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Introduction

In many fields of science and engineering, simulations are used to study complex phenomena for which practical experiments are either impossible or prohibitively expensive. However, these models often require significant computational resources, making them too slow to run a large number of times. Reduced modeling [START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF][START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF] refers to a variety of numerical techniques that aim at simplifying these complex models while retaining their essential features. The resulting reduced order models should be computationally efficient, in order to fully explore the behavior of the system when its physical parameters vary. Reduced models are thus typically used in order to accelerate forward numerical simulation when the solution should be queried for many parameter values. They are also of important use in inverse problems, when the parameters and the state are unknown, and one can access the solution only through a few measurements.

In general mathematical terms, one considers an unknown element u of some Banach space V . A priori knowledge on u is expressed through its membership to a compact class K ⊂ V , which could account for the regularity of u, the physical laws it obeys, and in a broader sense the equations and bounds that u is expected to satisfy. We are interested in representing u in a simplified manner, using a small number n of real coefficients, from which an approximation ũ will be calculated. In the next section, we introduce various tools for gauging the trade-off between simplicity and accuracy of this representation. Their study is at the core of the results presented in this thesis.

Complexity measures

The procedure for deriving ũ can be decomposed as encoding and then decoding u with some continuous maps E : V → R n and D : R n → V . Here E expresses the n coefficients of the reduced model as information queried on u, while D constructs a surrogate ũ based on E(u). The resulting approximation ũ = D(E(u)) should remain close to u. The accuracy of such a method is assessed in the norm • V associated to V , through a uniform error bound max u∈K u -D(E(u)) V .

(1.1)

Note that the maximum is indeed attained, due to the compactness assumption on K.

Defining the reduced order model as V n = D(R n ), the search for maps E and D making (1.1) small can be reformulated as looking for a set V n ⊂ V and a continuous map P : V → V n such that max u∈K u -P u V is as small as possible. If we assume that D(E(u)) = u when u ∈ V n , we may view P = D • E as a (generally nonlinear) projection onto V n .

As computations should be much faster in the reduced model V n than in the whole space V , one is frequently led to impose some constraints on V n , and therefore on D. For example, only linear maps D could be considered, resulting in linear spaces V n , as illustrated in Figure 1.1. Even for nonlinear decoders, D is commonly assumed to be smooth, making V n an n-dimensional differentiable manifold, see Figure 1.2. On the other hand, the choice of the encoder E depends on the measurements that can be performed on u. One might have access only to linear forms evaluated on u, or to a more restrictive class such as point evaluations when u is a function.

Optimizing over D and E with the various above-mentioned constraints defines so-called n-widths of the 1

V n V K u • P u • Figure 1.1 -Approximation by a linear reduced model V n V n V K u • P u • Figure 1.
2 -Approximation by a nonlinear reduced model V n . The increase in computational complexity caused by the nonlinear setting is expected to be compensated by an improved accuracy class K (see [START_REF] Pinkus | n-widths in approximation theory[END_REF], or [START_REF] Pietsch | Eigenvalues and s-numbers[END_REF] and Chapter 5 of [START_REF] Pisier | The volume of convex bodies and Banach space geometry[END_REF] for equivalent definitions in operator theory), of the form

inf E:V →R n inf D:R n →V max u∈K u -D(E(u)) V ,
as summarized in the following Table 1 ρ n , that all linear widths are larger than their nonlinear counterparts on the right column, and that all these numbers decrease as n increases Probably the most popular are the Kolmogorov n-widths d n (K) V , which require D to be linear, and can be seen to satisfy

d n (K) V = inf Vn linear dim(Vn)=n max u∈K min v∈Vn u -v V (1.2)
by taking the best approximation P n u ∈ arg min v∈Vn u -v V . Note that, as K is compact, it can be covered by balls of any radius ε > 0 centered at points u 1 , . . . , u n ∈ K for n = n(ε) large enough. Taking V n that contains u 1 , . . . , u n shows that d n (K) V ε, and therefore

d n (K) V -→ n→∞ 0.
One alternative to the Kolmogorov widths consists in imposing that E is also linear, which leads to the approximation numbers a n (K) V = inf

P ∈L(V,V ) rank(P ) n max u∈K u -P u V ,
where L(V, W ) denotes the set of continuous linear operators from V to W . If V is a Hilbert space, the optimal projection P n is linear, so a n (K) V = d n (K) V .

An important aspect for quantifying the effectiveness of linear reduced modeling is to determine how fast the Kolmogorov widths of K decay. Such decay properties are well understood for standard regularity classes [START_REF] Dũng | Hyperbolic cross approximation[END_REF][START_REF] Temlyakov | Multivariate approximation[END_REF][START_REF] Temlyakov | Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness[END_REF][START_REF] Temlyakov | Approximation of functions with small mixed smoothness in the uniform norm[END_REF], and have more recently been studied for classes of solutions to parametric elliptic Partial Differential Equations (PDEs), under the systematic assumption that ellipticity holds uniformly over the parameter domain [20-22, 84, 174]. In Chapter 2, we address this question when the uniform ellipticity assumption is no more valid, namely for a stationary diffusion equation with degenerate coefficients, that correspond to the so-called high-contrast regime.

In some situations, the Kolmogorov widths may decrease too slowly, and a natural approach to tackle this issue consists in using nonlinear reduced models. This leads to the notion of nonlinear widths (or manifold widths) [START_REF] Temlyakov | Nonlinear Kolmogorov widths[END_REF] δ n (K) V = inf

E∈C 0 (V,R n ) inf D∈C 0 (R n ,V ) max u∈K u -D(E(u)) V ,
Note that V n = D(R n ) is now a nonlinear space. One important variant, called stable nonlinear widths [START_REF] Cohen | Optimal stable nonlinear approximation[END_REF] and denoted δ L n (K) V , imposes in addition that E and D are both L-Lipschitz continuous for a certain choice of norm on R n .

An important chapter of nonlinear approximation, that was highlighted by the theory of Compressed Sensing [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Foucart | An invitation to compressive sensing[END_REF], consists in imposing that encoding is made by linear measurements while decoding could be nonlinear. This brings us to introduce the sensing numbers

s n (K) V = inf E∈L(V,R n ) inf D:R n →V max u∈K u -D(E(u)) V . (1.3) 
There is a close connection between s n and the Gelfand widths, defined as

g n (K) V := inf E∈L(V,R n ) max u∈K E(u)=0 u V .
One can observe, as in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF], that

s n (K) V g n (K -K) V 2 s n (K) V .
In particular, when K is convex and centrally symmetric, a Hahn-Banach extension of id Ker E to V in the norm v K := min{λ ∈ [0, ∞] : v/λ ∈ K} shows that s n (K) V = g n (K) V .

Remark 1.1. In the definition of sensing numbers, we can omit the assumption that D is continuous, without changing the value of s n . Indeed, for any ε > 0, covering K by a finite union of sets U z = {u + v : u ∈ K, E(u) = z and v V ε}, and applying a partition of unity on the covering of E(K) by the E(U zi ), one can define a continuous decoder D ε interpolating any decoder D at points z i , with an additional error at most ε. This will be useful in Chapter 3, where we prove bounds on s n by the construction of a possibly discontinuous decoder.

In Chapter 3, we discuss how nonlinear reduced models can be used in the context of inverse problems, and establish theoretical bounds on the achievable accuracy for a given set of linear or nonlinear measurements. Indeed, in many applications, not all measurements of u are accessible, thus optimal encoders E are out of reach [START_REF] Micchelli | A survey of optimal recovery[END_REF]. As a particular application, we discuss the performance of nonlinear reconstructions for classes K of piecewise smooth functions from their encoding by cell averages, and show that it decays faster than the Kolmogorov widths of K. This means that s n and δ n decay significantly faster than a n and d n for such K.

Finally, a typical setting, in the case where u is a real or complex valued function defined on some domain Ω, is when encoding of u is perfomed by point evaluations only [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF]. This naturally leads to the notions of linear sampling numbers that are defined as

ρ n (K) V = inf x 1 ,...,x n ∈Ω inf D∈L(R n ,V ) max u∈K u -D(u(x 1 ), . . . , u(x n )) V , (1.4) 
Once again we may relax the assumption that D is linear, leading to the nonlinear sampling numbers ρn (K) V .

Another important variant that will be defined further are the randomized sampling numbers, that correspond to the case where the x i are picked at random and error is measured in an expectation sense. This practical situation of point evaluations is the main focus of the rest of this thesis. Part II, composed of Chapters 4, 5, 6 and 7, explores new bounds on sampling numbers. In these contributions, decoding/reconstruction strategies are linear and very classical, such as interpolation or least-squares. The main contribution lies in the careful selection of the points where u should be evaluated, that is in the encoding/sampling strategy, a topic which has been the object of intensive research in recent years [START_REF] Novak | Tractability of multivariate problems[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF][START_REF] Temlyakov | Multivariate approximation[END_REF][START_REF] Wasilkowski | On the power of standard information for weighted approximation[END_REF]. In particular, we provide in various contexts estimates for the sampling numbers ρ n (K) V that compare favorably to the Kolmogorov widths, when V is either L 2 (D) or L ∞ (D).

Let us stress that there also exist many nonlinear reconstruction methods based on point sampling, and therefore falling in the category described by the nonlinear sampling numbers ρn [START_REF] Siegel | Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks[END_REF][START_REF] Wendland | Scattered data approximation[END_REF]. We may single out the very active area of neural network approximation, with recent progress on learning Banach subsets, see [START_REF] Adcock | Near-optimal learning of Banach-valued, highdimensional functions via deep neural networks[END_REF] and the references therein. However, nonlinear sampling numbers ρn do not compare as favorably to nonlinear widths δ n as in the linear case, due to a theory-to-practice gap in deep learning [START_REF] Grohs | Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces[END_REF]. As the underlying mathematical concepts are also quite different from the ones studied here, these methods are left outside the scope of this thesis.

Remark 1.2. Here we emphasized the role of reduced order models based on continuous coefficients c ∈ R n . Another approach consists in encoding information on u in a discrete way, by replacing R n with a finite set {1, . . . , N }. Appraising the accuracy of this technique is the goal of covering numbers, packing numbers, and the related entropy numbers, that have natural connections with the complexity measures described above [START_REF] Carl | Entropy numbers, s-numbers, and eigenvalue problems[END_REF].

In the next sections, we go into further detail on each of the previously mentioned themes, and summarize the content of each chapter.

Reduced modeling for parametric elliptic PDEs

Part I of the thesis begins with Chapter 2, based on our article [a], which deals with linear reduced modeling for parametric elliptic PDEs with high contrast diffusion coefficients.

When simulating physical phenomena, u often corresponds to an intensive quantity, such as a temperature, pressure, concentration, or a velocity field. Besides the spatial coordinates x ∈ Ω, u may depend on some parameters gathered in a vector y ∈ Y ⊂ R d , which could account both for physical properties of the materials, and for geometric variables describing for instance the shape of the domain Ω and its boundary conditions. Modeling this function u(y) by a PDE P(u, y) = 0, x ∈ Ω, creates a class of solutions

K Y = {u(y) : y ∈ Y } (1.5)
in the Banach space V for which the PDE is well-posed. One typically has access to a high fidelity numerical solver, which computes u(y) for any given parameter vector y ∈ Y . Such solvers are computationally costful, which is particularly problematic in the "many query" context, that is, when the solution is needed for many different y. This motivates the offline search of a reduced model V n for K, that aims at collectively approximating all solutions as best as possible for the given dimension n. The two prominent approaches are the reduced basis method [START_REF] Haasdonk | Reduced basis methods for parametrized PDEs-a tutorial introduction for stationary and instationary problems[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics[END_REF][START_REF] Sen | Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems[END_REF] and the principal orthogonal decomposition [START_REF] Chatterjee | An introduction to the proper orthogonal decomposition[END_REF][START_REF] Volkwein | Proper orthogonal decomposition: Theory and reduced-order modelling[END_REF][START_REF] Willcox | Balanced model reduction via the proper orthogonal decomposition[END_REF]. The main challenges arising in this context consist in -estimating the Kolmogorov widths d n (K) V from (1.2) that corresponds to the performance of optimal, and often out of reach, n-dimensional spaces; -constructing a reduced space V n such that the distance max u∈K min v∈Vn u-v V from K to V n compares favorably with d n or satisfies similar decay estimates; -once V n is fixed, and given y ∈ Y , computing a surrogate ũ(y) ∈ V n of u(y), with an error u(y) -ũ(y) V again satisfying a similar bound. The online computation of the surrogate ũ(y) is typically performed by the Galerkin method in the space V n , that amounts to solving a system of moderate size n, resulting in substantial computational savings compared to the high fidelity solver.

Chapter 2 concentrates on an archetypal example of parametrized elliptic problem P(u, y) := f + div (a(y) ∇u) = 0, x ∈ Ω (1.6) modeling the stationary solution u ∈ V := H 1 0 (Ω) of a diffusion equation in a heterogeneous domain, with source term f ∈ V = H -1 (Ω), diffusion coefficient a(y) ∈ L ∞ (Ω), and homogeneous Dirichlet boundary conditions u| ∂Ω = 0.

Here, Ω is a fixed smooth spatial domain, and we assume that f is independent from the parameters y, because u depends linearly on f , hence a parametrized source term would pose no particular difficulty. On the contrary, the evolution of u when a varies is much more complex. We restrict ourselves to a piecewise constant geometry a(y) = y j on Ω j , where {Ω 1 , . . . , Ω d } is a fixed partition of Ω and y ∈ Y ⊂ (0, ∞) d , as illustrated in Figure 1. [START_REF] Adcock | On efficient algorithms for computing nearbest polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples[END_REF]. If we take a source term f = 1 and a piecewise constant diffusion coefficient a = y j on Ω j with y 1 1 and y 2 = 1, the solution u(y), plotted on the right, is almost constant on Ω 1 , with a value close to zero due to the homogeneous Dirichlet boundary conditions This problem has been widely studied in recent years, see in particular [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF][START_REF] Bäck | Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison[END_REF][START_REF] Tran | Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients[END_REF], who all work under a uniform ellipticity assumption Y ⊂ [a min , a max ] d , 0 < a min < a max < ∞.

Even when the parameter dimension d goes to infinity, sparse approximations [START_REF] Adcock | On efficient algorithms for computing nearbest polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples[END_REF][START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients[END_REF][START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's[END_REF] have been proved to achieve polynomial decay rates, for any affine parametrization of a as a function of y. For finite d, exponential rates can be obtained, by studying certain sparse polynomial expansions of u(y) with respect to the parameter coordinates (y j ) 1 j d . This is the strategy adopted in [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF], yielding the following result: Theorem 1.3. If the diffusion coefficient a is piecewise constant with value y j on Ω j (or any affine function a(y) = a + d j=1 y j ψ j ) and a min a(x, y) a max for all x ∈ Ω and y ∈ Y , then

d n (K Y ) V C exp(-cn 1/d ),
where C and c are positive constants depending on d, a min , a max , and the geometry of the partition (or on the affine basis functions a and ψ 1 , . . . , ψ d ).

However, the constraint that a is bounded from above and below is quite stringent, as the constant C degrades proportionally to the level of contrast a max /a min . For heat diffusion in composite materials, metallic and cristalline parts may have conductivities hundreds or thousands times higher than organic compounds or air. An even worse gap occurs in modeling the diffusion of a contaminant in underground water flows, as the diffusivity is much higher in flooded cavities than in the surrounding porous rocks.

Many techniques have been proposed to avoid deterioration of the convergence of numerical solvers when the level of contrast increases. They range from preconditionners [START_REF] Aksoylu | Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems[END_REF][START_REF] Aksoylu | Robust multigrid preconditioners for cell-centered finite volume discretization of the high-contrast diffusion equation[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF] to a posteriori error estimation [START_REF] Ainsworth | Robust a posteriori error estimation for nonconforming finite element approximation[END_REF][START_REF] Bernardi | Adaptive finite element methods for elliptic equations with non-smooth coefficients[END_REF], not forgetting domain decomposition methods adapted to drastic changes in the coefficients [START_REF] Gander | On optimal coarse spaces for domain decomposition and their approximation[END_REF][START_REF] Gander | Analysis of a new harmonically enriched multiscale coarse space for domain decomposition methods[END_REF] or even to changes in the nature of the PDE [START_REF] Gander | Heterogeneous optimized Schwarz methods for second order elliptic PDEs[END_REF]. The main novelty of Chapter 2 is to establish such robust estimates for model order reduction.

A first step consists in observing that, due the homogeneity property u(y) = tu(ty), we only have to consider the case of large values y → ∞. We thus assume, up to a rescaling, that y j 1 for all 1 j d, and show a uniform reduced model error sup

y∈[1,∞) d ũ(y) -u(y) V ε.
This results in a similar uniform error bound, in the relative error sense

sup y∈(0,∞) d ũ(y) -u(y) V u(y) V ε,
over the full range of parameter Y = (0, ∞) d , which is therefore robust to arbitrarily high contrast.

One key ingredient to our analysis is the fact that the solution u to the variational problem associated to (1.6), ˆΩ a(y)∇u

• ∇v = ˆΩ f v, v ∈ V = H 1 0 (Ω),
converges, when some of y j tend to infinity, to the solution u S ∈ V S of a limit problem ˆΩc S a(y)∇u

S • ∇v = ˆΩ f v, v ∈ V S ,
where S is the set of indices j such that y j = ∞, Ω S = j∈S Ω j is the part of Ω where a(y) is infinite, and

V S = {v ∈ V : ∇v = 0 on Ω S }.
The weak convergence of u(y) towards u S follows from a compactness argument, which can be found in Chapter 3 of [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF] in the context of homogeneization. To obtain strong convergence, one additionally needs the convergence of the energy norm

v 2 y := ˆΩ a(y)|∇v| 2 .
A more detailed convergence analysis when there are only d = 2 subdomains can be found in [START_REF] Calo | Asymptotic expansions for high-contrast elliptic equations[END_REF], where asymptotic expansions up to any order are performed. One of our main contributions is to quantify more precisely the rate of this strong convergence. The central idea for manufacturing a reduced model V n of K Y is then to use polynomial expansions adapted from [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF] in subsets of the parametric domain Y = [1, ∞] d corresponding to moderate values of y, and to take advantage from the proximity between u(y) and a limit solution when some of the y j are large. Our main result is in turn the following.

Theorem 1.4. For Y = [1, ∞] d and a(y) = y j on Ω j , the class K Y defined by (1.5) satisfies

d n (K) V C exp(-cn 1/2d )
for some constants C, c > 0 that depend on d and the geometry of the partition.

As the proof is constructive, it also provides a space V n achieving the following bound, however at the expense of computing derivatives of the solutions u(y) with respect to y. Classical reduced models, selected as subspaces of the span of a limited number of solutions u(y 1 ), . . . , u(y N ), are nevertheless proved to work at least as well [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Buffa | A priori convergence of the greedy algorithm for the parametrized reduced basis method[END_REF][START_REF] Devore | Greedy algorithms for reduced bases in Banach spaces[END_REF][START_REF] Veroy | A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations:"convex inverse" bound conditioners[END_REF], and in practice reach much better rates than the pessimistic bound in exp(-cn 1/2d ).

Concerning the construction of the surrogate ũ(y), the best approximation would be the H 1 0 -orthogonal projection of u(y) onto V n , which is accessible only by first computing u(y), which is exactly what we want to avoid. A more efficient approach is to compute the Galerkin projection, that is, the orthogonal projection of u(y) onto V n with respect to the energy norm • a . This only asks to solve the PDE in the reduced model, which comes down to solving an n × n linear system. We show estimates of the same kind as Theorem 1.4 for the error of approximation by Galerkin projection, despite the fact that the high-contrast regime does not allow a straightforward use of Cea's lemma.

Finally, as a consequence of the above results, we demonstrate that the linear Parametrized Background Data-Weak (PBDW) method [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] allows to solve the inverse problem of recovering an unknown state u or the underlying parameters y, based on a few measurements of the solution.

Nonlinear reduced modeling and inverse problems

Chapter 3 is based on article [b], which deals with the use of nonlinear reduced models for solving inverse problems.

In full generality, we address the inverse problem of recovering an unknown function u ∈ V from m linear measurements performed by given functionals 1 , . . . , m : V → R. The properties of u are again modeled by its membership in a class K that could be the solution manifold of a parametric PDE.

The Parametrized Background Data-Weak (PBDW) method consists in introducing a linear reduced model space V n for K, with n m, and defining the recovery as the optimizer u * in the pair (u * , ũ) ∈ arg min v * ∈Vz, ṽ∈Vn v * -ṽ V , where V z = {v ∈ V : (v) = z} is the space of codimension m of all elements v ∈ V that have the same measurements z = (u) as the unknown element u, with the notation = ( 1 , . . . , m ) : V → R m . The PBDW estimator u * entirely trusts the data, expressed through V z , and considers the parametrized space V n as an inexact approximation, contrarily to the best fit estimator ũ which heavily relies on the precision of V n , while allowing noisier measurements.

If we assume that V is a Hilbert space and that ∈ L(V, R m ) is linear, one can take Riesz representers ω i of the i i (v) = ω i , v V , 1 i m, v ∈ V, and characterize the measurements as the orthogonal projection P Wm onto the observation space W m = span{ω 1 , . . . , ω m }, see Figure 1 If moreover V n is a linear space, it was proved in [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] that these estimators are near-optimal:

Theorem 1.5. Given V n and noiseless observations P Wm u of u, the estimators u * and ũ satisfy

max( u -u * V , u -ũ V ) µ m n min v∈Vn u -v V ,
where The quantity µ m n may be thought of as the cosecant 1/ sin(θ) of the minimal angle θ between W ⊥ m (or the affine space V z ) and V n . In other words, µ m n indicates how close V n is from W m . In particular, µ m n = 1 if V n ⊂ W m , in which case the optimal approximation ũ = P Vn u can be computed from the observations P Wm u. On the opposite, if there exists a non-zero v ∈ V n ∩W ⊥ m , the corresponding coordinate u, v V cannot be deduced from the measurements, and µ m n = ∞.

µ m n = max v∈Vn v P Wm v V . θ V n V K u • ũ • P n u • V z W m 0 • P Wm ũ •
Remark 1.6. In Figure 1.4, sin θ corresponds both to the ratio between optimal error u -P n u V and actual error u -ũ V , and to the fraction P Wm ũ V / ũ V . This motivates the definition of the stability constant µ m n in Theorem 1.5

In Chapter 3, we establish an extension of the above result to nonlinear spaces V n in general Banach spaces V . For a linear measurement map : V → R m , Theorems 3.3, 3.5 and 3.8 imply: Theorem 1.7. Given V n and noiseless linear observations (u) of u, the estimators u * and ũ satisfy

max( u -u * V , u -ũ V ) (1 + 2µ W n ) min v∈Vn u -v V where µ W n = sup v1,v2∈Vn v 1 -v 2 V (v 1 ) -(v 2 ) W ,
for the norm z W := min v∈Vz v V on R m .

Note that µ W n is the inverse Lipschitz stability constant of in V n . It coincides with the factor µ m n from the previous theorem under the corresponding assumptions, as illustrated on Figure 1.5.

θ θ u V n V K u • ũ • P u • V z Figure 1
.5 -Approximation of u in a nonlinear reduced model V n , based on linear measurements expressed by V z . The stability constant is again inversely proportional to sin θ u , which we bound by considering the minimal angle θ = min u∈K θ u . As V n is nonlinear, these angles are in fact defined by considering differences between two elements of V n , see Theorem 1.7

Furthermore, in the case of noisy observations z = (u) + η, we obtain similar bounds, with an additional term proportional to η p , the norm of the noise in p (R m ), for any p 1. When the level of noise grows, a norm • Z different from • W should be chosen in Theorem 1.7, to preserve a balance between these two terms.

The above analysis is then carried on to a concrete example in Sections 3.4 and 3.5: one wishes to recover a piecewise smooth function u : [0, 1] 2 → R from its local averages ffl T u on cells of the form T i,j = [(i -1)h, ih] × [(j -1)h, jh], where h > 0 is the cell size and 1 i, j 1/h. This typically applies to cartoon images, for which one may construct a fine resolution image based on a pixelized version. Another domain where this example could be of interest is the numerical resolution of hyperbolic equations with shock singularities.

Assuming that u is in fact piecewise constant with values 0 and 1, the strategy consists in looking for the best approximation of u by the indicator of a half-plane, on each stencil of 3 × 3 cells. We show in Proposition 3.15 that µ W n = 3/2, which implies the following bound, adapted from Theorem 3.18:

Theorem 1.8. If u the indicator of a smooth domain in [0, 1] 2 , we can construct an approximation ũ based on its average values on n = h -2 cells such that

u -ũ q L q C n .
This is better than the rate 1/ √ n achieved by a linear method, this rate being optimal for q = 2. In other words, we proved that for the class K of indicators of smooth domains, the sensing numbers defined in (1.3) decrease as

s n (K) L 2 n -1/2 ,
whereas the Kolmogorov widths (or approximation numbers) only decay as d n (K) L 2 ≈ n -1/4 . Finally, in Section 3.6, we show that for the space V n of n-sparse vectors in V = R N , optimal accuracy of the reconstruction is equivalent, up to a factor 2 in the constants, to the null space property [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF], which is known to certify the quality of the measurements in compressed sensing (it is in particular implied by the the restricted isometry property [START_REF] Candes | Decoding by linear programming[END_REF][START_REF] Foucart | An invitation to compressive sensing[END_REF]).

Weighted least-squares

In Part II of the thesis, we investigate more specifically linear recovery methods from point value data.

Thus the information on u consists of its evaluations at a few selected points x 1 , . . . , x m , possibly affected by noise. The critical aspect of the setting we consider is that the user is allowed to pre-select the sample points. This situation happens:

-in the design of physical experiments, if u is a spatially-dependent physical quantity, and one can pick the positions x 1 , . . . , x m of sensors measuring u(x i ), -in the model reduction of a parametric PDE, whose solution u is seen as a function of the parameters y, since the user can pick the set of parameters y i when lauching the fine numerical solver. This active learning setting is in shear contrast to the regression problem in statistical learning, where the data points are drawn from an unknown underlying distribution. It puts in the forefront the problem of optimally selecting the sampling point, as already hinted in the definition (1.4) of the sampling numbers ρ n .

As m represents a number of sensors or a number of expensive numerical solves, one is interested in establishing convergence estimates that compare favorably to the accuracy of the reduced model V n , of given dimension n, that is used for the reconstruction, and hold for the smallest possible sampling budget m, if possible of the same order as n.

Before detailing the contents of each chapter of Part II, let us briefly present a simplified version of the main result of [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], see § 4.2.2, boosted by adding a conditioning step from [START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF], with a strategy of proof following the same lines as [d]. The proof is essentially summed up in Lemma 5.2, and the main result of this section is almost a copy of Lemma 5.4. Let Ω be a multivariate domain equipped with a measure µ, and let

V := L 2 (Ω, µ).
Let V n ⊂ V be a given linear space of dimension n ∈ N. We seek to approximate an unknown function u ∈ V by a surrogate ũ ∈ V n , based on its point values. Take (ϕ 1 , . . . , ϕ n ) an orthonormal basis of V n , and define

k n (x) = 1 n n j=1 |ϕ j (x)| 2 , x ∈ Ω, (1.7) 
the inverse Christoffel function, up to the scaling factor 1/n. For m n to be determined later, we draw points x 1 , . . . , x m ∈ Ω i.i.d according to the sampling measure k n (x) dµ(x). Moreover, we define weights w i = 1/k n (x i ), and a discrete semi-norm

v 2 m = 1 m m i=1 w i |v(x i )| 2 , v ∈ V.
In the noise-free case, the weighted least-squares approximation

P m n u = arg min v∈Vn u -v m
is the orthogonal projection of u onto V n with respect to the norm • m . This definition should be viewed in an almost sure sense, when applied to a function representative of u ∈ L 2 (Ω, µ).

We introduce the random Gram matrix

G m := ( ϕ j , ϕ k m ) 1 j,k n = 1 m m i=1 a i a † i , (1.8) 
where a i = √ w i ϕ(x i ) ∈ C n . Following [START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF], we define a conditional estimator

ũ = E P m n u G m 1 2 I ,
where A B means that A -B is a positive semi-definite matrix. The estimator ũ can be computed by redrawing samples (x 1 , . . . , x m ) until the event G m 1 2 I occurs. Theorem 1.9. For m 10 n ln(2n), the expected numbers of redraws is at most 2, and

E u -ũ 2 L 2 5 min v∈Vn u -v L 2 , (1.9) 
The main tool for proving Theorem 1.9 is the following matrix Chernoff inequality, originally proved by [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF]. A review on matrix concentration inequalities can be found in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF], and the version given below is from [c, d] 

a i a † i < 1 2 n exp - m 10n .
Proof of Theorem 1.9. The random vectors a i = √ w i ϕ(x i ) are i.i. 

E(a i a † i ) = ˆΩ 1 k n (x i ) ϕ(x i )ϕ(x i ) † k n (x i ) dµ(x i ) = ˆΩ ϕϕ † dµ = I.
Applying Proposition 1.10 with m 10n ln(2n), we see that the probability p := P(G m 1 2 I) is at least 1 2 . The expected number of redraws is therefore 1/p 2.

For the estimate (1.9), recalling that P n u is the orthogonal projection of u onto V n for the norm

• V = • L 2 , E u -ũ 2 L 2 = u -P n u 2 L 2 + E ũ -P n u 2 L 2 . (1.10)
By definition of the estimator ũ,

E ũ -P n u 2 L 2 = E P m n u -P n u 2 L 2 G m 1 2 I . (1.11) Decomposing v = P m n u -P n u ∈ V n as v = n j=1 ν j ϕ j , observe that v 2 m = ν * G m ν λ min (G m ) ν * ν 1 2 v 2 L 2 a.s.,
where we used the fact that λ min (G m ) 1 2 almost surely holds for the conditioned sample. Thus

P m n u -P n u 2 L 2 2 P m n u -P n u 2 m 2 u -P n u 2 m a.s., (1.12) 
since P m n u -P n u = P m n (u -P n u) is the orthogonal projection of u -P n u onto V n for the discrete norm • m . Finally, for any random variable X 0 and event E with P(E) > 0, we have

E(X|E) = E(Xχ E ) P(E) E(X) P(E)
.

Hence,

E u -P n u 2 m G m 1 2 I 1 p E u -P n u 2 m 2 u -P n u 2 L 2 . (1.13)
We conclude by combining the above bounds (1.10), (1.11), (1.12) and (1.13).

Theorem 1.9 can be rephrased in terms of randomized sampling numbers [START_REF] Wasilkowski | The power of standard information for multivariate approximation in the randomized setting[END_REF] 

ρ rand m (K) 2 V = inf σm∈Prob(Ω m ) inf D:Ω m →L(R m ,V ) max u∈K E u -D (x 1 ,...,x m ) (u(x 1 ), . . . , u(x m )) 2 V , (1.14) 
where Prob(Ω m ) is the set of probability measures on Ω m , and the expectation is taken over the sample (x 1 , . . . , x m ) of law σ m . Note that these randomized numbers are smaller than the deterministic sampling numbers ρ m (K) V from Table 1.1, defined in (1.4), since a deterministic sample may be thought of as a particular instance of random sample.

Corollary 1.11. If m 10 n ln(2n), for any compact subset

K of V = L 2 (Ω, µ), ρ rand m (K) 2 L 2 5 d n (K) 2 L 2 .
Remark 1.12. The main result in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF] proposes some improvements over the simplified Theorem 1.9: in particular, the conditioning step can be avoided if u ∈ L ∞ , by considering a truncated estimator. Moreover, the factor 5 is replaced by 1 + 8 n/m, and this new factor 8 could be reduced to any constant larger than 1, by increasing the ratio between m and n ln(n). This leads to a stability constant 1 + n/m + o(n/m) as m → ∞ for a fixed value of n, which is optimal for i.i.d sampling methods.

Remark 1.13. In the definition (1.14) of ρ rand m (K) V , we did not enforce the sample points to be i.i.d or even independent, which would transcribe as σ m = σ ⊗m for σ ∈ Prob(Ω), or as σ m ∈ Prob(Ω) m , respectively. Indeed, the conditioning procedure does not preserve the independence of the points, and there always is a probability of failure for an algorithm based on i.i.d points.

Christoffel function on general domains

Chapter 4 is based on our article [c], and investigates the computational issues arising from the use of the Christoffel function on general domains, as well as multistep algorithms circumventing these difficulties.

One main computational challenge for applying the above least-squares strategy is to compute an orthonormal basis (ϕ 1 , . . . , ϕ n ) of V n in L 2 (Ω, µ). This basis is essential for evaluating the Gram matrix G m (1.8), and even more crucially for computing the inverse Christoffel function k n (x) (1.7), which is needed both as the optimal sampling density, and for assigning the correct weights w i = 1/k n (x i ).

On general domains Ω, one might only have access to V n through a non-orthonormal basis (φ 1 , . . . , φ n ), and the continuous norm • L 2 (and associated inner product •, • L 2 ) are usually not exactly computable. One is therefore constrained to use an approximately orthonormal basis ( φ1 , . . . , φn ), and the related sampling density

kn (x) = 1 n n j=1 | φj (x)| 2 .
An important remark is that, if only an approximation kn of k n is known, it is sufficient to draw Zk n / kn L ∞ times more points according to the probability measure 1 Z kn dµ, and to use weights

w i = 1/ kn (x i ). Although the normalization constant Z = ˆΩ kn (x) dµ(x)
may not be known, classical sampling methods such as rejection sampling or Markov Chain Monte Carlo (MCMC) do not require its knowledge, and estimates on Z from above are sufficient to bound the factor Zk n / kn L ∞ in the sample size. As a consequence, our algorithm is divided into two steps: the first one consists in drawing a large sample y 1 , . . . , y M according to µ (or any known a priori sampling measure), to compute an inexact quadrature formula for • L 2 on V n and obtain the density kn , while the second draws a smaller sample x 1 , . . . , x m ∼ kn dµ, evaluates u at these points, and returns the weighted least-squares approximation. This is the subject of Chapter 4, and in particular Section 4.3. Similar results have been obtained in [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF][START_REF] Adcock | Approximating smooth, multivariate functions on irregular domains[END_REF][START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF][START_REF] Migliorati | Multivariate approximation of functions on irregular domains by weighted least-squares methods[END_REF], with an emphasis on numerical error analysis in [START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF][START_REF] Migliorati | Multivariate approximation of functions on irregular domains by weighted least-squares methods[END_REF], on frame discretizations in [START_REF] Adcock | Approximating smooth, multivariate functions on irregular domains[END_REF], and on the adaptivity to a nested sequence of approximation spaces (V np ) p 1 in [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF].

By the same arguments as for m, the number M of sample points in the first part has to grow at least like M k n L ∞ n ln(n). When the domain Ω is very irregular, k n L ∞ may increase too fast with n, which is problematic in terms of computational complexity of the offline stage. To get around this obstacle, we try to sample y 1 , . . . , y M according to a better measure than µ. The optimal sampling density for the y i is again the inverse Christoffel function k n , which is precisely the quantity we would like to compute.

