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Abstract
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Doctor of Philosophy

Modeling hippocampal replay in spatial navigation with the theory of
reinforcement learning: a neuroscientific and robotic approach

by Elisa MASSI

The experience gained by interacting with the surrounding world is the primary
way animals and humans learn. The mammalian brain can re-elaborate past experi-
ences and contextually organize them through neural circuitries which involve the
hippocampus. Hippocampal reactivations of place cells seem to exploit experience
to infer the outcome of new situations, as it has been studied in rodent spatial navi-
gation experiments.

Recently, the Reinforcement Learning (RL) theory has been proved to be very ef-
ficient in modeling goal-directed navigation and the contributions of different types
of hippocampal replay. However, how it can account for the richness of exploratory
behaviors is still a matter of debate. Thus, our first contribution has been designing
and validating a data-driven exploration model for rodents.

Our first research interest was identifying common behavioral characteristics
in rodent free exploration and modeling them as a valued-based decision-making
model. Starting from observations and data analyses performed on a new rodent
dataset, we propose a parametrized general decision-making model, where deci-
sions are based on the perceived safety of a location and the biomechanical cost and
persistence of the animal’s exploratory dynamic. Eventually, we validate the adop-
tion of the same model on two new rodent datasets, freely exploring different mazes
for different periods. We discuss future model improvements to better adapt it to a
broader range of situations.

Free exploration represents a particular case of exploratory behavior when no
external conditioning emotionally affects the animal. When animals experience pos-
itive or negative external stimuli, their exploratory behavior changes. Research stud-
ies have shown that hippocampal reactivations represent emotional-related loca-
tions more frequently. However, very few studies directly address this phenomenon
following aversive and appetitive stimuli and comparing the mechanisms involved.
Our second contribution concerns the extension of the free exploration model to de-
scribe these mechanisms. Starting from existing RL models of hippocampal replay,
we extended our free exploration model with a component accounting for learned
and replayed stimulus valence. Our results can qualitatively reproduce the corre-
lation between the estimated amount of hippocampal replay during sleep and the
differential occupancy of the shock zone in post- and pre-conditioning found in the
experimental data by our collaborators. Moreover, they raise new interesting ex-
perimental predictions concerning the increasing relevance of sleep replay in proper
learning the post-conditioning behavior of the animal in negative conditioning, com-
pared to their relevance in the positive conditioning case.
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Learning goal-directed behaviors is also crucial in designing adaptive artificial
agents and robots. Autonomous robots usually have limited knowledge of the stochas-
tic nature of the real world surrounding them, and one of the most powerful sets of
online learning algorithms, RL, is often neither responsive enough nor time-efficient
for the constraints imposed by real robotic applications. Even before the first neuro-
physiological studies on hippocampal reactivations, machine learning research pro-
posed mechanisms for experience replay in RL algorithms to enhance the speed of
learning and the adaptability of the already existing algorithms.

The last scientific contribution of this thesis concerns a prospective analysis of the
possible benefits and disadvantages of different state-of-the-art hippocampal replay-
inspired RL algorithms in neurorobotics. Since the impact of different types of replay
in neurorobotics scenarios has only recently started to be investigated, we test a
model combining different RL replay strategies and test their interaction in different
goal-oriented robotic navigation tasks, going from a pure theoretical simulation to a
complete robotic experiment.
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Docteur

Modélisation des réactivations hippocampiques en navigation spatiale avec la
théorie de l’apprentissage par renforcement : une approche neuroscientifique et

robotique

par Elisa MASSI

L’expérience obtenue par les interactions avec le monde qui nous entoure est le prin-
cipal moyen par lequel les animaux et les humains apprennent. Comme cela a été
étudié dans la navigation spatiale chez les rongeurs, le cerveau des mammifères peut
réélaborer l’expérience passée de manière contextuelle, grâce aux réactivations des
cellules de lieu dans l’hippocampe.

Récemment, la théorie de l’apprentissage par renforcement (AR) s’est avérée très
efficace dans la modélisation de la navigation dirigée vers un but et des différents
types de réactivations de l’hippocampe.

Dans cette perspective, notre première contribution scientifique concerne la con-
ception et la validation d’un modèle d’exploration spatiale inspiré par des don-
nées comportementales de rongeurs. Nous avons identifié des caractéristiques com-
portementales communes chez les rongeurs dans un contexte d’exploration libre,
et les avons modélisées sous la forme d’un modèle de prise de décision. En ex-
ploitant ces données comportementales, nous avons proposé un modèle décisionnel
d’exploration général, où la prise de décision repose sur la sécurité perçue d’un lieu
dans le labyrinthe et sur le coût et la persistance biomécanique de la dynamique ex-
ploratoire de l’animal. Enfin, nous avons validé l’adoption du modèle proposé sur
deux nouveaux groupes de données comportementales de rongeurs et nous avons
discuté les possibles améliorations futures du modèle pour mieux l’adapter à un
plus large éventail de situations.

L’exploration libre correspond à un cas particulier du comportement exploratoire,
où aucune condition externe n’affecte émotionnellement l’animal. Des recherches
antérieures montrent que les réactivations hippocampiques représentent plus fré-
quemment des lieux à haut contenu émotionnel, mais il existe peu d’études traitant
directement de l’apparition de réactivations hippocampiques à la suite d’un évène-
ment aversif ou appétitif et qui comparent les mécanismes impliqués. Pour répondre
à ce manque, notre deuxième contribution concerne l’extension du modèle d’explo-
ration libre à la modélisation de ces mécanismes. En s’inspirant des modèles d’AR
existants sur les réactivations hippocampiques, nous étendons notre modèle d’ex-
ploration libre avec un composant qui décrit la valence apprise et rejouée du con-
ditionnement positif ou négatif. En exploitant des nouveaux données expérimen-
tales, nous avons reproduit qualitativement la corrélation entre la quantité estimée
de réactivations hippocampiques pendant le sommeil et l’occupation différentielle
de la zone de conditionnement aversif, après et avant le conditionnement. De plus,
elles soulèvent de nouvelles prédictions intéressantes, qui concernent la plus grande
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importance des réactivations pendant le sommeil pour reproduire au mieux le com-
portement des souris après un conditionnement négatif, plutôt qu’après un condi-
tionnement positif.

L’apprentissage des comportements dirigés vers un but est également essentiel
dans la conception d’agents artificiels et de robots adaptatifs. En dépit de l’efficacité
des méthodes d’AR pour l’apprentissage en ligne, celles-ci ne sont en général pas
assez réactives pour répondre aux contraintes de la robotique réelle. De plus, avant
même les premières études neurophysiologiques sur les réactivations hippocampi-
ques, la recherche en apprentissage automatique proposait de rejouer l’expérience
passée dans l’AR pour améliorer la vitesse d’apprentissage et l’adaptabilité des al-
gorithmes.

La dernière contribution scientifique de cette thèse concerne une analyse prospec-
tive des avantages et des inconvénients en neurorobotique de différents algorithmes
d’AR inspirés par les réactivations hippocampiques. Nous avons proposé un mod-
èle qui combine différentes stratégies de réactivations d’AR et avons testé leurs in-
teractions dans différentes tâches de navigation robotique dirigée vers un but, en
partant de simulations purement théoriques jusqu’à arriver à des expériences robo-
tiques complètes.
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Chapter 1

Introduction

“ In the practical use of our intellect, forgetting is as important as remem-
bering. ”

William James, Psychology: Briefer Course, 1984

Animals and humans continuously learn through their interaction with others
and the surrounding environment. They are also very efficient when learning from
their past experience, particularly from unexpected mistakes. This learning effi-
ciency is desirable and often required to survive in harsh conditions and emerge
in situations where resources and possibilities are limited. To cope with this natu-
ral need, evolution has provided many creatures with neural mechanisms that can
exploit what they have already experienced to possibly learn faster from their past.

When animals encounter new environments and situations, many factors can
influence their behavior. In the absence of significant exogenous stimuli, this ex-
ploratory behavior is mainly driven by internal factors such as their current level
of motivation, anxiety, or curiosity. Thus, this animal behavior is usually referred
to as a free exploration of the environment. Clearly, these factors may change when
rewarding or adverse stimuli are introduced in the scene, and the animal modifies
its decision-making mechanisms accordingly, typically to maximize the reward and
to minimize adverse situations. To computationally understand these mechanisms,
behavioral neuroscientists are interested in modeling how mammals make decisions
while exploring new environments and studying if the behavioral patterns at the
base of these decisions are consistent across different environments, timescales, and
species.

Then, how do these behavioral attitudes change when unexpected variables are
introduced in the environment? To survive, animals need to learn a proper behav-
ior through very few interactions with a positive event. In case of an adverse event
(e.g., injury, a threat by a predator), this is even more important in order to preserve
the agent’s physical integrity and increase its chances of survival. More than one
century ago, with his famous experiment, Pavlov remarked on a solid ability for in-
strumental conditioning and learning in mammals. From that point, research efforts
have been focused on investigating which parts of the mammalian brain cooper-
ate to generate such instrumental and associative learning mechanisms and which
neural strategies made them possible.

One of the most popular theories came from Tolman (1948) who suggested that,
among other brain structures, the hippocampus was the one specialized in encoding
the existing relationships between elements of the outside world and the agent ex-
periencing them and eventually building cognitive maps. How animals and humans
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organize, elaborate and abstract from the noisy and redundant information sensed
in the world is essential to efficient learning.

From the seminal works of Scoville and Milner (1957) and Pavlides and Win-
son (1989), the role of the hippocampus as a center for cognitive mapping has been
deeply studied in neuroscience, in particular through neurophysiological studies in
rodent spatial tasks. This research shed light on the fact that some patterns of se-
quential activations of hippocampal neurons, observed during task performance,
are later replayed during either sleep or periods of quiet wakefulness of the ani-
mal. This activity was called hippocampal reactivations and recognized as a powerful
mechanism used, in particular by place cells, to recall, organize and consolidate past
experiences and infer future ones.

From a machine learning point of view, it has also been known that perform-
ing off-line replay of learning algorithms enables accelerated learning, following a
small number of real-world interactions with rewarding or punishing events in the
environments (e.g., Lin (1992)). Since the first works in the field of neurorobotics
(interdisciplinary field between neuroscience and robotics), such as the one from
Miyamoto et al. (1988), computationally understanding and reproducing exploratory
and learning mechanisms from humans and animals has been vital in designing
agents and robots that could adapt to the noisy, dynamic and rich interaction with
the outside world. Nevertheless, adding replay strategies to learning algorithms
poses important challenges for robotics, especially concerning what is called the real-
ity gap: the challenge of transferring a robotic behavior from simulated environments
to real ones. In fact, a robot’s replay or mental simulations can produce very differ-
ent results than performing these actions in the real world. So, how can we design
efficient replay algorithms that minimize the reality gap in robots? And potentially,
does the biological brain face the same problem? If yes, which neural mechanisms
have been selected through evolution to solve this problem? These questions suggest
that designing computational strategies that can easily transfer to real-world scenar-
ios is one of the main challenges of bridging artificial intelligence, neuroscience, and
robotics.

The great interest in implementing computational strategies inspired by hip-
pocampal reactivations in robotics lies in tasks in which past experience and ac-
quired knowledge should be re-evaluated and re-elaborated to perform better dur-
ing future decision-making steps. This is the case of reinforcement learning para-
digms, where at the beginning, when no prior knowledge is usually available, the
best strategy is to interact within an environment by trial and error, and only when
the level of experience increases the agent can exploit its previous knowledge to
reach a sequence of actions that is closer to the optimal behavior for that situation.
In mammals, this knowledge consolidation is not only due to the animal performing
the same actions in the same situations: memories, in particular, targeted experience
recalls, are fundamental for efficient learning from a small batch of episodes.

Recalling past experience through hippocampal reactivations has been observed
to have many functions, such as memory consolidation and spatial learning (Gi-
rardeau et al., 2009; De Lavilléon et al., 2015; Foster, 2017; Ólafsdóttir, Bush, and
Barry, 2018), but how to develop efficient computational strategies to replicate these
functionalities is still a matter of debate, in particular when the agent that needs
these strategies is a mobile robot, with low computational power and battery life.
While in simulation, strategies that accumulate reward faster are usually unreservedly
chosen, real robotics imposes new constraints which push the investigation towards
the inspiration from neural strategies that can better juggle the compromise between
learning accuracy and computational cost. The proper identification of what should
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be kept in memory for recall and what should not is fundamental to efficiently or-
chestrate past experience when time and resources are limited. Finally, what is also
designating robotics as a field worthy of digging into for behavioral neuroscientists,
is that it represents more than the implementation of autonomous machines with
cognitive capabilities. By emboding, testing and, validating computational theories
for adaptive behavior and intelligence in interaction with the real world, robotics
constitutes a compelling technology also for behavioral neuroscience.

1.1 Scientific questions

This thesis focuses on studying different aspects around the topic of hippocampal
reactivations and their role in spatial navigation tasks, both in computational neu-
roscience and robotics. In particular, our research addresses three main scientific
questions:

• Is it possible to interpret rodent decision-making during free exploration in
a novel environment through a combination of value functions? We want
to examine the main characteristics that can influence rodent free exploration.
Then, we investigate if a decision-making mechanism that assigns a value to
these characteristics is able to produce a simulated behavior closer to one of
the real animals than the one produced by a random decision-maker.

• How does opposite valence conditioning, i.e., reward and punishment, in-
fluence hippocampal reactivations? Here, we are interested in optimizing our
proposed reinforcement learning-based spatial exploration model on mice be-
havioral data to qualitatively predict the replay activity during opposite va-
lence conditioning.

• Which replay mechanism based on reinforcement learning would be better
suited for dynamic goal-directed robotic navigation tasks? We want to inves-
tigate which navigation mechanism based on reactivations is more appropriate
while passing from theoretic simulations to real robotic experiments and trying
to predict which computational strategies better explain goal-directed spatial
navigation in different conditions.

This manuscript is the scientific report of our research process to answer the
above questions. From our current knowledge of different fields, such as behavioral
neuroscience, computational modeling, and neurorobotics, we propose an interdis-
ciplinary approach to address these scientific questions transversely. All these ques-
tions together aim at a deeper understanding of mammals’ behavior and learning in
spatial navigation through the lense of reinforcement learning (RL) and the cooper-
ation between computational neuroscience and robotics. The common value-based
RL framework allows, on one side, for an easy transfer of the model designed for de-
scribing rodents’ free exploration and learning (first and second scientific questions)
to artificial agents and robots in similar spatial tasks (third question). On the other
side, it facilitates new neuroscientific hypotheses about the role of hippocampal re-
play in spatial learning, not only by the analyzing the animals’ behavior, but also by
analysing the best strategies that contribute to learning efficiency and adaptability
in robotic goal-directed tasks.



4 Chapter 1. Introduction

1.2 Thesis development

After this introduction section, the manuscript presents a first macro-section about
the state-of-the-art and related works to contextualize and insert the scientific contri-
butions of this thesis in the literature (Chapter 2). This background review is divided
into three sections: Neuroscience (Sect. 2.1), Computational modeling (Sect. 2.2), and
Neurorobotics (Sect. 2.3).

We are going to tackle different scientific questions in this thesis (Sect. 1.1), cov-
ering from behavioral neuroscience (Chapter 3) to robotics (Chapter 4). We pass
from one domain to the next one by consistently relying on the common modeling
sequential framework of discrete Markov Decision Processes (MDPs), Value-based
models, and discrete tabular Reinforcement Learning (RL) (Sect. 2.2.1).

The sections that follow gather the scientific outputs of the thesis (Chapters 3-4).
Firstly, we present the design of a new value-based decision-making model for ro-
dent free exploration and its evaluation against three different datasets (Sect. 3.1.2).
Secondly, we show the adaptation of the same model to evaluate and predict the con-
tribution of replay-like mechanisms in opposite valence spatial learning (Sect. 3.2).
Also in this case, we based our predictions on behavioral data. Thirdly, analyses of
the impact of different reinforcement learning replay-inspired mechanisms in neu-
rorobotics are presented (Sect. 4.1). Here, we present the results published in Massi
et al. (2022) and the design and development of an immersive robotic demonstra-
tion on the role of reinforcement learning-based reactivations in robotic navigation
(Sect. 4.2).

Finally, we discuss the contribution of the presented results (Chapter 5) by de-
scribing the possible limitations and the future perspectives derived from this thesis
(Sect. 5.2).

1.3 Collaborators and contributors

The results presented in this thesis would not be possible without the exchanges and
discussions we had with our collaborators and the work conducted by bachelor and
master students supervised by us during part of the period when this thesis was con-
ducted. The author intends to acknowledge the contributions of our collaborators
and students concerning the different sections of this thesis.

Regarding the free exploration model in rodents, the first design was driven by
behavioral data (Sect. 3.1.1) we had through the collaboration with the research team
of Karim Benchenane at ESPCI Paris and PSL University, in the context of the CNRS
RHiPAR project which funded this thesis. Moreover, preliminary work and results
on the design and validation of this proposed model have been started by Eléonore
Schiltz, and Artem Dobrosmyslov did some preliminary analyses during their mas-
ter internships in the lab. Then, Eléonore Schiltz and her current Ph.D. supervisor
Sebastian Haesler, from KU Leuven, exchanged with us some of their behavioral
data to enrich the validation process of our free exploration model and to gener-
alize our hypothesis on new data (Sect. 3.1.1). Finally, during the last year of the
thesis, more behavioral data (Sect. 3.1.1) were also accessible to us for validating the
model thanks to the team of Michaël Zugaro at College de France, and in particular
to Raphaël Brito and Linda Kokou, who are the Ph.D. students who directly set up
the experiments and recorded these data.

The results obtained in Sect. 3.2 were then possible thanks to new data received
from Karim Benchenane’s team during the last months of the thesis.
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Finally, Jeanne Barthélémy, Juliane Mailly, Esther Poniatowski, and Julien Cani-
trot contributed to implementing part of the code for Massi et al. (2022) and did some
preliminary analyses on the results. Next, Mehdi Khamassi worked on the simu-
lations, results analysis, and writing of Sect. 4.1.2. Then, Lakshwin Shreesha and
Fousseyni Sangaré contributed to the execution of some robotic navigation experi-
ments for their master internships, and Lydia Gaillot, Léo Laval, Laurine Le Peutit,
and Ilke Tuzun built the immersive demonstration table and part of the visualization
program for their university project (Sect. 4.2).
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Chapter 2

Background and related works

The research results presented in this thesis cover and merge knowledge from dif-
ferent domains of science. In this section, the literature concerning the topic of ro-
dent navigation, the neural circuitry involved in instrumental behavior, spatial rep-
resentation, and learning, is analyzed from the three main perspectives that are then
tackled in the scientific contributions of this work: neuroscience (Sect. 2.1), compu-
tational modeling (Sect. 2.2) and neurorobotics (Sect. 2.3).

2.1 Neuroscience

While talking about spatial navigation and learning, different levels of study and
abstraction can be employed.

Firstly, it is important to consider the previous researches that have questioned
the relevance of particular behavioral traits in animal spatial navigation. In Sect. 2.1.1,
we are going to analyze the main insights about behavioral patterns in animal spa-
tial exploration. Indeed spatial exploration has been extensively studied in rodents,
in the last 50 years.

Secondly, it is relevant to look into the decision-making processes that generate
learning and adaptive instrumental behavior. Sect. 2.1.2 summarizes the studies on
this subject, in particular regarding the dichotomy between two distinct systems for
guiding action selection; a habitual and a goal-oriented one.

Thirdly, we are going to describe the current understanding of the brain cir-
cuits and mechanisms which process spatial information. Sect. 2.1.3 reviews the
state-of-the-art studies about the role of the hippocampal-entorhinal circuitry in self-
localization and orientation in space.

Finally, understanding the neural mechanisms that make spatial adaptation and
learning possible is key to transferring these principles to a higher behavioral level.
In Sect. 2.1.4, we provide a summary of the principal brain structures that are in-
volved in spatial learning, as well as the mechanisms that underlie spatial memory.

2.1.1 Spatial exploration in rodents

Exploration has always played a key role in human and animal survival. Being able
to safely navigate unfamiliar places and to optimize energy to collect food discrimi-
nates which species are more likely to sustain and then prevail over others.

With the use of the term exploration, we are particularly referring to a spatial
navigation behavior where the main trigger is novelty (Belzung, 1999). Thus, we
will typically use this term when describing an animal or a human that experiences
an environment for the very first time and whose behavior is strongly guided by
novelty and surprise (Berlyne, 1950).
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The interest in understanding the leading motivations which guide navigation in
a novel environment has developed decades ago when novelty already was thought
to be a salient factor for exploration. During the last 20 years, some researchers
have focused their work on similar questions, in particular by studying spatial ex-
ploration in rodents, like mice and rats.

Rodent spatial behavior has been studied in different types of environments,
such as open fields (Walsh and Cummins, 1976), mazes with corridors, such as Y-
mazes (Peyrache et al., 2009), and hole-board apparatus (G. R. Brown and Nemes,
2008). Here, we focused our attention on the so-called free exploration, by discussing
the exploratory dynamics in contexts where the animals are navigating mazes with-
out any constraints or exogenous stimuli from the experimenter.

A crucial distinction that can be observed when going through past studies about
free exploration concerns the presence or not of a departure home cage and whether
the animal is given the possibility to come back there or not. When rodents can-
not return to a familiar safe location, they are much more active and this level of
hustle subsequently decreases within experimental sessions (Welker, 1957). On the
contrary, if a very familiar location, such as a home cage, is present, rodents are less
active and tend to come back there very often during the beginning of their explo-
ration, because they perceive it as the safest accessible place.

Extensive work in modeling rodent exploration in novel open-field environments
has been carried out by the research group of Golani at Tel Aviv University. Since the
early nineties, their research has progressed and enriched the knowledge in the field,
by disclosing the existence of some common patterns in a free exploratory behavior
that seems often haphazard.

The first relevant feature of free exploratory behavior in rodents is that places
that are considered safe, such as home-cages for instance, stand out from the rest
of the environment as attraction points in exploration. Further, Golani, Benjamini,
and Eilam (1993) identified the fact that when one or more home cages are present
in the maze, the attraction to their location increases faster when the number of the
animal’s stops in its “excursion” increase. Usually the animal’s stops during excur-
sions does not exceed an intrinsic upper bound, which interestingly does not scale
with the size of the explored area. Thus, rats’ exploratory behavior can be split into
excursions (paths covered by the animal between two visits of its home base places,
Golani, Benjamini, and Eilam (1993)) that often present a low-velocity profile and
an intermittent progression while the animal is moving away from the home bases
and instead high-velocity profiles while it is going back to them (Tchernichovski and
Golani, 1995).

A second important characteristic of free exploratory behavior in rodents is the
fact that if the animal is modeled as a moving point in space, then the dynamics
of this point should be described as an alternation between moving and stopping
bouts (Tchernichovski and Golani, 1995). As long as the exploration of a novel en-
vironment proceeds, rats unravel new reference places (home bases) that gradually
become more connected in time (Tchernichovski, Benjamini, and Golani, 1996).

Finally, another relevant aspect is that the dynamics of free exploration in ro-
dents develop in a way that the animals feel safer and safer and free to navigate far
away from the maze walls and home bases and cover complex trajectories and move-
ments. As shown in Fig. 2.1, the dynamics of the behavior of their twelve studied
mice can be decomposed into twelve landmark motions that describe a gradual pas-
sage of the animal into a broader and more unconstrained navigation of the space,
in an about 3-hour period. The animal starts the exploration by periodically peeping
its nose beyond the home cage (1) and then by completely exiting the safe cage and
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immediately going back (2). Then it starts to move in a circle close to the departure
spots (3) and still comes back inside the cage (4). The first roundtrip excursions are
very short strictly close to the walls, and in the same direction out of the cage (5)
and become progressively longer (6). Finally, the mice begin doing roundtrips in the
opposite direction out of the home cage (7) and finally, a full circle, rigorously close
to the wall can be accomplished (8). Later, the trajectories become more complex
and they start with a brief excursion towards the center of the maze (9) and go for
some border-related shuttles (10). This gradual process of interaction with novelty
and new information to process in the environment ends when the mice’s trajecto-
ries finally reach the center of the open field maze (11) and then they try to jump out
of the maze (12).

The ordered coverage of these landmark motions is consistent for 5 over 12 mice
studied in the research, during an unfettering exploration. The remaining six mice,
whose exploration was not completely consistent with the proposed 12 landmark
motions would need from 1 to 3 swaps of adjacent motions to replicate the exact
sequence (Fonio, Benjamini, and Golani, 2009).

FIGURE 2.1: Illustration of the 12 landmark motions identified in the
work from Fonio, Benjamini, and Golani (2009). The 2D evolution
of the navigation of the animal is shown with a black line. The red
demarcations better highlight some of the landmark motions, while
the yellow ones indicated Home-directed-shuttle. Finally, blue dots
refer to turns when the animal stopped before going back to the home

cage. Figure reprinted from Fonio, Benjamini, and Golani (2009).

All these observations contribute to the current state-of-the-art knowledge on
free spatial exploration in rodents, and the majority of them have reported results
from experiments where rodents had explored circular open-fields environment.
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These studies have been able to show that, without any particular constraint, ro-
dents tend to have some common persistent behavioral features in free exploration
(Drai et al., 2001) and that they deal with novelty, safety spots, and dynamics of space
coverage. In this thesis, we suggest that similar common patterns can be found even
when rodents explore different types of mazes and for various temporal durations,
proposing a new framework for the description and modeling of diversified free
explorations.

2.1.2 Instrumental behaviour in the brain

Rodent navigation does not concern just free exploration, but also moments where
the animal is goal oriented (e.g., navigating towards a desired food location). These
goal-oriented behaviours are usually referred to as Instrumental behaviours. They
consist in a series of actions that are undertaken to reach a desired goal, either to get
a reward or to avoid a punishment (Fragaszy and Liu, 2012). That animals can per-
form instrumental behaviour was demonstrated by Hammond (1980). They showed
that animals were receptive about the causal relationship between their action and
the subsequently obtained reward. Dickinson (1985) was then the first one to hy-
pothesize the existence of two general behavioural modes for animal instrumental
behaviour. The first mode is close to a direct and reactive relationship stimulus-
response and can be described as habit. The second one, instead, is goal-oriented and
assumes a more complex knowledge on the relation between actions and following
consequences. The existence of this second goal-directed model has been observed
first in rats, where their response to a lever-press task is modulated by reward alter-
ation (Adams, 1982).

After several behavioural and neural studies supported the presence of this dual-
ity between an habitual and a goal-oriented model for instrumental choices (among
them, Dickinson and B. Balleine (1994), Lieberman et al. (2002), and Dickinson and
B. Balleine (2002)). Daw, Niv, and Dayan (2005) were the first to investigate which
kind of computational mechanism should then be in place to arbitrate their coexis-
tence. They proposed that the arbitration between such a duality of action control
systems can be based on the reliability of their predictions.

Thus, neurophysiological lesion studies from fifty years ago have already iden-
tified that, basal ganglia and, in particular the striatum, are crucial areas for instru-
mental conditioning (Konorski, 1967; B. W. Balleine, Delgado, and Hikosaka, 2007),
and thus for everything that has to deal with the control of voluntary behavior (Yin
and Knowlton, 2006). In rodents, on the one hand, the dorsolateral striatum (DLS)
has been proven to be necessary for habit formation (Yin, Knowlton, and B. W.
Balleine, 2004) and its inactivation enhances sensitivity to changes in the Action-
Outcome (A-O) contingency in rats (Yin, Knowlton, and B. W. Balleine, 2006). On the
other hand, the dorsomedial striatum (DMS) has been identified as supporting cen-
ter for goal-directed behavior (Yin, Knowlton, and B. W. Balleine, 2005) hypothesize
that this functional difference comes from the diversity in types of plasticity present
in these areas (Partridge, Tang, and Lovinger, 2000) which lead to a difference in
computational learning rules. Yin et al. (2009) showed also that the activity of these
two areas (i.e., DMS and DLS) change through the task learning phase: at the begin-
ning, the DMS is more active than the DLS, suggesting that goal-directed behaviour
is preferred in this phase, while towards the end, the DLS, prevails, representing a
higher contribution from habitual behavior in this last phase. Finally, the prefrontal
cortex (PFC) represents the brain areas devoted to high cognitive functions which
can orchestrate different type of behaviour and associate them to particular contexts
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and goals (Koechlin and Summerfield, 2007; O’Doherty et al., 2021). The PFC has
the role of switching among models or task-sets, depending on the external context,
while the characteristics of these models are modulated and learned by the basal
ganglia (Daw et al., 2011b; Gläscher et al., 2010). Either the DLS (habituation sys-
tem) or the DMS (goal-oriented system) could be selected based on their reliability
on their predictions, making the inferior lateral prefrontal and frontopolar cortex in-
hibiting the habitual system when the goal-oriented one is preferred in rodents (S. W.
Lee, Shimojo, and O’Doherty, 2014). In their review, Dolan and Dayan (2013) under-
line the fact that even if four generations of research works have been published on
the cognitive dichotomy of reflective versus reflexive decision making, it is not yet
clear at which level model-based and model-free control are intertwined, in partic-
ular in humans. On one hand, Blood-oxygen-level-dependent (BOLD) signal in the
human orbitofrontal cortex was showed to be modulated by outcome devaluation,
arguing a role of the area in goal-directed decision-making (Valentin, Dickinson, and
O’Doherty, 2007). On the other hand, overtrained human subjects showed increased
BOLD signals in the right posterior putamen/globus pallidum compared to earlier
sessions of the training. This denotes that that these areas are habituation-related
and this analysis is consistent to the results previously found in rodents (Tricomi,
B. W. Balleine, and O’Doherty, 2009).

The study of habitual versus goal-oriented behaviour has also been studied for
specific tasks in rodents. Khamassi and Humphries (2012) underlined the fact that
the interaction between these two decision-making systems is also very relevant in
spatial navigation. In this view, an habitual behaviour would correspond to a cue-
driven and map-free exploration, while a goal-directed behaviour would correspond
to a place-driven and map-based strategy. The model they propose that suggest spe-
cific computational functions to the neural substrate of basal ganglia, hippocampus,
amygdala and other areas in the cortex and in the pedunculopontine nucleus will be
illustrated in Sect. 2.2.2.

They also suggested that ventral striatum is responsible for building the model
of a rewarding interaction with the environment (Joel, Niv, and Ruppin, 2002; Yin,
Ostlund, and B. W. Balleine, 2008) and to learn important stimulus-response associ-
ations that constitute a model between actions and reward (Lansink et al., 2009).

More recently, Daw et al. (2011b) found that human ventral striatal BOLD sig-
nal seems to responds either to model-free and model-based predictions, suggesting
that the computation alternating these two learning systems could be more com-
bined than expected.

These results concerning the coexistence of two behavioral systems, i.e., habit-
oriented and goal-oriented, shared important insights on animal and human decision-
making and learning processed. Looking at the computational principles behind
them, we could be able to better explain how animals explore and in particular adapt
to different situations, and in the case of this thesis, to different spatial cues and en-
vironments.

2.1.3 Spatial mapping in the brain

During the last decades, all the literature related to spatial navigation has been pro-
gressively involving the concept of spatial memory and the role of the hippocampus
in navigation.

Spatial memory is defined as the ability of an organism to know or to have a
representation of where it is in a particular environment and thus to be capable of
effectively navigating in there (C. Barnes, 1988). One of the first pieces of evidence
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that spatial memory exists arrived when Morris (1981) demonstrated that rats can
rapidly learn to locate an object that they cannot sense as long as it remains in a fixed
spatial location. The research implied the use of a circular pool, around 10 times the
size of the animal, filled with opaque water. The rats were given the possibility to
escape water by climbing over a platform and they were able to rapidly localize it
either if it was above or below the water’s surface. The same thing happened also
if the rats were introduced to a different area of the pool, showing a generalization
capability related to allocentric spatial memory. The only case when the localization
of the platform was slower than usual were the ones where the underwater platform
was moved to a new location. In this latter case, 5 over 6 animals showed a strong
searching strategy around the previous location of the platform.

The fact that rodents can efficiently navigate in a known environment without
the need for sensory clues, such as visual markers, familiar odors, and so on, is pos-
sible thanks to neural hippocampal formations that serve as cognitive maps (O’Keefe
and Dostrovsky, 1971; O’Keefe and Conway, 1978).

Different types of cells in the hippocampal-entorhinal circuit play a special role
in declarative memory formation and in encoding relevant spatial information in
both rodents and humans (M.-B. Moser, Rowland, and E. I. Moser, 2015; Alkon et
al., 1991):

• Place cells: they respond specifically to the current location of the animal i.e.,
place field, (O’Keefe, 1976) and their combination of activity is unique for a spe-
cific environment (O’Keefe and Conway, 1978). Interestingly, the spatial orga-
nization of the place fields and the anatomical location of the corresponding
place cells do not seem to have any topographical relationship (O’Keefe et al.,
1998). Fig. 2.2 shows the strong spatial selectivity of a group of pyramidal cells
recorded simultaneously in the hippocampus of a rat. The represented 35 place
fields seem to collectively cover almost the whole available space (O’Keefe et
al., 1998).

• Grid cells: they were identified in the medial entorhinal cortex (MEC, in Fig. 2.3-
A) and express geometrical and directional information about the animal loca-
tion (Hafting et al., 2005). Their activity significantly increases whenever the
animal is placed in one of the vertices of a regular grid of equilateral triangles
superimposed on the environment (Fig. 2.3 C, top). These grid fields increase in
size from the dorsal to the ventral entorhinal cortex and their activity persists
even in the absence of stable external markers.

• Head direction cells: their firing rate increases selectively when the rodent’s
head is facing a certain preferred direction which varies among cells and is
independent of the animal’s location and behavior (Taube, 2007). They were
first discovered by Ranck Jr (1984) to be present in rat’s presubiculum (Taube,
Muller, and Ranck, 1990a; Taube, Muller, and Ranck, 1990b), and then their
presence has been remarked also in the anterodorsal thalamic nuclei (ADN)
(Taube, 1995), in the lateral mammillary nuclei (LMN) (Stackman and Taube,
1998) and in the retrosplenial cortex (Chen et al., 1994). Eventually, neurons
showing this specific behavior have been found in deeper layers of the medial
entorhinal cortex (Sargolini et al., 2006).

• Border cells: they also are in the entorhinal cortex and their activity is related
to the proximity of the animal to the borders of the environment and they are
orientation-specific (Solstad et al., 2008). They are thought to play an important
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FIGURE 2.2: Location-related activity of 35 simultaneously recorded
hippocampal place cells O’Keefe et al. (1998). The activity of the cells
is ordered to spatially represent the animal’s location in the 40cm x
40cm open platform, while it is searching for grains of rice. The four
gray scales represent the place fields firing rates (each gray shade de-
picts 20% of the peak firing rate). Figure reprinted from O’Keefe et al.

(1998).

role in consolidating the structures of place and grid fields to an environment-
related reference frame.

A description of a typical activation pattern of place cells and grid cells is shown
in Fig. 2.3. Grid cells are located in layer III of the MEC and project their axons to
the CA1 in the hippocampus, to place cells (Fig. 2.3 B). This suggests that grid cell
neural input is crucial for initiating place cells’ activity.

Thanks to all the studies that have been carried out in the last decades (Stensola
and E. I. Moser, 2016), we can affirm today the importance of the hippocampal-
entorhinal circuitry (Fig. 2.3 A) in memory and space-related information process-
ing, even in episodic memory mental travels (Buzsáki and E. I. Moser, 2013). Nowa-
days, the computational mechanisms which regulate these phenomena have reached
a deep level of understanding and consensus in the community.
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FIGURE 2.3: Hippocampal-entorhinal circuitry: grid and place cells.
A) Anatomical representation of the hippocampus and medial en-
torhinal cortex (MEC) in rodents. B) Anatomical representation of
the Grid-to-Place cell synaptic communication circuitry. C) Examples
of a spiking pattern for a grid cell and a place cell where the rodent
occupies a particular position in space. Figure reprinted from Park

et al. (2019).

2.1.4 The role of hippocampal replay in spatial navigation and memory

A consistent understanding of the brain mechanisms underlying the representation
of spatial information and self-location in space is not sufficient to explain how this
information is stored and then retrieved when needed. From the first pieces of evi-
dence that there exist cells in the hippocampus that spike according to the animal’s
spatial location, i.e., place cells (O’Keefe and Conway, 1978; E. I. Moser, Kropff, M.-B.
Moser, et al., 2008), and that lesions to the hippocampus strongly impair the forma-
tion of new spatial memory (Scoville and Milner, 1957; Morris et al., 1982), many
more research studies have been conducted in this direction. The current consensus
is that the hippocampus displays a particular activity pattern called sharp wave ripples
(SWR), at a frequency of 150-200 Hz, which is temporally compressed with respect
to the timescale of the neural activity happening during the real spatial experience,
and thus enhances spike-timing depended plasticity (STDP) (Dan and Poo, 2004).
Hippocampal sharp wave ripples encode temporally structured spatial patterns and
drive the initial storage and the later retrieval of relevant spatial experience (Pfeiffer,
2020). A very effective and simple example of the neural activity happening during
hippocampal replay is shown in Fig. 2.4. On the top of the figure (Fig. 2.4 A) and
highlighted in the analysis below (Fig. 2.4 B), we can see that the selective place cells
that were active during the time-lapse when the animal covered the corridor, are re-
activated, in a compressed timescale and in reverse order, when the animal reached
the end of the corridor and stops there (the animal trajectory is the light blue line in
Fig. 2.4 A bottom). This example is coherent with what has been found recently by
Diba and Buzsáki (2007); studying replays in linear elevated tracks, they found that
backward replay is usually elicited at the end of a one-way run while replaying for-
ward sequences was more common before starting a new run. The bi-directionality
of this phenomenon can indicate also a duality in the nature of hippocampal reacti-
vations; backward sequences are more devoted to consolidating relevant and recent
past experience and forward ones to deliberate and plan the next trajectories (Pfeif-
fer and Foster, 2013; Johnson and Redish, 2007). Different types of replay can be also
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triggered by task demands; Ólafsdóttir, Carpenter, and Barry (2017) showed that the
content of task-focused replay is more related to planning and subsequent spatial
decisions when the animal is active on the task, while it is more synchronized with
grid cells activity during rest periods, and thus oriented towards memory consoli-
dations.

FIGURE 2.4: Example of recorded reverse hippocampal replay in rats.
A, top) The raster plot representing the activity of 91 simultaneously
recorded place cells in the animal CA1 hippocampus. The cells are
ordered based on the location of the place field peak. A, bottom) the
heat map represents the rat’s estimated position on the linear track,
based on Bayesian decoding of the spiking activity above. In this time
interval, the animal is covering the linear track from one end to the
other (the position of the animal is shown here with a light blue line).
On the right, we can see expanded windows on the reverse replay ac-
tivity, once the animal reaches the end of the track. B) Example of the
decoding of an open-field replay. From the left to the right, we can
look at the raster plot on the activity of 212 simultaneously recorded
place cells, then the Bayesian estimation of the place fields for a se-
lected ripple in the raster plot, and finally the reconstructed replay
trajectory from the temporal frames to the maze. Figure reprinted

from Pfeiffer (2020).

Further studies have brought to light even more diversity in hippocampal reac-
tivation; such ripples can happen at relevant moments during the active exploration
(Foster and M. A. Wilson, 2006), but also during inactive time intervals and sleep
(M. A. Wilson and McNaughton, 1994; A. K. Lee and M. A. Wilson, 2002). This dis-
tinction between awake and sleep replay has been associated with a two-step memory
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consolidation process that enforces versatile memory during day time and stabilizes
long-term memory during night (Buzsáki, 1989). Also, Maingret et al. (2016) has
recently validated the hypothesis that sleep hippocampal sharp wave-ripples, co-
ordinated with prefrontal cortical delta waves and spindles, causally contribute to
memory consolidation processes in rats.

To consolidate the hypothesis that hippocampal replays are not exclusively hap-
pening for long-term memory consolidation, (Gupta et al., 2010) demonstrated, in a
double T-maze task, that they are not just representing past experience, but they can
also encode possible environment-related contents that have never been experienced
before by the animal, generating the so-called imaginary replay.

