectro-temporal analysis. From

there on, the TEMPO architecture contains two information processing channels

(Figure 1.3, in blue and orange, respectively). The first path, the “segmentation

path”, is dedicated to processing the temporal aspects of speech. It is organized

as a hierarchy of oscillators in which high-frequency oscillators are embedded

in low-frequency oscillators. In this set of cascaded oscillators, the central one,

in the theta frequency band, is the pivot oscillator, which tracks the syllable

rhythm in speech. It monitors the higher-frequency gamma oscillator providing

spectro-temporal information at an infra-syllabic rate above 40 Hz, and it is

under the temporal control of the lower-frequency delta oscillator driving phrasal

fluctuations in the 1–3 Hz range. This path would therefore provide temporal

frames in which to decode the acoustic content in order to perform pattern

matching with syllabic patterns stored in the memory. This pattern matching

is performed in the second path, the “decoding path”, concerned with decoding

the speech content. In a theta oscillation cycle, there would be a fixed number
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of high-frequency oscillations in order to organize the processing of sub-lexical

phonetic units such as phones.

A fundamental characteristic of the coordinated operation of these oscillators

is related to the fact that they are able to adapt their rhythm to the rhythm

of the speech input, thus facilitating the integration of prosodic variations in

the signal. It should therefore be noted that these oscillators are not totally

resonant systems that would stay perfectly periodic, but rather gently resonating

input-driven systems that oscillate in a pseudo-periodic way, with the constraint

that each oscillator has a fixed preferential frequency band.

4.1.2 Main results

Although there is no complete implementation of TEMPO , Ghitza has shown

qualitatively that the model is capable of simulating several sets of behavioral

data, that are claimed to be beyond the scope of conventional speech perception

models, which only feature an acoustic signal decoding channel. These include

data from Ghitza and Greenberg (2009) on the intelligibility of compressed speech.

Since this study is influential, let us describe it in some more detail.

One of the main sources of variability in speech is due to how fast or slow

some talkers speak. In both cases, this may result in distorted speech that

can prove difficult for listeners. Usually, in ecological communication, listeners

seldom face slowed speech, but are more confronted with accelerated speech,

which can be thought of as “compressed speech”. Such alterations of the speech

rate have consequences on information rate at various levels, namely at the

prosodic and acoustic levels (Arons, 1992; Foulke, 1971; Foulke & Sticht, 1969;

Maki & Beasley, 1976). Since speech-altered rhythms differ from the “canonical”

speech rhythms listeners expect, one important question is how they cope with it

and whether there is any relation between time-compressed speech perception

and neural oscillations. Ghitza and Greenberg (2009) address this question by

experimentally inserting silence segments in compressed speech, and studying

how this would help recover intelligibility.

There has been research in the literature, prior to these, investigating the

temporal mechanisms at play in speech perception. A noteworthy study by

Huggins (1975) investigated the hidden temporal variables that underlie intelli-

gibility. Contrary to Huggins (1975), who “suggested that the factor governing

intelligibility was not phonetic glimpsing per se, but rather some internal time

constraint on processing spoken material” tightly related to an echoic memory

buffer, Ghitza and Greenberg (2009) suggest that “the decline in intelligibility is

the result of a disruption in the syllabic rhythm beyond the limits of what brain

neural circuitry can handle”. In other words, they argue for a potential role of

neural oscillations, underpinning the intelligibility of compressed speech.
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Ghitza and Greenberg (2009) used the SUSGEN corpus (Bunnell et al., 2005)

which contains short (of about 2 seconds in duration) Semantically Unpredictable

Sentences (SUS). They first showed that if compression is too strong (e.g., synthet-

ically accelerating the rhythm by a factor 3) intelligibility of such unpredictable

sentences dropped severely (with up to 50 % words not recognized), but it could

be largely improved by inserting silence gaps, decreasing word error rate down to

20 % in the best cases. The authors claim that inserting silence gaps provides

a way to align acoustic information between the compressed and uncompressed

signal, thus allowing the recovery of potential information loss. They link this

result with neural oscillations tracking mechanisms, suggesting that silence gaps

insertion constrains the decoding of the speech input in an interval of time that is

suitable to the endogenous brain rhythms involved in speech processing, namely

the theta band.

Conventional models with only the decoding channel are unable to simulate

such experimental observations, whereas with the TEMPO model, thanks to

the pseudo-periodic and adaptive oscillators, it is possible to simulate them. The

moments of silence play the role of calibrating the temporal decoding frames

necessary to decode the different acoustic chunks, which are in the frequency

band corresponding to the syllabic rhythm (Ghitza, 2013).

We can hereby note that, in cases of ecological communication, where speech

is not compressed nor degraded, the TEMPO model would operate in a way

similar to the classical models, with less evidence in favor of the crucial role

played by the cascaded oscillators. On the other hand, in order to explain results

such as those presented by Ghitza and Greenberg (2009), the segmentation path

appears to be critical.

4.2 The model by Giraud & Poeppel

4.2.1 Model description

Figure 1.4 shows the conceptual model of speech perception proposed by Giraud

and Poeppel (2012). Unlike Ghitza’s TEMPO model, where we can clearly

distinguish between two processing streams, here the authors proposed a step-

by-step data processing mechanism applied sequentially to the speech signal.

Importantly, at the output of the spectro-temporal analysis stage in the cochlea,

the signal is converted in a spike train which then constitutes the input to all

further processes.

The first step is called the “Phase reset” step. At rest, intrinsic neural

oscillations are already present in the cortical activity of the human brain, and

this happens in various bands of oscillations (Deco & Corbetta, 2011; Giraud

et al., 2007; Laufs, 2008; Northoff et al., 2010). In this first step, the intrinsic
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Figure 1.4: The conceptual model of speech perception by Giraud and Poeppel
(2012). The speech waveform goes through hierarchical processing from higher
cortical layers to lower cortical layers (Input layer IV, output layers II/III). The
communication between these layers is achieved through the synchronization of
neural oscillations (stimulus-induced ones, local field potentials (LFP), recorded
by electroencephalography (EEG) or magnetoencephalography (MEG)). Image
is taken from (Giraud & Poeppel, 2012).

oscillations are reset to align with the proper dynamics of the input data, in some

specific bands, notably in the theta band, but not only.

These specific oscillations track and entrain to the speech input stimuli in the

4–8 Hz theta frequency band, facilitating the tracking of salient points present in

the speech envelope. This is the second step, also called “stimulus envelope

tracking”.

Then in step 3, called “Theta-gamma nesting”, with the theta oscillations

orchestrating the gamma oscillations, the lower frequency oscillations (theta)

organize the higher frequency oscillations (low gamma, in the 25–35 Hz frequency

band). This allows the processing of phonemic units with lower time scales in

the gamma band, inside larger syllabic units within the theta band. It is still

a matter of debate how many high-frequency cycles are processed within a full

cycle of a lower-frequency band. This cross-frequency organization ensures and

organizes successful fine-grained processing of the speech input.

Then the activity in the low and high gamma oscillatory bands modulates the

spike trains encoded from the input signal. This is the fourth step, also called

“modulation of neuronal excitability and output discretization”.

Finally, the temporally organized spike train can be used to search for codes
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of discrete linguistic units, especially at the syllabic and phonemic levels. This is

the fifth step, also called “alignment of neuronal excitability with acoustic

structure”. How this mapping is precisely performed is not described in detail.

While the model proposed by Giraud and Poeppel (2012) is rather con-

ceptual, there have been several developments towards more or less realistic

neuro-computational models based on these principles, which we describe later on.

The first one developed by Hyafil, Fontolan, et al. (2015), is described in section

5.3. The most recent one by Hovsepyan et al. (2020) is presented in section 5.5.

4.3 General principles of oscillation-based models

The two models by Ghitza (2011) and Giraud and Poeppel (2012) allow us to

establish a number of general principles that would underlie all models of speech

perception based on neural oscillations.

The first fundamental principle concerns the dissociation of the information

processing pathways by clearly separating the temporal mechanisms from the

spectral content decoding mechanisms. As in classical models, we still have a

spectro-temporal decoding pathway, but this is guided by a temporal segmentation

pathway that provides potential temporal linguistic boundaries in the signal.

Even if the separation does not clearly appear in Giraud and Poeppel (2012), in

TEMPO , it is clear that the architecture is designed so as to put an emphasis

on the separation of the temporal and decoding mechanisms.

The second principle refers to the nesting of oscillations in different frequency

bands, with the higher frequency oscillations embedded in the lower frequency

ones. How many cycles of high-frequency oscillations are embedded within cycles

of low-frequency oscillations is still a partly open question that has generated

various proposals. In the first developments of the TEMPO architecture (e.g.,

Ghitza, 2013), Ghitza suggests that in a cycle of theta oscillations, one could

expect typically 4 cycles of beta oscillations with similar duration, as well as 4

cycles of gamma oscillations in each of the cycles of beta oscillations, thus making

16 cycles altogether in a theta oscillation. In contrast, Giraud and Poeppel (2012)

propose that there would be at most 4 cycles of gamma oscillations in a cycle

of theta oscillation – although later proposals by the same group enacted other

choices (for example, Hovsepyan et al. (2020) used 8 gamma oscillations framed

in a cycle of theta oscillation).

5 Computational oscillation-based models of speech

perception

Based on these principles, several neuro-computational models have been proposed

and tested on different tasks, such as word or syllable recognition tasks.
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Although conceptual models summarize the general principles underlying

speech perception based on neural oscillations, there remains a gap to fill when

it comes to testing the validity of their predictions and hypotheses on real speech

stimuli. Here, we will describe the main models implementing neural oscillations

in order to segment speech, in particular into syllable-like acoustic chunks. For

each model, we will describe how it works, and then we will present its main

evaluation results. As the performance metrics are almost the same for all these

models, we will summarize them before starting the review of the models per se.

5.1 Metrics to evaluate models

Most often, in evaluating computational models of speech perception, one might

be interested either in the model performance in correctly categorizing the

speech input (“unit performance”), or its temporal accuracy in relation to

the syllabic/lexical boundaries of the speech input (“boundary performance”).

Depending on the task, in the first case, one assesses how well the model recognizes

speech units, which might be the phoneme, the syllable, the word, or a higher-level

structure such as the whole sentence. In contrast, in the second case, regardless

of the considered unit, one evaluates the correctness of the model’s temporal

predictions.

These metrics are computed by comparing with human-annotated data or

semi-automatically annotated data with human correction thereafter. Such data

are often called “ground truth”, as they provide the “real” boundaries and

units to detect and categorize. Thus, the evaluation of computational speech

segmentation models would boil down to comparing the outputs of the models

with the corresponding ground truth.

In unit identity recognition, we often ignore temporal alignment details. The

task is about the identification of a lexical unit (e.g., syllable or word) or a

sequence of lexical units, and we only compare the model’s output with the real

lexical units to identify. Whatever the case, we can consider that the model

outputs a sequence of predicted units (a sequence of only one unit in the case of

isolated unit recognition), that have to be compared to a reference sequence of

labels. The evaluation then boils down to a comparison of sequence matching

between the predicted and the reference. Classically, errors of prediction can be

identified either as a substitution error (S ), a deletion error (D), or an insertion

error (I ). Two metrics can then be computed based on these errors: the percentage

correct, PC and the percentage accuracy, PA (Young et al., 2002), the difference

being that the first ignores the insertion errors whereas the second penalize them.

The percentage correct is defined as follows:

PC = 1− D + S

N
,
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with N the total number of true units to be recognized. And the percentage

accuracy is defined by:

PA = 1− D + S + I

N
,

where the values of D, S, I can be computed using any sequence matching

algorithm, for example, the one based on the Levenshtein distance (Young et al.,

2002; Yujian & Bo, 2007).

Temporal segmentation involves the analysis of model temporal predictions

compared with a given ground truth. The ground truth can either be syllabic

onsets (in other words, instants of syllable beginnings) or syllable P-centers

(usually defined as the psychological moment of occurrence of syllables Morton

et al., 1976). The syllable onsets are considered to correspond to troughs of

the envelope of the speech signal, whereas P-centers correspond to peaks of

the derivatives of the speech signal envelope (Marcus, 1981; Patel et al., 1999).

Because of possible annotation errors, coming either from humans, from the

tools used, or from elsewhere, authors often allow a margin of error around the

proposed ground truth events, typically 50 ms (Obin et al., 2013; Villing et al.,

2006). Performance metrics involve model precision, or recall, or its F-score,

which is a combination of the two (Chinchor, 1992; Sasaki et al., 2007). The

precision P is defined as the proportion of events predicted by the model that

corresponds to real events, the recall R as the proportion of real events correctly

predicted by the model, and the F-score is a combined measure that performs a

trade-off between the two, and is calculated using their harmonic mean:

F =
2PR

P +R
.

These metrics are used in many problems dealing with evaluating model perfor-

mance such as in event detection or sound detection tasks (Heittola et al., 2013;

Temko et al., 2009).

Since these two metrics evaluate different aspects of the model’s performance,

it is possible to combine them into aggregate measures that calculate the overlap

of model predictions and ground truth. One can find variants such as the

temporal ratio of correct lexical categorization (Hovsepyan et al., 2020), or the

unit recognition accuracy within the correct intervals (Räsänen et al., 2018).

Both variants consider both categorization and event detection performance. The

more a model predicts a correct category in a time interval that overlaps as much

as possible with the ground truth temporal interval of this category, the better

the model is considered to be.
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Figure 1.5: Yildiz et al. (2013)’s model of speech perception inspired by a birdsong
recognition model. Image is taken from (Yildiz et al., 2013).

5.2 The model by Yildiz, Kriegstein & Kiebel (2013)

5.2.1 Model description

Figure 1.5 shows the model developed by Yildiz et al. (2013). It is highly inspired

by the hierarchical model that they developed for birdsong recognition, which is

based on the accumulated knowledge of how birds perceive songs (Yildiz & Kiebel,

2011). The rationale relies on first acknowledging that speech and birdsong are

both, first and foremost, sound waves; second and most importantly, there also are

various similarities in how birds process sounds and how humans process speech

(Berwick et al., 2012; Bolhuis et al., 2010; R. Dooling, 1992; R. J. Dooling et al.,

2002; Doupe & Kuhl, 1999). From there on, Yildiz et al. (2013) design a word

recognition model based on the key principles of their previous song recognition

system, that exploits Bayesian inference within dynamic hierarchical generative

models, each associated with one of the linguistics units to be recognized, and

more precisely, one per word.

The speech sound wave is first processed in a cochlear filtering model providing
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a cochleagram with 86 frequency channels, which is then used as the input to

the two-level hierarchical core model. The cochleagram output is down-sampled

in order to finally keep only 6 dimensions by linear window averaging every

consecutive 14 channels (removing the last two channels of highest frequency).

The 6-dimensional input is then fed into a series of generative modules, one per

each word to be recognized. Generative modules combine a higher level (“second

level” in Figure 1.5) which controls in time a sequence of local states within each

of the 6 spectral channels (“first level” in Figure 1.5). More precisely, the output

of the first level represents the typical neuronal activity for a given word in a

given frequency band, estimated by using a Hopfield attractor model (Hopfield,

1982; Hopfield & Tank, 1985). At the second level, the model interacts with the

output from the first level through the activity of various neuronal ensembles

and generates a new encoding of the speech input, which is now temporally

organized exhibiting a sequential activation of neural sets following a winnerless

competition principle, that is, a dynamical principle of brain dynamics where

different neuronal ensembles change states sequentially dependent on the stimulus

(Afraimovich et al., 2004; Rabinovich et al., 2001; Seliger et al., 2003). In their

implementation, the authors propose to use a constant sequence of 8 successive

states to describe each word in the corpus.

Therefore, globally, the first level of the core model results in a content de-

coding module, controlled in time by the second level which temporally organizes

the outputs in order to guide the search for lexical units. Each word generative

module is then fed with the speech input, resulting in the output in a “prediction

error” which can be compared with the errors from all the other word generative

modules. Categorization follows by searching the minimal predictive error in out-

put in a Bayesian inference process which combines prior (top-down) information

from the word generators previously learned from a learning corpus, with the

incoming (bottom-up) acoustic data. The combination can be controlled from a

so-called “precision” variable which enables modulating the relative importance

of top-down and bottom-up information in the decision process.

5.2.2 Main results

To demonstrate the behavior of their model, the authors performed a word

learning and recognition task, using a dataset considering digits from zero to

nine (Instruments, 1991). Overall, authors report a Word Error Rate (WER)

of 1.6 %, which is, according to them, on par with state-of-the-art automatic

speech recognition models for the same kind of material (isolated digits) in the

literature.

Moreover, in order to account for ecological speech communication situations

that human listeners face daily, they tested the model in various “degraded”
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Figure 1.6: Hyafil, Fontolan, et al. (2015)’s model of speech perception. The
Pyramidal Inter Neuron- Theta (PIN-TH) is composed of excitatory theta neurons
(Te) and inhibitory theta neurons (Ti). Whereas the Pyramidal Inter Neuron-
Gamma (PIN-G) is composed of excitatory gamma neurons (Ge) and inhibitory
gamma neurons (Gi). Image is taken from (Hyafil, Fontolan, et al., 2015).

scenarios. First, they showed that the model was robust to varying levels of

noise, with the worst WER of 11.2 % which compares, once again, to the state-of-

the-art in similar conditions. Second, they evaluated the model performance in

compressed speech with varying speech rates. They showed that the model was

still able to perform quite well up to 25 % compression rate. Authors attribute

this result to the fact that the model is able to adapt to the rhythm of the

signal, and that even for time-compressed speech, the sequence of dynamics is

less affected by the temporal change overall in the input.

5.3 The model by Hyafil, Fontolan, Kabdedon, Gutkin &

Giraud (2015)

5.3.1 Model description

Figure 1.6 shows the model developed by Hyafil, Fontolan, et al. (2015). It is

a neuronal spiking model based on the cross-frequency coupling between theta

oscillations and gamma oscillations. The main focus is to precisely describe
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the oscillations that are observed in human cortical activity. The model takes

inspiration from a model implementing the neural oscillations in the gamma

band, namely the Pyramidal Inter Neuron Gamma (PING) which simulates the

spiking rhythm by alternating bursts of inhibitory neurons (Gi cells) and bursts

of excitatory neurons (Ge cells) (Ainsworth et al., 2011; Jadi & Sejnowski, 2014).

In their model, Hyafil, Fontolan, et al. (2015) assumed the same mechanisms of

oscillation generation for both gamma and theta neural oscillations, naming the

latter Pyramidal Inter Neuron Theta (PINTH), with Ti and Te cells, respectively

for inhibitory and excitatory theta neuronal populations. Neurons for both PING

and PINTH populations were modeled using leaky integrate-and-fire neurons

(Börgers et al., 2005; Börgers & Kopell, 2008; Burkitt, 2006).

The two neural oscillations resonate at different time scales: PING at the

gamma timescale (25–40 Hz), and PINTH at the theta timescale (4–8 Hz). In

the absence of stimulation, they both sustain activity at their respective intrinsic

rhythms. In the presence of speech input, they both re-organize their activity

accordingly. The theta neuronal population activity (PINTH) is first simulated

by all the auditory channels of the speech input. It then locks to the speech

input in its specific rhythmic range by tracking slow amplitude modulations. On

the contrary, the gamma activity (PING) with its different excitatory modules,

is simulated by specific auditory channels. It fires at rapid rhythms tuning into

the fine details of phonemes. Following the presentation of speech, the PINTH

activity, which entrains to the envelope, constrains the PING activity whose

outputs can be used to recognize the syllables. The authors designed the PINTH

carefully in such a way that it follows the syllabic rhythm in the theta neural

oscillations 4–H Hz range. It is thus used to detect syllabic boundaries in the

presented speech stimuli. This information can then be used to temporally

organize the PING outputs into syllable units.

5.3.2 Main results

In order to evaluate model performance, Hyafil, Fontolan, et al. (2015) first

compared their model to two other models of the literature in a syllable alignment

task: a simple linear-nonlinear acoustic boundary detector based on a generalized

linear point process model and a state-of-the-art off-line model developed by

Mermelstein (1975), which simply identifies the local minima in the speech

envelope as syllable boundaries. They used the speech corpus from TIMIT

(Garofolo, 1993), which contains phonetically labeled English sentences. The

results they obtained show that their model outperforms other models for both

natural speed and compressed speech, with their model being the only one able

to adapt to speech compression (Hyafil, Fontolan, et al., 2015, Fig. 2).

Hyafil, Fontolan, et al. (2015) also evaluated their model’s performance by
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comparing it with two variants, in an “artificial lesioning” model comparison study.

From the main model, which they called the “Intact model”, they considered

two variant models: one where the theta activity was not driven by the speech

stimulus, called the “Undriven model”, and another where there was no coupling

between theta and gamma oscillations, called the “Uncoupled theta/gamma

model”. Before evaluating model performance on real speech, they used simple

temporal stimuli for two different tasks: stimulus classification measuring what

we call the “unit performance” in section 5.1, to assess model categorization

performance (Hyafil, Fontolan, et al., 2015, Fig. 3C), and stimulus detection

measuring what we call “boundary performance” in section 5.1, to assess model

performance at detecting the temporal boundaries (Hyafil, Fontolan, et al., 2015,

Fig. 3D). They showed that the Intact model outperformed the other two models

when combining the false alarm and hit rates; the Uncoupled model had the

second-best performance, suggesting the importance of having the theta module

driven by the speech stimulus. This can be explained by the fact that in the

case where the theta oscillations are stimulated by the input, there would be an

adaptation of the intrinsic rhythm to follow the one present in the signal, while

in the other configuration (“Uncoupled theta/gamma model”), this would not be

the case.

Finally, they assessed the model’s performance on real speech decoding by

considering the generated spike patterns as codes to recognize. Here also, as

expected, the Intact model outperformed the other models, by achieving a

performance of correctly classified syllables of 58 % (in a set of 10 possible

randomly chosen syllables). It is noteworthy that, when considering spike counts

instead of spike patterns as codes to recognize, the model performance was

decreased by about 10 points, suggesting that spike patterns represent a better

distinguishable neural code for categorization.

5.4 RDF : The model by Räsänen, Doyle & Frank (2018)

Note

The text of this section is partially adapted from the paper (Nabé, Diard,

et al., 2022).

Figure 1.7: Räsänen et al. (2018)’s model of speech perception. Image taken
from (Räsänen et al., 2018).
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5.4.1 Model description

Figure 1.7 shows the architecture of the model developed by Räsänen et al. (2018),

that we refer to as the RDF model hereafter. The authors developed an oscillator

model for sonority-based rhythmic segmentation to study the pre-linguistic

segmentation of syllables. It is mainly focused on the key mechanisms involved

in language acquisition in infants (who supposedly have neither phonological nor

lexical knowledge). The RDF model is on par with other oscillatory models of

speech perception since they are all grounded on the same general principles, with

a system driven by the energy fluctuations present in the speech signal (Arnal,

2012; Ding & Simon, 2014; Ghitza, 2011; Giraud & Poeppel, 2012). The model is

based on the concept of sonority, that is the principle, elaborated in phonological

theories of syllabic structure, that syllables are organized along sequences of

minima and maxima of acoustic energy, minima corresponding to syllable onsets

and offsets, and maxima to the vocal climax. Despite the debate around the

physical reality of sonority, or whether it contributes to speech understanding

(Daland et al., 2011; Harris, 2006; Parker, 2012), several studies have shown

that sonority is correlated to syllabicity, namely with the Sonority Sequencing

Principle (Clements, 1990), and that it is predominant in how infants perceive

speech (Gómez et al., 2014; Hamza et al., 2018; Mäıonchi-Pino et al., 2012; Price,

1980).

The RDF model of speech perception, based on linear second-order oscillators

following cochlear analysis, is attractive since it is in some sense the simplest

model that could be proposed to analyze the role of oscillations in processing

envelope modulations for syllabic boundary detection. Starting from the speech

signal, a set of signal processing techniques are applied in order to obtain an

estimate of the sonority of the signal, as is depicted in the block diagram of

the model (see Figure 1.7). First, Gammatone filter-banks (Holdsworth et al.,

1988; Patterson et al., 1987) are applied to the speech input to get the amplitude

envelope in 20 logarithmically spaced frequency bands. Their outputs are low-pass

filtered and down-sampled to have an overall sampling rate of 1,000 Hz. Each

envelope of each frequency band is then passed to a harmonic oscillator which

resonates at a central frequency f0 within a bandwidth ∆f . Together, these

define the oscillator Q factor, Q = f0/∆f . Finally, the N most energetic outputs

(usually N taken between 6 and 16) are combined by taking the sum of the

logarithms of the amplitudes to obtain the sonority output; the final values are

normalized between 0 and 1 over the stimulus duration. The resulting sonority

function, which is a good estimate of the slow amplitude modulation, can be

used in various ways, to identify speech-relevant events. The authors used it, in

particular, to detect syllable boundaries by identifying local minima (valleys) in

the sonority output.
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5.4.2 Main results

The authors evaluated the model on a syllabic segmentation task using three

publicly available speech corpora respectively in three languages with male and

female speakers: the Switchboard corpus of spontaneous telephone conversations

in American English (Godfrey et al., 1992), the phonetic corpus of Estonian spon-

taneous speech (Lippus et al., 2013), and the FinDialogue corpus of spontaneous

Finnish speech (Lennes, 2009). All three corpora were annotated at the syllable

level, with annotations verified by humans; this was considered the target ground

truth. Model performance was compared to three syllabification algorithms of the

literature: an envelope velocity-based algorithm proposed by Villing et al. (2004),

a simple amplitude envelope minima detector using ear-like temporal filtering,

and another sonority-based speech rhythm estimator developed by Wang and

Narayanan (2007).

Four evaluation metrics were used. The first one assessed the temporal accu-

racy of syllable segmentation, by verifying whether predicted syllable boundaries

fell with a margin of 50 ms, sooner or later than ground truth syllable boundaries

(“boundary performance”). The second one assessed syllable temporal extraction,

by considering not only the correct detection of the boundaries but also the

detection of the beginning and end of syllables (“unit performance”), still with

an acceptation margin of 50 ms. Then these two metrics were applied to words

instead of syllables, that is, detection of word boundaries and word temporal

extraction, with the same 50 ms precision criterion.

The oscillator model performed better than the other three models overall in

both the boundary detection and unit detection tasks. At the syllable level, it

achieved an overall mean performance (F-score, see section 5.1) of 0.74 (i.e., 74 %

mean performance in correct event detection and correct non-event rejection)

and 0.53, respectively for boundary detection, and unit detection. In the first

task, it is followed by the envelope velocity-based algorithm which had a mean

performance of 0.71. Whereas in the unit detection task, it is followed by the

simple envelope model which had a mean performance of 0.43. At the word

level, the oscillator model achieved an overall mean performance of 0.63 and 0.45,

respectively in boundary detection and unit detection. Here again, in the first

task, it is followed by the velocity-based algorithm which had the same overall

mean performance, and by the envelope model in the second task with a mean

overall performance of 0.37.

Unsurprisingly, all models perform better for syllables than for words, and

we observe the same pattern in model performance for both syllable and word

temporal extraction measures. This could be explained by the fact that all these

models are specialized in detecting local extremums of the speech signal envelope,

which correspond much more to syllabic boundary markers, whereas this same
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Figure 1.8: Illustration of Precoss, a neuro-computational model of speech
perception developed by Hovsepyan et al. (2020). Image is taken from (Hovsepyan
et al., 2020).

notion of boundary markers is difficult to define from the signal envelope alone

for words.

5.5 Precoss: The model by Hovsepyan, Olasagasti & Giraud

(2020)

5.5.1 Model description

Figure 1.8 shows the model Precoss (for “predictive coding and oscillations

for speech”) developed by Hovsepyan et al. (2020). It illustrates both the full

architecture of the model (left part, a panel) and the simplified version of the

same model (right part, b panel), depicting only the functional connections

from the top level, with the theta module (denoted θ) connected to the gamma

module (denoted γ), which in turn connects to the syllable units (denoted ω).

This model is conceived as performing the connection between two components

described previously: the model of syllabic speech parsing with theta-based

envelope modulation processing developed by Hyafil, Fontolan, et al. (2015)

and the syllabic decoding model exploiting a Bayesian inference network within

dynamic hierarchical generative models developed by Yildiz et al. (2013).

Starting from the raw speech signal, the bottom level extracts the essential

characteristics by applying some pre-processings to obtain, on the one hand,

the acoustic envelope of the signal (Hyafil & Cernak, 2015; Hyafil, Fontolan,

et al., 2015) and, on the other hand, its spectral content (Chi et al., 2005) with
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a simplified spectrogram. At the top level, we have two specialized modules

mentioned previously, that are the temporal processing model “à la Hyafil”, called

the theta module, which is stimulated by the slow amplitude modulation of the

signal, and the spectro-temporal content processing model “à la Yildiz”, aptly

named the spectro-temporal module, which is stimulated by the spectral content

of the speech input. Taken together, they both contribute to processing the When

and What aspects of speech perception (Arnal, 2012; Arnal & Giraud, 2012).

More precisely, the theta module provides a simplification of the spiking theta

model of Hyafil, Fontolan, et al. (2015) by exploiting a continuous non-linear

oscillator, the Ermentrout-Kopell’s canonical model of Ermentrout and Kopell

(1986). It is driven by the signal envelope and resonates in a range of theta

frequencies (3–8 Hz). This model tracks so-called theta triggers providing syllable

onsets (θ in Figure 1.8, b). From there on, in the spectro-temporal module, each

parsed syllable (from 4 to 25 in a single sentence in the corresponding corpus)

is fed inside a Bayesian inference network computing prediction error for the

corresponding acoustic syllabic signal within dynamic hierarchical generative

models respectively testing the match between the incoming signal and each

possible syllable in the corpus. These generators perfectly follow the principles

proposed by Yildiz et al. (2013) and described previously, with a specific set of

8 states of equal duration per syllable. Therefore, every syllable is encoded by

a sequence of 8 spectro-temporal patterns corresponding to 8 gamma units (γ

in Figure 1.8, b). At the end of the eighth gamma unit, another sequence of 8

gamma units follows.

Consider now the temporal control mechanisms of the Precoss model. There

are two different mechanisms controlling the sequential activation of syllable units

(ω in Figure 1.8, b). The first is through the theta module which provides the

syllable onsets detected by the neural tracking mechanisms of the speech envelope

by the cortical oscillations. This automatically resets accordingly the 8 gamma

units, regardless of the current processing state. The consequence is that, if a

syllable onset is detected before the last gamma unit is terminated, then gamma

units are nonetheless reset to allow the processing of a new syllable. The second

mechanism is through the natural sequence of 8 gamma units, lasting 25 ms each.

This sequence can be halted or not, depending on the model detecting another

onset before the end of the last gamma unit.

In order to effectively study the model’s performance, the authors designed

different model variants, based on the pattern of interactions between θ, γ, and

ω units. The complete model (model variant A) incorporates the complete

processing chain described previously. Then, in a number of variants from B to

F, the authors introduce various simplifications to selectively assess the role of

each component in the model. First, they degrade the theta module by replacing
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its stimulus-driven oscillator with a pure stimulus-driven or a pure oscillating

process. Second, they degrade the model by removing one or the other of the

temporal control mechanisms for syllable onset detection described in the previous

paragraph (one based on direct event detection and the other on the completion

of the 8-gamma-unit temporal sequence). Third, they test a model with only

fixed sequences of 8 gamma units with no temporal control at all.