To avoid this loop, we use as in [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF] a nested sequence of spaces

V n1 ⊂ • • • ⊂ V nq = V n ,
where n 1 < • • • < n q and dim(V np ) = n p for 1 p q. These spaces are obtained by progressively adding basis elements, for instance by taking V np = span{φ 1 , . . . , φ np }. Our main result in this direction is Theorem 4.12, which states that near-optimal accuracy can be obtained with a quasilinear sample size m, using preliminary samples y p,1 , . . . , y p,Mp of size M p ∼ n p ln(n p ) for 1 p q, provided that there exists a constant κ such that

n p k np n p+1 k np+1 κ n p k np . (1.15)
This multilevel strategy differs from the one in [START_REF] Haji-Ali | Multilevel weighted least squares polynomial approximation[END_REF], in which it is assumed that the numerical solver can be queried to obtain values u(x i ) with variable precision, depending on the computational effort invested. Moreover, it can be complemented with the variance reduction techniques discussed in [START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF]. Theoretical and empirical methods for choosing the intermediate sample sizes M p are discussed in [START_REF] Blel | Influence of sampling on the convergence rates of greedy algorithms for parameter-dependent random variables[END_REF], in the connected setting of randomized weak greedy algorithms.

In order to guess the necessary sample sizes and to find κ satisfying (1.15), it remains to prove estimates 1.6. Reducing the sample size on the inverse Christoffel function. We address this question in Section 4.5 for the space V n of multivariate total degree polynomials of a certain order, on a domain Ω ⊂ R d , with µ the uniform probability measure on Ω.

There is already a vast literature on the subject, see for instance [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations-application to parametric and stochastic elliptic PDEs[END_REF][START_REF] Ditzian | On Nikol'skii inequalities for domains in R d[END_REF][START_REF] Kroó | Christoffel functions on convex and starlike domains in R d[END_REF][START_REF] Prymak | Christoffel functions on planar domains with piecewise smooth boundary[END_REF][START_REF] Xu | Asymptotics for orthogonal polynomials and Christoffel functions on a ball[END_REF]. Our main results in that matter are summarized below:

Theorem 1.14. Let V np be the space of total degree polynomials of order p on a domain

Ω ⊂ R d . If Ω has a C 2 boundary, c smooth n 1/d k n L ∞ C smooth n 1/d ,
where c smooth and C smooth depend on Ω. If Ω has a Lipschitz boundary,

k n L ∞ C Lipschitz n, and k n (x) c Lipschitz (x) n
for any outward corner x ∈ ∂Ω. Finally, in the case of outward cusps, the reference domain

Ω = x ∈ [-1, 1] d : max 1 j d-1 |x j | αi x d satisfies c α n 1 d (2+ d-1 j=1 2/αj ) n k n (0) C α n 1 d (2+ d-1 j=1 2/αj ) for any α 1 , . . . , α d-1 ∈ (0, 2].
We also obtain a pointwise framing on k n up to constants for piecewise smooth domains with outward corners, see Theorem 4.27, which implies (1.15) for such domains.

It is interesting to note that the sources of fast growth of k n are the outward corners of the domain, in contrast to geometric singularities in the solutions to elliptic problems, which are caused by reentrant corners.

Reducing the sample size

In Chapter 5, based on our article [d], we obtain estimates similar to Theorem 1.9 and Corollary 1.11, with a sample size m that scales linearly with n, therefore removing the logarithmic oversampling.

The main ingredient in this reduction of the sample size is the celebrated solution [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] of the Kadison-Singer problem. This problem was a conjecture posed by Kadison and Singer [103] in 1959, concerning extensions of C * -algebras in the formalization of quantum mechanics. It was later linked to a paving conjecture in [START_REF] Anderson | Extensions, restrictions, and representations of states on C * -algebras[END_REF], and brought back to finite dimension in [START_REF] Weaver | The Kadison-Singer problem in discrepancy theory[END_REF], before being solved by Markus, Spielman and Srivastava, based on their earlier works on interlacing families of polynomials [START_REF] Marcus | Interlacing families I: Bipartite Ramanujan graphs of all degrees[END_REF].

Although the focus of the authors of [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] was mainly to find so-called graph sparsifiers, their method helped advancing on the problem of frame discretization ( [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF][START_REF] Freeman | The discretization problem for continuous frames[END_REF][START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Nitzan | A few remarks on sampling of signals with small spectrum[END_REF][START_REF] Nitzan | Exponential frames on unbounded sets[END_REF], see also the surveys [START_REF] Bownik | Continuous frames and the Kadison-Singer problem[END_REF][START_REF] Christensen | An introduction to frames and Riesz bases[END_REF]): given a vector-valued function ϕ : Ω → C n such that

A 0 I ˆΩ ϕϕ * dσ B 0 I
for some probability measure σ and continuous frame bounds A 0 , B 0 > 0, can one find a finite set S ⊂ Ω of controlled cardinality such that

AI 1 |S| x∈S ϕ(x)ϕ(x) * BI,
with discrete frame bounds A, B > 0 ? As noticed in [START_REF] Temlyakov | The Marcinkiewicz-type discretization theorems[END_REF], if one takes ϕ = (ϕ 1 , . . . , ϕ n ) an orthonormal basis of V n in V = L 2 (Ω, µ), the first estimate is valid for σ = µ and A = B = 1, and the frame discretization yields a set of points S satisfying a Marcinkiewicz-Zygmund inequality:

A v 2 L 2 1 |S| x∈S |v(x)| 2 B v 2 L 2 , v ∈ V n .
This inequality is in turn strongly related to approximation from point values, see [START_REF] Gröchenig | Sampling, Marcinkiewicz-Zygmund inequalities, approximation, and quadrature rules[END_REF], since it is equivalent to the eigenvalues of the Gram matrix G m being comprised between A and B. In Chapter 5, we use this subsampling theory to reduce the size of our sample x 1 , . . . , x m , by drawing points as in Section 1.4 and then randomly removing some of them. We detail the main steps below.

The main result from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF], see Corollary 1.5 there, can be stated as: 

G Ss := r m i∈Ss a i a † i 1 + √ rδ 2 I, 1 s r.
To obtain a lower frame bound, it suffices to consider the case r = 2, and to notice that

G S1 + G S2 = I, so λ min (G S1 ) = 1 -λ max (G S2
). By a similarity transformation, one can send each G Ss to the identity, and repeat the partitioning operation. This leads to a dyadic splitting of the initial sample {1, . . . , m}, satisfying the following duplicate of Lemma 5.8, which is mainly inspired from [START_REF] Nitzan | Exponential frames on unbounded sets[END_REF], Lemma 2, up to the slight difference that we keep track of all partition classes.

Lemma 1.16. Let a 1 , . . . , a m ∈ C n such that 1 2 I 1 m m i=1 a i a † i 3 2 I and |a i | 2 = n m for 1 i m. Then there exists L ∼ ln(m/n) and a partition {J 1 , . . . , J 2 L } of {1, . . . , m} such that |J s | C 0 n and c 0 I 1 n i∈Js a i a † i C 0 I, 1 s 2 L ,
for some universal constants c 0 and C 0 .

With this, randomly selecting the partition class J s with probability |J s |/m, we are able to obtain an error bound for weighted least-squares that is optimal up to a constant, and has a linear sampling budget |J s | C 0 n. In Corollary 5.9, we indeed show that for any compact K ⊂ V = L 2 (Ω, µ),

ρ rand C0n (K) L 2 1 + 2 C 0 c 0 d n (K) L 2 .
This result therefore shows that, in the • L 2 norm, sampling numbers compare favorably to Kolmogorov widths, up to constant factors in the error bounds and the oversampling ratio |J s |/n. Note however that the uniformity of ρ rand C0n (K) L 2 with respect to the element u ∈ K only holds with an expectation over a randomized sample inside the supremum sup u∈K . Indeed, there can be no deterministic sample achieving a recovery error close to d n (K) L 2 for general classes K.

On the other hand, if more regularity than having a finite n-width is assumed on K, deterministic bounds can be attained. This topic has attracted much attention in recent years, see for instance [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF][START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF][START_REF] Krieg | Optimal Monte Carlo methods for L 2 -approximation[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF], and is discussed in the next sections.

Reproducing Kernel Hilbert Spaces

Chapter 6 is based on our article [e], and studies deterministic sampling numbers ρ n (K) L 2 from (1.4), when K is the unit ball of a separable reproducing kernel Hilbert space (RKHS), or a compact class with sufficiently fast decay of its Kolmogorov widths.

The need for randomized error norms in the previous sections stems from the fact that point evaluations are not continuous linear forms in L 2 (Ω, µ). In contrast, a RKHS is a Hilbert space H of functions on some domain Ω, equipped with a kernel

K : Ω × Ω → C such that v(x) = v, K(x, •) H , v ∈ H, x ∈ Ω.
We first consider the case where K is the unit ball of a RKHS H, itself compactly embedded into L 2 (Ω, µ). In addition, we require the separability of H and the finite trace of its kernel:

ˆΩ K(x, x) dµ < ∞.
Under this assumption, our main result is the following.

Theorem 1.17. There exists a universal constant c ∈ N such that

ρ cn (K) 2 L 2 1 n k n d k (K) 2 L 2 , n ∈ N. (1.16)
Note that the separability assumption could be dropped by following [START_REF] Moeller | L 2 -norm sampling discretization and recovery of functions from RKHS with finite trace[END_REF], whereas the finite trace assumption is essential since it implies the 2 summability of the Kolmogorov widths

d n (K) V .
This result is a replica of Theorem 6.1, which comes as the culmination of a series of earlier works [START_REF] Krieg | Optimal Monte Carlo methods for L 2 -approximation[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Kuo | On the power of standard information for multivariate approximation in the worst case setting[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF][START_REF] Wasilkowski | On the power of standard information for weighted approximation[END_REF] proving estimates of the same kind. It matches, up to a change in the constant c, the lower bounds on sampling numbers given in [START_REF] Hinrichs | Lower bounds for integration and recovery in L 2[END_REF][START_REF] Hinrichs | Lower bounds for the error of quadrature formulas for Hilbert spaces[END_REF][START_REF] Hinrichs | Linear information versus function evaluations for L 2 -approximation[END_REF], and solves or partially answers open problems posed in [START_REF] Dũng | Hyperbolic cross approximation[END_REF][START_REF] Hinrichs | Lower bounds for integration and recovery in L 2[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF].

It notably implies the following bounds on decay rates of sampling numbers, see Corollary 6.2:

Corollary 1.18. If d n (K) L 2 c n -α ln -β n for some α > 0, β ∈ R, and c > 0, then there exists C > 0 such that ρ m (K) L 2 C m -α ln -β m if α > 1/2, C m -α ln -β+1/2 m if α = 1/2 and β > 1/2.
The main tool for the proof of Theorem 1.17 is an infinite-dimensional version of [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF], see Proposition 6.17, which exhibits some similarities with the discretization of infinite-dimensional frames in [START_REF] Freeman | The discretization problem for continuous frames[END_REF].

Secondly, in Section 6.6, we consider more general classes K, that are only assumed to be compactly embedded into L 2 , separable, and with continuous point evaluation functionals. By constructing the appropriate RKHS containing K as in [START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF], we obtain bounds similar to (1.16), up to a logarithmic loss. This in particular yields the following decay rates, see Corollary 6.4:

Corollary 1.19. If d n (K) L 2
c n -α ln -β n for some α > 0, β ∈ R, and c > 0, then there exists C > 0 such that

ρ m (K) L 2        C m -α ln -β m if α > 1/2, C m -α ln -β+1 m if α = 1/2 and β > 1, C otherwise.
Finally, we provide examples of classes K for which the rates of Corollaries 1.18 and 1.19 are sharp. In particular, this shows that sampling numbers may behave differently from Kolmogorov widths, and that this gap is amplified in a non-Hilbert setting.

Weighted least-squares with minimal oversampling

We conclude this introduction with the presentation of Chapter 7, which is based on an ongoing joint project with Abdellah Chkifa. This work improves significantly on Chapter 5, both in terms of computational complexity and sampling budget, by means of a randomized greedy algorithm for selecting the sampling points, inspired from [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF] and [START_REF] Lee | Constructing linear-sized spectral sparsification in almost-linear time[END_REF].

The strategy is in fact simpler than in Chapter 5, since its sample points are drawn directly from continuous measures, following an idea from [START_REF] Dai | Entropy numbers and Marcinkiewicztype discretization[END_REF], instead of being subsampled from a larger initial sample.

Algorithm 4 is inspired by [START_REF] Lee | An SDP-based algorithm for linear-sized spectral sparsification[END_REF][START_REF] Lee | Constructing linear-sized spectral sparsification in almost-linear time[END_REF], themselves randomized versions of [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF][START_REF] Spielman | Graph sparsification by effective resistances[END_REF]. Our main theorem below shows that it achieves a randomized error bound as soon as m n, see Theorem 7.1 for details.

Theorem 1.20. For any m n, one can compute a weighted least-squares approximation ũ ∈ V n using m evaluations of u such that

E( u -ũ 2 L 2 ) 1 + 1 (1 - √ r) 2 min v∈Vn u -v 2 L 2
where r = (n -1)/m < 1 is the oversampling ratio.

Interestingly, the same algorithm can also produce an estimator ũ satisfying a deterministic error bound, when u and V n are in L ∞ . This setting has been developed in [START_REF] Dai | Random points are good for universal discretization[END_REF][START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF], with a structure of proof based on Lemma 5.12, see also [START_REF] Cohen | Optimal weighted least-squares methods[END_REF][START_REF] Gröchenig | Sampling, Marcinkiewicz-Zygmund inequalities, approximation, and quadrature rules[END_REF][START_REF] Temlyakov | Multivariate approximation[END_REF] or Theorem 2.1 in [START_REF] Temlyakov | On optimal recovery in L 2[END_REF].

Theorem 1.21. For any m n, one can compute a weighted least-squares approximation ũ ∈ V n using m evaluations of u such that

u -ũ 2 L 2 1 + 1 (1 - √ r) 2 min v∈Vn u -v 2 L ∞ a.s.,
where r = (n -1)/m < 1 is the oversampling ratio.

As a consequence of Theorem 1.20, we obtain a randomized interpolation result, with a Lebesgue constant of order O(n 2 ). We repeat Corollary 7.2 below:

Corollary 1.22. For m = n, one can compute an interpolation ũ ∈ V n of u such that E( u -ũ 2 L 2 ) 4n 2 min v∈Vn u -v 2 L 2 .
To our knowledge, there are no pre-existing results on interpolation of L 2 functions in expectation with respect to the L 2 norm. It is much more classical to study the stability of interpolation in the uniform norm. This can also be done here, by taking m = n in Theorem 1.21, however requiring an additional inverse inequality between L 2 (Ω, µ) and L ∞ in V n . Such an inequality involves the L ∞ norm of the inverse Christoffel function

nk n 1/2 L ∞ = max v∈Vn v L ∞ / v L 2 ,
and gives our last result:

Corollary 1.23. For m = n, one can compute an interpolation ũ ∈ V n of u such that u -ũ L ∞ 1 + 2n nk n 1/2 L ∞ min v∈Vn u -v 2 L ∞ .
Using Theorem 1.14 or the results from Section 4.5, we at once obtain strong stability estimates for polynomial interpolation on general domains. Moreover, in contrast to the Fekete points, the sample is computable in polynomial time, with Algorithm 4. In the monodimensional case of a finite union of intervals, one can see for instance that k n L ∞ ∼ √ n, resulting in a Lebesgue constant

Λ n := max v∈Vn ṽ L ∞ v L ∞ = O(n 7/8 ),
beating other greedy strategies based on Leja points [START_REF] Andrievskii | A simple upper bound for Lebesgue constants associated with Leja points on the real line[END_REF][START_REF] Chkifa | On the stability of polynomial interpolation using hierarchical sampling[END_REF][START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF] which only achieve 3) ). Of course, in this very elementary case, it is well known that Chebyshev points give the optimal rate Λ n = O(ln n) for the Lebesgue constant. Corollary 1.23 also applies for different spaces V n . For instance, on the d-dimensional torus Ω = T d , and for any space V n of trigonometric polynomials, it holds k n = 1 over the whole domain, by translation invariance of V n and of the Lebesgue measure µ. This yields the bound

Λ n = O(n 13/4 ) or Λ n = O(n 1+log 2 (
Λ n 2n √ n.
As a concluding remark, let us note that the measure µ with respect to which we integrate in the L 2 norm is not fixed by the L ∞ constraint. Therefore, one may multiply µ by any density before applying Corollary 1.23. For instance, in the case of univariate polynomials on the interval [-1, 1], taking the arcsine density 4 dx π √

1-x 2 makes the Chebyshev polynomials orthogonal, and as they are uniformly bounded, we once more obtain

Λ n = O(n 3/2 ).
This leaves open the challenge of attaining a bound of the same order for any finite dimensional space V n of functions on a general domain Ω.

Part I

Reduced order modeling for PDEs and inverse problems

Introduction

Reduced models for parametric PDEs

Parametric PDEs are commonly used to describe complex physical phenomena. With y = (y 1 , . . . , y d ) denoting a parameter vector ranging in some domain Y ⊂ R d , and u(y) the corresponding solution to the PDE of interest, assumed to be well defined in some Hilbert space V , we denote by

K Y := {u(y) : y ∈ Y } (2.1)
the collection of all solutions, called the solution manifold.

There are two main ranges of problems associated to parametric PDEs: 1. Forward modeling: in applications where many queries of the parameter to solution map y → u(y) are required, one needs numerical forward solvers that efficiently compute approximations ũ(y) with a prescribed accuracy. 2. Inverse problems: when the exact value of the parameter y is unknown, one is interested in either recovering an approximation to u(y) (state estimation) or to y (parameter estimation), from a limited number of observations z i = i (u(y)), possibly corrupted by noise. Reduced order modeling is widely used for tackling both problems. In its most common form, its aim is to construct linear spaces V n of moderate dimension n that approximate all solutions u(y) with best possible certified accuracy. The natural benchmark for measuring the performance of such linear reduced models is provided by the Kolmogorov n-width of the solution manifold

d n (K Y ) V := inf dim(Vn)=n dist(K Y , V n ) V (2.2)
that describes the performance of an optimal space. Here

dist(K Y , V n ) V := sup u∈K Y inf v∈Vn u -v V = sup y∈Y u(y) -P n u(y) V ,
where P n is the V -orthogonal projector onto V n . We refer the reader to the Section 1.1, see also [START_REF] Pinkus | n-widths in approximation theory[END_REF], for a general treatment of n-widths.

While an optimal space achieving the above infimum is usually out of reach, there exist two main approaches aiming to construct "sub-optimal yet good" spaces. The first one consists in building expansions of the parameter to solution map, for example by polynomials

ũ(y) := ν∈Λn u ν y ν , y ν := y ν1 1 . . . y ν d d , (2.3) 
where Λ n ⊂ N d 0 is a set of cardinality n. The coefficients u ν are elements of V and therefore, for all y ∈ Y the approximation ũ(y) is picked from the space

V n := span{u ν : ν ∈ Λ n }.
Notice that ũ(y) is not the orthogonal projection P n u(y) in this case, but ũ(y) is easy to compute for a given query y once the u ν have been constructed (usually through a high fidelity finite element solver). We refer to [START_REF] Babuška | A stochastic collocation method for elliptic partial differential equations with random input data[END_REF][START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients[END_REF][START_REF] Bäck | Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison[END_REF][START_REF] Beck | Implementation of optimal Galerkin and collocation approximations of PDEs with random coefficients[END_REF][START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's[END_REF][START_REF] Tran | Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients[END_REF] for instances of this approach.

The second approach is the reduced basis method [START_REF] Haasdonk | Reduced basis methods for parametrized PDEs-a tutorial introduction for stationary and instationary problems[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics[END_REF][START_REF] Sen | Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems[END_REF], that consists in taking

V n := span{u(y 1 ), . . . , u(y n )},
where the u(y i ) are particular solution instances corresponding to a selection of parameter vectors y i ∈ Y . A close variant is the proper orthogonal decomposition method [START_REF] Chatterjee | An introduction to the proper orthogonal decomposition[END_REF][START_REF] Volkwein | Proper orthogonal decomposition: Theory and reduced-order modelling[END_REF][START_REF] Willcox | Balanced model reduction via the proper orthogonal decomposition[END_REF], where the reduced spaces are obtained by principal component analysis applied to large training set of such instances. In the reduced basis method, the parameter vectors y 1 , . . . , y n can be selected by a greedy algorithm, introduced in [START_REF] Veroy | A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations:"convex inverse" bound conditioners[END_REF] and originally studied in [START_REF] Buffa | A priori convergence of the greedy algorithm for the parametrized reduced basis method[END_REF]. For such a selection process, it is proved in [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Devore | Greedy algorithms for reduced bases in Banach spaces[END_REF] that if d n (K Y ) V has a certain algebraic or exponential rate of decay with n, then a similar rate is achieved by dist(K Y , V n ) V for the reduced basis spaces. It follows that the reduced basis spaces constructed by the greedy algorithm are close to optimal. This is in contrast to the spaces V n spanned by the polynomial coefficients u ν for which the approximation rate is not guaranteed to be optimal. We refer to [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF] for instances where reduced basis methods can be proved to converge with a strictly higher rate than polynomial approximations. On the other hand, the polynomial constructions (2.3) have certain numerical advantages. Namely, for several relevant classes of parametric PDEs, it can be shown that the parameter to solution mapping y → u(y) has certain smoothness properties that can be used to obtain a-priori bounds on the u ν V without actually computing these norms. This allows for an a priori selection of an appropriate set Λ n , yielding concrete approximation estimates for the error sup y∈Y u(y)-ũ(y) V . These estimates in turn provide an upper bound for d n (K Y ) V , and therefore for reduced basis approximations.

Parametric elliptic PDEs

One prototypical instance where the convergence analysis described above has been deeply studied is the parametric second order elliptic equation

-div(a(y)∇u(y)) = f in Ω, u| ∂Ω = 0 on ∂Ω, (2.4) 
where Ω is a spatial domain, f ∈ H -1 (Ω) a source term, and a(y) has the affine form a(x, y) = a(x)

+ d j=1 y j ψ j (x), x ∈ Ω, (2.5) 
with a and ψ 1 , . . . , ψ d some fixed functions in L ∞ (Ω).

The corresponding solution u(y) ∈ H 1 0 (Ω) is defined through the standard variational formulation in H 1 0 (Ω) equipped with its usual norm. Up to renormalization, it is usually assumed that the y j range in [-1, 1], or equivalently Y = [-1, 1] d . To ensure existence and uniqueness of solutions, one typically assumes that the so-called Uniform Ellipticity Assumption (UEA) holds: for some fixed 0 < a min a max < ∞,

a min a(x, y) a max , x ∈ Ω, y ∈ Y, (2.6) 
or in short a min a(y) a max for all y ∈ Y . Under this assumption, Lax-Milgram theory ensures that the solution map y → u(y) is well defined from Y into H 1 0 (Ω), with the uniform bound

u(y) H 1 0 := ∇u(y) L 2 C f a min , y ∈ Y.
Here and throughout this chapter

C f := f H -1 . (2.7)
It was proved in [START_REF] Bäck | Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison[END_REF][START_REF] Tran | Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients[END_REF] that, under UEA, polynomial approximations (2.3) of given total degree converge sub-exponentially: for

Λ n = {ν ∈ N d 0 : |ν| k}, one has sup y∈Y u(y) -ũ(y) H 1 0 C exp(-cn 1/d ) with n = k + d k . (2.8) 
Such sub-exponential rates show that the spaces V n based on polynomial expansions or reduced bases perform significantly better than standard finite element spaces, at least for a moderate number d of parameters. It is possible to maintain a rate of convergence as d grows, and even when d = ∞, when assuming some anisotropy in the variable y j through the decay of the size of ψ j as j → ∞, see in particular [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients[END_REF][START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's[END_REF] for results of this type.

High constrast problems

The Uniform Ellipticity Assumption (2.6) implies that there is a uniform control on the level of contrast in the diffusion function

κ(y) := max x∈Ω a(x, y) min x∈Ω a(x, y) a max a min , y ∈ Y. (2.9) 
This assumption also plays a key role in the derivation of the above approximation results, since it guarantees that the parameter to solution map has a holomorphic extension to a sufficiently large complex neighborhood of Y . In this case, a good polynomial approximation ũ may be defined by simply truncating the power series

ν∈N d 0 u ν y ν , leading to the estimate (2.8).
On the other hand, there exist various situations where one would like to avoid such a strong restriction on the level of contrast. Perhaps the most representative setting is when the domain Ω is partitioned into disjoint subdomains {Ω 1 , . . . , Ω d }, each of them admitting a constant diffusivity level that could vary strongly between subdomains. This is typically the case when modeling diffusion in materials having multiple layers or inclusions that could have very different nature, for example air or liquid versus solid. This situation can be encountered in groundwater flow applications, where certain subdomains correspond to cavities, for which the diffusion function becomes nearly infinite, as opposed to subdomains containing sediments or other porous rocks.

In such a case, we do not want to limit the contrast level. To represent this setting, we let

a(y)| Ωj = y j , y j ∈ (0, ∞) (2.10)
or equivalently a(y) = 

y j ˆΩj ∇u(y) • ∇v dx = f, v H -1 ,H 1 0 , v ∈ H 1 0 (Ω), (2.12) 
or equivalently -y j ∆u(y) = f as elements of H -1 (Ω j ) on each Ω j , with the standard jump conditions [a(y)∂ n u(y)] = 0 across the boundaries between subdomains.

Let us observe that in this setting, it is hopeless to find spaces V n that approximate all solutions u(y) uniformly well. Indeed, the following homogeneity property obviously holds: for any y ∈ Y and t > 0, one has u(ty) = t -1 u(y).

(2.13)

This property implies in particular that u(y) H 1 0 tends to infinity as y → 0, and so does u(y) -P n u(y) H 1 0 in general. In fact, this also shows that the solution manifold K Y is not relatively compact and does not have finite n-widths.

In addition to this principal difficulty, let us remind that when using the spaces V n in forward modeling, we typically use the Galerkin method, which delivers the orthogonal projection P y n onto V n , however for the energy norm

v 2 y := d j=1 y j ˆΩj |∇v| 2 dx. (2.14) 
This approximation is thus optimal in H 1 0 (Ω), however up to the constant κ(y) 1/2 , which deteriorates with high contrast.

The main contribution of this chapter is to treat these issues, and derive approximation estimates that are robust to high contrast, in the sense that they are independent of y ∈ Y .

Due to the main objection coming from the homogeneity property (2.13), it is natural to look for uniform approximation estimates in relative error, that is, estimates of the form

u(y) -P n u(y) H 1 0 ε n u(y) H 1 0 , y ∈ Y, (2.15) 
with lim n→∞ ε n = 0, and similarly for P y n u(y). Our main results, Theorems 2.16 and 2.21, exhibit spaces V n ensuring the validity of such uniform estimates with ε n having sub-exponential decay with n, similar to the known results under UEA.

Remark 2.1. High contrast problems have been the object of intense investigation, in particular with the objective of developing techniques for multilevel or domain decomposition preconditioning [START_REF] Aksoylu | Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems[END_REF][START_REF] Aksoylu | Robust multigrid preconditioners for cell-centered finite volume discretization of the high-contrast diffusion equation[END_REF][START_REF] Galvis | Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces[END_REF]] and aposteriori error estimation [START_REF] Ainsworth | Robust a posteriori error estimation for nonconforming finite element approximation[END_REF][START_REF] Bernardi | Adaptive finite element methods for elliptic equations with non-smooth coefficients[END_REF], that are provably robust with respect to the level of contrast. To our knowledge, the present work is the first in which this robustness is established for reduced modeling methods.

Outline

Throughout this chapter, we consider the parametric elliptic PDE (2.4) with a(y) having piecewise constant form (2.10) over a fixed partition. In view of the homogeneity property (2.13), we are led to consider the subset

Y := [1, ∞) d (2.16)
of parameters corresponding to the coercive regime. Any result on relative approximation error that is established for Y extends automatically to all of Y because of the homogeneity property. Accordingly, we let

K Y := {u(y) : y ∈ Y }.
(2.17)

In Section 2.2, we start by proving that K Y is a precompact set of H 1 0 (Ω). One crucial ingredient for this analysis are the limit solutions of the so-called stiff problem, obtained as y j → ∞ for certain j ∈ {1, . . . , d}.

In Section 2.3, we construct specific reduced model spaces for which the approximation estimate (2.15) holds with ε n decaying sub-exponentially. Our construction is based on partitioning the parametric domain Y into rectangular regions and using a different polynomial approximation on each region. This results in a global reduced model space V n for which the accuracy bound remains sub-exponential, however in exp(-cn 1 2d-2 ). A key ingredient for establishing these sub-exponential rates is the derivation of quantitative estimates on the convergence of u(y) towards limit solutions defined in Section 2.2 as some y j tend to infinity. These estimates are established under an additional geometric assumption on the partition, similar results for a general partition of Ω being an open problem.

In Section 2.4, we discuss the use of these reduced model spaces in forward modeling and inverse problems. Our main result relative to forward modeling is that the estimate (2.15) also holds for the Galerkin projection with the same exponential decay ε n . We show that such a result is only possible if V n includes functions that have constant values over some subdomains. For the state estimation problem, we follow the Parametrized Background Data Weak (PBDW) method [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF], and obtain recovery bounds that are uniform over y ∈ Y in relative error. For the parameter estimation problem, we introduce an ad-hoc strategy that specifically exploits the piecewise constant structure of the diffusion coefficient and obtain similar recovery bounds for the inverse diffusivity.

We conclude in Section 2.5 by presenting some numerical illustrations revealing the effectiveness of the reduced model spaces even in the high-contrast regime, as expressed by the approximation results.

Uniform approximation in relative error

In this section we work under no particular geometric assumption on the partition {Ω 1 , . . . , Ω d } of Ω, and consider the solution manifold K Y defined by (2.1), where u(y) ∈ H 1 0 (Ω) is solution to the elliptic boundary value problem with variational formulation (2.12). Our objective is to show the existence of spaces V n that uniformly approximate K Y in the relative error sense expressed by (2.15).

Limit solutions and the extended solution manifold

Our first observation is that this collection can be continuously extended when y j = ∞ for some values of j, through limit solutions of stiff inclusions problems. Such limit solutions have for example been considered in the context homogeneization, see e.g. p.98 of [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF].

For this purpose, to any S ⊂ {1, . . . , d}, we associate the space

V S := {v ∈ H 1 0 (Ω) : ∇v| Ωj = 0, j ∈ S}. (2.18) 
In other words, V S consists of the functions from H 1 0 (Ω) that have constant values on the subdomains Ω j for j ∈ S (or on each of their connected components if these subdomains are not connected). It is a closed subspace of H 1 0 (Ω). We decompose the parameter vector y according to y = (y S , y S c ), y S := (y j ) j∈S and y S c := (y j ) j∈S c .

(2.19)

For any finite and positive vector y S c , similar to the • y norm (2.14), we may define

v 2 y S c := j∈S c y j ˆΩj |∇v| 2 dx, (2.20) 
which is a semi-norm on H 1 0 (Ω), and a full norm equivalent to the H 1 0 -norm on V S . Also note that when y = (y S , y S c ) is finite, one then has v y S c = v y for any v ∈ V S .

For any finite and positive vector y S c , we define the function u S (y S c ) ∈ V S solution to the following stiff inclusions problem:

j∈S c y j ˆΩj ∇u S (y S c ) • ∇v dx = f, v H -1 ,H 1 0 , v ∈ V S . (2.21) 
The following result shows that this solution is well defined and is the limit of u(y), when y S c is fixed and y j → ∞ for j ∈ S. Note that the weak convergence is established in [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF] (p.98) and so we concentrate the proof on the strong convergence.

Lemma 2.2. There exists a unique u S (y S c ) ∈ V S solution to (2.21), which is the limit in H 1 0 (Ω) of the solution u(y S , y S c ) as y j → ∞ for all j ∈ S.

Proof. Using the bilinear form (u, v) → j∈S c y j ´Ωj ∇u • ∇v dx in the space V S , Lax-Milgram theory implies the existence of a unique solution u S (y S c ) ∈ V S to (2.21).

Consider now a sequence (y n ) n 1 ∈ Y N , with y n S c = y S c and y n j → ∞ for all j ∈ S. Denoting

u n = u(y n ), it is readily seen that (u n ) n 1 is uniformly bounded in H 1 0 norm by C = C f c -1
, where c := min n 1 min 1 j d y n j > 0, and that any weak limit of a sequence extraction is solution to the variational equation (2.21). Therefore the whole sequence (u n ) n 1 weakly converges to ū = u S (y S c ).

We finally prove strong convergence by writing

c u n -ū 2 H 1 0 ˆΩ a(y n )|∇(u n -ū)| 2 dx = f, u n H -1 ,H 1 0 -2 ū, u n y S c + ū 2 y S c -→ n→∞ f, ū H -1 ,H 1 0 -ū 2 y S c = 0.
The above lemma allows us to readily extend the solution manifold by introducing Y := (0, ∞] d and

K Y := {u(y) : y ∈ Y },
where we have formally set u(y) := u S (y S c ), when y j = ∞ for j ∈ S and y j < ∞ for j ∈ S c . Note that when S = {1, . . . , d} the space V S is trivial and one has u(∞, . . . , ∞) = 0.

Remark 2.3. Although we do not make explicit use of it, it can be checked that despite the fact that y j = 0 is excluded in the definition of K Y , it indeed coincides with the closure of K Y in H 1 0 (Ω) due to the fact that u(y) H 1 0 → ∞ as y → 0. Remark 2.4. More precisely, when some y j tend to zero, u(y) converges to the solution of the so-called soft inclusions problem (see [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF], chapter 3), outside the corresponding subdomains Ω j . Here, due to the fact that the approximation estimates that we prove further are in relative error, these other limit solutions are of no use in our analysis.

A compactness result

As already observed in the introduction, the manifold K Y is not bounded in H 1 0 (Ω) due to the homogeneity property (2.13) and therefore not compact.

In order to treat this defect, we consider Y := [1, ∞] d , and the submanifold

K Y := {u(y) : y ∈ Y },
which is now bounded in H 1 0 (Ω), from the standard a-priori estimate

u(y) H 1 0 C f min 1 j d y j C f ,
that is obtained by taking v = u(y) in the variational formulation (2.12), with C f = f H -1 as in (2.7). This estimate trivially extends to u S (y S c ) when the y j have infinite value for j ∈ S. In addition we have the following result.

Theorem 2.5. The set K Y is compact in H 1 0 (Ω).