In addition, hippocampal SWRs contribute to spatial learning. Their suppres-
sion during sleep phases, which happen just after the task, leads to a performance
impairment during spatial reinforcement learning tasks (Girardeau et al., 2009). De
Lavilléon et al. (2015) managed also to create fictitious memory for a location pref-
erence by positively stimulating the animal during sleep, simultaneously with the
SWR appearance for the place cell representing that location. An overall view of
the acquired knowledge and current questions on the role of hippocampal replay
is provided thanks to the works by Foster (2017) and Ólafsdóttir, Bush, and Barry
(2018).

Interestingly, memory consolidation processes happening through replay, are of-
ten triggered by novelty (Cheng and Frank, 2008), recency (Foster and M. A. Wilson,
2006) or saliency (Singer and Frank, 2009), suggesting that some distinctive experi-
ences could be replayed more or at the cost of others. On another interesting note,
hippocampal reactivation can already appear after a single episode and reinforce
with experience, by slowing down the reactivation of the same trajectory for encod-
ing a greater level of spatial details (Berners-Lee et al., 2022).

Although replay phenomena happen in other parts of the brain, namely in the
motor cortex (Dave and Margoliash, 2000), in the prefrontal cortex (Euston, Tatsuno,
and McNaughton, 2007), and in the visual cortex (Ji and M. A. Wilson, 2007), the
ones occurring in the hippocampus can thus be described as one of the primary neu-
ral mechanisms that allow adaptive spatial behavior and spatial learning. Yet, the
idea that the hippocampus is a pivotal center for the creation, consolidation, and
retrieval of cognitive maps, knowledge abstraction, and inference (Tolman, 1948)
keeps getting stronger evidence recently, extending from rodents to human models
(Behrens et al., 2018). Stella et al. (2019) found that the length and the timescale of re-
played trajectories approximate the Brownian motion of particles, showing that this
reactivation was not encoding the exact recent experience of the animal, but random
trajectories, from the map, recently created on the environment by the animal. That
could extend the importance of the replay phenomenon to contextual memory, gen-
eralization, and learning, beyond the spatial context and across multiple domains.

2.2 Computational modeling

Building computational models is what allows humans to get closer to a full under-
standing of many natural processes and animal and human behaviors, and then to
be able to emulate these processes as well. A computational model describes a par-
ticular phenomenon in one or more equations, depending on its complexity. One of
the main advantages of computational modeling consists in the description and ex-
planation of a large amount of data by a precise and synthetic mathematical formu-
lation. Another important benefit of having models for describing a certain natural
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phenomenon resides in its potential for prediction; in fact, by looking at the results
of the dynamics from the model, researchers can predict what would be observed in
a real experiment. For example, lesion studies can be simulated in brain models by
removing the connections among the areas of interest (Dollé et al., 2018) or changing
environmental conditions in a robotic experiment can be simulated by changing the
dynamic contact friction in physical robotic simulation environment (Massi et al.,
2019). If the reader is interested in knowing more about the bases of computational
modeling, an exhaustive introduction, with open-source code is proposed in French
by A. Collins and Khamassi (2021).

This section summarizes the state-of-the-art about computational modeling in
the subjects already covered in the previous section (Sect. 2.1). This literature repre-
sents the research niche to which this thesis contributes the most.

The computational framework which is the basis of the main contribution of this
thesis is Reinforcement Learning (RL). RL represents a great modeling framework
for explaining learning processes where a repetitive action or exposition to a posi-
tive or negative stimulus leads to the development of attraction or aversion towards
it, and thus, RL can be considered a valid strategy to model instrumental learning
(Sect. 2.1.2). Thus, the first section (Sect. 2.2.1) will cover the bases of the RL the-
ory (R. Sutton and A. Barto, 1998), from the definition of Markov decision processes
(MDPs) to the description of the main RL algorithms adopted in this thesis.

A step further is then taken to explain what is currently known to associate in-
strumental behavior with RL. Sect. 2.2.2 will go through the major computational
principles that are associated with habitual and goal-directed instrumental behav-
iors, described in Sect. 2.1.2, and the way their coexistence and interplay are then
modeled in the literature.

Once defining this theoretical framework for spatial decision-making and learn-
ing, we will show how these principles have been applied in the recent literature to
model rodent free navigation. Thus, the analysis of the existing behavioral models
for spatial navigation in rodents will be reviewed in Sect. 2.2.3.

Following the short survey on the modeling of free exploration, we then ex-
amine how rodent spatial learning can be explained and modeled by using rein-
forcement learning and most importantly the hippocampal replay-inspired strate-
gies (Sect. 2.2.4). Here, we report the late efforts to associate different replay-inspired
RL mechanisms to the underlying biological phenomena (awake or asleep hippocam-
pal reactivations, reverse, forward, unordered or imaginary sequences).

Ultimately, to explain all the computational instruments used in this thesis, an
introduction to the bases and main working principles of evolutionary computation
is provided in Sect. 2.2.5. Here more details are given on the methodologies applied
in the scientific contributions of the presented research, meaning single- and multi-
objective optimization strategies for model parameters estimation.

2.2.1 Reinforcement learning and value-based decision-making models

Modeling behavior can be achieved at many levels and, in this thesis, we model it as
a series of decision-making steps in a discrete and sequential environment. For this
purpose, we introduce finite Markov decision processes (MDPs), which are mathe-
matical models for sequential decision-making, where an agent, its state, and actions
can be described in their search for the maximization of future reward (R. S. Sutton
and A. G. Barto, 2018). In the recent literature, the definition of a Finite Markov
Decision Process is what has been most commonly used to model agents’ behavior,
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thanks to its precise formalization and enormous capability to be applied in very
different problems of learning through interaction (Bellman, 1957).

FIGURE 2.5: The agent interacting with the environment in a Markov
decision process. Figure reprinted from R. S. Sutton and A. G. Barto

(2018).

In the framework of discrete MDPs, well illustrated in Fig. 2.5, when we consider
a single time step, the decision-maker is the agent and it can interact with the envi-
ronment through a selected action At. Following this action, the agent will then ac-
cess the new conditions of the environment, state St+1 and the instantaneous reward
Rt+1. Then, the decision-making process goes on to the next time steps, allowing the
learning agent to keep enriching the experience of its interaction with the environ-
ment and the accumulation of a reward signal. This formalization gets its name from
the Markov property due to the assumption that the probability of reaching possible
states St and rewards Rs depends only on the previous state St−1 and action At−1
and the interaction agent-environment can be fully described by its state-transition
probabilities:

p(s′|s, a)=̇Pr{St = s′|St−1 = s, At−1 = a} = ∑
r∈R

p(s′, r|s, a) (2.1)

where R is the set of possible rewards. This implies that the previous state St−1
includes all the information of the past agent-environment interaction that is useful
for the future choice of At.

Almost all problems of goal-directed learning can be expressed as an MDP where
the continuous agent-environment interaction makes training and learning possible.
In MDPs, learning rules can be derived just from the combination of the three sig-
nals, represented in Fig. 2.5: The choices made by the agent (actions) A, the context
where these choices are taken (states) S, and the agent’s goal (rewards) R.

The branch of Machine Learning which approaches this kind of goal-directed
learning from interaction in MDPs is called Reinforcement Learning (RL). Reinforce-
ment learning takes inspiration from the way humans and animals learn how to
achieve goals via their interaction with the environment. No precise indications or
guidance is given to infants when they learn how to properly grip an unknown ob-
ject or when a mouse learns how to enter the proper maze corridor with food, but
their interactions with the world are the same as an RL agent. They are learning an
optimal behavior through an Action-Outcome instrumental conditioning protocol
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(Sect. 2.1.2), where they gradually discover that a certain rewarding situation is as-
sociated with a specific action, and they want to optimize their strategy to maximize
their reward.

These main concepts are trial-and-error search and delayed reward. On the one
hand, trial-and-error refers to the absence of complete knowledge of the agent-envi-
ronment interaction or on the task that makes the learner usually experiment with
many sub-optimal sets of actions before getting to the optimal one, called optimal
policy. In RL, the term policy indicates the agent’s behavior. The policy represents
the mapping of the perceived state and chosen action, and it is usually improved
via the experience (for example encountering unexpected rewards). In most cases
we are interested in maximizing the sum of future rewards, expressed as the dis-
counted return the notion of expected return, that is the sum of Gt = ∑t=+∞

t=0 γtRt+1.
This definition of Gt is a deliberate choice and it would be possible to define other
return criteria and this would lead to different algorithms and associated policies
(for example Jarboui and Akakzia (2022)).

One of the best strategies to improve the policy with respect to the maximiza-
tion of Gt is through the use of the Bellman equation which describes the relationship
between the value of a state and the values of its successor states under an optimal
policy. The use of this equation makes it easier to derive learning algorithms. In
fact, the unique solution for the Bellman equation for a specific policy π is the value
function for that policy vπ, as expressed in Eq. 2.2.

vπ(s)=̇Eπ[Gt|St = s]
= Eπ[Rt+1 + γGt+1|St = s]

= ∑
a

π(a|s)∑
s′

∑ rp(s′, r|s, a)[r + γ Eπ[Gt+1|St+1 = s′]]

= ∑
a

π(a|s)∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)], for all s ∈ S (2.2)

This equation states that the value of each state s in the set of all possible states S
is the discounted value (with a discount factor γ) of the expected next state s′, plus
the expected reward r. The value function vπ for a given policy π is what is most
important when a learning agent needs to take a decision. Proposing methods for
efficiently estimating the value function is one of the most important contributions
of RL; values functions are built on top of the environment and the reward signal,
and through the experience, they can map and propagate the rewarding information
and decisions in the state-action space to improve the policy. Thus, the value of a
state represents its long-term desirability, that is the total amount of reward that the
learner can expect to achieve in the future, from that particular state.

In the scope of this thesis, we will focus specifically on RL tabular solution methods,
which are the simplest form of RL algorithms. These algorithms are called tabular
since their state and action spaces are discrete and not too large and can be repre-
sented in tables. The main RL algorithms we are going to adopt in the scientific
contributions of this thesis are Temporal-difference methods, Q-learning, and Value it-
eration.

Firstly, temporal-difference (TD) methods update the estimate of the value func-
tion of a certain policy vπ by bootstrapping on other estimates. Compared to other
RL methods, such as the Monte Carlo ones (R. S. Sutton and A. G. Barto, 2018), TD
methods can also learn from one action. They combine the sample update strategy
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of Monte Carlo methods without waiting until the end of a run and use it to boot-
strap the value of the current state considering only the sample successor state and
not the complete distribution of all possible successors as in dynamic programming
strategies (R. S. Sutton and A. G. Barto, 2018). The equation for updating the value
function in case of one-step TD learning (TD(0)) is as follows, where R is the reward
signal and α is the learning rate:

V(St)←− V(St) + α[Rt+1 + γV(St+1)−V(St)] (2.3)

Secondly, q-learning is an off-policy temporal difference algorithm, that allows
the agent to learn a direct approximation Q of the optimal action-value function q∗,
independently of the agent’s current policy (Watkins, 1989). Differently from TD(0),
the value function is here called q-function and depends on both states and actions.
Its action-state function is updated as follows:

Q(St, At)←− Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (2.4)

where α is the step size parameter or learning rate and γ is the discount factor,
already presented in Eq. 2.2. Without any knowledge of the model of the environ-
ment, the Q-learning rule updates, along with the agent’s experience, the state-action
q-value Q(St, At) based on the maximal q-value obtained from the arriving state
S(t + 1).

As a relevant visual example of the q-learning at work, we can look at the grid-
world in Fig. 2.6, where a blue cubic agent learns the q-table to efficiently navigate
from the yellow to the green state. Firstly, Fig. 2.6a shows a visual representation of
a q-table Q(St, At) at its starting condition when all its values are zeros. Secondly,
Fig. 2.6b exhibits the same scenario after a total number of 100 actions taken by the
blue agent; Each state shows with a light blue arrow the preferential action to be
taken by the agent to get to the reward state. Since the q-function has not converged
yet to its optimal values q∗, the states which are further away from the rewarding
state may suggest an action that is in the opposite direction of the green state, while
the closer states express a better policy.

Eventually, value iteration instead fits in the type of RL algorithms, called dy-
namic programming (R. S. Sutton and A. G. Barto, 2018). This type of strategy requires
complete knowledge of the environment, i.e. the transition and the reward functions,
and usually have a high computational cost, due to the procedure of policy evalua-
tion, which generally requires updating the value function for many sweeps through
the state set. By having complete knowledge of the environment in an MDP, we can
say that the algorithm has access to the p(s′, r|s, a) for all the (S, A, R) in the system.
The advantage of using value iteration compared to other dynamic programming
strategies lies in the fact that the computational cost is reduced by stopping the pol-
icy evaluation procedure after one sweep over all the states and still being able to
converge to an optimal policy for a discounted and finite MDP. The update of the
value function that is performed for each state during a value iteration sweep is:

vk+1(s)=̇max
a

E[Rt+1 + γvk(s + 1)|St = s, At = a]

= max
a ∑

s′,r
p(s′, r|s, a)[r + γvk(s′)] (2.5)

This equation above is obtained by converting the Bellman equation into an up-
date rule where the termination criterion is the moment when the value function
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(A) The q-table at t=0 (B) The q-table at t=100

FIGURE 2.6: Grid-world q-learning example: A blue cube agent ex-
ploring a 5x5 states world, which 4 possible actions to be taken in
each state (north, south, east, west). The yellow square represents
the initial state, where the agent returns after each trial, i.e. after
having reached the rewarding green state. The colors of the 4 ar-
rows per state indicate the q-values Q(s, a) associated with that par-
ticular action a from that state s: Lighter arrows correspond to a
higher Q(s, a). The interface to generate this example is ReinforceMe!

(https://loreucci.github.io/projects/reinforceme/).

does not change more than a small threshold ϵ after a sweep.
While the value or the action-value functions are being learned, the agent can

exploit these values to make decisions for its next actions. For instance, in the com-
putational models we described in Sect. 3.1-3.2, the simulated agent decides to go
to a particular state s with a probability P(s), computed as the Soft-max Boltzmann
distribution applied onto the values V(s) of its possible next states S :

P(s) =
eβV(s)

∑i∈S eβV(i)
(2.6)

Here, in Eq. 2.6, β is called the inverse temperature and tunes the exploration/ex-
ploitation trade-off; lower βs favors exploration, while higher ones exploit more the
information contained in V(s). This decision-making strategy is one of the most
used among the classical ones such as ϵ-greedy (R. S. Sutton and A. G. Barto, 2018).
The use of the Soft-max Boltzmann distribution has been also previously adopted
to model the brain mechanism of decision-making under exploration/exploitation
trade-off (Daw et al., 2006; Khamassi et al., 2011).

2.2.2 Model-based and model-free reinforcement learning

Although all the RL methods presented in the previous section (Sect. 2.2.1) are based
on the approximation of a value function which is based on an expectation of the
future reward used to back up its values, they present also clear differences. RL
techniques that can be used without a model of the environment, such as tempo-
ral difference learning, are called model-free (MF). In contrast, RL strategies based on
dynamic programming, such as value-iteration, require the knowledge of a model
under the form of a transition and reward functions and are then called model-based
(MB). The model of the environment can be deterministic or stochastic and in this
latter case, they are usually represented as distribution models where the agent knows

https://loreucci.github.io/projects/reinforceme/
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the transition and reward probabilities p(s′, r|s, a) of the current MDP. This knowl-
edge can be used to simulate a sequence of actions and experiences, before taking
the actual decision, in a process that is commonly addressed as planning.

Since (at least) two distinct behavioral strategies have been proved to exist in
the brain for instrumental behavior (habitual vs goal-directed behavior, Sect. 2.1.2),
different research groups have proposed models where these strategies respectively
correspond to model-free and model-based RL (first among the others Daw, Niv,
and Dayan (2005)), and have proposed mechanisms to describe how they could ef-
ficiently work together. Model-free RL strategies are indeed a proper model for ha-
bitual behaviors because they slowly converge to an optimal series of actions, by
using a very low computational cost and also slowly reacting to external changes
in their learning scenario. This scarce planning power and low behavioral reactiv-
ity are what mainly characterized habitual behavior in rodents and humans. On
the other side, model-based RL algorithms are more efficient in adapting to context
changes, but they require a higher computational cost to infer and plan for granting
this fast reaction. This higher computational cost reflects the largest involvement of
high cognitive brain areas required in goal-directed behavior (Sect. 2.1.2).

One of the first studies proposing a model for multiple learning strategies was
Guazzelli et al. (1998) which applied it in a navigation task. They proposed a cooper-
ation between two TD-learning algorithms: Taxon-Affordances which learned directly
on the perceived stimuli, closer to a cue-guided behavior, and World-Graph which
built an association between the perceived stimuli and the external environment,
similar to a more structured map-based behavior. Then, decision-making is per-
formed through a combination method based on the values associated with the next
possible actions by each algorithm, which are then summed by a meta-controller.

An interesting theory for the combination of multiple learning systems in se-
quential procedure has been then proposed by Hikosaka et al. (1999). Their pro-
posal suggested that the acquired information for learning a determined sequential
behavior is distributed and elaborated in many parts of the brain, such as the pre-
frontal cortex (working memory), the hippocampus (declarative memory), and the
basal ganglia (procedural memory). In the motor control case, which they analyzed,
they suggested that two brain areas learn their sequential procedures at the same
time, but for two different systems: the spatial coordinates and the motor coordi-
nates. Finally, they proposed that it exists a neural loop circuitry between the basal
ganglia and the cerebellum where the procedural learning control passes from the
former to the latter once the inverse model between the goal spatial-space and the
motor-space has been learned through the task.

Following these first proposals, another mechanism called responsibility signal has
been developed to weigh the relative goodness of predictions between different MB-
RL modules (Doya et al., 2002). Since each module is composed of a state prediction
model and an RL controller, the responsibility signal is implemented as a gaussian
softmax function of the errors in the outputs of the prediction models.

To organize the contributions of many behavioral navigation strategies, an inter-
esting development arrived when, next to the more computationally expensive com-
bination strategies (for example Guazzelli et al. (1998)), the first arbitration methods
started to be considered. An important contribution in this direction came from
Daw, Niv, and Dayan (2005), who, always using a computational framework, based
on RL, proposed a Bayesian principle to choose which of the two modes (model-
based or model-free) should take control over behavior based on its accuracy. Be-
tween a value-iteration (MB) system and a q-learning (MF) one, the chosen expert
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would be the one with the lower variance of a posteriori distribution of expected
value Qs,a(q)≡P(Q(s,a))=q)

1.
The coexistence of two instrumental behavioral systems is thought to give a rel-

evant contribution at different stages of learning (Hikosaka et al., 1999; Daw, Niv,
and Dayan, 2005). On the one hand, MB systems are better in adaptation towards
dynamical scenarios, but the computation to account for the elaboration of all the in-
formation to be that flexible is very expensive (Dromnelle et al., 2022). On the other
hand, MF systems have a faster response, but they do not integrate enough knowl-
edge of the environment to be adaptive. Keramati, Dezfouli, and Piray (2011), also
using an RL computational framework, proposed that the arbitration mechanism
between these two behavioral modes is based not only on the decision accuracy
(as proposed by Daw, Niv, and Dayan (2005)) but also on the cost of deliberation.
Looking at the value of perfect information VPI(s, a) which is a measure of the decision
accuracy from state s for each action a, for each expert, the arbitration mechanism
would pick the expert with the highest value that it is not having a too high cost of
deliberation. This means that R̄τ, the amount of reward that could potentially be
acquired in a deliberation time τ, should be lower than the actual reward that the
deliberation time τ allows to get.

After further experimental evidence, also in human studies, supporting the ex-
istence of two unique learning modalities and the identification of the neural sig-
natures for the reward prediction error (RPE) (D’Ardenne et al., 2008; Haruno and
Kawato, 2006; O’Doherty et al., 2003) and the state prediction error (SPE) in hu-
mans (Gläscher et al., 2010), this instrumental behavioral duality has been extended
as a leading mechanism in other functional scenarios. For instance, this model-
based/model-free distinction turns out to be also relevant to describe mammal be-
havior during Pavlovian conditioning paradigms (Lesaint et al., 2014).

In light of the goal-directed and habitual behavioral strategies described above,
many recent proposals for computational navigation models are based on the coor-
dination of parallel learning systems. For instance, Dollé et al. (2010) proposed a
new model for navigation based on the coordination of three different strategies by
a meta-controller, called Gating network, based on TD-learning. Depending on the
accuracy of the three strategies in predicting the future reward, the meta-controller
can learn when it is better to follow a taxon expert (procedural, associative, and ego-
centric learning), a planning one (cognitive, planning, and allocentric learning), or
pure random exploration. Their proposed novelty was in particular in the design of
a meta-controller that could integrate the information (e.g., common currency, mean-
ing the proposed goal-directed action) coming from different learning strategies and
learn how to optimally choose among them. The proposed model has been later
integrated with a more realistic hippocampal model (Ujfalussy et al., 2008) on the
cognitive and planning part of the algorithm (Dollé et al., 2018). In this work, they
were able to replicate some experimental results, among which Morris et al. (1982)
and Devan and White (1999), showing that the gating network coordination strat-
egy is indispensable for these replications and can coordinate the contributions of
different learning strategies.

An innovative perspective came then from this hypothesis article, Khamassi and
Humphries (2012), where they proposed that in spatial instrumental behavior, the
main distinction between model-based (MB) and model-free (MF) learning depends
on how the knowledge is used more that on what kind knowledge is used. As shown

1The MB variance of Qs,a(q)≡P(Q(s,a))=q) has a fixed minimum value without strong theoretical jus-
tifications.
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in Fig. 2.7, they propose a detailed functional model of the basal ganglia as a neural
substrate for spatial learning.

FIGURE 2.7: The proposed functional model for the integration of
model-based (MB) and model-free (MF) navigation strategies in the
brain. The basal ganglia are identified as the main center for spatial
instrumental behavior thanks to their communication with the amyg-
dala, hippocampus, medial prefrontal cortex (mPFC), orbitofrontal
cortex, sensory and motor cortices, and pedunculopontine nucleus.
In particular, the areas specifically related to the processing of spatial
information are the hippocampus (Sect. 2.1.4), the sensory and motor
cortices, and the mPFC, considered as a center for the elaboration of
place representation (Hok et al., 2005) and deliberation on the output
of the two strategies (Wunderlich, Dayan, and Dolan, 2012). Figure

reprinted from Khamassi and Humphries (2012).

The dorsomedial striatum (DMS) works as an MB system and the ventral stria-
tum is the corresponding part dedicated to building the model of the world. In
fact, the striatum has been proven to be extremely relevant for value-based plan-
ning (Wunderlich, Dayan, and Dolan, 2012), and in this work, they proposed that its
core, in particular, is dedicated to learning the transitions probability model of the
environment. Finally, they argue that different parts of the ventral striatum could
compute the RPE for the model-free system, in its core, and for the model-based
one, in its shell, suggesting that the ventral striatum plays the role of the critic in a
classical actor-critic RL algorithm (Konda and Tsitsiklis, 1999). On the other side,
the DMS and the dorsolateral striatum (DLS) represent the actors, of the MB and MF
systems, respectively.

More recently, other groups have proposed new theories and computational mod-
els on the coexistence of these two known strategies for instrumental behavior. Pez-
zulo, Rigoli, and Chersi (2013) proposed a Mixed Instrumental Controller that, through
a costs and benefits analysis, decides whether to privilege a habitual behavior or to
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re-evaluate the cached values for a specific state-action transition. Compared to the
models proposed before (Daw, Niv, and Dayan, 2005; Keramati, Dezfouli, and Piray,
2011), this work introduces a more central control where the cost of model-based pre-
dictions is engaged just when needed, i.e., in particular when the Value of Information
surpasses the cost of the inference process. They defined the Value of Information
(Voi) concerning the possible action Act1, over the other option Act2, as follows:

VoIAct1 =
CAct1

|QAct1 −QAct2|+ ϵ
(2.7)

where CAct1 is the uncertainty linked to Act1, and QAct1 and QAct2 the values
of the actions Act1 and Act2, respectively. ϵ will assure that the denominator is
non-zero. The MB re-evaluation of the states-actions values Q is similar to a trajec-
tory sampling episode (A. G. Barto, Bradtke, and Singh, 1995) where the length of
the sampled trajectory is controlled by the VoI of the sequence of actions. A similar
inference mechanism, with a controlled re-evaluation budget, called Simulation Reac-
tivations (SimR), is also adopted in our scientific contribution about the coordination
between MB and MF replay strategies in goal-directed navigation (Sect. 4.1.4).

Inspired by the forward re-evaluation sweeps of the inference strategy proposed
by Pezzulo, Rigoli, and Chersi (2013), Keramati et al. (2016) proposed a new compu-
tational strategy for the coordination of an MB and MF learning systems. Similarly
to Doya et al. (2002), they suggested that the presence of these two learning systems
could be seen not just as a dichotomy, where one of the two systems takes control
over the other because more reliable at less expensive at that point, but as more like
two strategies that always act together, modulating the weight of their contribution
using their competence. In this way, many more learning strategies could exist in
the animal and human brains based on the modulation of the contribution of the
two experts (MB and MF). By testing their ideas on a theoretical framework based
on RL, they propose a plan-until-habit solution, where the q-value Q(s, a) of a given
state and action couple (s, a) is computed by limited forward simulations to pre-
dict the future discounted rewards r until a predefined depth k when the habitual
q-value for the consequences of the remaining future steps Qhabit(s′, a′) is summed
to the prediction.

Q(s, a) = r0 + γr1 + γ2r2 + .. + γkQhabit(s′, a′) (2.8)

In Sect. 4.1.4 of this thesis, we are going to explore deeper the role of the arbitra-
tion mechanism proposed by (Dromnelle, Renaudo, et al., 2020; Dromnelle, Girard,
et al., 2020) in goal-oriented spatial navigation tasks and the possible advantages of
adding MB and MF replay strategies, respectively integrated within the two systems.

In conclusion, the current consensus is that the animal and the human brain exer-
cise instrumental conditioning and domain-general learning by using a framework
that can be modeled as a mixture of experts in machine learning (O’Doherty et al.,
2021) (usually MB and MF experts), and their prevalence can be regulated trial-by-
trial (Otto et al., 2013). The arbitration among the experts is performed based on the
uncertainty of their predictions and their cognitive cost and, thanks to the variety
of their proposals, effective interaction, and adaption to different environments and
situations are possible.
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2.2.3 Models of spatial navigation in rodents

Despite the apparently arbitrary nature of free spatial exploration in rodents, Sect. 2.1.1
illustrates several regular patterns that portray a sort of systematic unconstrained
navigation in novel environments. The same research group that conducted most of
these behavioral studies, proposed also a first computational model for rodent free
exploration behavior (Gordon, Fonio, and Ahissar, 2014a).

Firstly, they proposed a hierarchical curiosity model to mimic an autonomous
active agent that optimizes the learning of its sensory-motor integration by recom-
pensing curiosity, in the form of RL reward prediction error (Gordon and Ahissar,
2012). In their work, additional levels of sensory-motor mapping are built on top of
each other as RL incremental natural actor-critic agents (Fig. 2.8a, Bhatnagar et al.
(2007).

Assigning the square of the learning error e2 to the reward function R would
create a reinforcement active learning agent (ReAL) (Gordon and Ahissar, 2011) with
a strong attitude towards exploration. The reward for this agent will then be:

Rt+1 = e2
t = (ôL(it)− ot)

2 (2.9)

where o is the current output for the input i and ôL is the estimated one that
follows the input-output transformation L dedicated to learn the model of the in-
teraction agent-environment. The parameters defining the transformation L are au-
tonomously updated according to the reward prediction error e2 by internal super-
vised learning. This implementation allows the gradual learning of knowledge and
skills of increasing complexity concerning the interaction with the surrounding en-
vironment. They applied this strategy in particular to rodent whiskers system to
learn the internal model of their motion and their object localization activity.

Secondly, the same principle was improved to model rodent whiskers’ exploratory
patterns in novel circumstances (Gordon, Fonio, and Ahissar, 2014b). In this case,
the exploring agent uses the information gain as an intrinsic reward, instead of the
reward prediction error as done in Gordon and Ahissar (2012). To measure the infor-
mation gain, they used the Kullback-Leibler divergence of the new observed state:

DKL(Pt+1(s′|o)||(Pt(s′)) = ∑
s′

Pt+1(s′|o)log
(Pt+1(s′|o)

Pt(s′)

)
, (2.10)

where P(s′) is the previous known probability to encounter the sensory state s′

at time t, and P(s′|o) is the new actual probability to encounter it at time t + 1 given
the observation o. This divergence measure indicates the amount of new information
which is present in the observation o and this information gain is used then to guide
the agent perception toward states s′ with higher gains.

Here, they also introduced the concept of novelty control which allows an alterna-
tion between exploratory and retreating behavior by keeping constant the amount of
novelty perceived by the agent in its whisker system.

Eventually, their research adapts this latter model to describe either the whisker
system and the locomotion one to create a complete spatial exploration framework
(Fig. 2.8b, Gordon, Fonio, and Ahissar (2014a)). As in their previous work, the per-
ceiver is a Bayesian learner that aims to learn the sensory-motor forward model
(Kawato, 1999), the critic tries to learn instead the expected future reward and the
actor chooses the current action, given a stochastic policy (Fig. 2.8a). In the dif-
ferent exploration primitives, by having each actor start from a different random
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distribution for exploring the agent-environment relationship, the main exploration
primitives will be learned from the most to the least novel ones.

As already mentioned, the novelty of this work compared to Gordon, Fonio, and
Ahissar (2014b) is also the introduction of four locomotion loops (Fig. 2.8b). These
exploration primitives are fed by the two whisker loops which provide information
about the presence of ”contact points” to external objects in the environment. This
allows the locomotion loops to learn, based on the morphology of the agent’s sur-
roundings, features of the environment, like the presence of corners, walls, and open
spaces. Also, in this case, the novelty controller operates to make the agent retreat
when the novelty level is too high or explore when it is too low (Fig. 2.8c). The prob-
ability for the agent to pass to a retreat mode from a particular exploration loop l
is:

pl
retreat(rt) = ψ

(
(rt − ( Ĵl

t + r̃l))/r̃l
)

, (2.11)

where rt is the current reward, Ĵl
t is the current loop l average reward, r̃ is the

novelty-transition sensitivity and ψ(x) = 1/(1 + e−x) is a sigmoid function. So that
if the reward rt exceeds the current estimation of the average reward Ĵl

t , there is a
higher probability for a switch to retreat mode. On the contrary, if there is no more
novelty in the current exploration loop l, the novelty controller passes to a higher
exploration level loop with a probability:

pl
adv(τ

l) = ψ
(

τl − τ̂l)/τ̃l)
)

, (2.12)

where τl is the accumulated time of loop l, τ̂l is the advancement threshold and
τ̃l is the advancement sensitivity. Before any advancement in exploration loops, the
agent returns to base to assure that all learned motor primitives have a common
starting point.

To conclude, the innovative idea behind the design of this model is the identifi-
cation of novelty as the primary driving force for free exploration and the fact that
this novelty is gradually absorbed by the agent. This idea takes, however, inspira-
tion from the assumption that curiosity and novelty propel and optimize exploration
and can produce agents which can systematically and autonomously learn tasks of
increasing complexity; a view that has been recently explored a lot in artificial in-
telligence and robotics (Oudeyer, Kaplan, and Hafner, 2007; Pape et al., 2012; Little
and Sommer, 2013).

Another interesting approach for a bio-inspired adaptive agent for spatial navi-
gation tasks came from (Cos et al., 2013). They propose an RL-motivated actor-critic
agent whose exploration is guided by a hedonic value (HV) and constrained by phys-
iological stability. The proposed HV is inspired by the role of phasic dopamine as
an error signal to module the subjective behavioral assessment response to differ-
ent stimuli and physiological states (Houk, Davis, and Beiser, 1995; Khamassi et al.,
2005). By simultaneously considering all the agent’s homeostatic variables (abstrac-
tions representing the dynamics of its internal resources), their proposal produces
an autonomous agent which owns an internal modulation of the value relative to
the environment and that can rapidly adapt to non-stationary environments.

In our scientific contribution (Sect. 3.1), we will propose a free exploration model
that considers the information gain coming from the environment from a differ-
ent point of view compared to the research presented so far. We will describe the
decision-making process of the animal as a combination of many factors which model
the importance of its different emotional components, such as anxiety, fatigue, and
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activity as a reflection of its internal curiosity. Even though research on rodents has
strong experimental protocols and a long history, research laboratories are not the
real natural environments of such animals and that makes the job of understanding
and modeling their spontaneous behavior very challenging. This situation could al-
ter the anxiety levels, and thus the subsequent spatial exploration, as the preferences
for certain corners of the maze, which are considered safer and more familiar. These
inclinations could also vary in relationship to social interactions, individual status,
and gender of the animal (Balcombe, 2006).

Besides, regarding the modeling strategy in rodent free exploration, a recent re-
search also points out that by considering an exploratory session of a novel environ-
ment as a whole, some regularities emerge more than searching for consistent local
patterns (Benjamini et al., 2011). An example of these regularities can be seen as the
cumulative distance traveled and the percent time spent in the center of an open-
field maze respectively as measurements for the levels of activity and anxiety for a
specific animal.

In this thesis, we investigate whether it is possible to identify some regular pat-
terns in the decision-making process of rodents exploring a novel environment and
if it is then possible to encode the relevance of these behavioral features for each ani-
mal (Sect. 3.1). The model we propose considers both allocentric and egocentric spa-
tial representations of the animal in the environment (Berthoz, 1991; Klatzky, 1998)
and would constitute a framework for building decision-making, spatial memory,
and learning.
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FIGURE 2.8: Scheme of the model for exploration and whiskers mo-
tion from Gordon, Fonio, and Ahissar (2014a). A) A single explo-
ration primitive: The interaction agent-environment is dealt with an
RL actor-critic agent, whose actions on the world depend on the
amount of novelty (=reward) perceived by the critic. B) The sys-
tem is composed of two exploration modules for the whisker con-
trol and four modules for the locomotion one. The locomotion sys-
tem is of a higher rank compared to the whiskers’ one and uses the
sensory information provided by the latter to perform better localiza-
tion. C) The novelty management unit as a mechanism to alternate
between exploration and retreat; when the novelty for a specific ex-
ploratory module is higher than its average, the agent chooses the
retreat primitive, otherwise the next exploratory module is activated.

Figure reprinted from Gordon, Fonio, and Ahissar (2014a).
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2.2.4 Reinforcement learning-based replay mechanisms

Even before the numerous studies that have been conducted in neuroscience about
hippocampal replay, researchers in RL were starting to design and test artificial
memory mechanisms that improved the performance of their classical algorithms.

R. S. Sutton (1990) introduced the Dyna-Q algorithm where MF trial-and-error
learning is integrated with MB online planning on a learned model of the world.
Compared to the previously proposed Dyna-PI and considering the Q-function in-
stead of a Value function for a specific policy π, Dyna-Q assures that q-values, and
also the learning process will converge properly whatever policy is used. This strat-
egy is also more robust to face dynamic experimental environments thanks to the
fact that it learns a stochastic model of the world, differently from Dyna-PI, which
learns a deterministic one. In this way, the system has a sort of intrinsic exploratory
behavior, which can make it go for suboptimal actions at the beginning, but that bet-
ter deals with stochastic and changing environments. Further, during the planning
phase, the agent is allowed to experience actions that have not been tried before and
so integrate this knowledge in the learning of the Q-function.

In the same years, (Lin, 1992) introduced a mechanism called experience replay
that consisted in effectively reusing past experience. A past event was described in
the form of quadruples (s, a, s′, r) meaning that the agent had started from state s and
having performed action a had ended up in state s′ with a reward r. Sequences of
events starting in the initial state and leading to the goal state, called lessons, are then
re-experienced in the opposite direction (backward replay). This means that each
event in a lesson is used to update the state-action values as if it were experienced
again. In particular, they suggested that experience replay could be more efficient
if the propagation of the past knowledge was a sequence of the above-explained
transitions and if it was replayed in backward order. By adopting this strategy, clas-
sical MF-RL algorithms, such as Q-learning (Watkins, 1989), were demonstrated to
converge faster.

Although the computational RL strategies explained above have been designed
and conceived separately from hippocampal reactivations, their similarities and in-
terplay have been discussed more and more recently.

As developed in Dyna-Q, Pezzulo, Kemere, and Van Der Meer (2017) proposes
that both the experience-tied (MF) and the internally generative (MB) experience
can be involved in the inference processes of rodents, and mammals in general. The
way this experience is recalled in reasoning and imagination happens in the form of
replay or internally generated sequences (IGSs), mainly in the hippocampus, but also in
many other areas (Sect. 2.1.4). They first suggest that active inference which appears
during task-engagement and theta cycles, replays successively experienced elements
more rapidly if the location is next to the current animal position. Also, they claim
the importance of the different dynamics and timescales of respectively theta cycles
and sharp wave ripples (SWR) (Sect. 2.1.4) since these differences could correspond
to diversity in many aspects, such as communication to other areas of the brain, in
the timing of occurrence (task-engagement, sleep, etc.) and functionality. The neural
mechanism for task-engaged reasoning and mental time could be the same, with the
difference that the clue coming from the actual action-perception cycle guides the
mental experience triggered on the generative model in a strongly constrained way
compared to detached imagination.

The most known and used heuristics that have been proposed to make the best
use of simulation replay are prioritized sweeping and trajectory sampling (R. Sutton and
A. Barto, 1998). Prioritized sweeping was first proposed as an efficient strategy to
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enhance learning and increase computational efficiency and it was independently
proposed and developed in the same year in two slightly different versions. Both
methods compute the reward prediction error (RPE) of each state-action pair and
they consider it as its priority value and prioritized replay is then performed from
the most unexpected pair to the least unexpected one in the queue. The replay phase
stops when the priority queue (P-queue) is empty, meaning that no relevant knowl-
edge is left to be replayed. On the one hand, the algorithm proposed by Peng and
Williams (1993) suggests prioritizing the order of the value function estimate up-
dates in Dyna-Q (R. S. Sutton, 1990). They proposed to prioritize the largest recent
updates and then their predecessors’ states’ priority is computed and they are eval-
uated next. Next, the algorithm prioritizes the updates, starting from the current
state, whose estimate is relevant for future long-term reward. On the other hand,
Moore and Atkeson (1993) proposed a similar prioritization technique which put
forth the backups of the most recent surprising state and their predecessors, without
re-compute the predecessors’ priority when they are then considered in the prior-
ity queue. While prioritized sweeping prioritizes backups of predecessors of states
that have recently changed their values, trajectory sampling instead consists of priv-
ileging backups on the on-policy distribution, thus on the successors of the current
state (R. Sutton and A. Barto, 1998). Here, the replay phase starts by simulating
the on-policy trajectory from the current state and then performing backups at each
state-action pair. This backups strategy results in a computationally efficient way of
updating state-action values by ignoring uninteresting parts of the task space, but it
can hurt in the long-term since backing ups just the on-policy state-action couples
would become rapidly irrelevant.

With the advancement of the research in this direction, new proposals for more
comprehensive algorithms, aiming at generating and explaining more replay mech-
anisms and functionalities are arising. One of the first computational proposals
that allow the spontaneous generation of both reverse and forward replay came by
Aubin, Khamassi, and Girard (2018). Designing and testing their algorithm in a nav-
igation task, they first propose a neural network (NN) version of the Dyna-Q algo-
rithm (R. S. Sutton, 1990), which also uses prioritized sweeping (Peng and Williams,
1993; Moore and Atkeson, 1993). Then, their strategy includes also a new NN ar-
chitecture, GALMO, dedicated to learning the world model. The GALMO NN is es-
sential to the proposed navigation task (double T-maze, Gupta et al. (2010)) because
multiple predecessors exist for certain states of the maze. Multiple predecessors re-
quire that the world model is learned offline by presenting the data in random order
to disrupt their sequential correlation. They suggest that the above-described mech-
anism can be predictive of the fact that also rodents learn the world model offline by
non-sequential hippocampal reactivations. Then, another interesting result found in
this study comes indeed from the spontaneous generation of replay in the proposed
Dyna-Q prioritized sweeping set-up; the majority of the generated reactivations are
non-sequential, while the 15-20% of them are either backward or forward, predict-
ing a strong relevance of unordered replay even if the priority sweeping strategy is
usually encouraging sequential reactivations, driven by larger prediction errors.