5.5.2 Main results

The different model variants were tested on the TIMIT data set (Garofolo, 1993)

for syllable recognition using the temporal overlap recognition metric. The TIMIT

data set contains phonetically-rich sentences read out by 630 speakers of 8 dialects

of American English. The authors used a subset of the initial TIMIT data set

amounting to 220 sentences, from 22 speakers.

They first compared all models, except model variant A, that is, the complete

model. Results were significantly in favor of model variants with gamma units

interacting with omega units (when the evidence accumulation is reset after

every full gamma cycle). Within the model variants with the coupling between

gamma units and syllable units, model variants with the theta-gamma coupling

performed better displaying the importance of having the gamma units’ activity

synchronized at a preferred rate, whether it be endogenous (200 ms) or exogenous

(stimulus-driven theta rhythm). Importantly, slow signal-driven evolution of the

mean theta rhythm around 200 ms did not significantly change performance.

One can argue that the internal intrinsic theta rhythm (200 ms) captures a wide

range of natural syllable rhythms, overall.

In ecological human communication, the speech rate commonly varies from

one speaker to another. Nevertheless, listeners usually adapt well to speech

rate variability. To study this, the authors performed a simulation where they

compressed the original speech input by factors 2 and 3. They compared the

whole model A with variant B where the mean theta rhythm slowly adapts to

fluctuations of the signal envelope, although with no instantaneous onset detection

from the theta module. Interestingly, for a compression factor of 2, there is no

significant difference between the two model variants, but for a compression

factor of 3, model variant A performs slightly better than model variant B. This

suggests that in highly adverse conditions, resetting the sequence of gamma units

by a theta module driven by the stimulus envelope is useful, while it is less so in

a less adverse situation, where the intrinsic theta rhythm suffices.
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6 A key experimental paradigm

After reviewing the main computational models concerned with oscillatory-based

processing of speech, we now consider how well they account for human speech

perception experimental data. A number of experimental paradigms, mostly

involving speech compression, have already been introduced in the previous

sections. Here, we focus on key experimental data from Aubanel and Schwartz

(2020) that will serve as the basis for our model development and evaluation.

Indeed, this paradigm assesses the relative roles of bottom-up resonance processes

and top-down linguistic predictions in the onset detection and syllabic parsing

mechanism.

6.1 On the role of isochrony in speech perception

Although caveats have been raised about the true periodic nature of cortical oscil-

lations (Cummins, 2012a, 2012b, 2015; Obleser et al., 2017; Obleser et al., 2012),

in principle, one would expect that human speech perception, based on these

oscillatory cortical processes, would perform best when the speech signal is as

regular as possible, i.e., for an isochronous speech signal with temporal events lo-

cated at regular intervals (Schön & Tillmann, 2015; Tillmann & Lebrun-Guillaud,

2006). Aubanel and Schwartz (2020) tested this hypothesis by conducting an

experiment in which they evaluated the intelligibility (word error rate, WER) of

the natural speech made isochronous.

6.2 Materials

In their study, the authors used sentences from the Harvard corpus for English

(Rothauser, 1969), and its equivalent, the Fharvard corpus for French (Aubanel

et al., 2020) 1. English and French are two languages with different rhythmic

structures, according to the rhythmic class hypothesis (Abercrombie, 1967; Aber-

crombie, 1965; Grabe & Low, 2002): English is a stressed-timed language and

French is a syllable-timed language. Notice that several studies have shown that

languages of the world are better classified on a spectrum in this regard, rather

than on two discrete categories (Dasher & Bolinger, 1982; Dauer, 1983; Nespor,

1990; Ramus et al., 1999).

Both corpora consist of phonemically-balanced natural spoken sentences

uttered by a female speaker for English and by a male speaker for French.

Originally, in the French corpus (respectively English) there are 700 sentences,

containing 5 (respectively 7) keywords, which are monosyllabic (respectively

bisyllabic). However, in their study, Aubanel and Schwartz (2020) randomly

1Found online at https://zenodo.org/record/1462854#.YitevozMLm4

https://zenodo.org/record/1462854#.YitevozMLm4
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selected a subset of 180 sentences per corpora. From these original sentences,

they devised three different conditions.

1. The natural rhythm condition, noted NAT, corresponds to unmodified,

original sentences of the corpora. Their onset events later serve as a

reference for the natural rhythm for modified conditions, either at the

accent (acc) or syllable level (syl).

2. The isochronous rhythm condition, noted ISO, corresponds to sentences in

which original time onsets are aligned regularly using temporal distortions

(detailed below) either at the accent rhythm level or at the syllable rhythm

level, using P-centers as units of isochrony in the speech input (Morton

et al., 1976; Strauß & Schwartz, 2017). Therefore, there are two variants of

this condition: the isochronous condition at the accent level (noted ISO.acc)

and the isochronous condition at the syllable level (noted ISO.syl).

3. The anisochronous rhythm condition noted ANI, defined by first reversing

the time onsets in the original sentences, and then applying the same

isochronous temporal distortions procedure. As for the ISO conditions,

there are here also two versions: ANI.acc and ANI.syl. The interest of

the ANI conditions is that an “equal” amount of temporal distortion from

the natural rhythm was applied as for the corresponding ISO conditions,

though not rendering the material isochronous or even temporally more

regular than the natural baseline.

Overall, for every sentence, there are 5 different versions in each corpus,

corresponding to the different rhythm conditions. The final experimental stimuli

consisted of these temporally modified or unmodified sentences, which were also

degraded with white background noise at a signal-to-noise (SNR) ratio of -3 dB.

Temporal distortion metric To characterize the departure from isochrony

in speech signals, authors used a distortion metric noted δ, as introduced by

Aubanel et al. (2016). It is computed for a given reference time series t (the

initial temporal event series) which is transformed into a target time series t′

(here a hypothetical isochronous time series with the same number of events) as

the following:

δ =

√∑N
i=1(log τi)

2di∑N
i=1 di

,

with di and d′i respectively the duration between successive events in the reference

and target times series (di = ti+1 − ti; d
′
i = t′i+1 − t′i), and τi the time-scale factor

between the reference and target time series: τi = d′i/di.

δ measures the temporal distortion between two time series. If one of the

two time series has temporal events that follow a natural temporal distribution,
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Figure 1.9: Intelligibility results of the Aubanel and Schwartz (2020) experiment
in all conditions, for both French and English. Image taken from (Aubanel &
Schwartz, 2020).

then δ measures the degradation with respect to naturalness. In that case, the

lower δ is, the more natural the sequence of events, and the higher δ is, the more

unnaturally temporally distributed the events of the sequence are. If one of the

time series is an isochronous time series, then δ measures the degradation with

respect to isochrony. In that case, the lower δ is, the more a sequence of events is

isochronous, and the higher δ is, the more temporally anisochronous the sequence

of events is.

6.3 Results

Subjects’ performance was measured as the average number of keywords success-

fully perceived within the experimental modified or unmodified sentences within

the noise.

Figure 1.9 shows a summary of results on intelligibility in all the different

conditions, for both languages, French and English. We observe that, for both

languages, the naturally unmodified sentences lead to higher correct keyword

perception than in any other temporally distorted conditions. Other differ-

ences between conditions are mainly attributed by the authors to differences in

degradation mechanisms relative to the natural conditions, both in French and

English.

To further understand the role of temporal distortion, Figure 1.10 relates the

results of intelligibility in the different conditions to various distortion metrics.

The main findings are indicated in the annotated regions A, B, and C. First,

results in region A show that in the case of unmodified, naturally timed sentences,

performance is positively correlated with departure from accent isochrony, whereas
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Figure 1.10: Intelligibility results of the Aubanel and Schwartz (2020) experiment
in all conditions (columns), in both French and English (subpanels), as a function
of various distortion metrics δ (rows). Image taken from (Aubanel & Schwartz,
2020).

it is negatively correlated with departure from syllable isochrony, with the same

pattern for both languages, French and English. Importantly, this means that

at the syllable level, the more isochronous natural speech is, the more it is

intelligible. Second, results in region B show that in the case of isochronously

retimed sentences, performance is negatively correlated with departure from

naturalness, for both languages, French and English. Finally, region C confirms

that for asynchronously retimed sentences, a departure from both naturalness

and syllabic isochrony impairs intelligibility.

In conclusion, these experimental data provide two major insights that are (1)

that the more speech is naturally timed, the more intelligible it is, and (2) that

syllabic isochrony increases intelligibility in naturally time sentences. Importantly,

this is true for both languages, notably for English which is not a syllable-timed

language. Departure from naturalness in timing appears to result in an overall

degradation of intelligibility for the listener.

This could be interpreted by assuming a degradation of the relevance of

top-down information from higher-level knowledge, which would allow to better
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track the temporal statistics of events in incoming speech embedded in noise. The

benefit provided by syllabic isochrony in natural speech could be interpreted as

resulting from the oscillatory mechanisms involved in speech perception through

cortical oscillations. The interplay between both processes, bottom-up and

top-down, as shown by Aubanel and Schwartz (2020), would lead to better

intelligibility in speech perception in noise. Altogether, the data and analyses

presented by Aubanel and Schwartz (2020) show the interplay between bottom-

up and top-down processes in the setting of intelligibility of speech sentences

embedded in noise.

7 Interaction between bottom-up envelope

processing and top-down predictions in the

temporal control of the speech perception process

In this literature review, we have described the two most influential conceptual

neuro-computational models of speech perception together with some recent

computational models that are compatible implementations. They all agree

on some general theoretical principles related to the speech signal processing

chain, with an emphasis on the hierarchical oscillatory processing of speech, and

a focus on the temporal control of speech processing. The precise mechanism

operating such temporal control varies from one model to the other, with a linear

oscillator for Räsänen et al. (2018), a nonlinear oscillator for Hovsepyan et al.

(2020), excitation-inhibition loops in populations of spiking neurons for Hyafil,

Fontolan, et al. (2015) or dynamic sequences of local temporal states for Yildiz

et al. (2013). However, crucially, all these models incorporate a specific temporal

control mechanism delineating the sequence of spectro-temporal local features

to analyze for the decoding of the corresponding speech units. These units are

syllables for the first three models, and words for Yildiz et al. (2013). Moreover,

the first three models closely relate to the general neural architecture presented by

Ghitza (2011) and Giraud and Poeppel (2012) around the theta-gamma coupling

associating syllabic parsing in theta units and phonetic decoding in gamma units.

All these models are compatible with the predictive coding framework (Friston,

2005; Friston & Kiebel, 2009; Gilbert & Sigman, 2007; Mumford, 1992; Rao &

Ballard, 1999) according to which the human brain is a permanent forward infer-

ence machine. The predictive coding framework proposes that sensory, bottom-up

processing is compared with top-down, prior knowledge-based predictions. How-

ever, in all the computational models that we have described, none precisely

integrates top-down knowledge in the temporal control model. For Räsänen et al.

(2018), the question does not even arise, because the authors consider the case of

children who do not yet have developed lexical knowledge, and hence they focus
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on bottom-up mechanisms. For Hyafil, Fontolan, et al. (2015), there is no explicit

mechanism of top-down control. All the oscillatory processes implemented are

driven by the speech signal itself. For the Precoss model (Hovsepyan et al., 2020),

the situation is slightly different. Clearly, speech segmentation in this model is

mainly driven by bottom-up processes with the slow amplitude modulation of the

speech input driving the theta oscillator. However, the authors make special use

of a parameter called model precision, already introduced by Yildiz et al. (2013)

in their model at the basis of spectro-temporal decoding in Precoss. Precision

controls the respective weight of top-down evidence and bottom-up incoming

features, but it is nevertheless not related to higher-level linguistic (e.g., prosodic,

syntactic, or semantic/pragmatic) information. Recently, the authors proposed

a new version of Precoss named “Precoss-β” (Hovsepyan et al., 2022), with

the β referring to the potential role of beta oscillations in providing top-down

predictions (Pefkou et al., 2017). They suggest that the beta band is involved

in controlling the precision of internal states in the decoding process and show

that adding this mechanism significantly improves performance over the previous

version of the model. It is important to note here that, although this mechanism

is apparently related to a top-down mechanism, it does not involve any higher

level of stored or learned knowledge. More precisely and of more concern, it is

not related to any lexical knowledge.

Generally, whether it is in the field of vision (Lee, 2002; Przybyszewski, 1998),

memory (Edin et al., 2009; Gazzaley & Nobre, 2012), motor skills (Narayanan

& Laubach, 2006; Roberts et al., 2014), or language (M. H. Davis & Johnsrude,

2007; Perrone-Bertolotti et al., 2012; Radach et al., 2008; Sohoglu et al., 2012),

top-down processes actively participate in perception. It is of course also the case

for speech perception. To better recognize speech sounds, top-down knowledge

(higher-level language systems) associated with morphology, lexicon, syntax,

semantics or pragmatics may interact with low-level speech perception processes.

Thus, phoneme identification may require a prior understanding of higher lexical

units such as words, which might result in an interactive feedback-feedforward

process that has been the focus of active research since the first modeling works

on spoken word recognition (see e.g., McClelland & Rumelhart, 1981). A classical

example concerns the “Ganong effect” (Ganong, 1980; Massaro & Cohen, 1983), in

which the identification of an ambiguous stimulus is highly influenced by context.

For example, an ambiguous sound that might be a /g/ or a /k/ is more likely to

be perceived as a /g/ if followed by “ift” and as a /k/ if followed by “iss”. This

particular experience has been interpreted as resulting from lexical influence on

sub-lexical units (word knowledge influences phoneme perception). More globally,

a large number of studies highlight the interaction of top-down knowledge with

bottom-up processes, whatever the situation, that is, in adverse (e.g., in noise
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Mishra & Lutman, 2014; Zekveld et al., 2006) or normal conditions (Cope et al.,

2017; McClelland & Elman, 1986). The “canonical” speech perception model

TRACE (McClelland & Elman, 1986) typically integrates the interaction between

feedforward and feedback processes, and has been shown in consequence to

be able to account for a large set of experimental speech perception data in

psycholinguistics, such as the “Ganong effect” discussed previously.

Crucially, however, the nature of top-down processes involved in such models

is solely concerned with the “what” question in speech perception, referring to

the lexical and sub-lexical unit categorization processes. Still, according to the

general neurocognitive framework abundantly developed in the previous sections

of this chapter, information regarding “when” and “how” in time the acoustic

input is structured and processed is considered encoded independently from

“what” and conveyed via distinct neural pathways for both perceptual and motor

processes (Arnal, 2012; Arnal & Giraud, 2012; Morillon et al., 2016). In other

words, temporal control likely requires not only bottom-up processing of the

signal envelope but also top-down predictions from linguistic knowledge. This

seems required for at least three sets of reasons. First, if top-down predictions

intervene globally in the speech processing architecture, they likely participate

not only in the spectro-temporal decoding process but also in the temporal

control mechanism driving this process. Secondly, several neural data suggest

that the synchronization of brain responses to speech signals does depend on

the intelligibility of these acoustic inputs (e.g., Ahissar et al., 2001; Peelle et al.,

2013), and it has been repeatedly suggested that top-down predictions could

exploit the neural beta channel for this feedforward-feedback process (Hovsepyan

et al., 2022; Pefkou et al., 2017). Last but not least, the behavioral data by

Aubanel and Schwartz (2020) described in Section 6 seem to clearly show that

predictions associated with a “natural” sequence of speech events are required

for efficient perception in noise.

8 Goals and contributions of the present thesis

In light of the converging arguments on the potential role of top-down mechanisms

in temporal control for speech perception presented in the previous section, the

present thesis is focused on three questions related to three main contributions.

The first major contribution of this thesis is the definition and development

of a speech perception model, which we named COSMO-Onset, that includes

both a spectro-temporal content decoding module and a temporal control module

combining bottom-up onset detection and top-down temporal pre-

diction mechanisms. The separation into two modules is what on the one

hand distinguishes our model from classical models of speech perception “à la
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TRACE”, and on the other hand also allows us to compare with recent models

of speech perception inspired by neural oscillations. The specific originality of

COSMO-Onset compared to the latter models is that it features a temporal

control model that combines bottom-up and top-down components. We have

defined the model and illustrated its behavior and main principles on a set

of simplified stimuli: this contribution was published, first, in a peer-reviewed

journal paper to introduce the COSMO-Onset model (Nabé et al., 2021), and

second in a peer-reviewed international conference paper to describe the Bayesian

Gates, one of its technical features (Nabé, Schwartz, et al., 2022).

Our second contribution in this thesis focuses on the study of a completely

bottom-up and simple neural oscillation-based model of speech perception devel-

oped by Räsänen et al. (2018). It is a model solely concerned with the detection

of syllabic onsets without any consideration related to the spectro-temporal

decoding mechanisms. This allows us to show not only the interest and perfor-

mance in the noise of such systems but also the potential role of resonance and

isochrony processes for the robustness of syllabic onset detection in noise. We

have also developed and evaluated a variant of the model of Räsänen et al. (2018),

that detects P-centers instead of syllabic onsets. This second contribution was

published in a peer-reviewed conference (Nabé, Diard, et al., 2022).

The third and last contribution of this thesis is the development of the second

version of COSMO-Onset integrating more advanced signal processing and

decoding mechanisms, to be able to deal with real speech signals. To do so,

some simplifying assumptions of the first version of COSMO-Onset have to

be lifted, and some of its components need to be redesigned. For instance, since

the model developed by Räsänen et al. (2018) already deals with real speech

input, it can be adapted and included into the COSMO-Onset as its bottom-up

onset detection mechanism, in the temporal control module. With this version

of COSMO-Onset adapted to real speech, we then perform a first complete

simulation of the experiment of Aubanel and Schwartz (2020) and evaluate

whether COSMO-Onset successfully accounts for the complementary roles of

isochrony and naturalness in speech perception in noise.



Chapter 2

COSMO-Onset: The

conceptual model

Note

This chapter is partially adapted from (Nabé et al., 2021).

In the previous chapter, we conducted a literature review that provides an

overview of the research on neural oscillations and their specific relations to

speech. In particular, we described the main models of speech perception and

segmentation based on neural oscillations. This chapter ended with a critical

analysis of these models which allowed us to define the main theoretical questions

of this thesis.

The main contribution of this thesis is the COSMO-Onset model. We have

developed two implementations of this model. The first one, presented Chap-

ter 3, served as a proof-of-concept of the proposed architecture and inference

mechanisms and was designed to process very simplified, synthetic stimuli. The

second one aimed at processing more realistic stimuli. Its description is covered

in Chapters Chapter 4, Chapter 5 and Chapter 6. Therefore, in the present chap-

ter, we introduce COSMO-Onset, focusing on a conceptual level overview (i.e.,

with no mathematical details) and elements that are common to the subsequent

implementations.

First, we present the overall model architecture and its two main components:

the decoding module and the temporal control module. The decoding module

processes the spectro-temporal content of the input hierarchically in order to

ultimately recognize words. The temporal control module processes the slow

amplitude modulation of the input to detect syllabic events, by combining both

sensory-driven bottom-up segmentation and knowledge-driven top-down event

prediction.

39
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Second, we describe, again at a conceptual level, the Bayesian inference

process conducted in the model for simulating word recognition and show how

it articulates with and involves syllabic event segmentation. We detail the

probabilistic computations featured in the temporal control and decoding modules.

1 Model architecture

Decoding moduleTemporal control module

SySt
1 SySt

2 SySt
3

λ λ λ

SyPt
1 SyPt

2 SyPt
3

λ λ λ

OTDt

OREFt OCt

OBUt

SyLt
1 SyLt

2 SyLt
3

WSt

λ

WPt

At

At+1

∆Lt It Silt

XY

Figure 2.1: Conceptual graphical representation of COSMO-Onset

COSMO-Onset is a Bayesian hierarchical computational model of speech

perception. The conceptual architecture of the model, which is graphically

represented on Figure 2.1, shows the main components: on the left is the

“temporal control” module, and on the right is the “decoding” module. The

temporal control module associates three components. A bottom-up system

associates input envelop features based on variations of the perceptual intensity

(loudness) ∆L with Onset Bottom-Up OBU features. A top-down system predicts

the Onset of Top-Down OTD features from the output of the word recognition

module. Finally, the bottom-up and top-down systems are combined (purple

box in Figure 2.1). The decoding module hierarchically combines a sensory layer
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decoding sensory inputs I into “Sensory” Syllabic features SyS (green box in

Figure 2.1) and a perceptual layer associating “Perceptual” Syllabic features SyP

into Word units W (blue box in Figure 2.1).

A combination tool used in the model to connect some of its portions is

the so-called coherence variables (noted as λ variables), which will be further

described in the next sub-sections. The summary of the different variable names

and their interpretation is provided in Table 2.1. Applying Bayesian inference to

the model architecture provides computing steps for simulating onset detection

and word recognition. We now describe the general principles and functioning of

the model followed by a description of each of the two sub-models.

Table 2.1: Summary of symbols of the illustrative COSMO-Onset model: variable
names and their interpretation. Some of the mentioned variables (e.g., Sil, FeP,
. . .) will be discussed later in Chapter 3

Variables for acoustic signal description

I1:T1:12 Spectro-temporal content of the acoustic
signal Input (F1, F2 formants)

∆L1:T
1:12 Derivative of the Loudness local intensity

of the acoustic signal

Sil1:T1:12 SILent portions of the acoustic signal
(Boolean)

Variables for linguistic content

FeS0:T1:12, FeP
0:T
1:12, FeL

0:T
1:12 Phones (i.e., FEatures), respectively from

Sensory decoding, in phone Perceptual ac-
cumulators and from Lexical prediction

SyS0:T1:3 , SyP
0:T
1:3 , SyL

0:T
1:3 SYllables, respectively from Sensory decod-

ing, in syllabic Perceptual accumulators
and from Lexical prediction

WS0:T , WP0:T Words, respectively from Sensory decoding
and in the word Perceptual accumulator

Variables for controlling information flow in the model

λFeSP1:T
1:12,

λFePL1:T
1:12, . . .

Coherence or controlled coherence vari-
ables, connecting layers of the model

A1:T
1:15 Control variables modulating information

flow (opening, closing, and sequencing
phone and syllable perceptual accumula-
tors)

Variables for onset detection

OTD1:T , OBU1:T ,
OREF1:T , OC1:T

Onset detectors (Boolean), respectively
from TD knowledge, BU sensory decoding,
REFractory period inhibition, and Com-
bined result
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1.1 General principles: Coherence variables, Bayesian gates,

and syllabic parsing

As shown in Figure 2.1, the overall structure of the decoding portion of the model

consists of different layers, connected by Boolean variables called “coherence vari-

ables” (represented by λ nodes in Figure 2.1). These can be seen as “probabilistic

glue”, allowing merging, in a mathematically principled manner, probability

distributions over the same domains (Bessière et al., 2013; Gilet et al., 2011).

During inference, these coherence variables are used to choose how probabilistic

information propagates into the model; in that sense, they can be interpreted as

“Bayesian switches” that can be “closed” or “open”. When a coherence variable is

closed between two connected variables, information propagates through it. Math-

ematically, this corresponds to assuming that the value of the coherence variable

is known and equal to 1, and it yields a product of the probability distributions

of the variables connected by the coherence variable (whatever these probability

distributions). Conversely, a Bayesian switch can be “open”, by ignoring its value

during inference; this results in disconnecting the corresponding portions of the

model connected by the coherence variable, through a marginalization process

that can be shown to simplify. Technical details can be found elsewhere (Gilet

et al., 2011, see also Section 4).

Some of the coherence variables in the decoding module (the ones with input

arrows coming from node At in the temporal control module, see Figure 2.1)

are further “controlled” (Phénix, 2018), that is to say, they allow controlling

in a gradual manner the propagation of probabilistic information, from one

layer to another. Where coherence variables can be interpreted as “Bayesian

switches”, controlling information flow in an all-or-none manner, controlled

coherence variables can be interpreted as “Bayesian potentiometers”, thanks to

their gradual control of information propagation. Technically, this is done by

connecting a probability distribution over the control variable, which is Boolean,

to the coherence variable. The probability that the control variable is “True” then

modulates the amount of probabilistic information propagation (see Section 4).

In the context of the COSMO-Onset model, we, therefore, use controlled

coherence variables to modulate, over time, information flow in the model (see

variable At in Figure 2.1). This allows us to modify dynamically, during percep-

tion, which portion of the model receives and processes sensory evidence. In other

words, variables At, which are the main output of the temporal control module,

are used to explicitly “open” or “close” channels through which probabilistic

information propagates in the model.

More precisely, we employ such a mechanism to control information flow

between the acoustic input and a number of consecutive “syllabic decoders”. In

the following, we fix this number to 3 for simplicity, which means that the word
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decoder includes a sequence of 3 syllabic decoders (associated with the variables

SyPt
1, SyP

t
2 and SyPt

3). In this process, control variables At control the temporal

windows during which syllable perceptual variables receive sensory evidence to

process, from the acoustic input. This allows implementation of the sequential

activation of syllabic decoders, that is to say, syllabic parsing.

To generalize, we propose to call “Bayesian gates” this novel mathematical

construct (Nabé, Schwartz, et al., 2022). They allow the segmentation of a

sensory stream by appropriately activated perceptual decoders in a sequential

manner. In short, variables At
1...3 are in charge of controlling which syllable

decoder receives sensory information. Their probability distributions pilot all

links between decoders and the sensory input. When the probability that the

control variable At
i is True is 0, the corresponding decoder i is not activated or

already terminated; on the other hand, when the probability that the control

variable At
i is True has a non-zero value, the corresponding decoder is currently

activated, so that some amount of sensory information is fed into the perceptual

model.

The purpose of the temporal control module is thus exactly to control syllabic

parsing. To do so, it computes, at each time step, the probability that there

would be a syllabic onset event, that is, the probability that a new syllable

begins in the acoustic input. When this probability passes a threshold, the

system decides there was an onset, which has two main effects (see Figure 2.1,

dotted arrow). First, the currently “activated” syllable decoder stops receiving

sensory input from the stimulus or lower-level layers. Second, the next syllabic

decoder, in sequential order, is activated. Therefore, our model segments the

continuous speech stream into linguistic intervals of varying lengths at the syllabic

level. Consequently, the model can handle words that have a varying number of

syllables, and syllables that have a varying duration. We note, as mentioned in the

introduction (Section “Neural oscillation-based models of speech segmentation”),

that previously proposed models also feature such mechanisms, of sequential

activation and deactivation of syllabic decoders (Ghitza, 2011; Hovsepyan et al.,

2020; Hyafil, Fontolan, et al., 2015).

1.2 Decoding module

The decoding module of the COSMO-Onset model is inspired both by the BRAID

model (Bayesian model of Word Recognition with Attention, Interference, and

Dynamics) of visual word recognition (Ginestet et al., 2019; Phénix, 2018) and

by the classical, three-layer architecture of spoken word recognition models, such

as TRACE (McClelland & Elman, 1986; McClelland & Rumelhart, 1981). It can

also be construed as a hierarchical (multi-layered) dynamic Bayesian network

(Murphy, 2002), with an external component to control information propagation.
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With its hierarchical architecture, each layer describes particular knowledge

that is involved in the overall word recognition process. From the first bottom

layer to the last top layer, the different layers can interact with each other,

either in a purely bottom-up manner with only feedforward processes or in a

bi-directional manner with feedforward and feedback processes. The model is

organized into different layers of knowledge representation. This begins with

a syllabic sensory layer (the green box in Figure 2.1), connected to a syllabic

perceptual layer (in blue), which is then connected to a lexical layer (in red)

expressing the known word syllabic constitution (word-to-syllable lexical layer),

which is finally connected to a word perceptual layer (in blue).

The sensory layer is represented by the rectangle noted X Figure 2.1, and

contains a mathematical relation between syllables and sensory input; more

precisely, it represents knowledge about how known syllables correspond to

acoustic signals. This can be expressed in a general mathematical form by a

probability distribution of the form P (SySti | It), that is, “what is the probability

distribution for the ith syllable in the sensory layer at time t, knowing the input

It at the same time?”.

There are two perceptual layers featured in the COSMO-Onset model,

with internal representations corresponding to syllables and words. Each is

associated with a series of probabilistic dynamic models (i.e., Markov-chain-like

probabilistic models, to which we now refer as “decoders”). They are expressed

in terms of the forms P (SyPt
i | SyPt−1

i ) and P (WPt
i | WPt−1

i ), respectively for

syllables and words. They allow continuous accumulation of sensory evidence

about the representation domain they consider. Information gradually decays

from these Markov chains, to ensure a return to their respective initial states

in the absence of stimulation. However, the information decay rate is set to a

low value, to basically ensure that the result of sensory evidence accumulation is

maintained and remains available for the whole duration of processing a given

word. Therefore, these Markov chains essentially provide perceptual models

about syllables and words, central to syllable and word recognition, respectively.

In the lexical layer, the model contains probabilistic “transformation terms”,

that is to say, knowledge about how one representational space maps onto another.

The word-to-syllable lexical layer describes how known words are composed of

known syllables. This is expressed with terms of the form P (SyLt
i | WSt). With

a similar mechanism, known syllables can be described in terms of smaller units

such as phones. This provides a syllable-to-phone lexical layer in a similar manner

to the word-to-syllable layer. This is not included in the conceptual representation

shown on Figure 2.1, though it appears later in Chapter 3.

These different layers are connected by coherence variables so as to have

sensory information entering the model through the bottom sensory layer and
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propagating to the top last perceptual layer of word recognition. Altogether, we

can then simulate word recognition with the decoding portion of the model, that is

to say, compute the probability distribution over variable WPt, at each iteration

t, given the acoustic stimulation, as described by variables It, Silt and ∆Lt.

Because of the complex structure of the model, with its hierarchically layered

Markov chains, Bayesian inference results in complex computations, involving

both feedforward (from acoustic input to word space) and feedback (from word

space to acoustic input) propagation of information. However, we approximate

these, considering word recognition in the decoding module as a pure feedforward

process (in contrast with our main focus, that is, the inference in the temporal

control module, which features both bottom-up and top-down components; see

below).

1.3 Temporal control module

The temporal control module is composed of three interacting portions, with

“bottom-up” onset detection, “top-down” onset prediction, and the last portion

to combine them.

The bottom-up portion of the temporal control module assesses the prob-

ability of syllabic onset events by relying on the temporal cues that can be

extracted from the speech envelope. The extraction mechanisms are described

by the model in the rectangle noted Y. This has been largely discussed in the

literature and several models of syllable onset and boundary detection have been

proposed (Ghitza, 2011; Hovsepyan et al., 2020; Hyafil, Fontolan, et al., 2015;

Mermelstein, 1975; Räsänen et al., 2018). These models process the speech

envelope, in search of either rapid increase (towards peaks) or decrease (troughs)

in the energy of the speech envelope. In practice, the Y rectangle can contain

any of the syllable event detection models, be they based on oscillations or other

signal processing techniques. This bottom-up process outputs OBUt events, that

can either be precisely or probabilistically positioned in time in the input signal.

The top-down portion of the temporal control module relies on lexical

knowledge about word composition. Such lexical knowledge associates each word

of the lexicon to a sequence of syllables, each of a known composition, thus of

typical known duration. Therefore, the model incorporates knowledge about

the “canonical” instants at which syllabic onset can be expected, for each word.