Proof. Consider any sequence of vectors y n = (y n 1 , . . . , y n d ) ∈ Y for n 1. We need to prove that the corresponding sequence of solutions (u(y n )) n 1 admits a converging subsequence. For this purpose, we observe that there exists a subset S ∈ {1, . . . , d} such that, up to subsequence extraction,

lim n→∞ y n j = ∞, j ∈ S,
and

lim n→∞ y n j = y j < ∞, j ∈ S c .
Note that S could be empty, for instance in the case where the y n j are uniformly bounded for all j. Let ε > 0. Using the strong convergence result in Lemma 2.2, for all n 1 there exists an auxiliary vector ȳn such that ȳn j = y n j when y n j < ∞, ȳn j < ∞ when y n j = ∞, such that by having picked ȳn j large enough in the second case

u(y n ) -u(ȳ n ) H 1 0 ε/3.
In addition we may assume that ȳn j → ∞ for j ∈ S. Next we introduce the vector ỹn such that ỹn j = ȳn j when j ∈ S and ỹn j = y j when j ∈ S c . Applying again Lemma 2.2, we find that with y S c = (y j ) j∈S c , one has

u(ỹ n ) -u S (y S c ) H 1 0 ε/3,
for n sufficiently large. Finally we argue that

u(ỹ n ) -u(ȳ n ) H 1 0 ε/3,
for n large enough. This is a consequence of the following variant of Strang first lemma (which proof is similar and left as an exercise to the reader) that says that for two diffusion functions ā and ã, the corresponding solution u(ā) and u(ã) with the same data f satisfy

u(ā) -u(ã) H 1 0 C f ā -ã L ∞ min{ā min , ãmin } 2 .
We then apply this to a := a n = a(y n ) and ã := ãn = a(ỹ n ), observing that ā -ã L ∞ = max j∈S c |ȳ n j -y j | → 0 as n → ∞. Therefore u(y n ) -u S (y S c ) H 1 0 ε for n sufficiently large, which concludes the proof.

We next observe that any y ∈ Y can be rewritten as y = tỹ, with ỹ ∈ Y and normalization min ỹj = 1, for some t > 0, and from (2.13) one has u(y) = t -1 u(ỹ). This motivates the study of the further reduced manifold

K Y := {u(y) : y ∈ Y = [1, ∞] d : min 1 j d y j = 1}, (2.22)
which is a subset of K Y . One important observation is that the solutions contained in K Y are also uniformly bounded from below, under mild assumptions on the data f . Lemma 2.6. The set K Y is compact in H 1 0 (Ω). Moreover, one has the framing min

1 j d f H -1 (Ωj ) u(y) H 1 0 C f , (2.23) 
for all u(y) ∈ K Y .

Proof. The compactness of K Y follows from that of K Y , since K Y is a closed subset of K Y . For the framing, as a(y) 1 on Ω,

u 2 H 1 0 j∈S c y j ˆΩj |∇u(y)| 2 dx = f, u(y) H -1 ,H 1 0 C f u(y) H 1 0 , so u(y) H 1 0
C f . Now take j ∈ {1, . . . , d} such that y j = 1, and consider φ ∈ H 1 0 (Ω j ). Then

f, φ H -1 ,H 1 0 = ˆΩj ∇u(y) • ∇φ dx u(y) H 1 0 (Ω) φ H 1 0 (Ωj ) ,
which gives the result by optimizing over φ.

In the sequel of this chapter, we always work under the condition that the lower bound in (2.23) is strictly positive c f := min

1 j d f H -1 (Ωj ) > 0. (2.24)
Let us observe that when f is a function in L 2 (Ω), this is ensured as soon as f is not identically zero on one of the Ω j . We thus have

0 < c f u(y) H 1 0 C f , (2.25) 
for all u(y) ∈ K Y .

Remark 2.7. The condition c f > 0 is in general necessary for controlling u(y) H 1 0 from below. Indeed assume f H -1 (Ωj ) = 0 for some j such that R d \ Ω j is connected. Then taking y k = ∞ for k = j and y j = 1, we find that u(y) ∈ V S with S = {j} c , which is equivalent to u(y) ∈ H 1 0 (Ω j ) since it vanishes on the other sub-domains. As f H -1 (Ωj ) = 0, we obtain u(y) = 0. Remark 2.8. One also has the uniform framing in the • y norm since

0 < c f u(y) H 1 0 u(y) y = f, u H -1 ,H 1 0 C f (2.26)
when the y j are finite, and by continuity for all u(y) ∈ K Y in the norm • y S c .

The framing (2.25) has an implication on the existence of reduced model spaces that approximate uniformly well all solutions u(y) ∈ K Y in relative error. Theorem 2.9. There exists a sequence of linear spaces (V n ) n 1 such that dim(V n ) = n, and a sequence (ε n ) n 1 that converges to zero such that u(y) -P n u(y)

H 1 0 ε n u(y) H 1 0 (2.27)
for all y ∈ Y , where P n is the

H 1 0 (Ω)-orthogonal projector onto V n . Proof. Since K Y is compact, there exists a sequence of spaces (V n ) n 1 with dim(V n ) = n and a sequence (σ n ) n 1 that tends to 0, such that v -P n v H 1 0 σ n , v ∈ K Y .
Now let y ∈ Y differing from (∞, . . . , ∞), for which there is nothing to prove since u(∞, . . . , ∞) = 0, and let t = 1/ min 1 j d y j < ∞. By homogeneity, t -1 u(y) = u(ty) ∈ K Y , and therefore

u(y) -P n u(y) H 1 0 = t u(ty) -P n u(ty) H 1 0 (Ω)
tσ n .

On the other hand, u(y)

H 1 0 (Ω) = t u(ty) H 1 0 (Ω)
tc f by framing (2.23), which proves Theorem 2.9 with

ε n = σ n /c f .
The above theorem tells us that we can achieve contrast-independent approximation in relative error. It is however still unsatisfactory from two perspectives:

1. It does not describe the rate of decay of ε n as the reduced dimension n grows. In practice, one would like to construct reduced spaces V n such that this decay is fast, similar to the exponential decay obtained under UEA.

2. The approximation property is expressed in terms of the orthogonal projection P n . In applications to forward modeling, we approximate the solution u(y) in the space V n by the Galerkin projection P y n u(y). We thus wish for uniform estimates also for such approximations.

These two problems are treated in Section 2.3 and Section 2.4 respectively.

Approximation rates

Our construction of efficient reduced model spaces is based on a certain partitioning of the parameter domain Y associated to the manifold K Y . To any = ( 1 , . . . , d ) ∈ N d 0 we associate the dyadic rectangle

R = [2 1 , 2 1+1 ] × • • • × [2 d , 2 d +1 ], (2.28) 
For a positive integer L to be fixed further, we modify the definition of R by replacing the interval [2 j , 2 j +1 ] by [2 j , ∞] when j = L for some j. This leads to the partition

Y = ∈{0,...,L} d R . (2.29)
This partition is best visualized in the inverse parameter domain

(y -1 1 , . . . , y -1 d ) ∈ [0, 1] d . (2.30) 
Then, the inverse rectangles R -1 split the unit cube, as shown on Figure 2.1. In particular, the rectangles touching the axes correspond to rectangles R of infinite size. We build reduced model spaces through a piecewise polynomial approximation over this partition. In other words, for each ∈ {0, . . . , L} d , we use different polynomials

1/y 1 1/y 2 0 1 1 1 2 1 2 1 2 L 1 2 L R -1 11 R -1 12 R -1 21 R -1 22 . . . R -1 1L ... . . . . . . . . .
u ,k (y) = |ν| k u ,ν y ν ,
of total degree k for approximating u(y) when y ∈ R , leading to a family of local reduced model spaces

V ,k = span{u ,ν : |ν| k}, (2.31) 
that can be either used individually when approximating u(y) if the rectangle R containing y is known, or summed up in order to obtain a global reduced model space.

In this section we show that this construction yields exponential convergence rates in (2.15), similar to those obtained under a Uniform Ellipticity Assumption. This requires a proper tuning between the total polynomial degree k and the integer L that determines the size of the partition. In the study of local polynomial approximation, we treat separately the inner rectangles for which ∈ {0, • • • , L -1} d and the infinite rectangles for which one or several j are equal to L. The estimates obtained in the latter case rely on the additional assumption that the partition has a geometry of disjoint inclusions.

Polynomial approximation on inner rectangles

Inner rectangles R are particular cases of rectangles of the form

R = [a 1 , 2a 1 ] × • • • × [a d , 2a d ], (2.32) 
for some a j 1. The following lemma, adapted from [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF], shows that one can approximate the parameter to solution map in the • y and • H 1 0 norms on such rectangles, with a rate that decreases exponentially in the total polynomial degree.

Lemma 2.10. Let R be any rectangle of the form (2.32). Then, for k 0, there exists functions

u ν ∈ H 1 0 (Ω), |ν| k, such that u(y) - |ν| k u ν y ν y C3 -k , y ∈ R, (2.33) 
where

C := 1 √ 3 C f , and u(y) - |ν| k u ν y ν H 1 0 C3 -k , y ∈ R, (2.34) 
where

C := 1 √ 6 C f .
Proof. The exponential rate is established in [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF] for a single parameter domain with uniform ellipticity assumption. Here the difficulty lies in the fact that we want the same estimate for all parametric rectangles R and thus without control on the uniform ellipticity. Still the technique of proof, based on power series, is similar. The elliptic equation -div(a(y)u(y)) = f may be written in operator form

A y u(y) = f,
where the invertible operator A y :

H 1 0 (Ω) → H -1 (Ω) is defined by A y v, w H -1 ,H 1 0 := ˆΩ a(y)∇v • ∇w dx = v, w y .
We introduce

y := 3 2 (a 1 , . . . , a d ),
the center of the rectangle, and write any y ∈ R as

y = y + ỹ,
where the components ỹj of ỹ vary in [-a j /2, a j /2]. We may write A y = A y + d j=1 ỹj A j , where the operators A j : H 1 0 (Ω) → H -1 (Ω) are defined by

A j v, w H -1 ,H 1 0 := ˆΩj ∇v • ∇w dx.
This allows us to rewrite the equation as

(I + B(ỹ))u(y) = g, where g := A -1 y f ∈ H 1 0 (Ω) and B(ỹ) = d j=1 ỹj A -1 y A j acts in H 1 0 (Ω).
We then observe that 

B(ỹ)v, w y = A y B(ỹ)v, w H -1 ,H 1 0 = d j=1 ỹj A j v, w H -1 ,H
(-1) l B(ỹ) l ,
which is a polynomial in ỹ of total degree k. The corresponding polynomial approximation to u(y) is given by

N k u(y) = k l=0 (-1) l B(ỹ) l g = k l=0 (-1) l   d j=1 ỹj A -1 y A j   l g = |ν| k v ν ỹν ,
and coincides with the truncated power series of ũ(ỹ) := u(y + ỹ) at ỹ = 0, that is,

v ν := 1 ν! ∂ ν u(y), ν! := ν j !.
It can be rewritten in the form

N k u(y) = |ν| k u ν y ν .
One has

u(y) -N k u(y) y l>k B(ỹ) l g y l>k 3 -l A -1 y f y = 3 -k 2 A -1 y f y , and 
A -1 y f 2 y = A y A -1 y f, A -1 y f H -1 ,H 1 0 = f, u(y) H -1 ,H 1 0 C f u(y) H 1 0 C 2 f
, where the last inequality follows from Lax-Milgram estimate since a(y) 1. This proves the estimate

u(y) - |ν| k u ν y ν y C3 -k , y ∈ R, (2.35) 
with C := 1 2 C f . Using the inequalities

v 2 y 4 3 v 2 y , v ∈ H 1 0 (Ω), y ∈ R, and v 2 H 1 0 2 3 v 2 y , v ∈ H 1 0 (Ω),
we obtain the estimate (2.33) and (2.34) with the modified multiplicative constants.

Remark 2.11. The above lemma shows that the set K R := {u(y) : y ∈ R} can be approximated with accuracy C3 -k by the space V R := span{u ν : |ν| k}.

(2.36)

The dimension of V R is at most k+d d , however, as noticed in [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF], it can in fact be seen that

dim(V R ) k + d -1 d -1 . (2.37)
This stems from the fact that the operators defined in the above proof satisfy the dependency relation

A y = d j=1 y j A j ,
and therefore, one can rewrite A y as

A y := (1 + ỹd /y d )A y + d-1 j=1 (ỹ j -ỹd y j /y d )A j .
Using this form, the partial Neumann sum N k u(y) has at most k+d-1 d-1

independent terms.

We shall also make use of the following adaptation of the above lemma to the approximation of the limit solution map y S c → u S (y S c ), defined by (2.21). Its proof is an immediate adaptation of the previous one and is therefore omitted. Lemma 2.12. Let S ⊂ {1, . . . , d}, and for some a j 1, let R be a rectangle of the form

R = j∈S c [a j , 2a j ].
(2.38)

Then, there exists functions u ν ∈ V S such that u S (y S c ) -

|ν| k u ν y ν S c y S c C3 -k , y S c ∈ R, (2.39) 
where

C := 1 √ 3 C f , and u S (y S c ) - |ν| k u ν y S c H 1 0 C3 -k , y S c ∈ R, (2.40) 
where

C := 1 √ 6 C f .

Polynomial approximation on infinite rectangles

We now consider the infinite rectangles R , corresponding to the such that some of the j equal L. We define S := {j : j = L}, (2.41)

the set of such indices. When y ∈ R , we thus have

y j 2 L , j ∈ S,
and so u(y) should be close to u S (y S c ) as L is large. On the other hand y S c belongs to a rectangle of the form

R S c = j∈S c [2 j , 2 j +1 ].
Therefore, by Lemma 2.12, we can approximate u S (y S c ) by a polynomial of total degree k in these restricted variables.

In order to conclude that this polynomial is a good approximation to u(y) on R , we need a quantitative estimate on the convergence of u(y) towards u S (y S c ). Let us observe that since

d j=1 y j ˆΩj ∇u(y) • ∇v dx = j∈S c y j ˆΩj ∇u S (y S c ) • ∇v dx = f, v H -1 ,H 1 0 , v ∈ V S ,
the function u S (y S c ) coincides with the orthogonal projection of u(y) onto V S for the y-norm, as well as for the y S c -norm:

u S (y S c ) = P y V S u(y) = P y S c
V S u(y).

(2.42)

In addition, with

Ω S := j∈S Ω j , (2.43) 
we have

2 L ∇u(y) 2 L 2 (Ω S ) j∈S y j ˆΩj |∇u(y)| 2 dx f, u(y) H -1 ,H 1 0 C 2 f , since u(y) H 1 0
C f , and therefore, since ∇u S (y S c ) = 0 on Ω S , we find that

∇u(y) -∇u S (y S c ) L 2 (Ω S ) C f 2 -L/2 . (2.44)
Our objective is to obtain a similar error bound on the remaining domains Ω j for j ∈ S c . This turns out to be feasible, with an even better rate 2 -L , when making certain geometric assumptions on the partition of the domain Ω.

Definition 2.13. We say that {Ω 1 , . . . , Ω d } is a Lipschitz partition if and only if for any subset T ⊂ {1, . . . , d}, the domain Ω T = j∈T Ω j has Lipschitz boundaries. Note that such a property is stronger than just saying that each domain is Lipschitz, see Figure 2.2 (right) for a counter-example. In a Lipschitz partition, all subdomains Ω j are Lipschitz, and the common boundary between two subdomains is either empty or a hypersurface of dimension dim(Ω) -1, as illustrated on Figure 2.2 (left). In particular, it is easily checked that partitions consisting of a background domain and well separated subdomains that have Lipschitz boundaries fall in this category. Similar to the Ω T , the individual Ω j could have several connected components, that should then be well separated. Here by "well separated", we mean that δ-neighbourhoods of the subdomains remain disjoints for some δ > 0.

Ω 1 Ω 4 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 Ω 4
For the inner domains Ω T such that ∂Ω T ∩ ∂Ω = ∅, the classical Stein's extension theorem [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF] guarantees the existence of continuous extension operators

E T : H 1 (Ω T ) → H 1 (Ω), that satisfy (E T v)| Ω T = v for all v ∈ H 1 (Ω T ).
We refer to chapter 5 of [START_REF] Adams | Pure and Applied Mathematics[END_REF] for a relatively simple construction of the extension operator E j by local reflection after using a partitioning of unity along the boundary of Ω T and local transformations mapping the boundary to the hyperplane R n-1 .

For the domains Ω T touching the boundary ∂Ω, these operators are modified in order to take into account the homogeneous boundary condition, and we refer to [START_REF] Ženíšek | Extensions from the Sobolev spaces H 1 satisfying prescribed Dirichlet boundary conditions[END_REF] for such adaptations. Here, the relevant space is

H1 (Ω T ) := R T (H 1 0 (Ω)), (2.45) 
where R T is the restriction to Ω T , over which v → ∇v L 2 (Ω T ) is equivalent to the H 1 norm by Poincaré inequality. Then, there exists a continuous extension operator

E T : H1 (Ω T ) → H 1 0 (Ω).
Note that the norm of all these operators depends on the geometry of the partition. These operators are instrumental in proving the following convergence estimate.

Lemma 2.14. Assume that {Ω 1 , . . . , Ω d } is a Lipschitz partition of Ω. Then there exists a constant C 0 that only depends on the geometry of the partition such that for any S ⊂ {1, . . . , d} and y = (y S , y S c ) ∈ Y , one has

u(y) -u S (y S c ) H 1 0 C 0 C f max j∈S y -1 j . (2.46)
In particular, for the infinite rectangle R ,

u(y) -u S (y S c ) H 1 0 C 0 C f 2 -L , y ∈ R , (2.47) 
with S defined by (2.41).

Proof. We first note that it suffices to prove (2.46) in the particular case where the largest y j are those for which j ∈ S. Indeed, if this is not the case, we use the decomposition

u(y) -u S (y S c ) = (u(y) -u S (y S c )) -(u(y ) -u S (y S c )) + (u(y ) -u S (y S c )),
with S = {i : y i min j∈S y j } and y defined by y j = max i=1,...,d y i if j ∈ S, y j = y j otherwise, so that each term falls in this particular case and will be bounded in H 1 0 norm by C 0 C f max j∈S y -1 j . This leads to the same estimate (2.46) up to a factor 3 in constant C 0 . In addition, up to reordering the subdomains Ω j , we may assume y 1 • • • y d and therefore S = {1, . . . , |S|}.

Fix j

|S|, and denote u = u(y) and u S = u S (y S c ) for simplicity. We define the Lipschitz domain

Ω j = Ω 1 ∪ • • • ∪ Ω j , remarking that Ω S = j∈S Ω j = Ω |S| .
Poincaré's inequality ensures that there exists a function c on Ω j , constant on any connected component of Ω j , and null on ∂Ω ∩ Ω j , such that

u -u S -c H 1 (Ω j ) C P ∇(u -u S ) L 2 (Ω j ) ,
with C P the maximal Poincaré constant of all unions of subdomains from the partition. Moreover, there is an

extension v ∈ H 1 0 (Ω) of u -u S -c ∈ H1 (Ω j ) such that v H 1 0 (Ω) C E u -u S -c H 1 (Ω j ) C E C P ∇(u -u S ) L 2 (Ω j ) ,
with C E the maximal norm of all extension operators E T , T ⊂ {1, . . . , d}.

As u-u S -v = c on Ω S ⊂ Ω j , the function u-u S -v is in V S , and therefore orthogonal to u-u S = u-P y V S u for the • y norm:

0 = u -u S , u -u S -v y = d i=1 y i ˆΩi |∇(u -u S )| 2 - d i=1 y i ˆΩi ∇(u -u S ) • ∇v = i>j y i ˆΩi |∇(u -u S )| 2 - i>j y i ˆΩi ∇(u -u S ) • ∇v since ∇v = ∇(u -u S ) on Ω j .
In particular, we obtain

y j+1 ∇(u -u S ) 2 L 2 (Ωj+1) i>j y i ˆΩi |∇(u -u S )| 2 y j+1 ˆΩ\Ω j |∇(u -u S ) • ∇v| y j+1 u -u S H 1 0 (Ω) v H 1 0 (Ω) y j+1 u -u S H 1 0 (Ω) C P C E ∇(u -u S ) L 2 (Ω j ) , and therefore ∇(u -u S ) 2 L 2 (Ω j+1 ) (1 + C P C E ) ∇(u -u S ) L 2 (Ω) ∇(u -u S ) L 2 (Ω j ) .
Applying this inequality inductively for j = d -1, . . . , d -r, we get

∇(u -u S ) L 2 (Ω) (1 + C P C E ) 2 r -1 ∇(u -u S ) L 2 (Ω d-r ) ,
for any r = 1, . . . , d -|S|. For r = d -|S|, this results in the bound

∇(u -u S ) 2 L 2 (Ω) C 0 ∇(u -u S ) 2 L 2 (Ω S ) = C 0 ∇u 2 L 2 (Ω S ) , (2.48) 
for any non-empty S, with

C 0 = (1 + C P C E ) 2 d-1 .
We now write

(min i∈S y i ) ∇(u -u S ) 2 L 2 (Ω S ) u -u S 2 y = u, u -2u S y + u S , u S y S c = f, u -u S H -1 ,H 1 0 C f ∇(u -u S ) L 2 (Ω) ,
which, combined to the previous estimate, gives

u -u S H 1 0 = ∇(u -u S ) L 2 (Ω) C 0 C f max i∈S y -1 i ,
therefore proving (2.46). For (2.47), we simply notice that max j∈S y -1 j 2 -L for y ∈ Y ∩ R , and use a continuity argument when y takes infinite values.

Combining the estimate (2.47) from the above lemma with (2.40) from Lemma 2.12, we obtain the following estimate for polynomial approximation on an infinite rectangle R :

u(y) - |ν| k u ν y ν S c H 1 0 C f √ 6 3 -k + C 0 C f 2 -L , y ∈ R , (2.49) 
where C 0 is the constant in (2.47). This estimate hints how the level L in the partition should be tuned to the total polynomial degree k, so that the two contributions in the above estimate are of the same order.

Remark 2.15. Note that the constant

C 0 = (1 + C P C E ) 2 d-1
becomes prohibitive even for moderate values of d. However, under more restrictive geometric assumptions, for instance if the subdomains Ω 2 , . . . , Ω d are disjoint inclusions in a background Ω 1 , better bounds can be obtained, with a constant C 0 that does not suffer a similar curse of dimensionality, by replacing the induction in the proof by a two-step procedure, consisting of extensions first from the high-diffusivity inclusions to the background, and then to the whole domain Ω.

Approximation rates and n-widths

We are now in position to establish an approximation result for the reduced model spaces. For this purpose, we fix the smallest level L = L k 1 such that

C 0 C f 2 -L C f √ 3 3 -k .
In particular L scales linearly with k, with the bound αk + β L k αk + γ, where

α := ln 3 ln 2 , β := ln( √ 3C 0 ) ln 2 , γ := ln(2 √ 3C 0 ) ln 2 . (2.50)
Then, the polynomial approximation estimates (2.34) and (2.49) show that for each

∈ {0, • • • , L k } d , there exist functions u ,ν ∈ H 1 0 (Ω) such that u(y) - |ν| k u ,ν y ν H 1 0 C f √ 6 + C f √ 3 3 -k C f 3 -k , y ∈ R .
Note that in the case of an infinite rectangle R , the u ,ν are non trivial only for monomials of the form y ν S c and they belong to V S , where S := {j : j = L k }.

Thus the solutions u(y) for y ∈ R are approximated with accuracy C f 3 -k in the space

V ,k := span{u ,ν : |ν| k},
which in view of Remark 2.11 has dimension at most k+d-1 d-1 . Note also that approximating the reduced manifold K Y defined in (2.22) requires a smaller subset of rectangles, since

{y ∈ Y : min y j = 1} ⊂ ∈E k R , E k := {0, • • • , L k } d \ {1, • • • , L k } d .
We thus introduce the reduced model space

V n := ∈E k V ,k , n = dim(V n ) #(E k ) k + d -1 d -1 , (2.51) 
and find that u(y) -P n u(y)

H 1 0 C f 3 -k , (2.52) 
for all y ∈ Y such that min y j = 1. In view of (2.50), there exists a constant C that depends on d and C 0 , such that

n ((L k + 1) d -L d k ) k + d -1 d -1 C(k + 1) 2d-2 . (2.53)
This leads to the following approximation theorem.

Theorem 2.16. Assume that the partition has the geometry of disjoint inclusions. The reduced basis space V n defined in (2.51) then satisfies

u(y) -P n u(y) H 1 0 C exp -cn 1 2d-2 , (2.54 
)

for all y ∈ Y = [1, ∞] d such that min y j = 1. The Kolmogorov n-width (2.2) of the reduced manifold K Y satisfies d n (K Y ) H 1 0 C exp -cn 1 2d-2 .
(2.55)

Over the full manifold K Y , one has the estimate in relative error Proof. The estimate (2.54) follows directly by combining (2.52) and (2.53), and (2.55) is an immediate consequence. We then derive (2.56) by using the homogeneity property (2.13) and the lower inequality in (2.25), similar to the proof of (2.27) in Theorem 2.9.

u(y) -P n u(y) H 1 0 C exp -cn 1 2d-2 u(y) H 1 0 , (2.56 
Remark 2.17. In the above construction of V n , the dimension n only takes the values

n k := #(E k ) k+d-1 d-1
for k 0. However it is easily seen that if we set V n = V n k for n k n < n k+1 , then all the estimates in the above theorem remain valid up to a change in the constants C and c.

Remark 2.18. Note that the union of the V ,k for ∈ E k would suffice to approximate K Y with uniform accuracy C f 3 -k , their sum V n is an overkill. When y is known, for example in forward modeling, it is therefore possible to first identify the proper space V ,k associated to the rectangle R that contains y, and build the approximation to u(y) from this space. This nonlinear reduced modeling strategy has been studied in [START_REF] Bonito | Nonlinear methods for model reduction[END_REF] with similar local polynomial approximation under UEA, and in [START_REF] Eftang | An "hp" certified reduced basis method for parametrized elliptic partial differential equations[END_REF][START_REF] Maday | Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces[END_REF][START_REF] Zou | An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk[END_REF] with local reduced basis. The natural benchmark is given by the notion of library width introduced in [START_REF] Temlyakov | Nonlinear Kolmogorov widths[END_REF], that is defined for any compact set K in a Banach space V as

d n,N (K) V := inf #(Ln) N sup u∈K min Vn∈Ln min v∈Vn u -v V , (2.57) 
where the first infimum is taken over all libraries L n of n-dimensional spaces with cardinality at most N . Our results thus show that

d n,N (K Y ) H 1 0 C f 3 -k ∼ C exp(-cn 1 d ), n := k + d -1 d -1 , N = (L k + 1) d -L d k .
Note that the above sub-exponential rate can be misleading due to fact that the constant c has a hidden dependence in d. As an example, up to the constant C f , we find that taking k = 4, 7, 9 leads to error bounds 3 -k of order 10 -2 , 10 -3 , 10 Remark 2.19. In view of the results from [START_REF] Binev | Data assimilation in reduced modeling[END_REF] and [START_REF] Devore | Greedy algorithms for reduced bases in Banach spaces[END_REF], we are ensured that a proper selection of reduced basis elements in the manifold K Y should generate spaces V n that perform at least with the same exponential rates as those achieved by the spaces V n in Theorem 2.16. As explained in the introduction, reduced basis spaces may perform significantly better than reduced model spaces based on polynomial or piecewise polynomial approximation. This occurs in particular when the polynomial coefficients have certain linear dependency, as established in [START_REF] Bachmayr | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs[END_REF] for the elliptic problem with piecewise constant coefficients in the low contrast regime, and recalled in Remark 3.2. There, it is shown that the rate O(exp(-cn

1 d )) is at least improved to O(exp(-cn 1 d-1
)) and that further improvements in the rate may result from certain symmetry properties of the domain partition, however not circumventing the curse of dimensionality. While we do not pursue this analysis in the present high contrast setting, we expect similar results to hold.

Forward modeling and inverse problems

Galerkin projection

In the context of forward modeling, the reduced model space V n is used to approximate the parameter to solution map, by a map

y → ũ(y) ∈ V n , computed through the Galerkin method: ũ(y) ∈ V n is such that d j=1 y j ˆΩj ∇ũ(y) • ∇v dx = f, v H -1 ,H 1 0 , v ∈ V n .
Therefore ũ(y), v y = u(y), v y , that is ũ(y) = P y Vn u(y), where P y Vn is the projection onto V n with respect to norm • y . Hence, one would like to derive estimates on u(y) -P y Vn u(y) H 1 0 in place of the estimates on u(y) -P n u(y) H 1 0 that we have obtained so far, since P n u(y) is not practically accessible. As explained in the intro-duction, we cannot be satisfied with combining the latter estimates with the bound

u(y) -P y n u(y) H 1 0 κ(y) 1/2 u(y) -P n u(y) H 1 0
derived from Cea's lemma, since the multiplicative constant κ(y) from (2.9) is not uniformly bounded over the manifolds K Y , K Y or K Y . Here, we shall employ another approach to derive the same rates of convergence for u(y) -P y Vn u(y) H 1 0 . One first observation is that, in order for Galerkin projection P y n onto a reduced model space V n to satisfy a convergence bound in relative error, it is critical that this space contains some functions from the limit spaces V S . This is expressed by the following result.

Proposition 2.20. Assume that there exists S {1, . . . , d} such that V n ∩ V S = {0}. Then for any C ∈ (0, 1),

there exists y ∈ Y = [1, ∞) d such that u(y) -P y Vn u(y) H 1 0 C u(y) H 1 0 . (2.58) Proof. Since V n ∩ V S = {0}, the quantity ∇v L 2 (Ω S ) is a norm on V n and one can define α = min v∈Vn ∇v L 2 (Ω S ) v H 1 0 > 0.
For any ε > 0, take y j = ε -2 for j ∈ S and y j = 1 for j ∈ S c . Then, for v = P y Vn u(y),

α ε v H 1 0 1 ε ∇v L 2 (Ω S ) v y u(y) y C f C f c f u(y) H 1 0 ,
where we have used the framings (2.25) and (2.26). Therefore, taking ε =

c f C f α(1 -C) implies v H 1 0 (1 -C) u(y) H 1 0
, and (2.58) follows.

However, in the construction of V n in Section 2.3, each space V ,k is a subset of V S for S = {j : j = L k }. This prevents the phenomenon described in the previous proposition from occurring. Instead, we obtain similar convergence bounds as those obtained for P n , as expressed in the following result.

Theorem 2.21. Assume that the partition of Ω has the geometry of disjoint inclusions. On the rectangles R for ∈ {0, . . . , L} d , the following uniform convergence estimates hold:

u(y) -P y V ,k u(y) H 1 0 C f √ 3 3 -k , y ∈ R , (2.59) if ∞ < L, and u(y) -P y V ,k u(y) H 1 0 C f √ 3 3 -k + C 0 C f 2 -L , y ∈ R , (2.60) if ∞ = L. As a consequence, with L = L k and V n defined as in § 2.3.3, one has the estimates u(y) -P y n u(y) H 1 0 C exp -cn 1 2d-2 , (2.61) 
for all y ∈ Y such that min y j = 1, and

u(y) -P y V ,k u(y) H 1 0 C exp -cn 1/(2d-2) u(y) H 1 0 , (2.62) 
for all y ∈ Y , with constants c and C that only depend on d, C f , c f , and on the geometry of the partition through the constant C 0 .

Proof. For bounded rectangles R with ∞ < L, we know from Lemma 2.10, and more precisely from (2.33), that u(y)

-P y V ,k u(y) y = min v∈V ,k u(y) -v y u(y) - |ν| k u ν y ν y C f √ 3 3 -k
for any y ∈ R . Since all the y j are greater or equal to 1, one has v H 1 0 v y for all v and therefore (2.59) follows.

For infinite rectangles R such that ∞ = L, we again introduce S = {j : j = L}. Then, using (2.47),

u(y) -P y V ,k u(y) H 1 0 u(y) -u S (y S c ) H 1 0 + u S (y S c ) -P y V ,k u(y) H 1 0 C 0 C f 2 -L + u S (y S c ) -P y V ,k u(y) H 1 0 . Since V ,k ⊂ V S , we have P y V ,k u(y) = P y V ,k P y V S u(y) = P y V ,k u S (y S c ) = P y S c V ,k u S (y S c ),
Similarly to the previous case, we apply (2.39) from Lemma 2.12:

u S (y S c ) -P y V ,k u S (y S c ) H 1 0 u S (y S c ) -P y V ,k u S (y S c ) y C f √ 3 3 -k ,
and we thus obtain (2.60).

After taking L = L k and defining V n as the sum of the V ,k for ∈ E k , the derivation of (2.61) and (2.62) is exactly the same as for (2.54) and (2.56).

Remark 2.22. As in Remark 2.19, it is expected that the same rate of convergence is attained if V n is a reduced basis space generated by solutions u(y i ), i = 1, . . . , n, as long as there are O k+d-1 d-1 samples y i in each rectangle, however with samples forced to be of the form u S (y i S c ) ∈ V S in the case of infinite rectangles.

State and parameter estimation

The state estimation problem consists in retrieving the solution u = u(y) when the parameter y is unknown, and one observes m linear measurements

z i = i (u), i = 1, . . . , m,
where the i are continuous linear functional on the Hilbert space V that contains the solution manifold. These linear functionals may thus be written in terms of Riesz representers

i (v) = ω i , v V .
The Parametrized Background Data Weak (PBDW) method, introduced in [START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] and further studied in [START_REF] Binev | Data assimilation in reduced modeling[END_REF], exploits the fact that all potential solutions are well approximated by reduced model spaces V n . It is based on a simple recovery algorithm that consists in solving the problem

min v * ∈Vz min ṽ∈Vn v * -ṽ V , (2.63) 
where, for z

= (z 1 , . . . , z m ) ∈ R m , V z := {v ∈ V : i (v) = z i , i = 1, . . . , m},
is the affine space of functions that agree with the measurements. The analysis of this problem is governed by the quantity

µ m n = µ(V n , W m ) := sup v∈Vn v V P Wm v V , (2.64) 
where

W m := span{ω 1 , . . . , ω m }, which is finite if and only if V n ∩ W ⊥ m = {0}.
Then, there exists a unique minimizing pair

(u * , ũ) = (u * (z), ũ(z)) ∈ V z × V n to (2.63), which satisfies the estimates u -ũ V µ m n min v∈Vn u -v V , (2.65) 
and

u -u * V µ m n min v∈Vn+(Wm∩V ⊥ n ) u -v V .
(2.66)

The computation of (u * , ũ) amounts to solving finite linear systems, and both solutions depend linearly on z.

Turning to our specific elliptic problem, and assuming that the i belong to H -1 (Ω) = V for V = H 1 0 (Ω), we may apply the above PBDW method using the reduced basis spaces V n introduced in Section 2.3. As an immediate consequence of Theorem (2.16), we obtain a recovery estimate in relative error.

Proposition 2.23. Let y ∈ Y and u = u(y). Then both estimators ũ ∈ V n and u * ∈ V z satisfy max( u -ũ H 1 0 , u -u * H 1 0 ) Cµ m n exp -cn 1 2d-2 u H 1 0 . (2.67) 
The constants C, c > 0 only depend on d, C f , c f , and on the geometry of the partition through the constant C 0 .

Proof. It follows readily by combining (2.56) with the recovery estimates (2.65) and (2.66).

We next turn to the problem of parameter estimation, namely recovering an approximation y * to y from the measurements z. In contrast to state estimation, this is a nonlinear inverse problem since the first mapping in y → u → z is typically nonlinear. One way of relaxing this problem into a linear one is by first using a recovery u * of the state u, for example obtained by the PBDW method. One then defines y * as the minimizer over Y of the residual R(y

) := div(a(y)∇u * ) + f H -1 .
This is a quadratic problem when a(y) has an affine dependence in y, that can be solved by standard quadratic optimization methods. The rationale for this approach is the fact that

R(y) = A y u * -A y u(y) H -1 ∼ u * -u(y) H 1 0
, and therefore we should be close to finding the parameter y that best explains the approximation u * . Unfortunately, this approach is not much viable in the high-contrast regime since the equivalence

A y v H -1 ∼ v H 1 0
has constants that are not uniform in y and deteriorate with the level of contrast κ(y).

