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Résumé

Cette thèse de doctorat s’articule en trois chapitres qui traitent des comportements moutonniers,

de la mesure de la sensibilité aux krachs financiers et de son impact sur les rendements financiers.

Chacun de ces articles apportent une contribution méthodologique autour du risque de marché.

Plus précisément, ils constituent des éléments de réponse à ces trois questions : Comment se

forme le risque sur les marchés ? comment et avec quelle mesure peut-on mesurer le risque ?

Est-ce que le risque est incorporé dans les rendements financiers ?

Le premier chapitre consiste en l’estimation d’un modèle d’agent décrivant la contagion du

sentiment des investisseurs qui interagissent entre eux. A l’aide d’une analyse textuelle des mes-

sages publiés sur le réseau social StockTwits, la dynamique du sentiment des investisseurs est es-

timée pour des actifs financiers et des cryptos monnaies parmi les plus discutés sur la plateforme.

Ce premier chapitre apporte des éléments d’observation empiriques sur le lien entre l’intensité

de la contagion et le niveau de risque sur les marchés.

Le deuxième chapitre développe une méthode théorique pour l’estimation de la dépendance

de valeurs extrêmes, en finance, cette mesure traduit la probabilité d’observer un krach simultané

entre deux actifs. La crédibilité de la méthode est testée sur différentes données de simulations

pour comparer sa performance par rapport à d’autres estimateurs. Une application sur la dépen-

dance des valeurs extrêmes entre les rendements de l’indice des marchés US et les rendements

des indices de marchés internationaux est également donnée.

Le troisième chapitre propose de réexaminer des études récentes qui mesurent l’effet de la

sensibilité aux krachs sur les rendements des actifs financiers. La sensibilité aux krachs est don-

née par la dépendance de valeurs extrêmes étudiée au chapitre précédent. Après avoir étudié un

potentiel biais dans les estimations paramétriques et non paramétriques qui apparaissent lorsque

qu’on a de fort niveau de corrélation, les précédentes études sur les rendements financiers sont

reproduites. En incorporant le biais dans les analyses des précédents papiers, les effets significat-

ifs sur les rendements précédemment documentés disparaissent.

Mots clés : Modèle d’Agent, Sentiment des Investisseurs, Comportements Mouton-

niers, Réseaux Sociaux, Coefficient de Dépendance de Valeurs Extrêmes, Estimations Non-

Paramétriques, Copula, Analyse des Valeurs Extrêmes, Pricing d’actifs



Abstract

This thesis is constituted of three chapters on herding behaviors, the measure of crash risk sen-

sitivity and its impact on financial asset returns. Each of this article provides a methodological

and empirical contribution about risk in financial markets. More precisely, they provide answers

to the following questions: Where does the risk in financial markets come from? How to measure

the risk in financial markets? Is the risk incorporated in financial returns?

The first chapter is dedicated to the estimation of an Agent Based Model that describes herd-

ing behavior in the formation of investors sentiment. With the use of textual analysis of investors

messages published on the social media StockTwits, the dynamic of investors sentiment is es-

timated for some of the most discussed financial asset and cryptocurrencies on the platform.

This first chapter provides empirical observation that high levels of contagion are associated with

higher levels of risk observed in financial returns.

The second chapter develops a theoretical method to estimate the extreme value dependency,

in finance, this measures the probability of a joint crash between two financial assets. The use-

fulness and performance of the proposed estimator is tested in a simulation framework against

multiple distributions. An empirical application is provided to measure the extremal dependence

between the returns of the US market and other international markets returns.

In the third chapter we proposed to reexamine recent studies that provide evidence that the

crash sensitivity impacts financial returns. The crash sensitivity in those corresponding studies

is measured with the extremal dependence, presented in the previous chapter, between the asset

returns and the market returns. After having presented potential biases in the parametric and

non-parametric estimators when there is a high level of correlation, we replicate the studies ded-

icated to demonstrate the relationship between crash risk exposure and future excess returns. We

proceed by showing that these results do not hold when we control for the correlation coefficient

and other past returns behavior.

Keywords: Agent-Based Model, Investor Sentiment, Herding Behavior, Social Network, Tail

dependence coefficient, Nonparametric estimation, Copula, Extreme values, Asset Pricing
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Introduction (Français)

" Une évaluation conventionnelle, fruit de la psychologie collective d’un grand nombre

d’individus ignorants, est exposée à subir des variations violentes à la suite des

revirements soudains que suscitent dans l’opinion certains facteurs dont l’influence

sur le rendement escompté est en réalité assez petite. Les jugements manquent en effet

des racines profondes qui leur permettraient de tenir. Dans les périodes anormales

notamment, lorsque la croyance à la continuation indéfinie d l’état actuel des affaires

est particulièrement peu plausible, même s’il n’y a pas de raison formelle de prévoir un

changement déterminé, le marché se trouve exposé à des vagues d’optimisme et de

pessimisme irraisonnées, mais après tout compréhensibles en l’absence d’une base

solide de prévision rationnelle. "

Théorie générale de l’emploi, de l’intérêt et de la monnaie. John Maynard Keynes, 1936

La théorie de l’efficience informationnelle des marchés (Fama, 1965) est toujours au cœur

de l’industrie financière moderne. Elle suppose que l’information est parfaitement incorporée

dans les prix des actifs financiers. Suivant cette hypothèse, seules des informations économiques

considérables seraient susceptibles de provoquer des variations importantes de la valorisation

des actifs financiers. De plus, dans un marché où les prix reflètent parfaitement l’information

disponible, l’apparition de bulles financières, qui se traduisent par une variation excessive par

rapport la valeur fondamentale, reste limitée.

Il est aujourd’hui difficile de donner encore du crédit à cette théorie tant les exemples de

bulles et de crises financières sont nombreux. Les crises financières des XXe et XXIe siècles

comme le krach de 1929, la bulle internet et la crise des subprimes en sont les exemples les plus

frappants. Par ailleurs, la mondialisation croissante et l’augmentation de l’interconnexion entre

les marchés internationaux, rendent les crises et les bulles financières généralisées de plus en plus

fréquentes (Sornette, 2017). Chacune de ces crises est un appel à revoir les modèles traditionnels

pour expliquer ces phénomènes (Bouchaud, 2008).

La théorie d’efficience des marchés est intrinsèquement liée à l’hypothèse de marche aléa-

toire. Du point de vue statistique, cette hypothèse stipule que les rendements sont représentés par

des processus qui ne comportent que des fluctuations bénignes, les observations de larges mou-
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INTRODUCTION (FRANÇAIS)

vements sont considérées comme “anecdotiques” et traitées comme des données aberrantes.

Ces croyances peuvent s’avérer dramatiques et elles sont notamment désignées comme la con-

séquence de la crise des subprimes1. En effet, pour les modèles qui servaient à mesurer les risques

des produits financiers structurés liés aux crédits subprimes, la probabilité que plusieurs em-

prunteurs fassent défaut de manière simultanée était nulle. Suivant leurs hypothèses, la possibil-

ité d’une crise généralisée n’existait pas. Cependant depuis Mandelbrot (1963), l’observation sug-

gère que les rendements des actifs représentent trop de mouvements extrêmes pour qu’ils soient

en adéquation avec cette hypothèse. Il est préférable de considérer que les mouvements extrêmes

sont constitutifs des dynamiques des cours d’actifs et non pas des aberrations statistiques.

D’une autre part, la théorie financière classique repose sur l’hypothèse de rationalité des

agents, figurée par l’homo œconomicus qui représente les agents comme rationnels qui max-

imisent leur utilité en toutes circonstances. Dans cette optique, les investisseurs forment des an-

ticipations rationnelles en mobilisant toute l’information disponible. Keynes (1936) a largement

exprimé ses doutes sur le fait que les investisseurs se reposent uniquement sur les informations

dont ils disposent pour former leurs choix d’investissement. Il le fait notamment au travers sa

célèbre analogie du “concours de beauté” pour illustrer le fonctionnement des marchés bour-

siers. Il fait alors le parallèle avec un investisseur qui a tout intérêt à ne pas prendre en compte

ses goûts personnels mais à choisir plutôt en fonction du consensus et de la majorité. Depuis,

l’idée a largement été reprise dans la littérature qui montre que les investisseurs sont régis par

la psychologie de masse qui les pousse à analyser l’information disponible non pas de manière

objective mais par imitation (Scharfstein and Stein, 1990).

Depuis les années 1990, de nombreuses études en finance comportementale ont introduit

la psychologie des investisseurs comme élément déterminant des instabilités des marchés fi-

nanciers (Barberis and Thaler, 2003). Les comportements grégaires en constituent un des élé-

ments principaux permettant d’expliquer la formation de crises et de bulles. Plus généralement,

la finance comportementale a permis, à l’aide de modélisation, d’expliquer les anomalies de

marché par différents biais comportementaux. On peut citer les études qui rapportent que les

investisseurs sont sujet à des vagues d’optimisme ou de pessimisme, tirant les prix au-delà des

fondamentaux économiques (Baker and Wurgler, 2007).

Le risque en finance est plus important que le laisse entendre la théorie classique, et nous

ne devons pas reproduire les erreurs antérieures qui ont empêché l’identification de mesures de

risque cohérentes (Colander et al., 2009). Dans une tentative de limiter les occurrences et les ef-

fets des instabilités et particulièrement des événements extrêmes sur les marchés financiers, les

acteurs de l’industrie financière et les régulateurs doivent sans cesse se munir de nouveaux out-

ils pour comprendre comment se forme le risque et comment le mesurer de manière adéquate.

C’est dans cette perspective et pour répondre à ces enjeux qu’ont été développés les travaux de

recherche qui constituent la présente thèse.

Le but de cette dissertation est de délivrer trois contributions originales permettant de con-

tribuer de manière novatrice à l’analyse du risque de marché. Dans un premier temps, compren-

1Voir l’article “Recipe for Disaster: The Formula That Killed Wall Street”, https://www.wired.com/2009/02/
wp-quant/
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dre pourquoi des instabilités apparaissent nécessite d’appréhender la théorie économique d’un

point de vue du comportement collectif. C’est pourquoi le premier chapitre est une contribution

méthodologique et empirique à l’analyse des comportements grégaires en partant de données

révélant des informations sur les interactions entre investisseurs. Dans le deuxième chapitre

nous proposons une méthode adéquate pour mesurer le risque de dépendance de valeurs ex-

trêmes. La contribution est essentiellement théorique mais nous proposons une application de

la méthode pour mesurer les risques extrêmes partagés par les marchés américains-actions et

les autres marchés actions développés. Le troisième chapitre montre que les mesures de dépen-

dance de risques extrêmes peuvent être affectées de biais. Fort de l’acquis théorique obtenu dans

le second chapitre, nous montrons que ces biais peuvent avoir une incidence déterminante sur la

répercussion de la "sensibilité aux krachs” sur les rendements d’actifs. Avec la conséquence que

ces biais peuvent radicalement changer les conclusions quant à l’impact de cette sensibilité sur

les rendements.

Chapitre 1

Dans une tentative de comprendre la formation du risque financier, ce premier chapitre intitulé

“Estimating a model of herding behavior on social networks” propose d’étudier et de mesurer les

comportements grégaires. Ces stratégies d’imitation, qui visent à adopter le comportement du

plus grand nombre sans prendre en compte ses informations personnelles, font l’objet de nom-

breuses études qui cherchent à expliquer l’origine des instabilités financières. On peut citer les

travaux pionniers de Shiller et al. (1984) qui ont suggéré que les choix des investisseurs étaient

issus d’effets de mode et de tendances communes plutôt que des motivations individuelles. Ces

comportements peuvent être à l’origine de boucles de rétroaction positive pouvant entraîner un

emballement et se résoudre en bulles spéculatives et krachs (Lux, 1995; Sornette, 2017). Ils sont

également associés à "l’exubérance irrationnelle” décrite par Shiller (2015) qui fait référence à un

profond excès d’optimisme collectif qui entraîne les prix au-delà de la valeur fondamentale.

Ce chapitre propose une approche originale pour étudier ces comportements grégaires. Nous

faisons référence à un modèle théorique permettant d’expliquer la formation de comporte-

ments mimétiques, en vertu desquels chaque investisseur forme son propre sentiment à partir

de l’observation du sentiment des autres investisseurs (Weidlich, 1971; Lux, 1995). Le modèle

théorique est ensuite confronté à des observations empiriques relatives au sentiment des investis-

seurs. Pour mesurer le sentiment, nous utilisons des sources de données très récentes, provenant

d’internet et plus précisément de l’observation des interactions permises par les réseaux soci-

aux. En effet, grâce à l’apparition de nouvelles plateformes dédiées aux marchés financiers, les

réseaux sociaux spécialisés sont devenus des médias d’information qui rassemblent de grandes

communautés d’investisseurs.

L’étude du sentiment des investisseurs, mesuré à partir des discussions d’investisseur sur in-

ternet, n’est pas récente dans la littérature (Antweiler and Frank, 2004; Das and Chen, 2007) mais

la place qu’on lui attribue dans l’industrie financière s’est révélée de plus en plus importante au
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cours du temps2. Non seulement l’utilisation des réseaux sociaux a explosé mais aussi les nou-

velles méthodes d’intelligence artificielle et de big data permettent le traitement et l’analyse des

grandes quantités des messages échangés sur ces réseaux. Par ailleurs, de récentes études ont

montré que ces échanges reflétaient bien un sentiment collectif chez les investisseurs, au point

de permettre la prédiction des rendements futurs des actifs. (Sprenger et al., 2014; Chen et al.,

2014; Renault, 2017).

Au-delà du débat sur leurs utilité pour prédire les rendements financiers, ces données sont

une aubaine pour les recherches comportementales. En effet, elles nous permettent de confron-

ter les modèles théoriques qui nous décrivent la formation du sentiment des investisseurs avec

des observations empiriques. Aujourd’hui encore trop peu d’études sont consacrées à la valida-

tion des modèles théoriques par des études empiriques (Cipriani and Guarino, 2014). Ce premier

chapitre propose donc de combler ce manque en proposant une méthodologie pour estimer un

modèle théorique sur le rôle du sentiment à partir d’observations relatives aux échanges de mes-

sages. Ce chapitre apporte également une contribution empirique en donnant une interprétation

des paramètres estimés sur les données observées. Ces paramètres estimés nous donne une idée

de l’intensité de la contagion dans la formation du sentiment sur différentes actions américaines

et crypto-monnaies.

Nous sommes ainsi en mesure de valider un modèle d’agent à partir de données de senti-

ment portant sur des actifs financiers individuels. Par ailleurs, nos estimations fournissent des

valeurs de paramètres cohérentes et compatibles avec les hypothèses de la contagion dans la for-

mation du sentiment. On confirme ensuite les arguments d’études récentes qui montrent que

de forts niveaux de volatilités sont engendrés par des comportements moutonniers (Froot et al.,

1992; Blasco et al., 2012; Wang and Wang, 2018). De fait, nos résultats montrent que la mesure

de contagion proposée est significativement plus élevée lorsque l’on observe de forts niveaux

de volatilité sur les actifs financiers. Par ailleurs, les résultats ayant été obtenus de manière dy-

namique, ils nous ont permis de cibler la période de bulle subie récemment par le marché des

crypto-monnaies et de montrer que l’intensité de la contagion est forte au moment de la bulle

mais décroît rapidement ensuite.

L’évidence de ces comportements grégaires sur les marchés des crypto-monnaies entraîne

une exposition à un risque supplémentaire pour les investisseurs. Par conséquent, ses résultats

appellent à une prise en compte de la contagion par les régulateurs pour adopter des mesures

afin de limiter les comportements grégaires sur ces marchés. Ces résultats sont également impor-

tants d’un point de vue théorique puisqu’ils permettent de valider des modèles existants dans la

littérature par de nouvelles observations empiriques.

Chapitre 2

Même si les modèles d’agent étudiés au cours du premier chapitre nous aident à compren-

dre l’émergence des faits stylisés observés sur les marchés, ils ne fournissent pas d’outils pour

mesurer le risque de manière adéquate. C’est dans cette perspective que ce deuxième chapitre

2Voirhttps://www.bloomberg.com/professional/blog/can-get-edge-trading-news-sentiment-data/
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“Nonparametric estimator of the tail dependence coefficient: balancing bias and variance” a été

développé avec Matthieu Garçin.

Mesurer le risque nécessite de s’éloigner du paradigme traditionnel “gaussien”, pour lequel

les risques extrêmes apparaissent comme des valeurs aberrantes et peu probables. Si les change-

ments extrêmes dans les prix sont négligés dans les modèles traditionnels, la probabilité que de

tels événements violents s’observent de manière simultanée pour plusieurs actifs l’est tout au-

tant. Pourtant, les risques extrêmes sont rarement issus d’un comportement isolé et surviennent

plutôt à la suite d’un comportement collectif. Dans cette perspective, il est décisif de se représen-

ter la dépendance entre différentes variables aléatoires pour décrire ce comportement collectif.

Dans le cas le plus facile, la dépendance entre deux actifs ou marchés financiers est décrite par le

coefficient de corrélation de Pearson. Or la corrélation ne prend en compte que la dépendance

linéaire et se révèle évidemment totalement inadaptée en gestion des risques extrêmes dont les

dépendances sont fortement non-linéaires; d’ailleurs la dépendance se révèle plus forte dans les

périodes d’instabilité (Longin and Solnik, 2001; Patton, 2004). Dans une optique de proposer une

mesure adéquate de la dépendance « extrême », on s’intéresse dans ce chapitre au coefficient de

dépendance de queue de distribution (CDQ). Ce coefficient mesure la probabilité qu’une variable

aléatoire observe une valeur extrême sachant qu’une autre variable aléatoire l’observe également.

Dit autrement, il nous permet de calculer la probabilité que deux variables aléatoires subissent

un choc de manière simultanée. En finance, cette mesure est largement utilisée pour mesurer la

probabilité d’observer un krach affectant simultanément deux marchés internationaux ou deux

actifs financiers (Malevergne and Sornette, 2003; Poon et al., 2004; Caillault and Guégan, 2005).

En particulier, son utilisation est, de fait, importante dans une optique de diversification de porte-

feuille ; à ce titre, on peut citer (De Luca and Zuccolotto, 2011; Wang and Wang, 2018) qui dévelop-

pent une méthodologie pour créer des portefeuilles robustes tels que leurs actifs ne krachent pas

ensemble.

L’estimation du CDQ peut se faire de manière directe selon une approche paramétrique.

Cependant l’efficacité de ce type d’approche dépend largement du choix de la fonction de

vraisemblance qui est postulée. Pour gagner en flexibilité, praticiens et académiques privilégient

des méthodes non paramétriques. Dans sa version non paramétrique introduite par Joe (1997),

l’estimation du CDQ nécessite de choisir un seuil arbitraire au-dessus duquel la probabilité

d’observer des valeurs extrêmes jointes doit être calculée. Les méthodes existantes ont recours

à des heuristiques ou à l’observation graphique pour sélectionner ce seuil (Frahm et al., 2005a;

Schmidt and Stadtmüller, 2006; Caillault and Guégan, 2005). Cependant, aucun cadre théorique

n’a été développé jusqu’à présent, pour déterminer une règle de sélection du seuil, alors que cette

sélection est déterminante pour la qualité de l’estimation.

La principale contribution de cet article consiste précisément dans la proposition d’un cadre

théorique permettant de sélectionner ce seuil. Le seuil est simplement choisi de façon à min-

imiser l’erreur quadratique moyenne (EQM), calculée en fonction du biais et de la variance de

l’estimateur. La performance de l’estimateur est ensuite évaluée sur la base de simulations et

comparée à celle des estimateurs utilisés dans les approches traditionnelles. Les résultats mon-

trent la cohérence du nouvel estimateur proposé, sans que celui-ci n’apparaisse plus performant
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que les autres estimateurs. La méthode d’estimation est enfin appliquée pour évaluer le CDQ en-

tre les rendements de l’indice du marché action US et les rendements des marchés actions de 17

pays développés.

Au-delà de l’apport méthodologique, ce chapitre apporte un éclairage et des résultats intéres-

sants pour les gestionnaires d’actifs qui souhaitent diversifier les risques extrêmes des actifs de

leurs portefeuilles. Cette méthodologie peut également intéresser le régulateur qui cherche à ap-

préhender les sources simultanées de risque pour contrôler et éventuellement contrer le risque

systémique. Il est aussi important de souligner que les développements de ce chapitre ont des

applications potentielles au-delà de la finance car le CDQ est appliqué dans différents domaines

comme l’hydrologie et le climat (Tawn, 1988; Poulin et al., 2007; Aghakouchak et al., 2010) mais

aussi l’astronomie (Scherrer et al., 2009; Sato et al., 2011).

Chapitre 3

La théorie financière nous enseigne que tout risque supplémentaire doit être compensé par des

rendements supérieurs (Campbell, 1996). Une grande partie de l’économie financière est dédiée à

la recherche de facteurs de risque qui permettent d’expliquer les rendements financiers. La prob-

abilité d’observer un événement extrême doit être également prise en compte comme un facteur

de risque à part entière. Si les risques de krachs de marchés financiers sont depuis longtemps pris

en compte dans l’étude de l’espérance des rendements des actifs financiers (Roy, 1952), la série

de chocs financiers subie ces 30 dernières années a poussé les investisseurs à appréhender les

risques extrêmes comme facteur à part entière dans l’évaluation de la prime de risque des actions

financières. D’après des développements théoriques récents, il est établi que la prime de risque

des actifs doit intégrer une composante représentant le risque de krach (Rietz, 1988; Barro, 2006;

Bollerslev and Todorov, 2011).

A la suite de quoi, de nouvelles mesures de risques appelées "sensibilités aux krach” ont été

proposées très récemment dans la littérature (Chabi-Yo et al., 2018). Ce type de mesure exprime

l’intensité de l’exposition d’un actif financier au krach de marché ou à plusieurs facteurs de risque

prédéfinis. Cette liste de facteurs a notamment été défini par Chabi-Yo et al. (2021) et correspond

aux facteurs de risque du modèle Fama and French (1995, 2015) à cinq facteurs avec le facteur

"momentum" (Carhart, 1997) et le facteur BAB "betting-against-beta" (Frazzini and Pedersen,

2014). Pour un actif donné, cette exposition aux krachs est évaluée statistiquement comme la

dépendance de valeurs extrêmes entre les rendements de l’actif et le rendement du marché asso-

cié. Ces études proposent des évaluations empiriques de la capacité de l’exposition aux risques

extrêmes à prédire en partie les rendements futurs. Le troisième chapitre, intitulé “Spurious tail

risk factors and asset prices”, remet en question les résultats obtenus dans la littérature récente

sur la capacité prédictive des facteurs d’exposition aux krachs.

Les développements du chapitre 2 sur l’étude de la dépendance de queues de distributions

ont montré les limites de son estimation, plus précisément l’existence d’un biais dans l’estimation

du CDQ lorsqu’on observe un fort niveau de dépendance dans la totalité de la distribution. Le

CDQ capture alors une dépendance en partie nourrie par la forte dépendance globale, observée
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lorsque la corrélation linéaire est forte.

Nous proposons d’abord des explications théoriques au lien existant entre le CDQ et le coeffi-

cient de corrélation, puis, à l’aide de simulations, une évaluation de l’importance du biais dans le

cas gaussien. Dans un deuxième temps, nous reproduisons les résultats des précédentes études

prouvant que l’exposition au krach mesurée avec le CDQ est un facteur contribuant à la prime de

risque. Nous montrons que ces résultats sont remis en cause pour des niveaux différents de cor-

rélation lorsqu’on considère plusieurs sous portefeuilles avec différentes valeurs du coefficient

de corrélation. Nos résultats nous conduisent à penser que l’effet prédictif de la sensibilité aux

krachs provient de ce lien avec la dépendance générale au marché. Au-delà de la contribution

méthodologique, ce troisième chapitre apporte des informations importantes pour les praticiens

et analystes qui cherchent à identifier des facteurs prédictifs des rendements financiers, plus par-

ticulièrement liés aux risques extrêmes, la démonstration de leur validité restant à trouver.
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"A conventional valuation which is established as the outcome of the mass psychology

of a large number of ignorant individuals is liable to change violently as the result of a

sudden fluctuation of opinion due to factors which do not really make much

difference to the prospective yield; since there will be no strong roots of conviction to

hold it steady. In abnormal times in particular, when the hypothesis of an indefinite

continuance of the existing state of affairs is less plausible than usual even though

there are no express grounds to anticipate a definite change, the market will be subject

to waves of optimistic and pessimistic sentiment, which are unreasoning and yet in a

sense legitimate where no solid basis exists for a reasonable calculation."

The General Theory of Employment, Interest and Money. John Maynard Keynes, 1936

Nowadays, the efficient market hypothesis (Fama, 1970) is still the cornerstone of modern fi-

nance. This theory argues that all available information is perfectly reflected in the price of finan-

cial assets. Following this hypothesis, only few important economic news releases would be able

to cause extreme mouvement in financial asset valuations. Moreover, in a perfect market where

prices perfectly reflect the available information, the appearance of financial bubbles, which re-

sult in an excessive variation compared to the fundamental value, remains limited.

Today, it is difficult to give credence to this theory, since there are so many examples of finan-

cial bubbles and crises. The financial crises of the 20th and 21st centuries, such as the crash

of 1929, the internet bubble and the subprime crisis are the most striking examples. More-

over, with increasing globalization and the growing interconnection between international mar-

kets, widespread financial crises and bubbles are becoming more and more frequent (Sornette,

2017). Each of these crises is a call to revise the traditional models to explain these phenomena

(Bouchaud, 2008).

The efficient market hypothesis is intrinsically linked to the random walk hypothesis. From a

statistical point of view, this hypothesis states that returns are represented by random processes

that contain only minor fluctuations. Observations of large movements are considered "anec-

dotal" and treated as outliers. These beliefs can be dramatic, they are notably referred to as the
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consequence of the subprime crisis3. Indeed, for the models that were used to measure the risks

of structured finance products linked to subprime loans, the probability that several borrowers

would default simultaneously was zero. According to their assumptions, the possibility of a gen-

eralized crisis did not exist. However, as far as Mandelbrot (1963), the observation suggests that

asset returns represent too many extreme movements to be consistent with this hypothesis. It

is preferable to consider that extreme movements are constitutive of asset price dynamics rather

than statistical aberrations.

On the other hand, classical financial theory is based on the hypothesis of the rationality of

agents, represented by homo œconomicus, who states that agents are rational beings who max-

imize their utility in all circumstances. From this perspective, investors form rational expecta-

tions by using all available information. Keynes (1936) expressed his doubts about the fact that

investors rely solely on the information available to make their investment choices. He did this

in particular through his famous analogy of the "beauty contest" to illustrate the functioning of

stock markets. In his analogy, he draws a parallel with an investor who has every interest to not

take into account his personal tastes but rather choosing according to the consensus and the

majority. Since then, the idea has widely inspired the literature, which shows that investors are

governed by mass psychology, which pushes them to analyze the available information not in an

objective manner but by imitation (Scharfstein and Stein, 1990).

Since the 1990s, numerous studies in behavioral finance have introduced investor psychology

as a determinant of financial market instabilities (Barberis and Thaler, 2003). The analysis of herd

behavior is one of the main elements that explain the formation of crises and bubbles. More

generally, behavioral finance has made it possible, with the help of modeling, to explain market

anomalies by various behavioral biases. One can cite studies that report that investors are subject

to waves of optimism or pessimism that pull prices beyond economic fundamentals (Baker and

Wurgler, 2007).

Risk in finance is more important than conventional theory suggests, and we must not repeat

past mistakes that have prevented the identification of consistent risk measures (Colander et al.,

2009). In an attempt to limit the occurrences and effects of instabilities and particularly extreme

events in financial markets, the financial industry and regulators must continually acquire new

tools to understand how risk is shaped and how to measure it adequately. It is in this perspec-

tive and in response to these challenges that the research work that constitutes this thesis was

developed.