This is expressed in terms of the form P (OTDt | WSt). During word recognition,

this lexical prediction of onset events is combined with the ongoing computation

of the probability distribution over words, so that words contribute to syllabic

onset prediction according to their estimated probability. Other levels allowing

top-down predictions on syllable duration and event occurrence (e.g., syntactic

or prosodic), could be proposed, and will indeed by introduced or discussed
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later in this document (in Chapter 6 and Chapter 7). At this stage, for the

sake of simplicity, we just feature in the COSMO-Onset model lexical top-down

predictions.

The next component of the temporal control module is a fusion model

between the bottom-up detection and top-down prediction of onset events. It is

expressed by the term P (OCt | OTDtOBUt). We define two ways of combining

the two pieces of information, through two fusion “operators”, the AND and the

OR operators. They are both mathematically defined as particular products of the

probability distributions provided by the top-down and bottom-up components.

Nevertheless, they can easily be interpreted: with the AND operator, the temporal

control module decides that there is an onset event if both the bottom-up OBUt

and top-down OTDt components agree that there is one; in contrast, with the

OR operator, the temporal control module decides that there is an onset event if

at least one component suggests that there is one.

The computed probability that there is an event, noted by the term P ([OCt =

True] | OTDtOBUt), is then compared with a decision threshold: if it exceeds this

threshold, an onset event is considered detected. This then controls, sequentially,

the closing and opening of the Bayesian Gates connected to the appropriate

syllable decoders of the decoding module. It is represented, in Figure 2.1, by the

dotted arrow between nodes OCt and At+1
i (with i = 1 . . . 3), implementing the

Bayesian Gate process explained in Section 1.1.

2 Inference for simulating word recognition

The main cognitive task we want to simulate with the COSMO-Onset model is

word recognition. These computations are performed online (continuously as the

model receives input), thanks to the recursive solutions provided by Bayesian

inference.

Both syllable event detection and word recognition are computed at each time

step: word recognition proceeds assuming the states of the syllable decoders as

given, and event detection, informed by word recognition, proceeds to compute

the states of syllable decoders for the next time step. In other words, model

simulation proceeds in an iterative manner, as only probability distributions at

time t are needed to compute probability distributions at time t+ 1 (notice that

even though, for visualization purposes, we also memorize the whole history of

probability distributions, this is not required for simulations).

2.1 Inference in the decoding module

Formally, word decoding relies on syllable decoding. To simulate these, we

compute the probability distributions over the perceived syllables SyP and word
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WP, at each time step, assuming that the stimulus and states of each syllable

decoder (i.e., whether they are active or not) are given. To differentiate these

two computations, we use the coherence variables to limit the propagation of

information extracted from the stimulus into the model.

Consider first syllable decoding. For a syllable decoder i (= 1 . . . 3), it is

represented by computing a probability distribution QSyti, expressed in terms of

the probabilistic variables in the sensory and perceptual layers at the syllable

level (in all the following, the introduction of the calligraphic letter Q in a

given variable name means that it is the result of a probabilistic question, e.g.

“what is the content of a given variable knowing a given state of other available

variables?”). The exact computation of QSyti depends on the X box, and it is

not detailed in this part. The computation is performed over the entire speech

stimulus presentation, even if there are some moments (time steps) when the

syllable decoder is not active. In those moments, the probability distribution

decays towards its initial state of uniform knowledge about all the syllables states.

Next and finally, in a similar manner, for word decoding, we compute a

particular probability distribution, noted QWt
i. It is detailed for each of our

implementations of the COSMO-Onset model, in the following chapters.

2.2 Inference in the temporal control module

At each time step, once word decoding is computed, we then compute, in the

temporal control module, onset detection, to update the states of syllable decoders

for the next, upcoming time step. Inference for the bottom-up sensory

detection of onsets simply proceeds by referring to the P (OBUt | ∆Lt) term,

with computation mechanisms encoded in the Y box of Figure 2.1. On the other

hand, for the inference of the top-down prediction of onsets, we compute

the probability:

P ([OTDt = True]) =
∑
wst

P ([OTDt = True] | [WSt = wst]) QW t .

In other words, we compute the probability that there would be an onset,

according to the lexical models of all words, simultaneously, but weighed according

to the current probability distribution over words as computed by word recognition.

This, consequently, allows word perception to influence syllabic onset detection

at any time of the inference.

Finally, we define the fusion operator, expressed by the term P (OCt |
OTDt OBUt). In the AND variant of the fusion operator, we define:

P ([OCt = T ] | [OTDt = T ] [OBUt = T ])

= P ([OTDt = T ])× P ([OBUt = T ]) ,
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with T for the True Boolean value. This implements a combination in which

the probability of onset is the product of the probabilities of the two “temporal

submodels” (top-down prediction and sensory detection). As a consequence

of this product, the probability value can be close to one only when the two

components agree and also provide a high probability that there is an onset; this

explains why we denote this as an “AND” combination operator.

To define the OR operator, we apply De Morgan’s law, A ∨B = A ∧B, and

define:

P ([OCt = T ] | [OTDt = T ] [OBUt = T ])

= 1− (1− P ([OTDt = T ]))× (1− P ([OBUt = T ])) .

The final step of onset detection is to apply the decision process on the

computed probability distribution: when the probability that [OCt = True] is

above a threshold, an onset is considered to be detected, which updates the states

of syllable decoders. This final step is not properly a “probabilistic dependency”

in the model; that is why it is represented as a dotted arrow in Figure 2.1.

3 Discussion

In this chapter, we presented a conceptual description of the COSMO-Onset

model. We defined an original Bayesian model of speech perception including a

temporal control module combining bottom-up acoustic envelope processing and

top-down timing predictions from higher linguistic levels.

Even though we did not specify the exact mechanisms at play for syllable

decoding and syllable event detection, it led us to lay down the key concepts and

design two fusion models associating bottom-up event detection and top-down

temporal prediction. We now have at our disposal a general Bayesian architecture

associating temporal control and input decoding, that can be implemented,

tuned, or modified in various ways, tested on speech stimuli, and possibly used

for generating predictions for future neurocognitive experiments.



Chapter 3

COSMO-Onset: The illustrated

model

Note

This chapter is partially adapted from (Nabé et al., 2021).

In the previous chapter, we presented the COSMO-Onset model at the

conceptual level. We specifically defined all the main components and their

interaction, leaving out some details to be specified for each implementation of

the model. To recall, we note X the portion of the decoding module which maps

syllables onto sensory input, and Y the portion of the temporal control module

which implements the syllable event detection mechanism.

In this chapter, we first describe the two boxes X and Y for our first imple-

mentation of the model. We then perform various simulations in an exploratory

study aiming to illustrate the model behavior. These simulations rely on “toy”,

synthetic stimuli, and experimental situations, that were carefully designed to

assess model performance in nominal conditions, and evaluate its robustness

when confronted with various adverse conditions.

1 The illustrated COSMO-Onset model

After the conceptual overview of the model in the previous chapter, we now

introduce the first implementation of COSMO-Onset, with which the simulations

of this chapter will be performed. The probabilistic dependency structure of the

model is shown on Figure 3.1.

In this version, in the X portion of the decoding module, syllables are

decomposed into phones, with phones being short portions of the acoustic input

(possibly close, but not always equivalent to a phoneme). We assume, for

49
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0.1 Step 7 of the toy version of the COSMO-Onset model:
version May, 31th, 2021 (Frontiers paper third revi-
sion)

Patch notes:

• adding variable At+1
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Figure 3.1: Graphical representation of the first implementation of the COSMO-
Onset model. Variables of the model are represented as nodes (A summary of
variable names and their interpretation is available in Table 2.1). Subscripts
indicate the position in sequential parsing of the input into the linguistic unit, and
superscripts indicate time instant. For instance, SyPt

1 is the variable related to
the first syllabic decoder at time t. Probabilistic dependencies between variables
are represented by arrows: there is an arrow from node X to node Y if X is a
“parent node” of Y , that is to say, X appears as a conditioning variable of Y in a
term (e.g., the arrow from SySt1 to FeLt

1 represents the term P (FeLt
1 | SySt1)). Self-

looping arrows denote dynamical models, that is to say, a variable that depends on
the same at the previous time step (e.g., there is a term P (WPt | WPt−1)). The
dotted arrow between node OCt and node At+1

1:15 is not a probabilistic dependency
and represents instead a decision process (i.e., the probability that OCt is True
is compared to a threshold, and this comparison conditions variables At+1

1:15). Sub-
models are represented as colored rectangular blocks, to assist model description
(see text for details). Portions of the model, specifically, some “phone branches”
are not shown, for clarity.

simplicity, that there are not more than 4 phones per syllable. In consequence, the

decoding module now incorporates a phone perceptual layer and a syllable-to-

phone lexical layer. As for the other two perceptual layers (word and syllables),

the phone perceptual layer has internal representations corresponding to

phones and is associated with a series of probabilistic dynamic models, expressed

in terms of the form P (FePt
j | FePt−1

j ). This layer is connected to the phone

sensory layer with coherence variables.
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In the Y portion of the temporal control module, we assume that there is a

straight dependency between the speech input loudness and the bottom-up onset

detection variable. In other words, our onset detection mechanism is a direct

computation from the loudness profile, adequate in the context of our synthetic

stimuli. Hence, there is no external onset detection mechanism in this version of

the model, and we apply a computation directly derived from the loudness. The

syllable event detection from the stimulus is based on tracking the rapid increase

of energy in the speech envelope. If such an increase is detected for several

successive time steps, and if the corresponding increase exceeds a given threshold,

then the probability of an onset event gets high. This is expressed in terms of the

form P (OBUt | ∆Lt). However, since this simplified bottom-up onset detection

method is not oscillatory per see (in the sense of neural oscillatory models of

speech perception), we need a mechanism to avoid detecting two successive events

too close. Therefore, we introduce a refractory period.

At this stage, the refractory period is expressed by the variable OREFt.

If a syllable event was detected, this refractory mechanism prevents successive

detection for a given time window, fixed at 50 ms. This is inspired by well-known

properties of the dynamics of oscillators in speech processing, that prevent the

firing of successive onsets in the same oscillation period, classically observed in

the theta band (Schroeder & Lakatos, 2009; Wyart et al., 2012). This is also a

classical feature of previous models (Hyafil, Fontolan, et al., 2015).

Consequently, according to this description of the temporal control module of

the first implementation, we adapt the fusion equations. In the AND variant of

the fusion operator, we now define:

P ([OCt = T ] | [OTDt = T ] [OBUt = T ])

= P ([OTDt = T ])× P ([OBUt = T ])× P ([OREFt = T ]) ,

and the OR variant is defined as follows:

P ([OCt = T ] | [OTDt = T ] [OBUt = T ])

= (1− (1− P ([OTDt = T ]))× (1− P ([OBUt = T ])))× P ([OREFt = T ]) .

2 Simulation Material

In this first set of simulations aiming at evaluating the feasibility of the global

model and exploring the potential role of top-down temporal predictions, we

defined a set of highly simplified materials, easily tractable but still enabling

to test all the different components of the model. This “toy” material hence

respects a compromise between two antagonist requirements: being sufficiently
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varied to display a variety of configurations for the model and being sufficiently

simple to enable simple simulations that remain easy to interpret.

2.1 Linguistic material

The linguistic material we consider in this first study is made of isolated words

with a variable number of syllables from 1 to 3, and syllables made of either

a single vowel (a V syllable) or a sequence of a consonant and a vowel (a CV

syllable). We consider a set of 3 vowels /a i u/ and 2 plosive consonants /p t/.

Furthermore, we defined a lexicon of 28 toy words, at most tri-syllabic, the list

of which is provided in column 2 in Table 3.1.

2.2 Phonetic material

At the acoustic and phonetic level, we represent syllables by sequences of phones

with a maximum number of 4 phones per syllable (in the same vein as in Ghitza

(2011)). The sequence of phones for the 28 words in the lexicon is provided in

column 3 in Table 3.1. For example, the word “pata” is composed of a sequence of

7 phones p-@-a-t-@-a-#, the content of which will be described in the following

of this section. Altogether, the constraints on the maximal number of syllables

per word (3) and phones per syllable (4) match with the decoding structure of

the current COSMO-Onset implementation (see Figure 3.1), respectively in the

word-to-syllable lexical layer and syllable-to-phone lexical layer.

Vowel and plosive phones in our simulations are acoustically represented as

sets of pairs of formants (F1, F2) in Barks, a subjective perceptual scale (Zwicker,

1961) (see Figure 3.2). While it is classical to characterize vowels by their first

two formants (Fant, 1970), it is less classical to use formant values for plosives

(although, see Schwartz et al. (2012) for characterization of plosives by formant

values). More precisely, the formant values for the considered vowels are gathered

from a dataset obtained using VLAM, the Variable Linear Articulatory Model

(Boë & Maeda, 1998; Maeda, 1990). It contains a large set of synthetic acoustic

samples for all oral French vowels, and we only used the data points for the

vowels /a i u/, respectively corresponding to phones a, i and u in the following,

which amount to 15,590 samples. To this vowel set, we added 1,000 points for

the phones p and t associated with consonants /p t/, 500 each, supposed to lie

in the (F1, F2) space between i and u, p close to the back rounded u and t close

to the front i (Schwartz et al., 2012).

For the syllables formed by two different phonemes (in the present simulations,

C followed by V), in order to simulate formant transitions (Dorman et al.,

1975; Lindblom & Studdert-Kennedy, 1967; Stevens & Klatt, 1974), we defined

linear transitions between the phones associated with the constituent phonemes.
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Table 3.1: List of the 28 words of the lexicon together with their “phonetic”
content. Column 1 provides the grouping of words according to their number
of syllables. Column 2 provides the name of each word, corresponding to its
phonological content. Column 3 provides the phonetic content of each word,
that is, the sequence of acoustic phones. Column 4 provides the corresponding
duration of the model input, in simulated time steps.

Word type Word Phone sequence Duration

Monosyllabic

“a” a-# 150
“pa” p-@-a-# 200
“pi” p-@-i -# 200
“pu” p-@-u-# 200
“ta” t-@-a-# 200
“ti” t-@-i -# 200
“tu” t-@-u-# 200

Bi-syllabic

“apa” a-p-@-a-# 300
“ata” a-t-@-a-# 300
“ipi” i -p-@-i -# 300
“iti” i -t-@-i -# 300
“upu” u-p-@-u-# 300
“utu” u-t-@-u-# 300
“papa” p-@-a-p-@-a-# 350
“pata” p-@-a-t-@-a-# 350
“patu” p-@-a-t-@-u-# 350
“pipi” p-@-i -p-@-i -# 350
“pita” p-@-i -t-@-a-# 350
“tata” t-@-a-t-@-a-# 350
“tatu” t-@-a-t-@-u-# 350
“tuti” t-@-u-t-@-i -# 350

Tri-syllabic

“apata” a-p-@-a-t-@-a-# 450
“apiti” a-p-@-i -t-@-i -# 450
“iputu” i -p-@-u-t-@-u-# 450
“utatu” u-t-@-a-t-@-u-# 450
“patata” p-@-a-t-@-a-t-@-a-# 500
“patati” p-@-a-t-@-a-t-@-i -# 500
“tapatu” t-@-a-p-@-a-t-@-u-# 500

Examples of transitions between phones p and a and between phones a and t

are depicted in Figure 3.2. Transitions are denoted by the phone symbol @, both

in descriptions of the stimuli used in the simulations, but also as a value in the

phone space in the model.

Finally, in the present simulations, each word input consists of a phone

sequence ending with an “end of sequence” marker, to signal silence in the

acoustic signal. Silence is denoted by the phone symbol #, here again, both in

descriptions of the stimuli and as a possible phone to be recognized by the model.

An example of formant sequence used as input for the bi-syllabic word “pata” is
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Figure 3.2: (Left) Phones of the lexicon represented on a two-dimensional space
with the second formant F2 on the x-axis from right to left and the first formant
F1 on the y-axis from top to bottom, as is classical in phonetic displays. Phones
associated with phonemes /a/, /i/, /u/, /t/, and /p/ are respectively represented
by blue, yellow, green, red, and purple colored dots. The trajectory of the
simulation of the word “pata”, is also displayed. The annotations correspond to
the different corresponding time steps for each constituent phone of the word
“pata”, with one sample of the phone p from 0 to 50 time steps, the transitional
phone @ between the phones p and a, from 50 to 100 time steps, along a linear
transition joining the barycenters of the two phone categories (brown dots), one
sample of the phone a from 100 to 150 time steps, one sample of the phone t from
150 to 200 time steps, the transitional phone on 50 time steps, and one sample
of the phone a from 250 to 300 time steps. For each phone, are also shown the
mean (black dot) and the 3 standard-deviation ellipses of the bi-variate normal
distribution best fitting the data points (black ellipses). (Right) Example of
formant inputs (y-axis, in orange for F1, in blue for F2) used for the word “pata”,
as a function of simulated time steps (x-axis).

shown in Figure 3.2 (right).

All these formant data distributions for each phone are used to obtain the

parameters of the sensory models, that is, the probability distributions over

acoustic input for each phone category (term P (Itj | [FeStj = f ])), and more

precisely, their parameters, i.e., the means and covariances of the Gaussian

distributions for each phone in the lexicon (see Figure 3.2, black dots and black

ellipses). In the case of the end-of-sequence marker #, it is arbitrarily mapped

with formants normally distributed around the origin of the 2D formant space;

such an arbitrary value is well outside of the meaningful formant descriptions

for the vowels and the consonants of the lexicon, and thus silence is “easily

recognized”.
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2.3 Phone duration and loudness profiles

In the current simulations, we consider that all phones have a constant duration

of 50 ms, that is, 50 “time steps”, except for initial vowels which have a duration

of 100 ms (we keep the description of simulations in terms of time steps in the

following, acknowledging that they would correspond to ms for application to real

acoustic inputs). Nevertheless, syllables have variable duration since they have a

variable number of phones. This number varies from 1 to 4: 1 for a non-terminal

syllable made of a single vowel (e.g., the initial syllable in word “apata”), 2 if the

vowel is followed by a final silence # (e.g., in the monosyllabic word “a”), 3 for

a CV syllable with a phone for C and a phone for V connected by a transitional

phone @, and 4 in a CV syllable that ends a word, because of the end-of-sequence

phone. Accordingly, the duration of each word stimulus is displayed in column 4

in Table 3.1). For example, the word “pata” is composed of 50 ms of the phone

p, followed by 50 ms of the transitional phone @, followed by 50 ms of the phone

a, and so on, to end with 50 ms of the “end of word” marker #.

In addition to its description in terms of the temporal sequence of phones,

each syllable is characterized by a loudness profile L which provides the input

to the temporal control module for syllable segmentation. Loudness represents

the auditory evaluation of acoustic intensity at a given time, resulting from the

sensory processing of the acoustic signal envelope. This can be seen as capturing

the variations of energy of the acoustic signal. In our simulations, loudness values

are normalized between 0 and 1. Positive values of the local derivative of loudness

are used to define onset events.

The loudness profiles used in this study are simplified, and serve to illustrate

and capture the fact that there are syllabic energy fluctuations in real speech

with, generally, rapid increase at syllable onsets and gradual decrease towards

syllable offsets (in-between, almost anything can happen). In Figure 3.3, we

display examples of loudness profiles we use in the simulations, respectively for

the mono-syllabic word “a”, composed of one vowel (Figure 3.3, left), for the

bi-syllabic word “pata”, composed of 2 CV syllables (Figure 3.3, middle) and for

the tri-syllabic word “apata” composed of 3 syllables (one V and 2 CV syllables,

Figure 3.3, right).

2.4 Paradigms for test conditions

We explored various test conditions for the model, in order to assess and illustrate

the interaction between the bottom-up onset detection and the top-down onset

prediction mechanisms, with the stimuli configured as presented above.

First, we consider a “nominal condition”, in which the stimulus presents no

difficulty, that is to say, the stimuli loudness profiles are “smooth and regular”,
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Figure 3.3: Examples of loudness variations for three input sequences: the word
“a” (left), the word “pata” (middle) and the word “apata” (right). Simulated
time is on the x-axis, and normalized loudness (arbitrary units) is on the y-axis.
The vertical bars and top annotations refer to the associated phonetic content of
the stimulus.

Figure 3.4: Loudness profiles for the bi-syllabic word “pata” used in the three
simulation conditions: the nominal condition (left), the “noisy-event” condition
(middle) and the “hypo-articulation-event” condition (right). Simulated time is on
the x-axis, and normalized loudness (arbitrary units) is on the y-axis. Degraded
conditions (middle and right) respectively correspond to the first noise level with
one spurious event in a random position (with different positions corresponding
to different colors) in the “noisy-event” condition, and to a dip height at 0.75
with random dip shapes (with different shapes corresponding to different colors)
in the “hypo-articulation-event” condition.

such as shown in Figure 3.3.

Second, to assess the model in more difficult situations, we define degraded

versions of the loudness profiles, in two possible ways. In the first case, we

add noise events to the loudness profile, randomly positioned in portions where

loudness is sustained in the nominal case: this may lead to the detection of

spurious loudness events by sensory processing (“noisy-event condition”). In

the second case, we decrease the depth of the loudness dip found at syllable

boundaries and randomly modify the shape of the loudness dip: this may lead
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sensory processing to miss syllabic onsets from the loudness signal (“hypo-

articulation-event condition”). The three conditions, and the corresponding

loudness profiles employed, are illustrated Figure 3.4 for the bi-syllabic word

“pata”.

2.5 Simulation configuration

We performed a set of simulations to evaluate the performance of the COSMO-

Onset model. To do so, we simulated word recognition by the different model

variants, for different words, and for the various test conditions; for the test

conditions that simulate degradation of the stimulus, we applied different severity

levels of the degradation. We now detail each of these components of our

simulation set.

To recall, there are three considered variants of the model, in which syllable

onset events are either assessed from bottom-up sensory information only (the

“BU-only” model, in the following), or with top-down onset prediction combined

with the AND operator (AND model), or, finally, with top-down onset prediction

combined with the OR operator (OR model).

2.5.1 Degraded stimuli simulations

In degraded simulations, the stimuli we used for the experiment are all non-

monosyllabic words from the lexicon (21 different words out of the 28 in the

lexicon, see Table 3.1). Monosyllabic words were not used as stimuli since they

would only contain a single onset event, at the initial iteration; nevertheless, they

are part of the lexicon and are evaluated as possible candidates by the model

during word recognition. Each of these words is presented once to the three

variant models in nominal test conditions (i.e., with nominal loudness profiles).

In the “noisy-event” test condition, we considered 5 possible severity levels,

by varying the number of noisy events applied to the loudness profile, from 0

(identical to the nominal case) to 4. Each noisy event lasts 10 % of the duration

of the word, and its position is randomly drawn in the loudness profile of the

word, ensuring that, when there are several noisy events, they do not overlap

(see examples of severity level 1 on Figure 3.4, middle plot).

In the “hypo-articulation” test condition, we considered 5 possible severity

levels, by varying the depth of the loudness dip between syllables. In this dip,

loudness decreases to a varying minimal value, from 0.6 (identical to the nominal

case) to 0.8 (in which case the loudness dip between syllables is entirely removed

since loudness is at 0.8 inside syllables). The 5 possible values, therefore, are 0.6,

0.65, 0.7, 0.75, and 0.8. To introduce some variability, we randomly draw the

precise time iteration, during the loudness dip, at which the minimum value is
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attained (except, of course, for perturbation level 0.8, since the dip is removed

altogether. See examples of a dip modified to be at value 0.75 on Figure 3.4,

right plot)).

Note that, while severity level 0 of the “noisy-event” test condition perfectly

corresponds to the nominal case (and the simulations are thus not repeated), this

is not the case for severity level 0 of the “hypo-articulation” test condition, since

the time instant of the loudness minimal value is varied, which may affect onset

detection. Whenever perturbations would be randomly generated, we performed

10 independent simulations for that condition. Overall, we, therefore, performed

21*3*(1 + 4*10 + 4*10 + 1) = 5,166 word recognition simulations: 21 word

stimuli, 3 model variants, 1 for the nominal condition, 4*10 for the noisy-event

condition, 4*10+1 for the hypo-articulation condition.

2.5.2 Temporal misalignment simulation

We then assessed the robustness of the “BU-only” model to temporal misalign-

ment, by performing a simulation experiment in which we manually inserted a

delay between onset detection and its use for opening and closing the syllabic

decoders. In other words, the “BU-only” model would compute onset detection

in a normal fashion (term P (OBUt | ∆Lt)), but its output would be temporally

delayed before being used in the computation of the inference for onset detection

(term P (OCt = True)).

We performed word recognition on all words of the lexicon and varied the

delay between −75 to +75 time steps (steps of 5 iterations). For all words and

all delays, we have measured the probability assigned by the model to the input

word (i.e., correct recognition probability) at the final iteration. The condition

where the delay is 0 provides a base-case performance for the model.

2.6 Performance measures

In order to evaluate the performance of the model variants during the simulations

of word recognition, we use two performance measures: the unit identity perfor-

mance metric (correct word recognition probability per se) and the boundary

performance metric (correct onset detection per se). Both are already explained

in Section 5.1 of Chapter 1.

However, the margins used in the boundary performance metric remain to be

defined: we consider an event to be correctly predicted if the model generated

an onset event internally in a 30-iteration wide time-window around the onset

position in the stimulus (15 iterations before, 15 iterations after).
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3 Results

We now report simulation results, to assess the performance of the three model

variants in the three experimental conditions: the “nominal” condition, the “noisy-

event” condition, and the “hypo-articulation-event” condition. First, we detail

an illustrative example, allowing us to investigate the mathematical behavior of

the model. This illustrative example is based on the input word “pata” in the

nominal condition. Second, for each degradation condition, we first show the

model behavior for the same input word “pata”, to illustrate mechanisms, before

proceeding to the systematic evaluation of performance over the whole simulation

set. And third, we show the results in the temporal misalignment condition for

all the words of the lexicon.

3.1 Illustrative example in nominal condition

Figure 3.5 shows the simulation of the full model with the AND fusion in the

nominal condition, for the example stimulus word “pata”. It shows probability

distributions computed by the model. Figure 3.5 (left) shows the different onset

probability values in the temporal control module, and their evolution over time:

the top-down onset prediction, the bottom-up onset detection composed of the

refractory period and sensory event detection, and finally, the combined result

with the AND fusion model. Figure 3.5 (right) shows probability distributions in

the decoding module, with probability distributions over words (which provide

the final output of the model), over syllables, and over phones.

Bottom-up onset detection shows that the model, based on sensory processing

of the loudness envelope alone, would detect 2 events (Figure 3.5, left, bottom

green curve), respectively around iterations 0, and 150. These, indeed, correspond

to an increase in the loudness profile for the stimulus word “pata” (see Figure 3.4,

left). Since these are outside the refractory period (dashed orange curve, left

column, middle row of Figure 3.4), these two onset events are maintained and

“output” by the bottom-up branch of the temporal control module.

Top-down lexical knowledge would predict 3 onset events (Figure 3.5, left,

top red curve), respectively around iterations 0, 150, and 300. The first two

match with bottom-up onset detection, and, since we illustrate here the AND

fusion model, they are maintained in the output of the temporal control module

(orange curve in the middle of Figure 3.5). The third onset predicted by top-down

knowledge is due to the fact that the presented stimulus, the word “pata” is a

prefix of other words in the lexicon (tri-syllabic words “patata” and “patati”).

At this stage of word recognition, these three words are equally probable (see

Figure 3.5, top right plot), so a third onset is likely. In this example, it is not

confirmed by the bottom-up sensory event detection, and the AND fusion model
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Figure 3.5: Example of simulation of the full model with the AND fusion in the
nominal condition, on input word “pata”. Plots are organized to roughly map with
corresponding positions in the model schema, see Figure 3.1. (Left, “Temporal
control module” panel) Plot of the onset detection probabilities computed in the
model (y-axis) as a function of simulated time (x-axis). Left column: In red,
top-down onset prediction, in dashed orange, probability of an onset being outside
a refractory period, in green, onset probability based on sensory processing of
stimulus loudness. Middle plot: in orange, the onset probability of the AND
fusion model (Right, “Decoding module” panel) Top plot shows the probability
(color-coded, see the color bar on the right) over words (y-axis) as a function
of time (x-axis). The vertical black bars and annotations at the top of the plot
recall the stimulus structure; in this example, the stimulus is the word “pata”,
with the acoustic signal of the first syllable during the first 150 iterations, the
one of the second syllable during the next 150 iterations, followed by silence.
Second row: plots of the probabilities (color coded) over syllables (y-axis), as
a function of time (x-axis) during the activation of the corresponding syllable
decoder. Bottom four rows: plots of the probabilities (color coded) over phones
(y-axis), as a function of time (x-axis). Plots for phone decoders are sorted
vertically, with the first phone above and the fourth at the bottom.

filters it out.

At each detected onset, the model activates a new syllable decoder, so we

observe that 2 syllabic decoders are involved in the model (Figure 3.5, bottom

right portion). In each syllable decoder, the probability distributions over syllables
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evolve as acoustic input is processed, and the probability value of the correct

syllable, that is, the one in the input, converges towards high values. We thus

observe that each syllable decoder recognizes the appropriate syllable, which

are /pa/ for the first syllable, and /ta/ for the second one. In the first syllable

decoder, we observe a perfect competition for the first 100 time steps between

all syllables beginning with phone p, and this competition gets disambiguated

when phone a is processed. The second syllable decoder is activated around

iteration 150 (it is a uniform probability distribution before activation), and

shows a similar dynamic: first, competition between all syllables starting with

phone t, then recognition of the correct syllable /ta/. The third syllable decoder

is never activated, and thus remains uniform during the whole simulation.

Within every syllable decoder, phonetic decoders get activated sequentially

(Figure 3.5, bottom 12 plots of right portion). We observe a behavior similar to

the syllable decoders, except at a smaller timescale. Phone decoders stay uniform

until their activation (this is especially visible for the phone decoders of the third

syllable, which are never activated), then they decode the input, yielding, in this

simulation, correct phone recognition, and after another onset is detected and

predicted, the probability distributions gradually decay (this is especially visible

for the phone decoders in the first syllable).

The probability distributions over syllables are then used, in the rest of the

probabilistic computations in the model, to infer the probability distribution over

words (Figure 3.5, top of the decoding module panel). Since syllable parsing was

successful, so that syllable decoding was, too, then word recognition proceeds as

expected, to recognize the word according to its syllables. Indeed, we observe

that, at time step 150, that is, after decoding the first syllable /pa/, all words

of the lexicon that start with /pa/ are equally probable. At time step 300, the

lexical competition continues, and three words remain equally probable: the

correct word “pata”, and two competitors, the words “patata” and “patati”,

which embed the word “pata”. This issue has been discussed in the literature

(M. H. Davis et al., 1998; M. H. Davis et al., 2002); in the current illustrative

simulations we do not address this general question, as it is naturally solved since

we only consider isolated words: after a few iterations in which the acoustic input

represents silence, the recognized word is the correct one, the word “pata”.

We, therefore, observe correct onset detection (thus correct syllable parsing),

but also correct phone, syllable, and word recognition by the full model with AND

fusion. Simulating the model in either the “BU-Only” or the OR fusion variant, in

the nominal condition, also provides correct answers and thus, good performance

(simulations not shown here, see below for model performance evaluation), with

the exception of the activation of a third syllabic decoder, when the top-down

model relies on the OR model because the word “pata” is a prefix of other words
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in the lexicon (this is not shown here but can be observed in the final simulation,

in the “hypo-articulation-event” condition: see Figure 3.8).