Instead, we propose a more specific approach that exploits the piecewise constant structure of a(y), assuming that V n is a reduced space of the form

V n = span{u(y 1 ), . . . , u(y n )},
for some properly selected parameter vectors

y i = (y i 1 , . . . , y i d ), i = 1, . . . , n.
As mentioned, see Remark (2.19), these spaces satisfy the same exponential convergence bounds as the spaces constructed in Section 2.3.

The PBDW estimator u * = u * (z) ∈ V n thus has the form

u * = n i=1 c i u(y i ) ∈ V n
and satisfies a similar bound (2.67) as in the above proposition. Then, on the particular domain Ω j , one has

f y j = -∆u| Ωj ≈ - n i=1 c i ∆u(y i ) = n i=1 c i f y i j ,
and therefore, a natural candidate for the parameter estimate is y * = (y * 1 , . . . , y * d ) with

y * j := n i=1 c i y i j -1
.

(2.68)

The following result gives a recovery bound in relative error for the inverse diffusivity.

Proposition 2.24. With the notation 1/y = (1/y 1 , . . . , 1/y d ), the estimator y * defined by (2.68) satisfies the bound

1 y * - 1 y ∞ C f c f Cµ m n exp -cn 1 2d-2 1 y ∞ , (2.69) 
where C f and c f are as in (2.25), and the other constants as in (2.67).

Proof. For 1 j d, take φ ∈ H 1 0 (Ω j ), then

1 y * j - 1 y j | f, φ H -1 ,H 1 0 | = n i=1 c i y i j ˆΩj y i j ∇u(y i ) • ∇φ dx - 1 y j ˆΩj y j ∇u • ∇φ dx = ˆΩj ∇(v * -u) • ∇φ dx v * -u H 1 0 (Ω) φ H 1 0 (Ωj ) . Optimizing over φ gives 1 y * - 1 y ∞ c -1 f v * -u H 1 0 ,
which combined with (2.67) gives

1 y * - 1 y ∞ c -1 f Cµ m n exp -cn 1 2d-2 u H 1 0 .
Using the Lax-Milgram estimate

u H 1 0 C f 1 y ∞ ,
we reach (2.69).

Remark 2.25. The bound (2.69) is not entirely satisfactory since the approximation error on y j remains high when y ∈ K Y with y j 1. We do not know if a bound of the form

1 y * j - 1 y j ε n y j , 1 j d, which would imply |y * j -y j | ε n /(1 -ε n ) y j , holds uniformly over K Y with ε n -→ n→∞ 0.

Numerical illustration

The base model that will be used all along the numerical illustrations is the diffusion equation (2.4) with data f = 1 set on the two-dimensional square Ω = [-1, 1] 2 with homogeneous Dirichlet boundary conditions. As such this partition does not satisfy the geometric assumption of "Lipschitz partition" that was critical in our analysis for the application of Lemma 2.14. Therefore we consider sub-partitions that comply to the assumptions, such as illustrated on Figure 2.3a, which amounts to equate the parameters y j of squares belonging to the same sub-domain. This way we can consider that y = (y A , y B , y C , y D ) consists of four parameters, one for each subdomain.

Ω D Ω C Ω B Ω A (a) Lipschitz partition of Ω. Ω A Ω A Ω A Ω A Ω B Ω B Ω B Ω B Ω C Ω C Ω C Ω C Ω D Ω D Ω D Ω D (b) Non-lipschitz partition of Ω.
The numerical results that we present next aim at illustrating the robustness to high contrast of the reduced basis method, and discuss in addition the effect of parameter selection, higher parametric dimensions, and inclusions that are not satisfying the geometric assumption, as exemplified on Figure 2.3b.

We construct different reduced bases {u(y 1 ), . . . , u(y n )} of moderate dimension 1 n 15, for certain parameter selections y 1 , . . . , y n . Each reduced basis element u(y i ) is numerically computed by the Galerkin method in a background finite element space V h of dimension 6241.

The reduced basis spaces are thus subspaces of V h , thus strictly speaking V n = V n,h depends both on n and on the meshsize h. In our numerical computation, we always assess the error

P y V h u(y) -P y V n,h u(y).
We noticed that for the considered values of n = 1, . . . , 15 the error curves do not vary much when further reducing the mesh size h. In fact they are essentially identical when the dimension of V h is four times smaller. Therefore, for simplicity of the presentation, we still write

u(y) -P y Vn u(y),
bearing in mind that the additional finite element error u(y) -P y V h u(y) depends on h (with algebraic decay in the finite element dimension).

All the tests were done using Python 3.8. For more information and experiments not presented here we invite the reader to look into the github repository https://github.com/agussomacal/ROMHighContrast.

Parameter selection

We first study the case of a one-parameter family: the diffusion coefficient y A of Ω A in Figure 2.3a varies from 1 to ∞, while the other subdomains are considered as background with all coefficents equal to 1. Thus the y i are of the form y i = (y i A , 1, 1, 1). In reduced basis constructions, the approach for selecting parameter sets is usually either random or greedy. Random selection usually performs well enough in many situations, however we shall see that it fails in the high contrast regime. This is in particular due to the fact that it does not capture the limit solutions, while we have observed in Section 2.4 that robust convergence of the Galerkin method in the high-contrast regime critically requires to include limit solutions in the space V n . Here, there is only one limit solution u ∞ = u(y ∞ ) where y ∞ = (∞, 1, 1, 1), and this element is picked by the greedy method if initialized at any other point.

More precisely, we compare four strategies for selecting the y i A ∈ [1, ∞]: -Random: The y i A are drawn independently according to the uniform law for 1/y A ∈ [0, 1]. -Random-∞: First the limit solution, corresponding to y A = ∞, is inserted in the basis. The rest of the elements are randomly picked as in the previous case. -Greedy H 1 0 : The y i are picked incrementally, y i+1 maximizing the relative H 1 0 projection error

u(y) -P Vi u(y) H 1 0 u(y) H 1 0 .
-Greedy Galerkin: The y i are picked incrementally, y i+1 maximizing the relative H 1 0 error of the Galerkin projection u(y) -P y Vi u(y) 

sup y A ∈[1,∞] u(y) -P y n u(y) H 1 0 u(y) H 1 0 ,
as a function of n = dim(V n ) for these various selection strategies. It reveals the superiority of the greedy selection that reaches machine precision after picking n = 11 reduced basis elements, and the gain in including the limit solution in the case of a random selection. As a comparison, we display on the right the decay of the relative H 1 0 -orthogonal projection error

sup y A ∈[1,∞] u(y) -P n u(y) H 1 0 u(y) H 1 0
for the same parameter selection strategies. Here, we notice that the inclusion of the limit solution u ∞ is not anymore critical for reaching good accuracy. Nevertheless, these errors still decay faster for the greedy strategies.

Remark 2.26. As the diffusion coefficient is piecewise constant on the partition Ω A ∪ Ω c A , the parameter space dimension is d = 2 in this numerical example. The theoretical results thus provide a bound on the error of order exp(-c √ n). However, this bound is obtained with local reduced spaces V ,k on dyadic intervals, which does not perform as well as V n = ∈E k V ,k , for which one might expect a rate closer to exp(-cn). In Figure 2.4 for n 11, that is, until numerical precision issues arise, we even observe a faster than exponential convergence, that could be due to the superiority of reduced bases over polynomial approximations. Remark 2.27. It is well known that the reduced basis can be very ill-conditioned, since u(y n ) becomes extremely close to V n-1 = span{u(y 1 ), . . . , u(y n-1 )} as n gets moderately large. In order to avoid numerical instabilities, prior to the computation of the Galerkin or H 1 0 projection onto V n , we need to perform a change of basis, typically by some orthonormalization process. In our numerical test, we perform this orthonormalization with respect to the discrete 2 inner product for the nodal values in the background finite element representation, using the QR decomposition, and obtain a satisfactory stable numerical behavior. However, this process is not invariant under permutations, and we observe that it behaves better in terms of numerical stability when sorting the reduced basis elements from higher contrast to lower contrast.

In this one parameter scenario, both greedy strategies behaved equally well. However, as we increase the dimensionality of the problem d > 1, Greedy Galerkin appears to be the best selection procedure, as could be expected since it optimizes the error based on the approximation which is effectively computed in forward modeling. Figure 2.5 shows this effect when d = 2, where y A and y B are allowed to vary independently while y C and y D are taken as background always equal to 1.

Influence of dimensionality and geometry

In order to study the impact of dimensionality on the approximation rates, we compare the behavior of the Greedy Galerkin selection method, as we increase the number of freely varying parameters. As before, we will have for y = (y A , 1, 1, 1) when d = 1, then y = (y A , y B , 1, 1) when d = 2, until having all four subdomains freely varying between 1 and ∞.

In Figure 2.6 the degradation with respect to dimension is clearly observed as the approximation capabilities strongly decrease. Even thought the exponential decay rate is still conserved, the decay parameter shrinks from almost 3 down to 0.22 when d = 4.

Secondly, we study the case where the geometric assumptions are not satisfied. We follow the same incremental subdomains unfreezing as in the previous case but using the geometry stated in Figure 2.3b. We observe that the reduced basis approach still achieves exponential approximation rates, actually higher than in the previous example. This hints that the geometric assumptions which are needed in our proofs could be artificial, and leaves open the question of achieving such results without relying on these assumptions.

Chapter 3

Nonlinear approximation spaces for inverse problems

Abstract. This chapter is concerned with the ubiquitous inverse problem of recovering an unknown function u from finitely many measurements, possibly affected by noise. In recent years, inversion methods based on linear approximation spaces were introduced in [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] with certified recovery bounds. It is however known that linear spaces become ineffective for approximating simple and relevant families of functions, such as piecewise smooth functions that typically occur in hyperbolic PDEs (shocks) or images (edges). For such families, nonlinear spaces [START_REF] Devore | Nonlinear approximation[END_REF] are known to significantly improve the approximation performance. The first contribution of this chapter is to provide certified recovery bounds for inversion procedures based on nonlinear approximation spaces. The second contribution is the application of this framework to the recovery of general bidimensional shapes from cell-average data. We also discuss how the application of our results to n-term approximation relates to classical results in compressed sensing.

Introduction

The recovery problem

In this chapter, we treat the following state estimation problem in a general Banach space V . We want to recover an approximation to an unknown function u ∈ V from data given by m observations

z i := i (u) + η i , i = 1, . . . , m, (3.1) 
where i : V → R are known measurement functionals, and η i is additive noise. The functionals i often correspond to the response of a physical measurement device but they can have a different interpretation depending on the application. Their behavior can be linear (in which case the i are linear functionals from V , the dual of V ) or nonlinear. This type of recovery problem is clearly ill-posed when the dimension of V exceeds m. It nevertheless prevails in sampling and inverse problem applications where V is infinite dimensional (to name a few, see [START_REF] Adcock | Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem[END_REF][START_REF] Argaud | Sensor placement in nuclear reactors based on the generalized empirical interpolation method[END_REF][START_REF] Galarce | State estimation with model reduction and shape variability. Application to biomedical problems[END_REF][START_REF] Hrycak | Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method[END_REF]).

One natural strategy to address this difficulty is to search for a recovery of u by an element of a lowdimensional reconstruction space V n ⊂ V . The space V n could be either an n-dimensional linear subspace, or more generally a nonlinear approximation space parametrized by n degrees of freedom, with n m.

In order to obtain quantitative results for such recovery procedures, it is necessary to possess additional information about u, usually as an assumption that u belongs to a certain model class K contained in V . The approximation space V n is chosen in order to collectively approximate the elements of K as well as possible, in the sense that dist(K,

V n ) V := max u∈K min v∈Vn ||u -v|| V
is as small as possible for moderate values of n. Multiple theoretical results and numerical algorithms have been proposed in various fields to study and solve 47 the above recovery problem (we recall some relevant results below). However, to the best of our knowledge, they all involve at least one or several of the following assumptions:

-The i are linear functionals, -V n is a linear (or affine) subspace of V , -V is a Hilbert space, -The model class K is a ball in a smoothness space, e.g., a unit ball in Lipschitz, Sobolev, or Besov spaces.

Results involving this type of model classes have been intensively studied in the field of optimal recovery (see [START_REF] Bojanov | Optimal recovery of functions and integrals[END_REF][START_REF] Micchelli | A survey of optimal recovery[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF]). The goal of this chapter is to develop and analyze inversion procedures that do not require any of the above assumptions. Our analysis and numerical algorithms can thus be applied to virtually any recovery problem. The starting point of our development is based on algorithms introduced for inverse state estimation using reduced order models of parametric Partial Differential Equations (PDEs). We next recall that specific framework. The presentation will also serve to explain more in depth the motivations leading to propose the present generalization.

State estimation with reduced models for parametric PDEs

A relevant scenario in inverse state estimation is when the model class K is given by the set of solutions to some parameter-dependent PDE of the general form

P(u, y) = 0, (3.2) 
where P is a differential operator, y a vector of parameters ranging in some domain Y in R d , and u is the solution.

If well-posedness holds in some Banach space V for each y ∈ Y , we denote by u(y) ∈ V the corresponding solution for the given parameter value y and by

K Y := {u(y) : y ∈ Y },
the solution manifold.

In inverse state estimation, we take K = K Y for the model class, so the unknown u to recover belongs to K. However, the parameter y that satisfies u = u(y) is unknown, so we cannot solve the forward problem (3.2) to approximate u. Instead, we must approximate u from the partial observational data (3.1), and the knowledge of the model class K Y .

For the manifold K Y , efficient approximation spaces V n are usually obtained by reduced modeling techniques. In their most simple format, reduced models consist into linear spaces (V n ) n 0 with dim(V n ) = n. The ideal benchmark in this linear approximation setting is provided by the Kolmogorov n-width

d n (K Y ) V := inf dim(Vn) n dist(K Y , V n ) V ,
which describes the optimal approximation performance achievable by an n-dimensional space over the set K Y . Apart from very simplified cases, the space V n achieving the above infimum is usually out of reach. Practical model reduction techniques such as polynomial approximation in the parametrized domain [START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's[END_REF][START_REF] Tran | Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients[END_REF] or reduced bases [START_REF] Eftang | An "hp" certified reduced basis method for parametrized elliptic partial differential equations[END_REF][START_REF] Hesthaven | Certified Reduced Basis Methods for Parametrized Partial Differential Equations[END_REF][START_REF] Maday | Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics[END_REF][START_REF] Zou | An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk[END_REF] construct spaces V n that are "suboptimal yet good". In particular, the reduced basis method, which generates V n by a specific selection of particular solution instances u(y 1 ), . . . , u(y n ) ∈ K Y , has been proved to have approximation error dist(K Y , V n ) V that decays with the same polynomial or exponential rates as d n (K Y ) V , and in that sense are close to optimal [START_REF] Devore | Greedy algorithms for reduced bases in Banach spaces[END_REF].

The PBDW method

We take the Parametrized Background Data Weak (PBDW) method as a starting point for our analysis. The PBDW method, first introduced in [START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF], as well as several extensions, has been the object of a series of works [START_REF] Binev | Greedy Algorithms for Optimal Measurements Selection in State Estimation Using Reduced Models[END_REF][START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Cohen | Optimal reduced model algorithms for data-based state estimation[END_REF][START_REF] Cohen | Nonlinear reduced models for state and parameter estimation[END_REF] on its optimality properties as a recovery algorithm. It has also been used for different practical applications, see [START_REF] Argaud | Sensor placement in nuclear reactors based on the generalized empirical interpolation method[END_REF][START_REF] Galarce | State estimation with model reduction and shape variability. Application to biomedical problems[END_REF][START_REF] Hammond | PBDW: A non-intrusive Reduced Basis Data Assimilation method and its application to an urban dispersion modeling framework[END_REF]. We refer to [START_REF] Mula | Inverse problems: A deterministic approach using physics-based reduced models[END_REF] for an overview of the state of the art on this approach, and its connections with different fields. For our current purposes, it will suffice to recall the first version of the algorithm, which is the goal of this section.

The PBDW method uses a linear approximation space V n of dimension n m. Usually this space is a reduced model in applications. It is assumed that the i are continuous linear functionals, that is i ∈ V , and that V is a Hilbert space. Then, introducing the Riesz representers

ω i ∈ V such that i (v) = ω i , v V , the data of the noise-free observation z = (u) := ( 1 (u), . . . , m (u)),
is equivalent to that of the orthogonal projection w = P Wm u on the Riesz measurement space

W m := span{ω 1 , . . . , ω m }.
Assuming linear independence of the i , this space has dimension m. A critical quantity is the number

µ m n = µ(V n , W m ) := max v∈Vn v V P Wm v V , (3.3) 
that describes the "stability" of the description of an element of V n by its projection onto W m , and may be thought of as the inverse cosine of the angle between W m and V n . In particular, this quantity is finite only when n m. It can be explicitly computed as the inverse of the smallest singular value of a cross-grammian matrix between orthonormal bases of V n and W m (see [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Mula | Inverse problems: A deterministic approach using physics-based reduced models[END_REF]).

The PBDW method consists in solving the minimization problem

min v * ∈Vw min ṽ∈Vn v * -ṽ V ,
where V w := w + W ⊥ m is the set of all states v such that P Wm v = w. We denote by (u * , ũ) ∈ V w × V n the minimizing pair, which is unique when µ m n < ∞, and can be computed by solving an n × n linear system. The function ũ may be seen as a particular best fit estimator of u on V n , since it is also defined by

ũ := arg min v∈Vn P Wm v -w V .
The function u * can be derived from ũ by the correction procedure u * := ũ + (w -P Wm ũ), which shows that u * ∈ V n + W m . It may be thought of as a generalized interpolation estimator, since it agrees with the observed data (P Wm u * = P Wm u). In the case of noise-free data, it is proved in [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] that these estimators satisfy the recovery bounds

u -ũ V µ m n min v∈Vn u -v V and u -u * V µ m n min v∈Vn⊕(Wm∩V ⊥ n ) u -v V .
These bounds reflect a typical trade-off in the choice of the reduced basis space, since making n larger has both effects of decreasing the approximation error min v∈Vn u -v V and increasing the stability constant

µ m n = µ(V n , W m ).
When the PBDW method is applied to noisy data, amounting in observing a perturbed version w of w = P Wm u, the recovery bounds remain valid up to the additional term µ m n w -w V . In summary, one has for both estimators

max{ u -ũ V , u -u * V } Cµ m n (e n (u) + w -w V ), (3.4) 
where e n (u) := min

v∈Vn u -v V
is the reduced model approximation error, C > 0, and w -w V is the noise error measured in the space W m . Note that since the additive perturbations η i are applied to the data i (u), a natural model for the measurement noise is to assume a bound of the norm η p ε, for the vector η = (η 1 , . . . , η m ), typically in the max norm p = ∞ or euclidean norm p = 2. Therefore, one has w -w V β p m ε, where

β p m := max v∈Wm v V (v) p ,
resulting in a bound of the form Cµ m n (e n (u) + β p m ε) for both estimators.

Towards nonlinear approximation spaces

The simplicity of the PBDW method and its variants comes together with a fundamental limitation on its performance: it is by essence a linear reconstruction method with recovery bounds tied to the approximation error e n (u). When the only prior information is that the unknown function u belongs to a class K, with K = K Y the solution manifold in the case of parametric PDEs, its best performance over K is thus limited by the n-width d n (K) V and in turn by d m (K) V since n m.

In several simple yet relevant settings, it is known that n-widths have poor decay with n. One instance is when the class K contains piecewise smooth states, with a state-dependent location of jump discontinuities. As an elementary example, one can easily check that if

V = L 2 ([0, 1]) and K is the set of all indicator functions u = χ [a,b] with a, b ∈ [0, 1], one has d n (K) V ∼ n -1/2
. This decay is of course even slower for more general classes of piecewise smooth functions in higher dimension, see in particular [START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF]Chapter 3,equation (3.76)]. Such functions are typical in parametric hyperbolic PDEs, due to the presence of shocks with positions that differ when parameters entering in the velocity field vary. We refer to [START_REF] Battisti | Wasserstein model reduction approach for parametrized flow problems in porous media[END_REF][START_REF] Binev | Greedy Algorithms for Optimal Measurements Selection in State Estimation Using Reduced Models[END_REF][START_REF] Ehrlacher | Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces[END_REF][START_REF] Greif | Decay of the Kolmogorov N-width for wave problems[END_REF][START_REF] Ohlberger | Reduced Basis Methods: Success, Limitations and Future Challenges[END_REF][START_REF] Welper | Transformed snapshot interpolation with high resolution transforms[END_REF] for other examples of parametric PDEs whose solution manifold has slow Kolmogorov n-width decay.

For such classes of functions, nonlinear approximation methods are well known to perform significantly better than their linear counterparts. Typical representatives of such methods include approximation by rational fractions, free knot splines or adaptive finite elements, best n-term approximation in a basis or dictionary, neural network or various tensor formats. In all these instances the space V n still depends on n or O(n) parameters but is not anymore a linear space. We refer to [START_REF] Devore | Nonlinear approximation[END_REF] for a general introduction on the topic of nonlinear approximation.

Objective and outline

The objective of this chapter is to study the natural extensions of the PBDW method to such nonlinear approximation spaces and identify the basic structural properties that lead to near optimal recovery estimates similar to (3.4).

We begin in Section 3.2 by considering the most general setting where V is a Banach space, V n a nonlinear approximation family, and the i are functionals defined on V that are not necessarily linear, but Lipschitz continuous, that is

(v) -(ṽ) Z α Z v -ṽ V , v, ṽ ∈ V. (3.5)
Here • Z can be any given norm defined over R m with the constant α Z depending on this choice of norm.

In this framework, we discuss the best fit estimation procedure that consists in minimizing the distance to the observed data in a given norm • Z .

Our main structural assumption on V n is the following inverse stability property: the reduced model is stable with respect to the measurement functionals if there exists a finite constant µ Z n such that

v -ṽ V µ Z n (v) -(ṽ) Z , v, ṽ ∈ V n . (3.6)
The stability constant µ Z n depends on the Z norm and plays a role similar to that of µ in the linear case. In particular, we show that this constant is finite only if n m. The resulting estimator ũ is then proved to satisfy a general recovery bound of the form

u -ũ V C 1 e n (u) + C 2 η p ,
where e n (u) := min v∈Vn u -v V is the nonlinear reduced model approximation error, η p the level of measurement noise in p norm, and the constants C 1 and C 2 depend on α Z and µ Z n . In Section 3.3, we consider the more particular setting where the i are linear functionals. Then, we show that constants C 1 and C 2 are each minimized by a different choice of norm • Z , resulting in two different best fit estimators ũ, as already observed in [START_REF] Berger | Sampling and reconstruction in distinct subspaces using oblique projections[END_REF] in the case of linear reduced models. This particular setting also allows us to introduce a generalized interpolation estimator u * and establish similar recovery estimates for u -u * V . We next apply our framework to the inverse problem that consists in recovering a general shape D, identified to its characteristic function χ D , based on cell average data

a T (D) := 1 |T | ˆT χ D , T ∈ T ,
where T is a fixed cartesian mesh. One motivation for this problem is the design of finite volume schemes for the computation of solutions to transport PDEs on such meshes. We first discuss in Section 3.4 the best estimation rate in terms of the mesh size h that can be achieved by standard linear reconstructions, and which is essentially that of piecewise constant approximations, that is O(h 1/q ) regardless of the smoothness of the boundary ∂D. This intrinsic limitation is due to the presence of the jump discontinuity that is not well resolved by the mesh.

We then discuss in Section 3.5 a local recovery strategy based on a nonlinear approximation space V n that consists of characteristic functions of half-planes which can fit the boundary of D at a subcell resolution level, as already proposed in [START_REF] Arandiga | Interpolation and approximation of piecewise smooth functions[END_REF][START_REF] Pilliod | Second-order accurate volume-of-fluid algorithms for tracking material interfaces[END_REF][START_REF] Pilliod | An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods[END_REF][START_REF] Puckett | A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction[END_REF]. One main result, whose proof is given in an appendix, is that this approximation space is stable in the sense of (3.6) with respect to cell average measurements on a stencil of 3 × 3 squares. In turn, if D has a C 2 boundary, the recovered shape D is proved to satisfy an estimate of the form

χ D -χ D L q Ch 2/q ,
where h is the mesh size, which cannot be achieved by any linear reconstruction. This paves the way to higher order reconstruction methods for smoother boundaries by using local nonlinear approximation spaces with curved boundaries and larger stencils. Finally, we discuss in Section 3.6 the application of our results to the recovery of large vectors of size N from m < N linear measurements, up to the error of best n-term approximation. This problem is well-known in compressed sensing [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Foucart | An invitation to compressive sensing[END_REF], and was in particular studied in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] which discusses the importance of the recovery norm • V to understand if near-optimal recovery bounds can be achieved with m not much larger than n. We show that the structural assumptions identified in our general setting are naturally related to the so-called null space property introduced in [52].

Nonlinear reduction of inverse problems

A general framework

In full generality we are interested in recovering functions u in a general Banach space V with norm • V , from the measurement vector z = (z 1 , . . . , z m ) ∈ R m given by (3.1). A recovery (or inversion) map z → R(z), takes this vector to an approximation R(z) of u. We are interested in controlling the recovery error u-R(z) V .

To build the recovery map R, we use a nonlinear approximation space of dimension n, that is, a family of functions that can be described by n parameters. Loosely speaking, this means that there exists a set S ⊂ R n and a continuous map D : S → V such that

V n := {D(x) : x ∈ S}.
Note that this definition covers the case of an n dimensional linear subspace since we can choose S = R n and D a linear map.

Our main assumptions are the Lipschitz stability of the functionals i over the whole space V and their inverse Lipschitz stability over the nonlinear approximation space V n , expressed by (3.5) and (3.6), respectively. Note that since R m is finite dimensional, the norm • Z that is chosen in R m to express these properties could be arbitrary up to a modification of the stability constants α Z , µ Z n . These constants can be optimally defined as

α Z = sup v1,v2∈V (v 1 ) -(v 2 ) Z v 1 -v 2 V , and 
µ Z n = sup v1,v2∈Vn v 1 -v 2 V (v 1 ) -(v 2 ) Z .
Note that one always has α Z µ Z n 1.

Remark 3.1. Note that when V n is an n-dimensional space and the i are linear functionals, the quantity µ Z n may be rewritten as

µ Z n = max v∈Vn v V (v) Z .
As discussed further, the quantity µ m n defined in (3.3) for the analysis of the PBDW method is an instance of µ Z n corresponding to a particular choice of norm • Z . Assuming the i are independent functionals, one easily checks that finiteness of this quantity imposes that n m. Indeed, if n > m, there exists a non-trivial v ∈ V n ∩ N , where

N := {v ∈ V : (v) = 0}
is the null space of the measurement map that has codimension m, and therefore µ Z n is infinite.

Remark 3.2. The restriction n m is also needed for nonlinear spaces V n and measurement map , under assumptions expressing that m and n are local dimensions. More precisely, assume that the map D defining V n is differentiable at some c 0 in the interior of S, that is differentiable at v 0 = D(c 0 ), and that both tangent maps have full rank at these points, that is,

dim(dD c0 (R n )) = n and dim(d v0 (V )) = m.
Then, by taking v 1 = v 0 and v 2 = D(c 0 + tc) in the quotient that defines µ Z n , and letting t → 0 for arbitrary c ∈ R n , one finds that

µ Z n max v∈dDc 0 (R n ) v V d v0 (v) Z ,
and therefore it is infinite if n > m, by the same argument as in the previous remark.

The best fit estimator

We define a first recovery map z → ũ = R(z) as the best fit estimator in the

• Z norm ũ := arg min v∈Vn z -(v) Z . (3.7)
The existence of such a minimizer is trivial if the space V n and the measurement map are linear. It can also be ensured in the nonlinear case under additional assumptions, for example compactness of the set S defining the nonlinear space V n , which will be the case in the application to shape recovery discussed in Section 3.5. If the minimizer does not exist, we may consider a near minimizer, that is

ũ ∈ V n satisfying z -(ũ) Z C z -(v) Z , v ∈ V n ,
for some fixed C > 1. Inspection of the proofs of our main results below reveals that similar recovery bounds can be obtained for such a near minimizer, up to the multiplicative constant C. Recall that our assumption on the noise model is a control on η p for some 1 p ∞. For this value of p, we introduce the quantity

β p Z := max z∈R m z Z z p
We are now in position to state a recovery bound in this general framework.

Theorem 3.3. The best fit estimator ũ from (3.7) satisfies the estimate

u -ũ V C 1 e n (u) + C 2 η p . (3.8)
where

C 1 := 1 + 2α Z µ Z n and C 2 := 2β p Z µ Z n .
Proof. Consider any v ∈ V n and write

u -ũ V u -v V + v -ũ V u -v V + µ Z n (v) -(ũ) Z ,
where we have used (3.6). On the other hand, the minimizing property of ũ ensures that

(v) -(ũ) Z z -(v) Z + z -(ũ) Z 2 z -(v) Z .
Furthermore, using the stability (3.5) of and the definition of β p Z , we have

z -(v) Z (u) -(v) Z + η Z α Z u -v + β p Z η p .
Combining the three estimates, we reach

u -ũ V 1 + 2α Z µ Z n u -v V + 2β p Z µ Z n η p , which gives (3.8) by optimizing over v ∈ V n .
The constants C 1 and C 2 in the above recovery estimate depend on the choice of norm • Z . Note that they are invariant when this norm is scaled by a factor t > 0, since this has the effect of multiplying α Z and β p Z by t and dividing µ Z n by t, which is consistant with the fact that the resulting estimator ũ is left unchanged by such a scaling. In the next section we show, in the particular setting of linear measurements, that specific choices of • Z can be used to minimize C 1 or C 2 . This setting also allows us to introduce and study a generalized interpolation estimator, which is not relevant to the present section since the nonlinear measurement map is not assumed to be surjective: in the presence of noise, there might exist no v ∈ V that agrees with the data, in the sense that z = (u) + η does not belong to the range of .

Linear observations

In this section, we assume that the i ∈ V are independent linear functionals, still allowing V n to be a general nonlinear space. In this framework, which contains the example of shape recovery discussed in Section 3.5, one has

α Z = max v∈V (v) Z v V and µ Z n = max v∈V diff n v V (v) Z , where V diff n = V n -V n := {v 1 -v 2 : v 1 , v 2 ∈ V n }.
In this particular setting, we can identify the norms • Z that minimize the constants

C 1 := 1 + 2α Z µ Z n and C 2 := 2β p Z µ Z n , respectively.

Optimal norms

As : V → R m is linear continuous and surjective, we can define a norm on R m through

z W = min { v V : (v) = z}. (3.9)
Remark 3.4. If V is a Hilbert space, the minimizer is unique by strict convexity of • V , and the m-dimensional space W := arg min

(v)=z v V : z ∈ R m
is exactly the span of the Riesz representers of the observation functionals i ∈ V . Moreover, denoting P W the orthogonal projection on W , we have

(v) W = P W v V , v ∈ V.
For this reason, we sometimes refer to • W as the Riesz norm even in the case of a more general Banach space.

The following result shows that the choice • Z := • W is the one that minimizes the constant C 1 , while C 2 is minimized by simply taking the p norm • Z = • p . Theorem 3.5. For any norm • Z , one has

α W µ W n = µ W n α Z µ Z n , and 
β p p µ p n = µ p n β p Z µ Z n , where (α W , β p W , µ W n ) and (α p , β p p , µ p n ) are the triplets (α Z , β p Z , µ Z n ) when • Z := • W and • Z = • p , respectively.
Proof. One has

α W = max v∈V (v) W v V = max z∈R m max (v)=z z W v V = 1,
and so

α W µ W n = µ W n = max v∈V diff n v V (v) W max v∈V diff n (v) Z (v) W max v∈V diff n v V (v) Z = max v∈V diff n (v) Z (v) W µ Z n .
We now observe that from the definition of • W , one has

max v∈V diff n (v) Z (v) W max z∈R m z Z z W = max z∈R m max (v)=z z Z v V = α Z .
We have thus obtained the first claim

α W µ W n = µ W n α Z µ Z n .
For the second claim, note that we trivially have β p p = 1, and so

β p p µ p n = µ p n = max v∈V diff n v V (v) p max v∈V diff n (v) Z (v) p max v∈V diff n v V (v) Z β p Z µ Z n .
Remark 3.6. In the particular case where V is a Hilbert space, V n a linear subspace and p = 2, it was already observed in [START_REF] Berger | Sampling and reconstruction in distinct subspaces using oblique projections[END_REF] that the reconstruction operators based on the choice

• Z = • W or • Z = • 2
are the most stable with respect to the approximation error and the noise error, respectively. The above result may thus be seen as a generalization of this state of affairs to the case of nonlinear subspaces of Banach spaces, and p noise.

The generalized interpolation estimator

Thanks to the surjectivity of , we may introduce the space

V z := {v ∈ V : (v) = z},
and consider the minimization problem min

v * ∈Vz min ṽ∈Vn v * -ṽ V .
If (u * , ũ) ∈ V z × V n is a minimizing pair, the function u * is given by

u * = u * (z) ∈ arg min (v)=z dist(v, V n ) V ,
and is called the generalized interpolation estimator, since it exactly matches the data.

Remark 3.7. The best fit and generalized interpolator estimations may be thought of as the two extreme cases, t → ∞ and t → 0, of the penalized estimator

u t := arg min v∈V z -(v) Z + t dist(v, V n ) V .
As explained earlier, the generalized interpolation operator may not be well defined in the general case where the i are nonlinear. As opposed to the best fit, or the above penalized estimator u t when t > 0, the generalized interpolation estimator does not involve the choice of a particular norm Z.

On the other hand, we see that ũ is the solution to the problem

min ṽ∈Vn dist(ṽ, V z ) V .
Observing that dist(ṽ,

V z ) V = min (v)=z ṽ -v V = min (v )= (ṽ)-z v V = (ṽ) -z W ,
we thus find that ũ is precisely the best fit estimator for the Riesz norm

• Z := • W .
In the Hilbert space setting, the generalized interpolation estimator u * is therefore the orthogonal projection of this particular best fit estimator ũ onto the affine space V z . It may thus also be derived from ũ by the correction procedure u * = ũ + w -P W ũ, where w = arg min (v)=z v V ∈ W is the preimage by of the measurements z. In the noiseless case when w = P W u, this correction can only improve the approximation since it reduces the component of u -ũ in the W direction while leaving unchanged the orthogonal component, and so, in view of Theorems 3.3 and 3.5, we are ensured that

u -u * V C 1 e n (u),
where

C 1 := 1 + 2µ W n .
More generally, in the noisy case, and without the assumption that V is a Hilbert space, there is no guarantee that u * performs better than ũ, but we still obtain an error estimate on u * that is similar in nature to that satisfied by ũ.