Following this work and based on the ideas behind the previously proposed re-
play heuristics, prioritized sweeping (Peng and Williams, 1993; Moore and Atkeson,
1993) and trajectory sampling (R. Sutton and A. Barto, 1998), Mattar and Daw (2018)
proposes a balancing mechanism between need and gain which can orchestrate for-
ward and reverse reactivations. They formulate a utility measurement, based on
need and gain, to prioritize the memory access during deliberation. The demand
for replay a certain episode ek and so to update its Q(sk, ak) in an MDP is evaluated
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based on this utility, also called expected value of backup EVP(sk, ak):

EVP(sk, ak) = Eπnew [
∞

∑
i=0

γiRt+1|St = sk]−Eπold [
∞

∑
i=0

γiRt+1|St = sk] (2.13)

EVP(sk, ak) = Gain(sk, ak)×Need(sk) since Gain(sk, ak) is the expected improve-
ment in return of state sk and Need(sk) is the discounted number of times the agent
is expected to visit the target state sk. On the one hand, starting replay activity based
on gain will generate backward sequences from reward locations, since gain is pro-
portional to the surprise of an unexpected positive gain. On the other hand, if need
drives the replay activity, a depth-first replay sequence generates from the current
state. This happens in particular because the need contribution privileges the re-
play sequence to start from the most probable states where the agent will be next.
However, the main limitation of this approach is the needed computation to assess
the utility of each backup replay which includes the computation of the Bellman
backup itself (Eq. 2.13).

Another computational model, capable of generating diverse replay mechanisms,
such as forward and reverse replays, has been presented by Khamassi and Girard
(2020) to suggest a computational principle to generate awake hippocampal reacti-
vations. The strategy they proposed is constituted by a model-based bidirectional
search, which is composed of a trajectory sampling phase (A. G. Barto, Bradtke, and
Singh, 1995) and a prioritized sweeping one (Peng and Williams, 1993; Moore and
Atkeson, 1993). This process is repeated until the two trajectories connect and the
state-action values converge. Imaginary replay (Gupta et al., 2010) are also spon-
taneously generated in this model; The double t-maze task, simulated in their pa-
per to test the bidirectional search algorithm, does not allow the agent to go back
straight away after the decision points, while the simulated experience, either for-
ward planned or prioritized backward replayed, can interestingly involve these for-
bidden paths. Interestingly, with this model, the agent is free to perform replay in
any state of the environment and at any time, while Mattar and Daw (2018) forced it
to perform replay only before the beginning of the trial and at the end, after getting a
reward. In fact, the performance of forward replay before starting to move and back-
ward replay after getting rewarded was thus an emergent property of the Khamassi
and Girard (2020)’s model. Moreover, compared to Mattar and Daw (2018), the
model minimizes computational costs by performing extensive replays only after
surprising events (i.e., first reward delivery and task changes).

In these same years, an important scientific contribution came by Cazé et al.
(2018) who wrote a review study to associate several types of hippocampal reactiva-
tion mechanisms to RL algorithms (model-based, model-free or hybrid models such
as Dyna, already mentioned above). A year after, Whelan, Vasilaki, and Prescott
(2019) also reviewed the neuro-inspired models and artificial plasticity strategies
which could explain different types of hippocampal replay. In Cazé et al. (2018),
many replay-inspired RL algorithms are tested in a simulated spatial task, to accu-
mulate as much reward as possible (where the reward is located in a specific position
of the environment and then this position is changed in the middle of the experi-
ment).

Tab. 2.1 shows also that depending on the strategy, past or hypothetical future ex-
periences can be replayed in different orders, namely backward, forward, random-
ized the past order of the experience, or even imagining possible new experience
configurations.
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They showed that different types of RL reactivations could describe either awake
or asleep replay (Tab. 2.1), and some of them, like the MF Neural Network-based
value function (Mnih et al., 2015), the MB bidirectional search (Khamassi and Girard,
2020) and many sub-types of Dyna-RL (R. S. Sutton, 1990), even both awake and
asleep ones. Also in this case, some algorithms can replicate different categories of
reactivations, like prioritized sweeping (Peng and Williams, 1993; Moore and Atke-
son, 1993) and bidirectional search (Khamassi and Girard, 2020). Throughout this
review, they showed that different RL replay algorithms can account for the same
type of replay phenomenon (awake or asleep, backward, forward and so on), but
the identification of this computational mechanism to a specific type of replay (dif-
ferent states and different oscillations) is of crucial importance to infer the possible
content of hippocampal reactivations in the brain of navigating rodents. In fact, if
the replay event is more likely to be modeled with an MF-RL algorithm, its con-
tent will more likely be referred to the past, while if the algorithm is an MB-RL
one, its content will be referred to the future, due to the inference and planning na-
ture of these latter algorithms. Generally, awake replay is more often connected to
MB-RL algorithms which could work as trajectories sampler or as other planning
mechanisms that can be modeled by bidirectional sampling, for example. MB-RL
algorithms are also found more appropriate to model imaginary replay, since they
would base their inferences on the model of the world that they have built and ex-
plore more, compared to forward MF-RL algorithms that would instead reactivate
episodes which are closer to recent experience and for that not very exploratory.
They further hypothesize that unordered replays can instead be more appropriate
to describe the noisier dynamics of asleep reactivations and crucial to learning an
internal model of the world when adopting neural networks-based strategies. Also,
the Dyna-RL model-free replay on the inferred model of the world could be a good
candidate for hippocampal reactivations during sleep in rodents, as well as MF-RL
forward replay that updates action value for future use. Finally, their simulation re-
sults show that generally forward sequences are spontaneously replayed at decision
points, while backward replay happens mostly around the reward spots, where the
reward prediction errors (i.e., surprise signals) are higher. Even though this has not
been experimentally observed yet, the authors proposed that the vicarious trial and
error (VTE) reactivations at decision points could not exclusively be forward, but
also backward. In fact, many MB algorithms, listed in Tab. 2.1, can reproduce both
backward and forward replays during inference; For instance prioritized sweeping
(Peng and Williams, 1993; Moore and Atkeson, 1993), trajectory sampling (A. G.
Barto, Bradtke, and Singh, 1995) and bidirectional search (Khamassi and Girard,
2020).

Very recently, Diekmann and Cheng (2022) proposed an RL-based replay method
able to generate different types of replay mechanisms and observed statistics on hip-
pocampal reactivations. They proposed a new strategy to prioritize memory access
called Spatial structure and Frequency-weighted Memory Access (SFMA) where, given
that an experience is defined as et = (st, at, rt, st+1), each time one et is replayed, all
the other stored experiences e get a priority value:

R(e|et) = C(e)D(e|et)[1− I(e)] (2.14)

where C(e) represents the frequency of the experience and its reward-related value,
D(e|et) describes the spatial distance between the two experiences e and et account-
ing for structural environmental obstacle. Finally, the last component 1− I(e) pre-
vents that an experience which has just been recalled is replayed again and this
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has the consequence of generating replay sequences. The SFMA can operate in two
different modes: the default and the reverse mode, depending on which states are
considered in the computation of the similarity measure. In the default mode, the
similarity measure is computed between both current states of the two experiences,
D(s(t)e|s(t)et), while in the reverse mode, the similarity is computed between the
current state of the currently reactivated experience and the next state of the other
one, D(s(t + 1)e|s(t)et). Despite both modalities seem to reproduce diverse experi-
mental observations on replay mechanisms, the default mode results very efficient in
the generation of preplay (Ólafsdóttir et al., 2015) and shortcut replay (Gupta et al.,
2010; Ólafsdóttir et al., 2015), while the reverse mode is better performing in spatial
learning (Morris et al., 1982).

Being able to associate different phenomenological and functional aspects of neu-
ral phenomena, such as hippocampal replay, to computational algorithms which
encode a precise scope, such as planning, retrieval of past experience, or memory
prioritization, can be key in understanding which other parts of the brain could
be involved and co-active during these episodes. Investigations in this direction,
and towards more comprehensive computational models that solve tasks such as
goal-directed navigation, affect the design of new experimental protocols and im-
prove the comprehension of hippocampal reactivations. These works have recently
pointed out that hippocampal replay could account for many computational aspects
(e.g., context estimation, working memory, and spatial planning), depending on
their timing, organization, and content (Pezzulo, Kemere, and Van Der Meer, 2017).

In Sect. 4.1 of this thesis, we will explore the advantages and disadvantages of
some of MB- and MF-RL replay strategies explained in this current section, in dy-
namical goal-directed navigation tasks. To the best of our knowledge, the appli-
cation of replay-inspired RL strategies in real robots is still in a preliminary phase.
Our contribution will consist in identifying which strategies are the best to face the
uncertainty caused by real robotic experiments. The introduction and combination
of RL-based replay in goal-directed algorithms for navigation are crucial to saving
real experimental time on the robot, but many challenges, regarding for example the
computational costs of such strategies, have not been addressed yet.

2.2.5 Parameter estimation and evolutionary algorithms

A part of the research contribution of this thesis has been conducted by applying
state-of-the-art evolutionary algorithms for optimization and model fitting. This sec-
tion is going to introduce and explain the general bases of these methodologies.

To study and understand a particular phenomenon, data is usually collected.
After this phase, one of the main interests is identifying and fitting this observed
behavior into a model. This procedure is usually called model fitting. Following the
model’s design, the next step is often formulating a function to describe the best-fit
criterion between the proposed formalism and the data. Once this function has been
defined, the parameter estimation process starts with identifying the best parameters
that bring the model to optimally fit the available data and hopefully generalize the
physical phenomenon beyond that accessible sample.

In decision-making computational neuroscience, one of the most common mod-
eled experimental protocols is the binary choice (left versus right choice) of partici-
pants (rats, monkeys, or humans) in tasks where they repeat around 100 or 200 rep-
etitions. In these cases, the parameters of a proposed model are usually fitted by the
Bayesian estimation of the maximum likelihood to observe a participant’s sequence
of choices (Daw et al., 2011a). Daunizeau, Adam, and Rigoux (2014) proposed the
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variational Bayesian approach (VBA), a toolbox to perform robust model-based anal-
ysis of empirical data and parameters estimation based on Bayesian maximum like-
lihood. Once selecting a particular model against others, model falsification is also an
essential practice in computational neuroscience (Palminteri, Wyart, and Koechlin,
2017). This means that for assessing the selection of one model over another, it is
necessary to demonstrate that the other one cannot reproduce the behavioral trend
of interest while the selected one can. This same falsification procedure must also
be applied when selecting a set of parameters for the model. R. C. Wilson and A. G.
Collins (2019) then published an introductory guide and tutorial to computational
modeling good practices, and among them, relevant methodology and examples on
model parameters fitting.

The classical strategies the already mentioned Maximum-Likelihood (Bard, 1974)
or Bayesian estimators, such as Log-likelihood estimator (Carrera and Neuman, 1986)
and Weighted Least-Squares estimator (Beck and Arnold, 1977). More recently, in par-
ticular, when the computational models have more than 4 or 5 parameters, evolu-
tionary strategies or genetic algorithms (Yu and Gen, 2010) seem to be efficient and
robust in solving these nonlinear optimization problems (Liénard, Guillot, and Gi-
rard, 2010). Darwin’s theory inspires these algorithms on natural evolution, and
they have been proven to be very robust in solving complex and nonlinear problems
(Bäck and Schwefel, 1993). By emulating the biological process of natural evolution,
a randomly initialized population of individuals (i.e. possible problem solutions, set
of parameters) is gradually improved throughout generations by recombination, mu-
tation and selection. The latter selection procedure is based on the definition of a
fitness function which determines how good an individual is. In the vast majority of
cases, the fitness of an individual is computed on its "phenotype," meaning on the
"expression" (i.e. behavior) of its "genotype" (i.e. the parameters themselves to be
optimized). To assess an individual’s quality, the concept of domination is adopted.
An individual or solution X1 dominates the solution X2 if X1 ⪰ X2, meaning that
f (X1) ≥ f (X2) if f has to be maximized, or f (X1) ≤ f (X2) if f needs to be mini-
mized, with f being a single-objective optimized function f : S → R, where S and
R are the search and the real space respectively (Hao et al., 2019).

The main reasons evolutionary algorithms are broadly applied nowadays to solve
problems, such as complex parameter estimation, lies in their conceptual simplic-
ity and strong robustness against nonlinear and chaotic practical problems, such
as the biological evolution itself (Fogel, 1997). Classical search and optimization
algorithms, as the ones cited above, often fail to find satisfactory solutions to real
complex problems, but the application of strategies inspired by natural evolution
that do not rely on any a priori knowledge or static conditions could often generate
optimized results, simply with the definition of a fitness function. Moreover, evo-
lutionary computation is an embarrassingly parallelizable process, given that the
evaluation of the fitness of each individual is independent of the fitness of all the
others. This allows rapid scheduling of this computation in highly distributed com-
puter architectures. In Sect. 3.2.3, we use the Covariance Matrix Adaptation - Evolu-
tion Strategy (CMA-ES, Hansen (2006)), which is one of the most used state-of-the-
art evolutionary techniques to solve nonlinear-non-convex-black-box optimization
problems. Its main characteristic lies in the iterative estimation of the covariance
matrix, which defines the contours of a second-order model of the objective function
(that does not need to be accurately known). In more detail, possible solutions to
the problem are sampled from a multivariate gaussian distribution, and after evalu-
ation, they are sorted by their fitness value. Then the multivariate gaussian distribu-
tion parameters (i.e., the mean vector and the covariance matrix) are updated based
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on the ranking of the solutions’ fitness values. Moreover, its other point of strength
is that, in many of its implementations (for example Auger and Hansen (2005)), it
does not need a fine parameters tuning because the hyperparameters of the strate-
gies, for example the population size, are usually derived by the dimensionality of
the problem, for example from the number of parameters to evolve (problem dimen-
sion). The important parameter to tune is the initial step size σ0. It determines the
spread of the covariance matrix, which defines the shape of the gaussian distribu-
tion ellipsoid where the algorithm looks for new solutions. The mean vector of this
gaussian distribution represents the best temporary solutions (Hansen, 2016).

An exciting branch of genetic computations that will be used in this thesis con-
cerns multi-objecive optimization (Murata, Ishibuchi, et al., 1995; Coello, Lamont, Van
Veldhuizen, et al., 2007). As a result of the evidence that many real-world problems
have many objectives to be simultaneously optimized, an urge to apply evolutionary
strategies also to solve multi-objective problems arose. When many behavioral as-
pects must be optimized (for example, the participant’s choice and their reaction
times), the use of broader strategies that imply a multi-objective optimization is
needed (Viejo et al., 2015). From Schaffer (1985), the main procedure adopted in
these kinds of problems is the identification of Pareto optimal solutions. These so-
lutions are a set of trade-off sub-optimal individuals that are improved throughout
the evolutionary process and include the non-dominated individuals in the multi-
objectives space. The evolution will lead to the recognition of an approximated
Pareto front of the multi-objectives, which usually conflict with each other (Deb,
2011). Once a final version of the Pareto front has been assessed, the best individual
can be identified according to the problem and preferences. The principal elements
for guiding a good multi-objective optimization with genetic algorithms are a proper
choice for mutation, cross-over, and selection operators and also a satisfactory defi-
nition of the objective functions (Abraham and L. Jain, 2005).

The main Multi-Objective Evolutionary-Algorithm (MO-EA) adopted in the sci-
entific contribution of this thesis is a new version of the so-called Non-dominated
Sorting in Genetic Algorithms (NSGA, Srinivas and Deb (1994)). Differently from
scalarization approaches and the Vector Evaluated Genetic Algorithm (VEGA), pro-
posed by Schaffer (1985), the non-dominated sorting, introduced by Goldberg (1989),
proposed to find stable, uniform, and reproducible Pareto optimal solutions, explor-
ing in a no-objective-biased and uniform way the solution space. Then, Deb et al.
(2000) proposes a faster version of NSGA, called NSGA-II, where they introduce a
more elitist approach and reduce the overall complexity of the algorithm of an order
of magnitude. A glimpse of an evolution cycle of NSGA-II is shown in Fig. 2.9.
Initially, a population P of size N is randomly generated. Then at each genera-
tion, t, this population Pt is paired to its offspring population Qt of the same size
N. So, the whole 2N individuals are then organized in a new population Rt by
non-dominated sorting into several fronts F1, F2, ... and then their crowding distance
is computed. The sorting and selection are performed “by fronts”, meaning that the
individuals belonging to F1 are the best in the objectives space, and none among
them dominate the others. On the other side, the ones belonging to F2 are all the
individuals dominated only by those in F1 but then dominating all the remaining
ones. The crowding distance is used here as a metric to preserve population diver-
sity because it measures, for each individual, the average distance of its two most
neighboring solutions. Then, based on these sorting of the fronts, a new popula-
tion Pt+1 of size N is created by selecting all the individuals in the first fronts F1, F2.
To preserve population diversity, the individuals with the larger crowding distance
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in the last front F3 are also picked. The remaining N individuals are rejected. Fi-
nally, through crossover, mutation and selection a new offspring population Qt+1
is created. Crossover and mutation operations are used to identify new individu-
als by combining or partially modifying the existing ones. In particular, crossover
operations combine "genes" (=parameters) of two "parent" solution to create a new
individual of the next generation, while mutation operations alter certain genes of
an individual to generate a new one. Finally, Pt+1 and Qt+1 will be then the 2N
starting population for the next generation t + 1.

FIGURE 2.9: Scheme on the computations performed during a gener-
ation of NSGA-II. Figure reprinted from Jiang et al. (2021).

The last improvement to NSGA was made by Deb and H. Jain (2013) with the
introduction of NSGA-III and of the concepts of reference points. Thanks to the estab-
lishment of some reference points in the solutions’ space of the MO-EA, it is possible
to better preserve solutions diversity and better guide the evolution and the search
for the Pareto-optimal individuals. NSGA-II has already successfully been used to
automatically optimize the parameters of different basal ganglia models for model
selection (Wang et al., 2007; Liénard, Guillot, and Girard, 2010) and for the param-
eters estimation for a mean-field model of the basal ganglia against anatomical and
electrophysiological data (Liénard and Girard, 2014). We will use the NSGA-III evo-
lutionary strategy in Sect. 3.1.3-3.2.3 to estimate the best parametrization for our be-
havioral model based on the exploratory characteristics of different rodent datasets.

2.3 Neurorobotics

Recently, robotics and artificial intelligence have become very interconnected. In-
deed robots have physical bodies which experience and act on the real world through
their sensors and actuators. This embodiment is necessary to test the adaptive al-
gorithms we design to model our learning behaviors. Otherwise, they are usually
tested on simulated worlds, even if these can be very accurate.

Even if neurorobotics could classically refer to the integration of robotic systems
with the human body for rehabilitation, recovery or augmentation purposes, the
term is also concerning the domain that employs models of strategies used by the
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brain to control a robotic device (Moxon, 2005). In this thesis, we will refer to neuro-
robotics from the latter point of view, in the specific domain of goal-oriented robotic
navigation and spatial learning.

Mobile robotics has a long tradition and a wide range of daily applications,
such as autonomous cleaner robots, rovers and mobile platforms for agriculture.
In Sect. 2.3.1, we intend to present the main principles behind classic robotic space-
mapping and self-location algorithms.

Then, the main neuro-controllers implemented in literature for bio-inspired goal-
oriented robotic navigation are reviewed in Sect. 2.3.2. Here, our interest is in look-
ing at the advantages that the inspiration from our nervous system, particularly from
the role of place cells and grid cells in the hippocampus (Sect. 2.1.3), have brought
to real robotic spatial learning.

2.3.1 Robotic navigation and SLAM

Autonomous mobile robotics is strictly linked to the robot’s ability to build maps
of environments they have never explored before and to self-localise in these maps.
This is a problem that is mutually recursive and indeed more complex than it may
seem due to the inter-dependencies between building an accurate map and the proper
localisation of the robot with respect to the same map. This problem is usually re-
ferred to as Simultaneous Localization And Mapping (SLAM) (Chatila and Laumond,
1985; Whyte, 2006; Aulinas et al., 2008). The mobile platform needs to be equipped
with sensors for measuring its relative position with respect to external landmarks
and with respect to the series of its previous positions. Such sensors can be cameras,
proximity, light detection, and ranging (LIDAR) sensors for the estimation of the rel-
ative position of the robot with respect to the environment (in particular to specific
landmarks) and motion sensors for the odometry estimation of the relative position
of the robot with respect to its previous known location. Sensors commonly used for
the odometry evaluation are Inertial Measurement Units (IMU), like accelerometers,
gyroscopes and motor encoders.

The main techniques to simultaneously estimate the map and the robot position
in that map are based on Bayes rule. These strategies are particularly efficient for the
SLAM problem because of their ability to properly model probability distributions,
uncertainty and noise. The main classical algorithms to tackle the SLAM problem
are based on Kalman filters (KF, which are Bayesian filters with an assumption of
normality of the data, which enables to use Gaussian distributions, Davison and
D. W. Murray (2002)), Particle filters (PF, Montemerlo et al. (2002)) and Expectation
Maximization (EM, Burgard et al. (1999)).

In the neurorobotic section of this thesis (Sect. 4.1), we will adopt the Rao-Black-
wellized PF (RBPF) (Grisetti, Stachniss, and Burgard, 2007). This method creates
grid maps thanks to laser range data. The algorithm computes a proposal distribu-
tion for the grid map based on the observation likelihood of recent sensors (in our
case the LIDAR sensor), the odometry sensors and the scan-matching process. In
Fig. 2.10, we show snapshots of the RBPF detecting the robot position with respect
to the map. A different accuracy can be noticed in the case where the robot is fol-
lowing a straight line to accomplish a discrete navigation-step (Fig. 2.10a) and when
it is rotating during its decision-making and inference phase (Fig. 2.10b, Sect. 4.2).

Rao-Blackwellized PF, very accurately compared to similar methods, defines a
few particles (measurement estimations) and saves the computational time of creat-
ing unnecessary new ones. Rao-Blackwellized PF solves a full SLAM problem, that
means that it can compute the joint posterior probability distribution p(x1:t, m|z1:t, u1:t−1)
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(A) Forward motion SLAM (B) Rotation SLAM

FIGURE 2.10: RBPF in action on the Robot Operating System (ROS,
Quigley et al. (2009)), recorded in the ISIR experimental setup. This
screen capture shows how the real-time position of the Turtlebot3
burger robot from Robotis is estimated by the RBPF implementation
on ROS, with the Gmapping package. The small green arrows around
the robot represent the different particles’ estimations of the current
robot position. The green signal over-imposed on the arena’s walls is
the current information received by the LIDAR sensor. The pink area
inside the two light blue lines is the subsequent estimate of the arena’s
borders over the previously memorized map (as a black trace in the
background). A) During robotic forward motion, the algorithm esti-
mates the walls better because they are tracked from the LIDAR from
different map positions, but a poor estimation for the robot’s current
location. B) During the rotation phase instead, the robot position is
better estimated than the contours of the map, which are temporally
perceived as shifted compared to the real ones, due to the angular

velocity of the robot.
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over the whole trajectory x1:t = x1, ..., xt of the robot in the map m (Thrun, Bur-
gard, and Fox, 2006). This posterior estimation is based on the observations from
the current sensors z1:t = z1, ..., zt and the recent odometry measurements u1:t−1 =
u1, ..., ut−1. The RBPF used the factorization p(x1:t, m|z1:t, u1:t−1) = p(m|x1:t, z1:t) ·
p(x1:t|z1:t, u1:t−1) to first estimate the trajectory of the robot p(x1:t|z1:t, u1:t−1) and
then compute the estimate of the map p(m|x1:t, z1:t). The particle filter is used to
estimate p(x1:t|z1:t, u1:t−1); each particle represents the estimation of a possible tra-
jectory x1:t and, for each of them, a map m is estimated. Once new sensory observa-
tions z1:t = z1, ..., zt and u1:t−1 = u1, ..., ut−1 are available, the set of particles and map
couples are updated by using the new information and the weight of the particles:
the so-called importance weighting. The novel proposal of the RBPF consists in tak-
ing advantage of the accuracy of laser range sensors (compared to visual sensors)
to compute a Gaussian approximation of improved proposal for π(x1:t)|z1:t, u1:t−1
compared to the ones usually proposed by other PF-based methods. To sum up,
RBPF proposes a dense grid map approach relying on a landmark-based SLAM.

In the following section, we will review the main computational proposals for
transferring the principles behind self-location, mapping and spatial memory and
learning from the mammals neural system to robotic navigation.

2.3.2 Neuro-inspired models for robotic navigation

We have already seen, in particular in Sect. 2.2.4, that the comprehension and the in-
spiration from neural mechanisms that regulate memory and learning in mammals
can bring new insights to developing efficient strategies for artificial agents or robots
which could be adaptable and time saving.

One of the first examples of parallelisms between rodent neural system for nav-
igation and mobile robots’ control architectures was presented by Touretzky, Wan,
and Redish (1994). They proposed a robotic self-localization system inspired by the
formation of place cells in the hippocampus (Sect. 2.1.3). By integrating the informa-
tion regarding the distance and the egocentric orientation of the robot with respect
to external landmarks with path integration (similarly to the principle with which
the vestibular system helps mammals in the identification of a directional reference
framework (McNaughton, Knierim, and M. A. Wilson, 1995), the proposed com-
putational model can create and localize the system in fuzzy “external" states even
though just partial information is available (either from visible landmarks or from
self-perception sensors). This computational mechanism, together with the defini-
tion of “internal" states, where the robot position is identified compared to familiar
reference points, allows for the allocentric localization of the robot, modeling the con-
tribution of visual stimuli, head orientation and place cells in rodent navigation.

Following these first results, Arleo and Gerstner (2000) brought bio-inspiration
even further, by modelling the interaction between CA3-CA1 hippocampal place
cells for decoding spatial information, and the nucleus accumbens, which drives
locomotion actions (M. A. Brown and Sharp, 1995). They proposed a closed-loop
model that begins with the elaboration of visual inputs, in a model of the superfi-
cial entorhinal cortex, and that integrates the proprioceptive odometry information,
processed in a model of the medial entorhinal cortex, on hippocampal place cells-
like representation. Once a redundant spatial representation has been built online
during exploration, population vector coding is used to extract the robot position
in the following navigation phase. Then, reward based-learning is used to adjust
the connection from the place cells to the action cells in the nucleus accumbens to
generate goal-oriented actions. In this case, the chosen action is also extracted by
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population coding. Finally, by using q-learning (Watkins, 1989) as a RL strategy to
learn the weights between place and action cells, their robot can cope with changes
in the reward location during the experiments.

To solve the problem of SLAM, whose main classical solutions have been briefly
explained in the previous section, M. Milford and G. Wyeth (2010) implemented on
a real robotic platform the biologically inspired solution RatSLAM (M. J. Milford and
G. F. Wyeth, 2008). RatSLAM proposes to self-localize the robot in an extended and
changing environments employing local view cells, pose cells and experience maps. Lo-
cal view cells are an array of rate-coded units which encode the content in the field
of view of the robot; usually one cell represents a unique scene, but cell can be also
simultaneously active and different degree. The local view cells are then connected
to the pose cells modelled by a 3D continuous attractor network (CAN). These net-
works have been previously used to model the mechanism that allow hippocampal
place cells to encode spatial information in rodents (Samsonovich and McNaughton,
1997). Excitatory inputs strongly connect pose cells to the other neighbouring cells
and other group of cells in different layers. These clusters of strongly connected cells
are called experience nodes. In this way, the subsequent alternation among experi-
ence nodes creates an experience map and forms a spatial representation from visual
external landmark, the robot can internally compute its allocentric position with re-
spect to the external map. Moreover, thanks to the path integrator, which works
on odometry, and so on idiothetic spatial representation, place cells can shift their
activity to different experience nodes to stabilize the allothetic representation of the
robot, without directly dealing with the sensors’ uncertainty.

Inspired by the rat model proposed by Dollé et al. (2010) (Sect. 2.1.2), Caluwaerts
et al. (2012) proposed then a bio-inspired algorithm, able to perform self-localization
and navigation based on the alternation between different strategies and had tested
it on a rat-like robot (Meyer et al., 2005). Using a RL framework, the robot can rec-
ognize a familiar context and switch towards the best behavioral strategy between
pure exploration, a taxon and a planning response. These strategies took inspira-
tion from studies on mammals (Trullier et al., 1997) and the meta-controller which
arbitrates between them is inspired by the role of the prefrontal cortex (PFC) in ro-
dents (Miller, J. D. Cohen, et al. (2001), Sect. 2.1.2). Following the model’s extension
they proposed in Caluwaerts et al. (2012), the robot could then switches among an
exploratory, a planning (model-based) and, a taxon (model-free) strategy. In this
work, this model’s extension can detect all the environmental landmarks and au-
tonomously learns the relevant ones, instead that associating its movements’ direc-
tion just to proximal intra-maze landmarks (as in Caluwaerts et al. (2012)). The possi-
bility to switch between many navigation strategies constitutes a simple way to gen-
erate adaptive behaviors, particularly by modulating the exploration/exploitation
trade-off. Learning the association between gating patterns and sub-parts of the
task through a context-switching detector, is either a proposed computational mech-
anism for the role of rodents and primates PFC in context evaluation and retrieval
of past related information, but also a valuable contribution in the search for new
mechanisms to produce adaptive goal-directed navigation in mobile robots.

Given the growing interest in hippocampal cells and their ability to robustly
and flexibly interpret spatial information (Sect.2.1.3), bio-inspired models mimick-
ing their roles have become interesting for roboticists. Jauffret, Cuperlier, and Gaussier
(2015) propose a model of the communication between place cells (PC) and grid cells
(GC), through a compression mechanism, that encodes the visual sensory informa-
tion in the PC, by condensing it in the GC. This compression mechanism, based on
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neural field coding (Wittmann and Schwegler, 1995), results in a satisfying path inte-
gration strategy for their robuLAB 10 robot from Robosoft Inc. They also argue that
this mechanism can computationally explain the connectivity from the cortex to the
entorhinal cortex and play the role of compressing and compensating sensory infor-
mation (Gaussier et al., 2007). As in Arleo and Gerstner (2000), redundancy results
as one of the main features of robust spatial localization, with different levels of GC
which project on fewer emerging PC in the hippocampus, allowing this deep brain
structure to easier detect the transitions in the cortical activity (Gaussier et al., 2002).

The coexistence of multiple instrumental conditioning strategies for goal-directed
behavior and, in particular for navigation (Sect. 2.1.2), is of particular interest also
for adaptive mobile robotics (Caluwaerts et al., 2012). Maffei et al. (2015) presents
a comprehensive framework of alternation among navigation strategies where rel-
evant policies are extracted by memory consultation. This model is based on the
Distributed Adaptive Control (DAC) cognitive architecture which proposed that
goal-directed behavior is produced not just by an unique computation, but by multi-
ple learning, memory and planning systems at the same time (Verschure, Pennartz,
and Pezzulo, 2014)). Particularly interesting in the context of hippocampal replay
(Sect. 2.1.4), they manage to partially model the emergence of reactivations show-
ing that forward-shifted spatial representations happen largely at decision points to
predict the consequences of the next actions.

Another recent work on implementing bio-inspired replay on a real robotic plat-
form has been presented in Whelan, Prescott, and Vasilaki (2020) and Whelan et al.
(2022). They implement a model of a network of CA3 place cells which reproduce
reverse sequences of recent experience. They design a biophysical network model
where controlled replay can be generated thanks to the intrinsic plasticity (Pang and
Fairhall, 2019) of the recent active cells. Fig. 2.11 shows an example of network rates
(on the top) and intrinsic plasticity (on the bottom) where the robot explores the
10x10 states environment for the first time, from the left bottom corner (Fig. 2.11a
and zone 1) to the top centre (Fig. 2.11b and c and final zone 14 in Fig. 2.11a). At the
reward state (Fig. 2.11c and Fig. 2.11a zone 14) the reverse sequence is then triggered
over its recent experience action-steps.

The main brain functions related to the phenomenon of hippocampal replay
seems to be linked to memory and learning (Sect. 2.1.4). Therefore, modeling hip-
pocampal reactivations is important in understanding how the brain stores experi-
ence to model the outcome of sequences of actions or simply off-line updates the
knowledge on the state-action relationship to a reward. This comprehension, as a
consequence, would advance the development of artificial agents and robots which
show spontaneous memory recalling and learning for better tackling tasks for which
they do not have any prior knowledge.

Many bio-inspired models of goal-directed navigation have been tested on real
robotics platforms, and some of them were able to generate phenomena that recall
hippocampal replay (Maffei et al., 2015; Whelan, Prescott, and Vasilaki, 2020). What
is missing in the literature and that constitutes our contribution in the field is indeed
the evaluation of different replay strategies, in the framework of RL, as a mean of en-
hancing adaptive mobile robotics and also better understand the implication of the
different strategies (namely MB and MF) at behavioral level. Our research focuses
will be also in unveiling how the contributions of the tested replay strategies persist
or change when switching from a completely theoretical simulation to a real robotic
one 4.1.
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FIGURE 2.11: Network activity and intrinsic plasticity of the CA3
model running on the robot. A) Starting phase: from area 1 to area 14
(reward). At the beginning just a few areas close to the starting po-
sition are active and have a strong intrinsic plasticity. B) Exploration
phase: the plasticity is more diffused along the past active cells. C)
Reward phase and reverse replay: thanks to the reverse reactivation,
the network activity propagates backward from the reward state (fol-
lowing the arrow) according to intrinsic plasticity. Figure reprinted

from Whelan, Prescott, and Vasilaki (2020).
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Chapter 3

Scientific contributions in
neuroscience

As seen in the previous section, hippocampal reactivations nowadays are very in-
terdisciplinary. Passing from neurophysiological recordings to behavioral studies
and finally to computational models, recent research has drastically improved our
knowledge on this topic (Sect. 2.1.4, Cazé et al. (2018), Foster (2017), Ólafsdóttir,
Bush, and Barry (2018), and Whelan, Vasilaki, and Prescott (2019)). Nevertheless,
we are far from a complete understanding of the generation and implications of
such reactivations.

In Sect. 3.1, we describe newly identified common patterns in rodent free explo-
ration, by modeling under the same constraints three rodent datasets. Our purpose
is to unveil the existence of common free navigation patterns, which can explain ro-
dent behavioral approaches into new scenarios or mazes across different timescales.

Sect. 3.2 will then take a step further, by merging the assessed model of Sect. 3.1
and employing it to model spatial learning tasks. In that case, we investigate, with
our proposed computational model, how simple forms of RL-based reactivations
could give insights on the emergence of divergent trends concerning the need for
off-task (asleep) hippocampal reactivations based on the valence of the stimuli i.e.,
positive or negative.

3.1 A data-driven computational model for free exploration
in rodents

Exploration is an essential component in human and animal life. In nature, animals
continually face new contexts, situations, and environments. In these new condi-
tions, they need to look for resources and food and, simultaneously, avoid dangers
and predators to survive. The interest in understanding exploratory behavior, and
in particular exploratory decision-making, in animals is evident both from a neuro-
scientific and a robotic point of view. Taking inspiration from animal exploration to
recreate a bio-inspired exploration can be useful for mobile robots to generate safer
exploration paths and more robust localization maps.

In this section of our scientific contribution, we are going to investigate and dis-
cuss the following scientific questions:

• Which factors impact rodent decisions the most in the spatial exploration of
new environments?

• Is it possible to model navigation in a novel environment as a value-based
decision-making system inspired by rodent behavior?
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• Is it possible to extend such a model to other rodents, different mazes, and
longer exploratory sessions?

We will examine the above questions starting on observations and analyses we
performed on rodent behavioral data, collected by our collaborators’ research teams,
during their neurophysiological experiments. The new computational model we
propose tries to unveil common decision-making patterns among different rodents.
To do so, we specifically fit the relevant behavioral components to each rodent sub-
ject’s exploratory behavior. We suggest that common behavioral trends emerge if a
consistent modelization of the environment and possible actions as a Markov De-
cision Process (MDP) is performed across different experiments, with different ani-
mals, and with different timescales.

As described in Sect. 2.2.3, the existence of common ’degrees of motion’ in ro-
dents has been studied and remarked on in the last 30 years. From our perspective,
what is missing and can be useful to bridge the current knowledge on the subject
to be easily deployed on reinforcement learning artificial agents or robots, is a com-
mon computational model which can account for MDP’s decision-making, inspired
by rodent free exploration.

In the following sections, the rodent exploration behavioral datasets that inspired
the model’s design and then were used to evaluate its generalization capabilities are
presented (Sect. 3.1.1). Then we are going through the formalization of the compu-
tational model, in the details of its three behavioral components (Sect. 3.1.2). Finally,
the model optimization process performed by evolutionary algorithms is explained
in Sect. 3.1.3, where we also presented our results, and a discussion is proposed in
Sect. 3.1.4.

3.1.1 Behavioral data

The design of this model is evaluated on a great amount of behavioural data that
contribute to its novelty and reliability. The data concern mice and rats and range
from novel exploration in a u-maze to open square maze and, to an original urban
grid maze. The data was made available to us thanks to three important collabora-
tions during this thesis (Sect. 1.3). The following section will explain in detail these
three datasets and our data analysis.

U-maze

The first dataset contains trajectories of eight C57BL6jRj mice exploring for the first
time and continuously for 15 minutes a u-shape maze of 1m x 1m size (Fig. 3.1, Bryz-
galov (2021)). First, the mice position was tracked by an overhead thermal camera
and then the center of mass of the hottest recorded point was registered as the mouse
current position. The data were recorded at 15 Hz and Karim Benchenane and Dmtri
Bryzgalov recorded them.

This first exploratory phase we are analyzing is considered a habituation phase
for the animals to get familiar with the environment before starting the desired ex-
periment. The research question behind these experiments regards studying the dif-
ference between the hippocampal replay activity in case of aversive or rewarding
stimuli (Bryzgalov, 2021). For this question, the u-shape of the maze is key to bet-
ter observe the presence of conditioned behaviours when the stimulus is given just
on one of the two corridors’ ends. In Fig. 3.2, the trajectories of the eight animals,
extracted by Karim Benchenane and Dmtri Bryzgalov are showed.
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FIGURE 3.1: A caption from the recorded videos. From this and other
similar videos, the trajectories of the body center (magenta star) of the
8 mice have been extracted. In green, the borders of the u-maze are

highlighted. Figure reprinted from Bryzgalov (2021).

Mouse 1 Mouse 2 Mouse 3 Mouse 4

Mouse 5 Mouse 6 Mouse 7 Mouse 8

FIGURE 3.2: Trajectories followed by the eight mice during the habit-
uation phase in the u-maze.

Square open maze

The second dataset also concerns mice behavioural data for habituation purposes.
The concerned animals are female C57Bl/6J mice, between 8 and 24 weeks old. In
that case, the trajectories contain the behaviour of these mice exploring for the first
time a square open maze of size 30cm x 30cm, with 30cm high walls (Fig. 3.3). An
overhead infra red camera records the data with a sampling time of 53ms and the
trajectories of the body center of the mice has been extracted by our collaborators,
using a DeepLabCut (Mathis et al., 2018) network, retrained for their experimental
set-up. This data has been recorded and the trajectories extracted with DeepLabCut
by Sebastian Haesler and Eléonore Schiltz.

The interesting aspect of this data is that these habituation phases are longer
then the previous u-maze dataset (Sect. 3.1.1), they are 35 and 33 minutes long, re-
spectively for the no-implanted and the implanted mice.
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(A) No-implanted mouse (B) Implanted mouse

FIGURE 3.3: Captures from the habituation phases of the two mice
exploring the square open-maze.

Even if the ratio between the maze and the animal size is three times smaller
than for the previous maze (Sect. 3.1.1), the animals’ behaviour could still show in-
teresting pattern, in particular thanks to the long duration of the habituation phases.
Fig. 3.4 shows the trajectories for the two mice of this dataset, individually. In par-
ticular, in this case, we have also a different condition between the two mice, since
the second mouse was doing the habituation phase with the recording electrodes
already implanted (Fig. 3.3b), while the first one was not (Fig. 3.3a). This aspect, to-
gether to the fact that our collaborators observed that the first mouse (Fig. 3.3a) was
also more stressed and active than the other, result in a more uniform occupancy of
the maze (Fig. 3.4, Mouse_1).