The purpose of this paper is to provide three original contributions to the analysis of market

risk. First, to understand why instabilities occur, it is necessary to consider collective behavior

into the economic theory. This is why the first chapter is a methodological and empirical contri-

bution to the analysis of herd behavior based on data revealing information on the interactions

between investors. In the second chapter we propose an adequate method to measure the risk

of extreme value dependence. The contribution is essentially theoretical but we propose an ap-

plication to measure extreme risks shared by the US equity markets and other developed equity

markets. The third chapter shows that measures of extreme risk dependence can be affected by

3See “Recipe for Disaster: The Formula That Killed Wall Street”, https://www.wired.com/2009/02/wp-quant/
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biases. Building on the theoretical background obtained in the second chapter, we show that

these biases can have a decisive impact on the measure of "crash sensitivity" on asset returns.

With the consequence that these biases can radically change the conclusions about the impact of

this sensitivity on returns.

Chapter 1

In an attempt to understand the formation of financial risk, this first chapter entitled "Estimat-

ing a model of herding behavior on social networks" proposes to study and measure herding be-

havior. These imitation strategies, which aim to adopt the behavior of the crowd without taking

into account their personal information, are the subject of numerous studies that seek to explain

the origin of financial instability. We can cite the pioneering work of Shiller et al. (1984) who

suggested that investors’ choices were the result of fads and trends rather than individual moti-

vations. These behaviors can be the source of positive feedback loops that can lead to a boom

and initiate speculative bubbles and crashes (Lux, 1995; Sornette, 2017). They are also associated

with the "irrational exuberance" described by Shiller (2015), which refers to a profound excess of

collective optimism that drives prices beyond their fundamental value.

This chapter proposes an original approach to study these herd behaviors. We refer to a theo-

retical model to explain the formation of mimetic behavior, whereby each investor forms his own

sentiment from the observation of the sentiment of other investors (Weidlich, 1971; Lux, 1995).

The theoretical model is then tested against empirical observations of investor sentiment. To

measure sentiment, we use very recent data sources, coming from the Internet and more pre-

cisely from the observation of interactions allowed by social networks. Indeed, thanks to the

appearance of new platforms dedicated to financial markets, specialized social networks have

become information media that gather large communities of investors.

The study of investor sentiment, as measured by investor discussions on the Internet, is not

new in the literature (Antweiler and Frank, 2004; Das and Chen, 2007) but its role in the financial

industry has become increasingly important over time4. Not only has the use of social networks

exploded, but also new methods of artificial intelligence and big data allow the processing and

analysis of the large quantities of messages exchanged on these networks. Moreover, recent stud-

ies have shown that these exchanges do indeed reflect a collective sentiment among investors, to

the point of allowing the prediction of future asset returns. (Sprenger et al., 2014; Chen et al., 2014;

Renault, 2017).

Beyond the debate on their usefulness in predicting financial returns, these types of data are a

boon for behavioral research. Indeed, they allow us to confront theoretical models that describe

the formation of investor sentiment with empirical observations. Today, there are still too few

studies devoted to the validation of theoretical models by empirical studies (Cipriani and Guar-

ino, 2014). This first chapter therefore proposes to fill this gap by proposing a methodology to

estimate a theoretical model on the role of sentiment from observations of message exchanges.

This chapter also makes an empirical contribution by providing an interpretation of the estimated

4see https://www.bloomberg.com/professional/blog/can-get-edge-trading-news-sentiment-data/
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parameters on the observed data that gives us an idea of the intensity of contagion in the forma-

tion of sentiment on different U.S. stocks and crypto-currencies.

We are thus able to validate an agent model using sentiment data on individual financial as-

sets. Furthermore, our estimates provide parameter values that are consistent with the hypothe-

ses of contagion in sentiment formation. We then confirm the arguments of recent studies that

show that high levels of volatilities are generated by herding behaviors (Froot et al., 1992; Blasco

et al., 2012; Wang and Wang, 2018). Indeed, our results show that the proposed contagion measure

is significantly higher when high levels of volatilities are observed on financial assets. Moreover,

since the results were obtained dynamically, they allowed us to target the bubble period recently

experienced by the crypto-currency market and show that the intensity of contagion is strong at

the time of the bubble but decreases rapidly afterwards.

The evidence of such herding behavior in crypto-currency markets results in additional risk

exposure for investors. Therefore, its results call for regulators to take contagion into account in

order to adopt measures to limit herd behavior in these markets. These results are also important

from a theoretical point of view since they allow us to validate existing models in the literature

with new empirical observations.

Chapter 2

Even if the agent models studied in the first chapter help us to understand the emergence of the

stylized facts observed on the markets, they do not provide tools to measure risk adequately. It

is in this perspective that this second chapter "Nonparametric estimator of the tail dependence

coefficient: balancing bias and variance" has been developed with Matthieu Garçin.

Measuring risk requires going beyond the traditional "Gaussian" paradigm, for which extreme

risks appear as unlikely outliers. If extreme price changes are neglected in traditional models, so

is the probability of such violent events occurring simultaneously for several assets. However,

extreme risks are rarely the result of isolated behavior, but rather occur as a result of collective

behavior. From this perspective, it is crucial to represent the dependence between different ran-

dom variables to describe this collective behavior. In the easiest case, the dependence between

two financial assets or markets is described by the Pearson correlation coefficient. However, cor-

relation only takes into account linear dependence, and is obviously totally unsuitable for the

management of extreme risks, where dependence is highly non-linear; moreover, dependence is

stronger in periods of instability (Longin and Solnik, 2001; Patton, 2004).

In an attempt to propose an appropriate measure of "extreme" dependence, this chapter fo-

cuses on the tail dependence coefficient (TDC). This coefficient measures the probability that a

random variable observes an extreme value knowing that another random variable also observes

it. In other words, it allows us to calculate the probability that two random variables will experi-

ence a shock simultaneously. In finance, this measure is widely used to measure the probability

of observing a crash simultaneously affecting two international markets or two financial assets

(Malevergne and Sornette, 2003; Poon et al., 2004; Caillault and Guégan, 2005). In particular, its

use is, in fact, important from a portfolio diversification perspective; as such, we can cite (De Luca
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and Zuccolotto, 2011; Wang and Wang, 2018) who develop a methodology to create robust port-

folios such that their assets do not crash together.

The estimation of the TDC can be done directly using a parametric approach. However, the

efficiency of this type of approach depends largely on the choice of the postulated likelihood func-

tion. To gain flexibility, practitioners and academics prefer non-parametric methods. In its non-

parametric version introduced by Joe (1997), the estimation of the TDC requires the choice of an

arbitrary threshold above which the probability of observing joint extreme values must be calcu-

lated. Existing methods use heuristics or graphical observation to select this threshold (Frahm

et al., 2005a; Schmidt and Stadtmüller, 2006; Caillault and Guégan, 2005). However, no theoret-

ical framework has been developed so far to determine a threshold selection rule, even though

this selection is crucial for the quality of the estimation.

The main contribution of this paper consists precisely in the proposal of a theoretical frame-

work for selecting this threshold. The threshold is simply chosen to minimize the mean square

error (MSE), calculated from the bias and variance of the estimator. The performance of the esti-

mator is then evaluated on the basis of simulations and compared to that of the estimators used

in traditional approaches. The results show the consistency of the proposed new estimator, with-

out a clear outperformance compared to the other estimators. The estimation method is finally

applied to evaluate the TDC between the returns of the US equity market index and the returns of

the equity markets indexes of 17 developed countries.

Beyond the methodological contribution, this chapter provides interesting insights and re-

sults for asset managers who wish to diversify the extreme risks of the assets in their portfolios.

This methodology may also be of interest to the regulator who seeks to understand the simulta-

neous sources of risk in order to control and eventually counter systemic risk. It is also important

to note that the developments in this chapter have potential applications beyond finance as the

TDC is applied in different fields such as hydrology and climate (Tawn, 1988; Poulin et al., 2007;

Aghakouchak et al., 2010) but also in astronomy (Scherrer et al., 2009; Sato et al., 2011).

Chapter 3

Financial theory teaches us that any additional risk must be compensated by higher returns

(Campbell, 1996). Much of financial economics is devoted to finding risk factors that explain

financial returns. The probability of observing an extreme event must also be taken into account

as a specific risk factor. While the risks of financial market crashes have long been taken into

account in the study of the expectation of returns on financial assets (Roy, 1952), the series of

financial shocks experienced over the last 30 years has led investors to consider extreme risks as

a factor of its own in the evaluation of the risk premium on financial stocks. According to re-

cent theoretical developments, it is established that the risk premium of assets must incorporate

a component representing crash risk (Rietz, 1988; Barro, 2006; Bollerslev and Todorov, 2011).

In this context, new risk measures called "crash sensitivities" have been proposed very re-

cently in the literature (Chabi-Yo et al., 2018). This type of measure expresses the intensity of a

financial asset’s exposure to a market crash or to several predefined risk factors. This list of fac-
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tors was notably defined by (Chabi-Yo et al., 2021) and corresponds to the risk factors of the Fama

and French (2015) five-factor model with the momentum factor Carhart (1997) and the betting-

against-beta factor (Frazzini and Pedersen, 2014). For a given asset, the crash risk exposure is

statistically assessed as the extreme value dependence between the asset’s returns and the associ-

ated market return. These respective studies offer empirical assessments of the ability of extreme

risk exposure to partially predict future returns. The third chapter, entitled "Spurious tail risk fac-

tors and asset prices", questions the results obtained in this recent literature on the predictive

capacity of the tail risk exposure factors.

The expertise acquired in Chapter 2 on the study of tail dependence has allowed us to identify

the limitations of its estimation, more precisely the existence of a bias in the estimation of the TDC

when a strong level of dependence is observed in the whole distribution. The TDC then captures

a dependence partly fed by the strong global dependence, observed when the linear correlation

is strong.

We first propose theoretical explanations for the link between the TDC and the correlation

coefficient, and then, using simulations, we give an evaluation of the importance of the bias in

the Gaussian case. In a second step, we reproduce the results of previous studies proving that the

exposure to the crash measured with the TDC is a factor contributing to a risk premium. We show

that these results are challenged for different levels of correlation when considering several sub-

portfolios with different values of the correlation coefficient. Our results lead us to believe that the

predictive effect of the crash sensitivity comes from this link to the overall market dependence.

Beyond the methodological contribution, this third chapter provides important information

for practitioners and analysts who seek to identify predictive factors of financial returns, more

particularly related to extreme risks, the demonstration of their validity remaining to be found.
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In this paper, we estimate an agent-based model (ABM) to investigate herding behaviors in

the formation of investor sentiment. We formalize a simple opinion dynamics model in a so-

cial network framework and rely on a numerical method to estimate its parameters. We derive a

sentiment proxy from the weekly aggregation of online messages concerning 15 US stocks and 5

cryptocurrencies. Our empirical results suggest a strong impact of herding behavior on the for-

mation of sentiment toward highly volatile assets. For such assets, we simultaneously find limited

impacts of financial returns and investor attention on the opinion formation process, suggesting

that investor sentiment is explained by social interactions. On the other hand, we find a limited

influence of social interactions on sentiment regarding less volatile assets, whose formation pro-

cess is instead explained by the strong influence of financial returns and investor attention. In

particular, we find that herding behavior was significantly higher and played a major role in the

sentiment formation process regarding cryptocurrencies when the bubble occurred.
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CHAPTER 1: ESTIMATING A MODEL OF HERDING BEHAVIOR ON SOCIAL NETWORKS

1.1 Introduction

Herding behavior in financial markets was initially explained by Keynes’ analogy of the beauty

contest, described as traders’ attempting to forecast “what average opinion expects the average

opinion to be” and was later clarified as the action of “[conforming] with the behavior of the

majority or the average” (Keynes, 1936, 1937). In light of these observations, Shiller et al. (1984)

documented that investors spend a large proportion of their time reading about others’ invest-

ments and gossiping about the successes or failures of their investments. This situation suggests

that opinion formation is a social process governed by individual suggestibility and group pres-

sure. With the current widespread access to social media, such behavior could be stronger than

ever. In fact, online stock message boards have become a popular way for investors to inform

themselves, discuss breaking news and corporate events, and comment on asset returns.

Herding behavior has been well documented in theoretical frameworks of agent-based mod-

els (ABMs). Most of these studies attempt to explain the known “stylized facts” observed in finan-

cial time series, such as clustered volatility and the so-called fat-tail property of asset returns (Lux

and Marchesi, 1999, 2000; Cont and Bouchaud, 2000; Iori, 2002; Zheng et al., 2004), while some

notable models focus more narrowly on investor opinion dynamics (Topol, 1991; Kirman, 1991;

Banerjee, 1992; Orléan, 1995; Lux, 1995, 1998). Although these models can reproduce the empir-

ical behavior of asset prices, they are mostly based on prior economic assumptions. Accordingly,

empirical measurements would be welcome to strengthen theoretical analyses of herding behav-

ior (Cipriani and Guarino, 2014). To this end, many approaches to validating ABMs with empirical

data have recently been proposed1. Accordingly, a growing subset of the literature is focusing on

the estimation of ABMs. The main concern of studies of this kind is to ensure that such models

can accurately reflect real-world data.

This paper attempts to fill this gap by estimating a theoretical model of herding behavior

based on empirical data. Our main contribution is to formalize the simple Weidlich-Lux opinion

dynamics model (Weidlich, 1971; Lux, 1995) in a social network. Indeed, compared to previous

authors Lux (2009, 2012); Shi et al. (2019) we formalize the model in a networked framework and

obtain more consistent results. Moreover, previous studies presented estimates of herding inten-

sity based either on an economic climate survey Lux (2009, 2012) or on stock markets indexes

(Shi et al., 2019). However, there is still no evidence of herding in the sentiment index at the as-

set level. To address this issue, we use sentiment analysis and text mining techniques to derive a

sentiment proxy from the weekly aggregation of online messages concerning 15 US stocks and 5

cryptocurrencies. We rely on numerical methods to estimate the parameters of a model of opin-

ion formation. In line with previous authors who have found that volatility is driven by herding

behavior (Froot et al., 1992; Blasco et al., 2012; Wang and Wang, 2018), we attempt to link herd-

ing intensity with the level of volatility. To the best of our knowledge, this is the first attempt at

estimating an ABM based with a networked model. Our study is also related to recent research

that tries to make sense of the boom and bust cycles in the cryptocurrency market by studying

1For discussions on the empirical validation of ABMs in economics, see Fagiolo et al. (2007) and Lux and Zwinkels
(2018).
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herding behavior (Bouri et al., 2019; da Gama Silva et al., 2019). However, our study is, to the best

of our knowledge, the first to measure herding behavior in the formation of investor sentiment

regarding cryptocurrencies.

Antweiler and Frank (2004) and Das and Chen (2007) were among the first authors to derive a

proxy for investor sentiment from user-generated content in an attempt to explain stock returns.

They used Yahoo! message boards and found no significant relationship with stock returns, vol-

ume, or volatility. Their results were later confirmed by Kim and Kim (2014), who showed that

market sentiment was shaped by previous stock performance. In contrast, later studies showed

that social media is capable of reflecting collective investor sentiment trends and has predictive

power for future asset prices (Sprenger et al., 2014; Chen et al., 2014; Renault, 2017; Guo et al.,

2017). Nonetheless, most research has been concerned with simply deriving a proxy to predict

stock returns, whereas there is little empirical research that describes how investor sentiment it-

self is formed and evolves over time. A preliminary approach to this topic can be found in the

estimation of ABMs of herding behavior in the formation of investor sentiment. Such models at-

tempt to provide empirical validation of ABMs and a measure of herding intensity. Alfarano et al.

(2005, 2008) estimated the parameters of a simple stochastic model of information transmission

initially designed by Kirman (1993) to explain herding behavior in ant colonies. They first derived

the underlying parameters of the model using a parametric approach and then linked the fat-tail

property of the distribution of returns to the intensity of changes in strategy among traders. A

relatively new branch of the literature focuses on the estimation of an interaction model, as ini-

tially proposed in the field of quantitative sociology by Weidlich (1971), to study the structure of

social groups of individuals mutually influencing each other with respect to their decision behav-

ior (Franke, 2008; Lux, 2009, 2012; Ghonghadze and Lux, 2011; Lux, 2018; Shi et al., 2019). Franke

(2008) and Lux (2009) used survey expectations regarding economic growth2 to estimate the pa-

rameters of models of social opinion formation among agents. Ghonghadze and Lux (2011) used

EU business and consumer survey data for 12 European countries and assessed the fitness of a

model with respect to its out-of-sample forecasting performance. Lux (2012) used weekly records

of investor sentiment for the German stock market. More recently, Shi et al. (2019) used data on

investor interactions on Chinese online forums to estimate contagion phenomena in sentiment

formation for different industry sectors.

Notably, however, the main drawback of the Weidlich-Lux model is that it relies on two as-

sumptions: that the number of agents N is relatively small and that the agents are embedded in

a fully connected network, in which each agent interacts with every other agent. Alfarano and

Milaković (2009) documented the lack of robustness of such models. Specifically, their results are

not robust with respect to an increase in the number of agents. As the number of agents increases,

a model of this kind becomes ill-defined; consequently, such models obviously cannot satisfac-

torily capture the interactions among the large numbers of participants found in real financial

markets. Usually, these models consider every individual as the origin of the contagion process

and pay little attention to the underlying network structure that defines the possibility of agent

interaction. This finding is in line with recent studies that have documented the estimation of

2The ZEW Business Climate Index for the German economy.
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a small “effective” number of agents (Lux, 2009). In the present paper, we attempt to overcome

this issue of N -dependence documented by Alfarano and Milaković (2009) by accounting for the

estimated underlying network structure in the model.

The main results of this paper can be summarized as follows:

• We formalize a simple ABM of opinion formation in social networks to overcome the prob-

lem of N -dependence.

• We estimate the herding parameters in the processes of sentiment formation with respect

to 20 financial assets.

• We link the intensity of herding behavior with the volatility of the corresponding asset.

The paper is organized as follows. In Section 2, we formalize a simple ABM of sentiment forma-

tion in a network-based framework and develop a corresponding methodology for estimating the

model parameters. Section 3 describes the data used to derive a sentiment index as well as the

associated stock market data. Section 4 documents the estimation results. Section 5 concludes

the paper.

1.2 Methodology

1.2.1 Agent-Based Model of Investor Interactions

Following Lux (1995, 1998), we adapt the model of opinion formation first introduced in the field

of quantitative sociology by Weidlich (1971). In this general framework, it is assumed that only

two opinions exist in the modeled society. Accordingly, in the following application scenario,

agents are assumed to be investors who can be classified as having either an optimistic (bullish)

opinion when they expect the price to increase or a pessimistic (bearish) opinion otherwise. The

configuration of the population of investors {n+,n−} at time t thus consists of two subgroups with

occupation numbers n+ and n−, corresponding to optimistic (+) and pessimistic (-) opinions,

respectively. The overall population size is 2N = n++n−, and the average opinion of the investors

is given by the following sentiment index:

x = n+−n−
2N

with x ∈ [−1,1] (1.1)

Accordingly, x > 0 (x < 0) corresponds to a situation in which optimistic (pessimistic) in-

vestors are predominant, while x = 0 corresponds to a balanced situation. Agents may change

their opinions over time and, in so doing, switch between the two possible subgroups (+) and (-).

These switches occur based on individual transition probabilities that govern the overall dynam-

ics of opinion formation. We assume a homogeneous population in which each individual has

the same individual transition probabilities per unit time period, denoted by p+ for the transition

from (-) to (+) and p− for the transition from (+) to (-). We define n = (n+−n−)/2 to characterize
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the configuration of the system. It is assumed that the transition rates take exponential forms:

p+(n) = v exp(U )

p−(n) = v exp(−U )
(1.2)

where v is a time scale parameter that determines the frequency of switches between groups and

U (·) is an influence function encompassing the factors that influence the rates of change of the

sentiment transitions. In the basic Weidlich model, U (·) depends solely on the current population

configuration, as described by the opinion index x:

U =α0 +κn =α0 +α1x (1.3)

with α1 = κN and N x = n. The two parameters of this model can be described as follows. (i)

The constant bias factorα0 reflects individual preferences toward an opinion, independent of the

opinions of other people. The probability that an agent will change from opinion (-) to opinion

(+) is increased when α0 > 0, correspondingly reducing the probability of changing from (+) to

(-), whereas the opposite is true for a negative α0. (ii) The contagion parameter α1 (representing

the herding effect) measures the intensity of sentiment contagion or herding behavior. It reflects

group pressure influencing an individual in favor of the opinion of the majority. For a large pos-

itive α1, the probability of transition in the direction of the majority opinion increases, and this

effect increases with increasing |x|.

1.2.2 Network Structure

The basic Weidlich model assumes that individuals observe the current societal configuration

at all times t when forming their opinions. Thus, it implicitly assumes the equivalent of a fully

connected network, in which each agent can interact with every other agent, and it assumes that

the contagion process is driven by the whole system configuration. Accordingly, the impact of

sentiment on the individual transition probabilities expressed in (1.2) can be described by κN x.

However, although this assumption may be true for small N , individuals can participate in only a

limited number of interactions, and thus, as N increases, this assumption becomes less likely to

hold. Assuming now that agents change their opinions under the influence of their neighbors, let

us define the socioconfiguration of the neighbors of agent i as follows:

n(i ,J) = (n+(i ,J)−n−(i ,J))/2 (1.4)

where n+(i ,J) and n−(i ,J) denote the numbers of i ’s neighbors that are in the optimistic (+) and

pessimistic (-) states, respectively3. J represents the information about the network configuration

between agent i and another agent j ( j ̸= i ). To simplify the model, we employ a mean-field

approximation as described by Alfarano and Milaković (2009) and assume that any heterogeneity

in the neighbor configuration J is due solely to negligible fluctuations. Accordingly, we drop the

3nX (i ,J) =∑
j ̸=i DX (i , j ) is the number of neighbors of agent i in state X as defined in terms of an indicator function

DX (i , j ), which is equal to 1 if agent i is connected to agent j in state X .
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term J and use the following approximation:

〈n(i )〉 = (〈n+(i )〉−〈n−(i )〉)/2 (1.5)

Additionally, we further assume homogeneity in the neighbor configuration and replace the

number of neighbors of each agent i with the average number of neighbors, D . In graph theory,

this quantity is called the average degree of the nodes in the network. The degree reflects the like-

lihood that a node will receive information flowing through the network. The socioconfiguration

of the neighbors of agent i can thus be expressed in terms of the average node degree D as follows:

〈n+(i )〉 = D n+
2N

〈n−(i )〉 = D n−
2N

(1.6)

where n+/2N and n−/2N are used to approximate the “unconditional” probability that a neighbor

of agent i is in state (+) or (-), respectively. For convenience, we adopt the notation d = D/2 and

obtain the following approximation of the socioconfiguration of agent i ’s neighbors:

〈n(i )〉 = d
n+−n−

2N
= d x. (1.7)

At this microscopic level, the function U in the expressions for the transition rates can be written

as

〈Ui 〉 =α0 +κ〈n(i )〉 =α0 +α1x (1.8)

with α1 = κd . The main difference between equations (1.3) and (1.8) lies in the effect of the herd-

ing parameter κ, which vanishes for N → ∞ in (1.3). We now give a better insight to the effect

of α1, which now incorporates the coefficient D , to account only for a local interaction among

individuals. The first contribution of this paper lies in this formalization, as it permits a more

realistic model representation and enables us to estimate a suitable model for large N . While Al-

farano et al. (2008) and Alfarano and Milaković (2009) have pointed out the analytical implications

of different network topologies in the ant model of Kirman (1993), we consider a given network

topology in which the average degree D is observed. In this paper, D is measured as the average

number of potential interactions among traders in the considered microblogging platform.

1.2.3 Model Estimation

The probability distribution of the sentiment index is implied by the distribution of the ordered

pairs {n+,n−}. Let us use P ({n+,n−}, t ) to denote the corresponding distribution function at time

t , which we can further abbreviate as P (x, t ) for simplicity of expression. Since we assume that

agents can continuously change their beliefs over time, the dynamics of the opinion index can

be approximated in terms of continuous variables. Weidlich (1971) showed that the equation

of motion can be expressed in the standard form of a one-dimensional Fokker-Planck equation

(given in appendix A). Accordingly, P (x, t ) can be expressed in terms of the socioconfiguration of
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agent i ’s neighbors {〈n+(i )〉,〈n−(i )〉}, as it is assumed that p(〈n(i )〉, t ) follows the same dynamics

∂P (x, t )

∂t
=− ∂

∂x
[A(x;θ)P (x, t )]+ 1

2

∂2

∂x2 [D(x;θ)P (x, t )] (1.9)

with a drift coefficient

A(x;θ) = (1−x)p+(d x)− (1+x)p−(d x) (1.10)

and a “fluctuation coefficient”

D(x;θ) = 1

d

[
(1−x)p+(d x)+ (1+x)p−(d x)

]
(1.11)

The task is to estimate the parameters θ = {α0,α1} from a sample of T observations X0, · · · , XT .

To obtain the parameter estimates, we first need to estimate the transient density function P (x, t )

of the sentiment index x at time t . Following Lux (2009, 2012), we apply a numerical maximum

likelihood approach based on numerical solutions of the Fokker-Planck equation, as previously

suggested by Jensen and Poulsen (2002) and Hurn et al. (2007). For estimation, we use a finite

difference scheme based on the Crank-Nicolson method, as described in appendix B. Thus, the

estimate of θ is obtained by maximizing the log-likelihood function of the observed sample:

logL (θ) = P0(x0;θ)+
T∑

i=1
logP (xi | xi−1;θ) (1.12)

where P0 (x0;θ) is the initial density, which can be omitted when estimating the log-likelihood

for the whole sample since it has only a small impact on the entire function, and P (xi | xi−1;θ) is

the value of the transitional probability density function (PDF) at (xi , ti ) for a process starting at

(xi−1, ti−1) and evolving at (xi , ti ).

Figure 1.1 shows multiple equilibrium shapes of the transient density function for various val-

ues of the model parameters for d = 25, xi−1 = 0, and v = 1.5 with an increasing herding parame-

ter (α1); when this parameter is zero, the sentiment is concentrated around theα0 parameter, and

the dispersion increases with increasing α1. The third graph in Figure 1.1 shows the typical “bi-

modal” density observed when the bias is null and the herding parameter is high. The displayed

configuration illustrates that a balanced opinion configuration is improbable. Figure 1.2 shows

two examples of numerical estimates of the transient density function with parameter values of

v = 1.5 and d = 25; for the first graph, α0 = 0.1 and α1 = 1.2, while for the second graph, α0 = 0

and α1 = 1.5.
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Figure 1.1: Transient density function for various parameter values.
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Figure 1.2: Numerical approximation of the transient density function.
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1.3 Empirical Data

1.3.1 Sentiment Index Estimation

Business climate surveys and sentiment indices have received increasing attention from aca-

demics interested in behavioral finance studies. In addition, microblogging platforms currently

host large communities of investors. StockTwits (ST) is the most popular stock-related social me-

dia platform, with more than 2 million active users since 2019. ST has implemented a feature that

allows users to label their own messages as “Bullish” or “Bearish” to express positive or negative
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opinions, respectively, about an asset or the market. Users incorporate “cashtags”, a portman-

teau of cash+hashtag, composed of a dollar sign and a stock ticker to refer to a particular stock

(for instance, $AAPL for Apple). In this study, we focused on 15 stocks among the most discussed

financial assets and 5 cryptocurrencies and extracted every message containing the correspond-

ing cashtags. To avoid missing values, we selected only trending stocks that were sufficiently dis-

cussed throughout the entire considered sample period.

