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Résumé v

Échantillonnage optimal et réduction de modèle
Optimal Sampling and Model Order Reduction

Résumé

Cette thèse porte d’une part sur la conception de modèles réduits qui approchent optimalement des classes complexes de
fonctions, et d’autre part sur l’utilisation de ces modèles réduits pour reconstruire des fonctions à partir d’un nombre
limité de mesures, en particulier d’évaluations ponctuelles.
La partie I de la thèse traite de deux thématiques en réduction de modèle linéaire et non linéaire. Dans le chapitre 2,
nous construisons des modèles réduits linéaires pour des EDP elliptiques paramétriques avec diffusion à fort contraste.
Nous prouvons qu’un taux de décroissance exponentiel peut être obtenu dans ce cadre avec un modèle réduit linéaire,
à la fois pour la simulation directe et pour les problèmes inverses, et ce malgré la dégénérescence des coefficients. Dans
le chapitre 3, nous introduisons un cadre général pour la résolution de problèmes inverses avec des modèles réduits non
linéaires, avec en particulier une application à la reconstruction de fonctions régulières par morceaux à partir de valeurs
moyennes sur chaque maille.
La partie II de la thèse aborde le problème fondamental de l’approximation d’une fonction à partir de ses valeurs ponc-
tuelles en des positions prédéfinies, en mettant l’accent sur les stratégies aléatoires et déterministes de sélection optimales
de ces points. Le chapitre 4 étudie les problèmes numériques posés par la manipulation de la densité d’échantillonnage
optimale, et propose des méthodes multi-niveaux de complexité algorithmique réduite, avec une analyse approfondie du
cas de l’approximation par des polynômes multivariés dans des domaines généraux. Dans le chapitre 5, nous améliorons
la stratégie d’échantillonnage aléatoire en ramenant la taille de l’échantillon au même ordre que la dimension du modèle
réduit. Le chapitre 6 étudie un cadre déterministe, en supposant que la classe de fonctions est incluse dans la boule unité
d’un espace de Hilbert à noyau reproduisant. Enfin, le chapitre 7 fait de nouvelles avancées dans le contexte aléatoire,
en atteignant un ratio de sur-échantillonnage minimal, ce qui aboutit à de nouvelles estimées d’interpolation.
Les chapitres 2, 3, 4, 5 et 6 sont issus des articles [a], [b], [c], [d] et [e] respectivement, tandis que le dernier chapitre est
un travail en cours.

Mots clés : réduction de modèle, échantillonnage aléatoire, problèmes inverses, moindres carrés à poids

Abstract

This thesis is concerned, on the one hand, with the design of reduced order models that optimally approximate complex
classes of functions, and on the other hand with the use of such reduced models to recover functions from a limited
amount of measurements, in particular point evaluations.
Part I of the thesis deals with two topics in linear and nonlinear reduced modeling. In Chapter 2, we construct linear
reduced models for parametric elliptic PDEs with high contrast diffusion. We prove that exponential decay rates can
be obtained in that setting with a linear reduced model, both for forward simulation and inverse problems, despite the
degeneracy of the coefficients. In Chapter 3, we introduce a general framework for solving inverse problems with nonlinear
reduced models, with a particular application to the reconstruction of piecewise smooth functions from cell-average data.
Part II of the thesis adresses the ubiquitous problem of approximating a function from its values at some predefined sample
points, with a focus on optimal random and deterministic selection strategies of such points. Chapter 4 investigates the
numerical issues arising in handling the optimal sampling density, and proposes multistep algorithms to control the
computational cost of the method, with a thorough analysis of the case of approximation by multivariate polynomials on
general domains. In Chapter 5, we improve the randomized sampling strategy by reducing the sample size to the same
order as the reduced model dimension. Chapter 6 studies a deterministic setting, through the assumption that the class
of functions is included in the unit ball of a reproducing kernel Hilbert space. Finally, Chapter 7 progresses further in
the randomized context, achieving a minimal oversampling ratio, which culminates in novel interpolation estimates.
Chapters 2, 3, 4, 5 and 6 are based on the articles [a], [b], [c], [d] and [e] respectively, whereas the last chapter is an
ongoing work.

Keywords: reduced modeling, randomized sampling, inverse problems, weighted least-squares

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Chapter 1

Introduction

In many fields of science and engineering, simulations are used to study complex phenomena for which
practical experiments are either impossible or prohibitively expensive. However, these models often require
significant computational resources, making them too slow to run a large number of times. Reduced modeling
[28, 56] refers to a variety of numerical techniques that aim at simplifying these complex models while retaining
their essential features. The resulting reduced order models should be computationally efficient, in order to fully
explore the behavior of the system when its physical parameters vary. Reduced models are thus typically used
in order to accelerate forward numerical simulation when the solution should be queried for many parameter
values. They are also of important use in inverse problems, when the parameters and the state are unknown,
and one can access the solution only through a few measurements.

In general mathematical terms, one considers an unknown element u of some Banach space V . A priori
knowledge on u is expressed through its membership to a compact class K ⊂ V , which could account for the
regularity of u, the physical laws it obeys, and in a broader sense the equations and bounds that u is expected
to satisfy. We are interested in representing u in a simplified manner, using a small number n of real coefficients,
from which an approximation ũ will be calculated. In the next section, we introduce various tools for gauging
the trade-off between simplicity and accuracy of this representation. Their study is at the core of the results
presented in this thesis.

1.1 Complexity measures

The procedure for deriving ũ can be decomposed as encoding and then decoding u with some continuous
maps E : V → Rn and D : Rn → V . Here E expresses the n coefficients of the reduced model as information
queried on u, while D constructs a surrogate ũ based on E(u). The resulting approximation ũ = D(E(u))
should remain close to u. The accuracy of such a method is assessed in the norm ‖ ·‖V associated to V , through
a uniform error bound

max
u∈K

‖u−D(E(u))‖V . (1.1)

Note that the maximum is indeed attained, due to the compactness assumption on K.
Defining the reduced order model as Vn = D(Rn), the search for maps E and D making (1.1) small can be

reformulated as looking for a set Vn ⊂ V and a continuous map P : V → Vn such that maxu∈K ‖u − Pu‖V is
as small as possible. If we assume that D(E(u)) = u when u ∈ Vn, we may view P = D ◦ E as a (generally
nonlinear) projection onto Vn.

As computations should be much faster in the reduced model Vn than in the whole space V , one is frequently
led to impose some constraints on Vn, and therefore on D. For example, only linear maps D could be considered,
resulting in linear spaces Vn, as illustrated in Figure 1.1. Even for nonlinear decoders, D is commonly assumed
to be smooth, making Vn an n-dimensional differentiable manifold, see Figure 1.2. On the other hand, the
choice of the encoder E depends on the measurements that can be performed on u. One might have access only
to linear forms evaluated on u, or to a more restrictive class such as point evaluations when u is a function.

Optimizing over D and E with the various above-mentioned constraints defines so-called n-widths of the

1
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VnV

K
u•

Pu
•

Figure 1.1 – Approximation by a linear reduced model Vn

Vn

V

K
u•

Pu
•

Figure 1.2 – Approximation by a nonlinear reduced model Vn. The increase in computational complexity caused
by the nonlinear setting is expected to be compensated by an improved accuracy

class K (see [150], or [147] and Chapter 5 of [151] for equivalent definitions in operator theory), of the form

inf
E:V→Rn

inf
D:Rn→V

max
u∈K

‖u−D(E(u))‖V ,

as summarized in the following Table 1.1.

E

Encoder

Decoder

D linear nonlinear

nonlinear dn Kolmogorov widths δn nonlinear widths

linear an approximation numbers sn sensing numbers

point values ρn sampling numbers ρ̃n nonlinear sampling numbers

Table 1.1 – Different n-widths can be defined, depending on the constraints on the encoder E and decoder D.
Observe that dn 6 an 6 ρn, that all linear widths are larger than their nonlinear counterparts on the right
column, and that all these numbers decrease as n increases

Probably the most popular are the Kolmogorov n-widths dn(K)V , which require D to be linear, and can be
seen to satisfy

dn(K)V = inf
Vn linear

dim(Vn)=n

max
u∈K

min
v∈Vn

‖u− v‖V (1.2)

by taking the best approximation Pnu ∈ arg minv∈Vn ‖u−v‖V . Note that, as K is compact, it can be covered by
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balls of any radius ε > 0 centered at points u1, . . . , un ∈ K for n = n(ε) large enough. Taking Vn that contains
u1, . . . , un shows that dn(K)V 6 ε, and therefore

dn(K)V −→
n→∞

0.

One alternative to the Kolmogorov widths consists in imposing that E is also linear, which leads to the approx-
imation numbers

an(K)V = inf
P∈L(V,V )
rank(P )6n

max
u∈K
‖u− Pu‖V ,

where L(V,W ) denotes the set of continuous linear operators from V to W . If V is a Hilbert space, the optimal
projection Pn is linear, so an(K)V = dn(K)V .

An important aspect for quantifying the effectiveness of linear reduced modeling is to determine how fast the
Kolmogorov widths of K decay. Such decay properties are well understood for standard regularity classes [67,
167, 171, 173], and have more recently been studied for classes of solutions to parametric elliptic Partial Differ-
ential Equations (PDEs), under the systematic assumption that ellipticity holds uniformly over the parameter
domain [20–22, 84, 174]. In Chapter 2, we address this question when the uniform ellipticity assumption is
no more valid, namely for a stationary diffusion equation with degenerate coefficients, that correspond to the
so-called high-contrast regime.

In some situations, the Kolmogorov widths may decrease too slowly, and a natural approach to tackle this
issue consists in using nonlinear reduced models. This leads to the notion of nonlinear widths (or manifold
widths) [169]

δn(K)V = inf
E∈C0(V,Rn)

inf
D∈C0(Rn,V )

max
u∈K

‖u−D(E(u))‖V ,

Note that Vn = D(Rn) is now a nonlinear space. One important variant, called stable nonlinear widths [57]
and denoted δLn (K)V , imposes in addition that E and D are both L-Lipschitz continuous for a certain choice of
norm on Rn.

An important chapter of nonlinear approximation, that was highlighted by the theory of Compressed Sensing
[42, 72], consists in imposing that encoding is made by linear measurements while decoding could be nonlinear.
This brings us to introduce the sensing numbers

sn(K)V = inf
E∈L(V,Rn)

inf
D:Rn→V

max
u∈K

‖u−D(E(u))‖V . (1.3)

There is a close connection between sn and the Gelfand widths, defined as

gn(K)V := inf
E∈L(V,Rn)

max
u∈K

E(u)=0

‖u‖V .

One can observe, as in [52], that
sn(K)V 6 gn(K −K)V 6 2 sn(K)V .

In particular, when K is convex and centrally symmetric, a Hahn-Banach extension of idKerE to V in the norm
‖v‖K := min{λ ∈ [0,∞] : v/λ ∈ K} shows that sn(K)V = gn(K)V .

Remark 1.1. In the definition of sensing numbers, we can omit the assumption that D is continuous, without
changing the value of sn. Indeed, for any ε > 0, covering K by a finite union of sets Uz = {u + v : u ∈ K,
E(u) = z and ‖v‖V 6 ε}, and applying a partition of unity on the covering of E(K) by the E(Uzi), one can
define a continuous decoder Dε interpolating any decoder D at points zi, with an additional error at most ε.
This will be useful in Chapter 3, where we prove bounds on sn by the construction of a possibly discontinuous
decoder.

In Chapter 3, we discuss how nonlinear reduced models can be used in the context of inverse problems, and
establish theoretical bounds on the achievable accuracy for a given set of linear or nonlinear measurements.
Indeed, in many applications, not all measurements of u are accessible, thus optimal encoders E are out of
reach [131]. As a particular application, we discuss the performance of nonlinear reconstructions for classes K
of piecewise smooth functions from their encoding by cell averages, and show that it decays faster than the
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Kolmogorov widths of K. This means that sn and δn decay significantly faster than an and dn for such K.

Finally, a typical setting, in the case where u is a real or complex valued function defined on some domain Ω,
is when encoding of u is perfomed by point evaluations only [83]. This naturally leads to the notions of linear
sampling numbers that are defined as

ρn(K)V = inf
x1,...,xn∈Ω

inf
D∈L(Rn,V )

max
u∈K

‖u−D(u(x1), . . . , u(xn))‖V , (1.4)

Once again we may relax the assumption that D is linear, leading to the nonlinear sampling numbers ρ̃n(K)V .
Another important variant that will be defined further are the randomized sampling numbers, that correspond
to the case where the xi are picked at random and error is measured in an expectation sense.

This practical situation of point evaluations is the main focus of the rest of this thesis. Part II, com-
posed of Chapters 4, 5, 6 and 7, explores new bounds on sampling numbers. In these contributions, decod-
ing/reconstruction strategies are linear and very classical, such as interpolation or least-squares. The main
contribution lies in the careful selection of the points where u should be evaluated, that is in the encod-
ing/sampling strategy, a topic which has been the object of intensive research in recent years [143, 144, 167,
184]. In particular, we provide in various contexts estimates for the sampling numbers ρn(K)V that compare
favorably to the Kolmogorov widths, when V is either L2(D) or L∞(D).

Let us stress that there also exist many nonlinear reconstruction methods based on point sampling, and
therefore falling in the category described by the nonlinear sampling numbers ρ̃n [162, 189]. We may single
out the very active area of neural network approximation, with recent progress on learning Banach subsets,
see [4] and the references therein. However, nonlinear sampling numbers ρ̃n do not compare as favorably to
nonlinear widths δn as in the linear case, due to a theory-to-practice gap in deep learning [82]. As the underlying
mathematical concepts are also quite different from the ones studied here, these methods are left outside the
scope of this thesis.

Remark 1.2. Here we emphasized the role of reduced order models based on continuous coefficients c ∈ Rn.
Another approach consists in encoding information on u in a discrete way, by replacing Rn with a finite set
{1, . . . , N}. Appraising the accuracy of this technique is the goal of covering numbers, packing numbers, and
the related entropy numbers, that have natural connections with the complexity measures described above [45].

In the next sections, we go into further detail on each of the previously mentioned themes, and summarize
the content of each chapter.

1.2 Reduced modeling for parametric elliptic PDEs
Part I of the thesis begins with Chapter 2, based on our article [a], which deals with linear reduced modeling

for parametric elliptic PDEs with high contrast diffusion coefficients.

When simulating physical phenomena, u often corresponds to an intensive quantity, such as a temperature,
pressure, concentration, or a velocity field. Besides the spatial coordinates x ∈ Ω, u may depend on some
parameters gathered in a vector y ∈ Y ⊂ Rd, which could account both for physical properties of the materials,
and for geometric variables describing for instance the shape of the domain Ω and its boundary conditions.
Modeling this function u(y) by a PDE

P(u, y) = 0, x ∈ Ω,

creates a class of solutions
KY = {u(y) : y ∈ Y } (1.5)

in the Banach space V for which the PDE is well-posed.
One typically has access to a high fidelity numerical solver, which computes u(y) for any given parameter

vector y ∈ Y . Such solvers are computationally costful, which is particularly problematic in the “many query”
context, that is, when the solution is needed for many different y. This motivates the offline search of a
reduced model Vn for K, that aims at collectively approximating all solutions as best as possible for the given
dimension n. The two prominent approaches are the reduced basis method [84, 157, 160] and the principal
orthogonal decomposition [46, 180, 190]. The main challenges arising in this context consist in
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- estimating the Kolmogorov widths dn(K)V from (1.2) that corresponds to the performance of optimal,
and often out of reach, n-dimensional spaces;

- constructing a reduced space Vn such that the distance maxu∈K minv∈Vn ‖u−v‖V from K to Vn compares
favorably with dn or satisfies similar decay estimates;

- once Vn is fixed, and given y ∈ Y , computing a surrogate ũ(y) ∈ Vn of u(y), with an error ‖u(y)− ũ(y)‖V
again satisfying a similar bound.

The online computation of the surrogate ũ(y) is typically performed by the Galerkin method in the space Vn,
that amounts to solving a system of moderate size n, resulting in substantial computational savings compared
to the high fidelity solver.

Chapter 2 concentrates on an archetypal example of parametrized elliptic problem

P(u, y) := f + div (a(y)∇u) = 0, x ∈ Ω (1.6)

modeling the stationary solution u ∈ V := H1
0 (Ω) of a diffusion equation in a heterogeneous domain, with source

term f ∈ V ′ = H−1(Ω), diffusion coefficient a(y) ∈ L∞(Ω), and homogeneous Dirichlet boundary conditions
u|∂Ω = 0.

Here, Ω is a fixed smooth spatial domain, and we assume that f is independent from the parameters y,
because u depends linearly on f , hence a parametrized source term would pose no particular difficulty. On the
contrary, the evolution of u when a varies is much more complex. We restrict ourselves to a piecewise constant
geometry a(y) = yj on Ωj , where {Ω1, . . . ,Ωd} is a fixed partition of Ω and y ∈ Y ⊂ (0,∞)d, as illustrated in
Figure 1.3.

Ω1

a = y1 � 1

Ω2

a = y2 = 1

Figure 1.3 – Example of a partition of Ω = [−1, 1]2 into d = 2 subdomains Ω1 = [−1, 0]2 and Ω2 = Ω \ Ω1.
If we take a source term f = 1 and a piecewise constant diffusion coefficient a = yj on Ωj with y1 � 1 and
y2 = 1, the solution u(y), plotted on the right, is almost constant on Ω1, with a value close to zero due to the
homogeneous Dirichlet boundary conditions

This problem has been widely studied in recent years, see in particular [20, 22, 174], who all work under a
uniform ellipticity assumption

Y ⊂ [amin, amax]d, 0 < amin < amax <∞.

Even when the parameter dimension d goes to infinity, sparse approximations [3, 21, 56, 58] have been proved to
achieve polynomial decay rates, for any affine parametrization of a as a function of y. For finite d, exponential
rates can be obtained, by studying certain sparse polynomial expansions of u(y) with respect to the parameter
coordinates (yj)16j6d. This is the strategy adopted in [20], yielding the following result:

Theorem 1.3. If the diffusion coefficient a is piecewise constant with value yj on Ωj (or any affine function
a(y) = a+

∑d
j=1 yjψj) and amin 6 a(x, y) 6 amax for all x ∈ Ω and y ∈ Y , then

dn(KY )V 6 C exp(−cn1/d),

where C and c are positive constants depending on d, amin, amax, and the geometry of the partition (or on the
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affine basis functions a and ψ1, . . . , ψd).

However, the constraint that a is bounded from above and below is quite stringent, as the constant C
degrades proportionally to the level of contrast amax/amin. For heat diffusion in composite materials, metallic
and cristalline parts may have conductivities hundreds or thousands times higher than organic compounds or
air. An even worse gap occurs in modeling the diffusion of a contaminant in underground water flows, as the
diffusivity is much higher in flooded cavities than in the surrounding porous rocks.

Many techniques have been proposed to avoid deterioration of the convergence of numerical solvers when
the level of contrast increases. They range from preconditionners [9, 10, 75] to a posteriori error estimation [8,
30], not forgetting domain decomposition methods adapted to drastic changes in the coefficients [76, 77] or even
to changes in the nature of the PDE [78]. The main novelty of Chapter 2 is to establish such robust estimates
for model order reduction.

A first step consists in observing that, due the homogeneity property u(y) = tu(ty), we only have to consider
the case of large values y → ∞. We thus assume, up to a rescaling, that yj > 1 for all 1 6 j 6 d, and show a
uniform reduced model error

sup
y∈[1,∞)d

‖ũ(y)− u(y)‖V 6 ε.

This results in a similar uniform error bound, in the relative error sense

sup
y∈(0,∞)d

‖ũ(y)− u(y)‖V
‖u(y)‖V

6 ε,

over the full range of parameter Y = (0,∞)d, which is therefore robust to arbitrarily high contrast.
One key ingredient to our analysis is the fact that the solution u to the variational problem associated

to (1.6), ˆ
Ω

a(y)∇u · ∇v =

ˆ
Ω

fv, v ∈ V = H1
0 (Ω),

converges, when some of yj tend to infinity, to the solution uS ∈ VS of a limit problem
ˆ

ΩcS

a(y)∇uS · ∇v =

ˆ
Ω

fv, v ∈ VS ,

where S is the set of indices j such that yj =∞, ΩS =
⋃
j∈S Ωj is the part of Ω where a(y) is infinite, and

VS = {v ∈ V : ∇v = 0 on ΩS}.

The weak convergence of u(y) towards uS follows from a compactness argument, which can be found in Chapter 3
of [101] in the context of homogeneization. To obtain strong convergence, one additionally needs the convergence
of the energy norm

‖v‖2y :=

ˆ
Ω

a(y)|∇v|2.

A more detailed convergence analysis when there are only d = 2 subdomains can be found in [41], where
asymptotic expansions up to any order are performed. One of our main contributions is to quantify more
precisely the rate of this strong convergence.

The central idea for manufacturing a reduced model Vn of KY is then to use polynomial expansions adapted
from [20] in subsets of the parametric domain Y = [1,∞]d corresponding to moderate values of y, and to take
advantage from the proximity between u(y) and a limit solution when some of the yj are large. Our main result
is in turn the following.

Theorem 1.4. For Y = [1,∞]d and a(y) = yj on Ωj, the class KY defined by (1.5) satisfies

dn(K)V 6 C exp(−cn1/2d)

for some constants C, c > 0 that depend on d and the geometry of the partition.

As the proof is constructive, it also provides a space Vn achieving the following bound, however at the
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expense of computing derivatives of the solutions u(y) with respect to y. Classical reduced models, selected as
subspaces of the span of a limited number of solutions u(y1), . . . , u(yN ), are nevertheless proved to work at least
as well [33, 40, 65, 179], and in practice reach much better rates than the pessimistic bound in exp(−cn1/2d).

Concerning the construction of the surrogate ũ(y), the best approximation would be the H1
0 -orthogonal

projection of u(y) onto Vn, which is accessible only by first computing u(y), which is exactly what we want to
avoid. A more efficient approach is to compute the Galerkin projection, that is, the orthogonal projection of
u(y) onto Vn with respect to the energy norm ‖ · ‖a. This only asks to solve the PDE in the reduced model,
which comes down to solving an n× n linear system. We show estimates of the same kind as Theorem 1.4 for
the error of approximation by Galerkin projection, despite the fact that the high-contrast regime does not allow
a straightforward use of Cea’s lemma.

Finally, as a consequence of the above results, we demonstrate that the linear Parametrized Background
Data-Weak (PBDW) method [33, 124] allows to solve the inverse problem of recovering an unknown state u or
the underlying parameters y, based on a few measurements of the solution.

1.3 Nonlinear reduced modeling and inverse problems

Chapter 3 is based on article [b], which deals with the use of nonlinear reduced models for solving inverse
problems.

In full generality, we address the inverse problem of recovering an unknown function u ∈ V from m linear
measurements performed by given functionals `1, . . . , `m : V → R. The properties of u are again modeled by
its membership in a class K that could be the solution manifold of a parametric PDE.

The Parametrized Background Data-Weak (PBDW) method consists in introducing a linear reduced model
space Vn for K, with n 6 m, and defining the recovery as the optimizer u∗ in the pair

(u∗, ũ) ∈ arg min
v∗∈Vz, ṽ∈Vn

‖v∗ − ṽ‖V ,

where Vz = {v ∈ V : `(v) = z} is the space of codimension m of all elements v ∈ V that have the same
measurements z = `(u) as the unknown element u, with the notation ` = (`1, . . . , `m) : V → Rm. The PBDW
estimator u∗ entirely trusts the data, expressed through Vz, and considers the parametrized space Vn as an
inexact approximation, contrarily to the best fit estimator ũ which heavily relies on the precision of Vn, while
allowing noisier measurements.

If we assume that V is a Hilbert space and that ` ∈ L(V,Rm) is linear, one can take Riesz representers ωi
of the `i

`i(v) = 〈ωi, v〉V , 1 6 i 6 m, v ∈ V,

and characterize the measurements as the orthogonal projection PWm
onto the observation space

Wm = span{ω1, . . . , ωm},

see Figure 1.4. Equivalently, we have Vz = u+W⊥m and we could have defined

u∗ = arg min
v∈Vz

‖v − PVnv‖V and ũ = arg min
v∈Vn

‖PWm(u− v)‖V .

If moreover Vn is a linear space, it was proved in [33, 124] that these estimators are near-optimal:

Theorem 1.5. Given Vn and noiseless observations PWm
u of u, the estimators u∗ and ũ satisfy

max(‖u− u∗‖V , ‖u− ũ‖V ) 6 µmn min
v∈Vn

‖u− v‖V ,

where
µmn = max

v∈Vn

‖v‖
‖PWm

v‖V
.
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Figure 1.4 – Approximation of u in a linear reduced model Vn, based on measurements by projection on Wm.

The quantity µmn may be thought of as the cosecant 1/ sin(θ) of the minimal angle θ between W⊥m (or the
affine space Vz) and Vn. In other words, µmn indicates how close Vn is from Wm. In particular, µmn = 1 if
Vn ⊂ Wm, in which case the optimal approximation ũ = PVnu can be computed from the observations PWmu.
On the opposite, if there exists a non-zero v ∈ Vn∩W⊥m , the corresponding coordinate 〈u, v〉V cannot be deduced
from the measurements, and µmn =∞.

Remark 1.6. In Figure 1.4, sin θ corresponds both to the ratio between optimal error ‖u− Pnu‖V and actual
error ‖u− ũ‖V , and to the fraction ‖PWm

ũ‖V /‖ũ‖V . This motivates the definition of the stability constant µmn
in Theorem 1.5

In Chapter 3, we establish an extension of the above result to nonlinear spaces Vn in general Banach spaces V .
For a linear measurement map ` : V → Rm, Theorems 3.3, 3.5 and 3.8 imply:

Theorem 1.7. Given Vn and noiseless linear observations `(u) of u, the estimators u∗ and ũ satisfy

max(‖u− u∗‖V , ‖u− ũ‖V ) 6 (1 + 2µWn ) min
v∈Vn

‖u− v‖V

where
µWn = sup

v1,v2∈Vn

‖v1 − v2‖V
‖`(v1)− `(v2)‖W

,

for the norm ‖z‖W := minv∈Vz ‖v‖V on Rm.

Note that µWn is the inverse Lipschitz stability constant of ` in Vn. It coincides with the factor µmn from the
previous theorem under the corresponding assumptions, as illustrated on Figure 1.5.

θ̄

θu

Vn

V

K
u•

ũ
•

Pu
•

Vz

Figure 1.5 – Approximation of u in a nonlinear reduced model Vn, based on linear measurements expressed
by Vz. The stability constant is again inversely proportional to sin θu, which we bound by considering the
minimal angle θ̄ = minu∈K θu. As Vn is nonlinear, these angles are in fact defined by considering differences
between two elements of Vn, see Theorem 1.7
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Furthermore, in the case of noisy observations z = `(u) + η, we obtain similar bounds, with an additional
term proportional to ‖η‖p, the norm of the noise in `p(Rm), for any p > 1. When the level of noise grows, a
norm ‖·‖Z different from ‖·‖W should be chosen in Theorem 1.7, to preserve a balance between these two terms.

The above analysis is then carried on to a concrete example in Sections 3.4 and 3.5: one wishes to recover a
piecewise smooth function u : [0, 1]2 → R from its local averages

ffl
T
u on cells of the form Ti,j = [(i− 1)h, ih]×

[(j−1)h, jh], where h > 0 is the cell size and 1 6 i, j 6 1/h. This typically applies to cartoon images, for which
one may construct a fine resolution image based on a pixelized version. Another domain where this example
could be of interest is the numerical resolution of hyperbolic equations with shock singularities.

Assuming that u is in fact piecewise constant with values 0 and 1, the strategy consists in looking for the best
approximation of u by the indicator of a half-plane, on each stencil of 3× 3 cells. We show in Proposition 3.15
that µWn = 3/2, which implies the following bound, adapted from Theorem 3.18:

Theorem 1.8. If u the indicator of a smooth domain in [0, 1]2, we can construct an approximation ũ based on
its average values on n = h−2 cells such that

‖u− ũ‖qLq 6
C

n
.

This is better than the rate 1/
√
n achieved by a linear method, this rate being optimal for q = 2. In other

words, we proved that for the class K of indicators of smooth domains, the sensing numbers defined in (1.3)
decrease as

sn(K)L2 . n−1/2,

whereas the Kolmogorov widths (or approximation numbers) only decay as dn(K)L2 ≈ n−1/4.
Finally, in Section 3.6, we show that for the space Vn of n-sparse vectors in V = RN , optimal accuracy of the

reconstruction is equivalent, up to a factor 2 in the constants, to the null space property [52], which is known to
certify the quality of the measurements in compressed sensing (it is in particular implied by the the restricted
isometry property [43, 72]).

1.4 Weighted least-squares

In Part II of the thesis, we investigate more specifically linear recovery methods from point value data.

Thus the information on u consists of its evaluations at a few selected points x1, . . . , xm, possibly affected by
noise. The critical aspect of the setting we consider is that the user is allowed to pre-select the sample points.
This situation happens:

— in the design of physical experiments, if u is a spatially-dependent physical quantity, and one can pick
the positions x1, . . . , xm of sensors measuring u(xi),

— in the model reduction of a parametric PDE, whose solution u is seen as a function of the parameters y,
since the user can pick the set of parameters yi when lauching the fine numerical solver.

This active learning setting is in shear contrast to the regression problem in statistical learning, where the data
points are drawn from an unknown underlying distribution. It puts in the forefront the problem of optimally
selecting the sampling point, as already hinted in the definition (1.4) of the sampling numbers ρn.

As m represents a number of sensors or a number of expensive numerical solves, one is interested in es-
tablishing convergence estimates that compare favorably to the accuracy of the reduced model Vn, of given
dimension n, that is used for the reconstruction, and hold for the smallest possible sampling budget m, if
possible of the same order as n.

Before detailing the contents of each chapter of Part II, let us briefly present a simplified version of the main
result of [59], see § 4.2.2, boosted by adding a conditioning step from [85], with a strategy of proof following
the same lines as [d]. The proof is essentially summed up in Lemma 5.2, and the main result of this section is
almost a copy of Lemma 5.4.
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Let Ω be a multivariate domain equipped with a measure µ, and let

V := L2(Ω, µ).

Let Vn ⊂ V be a given linear space of dimension n ∈ N. We seek to approximate an unknown function u ∈ V
by a surrogate ũ ∈ Vn, based on its point values. Take (ϕ1, . . . , ϕn) an orthonormal basis of Vn, and define

kn(x) =
1

n

n∑
j=1

|ϕj(x)|2, x ∈ Ω, (1.7)

the inverse Christoffel function, up to the scaling factor 1/n. For m > n to be determined later, we draw points
x1, . . . , xm ∈ Ω i.i.d according to the sampling measure kn(x) dµ(x). Moreover, we define weights wi = 1/kn(xi),
and a discrete semi-norm

‖v‖2m =
1

m

m∑
i=1

wi|v(xi)|2, v ∈ V.

In the noise-free case, the weighted least-squares approximation

Pmn u = arg min
v∈Vn

‖u− v‖m

is the orthogonal projection of u onto Vn with respect to the norm ‖ · ‖m. This definition should be viewed in
an almost sure sense, when applied to a function representative of u ∈ L2(Ω, µ).

We introduce the random Gram matrix

Gm := (〈ϕj , ϕk〉m)16j,k6n =
1

m

m∑
i=1

aia
†
i , (1.8)

where ai =
√
wi ϕ(xi) ∈ Cn. Following [85], we define a conditional estimator

ũ = E
(
Pmn u

∣∣∣∣Gm < 1

2
I

)
,

where A < B means that A − B is a positive semi-definite matrix. The estimator ũ can be computed by
redrawing samples (x1, . . . , xm) until the event Gm < 1

2I occurs.

Theorem 1.9. For m > 10n ln(2n), the expected numbers of redraws is at most 2, and

E
(
‖u− ũ‖2L2

)
6 5 min

v∈Vn
‖u− v‖L2 , (1.9)

The main tool for proving Theorem 1.9 is the following matrix Chernoff inequality, originally proved by [7].
A review on matrix concentration inequalities can be found in [176], and the version given below is from [c, d],
see Lemmas 4.1 and 5.3.

Proposition 1.10. Let a1, . . . , am ∈ Cn be i.i.d random vectors such that E(aia
†
i ) = I and |ai|2 6 n a.s. Then

P

(
λmin

(
1

m

m∑
i=1

aia
†
i

)
<

1

2

)
6 n exp

(
− m

10n

)
.

Proof of Theorem 1.9. The random vectors ai =
√
wi ϕ(xi) are i.i.d, bounded since |ai|2 = n by definition of

the wi, and satisfy

E(aia
†
i ) =

ˆ
Ω

1

kn(xi)
ϕ(xi)ϕ(xi)†kn(xi) dµ(xi) =

ˆ
Ω

ϕϕ†dµ = I.

Applying Proposition 1.10 with m > 10n ln(2n), we see that the probability p := P(Gm < 1
2I) is at least 1

2 .
The expected number of redraws is therefore 1/p 6 2.
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For the estimate (1.9), recalling that Pnu is the orthogonal projection of u onto Vn for the norm ‖·‖V = ‖·‖L2 ,

E
(
‖u− ũ‖2L2

)
= ‖u− Pnu‖2L2 + E

(
‖ũ− Pnu‖2L2

)
. (1.10)

By definition of the estimator ũ,

E
(
‖ũ− Pnu‖2L2

)
= E

(
‖Pmn u− Pnu‖2L2

∣∣∣∣Gm < 1

2
I

)
. (1.11)

Decomposing v = Pmn u− Pnu ∈ Vn as v =
∑n
j=1 νjϕj , observe that

‖v‖2m = ν∗Gmν > λmin(Gm) ν∗ν >
1

2
‖v‖2L2 a.s.,

where we used the fact that λmin(Gm) > 1
2 almost surely holds for the conditioned sample. Thus

‖Pmn u− Pnu‖2L2 6 2 ‖Pmn u− Pnu‖2m 6 2 ‖u− Pnu‖2m a.s., (1.12)

since Pmn u− Pnu = Pmn (u− Pnu) is the orthogonal projection of u− Pnu onto Vn for the discrete norm ‖ · ‖m.
Finally, for any random variable X > 0 and event E with P(E) > 0, we have

E(X|E) =
E(XχE)

P(E)
6

E(X)

P(E)
.

Hence,

E
(
‖u− Pnu‖2m

∣∣Gm < 1

2
I

)
6

1

p
E
(
‖u− Pnu‖2m

)
6 2 ‖u− Pnu‖2L2 . (1.13)

We conclude by combining the above bounds (1.10), (1.11), (1.12) and (1.13).

Theorem 1.9 can be rephrased in terms of randomized sampling numbers [185]

ρrand
m (K)2

V = inf
σm∈Prob(Ωm)

inf
D:Ωm→L(Rm,V )

max
u∈K

E
(
‖u−D(x1,...,xm)(u(x1), . . . , u(xm))‖2V

)
, (1.14)

where Prob(Ωm) is the set of probability measures on Ωm, and the expectation is taken over the sample
(x1, . . . , xm) of law σm. Note that these randomized numbers are smaller than the deterministic sampling
numbers ρm(K)V from Table 1.1, defined in (1.4), since a deterministic sample may be thought of as a particular
instance of random sample.

Corollary 1.11. If m > 10n ln(2n), for any compact subset K of V = L2(Ω, µ),

ρrand
m (K)2

L2 6 5 dn(K)2
L2 .

Remark 1.12. The main result in [59] proposes some improvements over the simplified Theorem 1.9: in
particular, the conditioning step can be avoided if u ∈ L∞, by considering a truncated estimator. Moreover,
the factor 5 is replaced by 1 + 8n/m, and this new factor 8 could be reduced to any constant larger than 1, by
increasing the ratio between m and n ln(n). This leads to a stability constant 1 +n/m+ o(n/m) as m→∞ for
a fixed value of n, which is optimal for i.i.d sampling methods.

Remark 1.13. In the definition (1.14) of ρrand
m (K)V , we did not enforce the sample points to be i.i.d or even

independent, which would transcribe as σm = σ⊗m for σ ∈ Prob(Ω), or as σm ∈ Prob(Ω)m, respectively. Indeed,
the conditioning procedure does not preserve the independence of the points, and there always is a probability
of failure for an algorithm based on i.i.d points.
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1.5 Christoffel function on general domains

Chapter 4 is based on our article [c], and investigates the computational issues arising from the use of the
Christoffel function on general domains, as well as multistep algorithms circumventing these difficulties.

One main computational challenge for applying the above least-squares strategy is to compute an orthonor-
mal basis (ϕ1, . . . , ϕn) of Vn in L2(Ω, µ). This basis is essential for evaluating the Gram matrix Gm (1.8), and
even more crucially for computing the inverse Christoffel function kn(x) (1.7), which is needed both as the
optimal sampling density, and for assigning the correct weights wi = 1/kn(xi).

On general domains Ω, one might only have access to Vn through a non-orthonormal basis (φ1, . . . , φn), and
the continuous norm ‖ · ‖L2 (and associated inner product 〈·, ·〉L2) are usually not exactly computable. One is
therefore constrained to use an approximately orthonormal basis (ϕ̃1, . . . , ϕ̃n), and the related sampling density

k̃n(x) =
1

n

n∑
j=1

|ϕ̃j(x)|2.

An important remark is that, if only an approximation k̃n of kn is known, it is sufficient to draw ‖Zkn/k̃n‖L∞
times more points according to the probability measure 1

Z k̃n dµ, and to use weights wi = 1/k̃n(xi). Although
the normalization constant

Z =

ˆ
Ω

k̃n(x) dµ(x)

may not be known, classical sampling methods such as rejection sampling or Markov Chain Monte Carlo
(MCMC) do not require its knowledge, and estimates on Z from above are sufficient to bound the factor
‖Zkn/k̃n‖L∞ in the sample size.

As a consequence, our algorithm is divided into two steps: the first one consists in drawing a large sample
y1, . . . , yM according to µ (or any known a priori sampling measure), to compute an inexact quadrature formula
for ‖·‖L2 on Vn and obtain the density k̃n, while the second draws a smaller sample x1, . . . , xm ∼ k̃n dµ, evaluates
u at these points, and returns the weighted least-squares approximation. This is the subject of Chapter 4, and
in particular Section 4.3. Similar results have been obtained in [5, 6, 132, 133], with an emphasis on numerical
error analysis in [132, 133], on frame discretizations in [6], and on the adaptivity to a nested sequence of
approximation spaces (Vnp)p>1 in [5].

By the same arguments as for m, the number M of sample points in the first part has to grow at least like
M > ‖kn‖L∞n ln(n). When the domain Ω is very irregular, ‖kn‖L∞ may increase too fast with n, which is
problematic in terms of computational complexity of the offline stage. To get around this obstacle, we try to
sample y1, . . . , yM according to a better measure than µ. The optimal sampling density for the yi is again the
inverse Christoffel function kn, which is precisely the quantity we would like to compute.

To avoid this loop, we use as in [5] a nested sequence of spaces

Vn1
⊂ · · · ⊂ Vnq = Vn,

where n1 < · · · < nq and dim(Vnp) = np for 1 6 p 6 q. These spaces are obtained by progressively adding basis
elements, for instance by taking Vnp = span{φ1, . . . , φnp}. Our main result in this direction is Theorem 4.12,
which states that near-optimal accuracy can be obtained with a quasilinear sample size m, using preliminary
samples yp,1, . . . , yp,Mp of size Mp ∼ np ln(np) for 1 6 p 6 q, provided that there exists a constant κ such that

np knp 6 np+1 knp+1 6 κnp knp . (1.15)

This multilevel strategy differs from the one in [87], in which it is assumed that the numerical solver can be
queried to obtain values u(xi) with variable precision, depending on the computational effort invested. Moreover,
it can be complemented with the variance reduction techniques discussed in [132]. Theoretical and empirical
methods for choosing the intermediate sample sizes Mp are discussed in [34], in the connected setting of ran-
domized weak greedy algorithms.

In order to guess the necessary sample sizes and to find κ satisfying (1.15), it remains to prove estimates
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on the inverse Christoffel function. We address this question in Section 4.5 for the space Vn of multivariate
total degree polynomials of a certain order, on a domain Ω ⊂ Rd, with µ the uniform probability measure on Ω.
There is already a vast literature on the subject, see for instance [48, 66, 115, 153, 191]. Our main results in
that matter are summarized below:

Theorem 1.14. Let Vnp be the space of total degree polynomials of order p on a domain Ω ⊂ Rd. If Ω has a
C2 boundary,

csmooth n
1/d 6 ‖kn‖L∞ 6 Csmooth n

1/d,

where csmooth and Csmooth depend on Ω. If Ω has a Lipschitz boundary,

‖kn‖L∞ 6 CLipschitz n, and kn(x) > cLipschitz(x)n

for any outward corner x ∈ ∂Ω. Finally, in the case of outward cusps, the reference domain
Ω =

{
x ∈ [−1, 1]d : max16j6d−1 |xj |αi 6 xd

}
satisfies

cα n
1
d (2+

∑d−1
j=1 2/αj) 6 nkn(0) 6 Cα n

1
d (2+

∑d−1
j=1 2/αj)

for any α1, . . . , αd−1 ∈ (0, 2].

We also obtain a pointwise framing on kn up to constants for piecewise smooth domains with outward
corners, see Theorem 4.27, which implies (1.15) for such domains.

It is interesting to note that the sources of fast growth of kn are the outward corners of the domain, in
contrast to geometric singularities in the solutions to elliptic problems, which are caused by reentrant corners.

1.6 Reducing the sample size
In Chapter 5, based on our article [d], we obtain estimates similar to Theorem 1.9 and Corollary 1.11, with

a sample size m′ that scales linearly with n, therefore removing the logarithmic oversampling.

The main ingredient in this reduction of the sample size is the celebrated solution [128] of the Kadison-Singer
problem. This problem was a conjecture posed by Kadison and Singer [103] in 1959, concerning extensions of
C∗-algebras in the formalization of quantum mechanics. It was later linked to a paving conjecture in [13], and
brought back to finite dimension in [187], before being solved by Markus, Spielman and Srivastava, based on
their earlier works on interlacing families of polynomials [127].

Although the focus of the authors of [128] was mainly to find so-called graph sparsifiers, their method helped
advancing on the problem of frame discretization ([23, 73, 121, 139, 140], see also the surveys [38, 51]): given a
vector-valued function ϕ : Ω→ Cn such that

A0I 4
ˆ

Ω

ϕϕ∗ dσ 4 B0I

for some probability measure σ and continuous frame bounds A0, B0 > 0, can one find a finite set S ⊂ Ω of
controlled cardinality such that

AI 4
1

|S|
∑
x∈S

ϕ(x)ϕ(x)∗ 4 BI,

with discrete frame bounds A,B > 0 ?
As noticed in [170], if one takes ϕ = (ϕ1, . . . , ϕn) an orthonormal basis of Vn in V = L2(Ω, µ), the first

estimate is valid for σ = µ and A = B = 1, and the frame discretization yields a set of points S satisfying a
Marcinkiewicz-Zygmund inequality:

A ‖v‖2L2 6
1

|S|
∑
x∈S
|v(x)|2 6 B ‖v‖2L2 , v ∈ Vn.

This inequality is in turn strongly related to approximation from point values, see [81], since it is equivalent
to the eigenvalues of the Gram matrix Gm being comprised between A and B. In Chapter 5, we use this
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subsampling theory to reduce the size of our sample x1, . . . , xm, by drawing points as in Section 1.4 and then
randomly removing some of them. We detail the main steps below.

The main result from [128], see Corollary 1.5 there, can be stated as:

Theorem 1.15. Let r ∈ N and a1, . . . , am ∈ Cn such that 1
m

∑m
i=1 aia

†
i = I and |ai|2 6 δ for 1 6 i 6 m. Then

there exists a partition {S1, . . . , Sr} of {1, . . . ,m} such that

GSs :=
r

m

∑
i∈Ss

aia
†
i 4

(
1 +
√
rδ
)2

I, 1 6 s 6 r.

To obtain a lower frame bound, it suffices to consider the case r = 2, and to notice that GS1
+ GS2

= I,
so λmin(GS1) = 1 − λmax(GS2). By a similarity transformation, one can send each GSs to the identity, and
repeat the partitioning operation. This leads to a dyadic splitting of the initial sample {1, . . . ,m}, satisfying
the following duplicate of Lemma 5.8, which is mainly inspired from [140], Lemma 2, up to the slight difference
that we keep track of all partition classes.

Lemma 1.16. Let a1, . . . , am ∈ Cn such that 1
2I 4

1
m

∑m
i=1 aia

†
i 4

3
2I and |ai|2 = n

m for 1 6 i 6 m. Then
there exists L ∼ ln(m/n) and a partition {J1, . . . , J2L} of {1, . . . ,m} such that |Js| 6 C0n and

c0I 4
1

n

∑
i∈Js

aia
†
i 4 C0I, 1 6 s 6 2L,

for some universal constants c0 and C0.

With this, randomly selecting the partition class Js with probability |Js|/m, we are able to obtain an error
bound for weighted least-squares that is optimal up to a constant, and has a linear sampling budget |Js| 6 C0n.
In Corollary 5.9, we indeed show that for any compact K ⊂ V = L2(Ω, µ),

ρrand
C0n (K)L2 6

(
1 + 2

C0

c0

)
dn(K)L2 .

This result therefore shows that, in the ‖ · ‖L2 norm, sampling numbers compare favorably to Kolmogorov
widths, up to constant factors in the error bounds and the oversampling ratio |Js|/n. Note however that the
uniformity of ρrand

C0n
(K)L2 with respect to the element u ∈ K only holds with an expectation over a randomized

sample inside the supremum supu∈K. Indeed, there can be no deterministic sample achieving a recovery error
close to dn(K)L2 for general classes K.

On the other hand, if more regularity than having a finite n-width is assumed on K, deterministic bounds
can be attained. This topic has attracted much attention in recent years, see for instance [23, 104, 106, 113,
121, 137, 168], and is discussed in the next sections.

1.7 Reproducing Kernel Hilbert Spaces

Chapter 6 is based on our article [e], and studies deterministic sampling numbers ρn(K)L2 from (1.4), when
K is the unit ball of a separable reproducing kernel Hilbert space (RKHS), or a compact class with sufficiently
fast decay of its Kolmogorov widths.

The need for randomized error norms in the previous sections stems from the fact that point evaluations
are not continuous linear forms in L2(Ω, µ). In contrast, a RKHS is a Hilbert space H of functions on some
domain Ω, equipped with a kernel K : Ω× Ω→ C such that

v(x) = 〈v,K(x, ·)〉H , v ∈ H, x ∈ Ω.

We first consider the case where K is the unit ball of a RKHS H, itself compactly embedded into L2(Ω, µ). In
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addition, we require the separability of H and the finite trace of its kernel:
ˆ

Ω

K(x, x) dµ <∞.

Under this assumption, our main result is the following.

Theorem 1.17. There exists a universal constant c ∈ N such that

ρcn(K)2
L2 6

1

n

∑
k>n

dk(K)2
L2 , n ∈ N. (1.16)

Note that the separability assumption could be dropped by following [135], whereas the finite trace assump-
tion is essential since it implies the `2 summability of the Kolmogorov widths dn(K)V .

This result is a replica of Theorem 6.1, which comes as the culmination of a series of earlier works [106,
113, 117, 137, 184] proving estimates of the same kind. It matches, up to a change in the constant c, the lower
bounds on sampling numbers given in [95–97], and solves or partially answers open problems posed in [67, 95,
113, 144].

It notably implies the following bounds on decay rates of sampling numbers, see Corollary 6.2:

Corollary 1.18. If dn(K)L2 6 c n−α ln−β n for some α > 0, β ∈ R, and c > 0, then there exists C > 0 such
that

ρm(K)L2 6

{
Cm−α ln−βm if α > 1/2,

C m−α ln−β+1/2m if α = 1/2 and β > 1/2.

The main tool for the proof of Theorem 1.17 is an infinite-dimensional version of [128], see Proposition 6.17,
which exhibits some similarities with the discretization of infinite-dimensional frames in [73].

Secondly, in Section 6.6, we consider more general classesK, that are only assumed to be compactly embedded
into L2, separable, and with continuous point evaluation functionals. By constructing the appropriate RKHS
containing K as in [114], we obtain bounds similar to (1.16), up to a logarithmic loss. This in particular yields
the following decay rates, see Corollary 6.4:

Corollary 1.19. If dn(K)L2 6 c n−α ln−β n for some α > 0, β ∈ R, and c > 0, then there exists C > 0 such
that

ρm(K)L2 6


Cm−α ln−βm if α > 1/2,

C m−α ln−β+1m if α = 1/2 and β > 1,

C otherwise.