Theorem 3.8. The generalized interpolation estimator u * satisfies the estimate

u -u * V C 1 e n (u) + C 2 η p , (3.10) 
where

C 1 := 2 + 2µ W n and C 2 := (1 + 2µ W n )β p W . Proof. Take δ ∈ arg min (v)=η v V , so that (δ) = η and η W = δ V . For v and v * in V n , decompose u -u * V u -v V + v -v * V + v * -u * V . (3.11)
For the middle term, using (3.6), we write

v -v * V µ W n (v -v * ) W µ W n ( (v -u) W + (u -u * ) W + (u * -v * ) W ) µ W n ( v -u V + η W + u * -v * V ) since α W = 1, so the decomposition (3.11) becomes u -u * V (1 + µ W n ) u -v V + µ W n η W + (1 + µ W n ) v * -u * V .
To bound the last term, we optimize over the choice of v * ∈ V n and use the definition of u * to obtain

inf v * ∈Vn v * -u * V = dist(u * , V n ) dist(u + δ, V n ) dist(u, V n ) + δ V = e n (u) + η W since (u + δ) = (u) + η = z.
Combining the last two estimates and optimizing over v ∈ V n gives

u -u * V (2 + 2µ W n )e n (u) + (1 + 2µ W n ) η W ,
and the result follows from the definition of β p W .

Shape recovery from cell averages

The shape recovery problem

The problem of reconstructing a function u from its cell averages

a T (u) := 1 |T | ˆT u, T ∈ T ,
where T is a partition of the domain Ω ⊂ R d in which u is defined, appears naturally in two areas:

-In 2d or 3d image processing, it corresponds to the so-called super-resolution problem, that is, reconstructing a high resolution image from its low resolution version defined on the coarse grid T of pixels or voxels. -In numerical simulation of hyperbolic conservation laws, it plays a central role when developing finite volume schemes on the computation mesh T . Standard reconstruction methods are challenged when the function u exhibits jump discontinuities which are not well resolved by the partition T . Such discontinuities correspond to edges in image processing or shocks in conservation laws. Here we may focus on the very simple case of characteristic functions of sets u = χ D , that already carry the main difficulty. Therefore we are facing a problem of reconstructing a shape D from local averages of χ D .

As a simple example we work in the domain Ω = [0, 1] 2 with a uniform grid based on square cells of sidelength h = 1 L for some L ∈ N, therefore of the form

T = T h := {T i,j = [(i -1)h, ih] × [(j -1)h, jh] : i, j = 1, . . . , L}.
The cardinality of the grid is therefore

n := #(T ) = L 2 = h -2 .
We consider classes of characteristic functions χ D of sets D ⊂ Ω with boundary of a prescribed Hölder smoothness. The definition of these classes requires some precision. Definition 3.9. For s ∈ N 0 , s ∈ [0, 1], 0 < R < 1/2 and M > 0, we define the class F R,M s,s as consisting of all characteristic functions χ D of domains D ⊂ [R, 1 -R] 2 ⊂ Ω with the following property: for all x ∈ Ω, there exists an orthonormal system (e 1 , e 2 ) and a function ψ ∈ C s,s with ψ C s,s M , such that

x ∈ D ⇐⇒ x2 ψ(x 1 ), for any x = x + x1 e 1 + x2 e 2 with |x 1 |, |x 2 | R.
Here, we have used the common definition

ψ C s,s = sup 0 k s ψ (k) L ∞ ([-R,R]) + sup r1,r2∈[-R,R] |ψ (s) (r 1 ) -ψ (s) (r 2 )| |r 1 -r 2 | s ,
for the Hölder norm. In the case s = 1, note that C s,s denotes functions with Lipschitz derivatives up to order s, so that in particular the case s = 0, s = 1 corresponds to domains with Lipschitz boundaries.

Remark 3.10. The condition D ⊂ [R, 1 -R] 2 imposing that D remains away from the boundary ∂Ω might be quite restrictive in some applications; instead, one can assume that the domains D and Ω are periodic, or symmetrize D with respect to ∂Ω.

The failure of linear reconstruction methods

The most trivial linear reconstruction method consists in the piecewise constant approximation

ũ = T ∈T a T (u)χ T . (3.12)
The approximation rate of this reconstruction over the class F R,M s,s is as follows.

Proposition 3.11. Let u = χ D ∈ F R,M s,s , its piecewise constant approximation ũ by average values on each cell, defined in (3.12), satisfies

χ D -ũ L q Ch 1 q = Cn -1 2q ,
where the constant C depends on R and M .

Proof. Let N = ( √ 2R) -1 , and partition the domain Ω = [0, 1] 2 into N 2 squares of side 1/N . Then each subsquare Q is contained in the set {x + x1 e 1 + x2 e 2 : |x 1 |, |x 2 | R} from Definition 3.9, where x is the center of Q. Thus ∂D is the restriction of the graph of an M -Lipschitz function on Q, so its arc length is bounded by

|∂D ∩ Q| diam(Q) 1 + M 2 2R 1 + M 2 .
As any curve of arclength h intersects at most four cells from T , ∂D ∩ Q intersects at most 4 2R √ 1 + M 2 /h cells, and summing over all subsquares, ∂D intersects at most 4N 2 2R √ 1 + M 2 /h cells. Denoting T ∂D the set of these cells, and observing that u| T ≡ a T (u) ∈ {0, 1} for T / ∈ T ∂D , we get

χ D -ũ q L q = T ∈T ˆT |u -a T (u)| q T ∈T ∂D |T | = h 2 |T ∂D | 24 √ 1 + M 2 R h
for h R, and this bound also holds for

h > R since χ D -ũ q L q 1.
The next result shows, for the particular case q = 2, that no better rate can actually be achieved by any linear method, regardless of the smoothness s of the boundary. We conjecture that a similar result holds for 1 q ∞. This motivates the use of nonlinear recovery methods, which are the object of the next section.

We recall that the Kolmogorov n-width of a compact set K from some Banach space V is defined by

d n (K) V := inf dim(E) n dist(K, E) V ,
where dist(K, E) V := max u∈K min v∈E u -v V and the infimum is taken over all finite dimensional spaces E of dimension at most n.

Proposition 3.12. Let s ∈ N 0 and s ∈ [0, 1] be arbitrary. Then for R sufficiently small, and M sufficiently large, there exists c > 0 such that the Kolmogorov n-widths of the class F R,M s,s satisfy

d n (F R,M s,s ) L 2 cn -1 4 , n 1.
Proof. The proof of this result relies on similar lower bounds for dictionaries of d-dimensional ridge functions

R d k := {x → σ k (ω • x + b) : ω 2 = 1 : b 1 b b 2 }
where σ k (t) := max(0, t) k is the so-called RELU-k function. Here, we work in the space L 2 (B) where B is an arbitrary ball of R d , and the constants (b 1 , b 2 ) are taken as the inf and sup of ω • x as x ∈ B and ω 2 = 1, respectively, that is we take all b such that the line discontinuity of the k-th derivative of σ k (ω • x + b) crosses the ball B. Theorem 9 from [START_REF] Siegel | Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks[END_REF], which improves on earlier results from [START_REF] Makovoz | Random approximants and neural networks[END_REF], shows that if

B 1 (R d k ) := n j=1 a j g j : n ∈ N : g j ∈ R d k : n j=1 |a j | 1
denotes the symmetrized convex hull of this dictionary (the closure being taken in L 2 (B)), then

d n (B 1 (R d k )) L 2 (B) cn -2k+1 2d , n 1,
where c depends on k, d, and the diameter of B.

In our case of interest we work with the value d = 2 and k = 0, so that the ridge functions are simply the characteristic functions of half-planes. By convexity, we have

d n (R 2 0 )) L 2 (B) = d n (B 1 (R 2 0 )) L 2 (B) cn -1 4 .
We take for B the ball of center (1/2, 1/2) and radius 1/4, which is inside our domain Ω = [0, 1] 2 . It is then readily seen that for R small enough and M large enough, we can extend any ridge function g ∈ R 2 0 into a characteristic function χ D from F R,M s,s , as illustrated in Figure 3 Observing that if E Ω is a linear subspace of L 2 (Ω) of dimension at most n, its restriction E B to B is a linear subspace of L 2 (B) of dimension at most n, and one has

dist(χ D , E B ) L 2 (B) dist(χ D , E Ω ) L 2 (Ω) .
By infimizing, it follows that

d n (F R,M s,s ) L 2 (Ω) d n (R 2 0 ) L 2 (B) cn -1 4 ,
which concludes the proof.

Remark 3.13. The fact that we impose conditions on R and M in the above statement is natural since the class F R,M s,s becomes empty if R is not small enough or M not large enough, due to the fact that the sets D are assumed to be contained in the interior of Ω.

Remark 3.14. The above results are easily extended to higher dimension d 2, with a similar definition for the class F R,M s,s . The rate of approximation in L q norm by piecewise constant functions on uniform partitions is then n -1 dq , which in the case q = 2 is proved by a similar argument to be the best achievable by any linear reconstruction method. We conjecture that the same holds for more general 1 q ∞.

Shape recovery by nonlinear least-squares

Nonlinear reconstruction on a stencil

We now discuss a nonlinear reconstruction method for u ∈ F R,M s,s , whose output ũ is the indicator of a domain D with polygonal boundary : on each cell T , the domain D coincides with a certain half plane. In order to define the delimiting line we only use the average values of u on a 3 × 3 stencil of cells centered at T .

We assume that h < R, so that D does not intersect the boundary cells T i,j with i or j in {1, L}, and fix indices 1 < i, j < L. For the cell T = T i,j , denote x = ((i -1

2 )h, (j -1 2 )h) its center, and

S = [(i -2)h, (i + 1)h] × [(j -2)h, (j + 1)h] = i-1 i i+1, j-1 j j+1 T i j
the stencil composed of T and its 8 neighboring cells. We define the nonlinear approximation space

V 2 := χ n•(x-x) c : n ∈ S 1 , c ∈ R , (3.13) 
which is a two-parameter family as each function is determined by (arg n, c) ∈ (-π, π] × R, where arg n is the angle of n with respect to the horizontal axis.

Here, our measurements are the average values of u on the cells contained in S

(u) = (a T (u)) T ⊂S ∈ R 9 .
In order to find a reconstruction of u in V 2 based on these measurements, we need an inverse stability property of the form (3.6). This is not possible here, since cancels on all functions χ D ∈ V 2 with D ∩ S = ∅. We therefore restrict the nonlinear family V 2 , and consider only indicators of half-planes whose boundary passes through the central cell T :

V 2,T := χ D ∈ V 2 : ∂D ∩ T = ∅ = χ n•(x-x) c : n ∈ S 1 , |c| h 2 | n| 1 . (3.14) 
In this setting, we prove the existence of the following stability constants for V = L 1 (S) and z W = h 2 z 1 , which is the best norm on R m in view of Theorem 3.5.

Proposition 3.15. One has

(u) W α W u L 1 (S) , u ∈ L 1 (Ω), (3.15 
)

and u -v L 1 (S) µ W n (u -v) W , u, v ∈ V 2,T , (3.16) 
where α W = 1 and µ W n = 3 2 are the optimal constants.

The proof of the stability property (3.15) is trivial since

(u) W = h 2 T ⊂S T u = T ⊂S ˆT u u L 1 (S) ,
with equality in case u has constant sign in S. The proof of the inverse stability (3.16) is quite technical and left as an appendix at the end of the chapter. Given the noisy observations

z = (u) + η ∈ R 9 ,
on the stencil S, we define the estimator of u on the cell T by

ũT ∈ arg min v∈V2 z -(v) W . (3.17) 
Here we minimize over all V 2 , that is on all indicators of half planes, but we note that we may restrict to half-planes whose boundary passes through the stencil S.

The following result, which uses Proposition 3.15, shows that the distance from ũT to u in L 1 (T ) is comparable to the error between u and its best approximation in the L 1 (S) norm

u S := arg min v∈V2 u -v L 1 (S) . Lemma 3.16. For all u ∈ F R,M
s,s , one has

u -ũT L 1 (T ) C 1 u -u S L 1 (S) + 2β p W µ W n η p ,
where

C 1 = 1 + 2α W µ W n = 4 and C 2 = 2β p W µ W n = 3 3-2/p h 2 ,
with α W , µ W n as in Proposition 3.15, and β p W = 9 1-1/p h 2 the maximal ratio between • p and • W norms in R 9 . Proof. We distinguish two cases:

-If ũT ∈ V 2,T and u S ∈ V 2,T , that is, both boundaries pass through the central cell T , we apply Theorem 3.8 together with Proposition 3.15

u -ũT L 1 (T ) u -ũT L 1 (S) C 1 min v∈V 2,T u -v L 1 (S) + C 2 η p = C 1 u -u S L 1 (S) + C 2 η p .
with

C 1 = 1 + 2α W µ W n , C 2 = 2β p W µ W n .
-Otherwise, either ũT or u S has constant value 0 or 1 on T , so ũT -u S has constant sign on T , and thus

u S -ũT L 1 (T ) = h 2 |a T (ũ T -u S )| (ũ T -u S ) W (u S ) -z W + (ũ T ) -z W 2 (u S ) -z W 2 (u S -u) W + 2 η W 2 u -u S L 1 (S) + 2β p W η p .
By triangle inequality, it follows that

u -ũT L 1 (T ) 3 u -u S L 1 (S) + 2β p W η p ,
which has better constants than in the estimate obtained in the first case, since the constant µ W n is larger than 1 and α W = 1.

The order of the best local approximation error u -u S L 1 (S) that appears as a bound for the reconstruction error u -ũT L 1 (T ) depends on the smoothness of the boundary, as expressed in the following lemma. Lemma 3.17. For all u ∈ F R,M s,s , with R

3 √ 2 h, one has u -u S L 1 (S) M (3 √ 2h) min(s+s ,2)+1 .
Proof. We apply the definition of F M . From the definition of C s,s , there exists an affine function ξ such that

|ψ(x 1 ) -ξ(x 1 )| M (3 √ 2h) min(s+s ,2) , |x 1 | 3 √ 2 h.
Then the function v : x + x1 e 1 + x2 e 2 → χ x2 ξ(x1) belongs to V 2 , and we have

u -u S L 1 (S) u -v L 1 (S) M (3 √ 2h) min(s+s ,2)+1 .

Global nonlinear reconstruction

We now consider the process of recovering u ∈ F R,M s,s globally from its data

z = (u) + η,
where now (u) := (a T (u)) T ∈T ∈ R n and η ∈ R n is the noise vector. Applying to each inner cell T ∈ T the previous reconstruction procedure based on the 3 × 3 stencil S centered at T , we obtain a global recovery

ũ = ũ(z) such that ũ| T = ũT | T , T = T i,j ∈ T , 1 < i, j < L,
where ũT is the local estimator from (3.17). On the boundary cells T = T i,j with i or j in {1, L}, u| T is zero by Definition 3.9 so we simply set ũ| T = 0. Note that ũ is of the form

ũ = χ D ,
where D has piecewise linear boundary with respect to the mesh T . The following result gives a global approximation bound, which confirms the improvement over linear methods when s + s > 1.

Theorem 3.18. For all u ∈ F R,M s,s , one has

u -ũ L q (Ω) C 1 n -min(1,(s+s )/2) q + C 2 n -1 pq η 1 q p .
Proof. First notice that if the result is proved for p = q = 1, as u -v has values in {-1, 0, 1},

u -v q L q (Ω) = u -v L 1 (Ω) C 1 n -s + C 2 n -1 η 1 C 1 q 1 n -s q + C 1 q 2 n -1 pq η 1 q p q ,
where s = min(1, (s + s )/2), so it suffices treat the case p = q = 1.

By an argument similar to the proof of Proposition 3.11, ∂D intersects at most 16N 2 2R √ 1 + M 2 /h stencils of 9 cells. Using the fact that u = u S is a constant on any other stencil, we get

u -ũ L 1 (Ω) = T inner cell u -ũ L 1 (T ) T inner cell (1 + 2α W µ W n ) u -u L 1 (S) + 2β p W µ W n η 1 (S) 16N 2 2R √ 1 + M 2 h M (3 √ 2h) 2s +1 + 18β p W µ W n η 1 C 1 h 2s + C 2 h 2 η 1 .
We conclude by recalling that n = h -2 .

Remark 3.19. Here the convergence rate for the noiseless term n -min(1/q,(s+s )/2q) is limited due to the use of polygonal domains in the reconstruction. So the best approximation rate h 2/q = n -1/q is already attained for C 2 boundaries. When the smoothness parameter s + s is larger than 2, better rates n -s+s 2q should be reachable if we use non-linear approximation spaces that are richer than the space V 2 , for example indicator functions of domains with boundary that have a higher order polynomial description rather than straight lines. Of course, the stable identification of these approximants in the sense of (3.6) might require stencils that are of larger size than 3 × 3.

Remark 3.20. If η ∞ 1 9
, then ũ is exactly equal to u on any cell whose corresponding stencil does not intersect ∂D, so the error is concentrated on O( √ n) cells, leading to an improved rate n -p+1 2pq instead of n -1 pq for the noise term.

Numerical illustration

We study the behavior of the above discussed linear and non-linear recovery methods from cell averages for the particular target function u = χ D , with D a slightly decentered disk of radius r = 0.325.

The linear method consists of the piecewise constant approximation (3.12), referred to as PiecewiseConstant. As to the nonlinear method, for the local best fit problem, we use the 2 norm on R 9 instead of the 1 norm. By norm equivalence on R 9 , the same convergence results can be proved to hold with different constants. This method, which we refer to as LinearInterface, does not ensure consistency of the reconstruction in the sense that a T (ũ) = a T (u). One way to approach this consistency property is to modify the 2 norm by putting a large weight on the central cell. We refer to this variant as LinearInterfaceCC, here taking the weight 100. 3.2 shows the convergence rates of the three methods in the L 1 norm. The expected h 2 decay is observed in both non-linear methods while the linear method lays behind with a decay rate of h. It is relevant to note that although both non-linear methods benefit from the same rate, the associated constants differ by an order of magnitude, showing the practical improvement gained by imposing consistency. This improvement is also visible on Figure 3.3 which shows that in the LinearInterface method, the interfaces that minimize the inwards. On the contrary, LinearInterfaceCC seems to find the right compromise between sticking to the cell average while capturing at the same time the curvature trend hinted by the surrounding cell averages.

3.6 Relation to compressed sensing 3.6.1 Compressed sensing and best n-term approximation

In this section we discuss the application of our setting to the sparse recovery of large vectors from a few linear observations. We thus take

V = R N ,
equipped with some given norm • V of interest. The linear measurements of u = (u 1 , . . . , u N ) ∈ R N are given by

( 1 (u), . . . , m (u)) = Φu,
where Φ is an m × N measurement matrix, with typically m N . The topic of compressed sensing deals with sparse recovery of u from such measurements, that is, searching to recover an accurate approximation to u by a vector with only a few non-zero components. We refer to [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candes | Decoding by linear programming[END_REF] for some first highly celebrated breakthrough results and to [START_REF] Foucart | An invitation to compressive sensing[END_REF] for a general treatment.

Remark 3.21. In the case of function recovery, sparse polynomial approximations have been investigated in [START_REF] Rauhut | Interpolation via weighted 1 minimization[END_REF][START_REF] Rauhut | Sparse Legendre expansions via 1 -minimization[END_REF]. It recently turned out [START_REF] Jahn | Sampling numbers of smoothness classes via 1 -minimization[END_REF] that even in the context of approximation in L 2 , nonlinear methods based on 1 minimization can achieve better rates of convergence than least-squares or any linear method, for certain classes of Sobolev functions. We also refer to [START_REF] Dai | Random points are good for universal discretization[END_REF] for sparse recovery results in the same vein.

We define the nonlinear space of n-sparse vectors as

V n := u ∈ R N : u 0 := #{i : u i = 0} n ,
and the best n-term approximation error in the V norm as

e n (u) V := min v∈Vn u -v V .
One natural question is to understand for which type of measurement matrices Φ does the noise-free measurement z = Φu contain enough information, in order to recover any u up to an error e n (u) V . In other words, one asks if there exists a recovery map R : R m → R N such that one has the instance optimality property at order n

u -R(Φu) V C 0 e n (u) V , u ∈ R N , (3.18) 
with C 0 a fixed constant, which we denote by IOP (n, C 0 ). This question has been answered in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] in terms of the null space N := {v ∈ R N : Φv = 0}. We say that Φ satisfies the null space property at order k with constant C 1 , denoted by N SP (k, C 1 ) if and only if

v V C 1 e k (v) V , v ∈ N . (3.19) 
This property quantifies how much vectors from the null space can be concentrated on a few coordinates. One main result of [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] is the equivalence between IOP at order n and N SP at order 2n in the following sense. One natural question is whether matrices Φ with such properties can be constructed with a number of rows/measurements m barely larger than n. As we recall further the answer to this question is strongly tied to the norm V used on R N .

Stability and the null space property

The nonlinear estimation results that we have obtained in Section 3.2 and Section 3.3 can be applied to the setting of sparse recovery, offering us a different vehicle than the null space property to establish instance optimality.

In the present setting, for a given norm • Z , the stability property (3.5) takes the form

Φu Z α Z u V , u ∈ R N (3.20)
and the inverse stability property (3.6) takes the form

v V µ Z n Φv Z , v ∈ V 2n , (3.21) 
since for sparse vectors we have

V diff n = V n -V n = V 2n .
We refer to these properties as S(α Z ) and IS(2n, µ Z n ), respectively.

Application of Theorem 3.3 in the noiseless case immediately gives us that the nonlinear best fit recovery R(Φu) = ũ satisfies the instance optimality bound (3.18) with constant

C 0 = 1 + 2α Z µ Z n .
In other words

S(α Z ) and IS(2n, µ Z n ) ⇒ IOP (n, C 0 ), C 0 = 1 + 2α Z µ Z n . (3.22) 
The following result shows that (S, IS) is actually equivalent to N SP , and thus to IOS, in the sense that a converse result holds when • Z is chosen to be the Riesz norm (3.9).

Theorem 3.23. For any norm • Z , one has

S(α Z ) and IS(2n, µ Z n ) ⇒ N SP (2n, C 1 ), C 1 = 1 + α Z µ Z n . (3.23) 
Conversely, let • W be the Riesz norm so that Φu W = min Φv=Φu v V , then

N SP (2n, C 1 ) ⇒ S(α W ) and IS(2n, µ W n ), α W = 1 and µ W n = 1 + C 1 . (3.24) 
Proof. Assume that S(α Z ) and IS(2n, µ Z n ) hold. Let v ∈ N and ṽ its best approximation in V 2n , then

v V v -ṽ V + ṽ V e 2n (v) V + µ Z n Φṽ W = e 2n (v) V + µ Z n Φ(v -ṽ) W (1 + α Z µ Z n )e 2n (x) V .
This shows that N SP (2n, C 1 ) holds with C 1 = 1 + α Z µ Z n . Conversely, assume that N SP (2n, C 1 ) holds. From the definition of the Riesz norm, it is immediate that S(α W ) holds with α W = 1. For v ∈ V 2n , let ṽ be the minimizer of min Φṽ=Φv ṽ V . Then, one has

v V ṽ V + v -ṽ V ṽ V + C 1 σ 2n (v -ṽ) V (1 + C 1 ) ṽ V ,
by using v as a sparse approximation to v -ṽ. Since ṽ V = Φv W , this shows that S(2n, µ W n ) holds with

µ W n = 1 + C 1 .

The case of p norms

The range of m allowing the properties to be fulfilled is best understood in the case of the p norms, that is [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] which points out a striking difference between the cases p = 2 and p = 1:

• V = • p , as discussed in
1. In the case p = 2, it is proved that N SP (2, C 1 ) cannot hold unless N C 2 1 m. In other words, instance optimality in 2 even at order n = 1 requires a number of measurements that is proportional to the full space dimension.

2. In the more favorable case p = 1, it is proved that for matrices which satisfy the 2 -RIP property of order 3n

(1 -δ) v 2 2 Φv 2 2 (1 + δ) v 2 2 , v ∈ V 3n , with parameter 0 < δ < ( √ 2-1) 2 3
, the N SP (2n, C 1 ) holds with C 1 depending on δ. Such matrices are known to exists with m ∼ n log(N/n) rows.

Our setting based on the stability properties S and IS applies more naturally to a different class of matrices built from graphs, which is also known to be well adapted for sparse recovery in the 1 norm. A bipartite graph with (N, m) left and right vertices, and of left degree d, is an (l, ε)-graph expander if

|X| l ⇒ |N (X)| d(1 -ε)|X|, X ⊂ {1, . . . , N },
where N (X) ⊂ {1, . . . , m} is the set of vertices connected to X. We necessarily have |N (X)| d|X|, and (1 -ε)dl m. From [START_REF] Capalbo | Randomness conductors and constant-degree lossless expanders[END_REF], it is known that there exists a (2n, 1 2 )-graph expander with d ∼ log N n and m ∼ nd ∼ n log(N/n).

Now denote Φ ∈ {0, 1} m×N the adjacency matrix of this graph, so that each column of Φ has d nonzero entries. Then

Φx 1 d x 1 , x ∈ R N ,
and

Φx 1 d(1 -ε) x 1 , x ∈ V 2n .
Therefore S(α 1 ) and IS(2n, µ 1 ), hold with α 1 = d and The proof contains 15 cases, represented on a tree in Figure 3.4. These cases correspond to different geometric situations, up to certain symmetries that leave the final relevant quantities (w) W and w L 1 (S) unchanged.

µ 1 n = 1 d(1-ε) = 2 d ,

Node a: Take

w = u -v ∈ V diff 2,T , with u, v ∈ V 2,T
, and denote n u , n v and c u , c v the corresponding unit vectors and offsets from the definition 3.14 of V 2,T . Recalling that x = (x 1 , x 2 ) is the center of S, we also denote

∆ u = {x ∈ R 2 , (x -x) • n u = c u }
the delimiting line between {u = 0} and {u = 1}, and define ∆ v in a similar way. 

Case 1: If n u = n v = n, we have w = χ cu n•(x-x)<cv if c u c v -χ cv n•(x-x)<cu otherwise so w has constant sign, which implies w L 1 (S) = h 2 (w) 1 = (w) W . c u n u x ∆ u c u |c v | n u = n v ∆ u ∆ v
C + = {x ∈ R 2 : w(x) = 1} and C -= {x ∈ R 2 : w(x) = -1}
are non-empty, and we can define the external bisector

∆ = {x ∈ R 2 : ( n u -n v ) • (x -x) = c u -c v },
which is the line of symmetry between C + and C -. We also denote

C = C + ∪ C -= {x ∈ R 2 : |w(x)| = 1}. Observing that w L 1 (S) = |S ∩ C| (3.25) and (w) W = T ⊂S |T ∩ C + | -|T ∩ C -| , (3.26) 
the stability property (3.16) can be rewritten as

|S ∩ C| 3 2 T ⊂S |T ∩ C + | -|T ∩ C -| = 3 2 |S ∩ C| -2 T ⊂S min(|T ∩ C + |, |T ∩ C -|) , or equivalently |S ∩ C| 6 T ⊂S min(|T ∩ C + |, |T ∩ C -|). (3.27)
Up to a rotation of S by a multiple of π 2 , we may assume without loss of generality that

arg( n u -n v ) ∈ π 4 , 3π 4 
,
that is, ∆ is at an angle of at most π 4 with the horizontal axis, and C + lies above ∆. Take ( e 1 , e 2 ) the canonical basis of R 2 . Up to a symmetry with respect to the vertical axis, we can assume that C + is included in the quadrant X + R 2 + . Now consider a cell T ⊂ S such that min(|T ∩ C + |, |T ∩ C -|) = 0, then there exist points x ∈ T ∩ C - and y ∈ T ∩ C + . As x 1 X 1 y 1 and x 2 X 2 y 2 , we get X ∈ T , so there is at most one such cell T , and inequality (3.27) Case 4: If X is in the lower left cell T , the dilation of T ∩ C + with respect to X by a factor 3 is in S ∩ C + , so

reduces to |S ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|). X C + ∆ u ∆ v X C - C + X C - C + z l T T ∆ Figure 3.
|S ∩ C| |S ∩ C + | 9|T ∩ C + | 9 min(|T ∩ C + |, |T ∩ C -|).
The same argument holds with C -instead of C + when X is in the upper right cell. Moreover, as ∆ u and ∆ v go through the central cell, X may not be in the upper left or lower right cells. 

|C ∩ S| hl + |C + ∩ T | + |C -∩ T | 6 min(|T ∩ C + |, |T ∩ C -|).
A similar construction can be applied to the remaining cases where X is in the upper central, central left or central right cell, which concludes the proof for Node c.

Node d: If now ( n u • e 2 )( n v • e 2 ) 0, as arg( n u -n v ) ∈ π 4 , 3π 4 , we get n u • e 2 0 n v • e 2 . Observe that C + + e 2 ⊂ C + since for all x ∈ C + , (x + e 2 -x) • n u (x -x) • n u c u and (x + e 2 -x) • n v (x -x) • n v < c v .
In the same way, C --e 2 ⊂ C -. We now divide S into columns separated by the vertical boundaries between cells, and in addition by vertical lines where ∆ intersects the two horizontal lines separating cells of S, as illustrated in Figure 3.7. 

∆ C + C - n v n u n u -n v
min(|T ∩ C + |, |T ∩ C -|) = min(|T ∩ U ∩ C + |, |T ∩ U ∩ C -|) + min(|T ∩ U c ∩ C + |, |T ∩ U c ∩ C -|).
Thanks to this observation, instead of (3.27) we only have to prove the inequality

|U ∩ C| 6 T ⊂U min(|T ∩ U ∩ C + |, |T ∩ U ∩ C -|) (3.28)
on each column U separately. We thus consider only one column U in the sequel, and assume up to a horizontal dilation (which preserves the condition | arg(∆)| π 4 ) that U has width h and is composed of three full cells. According to the definition of the columns, there is at most one cell T ⊂ U such that T ∩ ∆ = ∅, and as ∆ separates C + and C -, it is only for this cell that we may have min(|T ∩ C + |, |T ∩ C -|) = 0. If there is no such cell, (3.28) trivially holds. Otherwise, similar to Node c, we only need to prove

|U ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|),
where T ⊂ U is the cell containing ∆ ∩ U . Denoting P 1 , P 2 , P 3 and P 4 the upper left, upper right, lower left and lower right corner points of T , we observe that the assumptions on ∆ and U imply P 1 , P 2 / ∈ Cand P 3 , P 4 / ∈ C+ .

Node e:

If U ∩ ∆ u ∩ ∆ v = ∅, that is, if U contains
no intersection point between ∆ u and ∆ v , we match 5 cases depending on the position of T in U , and of its corners with respect to C. They are illustrated in Figure 3.8. 

P 1 P 2 P 3 P 4 R P 1 P 2 P 3 P 4 R R + R -
|U ∩ C| 2h 2 + |T ∩ C| 3|T ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|).
Case 7: If T is the bottom cell and P 1 ∈ C + but P 2 / ∈ C + , T ∩ C + is a triangle of width and height at most h, so there is a rectangle R ⊂ (U \ T ) ∩ C + of same width and twice as high, and thus

|U ∩ C| |R| + |T ∩ C| = 4|T ∩ C + | + |T ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|).
The same argument holds when P 2 ∈ C + but P 1 / ∈ C + , and we necessarily have 

P 1 or P 2 in C + since T ∩ C + = ∅. If T is the top cell,
|U ∩ C| h 2 + |T ∩ C| + |R| 2|T ∩ C| + 2|T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|).
The same situation occurs when only three points among P 1 , . . . , P 4 are in C.

Case 10: If T is the central cell, only one vertex among P 1 , P 2 is in C + , and only one among P 3 , P 4 is in C -, both T ∩ C + and T ∩ C -are triangles, and there exist rectangles R + and R -of same widths and heights, so

|U ∩ C| |R + | + |T ∩ C| + |R -| 3|T ∩ C + | + 3|T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|).
As C + and C -each contain at least one corner of T , we treated all cases for Node e.

Node f: Finally, we consider the situation where there is an intersection point X ∈ ∆ u ∩ ∆ v in U , and therefore in T . We again match 5 cases, illustrated in Figure 3.9, depending on the position of T in U , and of its corners with respect to C. Case 11: If T is the bottom cell, as ∆ u and ∆ v pass through the central cell of S, U is included in the central column of S, and no corner of T can be in C+ , since otherwise ∆ would have to pass through that corner, according to the definition of the columns. As a consequence, ∆ u and ∆ v necessarily pass through the central cell of U , so T ∩ C + is a triangle, and we proceed as in Case 7. The same happens if T is the top cell, so in the rest of the proof we only consider situations where T is the central cell.

Case 12: If the horizontal line H passing through X does not intersect C at any other point, C + is entirely above H and C -entirely below. Denoting z = X 2 -x 2 + h 2 ∈ (0, h), the vertical dilation with respect to H by a factor 2h-z h-z sends T ∩ C + in U ∩ C + , and the vertical dilation with respect to H by a factor h+z z sends

T ∩ C -in U ∩ C -, so |U ∩ C| 2h -z h -z |T ∩ C + | + h + z z |T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|) because 2h-z h-z + h+z z = 2 + h 2 z(h-z)
6 for z ∈ (0, h). In the remaining cases, up to a symmetry with respect to the vertical axis, we can assume that X + R 2 + ⊂ C + and X + R 2 -⊂ C -, and in particular P 2 ∈ C + and P 3 ∈ C -.

Case 13: If P 1 ∈ C + and P 4 ∈ C -, the situation is similar to Case 8.