Our sample period for model estimation is composed of 3 years of data, starting on 2018-01-01

and lasting until 2021-01-01. A total of 38.5% of messages in our sample were already preclassi-

fied by users as “Bullish”, and 10.0% were preclassified as “Bearish”. Table 1.1 provides summary

statistics for our data. Every user who mentioned the assets under consideration at least once is

included in the database. To compute an estimate of the sentiment index x, we employed sen-

timent analysis (SA) to classify messages as “Bullish”, “Bearish” or “Neutral”. We constructed a

balanced training dataset of preclassified messages extracted from the ST platform, consisting of

approximately 10 million messages classified as “Bullish” and 10 million classified as “Bearish”.

Following Oliveira et al. (2016) and Renault (2017), our first step of preprocessing was to edit

all control codes4 to avoid counting them as sentiment values. For the inclusion of a message

in the dataset, we imposed a minimum length of one word, not counting edited tags replacing

control codes. We preserved punctuation and emojis, as they have been found to increase the

precision of classification in previous studies (Renault, 2020; Mahmoudi et al., 2018).

We chose a simple naïve Bayes (NB) classifier, as recent studies have indicated that such clas-

sifiers show better performance than more sophisticated and time-consuming algorithms for sen-

timent analysis (Renault, 2020). We used a bag-of-words model from the sklearn Python library.

The NB classifier expresses the relationship between a label y (“Bullish” or “Bearish”) and a given

dependent feature vector w1, ..., wn of words (under the assumption that the features are mutually

independent). The probability of a label given a list of words can be expressed as

P (y |w1, ..., wn) = P (y)
∏n

i=1 P (wi |y)

P (w1, ..., wn)
. (1.13)

We collected a sample of 30 million preclassified messages, each of which was labeled as pos-

itive or negative by the users. To create a balanced dataset, we used random undersampling to

reduce the number of messages to 20 million, with an equal number of positive and negative ex-

amples. We then divided the dataset into training and testing sets. To train the classifier, we used

k-fold cross-validation with k = 5 groups to train the model on the training set. After evaluat-

ing the model’s performance by comparing the predicted labels to the true labels, we found that

it achieved an accuracy of 75%, similar to what has been reported in previous studies (Renault

(2017, 2020)).

Once the model was trained, we used it to classify the remaining messages as “Bullish”, “Bear-

ish” or “Neutral”. The classification results are shown in Table 1.2 for each asset. Prefiltered mes-

sages containing no textual information were classified as “Neutral”. To assign a sentiment score

4All instances of usernames (@john...), URL links (http, https...), hashtags (#business) and cashtags ($AAPL,
$MSFT...) were thus substituted with dedicated tags: USERTAG, URLTAG, HASHTAG and CASHTAG.
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based on the predicted probabilities, we use a simple thresholding method, as proposed by Re-

nault (2017). For example, if the model outputs a probability of 0.8 for a positive sentiment label,

we assign a sentiment score of 0.8 to that sample. To eliminate messages with low probability

of classification, we do not consider messages with a probability lower than 20%. Based on this

approach, we define the following sentiment measure for a given message, in accordance with its

classification probability:

S = 2
(
P (y |x1, ..., xn)−0.5

)
(1.14)

where S ∈ [−1,1]. The next step was to classify users by aggregating the sentiments of their mes-

sages into a weekly average5. If the weekly average for user i was greater than 0.2, user i was

classified as being bullish at time t . If the weekly average was less than -0.2, then user i was clas-

sified as bearish. Once the individual sentiments aggregated to the weekly level had been properly

classified, we computed the overall sentiment index in the following manner:

xt =
nt+−nt−
nt++nt−

(1.15)

where nt+ is the total number of individuals with positive sentiments in time interval t and nt− is

the number of individuals with negative sentiments. We assumed that equal numbers of neutral

individuals could be assigned to the optimistic and pessimistic states; then, the resulting senti-

ment index xt could be directly used in the model introduced in Section 2. We also assumed that

every market participant had the same number of neighbors corresponding to the number of po-

tential interactions measured as the average in-degree of the network. With the networked data

at our disposal, we fitted the value D in the model to the average in-degree reported in Table 1.1

of the corresponding users in the interacting network.

5Unfortunately, due to limitations in current computational resources, we had to aggregate the data to weekly fre-
quency to reduce the number of observations. The use of daily data would have dramatically increased the computa-
tional time of the estimation.
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Table 1.1: Social sample summary statistics.

Asset
Users

(total)

Posts

(total)

Labeled

Positive

(total)

Labeled

Negative

(total)

Classified

Positive

(total)

Classified

Negative

(total)

In-degree

(mean)

Out-degree

(mean)

AAPL 86.4 1,184.4 379.0 156.7 494.6 494.1 38.20 282.88

AMD 58.8 1,116.4 468.5 112.3 568.2 347.2 39.72 341.18

AMZN 60.3 827.3 266.6 82.6 369.6 326.6 44.43 428.61

FB 53.3 575.7 169.9 78.6 240.1 243.4 45.95 431.35

GOOG 19.8 100.3 26.0 9.0 47.4 38.3 55.85 819.97

MSFT 43.5 339.4 125.5 22.5 178.5 107.3 44.18 563.71

NFLX 44.7 447.1 121.6 66.1 185.7 190.8 48.60 516.61

NVDA 36.9 331.8 106.9 34.4 160.6 117.8 47.00 560.56

TSLA 117.1 2,207.5 843.9 350.6 878.6 946.1 33.19 251.95

TWTR 30.4 223.1 67.2 23.0 103.5 83.0 53.11 630.89

BIOC 22.5 218.4 110.1 7.4 140.4 41.7 46.74 343.96

FCEL 27.1 403.2 221.3 14.3 255.5 75.2 43.73 533.13

GEVO 18.8 199.3 103.5 7.6 123.6 40.4 53.46 424.22

IBIO 37.6 760.3 432.8 22.9 480.6 135.5 36.53 250.78

XSPA 30.5 548.0 288.4 15.2 364.3 96.4 36.47 421.65

BTC.X 49.5 1,292.3 542.2 157.8 538.8 485.9 40.95 403.03

LTC.X 13.6 173.8 69.8 10.9 89.8 50.1 52.41 478.34

ETH.X 18.9 202.9 77.1 13.2 106.0 59.4 47.75 561.59

TRX.X 9.8 167.1 72.3 9.4 92.5 42.1 49.76 281.72

XRP.X 17.8 192.1 81.2 13.8 98.2 54.0 44.18 354.01

Note: This table shows descriptive statistics for the numbers of users and the numbers of mes-

sages (in thousands) posted on the ST platform. The statistics are compiled by asset. Posts

could be labeled as either positive (bullish) or negative (bearish) by users and the remaining

were automatically classified using the SA methodology. This table also presents the average

in-degree and out-degree for each stock, which correspond to the average number of following

and the average number of followers per user. These statistics concern the sample period from

2018-01-01 to 2021-01-01.

1.3.2 Stock Market Data

We extracted weekly closing price data from the Bloomberg terminal, where yt denotes the weekly

return at time t . Table 1.2 reports annualized information on asset returns across the sample. The

last column provides the correlation between investor sentiment and asset returns. The financial

returns and sentiment index for every asset are also visualized in Figures 1.3 and 1.4.

Herd Behavior, Tail Risk Exposure and Asset Prices 30



CHAPTER 1: ESTIMATING A MODEL OF HERDING BEHAVIOR ON SOCIAL NETWORKS

Table 1.2: Stock market data statistics.

Asset
Company

Name

Returns

(Annualized)

Std. Dev.

(Annualized)
Skewness

Excess

Kurtosis
ρ(x, y)

AAPL Apple 0.43 0.32 1.17 0.15 0.36

AMD AMD 0.83 0.54 0.95 -0.15 0.39

AMZN Amazon.com 0.37 0.30 1.16 0.03 0.41

FB Facebook 0.19 0.35 0.79 -0.05 0.40

GOOG Alphabet 0.19 0.26 1.02 0.24 0.38

MSFT Microsoft 0.35 0.25 0.57 -0.99 0.32

NFLX Netflix 0.40 0.41 0.63 -0.34 0.33

NVDA NVIDIA 0.40 0.44 1.22 0.37 0.45

TSLA Tesla 1.04 0.69 2.07 3.47 0.49

TWTR Twitter 0.41 0.52 0.76 0.40 0.54

BIOC Biocept -0.28 1.60 2.86 9.89 0.35

FCEL FuelCell Energy 1.51 2.51 0.97 -0.50 0.28

GEVO Gevo 0.47 1.45 1.85 2.82 0.29

IBIO iBio 2.23 4.37 1.85 5.69 0.17

XSPA XpresSpa -0.42 1.67 2.30 4.91 0.29

BTC-USD Bitcoin/USD 0.52 0.74 2.01 6.65 0.63

LTC-USD Litecoin/USD 0.27 0.99 1.81 3.36 0.57

ETH-USD Ethereum/USD 0.50 1.01 1.80 3.41 0.63

TRX-USD Tronix/USD 1.19 2.32 4.60 31.66 0.37

XRP-USD Ripple/USD -0.10 1.21 4.60 27.86 0.45

Note: This table reports summary statistics for assets as computed from the daily returns. We

report the correlation ρ(x, y) between stock returns and investor sentiment at a weekly frequency

for 156 observations. These results concern the sample period from 2018-01-01 to 2021-01-01.
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Figure 1.3: Weekly financial returns and sentiment index.
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Figure 1.4: Weekly financial returns and sentiment index.
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1.4 Empirical Results

1.4.1 Model Estimation

This section presents the results of estimating an ABM on a sample of 156 weekly observations of

20 financial assets during the time period from 2018-01-01 to 2021-01-01. Following our empirical

measurement, the parameters were estimated using a social network topology featuring the av-

erage in-degree centrality given in Table 1.1. The resulting model provides the ability to estimate

the influence of exogenous effects on the opinion formation process. Accordingly, we adapted the

influence function U (·) to incorporate asset returns and investor attention. Investor attention on

social media is here measured as the scaled number of users posting in the current period. The

parameters were estimated in three different frameworks, as follows:

M1: We estimated U =α0+α1xt , such that the opinion dynamics depend solely on the bias

α0 and the herding parameter α1.

M2: We modified the model to U = α0 +α1xt +α2 yt , where α2 was added to capture the

effect of asset returns y on the opinion formation process.

M3: We further modified the influence function of M2 to obtain U = α0 +α1xt +α2 yt zt ,

where the effect of financial returns y scales with the level of investor attention z.

The results of the first framework, M1, are shown in Table 1.3 below. The standard errors of the

estimated parameters, computed using the negative Hessian matrix evaluated at the maximum

likelihood estimator (MLE), are reported in parentheses. The assets are sorted in descending or-

der of the estimates of the herding parameter α1. These estimates, ranging from 0.49 to 1.08,

suggest a strong influence of investor interactions in the formation of sentiment. The α1 param-

eter is relatively high for assets that suffered a high level of volatility (reported in Table 1.2), even

tending toward 1, which suggests a bimodal density in which predominantly bullish and pre-

dominantly bearish states are equally probable. However, BIOC, IBIO and the 5 cryptocurrencies

exhibit higher levels of positive bias, indicating that investors might have been more likely to have

a fixed bias toward a positive opinion of these assets. The sentiment index is therefore higher for

these financial assets.
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Table 1.3: Maximum likelihood estimation for M1: U =α0 +α1x.

Stock ν α0 α1 logL AIC BIC

XSPA 1.511 (0.244) 0.060 (0.023) 1.083 (0.043) -18.957 43.915 53.026

FCEL 0.535 (0.076) 0.079 (0.055) 1.071 (0.089) -86.73 179.46 188.57

GEVO 0.917 (0.134) 0.072 (0.028) 0.999 (0.056) -34.516 75.032 84.143

BIOC 0.778 (0.124) 0.122 (0.044) 0.951 (0.078) -67.033 140.067 149.178

IBIO 0.542 (0.083) 0.187 (0.078) 0.894 (0.123) -91.894 189.787 198.898

NVDA 0.266 (0.036) 0.002 (0.058) 0.891 (0.130) -95.742 197.484 206.595

MSFT 0.187 (0.028) 0.003 (0.130) 0.888 (0.248) -125.297 256.595 265.706

TRX-USD 1.629 (0.309) 0.106 (0.022) 0.878 (0.049) -24.835 55.67 64.781

ETH-USD 0.458 (0.064) 0.118 (0.048) 0.858 (0.092) -78.653 163.306 172.417

AMZN 0.215 (0.029) 0.003 (0.063) 0.773 (0.164) -107.807 221.613 230.724

LTC-USD 0.559 (0.085) 0.160 (0.045) 0.745 (0.090) -72.58 151.16 160.271

BTC-USD 0.509 (0.073) 0.105 (0.031) 0.695 (0.082) -64.297 134.594 143.705

NFLX 0.372 (0.049) 0.053 (0.027) 0.652 (0.094) -72.512 151.025 160.136

AAPL 0.142 (0.018) 0.004 (0.055) 0.576 (0.183) -134.706 275.412 284.522

TSLA 0.272 (0.036) 0.044 (0.031) 0.576 (0.113) -93.761 193.522 202.633

XRP-USD 0.491 (0.075) 0.226 (0.052) 0.558 (0.111) -82.286 170.571 179.682

TWTR 0.724 (0.126) 0.174 (0.033) 0.519 (0.088) -61.442 128.883 137.994

FB 0.337 (0.046) 0.092 (0.033) 0.517 (0.110) -85.922 177.845 186.956

GOOG 0.317 (0.043) 0.117 (0.040) 0.514 (0.119) -89.417 184.834 193.945

AMD 0.212 (0.028) 0.232 (0.085) 0.488 (0.174) -124.106 254.212 263.323

Note: This table reports the results for M1. The standard errors (reported in parentheses) are

computed using the negative Hessian matrix evaluated with the MLE. These results concern 156

observations over the sample period from 2018-01-01 to 2021-01-01.
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For the M2 estimates in Table 1.4, the herding intensity α1 is lower and most often falls in the

standard error interval around zero. In most cases, the influence of interactions vanishes when

financial returns are considered as an additional explanatory variable. Accordingly, we observe

large values for α2, suggesting that the sentiment process is influenced by the financial returns. It

could be that the sentiment dynamics are closely related to the stock prices. However, for assets

that suffered high volatility as well as TRX, the herding parameter α1 remains near 1, while the

effect of the financial returns as indicated by α2 is limited. These results cannot be explained by

differences in the correlation coefficient between the returns and the sentiment index (Table 1.2).

For instance, we observe similar values of the correlation between returns and sentiment for FCEL

(ρ = 0.28) and MSFT (ρ = 0.32). However, FCEL exhibits the lowest estimated value of α2 (0.293

+/- 0.069), whereas MSFT exhibits the highest estimated value of α2 (6.794 +/- 1.256). This obser-

vation suggests that investor interaction has a stronger influence on the formation of opinion for

highly volatile assets than for other financial assets. We also observe positive values of the bias

α0, consistent with the results for M1.

Table 1.4: Maximum likelihood estimation for M2: U =α0 +α1x +α2 y .

Stock ν α0 α1 α2 logL AIC BIC

XSPA 1.455 (0.233) 0.087 (0.024) 1.039 (0.045) 0.293 (0.069) -30.247 66.493 75.604

FCEL 0.522 (0.076) 0.120 (0.057) 0.996 (0.094) 0.207 (0.067) -92.554 191.107 200.218

GEVO 0.829 (0.119) 0.092 (0.031) 0.953 (0.061) 0.318 (0.079) -44.001 94.003 103.114

BIOC 0.722 (0.118) 0.189 (0.049) 0.838 (0.087) 0.402 (0.094) -79.12 164.24 173.351

IBIO 0.493 (0.073) 0.247 (0.083) 0.794 (0.131) 0.362 (0.041) -94.203 194.407 203.518

TRX-USD 1.111 (0.189) 0.139 (0.028) 0.789 (0.062) 0.557 (0.106) -46.449 98.898 108.009

NFLX 0.256 (0.034) 0.047 (0.033) 0.500 (0.117) 3.160 (0.564) -97.854 201.709 210.82

GOOG 0.216 (0.029) 0.153 (0.049) 0.255 (0.154) 5.622 (0.953) -117.109 240.219 249.33

XRP-USD 0.315 (0.046) 0.347 (0.073) 0.254 (0.158) 1.236 (0.229) -115.17 236.34 245.451

FB 0.189 (0.026) 0.113 (0.044) 0.218 (0.154) 5.457 (0.843) -124.272 254.543 263.654

TWTR 0.429 (0.069) 0.264 (0.046) 0.171 (0.130) 2.383 (0.396) -95.711 197.422 206.533

LTC-USD 0.284 (0.041) 0.407 (0.073) 0.168 (0.155) 2.070 (0.298) -123.539 253.078 262.189

NVDA 0.162 (0.022) 0.243 (0.069) 0.149 (0.178) 4.857 (0.734) -139.244 284.488 293.599

TSLA 0.171 (0.023) 0.051 (0.038) 0.116 (0.160) 2.879 (0.450) -131.081 268.163 277.274

ETH-USD 0.199 (0.026) 0.446 (0.083) 0.111 (0.168) 2.802 (0.329) -146.543 299.086 308.197

AMD 0.135 (0.019) 0.332 (0.105) 0.075 (0.227) 3.770 (0.633) -154.737 315.474 324.585

AAPL 0.092 (0.012) 0.048 (0.063) 0.014 (0.231) 7.751 (1.156) -170.341 346.682 355.792

AMZN 0.141 (0.019) 0.216 (0.070) -0.023 (0.207) 7.132 (1.115) -147.42 300.84 309.951

BTC-USD 0.183 (0.025) 0.305 (0.057) -0.127 (0.171) 4.172 (0.503) -141.086 288.172 297.283

MSFT 0.146 (0.021) 0.491 (0.124) -0.215 (0.259) 6.794 (1.256) -157.118 320.237 329.347

Note: This table reports the results for M2. The standard errors (reported in parentheses) are

computed using the negative Hessian matrix evaluated with the MLE. These results concern 156

observations over the sample period from 2018-01-01 to 2021-01-01.

Table 1.5 displays the results of the third framework. The Akaike information criterion (AIC)

and the Bayesian information criterion (BIC) both indicate better performance of M3, which in-
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corporates the interaction with investors’ attention, over M2. These results suggest an increase

in explanatory power when the investor attention component is added. We see strong consis-

tency between the M2 and M3 parameters except for some cases in which the herding parameter

becomes significantly higher than 0 but remains relatively small.

Table 1.5: Maximum likelihood estimation for M3: U =α0 +α1x +α2 y × z.

Stock ν α0 α1 α2 logL AIC BIC

XSPA 1.521 (0.246) 0.062 (0.023) 1.076 (0.043) 0.197 (0.109) -20.959 47.918 57.029

FCEL 0.536 (0.077) 0.084 (0.055) 1.058 (0.089) 0.140 (0.116) -87.474 180.948 190.059

GEVO 0.910 (0.133) 0.072 (0.029) 0.995 (0.057) 0.169 (0.125) -35.465 76.93 86.04

BIOC 0.768 (0.122) 0.130 (0.045) 0.930 (0.079) 0.451 (0.195) -69.868 145.737 154.848

IBIO 0.541 (0.084) 0.195 (0.078) 0.878 (0.124) 0.078 (0.057) -92.913 191.826 200.937

TRX-USD 1.513 (0.279) 0.111 (0.023) 0.868 (0.051) 1.272 (0.485) -28.698 63.397 72.508

NFLX 0.302 (0.039) 0.054 (0.030) 0.592 (0.105) 5.998 (1.262) -86.875 179.751 188.861

LTC 0.448 (0.066) 0.228 (0.052) 0.590 (0.107) 2.550 (0.497) -90.567 187.133 196.244

ETH-USD 0.325 (0.043) 0.247 (0.061) 0.587 (0.118) 4.715 (0.685) -110.73 227.46 236.571

XRP-USD 0.434 (0.065) 0.263 (0.057) 0.454 (0.123) 1.817 (0.417) -93.965 193.931 203.042

TSLA 0.240 (0.032) 0.050 (0.033) 0.378 (0.128) 4.106 (0.886) -107.493 220.986 230.097

FB 0.265 (0.034) 0.120 (0.038) 0.374 (0.128) 7.072 (1.146) -105.486 216.972 226.083

GOOG 0.236 (0.031) 0.153 (0.047) 0.327 (0.144) 11.825 (2.153) -110.728 227.455 236.566

NVDA 0.228 (0.030) 0.240 (0.060) 0.302 (0.151) 6.702 (1.145) -120.347 246.694 255.804

TWTR 0.494 (0.080) 0.262 (0.043) 0.237 (0.120) 4.227 (0.717) -89.031 184.062 193.173

AMD 0.177 (0.024) 0.312 (0.094) 0.234 (0.199) 3.855 (0.835) -138.401 282.801 291.912

BTC-USD 0.284 (0.037) 0.249 (0.047) 0.184 (0.134) 5.259 (0.648) -116.219 238.437 247.548

AAPL 0.119 (0.015) 0.079 (0.057) 0.179 (0.203) 14.104 (2.653) -153.332 312.665 321.776

AMZN 0.187 (0.025) 0.215 (0.062) 0.131 (0.179) 8.510 (1.659) -130.514 267.029 276.14

MSFT 0.180 (0.026) 0.501 (0.115) -0.126 (0.238) 15.982 (3.617) -146.402 298.805 307.916

Note: This table reports the results for M3. The standard errors (reported in parentheses) are

computed using the negative Hessian matrix evaluated with the MLE. These results concern 156

observations over the sample period from 2018-01-01 to 2021-01-01.

Considering all models, we observe higher values of the parameter ν and a strong herding

intensity α1 for assets such as XSPA and TRX, which are linked to a higher propensity toward sen-

timent changes. For these assets, switches between extremely bullish and bearish configurations

are more likely to occur. This tendency is also coupled with relatively small values of the bias α0

and of α2, indicating that investor sentiment is more likely an auto-generated process fed only by

investor interactions.

1.4.2 Herding Intensity and Volatility Levels

In previous studies, it has been shown that a strong implication of herding behavior was linked

to the generation of stylized facts such as clustered volatility (Lux and Marchesi, 2000; Wang and

Wang, 2018; Blasco et al., 2012). In an attempt to explain the differences in the herding estimates,

we link the parameters with the volatility level. Figure 1.5 presents a graphical visualization of the

Herd Behavior, Tail Risk Exposure and Asset Prices 36



CHAPTER 1: ESTIMATING A MODEL OF HERDING BEHAVIOR ON SOCIAL NETWORKS

estimated parameters α0, α1, and α2 for M3, where error bars are used to represent the standard

errors. The parameter values are plotted against the corresponding standard deviation of the

financial assets. We observe that assets with high values of the herding parameterα1 experienced

a stronger level of volatility. The influence of the financial returns, as reflected in the estimated

α2, decreases when assets exhibit higher standard deviations. However, no clear patterns emerge

from the analysis of the bias parameter α0. Overall, these results are consistent with those of

Blasco et al. (2012), who show that herding behavior is linked to higher volatility levels.

Figure 1.5: Estimated parameters and the standard deviation of returns.
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As stated by Bouri et al. (2019), a static analysis of cryptocurrency markets can be misleading.

Therefore, we estimated M3 in a dynamic framework for the five cryptocurrencies. At the end

of the 2017 and the beginning of 2018, the cryptocurrency market experienced an outbreak of

volatility; this period has been identified as a bubble period. Figure 1.6 presents the results of

a dynamic estimation of M3 for the 5 cryptocurrency assets, in which the model was estimated

every six months using a moving window of two years. We observe a decrease in the herding

intensity after the bubble and a significant increase in the bias toward positive opinions. The

herding parameter α1 was initially approximately 0.5 for BTC, ETH and XRP and 0.75 for LTC

and then decreased significantly toward zero. Simultaneously, the process of opinion formation

appeared to be increasingly influenced by the bias α0, which increased significantly, except for

TRX, which continued to exhibit the same pattern of a relatively null bias and a high value of the

estimated herding parameter. The influence of financial returns and investor attention rose just

after the bubble burst, with the effect more than doubling for all 5 cryptocurrencies. In contrast,

investors were more likely to ignore financial returns in favor of sentiment-forming interactions

during the bubble outbreak. This result is consistent with those of previous studies that show high

levels of herding intensity in the new expanding phase of the cryptocurrency market due to the

extreme level of volatility (Bouri et al., 2019; Chang et al., 2000).
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Figure 1.6: Dynamic estimation of M3 and the standard deviation of returns.
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1.5 Discussion and Conclusion

This paper has investigated the explanatory power of an ABM for the opinion formation process

for investors’ sentiments toward various financial assets. Our framework, which considers a social

network topology, overcomes the issue of N -dependence reported in the previous literature. We

use SA and text mining techniques to build a weekly aggregation of online messages as a proxy for

the sentiment index of investors. Whereas most previous research has emphasized the derivation

of a proxy to predict stock returns, we focus on the process underlying the formation of investor

sentiment. We find that investor interactions have strong implications for sentiment formation

toward volatile stocks, while sentiment toward other financial assets is predominantly explained

by financial returns and investor attention. Some assets show evidence of an autogenerated pro-

cess of sentiment formation in which extreme bullish or bearish configurations are more likely to

occur. Finally, we estimate our model in a dynamic framework for the five main cryptocurren-

cies that experienced a bubble in late 2017. Our results indicate a stronger influence of herding

behavior during the bubble period. The effect of investors’ interactions subsequently decreased

immediately after the bubble burst, and the sentiment process came to be increasingly influenced

by a bias toward positive sentiment, financial returns and investors’ attention.

Overall, these results have stong implications for the asset pricing literature. In particular, they

call into question the validity of the efficient market hypothesis (Fama, 1970) based on the ratio-

nality of traders who are supposed to make their decision independently of each other. Financial

assets that suffer high-intensity herding behavior will not be priced according to the available
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information and thus expose investors to additional risk.

While we have linked herding intensity to the level of volatility, the corresponding implica-

tions are not clearly established. In future works, we plan to investigate the herding intensity

for a larger number of stocks and link it to stock characteristics such as capitalization, financial

ratios, and the macroeconomic environment. This broader analysis will help us to understand

where and when the sentiment contagion process occurs. Additionally, while we have assumed

here that the contagion process is the same for every investor, recent literature has shown that

in fact, opinion dynamics tend to be shaped only by relatively few important nodes in a network

(Chen et al., 2021). In particular, the influence of financial “gurus” has been proven by Wang and

Wang (2018) to lead to more intensive herding behavior. This result may be stronger in the cryp-

tocurrency market, where, as it has already been observed, even a single individual can initiate

bubble-like behavior (Shahzad et al., 2022). This phenomenon could be analyzed by considering

different types of investors in our model, such as “opinion leaders”, who have higher in-degree

centrality in the network and therefore are able to reach more individuals in the contagion pro-

cess. Finally, our analysis could be conducted with either daily or monthly aggregation to explore

whether the estimation results of our model are different when different temporal frequencies are

considered.