Finally, we provide examples of classes K for which the rates of Corollaries 1.18 and 1.19 are sharp. In
particular, this shows that sampling numbers may behave differently from Kolmogorov widths, and that this
gap is amplified in a non-Hilbert setting.

1.8 Weighted least-squares with minimal oversampling
We conclude this introduction with the presentation of Chapter 7, which is based on an ongoing joint project

with Abdellah Chkifa. This work improves significantly on Chapter 5, both in terms of computational complex-
ity and sampling budget, by means of a randomized greedy algorithm for selecting the sampling points, inspired
from [24] and [119].

The strategy is in fact simpler than in Chapter 5, since its sample points are drawn directly from continuous
measures, following an idea from [61], instead of being subsampled from a larger initial sample.

Algorithm 4 is inspired by [118, 119], themselves randomized versions of [24, 164]. Our main theorem below
shows that it achieves a randomized error bound as soon as m > n, see Theorem 7.1 for details.
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Theorem 1.20. For any m > n, one can compute a weighted least-squares approximation ũ ∈ Vn using m
evaluations of u such that

E(‖u− ũ‖2L2) 6

(
1 +

1

(1−
√
r)2

)
min
v∈Vn

‖u− v‖2L2

where r = (n− 1)/m < 1 is the oversampling ratio.

Interestingly, the same algorithm can also produce an estimator ũ satisfying a deterministic error bound,
when u and Vn are in L∞. This setting has been developed in [62, 121, 168], with a structure of proof based on
Lemma 5.12, see also [59, 81, 167] or Theorem 2.1 in [168].

Theorem 1.21. For any m > n, one can compute a weighted least-squares approximation ũ ∈ Vn using m
evaluations of u such that

‖u− ũ‖2L2 6

(
1 +

1

(1−
√
r)2

)
min
v∈Vn

‖u− v‖2L∞ a.s.,

where r = (n− 1)/m < 1 is the oversampling ratio.

As a consequence of Theorem 1.20, we obtain a randomized interpolation result, with a Lebesgue constant
of order O(n2). We repeat Corollary 7.2 below:

Corollary 1.22. For m = n, one can compute an interpolation ũ ∈ Vn of u such that

E(‖u− ũ‖2L2) 6 4n2 min
v∈Vn

‖u− v‖2L2 .

To our knowledge, there are no pre-existing results on interpolation of L2 functions in expectation with
respect to the L2 norm. It is much more classical to study the stability of interpolation in the uniform norm.
This can also be done here, by takingm = n in Theorem 1.21, however requiring an additional inverse inequality
between L2(Ω, µ) and L∞ in Vn. Such an inequality involves the L∞ norm of the inverse Christoffel function
‖nkn‖1/2L∞ = maxv∈Vn ‖v‖L∞/‖v‖L2 , and gives our last result:

Corollary 1.23. For m = n, one can compute an interpolation ũ ∈ Vn of u such that

‖u− ũ‖L∞ 6
(

1 + 2n ‖nkn‖1/2L∞

)
min
v∈Vn

‖u− v‖2L∞ .

Using Theorem 1.14 or the results from Section 4.5, we at once obtain strong stability estimates for poly-
nomial interpolation on general domains. Moreover, in contrast to the Fekete points, the sample is computable
in polynomial time, with Algorithm 4. In the monodimensional case of a finite union of intervals, one can see
for instance that ‖kn‖L∞ ∼

√
n, resulting in a Lebesgue constant

Λn := max
v∈Vn

‖ṽ‖L∞
‖v‖L∞

= O(n7/8),

beating other greedy strategies based on Leja points [14, 47, 49] which only achieve Λn = O(n13/4) or Λn =
O(n1+log2(3)). Of course, in this very elementary case, it is well known that Chebyshev points give the optimal
rate Λn = O(lnn) for the Lebesgue constant.

Corollary 1.23 also applies for different spaces Vn. For instance, on the d-dimensional torus Ω = Td, and for
any space Vn of trigonometric polynomials, it holds kn = 1 over the whole domain, by translation invariance of
Vn and of the Lebesgue measure µ. This yields the bound

Λn 6 2n
√
n.

As a concluding remark, let us note that the measure µ with respect to which we integrate in the L2 norm is not
fixed by the L∞ constraint. Therefore, one may multiply µ by any density before applying Corollary 1.23. For



1.8. Weighted least-squares with minimal oversampling 17

instance, in the case of univariate polynomials on the interval [−1, 1], taking the arcsine density 4 dx
π
√

1−x2
makes

the Chebyshev polynomials orthogonal, and as they are uniformly bounded, we once more obtain Λn = O(n3/2).
This leaves open the challenge of attaining a bound of the same order for any finite dimensional space Vn of

functions on a general domain Ω.
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Part I

Reduced order modeling for PDEs and
inverse problems





Chapter 2

Reduced order modeling for elliptic
problems with high contrast diffusion
coefficients

Abstract. We consider a parametric elliptic PDE with a scalar piecewise constant diffusion coefficient
taking arbitrary positive values on fixed subdomains. This problem is not uniformly elliptic, as the contrast
can be arbitrarily high, contrarily to the Uniform Ellipticity Assumption (UEA) that is commonly made on
parametric elliptic PDEs. We construct reduced model spaces that approximate uniformly well all solutions
with estimates in relative error that are independent of the contrast level. These estimates are sub-exponential
in the reduced model dimension, yet exhibiting the curse of dimensionality as the number of subdomains grows.
Similar estimates are obtained for the Galerkin projection, as well as for the state estimation and parameter
estimation inverse problems. A key ingredient in our construction and analysis is the study of the convergence
towards limit solutions of stiff problems when diffusion tends to infinity in certain subdomains.

2.1 Introduction

2.1.1 Reduced models for parametric PDEs
Parametric PDEs are commonly used to describe complex physical phenomena. With y = (y1, . . . , yd)

denoting a parameter vector ranging in some domain Y ⊂ Rd, and u(y) the corresponding solution to the PDE
of interest, assumed to be well defined in some Hilbert space V , we denote by

KY := {u(y) : y ∈ Y } (2.1)

the collection of all solutions, called the solution manifold.
There are two main ranges of problems associated to parametric PDEs:
1. Forward modeling: in applications where many queries of the parameter to solution map y 7→ u(y)

are required, one needs numerical forward solvers that efficiently compute approximations ũ(y) with a
prescribed accuracy.

2. Inverse problems: when the exact value of the parameter y is unknown, one is interested in either
recovering an approximation to u(y) (state estimation) or to y (parameter estimation), from a limited
number of observations zi = `i(u(y)), possibly corrupted by noise.

Reduced order modeling is widely used for tackling both problems. In its most common form, its aim is
to construct linear spaces Vn of moderate dimension n that approximate all solutions u(y) with best possible
certified accuracy. The natural benchmark for measuring the performance of such linear reduced models is
provided by the Kolmogorov n-width of the solution manifold

dn(KY )V := inf
dim(Vn)=n

dist(KY , Vn)V (2.2)

21
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that describes the performance of an optimal space. Here

dist(KY , Vn)V := sup
u∈KY

inf
v∈Vn

‖u− v‖V = sup
y∈Y
‖u(y)− Pnu(y)‖V ,

where Pn is the V -orthogonal projector onto Vn. We refer the reader to the Section 1.1, see also [150], for a
general treatment of n-widths.

While an optimal space achieving the above infimum is usually out of reach, there exist two main approaches
aiming to construct “sub-optimal yet good” spaces. The first one consists in building expansions of the parameter
to solution map, for example by polynomials

ũ(y) :=
∑
ν∈Λn

uνy
ν , yν := yν1

1 . . . yνdd , (2.3)

where Λn ⊂ Nd0 is a set of cardinality n. The coefficients uν are elements of V and therefore, for all y ∈ Y the
approximation ũ(y) is picked from the space

Vn := span{uν : ν ∈ Λn}.

Notice that ũ(y) is not the orthogonal projection Pnu(y) in this case, but ũ(y) is easy to compute for a given
query y once the uν have been constructed (usually through a high fidelity finite element solver). We refer to
[19, 21, 22, 26, 56, 58, 174] for instances of this approach.

The second approach is the reduced basis method [84, 157, 160], that consists in taking

Vn := span{u(y1), . . . , u(yn)},

where the u(yi) are particular solution instances corresponding to a selection of parameter vectors yi ∈ Y .
A close variant is the proper orthogonal decomposition method [46, 180, 190], where the reduced spaces are
obtained by principal component analysis applied to large training set of such instances. In the reduced ba-
sis method, the parameter vectors y1, . . . , yn can be selected by a greedy algorithm, introduced in [179] and
originally studied in [40]. For such a selection process, it is proved in [33, 65] that if dn(KY )V has a certain
algebraic or exponential rate of decay with n, then a similar rate is achieved by dist(KY , Vn)V for the reduced
basis spaces.

It follows that the reduced basis spaces constructed by the greedy algorithm are close to optimal. This is
in contrast to the spaces Vn spanned by the polynomial coefficients uν for which the approximation rate is not
guaranteed to be optimal. We refer to [20] for instances where reduced basis methods can be proved to converge
with a strictly higher rate than polynomial approximations. On the other hand, the polynomial constructions
(2.3) have certain numerical advantages. Namely, for several relevant classes of parametric PDEs, it can be
shown that the parameter to solution mapping y 7→ u(y) has certain smoothness properties that can be used
to obtain a-priori bounds on the ‖uν‖V without actually computing these norms. This allows for an a priori
selection of an appropriate set Λn, yielding concrete approximation estimates for the error supy∈Y ‖u(y)−ũ(y)‖V .
These estimates in turn provide an upper bound for dn(KY )V , and therefore for reduced basis approximations.

2.1.2 Parametric elliptic PDEs

One prototypical instance where the convergence analysis described above has been deeply studied is the
parametric second order elliptic equation

− div(a(y)∇u(y)) = f in Ω, u|∂Ω = 0 on ∂Ω, (2.4)

where Ω is a spatial domain, f ∈ H−1(Ω) a source term, and a(y) has the affine form

a(x, y) = a(x) +

d∑
j=1

yjψj(x), x ∈ Ω, (2.5)

with a and ψ1, . . . , ψd some fixed functions in L∞(Ω).
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The corresponding solution u(y) ∈ H1
0 (Ω) is defined through the standard variational formulation in H1

0 (Ω)
equipped with its usual norm. Up to renormalization, it is usually assumed that the yj range in [−1, 1], or
equivalently Y = [−1, 1]d. To ensure existence and uniqueness of solutions, one typically assumes that the
so-called Uniform Ellipticity Assumption (UEA) holds: for some fixed 0 < amin 6 amax <∞,

amin 6 a(x, y) 6 amax, x ∈ Ω, y ∈ Y, (2.6)

or in short amin 6 a(y) 6 amax for all y ∈ Y . Under this assumption, Lax-Milgram theory ensures that the
solution map y 7→ u(y) is well defined from Y into H1

0 (Ω), with the uniform bound

‖u(y)‖H1
0

:= ‖∇u(y)‖L2 6
Cf
amin

, y ∈ Y.

Here and throughout this chapter
Cf := ‖f‖H−1 . (2.7)

It was proved in [22, 174] that, under UEA, polynomial approximations (2.3) of given total degree converge
sub-exponentially: for Λn = {ν ∈ Nd0 : |ν| 6 k}, one has

sup
y∈Y
‖u(y)− ũ(y)‖H1

0
6 C ′ exp(−cn1/d) with n =

(
k + d
k

)
. (2.8)

Such sub-exponential rates show that the spaces Vn based on polynomial expansions or reduced bases perform
significantly better than standard finite element spaces, at least for a moderate number d of parameters. It is
possible to maintain a rate of convergence as d grows, and even when d =∞, when assuming some anisotropy
in the variable yj through the decay of the size of ψj as j →∞, see in particular [21, 56, 58] for results of this
type.

2.1.3 High constrast problems

The Uniform Ellipticity Assumption (2.6) implies that there is a uniform control on the level of contrast in
the diffusion function

κ(y) :=
maxx∈Ω a(x, y)

minx∈Ω a(x, y)
6
amax

amin
, y ∈ Y. (2.9)

This assumption also plays a key role in the derivation of the above approximation results, since it guarantees
that the parameter to solution map has a holomorphic extension to a sufficiently large complex neighborhood
of Y . In this case, a good polynomial approximation ũ may be defined by simply truncating the power series∑
ν∈Nd0

uνy
ν , leading to the estimate (2.8).

On the other hand, there exist various situations where one would like to avoid such a strong restriction
on the level of contrast. Perhaps the most representative setting is when the domain Ω is partitioned into
disjoint subdomains {Ω1, . . . ,Ωd}, each of them admitting a constant diffusivity level that could vary strongly
between subdomains. This is typically the case when modeling diffusion in materials having multiple layers
or inclusions that could have very different nature, for example air or liquid versus solid. This situation can
be encountered in groundwater flow applications, where certain subdomains correspond to cavities, for which
the diffusion function becomes nearly infinite, as opposed to subdomains containing sediments or other porous
rocks.

In such a case, we do not want to limit the contrast level. To represent this setting, we let

a(y)|Ωj = yj , yj ∈ (0,∞) (2.10)

or equivalently a(y) =
∑d
j=1 yjχΩj , which corresponds to the affine form (2.5) with a = 0 and ψj = χΩj for

1 6 j 6 d, now with
Y := (0,∞)d. (2.11)

We take (2.11) as the definition of the parameter domain Y for the remainder of this chapter. The solution
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u(y) satisfies the variational formulation

d∑
j=1

yj

ˆ
Ωj

∇u(y) · ∇v dx = 〈f, v〉H−1,H1
0
, v ∈ H1

0 (Ω), (2.12)

or equivalently −yj∆u(y) = f as elements of H−1(Ωj) on each Ωj , with the standard jump conditions
[a(y)∂~nu(y)] = 0 across the boundaries between subdomains.

Let us observe that in this setting, it is hopeless to find spaces Vn that approximate all solutions u(y)
uniformly well. Indeed, the following homogeneity property obviously holds: for any y ∈ Y and t > 0, one has

u(ty) = t−1u(y). (2.13)

This property implies in particular that ‖u(y)‖H1
0
tends to infinity as y → 0, and so does ‖u(y) − Pnu(y)‖H1

0

in general. In fact, this also shows that the solution manifold KY is not relatively compact and does not have
finite n-widths.

In addition to this principal difficulty, let us remind that when using the spaces Vn in forward modeling, we
typically use the Galerkin method, which delivers the orthogonal projection P yn onto Vn, however for the energy
norm

‖v‖2y :=

d∑
j=1

yj

ˆ
Ωj

|∇v|2 dx. (2.14)

This approximation is thus optimal in H1
0 (Ω), however up to the constant κ(y)1/2, which deteriorates with high

contrast.

The main contribution of this chapter is to treat these issues, and derive approximation estimates that are
robust to high contrast, in the sense that they are independent of y ∈ Y .

Due to the main objection coming from the homogeneity property (2.13), it is natural to look for uniform
approximation estimates in relative error, that is, estimates of the form

‖u(y)− Pnu(y)‖H1
0
6 εn‖u(y)‖H1

0
, y ∈ Y, (2.15)

with limn→∞ εn = 0, and similarly for P ynu(y). Our main results, Theorems 2.16 and 2.21, exhibit spaces Vn
ensuring the validity of such uniform estimates with εn having sub-exponential decay with n, similar to the
known results under UEA.

Remark 2.1. High contrast problems have been the object of intense investigation, in particular with the
objective of developing techniques for multilevel or domain decomposition preconditioning [9, 10, 75] and a-
posteriori error estimation [8, 30], that are provably robust with respect to the level of contrast. To our
knowledge, the present work is the first in which this robustness is established for reduced modeling methods.

2.1.4 Outline

Throughout this chapter, we consider the parametric elliptic PDE (2.4) with a(y) having piecewise constant
form (2.10) over a fixed partition. In view of the homogeneity property (2.13), we are led to consider the subset

Y ′ := [1,∞)d (2.16)

of parameters corresponding to the coercive regime. Any result on relative approximation error that is estab-
lished for Y ′ extends automatically to all of Y because of the homogeneity property. Accordingly, we let

KY ′ := {u(y) : y ∈ Y ′}. (2.17)

In Section 2.2, we start by proving that KY ′ is a precompact set of H1
0 (Ω). One crucial ingredient for this

analysis are the limit solutions of the so-called stiff problem, obtained as yj →∞ for certain j ∈ {1, . . . , d}.
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In Section 2.3, we construct specific reduced model spaces for which the approximation estimate (2.15) holds
with εn decaying sub-exponentially. Our construction is based on partitioning the parametric domain Y ′ into
rectangular regions and using a different polynomial approximation on each region. This results in a global
reduced model space Vn for which the accuracy bound remains sub-exponential, however in exp(−cn

1
2d−2 ). A

key ingredient for establishing these sub-exponential rates is the derivation of quantitative estimates on the
convergence of u(y) towards limit solutions defined in Section 2.2 as some yj tend to infinity. These estimates
are established under an additional geometric assumption on the partition, similar results for a general partition
of Ω being an open problem.

In Section 2.4, we discuss the use of these reduced model spaces in forward modeling and inverse problems.
Our main result relative to forward modeling is that the estimate (2.15) also holds for the Galerkin projection
with the same exponential decay εn. We show that such a result is only possible if Vn includes functions that
have constant values over some subdomains. For the state estimation problem, we follow the Parametrized
Background Data Weak (PBDW) method [33, 124], and obtain recovery bounds that are uniform over y ∈ Y in
relative error. For the parameter estimation problem, we introduce an ad-hoc strategy that specifically exploits
the piecewise constant structure of the diffusion coefficient and obtain similar recovery bounds for the inverse
diffusivity.

We conclude in Section 2.5 by presenting some numerical illustrations revealing the effectiveness of the
reduced model spaces even in the high-contrast regime, as expressed by the approximation results.

2.2 Uniform approximation in relative error

In this section we work under no particular geometric assumption on the partition {Ω1, . . . ,Ωd} of Ω, and
consider the solution manifold KY defined by (2.1), where u(y) ∈ H1

0 (Ω) is solution to the elliptic boundary
value problem with variational formulation (2.12). Our objective is to show the existence of spaces Vn that
uniformly approximate KY in the relative error sense expressed by (2.15).

2.2.1 Limit solutions and the extended solution manifold

Our first observation is that this collection can be continuously extended when yj =∞ for some values of j,
through limit solutions of stiff inclusions problems. Such limit solutions have for example been considered in
the context homogeneization, see e.g. p.98 of [101].

For this purpose, to any S ⊂ {1, . . . , d}, we associate the space

VS := {v ∈ H1
0 (Ω) : ∇v|Ωj = 0, j ∈ S}. (2.18)

In other words, VS consists of the functions from H1
0 (Ω) that have constant values on the subdomains Ωj for

j ∈ S (or on each of their connected components if these subdomains are not connected). It is a closed subspace
of H1

0 (Ω). We decompose the parameter vector y according to

y = (yS , ySc), yS := (yj)j∈S and ySc := (yj)j∈Sc . (2.19)

For any finite and positive vector ySc , similar to the ‖ · ‖y norm (2.14), we may define

‖v‖2ySc :=
∑
j∈Sc

yj

ˆ
Ωj

|∇v|2 dx, (2.20)

which is a semi-norm on H1
0 (Ω), and a full norm equivalent to the H1

0 -norm on VS . Also note that when
y = (yS , ySc) is finite, one then has ‖v‖ySc = ‖v‖y for any v ∈ VS .

For any finite and positive vector ySc , we define the function uS(ySc) ∈ VS solution to the following stiff
inclusions problem: ∑

j∈Sc
yj

ˆ
Ωj

∇uS(ySc) · ∇v dx = 〈f, v〉H−1,H1
0
, v ∈ VS . (2.21)

The following result shows that this solution is well defined and is the limit of u(y), when ySc is fixed and



26 CHAPTER 2. Reduced modeling for high contrast problems

yj → ∞ for j ∈ S. Note that the weak convergence is established in [101] (p.98) and so we concentrate the
proof on the strong convergence.

Lemma 2.2. There exists a unique uS(ySc) ∈ VS solution to (2.21), which is the limit in H1
0 (Ω) of the solution

u(yS , ySc) as yj →∞ for all j ∈ S.

Proof. Using the bilinear form (u, v) 7→
∑
j∈Sc yj

´
Ωj
∇u · ∇v dx in the space VS , Lax-Milgram theory implies

the existence of a unique solution uS(ySc) ∈ VS to (2.21).
Consider now a sequence (yn)n>1 ∈ Y N, with ynSc = ySc and ynj →∞ for all j ∈ S. Denoting un = u(yn), it is

readily seen that (un)n>1 is uniformly bounded in H1
0 norm by C = Cf c

−1, where c := minn>1 min16j6d y
n
j > 0,

and that any weak limit of a sequence extraction is solution to the variational equation (2.21). Therefore the
whole sequence (un)n>1 weakly converges to ū = uS(ySc).

We finally prove strong convergence by writing

c ‖un − ū‖2H1
0
6

ˆ
Ω

a(yn)|∇(un − ū)|2 dx

= 〈f, un〉H−1,H1
0
− 2〈ū, un〉ySc + ‖ū‖2ySc

−→
n→∞

〈f, ū〉H−1,H1
0
− ‖ū‖2ySc = 0.

The above lemma allows us to readily extend the solution manifold by introducing Ỹ := (0,∞]d and

KY := {u(y) : y ∈ Ỹ },

where we have formally set
u(y) := uS(ySc),

when yj =∞ for j ∈ S and yj <∞ for j ∈ Sc. Note that when S = {1, . . . , d} the space VS is trivial and one
has

u(∞, . . . ,∞) = 0.

Remark 2.3. Although we do not make explicit use of it, it can be checked that despite the fact that yj = 0
is excluded in the definition of KY , it indeed coincides with the closure of KY in H1

0 (Ω) due to the fact that
‖u(y)‖H1

0
→∞ as y → 0.

Remark 2.4. More precisely, when some yj tend to zero, u(y) converges to the solution of the so-called soft
inclusions problem (see [101], chapter 3), outside the corresponding subdomains Ωj . Here, due to the fact that
the approximation estimates that we prove further are in relative error, these other limit solutions are of no use
in our analysis.

2.2.2 A compactness result
As already observed in the introduction, the manifold KY is not bounded in H1

0 (Ω) due to the homogeneity
property (2.13) and therefore not compact.

In order to treat this defect, we consider Ỹ ′ := [1,∞]d, and the submanifold

KY ′ := {u(y) : y ∈ Ỹ ′},

which is now bounded in H1
0 (Ω), from the standard a-priori estimate

‖u(y)‖H1
0
6

Cf
min16j6d yj

6 Cf ,

that is obtained by taking v = u(y) in the variational formulation (2.12), with Cf = ‖f‖H−1 as in (2.7). This
estimate trivially extends to uS(ySc) when the yj have infinite value for j ∈ S. In addition we have the following
result.
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Theorem 2.5. The set KY ′ is compact in H1
0 (Ω).

Proof. Consider any sequence of vectors yn = (yn1 , . . . , y
n
d ) ∈ Ỹ ′ for n > 1. We need to prove that the

corresponding sequence of solutions (u(yn))n>1 admits a converging subsequence. For this purpose, we observe
that there exists a subset S ∈ {1, . . . , d} such that, up to subsequence extraction,

lim
n→∞

ynj =∞, j ∈ S,

and
lim
n→∞

ynj = yj <∞, j ∈ Sc.

Note that S could be empty, for instance in the case where the ynj are uniformly bounded for all j.
Let ε > 0. Using the strong convergence result in Lemma 2.2, for all n > 1 there exists an auxiliary vector

ȳn such that ȳnj = ynj when ynj <∞, ȳnj <∞ when ynj =∞, such that by having picked ȳnj large enough in the
second case

‖u(yn)− u(ȳn)‖H1
0
6 ε/3.

In addition we may assume that ȳnj →∞ for j ∈ S. Next we introduce the vector ỹn such that ỹnj = ȳnj when
j ∈ S and ỹnj = yj when j ∈ Sc. Applying again Lemma 2.2, we find that with ySc = (yj)j∈Sc , one has

‖u(ỹn)− uS(ySc)‖H1
0
6 ε/3,

for n sufficiently large. Finally we argue that

‖u(ỹn)− u(ȳn)‖H1
0
6 ε/3,

for n large enough. This is a consequence of the following variant of Strang first lemma (which proof is similar
and left as an exercise to the reader) that says that for two diffusion functions ā and ã, the corresponding
solution u(ā) and u(ã) with the same data f satisfy

‖u(ā)− u(ã)‖H1
0
6

Cf ‖ā− ã‖L∞
min{āmin, ãmin}2

.

We then apply this to a := an = a(yn) and ã := ãn = a(ỹn), observing that ‖ā− ã‖L∞ = maxj∈Sc |ȳnj − yj | → 0
as n→∞. Therefore ‖u(yn)− uS(ySc)‖H1

0
6 ε for n sufficiently large, which concludes the proof.

We next observe that any y ∈ Y can be rewritten as

y = tỹ,

with ỹ ∈ Y ′ and normalization min ỹj = 1, for some t > 0, and from (2.13) one has u(y) = t−1u(ỹ). This
motivates the study of the further reduced manifold

KY ′′ := {u(y) : y ∈ Ỹ ′ = [1,∞]d : min
16j6d

yj = 1}, (2.22)

which is a subset of KY ′ .
One important observation is that the solutions contained in KY ′′ are also uniformly bounded from below,

under mild assumptions on the data f .

Lemma 2.6. The set KY ′′ is compact in H1
0 (Ω). Moreover, one has the framing

min
16j6d

‖f‖H−1(Ωj) 6 ‖u(y)‖H1
0
6 Cf , (2.23)

for all u(y) ∈ KY ′′ .

Proof. The compactness of KY ′′ follows from that of KY ′ , since KY ′′ is a closed subset of KY ′ . For the framing,
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as a(y) > 1 on Ω,

‖u‖2H1
0
6
∑
j∈Sc

yj

ˆ
Ωj

|∇u(y)|2 dx = 〈f, u(y)〉H−1,H1
0
6 Cf‖u(y)‖H1

0
,

so ‖u(y)‖H1
0
6 Cf . Now take j ∈ {1, . . . , d} such that yj = 1, and consider φ ∈ H1

0 (Ωj). Then

〈f, φ〉H−1,H1
0

=

ˆ
Ωj

∇u(y) · ∇φdx 6 ‖u(y)‖H1
0 (Ω)‖φ‖H1

0 (Ωj),

which gives the result by optimizing over φ.

In the sequel of this chapter, we always work under the condition that the lower bound in (2.23) is strictly
positive

cf := min
16j6d

‖f‖H−1(Ωj) > 0. (2.24)

Let us observe that when f is a function in L2(Ω), this is ensured as soon as f is not identically zero on one of
the Ωj . We thus have

0 < cf 6 ‖u(y)‖H1
0
6 Cf , (2.25)

for all u(y) ∈ KY ′′ .

Remark 2.7. The condition cf > 0 is in general necessary for controlling ‖u(y)‖H1
0
from below. Indeed assume

‖f‖H−1(Ωj) = 0 for some j such that Rd \ Ωj is connected. Then taking yk =∞ for k 6= j and yj = 1, we find
that u(y) ∈ VS with S = {j}c, which is equivalent to u(y) ∈ H1

0 (Ωj) since it vanishes on the other sub-domains.
As ‖f‖H−1(Ωj) = 0, we obtain u(y) = 0.

Remark 2.8. One also has the uniform framing in the ‖ · ‖y norm since

0 < cf 6 ‖u(y)‖H1
0
6 ‖u(y)‖y =

√
〈f, u〉H−1,H1

0
6 Cf (2.26)

when the yj are finite, and by continuity for all u(y) ∈ KY ′′ in the norm ‖ · ‖ySc .

The framing (2.25) has an implication on the existence of reduced model spaces that approximate uniformly
well all solutions u(y) ∈ KY in relative error.

Theorem 2.9. There exists a sequence of linear spaces (Vn)n>1 such that dim(Vn) = n, and a sequence (εn)n>1

that converges to zero such that
‖u(y)− Pnu(y)‖H1

0
6 εn‖u(y)‖H1

0
(2.27)

for all y ∈ Ỹ , where Pn is the H1
0 (Ω)-orthogonal projector onto Vn.

Proof. Since KY ′′ is compact, there exists a sequence of spaces (Vn)n>1 with dim(Vn) = n and a sequence
(σn)n>1 that tends to 0, such that

‖v − Pnv‖H1
0
6 σn, v ∈ KY ′′ .

Now let y ∈ Ỹ differing from (∞, . . . ,∞), for which there is nothing to prove since u(∞, . . . ,∞) = 0, and let
t = 1/min16j6d yj <∞. By homogeneity, t−1u(y) = u(ty) ∈ KY ′′ , and therefore

‖u(y)− Pnu(y)‖H1
0

= t‖u(ty)− Pnu(ty)‖H1
0 (Ω) 6 tσn.

On the other hand, ‖u(y)‖H1
0 (Ω) = t‖u(ty)‖H1

0 (Ω) > tcf by framing (2.23), which proves Theorem 2.9 with
εn = σn/cf .

The above theorem tells us that we can achieve contrast-independent approximation in relative error. It is
however still unsatisfactory from two perspectives:

1. It does not describe the rate of decay of εn as the reduced dimension n grows. In practice, one would
like to construct reduced spaces Vn such that this decay is fast, similar to the exponential decay obtained
under UEA.
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2. The approximation property is expressed in terms of the orthogonal projection Pn. In applications to
forward modeling, we approximate the solution u(y) in the space Vn by the Galerkin projection P ynu(y).
We thus wish for uniform estimates also for such approximations.

These two problems are treated in Section 2.3 and Section 2.4 respectively.

2.3 Approximation rates

Our construction of efficient reduced model spaces is based on a certain partitioning of the parameter domain
Ỹ ′ associated to the manifold KY ′ . To any ` = (`1, . . . , `d) ∈ Nd0 we associate the dyadic rectangle

R` = [2`1 , 2`1+1]× · · · × [2`d , 2`d+1], (2.28)

For a positive integer L to be fixed further, we modify the definition of R` by replacing the interval [2`j , 2`j+1]
by [2`j ,∞] when `j = L for some j. This leads to the partition

Ỹ ′ =
⋃

`∈{0,...,L}d
R`. (2.29)

This partition is best visualized in the inverse parameter domain

(y−1
1 , . . . , y−1

d ) ∈ [0, 1]d. (2.30)

Then, the inverse rectangles R−1
` split the unit cube, as shown on Figure 2.1. In particular, the rectangles

touching the axes correspond to rectangles R` of infinite size.

1/y1

1/y2

0

1

1

1
2

1
2

1
2L

1
2L

R−1
11

R−1
12

R−1
21

R−1
22

...
R−1

1L

...

. .
.

...

. . .

Figure 2.1 – Partition of [0, 1]d by the inverse rectangles R−1
` in the case d = 2.

We build reduced model spaces through a piecewise polynomial approximation over this partition. In other
words, for each ` ∈ {0, . . . , L}d, we use different polynomials

u`,k(y) =
∑
|ν|6k

u`,νy
ν ,

of total degree k for approximating u(y) when y ∈ R`, leading to a family of local reduced model spaces

V`,k = span{u`,ν : |ν| 6 k}, (2.31)

that can be either used individually when approximating u(y) if the rectangle R` containing y is known, or
summed up in order to obtain a global reduced model space.
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In this section we show that this construction yields exponential convergence rates in (2.15), similar to
those obtained under a Uniform Ellipticity Assumption. This requires a proper tuning between the total
polynomial degree k and the integer L that determines the size of the partition. In the study of local polynomial
approximation, we treat separately the inner rectangles for which ` ∈ {0, · · · , L−1}d and the infinite rectangles
for which one or several `j are equal to L. The estimates obtained in the latter case rely on the additional
assumption that the partition has a geometry of disjoint inclusions.

2.3.1 Polynomial approximation on inner rectangles

Inner rectangles R` are particular cases of rectangles of the form

R = [a1, 2a1]× · · · × [ad, 2ad], (2.32)

for some aj > 1. The following lemma, adapted from [20], shows that one can approximate the parameter to
solution map in the ‖ · ‖y and ‖ · ‖H1

0
norms on such rectangles, with a rate that decreases exponentially in the

total polynomial degree.

Lemma 2.10. Let R be any rectangle of the form (2.32). Then, for k > 0, there exists functions uν ∈ H1
0 (Ω),

|ν| 6 k, such that ∥∥∥u(y)−
∑
|ν|6k

uνy
ν
∥∥∥
y
6 C3−k, y ∈ R, (2.33)

where C := 1√
3
Cf , and ∥∥∥u(y)−

∑
|ν|6k

uνy
ν
∥∥∥
H1

0

6 C3−k, y ∈ R, (2.34)

where C := 1√
6
Cf .

Proof. The exponential rate is established in [20] for a single parameter domain with uniform ellipticity assump-
tion. Here the difficulty lies in the fact that we want the same estimate for all parametric rectangles R and thus
without control on the uniform ellipticity. Still the technique of proof, based on power series, is similar.

The elliptic equation −div(a(y)u(y)) = f may be written in operator form

Ayu(y) = f,

where the invertible operator Ay : H1
0 (Ω)→ H−1(Ω) is defined by

〈Ayv, w〉H−1,H1
0

:=

ˆ
Ω

a(y)∇v · ∇w dx = 〈v, w〉y.

We introduce
y :=

3

2
(a1, . . . , ad),

the center of the rectangle, and write any y ∈ R as

y = y + ỹ,

where the components ỹj of ỹ vary in [−aj/2, aj/2]. We may write Ay = Ay +
∑d
j=1 ỹjAj , where the operators

Aj : H1
0 (Ω)→ H−1(Ω) are defined by

〈Ajv, w〉H−1,H1
0

:=

ˆ
Ωj

∇v · ∇w dx.

This allows us to rewrite the equation as
(I +B(ỹ))u(y) = g,



2.3. Approximation rates 31

where g := A−1
y f ∈ H1

0 (Ω) and B(ỹ) =
∑d
j=1 ỹjA

−1
y Aj acts in H1

0 (Ω). We then observe that

〈B(ỹ)v, w〉y = 〈AyB(ỹ)v, w〉H−1,H1
0

=

d∑
j=1

ỹj〈Ajv, w〉H−1,H1
0

=

d∑
j=1

ỹj

ˆ
Ωj

∇v · ∇w dx,

and therefore, since |ỹj | 6 1
3yj ,

|〈B(ỹ)v, w〉y| 6
1

3

d∑
j=1

yj

∣∣∣ˆ
Ωj

∇v · ∇w dx
∣∣∣ 6 1

3
‖v‖y‖w‖y,

which shows that ‖B(ỹ)‖y→y 6 1
3 . We may thus approximate (I +B(ỹ))−1 by the partial Neumann series

k∑
l=0

(−1)lB(ỹ)l,

which is a polynomial in ỹ of total degree k. The corresponding polynomial approximation to u(y) is given by

Nku(y) =

k∑
l=0

(−1)lB(ỹ)lg =

k∑
l=0

(−1)l

 d∑
j=1

ỹjA
−1
y Aj

l

g =
∑
|ν|6k

vν ỹ
ν ,

and coincides with the truncated power series of ũ(ỹ) := u(y + ỹ) at ỹ = 0, that is,

vν :=
1

ν!
∂νu(y), ν! :=

∏
νj !.

It can be rewritten in the form
Nku(y) =

∑
|ν|6k

uνy
ν .

One has

‖u(y)−Nku(y)‖y 6
∑
l>k

‖B(ỹ)lg‖y 6
(∑
l>k

3−l
)
‖A−1

y f‖y =
3−k

2
‖A−1

y f‖y,

and
‖A−1

y f‖2y = 〈AyA−1
y f,A−1

y f〉H−1,H1
0

= 〈f, u(y)〉H−1,H1
0
6 Cf‖u(y)‖H1

0
6 C2

f ,

where the last inequality follows from Lax-Milgram estimate since a(y) > 1. This proves the estimate∥∥∥u(y)−
∑
|ν|6k

uνy
ν
∥∥∥
y
6 C3−k, y ∈ R, (2.35)

with C := 1
2Cf . Using the inequalities

‖v‖2y 6
4

3
‖v‖2y, v ∈ H1

0 (Ω), y ∈ R,

and
‖v‖2H1

0
6

2

3
‖v‖2y, v ∈ H1

0 (Ω),

we obtain the estimate (2.33) and (2.34) with the modified multiplicative constants.

Remark 2.11. The above lemma shows that the set KR := {u(y) : y ∈ R} can be approximated with accuracy
C3−k by the space

VR := span{uν : |ν| 6 k}. (2.36)
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The dimension of VR is at most
(
k+d
d

)
, however, as noticed in [20], it can in fact be seen that

dim(VR) 6

(
k + d− 1

d− 1

)
. (2.37)

This stems from the fact that the operators defined in the above proof satisfy the dependency relation

Ay =

d∑
j=1

yjAj ,

and therefore, one can rewrite Ay as

Ay := (1 + ỹd/yd)Ay +

d−1∑
j=1

(ỹj − ỹdyj/yd)Aj .

Using this form, the partial Neumann sum Nku(y) has at most
(
k+d−1
d−1

)
independent terms.

We shall also make use of the following adaptation of the above lemma to the approximation of the limit
solution map ySc 7→ uS(ySc), defined by (2.21). Its proof is an immediate adaptation of the previous one and
is therefore omitted.

Lemma 2.12. Let S ⊂ {1, . . . , d}, and for some aj > 1, let R be a rectangle of the form

R =
∏
j∈Sc

[aj , 2aj ]. (2.38)

Then, there exists functions uν ∈ VS such that∥∥∥uS(ySc)−
∑
|ν|6k

uνy
ν
Sc

∥∥∥
ySc
6 C3−k, ySc ∈ R, (2.39)

where C := 1√
3
Cf , and ∥∥∥uS(ySc)−

∑
|ν|6k

uνySc
∥∥∥
H1

0

6 C3−k, ySc ∈ R, (2.40)

where C := 1√
6
Cf .

2.3.2 Polynomial approximation on infinite rectangles

We now consider the infinite rectangles R`, corresponding to the ` such that some of the `j equal L. We
define

S := {j : `j = L}, (2.41)

the set of such indices. When y ∈ R`, we thus have

yj > 2L, j ∈ S,

and so u(y) should be close to uS(ySc) as L is large. On the other hand ySc belongs to a rectangle of the form

R`Sc =
∏
j∈Sc

[2`j , 2`j+1].

Therefore, by Lemma 2.12, we can approximate uS(ySc) by a polynomial of total degree k in these restricted
variables.

In order to conclude that this polynomial is a good approximation to u(y) on R`, we need a quantitative
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estimate on the convergence of u(y) towards uS(ySc). Let us observe that since

d∑
j=1

yj

ˆ
Ωj

∇u(y) · ∇v dx =
∑
j∈Sc

yj

ˆ
Ωj

∇uS(ySc) · ∇v dx = 〈f, v〉H−1,H1
0
, v ∈ VS ,

the function uS(ySc) coincides with the orthogonal projection of u(y) onto VS for the y-norm, as well as for the
ySc-norm:

uS(ySc) = P yVSu(y) = P yS
c

VS
u(y). (2.42)

In addition, with
ΩS :=

⋃
j∈S

Ωj , (2.43)

we have
2L‖∇u(y)‖2L2(ΩS) 6

∑
j∈S

yj

ˆ
Ωj

|∇u(y)|2 dx 6 〈f, u(y)〉H−1,H1
0
6 C2

f ,

since ‖u(y)‖H1
0
6 Cf , and therefore, since ∇uS(ySc) = 0 on ΩS , we find that

‖∇u(y)−∇uS(ySc)‖L2(ΩS) 6 Cf2−L/2. (2.44)

Our objective is to obtain a similar error bound on the remaining domains Ωj for j ∈ Sc. This turns out to
be feasible, with an even better rate 2−L, when making certain geometric assumptions on the partition of the
domain Ω.

Definition 2.13. We say that {Ω1, . . . ,Ωd} is a Lipschitz partition if and only if for any subset T ⊂ {1, . . . , d},
the domain ΩT =

⋃
j∈T Ωj has Lipschitz boundaries.

Ω1

Ω4

Ω2

Ω3

Ω1 Ω2

Ω3 Ω4

Figure 2.2 – A Lipschitz partition of Ω (left) and a counter-example (right) since Ω1 ∪ Ω4 is not Lipschitz.

Note that such a property is stronger than just saying that each domain is Lipschitz, see Figure 2.2 (right)
for a counter-example. In a Lipschitz partition, all subdomains Ωj are Lipschitz, and the common boundary
between two subdomains is either empty or a hypersurface of dimension dim(Ω)−1, as illustrated on Figure 2.2
(left). In particular, it is easily checked that partitions consisting of a background domain and well separated
subdomains that have Lipschitz boundaries fall in this category. Similar to the ΩT , the individual Ωj could
have several connected components, that should then be well separated. Here by “well separated”, we mean that
δ-neighbourhoods of the subdomains remain disjoints for some δ > 0.

For the inner domains ΩT such that ∂ΩT ∩ ∂Ω = ∅, the classical Stein’s extension theorem [165] guarantees
the existence of continuous extension operators

ET : H1(ΩT )→ H1(Ω),

that satisfy (ET v)|ΩT = v for all v ∈ H1(ΩT ). We refer to chapter 5 of [1] for a relatively simple construction of
the extension operator Ej by local reflection after using a partitioning of unity along the boundary of ΩT and
local transformations mapping the boundary to the hyperplane Rn−1.

For the domains ΩT touching the boundary ∂Ω, these operators are modified in order to take into account
the homogeneous boundary condition, and we refer to [192] for such adaptations. Here, the relevant space is

H̃1(ΩT ) := RT (H1
0 (Ω)), (2.45)
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where RT is the restriction to ΩT , over which v 7→ ‖∇v‖L2(ΩT ) is equivalent to the H1 norm by Poincaré
inequality. Then, there exists a continuous extension operator

ET : H̃1(ΩT )→ H1
0 (Ω).

Note that the norm of all these operators depends on the geometry of the partition. These operators are
instrumental in proving the following convergence estimate.

Lemma 2.14. Assume that {Ω1, . . . ,Ωd} is a Lipschitz partition of Ω. Then there exists a constant C0 that
only depends on the geometry of the partition such that for any S ⊂ {1, . . . , d} and y = (yS , ySc) ∈ Y ′, one has

‖u(y)− uS(ySc)‖H1
0
6 C0Cf max

j∈S
y−1
j . (2.46)

In particular, for the infinite rectangle R`,

‖u(y)− uS(ySc)‖H1
0
6 C0Cf2−L, y ∈ R`, (2.47)

with S defined by (2.41).

Proof. We first note that it suffices to prove (2.46) in the particular case where the largest yj are those for
which j ∈ S. Indeed, if this is not the case, we use the decomposition

u(y)− uS(ySc) = (u(y)− uS′(yS′c))− (u(y′)− uS′(yS′c)) + (u(y′)− uS(ySc)),

with S′ = {i : yi > minj∈S yj} and y′ defined by y′j = maxi=1,...,d yi if j ∈ S, y′j = yj otherwise, so that
each term falls in this particular case and will be bounded in H1

0 norm by C0Cf maxj∈S y
−1
j . This leads to the

same estimate (2.46) up to a factor 3 in constant C0. In addition, up to reordering the subdomains Ωj , we may
assume y1 > · · · > yd and therefore S = {1, . . . , |S|}.

Fix j > |S|, and denote u = u(y) and uS = uS(ySc) for simplicity. We define the Lipschitz domain
Ωj = Ω1 ∪ · · · ∪ Ωj , remarking that

ΩS =
⋃
j∈S

Ωj = Ω|S|.

Poincaré’s inequality ensures that there exists a function c on Ωj , constant on any connected component of Ωj ,
and null on ∂Ω ∩ Ωj , such that

‖u− uS − c‖H1(Ωj) 6 CP ‖∇(u− uS)‖L2(Ωj),

with CP the maximal Poincaré constant of all unions of subdomains from the partition. Moreover, there is an
extension v ∈ H1

0 (Ω) of u− uS − c ∈ H̃1(Ωj) such that

‖v‖H1
0 (Ω) 6 CE‖u− uS − c‖H1(Ωj) 6 CECP ‖∇(u− uS)‖L2(Ωj),

with CE the maximal norm of all extension operators ET , T ⊂ {1, . . . , d}.
As u−uS−v = c on ΩS ⊂ Ωj , the function u−uS−v is in VS , and therefore orthogonal to u−uS = u−P yVSu

for the ‖ · ‖y norm:

0 = 〈u− uS , u− uS − v〉y

=

d∑
i=1

yi

ˆ
Ωi

|∇(u− uS)|2 −
d∑
i=1

yi

ˆ
Ωi

∇(u− uS) · ∇v

=
∑
i>j

yi

ˆ
Ωi

|∇(u− uS)|2 −
∑
i>j

yi

ˆ
Ωi

∇(u− uS) · ∇v
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since ∇v = ∇(u− uS) on Ωj . In particular, we obtain

yj+1‖∇(u− uS)‖2L2(Ωj+1) 6
∑
i>j

yi

ˆ
Ωi

|∇(u− uS)|2

6 yj+1

ˆ
Ω\Ωj

|∇(u− uS) · ∇v|

6 yj+1‖u− uS‖H1
0 (Ω)‖v‖H1

0 (Ω)

6 yj+1‖u− uS‖H1
0 (Ω)CPCE‖∇(u− uS)‖L2(Ωj),

and therefore
‖∇(u− uS)‖2L2(Ωj+1) 6 (1 + CPCE)‖∇(u− uS)‖L2(Ω)‖∇(u− uS)‖L2(Ωj).

Applying this inequality inductively for j = d− 1, . . . , d− r, we get

‖∇(u− uS)‖L2(Ω) 6 (1 + CPCE)2r−1‖∇(u− uS)‖L2(Ωd−r),

for any r = 1, . . . , d− |S|. For r = d− |S|, this results in the bound

‖∇(u− uS)‖2L2(Ω) 6 C0‖∇(u− uS)‖2L2(ΩS) = C0‖∇u‖2L2(ΩS), (2.48)

for any non-empty S, with C0 = (1 + CPCE)2d−1

.
We now write

(min
i∈S

yi)‖∇(u− uS)‖2L2(ΩS) 6 ‖u− uS‖
2
y = 〈u, u− 2uS〉y + 〈uS , uS〉ySc

= 〈f, u− uS〉H−1,H1
0
6 Cf‖∇(u− uS)‖L2(Ω),

which, combined to the previous estimate, gives

‖u− uS‖H1
0

= ‖∇(u− uS)‖L2(Ω) 6 C0Cf max
i∈S

y−1
i ,

therefore proving (2.46). For (2.47), we simply notice that maxj∈S y
−1
j 6 2−L for y ∈ Y ′ ∩ R`, and use a

continuity argument when y takes infinite values.

Combining the estimate (2.47) from the above lemma with (2.40) from Lemma 2.12, we obtain the following
estimate for polynomial approximation on an infinite rectangle R`:∥∥∥u(y)−

∑
|ν|6k

uνy
ν
Sc

∥∥∥
H1

0

6
Cf√

6
3−k + C0Cf2−L, y ∈ R`, (2.49)

where C0 is the constant in (2.47). This estimate hints how the level L in the partition should be tuned to the
total polynomial degree k, so that the two contributions in the above estimate are of the same order.

Remark 2.15. Note that the constant C0 = (1 + CPCE)2d−1

becomes prohibitive even for moderate values
of d. However, under more restrictive geometric assumptions, for instance if the subdomains Ω2, . . . ,Ωd are
disjoint inclusions in a background Ω1, better bounds can be obtained, with a constant C0 that does not suffer
a similar curse of dimensionality, by replacing the induction in the proof by a two-step procedure, consisting of
extensions first from the high-diffusivity inclusions to the background, and then to the whole domain Ω.

2.3.3 Approximation rates and n-widths
We are now in position to establish an approximation result for the reduced model spaces. For this purpose,

we fix the smallest level L = Lk > 1 such that

C0Cf2−L 6
Cf√

3
3−k.
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In particular L scales linearly with k, with the bound αk + β 6 Lk 6 αk + γ, where

α :=
ln 3

ln 2
, β :=

ln(
√

3C0)

ln 2
, γ :=

ln(2
√

3C0)

ln 2
. (2.50)

Then, the polynomial approximation estimates (2.34) and (2.49) show that for each ` ∈ {0, · · · , Lk}d, there
exist functions u`,ν ∈ H1

0 (Ω) such that∥∥∥u(y)−
∑
|ν|6k

u`,νy
ν
∥∥∥
H1

0

6

(
Cf√

6
+
Cf√

3

)
3−k 6 Cf3−k, y ∈ R`.