3.2 Noisy-event condition

A first challenge for the listener is when the acoustic signal is perturbed, because

for instance of external noisy conditions. In that case, the speech envelope can

be degraded, introducing extraneous fluctuations of loudness and leading to

detecting spurious events in the sensory processing of loudness. In other words,

such spurious onsets would be detected by the bottom-up onset mechanism.

Therefore, in this second simulation, we expect the “BU-only” model to result in

erroneous syllable parsing, leading to incorrect syllable and word recognition. On

the other hand, the complete model would rely on top-down lexical predictions of

onset to “filter out” the unexpectedly detected onset (with the AND operator),

leading to correct parsing and recognition.

Figure 3.6 shows the simulation of the “BU-only” variant of the model and

of the full model (with the AND fusion model), on input word “pata”, with a

degraded loudness profile that includes 2 spurious noise-events. The simulation

we selected here for illustration adds these events at iterations 60 and 200 (see

Figure 3.4, middle). We observe that with the bottom-up onset mechanism

alone (Figure 3.6, top row), the bottom-up onset mechanism “fires” 4 events,

corresponding to the 4 energy rises in the loudness profiles: near the start, then

at iterations 60, 150, and 210. These are outside the refractory period of 50 ms,

which would have otherwise filtered out these spurious onset events. Therefore,

the bottom-up portion of the model detects 4 onset events. It leads to premature

onset detection, which has a number of deleterious effects. First, it prematurely

“closes” the first syllabic decoder, which was only fed with phone p, so that it is

unable to correctly identify the first syllable in the input. Instead, the first syllabic

decoder remains in an unresolved state of competition between all syllables that

start with consonant phone p. Second, it prematurely opens the second syllabic

decoder, which interprets the a vowel phone in the input as the syllable /a/,

even though it is not legal in our lexicon in non-initial positions. This does not

help resolve competition at the word level. Third, it correctly detects the real

onset at time step 150 and opens a third syllable decoder supposed to decode the

second syllable starting with phone t. But this is misaligned with the structure

of the word “pata” which is bi-syllabic. Finally, the third decoder is prematurely

closed, by the detection of the spurious onset event, near iteration 210. Overall,

from one spurious event to another, the error in syllable parsing persists during

decoding, and the bottom-up only variant is unable to correctly recognize the

input word.

Compare with the simulation of the full model, with the AND fusion model,
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Figure 3.6: Example of simulation of the “BU-only” variant (top row) and the full
model, with the AND fusion model (bottom row), in the noisy-event condition,
on input word “pata”. Left column: plots of onset detection probabilities;
Right column: plots of word probabilities in the word decoder (top row) and
syllable probabilities of the syllable decoders (bottom row). Graphical content is
presented in the same manner as in Figure 3.5 (except that onset probabilities
are superposed in a single plot and the phone decoders are not shown).

on the same stimulus (Figure 3.6, bottom row). We observe that, while the

bottom-up onset detection mechanism would lead to propose an onset near time

step 60, the top-down temporal prediction model does not confirm this proposal.

Therefore, the AND fusion model results in filtering out this event. This also

happens with the other spurious event near time step 210. Therefore, with the

AND fusion model, only the two “real” onsets are detected, that is to say, the

ones at the start of each syllable. As a consequence, the behavior of the AND

fusion model in the “noisy-event” condition is quite the same as in the nominal

condition, with correct syllabic parsing, phone recognition, syllable recognition,

and word recognition.

Figure 3.7 shows performance measures for the three variant models in the

“noisy-event” condition, across all simulations. We first observe that both perfor-

mance measures are highly correlated, suggesting that correct event detection

relates to correct word recognition. Second, when there is no perturbation
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Figure 3.7: Performance of the three variant models in the “noisy-event” condition.
Left: F-score (y-axis) as a function of the severity of degradation (x-axis). Right:
word recognition probability (y-axis) as a function of the severity of degradation
(x-axis). Every data point is averaged, over 21 words, and, where applicable, over
10 independent simulations with different randomly drawn perturbations.

(perturbation level 0), all variant models have the same performance, which is

expected since top-down event prediction is redundant in this case with events

that can be detected from the input signal. Third and finally, we also observe

that the higher the severity level of degradation, the more performance decreases.

Indeed, as degradation increases, the chance of having noise perturbations outside

refractory periods increases, thus leading to more chances for spurious onset

events. However, we observe that the model with the AND fusion is the most

robust, as its performance decreases less with perturbation.

3.3 Hypo-articulation-event condition

In the second challenge we consider, degradation of the loudness profile leads to

“removing out” onset events, for instance with an external perturbation masking

a dip in acoustic energy at the syllabic boundary, or with this dip being much

smaller, maybe because of hypo-articulation, or an error in speech planning,

or excessive speed in speech articulation leading to speech slurring, etc. In

that condition, we expect the “BU-only” variant of the model to miss onset

events, leading to incorrect syllabic parsing, thus incorrect recognition. On the

other hand, the complete model, with the OR operator, would use the lexically

predicted onsets to insert them where the sensory onsets were missed, leading to

correct parsing and recognition.

Figure 3.8 shows the simulation of the “BU-only” variant of the model and

of the full model (with the OR fusion model), on input word “pata”, with the

degraded loudness profile that decreases the dip depth in acoustic loudness at

the syllabic boundary (see Figure 3.4, right). We observe that the “BU-only”
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Figure 3.8: Example of simulation of the “BU-only” variant (top row) and the full
model, with the OR fusion model (bottom row), in the hypo-articulation-event
condition, on input word “pata”. Graphical content is presented in the same
manner as in Figure 3.6.

variant of the model does not ascribe a probability for the second onset prediction

that is high enough (the probability is lower than the decision threshold at 0.4),

and therefore it misses the second onset (near time step 150) so that the first

syllabic decoder stays activated for too long. Although it correctly recognizes the

initial /pa/ syllable, it never activates the second syllable decoder. This leads

to unresolved competition at the word level between all the bi-syllabic words

starting with syllable /pa/, and, ultimately, incorrect word recognition.

In contrast, with the OR fusion model (Figure 3.8, bottom row), the top-down

onset prediction allows recovering the missed onset event at time step 150, which

helps to avoid the problem of faulty syllabic parsing and misalignment of the

second syllabic decoder with the stimulus. In this condition, the full model with

the OR fusion model leads to correct syllabic parsing, phone recognition, syllable

recognition, and word recognition. Notice, however, that simulations here are

not exactly the same as those of the model in the nominal condition, with two

differences that merit attention.

Indeed, we first observe that the syllabic decoders are a few iterations ahead
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Figure 3.9: Performance of the three variant models in the “hypo-articulation-
event” condition. Left: F-score (y-axis) as a function of the severity of degradation
(x-axis). Right: word recognition probability (y-axis) as a function of the severity
of degradation (x-axis). The severity of degradation is measured with the minimal
value attained in the loudness dip at syllable boundaries (“dip height” in plot
labels; 0.6 corresponds to a well-marked dip, 0.8 removes the loudness dip
altogether). Every data point is averaged over 21 words, and over 10 independent
simulations with different randomly drawn perturbations.

of the stimulus: for instance, whereas the syllabic boundary between the first

and second syllables is exactly at time step 150 in the stimulus, the first onset

event resulting from the OR fusion model is around time step 140. This leads the

second syllabic decoder to process, for a few iterations, the end of the first phone

a in stimulus “pata”. This slight temporal misalignment is due to the value we

set for the onset decision criterion, at 0.4. Such a value is reached early of the

“bump” in onset probability provided by the lexical model, which correctly peaks

at time step 150 (Figure 3.8, bottom left plot, compare the lexical prediction

(red curve) and output of the OR fusion model (orange curve)).

The second notable behavior in this simulation is the activation of a third

syllabic decoder. Indeed, the lexical onset prediction model is aware of words

in the lexicon which embed “pata”. Therefore, up to time step 300, there is an

unresolved competition, at the word recognition level, between the embedding

words containing “pata” and “pata” itself. A third syllable could then, from the

lexical prediction, be expected, so that an onset event is lexically generated. This

leads to activating a third syllable decoder, which mostly processes the “end of

word” marker in the acoustic input (after the few iterations where it processes

the end of the second a, because of the slight temporal misalignment discussed

above). Observing a third syllable “composed of silence” is only consistent with

the word “pata” in the lexicon, so that it is, ultimately, correctly recognized.

Figure 3.9 shows performance measures for the three variant models in the
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“hypo-articulation-event” condition, across all simulations. First, we observe,

here again, that both performance measures correlate. Second, we observe that,

contrary to simulations in the “noisy-event” condition, all three model variants

do not have the same performance for the less degraded condition. Indeed, in our

simulation, we randomly select the time iteration at which the minimum value is

reached; this changes the geometry of the dip in loudness, so that, even though

it has nominal depth (when the dip height is 0.6), it can misalign onset detection

and prediction, which negatively affects the AND fusion model. Third and

finally, we also observe that performance decreases as degradation increases, for

the “BU-only” and the AND fusion models. The performance of the OR fusion

model, on the contrary, does not decrease as perturbation increases, indicating

the robustness of the OR fusion model in the “hypo-articulation-event” condition.

3.4 Temporal misalignment condition

Figure 3.10 shows the experimental results in which the manually-inserted delay

is varied systematically. We observe an overall inverted-U shaped plot (top

plot), with the probability for the correct word maximal when the delay is 0

or +5 iterations (probabilities differ at the third decimal), and very close to

maximal when the delay is +10 iterations. For other delay values, we observe

that performance sharply decreases. We also analyzed results independently

for monosyllabic, bisyllabic, and trisyllabic words (bottom plots). We observe

that monosyllabic words are overall better recognized, and performance is more

robust (longer plateau for varying delays); this, of course, is due to the fact

that monosyllabic word recognition is only dependent on a single syllabic onset

detection. However, result patterns for bisyllabic and trisyllabic words are very

similar to the global results.

Overall, these experimental results suggest that, when the “BU-only” model

processes the simplified stimuli that we have defined, there is a small temporal

tolerance, for which performance is preserved. However, performance is worse for

large delays, which confirms that a proper alignment of syllabic decoders with

the acoustic signal is central for word recognition.

4 Discussion

This chapter enabled us to present the first implementation of the COSMO-Onset

model where the X and Y portions of the decoding module and the temporal

control module, respectively, are designed to process simplified speech stimuli.

Of course, the simulations we proposed in this chapter are mostly illustrative and

certainly preliminary. They should be extended, in various directions that we

discuss now, and that will be partly explored in the next chapters.
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Figure 3.10: Temporal misalignment experiment. Top plot: average probability
for the correct word (y-axis) in the “BU-only” model variant simulating word
recognition, overall words of the lexicon, as a function of a manually-imposed
delay between onset detection and their use for opening and closing the syllabic
decoders (x-axis, in iterations). Bottom plots: the same as above, but for
monosyllabic (left), bi-syllabic (middle), and tri-syllabic (right) words only.

Efficiently combining bottom-up and top-down information for

syllabic parsing

The simulations presented in Section 3 suggest a rather clear overall picture.

Firstly, in the “hypo-articulation simulation set”, generating missing events in

the bottom-up branch, the OR model behaves efficiently and outperforms the

“BU-Only” model in terms of both detection accuracy and recognition score.

Secondly, in the “noisy-simulation set”, generating spurious events, the AND

model discards most of these spurious events and outperforms the “BU-Only”

model once again in terms of both detection accuracy and recognition score.
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Notice that in both cases, the bottom-up branch performs actually better than

the non-adapted fusion model. Indeed, the AND model degrades event detection

when it is already difficult in the hypo-articulation case, probably because of a

slight asynchrony between the bottom-up and the top-down branches; and the

OR model slightly increases the number of inaccurate or spurious events detected

in the noisy case, probably because the top-down information enhances spurious

envelope modulations.

Globally, this raises the question of selecting the right model for the right

stimulus condition. This falls into the general question of model selection and

averaging, for which literature is abundant (e.g., Burnham & Anderson, 2004;

Wasserman, 2000). This would suggest various ways of analyzing the probabilistic

content of each of the three models “BU-Only”, AND, and OR and selecting or

averaging their output accordingly. Importantly, the rationale of the two sets

of simulations suggests that some exogenous contextual criterion could be used

for model selection. Thus, if the system is able to extract some evaluation of

the level of noise or the quality of articulation during a short period of time,

this information could be used as a proxy to select the AND or the OR fusion

model accordingly or even to combine them. The same kind of endogenous or

exogenous information could also be used as a prior or weight in the Bayesian

fusion process involved in both the AND and the OR model. For example,

instantaneous estimates of the noise level could act as a weighing factor in the

AND Bayesian fusion process, increasing/decreasing the respective roles of the

bottom-up and top-down branches accordingly. The Bayesian framework that

we have adopted all along this work in the development of the COSMO-Onset

model is obviously adapted to study and explore all the corresponding questions

about model selection and fusion.

Finally, if there indeed exist two different fusion modes, namely an AND and

an OR behavior, this raises some interesting questions for cognitive neuroscience,

asking whether specific neural markers could be associated with a shift from

one mode to the other. Indeed, it has been proposed, for instance by Giraud

and Poeppel (2012) or Arnal and Giraud (2012), that there could exist specific

frequency channels respectively associated with bottom-up (theta channel) and

top-down (beta channel) messages. The shift from the AND to the OR behavior,

possibly associated with noisy conditions vs. hypo-articulation, would result

in different coordination in time between theta and beta bursts, that could be

explored with adequate neurophysiological paradigms.

From “toy” stimuli to realistic speech processing

First of all, it is important to acknowledge that the current material used as

input to the model is far from real speech. To be able to finely monitor the model
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output at this preliminary stage, we designed toy stimuli.

This is first the case for the synthetic loudness curves used to simulate the

speech envelope and the two kinds of adverse perturbations applied to these

curves, together with the simplified loudness processing in the bottom-up branch

performing a “simplistic” bottom-up onset detection with straightforward enve-

lope analysis. A further step in the development of the presented implementation

of COSMO-Onset in this chapter, will be to consider a more realistic neuro-

computational model able to track the signal envelope and adapt in an online

manner to variations in instantaneous syllabic frequency, as in oscillatory models

such as the ones developed by Hovsepyan et al. (2020), Hyafil, Fontolan, et al.

(2015) or Räsänen et al. (2018) (see also the neuro-physiological refinements

recently introduced by Pittman-Polletta et al. (2021)). Importantly, these various

existing models should help provide COSMO-Onset with a possible neurophysio-

logical implementation of the temporal processing component of the algorithmic

structure presented on Figure 3.1 in the Y box, which would make the relation-

ships between the present simulations and real neurophysiological data more

straightforward. As already mentioned in the literature review chapter (Chapter

1), the oscillatory model developed by Räsänen et al. (2018) seems the simplest

and the most concerned only with segmentation processes. Thus it is a good

candidate to replace the bottom-up onset detection mechanism implemented in

the Y box in this chapter. This will be discussed in Chapter 4.

Secondly, the spectral description of the acoustic stimulus was limited to the

first two formants. The first layer in the COSMO-Onset implementation presented

in this chapter (Figure 3.1), that is the Phone Sensory Layer, currently takes for

granted the feature extraction from the speech input by directly implementing

phone recognition from the first two formants, while realistic spectral analysis of

speech utterances would rather exploit a bank of auditory filters (e.g., gammatones

(Hohmann, 2002; Patterson et al., 1992) or Mel-cepstrum analysis (Rabiner,

1989). The latter spectral analysis has received large interest in the Automatic

Speech Recognition (ASR) domain and has shown to be efficient in encoding the

essential features of the speech spectral content. Thus, it is a good candidate

for that component of COSMO-Onset. We can therefore replace all the current

mechanisms implemented in theX box with a more sophisticated model to directly

perform syllable recognition from the speech input, of course after extracting the

features such as the Mel Frequency Cepstrum Coefficients (MFCC). This will be

the main focus of Chapter 5.

From there on, the ability of COSMO-Onset to deal with specific experimental

conditions displaying the role of top-down processes in syllabic parsing and onset

detection can be tested with more realistic experimental settings. For this aim,

we target the experimental data by Aubanel and Schwartz (2020) showing that
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natural speech is more intelligible in noise than speech rendered isochronous,

while isochrony also plays a role in helping intelligibility, but to a lesser extent.

Naturalness and isochrony play here complementary roles which could fit quite

well with the existence of a bottom-up onset detection branch exploiting isochrony,

and a top-down prediction branch exploiting naturalness. Capitalizing on a second

implementation of COSMO-Onset equipped with more realistic architectures for

the temporal control module (Chapter 4) and the decoding module (Chapter 5),

we will attempt to partly replicate these data in Chapter 6.





Chapter 4

A study of the oscillation-based

syllabic segmentation model by

Räsänen et al. (2018)

Note

This chapter is adapted from a published conference paper (Nabé, Diard,

et al., 2022).

In Chapter 2, we presented the COSMO-Onset model with its conceptual

architecture (Figure 2.1). To recall, there are two components that we introduced

in a generic form in the conceptual model, the first concerned with syllable

decoding (noted X, the light blue box of Figure 2.1), and the second with

bottom-up onset detection (noted Y, the dark blue box of Figure 2.1). We

then developed an implementation of this conceptual model suited for simplified

stimuli in Chapter 3 (Figure 3.1), in which the X box was replaced by phone

processing layers that inform syllable decoding, whereas the Y box was based on

the processing of the loudness of the speech signal looking for rapid increases.

In this chapter, we start moving towards a version of COSMO-Onset able

to process natural speech input. Here, we focus on the Y box, replacing the

simplistic bottom-up onset detection mechanism implemented in the illustrative

version of COSMO-Onset with a more realistic onset detection process inspired

by neural oscillations. As discussed in the literature review, among the various

oscillatory models, the model developed by Räsänen et al. (2018) stands out as

the simplest, operating on simple mechanisms of envelope detection and linear

second-order oscillators. In contrast to other discussed models, this model is

solely concerned with acoustic envelope processing in order to detect syllabic

onsets. In the remainder of this chapter, we refer to this model as the RDF

73
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model after its authors 1.

The present contribution has four major objectives. Firstly, we apply the

RDF model on a French corpus, the Fharvard corpus developed by Aubanel

et al. (2020), that we have already presented in Section 6 of Chapter 1. This will

enable widening its evaluation set for syllabic onset detection. Secondly, we will

extend the RDF model to the detection of P-centers on the same French corpus,

to assess its performance relative to the nature of syllabic events. Thirdly and

crucially in the present context, since our key experimental paradigm is concerned

with the role of isochrony in the bottom-up processing of natural speech (as

presented in Section 6 of Chapter 1), we assess whether isochrony plays a role in

the efficiency of the RDF model. Finally, and still, in the context of our target

experimental paradigm, we will evaluate the model’s robustness to noise.

1 Simulation Material

1.1 Corpus

The present simulations exploit the acoustic Fharvard corpus from Aubanel et al.

(2020), introduced in Chapter 1. From the 700 sentences of the Fharvard corpus,

in this study, we only used a subset of the overall dataset that was fully annotated

by the authors at various levels, namely at the word, syllable, P-center, and

phoneme levels. This subset amounts to 177 sentences composed of multi-syllabic

words with a total of 646 distinct syllables. Figure 4.1 shows the distribution of

syllable duration in the corpus.

An important characteristic of the sentences in this corpus concerns their

relation with isochrony. To evaluate the role of isochrony in event detection, we

characterize each sentence by its distortion to isochrony as defined in Chapter 1,

Section 6. It is computed for the time series of syllabic events t (which can either

be syllabic onsets or P-centers) by the distortion to transform the natural time

series into a target time series t′ made of the same number of isochronous events,

thanks to the formula:

δ =

√∑N
i=1(log τi)

2di∑N
i=1 di

,

with di and d′i respectively the duration between successive events in the reference

and target times series (di = ti+1 − ti; d
′
i = t′i+1 − t′i), and τi the time-scale factor

between the reference and target time series: τi = d′i/di.
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Figure 4.1: Histogram of syllable duration in the Fharvard corpus (Aubanel et al.,
2020) (mean ∼ 203 ms, median ∼ 180 ms, mode ∼ 154 ms).

1.2 The RDF model

To recall, Figure 4.2 shows the different processing stages sequentially performed

by the RDF model. The original acoustic waveform is first processed by a

Gammatone filter-bank resulting in outputs ec(t) (each channel with its separate

color), which are then transformed by a linear oscillator into oscillator amplitudes

xc(t), that are finally combined to obtain the sonority envelope S(t), as the model

output. This output can then be used to drive the search for local extrema.

Initially, the authors used the RDF model to detect only the “valleys”

(troughs) in the sonority envelope, which are considered the syllable boundaries.

They correspond to the red bars of the last bottom plot on Figure 4.2.

We then extended this initial version to detect P-centers. Let us recall that

P-centers correspond to the “psychological moment of occurrence” of syllables

(Morton et al., 1976; Strauß & Schwartz, 2017). Even if this definition is

consensual, a precise acoustical landmark that would correspond to P-centers

is still lacking. However, they are classically determined by determining peaks

of energy increase of the speech envelope, or in our case, the sonority envelope

(Marcus, 1981; Patel et al., 1999). Typically, this is easily found by analyzing

the first-order derivative of the sonority envelope. Therefore, we extended the

RDF model to detect peaks in the first-order derivative of the sonority envelope,

which is the oscillatory model output.

To implement the extension, we used the Python version of the RDF model,

which we adapted accordingly in the last step. Instead of the sonority envelope

being returned as the output of the model, we take its first derivative to search

for local maxima. In the following, we will interpret these local maxima as events

1There exists an implementation of the RDF model mainly in Matlab that can be found in
this GitHub repository. Also, a Python implementation can be found here.

https://github.com/orasanen/thetaOscillator
https://github.com/speech-utcluj/thetaOscillator-syllable-segmentation
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Figure 4.2: An example of the processing stages for an utterance “Can you
get the circle?” by the RDF model. From top to bottom: 1) the different
processing stages in the RDF model transforming the speech input into the
sonority envelope (model output), 2) the waveform of the input sentence, 3)
the different Gammatone filter-bank outputs applied to the input signal, 4)
the amplitudes of oscillator resonance applied to each Gammatone filter-bank,
and 5) the sonority envelope obtained by a linear combination of the oscillator
amplitudes annotated with the temporal events: the red bars correspond to
syllable boundaries, and the orange bars correspond to P-centers.

corresponding to the detection of syllable P-centers. They correspond to the

orange bars of the last bottom plot on Figure 4.2.

For our performance measure, we use the boundary detection metric with a

margin of 50 ms. This is identical to the measure used in the initial study of the

RDF model (Räsänen et al., 2018), which will allow comparison with our results.

Finally, to evaluate the model’s robustness to noise, we added white Gaussian

noise to the initial speech data, with varying signal-to-noise (SNR) ratio from

-30 dB (very noisy) to 30 dB (almost noise-free) by steps of 10 dB (totaling 7

SNR values).
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1.3 Parameter calibration

The RDF model has four free parameters, that require calibration to ensure

optimal use of the oscillator algorithm. To obtain optimal values for each of these

parameters, we performed a search on a predefined grid of values as in the original

paper by Räsänen et al. (2018). To perform calibration, we optimized performance

on a training dataset with 100 audio files within the 177 available ones, while

all experimental results provided below were obtained from the remaining 77

sentences in the test set. We now recall the model parameters and define our

4-dimensional calibration grid.

The first parameter is the central frequency f0, that is, the resonant frequency

of the oscillator, which varies in the theta frequency band, and usually depends

on the speaker and the speaking conditions. We considered 7 calibration values,

from 5 to 8 Hz with a .5 Hz step.

The second parameter is the quality factor Q, a function of the central

frequency and the bandwidth of the oscillator Q = f0/∆f . It measures the

damping rate of the oscillator. A notable value is Q = .5, for which the oscillator

is critically damped so that it would follow the envelope of the signal as closely

as possible. For larger values of Q (Q > .5), corresponding to an under-damped

oscillator situation, the oscillator resonates more around its central frequency,

with a slower decay of its amplitude, even if it is no longer excited by a real signal.

For smaller values of Q (Q < .5), corresponding to an over-damped oscillator

situation, the oscillator performs more temporal smoothing, with less dependence

on its central frequency. We considered, for calibration, an empirically defined

set of 21 possible values for parameter Q: .15, .25, .5, .75, from 1 to 1.9 with a .1

step, and from 2 to 5 with a .5 step.

The third parameter is the minimum detection threshold thr, that is, the

minimal difference between a local extremum and neighbor extrema enabling us

to consider the local extremum as meaningful. We considered 3 possible threshold

values: .01, .025, and .5.

The fourth parameter is a fixed delay del, to shift all detected events, so as to

mitigate artifacts introduced by signal processing techniques, in particular, delays

due to smoothing, filtering and windowing operations. For syllabic boundary

detection, we considered 15 possible values (0 to 70 ms with a step of 5 ms); for

P-center detection, we considered 7 possible values (0 to 30 ms, step of 5 ms).



78 A study of the RDF segmentation model

Table 4.1: Parameter values resulting from calibration on the training set, and
resulting F-scores on the test set.

P-centers Syllable boundaries
f0 (Hz) 6.5 7
Q 1.4 1.9
thr 0.025 0.01
del (ms) 0 55
F-score .89 .75

2 Simulation Results

2.1 Performance on syllabic event detection in French

Table 4.1 provides the optimal values, resulting from calibration, for model

parameters, for both P-center and syllable boundary detection tasks. To recall,

calibration was performed on the training set. On Figure 4.3, we observe that the

best performing parameters, both for P-center and syllable boundary detection,

correspond to Q factor values of an under-damped oscillator. It also displays a

varying distribution of performance values ranging from almost 0.7 to 0.89 for P-

center detection, and from almost 0.35 to 0.75 for syllable boundary detection. We

also observe that the optimal f0 value at 7 Hz for syllable boundary detection is

higher than the inverse value of the mean syllable duration (mean syllable duration

is 203 ms, the inverse is 4.9 Hz). This was also the case for all simulations in the

original study (Räsänen et al., 2018). However, the optimal f0 value seems to be

close to the inverse of the mode or of the median of the asymmetric distribution

of syllable duration (see Figure 4.1), which suggests that such statistics could

better describe the overall speech rate in the corpus, with respect to the RDF

oscillatory model.

Table 4.1 also reports detection performance on the test set for both tasks,

using the optimal parameter values. Performance for syllable boundary detec-

tion is measured by an overall F-score of .75, which is comparable to previous

experimental results in Finnish, Estonian, and English (Räsänen et al., 2018).

In contrast, performance is quite higher for P-center detection, with an overall

F-score of .89.

2.2 Role of isochrony in event detection

2.2.1 Relation between isochrony in the distribution of syllabic

boundaries and P-centers

Figure 4.4 shows the correlation between lack of isochrony for syllabic boundaries

and P-centers, for all sentences in the experimental corpus. We observe that

there is no significant correlation: sentences with low distortion to synchrony
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Figure 4.3: Model performance (color value) as a function of central frequency
f0 (on the y-axis) and Q factor (on the x-axis). On both the left plot (P-center
detection) and the right plot (syllable boundary detection), the darker the color,
the higher the model performance.

Figure 4.4: Correlation between distortion to isochrony values δ computed with
respect to syllabic boundaries (x-axis) and P-centers (y-axis), for the 177 sentences
of the experimental corpus. Linear regression (solid line) and corresponding
squared correlation coefficient R2 are indicated in the plot.

in syllabic boundaries may have large distortion for P-centers, and vice-versa

(Pearson correlation coefficient R = 0.05, p-value p = 0.51). In the following, we

use only distortion to synchrony computed over the distribution of P-centers, in

line with the experimental study by Aubanel and Schwartz (2020).

2.2.2 Relation between distortion to P-center isochrony and event

detection

Figure 4.5 shows the variations of event detection performance as a function

of distortion to P-center isochrony, for P-center detection (left) and syllable

boundary detection (right). We observe that for both P-center and syllable

boundary detection, there is a statistically significant negative correlation between
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Figure 4.5: Event detection performance (F-scores, y-axis) against P-center tem-
poral distortion to isochrony (δ, x-axis), for P-center detection (left) and syllable
boundary detection (right). Linear regressions (solid lines) and corresponding
squared correlation coefficients R2 are indicated in the plots.

model performance and temporal distortion. In other words, model performance

is higher, and events are better identified, when temporal distortion is small, that

is to say, for natural sentences which happen to be more isochronous.

2.2.3 Role of the resonance factor in event detection

Figure 4.6 shows event detection performance as a function of the Q factor when

all other model parameters are fixed, for P-centers (left) or syllable boundaries

(right). Strikingly, the best performance is obtained for resonant systems with

Q values much larger than the so-called critical damping value Q = .5 which

corresponds to a system that essentially tracks the acoustic envelope with no

additional resonance process. While the optimal value for the Q factor is similar

for P-centers and syllable boundaries in the 1.2− 1.5 range, the adequate range

is rather restricted for P-centers, with quasi-optimal values between 1.1 and 1.8

and then a rapid decrease for too resonant systems; in contrast, a large range

of Q values above 0.75 are adequate for syllable boundary detection, although

detection performance is lower overall.

2.3 Event detection in noise

Figure 4.7 shows how model performance varies as a function of the signal-to-noise

ratio (SNR). The RDF model appears to be rather robust to noise, with its

performance almost unchanged up to a rather large level of noise (SNR at 0 dB),

with performance sharply decreasing for lower values of SNR.
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Figure 4.6: Event detection performance (mean F-scores, y-axis) against the
Q parameter value (x-axis), for P-center detection (left) and syllable boundary
detection (right).

Figure 4.7: Model performance (mean F-score, y-axis) with respect to the noise
level (SNR, x-axis) for P-center detection (left) and syllable boundary detection
(right).

3 Discussion

In this chapter, we have evaluated the RDF oscillatory model of event detection

(Räsänen et al., 2018) on a French corpus, and shown that it performs as well as

previous evaluations on other languages.

Importantly, the results point to the role of resonance mechanisms in this

process. Indeed, it appears that (1) the system performs better for resonant than

for non-resonant characteristics of the proposed algorithm (see Figure 4.6) and

(2) acoustic speech signals with higher inter-P-center isochrony lead to better

event detection (see Figure 4.5). Furthermore, the detection process based on

a resonant response to envelope modulations appears more efficient to detect

P-centers than syllabic onsets (see Table 4.1). This is likely because P-centers

are more robust events within the speech envelope dynamics. It could lead to

proposing segmentation algorithms involving P-center detection as a complement

signal to syllable boundary detection: although P-centers are not systematically

related to syllable onsets (see Figure 4.4), P-center detection is a likely signal
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that a syllable boundary preceded, and was possibly missed.

The event detection system of the RDF model appears rather robust in

acoustic noise. Still, our study, in line with results from previous experiments,

suggests that performance is far from perfect (with 25 % missed events for

syllabic onsets and 11 % for P-centers) without noise, and rapidly degraded for

noise at SNR values under 0 dB. This suggests a potential role for top-down

processes, exploiting statistics of sentence rhythms in relation to lexical, syntactic,

and prosodic knowledge. In their study on comprehension of speech in noise,

Aubanel and Schwartz (2020) showed that, while natural isochrony improved

comprehension, anisochronous speech re-timed to become more isochronous is

actually less well perceived, which points to the role of top-down predictive

processes in speech segmentation. This is the core of the COSMO-Onset model

we have previously discussed in the last chapter (Nabé et al., 2021) to model

how bottom-up and top-down information could be combined for speech syllabic

segmentation. The present study provides an important baseline: the RDF

model is a purely bottom-up, signal-driven event detection model. Our objective

remains to study how complementing it with top-down knowledge could improve

the overall syllabic event detection performance.