Case 14: If P 1 ∈ C + and P 4 / ∈ C -, the top cell is included in C + , and one of the lines ∆ u or ∆ v intersects the line segments [P 1 , P 3 ] and [P 3 , P 4 ] at points Y and Z. Then the triangle Y P 3 Z is included in T and contains T ∩ C -, so there is a rectangle R of same width and height in (U \ T ) ∩ C -. In the end

|U ∩ C| h 2 + |T ∩ C| + |R| 2|T ∩ C| + 2|T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|).
The same approach treats the symmetric case P 1 / ∈ C + and P 4 ∈ C -, Case 15:

Finally, if P 1 / ∈ C + and P 4 / ∈ C -, denote l = X 1 -x 1 + h 2 ∈ (0, h), z = X 2 -x 2 + h 2 ∈ (0, h), φ ∈ (0, π 4 
) the angle between the vertical axis and the line among ∆ u and ∆ v that intersects [P 1 , P 2 ], and ψ ∈ (0, π 4 ) the angle between the line among ∆ u and ∆ v that intersects [P 1 , P 3 ] and the horizontal axis. As | arg(∆)| π 4 , φ ψ so tan(ψ) tan(φ) =: t 1. We can now compute

|T ∩ C + | = (h -l)(h -z) + 1 2 (h -l) 2 tan ψ + 1 2 (h -z) 2 tan φ, |T ∩ C -| = lz + 1 2 l 2 tan ψ + 1 2 z 2 tan φ, and 
|(U \ T ) ∩ C| (h -l)h + (h -z)th + lh + zth = (1 + t)h 2 .
If l + z h, we get

|(U \ T ) ∩ C| (1 + t)(l + z) 2 -(1 -t)(l -z) 2 = 4lz + 2t(l 2 + z 2 ) 4|T ∩ C -|. Similarly, l + z h implies |(U \ T ) ∩ C| 4|T ∩ C + |.
In any case, we found

|U ∩ C| = |T ∩ C| + |(U \ T ) ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|),
which concludes the proof. As a last remark, note that the constants α W = 1 and µ W n = 3 2 in Proposition 3.15 are sharp, since equality is attained by functions of constant sign on each cell for α W , and by

w = u -v with arg( n u ) ∈ π 4 Z, c u = 0 and v = u -1 for µ W n .
Part II

Approximation from point values

Chapter 4

Optimal sampling and Christoffel functions on general domains

Abstract. We consider the problem of reconstructing an unknown function u ∈ L 2 (Ω, µ) from its evaluations at given sampling points x 1 , . . . , x m ∈ Ω, where Ω ⊂ R d is a general domain and µ a probability measure. The approximation is picked from a linear space V n of interest where n = dim(V n ). Recent results [START_REF] Cohen | Optimal weighted least-squares methods[END_REF][START_REF] Hadigol | Least squares polynomial chaos expansion: A review of sampling strategies[END_REF][START_REF] Narayan | A Christoffel function weighted least squares algorithm for collocation approximations[END_REF] have revealed that certain weighted least-squares methods achieve near best (or instance optimal) approximation with a sampling budget m that is proportional to n, up to a logarithmic factor ln(2n/ε), where ε > 0 is a probability of failure. The sampling points should be picked at random according to a well-chosen probability measure σ whose density is given by the inverse Christoffel function that depends both on V n and µ. While this approach is greatly facilitated when Ω and µ have tensor product structure, it becomes problematic for domains Ω with arbitrary geometry since the optimal measure depends on an orthonormal basis of V n in L 2 (Ω, µ) which is not explicitly given, even for simple polynomial spaces. Therefore sampling according to this measure is not practically feasible. One computational solution recently proposed in [START_REF] Adcock | Approximating smooth, multivariate functions on irregular domains[END_REF] relies on using the restrictions of an orthonormal basis of V n defined on a simpler bounding domain and sampling according to the original probability measure µ, in turn giving up on the optimal sampling budget m ∼ n. In this chapter, we discuss practical sampling strategies, which amount to using a perturbed measure σ that can be computed in an offline stage, not involving the measurement of u, as recently proposed in [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF][START_REF] Migliorati | Multivariate approximation of functions on irregular domains by weighted least-squares methods[END_REF]. We show that near best approximation is attained by the resulting weighted least-squares method at near-optimal sampling budget, and we discuss multilevel approaches that preserve optimality of the cumulated sampling budget when the spaces V n are iteratively enriched. These strategies rely on the knowledge of a-priori upper bounds B(n) on the inverse Christoffel function for the space V n and the domain Ω. We establish bounds of the form O(n r ) for spaces V n of multivariate algebraic polynomials of given total degree, and for general domains Ω. The exact growth rate r is established depending on the regularity of the domain, in particular r = 1 for domains with Lipschitz boundaries and r = 1/d for smooth domains.

Introduction

Reconstruction from point samples

The process of reconstructing an unknown function u defined on a domain Ω ⊂ R d from its sampled values z i ≈ u(x i ) at a set of points x 1 , . . . , x m ∈ Ω is ubiquitous in data science and engineering. The sampled values may be affected by noise, making critical the stability properties of the reconstruction process. Let us mention three very different settings for such reconstruction problems, that correspond to different areas of applications: (i) Statistical learning and regression: we observe m independent realizations (x i , z i ) of a random variable (x, z) distributed according to an unknown measure, where x ∈ Ω and z ∈ R, and we want to recover a function x → v(x) that makes |z -v(x)| as small as possible in some given sense. If we use the quadratic loss E(|z -v(x)| 2 ), the minimizer is given by the regression function

u(x) = E(z|x).
and the observed z i may be thought of as the observation of u(x i ) affected by noise. (ii) State estimation from measurements: the function u represents the distribution of a physical quantity (temperature, quantity of a contaminant, acoustic pressure) in a given spatial domain Ω that one is allowed to measure by sensors placed at m locations x 1 , . . . , x m . These measurements can be affected by noise reflecting the lack of accuracy of the sensors. (iii) Design of physical/computer experiments: u is a quantity of interest that depends on the solution f to a parametrized physical problem. For example, f = f (x) could be the solution to a PDE that depends on a vector x ∈ Ω ⊂ R d of d physical parameters, and u could be the result of a linear form applied to f , that is, u(x) = (f (x)). We use a numerical solver for this PDE as a black box to evaluate f , and therefore u, at m chosen parameter vectors x 1 , . . . , x m ∈ Ω, and we now want to approximate u on the whole domain Ω from these computed values z i . Here, the discretization error of the solver may be considered as a noise affecting the true value u(x i ). Contrary to statistical learning, in the last two applications (ii) and (iii) the positions of the sample points x i are not realizations of an unknown probability distribution. They can be selected by the user, which brings out the problem of choosing them in the best possible way. Indeed, measuring u at the sample points may be costly: in (ii) we need a new sensor for each new point, and in (iii) a new physical experiment or run of a numerical solver. Moreover, in certain applications, one may be interested in reconstructing many different instances of functions u. Understanding how to sample in order to achieve the best possible trade-off between the sampling budget and the reconstruction performance is one main motivation of this work. We first make our objective more precise by introducing some benchmarks for the performance of the reconstruction process and sampling budget.

Optimality benchmarks

We are interested in controlling the distance u -ũ V between u and its reconstruction ũ = ũ(z 1 , . . . , z m ), measured in some given norm • V , where V is a Banach function space that contains u.

For a given numerical method, the derivation of an error bound is always tied to some prior information on u. One most common way to express such a prior is in terms of membership of u to a restricted class of functions, for example a smoothness class. One alternate way is to express the prior in terms of approximability of u by particular finite dimensional spaces. It is well-known that the two priors are sometimes equivalent: many classical smoothness classes can be characterized in terms of approximability in some given norm by classical approximation spaces such as algebraic or trigonometric polynomials, splines or wavelets [START_REF] Devore | Grundlehren der mathematischen Wissenschaften[END_REF].

In this chapter, we adopt the second point of view, describing u by its closeness to a given subspace V n ⊂ V of dimension n: defining the best approximation error

e n (u) V := min v∈Vn u -v V ,
our prior is that e n (u) V ε n for some ε n > 0. One of our motivations is the rapidly expanding field of reduced order modeling in which one searches for approximation spaces V n which are optimally designed to approximate families of solutions to parametrized PDEs. Such spaces differ significantly from the above-mentioned classical examples. For example in the reduced basis method, they are generated by particular instances of solutions to the PDE for well chosen parameter values. We refer to [START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF] for a survey on such reduced modeling techniques and their approximation capability.

In this context, one first natural objective is to build a reconstruction map

(z 1 , . . . , z m ) → ũ ∈ V n ,
that performs almost as good as the best approximation error. We say that a reconstruction map taking its value in V n is instance optimal with constant C 0 1 if and only if

u -ũ V C 0 e n (u) V , (4.1) 
for any u ∈ V . Obviously, instance optimality implies that if u ∈ V n , the reconstruction map should return an exact reconstruction ũ = u. For this reason, instance optimality can only be hoped for if the sampling budget m exceeds the dimension n. This leads us to introduce a second notion of optimality: we say that the sample is budget optimal with constant C

1 1 if m C 1 n. (4.2)
Let us stress that in many relevant settings, we do not work with a single space V n but a sequence of nested spaces

V 1 ⊂ V 2 ⊂ • • • ⊂ V n ⊂ . . .
so that e n (u) V decreases as n grows. Such a hierarchy could either be fixed in advance (for example when using polynomials of degree n), or adaptively chosen as we collect more samples (for example when using locally refined piecewise polynomials or finite element spaces). Ideally, we may ask that the constants C 0 and C 1 are independent of n. As it will be seen, a more accessible goal is that only one of the two constants is independent of n, while the other grows at most logarithmically in n.

Another way of relaxing instance optimality is to request the weaker property of rate optimality, which requires that for any s > 0 and u ∈ V ,

sup n 1 n s u -ũ V C sup n 1 n s e n (u) V ,
where C 1 is a fixed constant. In other words, the approximant produced by the reconstruction method should converge at the same polynomial rate as the best approximation.

In the context where the spaces V n are successively refined, even if the reconstruction method is instance and budget optimal for each value of n, the cumulated sampling budget until the n-th refinement step is in principle of the order m(n

) ∼ 1 + 2 + • • • + n ∼ n 2 ,
if samples are picked independently at each step. A natural question is whether the samples used until stage k can be, at least partially, recycled for the computation of ũk+1 , in such a way that the cumulated sampling budget m(n) remains of the optimal order O(n). This property will be ensured for example if for each n, the samples are picked at points {x 1 , . . . , x m(n) } that are the sections of a unique infinite sequence {x m } m 1 , with m(n) ∼ n, which means that all previous samples are recycled. We refer to this property as hierarchical sampling. It is also referred to as online machine learning in the particular above-mentioned application area (i).

Objectives and layout

The design of sampling and reconstruction strategies that combine budget and instance (or rate) optimality, together with the above progressivity prescription, turns out to be a difficult task, even for very classical approximation spaces V n such as polynomials.

In Section 4.2, we illustrate this difficulty by first discussing the example of reconstruction by interpolation for which the sampling budget is optimal but instance optimality with error measured in the L ∞ norm generally fails by a large amount. We then recall recent results [START_REF] Arras | Sequential sampling for optimal weighted least squares approximations in hierarchical spaces[END_REF][START_REF] Cohen | Optimal weighted least-squares methods[END_REF][START_REF] Hadigol | Least squares polynomial chaos expansion: A review of sampling strategies[END_REF][START_REF] Narayan | A Christoffel function weighted least squares algorithm for collocation approximations[END_REF] revealing that one can get much closer to these optimality objectives by weighted least-squares reconstruction methods. In this case, we estimate the approximation error in V = L 2 (Ω, µ), where µ is an arbitrary but fixed probability measure. The sampling points are picked at random according to a different probability measure σ * that depends on V n and µ:

dσ * (x) = k n (x) dµ(x).
Here k n is the inverse Christoffel function defined by

k n (x) = 1 n n j=1 |ϕ j (x)| 2 , (4.3) 
where (ϕ 1 , . . . , ϕ n ) is any L 2 (Ω, µ)-orthonormal basis of V n . By Cauchy-Schwarz inequality, it is readily seen that this function is characterized by the extremality property

n k n (x) = max v∈Vn |v(x)| 2 v 2 L 2 , ( 4.4) 
where v L 2 := v V = v L 2 (Ω,µ) (for notational simplicity, throughout the chapter, we ommit the obvious restriction v = 0 needed when optimizing quotients with numerators and denominators that are null when v = 0). Then, instance optimality is achieved in a probabilistic sense with a sampling budget m that is proportional to n, up to a logarithmic factor ln(2n/ε), where ε > 0 is a probability of failure which comes as an additional term in the instance optimality estimate

E( u -ũ 2 L 2 ) C 0 e n (u) 2 L 2 + O(ε).
It is important to notice that σ * differs from µ and that the standard least-squares method using a sample drawn according to µ is generally not budget optimal in the sense that instance optimality requires m to be larger than n ln n times the quantity

K n := k n L ∞ = sup x∈Ω |k n (x)| = 1 n max v∈Vn v 2 L ∞ v 2 L 2
, which may grow with n, for instance as O(n) or worse, see [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF] as well as Section 4.5. While these results are in principle attractive since they apply to arbitrary spaces V n , measures µ and domains Ω, the proposed sampling strategy is highly facilitated when Ω is a tensor-product domain and µ is the tensor-product of a simple univariate measure, so that an L 2 (Ω, µ)-orthonormal basis of V n can be explicitly provided. This is the case for example when using multivariate algebraic or trigonometric polynomial spaces with µ being the uniform probability measure on [-1, 1] d or [-π, π] d . For a general domain Ω with arbitrarypossibly irregular-geometry, the orthonormal basis cannot be explicitly computed, even for simple polynomial spaces. Therefore sampling according to the optimal measure σ * is not feasible.

Non-tensor product domains Ω come out naturally in all the above mentioned settings (i)-(ii)-(iii). For example, in design of physical/computer experiments, this reflects the fact that while the individual parameters x 1 , . . . , x d could range in intervals I 1 , . . . , I d , not all values x in the rectangle R = I 1 × • • • × I d are physically admissible. Therefore, the function u is only accessible and searched for in a limited domain Ω ⊂ R. Here we assume that the domain Ω is known to us, in the sense that membership in Ω of a point x ∈ R d can be assessed at low numerical cost.

One practical solution proposed in [START_REF] Adcock | Approximating smooth, multivariate functions on irregular domains[END_REF] consists in sampling according to the measure µ and solving the least-squares problem using the restriction of an orthonormal basis of V n defined on a simpler tensor product bounding domain, which generally gives rise to a frame. This approach is feasible for example when µ is the uniform probability measure. Due to the use of restricted bases, the resulting Gramian matrix which appears in the normal equations is ill-conditioned or even singular, which is fixed by applying a pseudo-inverse after thresholding the smallest singular values at some prescribed level. Budget optimality is generally lost in this approach since one uses µ as a sampling measure.

In this chapter, we also work under the assumption that we are able to sample according to µ, but we take a different path, which is exposed in Section 4.3. In an offline stage, we compute an approximation k n to the inverse Christoffel function, which leads to a measure σ that may be thought of as a perturbation of the optimal measure σ * . We may then use σ to define the sampling points {x 1 , . . . , x m } and weights. In the online stage, we perform the weighted least-squares reconstruction strategy based on the measurement of u at these points. Our first result is that if k n is equivalent to k n , we recover the stability and instance optimality results from [START_REF] Cohen | Optimal weighted least-squares methods[END_REF] at near-optimal sampling budget m ∼ n ln(2n/ε).

One approach for computing k n , recently proposed in [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF][START_REF] Migliorati | Multivariate approximation of functions on irregular domains by weighted least-squares methods[END_REF], consists in drawing a first sample {y 1 , . . . , y M } according to µ and defining k n as the inverse Christoffel function with respect to the discrete measure associated to these points. In order to ensure an equivalence between k n and k n with high probability, the value of M needs to be chosen larger than K n which is unknown to us. This can be ensured by asking that M is larger than a known upper bound B(n) on K n . The derivation of such bounds for general domains is one of the objectives of this chapter. We also propose an empirical strategy for choosing M that does not require the knowledge of an upper bound and appears to be effective in our numerical tests. In all cases, the size M of the offline sample could be of order substantially larger than O(n). However, this first set of points is only used in the offline stage to perform computations that produce the perturbed measure σ, and not to evaluate the function u which, as previously explained, is the costly aspect in the targeted applications and could also occur for many instances of u. These more costly evaluations of u only take place in the online stage at the x i , therefore at near-optimal sampling budget.

In the case where K n , or its available bound B(n), grows very fast with n, the complexity of the offline stage in this approach becomes itself prohibitive. In order to mitigate this defect, we introduce in Section 4.4 a multilevel approach where the approximation k n of k n is produced by successive space refinements

V n1 ⊂ • • • ⊂ V nq , n q = n,
which leads to substantial computational savings under mild assumptions. This setting also allows us to produce nested sequences of evaluation points {x 1 , . . . , x mp }, where m p grows similar to n p up to a logarithmic factor, therefore complying with the previously invoked prescription of hierarchical sampling. The analysis of this approach faces the difficulty that the x i are not anymore identically distributed, and this is solved by using techniques first proposed in [START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF].

In Section 4.5 we turn to the study of the inverse Christoffel function k n in the case of algebraic polynomial spaces of given total degree on general multivariate domains Ω ⊂ R d . We establish pointwise and global upper and lower bounds for k n that depend on the smoothness of the boundary of Ω. We follow an approach adopted in [START_REF] Prymak | Christoffel functions on planar domains with piecewise smooth boundary[END_REF] for a particular class of domains with piecewise smooth boundary, namely comparing Ω with simpler reference domains for which the inverse Christoffel function can be estimated. We obtain bounds with growth rate O(n) for Lipschitz domains and O(n 1/d ) for smooth domains, and these rates are proved to be sharp. We finally give a systematic approach that also describes the sharp growth rate for domains with cusp singularities.

We close the chapter in Section 4.6 with various numerical experiments that confirm our theoretical investigations. In the particular case of multivariate algebraic polynomials, the sampling points tend to concentrate near to the outward corner or cusp singularities of the domain, while they do not at the re-entrant singularities, as predicted by the previous analysis of the inverse Christoffel function.

Meeting the optimality benchmarks

Interpolation

One most commonly used strategy to reconstruct functions from point values is interpolation. Here we work in the space V = C(Ω) of continuous and bounded functions equipped with the L ∞ norm. For the given space V n , and n distinct points x 1 , . . . , x n ∈ Ω picked in such way that the map v → (v(x 1 ), . . . , v(x n )) is an isomorphism from V n to R n , we define the corresponding interpolation operator I n : C(Ω) → V n by the interpolation condition

I n u(x i ) = u(x i ), i = 1, . . . , n.
The interpolation operator is also expressed as

I n u = n i=1 u(x i ) ψ i ,
where (ψ 1 , . . . , ψ n ) is the Lagrange basis of V n defined by the conditions ψ i (x j ) = δ i,j . Interpolation is obviously budget optimal since it uses m = n points, that is, C 1 = 1 in (4.2). On the other hand, it does not guarantee instance optimality: the constant C 0 in (4.1) is governed by the Lebesgue constant

Λ n = I n L ∞ →L ∞ = max x∈Ω n i=1 |ψ i (x)|. Indeed, since u -I n u L ∞ u -v L ∞ + I n u -I n v L ∞ for any v ∈ V n , one has u -I n u L ∞ (1 + Λ n )e n (u) L ∞ .
The choice of the points x i is critical to control the growth of Λ n with n. For example in the elementary case of univariate algebraic polynomials where Ω = [-1, 1] and

V n = R n-1 [X],
it is well known that uniformly spaced x i result in Λ n growing exponentially, at least like 2 n , while the slow (and optimal) growth Λ n ∼ ln(n) is ensured when using the Chebychev points x i = cos 2i-1 2n π for i = 1, . . . n. Unfortunately, there is no general guideline to ensure such a slow growth for more general hierarchies of spaces (V n ) n 1 defined on multivariate domains Ω ⊂ R d . As an example, for the space of bivariate algebraic polynomials

V n = R p [X 1 , X 2 ] with n = (p+1)(p+2) 2
, and for a general polygonal domain Ω, a choice of points that would ensure a logarithmic growth of the Lebesgue constant is to our knowledge an open problem.

There exists a general point selection strategy that ensures linear behaviour of the Lebesgue constant for any space V n spanned by n functions {φ 1 , . . . , φ n }: it consists in choosing (x 1 , . . . , x n ) which maximizes over Ω n the determinant of the collocation matrix

A(x 1 , . . . , x n ) = (φ i (x j )) 1 i,j n ,
Since the j-th element of the Lagrange basis is given by

ψ j (x) = det(A(x 1 , . . . , x j-1 , x, x j+1 , . . . , x n )) det(A(x 1 , . . . , x n )) ,
the maximizing property gives that ψ j L ∞ 1 and therefore Λ n n. In the particular case of the univariate polynomials where Ω = [-1, 1] and

V n = R n-1 [X],
this choice corresponds to the Fekete points, which maximize the product i =j (x i -x j ).

While the above strategy guarantees the O(n) behaviour of Λ n , its main defect is that it is computationally unfeasible if n or d is large, since it requires solving a non-convex optimization problem in dimension d n. In addition to this, for a given hierarchy of spaces (V n ) n 1 , the sampling points S n = {x 1 , . . . , x n } generated by this strategy do not satisfy the nestedness property S n ⊂ S n+1 .

A natural alternate strategy that ensures nestedness consists in selecting the points by a stepwise greedy optimization process: given S n-1 , define the next point x n by maximizing over Ω the function x → det(A(x 1 , . . . , x n-1 , x)).

This approach was proposed in [START_REF] Maday | A general multipurpose interpolation procedure: the magic points[END_REF] in the context of reduced basis approximation and termed as magic points. It amounts to solving at each step a non-convex optimization problem in the more moderate dimension d, independent of n. However there exists no general bound on Λ n other than exponential in n. In the univariate polynomial case, this strategy yields the so-called Leja points for which it is only known that the Lebesgue constant grows sub-exponentially although numerical investigation indicates that it could behave linearly. In this very simple setting, the bound Λ n n 2 could be established in [START_REF] Chkifa | On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection[END_REF], however using a variant where the points are obtained by projections of the complex Leja points from the unit circle to the interval [-1, 1].

In summary, while interpolation uses the optimal sampling budget m = n, it fails by a large amount in achieving instance optimality, especially when asking in addition for the nestedness of the sampling points, even for simple polynomial spaces.

Weighted least-squares

In order to improve the instance optimality bound, we allow ourselves to collect more data on the function u by increasing the number m of sample points, compared to the critical case m = n studied before, and construct an approximation ũ by a least-squares fitting procedure. This relaxation of the problem gives more flexibility on the choice of the sample points: for instance, placing two of them too close will only waste one evaluation of u, whereas this situation would have caused ill-conditioning and high values of Λ n in interpolation. It also leads to more favorable results in terms of instance optimality, as we next recall.

Here, and in the rest of this chapter, we assess the error in the L 2 norm

v L 2 = v L 2 (Ω,µ) ,
where µ is a fixed probability measure, which can be arbitrarily chosen by the user depending on the targeted application. For example, if the error has the same significance at all points of Ω, one is naturally led to use the uniform probability measure dµ := |Ω| -1 dx.

In other applications such as uncertainty quantification where the x variable represents random parameters that follow a more general probability law µ, the use of this specific measure is relevant since the reconstruction error may then be interpreted as the mean-square risk

u -ũ 2 L 2 (Ω,µ) = E x (|u(x) -ũ(x)| 2 ).
Once the evaluations of u(x i ) are performed, the weighted-least squares methods defines ũ as the solution of the minimization problem

min v∈Vn 1 m m i=1 w(x i ) |u(x i ) -v(x i )| 2 , (4.5) 
where w(x 1 ), . . . , w(x m ) > 0 are position-dependent weights. The solution to this problem is unique under the assumption that no function of V n \ {0} vanishes at all the x i . Notice that in the limit m = n, the minimum in (4.5) is zero, and it is attained by the interpolant at the points x 1 , . . . , x n , which as previously discussed suffers from a severe lack of instance optimality. The results from [START_REF] Cohen | Optimal weighted least-squares methods[END_REF] provide with a general strategy to select the points x i and the weight function w in order to reach instance and budget optimality, in a sense that we shall make precise. In this approach, the points x i are drawn at random according to a probability measure σ on Ω, that generally differs from µ, but with respect to which µ is absolutely continuous. One then takes for w the corresponding Radon-Nikodym derivative, so that w(x) dσ(x) = dµ(x).

This compatibility condition ensures that we recover a minimization in the continuous norm • L 2 as m tends to infinity:

1 m m i=1 w(x i ) |u(x i ) -v(x i )| 2 a.s. -→ m→∞ ˆΩ w |u -v| 2 dσ = ˆΩ |u -v| 2 dµ = u -v 2 L 2 .
Here we may work under the sole assumption that u belongs to the space V = L 2 (Ω, µ), because pointwise evaluations of u and w will be almost surely well-defined. In return, since ũ is now stochastic, the L 2 estimation error will only be assessed in a probabilistic sense, for example by considering the mean-square error,

E( u -ũ 2 L 2 ) = E ⊗ m σ ( u -ũ 2 L 2 )
The weighted least-square approximation may be viewed as the orthogonal projection ũ = P m n u onto V n for the discrete 2 norm

v 2 m := 1 m m i=1 w(x i ) |v(x i )| 2 , (4.7) 
in the same way that the optimal approximation

P n u := arg min v∈Vn u -v L 2
is the orthogonal projection for the continuous L 2 (Ω, µ) norm. A helpful object for comparing these two norms on V n is the Gramian matrix

G m := ( ϕ j , ϕ k m ) 1 j,k n , (4.8) 
where (ϕ 1 , . . . , ϕ n ) is any L 2 (Ω, µ)-orthonormal basis of V n and •, • m is the inner product associated with the discrete norm • m . Indeed, for all δ > 0,

G m -I 2 δ ⇐⇒ (1 -δ) v 2 L 2 v 2 m (1 + δ) v 2 L 2 , v ∈ V n , (4.9) 
where A 2 denotes the spectral norm of an n × n matrix A. As noted in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF] in the case of standard leastsquares, and in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF] for the weighted case, G m can be seen as a mean of m independent and identically distributed rank-one matrices

a i a † i := (w(x i ) ϕ j (x i ) ϕ k (x i )) 1 j,k n satisfying E(a i a † i ) = I,
so G m concentrates towards the identity as m grows to infinity. This concentration can be estimated by a matrix Chernoff bound, such as Theorem 1.1 in the survey paper [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF]. As observed in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], for the particular value δ = 1 2 , this inequality can be rewritten as follows, in our case of interest. Lemma 4.1. For any ε > 0, under the sampling budget condition

m γ w k n L ∞ n ln(2n/ε), (4.10) 
where

γ := (3/2 ln(3/2) -1/2) -1 ≈ 9.242, one has P( G m -I 2 1/2) 1 -ε.
An estimate comparing the error u -ũ L 2 with the optimum e n (u) L 2 can be obtained when imposing that G m -I 2 1/2, as expressed in the following Lemma, which is proved in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF]. Lemma 4.2. One has

E u -ũ 2 L 2 χ Gm-I 2 1/2 1 + 4 n m w k n L ∞ e n (u) 2 L 2 . (4.11)
On the other hand, the estimator ũ obtained by solving (4.5) is not reliable in the event where G m becomes singular, which brings us to modify its definition in various ways:

1. If one is able to compute G m -I 2 , one may condition the estimator to the event

G m -I 2 1 2 by defining ũC := ũ χ Gm-I 2 1/2 , (4.12) 
that is, we take ũC = 0 if G m -I 2 > 1 2 . 2. If a uniform bound u L ∞ (Ω) τ is known, one may introduce a truncated estimator

ũT := T τ • ũ, (4.13) 
where T τ (y) := min{τ, |y|} sgn(y). The main results from [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], that we slightly reformulate below, show that these estimators are instance optimal in a probabilistic sense. Throughout the rest of the chapter, γ denotes the same constant as in Lemma 4.1. the weighted least-squares estimator satisfies

E ( u -ũ 2 L 2 χ Gm-I 2 1/2 ) (1 + η(m)) e n (u) 2 L 2 . (4.15)
The conditionned and truncated estimators satisfy the convergence bounds

E ( u -ũC 2 L 2 ) (1 + η(m)) e n (u) 2 L 2 + u 2 L 2 ε, (4.16 
)

and E ( u -ũT 2 L 2 ) (1 + η(m)) e n (u) 2 L 2 + 4 τ 2 ε, (4.17)
where

η(m) = 4 n m w k n L ∞ 4 γ ln(2n/ε) → 0, as n → ∞ or ε → 0.
Proof. The bound (4.15) follows directly from Lemma 4.2 and the assumption on m. In the event G m -I 2 > 1 2 , of probability less than ε by Lemma 4.1, one can use the bounds

u -ũC 2 L 2 = u 2 L 2 and u -ũT 2 L 2 4τ 2 .
Otherwise, one has u -ũC 2

L 2 u -ũ 2 L 2 and u -ũT 2 L 2 u -ũ 2 L 2 .
This leads to (4.16) and (4.17).

Remark 4.4. The above result shows that the estimators ũC and ũT achieve instance optimality in expectation up to additional error terms of order O(ε), accounting for the event { G m -I 2 > 1/2}. Note that ε only influences the constraint on the sampling budget logarithmically. In particular, if e n (u) L 2 decreases like n -r for some r > 0, these estimators are rate optimal by taking ε less than n -2r , which thus affects the constraint on sampling budget by a factor O(ln(n)). Note however that for exponential rates of the form exp(-cn α ) -that occur for example when approximating analytic functions by polynomials-imposing ε to be of this order results in a sampling budget m of sub-optimal order n 1+α up to a logarithmic factor.

Remark 4.5. One way to achieve instance optimality in expectation without an additional error term consists in redrawing the points {x 1 , . . . , x m } until one observes that G m -I 2 1 2 , as proposed in [START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF]. We denote by u * the weighted least-square estimator corresponding to this conditionned draw. In other words u * is the weighted least-square estimator ũ conditionned to the event { G m -I 2 1 2 }. Since, by Baye's rule,

P G m -I 2 1 2 E u -ũ 2 L 2 G m -I 2 1 2 = E u -ũ 2 L 2 χ Gm-I 2 1 2 ,
we find that under the sampling budget (4.14), one has

E( u -u * 2 L 2 ) = E u -ũ 2 L 2 G m -I 2 1 2 1 1 -ε E u -ũ 2 L 2 χ Gm-I 2 1 2 ,
and thus

E( u -u * 2 L 2 ) 1 1 -ε (1 + η(m))e n (u) 2 L 2 . (4.18)
The sampling budget condition also ensures a probabilistic control on the number of required redraws, since the probability that the event { G m -I 2 1 2 } did not occur after k redraws is less than ε k . Now the natural objective is to find a weight function w that makes w k n L ∞ small in order to minimize the sampling budget. Since

w k n L ∞ ˆΩ w k n dσ = ˆΩ k n dµ = 1,
with equality attained for the weight function

w * := 1 k n =   n j=1 |ϕ j | 2   -1
, this theorem shows that the choice of sampling measure

dσ * = 1 w * dµ = k n dµ
is optimal, in the sense that the above instance optimality results are achieved with a near-optimal sampling budget m ∼ n up to logarithmic factors. As already explained in the introduction, when working on a general domain Ω, we face the difficulty that the orthonormal basis (ϕ 1 , . . . , ϕ n ) cannot be exactly computed, and therefore the optimal w * and σ * are out of reach. The next section discusses computable alternatives w and σ that still yield similar instance optimality results at near-optimal sampling budget.

Near-optimal sampling strategies on general domains

Two steps sampling strategies

The sampling and reconstruction strategies that we discuss proceed in two steps:

1. In an offline stage we search for an approximation to the Christoffel function k n . For this purpose, we sample y 1 , . . . , y M ∈ Ω according to µ, use these sampling points to compute an orthonormal basis ( ϕ 1 , . . . , ϕ n ) with respect to the induced discrete inner product. The approximation to the Christoffel function is then

k n = 1 n n j=1 | ϕ j | 2 .
As we explain further, one objective is to guarantee that k n and k n are pointwise equivalent. We define the sampling measure σ as proportional to k n µ and draw the points x 1 , . . . , x m according to this measure.

2. In an online stage, we evaluate u at the sampling points x i and construct an estimate ũ by the weighted least-squares method.

In the offline stage M could be much larger than n, however it should be understood that the function u is only evaluated in the online stage at the m point x i which will be seen to have optimal cardinality m ∼ n up to logarithmic factors.

The two main requirements in these approaches are the data of a (non-orthogonal) basis (φ 1 , . . . , φ n ) of V n and the ability to sample according to measure µ. When Ω ⊂ R d is a general multivariate domain, one typical setting for this second assumption to be valid is the following:

-There is a set R containing Ω such that µ is the restriction of a measure µ R which can easily be sampled.

-Membership of a point x to the set Ω can be efficiently tested, that is, χ Ω is easily computed. This includes for instance the uniform probability measure on domains described by general systems of algebraic inequalities (such as polyhedrons, ellipsoids..), by including such domains Ω in a rectangle R = I 1 × • • • × I d on which sampling according to the uniform measure can be done componentwise. Then the y i are produced by sampling according to µ R and rejecting the samples that do not belong to Ω. The offline stage is described more precisely as follows. 

d σ := 1 Z k n dµ
Note that the factor Z is unknown to us but its value is not needed in typical sampling strategies, such as rejection sampling or MCMC. In contrast to k n , the function k n is stochastic since it depends on the drawing of the y i . In the online stage, we sample x 1 , . . . , x m independently according to d σ. We then measure u at the points x i , and define the estimator ũ ∈ V n as the solution to the weighted least-squares problem

min v∈Vn 1 m m i=1 w(x i ) |u(x i ) -v(x i )| 2 , ( 4.20) 
with w = Z/ k n . This least-squares problem can be solved explicitly by computing ũ = P m n u as the orthogonal projection of u on V n with respect to the inner product from (4.7)

u, v m := 1 m m i=1 w(x i ) u(x i ) v(x i ). (4.21)
Remark 4.6. There are now two levels of stochasticity: the draw of the y i and the subsequent draw of the x i . We sometimes use the symbols E y and P y referring to the first draw, and E x and P x referring to the second draw given the first one, while E and P refer to both draws.

We keep the notations G m and ũT from (4.8) and (4.13). In the following section, we establish instance optimal convergence results under near optimal sample complexity m similar to (4.15) and (4.17) in Theorem 4.3. On the other hand, we do not consider the conditioned estimator ũC any further since we do not have access to the matrix G m , which would require the knowledge of the functions ϕ j . The derivation of a computable estimator that satisfies a similar estimate as ũC is an open question. We also discuss the required sample complexity M of the offline stage.

Convergence bounds and sample complexity

Our principle objective is to ensure the uniform framing

c 1 k n (x) k n (x) c 2 k n (x), x ∈ Ω, (4.22) 
for some known constants 0 < c 1 c 2 . Our motivation is that instance optimal convergence bounds with near-optimal sampling budget hold under this framing, as expressed by the following result. ε. In addition, one has the convergence bounds

E x u -ũ 2 L 2 χ Gm-I 2 1 2 (1 + η(m)) e n (u) 2 L 2 , (4.24 
) Proof. It is an immediate application of the results from § 4.2.2. Indeed

and E x ( u -ũT 2 L 2 ) (1 + η(m)) e n (u) 2 L 2 + 4 ε τ 2 , ( 4 
w k n L ∞ = k n Z k n L ∞ = k n k n L ∞ ˆΩ k n dµ k n k n L ∞ k n k n L ∞ ˆΩ k n dµ c 2 c 1 .
Therefore, the sampling condition (4.23) implies m γ w k n L ∞ n ln(2n/ε), and the results follow by direct application of Lemma 4.1 and Theorem 4.3.

We now concentrate our attention on the offline procedure which should be tuned in order to ensure that (4.22) holds with high probability. For this purpose, we introduce the Gramian matrix

G M := ( ϕ j , ϕ k M ) 1 j,k n ,
where •, • M is the inner product defined by (4.19) that uses the intermediate samples y i , which are i.i.d. according to µ. This matrix should not be confused with G m defined in (4.8), that uses the inner product •, • m based on the final samples x i . Lemma 4.8. For any pair of constants 0 < c 1 c 2 , the matrix framing property

c -1 2 I G M c -1 1 I, (4.26)
implies the uniform framing (4.22).

Proof. We use the fact that, similar to k n , the function k n is characterized by the extremality property

k n (x) = 1 n max v∈Vn |v(x)| 2 v 2 M .
For any x ∈ Ω and v ∈ V n , one has on the one hand

|v(x)| 2 n k n (x) v 2 M n c 1 k n (x) v 2 L 2 ,
where the last inequality results from the upper one in (4.26). This shows that c 1 k n (x) k n (x). On the other hand, using the lower inequality in (4.26), we find that

|v(x)| 2 n k n (x) v 2 L 2 c 2 n k n (x) v 2 M , which shows that k n (x) c 2 k n (x).
Remark 4.9. The matrix framing (4.26) implies the uniform framing (4.22) but the converse does not seem to hold. Finding an algebraic condition equivalent to (4. 22) is an open question.