Note that in the case of an infinite rectangle R`, the u`,ν are non trivial only for monomials of the form yνSc and
they belong to VS , where S := {j : `j = Lk}.

Thus the solutions u(y) for y ∈ R` are approximated with accuracy Cf3−k in the space

V`,k := span{u`,ν : |ν| 6 k},

which in view of Remark 2.11 has dimension at most
(
k+d−1
d−1

)
.

Note also that approximating the reduced manifold KY ′′ defined in (2.22) requires a smaller subset of
rectangles, since

{y ∈ Ỹ ′ : min yj = 1} ⊂
⋃
`∈Ek

R`, Ek := {0, · · · , Lk}d \ {1, · · · , Lk}d.

We thus introduce the reduced model space

Vn :=
⊕
`∈Ek

V`,k, n = dim(Vn) 6 #(Ek)

(
k + d− 1

d− 1

)
, (2.51)

and find that
‖u(y)− Pnu(y)‖H1

0
6 Cf3−k, (2.52)

for all y ∈ Ỹ ′ such that min yj = 1. In view of (2.50), there exists a constant C that depends on d and C0, such
that

n 6 ((Lk + 1)d − Ldk)

(
k + d− 1

d− 1

)
6 C(k + 1)2d−2. (2.53)

This leads to the following approximation theorem.

Theorem 2.16. Assume that the partition has the geometry of disjoint inclusions. The reduced basis space Vn
defined in (2.51) then satisfies

‖u(y)− Pnu(y)‖H1
0
6 C exp

(
−cn

1
2d−2

)
, (2.54)

for all y ∈ Ỹ ′ = [1,∞]d such that min yj = 1. The Kolmogorov n-width (2.2) of the reduced manifold KY ′′
satisfies

dn(KY ′′)H1
0
6 C exp

(
−cn

1
2d−2

)
. (2.55)

Over the full manifold KY , one has the estimate in relative error

‖u(y)− Pnu(y)‖H1
0
6 C exp

(
−cn

1
2d−2

)
‖u(y)‖H1

0
, (2.56)

for all y ∈ Ỹ = (0,∞]d. The positive constants c and C only depend on d, Cf , cf , and on the geometry of the
partition through the constant C0.

Proof. The estimate (2.54) follows directly by combining (2.52) and (2.53), and (2.55) is an immediate conse-
quence. We then derive (2.56) by using the homogeneity property (2.13) and the lower inequality in (2.25),
similar to the proof of (2.27) in Theorem 2.9.
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Remark 2.17. In the above construction of Vn, the dimension n only takes the values nk := #(Ek)
(
k+d−1
d−1

)
for k > 0. However it is easily seen that if we set Vn = Vnk for nk 6 n < nk+1, then all the estimates in the
above theorem remain valid up to a change in the constants C and c.

Remark 2.18. Note that the union of the V`,k for ` ∈ Ek would suffice to approximate KY ′′ with uniform
accuracy Cf3−k, their sum Vn is an overkill. When y is known, for example in forward modeling, it is therefore
possible to first identify the proper space V`,k associated to the rectangle R` that contains y, and build the
approximation to u(y) from this space. This nonlinear reduced modeling strategy has been studied in [36] with
similar local polynomial approximation under UEA, and in [68, 125, 194] with local reduced basis. The natural
benchmark is given by the notion of library width introduced in [169], that is defined for any compact set K in
a Banach space V as

dn,N (K)V := inf
#(Ln)6N

sup
u∈K

min
Vn∈Ln

min
v∈Vn

‖u− v‖V , (2.57)

where the first infimum is taken over all libraries Ln of n-dimensional spaces with cardinality at most N . Our
results thus show that

dn,N (KY ′′)H1
0
6 Cf3−k ∼ C exp(−cn 1

d ), n :=

(
k + d− 1

d− 1

)
, N = (Lk + 1)d − Ldk.

Note that the above sub-exponential rate can be misleading due to fact that the constant c has a hidden
dependence in d. As an example, up to the constant Cf , we find that taking k = 4, 7, 9 leads to error bounds
3−k of order 10−2, 10−3, 10−4, with n = 15, 36, 55 for d = 3, and n = 35, 120, 220 for d = 4, which is far better
than the value of exp(−n 1

d ).

Remark 2.19. In view of the results from [33] and [65], we are ensured that a proper selection of reduced basis
elements in the manifold KY ′′ should generate spaces Vn that perform at least with the same exponential rates
as those achieved by the spaces Vn in Theorem 2.16. As explained in the introduction, reduced basis spaces
may perform significantly better than reduced model spaces based on polynomial or piecewise polynomial
approximation. This occurs in particular when the polynomial coefficients have certain linear dependency, as
established in [20] for the elliptic problem with piecewise constant coefficients in the low contrast regime, and
recalled in Remark 3.2. There, it is shown that the rate O(exp(−cn 1

d )) is at least improved to O(exp(−cn
1
d−1 ))

and that further improvements in the rate may result from certain symmetry properties of the domain partition,
however not circumventing the curse of dimensionality. While we do not pursue this analysis in the present high
contrast setting, we expect similar results to hold.

2.4 Forward modeling and inverse problems

2.4.1 Galerkin projection

In the context of forward modeling, the reduced model space Vn is used to approximate the parameter to
solution map, by a map

y 7→ ũ(y) ∈ Vn,

computed through the Galerkin method: ũ(y) ∈ Vn is such that

d∑
j=1

yj

ˆ
Ωj

∇ũ(y) · ∇v dx = 〈f, v〉H−1,H1
0
, v ∈ Vn.

Therefore 〈ũ(y), v〉y = 〈u(y), v〉y, that is
ũ(y) = P yVnu(y),

where P yVn is the projection onto Vn with respect to norm ‖ · ‖y.
Hence, one would like to derive estimates on ‖u(y) − P yVnu(y)‖H1

0
in place of the estimates on ‖u(y) −

Pnu(y)‖H1
0
that we have obtained so far, since Pnu(y) is not practically accessible. As explained in the intro-
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duction, we cannot be satisfied with combining the latter estimates with the bound

‖u(y)− P ynu(y)‖H1
0
6 κ(y)1/2‖u(y)− Pnu(y)‖H1

0

derived from Cea’s lemma, since the multiplicative constant κ(y) from (2.9) is not uniformly bounded over the
manifolds KY , KY ′ or KY ′′ . Here, we shall employ another approach to derive the same rates of convergence
for ‖u(y)− P yVnu(y)‖H1

0
.

One first observation is that, in order for Galerkin projection P yn onto a reduced model space Vn to satisfy a
convergence bound in relative error, it is critical that this space contains some functions from the limit spaces VS .
This is expressed by the following result.

Proposition 2.20. Assume that there exists S ( {1, . . . , d} such that Vn ∩ VS = {0}. Then for any C ∈ (0, 1),
there exists y ∈ Y ′ = [1,∞)d such that

‖u(y)− P yVnu(y)‖H1
0
> C‖u(y)‖H1

0
. (2.58)

Proof. Since Vn ∩ VS = {0}, the quantity ‖∇v‖L2(ΩS) is a norm on Vn and one can define

α = min
v∈Vn

‖∇v‖L2(ΩS)

‖v‖H1
0

> 0.

For any ε > 0, take yj = ε−2 for j ∈ S and yj = 1 for j ∈ Sc. Then, for v = P yVnu(y),

α

ε
‖v‖H1

0
6

1

ε
‖∇v‖L2(ΩS) 6 ‖v‖y 6 ‖u(y)‖y 6 Cf 6

Cf
cf
‖u(y)‖H1

0
,

where we have used the framings (2.25) and (2.26). Therefore, taking ε =
cf
Cf
α(1 − C) implies ‖v‖H1

0
6

(1− C)‖u(y)‖H1
0
, and (2.58) follows.

However, in the construction of Vn in Section 2.3, each space V`,k is a subset of VS for S = {j : `j = Lk}.
This prevents the phenomenon described in the previous proposition from occurring. Instead, we obtain similar
convergence bounds as those obtained for Pn, as expressed in the following result.

Theorem 2.21. Assume that the partition of Ω has the geometry of disjoint inclusions. On the rectangles R`
for ` ∈ {0, . . . , L}d, the following uniform convergence estimates hold:

‖u(y)− P yV`,ku(y)‖H1
0
6
Cf√

3
3−k, y ∈ R`, (2.59)

if ‖`‖∞ < L, and

‖u(y)− P yV`,ku(y)‖H1
0
6
Cf√

3
3−k + C0Cf2−L, y ∈ R`, (2.60)

if ‖`‖∞ = L. As a consequence, with L = Lk and Vn defined as in § 2.3.3, one has the estimates

‖u(y)− P ynu(y)‖H1
0
6 C exp

(
−cn

1
2d−2

)
, (2.61)

for all y ∈ Ỹ ′ such that min yj = 1, and

‖u(y)− P yV`,ku(y)‖H1
0
6 C exp

(
−cn1/(2d−2)

)
‖u(y)‖H1

0
, (2.62)

for all y ∈ Ỹ , with constants c and C that only depend on d, Cf , cf , and on the geometry of the partition
through the constant C0.

Proof. For bounded rectangles R` with ‖`‖∞ < L, we know from Lemma 2.10, and more precisely from (2.33),
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that
‖u(y)− P yV`,ku(y)‖y = min

v∈V`,k
‖u(y)− v‖y 6

∥∥∥u(y)−
∑
|ν|6k

uνy
ν
∥∥∥
y
6
Cf√

3
3−k

for any y ∈ R`. Since all the yj are greater or equal to 1, one has ‖v‖H1
0
6 ‖v‖y for all v and therefore (2.59)

follows.
For infinite rectangles R` such that ‖`‖∞ = L, we again introduce S = {j : `j = L}. Then, using (2.47),

‖u(y)− P yV`,ku(y)‖H1
0
6 ‖u(y)− uS(ySc)‖H1

0
+ ‖uS(ySc)− P yV`,ku(y)‖H1

0

6 C0Cf2−L + ‖uS(ySc)− P yV`,ku(y)‖H1
0
.

Since V`,k ⊂ VS , we have

P yV`,ku(y) = P yV`,kP
y
VS
u(y) = P yV`,kuS(ySc) = P yS

c

V`,k
uS(ySc),

Similarly to the previous case, we apply (2.39) from Lemma 2.12:

‖uS(ySc)− P yV`,kuS(ySc)‖H1
0
6 ‖uS(ySc)− P yV`,kuS(ySc)‖y 6

Cf√
3

3−k,

and we thus obtain (2.60).
After taking L = Lk and defining Vn as the sum of the V`,k for ` ∈ Ek, the derivation of (2.61) and (2.62)

is exactly the same as for (2.54) and (2.56).

Remark 2.22. As in Remark 2.19, it is expected that the same rate of convergence is attained if Vn is a
reduced basis space generated by solutions u(yi), i = 1, . . . , n, as long as there are O

((
k+d−1
d−1

))
samples yi in

each rectangle, however with samples forced to be of the form uS(yiSc) ∈ VS in the case of infinite rectangles.

2.4.2 State and parameter estimation

The state estimation problem consists in retrieving the solution u = u(y) when the parameter y is unknown,
and one observes m linear measurements

zi = `i(u), i = 1, . . . ,m,

where the `i are continuous linear functional on the Hilbert space V that contains the solution manifold. These
linear functionals may thus be written in terms of Riesz representers

`i(v) = 〈ωi, v〉V .

The Parametrized Background Data Weak (PBDW) method, introduced in [124] and further studied in [33],
exploits the fact that all potential solutions are well approximated by reduced model spaces Vn. It is based on
a simple recovery algorithm that consists in solving the problem

min
v∗∈Vz

min
ṽ∈Vn

‖v∗ − ṽ‖V , (2.63)

where, for z = (z1, . . . , zm) ∈ Rm,

Vz := {v ∈ V : `i(v) = zi, i = 1, . . . ,m},

is the affine space of functions that agree with the measurements.
The analysis of this problem is governed by the quantity

µmn = µ(Vn,Wm) := sup
v∈Vn

‖v‖V
‖PWmv‖V

, (2.64)
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where Wm := span{ω1, . . . , ωm}, which is finite if and only if Vn ∩W⊥m = {0}. Then, there exists a unique
minimizing pair

(u∗, ũ) = (u∗(z), ũ(z)) ∈ Vz × Vn
to (2.63), which satisfies the estimates

‖u− ũ‖V 6 µmn min
v∈Vn

‖u− v‖V , (2.65)

and
‖u− u∗‖V 6 µmn min

v∈Vn+(Wm∩V ⊥n )
‖u− v‖V . (2.66)

The computation of (u∗, ũ) amounts to solving finite linear systems, and both solutions depend linearly on z.
Turning to our specific elliptic problem, and assuming that the `i belong to H−1(Ω) = V ′ for V = H1

0 (Ω),
we may apply the above PBDW method using the reduced basis spaces Vn introduced in Section 2.3. As an
immediate consequence of Theorem (2.16), we obtain a recovery estimate in relative error.

Proposition 2.23. Let y ∈ Ỹ and u = u(y). Then both estimators ũ ∈ Vn and u∗ ∈ Vz satisfy

max(‖u− ũ‖H1
0
, ‖u− u∗‖H1

0
) 6 Cµmn exp

(
−cn

1
2d−2

)
‖u‖H1

0
. (2.67)

The constants C, c > 0 only depend on d, Cf , cf , and on the geometry of the partition through the constant C0.

Proof. It follows readily by combining (2.56) with the recovery estimates (2.65) and (2.66).

We next turn to the problem of parameter estimation, namely recovering an approximation y∗ to y from the
measurements z. In contrast to state estimation, this is a nonlinear inverse problem since the first mapping in

y 7→ u 7→ z

is typically nonlinear. One way of relaxing this problem into a linear one is by first using a recovery u∗ of
the state u, for example obtained by the PBDW method. One then defines y∗ as the minimizer over Ỹ of the
residual

R(y) := ‖div(a(y)∇u∗) + f‖H−1 .

This is a quadratic problem when a(y) has an affine dependence in y, that can be solved by standard quadratic
optimization methods. The rationale for this approach is the fact that

R(y) = ‖Ayu∗ −Ayu(y)‖H−1 ∼ ‖u∗ − u(y)‖H1
0
,

and therefore we should be close to finding the parameter y that best explains the approximation u∗. Unfortu-
nately, this approach is not much viable in the high-contrast regime since the equivalence ‖Ayv‖H−1 ∼ ‖v‖H1

0

has constants that are not uniform in y and deteriorate with the level of contrast κ(y).
Instead, we propose a more specific approach that exploits the piecewise constant structure of a(y), assuming

that Vn is a reduced space of the form

Vn = span{u(y1), . . . , u(yn)},

for some properly selected parameter vectors

yi = (yi1, . . . , y
i
d), i = 1, . . . , n.

As mentioned, see Remark (2.19), these spaces satisfy the same exponential convergence bounds as the spaces
constructed in Section 2.3.

The PBDW estimator u∗ = u∗(z) ∈ Vn thus has the form

u∗ =

n∑
i=1

ciu(yi) ∈ Vn
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and satisfies a similar bound (2.67) as in the above proposition. Then, on the particular domain Ωj , one has

f

yj
= −∆u|Ωj ≈ −

n∑
i=1

ci∆u(yi) =

n∑
i=1

ci
f

yij
,

and therefore, a natural candidate for the parameter estimate is y∗ = (y∗1 , . . . , y
∗
d) with

y∗j :=

(
n∑
i=1

ci
yij

)−1

. (2.68)

The following result gives a recovery bound in relative error for the inverse diffusivity.

Proposition 2.24. With the notation 1/y = (1/y1, . . . , 1/yd), the estimator y∗ defined by (2.68) satisfies the
bound ∥∥∥ 1

y∗
− 1

y

∥∥∥
∞
6
Cf
cf
Cµmn exp

(
−cn

1
2d−2

)∥∥∥1

y

∥∥∥
∞
, (2.69)

where Cf and cf are as in (2.25), and the other constants as in (2.67).

Proof. For 1 6 j 6 d, take φ ∈ H1
0 (Ωj), then

∣∣∣∣∣ 1

y∗j
− 1

yj

∣∣∣∣∣ |〈f, φ〉H−1,H1
0
| =

∣∣∣∣∣
n∑
i=1

ci
yij

ˆ
Ωj

yij∇u(yi) · ∇φdx− 1

yj

ˆ
Ωj

yj∇u · ∇φdx

∣∣∣∣∣
=

∣∣∣∣∣
ˆ

Ωj

∇(v∗ − u) · ∇φdx

∣∣∣∣∣
6 ‖v∗ − u‖H1

0 (Ω)‖φ‖H1
0 (Ωj).

Optimizing over φ gives ∥∥∥ 1

y∗
− 1

y

∥∥∥
∞
6 c−1

f ‖v
∗ − u‖H1

0
,

which combined with (2.67) gives∥∥∥ 1

y∗
− 1

y

∥∥∥
∞
6 c−1

f Cµmn exp
(
−cn

1
2d−2

)
‖u‖H1

0
.

Using the Lax-Milgram estimate

‖u‖H1
0
6 Cf

∥∥∥1

y

∥∥∥
∞
,

we reach (2.69).

Remark 2.25. The bound (2.69) is not entirely satisfactory since the approximation error on yj remains high
when y ∈ KY ′′ with yj � 1. We do not know if a bound of the form∣∣∣∣∣ 1

y∗j
− 1

yj

∣∣∣∣∣ 6 εn
yj
, 1 6 j 6 d,

which would imply |y∗j − yj | 6 εn/(1− εn) yj , holds uniformly over KY ′′ with εn −→
n→∞

0.

2.5 Numerical illustration
The base model that will be used all along the numerical illustrations is the diffusion equation (2.4) with

data f = 1 set on the two-dimensional square Ω = [−1, 1]2 with homogeneous Dirichlet boundary conditions.
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(b) Non-lipschitz partition of Ω.

Figure 2.3 – Different partitions of Ω = [−1, 1]2 into four subdomains, considered in the numerical tests

We consider a piece-wise constant diffusion coefficient

a|Ωj = yj , 1 6 j 6 d,

on a partition of Ω into 16 squares of quarter side-length.
As such this partition does not satisfy the geometric assumption of “Lipschitz partition” that was critical

in our analysis for the application of Lemma 2.14. Therefore we consider sub-partitions that comply to the
assumptions, such as illustrated on Figure 2.3a, which amounts to equate the parameters yj of squares belonging
to the same sub-domain. This way we can consider that y = (yA, yB , yC , yD) consists of four parameters, one
for each subdomain.

The numerical results that we present next aim at illustrating the robustness to high contrast of the reduced
basis method, and discuss in addition the effect of parameter selection, higher parametric dimensions, and
inclusions that are not satisfying the geometric assumption, as exemplified on Figure 2.3b.

We construct different reduced bases {u(y1), . . . , u(yn)} of moderate dimension 1 6 n 6 15, for certain pa-
rameter selections y1, . . . , yn. Each reduced basis element u(yi) is numerically computed by the Galerkin method
in a background finite element space Vh of dimension 6241.

The reduced basis spaces are thus subspaces of Vh, thus strictly speaking Vn = Vn,h depends both on n and
on the meshsize h. In our numerical computation, we always assess the error

P yVhu(y)− P yVn,hu(y).

We noticed that for the considered values of n = 1, . . . , 15 the error curves do not vary much when further
reducing the mesh size h. In fact they are essentially identical when the dimension of Vh is four times smaller.
Therefore, for simplicity of the presentation, we still write

u(y)− P yVnu(y),

bearing in mind that the additional finite element error u(y)− P yVhu(y) depends on h (with algebraic decay in
the finite element dimension).

All the tests were done using Python 3.8. For more information and experiments not presented here we
invite the reader to look into the github repository https://github.com/agussomacal/ROMHighContrast.

2.5.1 Parameter selection

We first study the case of a one-parameter family: the diffusion coefficient yA of ΩA in Figure 2.3a varies
from 1 to ∞, while the other subdomains are considered as background with all coefficents equal to 1. Thus
the yi are of the form yi = (yiA, 1, 1, 1).

In reduced basis constructions, the approach for selecting parameter sets is usually either random or greedy.
Random selection usually performs well enough in many situations, however we shall see that it fails in the high
contrast regime. This is in particular due to the fact that it does not capture the limit solutions, while we have
observed in Section 2.4 that robust convergence of the Galerkin method in the high-contrast regime critically
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requires to include limit solutions in the space Vn. Here, there is only one limit solution u∞ = u(y∞) where
y∞ = (∞, 1, 1, 1), and this element is picked by the greedy method if initialized at any other point.

More precisely, we compare four strategies for selecting the yiA ∈ [1,∞]:
— Random: The yiA are drawn independently according to the uniform law for 1/yA ∈ [0, 1].
— Random-∞: First the limit solution, corresponding to yA =∞, is inserted in the basis. The rest of the

elements are randomly picked as in the previous case.
— Greedy H1

0 : The yi are picked incrementally, yi+1 maximizing the relative H1
0 projection error

‖u(y)− PViu(y)‖H1
0

‖u(y)‖H1
0

.

— Greedy Galerkin: The yi are picked incrementally, yi+1 maximizing the relative H1
0 error of the Galerkin

projection
‖u(y)− P yViu(y)‖H1

0

‖u(y)‖H1
0

.

Figure 2.4 – Galerkin (left) and H1
0 (right) projection error, both measured in H1

0 relative error, maximized
over the parameter domain, for different reduced bases, case d = 1.

Figure 2.4 displays on the left the evolution of the maximal relative error of the Galerkin projection

sup
yA∈[1,∞]

‖u(y)− P ynu(y)‖H1
0

‖u(y)‖H1
0

,

as a function of n = dim(Vn) for these various selection strategies. It reveals the superiority of the greedy
selection that reaches machine precision after picking n = 11 reduced basis elements, and the gain in including
the limit solution in the case of a random selection. As a comparison, we display on the right the decay of the
relative H1

0 -orthogonal projection error

sup
yA∈[1,∞]

‖u(y)− Pnu(y)‖H1
0

‖u(y)‖H1
0

for the same parameter selection strategies. Here, we notice that the inclusion of the limit solution u∞ is not
anymore critical for reaching good accuracy. Nevertheless, these errors still decay faster for the greedy strategies.

Remark 2.26. As the diffusion coefficient is piecewise constant on the partition ΩA∪ΩcA, the parameter space
dimension is d = 2 in this numerical example. The theoretical results thus provide a bound on the error of order
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exp(−c
√
n). However, this bound is obtained with local reduced spaces V`,k on dyadic intervals, which does not

perform as well as Vn =
⊕

`∈Ek V`,k, for which one might expect a rate closer to exp(−cn). In Figure 2.4 for
n 6 11, that is, until numerical precision issues arise, we even observe a faster than exponential convergence,
that could be due to the superiority of reduced bases over polynomial approximations.

Figure 2.5 – Galerkin andH1
0 projection error (both measured inH1

0 relative error maximized over the parameter
domain) for different reduced bases, case d = 2.

Figure 2.6 – The Galerkin projection of Greedy Galerkin method for increasing dimensionality in geometries
satisfying (left) or not (right) the assumptions.

Remark 2.27. It is well known that the reduced basis can be very ill-conditioned, since u(yn) becomes ex-
tremely close to Vn−1 = span{u(y1), . . . , u(yn−1)} as n gets moderately large. In order to avoid numerical
instabilities, prior to the computation of the Galerkin or H1

0 projection onto Vn, we need to perform a change of
basis, typically by some orthonormalization process. In our numerical test, we perform this orthonormalization
with respect to the discrete `2 inner product for the nodal values in the background finite element representa-
tion, using the QR decomposition, and obtain a satisfactory stable numerical behavior. However, this process
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is not invariant under permutations, and we observe that it behaves better in terms of numerical stability when
sorting the reduced basis elements from higher contrast to lower contrast.

In this one parameter scenario, both greedy strategies behaved equally well. However, as we increase the
dimensionality of the problem d > 1, Greedy Galerkin appears to be the best selection procedure, as could
be expected since it optimizes the error based on the approximation which is effectively computed in forward
modeling. Figure 2.5 shows this effect when d = 2, where yA and yB are allowed to vary independently while
yC and yD are taken as background always equal to 1.

2.5.2 Influence of dimensionality and geometry
In order to study the impact of dimensionality on the approximation rates, we compare the behavior of the

Greedy Galerkin selection method, as we increase the number of freely varying parameters. As before, we will
have for y = (yA, 1, 1, 1) when d = 1, then y = (yA, yB , 1, 1) when d = 2, until having all four subdomains freely
varying between 1 and ∞.

In Figure 2.6 the degradation with respect to dimension is clearly observed as the approximation capabilities
strongly decrease. Even thought the exponential decay rate is still conserved, the decay parameter shrinks from
almost 3 down to 0.22 when d = 4.

Secondly, we study the case where the geometric assumptions are not satisfied. We follow the same in-
cremental subdomains unfreezing as in the previous case but using the geometry stated in Figure 2.3b. We
observe that the reduced basis approach still achieves exponential approximation rates, actually higher than
in the previous example. This hints that the geometric assumptions which are needed in our proofs could be
artificial, and leaves open the question of achieving such results without relying on these assumptions.
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Chapter 3

Nonlinear approximation spaces for
inverse problems

Abstract. This chapter is concerned with the ubiquitous inverse problem of recovering an unknown function
u from finitely many measurements, possibly affected by noise. In recent years, inversion methods based on linear
approximation spaces were introduced in [33, 124] with certified recovery bounds. It is however known that linear
spaces become ineffective for approximating simple and relevant families of functions, such as piecewise smooth
functions that typically occur in hyperbolic PDEs (shocks) or images (edges). For such families, nonlinear spaces
[63] are known to significantly improve the approximation performance. The first contribution of this chapter
is to provide certified recovery bounds for inversion procedures based on nonlinear approximation spaces. The
second contribution is the application of this framework to the recovery of general bidimensional shapes from
cell-average data. We also discuss how the application of our results to n-term approximation relates to classical
results in compressed sensing.

3.1 Introduction

3.1.1 The recovery problem

In this chapter, we treat the following state estimation problem in a general Banach space V . We want to
recover an approximation to an unknown function u ∈ V from data given by m observations

zi := `i(u) + ηi, i = 1, . . . ,m, (3.1)

where `i : V 7→ R are known measurement functionals, and ηi is additive noise. The functionals `i often
correspond to the response of a physical measurement device but they can have a different interpretation
depending on the application. Their behavior can be linear (in which case the `i are linear functionals from
V ′, the dual of V ) or nonlinear. This type of recovery problem is clearly ill-posed when the dimension of V
exceeds m. It nevertheless prevails in sampling and inverse problem applications where V is infinite dimensional
(to name a few, see [2, 16, 74, 99]).

One natural strategy to address this difficulty is to search for a recovery of u by an element of a low-
dimensional reconstruction space Vn ⊂ V . The space Vn could be either an n-dimensional linear subspace, or
more generally a nonlinear approximation space parametrized by n degrees of freedom, with n 6 m.

In order to obtain quantitative results for such recovery procedures, it is necessary to possess additional
information about u, usually as an assumption that u belongs to a certain model class K contained in V . The
approximation space Vn is chosen in order to collectively approximate the elements of K as well as possible, in
the sense that

dist(K, Vn)V := max
u∈K

min
v∈Vn

||u− v||V

is as small as possible for moderate values of n.
Multiple theoretical results and numerical algorithms have been proposed in various fields to study and solve
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the above recovery problem (we recall some relevant results below). However, to the best of our knowledge,
they all involve at least one or several of the following assumptions:

— The `i are linear functionals,
— Vn is a linear (or affine) subspace of V ,
— V is a Hilbert space,
— The model class K is a ball in a smoothness space, e.g., a unit ball in Lipschitz, Sobolev, or Besov spaces.

Results involving this type of model classes have been intensively studied in the field of optimal recovery
(see [35, 131, 142]).

The goal of this chapter is to develop and analyze inversion procedures that do not require any of the above
assumptions. Our analysis and numerical algorithms can thus be applied to virtually any recovery problem. The
starting point of our development is based on algorithms introduced for inverse state estimation using reduced
order models of parametric Partial Differential Equations (PDEs). We next recall that specific framework.
The presentation will also serve to explain more in depth the motivations leading to propose the present
generalization.

3.1.2 State estimation with reduced models for parametric PDEs

A relevant scenario in inverse state estimation is when the model class K is given by the set of solutions to
some parameter-dependent PDE of the general form

P(u, y) = 0, (3.2)

where P is a differential operator, y a vector of parameters ranging in some domain Y in Rd, and u is the solution.
If well-posedness holds in some Banach space V for each y ∈ Y , we denote by u(y) ∈ V the corresponding solution
for the given parameter value y and by

KY := {u(y) : y ∈ Y },

the solution manifold.
In inverse state estimation, we take K = KY for the model class, so the unknown u to recover belongs to K.

However, the parameter y that satisfies u = u(y) is unknown, so we cannot solve the forward problem (3.2) to
approximate u. Instead, we must approximate u from the partial observational data (3.1), and the knowledge
of the model class KY .

For the manifold KY , efficient approximation spaces Vn are usually obtained by reduced modeling techniques.
In their most simple format, reduced models consist into linear spaces (Vn)n>0 with dim(Vn) = n. The ideal
benchmark in this linear approximation setting is provided by the Kolmogorov n-width

dn(KY )V := inf
dim(Vn)6n

dist(KY , Vn)V ,

which describes the optimal approximation performance achievable by an n-dimensional space over the set KY .
Apart from very simplified cases, the space Vn achieving the above infimum is usually out of reach. Practical

model reduction techniques such as polynomial approximation in the parametrized domain [56, 58, 174] or re-
duced bases [68, 92, 125, 157, 194] construct spaces Vn that are “suboptimal yet good”. In particular, the reduced
basis method, which generates Vn by a specific selection of particular solution instances u(y1), . . . , u(yn) ∈ KY ,
has been proved to have approximation error dist(KY , Vn)V that decays with the same polynomial or exponential
rates as dn(KY )V , and in that sense are close to optimal [65].

3.1.3 The PBDW method

We take the Parametrized Background Data Weak (PBDW) method as a starting point for our analysis.
The PBDW method, first introduced in [124], as well as several extensions, has been the object of a series of
works [32, 33, 53, 54] on its optimality properties as a recovery algorithm. It has also been used for different
practical applications, see [16, 74, 88]. We refer to [136] for an overview of the state of the art on this approach,
and its connections with different fields. For our current purposes, it will suffice to recall the first version of the
algorithm, which is the goal of this section.
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The PBDW method uses a linear approximation space Vn of dimension n 6 m. Usually this space is a
reduced model in applications. It is assumed that the `i are continuous linear functionals, that is `i ∈ V ′, and
that V is a Hilbert space. Then, introducing the Riesz representers ωi ∈ V such that `i(v) = 〈ωi, v〉V , the data
of the noise-free observation

z = `(u) := (`1(u), . . . , `m(u)),

is equivalent to that of the orthogonal projection w = PWmu on the Riesz measurement space

Wm := span{ω1, . . . , ωm}.

Assuming linear independence of the `i, this space has dimension m. A critical quantity is the number

µmn = µ(Vn,Wm) := max
v∈Vn

‖v‖V
‖PWmv‖V

, (3.3)

that describes the “stability” of the description of an element of Vn by its projection onto Wm, and may be
thought of as the inverse cosine of the angle between Wm and Vn. In particular, this quantity is finite only
when n 6 m. It can be explicitly computed as the inverse of the smallest singular value of a cross-grammian
matrix between orthonormal bases of Vn and Wm (see [33, 136]).

The PBDW method consists in solving the minimization problem

min
v∗∈Vw

min
ṽ∈Vn

‖v∗ − ṽ‖V ,

where Vw := w + W⊥m is the set of all states v such that PWmv = w. We denote by (u∗, ũ) ∈ Vw × Vn the
minimizing pair, which is unique when µmn <∞, and can be computed by solving an n× n linear system. The
function ũ may be seen as a particular best fit estimator of u on Vn, since it is also defined by

ũ := arg min
v∈Vn

‖PWm
v − w‖V .

The function u∗ can be derived from ũ by the correction procedure

u∗ := ũ+ (w − PWm ũ),

which shows that u∗ ∈ Vn +Wm. It may be thought of as a generalized interpolation estimator, since it agrees
with the observed data (PWmu

∗ = PWmu). In the case of noise-free data, it is proved in [33, 124] that these
estimators satisfy the recovery bounds

‖u− ũ‖V 6 µmn min
v∈Vn

‖u− v‖V and ‖u− u∗‖V 6 µmn min
v∈Vn⊕(Wm∩V ⊥n )

‖u− v‖V .

These bounds reflect a typical trade-off in the choice of the reduced basis space, since making n larger has
both effects of decreasing the approximation error minv∈Vn ‖u − v‖V and increasing the stability constant
µmn = µ(Vn,Wm).

When the PBDW method is applied to noisy data, amounting in observing a perturbed version w of
w = PWmu, the recovery bounds remain valid up to the additional term µmn ‖w − w‖V . In summary, one
has for both estimators

max{‖u− ũ‖V , ‖u− u∗‖V } 6 Cµmn (en(u) + ‖w − w‖V ), (3.4)

where
en(u) := min

v∈Vn
‖u− v‖V

is the reduced model approximation error, C > 0, and ‖w − w‖V is the noise error measured in the space Wm.
Note that since the additive perturbations ηi are applied to the data `i(u), a natural model for the measurement
noise is to assume a bound of the norm ‖η‖p 6 ε, for the vector η = (η1, . . . , ηm), typically in the max norm
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p =∞ or euclidean norm p = 2. Therefore, one has ‖w − w‖V 6 βpmε, where

βpm := max
v∈Wm

‖v‖V
‖`(v)‖p

,

resulting in a bound of the form Cµmn (en(u) + βpmε) for both estimators.

3.1.4 Towards nonlinear approximation spaces

The simplicity of the PBDW method and its variants comes together with a fundamental limitation on its
performance: it is by essence a linear reconstruction method with recovery bounds tied to the approximation
error en(u). When the only prior information is that the unknown function u belongs to a class K, with K = KY
the solution manifold in the case of parametric PDEs, its best performance over K is thus limited by the n-width
dn(K)V and in turn by dm(K)V since n 6 m.

In several simple yet relevant settings, it is known that n-widths have poor decay with n. One instance is
when the class K contains piecewise smooth states, with a state-dependent location of jump discontinuities. As
an elementary example, one can easily check that if V = L2([0, 1]) and K is the set of all indicator functions
u = χ[a,b] with a, b ∈ [0, 1], one has dn(K)V ∼ n−1/2. This decay is of course even slower for more general
classes of piecewise smooth functions in higher dimension, see in particular [28, Chapter 3, equation (3.76)].
Such functions are typical in parametric hyperbolic PDEs, due to the presence of shocks with positions that
differ when parameters entering in the velocity field vary. We refer to [25, 32, 69, 80, 145, 188] for other examples
of parametric PDEs whose solution manifold has slow Kolmogorov n-width decay.

For such classes of functions, nonlinear approximation methods are well known to perform significantly
better than their linear counterparts. Typical representatives of such methods include approximation by rational
fractions, free knot splines or adaptive finite elements, best n-term approximation in a basis or dictionary, neural
network or various tensor formats. In all these instances the space Vn still depends on n or O(n) parameters but
is not anymore a linear space. We refer to [63] for a general introduction on the topic of nonlinear approximation.

3.1.5 Objective and outline

The objective of this chapter is to study the natural extensions of the PBDW method to such nonlinear
approximation spaces and identify the basic structural properties that lead to near optimal recovery estimates
similar to (3.4).

We begin in Section 3.2 by considering the most general setting where V is a Banach space, Vn a nonlinear
approximation family, and the `i are functionals defined on V that are not necessarily linear, but Lipschitz
continuous, that is

‖`(v)− `(ṽ)‖Z 6 αZ‖v − ṽ‖V , v, ṽ ∈ V. (3.5)

Here ‖ · ‖Z can be any given norm defined over Rm with the constant αZ depending on this choice of norm.
In this framework, we discuss the best fit estimation procedure that consists in minimizing the distance to the
observed data in a given norm ‖ · ‖Z .

Our main structural assumption on Vn is the following inverse stability property: the reduced model is stable
with respect to the measurement functionals if there exists a finite constant µZn such that

‖v − ṽ‖V 6 µZn‖`(v)− `(ṽ)‖Z , v, ṽ ∈ Vn. (3.6)

The stability constant µZn depends on the Z norm and plays a role similar to that of µ in the linear case. In
particular, we show that this constant is finite only if n 6 m. The resulting estimator ũ is then proved to satisfy
a general recovery bound of the form

‖u− ũ‖V 6 C1en(u) + C2‖η‖p,

where en(u) := minv∈Vn ‖u − v‖V is the nonlinear reduced model approximation error, ‖η‖p the level of mea-
surement noise in `p norm, and the constants C1 and C2 depend on αZ and µZn .

In Section 3.3, we consider the more particular setting where the `i are linear functionals. Then, we show
that constants C1 and C2 are each minimized by a different choice of norm ‖ · ‖Z , resulting in two different
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best fit estimators ũ, as already observed in [29] in the case of linear reduced models. This particular setting
also allows us to introduce a generalized interpolation estimator u∗ and establish similar recovery estimates for
‖u− u∗‖V .

We next apply our framework to the inverse problem that consists in recovering a general shape D, identified
to its characteristic function χD, based on cell average data

aT (D) :=
1

|T |

ˆ
T

χD, T ∈ T ,

where T is a fixed cartesian mesh. One motivation for this problem is the design of finite volume schemes for
the computation of solutions to transport PDEs on such meshes.

We first discuss in Section 3.4 the best estimation rate in terms of the mesh size h that can be achieved
by standard linear reconstructions, and which is essentially that of piecewise constant approximations, that is
O(h1/q) regardless of the smoothness of the boundary ∂D. This intrinsic limitation is due to the presence of
the jump discontinuity that is not well resolved by the mesh.

We then discuss in Section 3.5 a local recovery strategy based on a nonlinear approximation space Vn that
consists of characteristic functions of half-planes which can fit the boundary of D at a subcell resolution level,
as already proposed in [15, 148, 149, 154]. One main result, whose proof is given in an appendix, is that this
approximation space is stable in the sense of (3.6) with respect to cell average measurements on a stencil of
3 × 3 squares. In turn, if D has a C2 boundary, the recovered shape D̃ is proved to satisfy an estimate of the
form

‖χD − χD̃‖Lq 6 Ch
2/q,

where h is the mesh size, which cannot be achieved by any linear reconstruction. This paves the way to higher
order reconstruction methods for smoother boundaries by using local nonlinear approximation spaces with
curved boundaries and larger stencils.

Finally, we discuss in Section 3.6 the application of our results to the recovery of large vectors of size N
from m < N linear measurements, up to the error of best n-term approximation. This problem is well-known in
compressed sensing [42, 72], and was in particular studied in [52] which discusses the importance of the recovery
norm ‖ · ‖V to understand if near-optimal recovery bounds can be achieved with m not much larger than n. We
show that the structural assumptions identified in our general setting are naturally related to the so-called null
space property introduced in [52].

3.2 Nonlinear reduction of inverse problems

3.2.1 A general framework

In full generality we are interested in recovering functions u in a general Banach space V with norm ‖ · ‖V ,
from the measurement vector z = (z1, . . . , zm) ∈ Rm given by (3.1). A recovery (or inversion) map

z → R(z),

takes this vector to an approximation R(z) of u. We are interested in controlling the recovery error ‖u−R(z)‖V .
To build the recovery map R, we use a nonlinear approximation space of dimension n, that is, a family of

functions that can be described by n parameters. Loosely speaking, this means that there exists a set S ⊂ Rn
and a continuous map D : S → V such that

Vn := {D(x) : x ∈ S}.

Note that this definition covers the case of an n dimensional linear subspace since we can choose S = Rn and
D a linear map.

Our main assumptions are the Lipschitz stability of the functionals `i over the whole space V and their
inverse Lipschitz stability over the nonlinear approximation space Vn, expressed by (3.5) and (3.6), respectively.
Note that since Rm is finite dimensional, the norm ‖ · ‖Z that is chosen in Rm to express these properties could
be arbitrary up to a modification of the stability constants αZ , µZn . These constants can be optimally defined
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as
αZ = sup

v1,v2∈V

‖`(v1)− `(v2)‖Z
‖v1 − v2‖V

,

and
µZn = sup

v1,v2∈Vn

‖v1 − v2‖V
‖`(v1)− `(v2)‖Z

.

Note that one always has αZµZn > 1.

Remark 3.1. Note that when Vn is an n-dimensional space and the `i are linear functionals, the quantity µZn
may be rewritten as

µZn = max
v∈Vn

‖v‖V
‖`(v)‖Z

.

As discussed further, the quantity µmn defined in (3.3) for the analysis of the PBDW method is an instance
of µZn corresponding to a particular choice of norm ‖ · ‖Z . Assuming the `i are independent functionals, one
easily checks that finiteness of this quantity imposes that n 6 m. Indeed, if n > m, there exists a non-trivial
v ∈ Vn ∩N , where

N := {v ∈ V : `(v) = 0}

is the null space of the measurement map that has codimension m, and therefore µZn is infinite.

Remark 3.2. The restriction n 6 m is also needed for nonlinear spaces Vn and measurement map `, under
assumptions expressing that m and n are local dimensions. More precisely, assume that the map D defining
Vn is differentiable at some c0 in the interior of S, that ` is differentiable at v0 = D(c0), and that both tangent
maps have full rank at these points, that is,

dim(dDc0(Rn)) = n and dim(d`v0
(V )) = m.

Then, by taking v1 = v0 and v2 = D(c0 + tc) in the quotient that defines µZn , and letting t → 0 for arbitrary
c ∈ Rn, one finds that

µZn > max
v∈dDc0 (Rn)

‖v‖V
‖d`v0(v)‖Z

,

and therefore it is infinite if n > m, by the same argument as in the previous remark.

3.2.2 The best fit estimator

We define a first recovery map z 7→ ũ = R(z) as the best fit estimator in the ‖ · ‖Z norm

ũ := arg min
v∈Vn

‖z − `(v)‖Z . (3.7)

The existence of such a minimizer is trivial if the space Vn and the measurement map ` are linear. It can also
be ensured in the nonlinear case under additional assumptions, for example compactness of the set S defining
the nonlinear space Vn, which will be the case in the application to shape recovery discussed in Section 3.5. If
the minimizer does not exist, we may consider a near minimizer, that is ũ ∈ Vn satisfying

‖z − `(ũ)‖Z 6 C‖z − `(v)‖Z , v ∈ Vn,

for some fixed C > 1. Inspection of the proofs of our main results below reveals that similar recovery bounds
can be obtained for such a near minimizer, up to the multiplicative constant C.

Recall that our assumption on the noise model is a control on ‖η‖p for some 1 6 p 6∞. For this value of p,
we introduce the quantity

βpZ := max
z∈Rm

‖z‖Z
‖z‖p

We are now in position to state a recovery bound in this general framework.
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Theorem 3.3. The best fit estimator ũ from (3.7) satisfies the estimate

‖u− ũ‖V 6 C1en(u) + C2‖η‖p. (3.8)

where C1 := 1 + 2αZµ
Z
n and C2 := 2βpZµ

Z
n .

Proof. Consider any v ∈ Vn and write

‖u− ũ‖V 6 ‖u− v‖V + ‖v − ũ‖V 6 ‖u− v‖V + µZn‖`(v)− `(ũ)‖Z ,

where we have used (3.6). On the other hand, the minimizing property of ũ ensures that

‖`(v)− `(ũ)‖Z 6 ‖z − `(v)‖Z + ‖z − `(ũ)‖Z 6 2‖z − `(v)‖Z .

Furthermore, using the stability (3.5) of ` and the definition of βpZ , we have

‖z − `(v)‖Z 6 ‖`(u)− `(v)‖Z + ‖η‖Z 6 αZ‖u− v‖+ βpZ‖η‖p.

Combining the three estimates, we reach

‖u− ũ‖V 6
(
1 + 2αZµ

Z
n

)
‖u− v‖V + 2βpZµ

Z
n‖η‖p,

which gives (3.8) by optimizing over v ∈ Vn.

The constants C1 and C2 in the above recovery estimate depend on the choice of norm ‖ ·‖Z . Note that they
are invariant when this norm is scaled by a factor t > 0, since this has the effect of multiplying αZ and βpZ by t
and dividing µZn by t, which is consistant with the fact that the resulting estimator ũ is left unchanged by such
a scaling. In the next section we show, in the particular setting of linear measurements, that specific choices
of ‖ · ‖Z can be used to minimize C1 or C2. This setting also allows us to introduce and study a generalized
interpolation estimator, which is not relevant to the present section since the nonlinear measurement map ` is
not assumed to be surjective: in the presence of noise, there might exist no v ∈ V that agrees with the data, in
the sense that z = `(u) + η does not belong to the range of `.

3.3 Linear observations

In this section, we assume that the `i ∈ V ′ are independent linear functionals, still allowing Vn to be a general
nonlinear space. In this framework, which contains the example of shape recovery discussed in Section 3.5, one
has

αZ = max
v∈V

‖`(v)‖Z
‖v‖V

and
µZn = max

v∈V diff
n

‖v‖V
‖`(v)‖Z

,

where
V diff
n = Vn − Vn := {v1 − v2 : v1, v2 ∈ Vn}.

In this particular setting, we can identify the norms ‖ · ‖Z that minimize the constants C1 := 1 + 2αZµ
Z
n and

C2 := 2βpZµ
Z
n , respectively.

3.3.1 Optimal norms

As ` : V → Rm is linear continuous and surjective, we can define a norm on Rm through

‖z‖W = min {‖v‖V : `(v) = z}. (3.9)



54 CHAPTER 3. Nonlinear approximation spaces for inverse problems

Remark 3.4. If V is a Hilbert space, the minimizer is unique by strict convexity of ‖·‖V , and them-dimensional
space

W :=
{

arg min
`(v)=z

‖v‖V : z ∈ Rm
}

is exactly the span of the Riesz representers of the observation functionals `i ∈ V ′. Moreover, denoting PW the
orthogonal projection on W , we have

‖`(v)‖W = ‖PW v‖V , v ∈ V.

For this reason, we sometimes refer to ‖ ·‖W as the Riesz norm even in the case of a more general Banach space.

The following result shows that the choice ‖ · ‖Z := ‖ · ‖W is the one that minimizes the constant C1, while
C2 is minimized by simply taking the `p norm ‖ · ‖Z = ‖ · ‖p.

Theorem 3.5. For any norm ‖ · ‖Z , one has

αWµ
W
n = µWn 6 αZµ

Z
n ,

and
βppµ

p
n = µpn 6 β

p
Zµ

Z
n ,

where (αW , β
p
W , µ

W
n ) and (αp, β

p
p , µ

p
n) are the triplets (αZ , β

p
Z , µ

Z
n ) when ‖ · ‖Z := ‖ · ‖W and ‖ · ‖Z = ‖ · ‖p,

respectively.

Proof. One has

αW = max
v∈V

‖`(v)‖W
‖v‖V

= max
z∈Rm

max
`(v)=z

‖z‖W
‖v‖V

= 1,

and so
αWµ

W
n = µWn = max

v∈V diff
n

‖v‖V
‖`(v)‖W

6 max
v∈V diff

n

‖`(v)‖Z
‖`(v)‖W

max
v∈V diff

n

‖v‖V
‖`(v)‖Z

= max
v∈V diff

n

‖`(v)‖Z
‖`(v)‖W

µZn .

We now observe that from the definition of ‖ · ‖W , one has

max
v∈V diff

n

‖`(v)‖Z
‖`(v)‖W

6 max
z∈Rm

‖z‖Z
‖z‖W

= max
z∈Rm

max
`(v)=z

‖z‖Z
‖v‖V

= αZ .

We have thus obtained the first claim αWµ
W
n = µWn 6 αZµ

Z
n . For the second claim, note that we trivially have

βpp = 1, and so

βppµ
p
n = µpn = max

v∈V diff
n

‖v‖V
‖`(v)‖p

6 max
v∈V diff

n

‖`(v)‖Z
‖`(v)‖p

max
v∈V diff

n

‖v‖V
‖`(v)‖Z

6 βpZµ
Z
n .