Chapter 5

A syllable recognition model

using Random Forests

In the previous chapter, we started developing an implementation of COSMO-

Onset capable of dealing with real speech input by studying an oscillatory model

of speech segmentation for implementing the bottom-up onset detection process

(the dark blue box Y) presented in Chapter 2. The other component that needs

to be adapted is the X component associated with syllable decoding (the light

blue box).

In this chapter, we focus on this X box, replacing the syllable decoding

mechanism dealing with simplistic speech features implemented in the illustrative

version of COSMO-Onset with a more elaborated algorithm operating on more

realistic speech features. For this, we use a machine learning algorithm called

“Random Forest” (RF) for the syllable decoding part, operating on classical speech

features that are Mel Frequency Cepstral Coefficients (MFCC).

In the following, we present the RF algorithm and justify its use for our

decoding problem. Then, we carefully present all the material required to

implement a decoding module based on RF. Finally, we present the model

performance evaluation results.

1 A Machine Learning algorithm: Random Forest

In order to build our syllable recognition model, and since the target data set is

the one from Aubanel and Schwartz (2020), we need a machine learning model

(Bishop & Nasrabadi, 2006; Mitchell & Mitchell, 1997) able to achieve good

categorization performance on small data sets. Therefore this discards deep

learning methods from our consideration (Bengio, 1993; Goodfellow et al., 2016;

LeCun et al., 2015) since their performance largely relies on the amount of

available data for the learning process (Halevy et al., 2009; Sun et al., 2017).
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Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction

Figure 5.1: Illustration of the random forest algorithm. A random forest with n
trees, where each tree has a different number of nodes (blue and red circles, with
the red circles being the path undertaken in each tree).

There are various machine learning algorithms, including parametric models

(which assume a particular data distribution) and non-parametric models (which

do not assume any specific data distribution and are thus usually more versatile).

Another distinction separates supervised and unsupervised learning algorithms,

depending on whether their training data is labeled or not, respectively.

The random forest algorithms (Amit & Geman, 1997; Biau & Scornet, 2016;

Breiman, 2001) are part of the supervised non-parametric models and belong to

a more general algorithmic class, called “ensemble methods” (Dietterich, 2000a;

Sagi & Rokach, 2018; Zhou, 2012). These are models which build on other models.

In a nutshell, instead of using only a single model to train on data and make

predictions, a set of different models are constructed and aggregated to provide a

final prediction. Typically, for a classification task, a set of classifiers are learned

and a voting system is used for the final prediction, while for a regression task,

a set of regressors would be computed, and the final prediction would be the

average of their outputs (illustrated on Figure 5.1) 1. This class of models is

supposedly more robust than single classifiers and regressors and often leads to

better prediction results (Huang et al., 2009).

Ensemble methods differ in their way of aggregating single predictors (also

called weak learners). In a non-exhaustive way, we can mention “Bayesian aver-

aging” (Domingos, 2000; H.-C. Kim & Ghahramani, 2012), “Bagging” (Breiman,

1996), and “Boosting” (Drucker et al., 1992; Schapire, 1999). In the “Bayesian

1Source: Code to generate the random forest illustration.

https://imathworks.com/tex/tex-latex-illustrating-the-random-forest-algorithm-in-tikz/


1. A Machine Learning algorithm: Random Forest 85

averaging” method, the probabilistic predictions of various models, weighted by

their respective posterior probabilities, are linearly combined. The “Bagging”

method (contraction of Bootstrap and Aggregating) is a general aggregation

method that creates subsamples (bootstrap samples) from the original data set,

builds a predictor from each sample, and makes decisions by averaging all indi-

vidual predictors. The “Boosting” method differs from the “Bagging” method

by the way it trains weak learners. In the latter, weak learners are trained

independently from each other and in parallel, whereas in the former, weak

learners are learned sequentially and adaptively to improve the overall model

predictions. It is still unclear whether a particular version would be preferred over

others, as various factors affect the performance of these methods. For example

in situations with classification noise, the bagging method has been shown to be

better than boosting (Dietterich, 2000b).

The random forest algorithm, as initially conceived by Breiman (2001), uses

the bagging learning method by randomly splitting the original data set based

on some criteria (e.g., number of features for each weak learner, number of

samples for each weak learner, etc) and by training weak learners independently.

Furthermore, as the name suggests, the weak learners of the random forest

algorithm are decision trees (Breiman et al., 2017; Kotsiantis, 2013; Rokach &

Maimon, 2005).

Decision trees logically combine a series of elementary tests in a sequential

manner. In the case of numeric features, each test compares a numeric feature

against a certain threshold. In contrast, in the case of nominal and/or categorical

features, each test compares features against a set of possible values. Decision

trees can be viewed as a sequence of conditional propositions. As such they are

different from other models of machine learning considered black-box models since

one can trace the model decision and interpret its output. This explainability

property transfers from decision trees to random forests.

The random forest algorithm presents many advantages, from its robustness

to over-fitting (thanks to the ensemble technique), to its versatility, to its high

performance. Recently, a study by Grinsztajn et al. (2022) showed that decision

tree-based models such as random forest outperform deep learning methods on

tabular data (data sets with a fixed number of features). Prior to this study,

(Fernández-Delgado et al., 2014) realized a large study where they evaluated 179

classifiers from 17 families of models on 121 data sets from the UCI collection

of datasets, and concluded that the random forests algorithms were the best

classifier among these families. Besides, the random forest algorithm has been

used in ASR systems for various tasks. In language modeling, for instance, Xue

and Zhao (2008) have used a random forest on top of an HMM model for phonetic

acoustic modeling and showed that it achieved better performance on small data
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sets. In audio-visual speech recognition, some studies have used combined visual

and audio features to train random forest classifiers (Borde et al., 2020; Terissi

et al., 2015), with Terissi et al. (2015) also showing it outperformed classical

HMM models, especially in noisy conditions. Without an exhaustive list of the

many applications of random forests, we also mention that they have been used

in speaker recognition tasks (Nawas et al., 2021) or in isolated word recognition

(Attar et al., 2010), where authors showed it outperformed classical HMM-based

models of speech recognition.

In the rest of this chapter, we present the simulation material, how we

developed our syllable recognition model based on random forests, and discuss

performance results.

2 Simulation Materials

As in the previous chapter, the present simulations also exploit the acoustic

Fharvard corpus from Aubanel et al. (2020), introduced in Section 6 of Chapter 1.

Similarly, instead of using all 700 sentences of the corpus, we use the same subset

of 177 sentences. To recall, Figure 4.1 shows the distributions of syllables duration.

We also recall that this corpus of 177 sentences is thoroughly annotated by the

authors at different linguistic levels, from the sentence to the word, syllable, and

phoneme levels.

We used the material presented here to train and evaluate a random forest

model of isolated syllable recognition. However, instead of aiming at recognizing

the distinct syllable categories themselves, which is a difficult task to solve with

our limited corpus, we develop a random forest model for recognizing syllabic

structures. The reason for this choice is practical, as it allows defining broader

categories, thus increasing the number of samples in each category. We now

present the syllabic corpus itself.

2.1 Syllabic corpus

Figure 5.2 shows a block diagram of our procedure for syllabic corpus creation.

The inputs are the 177 audio files (sentences) and their corresponding annotations,

which include, among other annotations, the syllabic alignment annotations. Prior

to any forward processing, we strip all audio files from silent segments at their

beginnings and ends. Doing so assures that our database’s audio content only

contains speech signals. Then, we process both inputs simultaneously. First, for

every audio file, we parse its syllabic annotation where syllable labels are located

between two boundaries (the onset and offset of the syllable). The information is

used to segment the audio file appropriately into all of its constituent syllables,

except when it is the “silence” syllable, as it sometimes occurs within a sentence,
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Audio files Annotation files

Segment audio files

Generate syllable files

Syllable corpus

Figure 5.2: Block diagram of syllabic corpus creation. The first two top nodes
in light blue represent the inputs. They are passed onto a processing stage (in
light orange), which generates syllable files (the light green node). The last step
corresponds to assembling all the files into the syllabic corpus (output).

and discard it instead. Next, we generate a syllable file for each audio segment,

thus creating the complete syllable corpus.

With the syllable corpus generated in this manner, we obtain 2,232 syllables

files (with an average of 12.6 syllables per sentence). For practical considerations

(the exact reason will be discussed later), we filter out syllable files with a duration

of less than 35 ms, removing 5 occurrences (one respectively for syllables /œ̃/,

/a/, /n@/, /o/, /y/. This leaves us with 2,227 syllables files in the corpus,

corresponding to different realizations of 645 unique syllable categories, with

varying durations (see Figure 4.1).

Figure 5.3: Histogram of syllable occurrence in the syllable corpus generated
from the Fharvard corpus Aubanel et al., 2020 (mean ∼ 3.5 occurrences, median
∼ 1 occurrence). On the x-axis, is the syllable category, and on the y-axis, is the
count of occurrences.
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Table 5.1: Occurrence counts with respect to the 13 initial syllable types. Each
syllable type (first column) is associated with the number of syllable categories
composing it (second column), the total count of occurrences in the syllable
corpus (third column), and an example of a syllable with the given structure
(fourth column).

Types # of syllable categories # of occurrences Example

V 10 108 /a/
VC 5 25 /il/
VCC 2 2 /Est/
CV 190 1372 /sa/
CVC 225 376 /syK/
CVCC 29 31 /vEKs/
CVCCC 2 2 /maKbK/
CCV 103 206 /pli/
CCVC 61 78 /swaK/
CCVCC 4 4 /pKOpK/
CCCV 10 19 /tKHi/
CCCVC 3 3 /spKEs/
C 1 1 /K/
Total 645 2,227

Figure 5.3 shows the syllable occurrence distribution for the 645 identified

unique syllable categories. The top 25 % (the 75 % percentile) of the syllables

have a minimal occurrence of 3. This also means that the vast majority of the

syllables have at most only 3 occurrences. Furthermore, we can observe the

effect of the outliers that drive the mean towards 3.5, although, in reality, many

syllables are repeated only once in the whole corpus.

Thus, in the following, we consider the syllable type rather than the syllable

category itself. The syllable type is of the form CnVCm, where C stands for

consonant and V for vowel, n and m range from 0 to 3, and the superscript

notation indicates repetition n or m times (as in a regular expression notation).

Rather than building a model to recognize isolated syllable categories, we consider

a model to recognize syllable types.

Table 5.1 contains global statistics on syllable distributions depending on their

consonants and vowels composition. Initially, the database contains 13 distinct

syllable types, which we further regroup into 6 composite categories. The first

four syllable types we consider are the categories, CV, CVC, CCV, and CCVC,

which are largely represented in our corpus. However, the remaining syllable type

categories have fewer data samples, and we collapse categories further. First, we

group syllable types V, VC, and VCC together into one syllable type that we

hereby note as VC*. Second, all the remaining syllable types are grouped into a

final syllable type that we note as “others”. In the following, we use the term

“syllable type” for these 6 general, composite syllable types.
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Table 5.2: Occurrence counts with respect to the 6 composite syllable types. Each
syllable type (left column) is associated with the number of syllable categories
composing it (middle column) and the total count of occurrences in the syllable
corpus (right column).

Types # of syllable categories # of occurrences

VC* 17 135
CV 190 1372
CVC 225 376
CCV 103 206
CCVC 61 78
others 49 60

Total 645 2,227

Table 5.2 shows the occurrence count of distinct syllable categories and data

samples in the 6 composite syllable types. As expected, the syllables with the

most complete structure (CV and CVC) account for most of our database. We

also observe that the minimum number of samples is 60 (“others” syllable type),

which is supposedly sufficient to train our model.

All in all, we have a syllable corpus of 2,227 data samples, distributed across

6 labels, corresponding to the 6 syllable types in which we chose to regroup the

645 syllable categories. 2

2.2 Performance measures

For performance measures, since we are interested in the categorization model,

we use the classical accuracy and recall measures on the model predictions. We

also provide additional, combined performance measures, namely the precision

and the F-score.

2.3 Building the Random Forest model

To provide an acoustic input to the model, we extract acoustic features and

build a fixed-size vector that represents the audio file. Following Hovsepyan et al.

(2020), we fix this size to N = 8 frames. As is done classically, we first extract

the MFCC features for every frame of every audio file. This is done with the

Librosa library (McFee et al., 2015), which is widespread in the speech and audio

processing community. Classically, we extract 13 MFCC coefficients per 25 ms

frame from 512-points FFT, with a number of samples between successive frames

(hop length) fixed by the desired number of frames. For each audio input, the

2We remark that there is a single C syllable in the corpus. This is very likely an error in the
annotation. It comes from the utterance “un sentier raide est pénible pour nos pauvres pieds”
(“a steep path is hard on our poor feet” in English) which corresponds to example sentence
number 526 in the Fharvard corpus. The error is located specifically in the annotation of the
word “pauvres” which they split into the syllables /pov/ and /K/.



90 A syllable recognition model using Random Forests

hop length is then hence computed by:

hop length =
Duration× SR− n fft

N − 1

where Duration is the audio signal duration, SR is the sampling rate equal to

22,050 kHz, N is the number of frames, and n fft is the number of samples used

to compute the Fast Fourier transforms.

This fixes the minimal duration of a speech signal segment to 35 ms to ensure

the possibility to compute MFCC values without errors, for 8 different frames.

This is the technical reason justifying that we do not consider segments shorter

than 35 ms in our corpus.

Finally, each syllable audio file is represented by a vector of 104 features (8

frames of 13 MFCC coefficients), to which we add the duration of each audio

file. Therefore, this results in a vector of 105 features provided as an input to

the random forest model. The random forest algorithm is implemented using the

Scikit-Learn library (Buitinck et al., 2013; Pedregosa et al., 2011) 3.

Parameter calibration of the random forest classifier was performed with a

grid search over sets of values for each of the algorithm’s parameters. To perform

calibration, we optimized performance (model accuracy) on a training data set

with 1,672 syllable audio files within the 2,227 files overall, while experimental

results provided below were obtained from the remaining 555 audio files in the

test data set. These data sets were obtained by applying a splitting method of

75 %-25 % of data samples in each syllable type, that is, for every syllable type,

there are 75 % examples in the training data set, and the remaining in the test

set.

The random forest model has several parameters that are considered key to

its performance:

1. n estimators: The number of decision trees in the classifier. Intuitively,

the higher this number, the best it may overcome over-fitting. However,

in practice, too many trees may lead to poor models. We explored values

between 100 and 1000, with a step of 100. The best value we found during

optimization was 700.

2. max features: The maximum number of features for every decision tree.

In our random forest, both data samples and the number of features are

bootstrapped. Some decision trees may be trained on some features, and

others on other features. We explored values between 5 and 10, with a step

of 1. The best value was 9.

3. min samples leaf : The minimum number of samples required to be at a

3Link to scikit-learn random forest model.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Table 5.3: Performance scores of the random forest model on the test data set.
Top rows: performance for each composite syllable type, sorted in decreasing
F-score order. Bottom row: overall performance scores. Scores are given in
columns, with recall, precision, and F-scores, respectively in the second, third,
and fourth columns.

Performance (in %) Recall Precision F-score

CV 93.6 82.1 87.5
VC* 84.8 82.35 83.6
CVC 64.9 64.9 64.9
CCV 37.25 63.3 46.9
CCVC 15.78 100 27.27
others 13.3 66.67 22.22

Overall 78.2 84.3 80.5

leaf node of a decision tree. We explored values between 4 and 10, with a

step of 1. The best value was 7.

4. min samples split : The minimum number of samples required to split a

node of a decision tree. We explored the same parameter range as the

previous parameter, from 1 to 10, with a step of 1. The best value was 2.

5. min impurity decrease: A node will be divided if its division leads to a

better information gain. This gain of information is characterized by the

value of the min impurity decrease parameter. We explored the set of values

{10−5, 10−6, 10−7}. The best value was 10−7.

6. max depth: The maximum depth (level) of the decision trees. We explored

values from 10 to 50, with a step of 10. The best parameter value obtained

was 30.

7. max samples: The fraction of the total number of samples in the training

data to train each decision tree. We explored the values from 0.5 to 1 with

a step of 0.1. The best parameter value obtained was 0.9.

3 Simulation Results

Table 5.3 shows the scores of the different performance measures of the random

forest model on the 555 samples in the test data set. We observe that it achieves

overall scores above 70 % for all performance measures. Particularly, it has higher

precision than recall, resulting in a good F-score. Breaking down performance

for each syllable type, we observe that the model is overall better, according

to F-scores, for the CV, CVC, and VC* syllable types than for the remaining

three syllable types. Finally, Table 5.4 provides a confusion matrix between

the 6 composite syllable types, in which we verify that most mistakes can be
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Table 5.4: Confusion matrix of the random forest model predictions for each
syllable type on the test data set. Ground truth, the expected categories, are
in rows, and columns are model predictions. For instance, out of the 343 test
samples for the expected category CV, 321 samples were correctly recognized as
CV, 5 samples were miscategorized as VC*, 9 as CVC and 8 as CCV.

CV VC* CVC CCV CCVC others

CV 321 5 9 8 0 0
VC* 5 28 0 0 0 0
CVC 29 1 61 3 0 0
CCV 30 0 1 19 0 1
CCVC 3 0 13 0 3 0
others 3 0 10 0 0 2

considered as “expected mistakes”, that is to say, with confusions between close

syllable types (for instance, mistaking CV for CVC or CCV, or mistaking CVC

for CCVC).

4 Discussion

In this chapter, we have developed and studied a model of isolated syllable type

recognition using a random forest method (Breiman, 2001). We evaluated the

model performance on a subset of the French corpus Fharvard (Aubanel et al.,

2020) used by Aubanel and Schwartz (2020). For a test set of 555 syllables, it

provides reasonably good syllable-type-recognition scores by achieving more than

70 % on the classical performance measures for a categorization algorithm, that

is to say, precision, recall, and F-score (see Table 5.3).

Globally, the resulting model provides a good balance of accuracy among the

6 composite syllable types (see Table 5.4), making errors that we can classify

as reasonable since the confused syllable types are rather similar. Interestingly,

we observe that there is a correlation between the syllable type complexity and

the number of training samples. Logically, scores are higher when the number of

training samples is larger (see Table 5.1). The poorest performance is reached

for the “others” syllable type, the least well-represented type, and also arguably

the more difficult one since it is a highly diverse “catch-all other syllable types”

class. However, it is important to note that in any syllable type, performance, as

measured by the F-score, is still better than random guessing, which would be,

in our categorization task with 6 classes, at 16.67 %.

Since we have a somewhat limited corpus, with an unbalanced distribution of

classes (the 6 syllable types have different training data set sizes), and since our

goal is not to build a fully featured “state-of-the-art” speech recognition algorithm,

we consider that the obtained random forest model we developed is satisfactory

for our purposes. We, therefore, exploit this model in the remainder of our work,
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as a syllable-type recognition mechanism to replace, in the COSMO-Onset model,

the X box.





Chapter 6

COSMO-Onset: Adapting to

real speech

Note

This chapter will provide the basis for a paper to be submitted to an

international journal.

To quickly recall, in Chapter 2, we presented the COSMO-Onset model at

the conceptual level, showcasing its principal components and leaving out two

portions as unspecified (the X and Y portions), that we then defined later on,

first in a version aiming at illustrating the model behavior (see Chapter 3) and

second in a version aiming at dealing with real speech input. This was the focus

of the last two chapters, with Chapter 4 describing how we defined the Y portion

of the model with an adaptation of the RDF model, and Chapter 5 describing

how we defined the X portion with a classification algorithm based on Random

Forests.

In this chapter, we finalize the definition of the COSMO-Onset model. In the

following, we present the different changes that need to be applied to go from

the COSMO-Onset model presented in Chapter 2 to a version able to process

real speech input. Then, we state our theoretical hypotheses and present the

simulation material used to evaluate the model’s behavior. Finally, we present

results addressing our main theoretical hypotheses.

1 COSMO-Onset for real speech stimuli: putting it

all together

Figure 6.1 shows the variant of COSMO-Onset for real speech. Even though this

final version of COSMO-Onset is indeed able to process real speech stimuli from a

95
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real corpus, we stay within the limitations already introduced in the two previous

chapters. Indeed, since our focus is on evaluating whether our model is able to

account for the experimental results provided by Aubanel and Schwartz (2020), all

developments in the present chapter aim at treating the corpus of this experiment,

which is limited in size. Therefore, as in the previous chapter, the present variant

of COSMO-Onset is designed to perform only syllable type recognition. As a

consequence, since it is impossible to directly relate syllable types with word

identity, we consider a variant of the initial architecture of the model, without

the word recognition level in the decoding module. The architecture of the

temporal control module stays basically the same, even though, without the word

recognition layer, we have to adapt the top-down temporal prediction accordingly.

1.1 Adapting the temporal control module

To recall, the temporal control module of the COSMO-Onset model is comprised of

two interacting parts. Bottom-up onset detection relies on mechanisms operating

only on the signal itself, namely the speech envelope, whereas top-down onset

prediction is based on mechanisms involving “higher-level”, linguistic knowledge,

such as the constituent syllable duration of words.

1.1.1 Adapting the bottom-up onset detection

When presenting the COSMO-Onset model in Chapter 2, we designated by the

Y box the bottom-up onset detection portion of the temporal control module. In

this chapter, we replace it with the onset detection RDF model (Räsänen et al.,

2018), that we introduced, extended, and studied in Chapter 4.

Even though they both operate on the speech envelope, the main differences

with the bottom-up onset detection mechanism used in the first implementation

of the COSMO-Onset model in Chapter 3 reside in the fact that the RDF model

uses “real neural oscillatory” principles. This makes it a more realistic model

capable of extracting useful information from speech dynamics, to detect syllable

onset events with good performance.

In the first variant of the model, the bottom-up onset detection mechanism

was based on using simplistic envelope differentiation in search of energy increases,

characteristic of syllable onsets. However, with an oscillatory model such as the

RDF model, this is done using more sophisticated signal processing mechanisms

operating on the speech envelope that will, later on, drive event detection by either

looking for troughs (syllable onsets) or “peaks” (syllable P-centers). Furthermore,

in the first variant model, due to a lack of oscillatory mechanism, we used a

complementary mechanism and defined a refractory period in order to avoid

“illegal” successive onset detection. In the RDF model, the dynamics of the
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resonating process already limit the risk of detecting events close to one another.

Therefore, an explicit additional refractory period is unnecessary. We note that,

nevertheless, we still consider a short refractory period (35 ms), but its only

purpose is to avoid technical issues raised and discussed in the previous chapter,

regarding the incapacity of having a full working pipeline of MFCC feature

extraction and random forest model prediction when syllable duration is less

than 35 ms.

In practice, the RDF model outputs time instants where it detects syllable

events. This results in a binary output vector over time instants between the start

of the audio input to the end: for each time-frame, either an event is detected by

the RDF model (1), or not (0). In other words, the RDF model outputs an

all-or-nothing deterministic vector; to embed this into our framework, we need

to convert this deterministic output into a probability distribution, of the form

P (OBUt | ∆Lt), that is to say, the probability that there is an event at time

instant t given the envelope signal ∆Lt.

Of course, we require this probability distribution to provide high probability

values around syllable events detected by the RDF model. Therefore, we define

P (OBUt | ∆Lt) as a Gaussian mixture distribution, with as many Gaussian

kernels as there are syllable events detected by the RDF model. The means of

the kernels are equal to detected time instants, and we set at 1 ms the variance

value σ2
BU , for all the following simulations. Therefore, we tend towards a

Gaussian mixture of very narrow kernels, that is to say, with each kernel being

“quasi-Dirac”, leading to binary, almost “all-or-nothing” responses.

1.1.2 Adapting the top-down onset prediction

To recall, the idea behind the top-down onset prediction is to have another

channel of information coming from “higher-level” linguistic knowledge, such

as lexical, prosodic, or semantic representations. In Chapter 3, the top-down

temporal prediction was lexical and derived from word composition. It relied on

typical durations of constituent syllables, supposed to be known for every word

in the lexicon, and used to create a Gaussian mixture distribution for each word,

with a Gaussian kernel positioned at each expected syllable boundary. In the

COSMO-Onset model variant for real speech input, we must replace this lexical

knowledge with some other information on the likely distribution of syllable

durations. In the following paragraphs, we present three top-down models, of

increasing levels of adaptation to the structure of the speech input.

Basic top-down prediction of standard syllable duration The first and

simplest model we implement assumes that typical syllable duration is within a

preferred range of rhythmicity around 4–8 Hz, in agreement with several studies
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on the distribution of syllabic rhythm in languages of the world (Ding et al.,

2017; Greenberg et al., 2003; Poeppel & Assaneo, 2020; Varnet et al., 2017).

Speech rate adapted top-down temporal prediction of standard syllable

duration The previous “overall syllable duration” model is easily refined by

computing a more precise mean syllable duration from a given set of observations.

This corresponds to adapting the top-down estimation of syllable duration to the

observed speech rate, from the interlocutor, or, in our experimental case, from a

reference corpus.

Prosodic top-down temporal prediction of syllable duration The third

model we implemented incorporates straightforward prosodic information exploit-

ing the position of a syllable within a sentence. Indeed, it is known that syllable

duration differs along sentence production, with, for instance, syllable lengthening

in final positions (Ferreira, 1993; Lindblom, 1968). To implement this in our

model, we introduce a probability distribution of the form P (DSyli+1 | posi),

enabling us to predict the next syllable onset knowing the current syllable position.

This can be computed from the corpus of syllables created from the corpus of

audio sentences: we define a Gaussian distribution for each position, with its

mean and variance the empirical mean and variance measured in the corpus.

Importantly, this model is independent of word identity within the sentence, con-

sequently making it suitable for our syllable type recognition at hand. Therefore,

with this probability distribution identified from the corpus, it is easily used in

the model: given the known current position pi in the sentence processing, we

select the single Gaussian distribution P (DSyli+1 | [posi = pi]), to predict the

next expected syllabic event.

1.2 Adapting the decoding module

In the general COSMO-Onset model architecture presented in Chapter 2, the

decoding module is hierarchically organized with alternating layers about syllables

and words. The processes taking place to go from the speech signal to syllable

categories were wrapped within a portion of the model we noted X. The version

of the model that we define here is only concerned with the task of syllable type

recognition so that the word layer can be simplified from the general architecture.

This implies a slightly modified architecture for the top-down temporal prediction,

which, contrary to Figure 2.1, is not informed by a word-level variable, but by

syllable-level variables instead (and, in the case of our prosodic top-down model,

a variable representing syllable position in the sentence).

To recall, in Chapter 3, syllable recognition relied on an intermediate stage

of phone decoding. In the previous Chapter 5, we have trained a random forest
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(RF) model to perform syllable type recognition from the raw speech signal by

first, extracting the MFCC features and then predicting the syllable type.

The RF model provides, as its output, a probability distribution over the

6 syllable types. Importantly, in this implementation, the online (continuous)

decoding process operates at the “syllable level”, that is, we update all the

states of the model after every syllable onset detected by the temporal control

module, and all signals located between two successive syllable onsets are passed

onto the RF model to perform syllable type recognition. The X portion of the

model, linking the input to the syllable layer and expressed in terms of the form

P (SySt | It), embeds the decoding mechanisms performed by the RF model.

Altogether, this results in a global architecture for the present COSMO-Onset

architecture displayed on Figure 6.1.

Decoding moduleTemporal control module

SySt
1 SySt

2 SySt
N

λ λ λ

SyPt
1 SyPt

2 SyPt
N

OTDt

OREFt OCt

OBUt

Post1 Post2 PostN

At

At+1

∆Lt It
1 It

2 It
N

RF1 RF2 RFN
RDF

. . .

. . .

. . .

. . .

Figure 6.1: Graphical representation of COSMO-Onset for real speech. The
legends respect the same taxonomy as on Figure 3.1.

2 Theoretical Hypotheses

Now that we have fully defined the COSMO-Onset model in this new variant, by

including and adapting the X and Y portions, and refining the rest of the model’s

architecture, we can state the theoretical hypotheses that we are interested in,

and that the model simulations will aim at addressing.
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The fundamental hypothesis concerns the potential role of top-down informa-

tion to improve speech perception. This can be evaluated at two levels. First,

at the event detection level (HYPOTHESIS 1): does the top-down temporal

prediction model that we added to the more classical bottom-up onset detec-

tion module improve event detection? Second, at the sequence recognition level

(HYPOTHESIS 2): does it also improve sequence recognition?

In the second stage, we also evaluate whether the complete temporal control

module associating a bottom-up oscillator-based onset detection process and a

top-down syllabic duration prediction process provides simulations in line with

observed behavior. We focus on the experimental data presented by Aubanel

and Schwartz (2020), regarding the complementary roles of naturalness and

isochrony in speech perception. This leads us to two additional hypotheses. First,

we propose that resonance phenomena in the bottom-up RDF onset detection

process would favor isochrony (HYPOTHESIS 3): are natural sentences that

are more isochronous better recognized than those that are less isochronous?

Finally, we propose that “linguistic” predictions in the top-down component of

onset detection would favor naturalness (HYPOTHESIS 4): are isochronous

sentences that are more natural better recognized than those that are less natural?

3 Simulation Material

3.1 Corpus

All the simulations that are performed in this Chapter still exploit the Fharvard

corpus, as the ones in the previous chapters. Since we are interested in the

behavior of the model for sequences of syllables, therefore, instead of segmenting

the sentences of the corpus into sets of independent syllables, as we did to train

our Random Forest model, we consider here the whole sentences of the corpus.

For our simulations on natural sentences, the corpus was already described

(see Section 1.1 of Chapter 4). However, the corpus also contains the same 177

sentences, but in a version rendered isochronous with respect to the constituent

syllable P-centers (see Chapter 1, Section 6) 1. As their natural versions, these 177

isochronous sentences are fully annotated at various levels, including phonemic,

syllabic, and word levels. These isochronous versions of the sentences will be

used to assess our fourth Hypothesis.

The sentences of the corpus can be characterized by two measures. The

first is the distortion metric characterizing the departure of natural sentences

from isochrony (diso), which we previously used in Chapter 4. The second is

the distortion metric characterizing the departure of isochronous sentences to

1Examples of stimuli can be found here, supplementary information 2.

https://www.nature.com/articles/s41598-020-76594-1
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Figure 6.2: Syllable duration statistics for the prosodic top-down temporal
prediction model. The plot shows the mean and standard deviation (error bars)
of syllable duration in the Fharvard corpus (y-axis) as a function of syllable
position in the sentence (x-axis). As reasonably expected, uncertainty and hence
variance increase with position and reach rather large values towards the last
positions in the sentence. A single sentence contains 17 syllables (which is the
maximum value in the corpus), we, therefore, do not show the standard deviation
for the right-most data point.

naturalness (dnat).

3.2 The decoding module

We use the random forest model built in the previous chapter for syllable recog-

nition. We thus keep this portion of the model exactly as it was defined, with all

its parameters and optimal hyper-parameters.

3.3 The bottom-up model of the temporal control module

We use the RDF model presented extensively and evaluated in Chapter 4 in its

original version designed to detect syllabic onsets. It is also used exactly as it

was defined, with its optimal parameters.