1.A Appendix

1.A.1 Fokker-Planck Equation

Let p(n, t ) be the probability that the investor community has a socioconfiguration of {n+,n−} at

time t . Weidlich (1971) developed a formalization to express the temporal change in the probabil-

ity distribution p(n, t ) via the Fokker-Planck equation. This formalization consists of expressing

the transition probabilities for the socioconfiguration in terms of the individuals’ transition prob-

abilities as given in (1.2):

w(n → (n +1)) ≡ w↑(n) = n−p+(n) = (N −n)p+(n)

w(n → (n −1)) ≡ w↓(n) = n+p−(n) = (N +n)p−(n)
(A.1)

where n → (n +1) is equivalent to {n+,n−} → {n++1,n−−1} and corresponds to a transition from

opinion (+) to opinion (-) by one of the individuals with opinion (+). This transition probability

can also be expressed in terms of the sentiment index defined in (1.1) rather than in terms of the

configuration of the whole system:

w↑(n) = NW↑(x) = N (1−x)p+(N x)

w↓(n) = NW↓(x) = N (1+x)p−(N x).
(A.2)

The transition probabilities for the socioconfiguration (1.2) can be generalized in terms of the

following master equation (Weidlich (1971)):

∂p(n, t )

∂t
=− ∂

∂n

([
w↑(n)−w↓(n)

]
p(n, t )

)+ 1

2

∂2

∂n2

([
w↑(n)+w↓(n)

]
p(n, t )

)
(A.3)
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where x = n
N and∆x = ∆n

N = 1
N . By treating x as a continuous variable, we can transform (A.3) into

a partial differential equation by expanding the right-hand side as a Taylor series up to terms of

the second order. The probability distribution function becomes P (x, t ) = N p(n, t ) and yields the

following Fokker-Planck equation:

∂P (x, t )

∂t
=− ∂

∂x
[A(x)P (x, t )]+ 1

2

1

N

∂2

∂x2 [D(x)P (x, t )] (A.4)

where A(x) is the drift coefficient, defined as

K (x) =W↑(x)−W↓(x) (A.5)

and D(x) the fluctuation coefficient, defined as

Q(x) = 1

N

[
W↑(x)+W↓(x)

]
. (A.6)

The same formalization can be applied to p(〈n(i )〉, t ), the probability that agent i ’s neighbors have

the socioconfiguration {〈n+(i )〉,〈n−(i )〉} at time t . The transition probabilities for the sociocon-

figuration and the sentiment index given in (A.1) and (A.2) now become

w↑(〈n(i )〉) = D n+
2N p+(〈n(i )〉) = D(1−x)p+(〈n(i )〉)

w↓(〈n(i )〉) = D n−
2N p−(〈n(i )〉) = D(1+x)p−(〈n(i )〉) (A.7)

W↑(x) = (1−x)p+(d x)

W↓(x) = (1+x)p−(d x)
(A.8)

where x = 〈n(i )〉/d and P (x, t ) = d p(〈n(i )〉, t ). We recover the probability distribution of the sen-

timent index P (x, t ) in the same manner.

1.A.2 Finite Difference Method

As mentioned by Lux (2009), in such a model of interacting agents, no closed-form solution to

the Fokker-Planck equation is usually available. Accordingly, we must rely on numerical approxi-

mation techniques. The most common approaches to numerical estimation for solving differen-

tial equations are based on the finite difference (FD) method. Lux (2009) showed that for such a

model, high-accuracy approximation can be achieved by means of the Crank-Nicolson method

combining forward and backward differences. Consider the following Fokker-Planck equation:

∂ f (x, t )

∂t
=− ∂

∂x
[A(x;θ) f (x, t )]+ 1

2

∂2

∂x2 [D(x;θ) f (x, t )] (B.1)

where A(x;θ) and D(x;θ) are the drift and diffusion coefficient, of the process and θ is the set

of unknown parameters to be estimated. In the FD scheme, both the spatial domain (support

of the sentiment index x ∈ [−1,1]) and the time interval are discretized, or divided into a finite

number of steps. We consider a spatial grid with a distance step h between x j = x0 + j ·h, where

j = 0,1, . . . , Nx , and time steps of length k from t = 0 to the final time T : ti = i k with i = 0, ..., Nt
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and k = T
Nt

. With f i
j denoting the transient density at (x j , ti ), partial derivatives are approximated

using the Taylor series approach. The following FD approximations are selected for the partial

derivatives:
∂ f (x, t )

∂t
≈

f i+1
j − f i

j

k
(B.2)

∂ f (x, t )

∂x
≈

f i+1
j+1 − f i+1

j−1

2h
(B.3)

∂2 f (x, t )

∂x2 ≈
f i+1

j+1 −2 f i+1
j + f i+1

j−1

h2 . (B.4)

The Crank-Nicolson method consists of taking the average of both the forward and backward

difference approximations at intermediate points
(
i + 1

2

)
k and

(
j + 1

2

)
h. For the model equation,

the Crank-Nicolson scheme yields

f i+1
j − f i

j

k = 1
2

(
A j+1 f i+1

j+1 −A j−1 f i+1
j−1

2h + A j+1 f i
j+1−A j−1 f i

j−1

2h

)
+1

2

(
1
2 D j+1 f i+1

j+1 −D j f i+1
j + 1

2 D j−1 f i+1
j−1

h2 +
1
2 D j+1 f i

j+1−D j f i
j + 1

2 D j−1 f i
j−1

h2

) (B.5)

(−kD j−1 −kh A j−1
)

f i+1
j−1 + (

4h2 +2kD j
)

f i+1
j + (−kD j+1 +kh A j+1

)
f i+1

j+1

= (
kD j−1 +kh A j−1

)
f i

j−1 +
(
4h2 −2kD j

)
f i

j +
(
kD j+1 −kh A j+1

)
f i

j+1

(B.6)

We rearrange the system into the following form:

a j f i+1
j−1 +b j f i+1

j + c j f i+1
j+1 = d j f i

j−1 +e j f i
j + f j f i

j+1 (B.7)

where
a j =−kD j−1 −kh A j−1

b j = 4h2 +2kD j

c j = kh A j+1 −kD j+1

d j = kD j−1 +kh A j−1

e j = 4h2 −2kD j

f j = kD j+1 −kh A j+1

(B.8)

Expressing (B.7) in matrix form, we end up with a computationally convenient tridiagonal system

of equations that approximates the continuous-time dynamics of the transient density f (x, t ):

VQi+1 = RQi (B.9)

b0 c0 0 0 · · · 0

a1 b1 c1 0 · · · 0

0 a2 b2 c2 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 aNx−1 bNx−1 cNx−1

0 · · · 0 0 aNx bNx





Q i+1
0

Q i+1
1

Q i+1
2
...

Q i+1
Nx−1

Q i+1
Nx


=



e0 f0 0 0 · · · 0

d1 e1 f1 0 · · · 0

0 d2 e2 f2 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 dNx−1 eNx−1 fNx−1

0 · · · 0 0 dNx eNx





Q i
0

Q i
1

Q i
2

...

Q i
Nx−1

Q i
Nx


(B.10)
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Coefficients outside the edges of the matrix x0 and xn = x0+Nx h are equal to zero. The Crank-

Nicolson approach requires the assumption that f (x0, t ) = f (xn , t ) = 0. Jensen and Poulsen (2002)

suggested that the transitional PDF at time (ti + k) may be well approximated by a normal dis-

tribution with a mean of µ = xi−1 + A (xi−1;θ)k and a variance of σ2 = D (xi−1;θ)k. The entire

FD procedure must be repeated for each of the N transitions in the dataset, and the likelihood

of each transition must be accumulated for the construction of the log-likelihood function. Fig-

ure 1.7 presents the discretization procedure for a numerical estimation in which we use h = 1/16

and k = 0.1 for the discretizations in space and time, respectively, and T = 1 as the time horizon.

Under the initial conditions, a normal density distribution N (xi−1 + A(xi−1;θ)k,D(xi−1;θ)k) is

used to approximate the density distribution.

Figure 1.7: Finite difference scheme.
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Abstract

A theoretical expression is derived for the mean squared error of a nonparametric estimator

of the tail dependence coefficient, depending on a threshold that defines which rank delimits the

tails of a distribution. We propose a new method to optimally select this threshold. It combines

the theoretical mean squared error of the estimator with a parametric estimation of the copula

linking observations in the tails. Using simulations, we compare this semiparametric method

with other approaches proposed in the literature, including the plateau-finding algorithm.
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2.1 Introduction

When considering several risk factors, risk managers across various fields such as finance, insur-

ance, hydrology, and engineering, are interested in quantifying the dependence between all these

random variables. Although the copula function is the most accurate description of dependence,

a simple statistic is often preferred to this function in order to ease the interpretation. Popular ex-

amples of such a statistic include quantities based on a linear model, like the Pearson’s correlation

coefficient, or more realistic nonlinear approaches, such as Spearman’s rho. However, these two

examples do not specifically focus on the dependence between extreme events, and are thus not

relevant in risk management applications. For instance, in finance, stronger dependencies be-

tween asset price returns are observed during recessions (Longin and Solnik, 2001; Patton, 2004).

Therefore, one might prefer using the tail dependence coefficient (TDC). The TDC depicts the

probability that extreme events for several random variables happen simultaneously. It usually

refers to the asymptotic probability introduced by Sibuya (1960) and later defined by Joe (1997). It

has been used for example in finance (Malevergne and Sornette, 2003; Poon et al., 2004; Caillault

and Guégan, 2005) as well as in hydrology, for rainfall data (Poulin et al., 2007; Serinaldi, 2008;

Aghakouchak et al., 2010). It is worth noting that the purpose of TDC is not only to determine

whether data exhibit tail dependence or not, and hence what type of models might be suitable.

There are indeed several applications which require a more accurate estimation of the TDC. For

example, in finance, one can base the selection of a portfolio on the TDC, with the motivation of

diversifying the portfolio with respect to extreme risks (De Luca and Zuccolotto, 2011).

Before addressing the pivotal question of how to estimate the TDC, it is worth noting that the

TDC is a pure copula property: it is not based on marginal distributions but only on the copula,

that is the marginal-free version of the joint distribution (Nelsen, 2007; Joe, 2014). Therefore, the

estimation of the TDC is strongly related to the estimation of the copula itself.

The parametric estimation of the copula is a first solution that makes it possible to easily de-

rive the TDC. The only challenging step is the choice of the copula function that best fits the data.

Such a parametric procedure, in which the whole dataset is used to estimate the copula function,

may not be appropriate since it does not focus on the tail. By exploiting extreme value theory,

some parametric specifications of the copula however seem natural for depicting the dependence

of extreme events (Einmahl et al., 2008; Klüppelberg et al., 2007). This is the case, for example, of

the Clayton copula (Juri and Wüthrich, 2002).

To overcome the issue of choosing a specific parameterization of the copula function, some

researchers proposed a nonparametric version of the TDC estimator based on the empirical cop-

ula introduced by Deheuvels (1979). This estimator corresponds to a discretization of the TDC

as defined by Joe (1997) and relies on the selection of a threshold over which the probability of

occurrence of joint extreme events is computed. Coles et al. (1999) have motivated a slightly dif-

ferent version of this nonparametric estimator, which is asymptotically equivalent. The selection

rule for the threshold strongly impacts the quality of these nonparametric TDC estimators. Ide-

ally, the threshold should make us focus on a few observations only, corresponding to extremes, in

order to not bias the TDC estimation with data in the bulk of the distribution. However, the vari-
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ance of the estimator would then be overriding. The threshold selection thus corresponds to the

art of balancing adequately bias and variance. Most of the existing selection methods are heuris-

tic. Among them, we can cite the plateau-finding algorithm (Frahm et al., 2005b; Schmidt and

Stadtmüller, 2006), or graphical methods (Caillault and Guégan, 2005). Most of the contributions

in the field are devoted to the comparison of various methods of TDC estimation in simulation

frameworks (Frahm et al., 2005b; Schmidt and Stadtmüller, 2006; Poulin et al., 2007; Supper et al.,

2020). Yet, to our knowledge, there is no theoretical contribution in which the selection rule of the

threshold is related to a simple trade-off between the bias and the variance of the estimator.

We thus propose a theoretical expression for both the bias and the variance of the nonpara-

metric TDC estimator. We then use these expressions to define selection rules in which the thresh-

old in the nonparametric TDC estimator minimizes the theoretical mean squared error (MSE).

The formulas depend on the true and unobserved copula. Therefore, a practical application re-

quires choosing a parametric specification for the copula, but only for the tails of the multivariate

distribution. To this end, we consider two widespread Archimedean copulas, the Clayton and

Gumbel copulas. The Clayton copula offers a flexible representation of tail dependence with var-

ious degrees of intensity. Schmidt and Stadtmüller (2006) proposed the Clayton copula to model

the tail copula function. Juri and Wüthrich (2002, 2003) showed that the survival Clayton copula

is a natural limit for joint excesses beyond a threshold having an Archimedean copula depen-

dence structure. The Gumbel copula is also a natural choice to model upper tail dependence

(Galambos, 1978; Joe, 1997) since it is the only copula that is at the same time Archimedean and

an extreme-value copula (Genest and Rivest, 1989).

The paper is organized as follows. Section 2 rapidly recalls some basic definitions of the TDC.

Section 3 is devoted to theoretical expressions for the bias and variance of nonparametric TDC

estimators. Section 4 explores several selection rules for the threshold in the nonparametric TDC

estimator. In the simulation study of Section 5, the performance of these estimators is shown

to be similar to the one of the plateau-finding algorithm. Section 6 presents a short empirical

application to financial data. Section 7 concludes.

2.2 Tail-dependence coefficient

Sklar (1959) showed that any joint distribution of the pair (X ,Y ) of real random variables can be

written as a function of marginal distributions:

F (x, y) =C
(
FX (x),FY (y)

)
,

where C is the copula function between X and Y and can be expressed as:

C (u, v) = F
(
F−1

X (u),F−1
Y (v)

)
,

where (u, v) ∈ [0,1]2, F−1
X and F−1

Y are the generalized inverse of the univariate distribution func-

tions FX and FY . The dependence structure is fully described by the copula function and holds

independently of the marginal distributions.

Herd Behavior, Tail Risk Exposure and Asset Prices 45



CHAPTER 2: NONPARAMETRIC ESTIMATOR OF THE TAIL DEPENDENCE COEFFICIENT

In a pioneering article, Sibuya (1960) introduced the notion of tail dependence. This notion

describes the dependence between extreme values, either in the upper-right-quadrant tail or in

the lower-left-quadrant tail of a bivariate distribution. The lower TDC, denoted λL , is defined as

follows (Joe, 1997):

λL = lim
u→0+P

[
X < F−1

X (u)|Y < F−1
Y (u)

]= lim
u→0+

C (u,u)

u
,

if the limit exists. Similarly, the upper TDC is defined by:

λU = lim
u→1− P

[
X > F−1

X (u)|Y > F−1
Y (u)

]= lim
u→1−

1−2u +C (u,u)

1−u
,

if the limit exists. Since λL and λU are probabilities, they belong to [0,1].

The tail dependence is a pure copula property, that is, it is independent of the margins of X

and Y . The TDC exists if the limits in the above equations exist. If λL > 0 (respectively λU > 0),

then the copula presents tail dependence and we simultaneously observe extremely small (resp.

extremely large) realizations of X and Y , with conditional probability λL (resp. λU ). In contrast,

the absence of tail dependence corresponds to the TDC equal to zero. In this case, the variables

X and Y are asymptotically independent.

2.3 Nonparametric estimation of the TDC

The estimation of the TDC is often related to the estimation of copulas. Indeed, if one estimates

a parametric copula, one can easily deduce the corresponding parametric TDC. Nonetheless, an

accurate estimation of the TDC requires focusing merely on extreme observations1. However, the

more one confines oneself to extreme observations, the less robust the estimator. The need to

rely on extreme observations must thus be balanced with the equally important need to use a

sufficiently large amount of data. Nonparametric techniques seem suitable for this purpose, as

emphasized by Joe et al. (1992). In this section, we present nonparametric estimators and we in-

troduce their corresponding MSE. We first focus on the lower TDC, then on the upper TDC, and

we finish with an extension in which the estimator is itself an average of nonparametric estima-

tors.

2.3.1 Lower tail

We are given n bivariate observations (X j ,Y j ), for j ∈ �1,n�, generated with a dependence model

of copula C . The nonparametric estimator of the lower TDC is defined by the following (Caillault

and Guégan, 2005; Frahm et al., 2005b):

λ̂L,n

(
i

n

)
= Ĉn

( i
n , i

n

)
i
n

, (1)

1Otherwise, if one considers that all the observations, even not extreme, are linked by the same copula, other non-
parametric methods including all the data are possible. For instance, one may use a nonparametric estimator of
Pickands’ dependence function, which is an important feature in the definition of an extreme-value copula (Capéraà
et al., 1997; Frahm et al., 2005b).
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where (u, v) ∈ [0,1]2 7→ Ĉn (u, v) is the empirical copula, introduced by Deheuvels (1979). We can

write this empirical copula as follows (Genest and Rémillard, 2004):

Ĉn (u, v) = 1

n

n∑
j=1

{F̂X ,n(X j ) ≤ u}{F̂Y ,n(Y j ) ≤ v},

where F̂X ,n and F̂Y ,n are estimations of the marginal cumulative distribution functions. Focusing

on X , F̂X ,n is defined by:

F̂X ,n(x) = 1

n

n∑
j=1

{X j ≤ x}.

Schmidt and Stadtmüller (2006) have shown that the nonparametric estimator of the TDC has a

strong consistency and is asymptotically normal.

The estimator of the lower TDC provided in equation (1) relies on the selection of an appro-

priate integer i ∈ �1,n�. Various selection rules for this free parameter have been proposed in

the literature. We can cite for example the plateau-finding algorithm (Frahm et al., 2005b) or a

graphical method based on monotonic variations of the estimator (Caillault and Guégan, 2005).

Before depicting a new selection criterion for i in equation (1), we have to precise the role

of this free parameter in the estimator. The definition of the lower TDC corresponds to the limit

case i /n → 0. Nevertheless, as exposed above, using the lowest possible value for i would lead to a

non-robust estimator. In contrast, a higher value of i would depict some properties of the copula

which are not specifically the ones of its lower tail. Therefore, these two effects, variance and bias,

should be balanced in a good compromise. We thus intend to minimize the MSE between the

estimator λ̂L,n (i /n) and the true lower tail dependence parameter λL . The value of this error is

provided in Theorem 2.3.1 in an asymptotic framework.

We introduce some notations that will be used in the theorem. The diagonal section of the

copula C is u 7→ δ(u) = C (u,u), with the corresponding nonparametric estimator δ̂n . The h-

function of the copula is the conditional cumulative distribution function provided by h1(u, v) =
∂C (u, v)/∂u and h2(u, v) = ∂C (u, v)/∂v . In the case of a symmetric copula, we will simply write

h(u, v) = h1(u, v) = h2(u, v). Moreover, the diagonal version of these h-functions, that is when

u = v , is simplified in h1(u), h2(u), and h(u).

Let the bivariate copula C have continuous partial derivatives, i (n) be equal to αn, where

α ∈ (0,1), and n
(
δ̂n(α)−δ(α)

)2
be uniformly integrable. Then, the MSE of the nonparametric esti-

mator of the lower TDC, defined in equation (1), behaves asymptotically in the following manner:

[(
λ̂L,n

(
i (n)

n

)
−λL

)2]
=VL,n(α)+

(
1

α
δ (α)−δ′(0)

)2

,

where

lim
n→∞nVL,n(α) = σ2 (α)

α2

and

σ2(α) = δ(α)(1−δ(α))+(1−α)
[
α

(
h1(α)2 +h2(α)2)−2δ(α)(h1(α)+h2(α))

]+2h1(α)h2(α)(δ(α)−α2).

(2)
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The proof is postponed in Appendix 2.A.1.

The technical condition regarding the uniform integrability of n
(
δ̂n(i (n)/n)−δ(i (n)/n)

)2
is

fulfilled for example in the case of an independent copula, as exposed in Appendix 2.A.6.

In Theorem 2.3.1, the variance of the estimator is σ2 (α)/nα2 and the squared bias is(
δ (α)/α−δ′(0)

)2. This means that, given α ∈ (0,1), the variance will shrink to zero as n → ∞
but not the bias. The squared bias and the variance will be more balanced for values of α close to

zero and datasets of finite size n, for which we will apply this asymptotic framework. If the copula

C is symmetric, σ2(u) more easily writes:

σ2(u) = δ(u)(1−δ(u))+2(1−u)h(u) [uh(u)−2δ(u)]+2h(u)2(δ(u)−u2). (3)

We now apply Theorem 2.3.1 to the Clayton copula, which is symmetric:

C (u, v) =
(
u−θ+ v−θ−1

)−1/θ
,

where θ > 0.

In the case of the Clayton copula of parameter θ > 0, the asymptotic variance and squared

bias of the nonparametric estimator λ̂L,n (i (n)/n) of the lower TDC, defined in equation (1), with

the assumptions of Theorem 2.3.1, are: variance = 1
nα2

(
δ(α)−δ(α)2

[
1+2 2(1−α)(1−αθ)+1

α(2−αθ)2

]
+2δ(α)3

[
1

α2(2−αθ)2

])
bias2 =

((
2−αθ)−1/θ−2−1/θ

)2
,

where δ(α) = (
2α−θ−1

)−1/θ
. The proof is postponed in Appendix 2.A.2.

2.3.2 Upper tail

We can extend to the upper tail the results exposed above for the lower tail. Starting from the

relation between the survival copula C̄ and the copula C ,

C̄ (u, v) = u + v −1+C (1−u,1− v),

we note that the survival diagonal section is

δ̄(u) = 2u −1+δ(1−u).

The upper TDC is the lower TDC of the survival copula (Schmidt and Stadtmüller, 2006). So we

have

λU = δ̄′(0) = 2−δ′(1).

Remarking that

δ′(1) = lim
t→1−

1−C (t , t )

1− t
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the estimator of the upper TDC naturally follows:

λ̂U ,n

(
i

n

)
= 1−2 i

n + Ĉn
( i

n , i
n

)
1− i

n

, (4)

which also depends on the selection of an appropriate i ∈ �1,n�.

Let the bivariate copula C have continuous partial derivatives, i (n) be equal to αn, where

α ∈ (0,1), and n
(
δ̂n(α)−δ(α)

)2
be uniformly integrable. Then, the MSE of the nonparametric es-

timator of the upper TDC, defined in equation (4), behaves asymptotically in the following man-

ner: [(
λ̂U ,n

(
i (n)

n

)
−λU

)2]
=VU ,n(α)+

(
1−2α+δ (α)

1−α −2+δ′(1)

)2

,

where

lim
n→∞nVU ,n(α) = σ2 (α)

(1−α)2

and σ2(α) is the same as in Theorem 2.3.1. The proof is postponed in Appendix 2.A.3. Like for

Theorem 2.3.1, we can explicitly split the MSE of the nonparametric estimator of the upper TDC,

expressed in Theorem 2.3.2, in two components: the variance σ2 (α)/n(1−α)2 and the squared

bias
(
(1−2α+δ (α))/(1−α)−2+δ′(1)

)2. This result will be useful for values of α close to 1.

We now want to illustrate Theorem 2.3.2 with the particular case of a Gumbel copula, whose

expression is:

C (u, v) = exp

[
−

{
(− ln(u))θ+ (− ln(v))θ

} 1
θ

]
.

The MSE of the nonparametric estimator of the upper TDC is then directly related to the param-

eter θ, as exposed in the following proposition. In the case of the Gumbel copula of parameter

θ > 1, the asymptotic variance and squared bias of the nonparametric estimator λ̂U ,n (i (n)/n) of

the upper TDC, defined in equation (4), with the assumptions of Theorem 2.3.2, are: variance = 1
n(1−α)2

(
δ(α)[1−δ(α)]+δ(α)2

[ 1
α −1

]
2

1
θ

[
2

1
θ
−1 −2

]
+δ(α)22

2
θ
−1

[
δ(α)
α2 −1

])
bias2 =

(
1−2α+δ(α)

1−α −2+21/θ
)2

,

for δ(α) = exp

[
−

{
2(− ln(α))θ

} 1
θ

]
. The proof is postponed in Appendix 2.A.4.

2.3.3 Average of estimators

We are now interested in the average estimator:

Λ̂L,n

(
i1

n
, ...,

im

n

)
= 1

m

m∑
k=1

λ̂L,n

(
ik

n

)
, (5)

which is the average of m nonparametric TDC estimators of respective thresholds i1, ..., im ∈ �1,n�.

Such an average nonparametric estimator appears for example in the plateau-finding algorithm,

which we will describe in Section 2.4.1. It is intended to reduce the MSE of the previously intro-

duced estimators. However, many combinations of m isolated estimators are possible, so that the
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minimization of the MSE is computationally expensive. For this reason, we put forward a sim-

pler version of this method in the simulation study detailed in Section 2.5, in which i1, ..., im are

consecutive numbers. Theorem 2.3.3 provides a formula for the MSE of the average estimator.

Let the bivariate copula C have continuous partial derivatives, ik (n) be equal to αk n, where

αk ∈ (0,1), and n
(
δ̂n(αk )−δ(αk )

)2
be uniformly integrable, for k ∈ �1,m�, and m ≥ 1. Then, the

MSE of the average nonparametric estimator of the lower TDC, defined in equation (5), behaves

asymptotically in the following manner:

[(
Λ̂L,n

(
i1(n)

n
, ...,

im(n)

n

)
−λL

)2]
=V Λ

L,n(α)+
(

1

m

m∑
k=1

1

αk
δ (αk )−δ′(0)

)2

,

where

lim
n→∞nV Λ

L,n(α) = 1

m2

m∑
k,l=1

1

αkαl
K (αk ,αl )

and
K (u, v) = δ(u ∧ v)−δ(u)δ(v)+ (h1(u)h1(v)+h2(u)h2(v))((u ∧ v)−uv)

−h1(v)(C (u ∧ v,u)− vδ(u))−h2(v)(C (u,u ∧ v)− vδ(u))

−h1(u)(C (u ∧ v, v)−uδ(v))−h2(u)(C (v,u ∧ v)−uδ(v))

+h1(u)h2(v)(C (u, v)−uv)+h1(v)h2(u)(C (v,u)−uv)),

and where a ∧b is the minimum between a and b. The proof is postponed in Appendix 2.A.5.

The extension of this theorem to an average upper TDC estimator is straightforward and is thus

omitted.

According to Theorem 2.3.3, the variance of the average nonparametric estimator of the lower

TDC relies on a function K . If u = v , K (u, v) is simply equal to σ2(u), where σ2(u) is provided by

equation 2. The case of C symmetric also simplifies the expression of K :

K (u, v) = δ(u ∧ v)−δ(u)δ(v)+2h(u)h(v)((u ∧ v)−uv)

−2h(v)(C (u ∧ v,u)− vδ(u))−2h(u)(C (u ∧ v, v)−uδ(v))

+2h(u)h(v)(C (u, v)−uv).

The function K provides some insights into the dependence between two standard nonpara-

metric estimators. More precisely, if we consider the two estimators of different thresholds,

λ̂L,n(i /n) and λ̂L,n( j /n), we can either write their asymptotic covariance as 2K (i /n, j /n)n/i j

or as 2ρi , jσ(i /n)σ( j /n)n/i j , where ρi , j is the correlation between λ̂L,n(i /n) and λ̂L,n( j /n). As a

consequence, the asymptotic correlation ρi , j is equal to K
(
i /n, j /n

)
/σ (i /n)σ

(
j /n

)
.

We see in Figure 2.1 this correlation ρi , j in the case of the Clayton copula. The smaller i , the

stronger the correlation decay with respect to j . In other words, the impact on an isolated TDC

estimator, when one changes the threshold by a fixed amount, is relatively greater when the initial

threshold is extreme. This simply illustrates the lack of statistical robustness of estimators relying

on few (extreme) observations: a slight expansion of the data taken into account, with respect to

the initial number of observations involved in the estimator, may have significant consequences.
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Figure 2.1: Correlation ρi , j between λ̂L,n(i /n) and λ̂L,n( j /n).

Notes: this figure shows the correlation ρi , j between λ̂L,n(i /n) and
λ̂L,n( j /n) for i equal to (from the darkest to the lightest) 1, 5, 10, 25,
and 50, and various values of j . We consider a Clayton copula and
n = 1000.