Remark 3.6. In the particular case where V is a Hilbert space, Vn a linear subspace and p = 2, it was already
observed in [29] that the reconstruction operators based on the choice ‖ · ‖Z = ‖ · ‖W or ‖ · ‖Z = ‖ · ‖2 are the
most stable with respect to the approximation error and the noise error, respectively. The above result may
thus be seen as a generalization of this state of affairs to the case of nonlinear subspaces of Banach spaces, and
`p noise.

3.3.2 The generalized interpolation estimator

Thanks to the surjectivity of `, we may introduce the space

Vz := {v ∈ V : `(v) = z},

and consider the minimization problem
min
v∗∈Vz

min
ṽ∈Vn

‖v∗ − ṽ‖V .
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If (u∗, ũ) ∈ Vz × Vn is a minimizing pair, the function u∗ is given by

u∗ = u∗(z) ∈ arg min
`(v)=z

dist(v, Vn)V ,

and is called the generalized interpolation estimator, since it exactly matches the data.

Remark 3.7. The best fit and generalized interpolator estimations may be thought of as the two extreme
cases, t→∞ and t→ 0, of the penalized estimator

ut := arg min
v∈V

‖z − `(v)‖Z + tdist(v, Vn)V .

As explained earlier, the generalized interpolation operator may not be well defined in the general case where
the `i are nonlinear. As opposed to the best fit, or the above penalized estimator ut when t > 0, the generalized
interpolation estimator does not involve the choice of a particular norm Z.

On the other hand, we see that ũ is the solution to the problem

min
ṽ∈Vn

dist(ṽ, Vz)V .

Observing that
dist(ṽ, Vz)V = min

`(v)=z
‖ṽ − v‖V = min

`(v′)=`(ṽ)−z
‖v′‖V = ‖`(ṽ)− z‖W ,

we thus find that ũ is precisely the best fit estimator for the Riesz norm ‖ · ‖Z := ‖ · ‖W .

In the Hilbert space setting, the generalized interpolation estimator u∗ is therefore the orthogonal projection
of this particular best fit estimator ũ onto the affine space Vz. It may thus also be derived from ũ by the correction
procedure

u∗ = ũ+ w − PW ũ,

where w = arg min`(v)=z ‖v‖V ∈ W is the preimage by ` of the measurements z. In the noiseless case when
w = PWu, this correction can only improve the approximation since it reduces the component of u − ũ in the
W direction while leaving unchanged the orthogonal component, and so, in view of Theorems 3.3 and 3.5, we
are ensured that

‖u− u∗‖V 6 C1en(u),

where C1 := 1 + 2µWn .

More generally, in the noisy case, and without the assumption that V is a Hilbert space, there is no guarantee
that u∗ performs better than ũ, but we still obtain an error estimate on u∗ that is similar in nature to that
satisfied by ũ.

Theorem 3.8. The generalized interpolation estimator u∗ satisfies the estimate

‖u− u∗‖V 6 C1en(u) + C2‖η‖p, (3.10)

where C1 := 2 + 2µWn and C2 := (1 + 2µWn )βpW .

Proof. Take δ ∈ arg min`(v)=η ‖v‖V , so that `(δ) = η and ‖η‖W = ‖δ‖V . For v and v∗ in Vn, decompose

‖u− u∗‖V 6 ‖u− v‖V + ‖v − v∗‖V + ‖v∗ − u∗‖V . (3.11)

For the middle term, using (3.6), we write

‖v − v∗‖V 6 µWn ‖`(v − v∗)‖W
6 µWn (‖`(v − u)‖W + ‖`(u− u∗)‖W + ‖`(u∗ − v∗)‖W )

6 µWn (‖v − u‖V + ‖η‖W + ‖u∗ − v∗‖V )
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since αW = 1, so the decomposition (3.11) becomes

‖u− u∗‖V 6 (1 + µWn )‖u− v‖V + µWn ‖η‖W + (1 + µWn )‖v∗ − u∗‖V .

To bound the last term, we optimize over the choice of v∗ ∈ Vn and use the definition of u∗ to obtain

inf
v∗∈Vn

‖v∗ − u∗‖V = dist(u∗, Vn) 6 dist(u+ δ, Vn) 6 dist(u, Vn) + ‖δ‖V = en(u) + ‖η‖W

since `(u+ δ) = `(u) + η = z. Combining the last two estimates and optimizing over v ∈ Vn gives

‖u− u∗‖V 6 (2 + 2µWn )en(u) + (1 + 2µWn )‖η‖W ,

and the result follows from the definition of βpW .

3.4 Shape recovery from cell averages

3.4.1 The shape recovery problem

The problem of reconstructing a function u from its cell averages

aT (u) :=
1

|T |

ˆ
T

u, T ∈ T ,

where T is a partition of the domain Ω ⊂ Rd in which u is defined, appears naturally in two areas:
— In 2d or 3d image processing, it corresponds to the so-called super-resolution problem, that is, recon-

structing a high resolution image from its low resolution version defined on the coarse grid T of pixels
or voxels.

— In numerical simulation of hyperbolic conservation laws, it plays a central role when developing finite
volume schemes on the computation mesh T .

Standard reconstruction methods are challenged when the function u exhibits jump discontinuities which
are not well resolved by the partition T . Such discontinuities correspond to edges in image processing or shocks
in conservation laws. Here we may focus on the very simple case of characteristic functions of sets

u = χD,

that already carry the main difficulty. Therefore we are facing a problem of reconstructing a shape D from local
averages of χD.

As a simple example we work in the domain Ω = [0, 1]2 with a uniform grid based on square cells of sidelength
h = 1

L for some L ∈ N, therefore of the form

T = Th := {Ti,j = [(i− 1)h, ih]× [(j − 1)h, jh] : i, j = 1, . . . , L}.

The cardinality of the grid is therefore
n := #(T ) = L2 = h−2.

We consider classes of characteristic functions χD of sets D ⊂ Ω with boundary of a prescribed Hölder
smoothness. The definition of these classes requires some precision.

Definition 3.9. For s ∈ N0, s′ ∈ [0, 1], 0 < R < 1/2 and M > 0, we define the class FR,Ms,s′ as consisting of all
characteristic functions χD of domains D ⊂ [R, 1 − R]2 ⊂ Ω with the following property: for all x̄ ∈ Ω, there
exists an orthonormal system (e1, e2) and a function ψ ∈ Cs,s′ with ‖ψ‖Cs,s′ 6M , such that

x ∈ D ⇐⇒ x̃2 6 ψ(x̃1),

for any x = x̄+ x̃1e1 + x̃2e2 with |x̃1|, |x̃2| 6 R.
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Here, we have used the common definition

‖ψ‖Cs,s′ = sup
06k6s

‖ψ(k)‖L∞([−R,R]) + sup
r1,r2∈[−R,R]

|ψ(s)(r1)− ψ(s)(r2)|
|r1 − r2|s′

,

for the Hölder norm. In the case s′ = 1, note that Cs,s′ denotes functions with Lipschitz derivatives up to
order s, so that in particular the case s = 0, s′ = 1 corresponds to domains with Lipschitz boundaries.

Remark 3.10. The condition D ⊂ [R, 1 − R]2 imposing that D remains away from the boundary ∂Ω might
be quite restrictive in some applications; instead, one can assume that the domains D and Ω are periodic, or
symmetrize D with respect to ∂Ω.

3.4.2 The failure of linear reconstruction methods

The most trivial linear reconstruction method consists in the piecewise constant approximation

ũ =
∑
T∈T

aT (u)χT . (3.12)

The approximation rate of this reconstruction over the class FR,Ms,s′ is as follows.

Proposition 3.11. Let u = χD ∈ FR,Ms,s′ , its piecewise constant approximation ũ by average values on each cell,
defined in (3.12), satisfies

‖χD − ũ‖Lq 6 Ch
1
q = Cn−

1
2q ,

where the constant C depends on R and M .

Proof. Let N = d(
√

2R)−1e, and partition the domain Ω = [0, 1]2 into N2 squares of side 1/N . Then each
subsquare Q is contained in the set {x+ x̃1e1 + x̃2e2 : |x̃1|, |x̃2| 6 R} from Definition 3.9, where x is the center
of Q. Thus ∂D is the restriction of the graph of an M -Lipschitz function on Q, so its arc length is bounded by

|∂D ∩Q| 6 diam(Q)
√

1 +M2 6 2R
√

1 +M2.

As any curve of arclength h intersects at most four cells from T , ∂D ∩Q intersects at most 4d2R
√

1 +M2/he
cells, and summing over all subsquares, ∂D intersects at most 4N2d2R

√
1 +M2/he cells. Denoting T∂D the set

of these cells, and observing that u|T ≡ aT (u) ∈ {0, 1} for T /∈ T∂D, we get

‖χD − ũ‖qLq =
∑
T∈T

ˆ
T

|u− aT (u)|q 6
∑

T∈T∂D

|T | = h2|T∂D| 6 24

√
1 +M2

R
h

for h 6 R, and this bound also holds for h > R since ‖χD − ũ‖qLq 6 1.

The next result shows, for the particular case q = 2, that no better rate can actually be achieved by any
linear method, regardless of the smoothness s of the boundary. We conjecture that a similar result holds for
1 6 q 6∞. This motivates the use of nonlinear recovery methods, which are the object of the next section.

We recall that the Kolmogorov n-width of a compact set K from some Banach space V is defined by

dn(K)V := infdim(E)6ndist(K, E)V ,

where dist(K, E)V := maxu∈Kminv∈E ‖u − v‖V and the infimum is taken over all finite dimensional spaces E
of dimension at most n.

Proposition 3.12. Let s ∈ N0 and s′ ∈ [0, 1] be arbitrary. Then for R sufficiently small, and M sufficiently
large, there exists c > 0 such that the Kolmogorov n-widths of the class FR,Ms,s′ satisfy

dn(FR,Ms,s′ )L2 > cn−
1
4 , n > 1.
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Proof. The proof of this result relies on similar lower bounds for dictionaries of d-dimensional ridge functions

Rdk := {x 7→ σk(ω · x+ b) : ‖ω‖2 = 1 : b1 6 b 6 b2}

where σk(t) := max(0, t)k is the so-called RELU-k function. Here, we work in the space L2(B) where B is an
arbitrary ball of Rd, and the constants (b1, b2) are taken as the inf and sup of ω · x as x ∈ B and ‖ω‖2 = 1,
respectively, that is we take all b such that the line discontinuity of the k-th derivative of σk(ω · x+ b) crosses
the ball B. Theorem 9 from [162], which improves on earlier results from [126], shows that if

B1(Rdk) :=
{ n∑
j=1

ajgj : n ∈ N : gj ∈ Rdk :

n∑
j=1

|aj | 6 1
}

denotes the symmetrized convex hull of this dictionary (the closure being taken in L2(B)), then

dn(B1(Rdk))L2(B) > cn
− 2k+1

2d , n > 1,

where c depends on k, d, and the diameter of B.
In our case of interest we work with the value d = 2 and k = 0, so that the ridge functions are simply the

characteristic functions of half-planes. By convexity, we have

dn(R2
0))L2(B) = dn(B1(R2

0))L2(B) > cn
− 1

4 .

We take for B the ball of center (1/2, 1/2) and radius 1/4, which is inside our domain Ω = [0, 1]2. It is then
readily seen that for R small enough and M large enough, we can extend any ridge function g ∈ R2

0 into a
characteristic function χD from FR,Ms,s′ , as illustrated in Figure 3.1.

B

D
Ω

Figure 3.1 – Example of extension of the indicator of a half-plane on B to the indicator of a smooth domain D
on Ω

Observing that if EΩ is a linear subspace of L2(Ω) of dimension at most n, its restriction EB to B is a linear
subspace of L2(B) of dimension at most n, and one has

dist(χD, EB)L2(B) 6 dist(χD, EΩ)L2(Ω).

By infimizing, it follows that
dn(FR,Ms,s′ )L2(Ω) > dn(R2

0)L2(B) > cn
− 1

4 ,

which concludes the proof.

Remark 3.13. The fact that we impose conditions on R and M in the above statement is natural since the
class FR,Ms,s′ becomes empty if R is not small enough or M not large enough, due to the fact that the sets D are
assumed to be contained in the interior of Ω.

Remark 3.14. The above results are easily extended to higher dimension d > 2, with a similar definition for
the class FR,Ms,s′ . The rate of approximation in Lq norm by piecewise constant functions on uniform partitions
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is then n−
1
dq , which in the case q = 2 is proved by a similar argument to be the best achievable by any linear

reconstruction method. We conjecture that the same holds for more general 1 6 q 6∞.

3.5 Shape recovery by nonlinear least-squares

3.5.1 Nonlinear reconstruction on a stencil

We now discuss a nonlinear reconstruction method for u ∈ FR,Ms,s′ , whose output ũ is the indicator of a
domain D̃ with polygonal boundary : on each cell T , the domain D̃ coincides with a certain half plane. In order
to define the delimiting line we only use the average values of u on a 3× 3 stencil of cells centered at T .

We assume that h < R, so that D does not intersect the boundary cells Ti,j with i or j in {1, L}, and fix
indices 1 < i, j < L. For the cell T = Ti,j , denote x = ((i− 1

2 )h, (j − 1
2 )h) its center, and

S = [(i− 2)h, (i+ 1)h]× [(j − 2)h, (j + 1)h] =
⋃

i−16i′6i+1, j−16j′6j+1

Ti′j′

the stencil composed of T and its 8 neighboring cells. We define the nonlinear approximation space

V2 :=
{
χ~n·(x−x)>c : ~n ∈ S1, c ∈ R

}
, (3.13)

which is a two-parameter family as each function is determined by (arg ~n, c) ∈ (−π, π] × R, where arg ~n is the
angle of ~n with respect to the horizontal axis.

Here, our measurements are the average values of u on the cells contained in S

`(u) = (aT ′(u))T ′⊂S ∈ R9.

In order to find a reconstruction of u in V2 based on these measurements, we need an inverse stability property
of the form (3.6). This is not possible here, since ` cancels on all functions χD ∈ V2 with D ∩ S = ∅. We
therefore restrict the nonlinear family V2, and consider only indicators of half-planes whose boundary passes
through the central cell T :

V2,T :=
{
χD ∈ V2 : ∂D ∩ T 6= ∅

}
=
{
χ~n·(x−x)>c : ~n ∈ S1, |c| 6 h

2
|~n|1

}
. (3.14)

In this setting, we prove the existence of the following stability constants for V = L1(S) and ‖z‖W = h2‖z‖1,
which is the best norm on Rm in view of Theorem 3.5.

Proposition 3.15. One has
‖`(u)‖W 6 αW ‖u‖L1(S), u ∈ L1(Ω), (3.15)

and
‖u− v‖L1(S) 6 µ

W
n ‖`(u− v)‖W , u, v ∈ V2,T , (3.16)

where αW = 1 and µWn = 3
2 are the optimal constants.

The proof of the stability property (3.15) is trivial since

‖`(u)‖W = h2
∑
T⊂S

∣∣∣∣ 
T

u

∣∣∣∣ =
∑
T⊂S

∣∣∣∣ˆ
T

u

∣∣∣∣ 6 ‖u‖L1(S),

with equality in case u has constant sign in S. The proof of the inverse stability (3.16) is quite technical and
left as an appendix at the end of the chapter.

Given the noisy observations
z = `(u) + η ∈ R9,
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on the stencil S, we define the estimator of u on the cell T by

ũT ∈ arg min
v∈V2

‖z − `(v)‖W . (3.17)

Here we minimize over all V2, that is on all indicators of half planes, but we note that we may restrict to
half-planes whose boundary passes through the stencil S.

The following result, which uses Proposition 3.15, shows that the distance from ũT to u in L1(T ) is compa-
rable to the error between u and its best approximation in the L1(S) norm

uS := arg min
v∈V2

‖u− v‖L1(S).

Lemma 3.16. For all u ∈ FR,Ms,s′ , one has

‖u− ũT ‖L1(T ) 6 C1‖u− uS‖L1(S) + 2βpWµ
W
n ‖η‖p,

where C1 = 1 + 2αWµ
W
n = 4 and C2 = 2βpWµ

W
n = 33−2/ph2, with αW , µ

W
n as in Proposition 3.15, and

βpW = 91−1/ph2 the maximal ratio between ‖ · ‖p and ‖ · ‖W norms in R9.

Proof. We distinguish two cases:
— If ũT ∈ V2,T and uS ∈ V2,T , that is, both boundaries pass through the central cell T , we apply Theorem 3.8

together with Proposition 3.15

‖u− ũT ‖L1(T ) 6 ‖u− ũT ‖L1(S) 6 C1 min
v∈V2,T

‖u− v‖L1(S) + C2‖η‖p

= C1‖u− uS‖L1(S) + C2‖η‖p.

with C1 = 1 + 2αWµ
W
n , C2 = 2βpWµ

W
n .

— Otherwise, either ũT or uS has constant value 0 or 1 on T , so ũT − uS has constant sign on T , and thus

‖uS − ũT ‖L1(T ) = h2|aT (ũT − uS)|
6 ‖`(ũT − uS)‖W
6 ‖`(uS)− z‖W + ‖`(ũT )− z‖W
6 2‖`(uS)− z‖W
6 2‖`(uS − u)‖W + 2‖η‖W
6 2‖u− uS‖L1(S) + 2βpW ‖η‖p.

By triangle inequality, it follows that

‖u− ũT ‖L1(T ) 6 3‖u− uS‖L1(S) + 2βpW ‖η‖p,

which has better constants than in the estimate obtained in the first case, since the constant µWn is larger than 1
and αW = 1.

The order of the best local approximation error ‖u−uS‖L1(S) that appears as a bound for the reconstruction
error ‖u− ũT ‖L1(T ) depends on the smoothness of the boundary, as expressed in the following lemma.

Lemma 3.17. For all u ∈ FR,Ms,s′ , with R > 3√
2
h, one has

‖u− uS‖L1(S) 6M(3
√

2h)min(s+s′,2)+1.

Proof. We apply the definition of FR,Ms,s′ at point x: as R > 3√
2
h, the stencil S is contained in the domain

{x+ x̃1e1 + x̃2e2 : |x̃1|, |x̃2| 6 R},
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so u|S is the indicator of a domain delimited by a Cs,s′ function ψ, with ‖ψ‖Cs,s′ 6 M . From the definition
of Cs,s′ , there exists an affine function ξ such that

|ψ(x̃1)− ξ(x̃1)| 6M(3
√

2h)min(s+s′,2), |x̃1| 6
3√
2
h.

Then the function v : x+ x̃1e1 + x̃2e2 7→ χx̃26ξ(x̃1) belongs to V2, and we have

‖u− uS‖L1(S) 6 ‖u− v‖L1(S) 6M(3
√

2h)min(s+s′,2)+1.

3.5.2 Global nonlinear reconstruction
We now consider the process of recovering u ∈ FR,Ms,s′ globally from its data

z = `(u) + η,

where now `(u) := (aT (u))T∈T ∈ Rn and η ∈ Rn is the noise vector. Applying to each inner cell T ∈ T
the previous reconstruction procedure based on the 3 × 3 stencil S centered at T , we obtain a global recovery
ũ = ũ(z) such that

ũ|T = ũT |T , T = Ti,j ∈ T , 1 < i, j < L,

where ũT is the local estimator from (3.17). On the boundary cells T = Ti,j with i or j in {1, L}, u|T is zero
by Definition 3.9 so we simply set ũ|T = 0. Note that ũ is of the form

ũ = χD̃,

where D̃ has piecewise linear boundary with respect to the mesh T . The following result gives a global approx-
imation bound, which confirms the improvement over linear methods when s+ s′ > 1.

Theorem 3.18. For all u ∈ FR,Ms,s′ , one has

‖u− ũ‖Lq(Ω) 6 C1n
−min(1,(s+s′)/2)

q + C2n
− 1
pq ‖η‖

1
q
p .

Proof. First notice that if the result is proved for p = q = 1, as u− v has values in {−1, 0, 1},

‖u− v‖qLq(Ω) = ‖u− v‖L1(Ω) 6 C1n
−s′′ + C2n

−1‖η‖1 6
(
C

1
q

1 n
− s′′q + C

1
q

2 n
− 1
pq ‖η‖

1
q
p

)q
,

where s′′ = min(1, (s+ s′)/2), so it suffices treat the case p = q = 1.
By an argument similar to the proof of Proposition 3.11, ∂D intersects at most 16N2d2R

√
1 +M2/he stencils

of 9 cells. Using the fact that u = uS is a constant on any other stencil, we get

‖u− ũ‖L1(Ω) =
∑

T inner cell

‖u− ũ‖L1(T ) 6
∑

T inner cell

(1 + 2αWµ
W
n )‖u− u‖L1(S) + 2βpWµ

W
n ‖η‖`1(S)

6 16N2

⌈
2R
√

1 +M2

h

⌉
M(3
√

2h)2s′′+1 + 18βpWµ
W
n ‖η‖1 6 C1h

2s′′ + C2h
2‖η‖1.

We conclude by recalling that n = h−2.

Remark 3.19. Here the convergence rate for the noiseless term n−min(1/q,(s+s′)/2q) is limited due to the use of
polygonal domains in the reconstruction. So the best approximation rate h2/q = n−1/q is already attained for
C2 boundaries. When the smoothness parameter s+ s′ is larger than 2, better rates n−

s+s′
2q should be reachable
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if we use non-linear approximation spaces that are richer than the space V2, for example indicator functions of
domains with boundary that have a higher order polynomial description rather than straight lines. Of course,
the stable identification of these approximants in the sense of (3.6) might require stencils that are of larger size
than 3× 3.

Remark 3.20. If ‖η‖∞ 6 1
9 , then ũ is exactly equal to u on any cell whose corresponding stencil does not

intersect ∂D, so the error is concentrated on O(
√
n) cells, leading to an improved rate n−

p+1
2pq instead of n−

1
pq

for the noise term.

3.5.3 Numerical illustration
We study the behavior of the above discussed linear and non-linear recovery methods from cell averages for

the particular target function u = χD, with D a slightly decentered disk of radius r = 0.325.
The linear method consists of the piecewise constant approximation (3.12), referred to as PiecewiseConstant.

As to the nonlinear method, for the local best fit problem, we use the `2 norm on R9 instead of the `1 norm.
By norm equivalence on R9, the same convergence results can be proved to hold with different constants. This
method, which we refer to as LinearInterface, does not ensure consistency of the reconstruction in the sense
that aT (ũ) = aT (u). One way to approach this consistency property is to modify the `2 norm by putting a large
weight on the central cell. We refer to this variant as LinearInterfaceCC, here taking the weight 100.

Figure 3.2 – Convergence curves and rates for the linear and nonlinear recovery methods

Figure 3.2 shows the convergence rates of the three methods in the L1 norm. The expected h2 decay is
observed in both non-linear methods while the linear method lays behind with a decay rate of h. It is relevant
to note that although both non-linear methods benefit from the same rate, the associated constants differ by
an order of magnitude, showing the practical improvement gained by imposing consistency. This improvement
is also visible on Figure 3.3 which shows that in the LinearInterface method, the interfaces that minimize the
`2 error on the 9 surrounding cells lay always inside the circle as the curvature of the boundary pushes them
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(a) (b)

(c) (d)

Figure 3.3 – (a) The target function, (b) its recovery by PiecewiseConstant showing the cell-average data, and
the recovered boundaries by (c) LinearInterface and (d) LinearInterfaceCC methods.
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inwards. On the contrary, LinearInterfaceCC seems to find the right compromise between sticking to the cell
average while capturing at the same time the curvature trend hinted by the surrounding cell averages.

3.6 Relation to compressed sensing

3.6.1 Compressed sensing and best n-term approximation
In this section we discuss the application of our setting to the sparse recovery of large vectors from a few

linear observations. We thus take
V = RN ,

equipped with some given norm ‖ · ‖V of interest. The linear measurements of u = (u1, . . . , uN )> ∈ RN are
given by

(`1(u), . . . , `m(u))> = Φu,

where Φ is an m×N measurement matrix, with typically m� N .
The topic of compressed sensing deals with sparse recovery of u from such measurements, that is, searching

to recover an accurate approximation to u by a vector with only a few non-zero components. We refer to [42,
43] for some first highly celebrated breakthrough results and to [72] for a general treatment.

Remark 3.21. In the case of function recovery, sparse polynomial approximations have been investigated in
[155, 156]. It recently turned out [100] that even in the context of approximation in L2, nonlinear methods
based on `1 minimization can achieve better rates of convergence than least-squares or any linear method, for
certain classes of Sobolev functions. We also refer to [62] for sparse recovery results in the same vein.

We define the nonlinear space of n-sparse vectors as

Vn :=
{
u ∈ RN : ‖u‖0 := #{i : ui 6= 0} 6 n

}
,

and the best n-term approximation error in the V norm as

en(u)V := min
v∈Vn

‖u− v‖V .

One natural question is to understand for which type of measurement matrices Φ does the noise-free measurement
z = Φu contain enough information, in order to recover any u up to an error en(u)V . In other words, one asks
if there exists a recovery map R : Rm → RN such that one has the instance optimality property at order n

‖u−R(Φu)‖V 6 C0en(u)V , u ∈ RN , (3.18)

with C0 a fixed constant, which we denote by IOP (n,C0). This question has been answered in [52] in terms
of the null space N := {v ∈ RN : Φv = 0}. We say that Φ satisfies the null space property at order k with
constant C1, denoted by NSP (k,C1) if and only if

‖v‖V 6 C1ek(v)V , v ∈ N . (3.19)

This property quantifies how much vectors from the null space can be concentrated on a few coordinates. One
main result of [52] is the equivalence between IOP at order n and NSP at order 2n in the following sense.

Theorem 3.22. One has IOP (n,C0)⇒ NSP (2n,C0) and conversely NSP (2n,C1)⇒ IOP (n, 2C1).

One natural question is whether matrices Φ with such properties can be constructed with a number of
rows/measurements m barely larger than n. As we recall further the answer to this question is strongly tied to
the norm V used on RN .

3.6.2 Stability and the null space property
The nonlinear estimation results that we have obtained in Section 3.2 and Section 3.3 can be applied to

the setting of sparse recovery, offering us a different vehicle than the null space property to establish instance
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optimality.
In the present setting, for a given norm ‖ · ‖Z , the stability property (3.5) takes the form

‖Φu‖Z 6 αZ‖u‖V , u ∈ RN (3.20)

and the inverse stability property (3.6) takes the form

‖v‖V 6 µZn‖Φv‖Z , v ∈ V2n, (3.21)

since for sparse vectors we have V diff
n = Vn − Vn = V2n. We refer to these properties as S(αZ) and IS(2n, µZn ),

respectively.
Application of Theorem 3.3 in the noiseless case immediately gives us that the nonlinear best fit recovery

R(Φu) = ũ satisfies the instance optimality bound (3.18) with constant C0 = 1 + 2αZµ
Z
n . In other words

S(αZ) and IS(2n, µZn )⇒ IOP (n,C0), C0 = 1 + 2αZµ
Z
n . (3.22)

The following result shows that (S, IS) is actually equivalent to NSP , and thus to IOS, in the sense that a
converse result holds when ‖ · ‖Z is chosen to be the Riesz norm (3.9).

Theorem 3.23. For any norm ‖ · ‖Z , one has

S(αZ) and IS(2n, µZn )⇒ NSP (2n,C1), C1 = 1 + αZµ
Z
n . (3.23)

Conversely, let ‖ · ‖W be the Riesz norm so that ‖Φu‖W = minΦv=Φu ‖v‖V , then

NSP (2n,C1)⇒ S(αW ) and IS(2n, µWn ), αW = 1 and µWn = 1 + C1. (3.24)

Proof. Assume that S(αZ) and IS(2n, µZn ) hold. Let v ∈ N and ṽ its best approximation in V2n, then

‖v‖V 6 ‖v − ṽ‖V + ‖ṽ‖V
6 e2n(v)V + µZn‖Φṽ‖W
= e2n(v)V + µZn‖Φ(v − ṽ)‖W 6 (1 + αZµ

Z
n )e2n(x)V .

This shows that NSP (2n,C1) holds with C1 = 1 + αZµ
Z
n .

Conversely, assume that NSP (2n,C1) holds. From the definition of the Riesz norm, it is immediate that
S(αW ) holds with αW = 1. For v ∈ V2n, let ṽ be the minimizer of minΦṽ=Φv ‖ṽ‖V . Then, one has

‖v‖V 6 ‖ṽ‖V + ‖v − ṽ‖V 6 ‖ṽ‖V + C1σ2n(v − ṽ)V 6 (1 + C1)‖ṽ‖V ,

by using v as a sparse approximation to v − ṽ. Since ‖ṽ‖V = ‖Φv‖W , this shows that S(2n, µWn ) holds with
µWn = 1 + C1.

3.6.3 The case of `p norms

The range of m allowing the properties to be fulfilled is best understood in the case of the `p norms, that is
‖ · ‖V = ‖ · ‖p, as discussed in [52] which points out a striking difference between the cases p = 2 and p = 1:

1. In the case p = 2, it is proved that NSP (2, C1) cannot hold unless N 6 C2
1m. In other words, instance

optimality in `2 even at order n = 1 requires a number of measurements that is proportional to the full
space dimension.

2. In the more favorable case p = 1, it is proved that for matrices which satisfy the `2-RIP property of
order 3n

(1− δ)‖v‖22 6 ‖Φv‖22 6 (1 + δ)‖v‖22, v ∈ V3n,

with parameter 0 < δ < (
√

2−1)2

3 , the NSP (2n,C1) holds with C1 depending on δ. Such matrices are
known to exists with m ∼ n log(N/n) rows.
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Our setting based on the stability properties S and IS applies more naturally to a different class of matrices
built from graphs, which is also known to be well adapted for sparse recovery in the `1 norm. A bipartite graph
with (N,m) left and right vertices, and of left degree d, is an (l, ε)-graph expander if

|X| 6 l⇒ |N(X)| > d(1− ε)|X|, X ⊂ {1, . . . , N},

where N(X) ⊂ {1, . . . ,m} is the set of vertices connected to X. We necessarily have |N(X)| 6 d|X|, and
(1− ε)dl > m. From [44], it is known that there exists a (2n, 1

2 )-graph expander with d ∼ log N
n and m ∼ nd ∼

n log(N/n).
Now denote Φ ∈ {0, 1}m×N the adjacency matrix of this graph, so that each column of Φ has d nonzero

entries. Then
‖Φx‖1 6 d‖x‖1, x ∈ RN ,

and
‖Φx‖1 > d(1− ε)‖x‖1, x ∈ V2n.

Therefore S(α1) and IS(2n, µ1), hold with α1 = d and µ1
n = 1

d(1−ε) = 2
d , which by (3.23) and (3.22) gives

NSP (2n,C1) with C1 = 3 and IOP (n,C0) with C0 = 5.

3.7 Appendix: Proof of Proposition 3.15
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c
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d

e

6 7 8 9 10

f

11 12 13 14 15

Figure 3.4 – Structure of the proof, each leaf corresponds to a different case, and each node contains a general
treatment valid for all its sons

The proof contains 15 cases, represented on a tree in Figure 3.4. These cases correspond to different geomet-
ric situations, up to certain symmetries that leave the final relevant quantities ‖`(w)‖W and ‖w‖L1(S) unchanged.

Node a: Take w = u − v ∈ V diff
2,T , with u, v ∈ V2,T , and denote ~nu, ~nv and cu, cv the corresponding unit

vectors and offsets from the definition 3.14 of V2,T . Recalling that x = (x1, x2) is the center of S, we also denote

∆u = {x ∈ R2, (x− x) · ~nu = cu}

the delimiting line between {u = 0} and {u = 1}, and define ∆v in a similar way.

Case 1: If ~nu = ~nv = ~n, we have

w =

{
χcu6~n·(x−x)<cv if cu 6 cv
−χcv6~n·(x−x)<cu otherwise

so w has constant sign, which implies ‖w‖L1(S) = h2‖`(w)‖1 = ‖`(w)‖W .
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cu

~nu

x

∆u

cu

|cv|

~nu = ~nv

∆u

∆v

Figure 3.5 – Left: 3× 3 stencil S, with x its center, and an example of function u ∈ V2,T with directing vector
~nu and offset cu > 0. Here the dotted line corresponds to ∆u, and the shaded region to u = 1, while u = 0
elsewhere. Right: Representation of Case 1 (~nu = ~nv), here cv < 0 < cu so w = −1 on the shaded region and
w = 0 elsewhere

Node b: In all other cases, the cones

C+ = {x ∈ R2 : w(x) = 1} and C− = {x ∈ R2 : w(x) = −1}

are non-empty, and we can define the external bisector

∆ = {x ∈ R2 : (~nu − ~nv) · (x− x) = cu − cv},

which is the line of symmetry between C+ and C−. We also denote

C = C+ ∪ C− = {x ∈ R2 : |w(x)| = 1}.

Observing that
‖w‖L1(S) = |S ∩ C| (3.25)

and
‖`(w)‖W =

∑
T⊂S

∣∣∣|T ∩ C+| − |T ∩ C−|∣∣∣, (3.26)

the stability property (3.16) can be rewritten as

|S ∩ C| 6 3

2

∑
T⊂S

∣∣∣|T ∩ C+| − |T ∩ C−|∣∣∣ =
3

2

(
|S ∩ C| − 2

∑
T⊂S

min(|T ∩ C+|, |T ∩ C−|)

)
,

or equivalently
|S ∩ C| > 6

∑
T⊂S

min(|T ∩ C+|, |T ∩ C−|). (3.27)

Up to a rotation of S by a multiple of π2 , we may assume without loss of generality that

arg(~nu − ~nv) ∈
[
π

4
,

3π

4

]
,

that is, ∆ is at an angle of at most π
4 with the horizontal axis, and C+ lies above ∆. Take (~e1, ~e2) the canonical

basis of R2.

Node c: Consider the situation where (~nu · ~e2)(~nv · ~e2) > 0. As ~nu 6= ~nv and ~nu 6= −~nv, the lines ∆u

and ∆v intersect at one point X ∈ R2. Moreover, the above condition implies X + ~e2 /∈ C. Using the fact that



68 CHAPTER 3. Nonlinear approximation spaces for inverse problems

| arg(∆)| 6 π
4 , we also get X + ~e1 /∈ C.

Up to a symmetry with respect to the vertical axis, we can assume that C+ is included in the quadrant
X + R2

+. Now consider a cell T ⊂ S such that min(|T ∩ C+|, |T ∩ C−|) 6= 0, then there exist points x ∈ T ∩ C−
and y ∈ T ∩ C+. As x1 6 X1 6 y1 and x2 6 X2 6 y2, we get X ∈ T , so there is at most one such cell T , and
inequality (3.27) reduces to

|S ∩ C| > 6 min(|T ∩ C+|, |T ∩ C−|).

X

C+∆u

∆v

X

C−

C+

X

C−

C+

z
l

T

T

∆

Figure 3.6 – Cases 2, 3, 4, and 5

Case 2: If X /∈ S, then w has constant sign on S, so ‖w‖L1(S) = ‖`(w)‖W .

Case 3: If X is in the central cell T , the dilation of T with respect to X by a factor 2 is a subset of S,
and the image of C ∩ T is in C ∩ S, so

|S ∩ C| > 4|T ∩ C| > 8 min(|T ∩ C+|, |T ∩ C−|).

Case 4: If X is in the lower left cell T , the dilation of T ∩ C+ with respect to X by a factor 3 is in S ∩ C+, so

|S ∩ C| > |S ∩ C+| > 9|T ∩ C+| > 9 min(|T ∩ C+|, |T ∩ C−|).

The same argument holds with C− instead of C+ when X is in the upper right cell. Moreover, as ∆u and ∆v go
through the central cell, X may not be in the upper left or lower right cells.

Case 5: If X is in the lower central cell T , denote l = |∂T ∩C+| ∈ (0, h) the distance between ∆u and ∆v when
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they pass from T to the central cell T , and z = dist(X,T ) ∈ (0, h) the depth of the point of intersection. Then

|T ∩ C+| =
zl

2
and |T ∩ C−| 6

zl

2

(
h− z
z

)2

,

so min(|T ∩ C+|, |T ∩ C−|) 6 hl
4 . On the other hand, the parallelogram of base ∂T ∩ C+, of height h, and with

sides orthogonal to ∆ belongs to (S \ T ) ∩ C+ (it does not escape to the right of S because ∆ is close to the
horizontal axis, so the sides of the parallelogram are at an angle at most π

4 with the vertical axis), and has an
area hl, which proves that

|C ∩ S| > hl + |C+ ∩ T |+ |C− ∩ T | > 6 min(|T ∩ C+|, |T ∩ C−|).

A similar construction can be applied to the remaining cases where X is in the upper central, central left or
central right cell, which concludes the proof for Node c.

Node d: If now (~nu · ~e2)(~nv · ~e2) 6 0, as arg(~nu − ~nv) ∈
[
π
4 ,

3π
4

]
, we get ~nu · ~e2 > 0 > ~nv · ~e2. Observe

that C+ + ~e2 ⊂ C+ since for all x ∈ C+,

(x+ ~e2 − x) · ~nu > (x− x) · ~nu > cu and (x+ ~e2 − x) · ~nv 6 (x− x) · ~nv < cv.

In the same way, C− − ~e2 ⊂ C−. We now divide S into columns separated by the vertical boundaries between
cells, and in addition by vertical lines where ∆ intersects the two horizontal lines separating cells of S, as
illustrated in Figure 3.7.

∆

C+

C−

~nv

~nu~nu − ~nv

Figure 3.7 – Generic situation for Node d, and partition of S into 5 columns: here, in addition to the 4 vertical
lines delimiting the cells of S, we added 2 vertical lines passing through the intersections of ∆ with the 2
horizontal cell delimiters

Let U be such a column, and T a cell intersecting U . If T ∩ U 6= T , ∆ intersects either the upper or lower
boundary of T , but not both since ∆ is at an angle of at most π

4 with the horizontal axis. If it is the upper
boundary, the symmetric of the part of T ∩U above ∆ with respect to ∆ is in T ∩U . If it is the lower boundary,
the symmetric of the part of T ∩ U below ∆ with respect to ∆ is in T ∩ U . Using the fact that C+ and C− are
symmetric with respect to ∆, we obtain

min(|T ∩ C+|, |T ∩ C−|) = min(|T ∩ U ∩ C+|, |T ∩ U ∩ C−|) + min(|T ∩ U c ∩ C+|, |T ∩ U c ∩ C−|).

Thanks to this observation, instead of (3.27) we only have to prove the inequality

|U ∩ C| > 6
∑
T⊂U

min(|T ∩ U ∩ C+|, |T ∩ U ∩ C−|) (3.28)
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on each column U separately. We thus consider only one column U in the sequel, and assume up to a horizontal
dilation (which preserves the condition | arg(∆)| 6 π

4 ) that U has width h and is composed of three full cells.
According to the definition of the columns, there is at most one cell T ⊂ U such that T ∩∆ 6= ∅, and as ∆

separates C+ and C−, it is only for this cell that we may have min(|T ∩ C+|, |T ∩ C−|) 6= 0. If there is no such
cell, (3.28) trivially holds. Otherwise, similar to Node c, we only need to prove

|U ∩ C| > 6 min(|T ∩ C+|, |T ∩ C−|),

where T ⊂ U is the cell containing ∆∩U . Denoting P1, P2, P3 and P4 the upper left, upper right, lower left and
lower right corner points of T , we observe that the assumptions on ∆ and U imply P1, P2 /∈ C̊− and P3, P4 /∈ C̊+.

Node e: If U ∩ ∆u ∩ ∆v = ∅, that is, if U contains no intersection point between ∆u and ∆v, we match
5 cases depending on the position of T in U , and of its corners with respect to C. They are illustrated in Figure
3.8.

P1 P2

P3 P4

R

P1 P2

P3 P4 R

R+

R−

Figure 3.8 – Cases 6, 7, 8, 9 and 10

Case 6: If T is the bottom cell and P1, P2 ∈ C+, then the two other cells are included in C+, so

|U ∩ C| > 2h2 + |T ∩ C| > 3|T ∩ C| > 6 min(|T ∩ C+|, |T ∩ C−|).

Case 7: If T is the bottom cell and P1 ∈ C+ but P2 /∈ C+, T ∩ C+ is a triangle of width and height at most h,
so there is a rectangle R ⊂ (U \ T ) ∩ C+ of same width and twice as high, and thus

|U ∩ C| > |R|+ |T ∩ C| = 4|T ∩ C+|+ |T ∩ C| > 6 min(|T ∩ C+|, |T ∩ C−|).

The same argument holds when P2 ∈ C+ but P1 /∈ C+, and we necessarily have P1 or P2 in C+ since
T ∩ C+ 6= ∅. If T is the top cell, applying a symmetry with respect to the horizontal axis and exchanging C+
with C− brings us back to Cases 6 and 7.

Case 8: If T is the central cell, P1, P2 ∈ C+ and P3, P4 ∈ C− the two other cells are included in C+ and
C−, and we conclude as in Case 6.

Case 9: If T is the central cell, P1, P2 ∈ C+, P3 ∈ C− but P4 /∈ C−, the top cell is included in C+, and
there is a rectangle R ⊂ C− of same width and height as T ∩ C− in the bottom cell, so

|U ∩ C| > h2 + |T ∩ C|+ |R| > 2|T ∩ C|+ 2|T ∩ C−| > 6 min(|T ∩ C+|, |T ∩ C−|).

The same situation occurs when only three points among P1, . . . , P4 are in C.

Case 10: If T is the central cell, only one vertex among P1, P2 is in C+, and only one among P3, P4 is
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in C−, both T ∩C+ and T ∩C− are triangles, and there exist rectangles R+ and R− of same widths and heights,
so

|U ∩ C| > |R+|+ |T ∩ C|+ |R−| > 3|T ∩ C+|+ 3|T ∩ C−| > 6 min(|T ∩ C+|, |T ∩ C−|).

As C+ and C− each contain at least one corner of T , we treated all cases for Node e.

Node f: Finally, we consider the situation where there is an intersection point X ∈ ∆u ∩ ∆v in U , and
therefore in T . We again match 5 cases, illustrated in Figure 3.9, depending on the position of T in U , and of
its corners with respect to C.

R

X

H

P1 P2

P3 P4

R

Y

ZP3

φ

ψ
l z

Figure 3.9 – Cases 11, 12, 13, 14 and 15

Case 11: If T is the bottom cell, as ∆u and ∆v pass through the central cell of S, U is included in the central
column of S, and no corner of T can be in C̊+, since otherwise ∆ would have to pass through that corner,
according to the definition of the columns. As a consequence, ∆u and ∆v necessarily pass through the central
cell of U , so T ∩ C+ is a triangle, and we proceed as in Case 7. The same happens if T is the top cell, so in the
rest of the proof we only consider situations where T is the central cell.

Case 12: If the horizontal line H passing through X does not intersect C at any other point, C+ is en-
tirely above H and C− entirely below. Denoting z = X2 − x2 + h

2 ∈ (0, h), the vertical dilation with respect to
H by a factor 2h−z

h−z sends T ∩ C+ in U ∩ C+, and the vertical dilation with respect to H by a factor h+z
z sends

T ∩ C− in U ∩ C−, so

|U ∩ C| > 2h− z
h− z

|T ∩ C+|+
h+ z

z
|T ∩ C−| > 6 min(|T ∩ C+|, |T ∩ C−|)

because 2h−z
h−z + h+z

z = 2 + h2

z(h−z) > 6 for z ∈ (0, h).
In the remaining cases, up to a symmetry with respect to the vertical axis, we can assume that X+R2

+ ⊂ C+
and X + R2

− ⊂ C−, and in particular P2 ∈ C+ and P3 ∈ C−.

Case 13: If P1 ∈ C+ and P4 ∈ C−, the situation is similar to Case 8.

Case 14: If P1 ∈ C+ and P4 /∈ C−, the top cell is included in C+, and one of the lines ∆u or ∆v inter-
sects the line segments [P1, P3] and [P3, P4] at points Y and Z. Then the triangle Y P3Z is included in T and
contains T ∩ C−, so there is a rectangle R of same width and height in (U \ T ) ∩ C−. In the end

|U ∩ C| > h2 + |T ∩ C|+ |R| > 2|T ∩ C|+ 2|T ∩ C−| > 6 min(|T ∩ C+|, |T ∩ C−|).

The same approach treats the symmetric case P1 /∈ C+ and P4 ∈ C−,

Case 15: Finally, if P1 /∈ C+ and P4 /∈ C−, denote l = X1 − x1 + h
2 ∈ (0, h), z = X2 − x2 + h

2 ∈ (0, h),
φ ∈ (0, π4 ) the angle between the vertical axis and the line among ∆u and ∆v that intersects [P1, P2], and
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ψ ∈ (0, π4 ) the angle between the line among ∆u and ∆v that intersects [P1, P3] and the horizontal axis. As
| arg(∆)| 6 π

4 , φ > ψ so tan(ψ) 6 tan(φ) =: t 6 1.
We can now compute

|T ∩ C+| = (h− l)(h− z) +
1

2
(h− l)2 tanψ +

1

2
(h− z)2 tanφ,

|T ∩ C−| = lz +
1

2
l2 tanψ +

1

2
z2 tanφ,

and
|(U \ T ) ∩ C| > (h− l)h+ (h− z)th+ lh+ zth = (1 + t)h2.

If l + z 6 h, we get

|(U \ T ) ∩ C| > (1 + t)(l + z)2 − (1− t)(l − z)2 = 4lz + 2t(l2 + z2) > 4|T ∩ C−|.

Similarly, l + z > h implies |(U \ T ) ∩ C| > 4|T ∩ C+|. In any case, we found

|U ∩ C| = |T ∩ C|+ |(U \ T ) ∩ C| > 6 min(|T ∩ C+|, |T ∩ C−|),

which concludes the proof.
As a last remark, note that the constants αW = 1 and µWn = 3

2 in Proposition 3.15 are sharp, since equality
is attained by functions of constant sign on each cell for αW , and by w = u− v with arg(~nu) ∈ π

4Z, cu = 0 and
v = u− 1 for µWn .



Part II

Approximation from point values





Chapter 4

Optimal sampling and Christoffel
functions on general domains

Abstract. We consider the problem of reconstructing an unknown function u ∈ L2(Ω, µ) from its evaluations
at given sampling points x1, . . . , xm ∈ Ω, where Ω ⊂ Rd is a general domain and µ a probability measure. The
approximation is picked from a linear space Vn of interest where n = dim(Vn). Recent results [59, 86, 138] have
revealed that certain weighted least-squares methods achieve near best (or instance optimal) approximation
with a sampling budget m that is proportional to n, up to a logarithmic factor ln(2n/ε), where ε > 0 is a
probability of failure. The sampling points should be picked at random according to a well-chosen probability
measure σ whose density is given by the inverse Christoffel function that depends both on Vn and µ. While this
approach is greatly facilitated when Ω and µ have tensor product structure, it becomes problematic for domains
Ω with arbitrary geometry since the optimal measure depends on an orthonormal basis of Vn in L2(Ω, µ) which
is not explicitly given, even for simple polynomial spaces. Therefore sampling according to this measure is
not practically feasible. One computational solution recently proposed in [6] relies on using the restrictions
of an orthonormal basis of Vn defined on a simpler bounding domain and sampling according to the original
probability measure µ, in turn giving up on the optimal sampling budget m ∼ n. In this chapter, we discuss
practical sampling strategies, which amount to using a perturbed measure σ̃ that can be computed in an
offline stage, not involving the measurement of u, as recently proposed in [5, 133]. We show that near best
approximation is attained by the resulting weighted least-squares method at near-optimal sampling budget, and
we discuss multilevel approaches that preserve optimality of the cumulated sampling budget when the spaces
Vn are iteratively enriched. These strategies rely on the knowledge of a-priori upper bounds B(n) on the inverse
Christoffel function for the space Vn and the domain Ω. We establish bounds of the form O(nr) for spaces
Vn of multivariate algebraic polynomials of given total degree, and for general domains Ω. The exact growth
rate r is established depending on the regularity of the domain, in particular r = 1 for domains with Lipschitz
boundaries and r = 1/d for smooth domains.