Mouse 1 Mouse 2

FIGURE 3.4: Trajectories followed by the two mice of the square open
maze experiment.

Our collaborators used this open-maze set-up for investigating novelty versus
familiar neural network encoding of the stimulus during an odor task (Sect. 1.3).
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Grid maze

Finally, the last dataset collects the habituation behavior of 21 male Long-Evans rats
(from Charles River), recorded over 3 years. Given that rats are bigger than mice,
the maze’s size is also bigger, around 2,1 x 2,1 m. The duration of these habituation
sessions varies from 5 to 11 minutes. The data was recorded by Michaël Zugaro,
Raphaël Brito, and Linda Kokou.

Fig. 3.5 shows the morphology of the custom-built maze, constituted by a 4 by 4
corridors grid, inspired by urban architecture. Through the months, some aspects of
the maze have been adapted to the need of the researchers conducting these exper-
iments; you can see it from the different appearance of the captures in Fig. 3.5a and
Fig. 3.5b (Sect. 1.3).

(A) First experiments. (B) More recent experiments.

FIGURE 3.5: Captures from the videos from where the trajectories of
the 21 rats have been computed for the grid maze. The colored dots
indicates how the deep neural network identifies the body landmarks
of the rat over the labelled one (colored crosses) that were assigned for
the training of the network. The color are purple, green, blue, red and
yellow, respectively for nose, left ear, right ear, body center and tail

start.

This unique morphology for the maze has been created to have the possibility
to deliver rewarding food in different crosses, and for temporally penalizing the an-
imals’ choice for passing through certain corridors (with an aversive sound). This
study is also addressed to study the emergence of hippocampal replay in this com-
plex and changing environment.

As you can notice, the color and quality of the videos are quite different from
Fig. 3.5a to Fig. 3.5b. This is because in the first experiments, the central islands of
the maze are opened, exposing the electronics that controls the reward and sound
delivery. In the second version instead, our collaborators built pyramidal covers to
protect the electronics and a sliding door to impede the animal from re-entering the
starting home-nest (in the bottom left corner of the maze).

In Fig. 3.6 the trajectories we have extracted from the videos with DeepLabCut
(Mathis et al., 2018) are shown. After a brief pre-processing on the videos for adjust-
ing their size and orientation, we have extracted the trajectories by using a 50-layers
deep residual network (ResNet) (He et al., 2016; Insafutdinov et al., 2016) imple-
mented on DeepLabCut (Mathis et al., 2018), running on a graphics processing unit
(GPU). This algorithm was able to properly generalize and identify the rats’ nose,
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ears, body center and tail start (Fig. 3.5) for all the 21 available videos, starting from
a sample of around 100 video frames, labelled by hand.

R406 R407 R408 R409 R410 R411 Rat428

Rat429 Rat430 R431 R432 R433 R434 R435

R436 R437 R438 R439 R443 R444 R445

FIGURE 3.6: Trajectories extracted from the videos for all the 21 rats
freely navigating the grid maze.

3.1.2 Free exploration computational model

Our aim in designing our computational model is to understand which factors influ-
ence rodent decision-making while exploring an environment for the first time. We
have seen that this question has also been addressed by studying rodent behavior on
three hours long sessions on a circular open arena by Fonio, Benjamini, and Golani
(2009), and that the identification of exploratory behavioural patterns is possible
(Drai et al., 2001). However, it is unclear if behavioural tendencies could be identi-
fied even when a home-cage is not present in the maze and if these trends could be
consistent for more types of maze and exploratory sessions of different durations.
A very recent study has also observed that mice’s spontaneous spatial exploration
is modulated by dorsolateral striatum (DLS) dopamine fluctuations (Markowitz et
al., 2023). Their result implies that the same neural circuits and reinforce computa-
tional mechanisms at the base of goal-directed behavior could also explain rodent
free exploration.

Compared to the previous literature models, our proposal’s novelty consists of
modelling, in a data-driven approach, the rodent as a decision-making agent, ex-
ploring an environment modeled as a Markov Decision Process (MDP), where each
possible next discrete state has a defined value for the agent. In order to formally de-
scribe the behaviour of the mouse in its environment, we will use an atypical MDP
in which we consider both continuous and discrete states, but only discrete time.
The agent (mouse) has a continuous state CS (Eq. 3.1) and a finite set of continu-
ous actions A (Eq. 3.2): the state is a pair with spatial coordinates and an absolute
rotation, while the actions are a set of relative displacements.

CS = R2
+ × [0, 2π] (3.1)

A = {(∆x1, ∆y1), . . . , (∆xNA , ∆yNA)} (3.2)
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At each iteration step t the mouse has thus a continuous state cst ∈ CS and
chooses to perform a certain action at ∈ A among the possible NA actions. Moreover,
the fact that the actions are relative implies that the agent, from the same starting
positions and choosing the same action, can arrive in two different ending positions,
depending on its orientation, as described by the deterministic transition function T:

T : CS × A → CS
(x, y, θ) × (∆x, ∆y) 7→

(
x′, y′, arctan

(
∆y
∆x

)) (3.3)

where
[

x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[

∆x
∆y

]
+

[
x
y

]
The movement of the agent is actually constrained by the environment (maze) in

which it acts. The maze has a discrete description: we divide the space in squared
tiles of fixed size ts and consider all continuous positions in the same tile as the same
discrete space using the relationship st = discrete(cst) as described below.

S = {1, . . . , M}2 (3.4)
discrete : CS → S

(x, y, θ) 7→
(⌊ x

ts

⌋
,
⌊ y

ts

⌋) (3.5)

In the description of S, for the sake of simplifying the notation, we consider only
the case of squared mazes of size M (that is the case for all the datsets we are going to
analyze in this thesis) and that the continuous position only lies within the extent of
the environment. As the maze can contain tiles which the mouse cannot visit due to
walls or holes, we also need to define a function that tells us which tiles are visitable,
which depends on a set of visitable states V that is different for each environment:

V ⊆ S (3.6)
visitable : S → {0, 1}

s 7→
{

1 if s ∈ V
0 otherwise

(3.7)

By using the discretization and the visitable function we can restrict the possible
actions for each state to the subset of actions A(cs) that have a visitable endpoint
inside the maze:

A(cs) =
{

a ∈ A | s′ = discrete(T(cs, a)) ∈ S ∧ visitable(s′) = 1
}

(3.8)

The subset A(cs) is the set of actions that we will consider during the MDP simula-
tion.

In real experiments, the conditioning signal is given when the mouse is in a cer-
tain position, but only at specific points in time. This can be formalized by defining a
set of reward values RS that depends on these variables (discrete position s = (x, y)
and discrete time t) and the corresponding reward function R:



52 Chapter 3. Scientific contributions in neuroscience

RS ⊂ S×N× {−1, 1} (3.9)
RS = {(x0, y0, t0, r0), . . . , (xNR , yNR , tNR , rNR)}

R : S×N → {−1, 0, 1}

(x, y)t 7→
{

r if (x, y, t, r) ∈ RS
0 otherwise

(3.10)

where NR is the number of rewards for a specific session. As for the set of possible
actions A(cs) (Eq. 3.8), the set of rewards RS depends on the particular experiment.
In the rest of the manuscript we will use either R or P interchangeably when refer-
ring to reward or punishment signals

To summarize: at each discrete time t, the agent has both a continuous state cst
and a discrete one st = discrete(cst); it will then transition to a new continuous
state cst+1 using an action a ∈ A(cst); to choose such an action, the decision making
process will be based on the value assigned to the possible next discrete states s′t ∈
{s ∈ S|∃a ∈ A(cst).s = discrete(T(cst, a))}.

All of our available datasets are organised as x and y coordinates (in m) of the
Center of Mass (CoM) of the animal recorded for each time sample (in ms). To define
states and actions for the definition of the MDPs, we looked directly at the behaviour
of the rodents.

On the first hand, the discretization of the position in states was done based on
the ratio between the animal size and the maze size, but also targeting a clear defi-
nition of areas of particular interest in the maze. In particular, the corners and areas
next to the walls are of particular interest for rodents during early exploratory phases
(Drai et al., 2001; Fonio, Benjamini, and Golani, 2009), and our aim was that the oc-
cupancy of these areas could be clearly identified. In fact, the occupation of these
areas is associated to thigmotaxis that has been identified as a proxy for anxiolytic
behavior (Treit and Fundytus, 1988). In Fig. 3.7-3.8, we can see that, for all the three
datasets, most of the rodents show a particular preference for staying in corners and
close to walls in terms of occupation compared to the case of an exploration per-
formed by a random decision-making simulated agent in the same MDP (random-dm in
Fig. 3.7-3.8).

From this point of the thesis, when we refer to a random decision-making agent
or to a random exploration, we mean the simulated agent or the behavior which is
generated by navigating the MDP describing one of the three mazes (u-maze, open
square maze, and grid-maze) by having an uniform probability to choose one of the
next possible actions A(cst) (no behavioral value is assigned to the possible next
states). The random decision-maker starts its exploration with the same initial posi-
tion and orientation of the corresponding rodent and navigates for the same dura-
tion (number of discrete steps).

This first data analysis already reflects a behavioural pattern where rodents con-
sider places closer to walls safer when exploring new environments (Tchernichovski,
Benjamini, and Golani, 1996; Fonio, Benjamini, and Golani, 2009). Indirectly, this is
also a measurement of the animal’s anxiety level, which prefers the perceived safer
corners of a maze to more open areas. At the beginning of an exploratory session,
these areas are considered safer because they can provide more tactile information
to the animal and help it to better localize itself in the new environment (Touretzky
and Redish, 1996).

On the second hand, a discretization in 600 ms time-steps was applied to all of
the data, since the actions that the animals usually did in that time-step were from 0
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FIGURE 3.7: Occupation maps once the data have been discretized in
time and space. The colorbars represent the number of visits of each
discretized state, and are different for each maze, given the different
time-scales of the experiments. U-maze and grid-maze (Fig. 3.8) ex-
periments have similar durations, while the experiments performed

in the square open-maze are longer (as described in Sect. 3.1.1).
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FIGURE 3.8: Occupation maps for the grid-maze dataset once the data
have been discretized in time and space.
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to 2 tiles away. This means that the 600 ms time interval was approximately correct
to describe a decision-making process leading to a maximum of a two tiles away
movement. A very similar timescale was also recently identified by Markowitz et al.
(2023) as a median duration for the main behavioral sequences of mice spontaneous
free exploration.

The identification of the possible next actions is computed for all the datasets by
applying the k-means clustering algorithm (Lloyd, 1982) with the k-means++ seed-
ing algorithm technique (Bachem et al., 2016) by considering the relative occupation
of the animals in the next time-step. More in detail, the aim is to maximize the dis-
tance between a cluster of the most visited tiles and one of the least visited ones,
among the tiles chosen for the next step. Since the current tile (the one where the
rodent triangle is placed in Fig. 3.9) and the ones immediately in front of that one
were occupied in a larger scale compared to the rest of the surrounding tiles, they are
a priori considered as belonging to the group of the most occupied nest-steps next
tiles. They are not used in the clustering process. Interestingly, for all the datasets, k-
means identifies the next possible tiles (gray crosses in Fig. 3.9) symmetrically with
respect to the current position and, as expected, showing a strong preference for
keeping the current orientation in the mazes where corridors are present (Fig. 3.9 u-
maze and Fig. 3.9 grid-maze). Thus, the directional preference gradually decreases
from the grid maze (Fig. 3.9 grid-maze) to the squares open-maze (Fig. 3.9 square
open maze), passing by the u-maze (Fig. 3.9 u-maze).

u-maze square open-maze grid-maze

corners walls central areas decision points

FIGURE 3.9: Mazes’ discretization and conversion into Markov De-
cision Processes. The tiles’ color indicates the topological type of tile
as described in the legend. Gray triangles represent an example for a
rodent’s position inside the maze and the gray crosses together with
the gray triangle identify the possible next states from the current po-

sition.

After identifying the states and actions of the MDPs we will use for our model,
we describe its relevant components which give values to the different parts (states)
of the maze.

In our proposed model, each one of the possible next states s′ (in gray in Fig. 3.9)
at time t would have the following value Vf ree_exploration(s′t) for free exploration:
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Vf ree_exploration(s′t) = Vsa f ety(s′t) + Vbiomechanical_cost(s′t)+

+Vbiomechanical_persistence(s′t) (3.11)

and this value is assigned to all the available next states which coincide with a feasi-
ble area inside the maze.

The model is intended to generally describe rodent free exploration in novel en-
vironments. It contains 9 or 10 parameters (10 in the case of the grid-maze, be-
cause it also has decision-points tiles) which are supposed to be optimized to cap-
ture the individual behavioural nuances of each animal. In the following description
of the model, some parameters will be written in red to highlight the variables that
will be optimized for each rodent as explained by using an evolutionary algorithm
(Sect. 3.1.3).

The free exploration value Vf ree_exploration(s′t) in Eq. 3.11 is composed of three
main components:

• the Safety component

• the Biomechanical cost component

• the Biomechanical persistence component

Safety component

The safety component derives from what has been already observed in the litera-
ture: the fact that, when they first explore an environment, rodents tend to spend
more time in very familiar and confined areas, such as the home-cage, the corners
of a maze, or in areas which are closer to the walls (Tchernichovski, Benjamini, and
Golani, 1996; Fonio, Benjamini, and Golani, 2009). Most importantly, our data con-
firms this preference (Fig. 3.10). In this figure, we represent the occupation of the
different tile-types (corners, walls, centres ,and decision-points in the grid-maze,
(Fig. 3.10c), over the number of that particular tile-type in a maze (Fig. 3.9).

Just for this safety component, we have two different definitions for the type of
maze because the grid-maze, due to its morphology, presents an unique tile-type
compared to the others: decision-points (Fig. 3.9).

Concerning the first two types of maze, u-maze and square open-maze, the defi-
nition of the safety component in our model is based on the constraint of a hierarchi-
cal relationship between three classes of tiles which show decreasing level of occu-
pational priority for rodent novel exploration, as shown in Fig. 3.10a and Fig. 3.10b.
Corners would hold the maximal priority p1 as the the safest spots in the maze, fol-
lowed by walls which would have a priority that is a p2 ratio of the one from corners.
Finally, the central areas would have a p3 ratio of the walls value. Thus, for modeling
this hierarchical relationship observed in the data, we have:

Vsa f ety(s′t) =


p1 if s′t is an external corner
p2 p1 if s′t s next to an external wall
p3 p2 p1 if s′t is in a central area of the maze

with p1 ∈ (0, 10], p2 ∈ [0, 1], p3 ∈ [0, 1] (3.12)
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FIGURE 3.10: Histogram distributions of the tiles occupation for the
data and a simulated random-decision making agent (10 repetitions
with data coherent starting points, starting orientations and dura-

tion).
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As we can see from the Fig. 3.10a and Fig. 3.10b, this hierarchy is not present in the
case of random exploration, instead the trend is opposite, suggesting that this occu-
pation bias could be crucial in describing rodent free exploration. The parameters
ranges in Eq. 3.12 show the boundary values for the optimization of the parame-
ter of this component. p1 presents a larger range, from 0 to 10 because its role is
also to weigh the importance of the safety component with respect to the other two.
Also the biomechanical cost (Sect. 3.1.2) and biomechanical persistence components
(Sect. 3.1.2) have a parameter, ranging from 0 to 10, to measure their importance in
the resulting behaviour of a particular rodent. p2 and p3 vary from 0 to 1 since they
represent relative amounts of p1 and of p1p2 respectively.

Concerning the grid-maze, we also considered the decision points as relevant
tile-type. In this case, we consider the relevance of the decision points to be inde-
pendent from the other types of tiles. This because, even though looking at the data
in Fig. 3.10c, it seems that the common trend for the decision points is to have a like-
lihood to be chosen between the wall areas and the corners, this is not always the
case for all the rats (if we look at the points for each rat). For this reason, the extra
model parameter p4 also ranges from 0 to 10 as p1 (Eq. 3.13).

Vsa f ety_grid_maze(s′t) =


p1 if s′t is an external corner
p2 p1 if s′t is next to an external wall
p3 p2 p1 if s′t is in a central area of the maze
p4 if s′t is in a decision-point of the maze

with p1 ∈ (0, 10], p2 ∈ [0, 1], p3 ∈ [0, 1], p4 ∈ (0, 10] (3.13)

This maze morphology is particularly challenging for our model because the cor-
ridors are narrow compared to the animals’ size (the corridors are one tile large)
and present junction points. Thus, we have re-adapted our safety component for
this particular case. Interestingly, the hierarchy between external corners, walls and
open areas also holds in this dataset; corner areas and external walls seem to be
prioritized anyway compared to the maze’s internal corridors. The safety compo-
nent for the grid-maze Vsa f ety_grid(s′t) is then defined as in Eq. 3.13. Strikingly, for
the grid-maze, the same trend in the data also seems to be present in random explo-
ration, implying that this occupation distribution could be derived from the maze
morphology and not underlying any particular behavioural pattern.

Biomechanical cost component

Instead, the biomechanical cost component describes rodents’ directional persis-
tence in dynamic navigation. With the term dynamic navigation we will refer to the
case where the rodents were moving in the previous considered time sample. This
behavioral tendency results from our time discretization of 600 ms. At this time
scale, a biomechanical cost of performing high rotations exists for our datasets as
showed in Fig. 3.11.

Here, the occurency of a dynamic relative rotations are represented. Bins 1 to 8
correspond to {[-2.75; -1.96], [-1.96; -1.18], [-1.18; 0.39], [-0.39; 0.39], [0.39; 1.18], [1.18;
1.96], [1.96; 2.75], [2.75; 3.53]} radians in relative rotations, so the red distribution
correspond to the decision of keeping the same direction of movement and the gray
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(C) Grid maze

FIGURE 3.11: Histogram distributions of the dynamic relative orien-
tations for the data and a simulated random-decision making agent
(10 repetitions with data coherent starting points, starting orienta-
tions and duration). The x axis represents rotation intervals in ra-

dians.
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one to go for the opposite direction. Each relative rotation bin is around 45 degrees
large.

The global shape of the bin distribution is similar for all the mazes, but partic-
ularly relevant for the u-maze (Fig. 3.11a). Compared to random exploration, the
dataset strongly prefers to keep the same direction of motion or narrowly deviate
from it. The more the rotation angle, the less the preference for it. Interestingly,
we can notice a strong difference also for the choice of going in the opposite direc-
tion of motion. In the maze, where the MDP allows for this choice (Fig. 3.11a and
Fig. 3.11b), the opposite direction is chosen more frequently than the current one; sit-
uation that never happens in the data. Even when the maze is an open environment
(Fig. 3.11b), the rodents prefer to go straight. While the MDP for the square open
maze constrains the next actions to be one tile front, one back and, one tile π/2 left
and right (Fig. 3.9), we decided to use the same number of bins and bin directions to
have results comparable to the data and the other mazes. This implies that there are
empty bins corresponding to directions that the MDP agent cannot take. Nonethe-
less, if we were to reduce the number of bins for the data of the square open maze,
the histograms would still be very different: the distribution for a hypothetical big-
ger bin [1.96; 3.53] would still be significantly lower than the one for [-0.39; 0.39],
thus it would still show a preference for going forward. On the contrary, in the case
of the random decision maker, going forward is actually the least preferred option.
This is because the next possible actions for the grid-maze instead (Fig. 3.11c) are
not admitting to take the opposite direction of motion (Fig. 3.9 grid-maze) and for
this reason we cannot see the same situation here. Moreover, in this case, just 4 ac-
tions are available compared to the 8 possible actions of the u-maze MDP. The maze
morphology is more constraining for the animal’s decision-making process. This, to-
gether with the fact that most of the states of the grid-maze force the rat to keep the
same direction of motion, makes the simulated agent also show a very strong bias
for moving forward (the red bin in Fig. 3.11c). This bias is stronger in random explo-
ration because, in this case, the simulated agents are more active than the real rats
and have just three possible relative directions to account for the agent’s rotations.

In this case, we adopt the VonMises function f (θ|µ, κ) = ψ eκ cos (θ−µ)

2π I0(κ)
to model the

distribution of the relative angular rotations when the animals are moving.

Vbiomechanical_cost(s′t) =

{
0 if s′t = st

ψ f (θ|µ, κ) = ψ eκ cos (θ−µ)

2π I0(κ)
if s′t ̸= st

with ψ = 1, if ||s′t − st||∞ <= 1, and ψ ∈ (0, 1] otherwise; κ ∈ (0, 10]
(3.14)

Only the relative rotation, when the rodents are moving, is considered here. We
assume that the inertia due to a greater relative rotation is consistently larger when
the animals run from one point of the maze to another and not when they just rotate
on the same position.

Further, looking at our data dynamics in Fig. A.3, Fig. A.4, Fig. A.5, in particular
at the histograms about the tile-distance covered by the animals of the datasets for
their next actions, we can derive that the usual number of tiles that the animals cover
during a 600 ms time step, is a 1, and sometimes 2 tiles-distance. The tiles which are
more than 1 step away from the current one are significantly less occupied in most
cases. To capture this behavioural feature in the model, a ψ factor is added to this
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component, to scale the preference for taking 2 or more tiles away actions compared
to 1 tile away ones and of that its optimization range is from o to 1 (Eq. 3.14.) Thus,
the biomechanical cost component for the next possible state s′ at t is in Eq. 3.14.
κ, which is a measure of the concentration, also represents this component’s impor-
tance. For this reason, its evolution range is from 0 to 10. If κ is zero, the distribution
is uniform, otherwise if κ is large, the distribution is very concentrated around its
centre µ that is 0 radians with respect to the previous orientation of motion.

Biomechanical persistence component

The biomechanical persistence component models the exploration motion dynamics
of rodents. The design of this component comes from the periodic nature of dynamic
and static exploratory bouts in rodent navigation (Tchernichovski and Golani, 1995).
This component is important to have a behavioural model that can also capture the
exploration’s dynamics and does not depend on the specific rodent’s position in the
current maze, to not over-fit the behavioural characteristics of an individual rodent
on the specific maze morphology.

Observing our data, we saw that the series of dynamic and static bouts show
significantly longer static bouts in the data than in what we observed if simulate
random decision-maker rodents in the same framework (Fig. A.6, Fig. A.7, Fig. A.8).
Representing differently this analysis, by computing how long the animals moved
or did not move longer than the medians of both the dynamic ans static bouts (black
lines in Fig. A.6, Fig. A.7 and, Fig. A.8), we can see a common result in all the three
datasets and what it is impressive is that these results correspond to the opposite
trend resulting when a random decision-maker is exploring in the same framework
(Fig. A.6, Fig. A.7 and, Fig. A.8, random-dm). In fact, for all three datasets, we
can see that the static bouts (red) are higher than the moving ones (green) for all
the animals, but not for the random decision-makers. The red predominance of
these figures suggests that, in the rodent behavior we analyzed, static intervals were
usually longer than dynamics ones. An other interesting observation comes from
the median length of the bouts for the random decision-maker: it is comparable to
the one from the mice, in the u-maze case (black line in Fig. A.6), but lower than the
one from most of the animals, for the square open maze and grid-maze (black line
in Fig. A.7 and, Fig. A.8). This last consideration implies that, without any modeling
constraint, an agent randomly exploring the proposed square open maze and grid-
maze MDPs, would more frequently change from static to dynamic bouts and vice
versa than the rodents. That’s why we decided to describe the exploratory dynamic
with this component. The idea behind this component is also to describe rodent
internal state in novel exploration. As observed by Tchernichovski and Golani (1995)
and Fonio, Benjamini, and Golani (2009), rodents tend to gradually explore new
environments by alternating exploratory runs to static periods (in the case of Fonio,
Benjamini, and Golani (2009), in form of comebacks to the home cage).

Fig. 3.12 suggests that rodents are usually less active compared to a random ex-
ploration in our proposed framework and that becomes more relevant when the
exploratory phases are longer, like in the case of the square open maze (Fig. 3.12b).

The biomechanical persistence value for one of the next state s′ at time t is defined
as follows:
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FIGURE 3.12: Histogram distributions of the time spent moving or
not moving more than the median duration of the dynamic and static
bouts (black line in Fig. A.6, Fig. A.7, Fig. A.8), for the data and a
simulated random-decision making agent (10 repetitions with data

coherent starting point, starting orientation and duration).
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Vbiomechanical_persistence(s′t) =



{
bp if s′t ̸= st

Wnmbp if s′t = st
if st ̸= st−1

{
bp if s′t = st

Wmbp if s′t ̸= st
if st = st−1

with bp ∈ (0, 10], Wnm ∈ (0, 10], Wm ∈ (0, 10] (3.15)

where the first case represents the persistence of remaining in motion while already
moving bp and the urgency to stop while moving Wnmbp, while the second case
represents the persistence of remaining static, always bp, and the urgency to start
moving from a static condition Wmbp. The bp value is always the same in the two
cases since it represents the relevance of this biomechanical persistence component
compared to the other two (safety and biomechanical cost), thus its evolution range
is from 0 to 10. Then, it possesses other two parameters: the non-moving weight
Wnm and the moving weight Wm which represent the importance of changing the
animal’s motion state, respectively from dynamic toward static and vice versa, to
static towards dynamic. In practice, this component models the persistence of a
particular motion state of the animal, i.e., dynamic or static, to persist. Wnm and
Wm are also being optimized between 0 and 10 because they are not a proportion of
other values, but an absolute value that denote an urgency of stopping while moving
or, of starting moving while being still.

Decision-making

Finally, in our framework, the simulated agent decides on which, among the avail-
able next states, to occupy based on the soft-max distribution of the free exploration
values Vf ree_exploration(s′t) of these possible next states (Eq. 3.16, Sect. 2.2.1, Daw et al.
(2006) and Khamassi et al. (2011)).

P(s′t) =
eβVf ree_exploration(s′t)

∑s∈N(st) eβVf ree_exploration(s)
with β ∈ (0, 10] (3.16)

Thus, the probability of occupying the state s′ at time t + 1 is P(s′t), where β is the
inverse temperature modulating the exploration/exploitation ratio in the behaviour.
If β is low, the agent’s decision will scarcely depend on the free exploration model,
while if β is large, they will unquestionably rely upon Vf ree_exploration. As for other
parameters, β would be optimized between 0 and 10.

3.1.3 Model optimization and results

All the model parameters β, p1, p2, p3, (p4 in the grid-maze case), k, ψ, bp, Wm,
Wnm, written in red in the previous section, are optimised for each rodent by us-
ing the multi-objectives evolutionary strategy Non-dominated Sorting in Genetic
Algorithms-III (NSGA-III, Deb and H. Jain (2013), Sect. 2.2.5). The evolutionary
ranges for these parameters have been explained in the previous section and the
larger range is always between 0 and 10. This constraint has been imposed to the
optimization process, because the values of the parameters in this range can already
generate very diverse behaviours. If we assume a larger range, this diversity is lost
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and, for values larger than 10, the parameters saturate and reproduce non distin-
guishable behaviours.

Fig. 3.13 shows the main dynamics of the NSGA-III parameters optimization pro-
cess, for the example of Mouse 8 in the u-maze.

The parameter optimization minimizes three objective functions which are re-
lated to the three behavioral components of the model i.e., safety, biomechanical cost
and biomechanical persistence (Sec. 3.1.2). Each objective represents an error mea-
surement between a behavior characteristic of the data and the same characteristic
measured in ten simulations of the model, with the same parameters’ configuration.
To simulate the behaviour of a particular rodent, with a particular set of parame-
ters, the computation is set so that the simulation of the artificial individual starts
from the same position and orientation as the real rodent and explores for the same
amount of time. Just in the case of the grid-maze, the starting orientation will always
be pi/2 radians (like the orientation of the gray triangle in Fig. 3.9, grid-maze). This
is because of our modeling constraints. Given the one-tile-large-corridors and the
possible next actions identified from the data (Fig. 3.9, grid-maze), an initial orien-
tation, which is not parallel to the corridors directions, would result in a completely
static exploration. This static exploration is caused by the fact that the next possible
actions would always drive the agent into walls (not available areas), so they would
not be chosen and the agent would spend the whole experiment in the same starting
position.

The three objectives functions to be minimized are described below.
The safety fitness Fsa f ety evaluates the occupancy on the different types of tile (i.e.,

corners, walls, central areas, and decision points) to make sure that the relevance of
safety spots for a particular rodent is respected in its model’s set of parameters. We
define this metric as the Manhattan distance of the corner and wall occupation in the
simulated model and in the data of that particular rodent (Eq. 3.17). The central area
occupation is not to be considered since it is already completely defined by the other
occupations because the simulated rodent would be exploring for the same time as
the real one.

Fsa f ety =| scornerdata − scornermodel | + | swalldata − swallmodel | (3.17)

with scorner being the number of iterations where the agent was in the corner areas
and swall the number of iterations where the agent was next to walls (Fig. 3.9). Since,
in the case of the grid maze, we also have the decision points (Fig. 3.9, grid-maze)
the definition of the safety objective will include also the decision points tiles, so that
the following equation completely determines the central areas occupation:

Fsa f ety_grid_maze =| scornerdata − scornermodel | + | swalldata − swallmodel | +
+ | sdecision_pointdata − sdecision_pointmodel | (3.18)

with scorner being the number of iterations where the agent was in the corner areas,
swall the number of iterations where the agent was next to walls, and sdecision_point the
number of iterations where the agent was in the decision-points (Fig. 3.9, grid-maze).

The second objective evaluates the directional persistence of the rodent. In this
case, the normalized distance between the histograms describing the relative ori-
entation distributions for the simulated free exploration model and the animal is
computed. By computing the normalized distance the evaluation of this distance is
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FIGURE 3.13: Evolution dynamics for Mouse 8 in the u-maze.
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performed more on the shape of the histograms than on the individual height of the
bins, that is what we are the most interested in optimizing.

Fbiomechanical_cost =

∣∣∣∣∣∣∣∣ Bdata
| Bdata | −

Bmodel
| Bmodel |

∣∣∣∣∣∣∣∣
with Fbiomechanical_cost = 0, if | Bdata |= 0 ∧ | Bmodel |= 0, ∧

Fbiomechanical_cost = 1, if Fbiomechanical_cost > 1 (3.19)

where B is a function that counts the number of observations that fall into each of
the disjoint categories (known as bins) and create the histogram, respectively for the
data Bdata and for the model Bmodel. So, if k is the total number of bins, in our case 8
(Sect. 3.1.2), and n is the total amount of observations, we will have that n = ∑k

i=1 Bi
and |B| represents the cardinality of the histogram B.

Finally, the biomechanical persistence objective evaluates the exploratory dy-
namic of the simulated set of parameters for the model. In this case, the distance
between the data’s behavior and the one from the model is computed as in the
biomechanical cost case (Eq. 3.19). Thus, Fbiomechanical_persistence is the difference be-
tween vectors containing the times the simulated model and the data are moving or
are static more than the median length of all the bouts.

Fbiomechanical_persistence =

∣∣∣∣∣∣∣∣ l_bdata

| l_bdata |
− l_bmodel

| l_bmodel |

∣∣∣∣∣∣∣∣ (3.20)

with l_b = (l_mov_b, l_not_mov_b) and l_mov_b being the sum of the lengths of all
the moving bouts which are longer than the median bouts length and l_not_mov_b
being the sum of the lengths of all the not moving bouts which are longer than the
median bouts length.

After a literature and empirical search, we select and apply the same genetic
algorithm hyper-parameters for all the optimizations (Tab. 3.1).

max # gen # ind CXPB MUTPB RPs
500 50 0.8 0.01 12

TABLE 3.1: Hyper-parameters for NSGA-III. Here we present the
maximum number of generations, max # gen, the population size,
# ind, the cross-over probability, CXPB, the mutation probability,
MUTPB, and the number of reference points, RPs for the pareto-front

(Sect. 2.2.5).

Once the evolution process reaches its last 500th generation, a set of sub-optimal,
equally dominant pareto-individuals is found. At this point, to identify the best set
of parameters among the last pareto-individuals, the Chebyschev distance (Eq. 3.21,
Cantrell (2000)) between the optimal point and all the normalized solutions in the
pareto-front is computed.

Chebyschev distance (ind) = max
obj
| OptimalSolutionobj − indobj | (3.21)
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In Fig. 3.13a two examples of paretofront for the individual Mouse 8 in the u-maze
are shown. The red star indicates the OptimalSolution where all the objectives are
minimimzed to zeros. In this point, all the three objectives for evaluating the three
behavioural components are equal to the their value for the data of that particu-
lar rodent. The other dots in the figures shows how the paretofront evolves from
generation 250 to generation 500; the largest dots indicate the best solutions for the
two represented epochs, identified with the Chebyschev distance equation (Eq. 3.21).
Fig. 3.13b shows instead a separate, but a more complete view of the three objectives
being minimized over the evolutionary process, always for Mouse 8 in the u-maze.
The three objectives are plotted in their corresponding value ranges. They converge
to a minimized value, close to 0. In particular, the case biomechanical persistence
objective consistently decreases and stabilizes its variance in the last epochs. Then,
Fig. 3.13c shows, always for the same rodent, the number of pareto sup-optimal
individuals identified at each epochs. Even if the size of the paretofront or the di-
versity of its individuals is not a stopping criterion in our implementation of NSGA-
III, monitoring if the number of pareto-individuals stabilizes for several generations
could indicate that the current set of pareto-individuals has converged to an optimal
set of solutions.

After selecting the estimated best individuals at generation 500 (the large blue
dot in Fig. 3.13a), we validate the behavior of this optimal model against random
exploration and the data. Fig. 3.14 shows the behavioural comparison among the
data, 10 repetitions of random exploration (rdm), and 10 repetitions of the opti-
mized model (om), in terms of tiles occupation (A), directional preferences (B) and
exploratory dynamics (C).

Regarding our behavioural measurements, the optimized model remarkably grabs
the behavioral traits of the particular individual. The biomechanical cost metric has
been the most difficult to be fitted by the optimization. However, the shape of the
relative orientation distributions is robustly closer to the data compared to the dis-
tribution obtained by the random decision-maker. Looking at the overall maze oc-
cupation in this comparison (Fig. 3.14d), it is noticeable that the optimized model’s
occupations show a strong preference for corners and walls closer to the ones ob-
served in the data. In the design of the proposed model there is no interest in trying
to reproduce particular asymmetries that the data could show in the occupation of
the two corridors or the exact same trajectories that the rodents followed. That is
why the optimized model does not prefer to occupy the exact same corner as the
one preferred by the mouse.

By performing a more global analysis of our results, the winning models for all
the rodents are analyzed. Fig. 3.15, Fig. 3.16 and Fig. 3.17 show a statistical analysis
to evaluate how better the optimized model can capture the behavioural compo-
nents of the data compared to random exploration. In all the three figures, the distri-
butions represent the computation of the three objectives (i.e., safety, biomechanical
cost and biomechanical persistence) for ten repetitions of the optimized model (blue)
and of the random exploration (orange). Looking at the three objectives for each an-
imal, we can see the behavioral difference between the data and the optimized free
exploration model (blue distributions) or random exploration (orange distributions).

The results in Fig. 3.15 encouragingly show that the optimized version of the free
exploration model can represent the three behavioural components significantly bet-
ter than random exploration (just one exception for the safety objective of Mouse_1
that shows an unusually homogeneous exploratory behavior compared to the rest
of the animals of this dataset, Fig. 3.7a, Mouse_1). We can say that the three objec-
tives are significantly minimized compared to the behavior generated by the random
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FIGURE 3.14: Optimizated model (om) behavior in comparison to
the data and random exploration (rdm); example for Mouse 8 in the
u-maze. A) Safety metric (occupancy for corners (co), walls (w) and
central areas (ce)). B) Biomechanical cost metric (bins 1 to 8 corre-
spond to {[-2.75; -1.96], [-1.96; -1.18], [-1.18; -0.39], [-0.39; 0.39], [0.39;
1.18], [1.18; 1.96], [1.96; 2.75], [2.75; 3.53]} radians in relative rotations).
C) Biomechanical persistence metric (moving (bm) and static bouts

(bs) over the median bouts length).
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FIGURE 3.15: U-maze comparative statistical analysis on the safety,
biomechanical cost, and biomechanical persistence objectives for the
selected optimized models and the corresponding random explo-
ration. Each sub-figure represents the results for each mouse agent
in terms of behavioral difference with the data. ** indicates that the
p-value resulting from the Wilcoxon-Mann-Whitney comparison test
is lower than 0.001, * that it is lower than 0.05 and non-significant

(n.s.) otherwise.

decision-making agent for 23/24 total objectives. Even though, the general trend to
have a hierarchy among occupation of corners, walls and central areas holds for
this u-maze dataset, Mouse_1 shows this same hierarchy, but weaker than the other
mice in the dataset. Also, the safety objective is the the only objective for which the
difference with random exploration is sometimes not strongly significant (Mouse_2,
Mouse_4, and Mouse_7, which have just one *). Looking at these results, a possible
improvement for the model could be to optimized the preference for each type of
tiles (corners, walls, and central areas), without imposing the hierarchy. This would
make all the rodents’ exploration models optimize their tiles’ preferences, even if
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FIGURE 3.16: Square open-maze comparative statistical analysis on
the safety, biomechanical cost, and biomechanical persistence objec-
tives for the selected optimized models and the corresponding ran-
dom exploration. Each sub-figure represents the results for each
mouse agent in terms of behavioral difference with the data. ** in-
dicates that the p-value resulting from the Wilcoxon-Mann-Whitney
comparison test is lower than 0.001, * that it is lower than 0.05 and

non-significant (n.s.) otherwise.

they are different from the general trend of the dataset.
Concerning the optimization results in the square open-maze (Fig. 3.16) the opti-

mal model is also able to strongly significantly better represent the behavioral trends
of the data, in general (in 5/6 objectives). In this case, the biomechanical cost objec-
tive has not properly been optimized for Mouse_1, probably due to the more uni-
form nature of its exploration (Fig. 3.4, Mouse_1), to the limited actions range de-
rived from the identification of the most suitable next actions for this dataset, and to
the open structure of the maze (Fig. 3.9, square open maze). These factors make this
component less predominant when these rodents’ behavior is simulated; thus, it is
more difficult for the evolutionary algorithm to optimize it. These results imply that
the contribution of the biomechanical cost component in the free exploration model
should be reconsidered. It should be adapted to the definition of the possible next
states of the MDP of a particular maze. In this case an adaptation of the number
of bins to describe the relative rotations of the animal should be constrained to be
equal or smaller to the number of the possible next states, as for the u-maze case,
and targeting the same orientations that the model allows for exploration.

Finally, Fig. 3.17 demonstrates that the only behavioural component which is
strongly significantly present in this large rat dataset is the biomechanical persis-
tence one. As we will discuss in Sect. 3.1.4, in the context of our proposed MDP’s
definition, random decision-making can surprisingly generate a tile occupation that
is statistically close to the one we have from the data. For this reason, it is foresee-
able that the optimized exploration model’s difference with the data in the safety
objective is sometimes non-significant different from the random exploration one
(this happens in 6/21 cases). In two cases, the random exploration’s safety objective
is also significantly closer to the data than the optimized model (for rat Rat430 and
R432).

Concerning the biomechanical cost objective, the situation is similar but, this
time, there are 14/21 cases where the distance with the data of this objective for the
optimized model is non-significantly different from the one obtained with random
exploration. Also here, there are two cases, for rats Rat428 and R439, where random
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exploration is capturing significantly better the biomechanical cost distribution of
the data than the optimized free exploration model. As for the square open maze,
here the range of motion is more constrained than the case of the u-maze (Fig. 3.9,
grid-maze) thus, these results suggest that also for this dataset, it would be inter-
esting to analyze the data and adapt the number of bins in the relative rotations
histograms to the same rotations allowed in the conversion of this maze and dataset
to the MDP.
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FIGURE 3.17: Grid-maze comparative statistical analysis on the
safety, biomechanical cost, and biomechanical persistence objectives
for the selected optimized models and the corresponding random ex-
ploration. Each sub-figure represents the results for each rat in terms
of behavioral difference with the data. ** indicates that the p-value
resulting from the Wilcoxon-Mann-Whitney comparison test is lower
than 0.001, * that it is lower than 0.05 and non-significant (n.s.) other-

wise.
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3.1.4 Discussion

This chapter proposes a new design for a generalized value-based decision-making
model for rodent free exploration. This computational model is data-driven, mean-
ing that its concept has been inspired not only by the literature (Sect. 2.1.1) but also
by new and original rodent behavioral data. The results presented are gathered only
on the final iteration of the design, which was, in the beginning, based uniquely on
the u-maze dataset since it is the very first data we had. Previous iterations included
other behavioral components, whose description is not reported here for brevity.