2.4 Selection of the threshold

The definition of the nonparametric estimators of the TDC, as in equations (1), (4), and (5), relies

on a free parameter i . A proper estimation of the TDC thus requires an appropriate selection

of this free parameter, which we subsequently call the threshold since the estimators focus on

extreme observations whose rank is beyond the threshold i . We first recall a classical selection

rule, known as the plateau-finding algorithm (Frahm et al., 2005b). We then propose alternative

methods based on the minimization of the asymptotic MSE as expressed in Theorems 2.3.1 and

2.3.2. We finally suggest an extension for average estimators.

2.4.1 Plateau-finding algorithm

Justified by the homogeneity property of the tail copula (Schmidt and Stadtmüller, 2006), the

plateau-finding algorithm is a heuristic algorithm that selects the threshold in a characteristic

plateau appearing for estimators λ̂L,n(i /n) or λ̂U ,n(i /n) of successive i (Frahm et al., 2005b). The

algorithm is shown below. Since it works both for the lower and upper tails, we have removed the

subscripts L and U . In this paragraph, each λ̂n(i /n) thus refers to equation (1) or (4).

1. The series {λ̂n(i /n)}i∈�1,n� is smoothed using a box kernel with bandwidth b ∈ N,

which consists in applying a moving average on 2b + 1 consecutive elements. We note

{λ̄n(i /n)}i∈�1,n−2b� the new smoothed series, where b is chosen such that 1% of the data

falls into the box, that is b = ⌊n/200⌋.

2. We want to select a vector pk = (
λ̄n(k/n), ..., λ̄n((k +m −1)/n)

)
of m = ⌊pn −2b⌋ consecu-

tive estimates, where k ∈ �1,n −2b −m +1�. More precisely, the algorithm selects the index
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k⋆ of the first2 vector pk which satisfies the following plateau condition:

m−1∑
i=1

∣∣λ̄n((k + i )/n)− λ̄n(k/n)
∣∣≤ 2σ,

where σ is the standard deviation of the smoothed series {λ̄n(i /n)}i∈�1,n−2b�.

3. Then, the TDC estimator is defined as the average of the estimators λ̄n(.) in the plateau pk⋆ :

λ̌n = 1

m

m−1∑
i=0

λ̄n((k⋆+ i )/n).

If there is no vector fulfilling the plateau condition, the TDC estimate is set to zero.

2.4.2 Minimization of the MSE

As an alternative to the plateau-finding algorithm, we propose selecting the threshold minimizing

the asymptotic MSE as expressed in Theorems 2.3.1 or 2.3.2, to balance the bias and the variance

of the nonparametric TDC estimator. However, minimizing this MSE leads to two issues. The first

is that the formulas of the MSE of the nonparametric estimators depend on the true and unob-

served copula of the dataset. We can then imagine a plug-in approach, in which the unobserved

copula is replaced in the MSE formula by an empirical estimate. Nonetheless, this leads to the

second issue: in addition to the copula itself, the MSE formula includes derivatives of the cop-

ula, namely δ′ and h. Regarding this ill-posed inverse problem of estimating derivatives, using a

simple empirical estimation of the copula is not enough, and regularization is required. We thus

propose a parametric specification for the unobserved copula, at least for the plug-in in the MSE

formulas of the nonparametric estimators of the TDC.

In this semiparametric approach, we can, for example, assume a Clayton copula when deal-

ing with the lower tail and a Gumbel copula for the upper tail, transforming the MSE formula

as in Propositions 2.3.1 and 2.3.2. The method we propose is however more general and one

may choose parametric copulas other than these traditional examples of tail-dependent copu-

las. Whether the copula is a Clayton or a Gumbel, it depends on a parameter θ to be estimated.

One could estimate θ using all observations. However, this approach may be strongly biased. We

indeed want this specific parametric copula to depict only the tail of the true copula. We thus

propose below two competing methods, in which we focus on extreme observations to estimate

θ.

We note that this idea of a plug-in to select the most appropriate free parameter of a non-

parametric estimator is a very common practice in nonparametric statistics. It is for example

widespread in the literature about kernel density estimation (Jones et al., 1996).

2Starting from k = 1 for the lower TDC and from k = n −2b −m +1 for the upper TDC.
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Simple plug-in approach

We note �MSE(i ,C ) the MSE provided in Theorem 2.3.1 or in the Theorem 2.3.2. This theoretical

asymptotic MSE depends both on the order i used in the nonparametric estimator of the TDC

and on the true and unobserved copula C , with respect to which the theoretical MSE is calcu-

lated. Since the true copula is unknown, we must estimate it in order to estimate the MSE. As

explained above, we consider a model in which the tail of the copula, and only its tail, is close

to the tail of a specific parametric copula. For example, one can estimate a Clayton copula by

considering only extreme observations, so that the estimate is not influenced by the rest of the

dependence structure, which may not be consistent at all with a Clayton copula. This idea is use-

ful for estimating tail copulas and the most widespread method in this perspective is the censored

likelihood approach (Smith et al., 1997; Huser and Wadsworth, 2019; Castro-Camilo and Huser,

2020). Here, we propose an estimation method combining the nonparametric estimator and the

censored likelihood, both depending on a common threshold which separates the extremes from

other observations.

For this purpose, one has to define clearly what are extreme observations. In dimension

higher than 1, sorting vectors and thus defining extreme vectors and quantile vectors is a ques-

tion for which one can conceive several different solutions, such as spatial quantiles (Abdous and

Theodorescu, 1992), geometric quantiles (Chaudhuri, 1996), or quantiles based on the inversion

of an appropriate mapping (Koltchinskii, 1997; Garcin et al., 2021). Following this last idea, we de-

fine here an extreme observation as one belonging to the empirical orthant quantile of probability

lower than i /n. In practice, we first determine the probability F̂n associated with each observa-

tion (X j ,Y j ), that is the empirical probability to have an observation in the lower left orthant of

(X j ,Y j ). Then, for a given threshold i , the set of corresponding observations is defined by

ΩL
i /n =

{
(X j ,Y j ) ∈R2, j ∈ �1,n�

∣∣∣∣F̂n
(
X j ,Y j

)≤ Ĉn

(
i

n
,

i

n

)}
for the lower tail and

ΩU
i /n =

{
(X j ,Y j ) ∈R2, j ∈ �1,n�

∣∣∣∣F̂n
(
X j ,Y j

)≥ Ĉn

(
i

n
,

i

n

)}
for the upper tail.

We note that the probability for a pair of observations to be inΩL
i /n is K (C (i /n, i /n)), where K

is the Kendall function associated with the probability distribution F : K (p) = [F (X ,Y ) ≤ p]. We

justify this Kendall quantile approach by the fact that a vector (X j ,Y j ) dominates all the observa-

tions whose probability is lower than F̂n(X j ,Y j ) and not only those in the lower left quadrant of

(X j ,Y j ) Garcin et al. (2021). The Kendall function will be overriding for calculating censored like-

lihoods. It is worth noting that the Kendall function is unique for a given copula and that its ex-

pression is straightforward in the case of Archimedean copulas, namely it is Kθ(p) = p −p ln(p)/θ

for the Gumbel copula and Kθ(p) = p +p2(1−pθ)/θ for the Clayton copula (Garcin et al., 2021).

Given a threshold i , one estimates a parametric copula close to the true copula of the extreme

vectors by a censored maximum likelihood method, restricted to the observations either in ΩL
i /n
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or inΩU
i /n . We note cθ and Cθ the parametric copula density and cumulative distribution function,

which are not specified more precisely here3 and which are parameterized by θ. We also note Kθ

the parametric Kendall function corresponding to the copula Cθ. In this censored approach, the

considered likelihood is cθ(F̂X ,n(X j ), F̂Y ,n(Y j )) for any vector in the set of extreme observations

ΩL
i /n , whereas we replace this likelihood by the probability measure of the set R2 \ΩL

i /n for any

non-extreme observation. In order to take into account the parameter θ in this last probability,

we consider a pseudo probability, where only the Kendall function depends on θ. Therefore, with

this assumption, the probability measure of R2 \ΩL
i /n is 1−Kθ(F̂n(X j ,Y j )), where (X j ,Y j ) is on the

boundary of the setΩL
i /n . The estimator θ̂L,i /n of θ is thus, for the lower tail:

θ̂L,i /n = argmax
θ

n∑
j=1

{
ln

(
cθ(F̂X ,n(X j ), F̂Y ,n(Y j ))

)
J L

j ,i + ln

(
1−Kθ

(
Ĉn

(
i

n
,

i

n

)))(
1−J L

j ,i

)}
,

where J L
j ,i =(X j ,Y j )∈ΩL

i /n
. We have a similar formula for the upper tail:

θ̂U ,i /n = argmax
θ

n∑
j=1

{
ln

(
cθ(F̂X ,n(X j ), F̂Y ,n(Y j ))

)
JU

j ,i + ln

(
Kθ

(
Ĉn

(
i

n
,

i

n

)))(
1−JU

j ,i

)}
,

where JU
j ,i =(X j ,Y j )∈ΩU

i /n
.

In both formulas, the likelihood is in fact a pseudo likelihood insofar as it uses the empirical

marginal distributions instead of a parametric specification with parameters to be estimated. In

the simulation study, we even work directly with pseudo observations, insofar as we simulate

random variables with a uniform marginal distribution. This approach is a common practice

for estimating copulas and leads to an estimator of copula parameters which is asymptotically

normal and consistent (Genest et al., 1995; Shih and Louis, 1995). Apart from this consideration,

the estimates θ̂L,i /n and θ̂U ,i /n depend on the choice of the threshold i and we can naturally define

a mappingψ such that θ̂L,i /n =ψ(i /n), or θ̂U ,i /n =ψ(i /n) if we are instead interested in the upper

tail.

Using a plug-in approach, the MSE is now estimated by �MSE(i ,Cψ(i /n)), which can be ex-

pressed thanks to Proposition 2.3.1 (respectively Proposition 2.3.2) if we use the Clayton (resp.

Gumbel) specification for lower (resp. upper) tails. The optimal i in this plug-in approach is then:

i⋆PI = argmin
i∈�1,n�

�MSE(i ,Cψ(i /n)).

In other words, given a threshold i , we calculate the corresponding estimated MSE between the

nonparametric TDC using this threshold and a TDC for a parametric copula, which we estimate

on observations beyond the same threshold i . Finally, we select the threshold i⋆PI minimizing

this MSE. The TDC estimator is then the standard nonparametric TDC estimator for the selected

3As previously explained, this copula may for example be a Clayton copula for the lower tail or a Gumbel copula
for the upper tail. We can even work with a set of various parametric copulas and finally select the pair of copula
specification and parameter with the highest likelihood or the highest AIC/BIC. This extension, though promising, is
not developed further in this paper. In particular, it implies an explicit formula for the MSE of each specification of
parametric copula, as we do for Clayton and Gumbel copulas.
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threshold:

λ̂L,MSE ,n = λ̂L,n

(
i⋆PI

n

)
,

where L has to be replaced by U for the upper case. Figure 2.2 illustrates the selection of this

threshold in the case of a lower tail, with data simulated by a rotated Gumbel copula.

Figure 2.2: Function of log
( �MSE(i ,Cψ(i /n))

)
.
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Notes: This figure shows the function of log
( �MSE(i ,Cψ(i /n))

)
with

respect to the threshold i /n, for n = 1000 pairs simulated with a ro-
tated Gumbel copula of parameter 1.5.

Two-step plug-in approach

In the simple plug-in approach described above, we have selected the rank i⋆PI minimizing the

estimated MSE, either for the lower or for the upper TDC. However, if we consider that Cψ(i⋆PI /n) is

the best estimation of the true copula C , at least in the tail of the distribution, one could then argue

that the rank i⋆PI is not necessarily the one minimizing the estimated MSE of the TDC estimator:

in other words, one may find a rank i such that �MSE(i ,Cψ(i⋆PI /n)) < �MSE(i⋆PI ,Cψ(i⋆PI /n)). We are

thus eager to find a rank i such that it minimizes the MSE of the TDC estimator with the copula

Cψ(i /n): this rank i must verify the following fixed-point equation:

i = argmin
j∈�1,n�

�MSE( j ,Cψ(i /n)). (6)

This objective leads to a two-step plug-in approach described below.

From Theorem 2.3.1, given a copula Cθ, we can determine the threshold i0 minimizing the

theoretical asymptotic MSE of the nonparametric TDC estimator. We can thus define a mapping

φ between the parameter θ and the corresponding optimal threshold in the nonparametric TDC

estimator: i0/n =φ(θ). The formal definition of φ is as follows:

φ(θ) = 1

n
argmin

j∈�1,n�
�MSE( j ,Cθ). (7)

If we plot this function φ in the particular case of a Clayton or a Gumbel copula, we observe a

strictly monotonic function, as one can see in Figure 2.3. In these cases, we can numerically invert

φ. In a broader perspective, we can define the generalized inverse function, φ−1 : u ∈ [0,1] 7→
inf{θ ∈R,φ(θ) ≥ u}, and finally write θ =φ−1(i0/n).
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Figure 2.3: Optimal threshold φ(θ).

Notes: this figure represents the optimal threshold φ(θ) (respectively 1−φ(θ)) of the
lower (resp. upper) TDC estimator, given the copula parameter θ, for various values of
n, for the Clayton (resp. Gumbel) copula.

The θ parameter being unknown, we now replace it by its estimator θ̂L,i /n . As stated in equa-

tion (6), we are looking for a rank i defining the same threshold for the estimation of θ and for the

estimation of the TDC. Therefore, combining equations (6) and (7) leads to the following equation

for the optimal i :
i

n
= 1

n
argmin

j∈�1,n�
�MSE( j ,Cψ(i /n)) =φ

(
ψ

(
i

n

))
.

In other words, our objective is to have

ψ

(
i

n

)
=φ−1

(
i

n

)
. (8)

We thus define the optimal threshold i as the rank for which the graphs of ψ and φ−1 intersect

themselves. Depending on the observations and on the parametric copula, this intersection may

not exist or be multiple. Moreover, the discrete nature of the threshold makes highly improbable

the existence of a fixed point, that is of a i satisfying equation (8). Therefore, we instead minimize

the quadratic deviation between ψ(i /n) and φ−1(i /n), so that our estimated optimal threshold

i⋆2PI is such that:

i⋆2PI = argmin
i∈�1,n�

(
ψ

(
i

n

)
−φ−1

(
i

n

))2

.

In practice, the determination of i⋆2PI thus amounts to an optimization algorithm. We can

for instance propose to use Nelder-Mead’s algorithm (Nelder and Mead, 1965). In this case, we

start with two different and arbitrary thresholds, for which we determine the output of the objec-

tive function i 7→ (
ψ(i /n)−φ−1(i /n)

)2
. Then, the iteration rule of Nelder-Mead makes these two

thresholds evolve and finally converge towards a local minimum. Refinements, such as the mix

of several executions of this algorithm, could improve the results and lead to reach a threshold

closer to a global minimum. This heuristic approach provides satisfying results in simulations.

Figure 2.4 illustrates the principle of the selection of the optimal threshold, corresponding to the

abscissa of the intersection of the two curves. In this example, the optimal threshold is lower with

the two-step plug-in estimator than with the simple plug-in illustrated in Figure 2.3.

Similarly to the simple plug-in approach, the TDC estimator in this two-step plug-in is the
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Figure 2.4: Threshold selection for the two-step plug-in approach.
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1.50 1(i/n) (i/n)

Notes: threshold selection for the two-step plug-in approach for the
lower TDC. The number n of simulated pairs is equal to 1000, and
the data-generating copula is a rotated Gumbel copula of parameter
1.5. The θ at the ordinate is the parameter of the Clayton copula
used by our estimator to describe the lower tail dependence.

nonparametric TDC estimator for the selected threshold:

λ̂L,MSE2,n = λ̂L,n

(
i⋆2PI

n

)
,

where L has to be replaced by U for the upper tail.

2.4.3 Minimizing an average MSE

The plateau algorithm leads to estimations of the nonparametric TDC with a particularly low vari-

ance. We can explain this characteristic of this estimation method by the double regularization of

the TDC which is performed in steps 1 and 3 of the algorithm detailed in Section 2.4.1. Inspired

by this regularization in the plateau algorithm, we can also propose an additional regularization

of the MSE-based plug-in estimators.

The smoothing procedure we propose is similar to step 3 of the plateau algorithm. We do not

mimic step 1, which consists of first smoothing the estimated nonparametric TDC, because this

step would modify the distribution of this TDC and make our MSE estimate erroneous.

We note that the smoothing used in the plateau is a simple rule-of-thumb averaging. It could

be beneficial to use other smoothing techniques based on the minimization of the error induced

by smoothing. Among these techniques, which are omnipresent in nonparametric statistics (Här-

dle et al., 2012), one can cite smoothing with wavelets (Mallat, 1999; Ranta, 2010; Garcin and Gué-

gan, 2016; Garcin and Goulet, 2019) or smoothing resulting from a variational problem (Garcin,

2017). We will not use these methods here, to be congruent with the plateau algorithm and to

make fair comparisons between the various TDC estimators. Nevertheless, we will see that be-

yond the arbitrary averaging, one can also do an averaging minimizing the MSE, as a result of

Theorem 2.3.3.

We are given a parameter m describing the size of an interval Im of consecutive ranks, where

m is the size of the plateau in the algorithm described in Section 2.4.1. We now have to select an
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appropriate interval Im of consecutive ranks, so that our new regularized TDC estimator will be:

λ̂L,Im ,n = 1

m

∑
i∈Im

λ̂L,n

(
i

n

)
,

where L has to be replaced by U for the upper tail. We can propose several ways of selecting Im .

For example, from the knowledge of an optimal plug-in rank, i⋆PI or i⋆2PI , we can build Im as an

interval having this optimal rank in its median or in one of its bounds, such as �i⋆2PI , i⋆2PI +m−1�.

Alternatively, we can select an interval of ranks minimizing the average of the MSE of each

rank. More precisely, for each rank i , we are able to approximate the corresponding MSE of the

nonparametric TDC estimator, following the simple plug-in approach: �MSE(i ,Cψ(i /n)). We now

select the m consecutive ranks leading to the minimal average estimated MSE. We note k⋆PI the

left bound of this interval of m ranks:

k⋆PI = argmin
k∈�1,n−m+1�

1

m

m∑
i=1

�MSE(k + i −1,Cψ((k+i−1)/n)).

The resulting estimated TDC is the average of the TDC estimates whose rank is in the interval

Im = �k⋆PI ,k⋆PI +m −1�. Finally, we can also select Im using Theorem 2.3.3. Indeed, given Im ,

this theorem makes it possible to calculate directly the MSE of the average estimator instead of the

average MSE of isolated estimators. We can thus extend naturally the direct and two-step plug-

in approaches, in which we replace the mappings ψ and φ respectively by Ψ and Φ, which are

defined as follows. Given an interval of ranks Im , the mapping Ψ provides an average estimator

of the copula parameter, by focusing on each extreme setΩL
i /n corresponding to each rank i of the

interval Im :

Ψ (Im) = 1

m

∑
i∈Im

ψ

(
i

n

)
.

Given a copula parameter θ, Φ provides the interval Im = �i⋆, i⋆+m −1� minimizing the MSE of

an average estimator Λ̂L,n of the TDC:

i⋆ = argmin
i∈�1,n−m+1�

[(
Λ̂L,n

(
i

n
, ...,

i +m −1

n

)
−λL

)2]
.

This MSE is expressed in Theorem 2.3.3, which can be applied for example with a Clayton copula.

2.5 A simulation study

We compare the estimators introduced above with other common TDC estimators. More pre-

cisely, the four estimators based on the minimization of an MSE include a plug-in approach in

which we estimate θ on the whole dataset (as evoked in the preamble of Section 2.4.2), along with

other approaches in which we estimate θ using only tail data, which include the simple plug-in

(Section 2.4.2), the two-step plug-in (Section 2.4.2), and a simple plug-in average estimator (Sec-

tion 2.4.3). We focus our analysis on the upper TDC, where the tail dependence function is given

by the Gumbel copula.
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We compute the empirical bias and standard deviation σ(λ̂U ,n) of the estimator for N = 100

random sample replications of three different sample sizes n ∈ {500,2000,5000}. We also compute

the root-mean-square error (RMSE) of the estimator to analyse the trade-off between bias and

variance for all estimation methods:

RMSE
(
λ̂U ,n

)=
√√√√ 1

N

N∑
j=1

(
λ̂

j
U ,n −λU

)2
.

We compare the estimators using random data of different samples generated by four

different bivariate distributions. We first use a Gumbel copula with parameter values θ ∈
{1.1,1.5,1.75,2}, corresponding to λU ∈ {0.12,0.41,0.51,0.59}. The second generated distribution

is a bivariate standard t-distribution with ν ∈ {1,2,3} degrees of freedom for correlation values ρ ∈
{0,0.25}, which correspond to six possible TDCs, λU ∈ {0.29,0.18,0.12,0.39,0.27,0.20}. Third, we

generate a distribution with a survival Clayton copula with parameter values θ ∈ {0.1,0.5,1,1.5},

corresponding to λU ∈ {0,0.25,0.50,0.63}. Finally, we focus on a case with tail independence

(λU = 0) corresponding to a Gaussian distribution with correlations ρ ∈ {0,0.25,0.5,0.75}.

For convenience, Table 2.1 reports the identification number for each of the eight estimators

implemented in this study. The arbitrary threshold selection (1) and (2) serve as baseline indica-

tors. We implement also the maximum likelihood estimator (3), The plateau-finding algorithm

(4), whereas the other estimators (5) and (6) are the proposed methods based on minimization of

the theoretical MSE.

Table 2.1: Estimation methods.
Method Description

(1) Arbitrary choice of the threshold = 1%
(2) Arbitrary choice of the threshold = 2%
(3) Maximum likelihood estimation with an arbitrary copula function (Gumbel)
(4) Plateau-finding algorithm
(5) Minimization of the MSE: Simple plug-in estimator
(6) Minimization of the MSE: Two-step plug-in estimator

2.5.1 Gumbel simulations

In this case, we assume that the underlying distribution function is known. For estimator (3) we

use a maximum likelihood estimation of the Gumbel copula distribution which is the true sample

distribution. For the two estimators introduced in this paper (5-6), the function of the upper TDC

estimator is also based on the Gumbel distribution.

The results are gathered in Figure 2.5, with more details in Table 2.4 , in the appendix. For the

lowest value of the true TDC (λU = 0.12), that is, when the Gumbel copula has a parameter θ = 1.1,

all the estimators show almost similar results in terms of RMSE. In this case, even if the methods

(1) and (2) exhibit the lowest bias they have the highest variances. However, for the three other

datasets, that is for θ ∈ {1.5,1.75,2}, when the true TDC is higher, the methods (1) and (2) are the

worst performing estimators in terms of bias, variance and RMSE.

Herd Behavior, Tail Risk Exposure and Asset Prices 59



CHAPTER 2: NONPARAMETRIC ESTIMATOR OF THE TAIL DEPENDENCE COEFFICIENT

The plateau-finding algorithm (4) and the two proposed methods (5) and (6) have good per-

formance, with a slightly lower bias and variance overall for methods (5) and (6). The method

relying on the maximum likelihood estimation (3) is the best performing estimator overall: not

surprisingly, the estimator based on the estimation of the true copula performs better than the

others.

Figure 2.5: RMSE for the upper tail dependence with 100 Gumbel simulations.
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2.5.2 Student simulations

Following Schmidt and Stadtmüller (2006), we test our estimator on random generations from a

bivariate standard t-distribution with ν= 1,2,3 degrees of freedom. We consider the case with no

correlation, ρ = 0, and the case where there is a small correlation coefficient, ρ = 0.25.

The results are gathered in Figure 2.6, with more details in Tables 2.5 and 2.6 , in the appendix.

Excepted for estimator (3), the larger the sample size is, the lower the RMSE. Consistent with the

findings of Schmidt and Stadtmüller (2006), the plateau algorithm (4) performs well regardless of

the parameters of the generating model. However we observe quite similar results for estimators

(5) and (6) (minimization of the MSE).

For the method based on the maximum likelihood (3) the performance is strongly dependent

on the parameterizations considered. It is the best performing estimator for ρ = 0.25 and ν ∈
{2,3}, but it is the worst performing estimator when ρ = 0 and ν ∈ {1,2}. The performance for the

first two estimators (1) and (2) are also quite dependent on the dataset considered and are not

performing well overall, compared to the other estimators.

2.5.3 Rotated Clayton simulations

For these simulations, the results are gathered in Figure 2.7, with more details in Table 2.7 , in the

appendix.

For the lowest theta parameter (θ = 1.1) when the true TDC is 0, all the estimators exhibit

similar results in terms of RMSE, which is also observed in the Gumbel simulations case. The
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Figure 2.6: RMSE for the upper tail dependence with 100 Student simulations.
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estimators (4), (5), and (6) also behave similarly and perform relatively well across all the param-

eterizations considered.

Figure 2.7: RMSE for the upper tail dependence with 100 rotated Clayton simulations.
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2.5.4 Gaussian simulations

We now evaluate the estimators on the Gaussian copula, that is in a framework with no tail de-

pendence. We see that an increase in the correlation coefficient strongly biases all the estimators.

Our results show that the nonparametric estimator for different threshold values captures tail de-

pendence even when the true distribution does not exhibit tail dependence but only dependence

for the bulk of the bivariate distribution. This is entirely consistent with Frahm et al. (2005b).
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The results are gathered in Figure 2.8, with more details in Table 2.8 , in the appendix.

Figure 2.8: RMSE for the upper tail dependence with 100 Gaussian simulations.
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2.5.5 Analysis

Overall, our two estimators based on a minimization of the theoretical MSE, that is estimators

(5) and (6), are, with the plateau-finding algorithm (4), the best performing estimators. They are

the least sensitive to a change of parameter in the generating distribution. In contrast, the per-

formance of other estimators strongly depends on the distribution considered and on the sample

size. For several of the examples above, we observe a slightly better performance for our intro-

duced estimators with respect to the plateau-finding method, when n is large. This simulation

study thus highlights the relevance of the estimators based on a minimization of the theoretical

MSE.

However, when the true TDC is close to zero, most estimators, including the plateau-finding

algorithm, perform poorly in terms of bias and RMSE, while their variance is relatively low. This

result is consistent with the findings of Frahm et al. (2005b) and Poulin et al. (2007). Therefore,

we suggest testing the tail dependence before computing an estimation of the TDC (Ledford and

Tawn, 1996; Capéraà et al., 1997; Hoga, 2018).

2.6 Empirical application

Copulas are used in many fields, such as hydrology (Tawn, 1988; Genest and Favre, 2007; Poulin

et al., 2007; Aghakouchak et al., 2010), astronomy (Scherrer et al., 2009; Sato et al., 2011), telecom-

munication networks (Garcin and Guégan, 2012; Neuhäuser et al., 2015). We focus here on the

modelling of financial assets, whose literature also largely uses copulas. In particular, there is a

prevalent use of TDCs to describe the dependence of extreme financial returns (Malevergne and

Sornette, 2003; Poon et al., 2004; Caillault and Guégan, 2005).

In this short empirical application, we estimate the lower and upper TDCs using the six same

estimators as used in the simulation study. We consider the MSCI developed markets indices,
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which represent the performance of the overall financial securities in countries with a developed

market. The estimation period is between 01/01/2000 and 01/01/2021. It consists of 5,295 daily

observations for 18 countries. We estimate the pairwise TDCs between the US market and other

developed markets. The results are reported in Tables 2.2 and 2.3, along with a standard linear

dependence measure, namely the correlation coefficient.