4.1 Introduction

4.1.1 Reconstruction from point samples

The process of reconstructing an unknown function u defined on a domain Ω ⊂ Rd from its sampled values
zi ≈ u(xi) at a set of points x1, . . . , xm ∈ Ω is ubiquitous in data science and engineering. The sampled values
may be affected by noise, making critical the stability properties of the reconstruction process. Let us mention
three very different settings for such reconstruction problems, that correspond to different areas of applications:

(i) Statistical learning and regression: we observe m independent realizations (xi, zi) of a random variable
(x, z) distributed according to an unknown measure, where x ∈ Ω and z ∈ R, and we want to recover a
function x 7→ v(x) that makes |z− v(x)| as small as possible in some given sense. If we use the quadratic

75
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loss E(|z − v(x)|2), the minimizer is given by the regression function

u(x) = E(z|x).

and the observed zi may be thought of as the observation of u(xi) affected by noise.
(ii) State estimation from measurements: the function u represents the distribution of a physical quantity

(temperature, quantity of a contaminant, acoustic pressure) in a given spatial domain Ω that one is
allowed to measure by sensors placed at m locations x1, . . . , xm. These measurements can be affected by
noise reflecting the lack of accuracy of the sensors.

(iii) Design of physical/computer experiments: u is a quantity of interest that depends on the solution f to
a parametrized physical problem. For example, f = f(x) could be the solution to a PDE that depends
on a vector x ∈ Ω ⊂ Rd of d physical parameters, and u could be the result of a linear form ` applied
to f , that is, u(x) = `(f(x)). We use a numerical solver for this PDE as a black box to evaluate f ,
and therefore u, at m chosen parameter vectors x1, . . . , xm ∈ Ω, and we now want to approximate u on
the whole domain Ω from these computed values zi. Here, the discretization error of the solver may be
considered as a noise affecting the true value u(xi).

Contrary to statistical learning, in the last two applications (ii) and (iii) the positions of the sample points
xi are not realizations of an unknown probability distribution. They can be selected by the user, which brings
out the problem of choosing them in the best possible way. Indeed, measuring u at the sample points may
be costly: in (ii) we need a new sensor for each new point, and in (iii) a new physical experiment or run of
a numerical solver. Moreover, in certain applications, one may be interested in reconstructing many different
instances of functions u. Understanding how to sample in order to achieve the best possible trade-off between
the sampling budget and the reconstruction performance is one main motivation of this work. We first make
our objective more precise by introducing some benchmarks for the performance of the reconstruction process
and sampling budget.

4.1.2 Optimality benchmarks
We are interested in controlling the distance ‖u− ũ‖V between u and its reconstruction ũ = ũ(z1, . . . , zm),

measured in some given norm ‖ · ‖V , where V is a Banach function space that contains u.
For a given numerical method, the derivation of an error bound is always tied to some prior information

on u. One most common way to express such a prior is in terms of membership of u to a restricted class of
functions, for example a smoothness class. One alternate way is to express the prior in terms of approximability
of u by particular finite dimensional spaces. It is well-known that the two priors are sometimes equivalent: many
classical smoothness classes can be characterized in terms of approximability in some given norm by classical
approximation spaces such as algebraic or trigonometric polynomials, splines or wavelets [64].

In this chapter, we adopt the second point of view, describing u by its closeness to a given subspace Vn ⊂ V
of dimension n: defining the best approximation error

en(u)V := min
v∈Vn

‖u− v‖V ,

our prior is that en(u)V 6 εn for some εn > 0. One of our motivations is the rapidly expanding field of reduced
order modeling in which one searches for approximation spaces Vn which are optimally designed to approximate
families of solutions to parametrized PDEs. Such spaces differ significantly from the above-mentioned classical
examples. For example in the reduced basis method, they are generated by particular instances of solutions to
the PDE for well chosen parameter values. We refer to [56] for a survey on such reduced modeling techniques
and their approximation capability.

In this context, one first natural objective is to build a reconstruction map

(z1, . . . , zm) 7→ ũ ∈ Vn,

that performs almost as good as the best approximation error. We say that a reconstruction map taking its
value in Vn is instance optimal with constant C0 > 1 if and only if

‖u− ũ‖V 6 C0 en(u)V , (4.1)
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for any u ∈ V .
Obviously, instance optimality implies that if u ∈ Vn, the reconstruction map should return an exact

reconstruction ũ = u. For this reason, instance optimality can only be hoped for if the sampling budget
m exceeds the dimension n. This leads us to introduce a second notion of optimality: we say that the sample
is budget optimal with constant C1 > 1 if

m 6 C1 n. (4.2)

Let us stress that in many relevant settings, we do not work with a single space Vn but a sequence of nested
spaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . .

so that en(u)V decreases as n grows. Such a hierarchy could either be fixed in advance (for example when
using polynomials of degree n), or adaptively chosen as we collect more samples (for example when using locally
refined piecewise polynomials or finite element spaces). Ideally, we may ask that the constants C0 and C1 are
independent of n. As it will be seen, a more accessible goal is that only one of the two constants is independent
of n, while the other grows at most logarithmically in n.

Another way of relaxing instance optimality is to request the weaker property of rate optimality, which
requires that for any s > 0 and u ∈ V ,

sup
n>1

ns ‖u− ũ‖V 6 C sup
n>1

ns en(u)V ,

where C > 1 is a fixed constant. In other words, the approximant produced by the reconstruction method
should converge at the same polynomial rate as the best approximation.

In the context where the spaces Vn are successively refined, even if the reconstruction method is instance
and budget optimal for each value of n, the cumulated sampling budget until the n-th refinement step is in
principle of the order

m(n) ∼ 1 + 2 + · · ·+ n ∼ n2,

if samples are picked independently at each step. A natural question is whether the samples used until stage
k can be, at least partially, recycled for the computation of ũk+1, in such a way that the cumulated sampling
budget m(n) remains of the optimal order O(n). This property will be ensured for example if for each n,
the samples are picked at points {x1, . . . , xm(n)} that are the sections of a unique infinite sequence {xm}m>1,
with m(n) ∼ n, which means that all previous samples are recycled. We refer to this property as hierarchical
sampling. It is also referred to as online machine learning in the particular above-mentioned application area (i).

4.1.3 Objectives and layout

The design of sampling and reconstruction strategies that combine budget and instance (or rate) optimality,
together with the above progressivity prescription, turns out to be a difficult task, even for very classical
approximation spaces Vn such as polynomials.

In Section 4.2, we illustrate this difficulty by first discussing the example of reconstruction by interpolation
for which the sampling budget is optimal but instance optimality with error measured in the L∞ norm generally
fails by a large amount. We then recall recent results [17, 59, 86, 138] revealing that one can get much closer
to these optimality objectives by weighted least-squares reconstruction methods. In this case, we estimate the
approximation error in V = L2(Ω, µ), where µ is an arbitrary but fixed probability measure. The sampling
points are picked at random according to a different probability measure σ∗ that depends on Vn and µ:

dσ∗(x) = kn(x) dµ(x).

Here kn is the inverse Christoffel function defined by

kn(x) =
1

n

n∑
j=1

|ϕj(x)|2, (4.3)

where (ϕ1, . . . , ϕn) is any L2(Ω, µ)-orthonormal basis of Vn. By Cauchy-Schwarz inequality, it is readily seen
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that this function is characterized by the extremality property

nkn(x) = max
v∈Vn

|v(x)|2

‖v‖2L2

, (4.4)

where ‖v‖L2 := ‖v‖V = ‖v‖L2(Ω,µ) (for notational simplicity, throughout the chapter, we ommit the obvious
restriction v 6= 0 needed when optimizing quotients with numerators and denominators that are null when
v = 0). Then, instance optimality is achieved in a probabilistic sense with a sampling budget m that is
proportional to n, up to a logarithmic factor ln(2n/ε), where ε > 0 is a probability of failure which comes as
an additional term in the instance optimality estimate

E(‖u− ũ‖2L2) 6 C0 en(u)2
L2 +O(ε).

It is important to notice that σ∗ differs from µ and that the standard least-squares method using a sample
drawn according to µ is generally not budget optimal in the sense that instance optimality requires m to be
larger than n lnn times the quantity

Kn := ‖kn‖L∞ = sup
x∈Ω
|kn(x)| = 1

n
max
v∈Vn

‖v‖2L∞
‖v‖2L2

,

which may grow with n, for instance as O(n) or worse, see [55] as well as Section 4.5.
While these results are in principle attractive since they apply to arbitrary spaces Vn, measures µ and

domains Ω, the proposed sampling strategy is highly facilitated when Ω is a tensor-product domain and µ is the
tensor-product of a simple univariate measure, so that an L2(Ω, µ)-orthonormal basis of Vn can be explicitly
provided. This is the case for example when using multivariate algebraic or trigonometric polynomial spaces
with µ being the uniform probability measure on [−1, 1]d or [−π, π]d. For a general domain Ω with arbitrary —
possibly irregular— geometry, the orthonormal basis cannot be explicitly computed, even for simple polynomial
spaces. Therefore sampling according to the optimal measure σ∗ is not feasible.

Non-tensor product domains Ω come out naturally in all the above mentioned settings (i)-(ii)-(iii). For
example, in design of physical/computer experiments, this reflects the fact that while the individual parameters
x1, . . . , xd could range in intervals I1, . . . , Id, not all values x in the rectangle R = I1 × · · · × Id are physically
admissible. Therefore, the function u is only accessible and searched for in a limited domain Ω ⊂ R. Here we
assume that the domain Ω is known to us, in the sense that membership in Ω of a point x ∈ Rd can be assessed
at low numerical cost.

One practical solution proposed in [6] consists in sampling according to the measure µ and solving the
least-squares problem using the restriction of an orthonormal basis of Vn defined on a simpler tensor product
bounding domain, which generally gives rise to a frame. This approach is feasible for example when µ is the
uniform probability measure. Due to the use of restricted bases, the resulting Gramian matrix which appears
in the normal equations is ill-conditioned or even singular, which is fixed by applying a pseudo-inverse after
thresholding the smallest singular values at some prescribed level. Budget optimality is generally lost in this
approach since one uses µ as a sampling measure.

In this chapter, we also work under the assumption that we are able to sample according to µ, but we take
a different path, which is exposed in Section 4.3. In an offline stage, we compute an approximation k̃n to the
inverse Christoffel function, which leads to a measure σ̃ that may be thought of as a perturbation of the optimal
measure σ∗. We may then use σ̃ to define the sampling points {x1, . . . , xm} and weights. In the online stage,
we perform the weighted least-squares reconstruction strategy based on the measurement of u at these points.
Our first result is that if k̃n is equivalent to kn, we recover the stability and instance optimality results from
[59] at near-optimal sampling budget m ∼ n ln(2n/ε).

One approach for computing k̃n, recently proposed in [5, 133], consists in drawing a first sample {y1, . . . , yM}
according to µ and defining k̃n as the inverse Christoffel function with respect to the discrete measure associated
to these points. In order to ensure an equivalence between kn and k̃n with high probability, the value of M
needs to be chosen larger than Kn which is unknown to us. This can be ensured by asking thatM is larger than
a known upper bound B(n) on Kn. The derivation of such bounds for general domains is one of the objectives
of this chapter. We also propose an empirical strategy for choosing M that does not require the knowledge of
an upper bound and appears to be effective in our numerical tests. In all cases, the size M of the offline sample
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could be of order substantially larger than O(n). However, this first set of points is only used in the offline stage
to perform computations that produce the perturbed measure σ̃, and not to evaluate the function u which, as
previously explained, is the costly aspect in the targeted applications and could also occur for many instances
of u. These more costly evaluations of u only take place in the online stage at the xi, therefore at near-optimal
sampling budget.

In the case where Kn, or its available bound B(n), grows very fast with n, the complexity of the offline
stage in this approach becomes itself prohibitive. In order to mitigate this defect, we introduce in Section 4.4 a
multilevel approach where the approximation k̃n of kn is produced by successive space refinements

Vn1
⊂ · · · ⊂ Vnq , nq = n,

which leads to substantial computational savings under mild assumptions. This setting also allows us to produce
nested sequences of evaluation points {x1, . . . , xmp}, where mp grows similar to np up to a logarithmic factor,
therefore complying with the previously invoked prescription of hierarchical sampling. The analysis of this
approach faces the difficulty that the xi are not anymore identically distributed, and this is solved by using
techniques first proposed in [132].

In Section 4.5 we turn to the study of the inverse Christoffel function kn in the case of algebraic polynomial
spaces of given total degree on general multivariate domains Ω ⊂ Rd. We establish pointwise and global upper
and lower bounds for kn that depend on the smoothness of the boundary of Ω. We follow an approach adopted
in [153] for a particular class of domains with piecewise smooth boundary, namely comparing Ω with simpler
reference domains for which the inverse Christoffel function can be estimated. We obtain bounds with growth
rate O(n) for Lipschitz domains and O(n1/d) for smooth domains, and these rates are proved to be sharp. We
finally give a systematic approach that also describes the sharp growth rate for domains with cusp singularities.

We close the chapter in Section 4.6 with various numerical experiments that confirm our theoretical inves-
tigations. In the particular case of multivariate algebraic polynomials, the sampling points tend to concentrate
near to the outward corner or cusp singularities of the domain, while they do not at the re-entrant singularities,
as predicted by the previous analysis of the inverse Christoffel function.

4.2 Meeting the optimality benchmarks

4.2.1 Interpolation

One most commonly used strategy to reconstruct functions from point values is interpolation. Here we
work in the space V = C(Ω) of continuous and bounded functions equipped with the L∞ norm. For the given
space Vn, and n distinct points x1, . . . , xn ∈ Ω picked in such way that the map v 7→ (v(x1), . . . , v(xn)) is
an isomorphism from Vn to Rn, we define the corresponding interpolation operator In : C(Ω) → Vn by the
interpolation condition

Inu(xi) = u(xi), i = 1, . . . , n.

The interpolation operator is also expressed as

Inu =

n∑
i=1

u(xi)ψi,

where (ψ1, . . . , ψn) is the Lagrange basis of Vn defined by the conditions ψi(xj) = δi,j . Interpolation is obviously
budget optimal since it uses m = n points, that is, C1 = 1 in (4.2). On the other hand, it does not guarantee
instance optimality: the constant C0 in (4.1) is governed by the Lebesgue constant

Λn = ‖In‖L∞→L∞ = max
x∈Ω

n∑
i=1

|ψi(x)|.

Indeed, since ‖u− Inu‖L∞ 6 ‖u− v‖L∞ + ‖Inu− Inv‖L∞ for any v ∈ Vn, one has

‖u− Inu‖L∞ 6 (1 + Λn)en(u)L∞ .
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The choice of the points xi is critical to control the growth of Λn with n. For example in the elementary case of
univariate algebraic polynomials where Ω = [−1, 1] and Vn = Rn−1[X], it is well known that uniformly spaced xi
result in Λn growing exponentially, at least like 2n, while the slow (and optimal) growth Λn ∼ ln(n) is ensured
when using the Chebychev points xi = cos

(
2i−1
2n π

)
for i = 1, . . . n. Unfortunately, there is no general guideline

to ensure such a slow growth for more general hierarchies of spaces (Vn)n>1 defined on multivariate domains
Ω ⊂ Rd. As an example, for the space of bivariate algebraic polynomials Vn = Rp[X1, X2] with n = (p+1)(p+2)

2 ,
and for a general polygonal domain Ω, a choice of points that would ensure a logarithmic growth of the Lebesgue
constant is to our knowledge an open problem.

There exists a general point selection strategy that ensures linear behaviour of the Lebesgue constant for
any space Vn spanned by n functions {φ1, . . . , φn}: it consists in choosing (x1, . . . , xn) which maximizes over
Ωn the determinant of the collocation matrix

A(x1, . . . , xn) = (φi(x
j))16i,j6n,

Since the j-th element of the Lagrange basis is given by

ψj(x) =
det(A(x1, . . . , xj−1, x, xj+1, . . . , xn))

det(A(x1, . . . , xn))
,

the maximizing property gives that ‖ψj‖L∞ 6 1 and therefore Λn 6 n. In the particular case of the univariate
polynomials where Ω = [−1, 1] and Vn = Rn−1[X], this choice corresponds to the Fekete points, which maximize
the product

∏
i 6=j(x

i − xj).
While the above strategy guarantees the O(n) behaviour of Λn, its main defect is that it is computationally

unfeasible if n or d is large, since it requires solving a non-convex optimization problem in dimension dn. In
addition to this, for a given hierarchy of spaces (Vn)n>1, the sampling points Sn = {x1, . . . , xn} generated by
this strategy do not satisfy the nestedness property Sn ⊂ Sn+1.

A natural alternate strategy that ensures nestedness consists in selecting the points by a stepwise greedy
optimization process: given Sn−1, define the next point xn by maximizing over Ω the function

x 7→ det(A(x1, . . . , xn−1, x)).

This approach was proposed in [123] in the context of reduced basis approximation and termed as magic points.
It amounts to solving at each step a non-convex optimization problem in the more moderate dimension d,
independent of n. However there exists no general bound on Λn other than exponential in n. In the univariate
polynomial case, this strategy yields the so-called Leja points for which it is only known that the Lebesgue
constant grows sub-exponentially although numerical investigation indicates that it could behave linearly. In
this very simple setting, the bound Λn 6 n2 could be established in [50], however using a variant where the
points are obtained by projections of the complex Leja points from the unit circle to the interval [−1, 1].

In summary, while interpolation uses the optimal sampling budget m = n, it fails by a large amount in
achieving instance optimality, especially when asking in addition for the nestedness of the sampling points, even
for simple polynomial spaces.

4.2.2 Weighted least-squares

In order to improve the instance optimality bound, we allow ourselves to collect more data on the function u
by increasing the number m of sample points, compared to the critical case m = n studied before, and construct
an approximation ũ by a least-squares fitting procedure. This relaxation of the problem gives more flexibility
on the choice of the sample points: for instance, placing two of them too close will only waste one evaluation
of u, whereas this situation would have caused ill-conditioning and high values of Λn in interpolation. It also
leads to more favorable results in terms of instance optimality, as we next recall.

Here, and in the rest of this chapter, we assess the error in the L2 norm

‖v‖L2 = ‖v‖L2(Ω,µ),

where µ is a fixed probability measure, which can be arbitrarily chosen by the user depending on the targeted
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application. For example, if the error has the same significance at all points of Ω, one is naturally led to use
the uniform probability measure

dµ := |Ω|−1dx.

In other applications such as uncertainty quantification where the x variable represents random parameters that
follow a more general probability law µ, the use of this specific measure is relevant since the reconstruction error
may then be interpreted as the mean-square risk

‖u− ũ‖2L2(Ω,µ) = Ex(|u(x)− ũ(x)|2).

Once the evaluations of u(xi) are performed, the weighted-least squares methods defines ũ as the solution of the
minimization problem

min
v∈Vn

1

m

m∑
i=1

w(xi) |u(xi)− v(xi)|2, (4.5)

where w(x1), . . . , w(xm) > 0 are position-dependent weights. The solution to this problem is unique under the
assumption that no function of Vn \ {0} vanishes at all the xi. Notice that in the limit m = n, the minimum in
(4.5) is zero, and it is attained by the interpolant at the points x1, . . . , xn, which as previously discussed suffers
from a severe lack of instance optimality.

The results from [59] provide with a general strategy to select the points xi and the weight function w in
order to reach instance and budget optimality, in a sense that we shall make precise. In this approach, the
points xi are drawn at random according to a probability measure σ on Ω, that generally differs from µ, but
with respect to which µ is absolutely continuous. One then takes for w the corresponding Radon-Nikodym
derivative, so that

w(x) dσ(x) = dµ(x). (4.6)

This compatibility condition ensures that we recover a minimization in the continuous norm ‖ · ‖L2 as m tends
to infinity:

1

m

m∑
i=1

w(xi) |u(xi)− v(xi)|2 a.s.−→
m→∞

ˆ
Ω

w |u− v|2 dσ =

ˆ
Ω

|u− v|2 dµ = ‖u− v‖2L2 .

Here we may work under the sole assumption that u belongs to the space V = L2(Ω, µ), because pointwise
evaluations of u and w will be almost surely well-defined. In return, since ũ is now stochastic, the L2 estimation
error will only be assessed in a probabilistic sense, for example by considering the mean-square error,

E(‖u− ũ‖2L2) = E⊗mσ(‖u− ũ‖2L2)

The weighted least-square approximation may be viewed as the orthogonal projection ũ = Pmn u onto Vn for the
discrete `2 norm

‖v‖2m :=
1

m

m∑
i=1

w(xi) |v(xi)|2, (4.7)

in the same way that the optimal approximation

Pnu := arg min
v∈Vn

‖u− v‖L2

is the orthogonal projection for the continuous L2(Ω, µ) norm. A helpful object for comparing these two norms
on Vn is the Gramian matrix

Gm := (〈ϕj , ϕk〉m)16j,k6n, (4.8)

where (ϕ1, . . . , ϕn) is any L2(Ω, µ)-orthonormal basis of Vn and 〈·, ·〉m is the inner product associated with the
discrete norm ‖ · ‖m. Indeed, for all δ > 0,

‖Gm − I‖2 6 δ ⇐⇒ (1− δ)‖v‖2L2 6 ‖v‖2m 6 (1 + δ)‖v‖2L2 , v ∈ Vn, (4.9)

where ‖A‖2 denotes the spectral norm of an n × n matrix A. As noted in [55] in the case of standard least-
squares, and in [59] for the weighted case, Gm can be seen as a mean ofm independent and identically distributed
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rank-one matrices
aia
†
i := (w(xi)ϕj(x

i)ϕk(xi))16j,k6n

satisfying E(aia
†
i ) = I, so Gm concentrates towards the identity as m grows to infinity. This concentration can

be estimated by a matrix Chernoff bound, such as Theorem 1.1 in the survey paper [176]. As observed in [59],
for the particular value δ = 1

2 , this inequality can be rewritten as follows, in our case of interest.

Lemma 4.1. For any ε > 0, under the sampling budget condition

m > γ ‖w kn‖L∞ n ln(2n/ε), (4.10)

where γ := (3/2 ln(3/2)− 1/2)
−1 ≈ 9.242, one has P(‖Gm − I‖2 6 1/2) > 1− ε.

An estimate comparing the error ‖u− ũ‖L2 with the optimum en(u)L2 can be obtained when imposing that
‖Gm − I‖2 6 1/2, as expressed in the following Lemma, which is proved in [59].

Lemma 4.2. One has

E
(
‖u− ũ‖2L2χ‖Gm−I‖261/2

)
6
(

1 + 4
n

m
‖w kn‖L∞

)
en(u)2

L2 . (4.11)

On the other hand, the estimator ũ obtained by solving (4.5) is not reliable in the event where Gm becomes
singular, which brings us to modify its definition in various ways:

1. If one is able to compute ‖Gm − I‖2, one may condition the estimator to the event ‖Gm − I‖2 6 1
2 by

defining
ũC := ũ χ‖Gm−I‖261/2, (4.12)

that is, we take ũC = 0 if ‖Gm − I‖2 > 1
2 .

2. If a uniform bound ‖u‖L∞(Ω) 6 τ is known, one may introduce a truncated estimator

ũT := Tτ ◦ ũ, (4.13)

where Tτ (y) := min{τ, |y|} sgn(y).
The main results from [59], that we slightly reformulate below, show that these estimators are instance opti-

mal in a probabilistic sense. Throughout the rest of the chapter, γ denotes the same constant as in Lemma 4.1.

Theorem 4.3. Under the sampling budget condition

m > γ ‖w kn‖L∞ n ln(2n/ε), (4.14)

the weighted least-squares estimator satisfies

E (‖u− ũ‖2L2χ‖Gm−I‖261/2) 6 (1 + η(m)) en(u)2
L2 . (4.15)

The conditionned and truncated estimators satisfy the convergence bounds

E (‖u− ũC‖2L2) 6 (1 + η(m)) en(u)2
L2 + ‖u‖2L2 ε, (4.16)

and
E (‖u− ũT ‖2L2) 6 (1 + η(m)) en(u)2

L2 + 4 τ2 ε, (4.17)

where η(m) = 4 nm‖w kn‖L∞ 6
4

γ ln(2n/ε) → 0, as n→∞ or ε→ 0.

Proof. The bound (4.15) follows directly from Lemma 4.2 and the assumption onm. In the event ‖Gm−I‖2 > 1
2 ,

of probability less than ε by Lemma 4.1, one can use the bounds

‖u− ũC‖2L2 = ‖u‖2L2 and ‖u− ũT ‖2L2 6 4τ2.

Otherwise, one has
‖u− ũC‖2L2 6 ‖u− ũ‖2L2 and ‖u− ũT ‖2L2 6 ‖u− ũ‖2L2 .
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This leads to (4.16) and (4.17).

Remark 4.4. The above result shows that the estimators ũC and ũT achieve instance optimality in expectation
up to additional error terms of order O(ε), accounting for the event {‖Gm − I‖2 > 1/2}. Note that ε only
influences the constraint on the sampling budget logarithmically. In particular, if en(u)L2 decreases like n−r for
some r > 0, these estimators are rate optimal by taking ε less than n−2r, which thus affects the constraint on
sampling budget by a factor O(ln(n)). Note however that for exponential rates of the form exp(−cnα) —that
occur for example when approximating analytic functions by polynomials— imposing ε to be of this order results
in a sampling budget m of sub-optimal order n1+α up to a logarithmic factor.

Remark 4.5. One way to achieve instance optimality in expectation without an additional error term consists
in redrawing the points {x1, . . . , xm} until one observes that ‖Gm − I‖2 6 1

2 , as proposed in [85]. We denote
by u∗ the weighted least-square estimator corresponding to this conditionned draw. In other words u∗ is the
weighted least-square estimator ũ conditionned to the event {‖Gm − I‖2 6 1

2}. Since, by Baye’s rule,

P
(
‖Gm − I‖2 6

1

2

)
E
(
‖u− ũ‖2L2

∣∣∣ ‖Gm − I‖2 6 1

2

)
= E

(
‖u− ũ‖2L2χ‖Gm−I‖26 1

2

)
,

we find that under the sampling budget (4.14), one has

E(‖u− u∗‖2L2) = E
(
‖u− ũ‖2L2

∣∣∣ ‖Gm − I‖2 6 1

2

)
6

1

1− ε
E
(
‖u− ũ‖2L2χ‖Gm−I‖26 1

2

)
,

and thus
E(‖u− u∗‖2L2) 6

1

1− ε
(1 + η(m))en(u)2

L2 . (4.18)

The sampling budget condition also ensures a probabilistic control on the number of required redraws, since the
probability that the event {‖Gm − I‖2 6 1

2} did not occur after k redraws is less than εk.

Now the natural objective is to find a weight function w that makes ‖w kn‖L∞ small in order to minimize
the sampling budget. Since

‖w kn‖L∞ >
ˆ

Ω

w kn dσ =

ˆ
Ω

kn dµ = 1,

with equality attained for the weight function

w∗ :=
1

kn
=

 n∑
j=1

|ϕj |2
−1

,

this theorem shows that the choice of sampling measure

dσ∗ =
1

w∗
dµ = kn dµ

is optimal, in the sense that the above instance optimality results are achieved with a near-optimal sampling
budget m ∼ n up to logarithmic factors.

As already explained in the introduction, when working on a general domain Ω, we face the difficulty that
the orthonormal basis (ϕ1, . . . , ϕn) cannot be exactly computed, and therefore the optimal w∗ and σ∗ are out
of reach. The next section discusses computable alternatives w̃ and σ̃ that still yield similar instance optimality
results at near-optimal sampling budget.

4.3 Near-optimal sampling strategies on general domains

4.3.1 Two steps sampling strategies

The sampling and reconstruction strategies that we discuss proceed in two steps:
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1. In an offline stage we search for an approximation to the Christoffel function kn. For this purpose,
we sample y1, . . . , yM ∈ Ω according to µ, use these sampling points to compute an orthonormal basis
(ϕ̃1, . . . , ϕ̃n) with respect to the induced discrete inner product. The approximation to the Christoffel
function is then k̃n = 1

n

∑n
j=1 |ϕ̃j |2. As we explain further, one objective is to guarantee that k̃n and kn

are pointwise equivalent. We define the sampling measure σ̃ as proportional to k̃n µ and draw the points
x1, . . . , xm according to this measure.

2. In an online stage, we evaluate u at the sampling points xi and construct an estimate ũ by the weighted
least-squares method.

In the offline stage M could be much larger than n, however it should be understood that the function u is
only evaluated in the online stage at the m point xi which will be seen to have optimal cardinality m ∼ n up
to logarithmic factors.

The two main requirements in these approaches are the data of a (non-orthogonal) basis (φ1, . . . , φn) of Vn
and the ability to sample according to measure µ. When Ω ⊂ Rd is a general multivariate domain, one typical
setting for this second assumption to be valid is the following:

— There is a set R containing Ω such that µ is the restriction of a measure µR which can easily be sampled.
— Membership of a point x to the set Ω can be efficiently tested, that is, χΩ is easily computed.

This includes for instance the uniform probability measure on domains described by general systems of algebraic
inequalities (such as polyhedrons, ellipsoids..), by including such domains Ω in a rectangle R = I1 × · · · × Id
on which sampling according to the uniform measure can be done componentwise. Then the yi are produced
by sampling according to µR and rejecting the samples that do not belong to Ω. The offline stage is described
more precisely as follows.

Algorithm 1 Offline stage of a two-step sampling strategy
1: Draw a certain amount M of points y1, . . . , yM independently according to µ

2: Define the inner product
〈u, v〉M :=

1

M

M∑
i=1

u(yi) v(yi) (4.19)

3: Construct from (φj)16j6n an orthonormal basis (ϕ̃j)16j6n of Vn with respect to ‖ · ‖M
4: Define the approximate inverse Christoffel function

k̃n(x) =
1

n

n∑
j=1

|ϕ̃j(x)|2

5: Define the normalization factor Z =
´

Ω
k̃n dµ, and the sampling measure

dσ̃ :=
1

Z
k̃n dµ

Note that the factor Z is unknown to us but its value is not needed in typical sampling strategies, such as
rejection sampling or MCMC. In contrast to kn, the function k̃n is stochastic since it depends on the drawing
of the yi. In the online stage, we sample x1, . . . , xm independently according to dσ̃. We then measure u at the
points xi, and define the estimator ũ ∈ Vn as the solution to the weighted least-squares problem

min
v∈Vn

1

m

m∑
i=1

w̃(xi) |u(xi)− v(xi)|2, (4.20)

with w̃ = Z/k̃n. This least-squares problem can be solved explicitly by computing ũ = Pmn u as the orthogonal
projection of u on Vn with respect to the inner product from (4.7)

〈u, v〉m :=
1

m

m∑
i=1

w̃(xi)u(xi) v(xi). (4.21)
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Remark 4.6. There are now two levels of stochasticity: the draw of the yi and the subsequent draw of the xi.
We sometimes use the symbols Ey and Py referring to the first draw, and Ex and Px referring to the second
draw given the first one, while E and P refer to both draws.

We keep the notations Gm and ũT from (4.8) and (4.13). In the following section, we establish instance
optimal convergence results under near optimal sample complexitym similar to (4.15) and (4.17) in Theorem 4.3.
On the other hand, we do not consider the conditioned estimator ũC any further since we do not have access
to the matrix Gm, which would require the knowledge of the functions ϕj . The derivation of a computable
estimator that satisfies a similar estimate as ũC is an open question. We also discuss the required sample
complexity M of the offline stage.

4.3.2 Convergence bounds and sample complexity

Our principle objective is to ensure the uniform framing

c1 kn(x) 6 k̃n(x) 6 c2 kn(x), x ∈ Ω, (4.22)

for some known constants 0 < c1 6 c2. Our motivation is that instance optimal convergence bounds with
near-optimal sampling budget hold under this framing, as expressed by the following result.

Theorem 4.7. Assume that (4.22) holds for some 0 < c1 6 c2. Then, under the sampling budget condition

m >
c2
c1
γ n ln(2n/ε), (4.23)

one has Px
(
‖Gm − I‖2 > 1

2

)
6 ε. In addition, one has the convergence bounds

Ex
(
‖u− ũ‖2L2χ‖Gm−I‖26 1

2

)
6 (1 + η(m)) en(u)2

L2 , (4.24)

and
Ex(‖u− ũT ‖2L2) 6 (1 + η(m)) en(u)2

L2 + 4 ε τ2, (4.25)

where η(m) = 4 c2
c1

n
m 6

4
γ ln(2n/ε) .

Proof. It is an immediate application of the results from § 4.2.2. Indeed

‖w̃ kn‖L∞ =

∥∥∥∥knZ
k̃n

∥∥∥∥
L∞

=

∥∥∥∥kn
k̃n

∥∥∥∥
L∞

ˆ
Ω

k̃n dµ 6

∥∥∥∥kn
k̃n

∥∥∥∥
L∞

∥∥∥∥ k̃nkn
∥∥∥∥
L∞

ˆ
Ω

kn dµ 6
c2
c1
.

Therefore, the sampling condition (4.23) implies m > γ ‖w̃ kn‖L∞ n ln(2n/ε), and the results follow by direct
application of Lemma 4.1 and Theorem 4.3.

We now concentrate our attention on the offline procedure which should be tuned in order to ensure that
(4.22) holds with high probability. For this purpose, we introduce the Gramian matrix

GM := (〈ϕj , ϕk〉M )16j,k6n,

where 〈·, ·〉M is the inner product defined by (4.19) that uses the intermediate samples yi, which are i.i.d.
according to µ. This matrix should not be confused with Gm defined in (4.8), that uses the inner product 〈·, ·〉m
based on the final samples xi.

Lemma 4.8. For any pair of constants 0 < c1 6 c2, the matrix framing property

c−1
2 I 6 GM 6 c

−1
1 I, (4.26)

implies the uniform framing (4.22).
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Proof. We use the fact that, similar to kn, the function k̃n is characterized by the extremality property

k̃n(x) =
1

n
max
v∈Vn

|v(x)|2

‖v‖2M
.

For any x ∈ Ω and v ∈ Vn, one has on the one hand

|v(x)|2 6 n k̃n(x) ‖v‖2M 6
n

c1
k̃n(x) ‖v‖2L2 ,

where the last inequality results from the upper one in (4.26). This shows that c1 kn(x) 6 k̃n(x). On the other
hand, using the lower inequality in (4.26), we find that

|v(x)|2 6 nkn(x) ‖v‖2L2 6 c2 nkn(x) ‖v‖2M ,

which shows that k̃n(x) 6 c2 kn(x).

Remark 4.9. The matrix framing (4.26) implies the uniform framing (4.22) but the converse does not seem
to hold. Finding an algebraic condition equivalent to (4.22) is an open question.

Lemma 4.1 indicates that if the amount of offline samples satisfies the condition

M > γ Kn n ln(2n/ε), Kn := ‖kn‖L∞(Ω), (4.27)

then, we are ensured that
Py (‖GM − I‖2 > 1/2) 6 ε,

and therefore the framing (4.26) holds with probability greater than 1 − ε, for the particular values c1 = 2/3
and c2 = 2. Bearing in mind that kn is unknown to us, we assume at least that we know an upper estimate for
its L∞ norm

Kn 6 B(n).

Explicit values for B(n) for general domains Ω are established in Section 4.5 for spaces Vn of algebraic polyno-
mials. Therefore, given such a bound, taking M such that

M > γ B(n) ln(2n/ε), (4.28)

guarantees a similar framing with probability greater than 1 − ε. We obtain the following result as a direct
consequence of Theorem 4.7.

Corollary 4.10. Assume that the amount of sample points M used in the offline stage described by Algorithm 1
satisfies (4.28) for some given ε > 0. Then, under the sampling budget condition

m > 3 γ n ln(2n/ε), (4.29)

for the online stage, the event E := {‖Gm − I‖2 6 1
2 and ‖GM − I‖2 6 1

2} satisfies P(Ec) 6 2ε. In addition,
one has the convergence bounds

E(‖u− ũ‖2L2χE) 6 (1 + η(m)) en(u)2
L2 , (4.30)

and
E(‖u− ũT ‖2L2) 6 (1 + η(m)) en(u)2

L2 + 8 ε τ2, (4.31)

where η(m) = 12 n
m 6

4
γ ln(2n/ε) .

Proof. The estimate on P(Ec) follows from a union bound. Since ‖GM − I‖2 > 1
2 ensures the framing (4.22)

with c1 = 2/3 and c2 = 2, the bound (4.30) follows from (4.24) in Theorem 4.7. Finally, the bound (4.31) follows
from (4.30) and the probability estimate on Ec by the same argument as in the proof of Theorem 4.3.
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4.3.3 An empirical determination of the value of M

In many situations, the best available bound B(n) on Kn could be overestimated by a large amount.
Moreover, the theoretical requirement M > γ Kn n ln(2n/ε) is only a sufficient condition that guarantees that
‖GM − I‖2 6 1

2 with probability larger than 1 − ε. It could happen that for smaller values of M , the matrix
GM satisfies the framing (4.26) with constants c1 and c2 that have moderate ratio c2/c1.

Since the computational cost of the offline stage is proportional toM , it would desirable to use such a smaller
value of M . If we could compute the matrix GM , it would suffice to increase M until the condition number

κ(GM ) =
λmax(GM )

λmin(GM )
,

has value smaller than a prescribed threshold c∗ > 1, so that (4.26) holds with c2/c1 = κ(GM ) 6 c∗.
However, since the exact orthonormal basis elements ϕj are generally unknown to us, we cannot compute the

matrix GM . As an alternate strategy, we propose the following method that provides an empirical determination
of the value M that should be used in Algorithm 1: start from the minimal value M = n, and draw points
z1, . . . , z

M and y1, . . . yM independently according to µ. Then, defining

〈u, v〉y =
1

M

∑
i=1

u(yi) v(yi) and 〈u, v〉z =
1

M

∑
i=1

u(zi) v(zi),

compute an orthonormal basis (ϕyj ) with respect to 〈·, ·〉y, and define the test matrix

T := (〈ϕyj , ϕ
y
k〉z)16j,k6n.

If κ(T ) > c∗, increase the value of M by some fixed amount, and repeat this step until κ(T ) 6 c∗. For this
empirically found valueM = Memp(n), use the points {y1, . . . , yM} in the offline stage described by Algorithm 1,
and the ratio c2/c1 = c∗ in the sampling budget condition (4.23) used in the online stage.

The rationale for this approach is that if GM is well conditioned with high probability, then T should also
be, as shown in the following result.

Proposition 4.11. If M is chosen in such a way that P(κ(GM ) > c) 6 ε for some c > 1, then

P(κ(T ) > c2) 6 2 ε.

Proof. Since both matrices Gy = (〈ϕj , ϕk〉y)16j,k6n and Gz = (〈ϕj , ϕk〉z)16j,k6n are realizations of GM , we
obtain by a union bound that, with probability at least 1 − 2ε, both Gy and Gz have condition numbers less
than c. Under this event,

λmax(T ) = sup
α∈Rn

‖
∑n
j=1 αjϕ

y
j‖2z

|α|2
6 sup
α∈Rn

‖
∑n
j=1 αjϕ

y
j‖2L2

|α|2
sup
v∈Vn

‖v‖2z
‖v‖2L2

= sup
v∈Vn

‖v‖2L2

‖v‖2y
sup
v∈Vn

‖v‖2z
‖v‖2L2

=

(
inf
v∈Vn

‖v‖2y
‖v‖2L2

)−1

sup
v∈Vn

‖v‖2z
‖v‖2L2

=
λmax(Gz)

λmin(Gy)
,

and

λmin(T ) = inf
α∈Rn

‖
∑n
j=1 αjϕ

y
j‖2z

|α|2
> inf
α∈Rn

‖
∑n
j=1 αjϕ

y
j‖2L2

|α|2
inf
v∈Vn

‖v‖2z
‖v‖2L2

= inf
v∈Vn

‖v‖2L2

‖v‖2y
inf
v∈Vn

‖v‖2z
‖v‖2L2

=

(
sup
v∈Vn

‖v‖2y
‖v‖2L2

)−1

inf
v∈Vn

‖v‖2z
‖v‖2L2

=
λmin(Gz)

λmax(Gy)
,

which implies that κ(T ) 6 κ(Gy)κ(Gz) 6 c2.

The above proposition shows that a good conditioning of GM with high probability implies the same property
for T . There is of course no theoretical guarantee that the value ofM provided by the above empirical approach
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is sufficient to achieve good conditioning of GM , unless the resulting M satisfies (4.28). However, in the
numerical experiments of Section 4.6, we will check that the values of M for which κ(T ) 6 c holds also ensure
a similar bound for κ(GM ).

4.4 Multilevel strategies

The sampling strategy described by Algorithm 1 provides instance optimal reconstructions of u with an
optimal sampling budget up to a multiplicative factor ln(2n/ε). Thus, the execution time of the online stage,
dominated by the m evaluations of u at points xi, cannot be significantly improved. On the other hand, the
complexity of the offline stage is dominated by the computation of the Gramian matrix in order to derive the
basis (ϕ̃1, . . . , ϕ̃n), and is therefore of order O(Mn2). In particular, it depends linearly on the number of points
M , which could be very large if Kn grows fast with n, or if its available bound B(n) is over-estimated.

In this section we discuss a multilevel approach aiming at improving this offline computational cost: we
produce an approximation to kn in several iterations, by successive refinements of this function as the dimension
of Vn increases. We consider a family of nested spaces (Vnp)p>1 of increasing dimension np and take an
orthonormal basis (ϕj)j>1 adapted to this hierarchy, in the sense that

Vnp = span{ϕ1, . . . , ϕnp}, np > 1.

As previously, the exact functions knp are out of reach, since we do not have access to the continuous inner
product by which we would compute the basis (ϕj)16j6np . The offline stage described in Section 4.3 computes
approximations ϕ̃j by orthogonalizing with respect to a discrete inner product with points yi drawn according
to dµ. We know that a more efficient sample for performing this orthogonalization could be obtained by drawing
according to dσ =

knp
np

dµ, which is however unknown to us.

The idea for breaking this dependency loop is to replace knp with k̃np−1 , which was computed at the previous
step. Our analysis of this strategy is based on the following assumption of proximity between knp−1

and knp :
there exists a known constant κ > 1 such that

kn1
(x) 6 3κ and np knp(x) 6 np+1 knp+1

(x) 6 κnp knp(x), p > 1, x ∈ Ω. (4.32)

The validity of this assumption can be studied through lower and upper estimates for kn, such as those discussed
in the next section. For example, Theorem 4.27 allows one to establish (4.32) for bivariate polynomial spaces of
total degree p, therefore with np = (p+1)(p+2)/2, on bidimensional domains with piecewise smooth boundary.
Note that (4.32) allows up to exponential growth of Kn, if we simply take np = p.

Assuming that the targeted space Vn is a member of this hierarchy, that is,

n = nq, for some q > 1,

we modify the offline stage as indicated in Algorithm 2 below.
The online stage remains unchanged: the samples x1, . . . , xm for evaluation of u are drawn i.i.d. according

to σ̃, and we solve the weighed least-squares problem (4.20). The sample size M of the offline stage is now
replaced by M = M1 + · · · + Mq. Denote by Gp := (〈ϕj , ϕk〉p)16j,k6np the Gramian matrices for the inner
products (4.33). The following result shows that the conditions imposed on theMp are less stringent than those
that were imposed on M .

Theorem 4.12. Let εp > 0 such that ε :=
∑q
p=1 εp < 1, and assume that the amount of offline samples used

in Algorithm 2 satisfies

Mp > 3κ γ np ln
2np
εp

, p = 1, . . . , q,

with κ the constant in the assumption (4.32). Then if m > 3 γ n ln 2n
ε , the same convergence bounds (4.30) and

(4.31) as in Corollary 4.10 hold, with E := {‖Gm − I‖2 6 1
2 and ‖Gq − I‖2 6 1

2} that satisfies P(Ec) 6 2ε.
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Algorithm 2 Offline stage of a multi-step sampling strategy
1: Start with w̃0 = 1 and σ̃0 = µ

2: for p = 1 to q do

3: Draw a certain amount Mp of points yp,1, . . . , yp,Mp independently according to σ̃p−1

4: Define the inner product
〈u, v〉p :=

1

Mp

Mp∑
i=1

w̃p−1(yp,i)u(yp,i) v(yp,i) (4.33)

5: Construct from (φj)16j6np an orthonormal basis (ϕ̃ pj )16j6np of Vnp with respect to ‖ · ‖Mp

6: Define the approximate inverse Christoffel function, weight and density

k̃np =
1

np

np∑
j=1

|ϕ̃ pj |
2, Zp =

ˆ
Ω

k̃npdµ, w̃p =
Zp

k̃np
and dσ̃p :=

1

Zp
k̃np dµ

7: end for

8: Define the final Christoffel density for Vn as k̃n = k̃nq , as well as w̃ = w̃q and σ̃ = σ̃q

Proof. We show by induction on p that the event

Bp :=

{
‖G1 − I‖2 6

1

2
, . . . , ‖Gp − I‖2 6

1

2

}
occurs with probability at least 1− ε1 − · · · − εp. As

M1 > 3κ γ n1 ln
2n1

ε1
> γ ‖w̃0 kn1‖L∞ n1 ln

2n1

ε1
,

by Lemma 4.1,
P(B1) > 1− ε1.

For 1 6 p < q, under the event Bp, Lemma 4.8 gives

2

3
knp(x) 6 k̃np(x) 6 2 knp(x), x ∈ Ω.

Therefore, using assumption (4.32), we find that

∥∥w̃p knp+1
Zp
∥∥
L∞

= np+1Zp

∥∥∥∥∥ knp+1

k̃np

∥∥∥∥∥
L∞

6 np+1

∥∥∥∥ k̃npknp

∥∥∥∥
L∞

∥∥∥∥∥knpk̃np

∥∥∥∥∥
L∞

∥∥∥∥knp+1

knp

∥∥∥∥
L∞

6 3κnp.

As Mp+1 > 3κ γ np ln
2np
εp+1

, Lemma 4.1 applies, and combining this with the induction hypothesis:

P(Bp+1) = P(Bp)P
(
‖Gp+1 − I‖2 6

1

2

∣∣∣Bp)
> (1− ε1 − · · · − εp)(1− εp+1) > 1− ε1 − · · · − εp − εp+1.

Use Lemma 4.8 one last time to write, in the event Bq,

2

3
knq (x) 6 k̃nq (x) 6 2 knq (x), x ∈ Ω,

which is the framing (4.26) for the particular values c1 = 2/3 and c2 = 2. Since Bq has probability larger than
1− ε, we conclude by the exact same arguments used in the proof Corollary 4.10.

We now comment on the gain of complexity by using Algorithm 2 in two different situations:
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1. Exponential growth of Kn: the property (4.32) might be satisfied even when Kn grows exponentially
with n, by taking the choice np = p. Then, the complexity of Algorithm 1 is of order

O(M n2) & O(Kn n
3 ln(2n/ε)),

which grows exponentially in n. In contrast, the total amount of sampling in Algorithm 2 is

M = M1 + · · ·+Mn 6 nMn = O(n2 ln(2n/ε)),

so the first stage remains of polynomial complexity O(Mn2) = O(n4 ln(2n/ε)).

2. Algebraic growth of Kn: if Kn ∼ nr only grows algebraically in n, one may choose np = 2p, in which case
the total number of sample points M rewrites as Mn0

+ · · ·+Mnq ∼Mnq , giving an optimal complexity
O(n3 ln(2n/ε)) for the first stage. This is smaller than the complexity

O(Kn n
3 ln(2n/ε)) = O(n3+r ln(2n/ε))

encountered in Algorithm 1.

While Algorithm 2 presents a computational gain for providing a near-optimal measure σ̃, the resulting
sample x1, . . . , xm is specifically targeted at approximating u in the space Vn = Vnq . As explained in Sec-
tion 4.1.2, it is sometimes desirable to obtain optimal weighted least-squares approximations ũnp for each space
Vnp while maintaining the cumulated number of evaluations of u until step p of the optimal order np up to
logarithmic factors. Therefore, we would like to recycle the evaluation points x1, . . . , xmp−1 drawn until step
p− 1 when assembling the new sample x1, . . . , xmp , for some well chosen sequence (mp)p>1 growing as (np)p>1

up to logarithmic factors.
Here, we assume that the family (Vnp)p>1 has been fixed, independently of the target function u, in contrast

to being generated in an adaptive manner. Adaptive space generation brings out new difficulties: the space Vnp
depends on the approximation computed in the previous space Vnp−1

and therefore the new evaluation points
xmp−1+1, . . . , xmp will not be independant from the previous ones. Maintaining optimal sample complexity in
the adaptive context is, to our knowledge, an open problem.

Intuitively, since the sample should have a density proportional to knp , most of the new points we draw at
step p should be distributed according a density proportional to np knp − np−1 knp−1 =

∑np
j=np−1+1 |ϕj |2. This

leads us to the following algorithm.