In Tab. 3.2, we report a statistical analysis done on the distributions of the be-
havioral measurements of the data (u-maze and grid-maze) and ten repetitions of
the simulated random decision-making agents in the same framework and the same
conditions.

u-maze grid-maze

safety

decision-points 0.095

corners 0.00016 0.0016

walls 0.28 0.036

centres 0.00016 0.51

biomechanical cost

1 0.00041 1.6e-05

2 0.00093 9.4e-06

3 0.37 7e-06

4 0.0054 3.8e-05

5 0.43 7.1e-06

6 0.00093 1e-05

7 0.00041 1.6e-05

8 0.00091 6.7e-06

biomechanical persistence
bouts mov 0.00016 1.2e-05

bouts stop 0.00093 6.5e-05

TABLE 3.2: Comparative statistical analysis between the behavioral
features of the data and the simulated random decision-making agent
in the same conditions and MDP framework. For each dataset (u-
maze and grid-maze) and each distribution corresponding to the bins
of the measurement of the three behavioral components (Fig. 3.10,
3.11, and 3.12 respectively), a Wilcoxon-Mann-Whitney comparison
test is performed. Here, we report the p-values for each compari-
son, and the blue gradient decreasingly shows non-significant statis-
tical difference (dark blue) and statistical difference; p-values < 0.05

(medium blue) and p-values < 0.001 (light blue).

These analyses are separately performed on each dataset and are related to the
same results presented in Fig. 3.10 - 3.11 - 3.12 (u-maze and grid-maze). We do not
perform the statistical tests for the case of the square open maze since the data has
a distribution of just two samples (Mouse_1 and Mouse_2, in Fig. 3.10 - 3.11 - 3.12,
square open maze). Almost all the data distributions are statistically different from
the ones derived from the random exploration, highlighting that the free exploratory
behavior of these animals shows characteristics that are far from haphazard naviga-
tion. Even though the datasets represent the behavior of different rodents in different
mazes and for a different time duration, the relevance of these behavioral patterns, in
contrast to an indiscriminate exploration, interestingly persists. In more detail, the
biomechanical persistence measure results indeed as the most relevant behavioral
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feature across the two analyzed datasets because it is always significantly different
from the random decision-makers distributions (Fig. 3.12, Tab. 3.2).

Concerning the safety measure, it is interesting that, even if the strong definition
of a hierarchy between corners, walls, and central areas exists in the u-maze, the
occupation of the spots next to the wall is not different from the one captured by
random exploration. This suggests that the maze’s morphology can already define
the data’s walls’ occupation during habituation (Fig. 3.10, Tab. 3.2). Concerning the
grid-maze, despite the large amount of available data (21 individuals) compared to
the other two datasets (8 individuals for the u-maze and 2 individuals for the square
open-maze), the occupation of the four types of tiles does not differ from the random
exploratory case both in the decision points’ and the central areas’ occupancy. Nev-
ertheless, we think it is interesting to look at the occupation of the decision points
absent from the other two datasets. It has been observed that rats present crucial cog-
nitive activity in corridors’ intersections (Johnson and Redish, 2007). In particular,
neural ensembles in CA3 have been recorded to represent locations swept forward
to cover the animal’s possible future paths. This active inferential process could im-
ply more time spent in that area for the animal, particularly when the environment
is novel. In fact, based on the actual number of junctions in the grid-maze, decision
points represent the second most relatively occupied spots, second just to the corner
spots that strikingly seem to represent safer locations for the animal’s first navigation
in a novel environment, even though the whole environment is composed by nar-
row corridors. So, we decided to keep the decision points tile type as a key element
of the maze descriptor even if the distribution of its occupancy is not significantly
different from the one in random exploration.

Finally, the biomechanical cost measure is statistically different from the one of
a random decision-maker for most of the bins and for all the two datasets. Here,
the distribution of some bins appears to be statistically comparable to the one from
random exploration (for bins 3 and 5 in the u-maze). However, let us look at the
shapes of the ensemble of the distributions representing the relative orientations.
It is easy to see that the shape of the orientations for that data is not respected in
random exploration for no dataset (Fig. 3.11). Therefore, even though we report
this analysis for the sake of clarity, in this particular case, it is probably better to
directly look at the shape of the distribution of the relative orientations (as done for
the model optimization process and the other analyses in Sect. 3.1.3, in particular,
Eq. 3.19) instead of performing a bin-to-bin comparison.

Based on the above data analysis, we have proposed a new data-driven model
able to generate a decision-making process resulting in a free exploratory behavior
significantly closer to one of the real rodents than the one generated from consistent
random exploration. All the rodents got at least one (over three) behavioral compo-
nent significantly closer to the data than random exploration. Furthermore, 24/31
individuals got two behavioral components that are significantly or strongly signif-
icantly better captured by the optimized model than by random exploration. Strik-
ingly, for all the individuals, the biomechanical persistence component is strongly
significantly better captured by the optimized free exploration model than by ran-
dom exploration. This suggests that, at the temporal and spatial scale of the model
we propose, the alternation between longer static bouts and shorter moving bouts
(Fig. A.6 - A.7 - A.8) is a behavioral characteristic that is shared among the free ex-
ploratory behavior of all rodents we have analyzed. To do so, the general framework
we propose (Sect. 3.1.2) is thought to be valid for all rodents, with the possibility to
describe the behavioral shades of each animal by optimizing a set the 9 (10 in case of
the grid-maze) model parameters (Sect. 3.1.3). Our results show that the proposed
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FIGURE 3.18: Relative directional preferences of the animals and of
a simulated random decision-maker if the directional bins are de-
signed on top of the possible discrete actions available in the maze
MDP (Fig. 3.9). Blue bins indicate turning π/2 radians left, yellow
ones going straight, green ones going π/2 radians right, and red ones

turning π radians.

model can capture the identified behavioral exploratory features of each rodent sig-
nificantly better than random exploration, with some exceptions for which we have
discussed the possible motivations and suggested possible model modifications to
deal with them (Sect. 3.1.3). A similar approach to comparing the optimized model
to a random exploration model has also been adopted by Rosenberg et al. (2021) to
study spatial navigation and learning in mice.

As we can see from Fig. 3.15, Fig. 3.16, and Fig. 3.17, some behavioral compo-
nents are easily captured by the optimized model. In general, the biomechanical
cost component is the one that apprehends the worst of the animals’ behavior. This
is due to the model’s constraints, particularly the fact that the definition of the bins
for the relative rotations suits the original u-maze data, which first inspired the de-
sign of the free exploration model. However, it does not consider the difference
between its possible next actions and the ones of the other datasets. That is why we
propose a future adaptation of the bins definition based on the possible next actions
of the dataset and MDP. This modification can be easily integrated into the model
since it does not need new parameters to be optimized for the biomechanical cost
component, and the biomechanical cost objective can remain unchanged. Looking
at Fig. 3.18, we can already appreciate that the histogram distribution of the relative
directions of both the square open-maze and the grid-maze have a more significant
distribution. In these cases, the relative rotations’ distributions are closer to a Von-
Mises (the distribution we used to model the biomechanical cost component in our
model) than if we keep the eight-bins-histogram like in the u-maze case (Fig. 3.11).

Fig. 3.18a shows that the data distribution is almost opposite to the one gen-
erated by random exploration if we create relative rotations bins centered in the
next possible states (for the two datasets where the biomechanical cost objective was
more challenging to be optimized, Fig. 3.16 - 3.17). This was not the case with the
eight bins’ relative rotations distributions in Fig. 3.11 (square open-maze). Fig. 3.18b
shows that, whether we consider just the actual points where either the animal or
the simulated agent has a choice to turn, meaning the decision points of the maze,
we can notice a difference between the two histogram distributions. In particular,
rats prefer to go straight more than the random exploratory agent. This underlines
that, even in this very peculiar maze morphology, at this temporal and spatial scale,
a biomechanical cost behavioral component that privileges the maintenance of the
same direction of motion exists, as for the other examined mazes. This final data
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analysis suggests that keeping the histogram distribution of the same size as the
possible actions in the MDP could improve the model’s power to describe rodent
behavior, particularly its biomechanical cost component.

In conclusion, the proposed value-based model could be generalized for differ-
ent situations (namely free exploration and spatial learning) by adding or removing
behavioral components. For each type of exploration (free or goal-directed), the
number of components should be kept to the lowest number that can reproduce
the significant behavioral patterns of the available data (Sect. 2.2, A. Collins and
Khamassi (2021)).

In the next section, the free exploration model will be generalized and evaluated
in data-driven cases of spatial learning.

3.2 A reinforcement learning-based model on the role of hip-
pocampal replay in spatial positive and negative learning

Free exploratory behavior is not the only condition characterizing navigation. When
exogenous conditions or stimuli that have an emotional valence for the animal be-
come part of the scenario, its behavior changes. We can refer to this exploratory
situation as conditioned exploration.

In rodent behavior, the two most studied conditioning stimuli concern suste-
nance and survival and can be of opposite emotional strength (among them Morris
(1981) and Girardeau, Inema, and Buzsáki (2017)). Both result in an induced goal-
directed exploration when the aim can be either to approach a rewarding stimulus
(food, odor for example) or to avoid it (aversive odor, sound, shock, air puff).

Even though aversive stimuli can be modeled as emotional conditioning as per
the positive case, but with an opposite sign, two different neural circuits are involved
in processing these two opposite valence conditions (Yacubian et al., 2006). Never-
theless, the amygdala and the orbitofrontal cortex (OFC) play an important role in
encoding and updating information concerning reward and punishment (Baxter and
E. A. Murray, 2002; Pickens et al., 2003; Wrase et al., 2007). Concerning negative con-
ditioning in rats, it has been observed that periaqueductal gray (PAG) is relevant
for fear conditioning (Canteras and Goto, 1999) and its lesions suppress freezing
behavior in response to negative stimuli. In contrast, the conditioned suppression
behavior is preserved (Amorapanth, Nader, and LeDoux, 1999). More recent obser-
vations have also pointed out the involvement of PAG in fear memory (Watson et al.,
2016) and classified the dorsal PAG (dPAG) as the center which coordinates survival
response and the ventral PAG (vPAG) as the part in charge of encoding innate and
learned fear behaviors. Palminteri et al. (2015) observed human fMRI data during a
task where the subjects were asked to maximize the reward and minimize the penal-
ties. They observed that, after value contextualization, the ventral striatum (VS),
devoted to encoding the reward signal, responded to successful penalty avoidance,
suppressing the activity of the anterior insula, which usually encodes negative con-
ditioning. Talking about reward-based navigation, it has been commonly recognized
that in humans VS received massive projections from dopaminergic midbrain neu-
rons and encode important information for reward-based learning (Delgado, 2007;
Daniel and Pollmann, 2014). Moreover, it has been suggested that the VS is also in-
volved in the neural mechanisms at the base of the computation of the reward pre-
diction error (Khamassi and Humphries, 2012). Medial prefrontal cortex and dorsal
hippocampus activity have been also found to be correlated with performances in
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trained mice after they have learned a reward-based conditioning task (Le Merre et
al., 2018).

As introduced in Sect. 2.1.4, instrumental conditioning gathers all the situations
where reinforcement or punishment are used to either increase or decrease the prob-
ability that a behavior will occur again in the future.

Many research studies have been conducted for studying instrumental condi-
tioning in rodents during navigation tasks and have disclosed the importance of hip-
pocampal reactivations in these contexts and also in goal-directed navigation (Ólafs-
dóttir, Bush, and Barry, 2018; Cazé et al., 2018). Furthermore, hippocampal replay’s
crucial role in memory consolidation makes that their disruption causes relevant
degradation of goal-oriented spatial learning (Girardeau et al., 2009). Thus, hip-
pocampal reactivation should play an important role in instrumental spatial learn-
ing, whether the conditioning is positive or negative. However, for obvious ethical
reasons, spatial learning associated with aversive stimulation has been studied to a
smaller extent than positive spatial learning. This justified under-representation of
these types of studies strongly motivates the research towards designing computa-
tional models at different levels (such as neuronal, network level, and behavioral)
for making it possible to predict the observation from these experiments with the
least possible data.

A recent work by Wu et al. (2017) showed awake hippocampal reactivations rep-
resenting the animal’s path to a punishment location after it has experienced a foot
shock in a particular area of the maze, although the animal does not re-enter the
punishment area again. In positive conditioning, the animal spends more time in
the rewarding areas. Thus, it is more complex to assess if hippocampal reactiva-
tions of the reward areas are more related to the emotional relevance or to the re-
cency of the experience. On the contrary, if a preference in reactivating place cells
concerning punishment areas exists, this suggests and confirms the hypothesis that
hippocampal reactivations can replay emotionally relevant information and not just
indiscriminate recent spatial experience. To support this idea, Girardeau, Inema, and
Buzsáki (2017) recorded hippocampus and amygdala coordinated reactivations dur-
ing non-REM sleep after aversive stimulation by an air puff. Also, in this case, the
co-activation of the hippocampus and amygdala was prevalent in the trail corridor
leading to the aversive conditioning.

Nevertheless, to the extent of our knowledge and excluding the recent work by
Bryzgalov (2021), comparison studies investigating possible differences in the initi-
ation and relevance of hippocampal reactivation during positive or negative condi-
tioning have not been presented yet. Additionally, to our knowledge, a computa-
tional model accounting for these differences is still lacking. In this chapter, by ex-
tending the modeling capabilities of the already presented model (Sect. 3.1) to goal-
directed exploration, and by optimizing the model on new data, we aim to predict if
such differences exist, by simulating the contribution of simple replay mechanisms
in our model.

Sect. 3.2.1 describes the conditioned experimental protocol and analyses the data
through the results obtained in Sect. 3.1.1 and a new proposed behavioral metric for
emotional conditioning. Then, in Sect. 3.2.2, we describe how we simulate the differ-
ent phases of the experiment and, in particular, how we integrate the conditioning
value to the previous proposed free exploration model Sect. 3.1.2,. In this section,
we explain also how we adopt Reinforcement Learning (RL) to simulate the spatial
assignment of emotional values to the different areas of the maze. Moreover, we
explain how we predict the preference for the presence of replay-inspired RL mech-
anisms to observe a simulated behavior comparable to the ones measured on the
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animals’ data by Karim Benchenane and Dmitri Bryzgalov. We then explain which
parameters of the model we are interested in optimizing and how, and also what sort
of insights concerning the role of hippocampal replay in aversive and positive spatial
learning we can deduct from our results (Sect. 3.2.3). Finally, we discuss our results
based on the current literature on opposite valence learning in rodent spatial navi-
gation and suggest what experimentalists and computational neuroscientists can do
to test our model predictions in terms of future studies.

3.2.1 Behavioral data

The dataset we are using for this thesis chapter is also available to us thanks to our
collaboration inside the RHiPAR project funded by the CNRS 80’PRIME Program
(Sect. 1.3). As for the free exploration data in the u-maze (Sect. 3.1.1), these data
were recorded during the experiments dedicated in studying the role of hippocam-
pal reactivation in aversive and rewarding experience (Bryzgalov, 2021).

The data we will employ in this chapter concerns six new C57BL6jR mice, navi-
gating in the same u-maze of 1m x 1m size, already described in Fig. 3.1. The tech-
nique for recording the animals’ position is the same one that has been described in
Sect. 3.1.1.

In this conditioned exploration protocol, the data are organized in different ses-
sions. Each mouse experiences:

• Pre-conditioning sessions: the animal is free to explore the u-maze as in a
habituation phase;

• Conditioning sessions: while navigating in the maze, the animal is subjected
to an exogenous stimulation, always when entering or remaining in a specific
part of the maze (every 6 seconds);

• Post-conditioning sessions: the animal re-enters the u-maze after the condi-
tioning phases and it is now free to explore the environment without external
stimuli or constraints.

The mice experienced all these phases either with a positive or a negative in-
tracranial electrical stimulation. A PulsePal stimulator has performed both stimula-
tions (Sanworks, NY, USA). Each stimulation was a train of 13 biphasic 1 ms short
pulses with an interstimulus interval of 8 ms (125 Hz) (Bryzgalov, 2021). For aversive
and rewarding stimulation, the dorsolateral periaqueductal gray matter and the me-
dial forebrain bundle were targeted respectively. Fig. 3.19 shows the experimental
protocol of the data that are available to us.

Each experimental phase has different sessions with a total duration of 16 min-
utes for the pre-conditioning sessions and the post-conditioning ones and 32 min-
utes for the conditioning sessions. Between the conditioning phase and the post-
conditioning one, the animals slept for 2 hours.

Even though the pre-conditioning phase is divided into shorter navigation ses-
sions, the data reflects the same relevant behavioural components, identified in Sect. 3.1
(Fig. 3.20).

Fig. 3.20 suggests that the pre-conditioning phase can be modeled as a habitua-
tion phase, using our proposed free exploration model (Sect. 3.1.2). First of all, the
data were sampled at 600 ms as in the previous case (Sect. 3.1) and the u-maze dis-
cretized in the same way (Fig. 3.9, u-maze), since it is the same maze that has been
used for recording the previous data (Sect. 3.1.1). As expected, by applying the same
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FIGURE 3.19: Experimental protocol. A) Aversive experimental pro-
tocol: pre-conditioning, conditioning and post-conditioning phases.
The red arrow indicates the area where the aversive stimulation has
been delivered. B) Positive experimental protocol: pre-conditioning,
conditioning and post-conditioning phases. The green arrow indi-
cates the area where the positive stimulation has been delivered. Fig-

ure adapted from Bryzgalov (2021) and Girard (2021).

clustering algorithm on the data from the pre-conditioning phases, the relevant ac-
tions for the definition of the Markov Decision Process (MDP) are the same ones
alrady identified for the previous u-maze date (gray crosses and triangle in Fig. 3.9,
u-maze).

Concerning the post-conditioning exploration, we can observe a very biased oc-
cupation of the u-maze compared to the pre-conditioning phase due to the emotional
stimulation. As it has been done in Bryzgalov (2021) , we divide the u-maze into
seven different sub-areas, as represented in Fig. 3.21a. We analysed the occupacy of
these seven sub-areas in the pre-conditioning and the post-conditioning sessions, in
case of aversive and positive stimulation (Fig. 3.21b and Fig. 3.21c respectively).

These histogram distributions represent how much the animals approach or avoid
(respectively for the positive and negative conditioning) the areas where the stimu-
lation was experienced. We decided to keep the division in these seven areas, even
though the occupation of some of them is not significantly different from the one in
free exploration, because they equally divided the maze area in sub-areas large as
the stimulation area. Thus, the conditioning metric can more homogeneously scale
the occupancy of the maze in a sort of linear distance to the location of the stimulus.

Interestingly, we can notice that the pre-conditioning occupations of the maze
in the seven sub-areas are very similar between aversive and positive stimulation
experiments (Fig. 3.21). The preference for the first, fifth and seventh sub-areas is
stronger than the occupation of the remaining sub-area with corners, the third one.
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FIGURE 3.20: Behavioral measurements on random exploration and
on the pre-conditioning data in the u-maze. B) Bins 1 to 8 correspond
to {[-2.75; -1.96], [-1.96; -1.18], [-1.18; 0.39], [-0.39; 0.39], [0.39; 1.18],

[1.18; 1.96], [1.96; 2.75], [2.75; 3.53]} radians.
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FIGURE 3.21: Occupation of the 7 subareas in the case in the pre-
conditionig and post-conditioning phases.
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The evidence that the sub-areas with corners are the most occupied by the animal is
an observation we expect since corners are usually the most occupied spots in the
maze (Fig. 3.20a). This suggests they could be perceived as the safest places in the
maze or the ones that can provide the largest amount of information, without exoge-
nous stimulations (Berlyne, 1950; Golani, Benjamini, and Eilam, 1993). Concerning
the post-conditioning sessions, as expected, there is an increasing preference for the
two corner areas (fifth and seventh ones) on the opposite corridor of the aversive
stimulus, and a very strong preference for the first sub-areas when the positive stim-
ulation is instead given to the rats. These observations suggest that the positive stim-
ulation has been experienced many times. Its location has been well consolidated in
the animals’ spatial memory (Fig. 3.21c, right), as well as the negative stimulation
experience, since the most visited sub-areas lies on the opposite corridor of the maze
(Fig. 3.21b, right).

3.2.2 Exploration model

The free exploratory behavior we observed in the dataset described in the previ-
ous chapter (Sect. 3.1.1), can be seen as a specific case of a more general exploration
model. Indeed, the animals did not experience any externally induced emotional re-
action in that exploratory phase, so we can talk about free exploratory behavior. Never-
theless, external factors, such as brain stimulations triggering an emotional response,
can deeply affect this free exploration.

Here, we propose that a general exploration model during rodent navigation is
one that adds the emotional value to the list of values that we proposed in the free
exploration model (i.e., the values of the biomechanical cost component, safety com-
ponent, and biomechanical persistence component). This section will introduce the
most general model we propose for rodent exploration. As in the previous chap-
ter, all the parameters written in red are the parameters that are then optimized to
describe the conditioning behavior of the animals.

As already said in the previous section, the modeled MDP used here will be the
same as for the u-maze dataset of the previous chapter, due to the consistency of
the measurements we took on the two datasets. Thus, each one of the possible next
state s′ (gray triangle and crosses in Fig. 3.9, u-maze) has a value Vexploration at time
t which consists of the value that is assigned by the three free exploration compo-
nents Vf ree_exploration plus the contribution of the conditioning component Vconditioning,
weighed by Wc with respect to the other free exploration component (Eq. 3.2.2).

Vexploration(s′t) = WcVconditioning(s′t) + Vf ree_exploration(s′t)

with Wc ∈ (0, 10] (3.22)

The conditioning component Vconditioning is weighed by the parameter Wc which
modulates the relevance of the learned conditioned values with respect to the other
behavioral components (safety, biomechanical cost and biomechanical persistence,
in Sect 3.1.2), that already have parameters to modulate their relative contributions
in the behavior, p1, κ, and bp, respectively). Thus, the evolutionary range of Wc is
also from around 0 to 10 to be consistent with the range of the weight parameters of
the other components.
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The conditioning component is learned through multiple conditioning sessions,
the same the real mice had, where the agent learns the conditioning values by fol-
lowing a reinforcement learning (RL) rule. Since it has been commonly accepted
that a good framework for modeling instrumental learning is RL (Glimcher, 2011; A.
Collins and Khamassi, 2021), we propose to model the spatial learning process, asso-
ciated with the emotional stimulation, by using RL. The values learned by this new
RL component are then assigned as conditioning values to the maze’s next states.
Fig. 3.22 gives an overall view on how the conditioning experiments from which we
have our data, are modelled.

FIGURE 3.22: Scheme of the modeling paradigm for the condition-
ing experiments. On the left, the simulated agent replicates the same
discretized trajectories that the corresponding mouse did during the
conditioning session and, simultaneously, the conditioning values for
the maze’s state Vconditioning are learned. After conditioning, the sleep
hippocampal reactivations are simulated by the agent updating the
Vconditioning by performing unordered off-line replay. Finally the post-
conditioning sessions are simulated by having the agents making
its own decision, based on Vexploration. Figure adapted from Girard

(2021).

Our proposal for learning the conditioned components is to have two different
formulations based on the emotional valence of the stimulation, to reflect the existing
neural circuitry duality between aversive and positive instrumental learning.

By considering the maze’s states as a simplified representation of how the place
cells encode the different locations of the maze in the rodent’s hippocampus, the
proposed model predicts the values that the animals would estimate at each of these
locations. Thus, this estimation is based on the replication of the real experience of
the stimulation and subsequent behavior that the animals had during the condition-
ing phases. Indeed, on the left part of Fig. 3.22, we show that the modeled mouse
follows the same trajectories covered by its real counterpart through the condition-
ing sessions and in the meantime learns the Vpositive_conditioning for the visited states.
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As anticipated above, the model has two different q-learning formulations de-
pending on the valence (sign) of the conditioning. If the stimulation is positive, we
apply the following RL rule to the state s, to learn its Vpositive_conditioning(s):

Vpositive_conditioning(st)t+1 = Vpositive_conditioning(st)t + α[R(st+1)

+γ max
s′t

Vpositive_conditioning(s′t)t −Vpositive_conditioning(st)t]

with α ∈ [0, 1], γ ∈ [0, 1] (3.23)

Here, the value of the current state is updated based on its relative likelihood to
get the agent to a positive stimulation R in the next future (discounted by a factor
γ, between 0 and 1), compared to the other possible next states. Besides, α is also
a parameter, evolving between 0 and 1, which modulates the learning speed of the
algorithm, as in the standard q-learning formalization (Eq. 2.4 and Sect. 2.2.1).

Q-learning is one of the most used off-policy learning rules in RL, due to its ef-
ficiency in finding near-optimal policy with very little information on the reward
and on the experimental environment. Compared to the most classic formulation of
q-learning, where the updates of the q-values are performed on state-action couples,
here the learning rule performs the updates just on the states. This formulation is
more relevant in our proposed value-based decision-making model, since we assign
values to all the possible next states also for the other components (safety, biome-
chanical cost, and biomechanical persistence). The q-learning rule we have applied
in our model does not need to consider a set of possible next actions and learn their
relationship with the state of the maze. This choice is also a consequence of our MDP
modelization in which we have both continuous and discrete states. From a discrete
state and a relative action, it is impossible to determine what would be the next state,
as this would require adding an orientation to the discrete formulation. Conversely,
it would be possible, albeit complex, to perform the classic q-learning on the contin-
uous states and relative actions, but this would not align with the rest of the discrete
state evaluation. If the conditioning has an opposite valence, meaning it is aversive,
it computationally represents a reward of -1, instead of 1, and it is called punishment
P. With an aversive stimulation, animals need to know which areas to avoid and, in
particular, propagate this negative signed knowledge. To model the negative condi-
tioning learning phase, we use the same q-learning rules, explained just above, with
a negative conditioning P, instead of the positve reward R. We average the update
of the chosen next state st+1 on the minimum, instead of the maximum, value among
all the other possible next states s′t (Eq. 3.24).

Vnegative_conditioning(st)t+1 = Vnegative_conditioning(st)t + α[P(st+1)

+γ min
s′t

Vnegative_conditioning(s′t)t −Vnegative_conditioning(st)t]

with α ∈ [0, 1], γ ∈ [0, 1] (3.24)

In this case, the learning parameters to optimize (α and γ) will be the same as
in the positive case (Eq. 3.23), and with the same evolutionary ranges. By using the
minimum instead of the maximum, the learning process would be the same as the
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one in the positive conditioning case, just with a propagation of negative state values
through the maze.

Laventure and Benchenane (2020) reviewed the theoretical bases of hippocam-
pal reactivations during sleep and reported many experiments that have been con-
ducted on the topic suggesting that sleep sharp waves and ripples (SWRs) not only
improve the animal localization, by replaying pure spatial content, but they also
represent place–reward (or place–punishment) associations (Atherton, Dupret, and
Mellor, 2015). Thus, we propose to model the conditioning experimental protocol
with an unordered model-free replay phase (Sect. 2.2.4) in between the condition-
ing and post-conditioning phases, to be consistent with the research for sleep replay
conducted in the work by Bryzgalov (2021) (Fig. 3.19). After all the conditioning
sessions have been simulated, the agent performs a number #rs, which will be opti-
mized in the range [0, 10], of replay sessions. This means that the exploration model
has also the possibility of not performing offline replay at all, if a good combination
of the learning parameters with #rs = 0 is found and it is able to replicate the post-
conditioning behavior of the mouse. To be consistent with the evolutionary range of
the other parameters, the maximum number of times that all the conditioning ses-
sions could be shuffled and replayed is 10. We consider 10 sessions a sufficiently
large replay budget to consistently boost the learned states’ values propagation.
Each replay session consists of shuffling the entire memory buffer containing all the
transitions (s, a, s′, r) done by the agent during the conditioning sessions, and replay
them one by one. In this way, the values of all the states s, contained in the transitions
(s, a, s′) will be updated and the positive or negative states-values in the maze would
be modified as if the agent had virtually explored the maze again. On the one hand,
we decided to model the sleep offline reactivation as unordered replay of the past ex-
perience for simplicity, because we do not have more detailed information about the
type of hippocampal reactivations when we designed the model. Thus, we do not
want to make constraining assumptions on the type of replay, accordingly avoiding
the need to use more complex model (such as model-based, prioritized sweeping,
or trajectory sampling replay strategies) to describe them. On the other hand, from
a RL-computational point of view, Cazé et al. (2018) suggest that the noisy dynam-
ics of asleep hippocampal reactivations can be appropriately modeled by unordered
model-free replay.

The replayed transitions (s, a, s′, r) do not directly represent an equivalent of
place cells in the hippocampus, but a compact and discretized version of parts of
the animals’ previous spatial experience, in the timescale of a decision-making step
in the exploration model. They are coherent with the classical format used to repre-
sent spatial experience and its associated values in MDP and RL.

The last part of the whole conditioning experimental protocols concerns the post-
conditioning sessions (Fig. 3.22). In these post-conditioning sessions, the mice agents
are simulated again as decision-making agents. Their decisions and the resulting be-
havior is based on Vexploration (Eq. 3.2.2). Vexploration depends, on one side, on the opti-
mized free exploration parameters (β, p1, p2, p3 , κ, ψ, bp, Wnm, and Wm, Sect. 3.1.2)
that have been indentified on their pre-conditioning sessions and that are not in-
volved in the optimization process for the conditioning behavior (Sect. 3.2.3). On
the other side, it depends on the Vconditioning values that have been learned during
the conditioning sessions and updated during the offline replay phase. In this case
these four parameters, α, γ, #rs, and Wc are then optimized to generate a condi-
tioned maze occupancy significantly similar to the one from the data. As showed
in Fig. 3.19, all the exploratory phases are divided into multiple sessions. In our
simulation, we simulate agents that go through all the separated sessions and then
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concatenate their trajectories to evaluate the related behavioral metrics and compare
them to the metrics’ values in the data, where the same procedure is done.

3.2.3 Model optimization and results

The pre-conditioning exploratory sessions are considered here as habituation phases
and, since the behavioral characteristics existing in our previous u-maze seem to ex-
ist also in these new data (Fig. 3.20), we optimized the free exploration model param-
eters on these pre-conditioning sessions, by using the same evolutionary strategies
and hyperparameters we used in the previous chapter (Sect. 3.2.3). On the contrary,
given that the conditioned behavior is influenced by three different phases, condi-
tioning exploration, sleeping phase and post-conditioning exploration, the param-
eters concerning these three sessions must be optimized simultaneously. Fig. 3.23
shows a scheme for the two-step optimization performed on this dataset.

FIGURE 3.23: Scheme showing the parameters that are optimized at
the different phases of the simulated experiment through the NSGA-
III (Deb and H. Jain, 2013), in the free exploration model case, and
through the CMA-ES algorithm (Hansen, 2006), in the conditioned
exploration model one. All the variables listed in black out of the
boxes are the parameters to optimize in that particular phase. The
green boxes indicate where the above parameters are used; either to
create a particular behavior in a computational model (free or condi-
tioned) or to learn the conditioning values for each state. The pink
boxes indicate which information is taken from the data to evaluate
(in the case of the metrics) or generate (in the case of the trajectories)

the simulated behaviour.

First, both pre-conditioning phases (the one before the aversive stimulation and
the one before the positive one) are considered as a unique set of free exploratory
behavioral sessions that are used to optimize the nine parameters of the free explo-
ration models: β, p1, p2, p3 , κ, ψ, bp, Wnm, and Wm (Sect. 3.1.2). Once the free
exploration model parameters have been optimized on the three behavioral metrics
that characterized our proposed model for free exploration: the safety, the biome-
chanical cost and the biomechanical persistence objectives (Fig. 3.24), the optimiza-
tion on the conditioned exploration phases can be performed.

As expected, since the free exploration model was able to robustly capture the
behavioral components of the other dataset we have on the u-maze, the results are
quite solid also in this case (16/18 objectives are strongly significantly closer to the
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FIGURE 3.24: Comparative statistical analysis on the safety, biome-
chanical cost, and biomechanical persistence objectives for the se-
lected optimized models and the corresponding random exploration.
Each sub-figure represents the results for each mouse agent in terms
of behavioral difference with the data. ** indicates that the p-value
resulting from the Wilcoxon-Mann-Whitney comparison test is lower
than 0.001, * that it is lower than 0.05 and non-significant (n.s.) other-

wise.

data than random exploration and, for all the mice, there are at least 2/3 objectives
which are strongly significantly closer to the data than random exploration).

Moving forward to the novelty of this chapter, in the second optimization phase,
our objective is to generate a model able to describe the changed occupancy of the
maze that we observed in the data (Fig. 3.21), as it indirectly reflects the influence
of the stimulation (positive or negative) that they have experienced. In this case,
the distance between the data masurement and the one obtained from the model is
computed as in the biomechanical cost case (Eq. 3.19), as a normalized difference
between vectors containing the occupations of the seven sub-areas in the simulated
model and in the data.

Fconditioning =

∣∣∣∣∣∣∣∣ Cdata
| Cdata | −

Cmodel
| Cmodel |

∣∣∣∣∣∣∣∣ (3.25)

where C is a function that counts the number of observations that fall into each of the
disjoint categories (known as bins, each bin for one of the seven subareas, Fig. 3.21a)
and creates the histogram, respectively for the data Cdata and for the model Cmodel.

Since, in this case, there is just one behavioral measurement whose value we
want to optimize by minimmizing the difference between our model and the data,
we used a state-of-the-art evolutionary strategy for one objective optimization: CMA-
ES (Sect. 2.2.5, Hansen (2006)). For this optimization with CMA-ES, we have used
the hyperparameters in Tab. 3.3.
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max # gen # ind σ0

500 50 0.5

TABLE 3.3: Hyper-parameters for CMA-ES. max # gen is the maxi-
mum number of generations, # ind, the population size, and σ0, the

initial standard deviation (Sect. 2.2.5).

We kept the same maximal number of epochs and the same number of individ-
uals per epochs as we used for the NSGA-III in the previous chapter (Tab. 3.1). The
selection for the best individual, i.e., the best set of model parameters, is based on
the minimal objective value found through the evolution.

As for the previous chapter, the optimized parameters are the ones in red in the
section above and they are four: the weight of the conditioning component inside
the exploration model Wc, the learning rate α, the discount factor γ, the number or
replay sessions #rs (Fig. 3.23). Fig. 3.23 shows that α and γ are optimized while the
agent is learning the conditioning values of the states of the maze. This learning
process is based on the animal’s trajectories during the conditioning phases. Fur-
thermore, #rs optimizes the number of times the whole previous conditioned ex-
periences (in the form of unordered transitions backups) is offline replayed by the
animal. Finally Wc describes the relative importance of the conditioning component
of the exploration model with respect to the other three components (safety, biome-
chanical cost and biomechanical persistence) in describing the behavior of the ro-
dents (in terms of the 7 sub-areas occupancies, Fig. 3.21a) during post-conditioning.

Fig. 3.25 shows the results of the two exploration models’ parameters optimiza-
tion (negative and positive conditioning) for Mouse1168 (Fig. A.9-A.10-A.11-A.12-
A.13 show the same results for all the other mice in the dataset).We decided to pick
this particular mouse to show the behaviour of an average case of the results we ob-
tained from our optimization (Fig. 3.27). Moreover, Mouse1168 is an interesting case
to analyze because the optimized number of replay sessions #rs is very different in
the positive (2) and in the negative case (10). Also, its α values are reasonably high
(respectively around 0.5 and 0.7 in the positive and negative stimulation case) and
Wr is instead smaller (between 0 and 2 in both cases) than for the cases of the other
mice. This means that most of the contribution in learning the states’ values comes
from #rs and α (Fig. 3.29).

In particular in Fig. 3.25c-3.25d, we want to compare the post-conditioning occu-
pacy of the maze for the two optimized models (free explo and free explo + cond)
for the same mouse to prove that the conditioning component and the possible ad-
dition of replay session is beneficial to capture the post-conditioning behavior of the
animals.

The conditioning objectives, describing the distance in subareas occupancy dis-
tribution between the data and the model, have been minimized for both the case of
aversive (Fig. 3.25a) and positive (Fig. 3.25b) stimulation. The increasing occupancy
of the locations which are far away from the negative stimulation (pink distribu-
tion) is better captured by the optimized exploration model (free explo + cond) than
by the corresponding version of the optimized free exploration model (free explo),
considering the statistics over ten repetitions of the same model parametrizations
(Fig. 3.25c). Considering the positive stimulation, since in the case of this particular
Mouse1168, there is not a stronger occupation preference for the positive stimulation
area (blue error-bar), we can notice that the median of the highest bars are closer to
the optimized free exploration model (free explo) values than to the optimized ex-
ploration model (free explo + cond) ones (Fig. 3.25d). Even though the optimized
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FIGURE 3.25: Optimized exploration model (free explo + cond) in
comparison to the previously optimized free exploration model (free

explo), and to the data; example for Mouse1168.
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exploration model (free explo + cond) is producing a distribution which is more bi-
ased towards the rewarding area than the one observed in the data, the decreasing
shape of the data distributions towards the areas far away from the positive stimu-
lation is more reflected in the results from the free explo + cond model than in the
ones from the optimized free exploration model (free explo) which are slightly bi-
ased towards the reward area. Infact, looking at one example of the occupancy map
for Mouse1168 during all the positive post-conditioning sessions (Fig. 3.26c), we can
see that the free explo + cond model’s occupation is more biased towards the first
sub-area compared to the data. However, the free explo model shows no strong pref-
erence for one of the two corridors. In particular, this occupancy map shows more
occupation in the corridor opposite the positive stimulation.

Here we can remark the strong preference for spending time in corners that char-
acterizes the free exploratory behavior of rodents. As expected by the more convinc-
ing replication of the data occupancy in Fig. 3.25c the occupancy of the corridor op-
posite to the negative stimulation is clearly more matched by the free explo + cond
model than by the free explo model which shows a more homogenous exploration
(Fig. 3.26b).

Fig. 3.26a represents an example of evolution and propagation of the condition-
ing states value Vconditioning before and after the offline replay sessions. As explained
before in the model description (Sect. 3.2.2), the learning process for positive con-
ditioning assigns positive values to the experienced states. In contrast, the one for
negative conditioning assigns negative ones and we represent them with opposite
heatmaps to highlight the propagation of the absolute value of the states. For both
cases, after the replay sessions, the states-values are increased and propagated all
over the end of the corridor opposite to the stimulations. Nevertheless, we note that
positive values are two orders of magnitude higher than the negative ones. This
large difference is due to the number of times Mouse1168 experienced the stimu-
lation: for over 140 seconds in the positive case, and for less than 4 seconds in the
negative one (Fig. 3.30).

By having an overall look at the optimization results for the parameters of the
exploration model for the all the mice, the obtained results for the best individuals
promisingly show that the exploration model significantly better captures the bi-
ased occupancy of the maze in post conditioning than the best individual optimized
for free exploration (Sect. 3.1.2). Over ten simulations of the same models, Fig. 3.27
shows that for the majority of the mice (all of them, but negative conditioning for
Mouse1161), the global optimized exploration model significantly decreases the er-
ror the optimized free exploration model has in describing the conditioned occu-
pancy of the maze in the post-conditioning sessions. More importantly, there are no
cases where the free exploration model is significantly better at capturing the post-
condition occupancy of the maze than the complete exploration model. This means
that, in the case of the negative conditioning of Mouse1161, the optimization has not
managed to bring significant improvements to the free exploration model to fit the
post-conditioning behavior of the animal, but the performance are comparable.