Table 2.2: Lower TDC: US vs other developed countries.
Country (1) (2) (3) (4) (5) (6) ρ

Canada 0.509 0.500 0.590 0.514 0.551 0.560 0.704
France 0.396 0.462 0.441 0.425 0.413 0.413 0.543
Germany 0.377 0.396 0.461 0.415 0.421 0.423 0.577
UK 0.415 0.415 0.422 0.378 0.387 0.389 0.528
Netherlands 0.340 0.415 0.431 0.401 0.373 0.380 0.535
Sweden 0.340 0.368 0.380 0.342 0.369 0.367 0.493
Belgium 0.340 0.434 0.344 0.344 0.350 0.351 0.470
Switzerland 0.377 0.368 0.326 0.366 0.355 0.351 0.458
Spain 0.377 0.358 0.368 0.353 0.336 0.336 0.494
Norway 0.396 0.396 0.278 0.322 0.358 0.365 0.427
Austria 0.396 0.377 0.257 0.329 0.341 0.339 0.401
Italy 0.340 0.321 0.370 0.310 0.327 0.324 0.499
Denmark 0.283 0.358 0.226 0.339 0.308 0.313 0.375
Australia 0.264 0.245 0.072 0.232 0.223 0.236 0.256
Singapore 0.245 0.217 0.120 0.196 0.219 0.209 0.281
Hong Kong 0.226 0.198 0.057 0.150 0.151 0.155 0.204
Japan 0.113 0.123 0.001 0.122 0.121 0.120 0.054

Notes: this table presents the lower TDC between the US and other developed countries,
depending on the TDC estimator. The correlation coefficient is ρ.

We observe a global coherence between the results of the six estimators. The strongest dis-

crepancies among the estimators appear for estimator (3), which tends to underestimate the

lower TDC with respect to the other estimators, when the TDC is low, and which also tends to

overestimate the upper TDC, except for the four countries with the lowest TDC. The arbitrary

estimator (1) tends to underestimate the upper TDC.

The three Asian markets (Japan, Hong Kong, Singapore) exhibit the lowest lower and upper

TDC. Of course, the time zone difference with the US can cause date shifts: if the US market is

driving the global economy, the effect on the Asian markets is to be observed one day later. Even

though the lower TDC is globally higher than the upper TDC, we see that a strong upper TDC

is generally related to a strong lower TDC. This result suggests that one cannot benefit from a

pairwise boom without having a risk of simultaneous crash.

2.7 Conclusion

We have given an expression of the MSE for the nonparametric TDC estimator. By minimizing this

MSE in the case of a Clayton or a Gumbel copula, we have proposed a semiparametric method for

estimating either the lower or the upper TDC. It is based on a plug-in approach, in which the pa-
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Table 2.3: Upper TDC: US vs other developed countries.
Country (1) (2) (3) (4) (5) (6) ρ

Canada 0.377 0.434 0.530 0.431 0.455 0.455 0.704
Germany 0.321 0.406 0.445 0.427 0.418 0.427 0.577
Netherlands 0.321 0.340 0.420 0.417 0.418 0.418 0.535
France 0.283 0.340 0.426 0.317 0.404 0.410 0.543
UK 0.302 0.321 0.405 0.313 0.332 0.353 0.528
Sweden 0.302 0.330 0.382 0.291 0.335 0.330 0.493
Spain 0.283 0.292 0.372 0.295 0.320 0.313 0.494
Belgium 0.264 0.302 0.356 0.284 0.330 0.330 0.470
Italy 0.264 0.264 0.384 0.256 0.300 0.302 0.458
Switzerland 0.302 0.236 0.336 0.242 0.269 0.268 0.499
Norway 0.226 0.274 0.302 0.274 0.264 0.268 0.427
Denmark 0.226 0.236 0.267 0.214 0.251 0.253 0.375
Austria 0.132 0.236 0.282 0.240 0.257 0.257 0.401
Singapore 0.226 0.264 0.200 0.219 0.233 0.233 0.281
Australia 0.189 0.245 0.164 0.227 0.216 0.216 0.256
Hong Kong 0.151 0.151 0.158 0.158 0.165 0.163 0.204
Japan 0.075 0.113 0.052 0.103 0.105 0.105 0.054

Notes: this table presents the upper TDC between the US and other developed countries,
depending on the TDC estimator. The correlation coefficient is ρ.

rameter of the Clayton or Gumbel copula is estimated on a well-chosen part of the observations.

A simulation study shows that this kind of estimator offers better performance. It behaves in a

similar way as the method relying on the plateau-finding algorithm does, for data generated by

various types of copulas. These results, along with the relative simplicity of the method compared

to the plateau-finding algorithm, thus legitimize this new estimator. Therefore we recommend

our estimators when facing an unknown type of underlying distribution.

2.A Appendix

2.A.1 Proof of Theorem 2.3.1

We define a dependence parameter for a given probability q as:

λL(q) = δ(q)

q
. (A.1)

In particular, λL = lim
q→0

λL(q). Since δ(0) = 0 by a basic property of copulas, we also have λL = δ′(0).

We decompose the error of the estimator provided in equation (1) in noise and bias:

λ̂L,n

(
i (n)

n

)
−λL =

(
λ̂L,n

(
i (n)

n

)
−λL

(
i (n)

n

))
+

(
λL

(
i (n)

n

)
−λL

)
.

Following the work of Fermanian et al. and in particular their Theorem 3, we know that the

empirical copula process
p

n(Ĉn(u, v) −C (u, v)) converges weakly towards a Gaussian process
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GC (u, v) (Fermanian et al., 2004):

GC (u, v) = BC (u, v)−h1(u, v)BC (u,1)−h2(u, v)BC (1, v),

where BC is a Brownian bridge on [0,1]2 of covariance

[
BC (u, v)BC (u′, v ′)

]=C (u ∧u′, v ∧ v ′)−C (u, v)C (u′, v ′). (A.2)

Therefore,
p

n
(
λ̂L,n (i (n)/n)−λL (i (n)/n)

) = p
n(Ĉn(α,α) − C (α,α))/α, weakly converges to-

ward GC (α,α)/α. As a consequence, n
(
λ̂L,n (i (n)/n)−λL (i (n)/n)

)2
weakly converges to-

ward GC (α,α)2/α2 (?, Th. 5.2) and, thanks to the assumed uniform integrability,[
n

(
λ̂L,n (i (n)/n)−λL (i (n)/n)

)2
]

converges toward
[
GC (α,α)2

]
/α2 (?, Th. 5.4). We note that, for

u ∈ (0,1),

[GC (u,u)2] = [BC (u,u)2]+h1(u)2[BC (u,1)2]+h2(u)2[BC (1,u)2]

−2h1(u)[BC (u,u)BC (u,1)]−2h2(u)[BC (u,u)BC (1,u)]

+2h1(u)h2(u)[BC (u,1)BC (1,u)]

= δ(u)−δ(u)2 +h1(u)2
(
C (u,1)−C (u,1)2

)+h2(u)2
(
C (1,u)−C (1,u)2

)
−2h1(u) (δ(u)−δ(u)C (u,1))−2h2(u) (δ(u)−δ(u)C (1,u))

+2h1(u)h2(u) (δ(u)−C (u,1)C (1,u))

= δ(u)(1−δ(u))+h1(u)2u(1−u)+h2(u)2u(1−u)

−2h1(u)δ(u)(1−u)−2h2(u)δ(u)(1−u)

+2h1(u)h2(u)
(
δ(u)−u2

)
= σ2(u),

according to equation (A.2) and using the fact that C (u,1) = C (1,u) = u. As a consequence, the

asymptotic MSE is

1

nα2

[
GC (α,α)2]+ (λL (α)−λL)2 = 1

nα2σ
2 (α)+

(
1

α
δ (α)−δ′(0)

)2

.

2.A.2 Proof of Proposition 2.3.1

The diagonal section of the Clayton copula is obtained by considering the case u = v :

δ(u) =
(
2u−θ−1

)−1/θ
.

Its first derivative is:

δ′(u) = 2u−θ−1
(
2u−θ−1

)−1−1/θ = 2
(
2−uθ

)−1−1/θ
,

whose value in u = 0 is δ′(0) = 2−1/θ. According to Theorem 2.3.1, the asymptotic bias is thus:

1

α
δ (α)−δ′(0) = 1

α

(
2α−θ−1

)−1/θ−2−1/θ =
(
2−αθ

)−1/θ−2−1/θ.
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The corresponding h-function is (Schepsmeier and Stöber, 2014):

h(u) = δ′(u)

2
= δ(u)

u−θ−1

(2u−θ−1)
= δ(u)

u

1

2−uθ
.

Following equation (3), we get:

σ2(u) = δ(u)(1−δ(u))+2(1−u)h(u) [uh(u)−2δ(u)]+2h(u)2(δ(u)−u2)

= δ(u)(1−δ(u))+2(1−u)δ(u)
u

1
2−uθ

[
u δ(u)

u
1

2−uθ −2δ(u)
]
+2

(
δ(u)

u
1

2−uθ

)2
(δ(u)−u2)

= δ(u)(1−δ(u))+2
( 1

u −1
)
δ(u)2 1

2−uθ

[
1

2−uθ −2
]
+2 δ(u)2

(2−uθ)2

(
δ(u)
u2 −1

)
= δ(u)+δ(u)2

[
−1+2

( 1
u −1

) 1
2−uθ

(
1

2−uθ −2
)
− 2

(2−uθ)2

]
+2δ(u)3

[
1

u2(2−uθ)2

]
= δ(u)−δ(u)2

[
1+2 2(1−u)(1−uθ)+1

u(2−uθ)2

]
+2δ(u)3

[
1

u2(2−uθ)2

]
.

2.A.3 Proof of Theorem 2.3.2

We first focus on the variance part of the tail dependence estimator:

[(
λ̂U ,n(i (n)/n)−λU (i (n)/n)

)2
]

.

We know that
p

n(Ĉ (u, v) −C (u, v)) converges weakly towards a Gaussian process GC (u, v), as

already mentioned in the proof of Theorem 2.3.1. Therefore, following the same reasoning as in

the proof of Theorem 2.3.1, the second moment of λ̂U (i (n)/n)−λU (i (n)/n) converges toward the

second moment of GC (α,α)
p

n/(n −αn), which is of mean 0 and of variance

1

1(1−α)2 E
[
GC (α,α)2]= 1

n(1−α)2σ
2 (α) .

By noting that λU = 2−δ′(1), the expression of the bias is straightforward and we conclude by

noting that the MSE is the sum of the variance and of the squared bias.

2.A.4 Proof of Proposition 2.3.2

In the Gumbel case,

δ(u) =C (u,u) = exp

[
−

{
2(− ln(u))θ

} 1
θ

]
= exp

[
−(2t )

1
θ

]
,

where t = (− ln(u))θ. Its first derivative is δ′(u) = 21/θδ(u)
u , and in particular δ′(1) = 21/θ. According

to Theorem 2.3.2, the asymptotic bias is thus:

1−2α+δ (α)

1−α −2+δ′(1) = 1−2α+δ (α)

1−α −2+21/θ.

The h-function is (Schepsmeier and Stöber, 2014):

h (u) =−e−(2t )
1
θ (2t )

1
θ
−1 t

u ln(u)
= δ(u)

u
2

1
θ
−1,
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so that

σ2(u) = δ(u)(1−δ(u))+2(1−u)h(u)[uh(u)−2δ(u)]+2h(u)2
(
δ(u)−u2

)
= δ(u)(1−δ(u))+δ(u)2

( 1
u −1

)
2

1
θ

(
2

1
θ
−1 −2

)
+δ(u)22

2
θ
−1

(
δ(u)
u2 −1

)
.

2.A.5 Proof of Theorem 2.3.3

Like in Theorems 2.3.1 and 2.3.2, we decompose the MSE in variance and squared bias:[(
1
m

∑m
k=1 λ̂L

(
ik (n)

n

)
−λL

)2
]

=
[

1
m

∑m
k,l=1

(
λ̂L

(
ik (n)

n

)
−λL

(
ik (n)

n

))(
λ̂L

(
il (n)

n

)
−λL

(
il (n)

n

))]
+

[( 1
m

∑m
k=1λL (αk )−λL

)2
]

,

with λL(u) defined by equation (A.1). Like in the previous theorems, the bias part finds a straight-

forward expression using δ and δ′:

(
1

m

m∑
k=1

λL (αk )−λL

)2

=
(

1

m

m∑
k=1

1

αk
δ (αk )−δ′(0)

)2

.

We now focus on the variance part of the MSE. Like in the proof of Theorem 2.3.1, we note that

the empirical copula process
p

n(Ĉ (u, v)−C (u, v)) converges weakly towards a Gaussian process

GC (u, v):

GC (u, v) = BC (u, v)−h1(u, v)BC (u,1)−h2(u, v)BC (1, v),

where BC is a Brownian bridge on [0,1]2 whose covariance is provided by equation (A.2). There-

fore, the covariance between GC (u,u) and GC (v, v) is

[GC (u,u)GC (v, v)] = [BC (u,u)BC (v, v)]+h1(u)h1(v)[BC (u,1)BC (v,1)]+h2(u)h2(v)[BC (1,u)BC (1, v)]

−h1(v)[BC (u,u)BC (v,1)]−h2(v)[BC (u,u)BC (1, v)]

−h1(u)[BC (v, v)BC (u,1)]−h2(u)[BC (v, v)BC (1,u)]

+h1(u)h2(v)[BC (u,1)BC (1, v)]+h1(v)h2(u)[BC (v,1)BC (1,u)]

= δ(u ∧ v)−δ(u)δ(v)+ (h1(u)h1(v)+h2(u)h2(v))((u ∧ v)−uv)

−h1(v)(C (u ∧ v,u)− vδ(u))−h2(v)(C (u,u ∧ v)− vδ(u))

−h1(u)(C (u ∧ v, v)−uδ(v))−h2(u)(C (v,u ∧ v)−uδ(v))

+h1(u)h2(v)(C (u, v)−uv)+h1(v)h2(u)(C (v,u)−uv))

= K (u, v),

according to equation (A.2) and using the fact that C (u,1) =C (1,u) = u. Following the same rea-

soning as in the proof of Theorem 2.3.1, this result leads to the expression of the asymptotic

variance of the TDC estimator provided in Theorem 2.3.3 thanks to equation (A.1), which links

(λ̂L(u)−λL(u)) to (δ̂(u)−δ(u))/u, that is to (Ĉ (u,u)−C (u,u))/u.

2.A.6 Uniform integrability condition of Theorem 2.3.1 for the independent copula

In Theorem 2.3.1, we have assumed that n
(
δ̂n(α)−δ(α)

)2
is uniformly integrable. We now show

that this assumption is fulfilled in the case of the independent copula. It is in fact enough to show
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that (Billingsley, 2013, page 32):

∃ε> 0, sup
n

(∣∣∣n (
δ̂n(α)−δ(α)

)2
∣∣∣1+ε)<∞. (A.3)

For simplicity of the notations, and without any consequence on the final result, we assume that

αn is an integer. For the independent copula, we have (Deheuvels, 1979, Th. 4.1):

[
δ̂n(α)

]= δ(α) =α2 (A.4)

and [
δ̂n(α)2]= α2

n
+ α2(αn −1)2

n(n −1)
. (A.5)

Regarding the third moment, we follow a similar proof as the one proposed by (Deheuvels, 1979,

Th. 4.1). We first define the rank statistics ri ,X and ri ,Y , such that Xr1,X ≤ Xr2,X ≤ ... ≤ Xrn,X and

Yr1,Y ≤ Yr2,Y ≤ ... ≤ Xrn,Y . Then,

δ̂n(α) = 1

n

N∑
i=1

{
ri ,X ≤αn

}{
ri ,Y ≤αn

}
.

Therefore, by independence between the two components X and Y , and noting

pi , j ,k (z) = (
ri ,X ≤ z,r j ,X ≤ z,rk,X ≤ z

)
,

we obtain[
δ̂n(α)3

] = 1
n3

∑N
i=1

∑N
j=1

∑N
k=1 pi , j ,k (αn)2

= 1
n3

(∑
i= j=k pi , j ,k (αn)2 +3

∑
i= j ̸=k pi , j ,k (αn)2 +∑

i ̸= j ̸=k pi , j ,k (αn)2
)

.
(A.6)

Moreover, for m ∈ �1,n�,

pi ,i ,i (m) =
m∑

m′=1

(
ri ,X = m′)= m∑

m′=1

1

n
= m

n
.

For m < m′, we have
∑

i ̸= j (ri ,X = m,r j ,X = m′) = 1, with all the events of the form (ri ,X = m,r j ,X =
m′) having equal probability, so that (ri ,X = m,r j ,X = m′) = 1/n(n−1). Similarly, for m < m′ < m′′,
(ri ,X = m,r j ,X = m′,rk,X = m′′) = 1/n(n −1)(n −2). As a consequence, we have

pi ,i , j (m) =
m∑

m′=1

m∑
m′′=1

(
ri ,X = m′,r j ,X = m′′)= m(m −1)

n(n −1)

for i ̸= j (and therefore m′ ̸= m′′). Similarly, for i ̸= j ̸= k, we have

pi , j ,k (m) = m(m −1)(m −2)

n(n −1)(n −2)
.
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Since pi ,i ,i (m), pi ,i , j (m), and pi , j ,k (m) do not depend on the exact value of i , j , and k, equa-

tion (A.6) becomes

[
δ̂n(α)3

] = 1
n3

(
np1,1,1(αn)2 +3n(n −1)p1,1,2(αn)2 +n(n −1)(n −2)p1,2,3(αn)2

)
= 1

n3

(
n

[
αn
n

]2 +3n(n −1)
[
αn(αn−1)

n(n−1)

]2 +n(n −1)(n −2)
[
αn(αn−1)(αn−2)

n(n−1)(n−2)

]2
)

= α2

n2 +3α
2(αn−1)2

n2(n−1) + α2(αn−1)2(αn−2)2

n2(n−1)(n−2) .

(A.7)

In a very similar way, after introducing pi , j ,k,l (z) = (
ri ,X ≤ z,r j ,X ≤ z,rk,X ≤ z,rl ,X ≤ z

)
, we can

prove that

[
δ̂n(α)4

] = 1
n4

(∑
i= j=k=l pi , j ,k,l (αn)2 +4

∑
i= j=k ̸=l pi , j ,k,l (αn)2 +3

∑
i= j ̸=k=l pi , j ,k,l (αn)2

+6
∑

i= j ̸=k ̸=l pi , j ,k,l (αn)2 +∑
i ̸= j ̸=k ̸=l pi , j ,k,l (αn)2

)
= α2

n3 +7α
2(αn−1)2

n3(n−1) +6α
2(αn−1)2(αn−2)2

n3(n−1)(n−2) + α2(αn−1)2(αn−2)2(αn−3)2

n3(n−1)(n−2)(n−3) .
(A.8)

Finally, using equations (A.4), (A.5), (A.7), and (A.8), and simplifying some long expression, we

obtain:[
n2

(
δ̂n(α)−δ(α)

)4
]

= n2
([
δ̂n(α)4

]−4
[
δ̂n(α)3

]
δ(α)+6

[
δ̂n(α)2

]
δ(α)2 −4

[
δ̂n(α)

]
δ(α)3 +δ(α)4

)
= A3(α)n3+A2(α)n2+A1(α)n

(n−1)(n−2)(n−3) ,

with 
A3(α) = 3α8 −12α7 +18α6 −12α5 +3α4

A2(α) = 18α8 −72α7 +120α6 −108α5 +55α4 −14α3 +α2

A1(α) = α4 −2α3 +α2,

so that
[

n2
(
δ̂n(α)−δ(α)

)4
]
<∞ whatever n. Using the condition put forward in equation (A.3),

this leads to the uniform integrability of n
(
δ̂n(α)−δ(α)

)2
.
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2.A.7 Tables of results for the simulation study

Table 2.4 : Upper tail dependence with 100 Gumbel simulations.

Dataset Method
n = 500 n = 1000 n = 2000

Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE
θ = 1.10 (1) 0.08 0.19 0.21 0.09 0.11 0.14 0.09 0.09 0.12
λU = 0.12 (2) 0.11 0.12 0.17 0.09 0.08 0.12 0.12 0.06 0.13

(3) 0.15 0.03 0.15 0.15 0.03 0.15 0.15 0.02 0.15
(4) 0.18 0.06 0.19 0.17 0.06 0.18 0.16 0.06 0.17
(5) 0.18 0.07 0.20 0.17 0.06 0.18 0.16 0.04 0.16
(6) 0.18 0.07 0.20 0.17 0.06 0.18 0.15 0.04 0.16

θ = 1.50 (1) -0.24 0.17 0.29 -0.22 0.12 0.25 -0.22 0.08 0.23
λU = 0.41 (2) -0.19 0.12 0.23 -0.20 0.08 0.22 -0.19 0.07 0.20

(3) -0.10 0.03 0.10 -0.09 0.02 0.10 -0.09 0.02 0.10
(4) -0.12 0.06 0.13 -0.13 0.06 0.14 -0.14 0.05 0.15
(5) -0.11 0.07 0.13 -0.13 0.06 0.14 -0.14 0.04 0.15
(6) -0.11 0.06 0.13 -0.13 0.06 0.14 -0.14 0.04 0.15

θ = 1.75 (1) -0.32 0.17 0.36 -0.29 0.13 0.31 -0.29 0.08 0.30
λU = 0.51 (2) -0.25 0.14 0.29 -0.25 0.09 0.26 -0.26 0.06 0.26

(3) -0.12 0.03 0.12 -0.12 0.02 0.12 -0.12 0.02 0.12
(4) -0.16 0.08 0.18 -0.18 0.07 0.19 -0.18 0.06 0.19
(5) -0.14 0.07 0.16 -0.16 0.05 0.17 -0.18 0.04 0.19
(6) -0.14 0.06 0.16 -0.16 0.05 0.17 -0.18 0.04 0.18

θ = 2.00 (1) -0.28 0.20 0.34 -0.28 0.12 0.30 -0.28 0.08 0.30
λU = 0.59 (2) -0.24 0.14 0.28 -0.25 0.10 0.27 -0.25 0.07 0.26

(3) -0.11 0.02 0.11 -0.11 0.02 0.11 -0.11 0.01 0.11
(4) -0.14 0.06 0.16 -0.17 0.06 0.18 -0.18 0.06 0.19
(5) -0.13 0.07 0.15 -0.15 0.05 0.16 -0.17 0.04 0.17
(6) -0.12 0.06 0.14 -0.15 0.05 0.16 -0.17 0.04 0.17
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Table 2.5 : Upper tail dependence with 100 Student simulations, with ρ = 0.

Dataset Method
n = 500 n = 1000 n = 2000

Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE
ρ = 0 (1) 0.00 0.19 0.19 -0.01 0.13 0.13 -0.01 0.10 0.10
ν= 1 (2) -0.01 0.13 0.13 0.01 0.08 0.09 -0.01 0.07 0.07
λU = 0.29 (3) -0.19 0.04 0.19 -0.19 0.03 0.19 -0.19 0.02 0.19

(4) -0.02 0.07 0.07 -0.00 0.05 0.05 -0.01 0.05 0.05
(5) -0.01 0.09 0.09 0.01 0.06 0.06 -0.00 0.06 0.06
(6) -0.01 0.08 0.09 0.01 0.06 0.06 -0.00 0.06 0.06

ρ = 0 (1) -0.04 0.14 0.14 0.01 0.11 0.11 -0.02 0.08 0.08
ν= 2 (2) -0.02 0.10 0.10 0.00 0.08 0.08 -0.00 0.06 0.06
λU = 0.18 (3) -0.11 0.04 0.12 -0.11 0.02 0.12 -0.11 0.02 0.11

(4) 0.00 0.07 0.07 0.00 0.05 0.05 0.01 0.05 0.05
(5) -0.00 0.09 0.09 0.00 0.07 0.07 0.01 0.06 0.06
(6) -0.00 0.09 0.09 0.00 0.07 0.07 0.01 0.06 0.06

ρ = 0 (1) -0.01 0.13 0.13 0.01 0.11 0.11 0.00 0.07 0.07
ν= 3 (2) 0.00 0.10 0.10 0.01 0.07 0.07 0.01 0.05 0.05
λU = 0.12 (3) -0.06 0.04 0.07 -0.06 0.02 0.06 -0.06 0.02 0.07

(4) 0.03 0.07 0.08 0.04 0.05 0.06 0.02 0.04 0.04
(5) 0.01 0.08 0.09 0.02 0.06 0.07 0.02 0.05 0.06
(6) 0.01 0.09 0.09 0.02 0.06 0.07 0.02 0.05 0.05

Table 2.6 : Upper tail dependence with 100 Student simulations, with ρ = 0.25.

Dataset Method
n = 500 n = 1000 n = 2000

Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE
ρ = 0.25 (1) -0.01 0.20 0.20 -0.01 0.13 0.13 -0.02 0.10 0.11
ν= 1 (2) -0.02 0.14 0.14 0.01 0.09 0.09 -0.01 0.07 0.07
λU = 0.39 (3) -0.12 0.04 0.13 -0.12 0.03 0.13 -0.12 0.02 0.12

(4) -0.02 0.07 0.07 -0.01 0.05 0.05 -0.01 0.05 0.05
(5) -0.00 0.07 0.07 0.00 0.05 0.05 -0.00 0.04 0.04
(6) -0.00 0.07 0.07 0.00 0.05 0.05 -0.00 0.04 0.04

ρ = 0.25 (1) -0.03 0.16 0.17 -0.00 0.12 0.12 -0.00 0.09 0.09
ν= 2 (2) -0.03 0.11 0.11 -0.00 0.10 0.10 0.01 0.07 0.07
λU = 0.27 (3) -0.04 0.04 0.06 -0.04 0.03 0.05 -0.04 0.02 0.04

(4) 0.01 0.06 0.06 0.01 0.05 0.05 0.01 0.05 0.05
(5) 0.02 0.08 0.08 0.01 0.05 0.05 0.02 0.05 0.05
(6) 0.02 0.07 0.08 0.01 0.05 0.05 0.02 0.05 0.05

ρ = 0.25 (1) -0.00 0.16 0.16 0.01 0.13 0.13 -0.00 0.08 0.08
ν= 3 (2) 0.00 0.12 0.12 0.03 0.09 0.10 0.02 0.06 0.06
λU = 0.20 (3) 0.02 0.04 0.05 0.03 0.03 0.04 0.02 0.02 0.03

(4) 0.04 0.08 0.09 0.05 0.06 0.07 0.04 0.05 0.06
(5) 0.06 0.09 0.10 0.06 0.05 0.08 0.04 0.04 0.06
(6) 0.05 0.08 0.10 0.06 0.05 0.07 0.04 0.04 0.06
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Table 2.7 : Upper tail dependence with 100 rotated Clayton simulations.

Dataset Method
n = 500 n = 1000 n = 2000

Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE
θ = 0.1 (1) 0.04 0.08 0.09 0.06 0.07 0.09 0.04 0.04 0.06
λU = 0.00 (2) 0.05 0.07 0.08 0.07 0.06 0.09 0.06 0.04 0.07

(3) 0.06 0.04 0.07 0.06 0.02 0.07 0.06 0.02 0.06
(4) 0.10 0.07 0.12 0.09 0.05 0.11 0.08 0.04 0.09
(5) 0.08 0.07 0.11 0.08 0.05 0.10 0.07 0.03 0.07
(6) 0.08 0.07 0.10 0.08 0.05 0.10 0.06 0.03 0.07

θ = 0.5 (1) 0.01 0.18 0.18 0.01 0.12 0.12 0.02 0.10 0.10
λU = 0.25 (2) 0.04 0.14 0.15 0.04 0.09 0.10 0.03 0.05 0.06

(3) 0.02 0.04 0.04 0.02 0.02 0.03 0.02 0.02 0.02
(4) 0.08 0.07 0.10 0.06 0.06 0.08 0.05 0.05 0.07
(5) 0.08 0.08 0.12 0.07 0.05 0.09 0.05 0.04 0.06
(6) 0.09 0.08 0.12 0.07 0.05 0.09 0.05 0.04 0.06

θ = 1.0 (1) -0.00 0.17 0.17 -0.02 0.13 0.13 -0.02 0.10 0.11
λU = 0.50 (2) -0.00 0.13 0.13 0.01 0.10 0.10 -0.01 0.07 0.07

(3) -0.07 0.03 0.08 -0.08 0.05 0.09 -0.07 0.01 0.07
(4) 0.00 0.05 0.05 0.00 0.05 0.05 -0.00 0.04 0.04
(5) 0.03 0.05 0.06 0.02 0.05 0.05 0.01 0.04 0.05
(6) 0.02 0.06 0.06 0.02 0.05 0.06 0.01 0.04 0.04

θ = 1.5 (1) -0.02 0.17 0.17 -0.01 0.13 0.13 0.00 0.09 0.09
λU = 0.63 (2) -0.04 0.12 0.13 -0.02 0.09 0.09 -0.00 0.06 0.06

(3) -0.10 0.02 0.10 -0.10 0.02 0.10 -0.10 0.01 0.10
(4) -0.02 0.04 0.05 -0.02 0.04 0.04 -0.01 0.03 0.03
(5) 0.01 0.05 0.05 0.00 0.04 0.04 0.00 0.03 0.03
(6) 0.01 0.05 0.05 0.00 0.04 0.04 0.00 0.03 0.03
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Table 2.8 : Upper tail dependence with 100 Gaussian simulations.