Algorithm 3 Offline stage of a multi-step adaptive sampling strategy
1: Start with w̃0 = 1, σ̃0 = µ and m0 = 0

2: for p = 1, 2, . . . do

3: Generate ynp,i and compute w̃np , σ̃np and k̃np as in Algorithm 2

4: Create the orthonormal basis (ϕ
np
j ), compatibly with the inclusion Vnp−1

⊂ Vnp , in the sense that

span{ϕnp1 , . . . , ϕnpnp−1
} = Vnp−1

.

5: Having already defined x1, . . . , xmp−1 , draw the new evaluation points xmp−1+1, . . . , xmp according to

dρp :=
1

Z ′p

1

mp −mp−1

mp

np

np∑
j=1

|ϕnpj |
2 − mp−1

np−1

np−1∑
j=1

|ϕnpj |
2

 dµ, (4.34)

6: end for

Remark 4.13. Note that the non-negativity of ρp is only guaranteed when (mp/np)p>1 is non-decreasing, a
condition which is easily met since mp has to grow as np lnnp. If we had taken mp exactly linear with respect
to the dimension np, the terms with j 6 np−1 in the expression (4.34) would cancel, hence dρp would only be
an approximation of the probability density 1

np−np−1

∑np
j=np−1+1 |ϕj |2 dµ.
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Remark 4.14. Another approach to hierarchical sampling was proposed in [132] and consists in drawing
constant proportions of samples according to the measure |ϕj |2dµ. It was adapted in [5] to our setting of
interest where the ϕj cannot be exactly computed.

Remark 4.15. In the above algorithm, the various subsets {xmk−1+1, . . . , xmk} of {x1, . . . , xmp}, for k between
1 and p, are drawn according to different probability measures. The sample {x1, . . . , xmp} is thus not i.i.d.
anymore, which affects the proof of the convergence theorem given below. Instead it may be thought as a
deterministic mixture of collections of i.i.d. samples, as in Theorem 2 of [132].

At any iteration q, we use the evaluations of u at all points x1, . . . , xm as follows to compute a least-squares
approximation ũn ∈ Vn, where n := nq and m := mq. We denote by w the weight function defined by

w(x)

q∑
p=1

(mp −mp−1) dρp = mdµ, (4.35)

and solve the weighted least square problem (4.5). The following result shows that instance optimality is
maintained at every step q, with a cumulated sampling budget mq that is near-optimal.

Theorem 4.16. Take numbers δp, εp ∈ (0, 1) such that ε :=
∑q
p=1 εp < 1 and δ :=

∑q
p=1 δp < 1/2, and define

cδ = ((1 + δ) ln (1 + δ)− δ)−1. Assume that, for all p > 1,

Mnp > 2κ cδp np ln
2np
εp

and mp >
γ

1− 2δ
np ln

2np
ε
,

with κ the constant in the assumption (4.32), and that mp/np is a non-decreasing function of p. Then, with
n := nq and m := mq, the convergence bounds (4.30) and (4.31) simultaneously hold for all q > 1, with

η(m) =
4

(1− 2δ)

n

m
6

4

γ ln(2n/ε)

and E := {‖Gm − I‖2 6 1
2 and ‖Gp − I‖2 6 δp for p > 1}, which satisfies P(Ec) 6 2ε.

The proof of this theorem requires a refinement of Lemma 4.1, due to the fact that the xi are not anymore
identically distributed. This uses the following tail bound, directly obtained from the matrix Chernoff bound
in [176].

Proposition 4.17. Consider a finite sequence (aia
†
i )16i6m of independent, random, rank-one self-adjoint

matrices with dimension n. Assume that each matrix satisfies 0 4 aia
†
i 4 N I almost surely, and that

1
m

∑m
i=1 E(aia

†
i ) = I. Then for all δ ∈ (0, 1),

P

(∥∥∥∥∥ 1

m

m∑
i=1

aia
†
i − I

∥∥∥∥∥
2

> δ

)
6 2n exp

(
− m

cδ N

)
,

where cδ = ((1 + δ) ln (1 + δ)− δ)−1 as in Theorem 4.16.

Proof of Theorem 4.16. By the same argument as in Theorem 4.12, we find that the event

B = {‖Gp − I‖2 6 δp : p > 1}

has probability larger than 1− ε, where the Gp are as in the proof of Theorem 4.12.
We then fix a value of q and for n = nq and m = mq, we study the Gramian matrix Gm which is the sum

of the independent, but not identically distributed, matrices

aia
†
i := w(xi) (ϕj(x

i)ϕk(xi))16j,k6n, i = 1, . . . ,m.
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Then, with the notation H(x) = (ϕj(x)ϕk(x))16j,k6n,

1

m

m∑
i=1

E(aia
†
i ) =

q∑
p=1

(mp −mp−1)

ˆ
Ω

1

m
w(x)H(x) dρp(x) =

ˆ
Ω

H(x) dµ(x) = I,

and

‖aia†i‖2 = w(xi)

n∑
j=1

|ϕj(xi)|2‖w kn‖L∞n =: N.

One also has, under the event B,
´

Ω
|ϕnpj |2 dµ 6 1

1−δp for j = 1, . . . , np so Z ′p > 1− δp, and consequently

m

w
=

q∑
p=1

(mp −mp−1)
dρp
dµ

=

q∑
p=1

1

Z ′p

mp

np

np∑
j=1

|ϕnpj |
2 − mp−1

np−1

np−1∑
j=1

|ϕnpj |
2


>

q∑
p=1

(
mp

1− δp
1 + δp

knp −mp−1 knp−1

)

> mkn −
q∑
p=1

mp
2δp

1 + δp
knp

> (1− 2δ)mkn,

so N = ‖w kn‖L∞n 6 n/(1− 2δ). Applying Proposition 4.17, we find that

Px
(
‖Gm − I‖2 >

1

2

∣∣∣ B) 6 2n exp

(
− 1

γ N

)
6 2n exp

(
−1− 2δ

γn

)
6 ε.

Therefore, since E := B ∩
{
‖Gm − I‖2 6 1

2

}
, we find that P(E) > 1− 2ε.

In order to prove the convergence bounds (4.30) and (4.31), we cannot proceed as in Corollary 4.10 by simply
invoking Theorem 4.7, because the xi are not identically distributed. This leads us to modify the statement of
Lemma 4.2 and its proof given in [59], following a strategy proposed in [132]. First, using similar arguments as
in [59], we find that

E(‖u− ũ‖2L2 χE) 6 en(u)2
L2 + 4E

(
n∑
k=1

|〈ϕk, g〉m|2 χE

)
, (4.36)

where g = u− Pnu is the projection error. For each k = 1, . . . , n, we define gk := wϕk g and write

E (|〈ϕk, g〉m|2 χE) 6 E (|〈ϕk, g〉m|2 χB)

=
1

m2

∑
16i,j6m

E
(
gk(xi) gk(xj)χB

)

=
1

m2
Ey

(
χB

( ∑
16i6m

Ex
(
|gk(xi)|2

)
+
∑
i 6=j

Ex
(
gk(xi) gk(xj)

)))

6
1

m2
Ey

(
χB

( ∑
16i6m

Ex
(
|gk(xi)|2

)
+
∣∣∣ ∑

16i6m

Ex
(
gk(xi)

) ∣∣∣2))

= Ey
(
χB

(
1

m
Et
(
|gk(t)|2

)
+
∣∣Et (gk(t))

∣∣2)) ,
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where t is a random variable distributed according to
∑q
p=1

mp−mp−1

m dρp = 1
w dµ. We then note that

Et(gk(t)) =

ˆ
Ω

ϕk g dµ = 0

since g ∈ V ⊥n , and that
∑n
k=1 |gk(t)|2 = w(t)2 g(t)2 kn(t). Therefore

E

(
n∑
k=1

|〈ϕk, g〉m|2 χE

)
6 Ey

(
χB

1

m

ˆ
Ω

w kn g
2dµ

)
6 Ey

(
χB N ‖g‖2L2

)
6

n

(1− 2δ)
en(u)2

L2 .

Combining this with (4.36), we finally obtain

E(‖u− ũ‖2L2 χE) 6

(
1 +

4

(1− 2δ)

n

m

)
en(u)2

L2

�

Remark 4.18. If a stopping time q is known in advance, the simplest choice is to take εp = ε/q and δp = δ/q.
If the stopping time q is not known in advance, we can take for instance εp = 6

π2
ε
p2 and δp = 6

π2
δ
p2 . As cδ ∼ 2

δ2

when δ → 0, this choice only increases the number Mp of sample points yi by a factor p4, which is satisfying in
view the previous remarks.

4.5 Estimates on the inverse Christoffel function

We have seen that the success of Algorithm 1 is based on the offline sampling condition (4.28), which means
that a uniform upper bound B(n) on the inverse Christoffel function kn is needed in the first place. Likewise, the
multilevel Algorithms 2 and 3 from Section 4.4 are based on the assumption (4.32), whose verification requires
pointwise upper and lower estimates on kn(x). In this section we establish such bounds on general domains,
when the Vn are spaces of algebraic multivariate polynomials of varying total degree. Throughout this section,
we assume that

µ = µΩ = |Ω|−1 χΩ dx

is the uniform measure over Ω, which is thus assumed to have finite Lebesgue measure |Ω|.

4.5.1 Comparison strategies

Our vehicle for estimating the Christoffel function is a general strategy, first introduced in [115], which
consists in comparing Ω with reference domains R for which the Christoffel function can be estimated. For
simplicity, we use the notation

L2(R) = L2(R,µR),

for any domain R, where µR = |R|−1 χR dx is the uniform measure over R. In order to make clear the dependence
on the domain, we define

kn,R(x) =
1

n
max
v∈Vn

|v(x)|2

‖v‖2L2(R)

,

and

Kn,R = ‖kn‖L∞(R) =
1

n
max
v∈Vn

‖v‖2L∞(R)

‖v‖2L2(R)

,

We first state a pointwise comparison result.

Lemma 4.19. For x ∈ Ω, let R be such that x ∈ R ⊂ Ω and β |Ω| 6 |R| for some β ∈ (0, 1]. Then

kn,Ω(x) 6 β−1 kn,R(x).
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Conversely, let S be such that Ω ⊂ S and β |S| 6 |Ω| for some β ∈ (0, 1]. Then

kn,Ω(x) > β kn,S(x), x ∈ Ω.

Proof. For any v ∈ Vn, we have

1

n
|v(x)|2 6 kn,R(x) ‖v‖2L2(R) 6 kn,R(x)

|Ω|
|R|
‖v‖2L2(Ω),

and
1

n
|v(x)|2 6 kn,Ω(x) ‖v‖2L2(Ω) 6 kn,Ω(x)

|S|
|Ω|
‖v‖2L2(S).

Optimizing over v gives the upper and lower estimates of kn,Ω(x).

Obviously, a framing on Kn,Ω can be readily derived as follows, by application of the above lemma to any
point in Ω.

Proposition 4.20. Assume that there exist a family R of reference domains with the following properties:
(i) For all x ∈ Ω there exist Rx ∈ R such that x ∈ Rx ⊂ Ω.
(ii) There exists a constant β ∈ (0, 1] such that |R| > β |Ω| for all R ∈ R.

Then, one has
Kn,Ω 6 β

−1 sup
x∈Ω

kn,Rx(x) 6 β−1 sup
R∈R

Kn,R.

Likewise, for any S ∈ R such that Ω ⊂ S and |Ω| > β |S|, one has

Kn,Ω > β sup
x∈Ω

kn,S(x).

In what follows, we apply this strategy to spaces Vn of multivariate algebraic polynomials. Throughout this
section, we consider

Vn = Rp[X1, . . . , Xd] := span{Xν1
1 . . . Xνd

d : |ν| = ν1 + · · ·+ νd 6 p}, (4.37)

the space of polynomials with total degree less or equal to p, for which we have

n =

(
d+ p
p

)
.

We assume Ω is a bounded open set of Rd.
It is important to note that Vn is invariant by affine transformation. As a consequence, if A is any affine

transformation, one has
R′ = A(R) =⇒ kn,R′(A(x)) = kn,R(x), x ∈ R,

and in particular Kn,R′ = Kn,R.

4.5.2 Lipschitz domains

In the case of the cube Q = [−1, 1]d, we may express kn,Q by using tensorized Legendre polynomials, that is

kn,Q(x) =
∑
|ν|6p

|ϕν(x)|2, ϕν(x) = ϕν1(x1) . . . ϕνd(xd),

where the univariate polynomials t 7→ ϕj(t) are normalized in L2([−1, 1], dt2 ). Using this expression, it can be
proved by induction on the dimension d that

Kn,Q 6 n, n > 1,
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see Lemma 1 in [48]. Therefore, by affine invariance,

Kn,R 6 n, n > 1, (4.38)

for any d-dimensional parallelogram R. Using this result, we may bound the growth of Christoffel functions
from above for a general class of domains.

Definition 4.21. An open set Ω ⊂ Rd satisfies the inner cone condition if there exist r̄ > 0 and θ ∈ (0, π), such
that for all x ∈ Ω, there exists a unit vector ~u such that the cone

Cr̄,θ(x, ~u) := {x+ r ~v, 0 6 r 6 r̄, |~v| = 1, ~u · ~v > cos(θ)}

is contained in Ω. In particular, any Lipschitz domain Ω ⊂ Rd satisfies the inner cone condition (see e.g. §4.11
in [1]).

Theorem 4.22. Let Ω ⊂ Rd be a bounded domain that satisfies the inner cone condition. Then, one has

Kn 6 CΩ n, n > 1, (4.39)

where CΩ depends on d, |Ω|, and on r̄ and θ in the previous definition.

Proof. The uniform cone condition ensures that there exists κ = κ(r̄, θ, d) > 0 such that for any x ∈ Ω, there
exists a parallelogram R such that x ∈ R ⊂ Ω and |R| = κ. Therefore, applying Proposition 4.20 with R the
family of all parallelograms of area κ, one obtains (4.39) with CΩ = |Ω|/κ.

Remark 4.23. The bound Kn,Q 6 n is actually established in [48] for the more general class of polynomial
spaces of the form

Vn = RΛ[X1, . . . , Xd] := span{Xν1
1 . . . Xνd

d : ν ∈ Λ}, #(Λ) = n,

where Λ ∈ Nd is downward closed, i.e. such that

ν ∈ Λ and ν̃ 6 ν =⇒ ν̃ ∈ Λ.

These spaces are however not invariant by affine transformation, and so one cannot apply the above method
to treat general domains with inner cone condition. On the other hand, these spaces are invariant by affine
transformation of the form x 7→ x0 +Ax where A is a diagonal matrix, therefore transforming the cube Q into
an arbitrary rectangle R aligned with the coordinate axes. As observed in [6], this leads to a bound of the form
(4.39) for any domain Ω that satisfies the following geometrical property: for all x ∈ Ω there exists a rectangle
R aligned with the coordinate axes such that x ∈ R ⊂ Ω and |R| > β |Ω|. Note that this property does not
readily follow from a smoothness property of the boundary, in particular there exist smooth domains for which
this property does not hold.

4.5.3 Smooth domains

We next investigate smooth domains. For this purpose, we replace parallelograms by ellipsoids as reference
domains. In the case of the unit ball B := {|x| 6 1}, it is known [191] that the Christoffel function reaches its
maximum on the unit sphere S := {|x| = 1}, where we have

nkn,B(x) =

(
p+ d+ 1

p

)
+

(
p+ d− 2
p− 1

)
.

In order to estimate how this quantity scales with n =

(
p+ d
p

)
we use the fact that for any integer m, one has

e
(m
e

)m
6 m! 6 mm.
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For the lower bound, we bound from below the first term(
p+ d+ 1

p

)
=

(
p+ d
p

)
p+ d+ 1

d+ 1
= n

p+ d+ 1

d+ 1

>
n

d e1/d
(p+ d+ 1) >

n

e (d!)1/d

(
(p+ d)!

p!

)1/d

= e−1 n
d+1
d ,

which leads to
Kn,B > kn,B(x) >

1

e
n1/d, x ∈ S. (4.40)

For the upper bound, we write(
p+ d+ 1

p

)
+

(
p+ d− 2
p− 1

)
=

(
p+ d
p

)(
p+ d+ 1

d+ 1
+

pd

(p+ d)(p+ d− 1)

)
6 n

(
p+ d+ 1

d+ 1
+ 1

)
= n

(
p

d+ 1
+ 2

)
,

Since

n1/d = (d!)−1/d

(
(p+ d)!

p!

)1/d

>
p+ 1

d
>

p

d+ 1
,

we find that
kn,B(x) 6 n1/d + 2 6 3n1/d.

By affine invariance, we thus obtain
1

e
n1/d 6 Kn,E 6 3n1/d, (4.41)

for all ellipsoids E. This leads to the following result.

Theorem 4.24. Assume Ω ⊂ Rd is a bounded domain with C2 boundary. Then, one has

Kn 6 CΩ n
1/d, n > 1, (4.42)

where CΩ depends on Ω.

Proof. Since the boundary of Ω has finite curvature, we are ensured that there exists a β > 0 such that for any
x ∈ Ω, there exist an ellipsoid E such that x ∈ E ⊂ Ω and |E| > β |Ω|. Therefore, applying Proposition 4.20
with R the family of ellipsoids with area larger than β |Ω|, we obtain (4.42) with CΩ = 3β−1.

Remark 4.25. In the above argument, one could simply use balls instead of ellipsoids, however at the price of
diminishing the value of β and thus raising the constant CΩ.

We next give a general lower bound for Kn showing that the above rate for smooth domains is sharp.

Theorem 4.26. Let Ω ⊂ Rd be an arbitrary bounded domain, and let B be its Chebychev ball, that is, the
smallest closed ball that contains Ω. Then, one has

Kn,Ω >
1

e

|Ω|
|B|

n1/d, n > 1.

Proof. As Ω is compact and B is the smallest possible ball containing Ω, there exists a point x ∈ Ω ∩ ∂B, and
by Lemma 4.19 one has

Kn,Ω > kn,Ω(x) >
|Ω|
|B|

kn,B(x) >
1

e

|Ω|
|B|

n1/d,

where the last inequality follows from (4.40) and affine invariance.
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4.5.4 Pointwise bounds for piecewise smooth domains
As already observed, it may be needed to get sharper bounds on kn(x) that depend on the point x, in

particular when checking the validity of (4.32). In the case of algebraic polynomials in dimension d = 2, for
which n = (p+1)(p+2)

2 , such bounds have been obtained for a particular class of piecewise smooth domains with
outward corners, in the following result from [153].

Theorem 4.27. Let Ω ⊂ R2 be a bounded open such that ∂Ω = ∪Ki=1Γi, where the Γi are one-to-one C2 curves
that intersect only at their extremities, at which points the interior angles belong to (0, π). Then, there exists a
constant CΩ that only depends on Ω such that, for all x ∈ Ω,

C−1
Ω kn(x) 6 min

(i,j)∈S
ρi(x) ρj(x) 6 CΩ kn(x), n > 1,

where S consists of the (i, j) such that Γi and Γj intersects, and ρi(x) := min
(
p, d(x,Γi)

−1/2
)
.

For the square domain Ω = Q = [−1, 1]2, this implies that kn,Q(x) ∼ p2 ∼ n when x is close enough to a
corner, and we retrieve the bound Kn,Q 6 CΩ n from (4.39). Theorem 4.27 also proves that for bidimensional
domains with C2 boundary, it holds kn(x) ∼ min

(
p, d(x, ∂Ω)−1/2

)
, which is consistent with the global bound

(4.42) in the case d = 2.

4.5.5 Rate of growth of Kn,Ω and order of cuspitality
We end this section by a more technical but systematic approach which allows us to estimate the rate of

growth of the inverse Christoffel function in a sharp way for domains Ω that could either be smooth, of α-Hölder
boundary, or even with cusps of a given order. It is based on using the following more elaborate reference domain
that describes a certain order of smoothness at the origin.

Definition 4.28. For α1, . . . , αd−1 ∈ (0, 2], denote Rα1,...,αd−1
the reference domain

Rα1,...,αd−1
:=

{
x ∈ [− 1, 1]d, max

16i6d−1
|xi|αi 6 xd

}
.

We shall establish upper and lower bounds for Kn,Ω based on comparisons between Ω and affine transfor-
mations of this reference domain, by adapting certain techniques and results from [66]. The upper bound is as
follows.

Theorem 4.29. Let Ω be a bounded domain. Assume there exist α1, . . . , αd−1 ∈ (0, 2] and β > 0 such that, for
all x ∈ Ω, one can find an affine map A such that A(0) = x, A(Rα1,...,αd−1

) ⊂ Ω and |A(Rα1,...,αd−1
)| > β |Ω|.

Then
Kn,Ω 6 CΩ n

1
d

(
1+
∑d−1
i=1

2−αi
αi

)
, (4.43)

where CΩ is a constant depending only on Ω.

This result is obtained with the extension strategy proposed in [66], which consists in combining Propo-
sition 4.31 below with a comparison of domains. Such a method was applied in the same paper to the case
of smooth domains, polytopes, some 2-dimensional domains, and `α balls in Rd, which all correspond to the
situation α1 = · · · = αd−1 ∈ [1, 2] in our theorem. We give below a series of intermediate results that lead to
the proof of Theorem 4.29.

Lemma 4.30. For α ∈ (0, 2] and n > 1, the function f : x 7→ 1
9p2 + βx2 − |x|α remains non-negative on R as

soon as β > α
2

(
9
2 (2− α) p2

) 2−α
α .

Proof. As f is even, one only has to consider this function on R+. For x > 0, f ′(x) = 2βx−αxα−1 cancels only

at x0 =
(
α
2β

) 1
2−α

, so

min
x∈R

f(x) = f(x0) =
1

9p2
− 2− α

2

(
α

2β

) α
2−α

,

which is non-negative if and only if β > α
2

(
9
2 (2− α) p2

) 2−α
α .
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The following result is Theorem 5.2 from [66].

Proposition 4.31. Suppose Ω ⊂ Rd is a compact set and T is an affine transformation of Rd such that
T (B(0, 1)) ⊂ Ω. Then

kn,Ω

(
T

(
0, . . . , 0, 1 +

1

3p2

))
6 c |detT |−1p.

where c depends only on d.

Lemma 4.32. For α1, . . . , αd−1 ∈ (0, 2], one has

kn,Rα1,...,αd−1
(0) 6 Cp1+

∑d−1
i=1

2−αi
αi ,

where C depends only on d and α1, . . . , αd−1.

Proof. Define βi = αi
2

(
9
2 (2− αi) p2

) 2−αi
αi for 1 6 i 6 d− 1, and let T be the affine transformation

T : x = (x1, . . . , xd) 7→

(
x1√
3β1

, . . . ,
xd−1√
3βd−1

,
1

3

(
1 +

1

3p2
− xd

))
.

Then, for all x ∈ B(0, 1), T (x)d ∈ [0, 1] and 1 6 i 6 d− 1, using Lemma 4.30,

T (x)d =
1

3

(
1 +

1

3p2
− xd

)
>

1

3

(
1

3p2
+ x2

i

)
=

1

9p2
+ βiT (x)2

i > T (x)αii ,

so max16i6d−1 |T (x)i|αi 6 T (x)d, which implies that T (B(0, 1)) ⊂ Rα1,...,αd−1
.

As T
(

0, . . . , 0, 1 + 1
3p2

)
= 0, a direct application of Proposition (4.31) gives

kn,Rα1,...,αd−1
(0) 6 c p |detT |−1 = 3 c p

d−1∏
i=1

√
3βi 6 Cp

1+
∑d−1
i=1

2−αi
αi

Proof of Theorem 4.29. One simply applies Proposition 4.20 to the family R of all domains of the form
A(Rα1,...,αd−1

) where A is an affine map such that |detA| |Rα1,...,αd−1
| > β |Ω|. As p 6 C̄ n1/d for some L > 0,

we obtain (4.43) with CΩ = C β−1 C̄ 2+
∑d−1
i=1 2/αi , the constant C coming from the lemma above. �

We now prove a lower bound based on the same reference domain.

Theorem 4.33. Let Ω be a bounded domain. Assume there exist x̄ ∈ Ω, 0 < r1 6 r2, α1, . . . , αd−1 ∈ (0, 2] and
an affine transformation A with A(0) = x̄ such that

Ω ⊂ A(Rα1,...,αd−1
) ∪
(
B(x̄, r2) \B(x̄, r1)

)
.

Then
Kn,Ω > cΩ n

1
d

(
1+
∑d−1
i=1

2−αi
αi

)
,

where cΩ is a constant depending only on Ω.

The proof follows the same path as in Theorem 8.1 and Remark 8.4 of [66], but with a radial polynomial
centered at x instead of a planar polynomial, that is a univariate polynomial composed with an affine function.
This small improvement shows that for a point x and a domain Ω satisfying the conditions of Theorems 4.29
and 4.33 with the same αi, the asymptotic behavior of kn,Ω(x) only depends on Ω in a neighborhood of x.

We first recall Lemma 6.1 from the same article:
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Lemma 4.34. For any p,m > 1 and y ∈ [−1, 1], there exists a univariate polynomial Pp,m,y of degree at most
p such that Pp,m,y(y) = 1 and

|Pp,m,y(x)| 6 c(m)

(
1 + p

√
1− y2

1 + p
√

1− y2 + p2 |x− y|

)m
, x ∈ [−1, 1].

Taking y = −1 and applying a change of variable x 7→ x+1
2 , we get as an immediate consequence:

Lemma 4.35. For any p,m > 1, there exists a univariate polynomial Pp,m of degree at most p such that
Pp,m(0) = 1 and

|Pp,m(x)| 6 c(m) min

(
1,

1

p2m|x|m

)
, x ∈ [0, 1].

We also need a bound on the volume of Rα1,...,αd−1
.

Lemma 4.36. For all r > 0, |Rα1,...,αd−1
∩B(0, r)| 6 c r1+

∑d−1
i=1 1/αi .

Proof. Given r ∈ [0, 1], Rα1,...,αd−1
∩ {xd = r} = [−r1/α1 , r1/α1 ]× · · · × [−r1/αd−1 , r1/αd−1 ]× {r} has a (d− 1)-

volume equal to
∏d−1
i=1 2 r−αi , so

|Rα1,...,αd−1
∩ {0 6 xd 6 r}| =

ˆ r

0

d−1∏
i=1

2x
1/αi
d dxd = c r1+

∑d−1
i=1 1/αi .

As for all r > 0, Rα1,...,αd−1
∩B(0, r) ⊂ Rα1,...,αd−1

∩ {0 6 xd 6 min(1, r)}, we obtain the desired result.

Proof of Theorem 4.33. Take p0 = bp2c, m >
1
2

∑d−1
i=1

1
αi

and r3 > r2 such that T (Rα1,...,αd−1
) ⊂ B(x̄, r3), and

define the multivariate polynomial

P (x) = Pp0,m

(
|x− x̄|2

r2
3

)
, x ∈ Rd.

Then P has degree at most 2p0 6 p in each variable, P (x̄) = 1, and Lemma 4.35 bounds P from above since
Ω ⊂ B(x̄, r3). It remains to compute an upper bound of ‖P‖L2(Ω). For 0 < r < r1, one has:

|Ω ∩B(x̄, r)| = |T (Rα1,...,αd−1
) ∩B(x̄, r)|

6 |detT | |Rα1,...,αd−1
∩ T−1(B(x̄, r))|

6 |detT | |Rα1,...,αd−1
∩B(0, r λmax(T−1))|

6 c′r1+
∑d−1
i=1 1/αi ,

where in the last line we used Lemma 4.36, and with c′ = c | detT |

λmin(T )1+
∑d−1
i=1

1/αi
. Therefore, one can compute

‖P‖2L2(Ω) 6

∥∥∥∥c(m) min

(
1,

1

p2m|x|m

)∥∥∥∥2

L2(Ω)

6 c(m)2

(ˆ
Ω∩B(x̄,p−2)

dx+

ˆ
B(x̄,r3)

dx

p4mr2m
1

+

ˆ
Ω∩B(x̄,r1)\B(x̄,p−2)

(
1

|x|2m
− 1

r2m
1

)
dx

p4m

)

= c(m)2

(∣∣Ω ∩B (x̄, p−2
)∣∣+

|B(x̄, r3)|
p4mr2m

1

+

ˆ r1

p−2

2m

p4mr2m+1
|Ω ∩B(x̄, r)| dr

)
6 c(m)2

(
c′p−2−

∑d−1
i=1 2/αi +

|B(x̄, r3)|
p4mr2m

1

+ c′
2m

p4m

ˆ r1

p−2

r
∑d−1
i=1 1/αi−2mdr

)
6 c′′max

(
p−2−

∑d−1
i=1 2/αi , p−4m, p−4m−2(

∑d−1
i=1 1/αi−2m+1)

)
= c′′p−2−

∑d−1
i=1 2/αi ,
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and conclude that Kn,Ω > kn,Ω(x̄) > 1
n
|P (x̄)|2
‖P‖2

L2(Ω)

> cΩ p
1+
∑d−1
i=1

2−αi
αi , with cΩ = pd/c′′n. �

Remark 4.37. These theorems include the case of smooth domains : indeed, taking α1 = · · · = αd−1 = 2 and
ed = (0, . . . , 0, 1), one has

B

(
1

2
ed,

1

2

)
⊂ R2,...,2 ⊂

{
x ∈ [− 1, 1]d,

1

d− 1

d−1∑
i=1

|xi|2 6 xd

}
⊂ B ((d− 1)ed, (d− 1)) ,

so one can recover the results 4.24 and 4.26, without explicit constants. Similarly, Lipschitz boundaries corre-
spond to the particular values α1 = · · · = αd−1 = 1.

Example 4.38. It becomes useful to take distinct values for the αi in the case of domains with edges but no
corners. For instance, consider Ω =

√
3

2 ed + B
(

1
2e1, 1

)
∩ B(− 1

2e1, 1). Then 0 ∈ A(R1,2...,2) ⊂ Ω ⊂ B(R1,2...,2),
where A and B are the linear maps defined by

A(x1, . . . , xd) =

(
1

4
x1,

1

2
√
d− 2

x2, . . . ,
1

2
√
d− 2

xd−1,

√
3

2
xd

)

and
B(x1, . . . , xd) =

(
3x1,

1√
3
x2, . . . ,

1√
3
xd−1,

√
3xd

)
.

ThusKn,Ω > kn,Ω(0) ∼ p2. Moreover, for all x ∈ Ω there exists an affine transformation T such that detT > 2−d,
T (Ω) ⊂ Ω and T (0) = x, so Kn,Ω ∼ p2.

Remark 4.39. It is easily seen that for domains having a cusp that points outside, the value of Kn may grow
as fast as any polynomial, depending on the order of cuspitality. For instance, given α ∈ (0, 2], according to
Theorems 4.29 and 4.33, one has

kn,Rα,...,α(0) ∼ p1+ 2−α
α (d−1),

so that Kn,Rα,...,α > c p
1+ 2−α

α (d−1).

4.6 Numerical illustration

In this section we give numerical illustrations of the offline and online sampling strategies in the particular
case of algebraic polynomials and for different domains. As in the previous section, we consider spaces of
polynomials of fixed total degree Vn = Rp[X1, X2] as defined by (4.37).

The three considered domains are

1. Ω := {x ∈ [−1, 1]2 : |x|2 6 2
π}, the ball of area 2.

2. Ω := {x ∈ [−1, 1]2 : 0 6 |x1| − x2 6 1}, a polygon with a re-entrant corner at (0, 0).

3. Ω := {x ∈ [−1, 1]2 : 0 6
√
|x1| − x2 6 1}, a domain with a re-entrant cusp at (0, 0).

The measure µ for the error metric L2(Ω, µ) is the uniform probability measure 1
|Ω|dx = 1

2dx on the considered
domains. In all three cases, the domain Ω is included in the unit cube Q = [−1, 1]2, and described by algebraic
inequalities. Thus, sampling according to µ is readily performed by uniform sampling on Q, which is done
separately on the two coordinates, followed by rejection when x /∈ Ω.

The above three domains are instances of smooth, Lipschitz and cuspital domains, respectively. They are
meant to illustrate how the smoothness of the boundary affects the amount of sample needed in the offline
state, as rigorously analyzed in the previous section. On these particular domains, we are actually able to
exactly integrate polynomials, and therefore in principle to compute the exact orthogonal polynomials ϕj up
to round-off error due to the orthogonalization procedure. In our numerical tests, the considered total degrees
are p = 0, 1, . . . , 20, therefore n = np = 1, 3, 6, . . . , 231. The intermediate values of n between np and np+1

are treated by complementing the space Vn with the monomials Xα1
1 Xα2

2 for α1 + α2 = p + 1 in the order
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Figure 4.1 – The three domains (disc, polygon, cusp) and the function kn for n = 231.

α2 = 0, . . . , p + 1. For such values, we could compute the ϕj using Cholesky factorization with quadruple
precision, and check that |〈ϕj , ϕk〉 − δj,k| 6 10−16, that is, orthonormality holds up to double precision.

We may thus compute for each value of n the exact inverse Christoffel function kn and optimal measure
σ∗ = kn µ. Figure 4.1 displays the three domains and the value of kn for the maximal value n = 231 which,
as explained by the results in Section 4.5, grows near to the boundary, faster at the outward corners (and even
faster at outward cusps), and slower in smooth regions or at re-entrant singularities.

This exact computation allows us to compare the optimal sampling strategy based on σ∗ and the more
realistic strategy based on σ̃ which is computed from the approximate inverse Christoffel function k̃n derived
in the offline stage. We next show that both strategies perform similarly well in terms of instance optimality
at near-optimal sampling budget. We stress however that for more general domains where exact integration of
polynomials is not feasible, only the second strategy based on k̃n is viable.

4.6.1 Sample complexity of the offline stage

We first illustate the sample complexity M in the offline stage of Algorithm 1. As discussed in § 4.3.2, a
sufficient condition to ensure the framing (4.22) between kn and k̃n is the matrix framing property (4.26) which
expresses the fact that the condition number of GM satisfies the bound

κ(GM ) 6
c2
c1
.

For the constants c1 = 2/3 and c2 = 2, this occurs with high probability when M is larger than Kn, or a known
upper bound B(n), multiplied by logarithmic factors, as expressed by (4.27).

Figure 4.2 – Conditioning of the matrix GM for the disc (left), polygon (center) and cusp (right) domains,
averaged over 100 realizations, with theoretical value ofMsuf(n) (full curve) and adjusted valueMadj(n) (dashed
curve). The x-coordinate stands for n and the y-coordinate for M ; moreover, the plotted values are saturated
at 10 since we are only interested in small condition numbers.
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Figure 4.2 displays the condition number κ(GM ), averaged over 100 realizations of the offline sample
{y1, . . . , yM}, as a function of n and M > n, for the three considered domains. We observe a transition
region that illustrates the minimal offline sampling budget Mmin(n) that should be practically invested in or-
der for GM to be well conditioned. For example, if Mmin(n) is defined as the minimal value of M such that
E(κ(GM )) 6 3, this value can be estimated and visualized on Figure 4.2 as the transition to the dark blue color.

We also draw in full line the value of the sufficient value

Msuf(n) := γ B(n) ln(2n/ε),

for ε = 10−2 where B(n) is the upper bound for Kn derived from the theoretical analysis of Section 4.5.
This upper bound is 3n3/2 for the disc in view of (4.41) and 2n2 for the polygonal domain by application of
Proposition 4.20 with β = 1

2 , since Ω is the union of two parallelograms of equal size. While the sampling
budget m = Msuf(n) guarantees that κ(GM ) 6 3 with high probability —here 0.99— the plots reveal that this
budget is by far an over-estimation of Mmin(n).

We draw in dashed line the adjusted values Madj(n) = CadjMsuf(n) where the multiplicative constant is
picked as small as possible with the constraint of still fitting the requirement E(κ(GM )) 6 3, thus better fitting
the minimal budget Mmin(n). We find that constant Cadj is approximately 1

45 for the disc and 1
120 for the

polygon. It is even smaller for the cusp domain, for which Theorem 4.29 with α1 = 1
2 yields an upper bound of

the form B(n) = Cn3 with a constant C that can be numerically estimated but turns out to be very pessimistic.
In summary, the offline sampling budget Msuf(n) suggested by the theoretical analysis is always pessimistic

by a large multiplicative constant. Let us remind that the value Mmin(n) is typically not accessible to us since
GM and its condition number cannot be exactly evaluated for more general domains Ω.

Figure 4.3 – Conditioning of the matrix T for the disc (left), polygon (center) and cusp (right) domains, and
value of Memp(n) (dashed curve), averaged over 100 realizations.

This state of affair justifies the use of the empirical method outlined in § 4.3.3 for selecting a good value ofM .
Recall that this approach consists in raising M until the conditioning of the computable matrix T becomes less
than some prescribed value, for example κ(T ) 6 3. Figure 4.3 displays the conditioning κ(T ) again averaged
over 100 realizations of the offline sample, as well as the curve showing the empirical value Memp(n) which
corresponds to the smallest value of M such that κ(T ) 6 3. It reveals the relevance of the empirical approach:
due to the very good fit between κ(T ) and κ(GM ), the value Memp(n) appears as a much sharper estimate for
Mmin(n) than Msuf(n).

4.6.2 Sample complexity of the online stage

We next study the sample complexity m of the online stage of Algorithm 1 through the conditioning of the
matrix Gm = (〈ϕj , ϕk〉m)16j,k6n, where 〈·, ·〉m is the inner product associated to the discrete norm

‖v‖2m :=
1

m

m∑
i=1

w(xi) |v(xi)|2.
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For the sampling measure σ and weight w, we both consider:
(i) The optimal sampling measure dσ∗ := kn dµ and weight w∗ = 1/kn, which, for these particular domains,

can be exactly computed from the ϕj , but are not accessible for more general domains.

(ii) The empirical sampling measure dσ̃ := k̃ndµ and weight w̃ = 1/k̃n where k̃n has been obtained from the
offline stage, using the previously described empirical choice of M .

Figure 4.4 – Conditioning of Gm = 〈ϕj , ϕk〉m depending on m and n for the disc (left), polygon (center)
and cusp (right) domains, using an average over 100 realizations with kn (up), or a single realization with the
estimated k̃n (down).

Figure 4.4 displays the condition number κ(Gm), as a function of m and n, for both choices and the
three domains. In order to illustrate the fluctuations of κ(Gm), we display an averaging over 100 realizations
when using kn, and one single realization when using k̃n. While the behaviour for a single realization is more
chaotic, we find that in both case, as expected, the online sampling budget m(n) which ensures that Gm is well
conditioned, for example κ(Gm) 6 3, grows linearly with n (up to logarithmic factors), now independently of
the domain shape.

4.6.3 Instance and budget optimality
In order to illustrate the achievement of our initial goal of instance and budget optimality, we consider

the approximation in a polynomial space Vn = Rp[X1, X2] of a function u that consists of a polynomial part
Pnu ∈ Vn and a residual part P⊥n u ∈ V ⊥n that are both explicitly given in terms of their expansions

Pnu =

n∑
j=1

cjϕj ,

and
P⊥n u =

∑
j>n+1

cjϕj .
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For numerical testing, we take only finitely many non-zero cj in this second expansion and adjust them so that∑
j>n+1 |cj |2 = 10−4. Thus, the best approximation error has value

en(u)L2 = ‖u− Pnu‖L2 = ‖P⊥n u‖L2 = 10−2.

We study the mean-square error E(‖u − Pmn u‖2L2) as a function of m, and compare the different sampling
strategies through their ability to reach this ideal benchmark.

Figure 4.5 – Mean-square reconstruction error for the disc (left), polygon (center) and cusp (right) domains,
with total polynomial degree p = 15, and sampling measures µ (blue), σ∗ (orange), σ̃ (green). Horizontal red
line: best approximation error en(u)2

L2 = 10−4. Vertical black line: polynomial dimension n = 136.

Figure 4.5 displays the error curves (obtained by averaging ‖u−Pmn u‖2L2 over 100 realizations) for the three
domains and polynomial degree p = 15 that corresponds to the dimension n = 136. For all domains, we observe
that the best approximation error is attained up to multiplicative factor 2 with a sampling budget m that is
thrice larger than n, when using either the optimal sampling measure σ∗ based on kn or the measure σ̃ based
on k̃n obtained in the offline stage Algorithm 1. This does not occur when sampling according to the uniform
measure µ: the error remains orders of magnitude above the best approximation error and this effect is even
more pronounced as the domain becomes singular. This reflects the fact that with the uniform sampling, the
budget m needs to be larger than nKn, which has faster growth with n for singular domains.



Chapter 5

Optimal pointwise sampling for L2

approximation

Abstract. Given a function u ∈ L2 = L2(Ω, µ), where µ is a measure on a set Ω, and a linear subspace
Vn ⊂ L2 of dimension n, we show that near-best approximation of u in Vn can be computed from a near-optimal
budget of Cn pointwise evaluations of u, with C > 1 a universal constant. The sampling points are drawn
according to some random distribution, the approximation is computed by a weighted least-squares method,
and the error is assessed in expected L2 norm. This result improves on the results in [59, 85] which require a
sampling budget that is sub-optimal by a logarithmic factor, thanks to a sparsification strategy introduced in
[128, 140]. As a consequence, we obtain for any compact class K ⊂ L2 that the sampling number ρrand

Cn (K)L2

in the randomized setting is dominated by the Kolmogorov n-width dn(K)L2 . While our result shows the
existence of a randomized sampling with such near-optimal properties, we discuss remaining issues concerning
its generation by a computationally efficient algorithm.

5.1 Introduction
We study the approximation of a function u ∈ L2(Ω, µ), where µ is a measure on a set Ω, by an element ũ

of Vn, a subspace of L2(Ω, µ) of finite dimension n, based on pointwise data of of u. Therefore, to construct ũ,
we are allowed to evaluate u on a sample of m points (x1, . . . , xm) ∈ Ωm. In addition, we consider randomized
sampling and reconstruction, in the sense that the sample will be drawn according to a distribution σm over
Ωm, so the error u − ũ should be evaluated in some probabilistic sense. For the sake of notational simplicity,
having fixed Ω and µ, we write throughout the chapter

L2 := L2(Ω, µ) and ‖v‖L2 :=

(ˆ
Ω

|v|2dµ
)1/2

,

as well as
en(u)L2 := min

v∈Vn
‖u− v‖L2 .

One typical applicative setting is the reconstrution of multivariate functions, which corresponds to Ω being a
domain in Rd. Our main result is the following:

Theorem 5.1. For some universal constants C,K > 1, and for any n-dimensional space Vn ⊂ L2, there exists
a random sample x1, . . . , xm with m 6 Cn and a reconstruction map R : Ωm × Cm 7→ Vn, such that for any
u ∈ L2, it holds

E
(
‖u− ũ‖2L2

)
6 Ken(u)2

L2 (5.1)

where ũ := R(x1, . . . , xm, u(x1), . . . , u(xm)).

The reconstruction map R is obtained through a weighted least-squares method introduced in [59], which
has already been discussed in several papers, see [5, 85, 86, 132, 133, 138, c]. The weights involved are given by

105
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the expression

w : x ∈ Ω 7→ n min
v∈Vn

‖v‖2L2

|v(x)|2
=

n∑n
j=1 |ϕj(x)|2

, (5.2)

where the last formula holds for any L2-orthonormal basis (ϕ1, . . . , ϕn) of Vn. Up to the factor n, w is the
Christoffel function associated to the space Vn and the space L2(Ω, µ). The weighted least-squares solution is
then simply defined as

ũ := arg min
v∈Vn

1

m

m∑
i=1

w(xi)|u(xi)− v(xi)|2.

Introducing the discrete `2 norm

‖v‖2m :=
1

m

m∑
i=1

w(xi)|v(xi)|2

and its associated scalar product 〈·, ·〉m, we get a computable formula for ũ:

ũ = arg min
v∈Vn

‖u− v‖2m = Pmn u,

where Pmn denotes the orthogonal projection on Vn with respect to 〈·, ·〉m. Note that, strictly speaking, ‖ · ‖m
is not a norm over L2, however the existence and uniqueness of Pmn will be ensured by the second condition in
Lemma 5.2 below, see Remark 5.6. Therefore our main achievements lie in the particular choice of the random
sample (x1, . . . , xm) ensuring near-optimal approximation error and sampling budget in Theorem 5.1.

The proof of Theorem 5.1 relies on two conditions: first, the expectation of ‖ · ‖2m has to be bounded by
‖ · ‖2L2 up to a constant. Second, an inverse bound should hold almost surely, instead of just in expectation, for
functions in Vn. More precisely, one has:

Lemma 5.2. Assume that m and the law σm of (x1, . . . , xm) are such that

E(‖v‖2m) 6 α ‖v‖2L2 , v ∈ L2, (5.3)

and
‖v‖2L2 6 β ‖v‖2m a.s., v ∈ Vn. (5.4)

Then
E(‖u− ũ‖2L2) 6 (1 + αβ) en(u)2

L2 . (5.5)

Proof. Denote Pnu the orthogonal projection of u on Vn with respect to the L2(Ω, µ) norm. Applying Pythagoras
theorem both for ‖ · ‖L2 and ‖ · ‖m, one obtains

E(‖u− ũ‖2L2) = ‖u− Pnu‖2L2 + E(‖Pnu− ũ‖2L2)

6 ‖u− Pnu‖2L2 + β E(‖Pnu− ũ‖2m)

= ‖u− Pnu‖2L2 + β E(‖Pnu− u‖2m − ‖u− ũ‖2m)

6 ‖u− Pnu‖2L2 + β E(‖Pnu− u‖2m)

6 (1 + αβ) ‖u− Pnu‖2L2 ,

which proves (5.5) since ‖u− Pnu‖L2 = en(u)L2 .

In Section 5.2, we recall how both conditions (5.3) and (5.4) can be obtained with m quasi-linear in n, that
is, of order n log n. We reduce this budget to m of order n in Section 5.3, by randomly subsampling the set
of evaluation points, based on results from [128, 140]. The proof of Theorem 5.1 follows. We compare it to
the recent results [114, 121, 137] in Section 5.4, in particular regarding the domination of sampling numbers by
n-widths. We conclude in Section 5.5 by a discussion on the offline computational cost for practically generating
the sample x1, . . . , xm.
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5.2 Weighted least-squares

A first approach consists in drawing the xi independently according to the same distribution σ, that is,
taking σm = σ⊗m. The natural choice for σ is dσ = 1

wdµ, which is a probability measure since

ˆ
Ω

1

w
dµ =

1

n

n∑
j=1

ˆ
Ω

|ϕj(x)|2dµ(x) =
1

n

n∑
j=1

‖ϕj‖2L2 = 1.

With this sampling measure,

E(‖v‖2m) =
1

m

m∑
i=1

ˆ
Ω

w(x)|v(x)|2dσ =

ˆ
Ω

|v|2dµ = ‖v‖2L2 ,

so condition (5.3) is ensured with α = 1. To study the second condition, we introduce the Hermitian positive
semi-definite Gram matrix

Gm := (〈ϕj , ϕk〉m)16j,k6n

and notice that (5.4) is equivalent to

|ν|2 =
∥∥∥ n∑
j=1

νjϕj

∥∥∥2

L2
6 β

∥∥∥ n∑
j=1

νjϕj

∥∥∥2

m
= β ν†Gmν, ν ∈ Cn,

which in turn rewrites as λmin(Gm) > β−1.
By the central limit theorem, as m tends to infinity, the scalar products 〈ϕj , ϕk〉m converge almost surely

to 〈ϕj , ϕk〉 = δj,k, so Gm converges to the identity matrix, and we expect that λmin(Gm) > β−1 holds for β > 1
with high probability asm gets large. A quantitative formulation can be obtained by studying the concentration
of Gm around I in the matrix spectral norm

‖A‖2 := max{|Ax| : |x| = 1}.

This is based on the matrix Chernoff bound, see [7, 176] for the original inequality and [c], Lemma 2.1, for its
application to our problem:

Lemma 5.3. For m > 10n ln( 2n
ε ), if (x1, . . . , xm) ∼ σ⊗m, then

P
(
‖Gm − I‖2 6

1

2

)
> 1− ε.

In particular, P
(
λmin(Gm) > 1

2

)
> 1− ε.

Thus assumption (5.4) is satisfied with β = 2, but only with probability 1− ε. As we would like it to hold
almost surely, we condition the random sample points to the event

E :=

{
‖Gm − I‖2 6

1

2

}
.