3.4 The variants of the top-down model of the temporal control

module

We consider three variants for the top-down model of the temporal control module.

The first one can be considered as the baseline top-down temporal model, with

an assumed speech rate at 8 Hz, and therefore a mean syllable duration of

1/8 = 125 ms. This can be viewed as a sort of non-informed preferred rate
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(intrinsic rhythm). We will refer to this top-down model variant as the top-down

with flat speech rate.

For the second variant, we computed the mean speech rate from the Fharvard

corpus. This informed preferred rate provides a mean syllable duration equal

to 150 ms and a variance equal to 60 ms. We will refer to this top-down model

variant as the top-down with mean speech rate.

The third and final variant relies on prosodic knowledge, predicting the next

onset based on the current syllable position. Using the Fharvard corpus for the

177 sentences, we computed the statistics of syllable duration (mean and variance

duration) as a function of syllable position; this is displayed on Figure 6.2 and

shown in Table 6.1. We will refer to this third variant as the top-down with

position.

3.5 Performance measures

Depending on the hypothesis (one of the four aforementioned), we either use

the event detection metrics (boundary performance) or the unit identity metrics

(unit performance), or the combination of both (temporal overlap) presented in

Section 5.1 of Chapter 1.

In addition to the set of natural or isochronous speech stimuli, we also

tested the model on noisy stimuli to assess the model’s performance in degraded

conditions. We hence added white noise at various intensities and we considered

3 levels of signal-to-noise ratio: -10 dB, -20 dB, and -30 dB.

The four sets of natural or isochronous stimuli, without noise or degraded at

3 SNR levels, were processed with four variants of the temporal control model:

a bottom-up only variant, and the whole model with the three variants of top-

down prediction models. For all variants with top-down predictions, we only

experimented with the AND fusion operator, which seems better adapted to

possibly filter out spurious events likely to emerge from the bottom-up processing

branch, particularly in noise.

Whether it is the bottom-up only model variant or the full model with

the fusion of bottom-up onset detection and top-down temporal prediction, we

compute “continuously”, at each time step (assumed to correspond to 1 ms), the

probability that there is a syllabic onset, as evaluated from the temporal control

module. Whenever this probability value reaches a threshold, that is set to 0.3

for all the following simulations, the temporal control module decides that a

syllable boundary is reached, which results in advancing in the syllable processing

sequencing (see Table 6.1 for the summary of the temporal control module). This

has several effects in the model; to recall, the current syllable is then considered

terminated, the next one begins to be processed, and the position counter posi is

incremented.
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Table 6.1: Summary of the temporal control module parameters. The first
column lists model variants, and, for the top-down with position model, positions.
The second column contains Gaussian kernel means expressed in ms. The third
column contains Gaussian kernel standard deviations expressed in ms.

Model Mean (ms) Standard deviation (ms)

Bottom-up only

Correspond to
detected

events by the
RDF model

1

TD with flat speech rate
125 ms after
each detected

onset
60

TD with mean speech rate
150 ms after
each detected

onset
60

TD with position

0 130 54.9
1 218 73.6
2 195 73.5
3 182 86.7
4 202 74.6
5 188 78.1
6 181 74.2
7 186 75.2
8 184 78.8
9 193 101
10 228 131
11 254 147
12 278 149
13 320 138
14 373 162
15 348 117
16 470 50

4 Simulation Results

4.1 Illustrative example of the whole model

Figure 6.3 provides an illustrative example of applying the model on a complete

sentence. The bottom plot of Figure 6.3 shows the representation of the input

corresponding to the sentence “La lampe de néon rouge irise ses cheveux” (in

English: The red neon lamp makes her hair glow) which lasts about 2.75 s. It

shows the energy amplitude, the normalized amplitude envelope and the ground

truth syllable boundaries. The syllabic annotation for the sentence is the following

sequence (from the annotated data by Aubanel and Schwartz (2020)): “la lã p@

d@ ne õ Ku Z@ i Ki z@ se S@ vø”. Converting this syllable sequence into syllable

types yields: CV, CV, CV, CV, CV, VC*, CV, CV, VC*, CV, CV, CV, CV,

CV. We notice that this example mostly contains CV syllables, which account

for nearly 86 % (12 / 14) of the sentence.

The rest of the plots (all other plots except the last bottom of the left part) on

Figure 6.3 shows the simulation results of the different components of the temporal

control module of the model. The bottom-up onset detection of the RDF model

(Figure 6.3, the second bottom left plot) detects 18 events (adding the first onset

of signal). The top-down onset model using the prosodically-informed variant,

predicting syllable duration from their position (Figure 6.3, top left plot), almost
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Figure 6.3: Illustrative example of applying the model on a complete sentence.
Bottom plot: Representation of the energy amplitude (in blue) and the normalized
amplitude envelope (in black), and the ground truth syllable boundaries (in red
vertical lines) from the annotated corpus Fharvard by Aubanel and Schwartz
(2020) for the sentence “La lampe de néon rouge irise ses cheveux” (in English:
The red neon lamp makes her hair glow) as a function of time (x-axis). The four
plots above the bottom plot illustrate the evolution of onset probability (y-axis)
in the temporal control module, as a function of time (x-axis). Left column, from
top to bottom: in orange, the top-down onset prediction, in dashed green, the
probability of an onset being outside a refractory period, in blue, the bottom-up
onset detection by the RDF model. Right plot: in green, the output of the
temporal control module for evaluating onset probability, according to the AND
fusion model. Note that, for all plots except the last bottom plot, the first initial
onset is not represented, although it is taken into consideration in all simulations
for performance measures.

predicts the same events as the bottom-up onset detection model, except for one

onset located near 2.23 s. These two sets of onsets combined with the refractory

onsets (Figure 6.3, the second top plot) with the AND fusion operator result in

the final onsets that would be considered the outputs of the temporal control

module (Figure 6.3, right plot). We observe that, in this example, the onset

detected by the bottom-up component at 2.3 s is filtered out by the top-down

prediction. Comparison with the ground truth annotation (red bars on the

bottom left plot of Figure 6.3) shows that this removal is, in this case, an error.

At each detected onset (the first onset being the one following the signal

onset and the last one corresponding to the signal offset), the signal between

the last onset and the previous one is sent to the decoding module (the random
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Figure 6.4: Results of the decoding module recognizing the syllable types for
the sentence “La lampe de néon rouge irise ses cheveux” (in English: The red
neon lamp makes her hair glow). Syllable types in red correspond to ground
truth syllable types annotated within their corresponding temporal intervals (red
boxes). Syllable types in green correspond to recognized syllable types by the
random forest model, also within their corresponding intervals (green boxes).

forest model) to perform syllable type recognition. Figure 6.4 shows the results

of the decoding module on this illustrative sentence. Overall, we observe that the

temporal control module detects onset events at relevant instants, thus providing

segments of acoustic input to the decoding module that are rather well-bounded,

resulting in relatively few errors both for syllabic onset detection and for syllable

type recognition. In this illustrative example, concerning event detection, model

performance evaluation yields a recall of 80 %, a precision of 70.6 %, and an

F-score of 75 %. To recall, the event detection performance scores are measured

by allowing a margin of error of 50 ms (before and after real onsets). Here, since

the model missed three onsets located respectively at 1.905 s, 2.055 s, and 2.255 s,

and added five onsets at 1.16 s, 1.845 s, 1.964 s, 2.139 s, and 2.337 s, the model

has a recall of 12/15 = 0.8 and precision of 12/17 ≈ 0.706, which leads to an

F-score of 75 %.

Comparing the sequence of syllable type output by the model on Figure 6.4,

we observe some errors. Using the sequence matching computation based on the

Levenshtein distance (Young et al., 2002; Yujian & Bo, 2007), we get a number of

deletions of 2 (the predicted syllable types at positions 7 and 16) and a number

of substitution of 3 (predicted syllable types at positions 12, 13 and 14). This

gives us a percent accuracy of 64.3 %. However, based on the temporal overlap

of predictions and the ground truth, the model score is at 70 %. Indeed, the

temporal overlap measure penalizes fewer insertions and deletions compared to

the Levenshtein distance score. Consider for instance the time interval between

1.0 and 1.4 s: a single long CV syllable is the expected answer, and the model is
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Table 6.2: The role of top-down in syllabic event detection for natural stimuli.
The first column describes the experimental condition (without noise, or with
added noise at varying SNR: -10 dB, -20 dB, -30 dB). The second column gives
the model variant: in blue the bottom-up only model, in teal the full model
combining bottom-up and top-down with flat speech rate, in purple the full model
combining bottom-up and top-down with mean speech rate and in orange the
full model combining bottom-up and top-down with the syllable position. In the
following columns (3, 4, 5), the syllabic event detection measures are expressed
in percentage, respectively the F-score, the precision, and the recall. For every
condition and for every measure, the best score is displayed in bold.

Condition Model variant F-score Precision Recall

No noise

BU-Only 77.93 71.26 86.51
TD with flat speech rate 74.76 71.53 79.09
TD with mean speech rate 76.46 72.79 81.28

TD with position 78.30 73.50 84.19

−10 dB SNR

BU-Only 61.77 46.31 93.58
TD with flat speech rate 61.64 46.47 92.42
TD with mean speech rate 65.17 51.73 88.67

TD with position 66.91 58.28 78.99

−20 dB SNR

BU-Only 55.28 39.72 91.59
TD with flat speech rate 55.51 40.03 91.25
TD with mean speech rate 60.79 46.67 87.80

TD with position 60.21 51.9 72.07

−30 dB SNR

BU-Only 55.11 39.73 90.66
TD with flat speech rate 55.52 40.18 90.55
TD with mean speech rate 60.44 46.61 86.61

TD with position 59.65 51.36 71.52

correct on syllable type but considers it as two syllables, erroneously introducing

a syllable frontier around 1.2 s. This impacts the Levenshtein distance score (an

insertion), but not the temporal overlap score (at each instant in this interval, a

CV syllable type is correct).

4.2 Contribution of top-down predictions in syllabic event

detection

We now return to the analysis of our simulation on the whole corpus. Table 6.2

shows the experimental performance measures for syllable onset detection for

the different model variants in the different experimental conditions. Figure 6.5

reprises the experimental F-score measures (third column of Table 6.2) in graphical

form.

In the baseline experimental condition, that is, without noise, the F-score

performance indicates that all models have similar performance overall. Interest-

ingly, the “bottom-up only” variant of the model is always better in recall than

the other model variants combining bottom-up with top-down. However, it is less

precise compared to the other models. In degraded conditions, we first observe

an overall performance decrease for all variants, as noise increases. Finally, we

observe a slight performance increase for top-down variants compared to the

bottom-up only model, with the top-down with position variant being the best

or very close to the best model.
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Figure 6.5: Experimental F-scores in syllabic event detection for natural stimuli.
The plot shows the F-score of experimental results (y-axis) as a function of
signal-to-noise ratio (x-axis), for all 4 model variants: bottom-up only in blue,
the full model with the top-down prediction with flat speech rate in teal, the
full model with the top-down prediction with mean speech rate in purple and
full model with the top-down prediction with syllable positions in orange. Data
shown here in graphical form is identical to the F-scores reported in column 3 of
Table 6.2.

Considering only the different top-down model variants, we observe that the

worst-performing model at event detection is the one with a non-informative

speech rate. Interestingly, the more informed the model variant, the higher

its precision, and the least informed the model variant, the higher its recall.

Considering the F-score measure, which is an aggregate of precision and recall,

we observe that the two best model variants are the “TD with mean speech rate”

and the “TD with position” variants, especially in conditions with a high level of

noise.

4.3 Contribution of top-down predictions in syllabic sequence

recognition

Table 6.3 shows the summary of the syllabic sequence recognition performance of

all model variants in the different experimental conditions. Figure 6.6 represents

the experimental temporal overlap measures (right column of Table 6.3) in

graphical form.

We recall that the accuracy measure compares the sequence of syllable types

evaluated by the model with the ground truth sequence, and is a measure that is

rather sensitive to insertions and deletions. The second measure, the temporal

overlap metric, combines both syllable type recognition and boundary detection.

It counts the portion of time where syllable type matches between the model

output and ground truth. The pattern of performances is quite clear, with an

increase in performance from the BU-Only to the TD with flat speech rate to

the TD with mean speech rate, and finally to the TD with position variant.

Differences are very large in the accuracy criterion and particularly in noise.
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Figure 6.6: Experimental temporal overlap in syllabic sequence recognition for
natural stimuli. The plot shows the temporal overlap scores (y-axis) as a function
of signal-to-noise ratio (x-axis), for the bottom-up only variant in blue, the full
model with the top-down prediction based on flat speech rate in teal, the full
model with the top-down prediction based on mean speech rate in purple, and
the full model with the top-down prediction with syllable positions in orange.
Data shown here in graphical form is identical to the temporal overlap scores
reported in the right-most column of Table 6.3.

Table 6.3: The role of top-down in syllabic sequence recognition for the natural
stimuli conditions. The first column describes the experimental condition (without
noise, or with added noise at varying SNR: -10 dB, -20 dB, -30 dB). The second
column gives the model variant with 4 possibilities. In the following columns
(3, 4), the syllabic sequence recognition measures are expressed in percentage,
respectively the accuracy and the temporal overlap. For every condition and for
every measure, the best score is displayed in bold.

Condition Model variant Percentage
Accu-
racy

Temporal
Overlap

No noise
BU-Only 48.64 52.04

TD with flat speech rate 52.04 50.40
TD with mean speech rate 52.47 52.14

TD with position 53.54 54.74

−10 dB SNR
BU-Only 1.18 42.15

TD with flat speech rate 1.57 42.22
TD with mean speech rate 9.30 42.56

TD with position 34.73 47.04

−20 dB SNR
BU-Only 0 35.35

TD with flat speech rate 0.04 35.54
TD with mean speech rate 2.77 37.78

TD with position 26.76 40.75

−30 dB SNR
0.27183170214077496, 0.416216803 BU-Only 0.084 35.67

TD with flat speech rate 0.084 35.57
TD with mean speech rate 3.14 37.47

TD with position 27.18 41.62

But the pattern is also clear with the temporal overlap measure. Altogether it

appears that the temporal prediction model based on syllable position within the

sentence is the best one and provides a strong improvement in performance. In

the following, it will be the only TD model that we keep in comparison with the

BU variant.

Similar to the natural corpus evaluation, in Table 6.4, we show model perfor-

mance on the corpus of sentences rendered isochronous. We observe the same

performance tendencies and comparison patterns between the model variants.

Somewhat unexpectedly, we observe an overall slightly better performance on
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Table 6.4: The role of top-down in syllabic sequence recognition for isochronous
stimuli conditions. The table format is identical to Table 6.3.

Condition Model variant Percentage
Accu-
racy

Temporal
Overlap

No noise
BU-Only 53.85 55.28

TD with position 55.30 55.75

−10 dB SNR
BU-Only 2.16 44.37

TD with position 33.7 48.99

−20 dB SNR
BU-Only 0 37.96

TD with position 27.84 43.61

−30 dB SNR
BU-Only 0.16 37.73

TD with position 27.71 42.64

Figure 6.7: Role of isochrony in syllabic onset detection for natural sentences.
All plots (from left to right: no noise, SNR at −10 dB, −20 dB and −30 dB)
show the experimental F-score (y-axis) as a function of distortion to isochrony
(x-axis), both for the bottom-up only model variant (in blue) and the full model
combining the bottom-up detection and the top-down with position (in orange).
Linear regressions (solid lines) and corresponding squared correlation coefficients
R2 and p-values are also indicated in the plots.

isochronous stimuli compared to natural stimuli.

4.4 Role of isochrony in speech perception for natural sentences

Figure 6.7 shows event detection performance as a function of distortion to

P-center isochrony, for syllable boundary detection in the different experimen-

tal SNR conditions, on the naturally timed corpus. We observe that there is

indeed a statistically significant negative correlation between model performance

and temporal distortion in most cases, which confirms that model performance

improves for more isochronous sequences (i.e., with lower temporal distortion

to isochrony). Interestingly, the effect appears already in the bottom-up model

variant. Nevertheless, the top-down variant does not remove this property and

possibly amplifies it, with larger correlation values (compare the orange with the

blue values in the figure). There is also an overall slight gain in performance with

the model including top-down predictions.

Figure 6.8 shows the experimental measure of syllabic sequence recognition, as

measured by percent accuracy, as a function of temporal distortion from isochrony.

We observe a large difference in performance between the “BU-only” and “TD
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Figure 6.8: Role of isochrony in syllabic sequence recognition for natural sentences.
Plots show experimental accuracy in sequence recognition (y-axis) as a function
of distortion to isochrony (x-axis); the rest of the graphical representation and
organization is identical to Figure 6.7.

Figure 6.9: Role of isochrony in the temporal overlap measure for natural
sentences. Plots show experimental temporal overlap in sequence recognition
(y-axis) as a function of distortion to isochrony (x-axis); the rest of the graphical
representation and organization is identical to Figure 6.7.

with position” variants, especially in noise (already observed from aggregated

data of Table 6.3. However, isochrony does not appear to play any significant

role here, since regardless of the experimental condition, that is, whether there is

noise or not, we do not find a statistically significant negative correlation between

model performance and distortion to isochrony.

Finally, we display on Figure 6.9 the experimental results for temporal overlap.

In all conditions, we observe both the (sometimes small) gain associated with top-

down predictions and the benefit of isochrony with significant negative correlations

between distortion to isochrony and performance in most conditions. Once again,

the effect of isochrony already appears with the “bottom-up only” variant and is

only slightly affected by the addition of top-down predictions.

4.5 Role of naturalness in speech perception for isochronous

sentences

Figure 6.10 shows event detection performance as a function of distortion to

the temporal distribution of natural P-centers (“distortion to naturalness”), for

syllable boundary detection on the corpus of sentences rendered isochronous, in

the different noise conditions. We observe in most cases a slight but statistically

significant negative correlation between model performance and temporal distor-

tion, meaning that model performance is higher when the temporal distortion

from a natural distribution of events is small. Therefore, for isochronous sentences
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Figure 6.10: Role of naturalness in syllabic onset detection for isochronous
sentences. Plots show experimental F-scores in sequence detection (y-axis)
as a function of distortion to naturalness (x-axis); the rest of the graphical
representation and organization is identical to Figure 6.7.

Figure 6.11: Role of naturalness in pure syllabic sequence recognition for
isochronous sentences. Plots show experimental accuracy in sequence recog-
nition (y-axis) as a function of distortion to naturalness (x-axis); the rest of the
graphical representation and organization is identical to Figure 6.7.

Figure 6.12: Role of naturalness in the temporal overlap performance for
isochronous sentences. Plots show experimental temporal overlap in sequence
recognition (y-axis) as a function of distortion to naturalness (x-axis); the rest of
the graphical representation and organization is identical to Figure 6.7.

which happen to be closer to naturally-timed sentences, model performance is

higher. Once again, we observe a slight top-down effect with better performance

when top-down predictions are added. Nevertheless, it appears that correlations

between event detection performance and naturalness are already found for the

“bottom-up only” model.

Concerning syllabic sequence recognition, accuracy scores displayed on Fig-

ure 6.11 show almost no effect of naturalness on model performance. However,

we still observe a large effect of the top-down branch, which strongly improves

accuracy in all conditions.

Finally, temporal overlap scores (Figure 6.12) show a slight gain in performance

with the top-down branch and a significant negative correlation between distortion

to naturalness and performance in various cases. Once again, and still, surprisingly,
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Figure 6.13: Relation between the CV ratios and the distortion values. On the
left: plot of the CV ratio on the y-axis vs the distortion to naturalness on the
x-axis for isochronous sentences. On the right: plot of the CV ratio on the
y-axis vs the distortion to isochrony on the x-axis for natural sentences. On both
plots, the linear regression coefficients (R2) and the interval of confidence are
also displayed

negative correlations are also found for the “bottom-up only” variant.

5 Discussion

5.1 Summary of main simulation results in relation to the four

hypotheses

In this chapter, we combined our model pieces together, in order to define a

variant of the COSMO-Onset model able to deal with real speech input. We

have evaluated model performance on the Fharvard French corpus, using both

sentences with their original temporal organization, and sentences rendered

isochronous. This corpus was used previously by Aubanel and Schwartz (2020),

which allows comparison. Globally, it appears that the four tested hypotheses

are confirmed in the present simulation.

For the first hypothesis, we focused on the effect of top-down temporal

prediction in syllabic onset detection. We tested this hypothesis on naturally

timed sentences, without noise, and in noisy conditions. First, we observe that

in all conditions, the bottom-up only model is the best model with regard to the

recall metric. This is possibly due to the fact that the RDF model is rather

sensitive, with a tendency to detect more events than there really are in the signal.

When it detects events that are “spurious”, this is not reflected in the recall scores,

but it is in the precision scores. Indeed, we observed good recall for the BU-only

variant. Top-down models, on the other hand, filter out spurious events detected

by the bottom-up only model, leading to increasing precision and decreasing

recall. F-scores, which combine precision and recall, yield a small advantage to

models with top-down knowledge. Second, in the baseline experimental condition
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(stimuli without noise), all model variants have similar performance measures.

This is consistent with the fact that in the case of no difficulty, i.e., when the

natural signal is not degraded, the contribution of the top-down is very small or

null, probably because the information from the bottom-up and top-down systems

are redundant. However, generally, we observed a performance increase, that is to

say, a positive effect of the top-down prediction for syllabic onset detection, with

the prosody-based top-down model being globally (in scores averaged over the

four noise conditions) the best among the four model variants tested (bottom-up

only, top-down with uninformed speech rate, top-down with informed speech

rate and the prosodically-informed top-down model). Still, at this stage, the

difference between the last two variants is quite small.

For the second hypothesis, we studied the contribution of top-down predictions

to syllable sequence recognition on the naturally timed and isochronous sentences,

in all noise conditions. Again, we found a positive effect of top-down predictions

on performance, with a larger performance increase. Crucially, the prosodically

informed variant providing temporal information in relation to the position of the

syllable in the sentence is by far the best one. This is due to the fact that this

model provides a significant increase in the precision of event detection, which

appears to automatically result in the elimination of many spurious events, thus

increasing recognition scores.

Concerning the third and fourth hypotheses, they are also both confirmed

in the sense that we obtained significant regressions with negative slopes, both

for natural sentences between departure from isochrony and event detection

F-scores (Figure 6.7) or temporal overlap in syllable recognition (Figure 6.9)

(third hypothesis), and for isochronous sentences between departure from natu-

ralness and event detection F-scores (Figure 6.10) or temporal overlap in syllable

recognition (Figure 6.12) (fourth hypothesis). Of course, it is important to stress

that, though regressions are significant and often highly significant in a number

of plots within the corresponding figures just mentioned, they actually explain

a small part of the total variance in these plots (just a few percent). This is

actually not surprising concerning the large variability of the presented acoustic

and phonetic material, and this is similar to what was found in the experimental

data in Aubanel and Schwartz (2020) (see their Tables 2, 3, and 4). Still, the

trends are rather systematic, confirming that in COSMO-Onset also, “natural

and isochronous are both beautiful”, as in the experimental data in Aubanel and

Schwartz (2020).

5.2 Two intriguing results provided by the simulations

Still, two intriguing results emerged from our simulations. Firstly, it appears that

isochronous sentences are better recognized than natural ones. Indeed, temporal
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Table 6.5: The role of top-down in syllabic event detection for isochronous stimuli.
The table format is identical to Table 6.2.

Condition Model variant F-score Precision Recall

No noise

BU-Only 77.56 72.50 83.78
TD with flat speech rate 73.04 72.56 74.21
TD with mean speech rate 75.04 72.34 78.69

TD with position 78.16 73.5 82.96

−10 dB SNR

BU-Only 61.32 46.26 91.9
TD with flat speech rate 61.4 46.52 91.25
TD with mean speech rate 64.42 51.21 87.59

TD with position 66.06 57.6 77.91

−20 dB SNR

BU-Only 55.24 39.67 91.74
TD with flat speech rate 55.59 40.06 91.58
TD with mean speech rate 60.15 45.99 87.48

TD with position 58.57 50.54 70.03

−30 dB SNR

BU-Only 54.97 39.61 90.65
TD with flat speech rate 55.27 39.96 90.46
TD with mean speech rate 60.32 46.46 86.65

TD with position 59.06 50.91 70.74

overlap scores in Tables 6.4 vs. 6.3 are 1.5 to 3 % better in the first case. This

is not the case at the level of event detection (see Table 6.5). Importantly, this

result is at odds with the experimental data, which show a clear decrease in

recognition accuracy for isochronous compared with natural stimuli (see Fig.

1.9, from the paper by Aubanel and Schwartz (2020)). The reason in our view

could be the fact that isochronous sentences are produced by shortening long

inter P-center intervals and lengthening short intervals, which probably results

in shortening long syllables and lengthening short ones. Indeed, the RF model

presented in Chapter 5 displays much better recognition scores for CV syllables

than for all other ones, and CV syllables are probably typically shorter than other

syllable types (e.g. CVC, CCV, CCVC, etc.). This likely increases somewhat

artificially temporal overlap scores for isochronous material.

The second puzzling fact concerns the behavior of the bottom-up RDF

model in these simulations. As a matter of fact, coming back to the “natural

and isochronous are both beautiful” claim, we expected the role of isochrony to

be driven by bottom-up resonance processes, and the role of naturalness to be

driven by top-down predictions. In Figure 6.7, it appears indeed that the role of

isochrony for the detection of onset events is already present in the bottom-up

only variant, which confirms that it should be driven by resonance processes in

the RDF model. This is in line with the simulations in Chapter 4. However,

Figure 6.10 shows that there is also an effect of naturalness for onset detection in

the bottom-up only variant, at least in the condition without noise. This was

absolutely not expected. Indeed, in this case, all sentences are isochronous and

were expected to display basically no difference, and certainly no difference in

relation to their smaller or larger naturalness. There is possibly an increase in

regression value when top-down predictions are added, at least without noise or

at an SNR level of -10 dB, but the bottom-up effect remains puzzling.

We conjecture that this could be due to the fact that isochronous sentences
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that are close to their natural counterpart, that is, sentences that are not distorted

much when rendered isochronous, are also those that have the most regular syllabic

structure. This would probably make their envelope more regular and hence

onset detection easier. To test this hypothesis, we estimated for each sentence

the ratio of CV syllables over the total number of syllables in each sentence. We

display in Figure 6.13 the relationship between this ratio and the distance to the

natural distribution for isochronous sentences, and conversely the relationship

between this ratio and the distance to the isochronous distribution for natural

sentences. This confirms our conjecture. It suggests that the regularity of the

phonetic material favors onset detection in the RDF algorithm, and intervenes

in both the effect of isochrony and naturalness in our results (see Figure 6.14

for two examples of the most and the least isochronous natural sentences, and

Figure 6.15 their equivalent for isochronous sentences). This unexpected finding

adds to our understanding of the potential role of oscillatory-driven neurally

inspired algorithms in the temporal processing of speech material.

Altogether, in this chapter, we showed that, even though the pure bottom-up

onset detection mechanism achieves relatively good results in event detection,

there is still a significant gain in combining with top-down temporal predictions.

If in natural situations without signal degradation, the increase in performance is

tiny, in degraded situations, the role played by top-down predictions appears more

marked. Importantly, regarding the comparison with the study by Aubanel and

Schwartz (2020), we showed that the COSMO-Onset model is able to partially

replicate the results related to the role of isochrony in natural sentence decoding,

and to the role of naturalness of isochronous sentences.
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Most isochronous Least isochronous
natural sentence natural sentence

Figure 6.14: Example of sentences at both extremes of the isochrony measure.
Left column: the most isochronous natural sentence with a distortion to isochrony
value of 0.139 (utterance: “Le bébé met son pied droit dans sa bouche” in French,
translated to “The baby puts its right foot in its mouth” in English). Right
column: the least isochronous natural sentence with a distortion to isochrony
value of 0.907 (utterance: “Les plinthes sur la gauche du hall d’entrée se décollent”
in French, translated to “The plinths on the left side of the entrance hall are
peeling off” in English). Bottom plots: sentence waveform (blue) with the
envelope (black) and ground truth syllable boundaries (vertical red lines). Top
plots: bottom-up only model variant boundary detections (in light blue)
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Most natural Least natural
isochronous sentence isochronous sentence

Figure 6.15: Example of sentences at both extremes of the naturalness measure.
Left column: the most natural isochronous sentence with a distortion to naturality
value of 0.139 (utterance: “Le bébé met son pied droit dans sa bouche” in French,
translated to “The baby puts its right foot in its mouth” in English). Right
column: the least isochronous natural sentence with a distortion to isochrony
value of 0.834 (utterance: “La vieille horloge sur le mur indique midi” in French,
translated to “The old clock on the wall indicates noon” in English). Bottom
and top plots are arranged in the same order as on Figure 6.14.





Chapter 7

Conclusion and General

Discussion

1 Summary of the contributions

In this thesis, we developed and studied COSMO-Onset, a Bayesian model of

speech perception with a temporal treatment inspired by neural oscillations. Our

main goal was to study the role of top-down temporal predictions in speech

segmentation in order to better understand the mechanisms at play in the

syllabic segmentation of speech input. We used the COSMO-Onset model to

illustrate cases where the top-down information turns out useful in achieving

more reliable and accurate segmentation. Especially, even though the role of top-

down information in speech perception is widely acknowledged in the literature,

the novelty of our work comes from the special care we took to design and

develop a fusion model combining both bottom-up onset detection and top-down

temporal prediction. The COSMO-Onset model was then compared to findings

from a key experimental study by Aubanel and Schwartz (2020) on the role of

top-down information in speech perception in noise. We now summarize the main

contributions of this thesis.

First, we designed the COSMO-Onset model, a Bayesian speech perception

model in line with recent research in speech neuroscience, dissociating the spectro-

temporal content decoding, which we called the “decoding module” on the

one hand, and the segmentation mechanism, which we called the “temporal

control module” on the other hand. This contrasts with classical models of

speech perception such as TRACE, which only feature a decoding module. In

the temporal control module of COSMO-Onset, there are two main functional

parts, the first performing bottom-up onset detection based on the analysis of

the envelope of speech input, and the second performing top-down temporal

prediction based on higher-level linguistic information. We particularly focused

119
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on the fusion of bottom-up onset detection mechanisms based on speech

envelope processing with neurally inspired oscillatory-based models

of speech perception and top-down temporal predictions exploiting

lexical or prosodic information about syllable duration, which to the best

of our knowledge is an original feature that current neuro-computational models

of speech perception lack.

Second, we developed a first implementation of the COSMO-Onset model

to illustrate its core principles on a set of synthetic toy stimuli to perform word

recognition and study the interaction of its components. We showed that, in

the case of nominal conditions, the use of temporal segmentation cues provided

by bottom-up onset detection mechanisms are sufficient to yield high event

detection and unit recognition performance. However, in the case of degraded

conditions, bottom-up onset detection is less reliable. We showed that properly

combining bottom-up cues with top-down temporal predictions allows recovering

performance comparable to the nominal condition. We developed two fusion

models depending on the degraded condition at hand. The first one is the AND

fusion model concerned with removing spurious events detected by the bottom-up

onset detection mechanisms, for instance, due to noisy signals. The second is

the OR fusion model concerned with recovering missed events by the bottom-up

onset detection mechanisms, for instance, due to hypo-articulation.