Dataset Method
n = 500 n = 1000 n = 2000

Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE Bias σ(λ̂U ,n) RMSE
ρ = 0.00 (1) 0.02 0.05 0.06 0.01 0.03 0.03 0.01 0.02 0.03

(2) 0.02 0.04 0.05 0.02 0.03 0.04 0.02 0.02 0.03
(3) 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01
(4) 0.04 0.05 0.06 0.03 0.04 0.05 0.02 0.02 0.03
(5) 0.03 0.05 0.06 0.02 0.03 0.03 0.01 0.03 0.03
(6) 0.02 0.05 0.05 0.02 0.03 0.04 0.01 0.02 0.02

ρ = 0.25 (1) 0.05 0.10 0.11 0.05 0.06 0.08 0.05 0.04 0.06
(2) 0.08 0.08 0.11 0.07 0.05 0.09 0.07 0.04 0.08
(3) 0.18 0.04 0.19 0.18 0.02 0.18 0.18 0.02 0.18
(4) 0.12 0.07 0.14 0.12 0.06 0.13 0.11 0.05 0.12
(5) 0.14 0.07 0.15 0.12 0.05 0.13 0.10 0.03 0.10
(6) 0.14 0.07 0.15 0.12 0.05 0.13 0.10 0.03 0.10

ρ = 0.50 (1) 0.12 0.14 0.19 0.12 0.09 0.15 0.14 0.07 0.15
(2) 0.17 0.11 0.20 0.16 0.07 0.18 0.17 0.06 0.18
(3) 0.38 0.03 0.38 0.38 0.02 0.38 0.37 0.02 0.37
(4) 0.28 0.08 0.30 0.26 0.07 0.27 0.24 0.07 0.25
(5) 0.30 0.07 0.31 0.28 0.06 0.28 0.25 0.04 0.25
(6) 0.30 0.06 0.30 0.27 0.05 0.28 0.25 0.04 0.26

ρ = 0.75 (1) 0.29 0.16 0.33 0.32 0.13 0.34 0.32 0.10 0.34
(2) 0.35 0.13 0.38 0.36 0.09 0.37 0.36 0.07 0.37
(3) 0.59 0.02 0.59 0.58 0.06 0.59 0.59 0.01 0.59
(4) 0.48 0.06 0.49 0.47 0.08 0.48 0.46 0.06 0.46
(5) 0.52 0.06 0.52 0.50 0.04 0.50 0.47 0.05 0.47
(6) 0.53 0.05 0.53 0.50 0.04 0.51 0.48 0.04 0.48
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Spurious tail risk factors and asset prices
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Abstract

In this paper, we argue that certain recent findings concerning the predictive ability of tail

risk exposure, defined as the extremal dependence between asset returns and market returns, are

likely spurious. We argue that these results are related to biases in the estimation procedure of the

tail dependence coefficient (TDC) computed based on the joint behavior of equity returns, market

returns, or other factors. Supported by a simulation framework, we show how this coefficient may

capture a high level of correlation rather than tail dependence. Then, we replicate recent studies

finding a relationship between crash risk exposure and future excess returns. We proceed to show

that these results do not hold when we control for the correlation coefficient and other past return

behavior.
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3.1 Introduction

In the recent asset pricing literature, there has been increasing interest in discovering pricing

anomalies related to compensation for bearing tail risks. Even more recently, some studies have

extended the univariate tail risk concept to bivariate and multivariate cases, mainly to measure

tail risk exposure to the market or a predefined set of factors. In this paper, after examining bias

related to the estimation of these measures of exposure to stock market crashes, we show that the

results identified in recent studies are most likely spurious.

Since the seminal work of Fama and French (1995, 1996), there has been extensive research

attempting to identify additional factors explaining the cross-section of expected stock returns

that the capital asset pricing model (CAPM) alone cannot explain (Sharpe, 1964). More specif-

ically, there has been a growing stream of literature devoted to proving the existence of pricing

anomalies related to compensation for bearing extramarket risks. This literature argues that in-

vestors are averse to downside losses and demand higher future excess returns for holding stocks

with higher downside risk. In this sense, Ang et al. (2006) show that stocks that exhibit downside

risk have higher future excess returns. Since then, many strategies have been used to identify the

downside risk premium in the cross-section of expected returns.

Recent studies rely on extreme value theory (EVT) to measure tail risk as a proxy for the risk

premium (Huang et al., 2012). The relationship between tail risk and future excess returns has

been documented in recent papers, such as those of Lu and Murray (2019) and Atilgan et al.

(2020), who find a negative return impact of a stock’s univariate crash risk. In most cases, such

studies concentrate on risk measures based on the univariate behavior of equity returns; thus,

these studies mainly focus on stock crash risk alone in terms of crash probability. However, re-

cently, a growing body of literature has focused on multivariate crash risk measures, which are

mainly captured with the tail dependence coefficient (TDC). The TDC depicts the probability that

extreme events involving several random variables occur simultaneously. In this paper, we focus

on the TDC estimated based on the joint behavior of stock returns and market returns (Bali et al.,

2014; Kelly and Jiang, 2014; Van Oordt and Zhou, 2016; Chabi-Yo et al., 2018) or the joint behavior

of other factors (Chabi-Yo et al., 2021; Ruenzi et al., 2020). The idea to use the TDC as a proxy for

crash aversion can be traced as far back as Poon et al. (2004), who consider the possibility of a

premium for stocks that exhibit a TDC that increases with the market. The intuition behind such

measures is that stocks sensitive to market crashes should include a premium.

Table 3.1 surveys six papers based on tail risk exposure variables related to the TDC between

stock returns and market returns. These papers provide significant explanatory power for one-

period-ahead stock returns. We report the name of the variable used in each study, its notation,

the estimation procedure, the dataset, and the sample period of the study. Finally, the last column

shows the main portfolio sorting results based on the tail risk measure in each study; it presents

the high-minus-low (H – L) quintile portfolio and its associated t statistics. Kelly and Jiang (2014)

construct a joint tail risk measure based on the TDC and the hill estimator developed by Hill

(1975) and show that firms with higher tail risk exposure earn higher excess returns. Van Oordt

and Zhou (2016) develop a crash risk measure called the tail beta (βT ), which helps predict losses
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in future stock market crashes but does not incorporate a positive premium. Agarwal et al. (2017)

develop a tail risk measure to explain hedge fund performance. He shows that hedge funds that

exhibit higher tail risk exposure earn more excess returns. Meine et al. (2016) show that crash

risk exposure is compensated by higher future excess returns in the cross-section of bank credit

default swaps. Chabi-Yo et al. (2018) evaluate the crash risk exposure of an equity to the market

with a copula approach and show that stocks with higher crash risk exposure earn higher future

returns. Their results are confirmed with the same approach but in the international stock market

by Weigert (2016). Chabi-Yo et al. (2021) extend the concept of crash risk exposure to the market

to encompass crash risk exposure to risk factors, and their measure has a significantly positive

effect on average future stock returns.

In this paper, we raise the following concerns regarding a well-known potential bias in the

estimation of the TDC. Supported by a simulation framework, we reveal bias in both parametric

and nonparametric TDC estimation procedures when data exhibit strong dependence as mea-

sured by the correlation coefficient. In the EVT literature, estimations of the TDC are normally

conducted as a part of exploratory analyses in multivariate extremes, but this is usually a prelim-

inary method used to determine whether data exhibit tail dependence and, hence, the type of

models that might be suitable. Even these assessments, however, should be conducted only in

conjunction with other dependence summaries because there are several models that exhibit no

tail dependence (i.e., asymptotic independence), for which one would estimate quite large values

of the TDC at any observable threshold (Frahm et al., 2005a). More generally, when the true un-

derlying TDC is close to zero but there is dependence in the data, most estimators perform poorly

(Poulin et al., 2007; Frahm et al., 2005a). Several studies have raised concerns regarding this bias

and suggest that tail dependence should be tested before the TDC is estimated (Ledford and Tawn,

1996; Capéraà et al., 1997; Hoga, 2018). We show theoretically and in a simulation framework how

such an estimation procedure could lead to biased estimations of the TDC.

Our research is also related to recent studies devoted to exposing biases in analyses of the

cross-section of expected stock returns. Notably, Lewellen et al. (2010) show that the explanatory

power of certain documented factors is most likely spurious. Harvey et al. (2016) argue that most

of the relevant research findings in financial economics are likely false; they argue that such find-

ings underemphasize the role of chance in the significance of the results. Harvey et al. (2016) also

mention that in the fields of finance and economics, it is difficult to publish studies that replicate

empirical findings related to traditional factors. Accordingly, he suggests that there is a bias to-

ward publishing results related to new factors rather than rigorously testing the predictive ability

of existing factors in multiple settings. This study is also related to a recent paper by McLean and

Pontiff (2016), who argue that certain stock market anomalies become less anomalous after works

identifying them are published.

The main results of this paper can be summarized as follows. First, we show how a crash risk

exposure variable can be subject to potential bias. Second, we replicate common findings in re-

search investigating crash risk exposure and find that this factor has a significant ability to predict

future excess returns with impressive t statistics. Third, we observe that the effect and significance

of these findings decrease and vanish when we control for the correlation with market returns. Fi-

Herd Behavior, Tail Risk Exposure and Asset Prices 76



CHAPTER 3: SPURIOUS TAIL RISK FACTORS AND ASSET PRICES

nally, this study explains that bias is the main driver of the significance of the relationship between

the examined crash exposure measure and future excess returns.

The rest of the paper is organized as follows. Section 3.2 presents the TDC and introduces the

major concerns related to potential bias with respect to the estimation. Section 3.3 introduces

the data and the variables used in the study. In Section 3.4, we present the results regarding the

relationship between crash risk exposure as captured by several variables and future excess re-

turns. We identify where bias could arise in the estimation and then control for it. We study the

relationship between a spurious risk factor and future returns. Finally, Section 3.5 concludes.

3.2 The TDC and bias

In this section, we introduce the TDC and its link to the study of crash risk exposure. Then, we

show the potential for bias in a naive estimation of this coefficient.

3.2.1 The TDC and the copula

The TDC depicts the probability that extreme events occur simultaneously in relation to several

random variables. The TDC usually refers to the asymptotic probability introduced by Sibuya

(1960) and subsequently defined by Joe (1997). This notion describes the dependence between

extreme values in either the upper-right-quadrant tail or lower-left-quadrant tail of a bivariate

distribution. A lower TDC, denoted λ, is defined as follows (Joe, 1997):

λ= lim
u→0+P

[
X < F−1

X (u)|Y < F−1
Y (u)

]
, (1)

where λ ∈ [0,1]. We denote the generalized inverses of the univariate cumulative distribution

functions FX and FY as F−1
X and F−1

Y . The TDC is a pure copula property and is not based on

marginal distributions but on only the copula, i.e., the marginal-free version of the joint distribu-

tion (Nelsen, 2007; Joe, 2014). The dependence structure is fully described by the copula function

and holds independent of the marginal distributions. Let us denote as C the copula function

between X and Y that can be expressed as follows:

C (u, v) = F
(
F−1

X (u),F−1
Y (v)

)
, (2)

where (u, v) ∈ [0,1]2. The TDC is independent of the margins of X and Y ; thus, we express the

TDC solely in terms of the copula function as follows:

λ= lim
u→0+

C (u,u)

u
. (3)

The generalization of the TDC in a multivariate setting with N factors is given as follows:

λX = lim
u→0+P

[
X < F−1

X (u) |
N⋃

j=1

{
Y j < F−1

Y j
(u)

}]
. (4)
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The copula expression is given in appendix A.

3.2.2 Estimation of the TDC

The estimation of the TDC is often related to the estimation of copulas. Indeed, if one estimates

a parametric copula, he or she can easily deduce the corresponding parametric TDC. Nonethe-

less, an accurate estimation of the TDC requires focusing merely on extreme observations. Such

a parametric procedure, in which the whole dataset is used to estimate the copula function, may

not be appropriate since it does not focus on the tail. To overcome the issue of choosing a specific

parameterization of the copula function, some researchers have proposed a nonparametric ver-

sion of the TDC estimator based on the empirical copula introduced by Deheuvels (1979). This

estimator corresponds to a discretization of the TDC as defined by Joe (1997) and relies on the

selection of a threshold over which the probability of the occurrence of joint extreme events is

computed.

We consider n bivariate observations (x j , y j ) for j ∈ {1,n} generated with a dependence model

of copula C . The nonparametric estimator of the lower TDC is defined as follows (Caillault and

Guégan, 2005; Frahm et al., 2005a):

λ̂L

(
i

n

)
= Ĉ

( i
n , i

n

)
i
n

, (5)

where 1 ≥ i ≥ n, and (u, v) ∈ [0,1]2 7→ Ĉ (u, v) is the empirical copula introduced by Deheuvels

(1979). We can write this empirical copula as follows (Genest and Rémillard, 2004):

Ĉ (u, v) = 1

n

n∑
j=1

1{F̂X (X j )≤u}1{F̂Y (Y j )≤v}, (6)

where F̂X and F̂Y are estimations of the marginal cumulative distribution functions. Focusing on

X , F̂X is defined as follows:

F̂X (x) = 1

n

n∑
j=1

1{X j≤x}. (7)

Schmidt and Stadtmüller (2006) show that a nonparametric estimator of the TDC exhibits strong

consistency and is asymptotically normal.

The estimator of the lower TDC provided in Eq. (5) relies on the selection of an appropriate

integer i ∈ {1,n}. Various selection rules for this free parameter have been proposed in the liter-

ature. An example is the plateau-finding algorithm (Frahm et al., 2005a). The selection rule for

the threshold strongly impacts the quality of these nonparametric TDC estimators. Ideally, the

threshold should allow us to focus on only a few extreme observations to prevent bias in the TDC

estimation stemming from data from the bulk of the distribution. Nonetheless, the variance in

the estimator would override.
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3.2.3 Bias in the estimation of the TDC

Recent studies have documented bias linked to the estimation of the TDC. It is well established

by extreme value theory (EVT) studies that the estimation of the TDC could result in misleading

interpretations. Especially when the true underlying TDC is close to zero and the general de-

pendence captured by the correlation coefficient is strong, most estimators perform poorly. This

result is related to the findings by Frahm et al. (2005a) and Poulin et al. (2007), who suggest that

tail dependence should be tested before an estimation of the TDC is carefully computed (Ledford

and Tawn, 1996; Capéraà et al., 1997). A high level of correlation coefficients is often found in

financial data and, therefore, might be captured by a TDC estimator.

Figure 3.1: Gaussian copula versus Clayton copula.
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Notes: This figure displays 2500 random simulations of 2 bivariate distributions with Gaussian marginals.
The graph on the left is drawn based on a Clayton copula with a theta parameter of 1 and an underlying
TDC of 0.5. The graph on the right is drawn based on a Gaussian copula with a correlation coefficient of
0.5 and an underlying TDC of 0, as the Gaussian copula exhibits no tail dependence.

To graphically illustrate the potential for bias in estimations of the TDC, we show two exam-

ples in Fig. 3.1; in one example, the true underlying TDC is equal to 0.5, which is the Clayton

copula, and in the other example, the true TDC is equal to 0, which is the Gaussian copula. A

nonparametric estimation of the TDC in this example could lead to a bias of 0.27 in the Gaussian

case. Frahm et al. (2005a) document similar results using a finite mixture of bivariate Gaussian

distributions, although tail independent, which produce sample observations suggesting tail de-

pendence even for large sample sizes.

A parametric method is also employed to estimate the TDC in Chabi-Yo et al. (2018); Ruenzi

and Weigert (2018); Weigert (2016), as presented in appendix B. Chabi-Yo et al. (2018) attribute

their findings to their parametric estimation procedure and explain that an estimation based on

a whole joint distribution is more robust than one that relies on a small number of observations

in the tail. To test this affirmation, we use a simulation framework to compare the nonparametric

method with their parametric method. We compare the two estimators using random data sam-

ples generated by tail-independent bivariate distributions using a Gaussian copula function for

N = 50 random sample replications with a sample size of n = 250. We use different correlation co-

efficient values ρ ∈ {−0.9,−0.75,−0.5,−0.25,0,0.25,0.5,0.75,0.9} to link the bias to the correlation

coefficient. Then, we compute the average of the empirical bias and the standard deviation of the
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sample bias. The results are presented in Fig. 3.2. The graph shows an upward bias with positive

Figure 3.2: Bias estimation in Gaussian simulations.
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Notes: This figure shows the results of the bivariate Gaussian simulation framework with 20 samples gen-
erated with a sample size of n = 250 for different correlation coefficient values. The results are reported for
two methods; the parametric method is shown in red, and the nonparametric method is shown in blue.
The plain line represents the average level of bias computed for the 50 samples, and the error bar is the
standard deviation of the bias.

values for the correlation coefficient. We can observe a nonlinear relationship between the bias

in the estimator and the correlation coefficient. We also observe that the parametric method is

more biased than the nonparametric method.

If we examine the limiting case in the Gaussian copula, although it exhibits a theoretical TDC

at 0, we observe that the theoretical TDC increases as the correlation coefficient increases if we

choose a threshold u in Eq. (3) slightly above 0. We plot these results in Fig. 3.3, which shows the

expected bias of the estimation of the TDC with different threshold choices above the limiting

case of u = 0 and different correlation coefficient values given that we face a bivariate Gaussian

distribution. The relationship between the correlation coefficient and the TDC is largely hidden

due to its strong nonlinear nature. In the simulation framework, the results suggest that bias

increases nonlinearly as the correlation coefficient increases.

The corresponding bias behaves in the same manner for the multivariate TDC discussed in

Chabi-Yo et al. (2021). As in the bivariate case, the nonparametric estimation of the multivari-

ate TDC requires the selection of a specific threshold q . In Fig. 3.4, we plot the expected bias of

the multivariate setting of equity returns and a 7-factor model (as elaborated in Chabi-Yo et al.

(2021)). In this case, we vary only the correlation coefficient of the equity returns and the mar-

ket factor MKT. We consider two cases. In the first case, the rest of the dependence between the

returns and other factors is described by a correlation matrix with a null coefficient for every pos-

sible combination. We denote this correlation matrix I7. Second, we consider a case in which we

estimate the rest of the correlation matrix of the factors as the average correlation matrix over the

whole sample period. We denote this matrix ρ̂X, which varies only for the correlation coefficient

between the returns and the first factor across its support. The procedure used to estimate the

expected bias in the theoretical framework is given by replacing the multivariate empirical cop-
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Figure 3.3: Sensitivity of the TDC by threshold selection and correlation.
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Notes: This figure represents the value of the TDC in the Gaussian copula if it is not computed with the lim-
iting case (u → 0) but computed with u slightly above 0. The results are reported with different correlation
coefficient values.

ula with a multivariate Gaussian copula with a given correlation matrix. The procedure used to

obtain the corresponding copula expression is given in appendix A.

Figure 3.4: Multivariate TDC bias as a function of the correlation coefficient.
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Notes: This figure shows the bias of the multivariate TDC in the multivariate Gaussian case with different
correlation coefficients between the first two variables (in the case of multivariate crash risk [MCRASH], it
corresponds to the correlation coefficient between returns and the first factor). The rest of the correlation
matrix is computed with a null correlation coefficient for I7 and an estimation of the average correlation
matrix between returns and other factors across the sample ρ̂X.

3.3 Data & variables

In Section 3.2, we argued that the TDC may be biased due to high correlation coefficients. Ac-

cordingly, the TDC might not capture how individual stocks behave during financial distress but

rather the intensity of the dependence between stock returns and market returns. In this sec-

tion, we present the stock dataset utilized and describe tail risk exposure and the other variables

employed in our analysis.
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3.3.1 Data

Our sample consists of data obtained from the Center for Research in Security Prices (CRSP)

database (share code 10 or 11) corresponding to all common stocks traded on the NYSE, AMEX,

and NASDAQ between January 1964 and December 2020. We select stocks with at least 200

nonzero return observations over the previous 250 trading days and prices of at least USD $2

to remain in the sample in month t . This procedure removes a large number of small and illiquid

stocks from our sample. Thus, the sample is reduced to 1977989 observations corresponding to

between 760 and 5937 firms in each month over the sample period. The risk-free rate and the

factors MKT, SMB, HML, RMW, CMA, and UMD are derived from Kenneth French’s website. The

last factor (BAB) is downloaded from the AQR website1.

3.3.2 Variables

The variables presented in Table 3.1 are the key variables used in this analysis; all the variables

depend on the TDC introduced in Eq. (1) and may be subject to estimation bias and a spurious

relationship with future excess returns. The crash measure (Chabi-Yo et al., 2018; Ruenzi and

Weigert, 2018; Weigert, 2016) is defined as the TDC between the stock return and market returns

as follows:

CRASHi = lim
u→0+P

(
ri ≤ F−1

i (u) | rm ≤ F−1
m (u)

)= λ̂i m(u), (8)

where F i and F m denote the cumulative distribution functions of the stock return ri and the

market return rm , respectively. The multivariate crash risk MCRASH (Chabi-Yo et al., 2021) is

based on a generalization of the CRASH measure to the multivariate case. Chabi-Yo et al., 2021

define MCRASH as follows:

MCRASHi = lim
u→0+P

(
ri ≤ F−1

i (u) |
N⋃

j=1

{
X j ≤ F−1

j (u)
})

= λ̂X
i (u), (9)

where X = (X1, . . . , XN )′ denotes multiple factors. MCRASH is estimated using a seven-factor

model in which the first five factors are those proposed by Fama and French (1995, 1996), i.e., the

excess market return (MKT), the size factor (SMB), the value factor (HML), the profitability fac-

tor (RMW), and the investment factor (CMA). The other factors are the momentum factor (UMD)

from Carhart (1997) and the betting-against-beta (BAB) factor from Frazzini and Pedersen (2014).

The variable is estimated with its non-parametric estimator (the formula is given in the In the case

of MCRASH, bias can arise from multiple correlation sources, but we focus on the correlation with

the first factor MKT, which is also measured with ρ(ri ,rm).

The next variables depend on the TDC and are scaled based on the ratio of the univariate

tail risk of stock i over the tail risk of the market. The tail beta βT (Van Oordt and Zhou, 2016) is

estimated nonparametrically with the following measure:

β̂T
i = λ̂i m(u)1/ᾱm

VaRi (u)

VaRm(u)
, (10)

1https://www.aqr.com/Insights/Datasets
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where the tail index α̂m is estimated with the Hill estimator (see Hill (1975)). The parameter (with

range (0,2)) is used to determine the tail behavior such that the smaller the parameter is, the heav-

ier the tail. In this study, it is estimated with a threshold of q = 0.04. Finally, the value at risk mea-

sures (VaRs) are the historical VaRs of the stock and the market estimated with the corresponding

threshold u.

As mentioned in Section 3.2, the TDC may capture a high level of correlation dependence in-

stead of a true asymptotic dependence. To confirm this relationship, we introduce the correlation

coefficient between asset returns and market returns (ρ(ri ,rm)). Usually, this relationship is cap-

tured through asset exposure to the market, which is the market beta of asset i (βi ) in the CAPM

model. The market beta can be expressed as the scaled correlation to the level of idiosyncratic

risk as follows:

βi = ρ(ri ,rm)
σ(ri )

σ(rm)

where σ(ri ) and σ(rm) are the respective volatilities. However, in this case, different levels of id-

iosyncratic risk (σ(ri )) can lead to very different market beta values and may express different re-

lationships. The relationships between the aforementioned variables and future returns may also

be attributed to relationships with other attributes known to impact future equity returns. This is

the case for cokurtosis (cokurt), with Fang and Lai (1997) and Dittmar (2002) showing that stocks

with high cokurtosis earn high average returns. This is also the case for coskewness (coskew),

which has already been shown to explain expected stock returns Harvey and Siddique (2000). The

coskewness is given in Chabi-Yo et al. (2018) as follows:

coskew =
E

[(
ri −µi

)(
rm −µm

)2
]

p
VAR(ri )VAR(rm)

,

Cokurtosis is given as follows:

cokurt =
E

[(
ri −µi

)(
rm −µm

)3
]

p
VAR(ri )VAR(rm)3/2

,

which are estimated nonparametrically. To control for univariate risk, we include the empirical

value at risk of stock i (VaR ri) estimated at the 5% level over the previous 12 months, which is a

common measure of left-tail risk. Following most studies that reduce the presence of outliers, we

winsorize all the independent variables at the 1% level.

3.4 Empirical analysis

In Section 3.3, we describe the data and the variables used in this study. This section is dedicated

to proving that the relationship between tail risk exposure and future excess returns is spurious.

We first provide some descriptive statistics and attempt to reproduce the results previously ob-

tained in the literature. Then, we show that the return predictability previously attributed to tail

risk exposure is in fact driven by the correlation between stock and market returns and other past

return behavior.
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3.4.1 Descriptive statistics and temporal variation

The summary statistics of all the independent variables used in this analysis and their correlation

matrix are provided in Table 3.2 . The table summarizes the results regarding tail risk exposure

and the other variables introduced in Section 3.3. In panel A, we present the mean, standard

deviation, skewness, kurtosis, minimum, 5th percentile, 25th percentile, median, 75th percentile,

95th percentile and maximum of each variable.

Panel B presents the correlation matrix of the independent variables. We observe positive cor-

relation coefficients between the 3 risk exposure variables. The correlation coefficient between

CRASH and MCRASH is relatively high at 0.72, indicating a strong relationship. The lowest corre-

lation coefficients are those of βT and MCRASH at 0.18 and βT and CRASH at 0.26. Regarding the

correlation coefficient between ρ(ri ,rm) and the 3 variables, we observe positive values ranging

from 0.07 to 0.73. The correlations of CRASH and MCRASH with ρ(ri ,rm) are relatively high, with

values of 0.73 and 0.54, respectively; however, we observe that the dependence is far from perfect,

suggesting that the variables may measure different types of exposure to market returns. We also

find positive relationships between these 3 variables and the market beta, with values that range

from 0.20 to 0.46.

Figure 3.5: Aggregated behavior of tail risk exposure and return correlation over time.
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Notes: This figure plots the aggregate behavior of the tail risk measure introduced in section 3.1 over the

sample period. The bold line refers to the monthly cross-sectional average of each variable, and the gray

area represents the standard deviation interval around the average.