In practice, the conditional sample can be obtained through a rejection method, which consists in discarding
the whole sample (x1, . . . , xm) and redrawing it according to the same probability measure σm = σ⊗m, as many
times as needed, until event E is attained. We then define ũ as the weighted least-square estimator based on
this conditioned sample, that is

ũ := E(Pmn u|E). (5.6)

This approach was introduced and analyzed in [85], see in particular Theorem 3.6 therein. A simpler version of
their result, sufficient for our purposes, is the following:
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Lemma 5.4. For m > 10n ln(4n), if (x1, . . . , xm) is drawn according to the conditional law σ⊗m|E, then

‖Gm − I‖2 6
1

2
,

and ũ defined in (5.6) satisfies
E(‖u− ũ‖2L2) 6 5 en(u)2

L2 .

Proof. The first part immediately results from the definition of E, and implies condition (5.4) with β = 2.
Moreover, Pσ⊗m(E) > 1

2 by Lemma 5.3 with ε = 1
2 , so for any v ∈ L2(Ω, µ),

E(σ⊗m|E)(‖v‖2m) = Eσ⊗m(‖v‖2m|E) =
Eσ⊗m(‖v‖2mχE)

Pσ⊗m(E)
6

Eσ⊗m(‖v‖2m)

Pσ⊗m(E)
6 2‖v‖2L2 ,

so condition (5.3) holds with α = 2. The conclusion follows from Lemma 5.2.

Remark 5.5. The number of redraws k needed to obtain the conditional sample follows a geometric law of
expectation E(k) = P(E)−1 = (1− ε)−1, that is E(k) 6 2 for the particular choice of m in the above lemma. It
should be noted that u is not evaluated at the intermediately generated samples not complying with event E.
This part of the sampling algorithm thus counts as an offline cost only.

Remark 5.6. Given a sample x1, . . . , xm satisfying E, the fact that the Gramian Gm is non-singular implies
that we can uniquely define

Pmn u =

n∑
k=1

ckϕk,

since c = (c1, . . . , cn)† solves the system of normal equations

Gmc = b,

where the right-side vector has coordinates

bj = 〈ϕj , u〉m =
1

m

m∑
i=1

w(xi)ϕj(x
i)u(xi).

If u is in L2, the u(xi) are only defined up to a representer, however since two representers u′ and u′′ coincide
µ-almost surely, we find that ũ = E(Pmn u|E) is well defined almost surely.

5.3 Random subsampling

With Lemma 5.4, we already have an error bound similar to that of Theorem 5.1. However, the sampling
budget is larger than n by a logarithmic factor, which we seek to remove in this section. To do so, we partition
the conditional sample into subsets of size comparable to n, and randomly pick one of these subsets to define a
reduced sample. An appropriate choice of the partitioning is needed to circumvent the main obstacle, namely
the preservation of condition (5.4). It relies on the following lemma, taken from Corollary B of [140], itself a
consequence of Corollary 1.5 in [128]. The relevance of these two results to sampling problems were exploited
in [137] and noticed in [104], respectively.

Lemma 5.7. Let a1, . . . , am ∈ Cn be vectors of norm |ai|2 6 δm for i = 1, . . . ,m, satisfying

αI 4
1

m

m∑
i=1

aia
†
i 4 βI
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for some constants δ < α 6 β. Then there exists a partition of {1, . . . ,m} into two sets S1 and S2 such that

1− 5
√
δ/α

2
α I 4

2

m

∑
i∈Ss

aia
†
i 4

1 + 5
√
δ/α

2
β I, s = 1, 2.

In Lemma 2 of [140] this result is applied inductively in order to find a smaller set J ⊂ {1, . . . ,m} of
cardinality |J | 6 cn such that

C−1I 4
1

n

∑
i∈J

aia
†
i 4 CI,

for some universal constants c, C > 1. We adapt this approach in order to obtain a complete partition of
{1, . . . ,m} by sets having such properties.

Lemma 5.8. Let a1, . . . , am ∈ Cn be vectors of norm |ai|2 = n for i = 1, . . . ,m, satisfying

1

2
I 4

1

m

m∑
i=1

aia
†
i 4

3

2
I.

Then there exists an integer L and a partition of {1, . . . ,m} into 2L sets J1, . . . , J2L such that

c0I 4
1

n

∑
i∈Js

aia
†
i 4 C0I, 1 6 s 6 2L, (5.7)

with universal constants c0 and C0. In addition, each set Js satisfies

|Js| 6 C0n. (5.8)

Proof. The cardinality estimate (5.8) follows from the upper inequality in (5.7) by taking the trace

C0n = Tr(C0I) >
1

n

∑
i∈Js

Tr(aia
†
i ) =

1

n

∑
i∈Js

|ai|2 = |Js|.

For the proof of (5.7), if n/m > 1/200, then the result holds with L = 0, J1 = {1, . . . ,m}, c0 = 1/2 and
C0 = 300. Now assuming δ := n/m < 1/200, define by induction α0 = 1

2 , β0 = 3
2 , and

α`+1 := α`
1− 5

√
δ/α`

2
, β`+1 := β`

1 + 5
√
δ/α`

2
, ` > 0.

As α`+1 6
α`
2 , the minimal integer L such that αL 6 100 δ is well defined, and satisfies

αL = αL−1
1− 5

√
δ/αL−1

2
> 100 δ

1− 5
√

1/100

2
= 25 δ.

Moreover α` > 2L−`−1αL−1 > 2L−`−1 100 δ for ` = 0, . . . , L− 1, so

βL = 3αL

L−1∏
`=0

1 + 5
√
δ/α`

1− 5
√
δ/α`

6 Cδ,

with C := 300
∏
`>2

1+
√

2
−`

1−
√

2
−` .

Finally, we inductively define partitions {S`1, . . . , S`2`} for 0 6 ` 6 L. We start with S0
1 = {1, . . . ,m}, and

for any ` < L and 1 6 s 6 2`, noticing that

α`I 4
1

m

∑
i∈S`s

aia
†
i 4 β`I,
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we apply Lemma 5.7 to split S`s into subsets S`+1
2s−1 and S`+1

2s satisfying the same property. At the last step, we
define

Js = SLs .

The framing (5.7) thus holds with c0 = αL/δ > 25 and C0 = βL/δ 6 11000.

Proof of Theorem 5.1. Consider (x1, . . . , xm) ∼ (σ⊗m|E) the conditioned sample introduced in the previous
section, and define

ai =
(√

w(xi)ϕj(x
i)
)

16j6n

the corresponding normalised random vectors. As E holds almost surely,

1

2
I 4 Gm =

1

m

m∑
i=1

aia
†
i 4

3

2
I,

and

|ai|2 = w(xi)

n∑
j=1

|ϕj(xi)|2 = n

thanks to the choice of weights (5.2), so the assumptions of Lemma 5.8 are satisfied. Applying this lemma, we
obtain sets J1, . . . , J2L partitioning {1, . . . ,m}. Let r be a random variable taking value s ∈ {1, . . . , 2L} with
probability ps = |Js|/m, and randomly subsample {x1, . . . , xm} by keeping only the points

{xi : i ∈ Jr}.

Then the budget condition |Jr| 6 C0n is satisfied according to (5.8). Here, we define the discrete norm as

‖v‖2Jr :=
1

|Jr|
∑
i∈Jr

w(xi)|v(xi)|2,

and the associated Gram matrix

GJr := (〈ϕj , ϕk〉Jr )16j,k6n =
1

|Jr|
∑
i∈Jr

aia
†
i .

The weighted least-squares estimate is now defined as

ũ := arg min
v∈Vn

1

|Jr|
∑
i∈Jr

w(xi)|u(xi)− v(xi)|2,

and it thus depends on the random draws of both (x1, . . . , xm) ∈ Ωm and 1 6 r 6 2L. Condition (5.4) follows
from the lower inequality in (5.7) with β = C0

c0
since

GJr >
c0n

|Jr|
I >

c0
C0
I.

Finally, we have for any v ∈ L2(Ω, µ)

E(σ⊗m|E),L(r)(‖v‖2Jr ) = E(σ⊗m|E)

 2L∑
s=1

ps
|Js|

∑
i∈Js

w(xi)|v(xi)|2
 = E(σ⊗m|E)(‖v‖2m) 6 2 en(u)2

L2 ,

so condition (5.3) holds with α = 2. Applying Lemma 5.2, we conclude that (5.1) holds with C = C0 and
K = 1 + 2C0

c0
. �
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5.4 Comparison with related results
In order to compare Theorem 5.1 with several recent results [104, 113, 137, 168], we consider its implication

when the target function u belongs to a certain class of functions K that describes some prior information on u,
such as smoothness.

Recall that if V is a Banach space of functions defined on Ω and K ⊂ V is a compact set, its Kolmogorov
n-widths are defined by

dn(K)V := inf
dimVn=n

sup
u∈K

inf
v∈Vn

‖u− v‖V ,

where the first infimum is taken over all linear spaces Vn ⊂ V of dimension n. This quantity thus describes the
best approximation error that can be achieved uniformly over the class K by an n-dimensional linear space.

On the other hand, building a best approximation of u requires in principle full knowledge on u, and we want
to consider the situation where we only have access to a limited number of point evaluations. This leads us to
the notion of sampling numbers, also called optimal recovery numbers, both in the deterministic and randomized
settings.

For deterministic samplings, we define the (linear) sampling numbers

ρm(K)V := inf
x1,...,xm

inf
R∈L(Cm,V )

max
u∈K
‖u−R(u(x1), . . . , u(xm))‖V ,

where the infimum is taken over all samples (x1, . . . , xm) ∈ Ωm and linear reconstruction maps R : Cm → V .
For random samplings, we may define similar quantities by

ρrand
m (K)2

V := inf
σm

inf
R:Ωm×Cm→V

max
u∈K

E
(
‖u−R(x1,...,xm)(u(x1), . . . , u(xm))‖2V

)
,

where the infimum is taken over all random sampling laws σm ∈ Prob(Ωm) and linear reconstruction maps
R(x1,...,xm) ∈ L(Cm, V ). Note that a deterministic sample can be viewed as a particular choice of random
sample following a Dirac distribution in Ωm, and therefore

ρrand
m (K)V 6 ρm(K)V .

Sampling numbers may also be defined without imposing the linearity of R, leading to smaller quantities. In
what follows, we shall establish upper bounds on the linear sampling numbers, which in turn are upper bounds
for the nonlinear ones. We refer to [142] for an introduction and study of sampling numbers in the context
of general linear measurements, and to [143, 144] that focus on point evaluations, also termed as standard
information.

By optimizing the choice of the space Vn used in Theorem 5.1, we deduce that, for V = L2 = L2(Ω, µ), the
sampling numbers in the randomized setting are dominated by the Kolmogorov n-widths.

Corollary 5.9. For any compact set K ⊂ L2, one has

ρrand
Cn (K)L2 6 Kdn(K)L2 , (5.9)

where C and K are the same constants as in Theorem 5.1.

Remark 5.10. The bound (5.9) cannot be attained with independent and identically distributed sampling
points x1, . . . , xm. Indeed, consider the simple example, already evoked in [176], where Ω = [0, 1], µ is the
Lebesgue measure,

Vn =

{ n∑
i=1

ciχ[ i−1
n , in ] : (c1, . . . , cn) ∈ Cn

}
is a space of piecewise constant functions, and K = {u ∈ Vn : ‖u‖L∞ 6 1}. Then K ⊂ Vn so dn(K)L2 = 0, and
an exact reconstruction Ru = u is possible if and only if the sample contains at least one point in each interval[
i−1
n , in

[
. Thus ρdet

n (K)L2 = 0, but in the case of i.i.d measurements, m has to grow like n log n to ensure this
constraint, due to the coupon collector’s problem.

Remark 5.11. In [106], a result similar to Theorem 5.1 is obtained under the extra assumption of a uniform
bound on en(u)L2/e2n(u)L2 , yielding the validity of (5.9) assuming a uniform bound on dn(K)L2/d2n(K)L2 .
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The recovery method used in [106] is not of least-square type, but rather an elaboration of the pseudo-spectral
approach that would simply approximate the inner products 〈u, ϕj〉 =

´
Ω
uϕj dµ by a quadrature, using a

hierarchical approach introduced in [185].

Ideally, one would like a “worst case” or “uniform” version of Theorem 5.1, of the form

ρCn(K)L2 6 Kdn(K)L2 , (5.10)

but it is easily seen that such an estimate cannot be expected for general compact sets of L2, due to the fact
that pointwise evaluations are not continuous in L2 norm.

It is however possible to recover such uniform estimates by mitigating the non-achievable estimate (5.10) in
various ways. One first approach, developed in [121, 168], gives an inequality similar to (5.10), with dn(K)L2

replaced by dn(K)L∞ . It is based on the following lemma, see Theorem 2.1 in [168], which we recall for
comparison with our Lemma 5.2:

Lemma 5.12. Assume that µ is a measure of finite mass µ(Ω) <∞, that the constant functions belong to Vn,
and that there exists a sample {x1, . . . , xm} and weights wi such that the discrete norm

‖v‖2m =
1

m

m∑
i=1

wi|v(xi)|2

satisfies a framing
β−1 ‖v‖2L2 6 ‖v‖2m 6 α ‖v‖2L2 , v ∈ Vn. (5.11)

Then
‖u− Pmn u‖L2 6

√
µ(Ω)

(
1 +

√
αβ
)
en(u)L∞ ,

where en(u)L∞ = minv∈Vn ‖u− v‖L∞ .

Proof. For any v ∈ L2, we have ‖v‖2L2 6 µ(Ω)‖v‖2L∞ , and as 1 ∈ Vn,

‖v‖2m 6 ‖1‖2m ‖v‖2L∞ 6 α ‖1‖2L2 ‖v‖2L∞ = αµ(Ω) ‖v‖2L∞ .

Hence

‖u− Pmn u‖L2 6 ‖u− v‖L2 + ‖v − Pmn u‖L2

6 ‖u− v‖L2 +
√
β ‖v − Pmn u‖m

6 ‖u− v‖L2 +
√
β ‖v − u‖m

6
(√

µ(Ω) +
√
αβµ(Ω)

)
‖u− v‖L∞ ,

and we conclude by optimizing over v ∈ Vn.

Remark 5.13. The assumption that the constant functions belong to the space Vn can be avoided by adding
a constant term in the density, which results in bounded weights. The constant αµ(Ω) is then replaced by the
bound on the weights, see [23].

Here, in contrast to the derivation of (5.5) in Lemma 5.2, one only uses the framing property (5.11), and
does not need the condition E(‖v‖2m) 6 α‖v‖2L2 . For this reason, one may achieve the above objective with a
simpler sparsification approach proposed in [24] and adapted in [121], which performs a greedy selection of the
points xi within the sample {x1, . . . , xm}, and defines adapted weights wi. If the initial sample satisfies

1

2
I 4 Gm 4

3

2
I,

then, for any r > 1 the selection algorithm produces a sample with at most rn points such that (5.11) holds
with α = 3

2 (1 + 1/
√
r)

2 and β−1 = 1
2 (1− 1/

√
r)

2.
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Optimizing the choice of Vn (but imposing that constant functions are contained in this space), this leads
to the following comparison result between deterministic optimal recovery numbers in L2 and n-widths in L∞:
for any compact set K ∈ C(Ω), one has

ρcn(K)L2 6 C
√
µ(Ω) dn−1(K)L∞ , (5.12)

where C depends on c > 1. For c = 2, one can take C = 11. We refer to [121, 168] where this type of result is
established.

Another approach consists in making pointwise evaluations continuous by restriction to the case where
K = BH is the unit ball of a separable reproducing kernel Hilbert space H ⊂ L2, and assuming that the
sequence (dn(BH)L2)n>1 is `2-summable. The following result from [137], also based on the sparsification
techniques from [128], improves on a bound found in [113]

ρCn(BH)2
L2 6 K

log n

n

∑
k>n

dk(BH)2
L2 , (5.13)

More general compact classes K of L2, such that point evaluations are well defined on functions of K, are
considered in [114], where the following general result is established: if

dn(K)2
L2 6 Cn−α ln(n+ 1)β , n ∈ N,

for some α > 1 and β ∈ R, then

ρn(K)2
L2 6 C ′n−α ln(n+ 1)β+1, n ∈ N. (5.14)

In the above results, the additional logarithmic factor appears as a residual of the result obtained before
sparsification, contrarily to the bounds (5.9) and (5.12), which do not explicitely depend on the size of the
initial sample Y . This results in a gap of a factor log n between (5.13) or (5.14) and known lower bounds for
ρn(K)2

L2 , see [137].

5.5 Computational aspects

The various results (5.9), (5.12), (5.13), (5.14) ensure the existence of good sampling and reconstruction
algorithms in various settings. We end by a discussion on the computational cost of these strategies.

For the weighted least-squares methods from Section 5.2, the most expensive step consists in assembling the
matrix Gm as a sum of m matrices of size n, so the algorithmic complexity is of order O(mn2) = O(n3 log n).
Besides, to obtain E(Gm|E), this step may need to be repeated a few times, as explained in Remark 5.5, but
this only affects the offline complexity by a small random factor.

Note that we assumed that an orthogonal basis (ϕ1, . . . , ϕn) of Vn is explicitly known, which might not
be the case for irregular domains Ω. However, under reasonable assumptions on Ω or Vn, one can compute
an approximately orthogonal basis (ϕ̃1, . . . , ϕ̃n), either by performing a first discretization of Ω with a large
number of points, or by using a hierarchical method on a sequence of nested spaces V1 ⊂ · · · ⊂ Vn, see [5, 17, 85,
132, 133] and [c]. These additional steps have complexities O(Knn

3) and O(n4) respectively, where Kn is the
maximal value of the inverse Christoffel function 1

n

∑n
j=1 |ϕj |2, which might grow with n for certain choices of

spaces Vn. Results similar to Lemma 5.4 have been obtained in the above references, with (ϕj)16j6n replaced
by (ϕ̃j)16j6n.

One could stop at this point and compute the approximation ũ = E(Pmn u|E), which satisfies error bounds
both in expectation when comparing to en(u)L2 , see Lemma 5.4, or uniformly when comparing to en(u)L∞ , see
Theorem 1 (iii) in [59]. Once the measurements of u are performed, the computation of ũ requires to solve a
n× n linear system as in Remark 5.6, so the online stage takes a time O(τn log n+ n3), where τ is the cost of
each measurement of u.

However, in applications where the evaluation cost τ becomes very high (for example when each evaluation
x 7→ u(x) requires solving a PDE by some numerical code, or running a physical experiment), further reduction
of the size of the sample may prove interesting, and justifies the interest for sparsification methods. The greedy
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selection method from [24], which is used in [168] and leads to (5.12), has a complexity in O(mn3) = O(n4 log n),
but it can only be applied to the worst-case setting, with the uniform error bound en(u)L∞ .

On the other hand, the iterative splitting method that we have used in this chapter following the ideas from
[128, 137] is not easily implemented, and one obvious method consists in testing all partitions of {1, . . . ,m} into
sets S1 and S2 when applying Lemma 5.7. Note that this lemma is in practice used L times, with L = O(log log n)
since 2L = O(mn ) = O(log n). The algorithm consisting in subdividing the sample L times, each time checking
that the Gram matrices corresponding to S1 and S2 are well conditioned, and keeping one such subset at random,
thus has an exponential complexity O(2mn3) = O(ncn). Having a different strategy that would produce the
random sample in polynomial time is currently an open problem to us. Note that the hierarchical Monte-Carlo
approaches from [106, 185] have similar optimal error bounds with an optimal sampling budget, and without
exponential complexity in the generation of samples, however under the additional assumption that is described
in Remark 5.11.

We summarise these computational observations in the following table, which illustrates the conflicts be-
tween reducing the sampling budget, ensuring optimal approximation results, and maintaining a reasonable cost
for sample generation.

sampling
algorithm

sample
cardinality m

offline
complexity

E(‖u− ũ‖2L2)
∣∣∣

6 Cen(u)2
L2

‖u− ũ‖2L2

∣∣∣
6 Cen(u)2

L∞

conditioned
σ⊗m |E 10n log(4n) O(n3 log n) 3 3

+ deterministic
sparsification [24] (1 + ε)n O(n4 log n) 7 3

+ random
sparsification [128] Cn O(ncn)→ O(nr) ? 3 3

As a final remark, let us emphasize that although the results presented in this chapter are mainly theorical
and not practically satisfactory, due both to the computational complexity of the sparsification, and to the
high values of the numerical constants C and K in Theorem 5.1, they provide some intuitive justification to
the boosted least-squares methods presented in [85], which consist in removing points from the initial sample
as long as the corresponding Gram matrix Gm remains well conditioned. For instance, Lemma 5.7 allows to
keep splitting the sample even after L steps, if one still has a framing 1

2I 4 GJ 4 3
2I and a sufficiently large

ratio |J |/n. Nevertheless, it would be of much interest to find a randomized version of [24] giving a bound of
the form (5.9), since this would give algorithmic tractability, smaller values for C and K, and the possibility to
balance these constants in Theorem 5.1.



Chapter 6

A sharp upper bound for sampling
numbers in L2

Abstract. For a class K of complex-valued functions on a set Ω, we denote by ρn(K)L2 its sampling numbers,
i.e., the minimal worst-case error on K, measured in L2, that can be achieved with a recovery algorithm based
on n function evaluations. We prove that there is a universal constant c ∈ N such that, if K is the unit ball of
a separable reproducing kernel Hilbert space, then

ρcn(K)2
L2 ≤

1

n

∑
k>n

dk(K)2
L2 ,

where dk(K)L2 are the Kolmogorov widths (or approximation numbers) of K in L2. We also obtain similar
upper bounds for more general classes K, including all compact subsets of the space of continuous functions on
a bounded domain Ω ⊂ Rd, and show that these bounds are sharp by providing examples where the converse
inequality holds up to a constant. The results rely on the solution to the Kadison-Singer problem, which we
extend to the subsampling of a sum of infinite rank-one matrices.

6.1 Introduction and main results

The general question of how well point-wise evaluations perform for approximating a function, which is often
called sampling recovery or approximation using standard information, is a classical question in theoretical and
applied mathematics. A historical treatment and various basics may be found in the monographs [60, 64, 67,
167, 189] for general approximation theory and in [142–144] for information-based complexity. It is of particular
interest to compare the power of function evaluations with the power of optimal linear measurements (which
could be Fourier coefficients or derivatives), since the latter are well understood in many cases and easier
to handle from a theoretical point of view, while the first are of larger practical relevance. The quest for a
systematic comparison has attracted much attention recently. We will describe the history and related results
below after presenting the setting and the main results, see also Section 6.1.1.

The power of a given class of measurements is often expressed in terms of the minimal error achievable with
a given amount of such information. Here, we consider L2-approximation in a worst-case setting, so that these
minimal errors correspond to sampling numbers and Kolmogorov (or approximation) numbers, as we summarize
below.

Let (Ω,A, µ) be a measure space and L2 := L2(Ω,A, µ) be the space of square-integrable complex-valued
functions on Ω. Let K be a set of functions contained in L2. The Kolmogorov widths of K in L2 are defined by

dn(K)L2 := inf
`1,...,`n : K→C
φ1,...,φn∈L2

sup
u∈K

∥∥∥u− n∑
j=1

`j(u)φj

∥∥∥
L2
.

This is the worst-case error of an optimal approximation within a linear space of dimension n. It coincides

115
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with the nth approximation number (or linear width) of K, which is the worst-case error of an optimal linear
algorithm that uses at most n linear functionals as information, see Remark 6.5. On the other hand, the
sampling numbers are given by

ρm(K)L2 := inf
x1,...,xm∈Ω
ψ1,...,ψm∈L2

sup
u∈K

∥∥∥u− m∑
i=1

u(xi)ψi

∥∥∥
L2
,

i.e., ρm(K)L2 is the minimal worst-case error of linear algorithms based on m function evaluations. Therefore,
the task is to compare the numbers dn(K)L2 and ρm(K)L2 .

It is clear that we have ρn(K)L2 ≥ dn(K)L2 . Here, we aim for an upper bound on ρm(K)L2 in terms of the
numbers dn(K)L2 . We first describe the situation where K is the unit ball of a separable reproducing kernel
Hilbert space (RKHS). A priori, it is not clear whether such a bound is even possible. And indeed, there can
be no such bound in the case that (dn(K)L2) /∈ `2. More precisely, it is shown in [97] that for any non-negative
and non-increasing sequence (σn) /∈ `2 and any sequence (τm) tending to infinity, e.g. τm = ln lnm, there exists
a RKHS with unit ball K such that dn(K)L2 = σn for all n but lim supm→∞ τm · ρm(K)L2 > 0.

The situation is completely different when (dn(K)L2) ∈ `2, which is equivalent to assuming that the kernel
K of the Hilbert space has finite trace ˆ

Ω

K(x, x) dµ(x) <∞, (6.1)

see, e.g., [135]. Under this assumption, first upper bounds on ρm(K)L2 in terms of the numbers dn(K)L2 were
obtained more than 20 years ago in [184]. These upper bounds were later improved in [113, 117, 137]. On the
other hand, a lower bound from [95, Theorem 2] tells us how far these improvements might go: for every non-
negative and non-increasing (σn) ∈ `2, there exists a separable RKHS with unit ball K such that dn(K)L2 = σn
for all n ∈ N and

ρbn/8c(K)L2 >

√
1

n

∑
k>n

dk(K)2
L2 (6.2)

for infinitely many values of n ∈ N. Anctually, it turns out that this is already the worst possible scenario. The
main result of this chapter is an upper bound, which matches the above lower bound (6.2) up to a universal
constant, and which is true for any separable reproducing kernel Hilbert space.

Theorem 6.1. There is a universal constant c ∈ N such that the following holds. Let µ be a measure on a
set Ω and let K ⊂ L2(µ) be the unit ball of a separable RKHS on Ω such that the finite trace assumption (6.1)
holds. Then, for all n ∈ N, we have

ρcn(K)L2 ≤
√

1

n

∑
k>n

dk(K)2
L2 .

This settles the question on the power of standard information compared to general linear information for
the problem of L2-approximation on Hilbert spaces, and solves the open problems from [95, 113], Open Problem
140 in [144], as well as Outstanding Open Problem 1.4 in [67] for L2-approximation. The latter is discussed in
Example 6.28, where we consider tensor product spaces. We note that the case of Lp-approximation (p 6= 2) is
widely open. A slightly stronger version of Theorem 6.1 and explicit constants are given in Theorem 6.23.

Let us add that, in principle, Theorem 6.1 does only imply the existence of (linear) sampling algorithms
achieving the error bound. However, all upper bounds on ρm(K)L2 will be obtained by a suitable (unregularized)
least squares method, see Remark 6.7 and Section 6.5.

Theorem 6.1 is a direct continuation of the series of works initiated in [113], in which the sampling numbers
were bounded by

ρbcn lnnc(K)L2 ≤
√

1

n

∑
k>n

dk(K)2
L2 ,

see also [104, 177], and an improvement from [137], where the logarithmic oversampling was removed in exchange
for an additional factor

√
lnn on the right hand side.

The ingredients for the proof are still the existence of good point sets with O(n lnn) points from [113], and
a subsampling of O(n) points based on the solution to the Kadison-Singer problem [128]. The Kadison-Singer
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subsampling has already been applied for the related problem of sampling discretization in [121] (see [105] for a
survey) and was subsequently introduced to the study of sampling numbers in [137, 168]. In these papers, the
subsampling was, roughly speaking, only performed for a finite-dimensional sub-problem which resulted in the
excessive factor

√
lnn in [137]. The new ingredient here is an infinite-dimensional version of the subsampling

theorem that might be of independent interest, see Proposition 6.17.
If we apply Theorem 6.1 and the lower bound from [95] to sequences with polynomial decay, we obtain the

following characterization.

Corollary 6.2. Let K be the unit ball of a separable RKHS with

dn(K)L2 . n−α ln−β n (6.3)

for some α ≥ 1/2, β ∈ R and c > 0. Then

ρm(K)L2 .

{
m−α ln−βm if α > 1/2,

m−α ln−β+1/2m if α = 1/2 and β > 1/2.
(6.4)

Moreover, there exist classes K such that these bounds are sharp.

Here, an . bn means that there is a constant c > 0 such that an ≤ c bn for all but finitely many n ∈ N;
later we will also use the symbols & and �, which are defined accordingly. It is clear from Theorem 6.1 that
the hidden constant in (6.4) is given by the product of the hidden constant in (6.3) and a constant that only
depends on α and β.

We now turn to general function classes K that are assumed to satisfy the following assumption.
Assumption A. Let K be a class of complex-valued functions on a set Ω and let µ be a measure on Ω. We say
that K and µ satisfy Assumption A, if there is a metric on K such that K is continuously embedded into L2,
separable, and function evaluation u 7→ u(x) is, for each x ∈ Ω, continuous on K.

Note that Assumption A is satisfied, for example, if
— K is a separable subset of the space of bounded functions equipped with the maximum distance and the

measure µ is finite, or
— K is the unit ball of a separable normed space that is continuously embedded in L2 and on which function

evaluation at each point is a continuous functional, or
— K is a countable set of square-integrable functions, equipped with the discrete metric.

In this setting, we prove the following bound.

Theorem 6.3. Let 0 < p < 2. There is a constant cp ∈ N, depending only on p, such that for any K and µ
that satisfy Assumption A and all n ∈ N,

ρcpn(K)L2 ≤
(

1

n

∑
k>n

dk(K)pL2

)1/p

.

Theorem 6.3 is an improvement over [114], where again we removed the excessive logarithmic factor. We will
also show that the result is not true for p = 2, see Example 6.31. However, we provide a variant of Theorem 6.3,
under the weaker condition

(
(lnn)sdn(K)L2

)
∈ `2 for some s > 1/2, in Section 6.6.2. In Proposition 11 of the

very recent paper [109], one can find a more general result encompassing Theorems 6.3 and 6.27. This leads to
the following corollary.

Corollary 6.4. Let K and µ satisfy Assumption A and

dn(K)L2 . n−α ln−β n (6.5)

for some α > 0 and β ∈ R. Then

ρm(K)L2 .


m−α ln−βm if α > 1/2,

m−α ln−β+1m if α = 1/2 and β > 1,

1 otherwise.

(6.6)

Moreover, there exist classes K such that these bounds are sharp.
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Again, the hidden constant in (6.6) is given by the product of the hidden constant in (6.5) and a constant
that only depends on α and β. The difference compared to unit balls of RKHSs is the case α = 1/2, where
we need β > 1 instead of β > 1/2, and lose a factor lnn instead of

√
lnn, see Example 6.30. In addition, if

(dn(K)L2) /∈ `2, then ρm(K)L2 might be bounded below by a constant, opposite to the RKHS setting where
ρm(K)L2 tends to zero as soon as dn(K)L2 does, see [97]. However, for α > 1/2, the results for general classes
are just as strong as before.

6.1.1 Remarks and related literature

We want to add several remarks on the history of the result and related topics.

Remark 6.5 (Equivalent widths). There are several quantities to measure the “width” of a set K. Although
we work here with the Kolmogorov numbers dn(K)L2 as benchmark, let us add that these quantities coincide
in L2 with the approximation numbers of K, i.e.

dn(K)L2 = an(K)L2 := inf
`1,...,`n : K→C linear

φ1,...,φn∈L2

sup
u∈K

∥∥∥u− n∑
j=1

`j(u)φj

∥∥∥
L2
,

as the infimum in the definition of dn(K)L2 for given φ1, . . . , φn is attained by the L2-orthogonal projection onto
their span, which is linear in any case. The approximation numbers of a class represent the worst-case error of
an optimal linear algorithm that uses at most n linear functionals as information. If K is the unit ball of some
Hilbert space H, then the approximation numbers agree with the singular values of the identity Id : H → L2. In
this case, the dn(K)L2 also coincide with the Gelfand n-widths gn(K)L2 , which represent the minimal worst-case
error of (possibly non-linear) algorithms based on n arbitrary linear functionals, see, e.g., Chapter 4 in [142].

Remark 6.6 (Extreme classes K). It is interesting to note that the lower bound (6.2) from [95] is attained for
univariate Sobolev spaces of periodic functions. By Theorem 6.1, this means that these basic classes already
represent the most difficult RKHSs for sampling recovery when the numbers dn(K)L2 are fixed.

Remark 6.7 (Least squares methods). The upper bounds in Theorem 6.1 and 6.3 are proved for a weighted least
squares algorithm using samples from a set of c n points that is subsampled from a set of c n lnn i.i.d. random
points, see Section 6.5. Depending on the function class K, the algorithm using the full set of random points may
be constructive but the subsampling is based on an existence result from [128] and is therefore not constructive.
It would be very interesting to make the subsampling constructive, see Remark 6.21.

Remark 6.8 (Spline algorithm). Let K be the unit ball of a RKHS H. If we fix the sampling points x1, ..., xm,
it is known that the smallest possible worst case error is achieved by the spline algorithm

Sm(u) := argmin
v∈H : v(xi)=u(xi)

‖v‖H ,

that is,

inf
ψ1,...,ψm∈L2

sup
u∈K

∥∥∥u− m∑
i=1

u(xi)ψi

∥∥∥
L2

= sup
u∈K

∥∥∥u− Sm(u)
∥∥∥
L2
,

see e.g. [175, Theorem 5.1]. The function Sm(u) is also known as the minimal norm interpolant and, by the
famous representer theorem, can be expressed as a linear combination of the kernel functions K(xi, ·), see e.g.
[182, Proposition 12.32]. Therefore, our upper bounds are true not only for the least squares algorithm, but also
for the kernel-based approximation Sm(u). Both types of algorithms are common in the context of learning, see
e.g. the seminal paper [60].

Remark 6.9 (The power of i.i.d. sampling). It is remarkable that, up to a logarithmic factor, the upper bound
from Theorem 6.1 is achieved with high probability for i.i.d. random sampling points, see [113, 177]. In regard
of the personal history of the authors DK and MU, Theorem 6.1 is a byproduct of a series of work on the power
of i.i.d. sampling for approximation and integration problems that started in [93, 94] and was also continued in
[98, 108, 111, 112].
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Remark 6.10 (Expected error). A different approach to L2-approximation is by using randomized algorithms
and taking the worst case expected error instead of a worst case deterministic error. The results in this
randomized setting are quite different; the error of optimal algorithms does not depend on the tail of the
sequence (dn(K)L2). We refer to [59, 106, 122, 144, 185, d].

Remark 6.11 (Upper bounds for infinite trace). We note that our bounds make sense also if dn(K)L2 is infinite
for small n, but they are useless if the tail of (dn(K)L2) is not square-summable, which is the case, e.g., if K is
the unit ball of a RKHS with infinite trace, see (6.1).
An alternative approach is to bound the numbers ρm(K)L2 by the Kolmogorov widths dn(K)L∞ in L∞: it is
shown in [168] that there is a universal constant c ∈ N such that ρcn(K)L2 ≤ c dn(K)L∞ for probability spaces
(Ω,A, µ). Although this bound is sometimes weaker than Theorem 6.3 (see Example 1 in [114]), it has the great
advantage that it may be applied in situations where the Kolmogorov widths in L2 are not square-summable,
see, e.g., [171, 173]. It would be very interesting to see whether it is possible to unify the two approaches.

Remark 6.12 (Tractability). Assume now that a whole sequence of classes Kd is given, where d could be the
dimension of the underlying domain. For some classes we know that the curse of dimensionality is present,
if only standard information (function values) is allowed, while the problem is tractable for general linear
information, see e.g., [96, 141, 181]. However, since the constants from Theorems 6.1 and 6.3 are independent
of the dimension, it is possible to transfer certain tractability properties from linear information to standard
information [104, 110, 144].

Remark 6.13 (Separability of K). Contrarily to the `2-summability of the Kolmogorov widths, it should be
possible to remove the separability assumption on the class K, at least in Theorem 6.1, by adding a term
tr0(K)/n inside the square root in the right-hand side, as done in [135].

Remark 6.14 (Discretization of continuous frames). A related problem is the question whether a continuous
frame for a Hilbert space may be sampled to obtain a frame, see [51] for details. This problem, which was
originally posed in the physics book [11], has only recently been solved in [73], see also the survey [38]. Although
seemingly independent, this line of research uses remarkably similar methods. We leave it to future research to
better understand and expand the connections.

6.1.2 Outline

The rest of the chapter can be outlined as follows. Sections 6.2–6.5 form the proof of Theorem 6.1. In
Section 6.2, we collect some basics on the RKHS setting. In Section 6.3, we obtain our initial sample of
O(n lnn) points based on a concentration inequality for infinite matrices. The subsampling is performed in
Section 6.4, which applies the solution to the Kadison-Singer problem in a slightly original way, leading to the
core of the proof in Section 6.5. In Section 6.6, we prove our results for general function classes by constructing a
suitable RKHS, on which a local version of Theorem 6.1 (Theorem 6.23) can be applied. Finally, in Section 6.7,
we present examples, applying our result to tensor product problems and showing that our upper bounds are
sharp.

6.2 Hilbert space setting

We first consider the case where K is the unit ball of a separable Hilbert space H with reproducing kernel
K ∈ CΩ×Ω. We refer to [135] and references therein for theoretical background on RKHSs.

Thanks to the finite trace assumption (6.1), we know that the identity map Id : H → L2 is Hilbert-Schmidt,
thus its left and right singular vectors (ϕn)n∈I and (σnϕn)n∈I are orthonormal families in L2 and H, respectively.
Here, we only list the singular vectors with respect to the nonzero singular values σn > 0, and the index set is
of the form I = {n ∈ N0 : n < N} with N ∈ N ∪ {∞}. The singular vectors satisfy

〈u, ϕn〉L2 = 〈u, σ2
nϕn〉H for all u ∈ H and n ∈ I.

We use the convention that N0 := {0, 1, 2, . . .} and the singular values are arranged in a non-increasing order. In
particular,

∑
k∈I σ

2
k <∞ and the Kolmogorov width dn(K)L2 = σn is attained by the L2-orthogonal projection
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Pn onto Vn = span{ϕk : k < n}. Moreover, the separability of H ensures that the equality

K(x, y) =
∑
n∈I

σ2
n ϕn(x)ϕn(y)

holds for all x, y ∈ Ω0 with some set Ω0 ⊂ Ω satisfying µ(Ω \ Ω0) = 0. We therefore have the identity

u(x) =
∑
n∈I
〈u, ϕn〉L2 ϕn(x) for all u ∈ H and x ∈ Ω0. (6.7)

Our sampling points will be contained in the set Ω0.
As a consequence of the following lemma, we only have to show the validity of Theorem 6.1 for all 1 6 n < N .

Lemma 6.15. Let N = min{n ∈ N : dn(K)L2 = 0} <∞. Then we have ρm(K)L2 = 0 for all m ≥ N .

Proof. For x ∈ Ω0, we write ϕ(x) = (ϕ0(x), . . . , ϕN−1(x)). Then there are points x0, . . . , xN−1 ∈ Ω0 such
that every ϕ(x) is contained in the span of the vectors ϕ(xi). We write ϕ(x) =

∑
ψi(x)ϕ(xi) with coefficients

ψi(x) ∈ C. By (6.7), we have

u(x) =
∑
n<N

〈u, ϕn〉L2

∑
i<N

ψi(x)ϕn(xi) =
∑
i<N

u(xi)ψi(x),

for all x ∈ Ω0 and u ∈ H. Thus, the identity u =
∑
u(xi)ψi holds almost everywhere. Moreover, the functions

ϕ0, . . . , ϕN−1 restricted to Ω0 form a basis of span{ψi : i < N}, and thus ψi ∈ L2.

We fix an integer 1 ≤ n < N for the rest of the proof of Theorem 6.1.

6.3 Concentration inequality

As proposed in [113] and applied in [104, 114, 135, 137, 177], we define the probability density

κn(x) =
1

2

(
1

n

∑
k<n

|ϕk(x)|2 +

∑
k>n σ

2
k |ϕk(x)|2∑
k>n σ

2
k

)
,

and draw i.i.d. random points x1, . . . , xm ∈ Ω according to this density. We define the N -dimensional vectors
a1, . . . , am by

(ai)k =

{
κn(xi)−1/2 ϕk(xi) if 0 ≤ k < n,

κn(xi)−1/2 γ−1
n σk ϕk(xi) if n 6 k < N,

where

γn := max

{
σn,

√
1

n

∑
k>n

σ2
k

}
> 0.

Note that κn(xi) > 0 almost surely. It follows from these definitions that ai ∈ `2(I) with

‖ai‖22 = κn(xi)−1

(∑
k<n

|ϕk(xi)|2 + γ−2
n

∑
k>n

σ2
k |ϕk(xi)|2

)
6 2n,

and
E(aia

†
i ) = diag(1, . . . , 1, σ2

n/γ
2
n, σ

2
n+1/γ

2
n, . . . ) =: E,

with ‖E‖2→2 = 1 since σ2
k/γ

2
n 6 1 for k > n. Here, diag(v) denotes a diagonal matrix with diagonal v, and

‖ · ‖2→2 denotes the spectral norm of a matrix.
We apply the following concentration inequality for infinite matrices, which was proved by Mendelson and

Pajor in [130, Theorem 2.1]. We use a version of this result from [135, Theorem 1.1] and [137, Theorem 5.3].
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Lemma 6.16. Let m > 3 and a1, . . . , am be i.i.d. random sequences from `2(I) satisfying ‖ai‖22 6 2n almost
surely and ‖E‖2→2 6 1, with E = E(aia

†
i ). Then, for 0 ≤ t ≤ 1,

P

(∥∥∥ 1

m

m∑
i=1

aia
†
i − E

∥∥∥
2→2

> t

)
6 23/4m exp

(
−mt

2

42n

)
.

For t = 1/2, this probability is less than 1/2 as soon as m
ln(4m) > 168n. In the sequel we take

m = bC0 n ln(n+ 1)c,

with C0 large enough, so that the previous inequality holds true. (One can take C0 = 104, for instance.) Thanks
to Lemma 6.16, we know that there exists a realization x1, . . . , xm ∈ Ω0 of the random sampling such that the
corresponding family a1, . . . , am satisfies ∥∥∥ 1

m

m∑
i=1

aia
†
i − E

∥∥∥
2→2
6

1

2
. (6.8)

We fix such a sequence for the rest of the proof of Theorem 6.1.

6.4 Subsampling of infinite vectors

We now want to apply the solution to the Kadison-Singer problem, or specifically to Weaver’s conjecture,
to the sum of rank-one matrices

1

m

m∑
i=1

aia
†
i ,

in order to find a subsampling of order n preserving the spectral properties of the sum. The original result
comes from the celebrated paper [128] by Marcus, Spielman and Srivastava, and has already been applied
numerous times in approximation theory, see for instance [106, 113, 114, 135, 137, 140, 168, d]. However, the
original subsampling strategy only works for finite matrices. The main result of this section is the following
infinite-dimensional variant, which might be of independent interest.

Proposition 6.17. There are absolute constants c1 6 43200, c2 > 50, c3 6 21600, with the following properties.
Let m,n ∈ N and a1, . . . , am be vectors from `2(N0) satisfying ‖ai‖22 6 2n and∥∥∥∥∥ 1

m

m∑
i=1

aia
†
i −

(
In 0
0 Λ

)∥∥∥∥∥
2→2

≤ 1

2
, (6.9)

for some Hermitian matrix Λ with ‖Λ‖2→2 6 1, where In ∈ Cn×n denotes the identity.
Then, there is a subset J ⊂ {1, . . . ,m} with |J | ≤ c1n, such that(

1

n

∑
i∈J

aia
†
i

)
<n

< c2 In and
1

n

∑
i∈J

aia
†
i 4 c3 I,

where A<n := (Ak,l)k,l<n and A 4 B denotes the Loewner order of Hermitian matrices A and B.

The conclusion can be understood as an upper bound on the largest eigenvalue of A =
∑
i∈J aia

†
i and a

lower bound on the smallest eigenvalue of A<n. Note that the constants in Proposition 6.17, and hence also the
final sampling size, are independent of m, the original sampling size. The rest of this section is devoted to the
proof of this proposition.
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6.4.1 Reduction to finite dimension

Let U0 be a matrix whose columns form an orthonormal basis of

span {(ai)>n : i = 1, . . . ,m} ⊂ `2,

where (ai)≥n = ((ai)k)k≥n. Clearly, U0 has at most m columns. Then we have that U†0U0 is the identity matrix
and in particular the spectral norm of U0 and U†0 equals one. We set

U =

(
In 0
0 U0

)
,

which is a matrix that satisfies U†U = Ip, where p ≤ m+ n, and therefore also U and U† have unit norm. We
choose vectors bi ∈ Cp that satisfy Ubi = ai for all i ≤ m. Such vectors exist since ai is contained in the span
of the columns of U . Then we also have bi = U†Ubi = U†ai.

Let E =

(
In 0
0 Λ

)
be the matrix from Proposition 6.17. We define

Ê = U†E U =

(
In 0
0 E′

)
where ‖E′‖2→2 ≤ ‖E‖2→2 6 1.

With the norm bounds on U and U†, equation (6.9) gives

∥∥∥ 1

m

m∑
i=1

bib
†
i − Ê

∥∥∥
2→2

=
∥∥∥U†( 1

m

m∑
i=1

aia
†
i − E

)
U
∥∥∥

2→2
6

1

2
.

6.4.2 Approximating the identity

In addition to finite dimension, the result from [128] requires the matrix 1
m

∑m
i=1 bib

†
i to be close to the

identity in spectral norm, and this is not ensured here. To circumvent this obstacle, we artificially add rank-one
matrices bib

†
i ∈ Cp×p for i = m+ 1, . . . , q in the following way.

As Ip − Ê is positive semi-definite, we can decompose it as a sum of rank-one matrices

Ip − Ê =

(
0 0
0 Ip−n − E′

)
=

p−n∑
j=1

tjt
†
j ,

where tj ∈ Cp. We now choose

bi =

√
m

mj(i)
tj(i), mj =

⌈m
2n
‖tj‖22

⌉
,

with j(i) ∈ {1, . . . , p− n} such that {bi : i = m+ 1, . . . , q} contains exactly mj copies of each
√
m/mj tj . In

this way, for i > m, the first n entries of bi are zero since this is true of the tj ,

‖bi‖22 =
m

mj(i)
‖tj(i)‖22 6 2n,

and ∥∥∥ 1

m

q∑
i=1

bib
†
i − Ip

∥∥∥
2→2

=
∥∥∥ 1

m

m∑
i=1

bib
†
i +

p−n∑
j=1

tjt
†
j − Ip

∥∥∥
2→2

=
∥∥∥ 1

m

m∑
i=1

bib
†
i − Ê

∥∥∥
2→2
6

1

2
.
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Remark 6.18. As ‖tj‖22 6 ‖Ip − Ê‖2→2 6 1, we count

q = m+

p−n∑
j=1

mj 6 m+

p−n∑
j=1

(
1 +

m

2n

)
6 m+ (p− n)

m

n
=
mp

n
.

Conversely, taking traces in Cp×p, we find

p

2
= Tr

(
1

2
Ip

)
6 Tr

(
1

m

q∑
i=1

bib
†
i

)
=

1

m

q∑
i=1

‖bi‖22 6
2nq

m
.

So, we obtain m/n > q/p ≥ m/4n. Recall that, given n the dimension of the approximation space Vn, we took
m = O(n lnn) initial sample points, and vectors bi of size p = O(n lnn). Hence, the number of such vectors is
q = O(n ln2 n). Surprisingly, we do not use estimates on p and q in the rest of the argument.

Remark 6.19. In fact, we did not need an exponential speed of convergence in the concentration inequality.
The reduction of the sample size to O(n) points works for any initial set of sampling points satisfying (6.8). If
the cardinality of the initial sample is m = n `(n), where `(n) is any positive function of n, we get p = O(n `(n))
and q = O(n `(n)2).

6.4.3 Reduction of the sample size

We can now use the Kadison-Singer solution from [128] in an iterated way, as proposed in Lemma 3 of [140],
and later used in [113, 114, 121, 135, 137, 168, d]. The following lemma is obtained from Corollary B and
Lemma 1 in [140].

Lemma 6.20. Let b1, . . . , bq ∈ Cp with ‖bi‖22 ≤ δ and

αIp 4
q∑
i=1

bib
†
i 4 βIp

for some β ≥ α > 100 δ > 0. Then there is a partition of {1, . . . , q} into sets J1, . . . , Jt such that, for all s ≤ t,
we have

25 δIp 4
∑
i∈Js

bib
†
i 4 3600

β

α
δIp.

Proof. Since the matrix M =
∑q
i=1 bib

†
i is positive, we may define b̃i = M−1/2bi. Then we have

∑q
i=1 b̃ib̃

†
i = Ip

and ‖b̃i‖22 ≤ δ/α =: δ′ < 1/100. By Corollary B and Lemma 1 in [140], noting that the constant C from
Lemma 1 is at most 36, we get a partition of {1, . . . , q} into sets J1, . . . , Jt such that, for all s ≤ t, we have

25 δ′ Ip 4
∑
i∈Js

b̃ib̃
†
i 4 3600 δ′ Ip.