Once we have verified that, in the majority of the cases (11/12 considering both
the positive and the negative conditioning in Fig. 3.27), the optimization algorithm
can find a proper model for the post-conditioning occupancy of the seven areas, our
interest is in analysing if any relationship exists between the optimized number of
replay sessions and the experimental and behavioral characteristics of the animals.
To assess and valid the proposed learning strategies (Sect. 3.2.2), we investigate if
the exploration model can reflect some phenomenological relationships observed in
the analyses of our collaborators (Bryzgalov, 2021).
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FIGURE 3.26: Example of learning and behavior for the optimized
exploration model for Mouse1168. A) Learned states values maps
before and after the replay sessions: positive and negative condition-
ing cases. B) Comparison of the post-conditioning occupancy map
among the optimized free exploration model (free explo), the opti-

mized model (free explo + cond) and the data.
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FIGURE 3.27: Comparative statistical analysis on the conditioning ob-
jectives for the selected optimized models and the corresponding free
exploration model. Each sub-figure represents the results for each
mouse agent in terms of behavioral difference with the data. This
difference is expressed as the conditioning objective (Eq. 3.25). ** in-
dicates that the p-value resulting from the Wilcoxon-Mann-Whitney
comparison test is lower than 0.001, * that it is lower than 0.05 and

non-significant (n.s.) otherwise.
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FIGURE 3.28: Linear correlation between the number of replay ses-
sions in the optimized model and the occupancy difference to enter
in the stimulation zone in the post-conditioning exploration data. ρ
is the Spearman correlation coefficient and p is the p-value for this

correlation test.

To investigate the role of hippocampal reactivation in spatial learning, it is in-
teresting to look for correlations between the amount or type of hippocampal re-
activations, and the change in the behavior before and after learning. In the case
of our experiments, since the pre-conditioning behavior is significantly different to
the post-conditioning one, in term of spatial occupation of areas close the stimula-
tion (Tab. A.1), it would be interesting to test if a correlation between number of
replay sessions and occupancy of the stimulation areas exists. Following the inter-
esting observations and results obtained by Bryzgalov (2021), we decided first to
perform the same analyses they did on the data, by replacing the explained variance
(EV) of ripples with the optimal number of replay sessions for a particular mouse
(Fig. 3.28). Measuring the EV is a common approach to identify reactivations. It
measures how much the activity patterns observed during post task rest or sleep
can account for wakeful activity patterns during the task (Kudrimoti, C. A. Barnes,
and McNaughton, 1999; Ólafsdóttir, Bush, and Barry, 2018).

Regarding the correlation between the number of replay sessions and the differ-
ence in occupancy of the shock zone between post- and pre-conditioning (Fig. 3.28b),
we found a similar Spearman’s ρ and p coefficients than the one found by Bryzgalov
(2021)’s data (Fig. 5.5-L, Spearman’s ρ is 0.64 and p is 0.14). The difference between
the occupancy times of the shock zone in the post- and in the pre- conditioning
sessions goes negative for almost all mice because the time spent in the shock ar-
eas after the negative stimulation is lower than the one spent there before it. Then,
we look at the replay-occupancy relationship in the case of the positive condition-
ing experiment (Fig. 3.28a). Interestingly, the more replay session are required by
the optimized exploration model, the longer is the corresponding occupancy of the
stimulation areas. We found this tendency slightly stronger in this positive case than
in the negative one, and it would be interesting to further investigate this prediction
either computationally or experimentally. In conclusion, these results suggest that in
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both the positive and the negative stimulation case, the replay activity could predict
and be correlated to the level of occupancy and avoidance of the stimulation area
respectively.

3.2.4 Discussion

In this chapter, a generalization of the free exploration model we proposed in Sect. 3.1.2
is presented and validated against a similar but new dataset. This generalization
extends the definition of state-value to the case where it can be learned by the agent-
environment-conditioning interactions through a reinforcement learning rule. To
investigate and make predictions on the possible role of hippocampal replay in spa-
tial learning, the optimization process for the parameters of our model includes the
possibility of performing offline model-free replay. This replay session happens af-
ter the animal has finished experiencing the conditioning and just before it re-enters
the maze for the post-conditioning phase.

The optimization of the parameters of the exploration model was able to get a
lateralized occupancy of the maze, which is significantly closer to the one presented
in the data than the one we can have by using just the free exploration version of
the same model. Our results predict that all the mice (except one, Fig. 3.29, #rs), if
they have the possibility to perform replay sessions, need at least one of them to
happen, for better fitting the post-conditioning occupancy of the data. Interestingly,
very similar correlations to the ones presented in the Bryzgalov (2021) data analyses
exist between the number of replay sessions and the difference in the time spent in
this zone between post- and pre-conditioning (Fig. 3.28b).

Our research interest in this part of the thesis was to investigate and try to pre-
dict with our model if hippocampal reactivations could play a differential role or
have a different saliency when the emotional valence of the conditioning changes.
The proposed model is based on one of the most simple and classic RL mechanisms
to reproduce experience reactivations. We propose to start investigating the hypo-
thetical existence of these differences by using the simplest possible computational
mechanism for replay. To answer this question, we did some analyses on the param-
eters of the best individuals, which resulted from the optimization process either in
the positive or the negative conditioning case (Fig. 3.29).

The most relevant learning parameters, #rs and α, result in statistically higher
values in the case of negative conditioning (n) than in positive conditioning (p). Fol-
lowing the q-learning rule (Eq. 3.23 and Eq. 3.24), the states-values propagate mainly
depending on the coordinated action of these parameters. Naturally, Wr is also im-
portant in the states-values learning because it represents the relative weight of the
conditioning component with respect to the other components. In support of the
common trend for the other parameters, it is also increasing its value from positive
to negative conditioning for 5/6 mice, even though the two overall distributions, p,
and n, are not significantly different. The parameter which probably weighs more
in the states-values learning is the number of unordered replay sessions #rs since its
modulation multiplies the contribution of the other parameters (α, γ and, Wr) by
increasing the number of time when the agent learns (updates the states-values) on
its overall past experience.

With the possibility to optimize α, γ, Wr and, #rs, it is interesting that the op-
timization finds solutions (set of model’s parameters) which almost always (11/12
mice considering both the positive and the negative stimulation experiments) need
a number of replay sessions greater or equal to 1 (Fig. 3.29). This suggests that,
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FIGURE 3.29: Statistical analysis on the exploration model parame-
ters for the best individuals found by CMA-ES, in the case of the pos-
itive stimulation data (p) and negative stimulation ones (n). #rs indi-
cates the number of replay sessions, α the learning rate, γ the discount
factor, and finally Wr the weight for the conditioning component. *
means that the p-value resulting from the Wilcoxon-Mann-Whitney
comparison test between the distributions of the model parameters
in positive and negative stimulation is lower than 0.05 otherwise it is

non-significant (n.s.).

from the proposed computational point of view of our model, longer replay ses-
sions are preferred to higher values of the learning rate α, for example, to amplify
the learning response of the stimulation sessions. If we assume that the RL is a
proper framework to model instrumental behavior, spatial learning, and hippocam-
pal reactivations and also that we appropriately use the evolutionary optimization
strategy. In that case, we can infer that increasing the number of replay sessions
#rs is more computationally efficient than increasing the learning rate α, to replicate
the animals’ occupancy of the maze. The relevance of replay sessions in replicat-
ing the post-conditioning behavior of the animals is also evident from the fact that,
in the aversive stimulation case, the winning set of parameters still have #rs values
greater or equal to 2, despite showing α values significantly higher than the ones in
the positive stimulation’s case.

Looking at the whole set of the learning parameters, it is striking that a signifi-
cant increase of α and #rs exists when the model needs to fit the post-conditioning
behavior after the aversive stimulation, compared to the positive one. This suggests
that, from the MF-RL perspective of the model, offline replay is significantly more
important when the valence of the conditioning is negative. Furthermore, in our
results, replay sessions are needed more when the animal has experienced very few
emotional stimulations (Fig. 3.30a).

These results make us predict that the amount and content of the information
replayed during offline hippocampal reactivations are not purely linked to spatial
experience. In fact, considering that all the mice explore for the same duration, we
observe the urgency for more replay sessions when the negative stimulation is less
experienced (Fig. 3.30a). This suggests that when there is more emotionally relevant
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FIGURE 3.30: Linear correlation between the amount of stimulation
received by the mice and the number of needed replay sessions to
represent the post-conditioning sub-areas occupancy of the maze. ρ
is the Spearman correlation coefficient, and p is the p-value for this

correlation test.

negative content, rodents need fewer replay sessions to consistently avoid the shock
area. However, the same correlation is not present in the case of positive stimulation
(Fig. 3.30b).

Despite the observation of replay during NREM sleep between the conditioning
and post-conditioning experimental sessions (Bryzgalov, 2021), in Sect. A.1 we re-
port some supplementary results, where we optimized the same exploration model
presented in this chapter but with offline replay sessions disabled. We found out that
our optimization procedure can find behavioral results (in terms of post-conditioning
occupancy of the sub-areas) which are comparable to the ones of the optimized
model with replay in most of the cases (9/12, in Fig. A.1). The results for the states-
values propagation and the post-conditioning occupation of the maze for all the 10
repetitions of all the mice for the two models (with or without replay) are reported in
Fig. A.14-A.25. We can see further analyses we have performed, always in Sect. A.1,
showed that a tendency exists for the learning rate α to have higher values in the no
replay model than in the one with replay (Fig. A.2b, but in particular in Fig. A.2a).
Even though we have just a few mice behavioral data to analyze and the difference
between the two distributions of α is not significant, these supplementary results
suggest that the absence of the possibility of offline replay sessions leads the model
optimization to compensate for them with higher learning rates. In case of complex
scenarios, like in the case of our conditioning sessions where the agent replicates the
animal’s behavior, higher α can eventually hinder the convergence of the TD learned
states values and lead to unstable behaviors (R. S. Sutton and A. G. Barto, 2018).
That is why reinforcing learning with offline replay could be more efficient and ro-
bust than increasing the learning rate. It is also the solution that the great majority
of the optimized exploration models, with the possibility to have replay sessions,
choose (11/12 optimized models cases in Fig. 3.30). Considering these other results
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implies that offline reactivations are not necessary to fit the post-conditioning oc-
cupation of the maze in either the positive or the negative conditioning. However,
they are computationally preferred as a mechanism to enhance the states’ values
learning. Adding to the model the possibility to perform offline replay is adding
computational cost to the model, but not modeling complexity since the backups
done during these sessions are just unordered MF updates of the same TD-learning
rule of the conditioning component. Thus, we consider it interesting trying to apply
and compare the performances of these two versions of the model (with or without
replay) on more spatial learning rodent datasets, where the resulting exploration
is even more biased than the one of our data (data in Fig. 3.25,-A.9-A.13). Also,
Fig. A.2c interestingly shows that a trend for higher values of α and Wr in the nega-
tive conditioning case, compared to the positive conditioning one, also exists in the
case of an exploration model without replay. The same preferences have also been
observed in Fig. 3.29 for the conditioning exploration model with replay. These other
results confirm that, from the RL computational point of view of our model, stronger
learning dynamics are needed in negative conditioning to fit the spatial occupational
preferences of the mice.

The amount of stimulation received by the mice is much smaller in the negative
cases than in the positive ones (two orders of magnitude smaller, axes x in Fig. 3.30),
as we expect from external conditions which cause aversive emotional reactions in
these animals. To recap, Fig. 3.30 implies that hippocampal replay is more important
for replicating the lateralized occupation of the maze we see in Fig. 3.21b when the
stimulation is negative. Also, the amount of replay sessions needed in this case is in-
versely proportional to the aversive stimulation received by the animal (Fig. 3.30a).
In other words, our data-driven model suggests that when the exogenous condition-
ing is a punishment, animals obviously do not want to experience it many times, but
however they want to have a robust avoidance of the punishment area. The same
model we propose, with two opposite signed-learning rules, optimized on the ani-
mals’ behavior, needs significantly higher learning rate α, and longer replay sessions
#rs, when the stimulation is negative (Fig. 3.29). As far as we know, this computa-
tional hypothesis, as raised here, concerning the significance of longer hippocampal
offline reactivations periods in negative conditioning, has not been directly inves-
tigated yet. Aversive experimental protocols are more difficult to address for ethi-
cal reasons and for the freezing aversive reactions that they induce, particularly in
rodents. Freezing reactions, happening just during negative conditioning and not
during positive one, make it difficult to directly compare the exploratory dynamics
of two equal experiments with opposite valence stimulations.

Also concerning freezing behavior, but on a different note, Bryzgalov (2021) doc-
umented an interesting phenomenon concerning rodent freezing reflex in the case of
aversive learning. They observed that a small subpopulation of dorsal hippocampal
interneurons strongly decreases its firing rate during freezing behavior. They have
also remarked that awake SWRs happen mostly in the most visited maze locations,
which are also the ones where the animals exhibit freezing behavior. Thus, they hy-
pothesize a strength and rate modulation of SWRs during freezing, even though the
exact dynamics of this phenomenon have not been clarified yet. Once additional
information on the locations and timing of freezing behavior is given, an interesting
expansion of the model would be to model the contribution of awake replay dur-
ing the conditioning phases (in particular, during freezing behavior, in the aversive
stimulation case).

As a future perspective of these results, the model could be improved to describe



3.2. A reinforcement learning-based model on the role of hippocampal replay in
spatial positive and negative learning

97

the spatial characteristics of hippocampal reactivations. To do that, it will be interest-
ing to use an RL prioritized sweeping replay algorithm able to produce spontaneous
replay activity of the experiences that were the most unexpected (Aubin, Khamassi,
and Girard, 2018). This model-based replay algorithm would suggest predictions on
the location of the hippocampal reactivation that could then be validated by compar-
ing the model observations to the analyses on the location of the explained variance
of the hippocampal SWRs recorded and analyzed in Bryzgalov (2021) and other sim-
ilar works.

To summarize the contributions of the neuroscientific chapter of this thesis:

• We have designed a computational free exploration model for rodents that can
simulate the behavior of an agent whose decision-making process reflect the
main observed behavioral preferences of the animals, such as safety, biome-
chanical cost, and biomechanical persistence;

• We have validated such a model on new rodents’ datasets;

• We have extended the proposed model to account for spatial learning scenarios
by considering two parallel learning rules for opposite valence conditioning;

• Without prior assumptions, the optimisation of the parameters of our explo-
ration model on the animals’ behavior subsequent to positive and negative
conditioning suggests that negative stimuli are perceived to have an higher
valence than positive ones and that more offline reactivations are required.

In the next chapter, we will discuss the contribution of hippocampal reactivations-
inspired RL mechanisms, similar to the one adopted in this chapter, in enhancing
robotic goal-directed navigation. In particular, we will discuss and test multiple
RL replay mechanisms (namely model-based and model-free) to identify the most
promising strategies once the experiments get closer to a realistic scenario. Finally,
a brief description of a robotic demonstration, conceived and realized in our labora-
tory, is given to illustrate the advantages of immersive real robotic navigation tasks
to efficiently explain hippocampal reactivations, also from a neuroscientific perspec-
tive.
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Chapter 4

Scientific contributions in machine
learning and robotics

From RL-based models of hippocampal reactivations that investigate rodents’ goal-
directed behavior in navigation tasks, the focus passes on to the contribution of the
same strategy and more complex ones in robotic goal-directed navigation. Sect. 4.1
evaluates and analyses multiple Model-Free- and Model-Based-RL reactivation strate-
gies in robotic contexts, looking at their implication when moving from theoretical
simulations to experiments on real robotic platforms.

Finally, Sect. 4.2 presents and discusses the conceptualization and design of a
demonstration for dissemination purposes concerning hippocampal reactivations
for robotics.

4.1 Model-based and model-free replay mechanisms for re-
inforcement learning in neurorobotics

Experience replay has been modeled and used in artificial intelligence (AI) to allow
agents to reuse past experience and learn more efficiently (Lin, 1992) since before the
adoption of the reinforcement learning’s theory to model the computational con-
tribution of dopaminergic activity (Schultz, Dayan, and Montague, 1997) and hip-
pocampal reactivations, particularly in rodents (Khamassi and Humphries, 2012).
Since these first research studies in AI, many mechanisms, including unordered,
reverse-ordered, and prioritized memory buffers, have been tested in different tasks.
They showed different learning properties which are suitable for specific experimen-
tal scenarios (i.e., simulation or robotic experiments, static or dynamic task, Cazé et
al. (2018)). In Sect. 4.1.2 - 4.1.3 - 4.1.4, we test different neuro-inspired RL control
architectures in navigation tasks of increasing complexity. In particular, we take in-
spiration from the instrumental conditioning dichotomy between habitual and goal-
directed learning systems in the brain (Sect. 2.1.2) to test the coordination of model-
based and model-free replay strategies in neurorobotics’ navigation tasks. Since, the
brain mechanisms which orchestrate hippocampal replay are still unclear, the intent
of the following study is also to raise new neuroscientific hypotheses starting from
our simulation and robotic results on which replay technique turned out to be more
efficient in distinctive scenarios and situations.

Eventually, in Sect. 4.2 we illustrate TaVAR, a new robotic device to explain to
the general public and real-time visualize how classic RL algorithms work in a goal-
oriented navigation task. The proposed platform shows the audience which spatial
information the robot uses to learn an optimal behavior to get to the desired loca-
tion and also how replaying past spatial transitions can speed up this learning. This
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visual and robotic set-up could also ease the explanation of the computational mech-
anisms that are thought to be behind hippocampal reactivations in neuroscience.

Sect. 4.1.1 - 4.1.2 - 4.1.3 - 4.1.4 - 4.1.5 present a reformated version of a published paper:
Massi, E., Barthélemy, J., Mailly, J., Dromnelle, R., Canitrot, J., Poniatowski, E., Girard, B.
and Khamassi, M. (2022). Model-Based and Model-Free Replay Mechanisms for Reinforce-
ment Learning in Neurorobotics. Frontiers in Neurorobotics, 16.

4.1.1 Introduction

For a reinforcement learning (RL) agent (R. Sutton and A. Barto, 1998; Lin, 1992),
experience replay consists in storing in (episodic) memory a buffer containing a se-
ries of observations (i.e., a quadruplet composed of: the previous state, the action,
the new state, the reward), and periodically replaying elements from this buffer to
bootstrap learning during offline phases (i.e., between phases where the agent acts
and samples new observations in the real-world) (Fedus et al., 2020).

Several important parameters have an impact on the performance of RL agents
with experience replay, such as the size of the memory buffer (Zhang and R. S. Sut-
ton, 2017), the relative time spent learning from replay versus the time spent col-
lecting new observations in the world (Fedus et al., 2020), or whether to shuffle the
memory buffer and uniformly sample elements from it or to prioritize elements as
a function of their associated level of surprise (e.g., the absolute reward prediction
error associated to a given quadruplet observed from the environment) (Moore and
Atkeson, 1993; Peng and Williams, 1993; Schaul et al., 2015).

To our knowledge, these replay techniques have their origin in the 1990s, when
Long-Ji Lin at Carnegie Mellon University proposed solutions to enable RL reactive
agents (i.e., model-free (MF) agents such as Q-learners (Watkins, 1989)) to bootstrap
their learning process in large dynamic (non-stationary) discrete simulation environ-
ments (Lin, 1992). One of the investigated solutions was to use the Dyna-Q archi-
tecture (R. S. Sutton, 1990) to learn action models and use these models to sample
hypothetical actions. Another tested solution consisted in storing the agent’s experi-
ence in a memory buffer and replaying it to bootstrap learning. Interestingly, one of
the main results was that the best performance was obtained by reversing the order
of the replay buffer, what we will call backward replay (i.e., replaying first the most
recent observation, then the second-to-last one, and so on until the oldest observa-
tion). This is because each time the buffer contains a rewarding observation, replay
leads to increasing the value of the action performed in the previous state, followed
by replaying precisely that previous state at the next iteration (because the buffer is
in reverse order), and thus increasing the value of the preceding action, and so on.
Consequently, single processing of the memory buffer results in reward value prop-
agation from rewarding states along the whole sequence of actions that the agents
had experienced to get the reward.

In parallel, other researchers further investigated the efficiency of model-based
(MB) techniques to sample hypothetical actions rather than replaying experienced
actions from a memory buffer. One example is called prioritized sweeping and con-
sists in replacing uniform model sampling with a prioritization that depends on the
absolute value of the reward prediction error (Moore and Atkeson, 1993; Peng and
Williams, 1993). While model-based methods can be conceived as ways of plan-
ning, thus different from model-free learning, they can nevertheless be seen as an
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alternative way to perform offline Q-value updates. Further, there is a mathemati-
cal equivalence between the sequence of Q-values obtained with model-based up-
dates and with model-free methods with replay (Seijen and R. Sutton, 2015). This
is why throughout this paper, we will discuss both model-based and model-free replay,
in the sense that they represent alternative offline reactivation mechanisms to up-
date action values. We will refer to model sampling as Simulation Reactivations and
sampling from a memory buffer as Memory Reactivations.

Strikingly, neuroscience research has found that the mammalian brain also seems
to perform some experience-dependent reactivations of neural activity, particularly
in a part of the brain called the hippocampus (M. A. Wilson and McNaughton, 1994).
These reactivations occur either when an animal is sleeping (Ji and M. A. Wilson,
2007) or during moments of quiet wakefulness between trials of the task (Karlsson
and Frank, 2009). Most importantly, these reactivations play an instrumental role in
learning and memory consolidation since blocking these neural reactivations leads
to impaired learning performance (Girardeau et al., 2009; Ego-Stengel and M. A.
Wilson, 2010; Jadhav et al., 2012), while new memories can be created by stimulating
reward circuits during these reactivations (De Lavilléon et al., 2015).

The computational neuroscience literature has recently compared the different
replay techniques from machine learning with the properties of hippocampal replay
recorded experimentally (Pezzulo, Kemere, and Van Der Meer, 2017; Cazé et al.,
2018; Mattar and Daw, 2018; Khamassi and Girard, 2020). Interestingly, the reacti-
vation of a sequence of states experienced by the animal during the task sometimes
occurs in the same forward order, and sometimes in backward order (Foster and M. A.
Wilson, 2006; Diba and Buzsáki, 2007). Nevertheless, a large part of hippocampal
reactivations occur in apparently random order, and the underlying computational
principle remains to be explained (see for instance the proposal of Aubin, Khamassi,
and Girard (2018)). Moreover, computational investigations recently found that pri-
oritized sweeping can also explain some properties of hippocampal reactivations
(Cazé et al., 2018; Mattar and Daw, 2018). However, it is not yet clear whether a
single unified computational principle can explain hippocampal replay, or whether
the brain alternates between different types of replay (backward, shuffled, priori-
tized / model-free versus model-based) in different situations (sleep versus quiet
wakefulness, depending on the difficulty of the task, the level of noise/uncertainty).

Thus, a new field of neurorobotics research is currently dedicated to integrating
offline reactivations in the reinforcement learning processes to improve and speed
them up. As mentioned above, this focus on offline reactivations is inspired by the
machine learning techniques created in the 90s and now commonly used in DeepRL,
as well as by the neuroscience results on hippocampal reactivations and the prob-
able cohabitation of model-based and model-free RL systems in the brain. With
robotic applications as an aim, these contributions must bridge the gap between per-
fectly controlled discrete state simulations and real embodied robotics experiments
in continuous environments. The goal of this research is to understand which replay
techniques give the best learning performance in different situations (constrained
corridor-based versus open maze environments; non-stationary goal locations and
maze configurations) and whether robotic tests lead to different conclusions than
simple perfectly controlled simulations (physical versus abstract simulations, au-
tonomous state decomposition by the robot, noisy perception). For instance, a re-
cent neural network-based simulation of a rat maze task highlighted that shuffled
experience replay was required to break the temporal data correlations, to learn a
neural internal world model (Aubin, Khamassi, and Girard, 2018). Notably, while
neurorobotics research during the last 20 years had already studied hippocampus
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models for robot navigation (Arleo and Gerstner, 2000; Fleischer et al., 2007; Dollé et
al., 2008; M. Milford and G. Wyeth, 2010; Caluwaerts et al., 2012; Jauffret, Cuperlier,
and Gaussier, 2015), to our knowledge the impact of different types of replay on the
performance of these models has only recently started to be investigated.

In this paper, we illustrate this line of research by presenting a series of numerical
simulations of laboratory mazes (used to study rat navigation in neuroscience) as
benchmark tasks for robotic learning. These simulations are presented in order of
increasing complexity toward real-world robotic experiments. At each step of this
presentation, we simulate and compare different replay techniques in either model-
free or model-based RL agents. We discuss the properties of these simulations, how
they contribute to improving learning in robots, and how they can also help generate
predictions for neuroscience.

4.1.2 Simulation of individual replay strategies in a
predefined discrete state space

This section presents a series of numerical simulations in a simple deterministic
maze task with predefined state decomposition. The task mimics the multiple T-
maze of Gupta et al. (2010), where rats have to follow constrained corridors and
make binary decisions (go left or go right) at specific T-like decision points (Fig. 4.1a).
This will enable us to illustrate the properties of different replay methods in the
same conditions as the perfectly controlled simulations usually performed in com-
putational neuroscience work. Then in the following sections, we will study what
happens in more open mazes where moreover, the robot will autonomously build
its state decomposition.

The work presented in this section contains two main differences with our pre-
vious computational neuroscience simulations of the multiple T-maze task (Cazé
et al., 2018; Khamassi and Girard, 2020)1: (1) in previous work, following experi-
ence replay techniques in machine learning, we had allowed the agent to perform
a series of replay iterations after each action; here, because it would be energy- and
time-consuming for a robot to stop after each action, we allow the simulated robot
to perform replay only at the end of the trial, while it is waiting for the subsequent
trial at the departure state; (2) we had simulated a version of model-based (MB) prior-
itized sweeping where the memory buffer contained one element per state; here, we
test whether it is also efficient to have an element for each (state,action) couple, thus
filling the memory buffer with multiple elements for the same state (as long as they
represent different actions).

Methods

We simulate the multiple T-maze task as a Markov Decision Problem (MDP), where
an agent visits discrete states s ∈ S , using a finite set of discrete actions a ∈ A.
States represent here unique locations in space, equally spaced on a square grid
(Fig. 4.1a), a piece of information expected to be provided by place cell activity in
the hippocampus (O’Keefe and Dostrovsky, 1971). The actions allowed the agent to
represent moves in the four cardinal directions: north, south, east, and west. During
the first 100 trials, the reward will always be located on the left arm. Then during
the successive 100 trials, the reward will be on the right arm, and the agent will have
to adapt its decisions accordingly.

1The updated code for these simulations is available at https://github.com/MehdiKhamassi/
RLwithReplay

https://github.com/MehdiKhamassi/RLwithReplay
https://github.com/MehdiKhamassi/RLwithReplay
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Here we simulate three model-free reinforcement learning algorithms and one
model-based one: MF without replay, MF with backward replay, MF with shuffled
replay, and MB prioritized sweeping (Table 4.1).

MF no replay MF backward replay MF shuffled replay MB prioritized sweeping

α 0.2 0.2 0.2 -

γ 0.99 0.99 0.99 0.99

β 3 3 3 3

ϵ - 0.001 0.001 0.001

N - 54 54 54

TABLE 4.1: Algorithm parameters used to generate the results in this
section. They have been taken from Cazé et al. (2018) without retun-
ing. α is the model-free (MF) learning rate. γ is the discount factor. β
is the inverse temperature in the softmax for decision-making (Equa-
tion 4.2). ϵ is the threshold for Q-values convergence during replay.

N is the maximal size of the episodic memory buffer.

For each Markovian state-action couple (s, a) in the environemnt, MF-RL agents
use Q-learning (Watkins, 1989) to learn the Q-value of performing action a from state
s, as follows:

Q(s, a)← Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)−Q(s, a)] (4.1)

Where R(s, a) is the reward obtained from the environment when performing (s, a),
and s′ is the arrival state after executing action a in state s.

At the next timestep, deciding which action to perform is computed by drawing
the next action a from a probability distribution given by the softmax Boltzmann
function applied to the Q values:

P(a|s) = eβQ(s,a)

∑i∈A eβQ(s,i)
(4.2)

With A being the set of all the possible actions from state s and β being the inverse
temperature parameter that regulates the compromise between exploration and ex-
ploitation: the closer to zero, the more the differences between the Q-values will be
attenuated, and thus the more the selection will be uniform (hence exploratory); con-
versely, large values (that can go up to infinity) will enhance the contrast between
the Q-values and will thus favor exploitation of the largest one.

In MF-RL backward replay and MF-RL shuffled replay and for all the other RL re-
play algorithms tested in this section and the next one (Sect. 4.1.3), we enable the
agent at each timestep to store in a memory buffer the quadruplet describing the
current observation: the previous state s from which the agent performed action a,
the resulting state s′ and the scalar reward r obtained from the environment (1 when
the rewarding state has been reached, 0 elsewhere). This memory buffer progres-
sively increases in size, timestep after timestep, but is limited by the maximal size
N (N being chosen to correspond to the number of states in the environment, see
Table 4.1). When the maximal size has been reached, adding a new element to the
buffer is accompanied by throwing away the oldest element.

When the agent has finished the current trial and reaches the departure state
again, a replay phase is initiated where at each replay iteration one element from
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the buffer is processed and the corresponding Q-value is updated following Equa-
tion 4.1. This is repeated until the sum of variations of Q-values over a window of
N replay iterations is below a certain replay threshold ϵ, which indicates that the
Q-values have converged and do not require to be updated anymore.

In the MF-RL backward replay algorithm (Lin, 1992), at the beginning of a new
replay phase, we reverse the order of elements in the buffer and then perform replay
iterations following the procedure explained above. In the MF-RL shuffled replay
algorithm, we shuffle the buffer elements before starting the replay phase.

We also test a model-based algorithm where the learning process aims at build-
ing a world model, i.e., a model of how the perceived world changes when actions
are taken. This model is conventionally composed of a transition function and a
reward function. The transition function T(s, a, s′) represents the probability of ob-
serving s′ next, if action a is taken while in state s. In the present discrete case, it
is built by storing the number of times each (s, a, s′) triplet was encountered and
dividing by the number of times (s, a) was experienced, as shown in the equation
below:

T(s, a, s′) =
VN(s, a, s′)

VN(s, a)
(4.3)

where VN(s, a) stands for the number of visits of state s when action a is then chosen
and VN(s, a, s′) is the number of transition from state s to state s′, having performed
action a. The reward function R(s, a, s′) represents the average reward signal ex-
perienced when effectively performing the (s, a, s′) transition. For the MB-RL pri-
oritized sweeping algorithm that we simulate here (Moore and Atkeson, 1993; Peng
and Williams, 1993), we add to each element in the memory buffer the absolute re-
ward prediction error ∆ measured when experiencing (s, a, s′, r) in the world. This
∆ can also represent the magnitude of change in Q(s, a), which resulted from this
observation. The memory buffer is sorted in decreasing order of ∆, thus giving a
high priority to be replayed to elements representing surprising events in the world
that resulted in important revisions of Q-values. In fact, Mattar and Daw, 2018 has
formally shown that deriving Expected Value of (Bellman) Backup (in other words, an
expected value of doing a replay) leads to maximizing a gain term, which is higher
for transitions that have been associated to larger reward prediction errors (hence
larger surprise) when the agent was experiencing the real world.

During the replay phase of MB-RL prioritized sweeping, we start by considering
the first element (s, a) of the buffer with the highest ∆. We use the world model
learned by the agent to estimate the virtual reward r and arrival state s′, and then
apply one iteration of the Value Iteration algorithm (R. Sutton and A. Barto, 1998) to
update the Q-value of (s, a), where k are all the possible actions starting from the
arriving state s′:

Q(s, a)← R(s, a) + γ ∑
s′

T(s, a, s′)maxk∈AQ(s′, k) (4.4)

From Equation 4.4, we can compute the new ∆ for the couple (s, a) and reinsert
it within the memory buffer with ∆ as the new priority level. Finally, we use the
world-model to find all possible predecessors of (s, a), i.e., couples (s′′, a′′), which
according to the model, enable the agent to reach state s. Because the predeces-
sors of a given state s can be challenging to determine in a stochastic world, Moore
and Atkeson, 1993 propose to consider as predecessors all the states s′′ which have,
at least once in the history of the agent in the current task, performed a one-step
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transition s′′ → s. The priority associated with a predecessor s′′ can thus be the cor-
responding absolute prediction error ∆pred and determines in which position it will
be inserted in the memory buffer, as introduced by Peng and Williams, 1993. The
replay phase then continues by processing the next element in the buffer with the
highest priority level, and so on, until one of the stop conditions described above is
met. For the sake of terminological clarification, what we call here a replay phase
for an MB algorithm corresponds to an inference phase. This is because MB-RL pri-
oritized sweeping does not replay memorized past experience but rather generates
Simulation Reactivations (SimR) through model sampling combined with the Value
Iteration algorithm described above. Thus, to transpose from MF to MB the replay
phase stop conditions described above, the size of the replay budget N (which could
also be called an inference budget in the case of MB) represents here a maximum
number of iterations that can be inserted in the prioritized memory buffer and re-
played through the Value Iteration algorithm.

Results

With the two changes that we made here compared to Cazé et al. (2018) and Khamassi
and Girard (2020) (i.e., (1) only allowing the simulated robot to do replay at the end
of the trial when reaching the departure state, and (2) storing distinct (state, action)
couple in the memory buffer for MB-RL prioritized sweeping rather than a single el-
ement per state), we found consistent performance results and only a difference in
terms of a reduced computational cost during replay phases, which we describe be-
low.

Figure 4.1b shows that the three algorithms with replay (i.e., MF-RL backward
replay, MF-RL shuffled replay, and MB-RL prioritized sweeping) quickly reached the op-
timal reward rate of 1 at the beginning of learning and then experienced only a brief
drop in reward rate after the change in reward location at trial #100. In contrast, MF-
RL without replay took longer to reach the optimal rate (approx. 60 trials) and barely
re-increase its reward rate within 100 trials after the change in reward location. So
the first conclusion is that any replay technique is equally valuable for enabling fast
learning in such a simple maze task with predefined state decomposition.

The second interesting observation has to do with the transient and nearly dis-
crete increases in replay time that are produced in responses to task changes (Fig-
ure 4.1b). All replay techniques enable the agent to avoid spending time performing
replay during most of the task. Moreover, they all show a sharp increase in replay
time after a change in reward location. Importantly, this property was also con-
firmed in our previous work, where replay was not restricted to the trial’s end but
allowed in any state of the task (Cazé et al., 2018). Thus it is interesting to note that
such a way to generate replay events is not only compatible with neurobiological
data (Cazé et al., 2018; Mattar and Daw, 2018) but also shows properties that could
be useful for autonomous robots: bursts of replay could be used by the robot as a
way to detect new task conditions automatically (but here the robot does not need
to label these events explicitly; it just needs to adapt and maximize reward). The rest
of the time, the agent starts each new trial without pausing, as if not showing any
hesitation, similar to what is classically observed in well-trained rats in similar tasks
(Gupta et al., 2010).

In addition, it is interesting to compare the duration of replay phases between
the different replay techniques. While there is no difference in the average number
of replay iterations after the change in reward location at trial #100 (Figure 4.1b),
MB-RL prioritized sweeping performs drastically fewer replay iterations than MF-RL
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backward replay and MF-RL shuffled replay during the initial learning phase (first 5-
10 trials of the task). Now that we restricted these algorithms to perform replay
only at the end of each trial, rather than after each action during the trial, MB-RL
prioritized sweeping performs even fewer replay iterations than what we previously
obtained in the same task (Cazé et al., 2018), without affecting its reward rate. The
new proposal to restrict replay to the inter-trial interval thus seems promising for
real robots. In Dromnelle, Renaudo, et al. (2020) (where we had not implemented
any replay mechanism yet), the robot took a few seconds after each trial to return
to the departure state. This short moment seems ideal to let the algorithm perform
replay without affecting the robot’s performance during the trial.

In the next section, we keep these principles and compare the same replay algo-
rithms in a more open environment where the robot autonomously learns to decom-
pose the task into discrete states, to verify that these algorithms still perform well
under these more realistic conditions.

4.1.3 Simulation of individual replay strategies with an
autonomously learned state decomposition

The neural activity of hippocampal place cells is often observed as showing tran-
sients and increases after surprising events (Valenti, Mikus, and Klausberger, 2018).
During maze navigation, surprising events mainly occur at locations in the environ-
ment that are associated with positive or negative outcomes. From these locations,
reverse replay, in particular, could reinforce spatial learning by occurring during
awake periods after the spatial experiences (Foster and M. A. Wilson, 2006). They
can potentially reinforce the surprising experience by propagating the outcome of
the event to states that the animal has encountered on its way to the reward or pun-
ishment site. Moreover, rewarding states are also very likely to initiate replay activ-
ity in the hippocampus, to enhance the memory consolidation of novel information
(Michon et al., 2019). During these events, the reactivation of the hippocampus neu-
ral activity is thought to be initiated by rewarding outcomes to bind this unexpected
positive experience to the events that preceded it (Singer and Frank, 2009).

One of the first and most relevant experimental protocols to study these and
other phenomena related to spatial navigation learning in rodents is the Morris Wa-
ter Maze (Morris, 1981). In this work, rats were introduced to a circular pool with
opaque water and removed only after reaching a hidden platform located just be-
low the water’s surface. Even though the rats could not see the platform, they could
still localize it spatially. This was found even in cases where their starting point
changed within the pool, thus indicating a robust spatial memory.

In this section, the same MF-RL and MB-RL replay strategies (Memory Reac-
tivations (MemR) and Simulation Reactivations (SimR), Sect. 4.1.2) are tested in a
more realistic robotic set-up, where the discretization of the environment in multi-
ple Markovian states is autonomously performed by the robot 2. Similarly to the
experiment in Section 4.1.2 and to what has been experimentally observed by Foster
and M. A. Wilson (2006), the replay phase takes place once the agent has reached
the reward state to enable offline learning of Q-values, as previously done by Mat-
tar and Daw, 2018. Neurobiologically, even though Vicarious Trial and Error (VTE)
plays an essential role in animals’ reasoning and decision-making (Tolman, 1939;
Redish, 2016), it usually happens in uncertain moments, such as at beginning of the
experiment, at decision points or surprising spots (Cazé et al., 2018; Khamassi and

2The code for these simulations is available at https://github.com/esther-poniatowski/
Massi2022

https://github.com/esther-poniatowski/Massi2022
https://github.com/esther-poniatowski/Massi2022
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Girard, 2020) and can also be unconsciously constrained by the attempt to limit the
opportunity cost (Keramati, Dezfouli, and Piray, 2011).

This aspect is particularly crucial for the robotic experiment because it allows the
agent to spend the Inter Trial Interval (ITI) updating the Q-table based on replay of
its past experience. Usually, this time interval does not require expensive computa-
tions for the robot, since it does not need to make any decision on its way back to
the starting position, and by replaying past experience, the learning speed could be
enhanced without losing important experimental time.

The research question addressed whether MF-RL or MB-RL replay strategies
could enhance spatial learning for artificial agents and robots. We found it inter-
esting to first test our proposed algorithm in a simulated version of an experimental
task (Morris, 1981) and eventually investigate if there were any differences between
replaying reverse sequences of actions, random transitions, or the most surprising
transitions, similar to what has been done in Section 4.1.2.

Like in the previous section, the presented simulated experiment investigates the
role of diverse replay strategies relative to a changing reward condition. Moreover,
the aim is also to investigate whether replays are relevant when transitions between
the states of the task are stochastic. These simulations thus bring us to more realistic
robotic experiments in stochastic and dynamical environments.

Materials and Methods

To study the implications of offline learning in spatial navigation, from rodent be-
havior to robotics, we have first investigated the role of two MF- and one MB-RL
replay techniques (as in Sec. 4.1.2) in a circular maze, consistent with the original
Morris water maze task (Morris, 1981) in terms of environment/robot size ratio.
Then, the learning performances of the analyzed replay techniques are discussed in
two main conditions:

• A deterministic version of the task, where an action a performed in a state s
will always lead the robot to the same arrival state s′ with probability 1.

• A stochastic version of the task, where performing action a in state s is associ-
ated with non-null probabilities of arriving in more than one state.

Learning algorithm and replay
As in the previous series of simulations (Sec. 4.1.2), here the simulated agent is

learning using either classical MF-RL Q-learning (Watkins (1989), Eq. 4.1) or MB-RL
prioritized sweeping learning (Moore and Atkeson, 1993; Peng and Williams, 1993).
The values of their parameters (learning rate α and the discount factor γ) are shown
in Tab. 4.2.