Third, we studied the fully oscillatory RDF model developed by Räsänen

et al. (2018). We evaluated its event detection capabilities on the French corpus

developed by Aubanel et al. (2020). To do so, we considered how the model

performs with respect to syllable onset detection, which is its original

target task, and with respect to P-center detection, for which we

extended the original model. For the former task, the RDF model performs

as well as previous evaluations on other languages (Finnish, Estonian and English)

studied by the authors. Furthermore, it appears better to detect P-centers than

syllabic onsets, probably because P-centers have more “prominent and robust”

markers within the speech envelope dynamics. Importantly, our results showed the

role of resonance mechanisms in event detection. We reported two main findings.

The first is that the RDF model performs better for resonant than non-

resonant features, and the second is that speech events within natural

sentences with larger inter-P-center isochrony are better detected than

those within sentences with smaller inter-P-center isochrony. This last

result is similar to observations from the study by Aubanel and Schwartz (2020).

Finally, we developed a variant of the COSMO-Onset model able to process

real speech stimuli. Rather than performing word recognition as in the conceptual

model and its first implementation, this version focuses on the recognition of

syllable types sequences (the syllabic structure of sentences in terms of consonant
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and vowel composition). In this implementation, we used the oscillatory-based

model RDF developed by (Räsänen et al., 2018) to perform bottom-up syllabic

event detection by analyzing the speech envelope, and a random forest machine

learning algorithm to perform syllable type decoding. We then used three different

models of top-down temporal predictions that combine with bottom-up event

detection to accomplish the overall syllable event detection, from a simple top-

down model based on a “non-informative” speech rate to a prosodically informed

one. Our simulation results corroborate well with our previous results on the

initial implementation of the COSMO-Onset model. In the nominal condition

(speech stimuli without noise), all models perform quite similarly, both in event

detection and unit recognition. However, in noisy conditions, the better the

model is informed, the better the model’s performance, both in event detection

and unit recognition. This holds true for both natural and isochronous sentences,

with a small performance gain for isochronous sentences. Furthermore, we

studied the model’s behavior in two particular conditions. First, we investigated

the relationship between model performance and the departure from isochrony

in natural sentences. Our results show that natural sentences that are more

temporally regular (less departure from isochrony) are still better recognized

than those that are less regular. Second, we investigated the relationship between

model performance and the naturalness considering isochronous sentences. Here

again, our results show that the isochronous sentences temporally close to natural

ones are better recognized than those with larger temporal distortion with respect

to the natural timing, both in unit recognition (expected) and in event detection

(unexpected). Overall, our simulation results with this implementation of the

COSMO-Onset model partially replicate experimental results of Aubanel and

Schwartz (2020). To the best of our knowledge, this was beyond the scope of

previous computational models in the field.

2 COSMO-Onset model vs other computational

models of speech perception

Altogether, how does our model COSMO-Onset compare to other computational

models of speech perception in the literature? First, the clear difference between

our model and psycholinguistics models such as TRACE and SHORTLIST resides

in the separation between the WHAT and WHEN questions involved in speech

perception (Arnal & Giraud, 2012), which is not a matter of concern to these

classical psycholinguistic models. Second, with regard to other models coming

from the neuroscience of speech perception research, the originality of our work

resides in the design of a temporal control module with two mechanisms involved

in syllabic segmentation, that is to say, a bottom-up onset detection mechanism
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and a top-down temporal prediction mechanism. To add to the distinction

between the COSMO-Onset model and the recent neuro-computational models of

speech perception, it would be appropriate to refer to Marr’s three-level taxonomy

of cognitive models (Marr, 1982).

In this taxonomy (Marr, 1982), there are three types of cognitive models,

hierarchically organized according to the type of constraint considered from

the object of study under consideration. The first level is the computational

level, which is only concerned with the description of the cognitive task to be

solved. Models at this level are usually mainly concerned with describing how

the cognitive task can be solved the best, and thus are concerned with optimality

and rationality principles. In a sense, at this level, no specific cognitive system is

considered, and ideal models developed at this level serve as asymptotic, “best-case

scenario” reference. The second level is the algorithm and representational

level, as the name suggests, which deals with the representations and algorithms

hypothesized to solve the problem in a given cognitive system. The third and

last level is the implementation level, concerned with hypothesized physical

realization of the representations and algorithms in a given physical system that

solves the cognitive task.

Clearly, with the COSMO-Onset model, we do not model nor simulate the

physical realization of speech perception, which is rather the purpose of neuro-

computational models. Instead, the COSMO-Onset model lies at the representa-

tional and algorithmic level of Marr’s hierarchy. Its architecture is inspired by,

and compatible with neuro-computational models based on neuroanatomy and

neuronal measures on the one hand, and theories developed from experimental

observations from the cognitive psychology of speech perception on the other

hand. This abstraction from “implementation details” (how neurons and neuronal

population precisely encode and exchange information) allows us to focus instead

on the overall architecture of information encoding and manipulation in the

system. The main hypothesis, in this framework, is that probabilities are the

“common currency” in the system to represent previous knowledge and acquired

sensory and perceptual information, which result in uncertain representations,

and Bayesian inference is the tool to reason with such uncertain representations

in the model. This approach provides modeling tools flexible enough to build

complex model architectures, such as the one of the COSMO-Onset model while

retaining the physical interpretability of model components. The methodology

we applied to develop the COSMO-Onset model is embedded in the more general

Bayesian Programming and Bayesian Algorithmic Modeling framework (Bessière

et al., 2013; Diard, 2015).
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3 Limitations and Perspectives

When designing the COSMO-Onset model, we aimed to elaborate and develop a

fully Bayesian model of speech perception with a special focus on the temporal

dimensions, that would be capable to simulate various experimental data. The

first implementation of the model aimed mainly to illustrate the components of

the model and study their interaction but only using synthetic stimuli as inputs.

We identified the main limitations of this first version which are described in the

discussion section of Chapter 3. In the previous chapter, we developed a second

implementation to overcome some of those limitations. We moved from synthetic

stimuli to real speech stimuli. However, considering the potential ambition of

COSMO-Onset to be part of a general model of speech perception in humans,

there are still, of course, many limitations to this latest and current version of

the COSMO-Onset model, that could be extended in various ways and opened

to new questions, as we will now discuss.

3.1 Addressing more extensively and realistically the role of

higher levels in top-down temporal predictions

The temporal control module in COSMO-Onset is composed of two interacting

parts: the bottom-up onset detection process and the top-down temporal pre-

diction model. The focus in the present work was conceptual and exploratory,

aiming at designing an architecture able to connect bottom-up processing and

top-down predictions. The nature and content of bottom-up processing were

rather carefully elaborated, thanks to the presentation of models and theories in

Chapter 1. Still, of course, the content of top-down predictions per se is in the

present state of our work quite preliminary.

In the first version in Chapter 3, top-down predictions are lexical. They are

supposed to provide statistics about syllable duration within each word, which

could be supposed to be part of the mental lexicon. In the second version in

Chapter 6, the top-down model relies on prosodic information associating syllable

duration with their position in a sentence. The structure of the mental lexicon on

one hand, and the architecture of prosodic representations and processing on the

other hand, are the object of an extremely rich literature that we do not claim

to cover here, but which provides a number of avenues for later developments

towards more realistic top-down predictive systems for our model. Of course,

lexical and prosodic information could also be combined in various ways. Just to

illustrate this, in the second version of COSMO-Onset presented in Chapter 6, we

also tested informally different top-down models. For instance, with a term of the

form P (DSyli+1 | typei), the next syllable duration is predicted given the current

syllable type decoded; with a term of the form P (DSyli+1 | typei [pos = i]),
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syllable duration would be predicted using both the syllable type and the current

syllable position.

Furthermore, both implementations of the COSMO-Onset model, and even

the conceptual COSMO-Onset architecture, can be considered incomplete. For

instance, they lack a number of processing levels, concerning for instance syntax

and semantics/pragmatics. Incidentally, in both model variants, the model is not

able to perform the recognition of a sequence of words. Of course, in ecological

communication situations, words are not perceived independently without context,

and context matters so that words embedded in sentences are more intelligible

than the same words presented in isolation. A priority for future developments of

COSMO-Onset would thus consist in extending its linguistic representations, by

adding higher levels concerned with the processing and representation of syntax

and semantics. Notice that, crucially, the effect of rhythm naturalness in sentence

intelligibility in noise in the behavioral data by Aubanel and Schwartz (2020)

could also be influenced by these lexical, prosodic, syntactic, and semantic levels,

hence the importance to consider all of them in future developments.

We believe that the Bayesian modeling framework we use is actually favorable

to consider and develop such extensions. Indeed, in previous versions of the

COSMO family of models (Barnaud, Diard, et al., 2018), or in its close cousins

related to speech production (Patri et al., 2016) we have been able to illustrate

how model variants and model extensions could easily be integrated into unifying

models, thanks to the versatility and interpretability of structured probabilistic

models. In the domain of the study of visual word recognition and reading, such

a strategy was also used to develop the BRAID family of models. The initial

BRAID model was limited to simulating visuo-orthographic processes, and tasks

such as letter perception, visual word recognition, and visual lexical decision

(Ginestet et al., 2019; Phénix, 2018; Phénix et al., 2018). Extending the model

with learning mechanisms yielded BRAID-Learn (Ginestet et al., 2022), extending

it with phonological representations yielded BRAID-Phon (Saghiran et al., 2020),

and these latter two were integrated, yielding BRAID-Acq, a model of reading

acquisition, currently in development in Alexandra Steinhilber’s Ph.D. thesis.

Overall, the Bayesian framework for cognitive modeling (Bessière et al., 2013;

Diard, 2015) that we applied to develop COSMO-Onset provides a way to explore

and combine, step by step, progressive extensions of the COSMO architecture,

as has been done over the years for the question of perceptuo-motor interactions

in speech perception (Schwartz et al., 2022b).

3.2 Exploring the fusion models for real speech

With the current version of the COSMO-Onset model, we performed our sim-

ulation experiment using only the AND fusion operator, since we deemed it
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more appropriate with respect to the data of the experiments, especially in

the case of noisy conditions, and the apparent sensitivity of the RDF model.

However, we have also proposed a second fusion operator, which is the OR model.

Hence, it would be interesting to conduct the same studies but using the OR

fusion operator to combine bottom-up onset detection and top-down temporal

prediction. Considering the degraded conditions applied to the data, we expect

the AND fusion model to perform better than the OR fusion model. Conversely,

other experimental conditions could lead to favor the OR model (see Section 3.4).

At this stage, the question of the adequate fusion model efficiently combin-

ing bottom-up processing and top-town predictions for temporal segmentation

remains open, and we already introduced some propositions about it in the

discussion of Chapter 3, including exploring the possibility to select or combine

various fusion models depending on the processing context (e.g. level of noise,

speech style, etc).

At a more global level of questioning, it could also be questioned what happens

if and when temporal segmentation per se becomes, in certain cases (e.g., in a

very large amount of noise or strongly adverse conditions of communication),

quite degraded and hence provide too many segmentation errors that would drive

the decoding systems in great difficulty. In such cases where, in some sense,

temporal segmentation could appear “counter-productive”, it could be assumed

that the decoding process operates alone without temporal control.

3.3 Embedding top-down temporal predictions into the neural

oscillation framework

An important question for the cognitive neuroscience of speech processing concerns

the way top-down information is neurally incorporated into the flow of information

processing in the human brain. In this context, two points are worth mentioning.

Firstly, the role of the beta band seems particularly relevant (Arnal, 2012; Arnal

& Giraud, 2012; Hovsepyan et al., 2022; Pefkou et al., 2017; Poeppel & Assaneo,

2020; Sohoglu et al., 2012). An underlying question concerns the precise role

of beta oscillations/synchronization in this process, to assess whether top-down

information simply modulates the bottom-up activity in beta band frequencies

(in that case, it would be a channel for conveying top-down information), or if it

is oscillatory in nature. Since our model of top-down information and processing

in COSMO-Onset does not incorporate any representation of neural oscillations,

it is neutral with respect to this question, and the exact nature of beta synchrony

processes remains an open issue.

Secondly, while we have abundantly discussed the role of the theta band in

syllabic processing in Chapter 1, including higher layers of information process-

ing and particularly at the prosodic and syntactic levels quite likely requires
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considering the role of delta oscillations in the 1–2 Hz range, which is supposed

to be the channel of information processing integrating higher linguistic units

(Ding et al., 2017; Ghitza, 2011). While the chunking of words into sequences of

syllables is done by the segmentation mechanisms relying on the theta band, the

chunking of sentences into words would potentially be done through segmentation

mechanisms using the delta band. Altogether, hence, the relationship between

theta, delta, and beta oscillations in speech temporal processing in relation to

bottom-up envelope modulations and top-down linguistic predictions shapes the

agenda of future research in this field.

3.4 Testing other experimental paradigms

Our ambition at the beginning of this work was to use a number of experimental

paradigms to assess our model. We finally focused on only one type of paradigm,

concerned with noise, and the role of naturalness in sentences. However, a

number of other paradigms for testing adverse conditions and the potential role

of top-down temporal predictions exist, of course. Let us mention two of them.

Firstly, in line with the studies done and presented in Chapter 3, we would

consider hypo-articulation conditions. Indeed, in such conditions, a number

of real onsets would easily be missed from the signal alone, and it would be

interesting to assess various conditions differing in the level of articulation (e.g.,

contrasting read speech, carefully articulated speech in e.g. a discourse or a talk,

or highly under-articulated speech in conversations) to better assess the role

of temporal predictions. According to the results presented in Chapter 3, we

would expect the OR fusion operator to be a relevant model for hypo-articulation

conditions.

Another experimental data that would be desirable to simulate concerns

compressed speech. As shown in the work by Ghitza and Greenberg (2009),

participants are able to cope with compressed speech up to a compression factor

of 3. In other words, when the natural rhythm of a speaker is accelerated by a

factor of 3, listeners are still able to more or less accurately understand the message.

In their experiment using semantically unpredictable sentences composed of 6

to 8 words, they found that when inserting “appropriate” silence gaps, listeners

could compensate for the compression hurdles, and still achieve good recognition

performance. This illustrates the decoupling between the decoding module (which

can process massively compressed signal) and the temporal control module (which

is less robust to compression), which is a prominent feature of our model, inspired

by these studies. We have not yet assessed whether and how the COSMO-Onset

model would be able to account for such experimental data. This should be the

topic of a future study.

More globally, a computational model such as COSMO-Onset can be claimed
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to be relevant and/or useful in some sense, not only if it is shown to be able

to address a single isolated problem or study such as the one we explored in

Chapter 6, but also, more globally if it happens to resist to a number of consecutive

experimental tests in relation with the literature. This point is discussed in very

interesting terms in a recent paper by Blandón et al. (2021) in the context

of speech development, and it sets the basis for future developments of the

COSMO-Onset model.

3.5 The attention question

Throughout our work in this thesis, we have considered neural oscillations from

the very specific perspective of neural entrainment. This stipulates that neuronal

oscillations are primarily an intrinsic brain phenomenon that exists first by itself

without any external excitation (Buzsáki & Draguhn, 2004) and that, in the

case of external excitation, the rhythm generated by intrinsic oscillations adapts

to closely track the rhythm present in the sensory stimulus. However, some

studies go beyond this mechanistic description and propose to interpret neuronal

oscillations in a theoretical framework related to attention processes (Calderone

et al., 2014; Ward, 2003).

Usually, there are two frequency bands that are considered most likely to be

involved in attention processes. Many studies have associated the gamma band

oscillations with the modulation of bottom-up attention processes, whereas the

beta band oscillations would be associated with top-down attention processes

(Riddle et al., 2019). The exact mechanisms coordinating the way the differ-

ent frequency bands communicate have yet to be elucidated and agreed upon.

However, there is the general idea that the theta band oscillations, which are

involved in processing sensory stimuli, also control gamma oscillations by ways of

cross-frequency coupling (Canolty & Knight, 2010; Hyafil, Giraud, et al., 2015),

where the phase of the theta band oscillations modulates the power of gamma

oscillation.

Furthermore, there have been theoretical propositions relating cognitive

disorders to abnormal neural entrainment. For example, it has been hypothe-

sized that impaired neural entrainment in delta band oscillations (involved in

prosody processing) and theta band oscillations (involved in syllable segmentation)

would contribute to poor phonological processing in dyslexia (Goswami, 2011;

Vidyasagar, 2019). In addition, some researchers have proposed a complementary

view relating an auditory phonemic deficit to a gamma oscillation deficit (Giraud

& Poeppel, 2012; Lehongre et al., 2013).

All the hypothesis we mentioned, as far as we understand them, are still

subjects of debate. While further exploring them experimentally will certainly

be fruitful, it could also be worth using computational models to address these
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questions. The COSMO-Onset model may prove to be a useful tool in this regard,

as it allows to carefully manipulate the interacting processes in the temporal

control module.

This offers a tantalizing perspective. Indeed, if some cognitive disorders can

be related to deficits in temporal processing characteristics, affecting either the

bottom-up or top-down components of segmentation cues, and if these have been

interpreted as related to attention processes, then this could mean that what we

referred to as “temporal control” module in the COSMO-Onset model could also

be interpreted as an “attentional” module. The common ground between both

is the function of this module: indeed, both can be viewed as “filtering” and

“controlling” the flow of information in the main decoding part of the model.

This further offers another perspective, that could possibly build a bridge

to another, seemingly distant domain. Indeed, we wonder whether the way

the temporal control module pilots acoustic processing in the COSMO-Onset

framework (and more globally within all the neurocognitive models exploiting this

concept, presented in Chapter 1) is related to so-called “attentional mechanisms”

in recent deep-learning models. Attention in these models is related to the

dynamic allocation of the focus of computation for a given task at a given time.

To quote a seminal paper in the field (Bahdanau et al., 2014), “the decoder

decides parts of the source sentence to pay attention to. By letting the decoder

have an attention mechanism, we relieve the encoder from the burden of having

to encode all information in the source sentence into a fixed-length vector”. This

corresponds actually quite closely to the role of the temporal control module in

the present COSMO-Onset model. A perspective of the development of COSMO-

Onset could be to attempt to better connect the neurophysiological concept of

temporal control with the powerful computational concept of attention in deep

neural networks – this is connected to the question that will be opened in the

next and final section of this discussion.

4 A final word on deep learning models vs cognitive

science models

Let us conclude this work by discussing a question that we find relevant. Consid-

ering the extraordinary development of machine learning tools and particularly

deep learning models, and considering also the trend that the less constrained

these models are, the better they can learn and the more efficient they happen to

be, what is the sense to introduce architectural hypotheses on a specific temporal

control device in a general speech processing architecture?

This actually leads to a much more general question, that is: within the

realm of speech perception, can there be an opposition between deep learning
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models and cognitive science models? Historically, deep learning research has

been hugely impacted by cognitive science research in various topics, namely

related to vision and language (text and speech). This is to contrast with the

new tendency with the recent development of artificial intelligence, which seems

to now open new directions of research in cognitive science, even though one can

consider that they have been influencing each other for quite a long time now

since both research fields have been around (Westberg et al., 2019). Recently, the

fast pace of artificial intelligence system development has led to rather impressive

outcomes, with some deep learning models achieving human-like performance or

even outperforming it. Nevertheless, it is important to note that these models

do not have the same goals as the cognitive science models, for the same tasks.

This results in their use of holistic and sophisticated data processing techniques,

ignoring and/or neglecting a whole lot of research from relevant cognitive science

studies.

Now, with all the above said, why would one prefer one to the other? The

“magical” answer is, of course, “it depends”. For those concerned with high

performance and industry applications, deep learning models ought to be the

choice, whereas, for those of us concerned with understanding the functioning of

the human brain, cognitive modeling is the way. And in between, we now have

researchers who seek to combine the best of both worlds. A pivot in this domain

is provided by Dupoux (2018), who proposed a roadmap for reverse-engineering

the infant language-learner by using deep learning models with three main

requirements. The first requirement is that models should be computationally

scalable, by “[going] beyond conceptual and box-and-arrow frameworks”, allowing

them to deal with real data, which is the second requirement that Dupoux (2018)

proposes. The author invites researchers to test their hypotheses using inputs

as close as possible to infants’ sensory signals. Finally, with the two previous

requirements met, Dupoux (2018) proposes that models’ performance ought to

be compared to humans using what he called the “cognitive indistinguishability”

that he defines as follows:

A human and a machine are cognitively indistinguishable with respect to

a given set of cognitive tests when they yield numerically overlapping results

when run on these tests.

It is important to note here that the key element relies on the use of the word

“test”, making it very important to choose the appropriate experimental data on

which to evaluate models.

Even though in our case, the COSMO-Onset model is not studying how

infants learn language, it can be embedded within the proposed roadmap by

Dupoux (2018), as is shown by the development of the model from the conceptual

one to the latest variant dealing with real speech inputs. However, we want to
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emphasize an important matter here. If seemingly all models, regardless of their

architecture, can be considered successful in his proposal as long as the model

performance compares with humans, we have another take, in which the model

architecture does matter for us. Dupoux (2018) does not seem to distinguish

between modeling and simulating, as long as the outputs are not far off. Following

works by Maria (1997) and Rieder (2003), modeling can be defined as the process

of producing models representing a system or an object, whereas, simulating can

be defined as the operation of using a particular model to study the behavior

of a system or an object. We took special care to design COSMO-Onset as

first, a model of human speech perception, making explicit architectural choices

informed by neuroscience and cognitive science studies on speech perception, that

we then used to simulate specific tasks such as word recognition and syllabic

event detection.

To be fair to deep learning models, it is becoming increasingly harder to argue

against them when the sole consideration is model performance. They would

undeniably outperform most, if not all of the cognitive science models, on many

given tasks related to vision or speech perception. Nevertheless, the issue of the

volume and cost of learning data and learning processes involved in these models

is increasingly being highlighted, both for scientific reasons (massive learning à

la GPT (T. Brown et al., 2020) or other deep learning models are cognitively

unlikely and neurophysiologically impossible) and for sustainable development

reasons (ecological considerations related to the consumption of computing energy

and data storage). It thus seems that, for reasons of compromise between the

performance and cost of the various models and parsimony, the cognitive modeling

approach more generally, and the neuroscience-informed modeling in particular,

is better suited than the deep learning approach. We believe that this is where

models such as COSMO-Onset and other computational models may be useful

for their cost-effectiveness and insights into human cognition.
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Quené, H., & Port, R. F. (2005). Effects of timing regularity and metrical

expectancy on spoken-word perception. Phonetica, 62 (1), 1–13 (cited on

page 13).



Bibliography 151

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected appli-

cations in speech recognition. Proceedings of the IEEE, 77 (2), 257–286

(cited on pages 2, 70).

Rabiner, L. R., Lee, C.-H., Juang, B., & Wilpon, J. (1989). HMM clustering

for connected word recognition. International Conference on Acoustics,

Speech, and Signal Processing, 405–408 (cited on page 4).

Rabiner, L. R., Schafer, R. W. et al. (2007). Introduction to digital speech

processing. Foundations and Trends® in Signal Processing, 1 (1–2), 1–194

(cited on page 1).

Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H., & Laurent,

G. (2001). Dynamical encoding by networks of competing neuron groups:

Winnerless competition. Physical review letters, 87 (6), 068102 (cited on

page 22).

Radach, R., Huestegge, L., & Reilly, R. (2008). The role of global top-down

factors in local eye-movement control in reading. Psychological research,

72 (6), 675–688 (cited on page 36).

Ramus, F., Nespor, M., & Mehler, J. (1999). Correlates of linguistic rhythm in

the speech signal. Cognition, 73 (3), 265–292 (cited on pages 2, 10, 31).

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A

functional interpretation of some extra-classical receptive-field effects.

Nature Neuroscience, 2 (1), 79–87 (cited on pages 3, 11, 35).

Räsänen, O., Doyle, G., & Frank, M. C. (2018). Pre-linguistic segmentation of

speech into syllable-like units. Cognition, 171, 130–150 (cited on pages 2,

6, 7, 20, 25, 26, 35, 38, 45, 70, 73, 76–78, 81, 96, 120, 121).

Reiner, M., Rozengurt, R., & Barnea, A. (2014). Better than sleep: Theta neuro-

feedback training accelerates memory consolidation. Biological psychology,

95, 45–53 (cited on page 9).

Riddle, J., Hwang, K., Cellier, D., Dhanani, S., & D’Esposito, M. (2019). Causal

evidence for the role of neuronal oscillations in top–down and bottom–up

attention. Journal of cognitive neuroscience, 31 (5), 768–779 (cited on

page 127).

Rieder, W. G. (2003). Simulation and modeling. In R. A. Meyers (Ed.), Encyclo-

pedia of physical science and technology (third edition) (Third Edition,

pp. 815–835). Academic Press. (Cited on page 130).

Rimmele, J. M., Morillon, B., Poeppel, D., & Arnal, L. H. (2018). Proactive

sensing of periodic and aperiodic auditory patterns. Trends in Cognitive

Sciences, 22 (10), 870–882 (cited on pages 4, 11).

Roberts, J. W., Bennett, S. J., Elliott, D., & Hayes, S. J. (2014). Top-down and

bottom-up processes during observation: Implications for motor learning.

European journal of sport science, 14 (sup1), S250–S256 (cited on page 36).



152 BIBLIOGRAPHY

Rohenkohl, G., & Nobre, A. C. (2011). Alpha oscillations related to anticipatory

attention follow temporal expectations. Journal of Neuroscience, 31 (40),

14076–14084 (cited on page 9).

Rokach, L., & Maimon, O. (2005). Decision trees. Data mining and knowledge

discovery handbook (pp. 165–192). Springer. (Cited on page 85).

Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguis-

tic aspects. Philosophical Transactions of the Royal Society of London.

Series B: Biological Sciences, 336 (1278), 367–373 (cited on page 2).

Rothauser, E. (1969). Ieee recommended practice for speech quality measure-

ments. IEEE Trans. on Audio and Electroacoustics, 17, 225–246 (cited

on page 31).

Saghiran, A., Valdois, S., & Diard, J. (2020). Simulating length and frequency

effects across multiple tasks with the Bayesian model BRAID-Phon.

Proceedings of the 42th Annual Conference of the Cognitive Science Society,

3158–3163 (cited on page 124).

Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery, 8 (4), e1249

(cited on page 84).

Samuel, A. G. (2011). Speech perception. Annual review of psychology, 62, 49–72

(cited on page 1).

Sasaki, Y. et al. (2007). The truth of the f-measure. 2007. Manchester: School of

Computer Science, University of Manchester (cited on page 20).

Schapire, R. E. (1999). A brief introduction to boosting. Ijcai, 99, 1401–1406

(cited on page 84).

Schön, D., & Tillmann, B. (2015). Short-and long-term rhythmic interventions:

Perspectives for language rehabilitation. Annals of the New York Academy

of Sciences, 1337 (1), 32–39 (cited on pages 13, 31).

Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as

instruments of sensory selection. Trends in Neurosciences, 32 (1), 9–18

(cited on pages 9, 51).

Schwartz, J.-L., Barnaud, M.-L., Bessière, P., Georges, M.-A., Laurent, R., Moulin-
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Full COSMO-Onset first

variant model specification

Note

This appendix is partially adapted from the supplementary materials of

the published paper (Nabé et al., 2021).

To specify the full model (see Figure 3.1), we use the Bayesian Programming

framework (Bessière et al., 2013; Diard, 2015; Lebeltel et al., 2004), which is

a methodology for defining probabilistic models. In this methodology, a joint

probability distribution is defined following three steps: first, all the relevant

variables are listed and their domains are defined; second, the joint probability

distribution is decomposed into a product of terms, and some of these are

simplified thanks to conditional independence hypotheses; third and last, all

terms of the decomposition need to be specified, and their parameters possibly

identified from data using a learning mechanism. Once the joint probability

distribution is fully defined in this manner, it can be used to “answer questions”,

that is to say, compute terms of interest by applying Bayesian inference. We now

provide the complete definition of the model by following these four steps.

1 Variables

In our methodology, probabilistic variables are defined by their name and domains.

The way we specify variable names, in our notation, deserves an introduction.

Indeed, since the same representational space (e.g., the syllabic space) can be

shared by several variables depending on their roles in the model (e.g., the

perceived information or the lexically predicted information), then we compose

variable names. For instance, SyP would be the perceived syllable and SyL would

be the lexically predicted syllable. Furthermore, we use subscript indices to

denote “position” in the speech sequence, and superscript indices to denote “time

instants”. For instance, SyP50
2 would be the probabilistic variable representing

knowledge that the model has, at time instant 50, about the second syllable
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perceived. Finally, we use a shorthand to denote sets of variables: SyP1:T
1:N is the

set of all variables about perceived syllable variables, for all positions 1 to N ,

with N = 3 the number of syllable decoders and all time instants 1 to T , with

T , arbitrarily set to 500, which is the longest word duration in the lexicon. The

different variables of the model are as follows.

• I1:T1:12 represent the spectral contents of the acoustic signal Input (in the

following, we capitalize the part of the variable definition which motivates its

name). They take continuous values in the 2-dimensional space representing

the first two formants F1, and F2 (in barks).

• ∆L1:T
1:12 represent the derivative of the Loudness of the acoustic signal. The

loudness variable used to describe the stimulus, which is not represented

inside the model, and thus has no probabilistic variables associated, takes

continuous values; therefore, it is also the case for the ∆L1:T
1:12 variables.

• Sil1:T1:12 are binary variables derived from the loudness of the stimulus. They

indicate “Silence” instants in the input by locating places where the loudness

is null (i.e., 1 represents a silent time step, 0 otherwise).

• FeP0:T
1:12 represent the set of possible phones (Fe for “features”), which is a

discrete set of values:

Fe = {a, i, u, p, t,@,#} ,

where /@/ represents transition phones (acoustic features outside of the

other categories) and /#/ is an end-of-sequence marker. FeS1:T1:12 and FeL1:T
1:12

are defined over the same domain but used for different portions of the

model: FeP variables represent Perceived features, FeS represent Sensed

features and FeL represent Lexically predicted features.

• SyP0:T
1:3 represent the set of possible Syllables, which is a discrete set of

values:

Sy = /a/, /i/, /u/, /pa/, /pi/, /pu/, /ta/, /ti/, /tu/ .

SyS1:T1:3 and SyL1:T
1:3 are defined over the same domain and, as previously, for

different portions of the model: SyP variables for Perceived syllables, SyS

for Sensed syllables and SyL for Lexically predicted syllables.

• WP0:T represent the set of possible Words, which is a discrete set of values.

All the words of the lexicon can be found in Table 3.1 of Chapter 3. WS1:T

are defined over the same domain, and, as above, WP variables represent

Perceived words and WS variables represent Sensed words.
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• To connect different portions of the model, a set of so-called “coherence

variables” (Bessière et al., 2008; Gilet et al., 2011) are defined; they are

binary variables, taking values 0 or 1. They are all represented graphically

identically as “λ” nodes in Figure 3.1, but they actually have different

mathematical notations. For instance, λFeSP1:T
1:12 connect the sensed and

perceived phone variables, λFePL1:T
1:12 connect the perceived and lexically

predicted phones, and so on and so forth for λSySP1:T
1:3 , λSyPL

1:T
1:12 and

λWSP 1:T .