Fig. 3.5 presents an overview of the aggregated measures across the sample period. No clear

temporal trend appears in the aggregated behavior of any variable. However, we can observe

jumps in CRASH and MCRASH that coincide with jumps in the average correlation with the mar-

ket. These spikes in the aggregated behavior seem to be related to major financial crisis events

(mainly Black Monday in 1987, the subprime crisis and the relatively recent COVID-19 crash at

the beginning of 2020). Increases in this correlation during periods of financial distress have been
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Table 3.2 : Summary statistics and correlations.
Panel A: Summary statistics

Mean StDev. skew kurt min q5 q25 med q75 q95 max

crash 0.23 0.15 0.63 -0.14 0.00 0.08 0.00 0.24 0.32 0.55 0.64
mcrash 0.09 0.03 0.33 -0.26 0.02 0.06 0.03 0.08 0.11 0.15 0.18
βT 1.59 0.91 0.51 0.45 0.00 1.04 0.00 1.48 2.09 3.28 4.31
βMK T 0.99 0.55 0.24 0.24 -0.28 0.65 0.08 0.98 1.31 1.95 2.54
βSMB 0.69 0.72 0.46 0.17 -0.89 0.17 -0.38 0.63 1.13 1.99 2.80
βH ML 0.16 0.82 -0.36 1.04 -2.44 -0.27 -1.28 0.19 0.64 1.46 2.30
βU MD -0.04 0.59 -0.07 1.27 -1.85 -0.35 -1.04 -0.03 0.28 0.93 1.73
ρ(Ri ,Rm) 0.33 0.19 0.22 -0.65 -0.05 0.18 0.03 0.32 0.47 0.67 0.78
coskew -0.09 0.24 -1.57 6.13 -1.25 -0.18 -0.46 -0.07 0.04 0.24 0.43
cokurt 1.75 1.66 3.16 15.62 -0.36 0.78 0.07 1.41 2.26 4.24 12.18
Panel B: correlation

CRASH MCRASH βT βMK T βSMB βH ML βU MD ρ(Ri ,Rm) coskew cokurt

CRASH 1.00
MCRASH 0.72 1.00
βT 0.25 0.18 1.00
βMK T 0.30 0.20 0.46 1.00
βSMB -0.05 0.06 0.32 0.40 1.00
βH ML -0.00 0.05 -0.10 0.12 0.16 1.00
βU MD 0.04 0.10 0.00 -0.08 -0.05 0.03 1.00
ρ(Ri ,Rm) 0.73 0.54 0.07 0.44 -0.07 -0.03 0.00 1.00
coskew -0.29 -0.26 0.01 -0.04 -0.05 -0.04 -0.05 -0.06 1.00
cokurt 0.57 0.45 -0.02 0.27 -0.05 -0.02 0.03 0.63 -0.53 1.00

Notes: Panel A reports the summary statistics of the different tail risk exposure measures introduced in
Section 3.3 and the other variables used in the analysis. The results regarding the three different tail risk
measures (CRASH, MCRASH, and βT ) are given; we also include the betas from the Carhart 4-factor model
(Carhart, 1997) (βMK T , βSMB , βH ML , βU MD ), the correlation coefficient between asset returns and market
returns (ρ(ri ,rm), coskewness (coskew), and cokurtosis (cokurt). In the columns, we report the mean,
standard deviation (StDev), skewness (skew), kurtosis (kurt), minimum value (min), 5% quantile (q5), 25%
quantile (q25), 50% quantile (median), 75% quantile (q75), 95% quantile and maximum value (max) of each
variable. We select all the US stocks with CRSP share codes 10 and 11 traded on the NYSE/AMEX/NASDAQ
between January 1965 and January 2020, excluding stocks with prices below $2 on the portfolio formation
date. We also require that a stock have at least 200 nonzero return observations over the previous year to
remain in the sample. In panel B of this table, we report the correlation matrix of the variables introduced
in panel A.
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well documented.

3.4.2 Portfolio sorts

Following Daniel and Titman (1997), we apply a double-sorting procedure. We conduct bivariate

portfolio sorting with five portfolios based on the tail risk measure; then, within each quintile

portfolio, we form five new portfolios based on the correlation coefficient between asset returns

and market returns. We evaluate average returns in excess of the risk-free rate over month t +1

(i.e., returns minus the risk-free rate) for each of the 25 double-sorted portfolios. The results are

reported in Table 3.3 . In column (H – L), we display the differences in returns between the lowest

quantile portfolio (Low) and the highest quantile portfolio (High). We report the significance of

this spread in the last column with the t statistics of the test computed with Newey et al. (1987)

standard errors with 12 lags. We conduct this sorting for each of the 3 tail risk exposure indicators,

with the results for CRASH, MCRASH, and βT presented in panels A to C, respectively.

First, considering only univariate sorting based on tail risk exposure (provided in the first line

of each panel with the index All), we observe a significant excess returns spread between the port-

folios in the lowest quintile and those in the highest quintile as the tail risk measure increases. The

spread is significant at the 1% level, with high t statistics for each of the tail risk exposure measures

in the 3 panels. We observe a positive spread of the CRASH and MCRASH measures. In panel A,

the CRASH return spread (H – L) amounts to 0.58% per month with a t statistic of 16.48, and the

stocks in the highest quantile earn 6.95% higher annualized excess returns. In the MCRASH re-

turn spread, we observe 0.54% per month with a t statistic of 14.64, which corresponds to 6.48%

in annualized returns. In contrast, we observe a negative spread of -0.72% for the tail beta with a

t statistic of -16.44.

However, considering this spread within the sorted portfolios based on the correlation values

(rows Low to High), we observe that this spread is in fact sensitive to differences in the correlation

values. The predictive power of the differences in the stock crash risk measures appears to be

linked to different values of the correlation coefficient. Specifically, except for the nonsignificant

spread in panel A, an increase in the correlation coefficient tends to accompany an increase in

the return spread. More specifically, in panel B, in the lowest correlation quantile portfolio, the

spread is significantly negative, while it is significantly positive in the highest quantile correlation

portfolio. The lowest correlation quintile portfolio exhibits an H – L MCRASH return spread of -

0.58% (with t statistic -3.36), while the highest correlation quintile portfolio has a spread of 0.74%

(t statistic 6.29). In panel C, the lowest correlation quintile portfolio has a return spread of -0.65%

(t statistic -6.16), while the highest a spread of -0.21% (t statistic -2.11). Consequently, in this set-

ting, higher average future returns associated with higher tail risk exposure are driven by different

values of the correlation coefficient.

3.4.3 Multivariate analysis

To test the relationships between the tail risk exposure measures and future excess returns, we

proceed with Fama and MacBeth (1973) regressions at the individual firm level. Thus, we imple-

Herd Behavior, Tail Risk Exposure and Asset Prices 87



CHAPTER 3: SPURIOUS TAIL RISK FACTORS AND ASSET PRICES

Table 3.3 : Equally weighted portfolio sorts based on correlation and tail risk.

Low 2 3 4 High H – L t stat

Panel A: CRASH and correlation
All 0.505 0.473 0.479 0.585 1.088 0.583∗∗∗ 16.483
Low ρri ,rm 0.473 0.500 0.526 0.437 0.476 0.003 0.006
2 0.389 0.263 0.222 0.175 0.054 -0.335∗ -1.844
3 0.558 0.463 0.482 0.489 0.587 0.029 0.282
4 0.926 0.767 0.686 0.726 0.823 -0.104 -1.000
High ρri ,rm 1.674 1.036 0.623 0.842 1.311 -0.363∗ -1.797

Panel B: MCRASH and correlation
All 0.559 0.289 0.542 0.591 1.106 0.547∗∗∗ 14.638
Low ρri ,rm 0.745 0.229 0.345 0.219 0.160 -0.585∗∗∗ -3.356
2 0.394 0.065 0.385 0.251 0.047 -0.347∗∗∗ -2.692
3 0.362 0.389 0.568 0.421 0.665 0.303∗∗∗ 3.237
4 0.594 0.535 0.707 0.739 1.071 0.478∗∗∗ 5.565
High ρri ,rm 0.708 0.451 0.779 0.977 1.452 0.744∗∗∗ 6.286

Panel C: βT and correlation
All 0.662 0.803 0.846 0.780 -0.054 -0.716∗∗∗ -16.436
Low ρri ,rm 0.593 0.641 0.654 0.458 -0.056 -0.649∗∗∗ -6.160
2 0.521 0.527 0.586 0.377 -0.555 -1.076∗∗∗ -11.567
3 0.659 0.698 0.713 0.624 -0.284 -0.943∗∗∗ -10.818
4 0.861 0.799 0.811 0.955 0.353 -0.508∗∗∗ -6.132
High ρri ,rm 0.965 1.100 1.231 1.380 0.759 -0.206∗∗ -2.114

Notes: This table reports the average monthly excess return of equally weighted bivariate portfolio sorts
on the basis of the correlation coefficient and the corresponding tail risk measure. First, the stocks are
sorted into quintile portfolios based on the tail risk measure estimated over the previous 12 months; then,
within each quintile portfolio, we form five new portfolios based on the correlation coefficient between
asset returns and market returns estimated over the previous 12 months. We select NYSE/AMEX/NASDAQ
stocks with CRSP share codes 10 and 11 traded between January 1965 and January 2020, excluding stocks
with prices below $2 on the portfolio formation date. We also require that a stock have at least 200 nonzero
return observations over the previous year to remain in the sample. The results are divided into 3 sets, with
one set for each of the following different tail risk measures: CRASH, MCRASH, and βT . The H – L columns
report the results of the high-minus-low portfolios, and the last column reports the associated t statistics
with Newey et al. (1987) standard errors based on twelve lags. The superscripts ∗∗∗, ∗∗, and ∗ indicate
significance at the 1, 5, and 10% levels, respectively.
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Table 3.4 : Fama and MacBeth (1973) regressions.

(1) (2) (3) (4) (5) (6) (7)

Panel A: CRASH
CRASH 0.752∗∗ 1.119∗∗∗ 1.114∗∗∗ 1.298∗∗∗ 1.253∗∗∗ 1.133∗∗∗ 0.650∗∗∗

βMK T -0.255∗ -0.274∗∗ -0.308∗∗ -0.271∗∗ -0.264∗ -0.419∗∗

βSMB 0.055 0.054 0.039 0.038 0.119
βH ML 0.112 0.189∗∗ 0.181∗∗ 0.191∗∗

βU MD -0.008 0.007 -0.004
coskew 1.133∗∗∗ -0.146
cokurt 0.262∗∗

Const. 0.395∗ 0.583∗∗∗ 0.568∗∗∗ 0.555∗∗∗ 0.536∗∗∗ 0.497∗∗∗ 0.395∗

Panel B: MCRASH
MCRASH 3.630∗∗∗ 4.611∗∗∗ 4.549∗∗∗ 5.021∗∗∗ 4.648∗∗∗ 3.983∗∗∗ 2.660∗∗∗

βMK T -0.221∗ -0.204∗∗ -0.226∗ -0.191 -0.203 -0.399∗∗

βSMB 0.002 -0.003 -0.022 -0.017 0.092
βH ML 0.103 0.183∗∗ 0.173∗∗ 0.185∗

βU MD -0.018 -0.013 -0.018
coskew 3.983∗∗∗ -0.207
cokurt 0.284∗∗

Const. 0.254 0.400∗ 0.396∗∗ 0.367∗ 0.373∗ 0.350∗ 0.254

Panel C: βT

βT -0.176 -0.188 -0.205∗ -0.202∗ -0.266∗∗∗ -0.299∗∗∗ -0.246∗∗∗

βMK T 0.001 0.036 0.03 0.124 0.109 -0.145
βSMB 0.007 -0.002 -0.004 0.009 0.104
βH ML 0.058 0.121 0.107 0.131
βU MD 0.103 0.092 0.064
coskew -0.299∗∗∗ -0.576∗∗∗

cokurt 0.285∗∗∗

Const. 0.917∗∗∗ 0.908∗∗∗ 0.890∗∗∗ 0.866∗∗∗ 0.852∗∗∗ 0.770∗∗∗ 0.917∗∗∗

Notes: This table reports the results of cross-sectional Fama and MacBeth (1973) regressions of future ex-
cess returns on the different tail risk measures (CRASH, MCRASH, and βT ). We control for the market beta
βMKT, small-minus-big beta βSMB, high-minus-low beta βHML, coskewness and cokurtosis. We select NY-
SE/AMEX/NASDAQ stocks with CRSP share codes 10 and 11 from between January 1965 and January 2020,
excluding stocks with prices below $5 on the portfolio formation date. We also require that a stock have
at least 200 nonzero return observations over the previous year to remain in the sample. The results are
divided into 3 panels, each corresponding to one of the following tail risk measures: CRASH, MCRASH,
and βT . The significance of the coefficient is given using the t statistics with Newey et al. (1987) standard
errors based on twelve lags. The superscripts ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% levels,
respectively.
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ment the following model:

Re
i t+1 =α0 +αTai l M

1 .Tai l Mi ,t +
K∑

j=1
α j Y j

i ,t +εi t+1, (11)

where Tai l M is the corresponding tail risk exposure variable considered, and Y j
i ,t denotes the set

of control variables used. Table 3.4 reports the results of the models corresponding to each of

the 3 tail exposure measures in 3 different panels. In models (1) to (7), we successively add the

betas from the Carhart 4-factor model (Carhart, 1997) βMK T , βSMB , βH ML , βU MD , coskewness

and cokurtosis. The significance of each coefficient is given using t statistics with Newey et al.

(1987) standard errors based on twelve lags.

Consistent with the results of previous studies, we find positive values for the coefficients of

CRASH and MCRASH with similar magnitudes (Chabi-Yo et al., 2018, 2021). Additionally, for the

βT coefficients, which are also shown to be related in a study (Van Oordt and Zhou, 2016), we

find negative values. In panel A, we find that the impact of CRASH is statistically significant at the

1% level, except for in the first model (1), where it is significant at the 5% level, with coefficient

values ranging from 0.65% to 1.30%. In panel B, the MCRASH measure is significant at the 1%

level across all models (1) to (7) with coefficients ranging from 3.63% to 5.02%. In panel C, the

coefficients range from -0.30% to -0.18% but are significant at the 1% level in only the last three

models (models (5), (6) and (7)) and significant at the 10% level in models (2) and (3).
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3.4.4 Additional controls

Table 3.5 : Fama and MacBeth (1973) regressions and quintile portfolio on correlation.

All Low (2) (3) (4) High

Panel A: CRASH

CRASH 0.348∗ 0.234 0.159 0.278 0.341 0.248

(1.95) (0.29) (0.38) (0.84) (1.36) (0.57)

past ret 0.655∗∗ 1.234∗∗ 0.524 0.086 1.014∗∗ 0.010

(2.44) (2.27) (1.41) (0.21) (2.24) (0.01)

VaRri 0.355∗∗∗ 0.438∗∗∗ 0.268∗∗∗ 0.319∗∗∗ 0.325∗∗∗ 0.638∗∗

(6.39) (5.07) (3.45) (4.5) (3.85) (2.53)

Panel B: MCRASH

MCRASH 1.066∗ 1.176 2.846∗∗ -0.688 1.664∗ 1.629

(1.77) (0.66) (2.28) (-0.50) (1.68) (0.73)

past ret 0.651∗∗ 1.170∗∗ 0.519 0.101 0.992∗∗ -0.611

(2.43) (2.17) (1.43) (0.25) (2.21) (-0.79)

VaRri 0.352∗∗∗ 0.424∗∗∗ 0.265∗∗∗ 0.318∗∗∗ 0.314∗∗∗ 0.445∗∗∗

(6.35) (4.68) (3.40) (4.47) (3.72) (2.62)

Panel C: βT

βT 0.105∗ 0.080 -0.068 0.048 0.209 0.413∗

(1.91) (0.50) (-0.65) (0.43) (1.55) (1.90)

past ret 0.654∗∗ 1.216∗∗ 0.495 0.112 1.022∗∗ 0.104

(2.43) (2.25) (1.32) (0.27) (2.27) (0.14)

VaRri 0.383∗∗∗ 0.434∗∗∗ 0.248∗∗∗ 0.325∗∗∗ 0.393∗∗∗ 0.838∗∗∗

(6.65) (4.97) (3.11) (3.85) (3.68) (2.94)

Notes: This table reports the results of cross-sectional Fama and MacBeth (1973) regressions of future ex-

cess returns on the different tail risk measures (CRASH, MCRASH, and βT ). The control variables corre-

spond to equation (7) in Table 3.4 ; we add controls for past return behavior (past ret) and the value at

risk at the 5% level (VaR). We give the results for the whole dataset in the first column (All); then, we sort

the stocks in our sample into quintile portfolios according to the correlation coefficient. We select NY-

SE/AMEX/NASDAQ stocks with CRSP share codes 10 and 11 traded between January 1965 and January

2020, excluding stocks with prices below $5 on the portfolio formation date. We also require that a stock

have at least 200 nonzero return observations over the previous year to remain in the sample. The results

are divided into 3 panels, each corresponding to one of the following tail risk measures: CRASH, MCRASH,

and βT . The significance of the coefficient is given using t statistics with Newey et al. (1987) standard er-

rors based on twelve lags. The superscripts ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% levels,

respectively.

We address previous concerns that the significant predictive ability of the different tail risk expo-

sure variables is related to a confounding effect with the correlation coefficient. We investigate
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the validity of the previous Fama and MacBeth (1973) regression results in Table 3.4 . We start

with model (7) from Table 3.4 , where we add controls for past return behavior (past ret) and the

value at risk at the 5% level (VaR) to control for the univariate tail risk and determine whether the

effect of tail risk exposure still holds. We then proceed with a regression analysis of the quintile

portfolios formed at the correlation coefficient level.

The results are reported in Table 3.5 . We give the results of the whole dataset in the first

column (All); then, we sort the stocks in our sample into quintile portfolios according to the cor-

relation coefficient in the next 5 columns. In panel A, considering the whole dataset (column All),

we find that the coefficient is significant at only the 10% level with a value of 0.35%. Past returns

and the value at risk are significant at the 5% and 1% levels with values of 0.65% and 0.35%, re-

spectively. When considering the quintile portfolios (from columns Low to High), we find that the

coefficients are no longer significant, with values ranging from 0.16 to 0.34.

In panel B, the coefficient of the entire dataset (column All) is still significant at the 10% level

with a value of 1.07%. However, when we consider the quintile portfolios, the coefficient is no

longer significant in the Low, (3), or High columns. The coefficient is only significant in the (2)

column at the 5% level and in the (4) column at the 10% level. We observe results for the past

returns and value at risk coefficients that are similar to those in panel A.

In the last panel, the coefficient becomes positive when the variables past ret and value at

risk are added as controls, in contrast to the previous regressions. Additionally, in all the different

quintile portfolios, the coefficients are no longer significant.

3.5 Conclusion

A plethora of factors have been recently introduced in the asset pricing literature, it is famously

referred to as a "zoo of new factors" by Cochrane (2011). This has given rise to a debate regarding

how many of these factors are really useful in providing independent information. In fact, some

studies argue that most of the claimed results may be attributed to data mining (Harvey et al.,

2016) or spurious regression (Deng, 2014). In this paper, we contribute to this ongoing debate by

re-examining the findings of recent distress risk factors that explain the cross-section of expected

stock returns. Specifically, we focus on three variables that capture the crash sensitivity of a stock

to the market or multiple factors, measured with the TDC. In the corresponding studies, the au-

thors claim that stocks sensitive to market crashes should include a premium or may be useful to

predict future excess returns.

We first highlight possible bias in the estimation of the TDC when there is a high level of cor-

relation between the corresponding random variables. Consequently, this bias may pollute all

crash sensitivity measures and downside risk measures in empirical studies. Then, we replicate

the recent studies finding a relationship between crash risk exposure and future excess returns.

We show that these results do not hold when we control for the correlation coefficient and other

past return behavior. The pricing anomalies are most likely driven by a confounding effect with

the correlation coefficient. Indeed, the TDC might not capture how individual stocks behave dur-

ing financial distress but rather the intensity of the dependence with the market.
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Our paper contributes to the literature dedicated to revealing biases in the context of asset

pricing. As mentioned by Harvey et al. (2016), there is a bias toward publishing studies investigat-

ing new factors. We suggest that more rigorous testing and estimation should be applied to em-

pirical findings related to traditional factors. More specifically, our results call for careful analysis

in empirical studies involving the estimation of the TDC with financial returns. Other measures

to capture the tail risk exposure such as the marginal expected shortfall (Idier et al., 2014) should

be considered in future works.
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3.1 Multivariate TDC in terms of copula functions

Here, we detail the expression of MCRASH in terms of copula functions. First, given the MCRASH

definition

MCRASHX
i = lim

u→0+P

[
X < F−1

X (u) |
N⋃

j=1

{
Y j < F−1

Y j
(u)

}]
, (A.1)

we can express the equation in the following form:

MCRASHX
i =

P
(
Ui < q ∩⋃N

j=1

{
U j < q

})
P

(⋃N
j=1

{
U j < q

}) , (A.2)

where Ui = Fi (Xi ), which gives the following nonparametric estimator:

áMCRASH
X
i =

∑N
s=1 1{Ui ,s≤q} ·1{U j ,s≤q or ... or U j ,s≤q}∑N

s=1 1{U j ,s≤q or ... or U j ,s≤q}
. (A.3)

In the case of independence, the estimator has a fixed bias of P
(
Ui < q

)= q .

To express MCRASH in terms of copula functions, we first provide the following expression of

the denominator of Eq. (A.2):

P

(
Ui < q ∩ ⋃

j ̸=i
U j < q

)
=P[(

U1 < q ∩U2 < q
)∪ (

U1 < q ∩U3 < q
)∪·· ·∪ (

U1 < q ∩Un < q
)]

=
n∑

k=2
P

(
U1 < q,Uk < q

)− n∑
2≤k1⩽k2⩽n

P
(
U1 < q,Uk1

< q,Uk2
< q

)
+

n∑
2≤k1≤k2≤k3≤n

P
(
U1 < q,Uk1

< q,Uk2
< q,Uk3

< q
)− ...

+ (−1)n−1P
(
U1 < q,U2 < q, ...,Un < q

)
=

n∑
k=2

C1,k (q, q)−
n∑

2≤k1≤k2≤n
C1,k1,k2

(q, q, q)+
n∑

2≤k1≤k2≤k3≤n
C1,k1,k2,k3

(q, q, q, q)

−
n∑

2≤k1≤...≤k4≤n
C1,k1,...,k4

(q, q, q, q, q)+ ...+ (−1)n−1C1,2,...,n (q, ..., q).

(A.4)

Then, we give the numerator as follows:

P

( ⋃
j ̸=i

U j < q

)
=P(

U2 < q ∪U3 < q ∪·· ·∪Un < q
)

=
n∑

k=2
P

(
Uk < q

)− n∑
2≤k1⩽k2⩽n

P
(
Uk1

< q,Uk2
< q

)
+

n∑
2≤k1≤k2≤k3≤n

P
(
Uk1

< q,Uk2
< q,Uk3

< q
)− ...

+ (−1)n−1P
(
U2 < q, ...,Un < q

)
=

n∑
k=2

q −
n∑

2≤k1≤k2≤n
Ck1,k2

(q, q)+
n∑

2≤k1≤k2≤k3≤n
Ck1,k2,k3

(q, q, q)

−
n∑

2≤k1≤...≤k4≤n
Ck1,...,k4

(q, q, q, q)+ ...+ (−1)n−1C2,...,n (q, ..., q).

(A.5)
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3.2 Appendix simulation studies and estimation

The estimation procedure consists of combining copulas with various tail behaviors that exhibit

no tail dependence (the Gauss, Frank, Farlie–Gumbel–Morgenstern [FGM], and Plackett copulas),

lower-tail dependence (the Clayton, rotated Gumbel, rotated Joe, and rotated Galambos copulas),

and upper-tail dependence (the Gumbel, Joe, Galambos, and rotated Clayton copulas). We con-

sider all 4× 4× 4 = 64 possible combinations with one lower tail-dependent copula, CLTD; one

copula that is asymptotically independent, CNTD; and one copula that allows for asymptotic de-

pendence in the upper tail, CUTD:

C (u1,u2,Θ) = w1×CLTD (u1,u2;θ1)+w2×CNTD (u1,u2;θ2)+(1−w1 −w2)×CUTD (u1,u2;θ3) , (B.1)

whereΘ denotes the set of the basic copula parameters θi , i = 1,2,3 and the weights w1 and w2.11.

The method consists of estimating every set of parameters Θ j for j = 1, . . . ,64 different copulas

C j
(·, ·;Θ j

)
and then choosing the appropriate combination that minimizes the distance to the

empirical copula. The Python package pycop (Nicolas, 2022) was used for generating data from

normal copula functions and for the estimation of the combinations of copula functions.





Conclusion

The first part of this dissertation focuses on understanding how risk emerges in financial markets.

To do so, we use sentiment analysis and text mining techniques to derive a sentiment proxy from

weekly aggregations of online messages posted on the social media platform StockTwits. We em-

ploy numerical methods to estimate the parameters of a model of opinion formation. Consistent

with previous research that has found that volatility is driven by herding behavior, we investigate

the relationship between herding intensity and the level of volatility. In particular, we find that

herding behavior was significantly higher and played a major role in the sentiment formation

process regarding cryptocurrencies during the bubble period.

In future research, we plan to extend our analysis of the relationship between economic herd-

ing intensity and future stock returns behavior. We will also explore whether the estimated con-

tagion parameters can serve as early warning signals for potential stock market risks. This will

provide valuable insights into the potential uses of sentiment analysis and text mining techniques

for identifying and mitigating financial risks.

In the second essay, we introduce a new statistical method for estimating the extremal depen-

dence between two random variables. This method is based on the well-known tail dependence

coefficient (TDC), for which there is no theoretical basis for selecting a threshold. In its non-

parametric version, the estimation of the TDC requires the choice of an arbitrary threshold above

which the probability of observing joint extreme values must be calculated. The main contri-

bution of this paper is the proposal of a theoretical framework for selecting this threshold. The

performance of the estimator is then evaluated through simulations and compared to the esti-

mators used in traditional approaches. The results show the consistency of the proposed new

estimator, although it does not clearly outperform the other estimators. The estimation method

is then applied to evaluate the TDC between the returns of the US equity market index and the

returns of the equity market indexes of 17 developed countries.

Based on these findings, we plan to conduct further research to incorporate the TDC into a

portfolio optimization program. This will allow us to combine financial assets that are less likely

to experience simultaneous crashes. We will test this technique during a global stock market crash

to evaluate its effectiveness in mitigating financial risks. By providing a more accurate and robust
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measure of extremal dependence, the TDC-based portfolio optimization program has the poten-

tial to improve the efficiency and stability of financial portfolios. We believe that this research will

contribute to the development of more effective risk management strategies in finance.

The third chapter focuses on the relationship between crash sensitivity and future excess re-

turns. Crash sensitivity is defined as the tail dependence between the returns of a financial asset

and the returns of the market. It measures the probability that one asset will experience an ex-

treme event, given that the market has also experienced an extreme event. Using a simulation

framework, we demonstrate the bias in both the parametric and nonparametric TDC estimation

procedures when the data exhibit strong dependence (as measured by the correlation coefficient).

Finally, we replicate recent studies that explain future excess returns using crash risk sensitivity.

However, we find that these results do not hold when we control for the correlation coefficient

and other past return behavior. This suggests that crash sensitivity alone may not be a sufficient

predictor of future excess returns, and that other factors should be taken into account when mod-

eling financial risk.

As part of an ongoing research, we are exploring the use of other tail dependence measures

as proxies for crash sensitivity. One such measure is the marginal expected shortfall, which mea-

sures a firm’s expected returns when the market falls below a certain threshold. Unlike other mea-

sures, the marginal expected shortfall is not prone to statistical biases. In future studies, we will

evaluate the performance of the marginal expected shortfall and other tail dependence measures

in predicting crash sensitivity and future excess returns. We will also compare these measures

to existing methods, such as the parametric and nonparametric TDC estimators discussed in the

previous chapter. By improving our understanding of the link between crash sensitivity and future

returns, we hope to contribute to the development of more effective risk management strategies

in finance.
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