The first implementation of offline learning techniques that we tested is the MF
backward replay. Similar to the double T-maze experiment in Sect. 4.1.2, the offline
learning phase happens once the agent has reached the reward state, which indicates
the end of a trial. All along with the trial, the Q-values Q(s, a) of the state-action cou-
ple (s, a) are updated with Eq. 4.1, and once the rewarding state has been reached,
they are updated again in reverse order, starting from the reward state. These back-
ward sequences can be up to N updates long if the agent has gained enough past ex-
perience and stored it in its memory buffer. The reverse sequences are then replayed
until the sum of variations of Q-values over the last replay repetition is below a cer-
tain replay threshold ϵ (Tab. 4.2). Given the size of the environment (36 states), these
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N long backward replay sequences can also involve experiences that happened dur-
ing the previous trials of the same agent (i.e., during the previous attempts to get
to the reward). In this way, the robot can transfer the acquired knowledge through
different trials and learn more efficiently.

The second replay strategy that has been tested is MF shuffled replay; in this case,
in the ITI, the internal values Q(s, a), are randomly ordered and then updated by
Eq. 4.1. As for the MF backward replay, the memory buffer that is accessible to initiate
the reactivations keeps in memory the latest N transitions (Tab. 4.2). Also, in this
case, the agent can benefit from the experience acquired during the latest trials and
learn to extract more general and valuable knowledge from its recent and uncorre-
lated past actions (because of shuffling). The ITI replay phase lasts until the sum of
the Q-values is converged under an ϵ value given in Tab. 4.2.

As for Sect. 4.1.2, we compared the learning performance of the above-explained
MF replay strategies to an MB prioritized sweeping algorithm (Moore and Atkeson,
1993; Peng and Williams, 1993). The implementation of the latter is the same as de-
scribed in Sect. 4.1.2, and the convergence criterion is reached when the prioritized
replay buffer, which can be maximum N transitions long, is empty. The experimen-

tal set-up and implementation

a b

FIGURE 4.2: Description of the experimental set-up. A) map of the
discrete states of the maze, identified by the robot during the explo-
ration on Gazebo. The initial state and the two rewarding states are
also highlighted. B) the ROS Gazebo simulated Turtlebot 3 in the cen-

ter of the circular environment.

The simulated experimental set-up intends to replicate a Morris water maze task:
the agent is introduced in a new circular environment and has to learn how to reach
a particular location associated with a positive reward (Morris, 1981). In our set-
up, the agent is a Turtlebot3 Burger, simulated with the Robot Operating System
(ROS) middleware and the Gazebo simulation environment (Quigley et al., 2009).
The water maze is represented as an empty circular arena surrounded by high walls
(Fig. 4.2b).

The robot discovers and defines the different discretized areas in the maze by
autonomously navigating within the environment. Despite the odometry and the
laser sensor being installed on the robotic device, the acquired space representa-
tion is allocentric. This is an emergent property of the automatic clustering process
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when applied to robot sensor data in a task where the robot can only move in a
horizontal plane, as found in previous neurorobotics work (Caluwaerts et al., 2012).
The robot, in fact, explores by selecting between 8 directions of motion defined in
the environment’s global reference frame, and its current position and orientation
are also elaborated in the maze reference frame. This allocentric description of the
robot movements and the states of the maze is possible thanks to a re-mapping of
the relative position of the robotic agent and the discretized states to the reference
coordinate system of the map. This is possible thanks to the 360 Laser Distance Sen-
sor of the robotic platform, combined with the use of a classical SLAM technique.
Note that such an allocentric space representation is compatible with neurophysi-
ology (hippocampal place cell activity) and can also be combined with egocentric
representations to account for a variety of experimentally observed animal behav-
iors during navigation tasks (Khamassi and Humphries, 2012). The discrete MDP,
presented in Fig. 4.2a, is obtained thanks to a Rao-Blackwellized particle filter that
builds grid maps from laser range data (Grisetti, Stachniss, and Burgard, 2007). The
simulated implementation of this Simultaneous Location and Mapping Algorithm
(SLAM) on ROS Gazebo is called GMapping.

This state decomposition process makes the robot able to immediately create new
states if necessary. However, in our work, the aim was to create the finest and most
robust possible discretization of the maze to be then employed in all the simula-
tion experiments where we tested the different replay strategies. As observed by
Khamassi, 2007; Chaudhuri et al., 2019; Benchenane et al., 2010, rats could re-explore
the whole maze every day before doing a learning task, and that could reflect their
need to rapidly acquire and stabilize a state representation before starting an extra
learning process.

For these reasons, the robot performs a long autonomous exploration phase to
acquire its state representation before starting the learning phase. During the first
48-minute-long exploration in Gazebo, the SLAM algorithm estimates the current
robot coordinates. Whenever the robot is more than 15 cm away from any existing
state, the algorithm creates a new state, whose reference position is the current. This
results in a Voronoi partition of the space, composed here of 36 states (Fig. 4.2a). This
15 cm state radius was chosen to be similar to the robot footprint of 13,8 x 17,8 x 19,2
(L x W x H, cm). The action space A instead contains 8 homogeneously distributed
directions of motion, defined with respect to the world reference frame (same as for
Sect. 4.1.4, Fig. 4.8a top right).

Then we ran another free exploration of the arena by the simulated Turtlebot3
robot to automatically learn the transition probabilities p(s′|s, a) that can be approx-
imated from randomly executing different actions a in different states s, and observ-
ing the arrival state s′. This second free exploration phase was chosen to be 5357-
action long, the same duration as for the results that will be presented in Sect. 4.1.4.
Lesaint et al., 2014 found that when an agent was progressively learning its transi-
tion function during the task, the RL model was better at accounting for rat behavior
than a model with a prior given transition function.

In practice, the transition probabilities autonomously learned by the robot dur-
ing free exploration in Gazebo are stochastic: the same action a performed in the
same state s can lead to more than one state with non-null probabilities. For in-
stance, moving north from state #31 alternatively leads to states #0,5,6,16 and even
sometimes to state #31 itself when the robot initiated its movement from the bot-
tom part of this state (Fig. 4.2a). Such stochasticity results from several properties:
(1) because the states autonomously decomposed by the algorithm are not evenly
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distributed; (2) because the experiments are performed in a simulated physical en-
vironment, which includes frictions between the robot’s wheels and the floor, and
where the robot sometimes moves too close to the walls, thus triggering its obstacle-
avoidance process, hence resulting in a different effect of the same action performed
without obstacle-avoidance.

The actual level of uncertainty of the stochastic version of the task is displayed in
Fig. 4.10a, where each state s has an entropy Henv(s) computed as in the equation 4.5,
where A is the set of all the possible actions a from state s, s′ are all the possible
arrival states from the original state s and p(s′|s, a) is the probability that the agent
arrives in state s′ after starting from state s and performing action a:

Henv(s) = max
a∈A ∑

s′
−p(s′|s, a) log2 p(s′|s, a) (4.5)

Finally, in order to obtain a deterministic version of the same task from these au-
tonomously learned transition probabilities p(s′|s, a), for each (state,action) couple
(s, a), we search for the state s′ with the highest probability of arrival (i.e., s′ =
argmax

x∈S
[p(x|s, a)]), and set p(s′|s, a) = 1 while setting p(s′′|s, a) = 0 for all other

states s′′(s′′ ̸= s′). The deterministic version of the task consists, in fact, in the sim-
plification of the interaction between the robot and the environment, meaning that
the trajectories that the robot can cover in the same environment are reduced. To
quantify the simplification of the resulting MDP, we have performed an analysis of
the trajectories which have been taken by the four different algorithms in the two
different environments. We compute the pairwise Fréchet distance of these trajecto-
ries to the optimal one, found by following a greedy optimal policy. Fig. 4.3 shows
this analysis during the first half of the experiment when the reward is fixed in state
#22. The results from this analysis show that, for all the adopted strategies, in the
stochastic environment (Fig. 4.3b), the sparsity of the trajectories around the opti-
mal path is generally higher compared to the same deterministic case Fig. 4.3a). To
assess the difference among these distance distributions, we did a Kruskal-Wallis H-
test (Kruskal and Wallis, 1952), founding them significantly different from each their
corresponding distribution in the other environment. The conversion of the envi-
ronment in a deterministic MDP is then intrinsically limiting the level of exploration
of the agents, resulting in two very different scenarios. However, it is crucial to in-
vestigate this transition, given our intent to study the role of RL replay strategies in
robotic navigation, from a theoretical to a more realistic robotic outline.

To replicate a non-stationary task similar to the one in the original experiment
(Morris, 1981), we changed the reward location from state #22 to state #4 at trial 25.
We tested the learning performances of the agent with four different replay strategies
(no replay, MF backward replay, MF shuffled replay and MB prioritized sweeping)
and in two different environments: a deterministic and a stochastic version of the
task.

Results

To assess the actual contribution of the tested replay strategies to the learning process
of the described spatial navigation task, an unbiased learning rate αbest has to be
found. Since αbest could be different depending on the unpredictability of the MDP
which simulates the task (i.e., deterministic or stochastic), we simulated 100 robotic
agents performing 50 trials to get to the rewarding states, for a set of uniformly
distributed α values between 0 and 1 (Fig. 4.4). For each value of α, we looked at the
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a b

* ** ** **

FIGURE 4.3: Analysis to investigate the level of the sparsity of the ex-
plored trajectories by the agent. The Fréchet distance has been com-
puted for the first half of the simulation. ** stands for p-value lower
than 0.001 and * for p-value lower than 0.05. A) The extension of the
Fréchet distance to the optimal trajectory in the deterministic case for
all the algorithms. B) The same extension of Fréchet distance in the

stochastic environment.

average value action(α) along the trials, with action(α) being the number of actions
needed by the robot to get to the rewarding states. This value is computed for both
the deterministic (Fig. 4.4a) and the stochastic worlds, considering the entirety of the
experiment, and the minimization of the sum of these two values is used to identify
the final αbest (Fig. 4.4b and Tab. 4.2) as described in the equation below:

αbest = argmin
α∈A

(actiondeterministic(α) + actionstochastic(α)) (4.6)

where A is the set of tested α values.
Once identified the most appropriate value for the learning rate α, the following

four replay conditions have been tested in the task:

• MF-RL no replay

• MF-RL backward replay

• MF-RL shuffled replay

• MB-RL prioritized sweeping

and the other relevant parameters for the experiment are described in Tab. 4.2.
The main results are shown in Fig. 4.5. The four different RL algorithms (no

replay, backward replay, shuffled replay, and prioritized sweeping) are compared
in terms of the number of model iterations to get to the rewarding state (Napierian
logarithm of the first, median, and third percentiles over the behavior of 100 robotic
agents). The task changes at trial #25 when the reward switches from state #22 to
state #4 (Fig. 4.2).
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FIGURE 4.4: Performed analysis to find out the best learning rate α
for all the replay strategies and the two environments (deterministic
and stochastic). For different values of α, the figure shows the first,
median, and third percentile of the number of actions to get to the
reward, over 100 agents completing the simulated experiment over
50 trials. The average minimum number of model iterations to get
to the reward is found for α equal to 0.8, and it was used for all the
presented experiments (Tab. 4.2). A) Performances of the tested algo-
rithms across the α values in the deterministic version of the maze. B)
Final selection of α considering the mean performances between the

deterministic and the stochastic version of the maze.

When the task is deterministic (Fig. 4.5a), all the three RL algorithms with replay
learn a short path to the reward significantly faster than the MF-RL no replay learner
(Fig. 4.5a and b, Trials 1-5). The same situation occurs when the reward position
is switched at trial #25, assessing RL replays’ role in improving the learning speed
after such a task change (Fig. 4.5a and b, Trials 26-30). When the environment is
stochastic, the situation is similar and, in particular, the prioritized sweeping algo-
rithm is learning significantly faster than the other replay strategies (Fig. 4.5b, Trials
26-30) reflecting the importance of an MB strategy (with MB replay) to faster adapt
to dynamical tasks, when the transition model is not deterministic. This suggests
that moving towards more complex robotic tasks, MB-RL models of replay may be
preferred since the higher information processing regarding the model of the envi-
ronment at the beginning of the task can save real experimental time when the robot
would need to adapt later in the experiment.

Moreover, the logarithmic scale makes it easier to notice that the no replay agent,
even if it is slower at the beginning of the task, can converge to paths that are sig-
nificantly shorter than the one covered by the other strategies before the change
in reward location (Fig. 4.5a and b, Trials 20-25). In the stochastic environment, in
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No replay MF backward replay MF shuffled replay MB prioritized sweeping

α 0.8 0.8 0.8 0.8

γ 0.9 0.9 0.9 0.9

β 15 15 15 15

ϵ - 0.001 0.001 0.001

N - 90 90 90

TABLE 4.2: Algorithm parameters used to generate the results in this
section. α is the learning rate, optimized as shown in Fig. 4.4 and
Eq. 4.6 and γ is the discount factor. β is the inverse temperature
in the softmax function for decision-making (Equation 4.2), and its
values were found by optimizing both the convergence time and the
performance of the tested algorithms. N is the maximal length of the
episodic memory buffer. This value was selected to replay the entire
real experience during the first trials of the experiment and to replay
experiences from several past trials later in the simulation. Finally, ϵ

is the convergence threshold as for Sect. 4.1.2 and Cazé et al., 2018.

particular, the MB-RL prioritized sweeping algorithm reinforces the experience of a sub-
optimal path, resulting in performance significantly different from the ones obtained
from the other two replay strategies (Fig. 4.5b, Trials 20-25). This shows that, even
if the stochastic environment leads the MF-RL replay strategy to explore the maze
more, the MB-RL prioritized sweeping algorithm, that can learn the transition model
from the beginning of the task, is not subjected to this “push” towards exploration
and keeps reinforcing the shortest path previously found.

Instead, in the second convergence phase (Trials 45-50), we highlight the fact that
the no replay agent is not showing anymore statistically better performances than all
the replay algorithms (Fig. 4.5a and b, Trials 45-50). In the deterministic case, it still
reaches the shortest path to the reward. However, the prioritized sweeping agent is
also significantly better than the MF-RL shuffled replay strategy (Fig. 4.5a Trials 45-50).
On the other hand, in the stochastic case, the MB-RL prioritized sweeping’s knowledge
of the environment makes it attain performances that are compatible with the ones
from the no replay strategy. In this case, we can notice that the replay strategies
perform differently, with the shuffled replay, which performs worse than the other
two replay strategies. This re-adaptation phase gives the agents the opportunity
for more exploration, particularly the replay agents, which have strongly reinforced
their previously experienced trajectory to maximize the reward and propagate this
knowledge throughout the environment. As already happened in the second learn-
ing phase (Fig. 4.5b, Trials 26-30), the MB-RL prioritized sweeping algorithm signifi-
cantly exceeds the performance of the other replay algorithms and converges to a
shorter path to the reward. This gives insights into the need for a more consolidated
knowledge of the environment (and so of the agent’s interaction with it) for adaptive
tasks. Consequently, we can predict that animals would need to retrieve knowledge
about their experienced and learned model of the world to adapt more efficiently to
dynamic circumstances.

Following the results shown in Fig. 4.5, we have further investigated the learning
and replay dynamics of the proposed strategies. In Fig. 4.6, the level of propagation
of the Q-values (Eq. 4.1) over the environment is shown for the different tested RL
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(a)

(b)

FIGURE 4.5: Performances of the simulated robot, learning the non-
stationary task, and a post hoc Wilcoxon-Mann-Whitney pairwise
comparison test on the relevant trial intervals among the different
curves. The post hoc test has been performed following a Kruskal-
Wallis H-test (Kruskal and Wallis, 1952) to reject the null hypothesis
that the population median of all of the algorithms’ average perfor-
mances was equal. ** stands for p-value lower than 0.001 and * for
p-value lower than 0.05. A) Deterministic environment. B) Stochastic

environment.

algorithms and for both the deterministic (Fig. 4.6a) and the stochastic (Fig. 4.6b) en-
vironments. The shown learning dynamics are representative of the different strate-
gies since they show the individual’s behavior, which is the closest to the median
performances of all the 100 individuals for each strategy.

In both cases (Fig. 4.6a and 4.6b, Trials 1,2 and 25), the presence of replay pro-
vides a drastically more extensive propagation of the Q-values, starting from the
first reward state (22). This explains the significantly faster learning performances



116 Chapter 4. Scientific contributions in machine learning and robotics

Tr
ia

l 1
Tr

ia
l 2

Tr
ia

l 2
5

Tr
ia

l 2
6

a b

FIGURE 4.6: Learning dynamics of the most representative individ-
ual: covered trajectory and replay at some critical trials. Also, for each
state s, the maxQ(s, ai), among all the ai, with i from 1 to 8 (Fig. 4.8a,
top right), is represented. The initial state and the reward state are
also represented in the figure. A) Experiments in the deterministic

MDP. B) Experiments in the stochastic MDP.

observed in the algorithms with replay compared to the MF-RL no replay method. In
both environments, the no replay method is slower to learn. However, it explores
more in the first trials (Trial 1 and 2), and that leads it to generally find a shorter path
to the reward location in the end (Trial 25) compared to the other learning strategies
(as shown in Fig. 4.5a and, Trials 20-25).

Comparing the two types of environments, we can understand that the MDP’s
stochasticity level leads to a larger exploration of the environment for all the strate-
gies (Fig. 4.6b, looking at the explored trajectories and the replayed transitions). This
results in a more extensive propagation of the maze Q-values, particularly in the
prioritized sweeping algorithm. As in the deterministic case, the MB-RL prioritized
sweeping is replaying a broader range of transitions after the first trial compared to
the other strategies. With this MB-RL replay strategy, the replay activity is led by the
surprise of the experienced events, resulting in longer replay phases, happening just
at specific moments in the task (some of them are well visible in Fig. 4.6, Trial 1 and
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26). This happens in both environments also thanks to the implementation of the al-
gorithm, which also examine the predecessor of the surprising state (Sect. 4.1.3) and
to the acquired knowledge of the environment (in particular in Trials 26, when the
reward position changes). In both environments, as expected from the previously
analyzed learning performance in Fig. 4.5, there is no practical difference in terms
of Q-value propagation between MF-RL backward replay and MF-RL shuffled replay.
Furthermore, the explored trajectories and the replay are also very similar, resulting
in not significantly different performances (Fig. 4.5).

These results, which simulate a spatial learning experiment for rodents (Morris,
1981) in a robotic framework, suggest some first advantageous properties of using
replay-inspired strategies in neurorobotics. Our results imply that MF-RL replays
could be sufficient to speed up learning and adaptation to non-stationarity (Fig. 4.5,
Trials 1-5 and 26-30), but MB-RL replay strategies could improve the adaptability
of the system even more, with a higher level of stochasticity which often charac-
terizes real robotic scenarios (Fig. 4.5, Trials 26-30). The proposed models and ex-
periments contribute to a deeper understanding of the advantages and limitations
of the existing RL replay models in such robotic tasks. This experimental compari-
son, examining either a deterministic or stochastic version of the same environment
(which implies a significantly different level of explored trajectories in the maze, see
Fig. 4.3) was helpful to observe that RL replay gives an important contribution to a
robotic spatial learning task, even if the model of the interaction robot-environment
is stochastic. Nevertheless, a good compromise between the exploration capabil-
ity of MF replay strategies and the adaptability of MB ones has not yet been found
within these experiments.

The following section will illustrate the performances of RL replay strategies in
spatial learning when they are tested in combination in an MF-MB RL hybrid learn-
ing architecture in a more complex environment with obstacles, higher stochasticity,
and non-stationarity.

4.1.4 Combining model-based and model-free replay in a changing envi-
ronment

Hippocampal replay has not only been interpreted as a memory consolidation pro-
cess from past experience (Foster and M. A. Wilson, 2006; Girardeau et al., 2009),
putatively model-free but also as a possible model-based planning process that en-
ables the mental simulation of hypothetical actions (Gupta et al., 2010; Ólafsdóttir,
Bush, and Barry, 2018; Khamassi and Girard, 2020). Along these lines, it has been
argued that model sampling can not only be used for planning but also to update
action values (Seijen and R. Sutton, 2015; Cazé et al., 2018; Mattar and Daw, 2018).
Moreover, some sequences of reactivated hippocampal neurons cannot be accounted
for as a simple model-free reactivation of past experience and rather seem to repre-
sent creative combinations of past and experienced trajectories, which can only be
accounted for by a model-based process (Gupta et al., 2010).

This suggests that both model-free Memory Reactivations (MemR) and model-
based Simulation Reactivations (SimR) are required to account for the diversity of
hippocampal replays. Importantly, state-of-the-art models of reinforcement learn-
ing processes in the mammalian brain assume a co-existence of model-based and
model-free processes (Daw, Niv, and Dayan, 2005; Dollé et al., 2010; Keramati, Dez-
fouli, and Piray, 2011; Khamassi and Humphries, 2012; Pezzulo, Rigoli, and Chersi,
2013; Dollé et al., 2018; A. G. Collins and Cockburn, 2020). Hence, neurorobotics
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constitutes a promising research area to study replay in robot control architectures
that combine MB and MF reinforcement learning processes.

The experiments presented in the previous sections have analyzed the comple-
mentary properties and performances of MF replay and MB replay. In our presented
tasks, RL agents with MB replays tended to be slower to converge to an optimal solu-
tion but eventually reached a faster path to the reward location. On the other hand,
the same agent with MF replay learned faster but converged to a suboptimal solu-
tion. In this section, in addition to pushing robot simulations towards more complex
environments with stochasticity and non-stationarity, we want to examine the ben-
efits of combining Simulation Reactivations (SimR, similar to Pezzulo, Rigoli, and
Chersi (2013) and Keramati et al. (2016), but unordered) and Memory Reactivations
(MemR) in a robot control architecture which includes both MB and MF RL 3. We
thus investigate the effects of including replay in the algorithm proposed in Drom-
nelle, Renaudo, et al. (2020), which coordinates a Model-based and a Model-free RL
expert within the decision layer of a robot control architecture. Interestingly, this al-
gorithm had been previously tested in a navigation environment that includes open
areas, corridors, dead-ends, a non-stationary task with changes in reward location,
and a stochastic transition function between states of the task. In these conditions,
previous results showed that the combination of MB- and MF-RL enables the robot
to (1) adapt faster to task changes thanks to the MB expert and (2) avoid the high
computational cost of planning when the MF expert has been sufficiently trained by
observation of MB decisions (Dromnelle, Renaudo, et al., 2020). Nevertheless, re-
play processes have not been included in this architecture yet, and the present paper
is the opportunity to do it.

The results that we are going to illustrate and discuss in the following subsec-
tions present the combination of SimR and MemR as a critical resource to optimize
the trade-off between the increase in performance and the reduction of computa-
tional cost in a hybrid MB-MF RL architecture when solving a more complex non-
stationary navigation task than the two previous sections.

Materials and Methods

The robot control architecture proposed in Dromnelle, Renaudo, et al., 2020, and
also successfully applied to a simulated human-robot interaction task in Dromnelle,
Girard, et al., 2020, takes inspiration from the mammalian brain’s ability to coordi-
nate multiple neural learning systems. Such ability is indeed considered to be vital
in making animals able to show flexible behavior in various situations, to adapt to
changes in the environment while simultaneously minimizing computational cost
and physical energy (Renaudo et al., 2014). The proposed architecture in Fig. 4.7 is
composed of a decision layer where a model-free (MF) expert and a model-based
(MB) expert compete to determine the next action of the system. Both experts pass
through three phases: learning, inference, and decision. Finally, a meta-controller
(MC) determines which proposed decision will be executed, following an arbitra-
tion criterion described below.

Model-based expert
The MB algorithm is implemented to learn a transition model T and a reward model
R of the specific task. Thanks to these two learned models, it can predict the con-
sequences of a given action several steps ahead and adapt faster to non-stationary

3The code for these simulations is available at https://github.com/elimas9/combining_MB_MF_
replay

https://github.com/elimas9/combining_MB_MF_replay
https://github.com/elimas9/combining_MB_MF_replay
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FIGURE 4.7: Robot control architecture. The agent-environment inter-
action can be described by (1) the state and the reward as perceptual
information (continuous arrows) from the environment and (2) by the
action (dashed lines) that the agent operates in the environment. The
perceptual information is used by the Model-Free, the Model-Based
expert, and the Meta-Controller (in purple). Based on this informa-
tion and memory of their previous performances, the Meta-Controller
estimates the entropy and computational cost of the experts, con-
sistently with the criterion in Eq. 4.13, and thus chooses the expert
that will be allowed to infer the probability distribution of the next
agent’s actions. This distribution, and the times consumed to com-
pute it (dashed arrows), are then sent to the Meta-Controller. Differ-
ently from Dromnelle, Renaudo, et al. (2020), both experts here have a
’replay’ (reactivation) budget (limited or until convergence) that will
affect both their performance and computation time and thus impact
the Meta-Controller’s arbitration. Here, shuffled Memory Reactiva-
tions (MemR) are integrated with the Q-learning algorithm of the MF
expert, while Simulation Reactivations (SimR) constitute the offline
MB inference iterations in the Value Iteration algorithm of the MB ex-

pert.

environments. Yet these computations are very costly (i.e., 1000 times higher than
the computations of the MF expert in Dromnelle, Renaudo, et al. (2020)).

During the learning process, the transition model and the reward model are up-
dated at each timestep after observing the departure state s of the robot, the action
a that it has performed, the arrival state s′, and the scalar reward r that this transi-
tion may have yielded. The transition model is updated by estimating T(s, a, s′), the
probability of arriving in s′ from (s, a), considering the past Ttw actions (Tab. 4.3).
This probability is computed as already shown in Eq. 4.3. Besides, the reward model
R(s, a, s′) is updated by considering the most recent reward rt associated with the
transition (s, a, s′), multiplied by the probability of the transition itself in Eq. 4.3.

The inference process estimates the action-value function via the Value Iteration al-
gorithm (R. Sutton and A. Barto, 1998), and it operates as an offline planning phase
that is continuously called every decision step, just before a decision is made by the
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agent about which action to perform. The maximal duration of this planning pro-
cess can be determined either by setting a finite budget for the number of transitions
over which the agent will evaluate its decision or by employing a convergence crite-
rion based on the sum of the absolute action-value function estimation errors. More
precisely, the planning terminates at iteration c if:

∑
s,a

∣∣δc
s,a
∣∣ < ϵMB where (4.7)

δc
s,a = ∑

s′
p(s′|s, a)[Rc

s,a + γV(s′)c]−Q(s, a)c (4.8)

Here Rc
s,a is the reward function of performing action a from state s at the offline

reactivation c and V(s′) is the value function of the arriving state s′ at reactivation c,
from state s and action a. γ is the discount factor (Tab. 4.3).

Finally, the decision process chooses the next action to be performed by the robot
by converting the action-value function into a probability distribution using a soft-
max function (see Eq. 4.2), with an exploration/exploitation trade-off parameter β
given in Tab. 4.3.

Model-free expert
The MF algorithm does not learn any transition or reward model of the task, in
contrast to the MB expert. Rather, it locally updates the current action-value function
Q(s, a) at each timestep. This property of the MF expert saves computational cost,
compared to the MB expert, at the expense of slow adaptability to task changes,
given the expert’s lack of topological knowledge of the environment.

The inference process consists of reading from the Q-table the line corresponding
to s, which is then used by the decision process. The latter chooses the next action
from the Q-values, also converted to a probability distribution with a β trade-off
parameter in Tab. 4.3.

For the MF-RL expert, the learning process is defined as a tabular Q-learning al-
gorithm in which the action-value function Q(s, a) is updated according to Eq. 4.1.
Following the online learning phase, shuffled replay is performed, using the (s, a, s′, r)
tuples experienced by the agent in a given time-window of past transitions Rtw (Tab.
4.3). As for the MB expert, these offline updates stop when either the maximal pre-
defined budget is exhausted or when the Q-values have converged. Since the MF
expert does not know the transition probabilities of the task, a convergence test is
computed for every offline learning iteration c as in Eq. 4.9, where actc

s,a = τ · actc−1
s,a ,

with actc̃s,a
s,a = RB during the first time c̃s,a when that specific transition is selected for

replay and with act0
s,a = 0. act is an activation function defined for each couple

(s, a), and it is 0 if (s, a) has not been replayed before or otherwise it decays from RB
(Tab. 4.3) along the replay iterations c with a time constant τ (Eq. 4.11).

∑
s,a

δc
s,aactc

s,a < ϵMF where (4.9)

δc
s,a = |Q(s, a)c −Q(s, a)c−1| (4.10)

The principle behind the design of this convergence criterion is that the importance
of each δs,a (Eq. 4.10) starts as RB and decreases over the offline learning iterations c,
following the decay constant τ (Eq. 4.11). This strategy does not constrain the num-
ber of needed replay iterations because the agent would still perform replays due to
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high ∑s,a δc
s,aactc

s,a. Nevertheless, this value will slowly decrease the need for more
replay iterations along with the offline learning phase. RB is a value representing
one of the possible replay budgets needed to obtain performances that are compara-
ble to the maximum amount of reward that the expert can collect, thus not inhibiting
the offline learning phase when needed. Finally, the convergence threshold ϵMF is an
order of magnitude larger than ϵMB (Tab. 4.3. which is the same used in Dromnelle,
Renaudo, et al. (2020)). The MF expert does know the probabilities contained in the
transitions model in Eq. 4.3. For this reason, its convergence criterion is based on the
actual update of the action-value function Q(s, a). This means that, in the MF case,
the δc

s,a are not multiplied by any probability derived from the world model. Thus
their values will usually be an order of magnitude larger than the δc

s,a of the MB case,
multiplied instead by the probability of a given (s, a, s′, r) tuple.

τ = RB

√
ϵMF

RB
(4.11)

Meta-controller
The MC selects which expert will take control of the next action by following a

specific criterion that is a trade-off between the learning performances and the com-
putational cost of the inference process of the two agents, and it is called Entropy and
Cost (EC) (Dromnelle, Renaudo, et al., 2020).

On the one hand, the quality of learning is computed by Eq. 4.12 where f (P(a|s, E, t)
is a low-pass filtered action probability distribution with a time constant τ = 0.67,
previously used as an indicator of the learning quality in humans (Viejo et al., 2015).

Hexp(s, E, t) = −
|A|

∑
a=0

f (P(a|s, E, t)) · log2 ( f (P(a|s, E, t))) (4.12)

On the other hand, the cost of the process C(s, E, t) is the computation time needed
to perform the inference phase for the expert E, at time t, and it is also filtered as the
action probability distribution above.

Eventually, the MC chooses which expert will take control of the next decision
by following the equation below (Dromnelle, Renaudo, et al., 2020):

EX(s, E, t) = −(Hexp(s, E, t) + κC(s, E, t)) (4.13)

EX(s, E, t) is the expertise value of the expert E, which is then converted into a distri-
bution of probabilities using a softmax function. κ weights the impact of time in the
criterion by assigning greater importance to the computation time when the entropy
component Hexp(s, E, t) of the MF experts is low.

After applying Eq. 4.13, the MC draws the winning expert from the softmax of
the distribution of their expertise EX(s, E, t) (with a trade-off coefficient β shown in
Tab. 4.3 and inhibits the inference process of the expert that is not selected.

The experimental set-up and implementation
This new hybrid MB-MF RL architecture with replay is tested in a dynamic naviga-
tion task where the robot has to learn how to reach a unitary rewarding state. The
task remains stationary during the first 1600 over 4000 iterations, and then the re-
ward is moved to another state (from state 18 to state 34, Fig. 4.8). In this experiment,
an extra element of non-stationarity is represented by the starting state of the robot
being uniformly selected with the same probability between state 0 and state 32 at
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the beginning of each trial (Fig. 4.10). Differently from Dromnelle, Renaudo, et al.,
2020, experiments where the reward is fixed or where a new obstacle is introduced
have not been performed for this work.

FIGURE 4.8: Description of the experimental set-up. A) Map of the
discrete states of the maze. The eight-pointed star indicates the car-
dinal directions in which the robot can move. These directions are
the same used for the experiment in Sect. 4.1.3. B) Photo of the real
Turtlebot approaching the initial rewarding state 18, highlighted in

the figure. Adapted from Dromnelle, Renaudo, et al. (2020)

First, the real Turtlebot autonomously navigates within the environment using a
SLAM Gmapping algorithm (Fig. 4.8) and creates a discrete map of the maze (38
Markovian states are identified and shown in Fig. 4.8a). This autonomous state
decomposition process is identical to the one used in the previous experiment de-
scribed in Sect. 4.1.3. The robot-environment ratio is very similar to the previous
experiment in Sect. 4.1.3: the state radius is 35 cm, in this case, and the robot size is
35,4 x 35,4 x 42 (L x W x H, cm).

Then, during a second free exploration phase, the robot learns the transition
model of the environment, that is, the probability that the robot starts its move in
one state s performs an action a, and arrives in another state s′. This second phase of
the creation of the transition model is also conducted as in Sect. 4.1.3, but with the
real robot.

After these exploration phases, the subsequent experiments involving a reward
were performed in simulation to test the impact of different parameters of the al-
gorithm and study the effect of replay on total performance and computation cost.
During these simulations, the agent experienced the MDP based on the transition
map that was empirically acquired with the real robot (as was done in (Dromnelle,
Renaudo, et al., 2020)).

Fig. 4.10b shows the maximum level of uncertainty for each of the 38 states of the
environment. This uncertainty is computed in the same way as for the other exper-
iment in Eq. 4.5, and the transitions map is used to guide the robotic exploration in
the simulation environment.

The action space is also discrete and consists of 8 possible cardinal directions
equally distributed around the agent. Given the discrete and probabilistic nature of
the state and action spaces, the transition model T(s, a, s′) (Eq. 4.3) and the reward
model R(s, a) of the MB expert are probability distributions.
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Results

We tested several algorithms to evaluate the contribution of combining model-based
and model-free replay in terms of performance and computational cost. First, we are
interested in simulating the two baseline cases, pure MF and pure MB algorithms,
and how they perform with the respective MemR and SimR and limited budgets.
Finally, we want to test the combination of the two strategies by using the criterion
proposed in Dromnelle, Renaudo, et al., 2020, with either an infinite or a limited
reactivations budget. Here are the relevant combinations of the same controller that
we tested in this task:

• MF only agent, no replay

• MF only agent with MF replay (infinite replay budget)

• MF only agent with MF replay (budget: 200 replay iterations)

• MB only agent with MB replay (infinite inference budget)

• MB only agent with MB replay (budget: 200 inference iterations)

• MB+MF agent with MB replay (infinite inference budget)

• MB+MF agent with MB budget (budget: 200 inference iterations)

• MB+MF agent with MF replay (budget: 100 replay iterations) and MB replay
(budget: 100 inference iterations) (a fair comparison with the previous cases
because here the reactivation buffer is split in a maximum of 100 iterations per
expert)

All the MB+MF agents use the Entropy and Cost (EC) coordination criterion de-
scribed in Section 4.1.4. This criterion was taken from Dromnelle, Renaudo, et al.
(2020), who showed that it allows for advantageous coordination between MB and
MF experts and significantly reduces the computational cost of the inference phase
without relevantly impacting the amount of gained reward. Table 4.3 shows the
values of the parameters we used for these experiments.

The learning speed of all the above-listed agents was impacted when the re-
ward’s position changed at iteration #1600 (Fig. 4.9a). It is interesting to notice that
the MB - inference budget 100 + MF - replay budget 100 agent, which exploited the En-
tropy and Cost criterion with a limited budget for the two experts, shows a faster
increase in the cumulative reward compared to all the other agents, from around ac-
tions #2500. As observed in the previous experiment (Sect. 4.1.3), replay contributes
to increasing the speed of learning, and by combining the action of both MF and
MB replay, it is possible to better account for both adaptability and generalization,
drastically leading to a steeper accumulated reward over time slope of the proposed
strategy, without having the same growth on the computational cost side (Fig. 4.9a
and b). Concerning the cumulative cost, Fig. 4.9b shows that it rapidly increases for
the MB - inference budget inf agent when the environment changed. Eventually, by
action #4000, its cumulative cost has doubled the ones of the other agents.

Thus, considering the final overview of the performances and computational
costs in Fig. 4.9c, deeper analyses and comparisons of the tested algorithms can be
presented. The results are represented in terms of first, median, and third percentiles
over 50 experiments. The cumulative reward is the amount of reward each agent has
accumulated over the entire experiment, which is composed of 4000 iterations of the
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a b

c

FIGURE 4.9: Overall performances of the different agents during their
first 4000 actions in the environment. The vertical black line high-
lights the trial when the reward switch (1600). A) The dynamics of the
reward’s accumulation. B) The dynamics of the computational cost’s
accumulation. C) An overview of the algorithms’ position within a
normalized reward × cost space. The central polygons represent the
median of the performance over 50 simulated experiments. Cumula-
tive reward and costs have been normalized considering that the MF
medians of the cumulative rewards and costs correspond to 0 and
that the MB medians of cumulative rewards and cost correspond to 1.
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Model-based Model-free Meta-controller

α - 0.6 -

γ 0.95 0.9 -

β 50 50 50

ϵ 0.01 0.1 -

RB - 100 -

Rtw - 100 -

Ttw 30 - -

table

TABLE 4.3: Parameters used to generate the results in this section.
They are taken from Dromnelle, Renaudo, et al. (2020) as a starting
point for this work. α is the learning rate, γ is the discount factor
and β is the exploration/exploitation trade-off parameter. For the MF
expert, the converge threshold ϵ and replay constant RB have been
introduced to design the convergence criterion, while ϵ for the MB
expert is the same as in Dromnelle, Renaudo, et al. (2020). Rtw is
the number of the last (s, a, s′, r) tuples that the MF expert can replay.
Ttw is the number of the last (s, a, s′, r) tuples considered to built the

transition model T for the MB expert.

learning, inference, and decision processes together (Sect. 4.1.4). The cumulative in-
ference cost represents the time (in seconds) needed to perform the inference phase.

As expected, reward-wise, the best-performing agent is the pure MB, with an
infinite inference budget (black triangle, on the top-right, in Fig. 4.9c). However, this
agent is also the most costly in terms of computation during the inference phase.
This issue can be partially fixed by reducing the MB replay budget to 200 iterations
(blue triangle, in Fig. 4.9c). In this case, the inference phase will be stopped if the
action-values have converged or if the number of inference iterations has reached
the maximum budget (in this case, 200).

On the opposite side of the figure, the pure MF agent (pink square, on the bottom-
left, in Fig. 4.9c) shows the minimum cost of the entire set of experiments but also the
lowest cumulative reward. Adding replay to the MF expert, with an infinite replay
budget (dark violet square in Fig. 4.9c) or a 200-iteration budget (light violet square
in Fig. 4.9c) doubles the reward accumulation performance, with a limited increase
in the computational cost (compared to the MB costs), in particular when adding the
budget of 200 iterations budget.

From the results in Fig. 4.9c, we can deduce that for both the MF and the MB
experts, most of the time, the number of needed reactivations is in the same order
of magnitude as the proposed finite budget of 200 (since the cumulative costs are
comparable). As already shown in Dromnelle, Renaudo, et al. (2020), with an MB
expert with an infinite inference budget, the coordination of MB and MF experts via
the EC criterion produces agents which are halfway between MB-only and MF-only
experts regarding performances and costs (yellow diamond in Fig. 4.9c). Neverthe-
less, when limiting the MB inference budget to 100 and adding the contribution of
100 replay iterations for the MF expert (red diamond in Fig. 4.9), the cumulative re-
ward increases, and the inference cost diminishes, moving the performance of the
agent closer to the optimal point (star in Fig. 4.9). Moreover, the arrows highlight
the progressions of the MF-only (pink), the MB-only (blue), and the MB+MF (orange)
agents. Looking in more detail, the performance of the MF-only agents is improved
by adding a budget of 200 MF replays. On the other hand, the performance of the
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MB-only agents is slightly decreased by limiting the inference budget to 200 iter-
ations, but the cumulative computational cost is significantly decreased. Starting
from the performance obtained in Dromnelle, Renaudo, et al. (2020), in yellow in the
figure, we obtain similar performances but decrease the computational cost when
we limited the inference budget to 200 inference iterations for the MB expert, pro-
ducing agents, which are halfway between MB-only and MF-only experts. After
this analysis, we have tested the combination of the best strategies tried so far: the
MB expert with a limited inference budget and the MF one with a limited replay
budget. We have combined them through the EC criterion (Eq. 4.13). In this case,
to have the same total reactivations budget as the other tested algorithm, we have
shared the initial 200 reactivations budget to 100 SimR for the MB expert and 100
MemR for the MF one. With this combined replay effort, the overall performances
reached an optimal compromise between performance and cost since the inference
cost is substantially decreased while the cumulative reward was significantly raised,
compared to the results obtained by Dromnelle, Renaudo, et al. (2020).