Lemma 4.1 indicates that if the amount of offline samples satisfies the condition

M γ K n n ln(2n/ε), K n := k n L ∞ (Ω) , (4.27) 
then, we are ensured that

P y ( G M -I 2 1/2) ε,
and therefore the framing (4.26) holds with probability greater than 1 -ε, for the particular values c 1 = 2/3 and c 2 = 2. Bearing in mind that k n is unknown to us, we assume at least that we know an upper estimate for its

L ∞ norm K n B(n).
Explicit values for B(n) for general domains Ω are established in Section 4.5 for spaces V n of algebraic polynomials. Therefore, given such a bound, taking M such that

M γ B(n) ln(2n/ε), (4.28) 
guarantees a similar framing with probability greater than 1 -ε. We obtain the following result as a direct consequence of Theorem 4.7. 

E( u -ũ 2 L 2 χ E ) (1 + η(m)) e n (u) 2 L 2 , (4.30) and E( u -ũT 2 L 2 ) (1 + η(m)) e n (u) 2 L 2 + 8 ε τ 2 , ( 4 

An empirical determination of the value of M

In many situations, the best available bound B(n) on K n could be overestimated by a large amount. Moreover, the theoretical requirement M γ K n n ln(2n/ε) is only a sufficient condition that guarantees that G M -I 2 1 2 with probability larger than 1 -ε. It could happen that for smaller values of M , the matrix G M satisfies the framing (4.26) with constants c 1 and c 2 that have moderate ratio c 2 /c 1 .

Since the computational cost of the offline stage is proportional to M , it would desirable to use such a smaller value of M . If we could compute the matrix G M , it would suffice to increase M until the condition number

κ(G M ) = λ max (G M ) λ min (G M ) ,
has value smaller than a prescribed threshold c * > 1, so that (4.26) holds with

c 2 /c 1 = κ(G M ) c * .
However, since the exact orthonormal basis elements ϕ j are generally unknown to us, we cannot compute the matrix G M . As an alternate strategy, we propose the following method that provides an empirical determination of the value M that should be used in Algorithm 1: start from the minimal value M = n, and draw points z 1 , . . . , z M and y 1 , . . . y M independently according to µ. Then, defining

u, v y = 1 M i=1 u(y i ) v(y i ) and u, v z = 1 M i=1 u(z i ) v(z i ),
compute an orthonormal basis (ϕ y j ) with respect to •, • y , and define the test matrix

T := ( ϕ y j , ϕ y k z ) 1 j,k n .
If κ(T ) c * , increase the value of M by some fixed amount, and repeat this step until κ(T ) c * . For this empirically found value M = M emp (n), use the points {y 1 , . . . , y M } in the offline stage described by Algorithm 1, and the ratio c 2 /c 1 = c * in the sampling budget condition (4.23) used in the online stage.

The rationale for this approach is that if G M is well conditioned with high probability, then T should also be, as shown in the following result. Proposition 4.11. If M is chosen in such a way that P(κ(G M ) c) ε for some c > 1, then

P(κ(T ) c 2 ) 2 ε.
Proof. Since both matrices G y = ( ϕ j , ϕ k y ) 1 j,k n and G z = ( ϕ j , ϕ k z ) 1 j,k n are realizations of G M , we obtain by a union bound that, with probability at least 1 -2ε, both G y and G z have condition numbers less than c. Under this event,

λ max (T ) = sup α∈R n n j=1 α j ϕ y j 2 z |α| 2 sup α∈R n n j=1 α j ϕ y j 2 L 2 |α| 2 sup v∈Vn v 2 z v 2 L 2 = sup v∈Vn v 2 L 2 v 2 y sup v∈Vn v 2 z v 2 L 2 = inf v∈Vn v 2 y v 2 L 2 -1 sup v∈Vn v 2 z v 2 L 2 = λ max (G z ) λ min (G y ) , and 
λ min (T ) = inf α∈R n n j=1 α j ϕ y j 2 z |α| 2 inf α∈R n n j=1 α j ϕ y j 2 L 2 |α| 2 inf v∈Vn v 2 z v 2 L 2 = inf v∈Vn v 2 L 2 v 2 y inf v∈Vn v 2 z v 2 L 2 = sup v∈Vn v 2 y v 2 L 2 -1 inf v∈Vn v 2 z v 2 L 2 = λ min (G z ) λ max (G y ) , which implies that κ(T ) κ(G y ) κ(G z ) c 2 .
The above proposition shows that a good conditioning of G M with high probability implies the same property for T . There is of course no theoretical guarantee that the value of M provided by the above empirical approach is sufficient to achieve good conditioning of G M , unless the resulting M satisfies (4.28). However, in the numerical experiments of Section 4.6, we will check that the values of M for which κ(T ) c holds also ensure a similar bound for κ(G M ).

Multilevel strategies

The sampling strategy described by Algorithm 1 provides instance optimal reconstructions of u with an optimal sampling budget up to a multiplicative factor ln(2n/ε). Thus, the execution time of the online stage, dominated by the m evaluations of u at points x i , cannot be significantly improved. On the other hand, the complexity of the offline stage is dominated by the computation of the Gramian matrix in order to derive the basis ( ϕ 1 , . . . , ϕ n ), and is therefore of order O(M n 2 ). In particular, it depends linearly on the number of points M , which could be very large if K n grows fast with n, or if its available bound B(n) is over-estimated.

In this section we discuss a multilevel approach aiming at improving this offline computational cost: we produce an approximation to k n in several iterations, by successive refinements of this function as the dimension of V n increases. We consider a family of nested spaces (V np ) p 1 of increasing dimension n p and take an orthonormal basis (ϕ j ) j 1 adapted to this hierarchy, in the sense that

V np = span{ϕ 1 , . . . , ϕ np }, n p 1.
As previously, the exact functions k np are out of reach, since we do not have access to the continuous inner product by which we would compute the basis (ϕ j ) 1 j np . The offline stage described in Section 4.3 computes approximations ϕ j by orthogonalizing with respect to a discrete inner product with points y i drawn according to dµ. We know that a more efficient sample for performing this orthogonalization could be obtained by drawing according to dσ = kn p np dµ, which is however unknown to us. The idea for breaking this dependency loop is to replace k np with k np-1 , which was computed at the previous step. Our analysis of this strategy is based on the following assumption of proximity between k np-1 and k np : there exists a known constant κ > 1 such that

k n1 (x) 3 κ and n p k np (x) n p+1 k np+1 (x) κ n p k np (x), p 1, x ∈ Ω. (4.32)
The validity of this assumption can be studied through lower and upper estimates for k n , such as those discussed in the next section. For example, Theorem 4.27 allows one to establish (4.32) for bivariate polynomial spaces of total degree p, therefore with n p = (p + 1)(p + 2)/2, on bidimensional domains with piecewise smooth boundary. Note that (4.32) allows up to exponential growth of K n , if we simply take n p = p.

Assuming that the targeted space V n is a member of this hierarchy, that is,

n = n q , for some q > 1,
we modify the offline stage as indicated in Algorithm 2 below. The online stage remains unchanged: the samples x 1 , . . . , x m for evaluation of u are drawn i.i.d. according to σ, and we solve the weighed least-squares problem (4.20). The sample size M of the offline stage is now replaced by M = M 1 + • • • + M q . Denote by G p := ( ϕ j , ϕ k p ) 1 j,k np the Gramian matrices for the inner products (4.33). The following result shows that the conditions imposed on the M p are less stringent than those that were imposed on M . Theorem 4.12. Let ε p > 0 such that ε := q p=1 ε p < 1, and assume that the amount of offline samples used in Algorithm 2 satisfies M p 3 κ γ n p ln 2n p ε p , p = 1, . . . , q, with κ the constant in the assumption (4.32). Then if m 3 γ n ln 2n ε , the same convergence bounds (4.30) and (4.31) as in Corollary 4.10 hold, with w p-1 (y p,i ) u(y p,i ) v(y p,i ) (4.33)

E := { G m -I 2 1 2 and G q -I 2 1 2 } that satisfies P(E c ) 2ε.

5:

Construct from (φ j ) 1 j np an orthonormal basis ( ϕ p j ) 1 j np of V np with respect to • Mp

6:

Define the approximate inverse Christoffel function, weight and density

k np = 1 n p np j=1 | ϕ p j | 2 , Z p = ˆΩ k np dµ, w p = Z p k np and d σ p := 1 Z p k np dµ 7:
end for 8: Define the final Christoffel density for V n as k n = k nq , as well as w = w q and σ = σ q Proof. We show by induction on p that the event

B p := G 1 -I 2 1 2 , . . . , G p -I 2 1 2
occurs with probability at least

1 -ε 1 -• • • -ε p . As M 1 3 κ γ n 1 ln 2n 1 ε 1 γ w 0 k n1 L ∞ n 1 ln 2n 1 ε 1 , by Lemma 4.1, P(B 1 ) 1 -ε 1 .
For 1 p < q, under the event B p , Lemma 4.8 gives

2 3 k np (x) k np (x) 2 k np (x), x ∈ Ω.
Therefore, using assumption (4.32), we find that

w p k np+1 Z p L ∞ = n p+1 Z p k np+1 k np L ∞ n p+1 k np k np L ∞ k np k np L ∞ k np+1 k np L ∞ 3 κ n p .
As M p+1 3 κ γ n p ln 2 np εp+1 , Lemma 4.1 applies, and combining this with the induction hypothesis:

P(B p+1 ) = P(B p ) P G p+1 -I 2 1 2 B p (1 -ε 1 -• • • -ε p )(1 -ε p+1 ) 1 -ε 1 -• • • -ε p -ε p+1 .
Use Lemma 4.8 one last time to write, in the event B q ,

2 3 k nq (x) k nq (x) 2 k nq (x), x ∈ Ω,
which is the framing (4.26) for the particular values c 1 = 2/3 and c 2 = 2. Since B q has probability larger than 1 -ε, we conclude by the exact same arguments used in the proof Corollary 4.10.

We now comment on the gain of complexity by using Algorithm 2 in two different situations:

1. Exponential growth of K n : the property (4.32) might be satisfied even when K n grows exponentially with n, by taking the choice n p = p. Then, the complexity of Algorithm 1 is of order

O(M n 2 ) O(K n n 3 ln(2n/ε)),
which grows exponentially in n. In contrast, the total amount of sampling in Algorithm 2 is

M = M 1 + • • • + M n n M n = O(n 2 ln(2n/ε)),
so the first stage remains of polynomial complexity O(M n 2 ) = O(n 4 ln(2n/ε)).

2. Algebraic growth of K n : if K n ∼ n r only grows algebraically in n, one may choose n p = 2 p , in which case the total number of sample points M rewrites as M n0 + • • • + M nq ∼ M nq , giving an optimal complexity O(n 3 ln(2n/ε)) for the first stage. This is smaller than the complexity

O(K n n 3 ln(2n/ε)) = O(n 3+r ln(2n/ε)) encountered in Algorithm 1.
While Algorithm 2 presents a computational gain for providing a near-optimal measure σ, the resulting sample x 1 , . . . , x m is specifically targeted at approximating u in the space V n = V nq . As explained in Section 4.1.2, it is sometimes desirable to obtain optimal weighted least-squares approximations ũnp for each space V np while maintaining the cumulated number of evaluations of u until step p of the optimal order n p up to logarithmic factors. Therefore, we would like to recycle the evaluation points x 1 , . . . , x mp-1 drawn until step p -1 when assembling the new sample x 1 , . . . , x mp , for some well chosen sequence (m p ) p 1 growing as (n p ) p 1 up to logarithmic factors.

Here, we assume that the family (V np ) p 1 has been fixed, independently of the target function u, in contrast to being generated in an adaptive manner. Adaptive space generation brings out new difficulties: the space V np depends on the approximation computed in the previous space V np-1 and therefore the new evaluation points x mp-1+1 , . . . , x mp will not be independant from the previous ones. Maintaining optimal sample complexity in the adaptive context is, to our knowledge, an open problem.

Intuitively, since the sample should have a density proportional to k np , most of the new points we draw at step p should be distributed according a density proportional to n p k np -n p-1 k np-1 = np j=np-1+1 |ϕ j | 2 . This leads us to the following algorithm. Generate y np,i and compute w np , σ np and k np as in Algorithm 2

4:

Create the orthonormal basis (ϕ np j ), compatibly with the inclusion V np-1 ⊂ V np , in the sense that span{ϕ np 1 , . . . , ϕ np np-1 } = V np-1 .

5:

Having already defined x 1 , . . . , x mp-1 , draw the new evaluation points x mp-1+1 , . . . , x mp according to

dρ p := 1 Z p 1 m p -m p-1   m p n p np j=1 |ϕ np j | 2 - m p-1 n p-1 np-1 j=1 |ϕ np j | 2   dµ, (4.34) 
6: end for Remark 4.13. Note that the non-negativity of ρ p is only guaranteed when (m p /n p ) p 1 is non-decreasing, a condition which is easily met since m p has to grow as n p ln n p . If we had taken m p exactly linear with respect to the dimension n p , the terms with j n p-1 in the expression (4.34) would cancel, hence dρ p would only be an approximation of the probability density

1 np-np-1 np j=np-1+1 |ϕ j | 2 dµ.
Remark 4.14. Another approach to hierarchical sampling was proposed in [START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF] and consists in drawing constant proportions of samples according to the measure |ϕ j | 2 dµ. It was adapted in [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF] to our setting of interest where the ϕ j cannot be exactly computed.

Remark 4.15. In the above algorithm, the various subsets {x m k-1 +1 , . . . , x m k } of {x 1 , . . . , x mp }, for k between 1 and p, are drawn according to different probability measures. The sample {x 1 , . . . , x mp } is thus not i.i.d. anymore, which affects the proof of the convergence theorem given below. Instead it may be thought as a deterministic mixture of collections of i.i.d. samples, as in Theorem 2 of [START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF].

At any iteration q, we use the evaluations of u at all points x 1 , . . . , x m as follows to compute a least-squares approximation ũn ∈ V n , where n := n q and m := m q . We denote by w the weight function defined by

w(x) q p=1 (m p -m p-1 ) dρ p = m dµ, (4.35) 
and solve the weighted least square problem (4.5). The following result shows that instance optimality is maintained at every step q, with a cumulated sampling budget m q that is near-optimal.

Theorem 4.16. Take numbers δ p , ε p ∈ (0, 1) such that ε := q p=1 ε p < 1 and δ := q p=1 δ p < 1/2, and define

c δ = ((1 + δ) ln (1 + δ) -δ) -1 . Assume that, for all p 1, M np 2 κ c δp n p ln 2n p ε p and m p γ 1 -2δ n p ln 2n p ε ,
with κ the constant in the assumption (4.32), and that m p /n p is a non-decreasing function of p. Then, with n := n q and m := m q , the convergence bounds (4.30) and (4.31) simultaneously hold for all q 1, with

η(m) = 4 (1 -2δ) n m 4 γ ln(2n/ε) and E := { G m -I 2 1
2 and G p -I 2 δ p for p 1}, which satisfies P(E c ) 2ε.

The proof of this theorem requires a refinement of Lemma 4.1, due to the fact that the x i are not anymore identically distributed. This uses the following tail bound, directly obtained from the matrix Chernoff bound in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF].

Proposition 4.17. Consider a finite sequence (a i a † i ) 1 i m of independent, random, rank-one self-adjoint matrices with dimension n. Assume that each matrix satisfies 0 a i a † i N I almost surely, and that

1 m m i=1 E(a i a † i ) = I.
Then for all δ ∈ (0, 1),

P 1 m m i=1 a i a † i -I 2 > δ 2 n exp - m c δ N ,
where c δ = ((1 + δ) ln (1 + δ) -δ) -1 as in Theorem 4.16.

Proof of Theorem 4.16. By the same argument as in Theorem 4.12, we find that the event

B = { G p -I 2 δ p : p 1}
has probability larger than 1 -ε, where the G p are as in the proof of Theorem 4.12.

We then fix a value of q and for n = n q and m = m q , we study the Gramian matrix G m which is the sum of the independent, but not identically distributed, matrices

a i a † i := w(x i ) (ϕ j (x i )ϕ k (x i )) 1 j,k n , i = 1, . . . , m.
Then, with the notation

H(x) = (ϕ j (x)ϕ k (x)) 1 j,k n , 1 m m i=1 E(a i a † i ) = q p=1 (m p -m p-1 ) ˆΩ 1 m w(x) H(x) dρ p (x) = ˆΩ H(x) dµ(x) = I, and 
a i a † i 2 = w(x i ) n j=1 |ϕ j (x i )| 2 w k n L ∞ n =: N.
One also has, under the event B, ´Ω |ϕ np j | 2 dµ 1 1-δp for j = 1, . . . , n p so Z p 1 -δ p , and consequently

m w = q p=1 (m p -m p-1 ) dρ p dµ = q p=1 1 Z p   m p n p np j=1 |ϕ np j | 2 - m p-1 n p-1 np-1 j=1 |ϕ np j | 2   q p=1 m p 1 -δ p 1 + δ p k np -m p-1 k np-1 m k n - q p=1 m p 2δ p 1 + δ p k np (1 -2δ) m k n , so N = w k n L ∞ n n/(1 -2δ).
Applying Proposition 4.17, we find that

P x G m -I 2 > 1 2 B 2n exp - 1 γ N 2n exp - 1 -2δ γn ε. Therefore, since E := B ∩ G m -I 2 1 2
, we find that P(E) 1 -2ε.

In order to prove the convergence bounds (4.30) and (4.31), we cannot proceed as in Corollary 4.10 by simply invoking Theorem 4.7, because the x i are not identically distributed. This leads us to modify the statement of Lemma 4.2 and its proof given in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], following a strategy proposed in [START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF]. First, using similar arguments as in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], we find that

E( u -ũ 2 L 2 χ E ) e n (u) 2 L 2 + 4 E n k=1 | ϕ k , g m | 2 χ E , (4.36) 
where g = u -P n u is the projection error. For each k = 1, . . . , n, we define g k := w ϕ k g and write

E (| ϕ k , g m | 2 χ E ) E (| ϕ k , g m | 2 χ B ) = 1 m 2 1 i,j m E g k (x i ) g k (x j ) χ B = 1 m 2 E y χ B 1 i m E x |g k (x i )| 2 + i =j E x g k (x i ) g k (x j ) 1 m 2 E y χ B 1 i m E x |g k (x i )| 2 + 1 i m E x g k (x i ) 2 = E y χ B 1 m E t |g k (t)| 2 + E t (g k (t)) 2 ,
where t is a random variable distributed according to q p=1 mp-mp-1 m dρ p = 1 w dµ. We then note that

E t (g k (t)) = ˆΩ ϕ k g dµ = 0 since g ∈ V ⊥ n , and that n k=1 |g k (t)| 2 = w(t) 2 g(t) 2 k n (t). Therefore E n k=1 | ϕ k , g m | 2 χ E E y χ B 1 m ˆΩ w k n g 2 dµ E y χ B N g 2 L 2 n (1 -2δ) e n (u) 2 L 2 .
Combining this with (4.36), we finally obtain

E( u -ũ 2 L 2 χ E ) 1 + 4 (1 -2δ) n m e n (u) 2 L 2
Remark 4.18. If a stopping time q is known in advance, the simplest choice is to take ε p = ε/q and δ p = δ/q. If the stopping time q is not known in advance, we can take for instance

ε p = 6 π 2 ε p 2 and δ p = 6 π 2 δ p 2 . As c δ ∼ 2 δ 2
when δ → 0, this choice only increases the number M p of sample points y i by a factor p 4 , which is satisfying in view the previous remarks.

Estimates on the inverse Christoffel function

We have seen that the success of Algorithm 1 is based on the offline sampling condition (4.28), which means that a uniform upper bound B(n) on the inverse Christoffel function k n is needed in the first place. Likewise, the multilevel Algorithms 2 and 3 from Section 4.4 are based on the assumption (4.32), whose verification requires pointwise upper and lower estimates on k n (x). In this section we establish such bounds on general domains, when the V n are spaces of algebraic multivariate polynomials of varying total degree. Throughout this section, we assume that

µ = µ Ω = |Ω| -1 χ Ω dx
is the uniform measure over Ω, which is thus assumed to have finite Lebesgue measure |Ω|.

Comparison strategies

Our vehicle for estimating the Christoffel function is a general strategy, first introduced in [START_REF] Kroó | Christoffel functions on convex and starlike domains in R d[END_REF], which consists in comparing Ω with reference domains R for which the Christoffel function can be estimated. For simplicity, we use the notation

L 2 (R) = L 2 (R, µ R ),
for any domain R, where µ R = |R| -1 χ R dx is the uniform measure over R. In order to make clear the dependence on the domain, we define

k n,R (x) = 1 n max v∈Vn |v(x)| 2 v 2 L 2 (R)
, and

K n,R = k n L ∞ (R) = 1 n max v∈Vn v 2 L ∞ (R) v 2 L 2 (R)
,

We first state a pointwise comparison result. 

k n,Ω (x) β -1 k n,R (x).
Conversely, let S be such that Ω ⊂ S and β |S| |Ω| for some β ∈ (0, 1]. Then

k n,Ω (x) β k n,S (x), x ∈ Ω.
Proof. For any v ∈ V n , we have

1 n |v(x)| 2 k n,R (x) v 2 L 2 (R) k n,R (x) |Ω| |R| v 2 L 2 (Ω) , and 
1 n |v(x)| 2 k n,Ω (x) v 2 L 2 (Ω) k n,Ω (x) |S| |Ω| v 2 L 2 (S) .
Optimizing over v gives the upper and lower estimates of k n,Ω (x).

Obviously, a framing on K n,Ω can be readily derived as follows, by application of the above lemma to any point in Ω. Proposition 4.20. Assume that there exist a family R of reference domains with the following properties:

(i) For all x ∈ Ω there exist

R x ∈ R such that x ∈ R x ⊂ Ω. (ii) There exists a constant β ∈ (0, 1] such that |R| β |Ω| for all R ∈ R. Then, one has K n,Ω β -1 sup x∈Ω k n,Rx (x) β -1 sup R∈R K n,R .
Likewise, for any S ∈ R such that Ω ⊂ S and |Ω| β |S|, one has

K n,Ω β sup x∈Ω k n,S (x). 
In what follows, we apply this strategy to spaces V n of multivariate algebraic polynomials. Throughout this section, we consider

V n = R p [X 1 , . . . , X d ] := span{X ν1 1 . . . X ν d d : |ν| = ν 1 + • • • + ν d p}, (4.37) 
the space of polynomials with total degree less or equal to p, for which we have

n = d + p p .
We assume

Ω is a bounded open set of R d .
It is important to note that V n is invariant by affine transformation. As a consequence, if A is any affine transformation, one has

R = A(R) =⇒ k n,R (A(x)) = k n,R (x), x ∈ R,
and in particular K n,R = K n,R .

Lipschitz domains

In the case of the cube Q = [-1, 1] d , we may express k n,Q by using tensorized Legendre polynomials, that is

k n,Q (x) = |ν| p |ϕ ν (x)| 2 , ϕ ν (x) = ϕ ν1 (x 1 ) . . . ϕ ν d (x d ),
where the univariate polynomials t → ϕ j (t) are normalized in L 2 ([-1, 1], dt 2 ). Using this expression, it can be proved by induction on the dimension d that [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations-application to parametric and stochastic elliptic PDEs[END_REF]. Therefore, by affine invariance,

K n,Q n, n 1, see Lemma 1 in
K n,R n, n 1, (4.38) 
for any d-dimensional parallelogram R. Using this result, we may bound the growth of Christoffel functions from above for a general class of domains.

Definition 4.

21. An open set Ω ⊂ R d satisfies the inner cone condition if there exist r > 0 and θ ∈ (0, π), such that for all x ∈ Ω, there exists a unit vector u such that the cone

C r,θ (x, u) := {x + r v, 0 r r, | v| = 1, u • v cos(θ)} is contained in Ω.
In particular, any Lipschitz domain Ω ⊂ R d satisfies the inner cone condition (see e.g. §4.11 in [START_REF] Adams | Pure and Applied Mathematics[END_REF]).

Theorem 4.22. Let Ω ⊂ R d be a bounded domain that satisfies the inner cone condition. Then, one has

K n C Ω n, n 1, (4.39) 
where C Ω depends on d, |Ω|, and on r and θ in the previous definition.

Proof. The uniform cone condition ensures that there exists κ = κ(r, θ, d) > 0 such that for any x ∈ Ω, there exists a parallelogram R such that x ∈ R ⊂ Ω and |R| = κ. Therefore, applying Proposition 4.20 with R the family of all parallelograms of area κ, one obtains (4.39) with C Ω = |Ω|/κ.

Remark 4.23. The bound K n,Q n is actually established in [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations-application to parametric and stochastic elliptic PDEs[END_REF] for the more general class of polynomial spaces of the form

V n = R Λ [X 1 , . . . , X d ] := span{X ν1 1 . . . X ν d d : ν ∈ Λ}, #(Λ) = n,
where Λ ∈ N d is downward closed, i.e. such that ν ∈ Λ and ν ν =⇒ ν ∈ Λ.

These spaces are however not invariant by affine transformation, and so one cannot apply the above method to treat general domains with inner cone condition. On the other hand, these spaces are invariant by affine transformation of the form x → x 0 + Ax where A is a diagonal matrix, therefore transforming the cube Q into an arbitrary rectangle R aligned with the coordinate axes. As observed in [START_REF] Adcock | Approximating smooth, multivariate functions on irregular domains[END_REF], this leads to a bound of the form (4.39) for any domain Ω that satisfies the following geometrical property: for all x ∈ Ω there exists a rectangle R aligned with the coordinate axes such that x ∈ R ⊂ Ω and |R| β |Ω|. Note that this property does not readily follow from a smoothness property of the boundary, in particular there exist smooth domains for which this property does not hold.

Smooth domains

We next investigate smooth domains. For this purpose, we replace parallelograms by ellipsoids as reference domains. In the case of the unit ball B := {|x| 1}, it is known [START_REF] Xu | Asymptotics for orthogonal polynomials and Christoffel functions on a ball[END_REF] that the Christoffel function reaches its maximum on the unit sphere S := {|x| = 1}, where we have

n k n,B (x) = p + d + 1 p + p + d -2 p -1 .
In order to estimate how this quantity scales with n = p + d p we use the fact that for any integer m, one has

e m e m m! m m .
For the lower bound, we bound from below the first term

p + d + 1 p = p + d p p + d + 1 d + 1 = n p + d + 1 d + 1 n d e 1/d (p + d + 1) n e (d!) 1/d (p + d)! p! 1/d = e -1 n d+1 d , which leads to K n,B k n,B (x) 1 e n 1/d , x ∈ S. (4.40) 
For the upper bound, we write

p + d + 1 p + p + d -2 p -1 = p + d p p + d + 1 d + 1 + pd (p + d)(p + d -1) n p + d + 1 d + 1 + 1 = n p d + 1 + 2 , Since n 1/d = (d!) -1/d (p + d)! p! 1/d p + 1 d p d + 1 , we find that k n,B (x) n 1/d + 2 3 n 1/d .
By affine invariance, we thus obtain

1 e n 1/d K n,E 3 n 1/d , (4.41) 
for all ellipsoids E. This leads to the following result.

Theorem 4.24. Assume Ω ⊂ R d is a bounded domain with C 2 boundary. Then, one has

K n C Ω n 1/d , n 1, (4.42) 
where C Ω depends on Ω.

Proof. Since the boundary of Ω has finite curvature, we are ensured that there exists a β > 0 such that for any x ∈ Ω, there exist an ellipsoid E such that x ∈ E ⊂ Ω and |E| β |Ω|. Therefore, applying Proposition 4.20 with R the family of ellipsoids with area larger than β |Ω|, we obtain (4.42) with

C Ω = 3 β -1 .
Remark 4.25. In the above argument, one could simply use balls instead of ellipsoids, however at the price of diminishing the value of β and thus raising the constant C Ω .

We next give a general lower bound for K n showing that the above rate for smooth domains is sharp.

Theorem 4.26. Let Ω ⊂ R d be an arbitrary bounded domain, and let B be its Chebychev ball, that is, the smallest closed ball that contains Ω. Then, one has

K n,Ω 1 e |Ω| |B| n 1/d , n 1.
Proof. As Ω is compact and B is the smallest possible ball containing Ω, there exists a point x ∈ Ω ∩ ∂B, and by Lemma 4.19 one has

K n,Ω k n,Ω (x) |Ω| |B| k n,B (x) 1 e |Ω| |B| n 1/d ,
where the last inequality follows from (4.40) and affine invariance.

Pointwise bounds for piecewise smooth domains

As already observed, it may be needed to get sharper bounds on k n (x) that depend on the point x, in particular when checking the validity of (4.32). In the case of algebraic polynomials in dimension d = 2, for which n = (p+1)(p+2) 2 , such bounds have been obtained for a particular class of piecewise smooth domains with outward corners, in the following result from [START_REF] Prymak | Christoffel functions on planar domains with piecewise smooth boundary[END_REF].

Theorem 4.27. Let Ω ⊂ R 2 be a bounded open such that ∂Ω = ∪ K i=1 Γ i ,
where the Γ i are one-to-one C 2 curves that intersect only at their extremities, at which points the interior angles belong to (0, π). Then, there exists a constant C Ω that only depends on Ω such that, for all x ∈ Ω,

C -1 Ω k n (x) min (i,j)∈S ρ i (x) ρ j (x) C Ω k n (x), n 1,
where S consists of the (i, j) such that Γ i and Γ j intersects, and

ρ i (x) := min p, d(x, Γ i ) -1/2 .
For the square domain

Ω = Q = [-1, 1] 2 , this implies that k n,Q (x) ∼ p 2
∼ n when x is close enough to a corner, and we retrieve the bound K n,Q C Ω n from (4.39). Theorem 4.27 also proves that for bidimensional domains with C 2 boundary, it holds k n (x) ∼ min p, d(x, ∂Ω) -1/2 , which is consistent with the global bound (4.42) in the case d = 2.

Rate of growth of K n,Ω and order of cuspitality

We end this section by a more technical but systematic approach which allows us to estimate the rate of growth of the inverse Christoffel function in a sharp way for domains Ω that could either be smooth, of α-Hölder boundary, or even with cusps of a given order. It is based on using the following more elaborate reference domain that describes a certain order of smoothness at the origin. Definition 4.28. For α 1 , . . . , α d-1 ∈ (0, 2], denote R α1,...,α d-1 the reference domain

R α1,...,α d-1 := x ∈ [ -1, 1] d , max 1 i d-1 |x i | αi x d .
We shall establish upper and lower bounds for K n,Ω based on comparisons between Ω and affine transformations of this reference domain, by adapting certain techniques and results from [START_REF] Ditzian | On Nikol'skii inequalities for domains in R d[END_REF]. The upper bound is as follows.

Theorem 4.29. Let Ω be a bounded domain. Assume there exist α 1 , . . . , α d-1 ∈ (0, 2] and β > 0 such that, for all x ∈ Ω, one can find an affine map A such that

A(0) = x, A(R α1,...,α d-1 ) ⊂ Ω and |A(R α1,...,α d-1 )| β |Ω|. Then K n,Ω C Ω n 1 d 1+ d-1 i=1 2-α i α i , (4.43) 
where C Ω is a constant depending only on Ω.

This result is obtained with the extension strategy proposed in [START_REF] Ditzian | On Nikol'skii inequalities for domains in R d[END_REF], which consists in combining Proposition 4.31 below with a comparison of domains. Such a method was applied in the same paper to the case of smooth domains, polytopes, some 2-dimensional domains, and α balls in R d , which all correspond to the situation

α 1 = • • • = α d-1 ∈ [1, 2]
in our theorem. We give below a series of intermediate results that lead to the proof of Theorem 4.29. Lemma 4.30. For α ∈ (0, 2] and n 1, the function f : x → 1 9p 2 + βx 2 -|x| α remains non-negative on R as soon as

β α 2 9 2 (2 -α) p 2 2-α α .
Proof. As f is even, one only has to consider this function on R + . For x > 0, f (x) = 2βx -αx α-1 cancels only

at x 0 = α 2β 1 2-α , so min x∈R f (x) = f (x 0 ) = 1 9p 2 - 2 -α 2 α 2β α 2-α , which is non-negative if and only if β α 2 9 2 (2 -α) p 2 2-α α .
The following result is Theorem 5.2 from [START_REF] Ditzian | On Nikol'skii inequalities for domains in R d[END_REF].

Proposition 4.31. Suppose Ω ⊂ R d is a compact set and T is an affine transformation of R d such that T (B(0, 1)) ⊂ Ω. Then

k n,Ω T 0, . . . , 0, 1 + 1 3p 2 c | det T | -1 p.
where c depends only on d.

Lemma 4.32. For α 1 , . . . , α d-1 ∈ (0, 2], one has

k n,Rα 1 ,...,α d-1 (0) Cp 1+ d-1 i=1 2-α i α i ,
where C depends only on d and α 1 , . . . , α d-1 .

Proof. Define

β i = αi 2 9 2 (2 -α i ) p 2 2-α i α i
for 1 i d -1, and let T be the affine transformation

T : x = (x 1 , . . . , x d ) → x 1 √ 3β 1 , . . . , x d-1 3β d-1 , 1 3 1 + 1 3p 2 -x d .
Then, for all x ∈ B(0, 1), T (x) d ∈ [0, 1] and 1 i d -1, using Lemma 4.30,

T (x) d = 1 3 1 + 1 3p 2 -x d 1 3 1 3p 2 + x 2 i = 1 9p 2 + β i T (x) 2 i T (x) αi i , so max 1 i d-1 |T (x) i | αi T (x) d , which implies that T (B(0, 1)) ⊂ R α1,...,α d-1 .
As T 0, . . . , 0, 1 + 1 3p 2 = 0, a direct application of Proposition (4.31) gives

k n,Rα 1 ,...,α d-1 (0) c p | det T | -1 = 3 c p d-1 i=1 3β i Cp 1+ d-1 i=1 2-α i α i
Proof of Theorem 4.29. One simply applies Proposition 4.20 to the family R of all domains of the form A(R α1,...,α d-1 ) where A is an affine map such that

| det A| |R α1,...,α d-1 | > β |Ω|. As p C n 1/d for some L > 0, we obtain (4.43) with C Ω = C β -1 C 2+ d-1
i=1 2/αi , the constant C coming from the lemma above.

We now prove a lower bound based on the same reference domain.

Theorem 4.33. Let Ω be a bounded domain. Assume there exist x ∈ Ω, 0 < r 1 r 2 , α 1 , . . . , α d-1 ∈ (0, 2] and an affine transformation A with A(0) = x such that

Ω ⊂ A(R α1,...,α d-1 ) ∪ B(x, r 2 ) \ B(x, r 1 ) . Then K n,Ω c Ω n 1 d 1+ d-1 i=1 2-α i α i
, where c Ω is a constant depending only on Ω.

The proof follows the same path as in Theorem 8.1 and Remark 8.4 of [START_REF] Ditzian | On Nikol'skii inequalities for domains in R d[END_REF], but with a radial polynomial centered at x instead of a planar polynomial, that is a univariate polynomial composed with an affine function. This small improvement shows that for a point x and a domain Ω satisfying the conditions of Theorems 4.29 and 4.33 with the same α i , the asymptotic behavior of k n,Ω (x) only depends on Ω in a neighborhood of x.