Now, using ∑
i∈Js

bib
†
i = M1/2

∑
i∈Js

b̃ib̃
†
i M

1/2,

we get the statement.

Note that one could obtain better constants by adapting the proof of Theorem 2.3 from [137]. In our case,
we have δ = 2n, α = m/2 and β = 3m/2. The relation α > 100 δ is satisfied. We thus obtain

50nIp 4
∑
i∈Js

bib
†
i 4 21600nIp
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for every Js from the partition. Moreover, the inequality

m

2
Ip 4

q∑
i=1

bib
†
i =

t∑
s=1

∑
i∈Js

bib
†
i 4 21600 tnIp

implies that one of the sets J ′ = Js from the partition must satisfy

|J ′ ∩ {1, . . . ,m}| ≤ m

t
≤ 43200n.

After applying Lemma 6.20 and removing the indices from J ′ ∩ {m+ 1, . . . , q} corresponding to artificially
added vectors, we are left with a set J := J ′ ∩ {1, . . . ,m} of cardinality

|J | ≤ 43200n.

It remains to show that the artificial vectors do not interfere with our desired properties. For this, recall
that (bi)k = (ai)k for k < n and i 6 m, whereas the first n entries of bi ∈ Cp are zero for i > m. Hence,(∑

i∈J
aia
†
i

)
<n

=

(∑
i∈J′

bib
†
i

)
<n

< 50n In,

where we use a simple linear algebra fact on self-adjoint matrices A:

λmin(A<n) = inf
z∈Cp, ‖z‖2=1
zk=0 for k>n

z†Az > inf
z∈Cp, ‖z‖2=1

z†Az = λmin(A).

Similarly, and using positive definiteness, we have∑
i∈J

bib
†
i 4

∑
i∈J′

bib
†
i 4 21600n Ip.

With the orthogonal transformation U from Section 6.4.1, we get

∥∥∥∑
i∈J

aia
†
i

∥∥∥
2→2

=
∥∥∥U (∑

i∈J
bib
†
i

)
U†
∥∥∥

2→2
≤
∥∥∥∑
i∈J

bib
†
i

∥∥∥
2→2
6 21600n.

This proves Proposition 6.17.

Remark 6.21. It would be an interesting improvement to use the result of Batson, Spielman and Srivastava,
see [24], instead of [128] for the subsampling. This earlier paper is applied to approximation theory in e.g. [121,
139, 170] and more recently in [23]. It presents a slightly less powerful method, requiring additional weights,
but comes with an almost linear algorithmic complexity, see [119], and much smaller constants, which could
make the bound presented here sharp also in terms of numerical values. Another approach would consist in
using randomized sampling strategies similar to the early work [164], but with correlated inputs, which aim
at avoiding the subsequent logarithmic oversampling. This optimality gap has for instance been reduced to
O(log(n)/ log(log(n))) in [91].

Remark 6.22. We recently learned that it might be possible to use results from [73], which work directly in
an infinite-dimensional setting, to avoid the reduction to a finite dimension in § 6.4.1. However, as the core of
our method is [128], we decided to keep our more direct deduction.

6.5 Proof of the main theorem
We now have all the tools for proving Theorem 6.1. To obtain our sampling points, we combine (6.8) for

our initial vectors ai ∈ `2(I) with Proposition 6.17. Clearly, Proposition 6.17 stays true if we replace N0 by the
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possibly finite index set I. We obtain points x1, . . . , xm ∈ Ω0 with m ≤ 43200n such that the vectors

(ai)k =

{
κn(xi)−1/2 ϕk(xi) if 0 ≤ k < n,

κn(xi)−1/2 γ−1
n σk ϕk(xi) if n 6 k < N,

satisfy (
m∑
i=1

aia
†
i

)
<n

< 50n I and

(
m∑
i=1

aia
†
i

)
≥n

4 21600n I,

where we use the notation A≥n = (Ak,l)k,l≥n for a matrix A.

As in earlier papers, we use the weighted least squares estimator

Pmn u := argmin
v∈Vn

m∑
i=1

|u(xi)− v(xi)|2

κn(xi)

with Vn and κn as defined in Sections 6.2 and 6.3, respectively, see [113]. This algorithm may be written as

Pmn u =

n∑
k=1

(D+Fu)k ϕk

where F : K → Cm with F (u) :=
(
κn(xi)−1/2u(xi)

)
i6m

is the information mapping and D+ ∈ Cn×m is the
Moore-Penrose inverse of the design matrix

D :=
(
κn(xi)−1/2 ϕk(xi)

)
i≤m, k≤n

∈ Cm×n.

Since we have the identity D†D = (
∑m
i=1 aia

†
i )<n, the matrix D has full rank and the spectral norm of D+ is

bounded by (50n)−1/2. In particular, the argmin in the definition of Pmn is uniquely defined and Pmn satisfies
Pmn u = u for all u ∈ Vn.
Denoting with Qn the L2-orthogonal projection onto span{ϕk : k ≥ n}, we obtain for any u ∈ H that

‖u− Pmn u‖
2
L2 = ‖u− Pnu‖2L2 + ‖Pnu− Pmn u‖

2
L2

= ‖Qnu‖2L2 + ‖Pmn (u− Pnu)‖2L2

= ‖Qnu‖2L2 +
∥∥D+F (u− Pnu)

∥∥2

`2(Cn)

≤ σ2
n ‖Qnu‖

2
H +

∥∥D+
∥∥2

2→2
· ‖F (u− Pnu)‖2`2(Cm) .

By (6.7) we have F (u− Pnu) = Φξu, where

Φ =
(
κn(xi)−1/2σk ϕk(xi)

)
i≤m, k>n

and ξu = (〈u, σk ϕk〉H)k>n.

The matrix Φ satisfies

Φ∗Φ = γ2
n

(
m∑
i=1

aia
†
i

)
≥n

and therefore its spectral norm is bounded by
(
21600nγ2

n

)1/2. Thus,
‖F (u− Pnu)‖2`2(Cm) ≤ 21600nγ2

n‖ξu‖22 = 21600nγ2
n ‖Qnu‖2H .

In summary, as 1 + 21600/50 = 433, we obtain for all 1 ≤ n < N the bound

‖u− Pmn u‖
2
L2 6 433 max

{
σ2
n,

1

n

∑
k>n

σ2
k

}
‖Qnu‖2H . (6.10)
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for all u ∈ H and some m ≤ 43200n. Taking the supremum over u ∈ K and using that

max

{
σ2
n,

1

n

∑
k>n

σ2
k

}
≤ 2

n

∑
k>dn/2e

σ2
k,

we obtain
ρ43200n(K)2

L2 ≤
866

n

∑
k>dn/2e

σ2
k.

This finishes the proof of Theorem 6.1 with c = 43200 · 866.

In fact, equation (6.10) provides a local upper bound which is sometimes superior to Theorem 6.1. We
therefore state it separately.

Theorem 6.23. Let µ be a measure on a set Ω and let K ⊂ L2(µ) be the unit ball of a separable RKHS H such
that the finite trace assumption (6.1) holds. For n ∈ N, let Pn be the orthogonal projection onto the span Vn of
the singular vectors corresponding to the n largest singular values of the embedding of H into L2. Then there
exist x1, . . . , xm ∈ Ω and ψ1, . . . , ψm ∈ Vn, where m ≤ 43200n, such that, for all u ∈ H,∥∥∥u− m∑

i=1

u(xi)ψi

∥∥∥2

L2
6 433 max

{
dn(K)2

L2 ,
1

n

∑
k>n

dk(K)2
L2

}∥∥u− Pnu∥∥2

H
.

Remark 6.24. For the purpose of Theorem 6.1 it was enough to bound ‖u− Pnu‖H ≤ ‖u‖H . However,
Theorem 6.23 will be of advantage later for the study of general classes since it is able to see additional decay of
the Fourier coefficients 〈u, ϕk〉L2 compared to the decay implied by u ∈ H. Note that faster decay of the Fourier
coefficients often corresponds to higher smoothness of the function. In a certain sense, this means that the
algorithm is universal. The error has the optimal rate of decay for any smoothness higher than the smoothness
of H.

Remark 6.25. The condition on the point sets can also be given by finite matrices that are related to
the kernel K of the Hilbert space. For this, let us define kn(x, y) := 1

n

∑
k<n ϕk(x)ϕk(y), and rn(x, y) :=

1
n

∑
k≥n σ

2
k ϕk(x)ϕk(y). The non-zero singular values of DD† are the same as those of D†D, and the non-zero

singular values of ΦΦ† are the same as those of Φ†Φ, where D and Φ are from above. Hence, the algorithm Pmn
based on points x1, . . . , xm satisfies the error bound above (up to a constant) if

c ≤ 1

n
λn
(
DD†

)
= λn

( kn(xi, xj)√
κn(xi)κn(xj)

)
16i,j6m


and (

rn(xi, xj)√
κn(xi)κn(xj)

)
16i,j6m

=
1

n
ΦΦ† 4 C γ2

n I

for some constants c, C > 0, where λn denotes the nth eigenvalue. It would be interesting to find a property
that only involves the kernel K directly (instead of the truncated kernels kn and rn above), or to verify that a
similar property characterizes good point sets, in a way similar to Proposition 1 of [96] for integration.

6.5.1 Proof of Corollary 6.2
For the given bounds on the sampling numbers for sequences of polynomial decay, we only need to note that

1

n

∑
k≥n

k−α ln−β k .

{
n−α ln−β n if α > 1, β ∈ R,
n−α ln−β+1 n if α = 1, β > 1.

Hence, Corollary 6.2 immediately follows from Theorem 6.1, and the existence of K where the bounds are
attained comes from (6.2), see [95].
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6.6 General function classes
We now prove all results related to general function classes.

6.6.1 Proof of Theorem 6.3
We will make use of the following observation from [114, Lemma 3]. We copy its proof for completeness.

Lemma 6.26. Let K ⊂ L2 and let L2 be infinite-dimensional. There is an orthonormal system (ϕk)k∈N0
in L2

such that for all n ≥ 1, the orthogonal projection Pn onto Vn = span{ϕk : k < n} satisfies

sup
u∈K
‖u− Pnu‖L2 ≤ 2 dbn/4c(K)L2 . (6.11)

Proof. Clearly it is enough to find an increasing sequence of subspaces of L2,

U1 ⊆ U2 ⊆ U3 ⊆ . . . , dim(Un) ≤ n,

such that the projection Pn onto Un satisfies (6.11). By the definition of dk(K)L2 , k ∈ N0, there is a subspace
Wk ⊂ L2 of dimension k and a mapping Tk : K →Wk such that

sup
u∈K
‖u− Tku‖L2 ≤ 2 dk(K)L2 .

This is also true if dk(K)L2 = 0. We let Un be the space that is spanned by the union of the spaces W2` over all
` ∈ N0 such that 2` ≤ n/2. Note that Un contains a subspace Wk with k ≥ bn/4c. Therefore, Pnu is at least as
close to u as Tku for some k ≥ bn/4c, which implies (6.11).

We now turn to the proof of Theorem 6.3. The basic idea is to construct a suitable reproducing kernel
Hilbert space H that contains a dense subset of K and apply Theorem 6.23 to this Hilbert space. It will be
important to use the local bound from Theorem 6.23 instead of the global bound from Theorem 6.1.

Proof of Theorem 6.3. Without loss of generality, we assume that L2 is infinite-dimensional. Moreover, we
assume that dk(K)L2 is finite for k ≥ k0 and that (dk(K)L2)k≥k0

∈ `p. Otherwise, the statement is trivial.
By Lemma 6.26, there is an orthonormal system (ϕk)k∈N0

such that (6.11) is satisfied for all n ∈ N. We will
consider ϕk as a function, where we fix an arbitrary representer from the equivalence class in L2. We call

û(k) := 〈u, ϕk〉L2

the kth Fourier coefficient of u. Moreover, we fix a countable dense subset K0 of K and set σk = max{1, k}−α
for all k ∈ N0 and some α ∈ (1/2, 1/p). Then we have (σk) ∈ `2.

We now want to define a RKHS on a set Ω0 ⊂ Ω, with µ(Ω \ Ω0) = 0, which admits the orthonormal basis
(σkϕk) and contains the set K0. Such a Hilbert space will have the reproducing kernel

K(x, y) =
∑
k∈N0

σ2
kϕk(x)ϕk(y).

To find a suitable set Ω0, we first note that
ˆ

Ω

K(x, x) dµ(x) =
∑
k∈N0

σ2
k <∞ (6.12)

and thus K(x, x) is finite for all x ∈ Ω \ E with a null set E ⊂ Ω. Moreover, for all u ∈ K0, we have∑
k≥1

k |û(k)|2 =
∑
n≥0

∑
k>n

|û(k)|2 =
∑
n≥0

‖u− Pnu‖2L2 <∞,

where we use (6.11) and the assumptions on K. The Rademacher-Menchov Theorem, see e.g. [159], now implies
that the Fourier series of u at x converges to u(x) for all x ∈ Ω\Eu with a null set Eu ⊂ Ω. We put Ω0 := Ω\E0,
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where E0 := E ∪
⋃
u∈K0

Eu is a null set. Then for all x ∈ Ω0 and u ∈ K0, we have

K(x, x) <∞ and u(x) =
∑
k∈N0

û(k)ϕk(x).

We now define the space H as the set of all square-integrable functions u : Ω0 → C which are point-wise
represented by their Fourier series

∑
k û(k)ϕk and which satisfy

‖u‖2H :=
∑
k∈N0

|û(k)|2

σ2
k

<∞.

Then H is a separable reproducing kernel Hilbert space on Ω0 since

|u(x)|2 6 K(x, x)‖u‖2H for all x ∈ Ω0 and u ∈ H,

and (σkϕk)k∈N0
is an orthonormal basis of H. The reproducing kernel is K, which has finite trace from (6.12).

We now show that K0 (with functions restricted to Ω0) is a subset of H. Recall that any u ∈ K0 is point-wise
represented by its Fourier series. Moreover, note that the Kolmogorov widths of K0 and K are the same. We
use

d2n(K)L2 =
(
d2n(K)pL2

)1/p ≤ ( 1

n

∑
k≥n

dk(K)pL2

)1/p

and obtain for any n ∈ 8N and u ∈ K0 that

‖u− Pnu‖2H =
∑
k≥n

k2α |û(k)|2 ≤
∑
`∈N0

(
n2`+1

)2α n2`+1−1∑
k=n2`

|û(k)|2

≤ 4
∑
`∈N0

(
n2`+1

)2α
dn2`−2(K)2

L2

≤ 4
∑
`∈N0

(
n2`+1

)2α( 1

n2`−3

∑
k≥n2`−3

dk(K)pL2

)2/p

6 22+2α+6/pn2α−2/p
∑
`∈N0

2(2α−2/p)`

( ∑
k≥n/8

dk(K)pL2

)2/p

.

The last expression is finite for n ≥ 8k0, since 2α− 2/p < 0. This implies that u ∈ H and

‖u− Pnu‖H 6 C nα
(

1

n

∑
k≥n/8

dk(K)pL2

)1/p

, (6.13)

where C > 0 only depends on p ∈ (0, 2) and α ∈ ( 1
2 ,

1
p ).

We now apply Theorem 6.23 to the newly constructed Hilbert space H to find m ≤ 43200n and a linear
algorithm Pmn of the form

Pmn u =

m∑
i=1

u(xi)ψi, xi ∈ Ω0, ψi ∈ L2,

such that
‖u− Pmn u‖2L2(Ω0,µ) ≤ 433 max

{
σ2
n,

1

n

∑
k>n

σ2
k

}
‖u− Pnu‖2H (6.14)

for all u ∈ H and thus, for all u ∈ K0. Clearly, in the last inequality, Ω0 can be replaced with Ω. If we now
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insert the estimate (6.13) and the estimate

max

{
σ2
n,

1

n

∑
k>n

σ2
k

}
. n−2α, (6.15)

into (6.14), we obtain that

‖u− Pmn u‖2L2 ≤
(
c̃p
n

∑
k≥n/8

dk(K)pL2

)2/p

for all u ∈ K0 and some c̃p > 0 that only depends on p. Since K0 is dense in K and both id : K → L2 and
Pmn : K → L2 are continuous, the last bound is true for all u ∈ K. This finishes the proof of Theorem 6.3 with
cp = 43200 max(c̃p, 8).

6.6.2 The boundary case
We provide a variant of Theorem 6.3 under a weaker condition than (dk(K)L2) ∈ `p for p < 2. In fact, we

show that the condition
(
(ln k)sdk(K)L2

)
∈ `2 for some s > 1/2 is enough for a comparison of the sampling and

the Kolmogorov widths, while the same assumption for s = 1/2 is not enough, see Example 6.31.

Theorem 6.27. Let s > 1/2. There is a universal constant c ∈ N and a constant cs > 0, depending only on s,
such that for every K and µ that satisfy Assumption A and all n ≥ 2,

ρcn(K)2
L2 ≤ cs n

−1 ln−2s+1 n
∑
k≥n

dk(K)2
L2 · ln2s k.

Proof. The proof follows the same lines as the proof of Theorem 6.3. The only difference is that we now choose
σk = k−1/2 ln−s k for k ≥ 2. Then, inequality (6.13) becomes

‖u− Pnu‖2H =
∑
k≥n

|û(k)|2k ln2s(k) ≤
∑
k≥n

|û(k)|2
∑

n≤r≤2k

ln2s(r)

≤
∑
r≥n

ln2s(r)
∑
k≥r/2

|û(k)|2 ≤ 4
∑
r≥n

ln2s(r) dbr/8c(K)2
L2

≤ 32
∑

k≥bn/8c

ln2s(8k + 7) dk(K)2
L2 .

Likewise, inequality (6.15) becomes

max

{
σ2
n,

1

n

∑
k>n

σ2
k

}
. n−1 ln−2s+1 n

and the stated inequality is obtained.

6.6.3 Proof of Corollary 6.4
Using the same bound as in the proof of Corollary 6.2, the case α > 1/2 immediately follows from Theorem 6.3

if we choose 1/α < p < 2, and the case α = 1/2, β > 1 from Theorem 6.27 if we choose 1/2 < s < β − 1/2.
All bounds are attained with the same classes K as in Corollary 6.2 for the first case, and with the construc-

tions from the next section for the two other cases.

6.7 Examples
We first apply Theorem 6.1 to tensor product spaces.
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Example 6.28. Let H be a RKHS on Ω that is compactly embedded into L2 and let K be its unit ball. We
consider L2-approximation on the unit ball Kd of the d-fold tensor product Hd of H, which is a RKHS on the
domain Ωd. We assume that ρm(K)L2 . m−α for some α > 0. The famous Smolyak algorithm, see [163], gives
the estimate

ρm(Kd) . m−α ln(α+1)(d−1)m. (6.16)

An example of such tensor product spaces are the spaces of dominating mixed smoothness α > 1/2, see [67].
For these spaces, it is known that the error bound (6.16) for the Smolyak algorithm can be improved [161]; the
exponent of the logarithm can be reduced to (α + 1/2)(d − 1). With Corollary 6.2 and known results on the
approximation numbers of tensor product operators, see [18, 134], we now obtain

ρm(Kd) . m−α lnα(d−1)m if α > 1/2. (6.17)

This bound is asymptotically optimal for the spaces of mixed smoothness, see [172, Theorem 1] or [167, Theorem
6.4.3]. More generally, it is known that dn(K)L2 � n−α implies dn(Kd) � n−α lnα(d−1) n (see e.g. [107]) and
therefore the asymptotic bound (6.17) is optimal whenever the approximation numbers in the univariate case
are of order n−α. Let us note, however, that also preasymptotic estimates on the sampling numbers (say, for
m < dd) are of interest, especially if the dimension d is high, see [107, 116, 186].

Remark 6.29. Note that, for Sobolev spaces with mixed smoothness r > 1/p and 1 < p < 2, the nonlinear
sampling numbers in L2 decay faster than the linear sampling numbers (and the Kolmogorov widths in L2) if
the dimension d is large, see [100].

We now present two examples that show that our upper bounds cannot be improved without further as-
sumptions on the class K.

First, we show that the worst possible behavior of the sampling numbers in the case dn(K)L2 . n−1/2 ln−β n
with β > 1 is indeed m−1/2 ln−β+1m.

Example 6.30. For ` ∈ N0 and k ∈ {1, . . . , 2`}, define the interval I`,k = [(k − 1)2−`, k2−`) and denote χ`,k
the indicator function of I`,k. Let β > 1. We set

Cβ :=

{
c = (c`,k)`∈N0, 1≤k≤2` :

2`∑
k=1

|c`,k|2 ≤ (`+ 1)−2β for all ` ∈ N0

}
and consider the class

Kβ :=

{
uc =

∑
`∈N0

2`∑
k=1

c`,kχ`,k : c ∈ Cβ
}
.

Note that the series uc converge uniformly, since the inner sum is bounded by (` + 1)−β . If Kβ is equipped
with the maximum distance on [0, 1), it is a separable metric space, function evaluation is continuous, and the
embedding in L2([0, 1)) is continuous.

For every L ∈ N0, the span VL of the functions χ`,k with ` ≤ L has dimension 2L. If PL is the L2-orthogonal
projection onto VL, we have for all c ∈ Cβ that

∥∥uc − PLuc∥∥2
≤
∥∥∥ ∑

(`,k) : `>L

c`,kχ`,k

∥∥∥
2
≤
∑
`>L

∥∥∥ 2`∑
k=1

c`,kχ`,k

∥∥∥
2

=
∑
`>L

( 2`∑
k=1

c2`,k‖χ`,k‖22
)1/2

≤
∑
`>L

2−`/2(`+ 1)−β . 2−L/2L−β ,

and thus
d2L(Kβ) . 2−L/2L−β ,

or equivalently
dn(Kβ) . n−1/2 ln−β n.
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We now show a lower bound for the sampling numbers. Let x1, . . . , xm ∈ [0, 1). For all ` ∈ N0, we let J` be the
set of indices 1 ≤ k ≤ 2` such that I`,k contains at least one of these points. Clearly, the cardinality of J` is at
most m. We choose L ∈ N0 of order lnm and define

uL :=
∑
`>L

|J`|−1/2(`+ 1)−β
∑
k∈J`

χ`,k.

This function is contained in Kβ and for all i ≤ m, we have

h := uL(xi) =
∑
`>L

|J`|−1/2(`+ 1)−β & m−1/2 ln−β+1m,

where h is independent of i. On the other hand, as shown by our previous calculation,∣∣∣ ˆ 1

0

uL(x) dx
∣∣∣ ≤ ∥∥uL∥∥2

. 2−L/2L−β . m−1/2 ln−βm.

Thus, if we set u = h− uL, the function is contained in Kβ , vanishes at all points x1, . . . , xm, and satisfies

‖u‖2 ≥
ˆ 1

0

u(x) dx ≥ h−
∣∣∣ˆ 1

0

uL(x) dx
∣∣∣ & m−1/2 ln−β+1m.

This shows ρm(Kβ) & m−1/2 ln−β+1m.

The next example shows that, in the case dn(K)L2 . n−1/2 ln−β n with β ≤ 1, no general statement on the
sampling numbers is possible.

Example 6.31. Similar to Example 6.30, we define

C :=

{
c = (c`,k)`∈N0, 1≤k≤2` :

2`∑
k=1

|c`,k|2 ≤ (`+ 1)−2 ln(`+ e)−2 for all ` ∈ N0

}
and consider the class

K :=

{
uc =

∑
`∈N0

2`∑
k=1

c`,kχ`,k : c ∈ C, c finite
}
.

The finiteness of the sequences ensures that K, equipped with the maximum distance, is still a separable metric
space, where function evaluation is continuous, and the embedding in L2([0, 1)) is continuous. As above, we
obtain

dn(K)L2 . n−1/2(lnn)−1(ln lnn)−1.

In particular, we have (dn(K)L2 ln1/2 n) ∈ `2. On the other hand, given x1, . . . , xm and ε > 0, we choose L ∈ N0

with ∑
`>L

2−`/2(`+ 1)−1(ln(`+ e))−1 ≤ ε,

define the sets J` as above, and choose L′ ∈ N0 such that

h :=

L′∑
`=L+1

|J`|−1/2(`+ 1)−1(ln(`+ e))−1 ≥ 1.

The function

uL :=
1

h

L′∑
`=L+1

|J`|−1/2(`+ 1)−1(ln(`+ e))−1
∑
k∈J`

χ`,k,

is contained in K, its integral is at most ε, and it satisfies uL(xi) = 1 for all i ≤ m. Then u = 1−uL is contained
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in K, vanishes at all points x1, . . . , xm, and satisfies

‖u‖2 ≥
ˆ 1

0

u(x) dx ≥ 1−
∣∣∣ˆ 1

0

uL(x) dx
∣∣∣ ≥ 1− ε.

This shows ρm(K)L2 ≥ 1 for all m ∈ N0.

We note that the lower bounds in Example 6.30 and 6.31 already hold for the easier problem of numerical
integration on Kβ . Thus, the upper bounds from Corollary 6.4 are also sharp for the minimal error of quadrature
rules on probability spaces.



Chapter 7

Randomized least-squares with minimal
oversampling

Abstract. When approximating functions based on point values, least-squares methods provide more
stability than interpolation methods, at the expense of increasing the sampling budget. We show that near-
optimal approximation results can nevertheless be achieved, in an expected L2 sense, as soon as the sample size
m is larger than the dimension n of the approximation space by a constant ratio. On the other hand, for m = n,
we obtain an interpolation strategy with a stability factor of order n in L2 and n3/2‖kn‖1/2L∞ in L∞, with kn the
normalized inverse Christoffel function. The sampling algorithm is a greedy procedure based on [24] and [119],
with polynomial computational complexity.

7.1 Introduction and main results

Let (Ω,A, µ) be a probability space. We consider the problem of estimating an unknown function u : Ω→ C
from observations (u(xi))16i6m of u at chosen points x1, . . . , xm ∈ Ω. We assess the error between u and its
estimator ũ either in the L2(Ω, µ) norm

‖v‖L2 :=

(ˆ
Ω

|v(x)|2dµ(x)

)1/2

, (7.1)

or in the uniform norm ‖v‖L∞ = ‖v‖L∞(Ω,µ).
Given a subspace Vn of L2(Ω, µ) such that dim(Vn) = n, or a sequence (Vn)n>1 of such spaces, we would

like to compute the best approximation of u in Vn. This is given by the L2(Ω, µ) orthogonal projection onto
Vn, which we denote by Pn, i.e. Pnu is the unique solution to the optimization problem

Pnu = arg min
v∈Vn

‖u− v‖L2 . (7.2)

In general, we may not have access to any information about u apart from its point evaluations. In this case
we cannot explicitly compute Pnu. A natural approach in this setting is to consider a solution to the weighted
least-squares problem

Pmn u ∈ arg min
v∈Vn

1

m

m∑
i=1

wi|u(xi)− v(xi)|2, (7.3)

where w1, . . . , wm > 0 are weights chosen in order to account for the difference between dµ and the density of
sample points. We are interested in the case where m > n, which is the regime where this problem may admit
a unique solution.

Compared to the orthogonal projection Pn for the L2 norm (7.1), the operator Pmn is the orthogonal projector

133
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onto Vn with respect to

‖v‖m :=

(
1

m

m∑
i=1

wi|v(xi)|2
)1/2

. (7.4)

The above norm is the discrete `2 norm for the empirical measure 1
m

∑m
i=1 wiδxi . Analogously, we denote by

〈·, ·〉m the associated discrete inner product.
It is well known that least squares approximations may be inaccurate even when the measured samples

are noiseless. For example, if Vn is the space Rn−1[X] of algebraic polynomials of degree less than n over the
interval [−1, 1] and if we choose m = n, this corresponds to Lagrange interpolation. This setting is known to
be highly unstable, failing to converge towards u when given values at uniformly spaced samples, even when
u is infinitely smooth. This is the so-called Runge phenomenon [158]. When considering non-uniform points,
for instance Fekete [71] or Leja [120] sequences, better results are obtained, however the Lebesgue constant still
increases polynomially with n on general domains, see [14, 47, 49].

Regularization by taking m larger than n is therefore required to achieve optimality up to a constant. We
present below our main theorem, which provides a new bound on this constant, depending on the ratio between
m and n, and on a constant γ ∈ [0, 1] which can be picked arbitrarily by the user.

Theorem 7.1. For any m > n and γ ∈ [0, 1], the weighted least-squares approximation ũ ∈ Vn provided by
Algorithm 5 using m evaluations of u at points selected by Algorithm 4 simultaneously satisfies

E(‖u− ũ‖2L2) 6

(
1 +

1

1− γ
1

(1−
√
r)2

)
min
v∈Vn

‖u− v‖2L2 (7.5)

and
‖u− ũ‖2L2 6

(
1 +

1

γ

1

(1−
√
r)2

)
min
v∈Vn

‖u− v‖2L∞ a.s., (7.6)

where r = (n− 1)/m < 1 is the oversampling ratio.

In particular, one can take m = n in (7.5) and (7.6), leading to a statement on interpolation in L2.

Corollary 7.2. For m = n and any γ ∈ [0, 1], the interpolation ũ ∈ Vn of u at random points x1, . . . , xn

selected by Algorithm 4 achieves the accuracy bounds

E(‖u− ũ‖2L2) 6
4n2

1− γ
min
v∈Vn

‖u− v‖2L2 (7.7)

and

‖u− ũ‖2L2 6
4n2

γ
min
v∈Vn

‖u− v‖2L∞ a.s. (7.8)

Instance optimality statements in expected L2 norm such as (7.5) and (7.7), of the form

E(‖u− ũ‖2L2) 6 C ‖u− Pnu‖2L2 ,

have already been obtained in [55] for i.i.d. sampling according to µ, but with a sample size m growing poly-
nomially with n in classical approximation settings. With the weighted least-squares introduced in [59], only a
logarithmic oversampling is needed. In [d], such an inequality is reached for some universal constants C and r.
However these constants are quite large, and the proof involves the Kadison-Singer solution [128], resulting in
exponential computational complexity with respect to n.

On the other hand, uniform bounds such as (7.6) and (7.8) follow the approach developed in [62, 121, 152,
168], attaining sharper constants, especially in the case where m is close to n. Note that by allowing the
right-hand side to be infinite, we do not require u and functions from Vn to belong to L∞.

A third context where similar bounds can also be obtained is the deterministic L2 setting, in which more
regularity is assumed on u through a nested sequence of approximation spaces (Vn)n>1. If (‖u−Pnu‖2L2)n>1 is
summable, the approximation error can be bounded almost surely by tails of this sequence in a Hilbert space
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setting [23, 104, 113, 135, 137], and by tails possibly involving an additional logarithmic factor in general Banach
spaces [114, e].

An important application in the case m = n is interpolation in L∞, which is obtained by combining (7.8)
with an inverse inequality between L2 and L∞ in Vn. Here we assume that Vn ⊂ L4(Ω, µ), which is the case as
soon as the natural assumption Vn ⊂ L∞(Ω, µ) is met.

Theorem 7.3. For m = n and γ = 1, the interpolation ũ ∈ Vn ⊂ L4 of u at points x1, . . . , xn achieves the
accuracy

‖u− ũ‖L∞ 6 (1 + 2n‖nkn‖1/2L∞) min
v∈Vn

‖u− v‖L∞ a.s., (7.9)

where nkn is the inverse Christoffel function associated to Vn on L2(Ω, σ) for any probability measure σ.

Note that in the case m = n, the values of the weights have no importance given that the minimum in (7.3)
is zero. In fact, we exhibit a constructive set of points such that the Lebesgue stability constant

Λn = max
v∈Vn

‖Pnn v‖L∞
‖v‖L∞

is at most 2n‖nkn‖1/2L∞ . Although Fekete points achieve Λn = n, resulting in a factor only 1 + n in (7.9) (see
[144], Theorem 29.7, for a discussion of this result in the context of Information Based Complexity), their
computational complexity is exponential in n. Greedy strategies, based on Leja points [14, 47], have polynomial
complexity but only achieve Λn ∼ n13/4 or Λn ∼ n1+log2(3), even in one-dimensional settings.

Remark 7.4. One can also use an inverse inequality between L2 and L∞ in the least-squares regime m > n.
This is investigated in [109] for general classes of functions in Banach spaces, with error bounds in any Lp norm.
We also refer [79], where implications in the field of Information Based Complexity are drawn, in a specific
Hilbert setting. These two very recent papers rely on the earlier work [152], and on the infinite-dimensional
adaptation [e] of the result from [128], see also [73]. This adaptation is itself based on the pioneering works
[113, 114].

In Section 7.2 we introduce our randomized algorithm and prove that it achieves stability and continuity
bounds for sampling discretization of functions in Vn. This allows in Section 7.3 our main results. The strategy
we adopt is in the same flavor as [d] and [168].

7.2 Randomized sampling algorithm

Let ϕ = (ϕj)16j6n ∈ L2(Ω,Cn) be an orthonormal basis of Vn. Notice that
ˆ

Ω

ϕ(x)ϕ(x)†dµ(x) = I, (7.10)

where ϕ(x)† stands for the row vector
(
ϕ1(x), . . . , ϕn(x)

)
. Taking the inner product against ϕk, the least-

squares solution ũ =
∑n
j=1 cjϕj ∈ Vn from (7.3) can be characterized by

0 = (〈ũ− u, ϕk〉m)16k6n = D†Dc−D†f, (7.11)

where f = (
√
wiu(xi))16i6m and

D =
(√

wiϕj(x
i)
)

16i6m
16j6n

∈ Cm×n

is the design matrix associated to the basis (ϕj) and sample (xi).
Our goal is to obtain a stability property on the linear system (7.11), or equivalently a lower bound on the

eigenvalues of the Gram matrix

Gm =
1

m
D†D =

1

m

m∑
i=1

wiϕ(xi)ϕ(xi)†,
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while asking a certain control on the norm of each term. This lower bound can be rewritten in the following
equivalent ways.

— Matrix formulation:
Gm < αI,

where A < B means that the hermitian matrix A−B is positive semi-definite.
— Frame inequality:

1

m

m∑
i=1

wi

∣∣∣∣∣
n∑
j=1

cjϕj(x
i)

∣∣∣∣∣
2

> α|c|2, c ∈ Cn.

— Marcinkiewicz-Zygmund inequality:

1

m

m∑
i=1

wi|u(xi)|2 > α‖u‖2L2 , u ∈ Vn.

All three versions have been extensively used in the litterature for emphasizing the relations with subsampling
of frames and discretization of continuous norms, see [73, 121, 139, 140]. Here we adopt the matrix formulation
for concision.

We start with the following greedy Algorithm 4, inspired by [119] and [118], which are themselves randomized
versions of [24]. The algorithm ouputs points xi and weigths wi from which one can compute the discrete inner
product ‖ · ‖m and the Gram matrix Gm = 1

m (Am+1 + (mδ − n)I). Given a matrix R, one main tool in the
analysis is the effective resistance ϕ(x)†Rϕ(x), coined after [164], which quantifies the interaction between ϕ(x)
and the eigenvectors of R. During the entire process, the parameters γ ∈ [0, 1] and δ ∈ (0, 1) are fixed.

Algorithm 4 Randomized sampling
1: Initialize A1 = nI, 0 6 γ 6 1, 0 < δ < 1

2: for i = 1 to m do

3: Let Bi = Ai − δI
4: Define Ri =

(
TrB−1

i − TrA−1
i

)−1
B−2
i −B

−1
i

5: Define κi(x) = ϕ(x)†Riϕ(x)χϕ(x)†Riϕ(x)>γ 1−δ
δ

6: Draw xi according to κi(x)dµ(x)´
κidµ

7: Let wi = 1
κi(xi)

8: Update Ai+1 = Bi + wiϕ(xi)ϕ(xi)†

9: end for

Before analyzing the algorithm, a few comments are in order.
— Contrarily to most variations on the algorithm presented in [24], no upper potential is used to bound the

eigenvalues of Ai from above. In fact, we will only need an upper bound on E(‖v‖2m) in the randomized
setting, and a bound on the weights wi in the deterministic setting.

— The initialization A0 = n is arbitrary, this particular choice is made in order to have Tr(A−1
0 ) = 1 and

δ < 1. By a scaling invariance, one could multiply all Ai, Bi, wi and δ by the same factor, while dividing
all Ri, κi and γ accordingly, without changing the results.

— In comparison to [24], we exploited a translation invariance to replace the lower barrier ` and lower
potential Φ`(A) = Tr(A − `I)−1 by 0 and Tr(A−1) respectively. This choice is only made to simplify
notations.

Remark 7.5. An important application is the case of a finite set Ω = {x1, . . . , xN}, with µ the uniform measure
on Ω. Then the orthonormality (7.10) of the basis ϕ rewrites

1

N

N∑
i=1

ϕiϕ
†
i = I,
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where ϕi = ϕ(xi), and we recover a randomized subsampling algorithm for sums of rank-one matrices. The
idea of using the algorithm of [24] with non-discrete measures seems to originate in [61], which investigates
Marcinkiewicz-type discretization theorems.

We now address the performance of the algorithm. We start with the following loop invariant.

Lemma 7.6. The algorithm is well-defined, and for any 1 6 i 6 m + 1, the matrices Ai and Bi are positive
definite with

Tr(A−1
i ) = 1.

Proof. We use an induction on index i. Observe that Tr(A−1
1 ) = 1. For 1 6 i 6 m, assume that Ai is positive

definite with Tr(A−1
i ) = 1. Then

λmin(Ai) = λmax(A−1
i )−1 > (TrA−1

i )−1 > 1 > δ,

so Bi is positive definite. As Bi ≺ Ai implies A−1
i ≺ B−1

i , the denominator in the definition of Ri is positive.
Next, using (7.10), ˆ

Ω

ϕ(x)†Riϕ(x)dµ(x) =

ˆ
Ω

Tr(Riϕ(x)ϕ(x)†)dµ(x) = Tr(Ri).

We rewrite the computations of [24], Lemma 3.5 and Claim 3.6. Using the eigendecompositionAi =
∑n
j=1 λjuju

†
j

and denoting

Y = A−1
i =

n∑
j=1

1

λj
uju
†
j and Z = B−1

i =

n∑
j=1

1

λj − δ
uju
†
j ,

it holds

TrZ − TrY =

n∑
j=1

1

λj − δ
− 1

λj
=

n∑
j=1

δ

λj(λj − δ)
= δTr(Y Z) (7.12)

and

TrZ2 − Tr(Y Z) =

n∑
j=1

1

(λj − δ)2
− 1

λj(λj − δ)

=

n∑
j=1

δ

λj(λj − δ)2
= δTr(Y Z2).

(7.13)

As a consequence,

TrRi =
TrZ2

TrZ − TrY
− TrZ

=
Tr(Y Z) + δTr(Y Z2)

δTr(Y Z)
− TrY − δTr(Y Z)

>
1

δ
+

Tr(Y Z2)

Tr(Y Z)
− 1− Tr(Y Z)

TrY
>

1− δ
δ

,

where we used the definition of Ri in the first line, equations (7.12) and (7.13) to go to the second line, the
fact that δ < 1 and TrY = 1 to reach the third, and finished with a Cauchy-Schwarz inequality. As γ 6 1, this
proves that

µ

({
x ∈ Ω : ϕ(x)†Riϕ(x) > γ

1− δ
δ

})
> 0,

hence
´

Ω
κi dµ > 0 and it is possible to draw xi according to its prescribed law. Finally, by the Shermann-

Morrison formula,

Tr(A−1
i+1) = TrB−1

i −
ϕ(xi)†B−2

i ϕ(xi)

1/wi + ϕ(xi)†B−1
i ϕ(xi)

= TrA−1
i = 1,

which concludes the induction.
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The main result of this section is the following.

Proposition 7.7. At the end of Algorithm 4,

‖v‖2m >
mδ − n+ 1

m
‖v‖2L2

for any function v ∈ Vn, whereas
‖u‖2m 6

δ

γ(1− δ)
‖u‖2L∞ a.s.

for any function u ∈ L∞(Ω, µ) and

E
(
‖u‖2m

)
6

δ

(1− γ)(1− δ)
‖u‖2L2

for any function u ∈ L2(Ω, µ).

Proof. At the end of the algorithm, we have that Tr(A−1
m+1) = 1 and hence Am+1 < I. This implies that

Gm =
1

m

m∑
i=1

wiϕ(xi)ϕ(xi)† =
1

m
Am+1 +

mδ − n
m

I <
mδ − n+ 1

m
I.

Thus, for any v =
∑n
j=1 νjϕj ∈ Vn,

‖v‖2m =
1

m

m∑
i=1

wi|v(xi)|2 = ν†Gmν > λmin(Gm)|ν|2 > mδ − n+ 1

m
‖v‖2L2 .

For the second statement, note that almost surely,

1

wi
= κi(x

i) > γ
1− δ
δ

,

and hence

‖u‖2m =
1

m

m∑
i=1

wi|u(xi)|2 6 1

m

m∑
i=1

δ

γ(1− δ)
|u(xi)|2 6 δ

γ(1− δ)
‖u‖2L∞ .

Finally we consider the third statement. We denote

Ωi = {x ∈ Ω : κi(x) > 0} =

{
x ∈ Ω : ϕ(x)†Riϕ(x) > γ

1− δ
δ

}
and observe that ˆ

Ω

κidµ =

ˆ
Ω

ϕ(x)†Riϕ(x)dµ(x)−
ˆ

Ωci

ϕ(x)†Riϕ(x)dµ(x)

> Tr(Ri)−
ˆ

Ω

γ
1− δ
δ

dµ > (1− γ)
1− δ
δ

.



7.3. Weighted least-squares 139

Therefore

E
(
‖u‖2m

)
=

1

m

m∑
i=1

E
(
wi|u(xi)|2

)
=

1

m

m∑
i=1

E
(ˆ

Ωi

1

κi(x)
|u(x)|2 κi(x)´

Ω
κidµ

dµ(x)

)

6
1

m

m∑
i=1

E
(
‖u‖2L2´
Ω
κidµ

)
6

δ

(1− γ)(1− δ)
‖u‖2L2 ,

which concludes the proof.

7.3 Weighted least-squares

Recall that the least-squares solution can be computed by solving the linear system (7.11). We use the
sample (x1, . . . , xm) and weights (w1, . . . , wm) provided by Algorithm 4.

Algorithm 5 Weighted least-squares approximation
1: Evaluate u(x1), . . . , u(xm)

2: Compute 1
mD

†f = 1
m

∑m
i=1 wiu(xi)ϕ(xi)

3: Solve Gm c = 1
mD

†f

4: Return ũ =
∑n
j=1 cjϕj

Proof of Theorem 7.1. We follow an approach similar to Lemma 1 in [d], which consists in using the results
from Proposition 7.7 to exchange continuous norms ‖ · ‖L2 and discrete norms ‖ · ‖m. Denote g = u− Pnu the
residual, for which according to (7.2) we have

‖g‖2L2 = ‖u− Pnu‖2L2 = min
v∈Vn

‖u− v‖2L2 .

By Pythagoras theorem one has
‖u− ũ‖2L2 = ‖g‖2L2 + ‖ũ− Pnu‖2L2 ,

so that we only need to bound the term

‖ũ− Pnu‖2L2 = ‖Pmn (u− Pnu)‖2L2 = ‖Pmn g‖2L2

in expectation. This is achieved thanks to Proposition 7.7 using the estimate

E(‖Pmn g‖2L2)

‖g‖2L2

=
E(‖Pmn g‖2L2)

E (‖Pmn g‖2m)

E
(
‖Pmn g‖2m

)
E (‖g‖2m)

E
(
‖g‖2m

)
‖g‖2L2

6
m

mδ − n+ 1
× 1× δ

(1− γ)(1− δ)
.

Recalling that r = (n− 1)/m, this last bound is equal to 1/(1− γ) times

mδ

(mδ − n+ 1)(1− δ)
=

1

(1− r/δ) (1− δ)
=

1

(1−
√
r)

2
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if we take δ =
√
r. This proves inequality (7.5). In order to deal with (7.6), we denote by

P∞n u = arg min
v∈Vn

‖u− v‖L∞

the Chebyshev projection of u onto Vn with respect to the Banach norm ‖ · ‖L∞ , and take g = u − P∞n u the
associated residual. By an argument similar to [59] and [168], we have

‖u− Pmn u‖L2 − ‖u− P∞n u‖L2 6 ‖Pmn u− P∞n u‖L2 = ‖Pmn g‖L2

and we conclude by bounding the operator norm ‖Pmn ‖L∞→L2 by

‖Pmn g‖L2(σ)

‖g‖L∞
=
‖Pmn g‖L2(σ)

‖Pmn g‖m
‖Pmn g‖m
‖g‖m

‖g‖m
‖g‖L∞

6
1
√
γ

1

1−
√
r
, (7.14)

where the last inequality stems from the same reasons as above. �

Proof of Corollary 7.2. Taking m = n, we simply observe that r = 1− 1
n and thus

√
r 6 1− 1

2n . This implies
that (1−

√
r)−2 6 4n2. �

Remark 7.8. Some intuition is given in [24], where an explanation is given on why their algorithm cannot
achieve a better bound than the so-called twice-Ramanujan bound(

1 +
√
r

1−
√
r

)2

.

This in some sense implies that the analysis of Algorithms 4 and 5 yields at least a factor (1−
√
r)
−2 in

Theorem 7.1 when r is close to 1, and therefore a factor of order 4n2 in Corollary 7.2. When r is close to 1, the
factor (1−

√
r)
−2 is also slightly better than the (1− r)3 obtained in [23].

Proof of Theorem 7.3. Let σ be a probability measure on Ω, and define the associated inverse Christoffel function

nkn(x) := max
v∈Vn

|v(x)|2

‖v‖2L2(Ω,σ)

.

Then, for any v ∈ Vn, it holds
‖v‖L∞ 6 ‖nkn‖1/2L∞‖v‖L2(Ω,σ),

with
‖nkn‖1/2L∞ := max

v∈Vn

‖v‖L∞
‖v‖L2(Ω,σ)

.

The rest of the proof follows the same path as made previously: by letting g = u− P∞n u, we have

‖u− Pmn u‖L∞ − ‖u− P∞n u‖L∞ 6 ‖Pmn u− P∞n u‖L∞ = ‖Pmn g‖L∞

and according to (7.14), with µ replaced by σ, we also that

‖Pmn g‖L∞
‖g‖L∞

=
‖Pmn g‖L∞
‖Pmn g‖L2(Ω,σ)

‖Pmn g‖L2(Ω,σ)

‖g‖L∞
6 2n ‖nkn‖1/2L∞ ,

which concludes the proof. �
Note that in Theorem 7.3 the choice of σ is left to the user. An important question is whether one can find a

probability measure σ making ‖kn‖L∞ bounded for general spaces Ω and Vn, which would result in a Lebesgue
interpolation constant of order O(n3/2). To our knowledge, this is an open problem.

Remark 7.9. A nice feature of the randomized and deterministic results is that they are obtained with the
same algorithm, up to a choice of parameter γ. If one takes an intermediate value γ = 1

2 , we attain both
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estimates at the same time, up to a factor 2 in the stability constants, compared to the optimal choices γ = 0
in the randomized setting and γ = 1 in the deterministic setting.

Remark 7.10. In the randomized setting, we do not need (Ω,A, µ) to be a probability space, a measure space
is sufficient. The uniform results also hold when µ is a measure of finite mass, if one multiplies all the L∞ norms
by a factor µ(Ω). Lastly, Theorem 7.3 holds for any sigma-finite measure µ, by rescaling µ with a density of
mass 1.

Remark 7.11. In the deterministic setting, it is not necessary to draw each point xi with a density proportional
to κi(x). If g is uniformly bounded (and not just essentially bounded), one can drop the "almost sure" limitation,
and the only requirement is that

ϕ(xi)†Riϕ(xi) > γ
1− δ
δ

, 1 6 i 6 m,

which may be easier from a numerical point a view. However, it seems that searching for xi by rejection sampling
works better in practice than sorting Ω and looking for the first point that achieves this condition.

Remark 7.12. Moreover, in the deterministic setting, one can replace each weight wi by its upper bound
δ

γ(1−δ) , resulting in an unweighted discrete norm

‖g‖2m =
1

m

m∑
i=1

|g(xi)|2,

which still satisfies
‖v‖m >

√
γ(1−

√
r)‖v‖L2 and ‖g‖m 6 ‖g‖L∞ a.s.

for any v ∈ Vn and g ∈ L∞, and therefore achieves the bound (7.6). We refer to [23] for earlier results on
subsampling of frames with unweighted discrete norms.
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