Given that the aim of each agent and its EC meta-controller is composed of two
objectives: (1) maximizing the cumulative reward and (2) minimizing the cumula-
tive inference cost, we compute the pareto front (black dotted line in Fig. 4.9c) which
represents the solutions that approximate the set of all optimal trade-offs of the two
given objectives. As expected, the pure MB and MF experts are pareto optimal so-
lutions, very specialized in one of the two objectives. At the same time, by reducing
and splitting their budgets, we can have agents that interestingly converge closer to
the OptimalPoint (star in Fig. 4.9c). To rank all the agents ag, the Chebyschev dis-
tance (Cantrell, 2000) from their median performance to the OptimalPoint is com-
puted as shown in the following equation.

Chebyschev distance (ag) = max
obj
| OptimalPointobj −median(agobj) | (4.14)

where obj are the 2 normalized objectives of the solutions space (cumulative infer-
ence costs and cumulative reward). The computed Chebyschev distances are shown
in Fig. 4.9c, on the side of each algorithm point, and show a clear picture concern-
ing the proposed solutions; the agent sharing the reactivations budget between the
MB and MF is the closest to the optimal point, followed by the MB expert with lim-
ited SimR budget. MF with MemR and MB + MF without MemR have very similar
distances to the optimal points, meaning that the contribution of the MB expert is
crucial in adapting to a dynamical environment. However, the cost of this computa-
tion can essentially decrease just when it cooperates with an MF agent with replay,
which can also learn faster from the MB expert’s Q-values update.

These results open new possibilities for the design of reinforcement learning con-
trol architectures in robotics. On the one hand, when dealing with probabilistic
environments, MF replay might focus mainly on rare and not relevant transitions,
leading to interesting exploration and computational economy, but misguiding the
memory consolidation of relevant experience when changes happen in the task (as
also seen in Sect. 4.1.3). On the other hand, when the transitions model is stochastic,
combining the computationally competitive MF replay with the general knowledge
of the environment acquired by MB replay can bring artificial agents and robots to
better deal with a non-stationary reinforcement learning task.
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4.1.5 Discussion

In this paper, our research question was whether reinforcement learning (RL) strate-
gies using neuro-inspired replay methods, based on neuroscience knowledge about
hippocampal reactivations, could improve the speed and the adaptability of robotic
agents engaged in spatial navigation tasks. Model-free, model-based, and no replay
RL techniques were compared in three simulated robotic experiments of increasing
complexity and realism. Our results showed that in all levels of abstraction, the
neurorobots learned the spatial task faster when replay was involved in the process
and more efficiently when a Model-based replay method was used. Conversely, we
show how a synergy between model-based and model-free replay strategies can be
more effective in a more realistic and stochastic experimental set-up.

Applying reinforcement learning techniques to robotics requires coping with
some specificities of operating in the real world (Kober, Bagnell, and Peters, 2013).
First, making actual movements in the real world takes time, wares out the robotic
platform, and can potentially damage it. Acquiring new data requires moving and
is thus costly too: online learning processes must be as parsimonious on data use as
possible. Second, making decisions also takes time, especially when using limited
embedded computation systems, while operating in a dynamic world may require
the ability to react exceptionally rapidly to avoid damage. Learning systems should
thus be as computationally cheap as possible. Finally, both moving and comput-
ing consume the robot’s energy, which is always available in limited amounts. This
highlights the importance of developing robotic controllers that can (1) maximize
their learning capabilities over experience and energy scarcity and (2) reduce the
complexity of their algorithm to meet the computational limitations of embedded
platforms.

Along with this paper, we have presented simulated experiments (sometimes
based on data like transition maps first generated with a real robot) to investigate
the possible advantages of equipping neurorobots with offline learning mechanisms
inspired by hippocampal place cells’ reactivations. These advantages are, first, to
extract as much information as possible from the already gathered data and, by
mixing the multiple types of learning processes with the multiple types of reactiva-
tions, to limit deliberation time and the costs mentioned above intrinsic to robotics.
Starting with simpler and deterministic environments, as the double T-maze ex-
periment presented in Sect. 4.1.2, this research illustrates that as the complexity
of the states-actions transitions increases, model-based Simulation reactivations be-
come more strategic for the learning capabilities of the agent (Sect. 4.1.3). Finally,
in Sect. 4.1.4, the combination of model-free Memory reactivations and model-based
Simulation reactivations is presented as an interesting proposal to merge the benefits
of both techniques: prioritizing the model-based expert when the task requires more
inference and generalization effectiveness to be solved (for example facing non-
stationarity), while on the contrary giving priority to the model-free expert when
an effective solution can be found relying only on recent experience.

When simulations increase in complexity, thus getting closer to a real robotic ex-
periment, the challenges regarding the internal representation of the world (in par-
ticular, the states-actions space and the reward) increase. As presented in Fig. 4.10
where the environments of the two last experiments (presented in Sect. 4.1.3 and
4.1.4 respectively) are displayed in terms of maximum entropy per state, it is visi-
ble that the transition probability matrix created by the navigation of the real robot
(Fig. 4.10b) results in a representation of the environment which is less homogeneous
and more uncertain than the one learned with the simulated robot (Fig. 4.10a). In
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FIGURE 4.10: Representation of the navigation environments for the
previous experiments (Sect. 4.1.3 and Sect. 4.1.4), organized in respec-
tively 36 and 38 discrete Markovian states decomposed from the data
acquired during the autonomous navigation of the robot, when no
reward was present in the mazes. The initial and reward states for
the tasks are also highlighted in the figure. In these heatmaps, the
lighter the color of the state, the greater the maximal entropy of that
specific state, according to Eq. 4.5. The represented scale of entropy
values (0.87-2.23 a.u.) has been selected to cover the whole range of
the computed entropies. Moreover, in both environments, the robots
have navigated 5357 actions. A) In the case of the circular maze (Sect.
4.1.3), the navigation and the transition model are acquired after sim-
ulated navigation on ROS Gazebo. B) In the second experiment (Sect.
4.1.4), the navigation and the transition model are instead computed
after the real robot navigation, which generated a wider range of max-
imal entropy values, sometimes also very low due to the presence of
walls that categorically constrained certain states of the environment.

mobile robotics, localization may often depend on a few sensory information, as in
the case of the mobile robots used in our experiments. Such limited information
is fundamental for acquiring a solid representation of the environment. For these
reasons, the entropy maps in Fig. 4.10 reflect the nature of the two mazes: the uncer-
tainty is more homogeneous in the circular maze (Fig. 4.10a) since the environment
is an open space which gives the agent an even chance to end up visiting the neigh-
boring states. In contrast, the second environment (Fig. 4.10b) is more extended in
one dimension and presents inner walls that result in a fuzzier level of uncertainty
on the transitions model of the environment.

Future works in this research direction would include the comparison with the
RL algorithms performing forward replays, which are of crucial importance in stan-
dard rodent navigation tasks, such as the multiple T-maze (Johnson and Redish,
2007). These forward-shifted spatial representations have been demonstrated to
happen mainly at decision points to predict the consequences of the following ac-
tions. Their effect has already been successfully modeled in neurorobotics by Maffei
et al. (2015), where they implemented the extraction of relevant policies by consult-
ing memory. On the other hand, Seijen and R. Sutton (2015) argued that it is mathe-
matically equivalent to update Q-values in a model-free way combined with replay
and to update Q-values in a model-based way, given that the elements in the mem-
ory buffer, used for replay, are the same than those used to build the model. More-
over, RL-based replay strategies can also generate forward replay events (Khamassi
and Girard, 2020) and enable RL-based models to still account for neurobiological
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data (Mattar and Daw, 2018; Cazé et al., 2018).
In summary, this work presented new and crucial results concerning the advan-

tages and the limitations of different RL-based replay techniques for robotics, grad-
ually testing them in more complex and realistic circumstances. Additionally, this
research paves the way for new studies on the role of replays in neurorobotics, in
particular in spatial navigation tasks where generalization effectiveness and time
efficiency are key.

Finally, the addition of RL techniques, inspired by hippocampal replays, shows
an improvement in the performances in the presented navigation task, in particular
concerning the exploitation of the past experience, knowledge propagation, and as
a consequence, the speed of learning. In particular, model-based Simulation Reacti-
vations significantly contributed in the case of non-stationarity. However, a fruitful
coordination with model-free Memory Reactivations became crucial in terms of com-
putational cost reduction. All these insights, found in robotic experiments, imple-
mented with different levels of abstraction, can encourage new neuroscientific ex-
perimental protocols and shed light on a better understanding of the phenomenon
of hippocampal replay.

4.2 TaVAR: a robotic demonstration for teaching reinforce-
ment learning

The work described in this section has been accepted to the conference “Drôles d’objets - Un
nouvel art de faire” as “B. Girard, L. Gaillot, L. Laval, L. Le Peutit, E. Massi, F. Sangaré, I.
Tuzun (2023). TaVAR : Une Table lumineuse pour Vulgariser l’Apprentissage par Renforce-
ment.”

Explaining the topic of your thesis or some classic Reinforcement Learning (RL)
algorithms can be easy when you are talking with your co-workers or other re-
searchers in a similar domain. Nevertheless, explaining simply and clearly how
RL can help an artificial agent or a robot to reach a desired goal by learning from its
interactions with the environments is not straightforward. Showing the equations
that make the robot learn an optimal behavior to optimize the cumulative reward
is not the most effective way to divulge RL basic concepts to your audience, if they
have a different background.

Coordinated by Benoît Girard, and with the help of the master students Lydia
Gaillot, Léo Laval, Laurine Le Peutit, Ilke Tuzun, and Fousseyni Sangaré, we pro-
pose a robotic navigation set-up that, with the help of a transparent table and a
projector, shows which information the robot gets from its interaction with the en-
vironment and how it exploits it to make decisions and generate a goal-directed in-
telligent behavior. The proposed robotic set-up is called TaVAR (Table lumineuse pour
Vulgariser l’Apprentissage par Renforcement). TaVAR is also used to explain model-
free unordered replay, with the possibility of replay just one experience per time,
to show the details and the effect of replay in learning the navigation task. This
replay demonstration also gives the chance to introduce what hippocampal reacti-
vations are and to talk about the transfer of their computational principle in RL and
robotics.



130 Chapter 4. Scientific contributions in machine learning and robotics

4.2.1 Material and methods

TaVAR is composed of an alluminium frame that sustains the table’s wooden boards.
The table surface is built with a transparent 180cmx160cm plexiglass layer with a
translucide film attached to it.

The main communication node is a desktop computer exchanging information
with the robot, the projector and the person presenting the demonstration (Fig. 4.11).

FIGURE 4.11: TaVAR communication set-up

The robotic platform is a Turtlebot3 burger 4 which can localize itself thanks to
a classic SLAM (Simultaneous Localization And Mapping) algorithm, GMapping
(Grisetti, Stachniss, and Burgard, 2007), running on the desktop computer. The robot
is sending in real-time the data measured from its lidar and odometry sensors to the
desktop computer which is then able to localize it with respect to the map of the
environment (table) by using GMapping.

The table space was previously divided by a random autonomous robotic ex-
ploration into 20 states (Fig. 4.12a, always using GMapping) and from each state
8 actions are possible in the cardinal directions of the absolute reference frame of
the environment (the same as for Sect. 4.1.4). In addition, there is one reward state,
state 15, which gives an unitary reward to the robot that come back alternatively
to two opposite starting states (state 0 and 8) after having reached the reward state
(Fig. 4.12a). Thus, the real-time information about the robot position and orientation
is also used to derive the current state of the robot.

The robot learns through experience by using a Q-learning algorithm (Watkins,
1989) running on the desktop computer with the following parameters: α is 0.2 and γ
is 0.9. Fig. 4.12b shows that, after around 20/30 min, the algorithm makes the robot
converge to an optimal behavior where it accumulates reward at a constant speed. In

4https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
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FIGURE 4.12: Demonstration experiment’s dynamics. A) Example of
the visualization projected on the table close to the end of an around
1h experiment. The white state 15 with the green circle is the reward
state and the initial states are alternatively 0 and 8. The blue gradient
shows the normalized max Q(s, a) for each s with lighter values been
larger max Q(s, a). The yellow line shows the most recent trajectory
covered by the robot. B) Median, first and third percentile (in the blue
shadow) over 3 experiments of around 1h of the cumulative reward

obtained by the robot.

order to get a smoother demonstration with a more efficient coverage of the states-
action possibilities during the first stage of the experiment, when there is an equal
probability to choose one of the possible next actions, the decision-making process
of the robot picked one of the possible next actions based on the softmax distribution
(Eq. 4.2 with occur(s, a) in the place of Q(s, a)) created from the negative exponential
−eoccur(s,a) of the number of the previous situation occur(s, a) when that action a was
chosen from s (always with the same β = 20).

The colors of the tiles projected on the table are a blue gradient representing the
maximum q-values among the state-action couples starting from that specific state.
The blue gradient scale is adapted to the relative maximum q-values and uses colors
visible from people suffering from different types of color blindness.

To receive the necessary data and generate the visualization showed on the table,
we used a Raspberry Pi connected to the projector where a ROS node controls the
real-time image using the tkinter python library. By pressing a button on the Rasp-
berry Pi keyboard, the person who is presenting the demonstration can choose at
any time (either while the robot is navigating or when it is pausing in its starting
position or wherever on the table) to randomly select one of the past robot transi-
tions (s, a, s′, r) and to replay it, to directly show the effect of an experience replayed
transition (Lin, 1992). The replayed transitions will be visible on the table as a green
arrow pointing from the centre of s to the centre of s′. In the meantime, the possible
change in the maximum q-values for s will be showed on the table, since the maxi-
mum states’ q-values are continuously updating on the table’s visualization. In fact,
the visualization of the states’ blue gradient that the robot is using to learn is contin-
uously projected from a short focal projector, which is fixed under the table, to the
table surface in a way that the audience can see the projected real-time information
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from above the table.
The desktop computer is the node sending the velocities to the robot’s motors.

This motor commands depend on the action decided by the navigation policy of the
robot, which picks the next action from the softmax distribution (where β is 20) of the
q-values associated to (s, ai), with i ∈ [0, 8] (Eq. 4.2) or by the speaker’s instructions.

At each time, the speaker presenting the demonstration can choose to stop the
robot’s navigation and restart it as it better follows the flow of their explanation. To
ease its explanation, by tapping different buttons on the keyboards, the speaker can
also show and hide a trace of the most recent robot trajectory (in yellow in Fig. 4.12a)
and color the current state where the robot (in gray). Finally, another keyboard but-
ton deletes the visualization of all the current states q-values.

4.2.2 Results and discussion

TaVAR has been used for the first time in October 2022 for the Fête de la Science 2022
at the Institut des Systèmes Intelligents et de Robotique (ISIR). The demonstration
has been run for 5 hours without significant problems. Fig. 4.13 shows a photo that
was taken during the demonstration day.

FIGURE 4.13: TaVAR demonstration for the Fête de la Science 2022. The
robot is navigating on the table during the demonstration. On the ta-
ble, the states’ discretization is visible with colder states representing
larger q-values around the reward state (state 15, in white with the

green circle.

After this first demonstration, the aim is to further improve the demonstration
by:

• adding obstacles on the table to create narrow corridors in the task to make
the exploration environment more similar to the mazes usually employed in
studying spatial navigation in mice (like the double T-maze Gupta et al. (2010));
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• showing also the learning contribution of more structured types of replay (i.e.,
reverse-ordered replay);

• optimizing the code that deals with the visualization on the table; the data that
are visualized on the table are slightly accumulating a delay with respect to the
computations done by the robot because the new information is shown on top
of the previous one. Thus, the idea is to test if refreshing the table’s “canvas”
in real-time could lighten the visualization process and solve this problem;

• for each state, indicating with an arrow the action which has the largest q-
values, to better explain that the learning values are assigned to state-action
pairs and just to states. This is important to explicit which action has been
learned to be a good behavior from each state because it can happen the am-
biguous situation where states which are next to the reward have low q-values
because the robot has not discovered yet that the reward is just one step away);

• investigating the educational value of the demonstration by asking the audi-
ence/participants to fill out a brief survey on the main RL concepts they have
just seen.

The robotic set-up designed for TaVAR is also being used for running experiments
with the learning methods presented Sect. 4.1.4 to test the contribution of replay-
inspired control strategies when all the phases of the experiment are performed on
the real robot. The one factor that has been changed in the transfer to the real robot
concerns the decrease in size of the memory buffer. In fact, the real robot adds an
extra level of stochasticity concerning sensors’ noise and localization errors. These
factors, that were not present in the results described in Sect. 4.1, together with a
smaller learning rate, require the robot to faster adapt to uncertain scenarios. By
constraining the information that builds the robot’s model of the world to the most
recent ones, we can prevent long adaptation loops when the environment changes
or sensors and localization measurements are inaccurate.

To the best of our knownledge, our results in studying the role and the combi-
nation of different types of RL-based replay in robotics are among the first ones that
have been presented in the field. Moreover, the simplicity that is thoroughly em-
ployed in the design of a demonstration for a general audience is highly helpful to
get a clear identifcation of the main features and criticalities of the different tested
learning strategies.

To summarize the contributions of the machine learning and robotics chapter of
this thesis:

• By testing different RL-based RL strategies in spatial learning experiments that
range from pure simulation to real robots experiments, we have concluded
that MB strategies are always preferrable when dealing with dynamic scenar-
ios when the agent needs to be adaptive and, in particular, the MB prioritized
sweeping algorithm is among the most performing strategies since it concen-
trates the replay activity just in the moments when the experiment changes;

• By adding MB- and MF-RL replay strategies on the meta-controller orchestrat-
ing between habitual and goal-directed behavior proposed by Dromnelle, Re-
naudo, et al. (2020), we have improved the learning performances of the agent
and also minimizing its computational costs;

• We have implemented a robotic demonstration to explain RL and the role of
hippocampal reactivations through a goal-directed navigation task. This new
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robotic set-up is also used for new experiments on spatial learning and reacti-
vations.
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Chapter 5

Conclusions

In this chapter, a summary of this thesis’s scientific contributions is presented (Sect. 5.1).
Secondly, we discuss the possible future developments and perspectives from this
thesis to address the limitations of the presented results in order to improve the fu-
ture scientific contributions that will follow this thesis (Sect. 5.2).

5.1 Summary

We summarize how our scientific contributions answer the research questions we
have presented in Sect. 1.2.

• Sect. 3.1 presents a new data-driven value-based decision-making model for
rodent free spatial exploration that has been designed and optimized against
three different datasets. In this contribution, we have proposed a general
framework for modeling free exploration in rodents by:

– a common pre-processing and sampling routine for exploratory rodent
behavioral data;

– the identification and formalization of three relevant behavioral com-
ponents for rodent free exploration: safety, biomechanical cost, and
biomechanical persistence;

– a Markov Decision Process (MDP) formalization for generating a decision-
making process which produces a rodent-like free exploratory behav-
ior.

• Sect. 3.2 expands the contribution of the proposed free exploration model to
account for externally conditioned situations. Our results predict that:

– as already observed in the results by Bryzgalov (2021), it exists a nega-
tive correlation trend between the number of offline replay sessions and
the differential occupancy of the negative stimulation areas between the
post- and the pre-conditioning phases. This means that the number of
offline reactivations could predict how strong the animal would avoid
the stimulation area.

– the number of offline replay sessions is slightly negatively correlated to
the amount of negative stimulation, while in the positive case, no corre-
lation exists. Even though the negative correlation that exists in nega-
tive conditioning is not significant, this can suggest that offline replaying
emotionally relevant experiences could be increasingly important as the
interaction with the negative stimulation becomes shorter.
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– the contribution of offline sleep replay is more relevant when learning
to avoid a negative stimulus than learning to approach a positive one.
The post-conditioning behavior reflects a biased occupancy of the maze
either for the negative stimulation areas (avoided) or the positive ones
(occupied), even though the negative stimulus has been very scarcely ex-
perienced (around one order of magnitude lower, Sect. 3.2.4 and Fig. 3.30)
compared to the positive one.

• Sect. 4.1 tests different hippocampal replay-inspired reinforcement learning
(RL) strategies for spatial navigation in neurorobotics. With a particular fo-
cus on the role of model-based (MB) and model-free (MF) RL replay strategies,
our results imply that:

– the integration of replay-inspired RL techniques always improves the
performances of the tested RL algorithms (in terms of cumulative re-
ward or time to get to the reward location).

– while moving towards real robotic scenarios, where the stochasticity of
the MDP describing the experiment increases or the task becomes non-
stationary, MB replay (also called Simulation Reactivations in Massi et
al. (2022)) are desirable because they can faster adapt thanks to their
acquired knowledge on the MDP.

– when transferring a simulated experiment on a real robot, new constraints
arise due to the real-time computations and the short battery life. In this
case, a coordination between MB and MF learning systems with replay
(i.e., Simulation Reactivations (SimR) and Memory Reactivations (MemR) in
Massi et al. (2022)) is a proper trade-off which alternatively exploits the
MB’s learning velocity and adaptability and the MF’s low computa-
tional cost. Adding SimR and MemR to the algorithm also improves
the results obtained in Dromnelle, Renaudo, et al. (2020).

In conclusion, the main scientific contributions presented in this thesis assess the
importance, while using the theory of RL, of integrating mechanisms inspired by
hippocampal replay in the behavioral modeling of spatial learning in rodents and in
the design of neuro-inspired controllers (i.e., neuro-controllers) for rapid and adap-
tive robotic navigation.

5.2 Discussion and future perspectives

This thesis applies the theory of Reinforcement Learning (RL) either to model data-
driven behaviors (Chapter 3) or to design neuro-controllers (Chapter 4) to foster
the exchange and the integration between computational neuroscience and robotics.
We have focused this philosophy on the topic of hippocampal reactivations by in-
vestigating how they can be studied, modeled, and adopted in both computational
neuroscience and robotics.

The uniqueness of this work consists in a computational study of the role of
hippocampal reactivations in spatial learning which covers biological behavior, in
rodents, and artificial behavior, in robots. From one side, our neuroscientific results
suggest that two parallel learning strategies are adopted in appetitive and aversive
learning. The sampling bias that occurs when animals experience a very few times
a negative stimulus compared to an equivalent positive one could be computation-
ally overcome by associating higher relevance to negative events and by replaying
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them more often than the corresponding positive ones. This would encourage the
implementation of two different controllers, and possibly two different RL-replay
strategies, when opposite valence conditioning affects the spatial navigation of an
artificial agent or a robot. On the other side, the robotic results of the thesis assess
a prominent role of model-based knowledge in efficiently solving dynamical spatial
learning tasks and, in particular, different stages of the tasks, namely the beginning,
the period after policy convergences, and the task change, privilege respectively MB,
MF, and MB learning algorithms and replay strategies. As it has been already stud-
ied and described in Sect. 2.1.2, the brain learning strategies that orchestrate behav-
ior are multiple and can be mainly traced back to MB to tackle goal-directed behavior
and MF to tackle the habitual one. Our results suggest that this aribitration, based
on accuracy and computational cost, between MB and MF learning, could also guide
the generation of hippocampal reactivation into more planning-oriented replay or
experince-driven ones.

A more detailed discussion over the main contributions, challenges, and future
perspectives of the thesis is given in the next sections.

5.2.1 Neuroscience

We suggest that general behavioral tendencies exist for rodents freely exploring a
new environment for the first time. To our knowledge, most of these behavioral
trends have already been studied in the literature (Fonio, Benjamini, and Golani
(2009), among the others reviewed in Sect. 2.2.3). These previous studies have dis-
closed the existence of behavioral patterns under specific constraints, such as the
presence of homecages in the environment. However, their permanence in differ-
ent mazes’ morphologies or for different time intervals experiments has not been
explored yet.

Compared to the other models proposed in the literature (Gordon and Ahissar,
2012; Gordon, Fonio, and Ahissar, 2014a), our novelty is to propose a formaliza-
tion of the problem as an MDP. The proposed model aims to describe and repro-
duce the main general behavioral characteristics of free spatial exploration in ro-
dents in terms of attraction for safer locations and of exploratory dynamics (static
or active, stronger or weaker directional preference). The parameters optimization
process that is executed for each animal intends to generate an artificial agent whose
decision-making process, in the proposed MDP, generates a behavior comparable to
the one from that specific rodent in terms of the behavioral metrics we have identi-
fied from the data.

One of the limitations of this contribution is that its first design was proposed
based only on the first u-maze dataset we had. Thus, it does not consider the other
two datasets made available to us later in the thesis (square open-maze and grid-
maze). In the process of generalizing the free exploration model to the two new
datasets, we have detected possible improvements for the model even though, in
most cases, our results are significantly better than random exploration without fur-
ther adaptation or modifications of the model. In particular, the selection of the rela-
tive directional bins of the definition for the biomechanical cost metric should adapt
to the possible next actions in the MDP’s formalization to properly fit the simulated
agent’s decision-making process, which aims at replicating the animal’s behavior.

Moreover, even though the parameters selection process is minimizing the three
objective metrics (safety, biomechanical cost, and biomechanical persistence objec-
tive) at the same time, the action of one behavioral component influences not only
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its own behavioral objective but also the others. For example, a strong safety compo-
nent could influence the biomechanical persistence metric by leading to a very static
behavior with long exploratory pauses in the corners of the maze. That is why to
assess the contribution of each behavioral component independently, it would be in-
teresting to study the behavioral metrics’ response when the free exploration model
is composed just by one of the three behavioral components and investigate deeper
if just one or two behavioral components could suffice to capture the three behav-
ioral metrics alone. If this is the case, this could lead to a simplified version of the
model, able to describe the same behavioral complexity as the proposed one.

Nevertheless, the proposed model, which reproduces the main behavioral fea-
tures of rodent free exploration through a decision-making agent in an MDP frame-
work, is relevant for future RL developments or extensions of this model and also
for bridging these results to neurorobotics navigation tasks. In fact, even though we
have not used this strategy during the TaVAR demonstration, when we were trying
different exploratory solutions, we easily integrated the biomechanical cost compo-
nent, identified in the rodent data we have analyzed, on the behavioral controller
for the robotic demonstration, generating a similar directional bias as we saw in the
data (even though in a different timescale).

Moreover, this value-based framework allows for an easy integration of the state-
of-the-art RL replay strategies that are usually tested in modeling the contribution of
hippocampal replay in computational neuroscience (Pezzulo, Kemere, and Van Der
Meer, 2017; Cazé et al., 2018; Mattar and Daw, 2018; Khamassi and Girard, 2020)
and in neurorobotics goal-directed navigation (Whelan, Prescott, and Vasilaki, 2020;
Massi et al., 2022).

In particular, recent studies suggest that Reinforcement Learning (RL) can be
considered a proper framework to model value-based spatial learning (Glimcher,
2011; A. Collins and Khamassi, 2021) and eventually the contribution of hippocam-
pal replay in this process (Pezzulo, Kemere, and Van Der Meer, 2017; Cazé et al.,
2018; Mattar and Daw, 2018; Khamassi and Girard, 2020). Thus, we include to the
free exploration model an extra component, which learns a spatial representation of
the values of an exogenous emotional conditioning. After a learning phase, based on
the reconstruction of the conditioning experimental sessions for each animal, we op-
timize the number of unordered offline replay sessions and the learning parameters
of the adopted RL algorithm based on the post-conditioning occupancy of the mice
in the u-maze. Thus, the exploratory behavior of the agent is the result of its free
exploratory behavior (previously optimized based on its exploration during the first
time it enters the maze), together with the contribution of a conditioning component
based on the learned and replayed states’ values.

Our results assess that, based on the theory of RL and not involving any com-
plexifying assumption on the type of hippocampal reactivations happening in the
sleep phase after the conditioning sessions, a recall and re-elaboration of the past ex-
perience is computationally convenient to replicate the post-conditioning behavior
of the animals.

One of the limitations of the extension of the free exploration model with the con-
ditioning component concerns the fact that after new stimulations trigger an emo-
tional response in the animal, the main characteristics of its free exploratory behavior
could also change. This means that after a negative stimulation, rodents could, for
example, prefer safer places and remain more static than during free exploration,
like when freezing reactions happen (D. C. Blanchard, Griebel, and R. J. Blanchard,
2001). Our other idea for the parametrization of the conditioning exploration model
is to re-optimize also the parameters that describe the relevance of the behavioral
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components (p1, κ, bp for the safety, biomechanical cost, and biomechanical persis-
tence component, respectively) to capture the change of contributions of these com-
ponents in the post-conditioning case by optimizing the original behavioral metrics
of free exploration plus the conditioning one. In a first attempt at optimizing the
parameters, we had actually employed a four objectives optimization. However, we
realized the four objectives were not properly being optimized because this would
require many more generations than the case with a single objective, to allow for a
deeper model parameters search. Exploring the use of multi-objective optimization,
also in this conditioning exploration case, would be another interesting research ap-
proach, but that requires more time or computational power.

The integration of RL replay mechanisms in our model allows for new possible
considerations and predictions. For example, the fact that opposite valence stimu-
lation could differently activate the hippocampus has already been observed by Se-
gal, Disterhoft, and Olds (1972) who noticed a more prominent hippocampal global
activity following a positive stimulation than an aversive one. Nevertheless, exper-
imental studies and computational models addressing the activity of hippocampal
reactivations after positive or negative conditioning have only recently started to be
studied. Also, this type of research entails some criticisms due to the ethical respon-
sibilities of imposing negative stimulation on animals.

Thanks to this new behavioral data and the work by Bryzgalov (2021), we could
optimize our exploration model proposal for the same set of mice experiencing op-
posite valence stimulations. Interestingly, our model was able to replicate the cor-
relation between the amount of sleep reactivations and the differential avoidance of
the shock areas. Further, based on the assumption that negative events are situa-
tions animals and humans do not want to experience very often, but they equally
want to learn from them efficiently, we look into the existence of other potential rela-
tionships between replay sessions and behavior in our optimized results. Based on
the prediction of our model, negative experience computationally requires longer
unordered offline replay sessions to succeed in avoiding the shock locations as the
corresponding animal does. Coherently with this interpretation, our results suggest
that, as the amount of negative stimulation received increases, the replay sessions
needed decrease.

Naturally, experimental studies and new validations of the presented results
against more data are needed to assess this hypothesis. We hope that these data-
driven computational predictions inspire other researchers in the field to investigate
more deeply the relationship between the emotional valence of the stimulation and
the following asleep (but also awake) hippocampal reactivations. In particular, the
proposed exploration model could be helpful in predicting rodent exploratory be-
havior and the length or the relevance of the replay sessions in new spatial learning
experimental protocols.

In the future, once more information concerning the observed hippocampal reac-
tivations will be available (e.g., if they are unordered, sequential, or biased towards
emotionally relevant locations, for example), computational models, as the one we
propose, could be improved by adopting more specific computational strategies
(e.g., reverse replay, trajectory sampling, and prioritized sweeping) for describing
and reproducing the effect of hippocampal reactivations and reveal a more robust
predictive power.
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5.2.2 Machine learning and robotics

The integration of RL mechanisms, inspired by hippocampal reactivations, is not
new in machine learning. However, the impact of diverse replay strategies has just
recently started to be investigated, particularly in robotics. The transfer of these
results to real robotic experiments is crucial and scarcely explored. With our ma-
chine learning and robotic contribution (Chapter 4), we start to address this concern
by testing different replay strategies in different simulated and robotic scenarios,
always in the framework of the theory of RL. Even though more research studies
in this direction are encouraged, our contribution suggests that the trade-off be-
tween learning performance and computational cost, identified to be crucial for real
robotic (Kober, Bagnell, and Peters, 2013; Dromnelle et al., 2022), could also be suc-
cessfully appliedon the study and the introduction of hippocampal reactivations in
robotic spatial learning tasks. We show that the MB/MF coordination strategy for
instrumental goal-directed navigation proposed by Dromnelle et al. (2022) can be
improved if limited budgets of RL model-based (MB) and model-free (MF) replay
strategies are included in the two learning systems, respectively.

An interesting future development for coordinating the MB and MF learning sys-
tems will be to dynamically allocate the replay budget between Memory (MemR)
and Simulation Reactivations (MemR), instead of evenly sharing it between the two
experts, as we proposed in our work. A crucial point for this improvement will
be to compute the budget allocation with a light computational strategy to not sig-
nificantly deteriorate the computing efficiency gained with the fixed assignment of
the replay budgets. By taking inspiration from the observations and models of hip-
pocampal reactivations in neuroscience (Cazé et al., 2018; Mattar and Daw, 2018;
Khamassi and Girard, 2020), on the one hand, we can suggest favoring MemR when
an unexpected reward or absence of reward (high reward prediction error in the
Eq. 2.4 formulation) is found, to consolidate the memory of this new significant
event. On the other hand, it would be suitable to favor SimR at crucial decision
points (when the decision entropy in Eq. 4.12 is high) to use the MB knowledge
about the transitions model to decrease the decision uncertainty before acting. This
information (reward prediction error and entropy) is already computed by the MB
and MF learning experts and, thus, is already available to allocate the replay budget
without further expensive computations.

Further efforts in this research direction are required to integrate such coordi-
nation between multiple RL controllers and replay strategies to a bio-inspired self-
localizing and navigating system, such as the ones proposed by Dollé et al. (2010),
Whelan, Prescott, and Vasilaki (2020), and Souza Muñoz et al. (2022). Also, the def-
inition of “fuzzy” (Touretzky, Wan, and Redish, 1994) and multi-scale (Llofriu et al.,
2015) discrete spatial areas, inspired by the spontaneous activations of hippocam-
pal place cells, have been observed to reproduce the biological place cell circuitry
dynamics better and improve the learning speed in goal-directed robotic navigation
tasks.

Another critical issue that we have started to address in this thesis and that
would need more attention in the future is the study of the relationship between
the stochasticity level of an MDP and the subsequent performances of the RL replay
strategies. In particular, a standard definition for defining the level of stochastic-
ity of an MDP, for example, based on the entropy of the states, as we proposed in
Sect. 4.1.5, would be desirable. Also, real robotics makes even more evident that both
MB and MF replay crucially speed up the learning in a navigation task but some-
times reinforce the learning of sub-optimal strategies, which can be, for instance, the
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first ones identified by the robot. This is why it would be interesting to look sys-
tematically into the interplay among different levels of stochasticity of the MDP, the
learning parameters of the RL algorithms, and the types, duration, and termination
criteria of the replay methodologies used.

Finally, we propose TaVAR, a new robotic framework to explain RL and experi-
ence replay with the help of an intuitive real-time visualization of the spatial infor-
mation used by the robot to make decisions and achieved the desired goal. The main
improvements to the presented version of TaVAR concern a quantitative evaluation
of the dissemination efficacy of the demonstration and a more detailed visualization
of the robot’s decision-making process.
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Appendix A

Supplementary material

A.1 Results

To further test what the possibility of performing offline RL replay mechanisms
brings to the model and the subsequent behavior, we have tried to optimize a ver-
sion of the exploration model where the replay buffer size #rs was not a parameter,
and it was fixed to zero. In Fig. A.1, we can see that in most of the cases (9/12 be-
tween in total considering Fig. A.1a-A.1b) the optimization of the two models (with
replay and without replay) obtains comparable performances in term of difference
with the data for the occupancy of the sub-areas.

In the 2/3 remaining cases (Mouse1168 and Mouse1182, in negative condition-
ing), the optimized model with replay (in blue) is significantly better than the one
without the replay (in green) and than to the free exploration one (in orange). In the
case of positive conditioning (Fig. A.2a) where the results between replay and not
replay model are always comparable (Fig. A.1a), to compensate for the absence of
replay, the optimized α values of the models with no possibility to perform offline
backups are usually higher than the ones in the model with replay (in 4/6 cases).

Also, as in the case of the optimized exploration model with replay (Fig. 3.29),
in the optimized no-replay model in 4/6 mice, α and Wr have higher values for
the negative than positive conditioning case, showing the need for a more decisive
contribution of this conditioning component in the exploration model compared to
the positive case.
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FIGURE A.1: Comparative statistical analysis on the conditioning ob-
jectives for the selected optimized models with replay, without replay,
and the corresponding free exploration model. Each sub-figure rep-
resents the results for each mouse individual in terms of behavioral
difference with the data. This difference is expressed as the condition-
ing objective (Eq. 3.25). ** indicates that the p-value resulting from the
post hoc Wilcoxon-Mann-Whitney pairwise comparison test is lower
than 0.001, * that it is lower than 0.05 and non-significant (n.s.) oth-
erwise. The post hoc test has been performed following a Kruskal-
Wallis H-test (Kruskal and Wallis, 1952) to reject the null hypothesis
that the population median of all of the models’ difference with the
data was equal (this happens just for Mouse1199, in negative condi-

tioning).
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FIGURE A.2: Statistical analysis on the exploration model parameters
for the best individuals found by CMA-ES with and without replay,
in case of the positive stimulation data (p) and negative stimulation
ones (n). #rs indicates the number of replay sessions, α the learn-
ing rate, γ the discount factor, and finally Wr the weigth for the con-
ditioning component. * means that the p-value resulting from the
Wilcoxon-Mann-Whitney comparison test between the distributions
of the model parameters in positive and negative stimulation is lower

than 0.05 otherwise it is non-significant (n.s.).
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A.2 Figures

This section contains additional figures for Sec. 3.1-3.2 .
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FIGURE A.3: Discrete movements for the mice in the u-maze (not
counting static time steps).
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FIGURE A.9: Optimized exploration model (free explo + cond) in
comparison to the previously optimized free exploration model (free

explo), and to the data; example for Mouse1117.
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FIGURE A.10: Optimized exploration model (free explo + cond) in
comparison to the previously optimized free exploration model (free

explo), and to the data; example for Mouse1161.
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FIGURE A.11: Optimized exploration model (free explo + cond) in
comparison to the previously optimized free exploration model (free

explo), and to the data; example for Mouse1162.
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FIGURE A.12: Optimized exploration model (free explo + cond) in
comparison to the previously optimized free exploration model (free

explo), and to the data; example for Mouse1182.
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FIGURE A.13: Optimized exploration model (free explo + cond) in
comparison to the previously optimized free exploration model (free

explo), and to the data; example for Mouse1199.
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FIGURE A.14: Mouse1117 - positive conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.15: Mouse1117 - negative conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.16: Mouse1161 - positive conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.17: Mouse1161 - negative conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.18: Mouse1162 - positive conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.19: Mouse1162 - negative conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.20: Mouse1168 - positive conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.21: Mouse1168 - negative conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.22: Mouse1182 - positive conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.23: Mouse1182 - negative conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the states’ values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.24: Mouse1199 - positive conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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FIGURE A.25: Mouse1199 - negative conditioning. Top-down, the fig-
ure shows in logarithmic scale the post-conditioning occupancy of the
data, the state’s values for the optimized exploration model (without
and with replay), and the post-conditioning occupancy of the maze

for the optimized exploration model (without and with replay).
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A.3 Tables

This section contains additional tables for Sec. 3.2.2.

positive negative

occupancy

1 0.041 0.015

2 0.59 0.025

3 0.94 0.31

4 0.87 0.94

5 0.75 1.0

6 0.093 0.24

7 0.026 0.94

TABLE A.1: Comparative statistical analysis between the occupancy
of the seven sub-areas of the maze (Fig. 3.21a) in the pre- and post-
conditioning data. For each dataset (u-maze positive and u-maze pos-
itive) and for each distribution, corresponding to the bins of the oc-
cupation of the seven sub-areas, a Wilcoxon-Mann-Whitney compar-
ison test is performed. Here, we report the p-values for each compar-
ison, and the blue gradient decreasingly shows non-significant statis-
tical difference (dark blue) and statistical difference; p-values < 0.05

(medium blue) and p-values < 0.001 (light blue).
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