• A1:T
1:15 are sets of so-called “control variables” (Ginestet et al., 2019; Phénix,

2018), which are Boolean variables. They are used to control the amount

of information transferred through the coherence variables between the

different representational layers. There are 15 sets of such control variables:

3 of them, A1:T
13:15, control the quantity of information between the syllable

lexical and perceptual layers and the other 12, A1:T
1:12, control the quantity of

information transferred between the feature sensory and perceptual layers;

this mechanism to control information transfer is used to activate the

different phone and syllable decoders sequentially.

• OTD1:T , OBU1:T , OREF1:T and OC1:T are Boolean variables, to represent

the probability that there is a syllabic Onset event. The OTD variables

represent the prediction of syllable onset events derived from word lexical

knowledge, in a “Top-Down” manner; OBU represent syllable onset events

detected from acoustic envelope processing, in a “Bottom-Up” manner;

OREF represent syllable onsets (more precisely, their absence thereof) dur-

ing the REFractory period after the preceding onset; finally, OC represent

the syllabic onsets resulting from the Combination of available information

about these events (either from the OBU and OREF variables in the “BU-

only” variant of the model or from a fusion model with the OTD variables

in the complete model).

2 Decomposition

We now consider the joint space described by the conjunction of all the variables

we defined above. The joint probability distribution (JD) cannot, of course, be

defined directly; instead, we decompose it into a product of terms and simplify

them with conditional independence assumptions. This results in a dependency

structure, which is graphically represented in Figure 3.1. In other words, the

conditional independence assumptions correspond to the structural choices that

result in the overall architecture of the model. These structural choices are

broadly motivated by theoretical frameworks of the architecture, for instance
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assuming a separation between the temporal control module and the decoding

module. This assumption is shared with other models, such as the TEMPO

model (Ghitza, 2011). Another example is the three-layer architecture separating

phone, syllable and word levels, as a variant of the TRACE model (McClelland

& Elman, 1986).

To implement these structural assumptions into the model, we have the

following joint probability distribution (JD):

JD = P



WP0:T WS1:T

SyL1:T
1:3 SyP

0:T
1:3 SyS

1:T
1:3

FeL1:T
1:12 FeP0:T

1:12 FeS1:T1:12

λWSP1:T λSyPL1:T λSySP1:T

λFeSP1:T λFePL1:T

I1:T1:12 ∆L1:T
1:12 Sil1:T1:12

A1:T
1:15 OTD1:T OBU1:T OC1:T OREF1:T


that we decompose into:

JD =



P (WP0)×
3∏

i=1
P (SyP0

i )×
12∏
j=1

P (FeP0
j )

×
T∏
t=1



P (At
1:15)× P (OREFt | At

1:15)

×P (OCt | OTDtOBUtOREFt)

×P (OTDt | WSt)× P (WPt | WPt−1)

×P (λWSPt | WSt WPt)× P (WSt)

×
3∏

i=1



P (SyLt
i | WSt)× P (λSyPLt

i | SyPt
i SyL

t
i)

×P (SyPt
i | SyPt−1

i )× P (SySti)

×P (λSySPt
i | SySti SyPt

i A
t
i)

×
4i∏

j=4(i−1)



P (FeLt
j | SySti)

×P (λFePLt
j | FeLt

j FePt
j)

×P (FePt
j | FePt−1

j )

×P (λFeSPt
j | FeStj FePt

j At
j)

×P (Itj | FeStj)× P (FeStj)

×P (∆Lt
j)× P (Siltj | WSt)

×P (OBUt | ∆Lt
j)









Inside the temporal product (
T∏
t=1

. . .), the first four terms along with the

P (OBUt | ∆Lt
j) in the innermost product, relate to the temporal control module

of the COSMO-Onset model and the other terms relate to the decoding module.

Terms related to the decoding module are organized “vertically” to match the

structure of the graph representing the decoding module of the model, in Figure 3.1

(from the WP variables at the top to the stimulus variables at the bottom).
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3 Parametric forms

We now define all the parametric forms of the probability distributions of the

terms that appear in the decomposition of the joint probability distribution.

1. The prior probability distributions of the temporal perceptual models

(that is to say, over WP, SyP and FeP), are all defined as discrete uniform

probability distributions over their domains (resp., over words of the lexicon,

syllables and phones): ∀w,P ([WP0 = w]) = 1
|W | , ∀s, i, P ([SyP0

i = s]) = 1
|Sy| ,

∀f, j, P ([FeP0
j = f ]) = 1

|Fe| .

2. The dynamic probability distributions of the temporal perceptual models

(that is to say, overWP, SyP and FeP), are all defined as discrete conditional

probability distributions over their domains (resp., over words of the lexicon,

syllables and phones). These are “quasi-Dirac” distributions, that is to say,

they have almost probability 1 on their “diagonal”, and a residual, non-zero

probability everywhere else. For instance, for the phone perceptual dynamic

model we note:

P ([FePt
j = f t] | [FePt−1

j = f t−1]) =

{
1+leakFe

1+|Fe|leakFe if f t = f t−1,
leakFe

1+|Fe|leakFe otherwise,

with leakFe = 10−3. The dynamic models over syllables and words are

defined in a similar manner, with parameters leakSy = leakW = 10−3. We

note that this value is set empirically here; in the presented simulations, it

mostly controls information decay speed, that is to say, how fast decoders

return to their initial, uniform state in the absence of a stimulus. Such

decays can be observed in portions of Figure 3.5 (e.g., the probability for

syllable “pa” in the first decoder, in late iterations).

3. As in perceptual models, in sensory models, all probability distributions

of the form P (WSt), P (SySti) and P (FeStj) are defined by discrete uniform

probability distributions over their respective domains.

4. P (Itj | [FeStj = f ]): for every phone f , the probability distribution over

spectral contents of the acoustic signals is defined by a multivariate Gaussian

distribution N (µ, Σ) in the space of the first two formants F1, F2. Their

parameters are given Table 1 for all the phones except the transitional

phone /@/, which has a fixed probability value over the formant domain,

arbitrarily set to 10−2.

5. P (FeLt
j | [SySti = s]): for every syllable s, the probability distribution over

the phones it has at position j is a Dirac probability distribution, that is to
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Table 1: Parameters of the Gaussian distributions over the spectral contents,
in F1, F2 space, for the term P (Itj | [FeStj = f ]). For the vowels /a, i, u/,
the parameters are identified from the VLAM dataset (see Figure 2). Mean
parameters are defined as vectors

(
F1 F2

)
and covariance matrices are defined

as

(
var(F1) cov(F1, F2)

cov(F1, F2) var(F2)

)
.

Phone Mean (µ) Covariance (Σ)

/a/
(
6.1148 8.8597

) (
0.001128 −0.00199
−0.00199 0.00962

)
/i/

(
3.1784 11.2910

) (
0.01522 −0.00578
−0.00578 0.00248

)
/u/

(
4.3340 7.0888

) (
0.0104 0.01124
0.01124 0.02427

)
/p/

(
3.3362 8.0357

) (
0.0011 −0.0019
−0.0019 0.01217

)
/t/

(
3.2598 9.6076

) (
0.00127 −0.00204
−0.00204 0.0097

)
/#/

(
0.0 0.0

) (
0.001128 −0.00199
−0.00199 0.00962

)

say, a discrete distribution with probability 1 for phone j, and probability

0 for other phones. We note:

P ([FeLt
j = f ] | [SySti = s]) =

{
1 if phone f is at position j of syllable s,

0 otherwise.

6. P (SyLt
i | [WSt = w]): for every word w, the probability distribution over

the syllables it has at position i is a Dirac probability distribution, that is to

say, a discrete distribution with probability 1 for syllable i, and probability

0 for other syllables. We note:

P ([SyLt
i = s] | [WSt = w]) =

{
1 if syllable s is at position i of word w,

0 otherwise.

7. Perceptual and lexical variables are connected by coherence variables, so

that the terms associated, by definition, are specified by:

P ([λSyPLt
i = 1] | [SyPt

i = sp] [SyL
t
i = sl]) =

{
1 if sl = sp

0 otherwise.

P ([λFePLt
j = 1] | [FePt

j = fp] [FeL
t
j = fl]) =

{
1 if fl = fp

0 otherwise.
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P ([λWSPt = 1] | [WSt = ws] [WPt = wp]) is defined in the same manner:

P ([λWSPt = 1] | [WSt = ws] [WPt = wp]) =

{
1 if ws = wp

0 otherwise

Technical details about the properties deriving from this definition of

coherence variables are found in Appendix 5.

8. Sensory and perceptual variables are connected by controlled coherence

variables, so that the terms associated, by definition, are specified by:

P ([λSySPt
i = 1] | [SySti = ss] [SyP

t
i = sp] [A

t = as])

=


1 if ss = sp and as = 1

0 if ss ̸= sp and as = 1

1/|Sy| if as = 0

P ([λFeSPt
j = 1] | [FeStj = fs] [FeP

t
j = fp] [A

t = as])

=


1 if fs = fp and as = 1

0 if fs ̸= fp and as = 1

1/|Fe| if as = 0.

For both expressions, the value of as controls the sequential activation of the

corresponding decoders. At any given time step, only one syllabic decoder

is activated, with as = 1 for this decoder, and as = 0 for others. The same

applies to phonetic decoders within syllabic decoders. Technical details

about the properties deriving from this definition of controlled coherence

variables are found in Appendix 5.

9. P (At
1:15) are defined as discrete prior probability distributions, chosen as

a function of a decision process applied to the result of inference over

variable OCt−1 (see below, Appendix 4). If this computation finds that

the probability that OCt−1 is True is larger than a decision threshold τ

(set empirically to 0.4 in the reported experiments), then, for sequencing

phone decoders, the current decoder i is closed (by setting the probability

P ([At
i = 1]) to 0), and the next decoder i + 1 is opened (by setting the

probability P ([At
i+1 = 1]) to a small, non-zero value αFe). A similar

mechanism is employed for sequencing syllable decoders.

10. P (OBUt | ∆Lt
j) is defined with a scaled logistic function:

P ([OBUt = True] | [∆Lt
j = δL]) =

{
2× logistic(uphillC)− 1 if δL ≥ 0

0 else

where uphillC is a discrete counter, used to count the number of time steps
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where energy in the signal envelope was increasing, logistic is the logistic

function,

logistic(x) =
1

1 + exp (−(x−µ)
s )

,

with µ and s parameters, respectively the mean and a scale parameter

proportional to the standard deviation. For all the simulations presented,

their values are respectively set to 0 and 1.

11. P (∆Lt
j) are probability distributions of the derivatives of the loudness

of the stimulus; they are defined as uniform probability distributions (in

practice, since values for variables ∆Lt
d are provided by the stimulus, this

choice is arbitrary and without consequence).

12. The term P (Siltj | WSt) is defined by:

P (Siltj = 1 | WSt = ws) = logistic(duration(ws)) ,

with logistic the same logistic function, with the same parameters, as in

the P (OBUt | ∆Lt
j) term, and duration(ws) a function that provides, for

each known word, its duration in time steps according to the lexicon (see

Table 3.1).

13. The term P (OTDt | WSt) is defined by:

P ([OTDt = True] | [WSt = ws]) =
∑
s∈ws

N (µ = TimeOnset(s, ws), σ
2)

where N is the Normal probability density function, and TimeOnset(s, ws)

is a function providing the time-instant at which the syllabic onset of

syllable s in word ws is expected. For all the presented simulations, the

variance σ2, controlling the dispersion of the temporal windows in which

onsets are expected, is set to an arbitrary value of 10. One “normal kernel”

is associated to predict each syllabic onset in a word, and they are summed

to form the probability of onsets over all time steps. Figure 1 shows an

illustration of the resulting probability profile, over all time steps, for the

word “pata”. Since it is a bi-syllabic word, there are two normal kernels,

around time steps 0 and 150.

14. The P (OREFt | At
1:15) term implements the refractory period, that is to

say, it sets the probability to have another onset event to 0 for the next

50 time steps after the last detected onset. Technically, it is a conditional

Dirac probability distribution, so that P ([OREFt = True] | At
1:15) is 0 if

the last time-instant at which At
1:15 was True is not yet “old enough” (this
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Figure 1: Top-down temporal prediction of syllabic onsets for the word “pata”,
in the term P ([OTDt = True] | [WSt = pata]). On the x-axis, the simulated time
steps, and on the y-axis, the probability of predicted onsets at different time
steps.

relies on an internal counter to describe this “memory”, which is technically

“outside” of the probabilistic description of the model, for simplicity).

15. The final term, P (OCt | OTDt OBUt OREFt), defines the fusion operator.

In the AND variant of the fusion operator, we define

P ([OCt = T ] | [OTDt = T ] [OBUt = T ] [OREFt = T ])

= P ([OTDt = T ])× P ([OBUt = T ])× P ([OREFt = T ]) ,

with T for the True Boolean value. This implements a combination in which

the probability that there is onset is the product of the probability of the

three “temporal submodels” (the top-down prediction, sensory detection,

and refractory period). As a consequence of this product, the probability

value can be close to one only when the three components agree and also

provide a high probability that there is an onset; this explains why we

denote this an “AND” combination. To define the OR operator, we apply

De Morgan’s law, A ∨B = A ∧B, and define:

P ([OCt = T ] | [OTDt = T ] [OBUt = T ] [OREFt = T ])

=
(
1− (1− P ([OTDt = T ]))× (1− P ([OBUt = T ]))

)
× P ([OREFt = T ]) .

Therefore, notice that, since the AND or OR fusion between bottom-up and

top-down event detection is applied before the refractory process occurs,

the AND operator could be construed as a probabilistic implementation of

“OTD AND OBU AND OREF”, while the OR operator could be noted as

a probabilistic “(OTD OR OBU ) AND OREF”.
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4 Inference for simulating word recognition

Here, we detail how word recognition and onset detection are computed in the

model. Both correspond to probabilistic computations, computed in an online

manner, thanks to recursive solutions provided by Bayesian inference. Both

word recognition and onset detection are thus computed at each time step: word

recognition proceeds assuming the states of the phone and syllable decoders as

given, and onset detection, informed by word recognition, proceeds to compute

the states of phones and syllables decoders for the next time step. In other

words, model simulation proceeds in an iterative manner, as only probability

distributions at time t are needed to compute probability distributions at time

t+1 (even though for visualization purposes, we also memorize the whole history

of probability distributions, this is not required for simulations).

Consider first the word decoding. Formally, word decoding relies on phone

decoding and syllable decoding. To simulate these, we compute the probability

distributions over the perceived phones FeP, syllables SyP and word WP, at

each time step, assuming that the stimulus and states of each phone and syllable

decoders (i.e., whether they are active or not) are given. To differentiate these

three computations, we use the coherence variables to limit the propagation of

information extracted from the stimulus into the model.

Consider first phone decoding. We are thus interested in computing, ∀j, t,
QFetj = P (FePt

j | I0:tj [λFeSP0:t
j = 1]). Applying Bayesian inference in the model

yields:

QFetj ∝
(

[αFeP (Itj | FeStj) + (1− αFe)UFe]

×∑FePt−1
j

P (FePt
j | FePt−1

j ) QFet−1
j

)
, (1)

where αFe is either equal to a constant (set to 10−1 for the simulations) when

the corresponding phonetic decoder is activated, or 0 otherwise, and UFe is the

uniform probability value over the phone space.

In a similar manner, for syllable decoding, we compute QSyti = P (SyPt
i |

I0:tJ [λSySP0:t
i = 1] [λFeSP0:t

J = 1]) (with J denoting the set of subscripts from

4(i− 1) + 1 to 4i). Applying Bayesian inference yields:

QSyti ∝
( ∏4i

j=4(i−1)+1[αSy⟨P (FeLt
j | SySti),QFetj⟩+ (1− αSy)USy]

×∑SyPt−1
i

P (SyPt
i | SyPt−1

i ) QSyt−1
i

)
, (2)

where αSy is either equal to a constant (set to 10−2 for the simulations) when

the corresponding syllabic decoder is activated, or 0 otherwise, and USy is the

uniform probability value over the syllable space.

Finally, for word decoding, we computeQW t = P (WPt | I0:t1:12 Sil
0:t
1:12 [λWSP0:t =
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1] [λSySP0:t
1:3 = 1] [λFeSP0:t

1:12 = 1])). Applying Bayesian inference yields:

QW t ∝

 P (Sil | WSt)

×∏3
i=1[αW ⟨P (SyLt

i | WSt),QSyti⟩+ (1− αW )UW ]

×∑WPt−1 P (WPt | WPt−1) QW t−1

 , (3)

where αW is equal to a constant (set to 10−2 for the simulations) and UW is the

uniform probability value over the word space.

We note that these inferences are approximate inferences. First, we do not

take into account the feedback loops required by the complete, loopy dependency

structure of the probabilistic model (due to the different Markov chains in

parallel). Indeed, even though it is represented as a tree in Figure 3.1, the

dependency structure of the decoding module contains variables with self-loops:

in other words, the decoding module is a set of Markov chains, one over each such

variable, interacting at each time step through the dependency structure shown

in Figure 1. In such a hierarchical dynamic model, exact Bayesian inference

would require sophisticated techniques, and even approximate Bayesian inference

would require feed-forward and feedback information propagation until numerical

convergence. Here, we proceed in a single-pass forward inference, as a first, rough

approximation. (However, we note that introducing a feedback pass in a model

with a similar architecture (Phénix, 2018) enabled contextual effects to appear in

decoding; in our case, this would provide context effects of word recognition for

syllable-decoding, and of syllable-recognition for phone-decoding. These effects

are outside of the scope of the current model.) Second, we also do not consider

the information propagation to the temporal module, and consider inference

in the decoding portion of the model as independent (it “receives”, from the

temporal module, only onset events, and not probability distributions over onsets;

in other words, the temporal module is seen, by the decoding module, as an

external, independent sensor providing the states (open or closed) of phone and

syllable decoders).

Consider, second, onset detection. At each time step, once word decoding

is computed, we then compute, in the temporal module, onset detection, to

update the states of phone and syllable decoders for the next, upcoming time

step. Inference for the bottom-up, sensory detection of onsets simply proceeds

by referring to the P (OBUt | ∆Lt
j) term. On the other hand, for the top-down,

prediction of onsets, we compute the probability:

P ([OTDt = True]) =
∑
wst

P ([OTDt = True] | [WSt = wst]) QW t .

In other words, we compute the probability that there would be an onset, accord-

ing to the lexical models of all words, simultaneously, but weighed according to
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the current probability distribution over words as computed by word recognition.

Computations of the probabilities of onsets in the refractory model, and in

the fusion model, simply proceed by applying the corresponding definitions of

their probabilistic terms. Considering, for instance, the AND fusion operator, we

thus compute:

P ([OCt = True] | ∆Lt
1:12 Silt1:12 It1:12[Λ = 1])

=

(∑
wst

P ([OTDt = True] | [WSt = wst]) QW t

)
×P ([OBUt = T ] | ∆Lt

j)× P ([OREFt = T ]) .

with j the index of the currently active phone decoder, and Λ representing the

set of all coherence variables of the decoding module.

The final step of onset detection is to apply the decision process on the

computed probability distribution: when the probability that [OCt = True] is

above a threshold, an onset is considered to be detected, which updates the states

of phone and syllable decoders. Technically, this is done by changing the prior

distributions over P (At+1
1:15) (see Appendix 3). This final step is not properly a

“probabilistic dependency” in the model; that is why it is represented as a dotted

arrow in Figure 1.

5 Using coherence and controlled coherence variables

for controlling decoder input

Here, we detail how coherence variables and controlled coherence variables, can

be used to control, in the model, when decoders are fed with sensory input. To

do so, we consider a small portion of the model around the first phone decoder

(without loss of generality, as this would apply to other phone decoders and to

syllable decoders, as well).

Consider thus the first phone decoder. To recall, it is essentially a temporal

model over variables FeP0:T
1 , defined by a dynamic model P (FePt

1 | FePt−1
1 ). To

simplify, we consider it provides, at time t, a distribution over perceived phones,

noted here P (FePt
1). This temporal model is fed sensory information from the

input; this involves an inversion of the term P (Itj | FeSt1). To simplify, we consider

it provides, at time t, a distribution over sensed phones, noted here P (FeSt1). We

connect these distributions with a simple coherence variable λFeSPt
1. Therefore,

we consider the model P (FePt
1 FeSt1 λFeSPt

1), defined by:

P (FePt
1 FeSt1 λFeSPt

1) = P (FePt
1)P (FeSt1)P (λFeSPt

1 | FePt
1 FeSt1) ,
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with the term P (λFeSPt
1 | FePt

1 FeSt1) defined by:

P ([λFeSPt
1 = 1] | [FePt

1 = fp] [FeS
t
1 = fs]) =

{
1 if fp = fS

0 otherwise.

We now demonstrate that, in this simplified portion of the model, coherence

variable λFeSPt
1 can be employed as a “Bayesian switch”, that is, we can choose

during inference, whether information propagates from sensory information about

phones to the phone decoder, or not. These demonstrations are adapted from

other texts about coherence variables as Bayesian switches (Bessière et al., 2013;

Gilet et al., 2011).

First, consider computing P (FePt
1) in the model as defined above. The result

of Bayesian inference can be shown to be equal to P (FePt
1), since it appears

as is in the decomposition of the joint probability distribution. By assumption,

P (FePt
1) is thus independent of the sensory distribution P (FeSt1). Here, the

coherence variable is unspecified, and this can be interpreted as “opening” the

Bayesian switch. In other words, whatever information is in P (FeSt1), it does not

affect P (FePt
1).

Second, consider computing P ([FePt
1 = fp] | [λFeSPt

1 = 1]):

P ([FePt
1 = fp] | [λFeSPt

1 = 1])

∝
∑
FeSt

1

P ([λFeSPt
1 = 1] [FePt

1 = fp] FeS
t
1)

∝
∑
FeSt

1

P ([FePt
1 = fp])P (FeSt1)P ([λFeSPt

1 = 1] | [FePt
1 = fp] FeS

t
1) .

In the summation over variable FeSt1, the term P ([λFeSPt
1 = 1] | [FePt

1 =

fp] [FeS
t
1 = fs]) is always 0 except when fp = fs, so that the summation can be

collapsed:

P ([FePt
1 = fp] | [λFeSPt

1 = 1])

∝ P ([FePt
1 = fp])P ([FeSt1 = fp])P ([λFeSPt

1 = 1] | [FePt
1 = fp] [FeS

t
1 = fp])

∝ P ([FePt
1 = fp])P ([FeSt1 = fp]) .

Therefore, P ([FePt
1 = fp] | [λFeSPt

1 = 1]) is not independent of P (FeSt1). In other

words, setting the coherence variable λFeSPt
1 to value 1 “closes” the Bayesian

switch: contrary to the previous case, here, sensory information in P (FeSt1)

is combined with the distribution P (FePt
1), and the combination operator is,

mathematically, a product of the two probability distributions.

A technical precision can be raised here. Even though the definition above

could suggest that a coherence variable “forces” the variables that it connects
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to be equal, this is not so in effect. Indeed, it is true that a coherence variable

imposes equality during inference, but this merely allows to “collapse summations”

over the adjacent variables. This results in mathematical forms with products of

probability distributions, such as, in our example, P ([FePt
1 = fp])P ([FeSt1 = fp]).

In this expression, whereas it is true that the product is performed “assuming that

variables have the same value”, this does not imply any constraints on probability

distributions P (FePt
1) and P (FeSt1). Indeed, these can “mostly agree”, with their

probability masses concentrated on the same values in their domain, or these

can be “widely in conflict”, with their probability masses on different portions of

their domain, or any other situation in between. The mathematical machinery

of coherence variables is agnostic to this and always results in a “fusion model”

that is a product of distribution.

We now consider a slightly more complex example, in which coherence variable

λFeSPt
1 would get controlled by an additional variable, At

1. The decomposition

of the joint probability distribution P (FePt
1 FeSt1 λFeSPt

1 At
1) would become:

P (FePt
1 FeSt1 λFeSPt

1 At
1) = P (FePt

1)P (FeSt1)P (At
1)P (λFeSPt

1 | FePt
1 FeSt1 At

1) ,

with the term P (λFeSPt
1 | FePt

1 FeSt1 At
1) defined by:

P ([λFeSPt
1 = 1] | [FeStj = fs] [FeP

t
j = fp] [A

t
1 = a])

=


1 if fs = fp and a = 1

0 if fs ̸= fp and a = 1

1/|Fe| if a = 0.

This is the same definition for this term as in the full model described above.

We now demonstrate that, with this definition of the model, the controlled

coherence variable allows gradual control of information propagation in the model

(Phénix, 2018). We consider, as above, computing:

P ([FePt
1 = fp] | [λFeSPt

1 = 1])

∝
∑

FeSt
1,A

t

P ([λFeSPt
1 = 1] [FePt

1 = fp] FeS
t
1 At

1)

∝
∑

FeSt
1,A

t
1

P ([FePt
1 = fp])P (FeSt1)P (At

1)P ([λFeSPt
1 = 1] | [FePt

1 = fp] FeS
t
1 At

1) .

∝ P ([FePt
1 = fp])

(
P ([At

1 = 1])
∑

FeSt
1
P (FeSt1)P ([λFeSPt

1 = 1] | [FePt
1 = fp] FeS

t
1 [At

1 = 1])

+P ([At
1 = 0])

∑
FeSt

1
P (FeSt1)P ([λFeSPt

1 = 1] | [FePt
1 = fp] FeS

t
1 [At

1 = 0])

)

∝ P ([FePt
1 = fp])

(
P ([At

1 = 1])P ([FeSt1 = fp]) + P ([At
1 = 0])

1

|Fe|

)
.
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As in Equation (1), we note P ([At
1 = 1]) = αFe, and rewrite this last result:

P ([FePt
1 = fp] | [λFeSPt

1 = 1])

∝ P ([FePt
1 = fp])

(
αFeP ([FeSt1 = fp]) + (1− αFe)

1

|Fe|

)
.

To interpret this result, consider two extreme cases. First, when αFe = 1, this

result is identical to the simple case, and the two distributions over FePt
1 and FeSt1

are multiplied together: therefore, αFe = 1 would correspond to fully closing the

Bayesian switch. Second, when αFe = 0, the distribution over FePt
1 is multiplied

with a uniform distribution, which leaves it unchanged (the uniform distribution

is the neutral element for the product of probability distributions), so that the

distribution over FePt
1 is independent of the one over FeSt1: therefore, αFe = 0

would correspond to fully opening the Bayesian switch. In the general case,

however, αFe is neither 0 nor 1, which allows mixing the above two computations:

the Bayesian switch is simultaneously “open” and “closed”, in amounts controlled

by αFe. This allows controlling, in a gradual manner, the amount of information

propagated from the sensory distribution to the perceptual model. Therefore,

the controlled coherence variable structure can be interpreted, not as a Bayesian

switch, but as a Bayesian potentiometer (to pursue the electric analogy; a

potentiometer allows gradual control of electric resistance, whereas a switch

controls it in an all-or-nothing manner).

In the context of our model of speech decoding, variables At
1:15 are in charge

of controlling which phone or syllable decoder receives sensory information; their

distributions pilot all links between decoders and their respective sensory inputs.

When the probability that the control variable At
i is True is 0, the corresponding

decoder is not yet activated or already terminated; on the other hand, when the

probability that the control variable At
i is True has a small, non-zero value, the

corresponding decoder is currently activated, so that a small amount of sensory

information is fed into the perceptual model.


	Summary
	Résumé
	Remerciements – Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Speech perception and speech segmentation
	Neural oscillation-based models of speech segmentation
	The role of top-down information in speech segmentation
	The fusion of bottom-up information and top-down knowledge for speech perception
	Thesis objective
	Organization of the thesis

	Oscillation-based models of speech perception
	Neural oscillations: a quick overview
	The natural oscillations of speech dynamics
	The Dynamic Attending Theory and its implications for speech
	Conceptual oscillation-based models of speech perception
	The TEMPO model by Ghitza
	Model description
	Main results

	The model by Giraud & Poeppel
	Model description

	General principles of oscillation-based models

	Computational oscillation-based models of speech perception
	Metrics to evaluate models
	The model by Yildiz, Kriegstein & Kiebel (2013)
	Model description
	Main results

	The model by Hyafil, Fontolan, Kabdedon, Gutkin & Giraud (2015)
	Model description
	Main results

	RDF: The model by Räsänen, Doyle & Frank (2018)
	Model description
	Main results

	Precoss: The model by Hovsepyan, Olasagasti & Giraud (2020)
	Model description
	Main results


	A key experimental paradigm
	On the role of isochrony in speech perception
	Materials
	Results

	Interaction between bottom-up envelope processing and top-down predictions in the temporal control of the speech perception process
	Goals and contributions of the present thesis

	COSMO-Onset: The conceptual model
	Model architecture
	General principles: Coherence variables, Bayesian gates, and syllabic parsing
	Decoding module
	Temporal control module

	Inference for simulating word recognition
	Inference in the decoding module
	Inference in the temporal control module

	Discussion

	COSMO-Onset: The illustrated model
	The illustrated COSMO-Onset model
	Simulation Material
	Linguistic material
	Phonetic material
	Phone duration and loudness profiles
	Paradigms for test conditions
	Simulation configuration
	Degraded stimuli simulations
	Temporal misalignment simulation

	Performance measures

	Results
	Illustrative example in nominal condition
	Noisy-event condition
	Hypo-articulation-event condition
	Temporal misalignment condition

	Discussion

	A study of the oscillation-based syllabic segmentation model by Räsänen et al. (2018)
	Simulation Material
	Corpus
	The RDF model
	Parameter calibration

	Simulation Results
	Performance on syllabic event detection in French
	Role of isochrony in event detection
	Relation between isochrony in the distribution of syllabic boundaries and P-centers
	Relation between distortion to P-center isochrony and event detection
	Role of the resonance factor in event detection

	Event detection in noise

	Discussion

	A syllable recognition model using Random Forests
	A Machine Learning algorithm: Random Forest
	Simulation Materials
	Syllabic corpus
	Performance measures
	Building the Random Forest model

	Simulation Results
	Discussion

	COSMO-Onset: Adapting to real speech
	COSMO-Onset for real speech stimuli: putting it all together
	Adapting the temporal control module
	Adapting the bottom-up onset detection
	Adapting the top-down onset prediction

	Adapting the decoding module

	Theoretical Hypotheses
	Simulation Material
	Corpus
	The decoding module
	The bottom-up model of the temporal control module
	The variants of the top-down model of the temporal control module
	Performance measures

	Simulation Results
	Illustrative example of the whole model
	Contribution of top-down predictions in syllabic event detection
	Contribution of top-down predictions in syllabic sequence recognition
	Role of isochrony in speech perception for natural sentences
	Role of naturalness in speech perception for isochronous sentences

	Discussion
	Summary of main simulation results in relation to the four hypotheses
	Two intriguing results provided by the simulations


	Conclusion and General Discussion
	Summary of the contributions
	COSMO-Onset model vs other computational models of speech perception
	Limitations and Perspectives
	Addressing more extensively and realistically the role of higher levels in top-down temporal predictions
	Exploring the fusion models for real speech
	Embedding top-down temporal predictions into the neural oscillation framework
	Testing other experimental paradigms
	The attention question

	A final word on deep learning models vs cognitive science models

	Bibliography
	Personal Bibliography
	Orals and Posters
	Full COSMO-Onset first variant model specification
	Variables
	Decomposition
	Parametric forms
	Inference for simulating word recognition
	Using coherence and controlled coherence variables for controlling decoder input