We first recall Lemma 6.1 from the same article:

Lemma 4.34. For any p, m 1 and y ∈ [-1, 1], there exists a univariate polynomial P p,m,y of degree at most p such that P p,m,y (y) = 1 and

|P p,m,y (x)| c(m) 1 + p 1 -y 2 1 + p 1 -y 2 + p 2 |x -y| m , x ∈ [-1, 1].
Taking y = -1 and applying a change of variable x → x+1 2 , we get as an immediate consequence: Lemma 4.35. For any p, m 1, there exists a univariate polynomial P p,m of degree at most p such that P p,m (0) = 1 and

|P p,m (x)| c(m) min 1, 1 p 2m |x| m , x ∈ [0, 1].
We also need a bound on the volume of R α1,...,α d-1 .

Lemma 4.36. For all r > 0, |R α1,...,

α d-1 ∩ B(0, r)| c r 1+ d-1 i=1 1/αi . Proof. Given r ∈ [0, 1], R α1,...,α d-1 ∩ {x d = r} = [-r 1/α1 , r 1/α1 ] × • • • × [-r 1/α d-1 , r 1/α d-1 ] × {r} has a (d -1)- volume equal to d-1 i=1 2 r -αi , so |R α1,...,α d-1 ∩ {0 x d r}| = ˆr 0 d-1 i=1 2 x 1/αi d dx d = c r 1+ d-1 i=1 1/αi .
As for all r > 0, R α1,...,α d-1 ∩ B(0, r) ⊂ R α1,...,α d-1 ∩ {0 x d min(1, r)}, we obtain the desired result.

Proof of Theorem 4.33. Take p 0 = p 2 , m 1 2

d-1 i=1

1 αi and r 3 r 2 such that T (R α1,...,α d-1 ) ⊂ B(x, r 3 ), and define the multivariate polynomial

P (x) = P p0,m |x -x| 2 r 2 3 , x ∈ R d .
Then P has degree at most 2p 0 p in each variable, P (x) = 1, and Lemma 4.35 bounds P from above since Ω ⊂ B(x, r 3 ). It remains to compute an upper bound of P L 2 (Ω) . For 0 < r < r 1 , one has:

|Ω ∩ B(x, r)| = |T (R α1,...,α d-1 ) ∩ B(x, r)| | det T | |R α1,...,α d-1 ∩ T -1 (B(x, r))| | det T | |R α1,...,α d-1 ∩ B(0, r λ max (T -1 ))| c r 1+ d-1 i=1 1/αi ,
where in the last line we used Lemma 4.36, and with c =

c | det T | λmin(T ) 1+ d-1 i=1 1/α i
. Therefore, one can compute

P 2 L 2 (Ω) c(m) min 1, 1 p 2m |x| m 2 L 2 (Ω) c(m) 2 ˆΩ∩B(x,p -2 ) dx + ˆB(x,r3) dx p 4m r 2m 1 + ˆΩ∩B(x,r1)\B(x,p -2 ) 1 |x| 2m - 1 r 2m 1 dx p 4m = c(m) 2 Ω ∩ B x, p -2 + |B(x, r 3 )| p 4m r 2m 1 + ˆr1 p -2 2m p 4m r 2m+1 |Ω ∩ B(x, r)| dr c(m) 2 c p -2-d-1 i=1 2/αi + |B(x, r 3 )| p 4m r 2m 1 + c 2m p 4m ˆr1 p -2 r d-1 i=1 1/αi-2m dr c max p -2-d-1 i=1 2/αi , p -4m , p -4m-2( d-1 i=1 1/αi-2m+1) = c p -2-d-1 i=1 2/αi ,
and conclude that K n,Ω k n,Ω (x)

1 n |P (x)| 2 P 2 L 2 (Ω) c Ω p 1+ d-1 i=1 2-α i α i , with c Ω = p d /c n.
Remark 4.37. These theorems include the case of smooth domains : indeed, taking

α 1 = • • • = α d-1 =
2 and e d = (0, . . . , 0, 1), one has (d -1)) , so one can recover the results 4.24 and 4.26, without explicit constants. Similarly, Lipschitz boundaries correspond to the particular values

B 1 2 e d , 1 2 ⊂ R 2,...,2 ⊂ x ∈ [ -1, 1] d , 1 d -1 d-1 i=1 |x i | 2 x d ⊂ B ((d -1)e d ,
α 1 = • • • = α d-1 = 1.
Example 4.38. It becomes useful to take distinct values for the α i in the case of domains with edges but no corners. For instance, consider Ω =

√ 3 2 e d + B 1 2 e 1 , 1 ∩ B(-1 2 e 1 , 1). Then 0 ∈ A(R 1,2...,2 ) ⊂ Ω ⊂ B(R 1,2...,2
), where A and B are the linear maps defined by

A(x 1 , . . . , x d ) = 1 4 x 1 , 1 2 √ d -2 x 2 , . . . , 1 2 √ d -2 x d-1 , √ 3 2 x d and B(x 1 , . . . , x d ) = 3 x 1 , 1 √ 3 x 2 , . . . , 1 √ 3 x d-1 , √ 3 x d .
Thus K n,Ω k n,Ω (0) ∼ p 2 . Moreover, for all x ∈ Ω there exists an affine transformation

T such that det T 2 -d , T (Ω) ⊂ Ω and T (0) = x, so K n,Ω ∼ p 2 .
Remark 4.39. It is easily seen that for domains having a cusp that points outside, the value of K n may grow as fast as any polynomial, depending on the order of cuspitality. For instance, given α ∈ (0, 2], according to Theorems 4.29 and 4.33, one has k n,Rα,...,α (0) ∼ p 1+ 2-α α (d-1) , so that K n,Rα,...,α c p 1+ 2-α α (d-1) .

Numerical illustration

In this section we give numerical illustrations of the offline and online sampling strategies in the particular case of algebraic polynomials and for different domains. As in the previous section, we consider spaces of polynomials of fixed total degree V n = R p [X 1 , X 2 ] as defined by (4.37).

The three considered domains are

1. Ω := {x ∈ [-1, 1] 2 : |x| 2 2 π }, the ball of area 2. 2. Ω := {x ∈ [-1, 1] 2 : 0 |x 1 | -x 2 1}
, a polygon with a re-entrant corner at (0, 0).

Ω

:= {x ∈ [-1, 1] 2 : 0 |x 1 | -x 2 1}
, a domain with a re-entrant cusp at (0, 0).

The measure µ for the error metric L 2 (Ω, µ) is the uniform probability measure 1 |Ω| dx = 1 2 dx on the considered domains. In all three cases, the domain Ω is included in the unit cube Q = [-1, 1] 2 , and described by algebraic inequalities. Thus, sampling according to µ is readily performed by uniform sampling on Q, which is done separately on the two coordinates, followed by rejection when x / ∈ Ω. The above three domains are instances of smooth, Lipschitz and cuspital domains, respectively. They are meant to illustrate how the smoothness of the boundary affects the amount of sample needed in the offline state, as rigorously analyzed in the previous section. On these particular domains, we are actually able to exactly integrate polynomials, and therefore in principle to compute the exact orthogonal polynomials ϕ j up to round-off error due to the orthogonalization procedure. In our numerical tests, the considered total degrees are p = 0, 1, . . . , 20, therefore n = n p = 1, 3, 6, . . . , 231. The intermediate values of n between n p and n p+1 are treated by complementing the space V n with the monomials X α1 1 X α2 2 for α 1 + α 2 = p + 1 in the order α 2 = 0, . . . , p + 1. For such values, we could compute the ϕ j using Cholesky factorization with quadruple precision, and check that | ϕ j , ϕ k -δ j,k | 10 -16 , that is, orthonormality holds up to double precision. We may thus compute for each value of n the exact inverse Christoffel function k n and optimal measure σ * = k n µ. This exact computation allows us to compare the optimal sampling strategy based on σ * and the more realistic strategy based on σ which is computed from the approximate inverse Christoffel function k n derived in the offline stage. We next show that both strategies perform similarly well in terms of instance optimality at near-optimal sampling budget. We stress however that for more general domains where exact integration of polynomials is not feasible, only the second strategy based on k n is viable. n, for the three considered domains. We observe a transition region that illustrates the minimal offline sampling budget M min (n) that should be practically invested in order for G M to be well conditioned. For example, if M min (n) is defined as the minimal value of M such that E(κ(G M )) 3, this value can be estimated and visualized on Figure 4.2 as the transition to the dark blue color.

Sample complexity of the offline stage

We also draw in full line the value of the sufficient value

M suf (n) := γ B(n) ln(2n/ε),
for ε = 10 -2 where B(n) is the upper bound for K n derived from the theoretical analysis of Section 4.5. This upper bound is 3n 3/2 for the disc in view of (4.41) and 2n 2 for the polygonal domain by application of Proposition 4.20 with β = 1 2 , since Ω is the union of two parallelograms of equal size. While the sampling budget m = M suf (n) guarantees that κ(G M ) 3 with high probability -here 0.99-the plots reveal that this budget is by far an over-estimation of M min (n).

We draw in dashed line the adjusted values M adj (n) = C adj M suf (n) where the multiplicative constant is picked as small as possible with the constraint of still fitting the requirement E(κ(G M )) 3, thus better fitting the minimal budget M min (n). We find that constant C adj is approximately 1 45 for the disc and 1 120 for the polygon. It is even smaller for the cusp domain, for which Theorem 4.29 with α 1 = 1 2 yields an upper bound of the form B(n) = Cn 3 with a constant C that can be numerically estimated but turns out to be very pessimistic.

In summary, the offline sampling budget M suf (n) suggested by the theoretical analysis is always pessimistic by a large multiplicative constant. Let us remind that the value M min (n) is typically not accessible to us since G M and its condition number cannot be exactly evaluated for more general domains Ω. This state of affair justifies the use of the empirical method outlined in § 4.3.3 for selecting a good value of M . Recall that this approach consists in raising M until the conditioning of the computable matrix T becomes less than some prescribed value, for example κ(T ) 3. 

Sample complexity of the online stage

We next study the sample complexity m of the online stage of Algorithm 1 through the conditioning of the matrix G m = ( ϕ j , ϕ k m ) 1 j,k n , where •, • m is the inner product associated to the discrete norm

v 2 m := 1 m m i=1 w(x i ) |v(x i )| 2 .
For the sampling measure σ and weight w, we both consider:

(i) The optimal sampling measure dσ * := k n dµ and weight w * = 1/k n , which, for these particular domains, can be exactly computed from the ϕ j , but are not accessible for more general domains.

(ii) The empirical sampling measure d σ := k n dµ and weight w = 1/ k n where k n has been obtained from the offline stage, using the previously described empirical choice of M . ), as a function of m and n, for both choices and the three domains. In order to illustrate the fluctuations of κ(G m ), we display an averaging over 100 realizations when using k n , and one single realization when using k n . While the behaviour for a single realization is more chaotic, we find that in both case, as expected, the online sampling budget m(n) which ensures that G m is well conditioned, for example κ(G m ) 3, grows linearly with n (up to logarithmic factors), now independently of the domain shape.

Instance and budget optimality

In order to illustrate the achievement of our initial goal of instance and budget optimality, we consider the approximation in a polynomial space V n = R p [X 1 , X 2 ] of a function u that consists of a polynomial part P n u ∈ V n and a residual part P ⊥ n u ∈ V ⊥ n that are both explicitly given in terms of their expansions

P n u = n j=1 c j ϕ j , and 
P ⊥ n u = j n+1
c j ϕ j .

For numerical testing, we take only finitely many non-zero c j in this second expansion and adjust them so that j n+1 |c j | 2 = 10 -4 . Thus, the best approximation error has value

e n (u) L 2 = u -P n u L 2 = P ⊥ n u L 2 = 10 -2 .
We study the mean-square error E( u -P m n u 2 L 2 ) as a function of m, and compare the different sampling strategies through their ability to reach this ideal benchmark. L 2 over 100 realizations) for the three domains and polynomial degree p = 15 that corresponds to the dimension n = 136. For all domains, we observe that the best approximation error is attained up to multiplicative factor 2 with a sampling budget m that is thrice larger than n, when using either the optimal sampling measure σ * based on k n or the measure σ based on k n obtained in the offline stage Algorithm 1. This does not occur when sampling according to the uniform measure µ: the error remains orders of magnitude above the best approximation error and this effect is even more pronounced as the domain becomes singular. This reflects the fact that with the uniform sampling, the budget m needs to be larger than n K n , which has faster growth with n for singular domains.

Chapter 5

Optimal pointwise sampling for L 2 approximation Abstract. Given a function u ∈ L 2 = L 2 (Ω, µ), where µ is a measure on a set Ω, and a linear subspace V n ⊂ L 2 of dimension n, we show that near-best approximation of u in V n can be computed from a near-optimal budget of Cn pointwise evaluations of u, with C > 1 a universal constant. The sampling points are drawn according to some random distribution, the approximation is computed by a weighted least-squares method, and the error is assessed in expected L 2 norm. This result improves on the results in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF][START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF] which require a sampling budget that is sub-optimal by a logarithmic factor, thanks to a sparsification strategy introduced in [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF][START_REF] Nitzan | Exponential frames on unbounded sets[END_REF]. As a consequence, we obtain for any compact class K ⊂ L 2 that the sampling number ρ rand Cn (K) L 2 in the randomized setting is dominated by the Kolmogorov n-width d n (K) L 2 . While our result shows the existence of a randomized sampling with such near-optimal properties, we discuss remaining issues concerning its generation by a computationally efficient algorithm.

Introduction

We study the approximation of a function u ∈ L 2 (Ω, µ), where µ is a measure on a set Ω, by an element ũ of V n , a subspace of L 2 (Ω, µ) of finite dimension n, based on pointwise data of of u. Therefore, to construct ũ, we are allowed to evaluate u on a sample of m points (x 1 , . . . , x m ) ∈ Ω m . In addition, we consider randomized sampling and reconstruction, in the sense that the sample will be drawn according to a distribution σ m over Ω m , so the error u -ũ should be evaluated in some probabilistic sense. For the sake of notational simplicity, having fixed Ω and µ, we write throughout the chapter

L 2 := L 2 (Ω, µ) and v L 2 := ˆΩ |v| 2 dµ 1/2 , as well as e n (u) L 2 := min v∈Vn u -v L 2 .
One typical applicative setting is the reconstrution of multivariate functions, which corresponds to Ω being a domain in R d . Our main result is the following:

Theorem 5.1. For some universal constants C, K 1, and for any n-dimensional space V n ⊂ L 2 , there exists a random sample x 1 , . . . , x m with m Cn and a reconstruction map

R : Ω m × C m → V n , such that for any u ∈ L 2 , it holds E u -ũ 2 L 2 Ke n (u) 2 L 2
(5.1)

where ũ := R(x 1 , . . . , x m , u(x 1 ), . . . , u(x m )).

The reconstruction map R is obtained through a weighted least-squares method introduced in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], which has already been discussed in several papers, see [5, 85, 86, 132, 133, 138, c]. The weights involved are given by 105 the expression

w : x ∈ Ω → n min v∈Vn v 2 L 2 |v(x)| 2 = n n j=1 |ϕ j (x)| 2 , (5.2)
where the last formula holds for any L 2 -orthonormal basis (ϕ 1 , . . . , ϕ n ) of V n . Up to the factor n, w is the Christoffel function associated to the space V n and the space L 2 (Ω, µ). The weighted least-squares solution is then simply defined as

ũ := arg min v∈Vn 1 m m i=1 w(x i )|u(x i ) -v(x i )| 2 .
Introducing the discrete 2 norm

v 2 m := 1 m m i=1 w(x i )|v(x i )| 2
and its associated scalar product •, • m , we get a computable formula for ũ:

ũ = arg min v∈Vn u -v 2 m = P m n u,
where P m n denotes the orthogonal projection on V n with respect to •, • m . Note that, strictly speaking, • m is not a norm over L 2 , however the existence and uniqueness of P m n will be ensured by the second condition in Lemma 5.2 below, see Remark 5.6. Therefore our main achievements lie in the particular choice of the random sample (x 1 , . . . , x m ) ensuring near-optimal approximation error and sampling budget in Theorem 5.1.

The proof of Theorem 5.1 relies on two conditions: first, the expectation of • 2 m has to be bounded by

• 2
L 2 up to a constant. Second, an inverse bound should hold almost surely, instead of just in expectation, for functions in V n . More precisely, one has: Lemma 5.2. Assume that m and the law σ m of (x 1 , . . . , x m ) are such that

E( v 2 m ) α v 2 L 2 , v ∈ L 2 , (5.3 
)

and v 2 L 2 β v 2 m a.s., v ∈ V n . (5.4 
)

Then E( u -ũ 2 L 2 ) (1 + αβ) e n (u) 2 L 2 .
(5.5)

Proof. Denote P n u the orthogonal projection of u on V n with respect to the L 2 (Ω, µ) norm. Applying Pythagoras theorem both for • L 2 and • m , one obtains

E( u -ũ 2 L 2 ) = u -P n u 2 L 2 + E( P n u -ũ 2 L 2 ) u -P n u 2 L 2 + β E( P n u -ũ 2 m ) = u -P n u 2 L 2 + β E( P n u -u 2 m -u -ũ 2 m ) u -P n u 2 L 2 + β E( P n u -u 2 m ) (1 + αβ) u -P n u 2 L 2 ,
which proves (5.5) since u -

P n u L 2 = e n (u) L 2 .
In Section 5.2, we recall how both conditions (5.3) and (5.4) can be obtained with m quasi-linear in n, that is, of order n log n. We reduce this budget to m of order n in Section 5.3, by randomly subsampling the set of evaluation points, based on results from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF][START_REF] Nitzan | Exponential frames on unbounded sets[END_REF]. The proof of Theorem 5.1 follows. We compare it to the recent results [START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF][START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF] in Section 5.4, in particular regarding the domination of sampling numbers by n-widths. We conclude in Section 5.5 by a discussion on the offline computational cost for practically generating the sample x 1 , . . . , x m .

Weighted least-squares

A first approach consists in drawing the x i independently according to the same distribution σ, that is, taking σ m = σ ⊗m . The natural choice for σ is dσ = 1 w dµ, which is a probability measure since ˆΩ 1

w dµ = 1 n n j=1 ˆΩ |ϕ j (x)| 2 dµ(x) = 1 n n j=1 ϕ j 2 L 2 = 1.
With this sampling measure,

E( v 2 m ) = 1 m m i=1 ˆΩ w(x)|v(x)| 2 dσ = ˆΩ |v| 2 dµ = v 2 L 2 ,
so condition (5.3) is ensured with α = 1. To study the second condition, we introduce the Hermitian positive semi-definite Gram matrix G m := ( ϕ j , ϕ k m ) 1 j,k n and notice that (5.4) is equivalent to

|ν| 2 = n j=1 ν j ϕ j 2 L 2 β n j=1 ν j ϕ j 2 m = β ν † G m ν, ν ∈ C n ,
which in turn rewrites as λ min (G m ) β -1 . By the central limit theorem, as m tends to infinity, the scalar products ϕ j , ϕ k m converge almost surely to ϕ j , ϕ k = δ j,k , so G m converges to the identity matrix, and we expect that λ min (G m ) β -1 holds for β > 1 with high probability as m gets large. A quantitative formulation can be obtained by studying the concentration of G m around I in the matrix spectral norm

A 2 := max{|Ax| : |x| = 1}.
This is based on the matrix Chernoff bound, see [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF][START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] for the original inequality and [c], Lemma 2.1, for its application to our problem: Lemma 5.3. For m 10n ln( 2n ε ), if (x 1 , . . . , x m ) ∼ σ ⊗m , then

P G m -I 2 1 2 1 -ε.
In particular, P λ min (G m ) 1 2 1 -ε.

Thus assumption (5.4) is satisfied with β = 2, but only with probability 1 -ε. As we would like it to hold almost surely, we condition the random sample points to the event

E := G m -I 2 1 2 .
In practice, the conditional sample can be obtained through a rejection method, which consists in discarding the whole sample (x 1 , . . . , x m ) and redrawing it according to the same probability measure σ m = σ ⊗m , as many times as needed, until event E is attained. We then define ũ as the weighted least-square estimator based on this conditioned sample, that is ũ := E(P m n u|E).

(5.6)

This approach was introduced and analyzed in [START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF], see in particular Theorem 3.6 therein. A simpler version of their result, sufficient for our purposes, is the following:

Lemma 5.4. For m 10n ln(4n), if (x 1 , . . . , x m ) is drawn according to the conditional law σ ⊗m |E, then

G m -I 2 1 2 ,
and ũ defined in (5.6) satisfies

E( u -ũ 2 L 2 ) 5 e n (u) 2 L 2 .
Proof. The first part immediately results from the definition of E, and implies condition (5.4) with β = 2. Moreover, P σ ⊗m (E) 1 2 by Lemma 5.3 with ε = 1 2 , so for any v ∈ L 2 (Ω, µ),

E (σ ⊗m |E) ( v 2 m ) = E σ ⊗m ( v 2 m |E) = E σ ⊗m ( v 2 m χ E ) P σ ⊗m (E) E σ ⊗m ( v 2 m ) P σ ⊗m (E) 2 v 2 L 2 ,
so condition (5.3) holds with α = 2. The conclusion follows from Lemma 5.2.

Remark 5.5. The number of redraws k needed to obtain the conditional sample follows a geometric law of expectation E(k) = P(E) -1 = (1 -ε) -1 , that is E(k) 2 for the particular choice of m in the above lemma. It should be noted that u is not evaluated at the intermediately generated samples not complying with event E. This part of the sampling algorithm thus counts as an offline cost only.

Remark 5.6. Given a sample x 1 , . . . , x m satisfying E, the fact that the Gramian G m is non-singular implies that we can uniquely define where the right-side vector has coordinates

P m n u =
b j = ϕ j , u m = 1 m m i=1 w(x i )ϕ j (x i )u(x i ).
If u is in L 2 , the u(x i ) are only defined up to a representer, however since two representers u and u coincide µ-almost surely, we find that ũ = E(P m n u|E) is well defined almost surely.

Random subsampling

With Lemma 5.4, we already have an error bound similar to that of Theorem 5.1. However, the sampling budget is larger than n by a logarithmic factor, which we seek to remove in this section. To do so, we partition the conditional sample into subsets of size comparable to n, and randomly pick one of these subsets to define a reduced sample. An appropriate choice of the partitioning is needed to circumvent the main obstacle, namely the preservation of condition (5.4). It relies on the following lemma, taken from Corollary B of [START_REF] Nitzan | Exponential frames on unbounded sets[END_REF], itself a consequence of Corollary 1.5 in [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF]. The relevance of these two results to sampling problems were exploited in [START_REF] Nagel | A new upper bound for sampling numbers[END_REF] and noticed in [START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF], respectively. In Lemma 2 of [START_REF] Nitzan | Exponential frames on unbounded sets[END_REF] this result is applied inductively in order to find a smaller set J ⊂ {1, . . . , m} of cardinality |J| cn such that

C -1 I 1 n i∈J a i a † i CI,
for some universal constants c, C > 1. We adapt this approach in order to obtain a complete partition of {1, . . . , m} by sets having such properties.

Lemma 5.8. Let a 1 , . . . , a m ∈ C n be vectors of norm |a i | 2 = n for i = 1, . . . , m, satisfying

1 2 I 1 m m i=1 a i a † i 3 2 I.
Then there exists an integer L and a partition of {1, . . . , m} into 2 L sets J 1 , . . . , J 2 L such that

c 0 I 1 n i∈Js a i a † i C 0 I, 1 s 2 L , (5.7) 
with universal constants c 0 and C 0 . In addition, each set J s satisfies

|J s | C 0 n. (5.8) 
Proof. The cardinality estimate (5.8) follows from the upper inequality in (5.7) by taking the trace

C 0 n = Tr(C 0 I) 1 n i∈Js Tr(a i a † i ) = 1 n i∈Js |a i | 2 = |J s |.
For the proof of (5.7), if n/m 1/200, then the result holds with L = 0, J 1 = {1, . . . , m}, c 0 = 1/2 and C 0 = 300. Now assuming δ := n/m < 1/200, define by induction α 0 = 1 2 , β 0 = 3 2 , and

α +1 := α 1 -5 δ/α 2 , β +1 := β 1 + 5 δ/α 2 , 0.
As α +1 α 2 , the minimal integer L such that α L 100 δ is well defined, and satisfies

α L = α L-1 1 -5 δ/α L-1 2 > 100 δ 1 -5 1/100 2 = 25 δ.
Moreover α 2 L--1 α L-1 2 L--1 100 δ for = 0, . . . , L -1, so

β L = 3 α L L-1 =0 1 + 5 δ/α 1 -5 δ/α Cδ, with C := 300 2 1+ √ 2 - 1- √ 2 
-. Finally, we inductively define partitions {S 1 , . . . , S 2 } for 0 L. We start with S 0 1 = {1, . . . , m}, and for any < L and 1 s 2 , noticing that

α I 1 m i∈S s a i a † i β I,
we apply Lemma 5.7 to split S s into subsets S +1 2s-1 and S +1 2s satisfying the same property. At the last step, we define J s = S L s . The framing (5.7) thus holds with c 0 = α L /δ 25 and C 0 = β L /δ 11000.

Proof of Theorem 5.1. Consider (x 1 , . . . , x m ) ∼ (σ ⊗m |E) the conditioned sample introduced in the previous section, and define

a i = w(x i )ϕ j (x i ) 1 j n
the corresponding normalised random vectors. As E holds almost surely,

1 2 I G m = 1 m m i=1 a i a † i 3 2 I,
and

|a i | 2 = w(x i ) n j=1 |ϕ j (x i )| 2 = n
thanks to the choice of weights (5.2), so the assumptions of Lemma 5.8 are satisfied. Applying this lemma, we obtain sets J 1 , . . . , J 2 L partitioning {1, . . . , m}. Let r be a random variable taking value s ∈ {1, . . . , 2 L } with probability p s = |J s |/m, and randomly subsample {x 1 , . . . , x m } by keeping only the points

{x i : i ∈ J r }.
Then the budget condition |J r | C 0 n is satisfied according to (5.8). Here, we define the discrete norm as

v 2 Jr := 1 |J r | i∈Jr w(x i )|v(x i )| 2 ,
and the associated Gram matrix

G Jr := ( ϕ j , ϕ k Jr ) 1 j,k n = 1 |J r | i∈Jr a i a † i .
The weighted least-squares estimate is now defined as

ũ := arg min v∈Vn 1 |J r | i∈Jr w(x i )|u(x i ) -v(x i )| 2 ,
and it thus depends on the random draws of both (x 1 , . . . , x m ) ∈ Ω m and 1 r 2 L . Condition (5.4) follows from the lower inequality in (5.7) with β = C0 c0 since

G Jr c 0 n |J r | I c 0 C 0 I.
Finally, we have for any v ∈ L 2 (Ω, µ)

E (σ ⊗m |E),L(r) ( v 2 Jr ) = E (σ ⊗m |E)   2 L s=1 p s |J s | i∈Js w(x i )|v(x i )| 2   = E (σ ⊗m |E) ( v 2 m ) 2 e n (u) 2 L 2 ,
so condition (5.3) holds with α = 2. Applying Lemma 5.2, we conclude that (5.1) holds with C = C 0 and K = 1 + 2 C0 c0 .

Comparison with related results

In order to compare Theorem 5.1 with several recent results [START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF], we consider its implication when the target function u belongs to a certain class of functions K that describes some prior information on u, such as smoothness.

Recall that if V is a Banach space of functions defined on Ω and K ⊂ V is a compact set, its Kolmogorov n-widths are defined by

d n (K) V := inf dim Vn=n sup u∈K inf v∈Vn u -v V ,
where the first infimum is taken over all linear spaces V n ⊂ V of dimension n. This quantity thus describes the best approximation error that can be achieved uniformly over the class K by an n-dimensional linear space.

On the other hand, building a best approximation of u requires in principle full knowledge on u, and we want to consider the situation where we only have access to a limited number of point evaluations. This leads us to the notion of sampling numbers, also called optimal recovery numbers, both in the deterministic and randomized settings.

For deterministic samplings, we define the (linear) sampling numbers

ρ m (K) V := inf x 1 ,...,x m inf R∈L(C m ,V ) max u∈K u -R(u(x 1 ), . . . , u(x m )) V ,
where the infimum is taken over all samples (x 1 , . . . , x m ) ∈ Ω m and linear reconstruction maps R : C m → V .

For random samplings, we may define similar quantities by

ρ rand m (K) 2 V := inf σm inf R:Ω m ×C m →V max u∈K E u -R (x 1 ,...,x m ) (u(x 1 ), . . . , u(x m )) 2 V ,
where the infimum is taken over all random sampling laws σ m ∈ Prob(Ω m ) and linear reconstruction maps R (x 1 ,...,x m ) ∈ L(C m , V ). Note that a deterministic sample can be viewed as a particular choice of random sample following a Dirac distribution in Ω m , and therefore

ρ rand m (K) V ρ m (K) V .
Sampling numbers may also be defined without imposing the linearity of R, leading to smaller quantities. In what follows, we shall establish upper bounds on the linear sampling numbers, which in turn are upper bounds for the nonlinear ones. We refer to [START_REF] Novak | Tractability of multivariate problems[END_REF] for an introduction and study of sampling numbers in the context of general linear measurements, and to [START_REF] Novak | Tractability of multivariate problems[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF] that focus on point evaluations, also termed as standard information.

By optimizing the choice of the space V n used in Theorem 5.1, we deduce that, for V = L 2 = L 2 (Ω, µ), the sampling numbers in the randomized setting are dominated by the Kolmogorov n-widths.

Corollary 5.9. For any compact set K ⊂ L 2 , one has

ρ rand Cn (K) L 2 Kd n (K) L 2 ,
(5.9)

where C and K are the same constants as in Theorem 5.1.

Remark 5.10. The bound (5.9) cannot be attained with independent and identically distributed sampling points x 1 , . . . , x m . Indeed, consider the simple example, already evoked in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF], where Ω = [0, 1], µ is the Lebesgue measure,

V n = n i=1 c i χ [ i-1 n , i n ] : (c 1 , . . . , c n ) ∈ C n
is a space of piecewise constant functions, and K = {u ∈ V n : u L ∞ 1}. Then K ⊂ V n so d n (K) L 2 = 0, and an exact reconstruction Ru = u is possible if and only if the sample contains at least one point in each interval i-1 n , i n . Thus ρ det n (K) L 2 = 0, but in the case of i.i.d measurements, m has to grow like n log n to ensure this constraint, due to the coupon collector's problem.

Remark 5.11. In [START_REF] Krieg | Optimal Monte Carlo methods for L 2 -approximation[END_REF], a result similar to Theorem 5.1 is obtained under the extra assumption of a uniform bound on e n (u) L 2 /e 2n (u) L 2 , yielding the validity of (5.9) assuming a uniform bound on

d n (K) L 2 /d 2n (K) L 2 .
The recovery method used in [START_REF] Krieg | Optimal Monte Carlo methods for L 2 -approximation[END_REF] is not of least-square type, but rather an elaboration of the pseudo-spectral approach that would simply approximate the inner products u, ϕ j = ´Ω u ϕ j dµ by a quadrature, using a hierarchical approach introduced in [START_REF] Wasilkowski | The power of standard information for multivariate approximation in the randomized setting[END_REF].

Ideally, one would like a "worst case" or "uniform" version of Theorem 5.1, of the form

ρ Cn (K) L 2 Kd n (K) L 2 ,
(5.10) but it is easily seen that such an estimate cannot be expected for general compact sets of L 2 , due to the fact that pointwise evaluations are not continuous in L 2 norm.

It is however possible to recover such uniform estimates by mitigating the non-achievable estimate (5.10) in various ways. One first approach, developed in [START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF], gives an inequality similar to (5.10), with d n (K) L 2 replaced by d n (K) L ∞ . It is based on the following lemma, see Theorem 2.1 in [START_REF] Temlyakov | On optimal recovery in L 2[END_REF], which we recall for comparison with our Lemma 5.2: Lemma 5.12. Assume that µ is a measure of finite mass µ(Ω) < ∞, that the constant functions belong to V n , and that there exists a sample {x 1 , . . . , x m } and weights w i such that the discrete norm

v 2 m = 1 m m i=1 w i |v(x i )| 2 satisfies a framing β -1 v 2 L 2 v 2 m α v 2 L 2 , v ∈ V n .
(5.11)

Then u -P m n u L 2 µ(Ω) 1 + αβ e n (u) L ∞ ,
where e n (u)

L ∞ = min v∈Vn u -v L ∞ .
Proof. For any v ∈ L 2 , we have v 2

L 2 µ(Ω) v 2 L ∞ , and as 1 ∈ V n , v 2 m 1 2 m v 2 L ∞ α 1 2 L 2 v 2 L ∞ = α µ(Ω) v 2 L ∞ .
Hence

u -P m n u L 2 u -v L 2 + v -P m n u L 2 u -v L 2 + β v -P m n u m u -v L 2 + β v -u m µ(Ω) + αβµ(Ω) u -v L ∞ ,
and we conclude by optimizing over v ∈ V n .

Remark 5.13. The assumption that the constant functions belong to the space V n can be avoided by adding a constant term in the density, which results in bounded weights. The constant αµ(Ω) is then replaced by the bound on the weights, see [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF].

Here, in contrast to the derivation of (5.5) in Lemma 5.2, one only uses the framing property (5.11), and does not need the condition E( v 2 m ) α v 2 L 2 . For this reason, one may achieve the above objective with a simpler sparsification approach proposed in [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF] and adapted in [START_REF] Limonova | On sampling discretization in L 2[END_REF], which performs a greedy selection of the points x i within the sample {x 1 , . . . , x m }, and defines adapted weights w i . If the initial sample satisfies

1 2 I G m 3 2 I,
then, for any r > 1 the selection algorithm produces a sample with at most rn points such that (5.11) holds

with α = 3 2 (1 + 1/ √ r) 2 and β -1 = 1 2 (1 -1/ √ r) 2 .
Optimizing the choice of V n (but imposing that constant functions are contained in this space), this leads to the following comparison result between deterministic optimal recovery numbers in L 2 and n-widths in L ∞ : for any compact set K ∈ C(Ω), one has

ρ cn (K) L 2 C µ(Ω) d n-1 (K) L ∞ , (5.12) 
where C depends on c > 1. For c = 2, one can take C = 11. We refer to [START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF] where this type of result is established.

Another approach consists in making pointwise evaluations continuous by restriction to the case where K = B H is the unit ball of a separable reproducing kernel Hilbert space H ⊂ L 2 , and assuming that the sequence (d n (B H ) L 2 ) n 1 is 2 -summable. The following result from [START_REF] Nagel | A new upper bound for sampling numbers[END_REF], also based on the sparsification techniques from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF], improves on a bound found in [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF] ρ Cn (B H ) 2

L 2 K log n n k n d k (B H ) 2 L 2 , (5.13) 
More general compact classes K of L 2 , such that point evaluations are well defined on functions of K, are considered in [START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF], where the following general result is established: if

d n (K) 2 L 2
Cn -α ln(n + 1) β , n ∈ N, for some α > 1 and β ∈ R, then

ρ n (K) 2 L 2
C n -α ln(n + 1) β+1 , n ∈ N.

(5.14)

In the above results, the additional logarithmic factor appears as a residual of the result obtained before sparsification, contrarily to the bounds (5.9) and (5.12), which do not explicitely depend on the size of the initial sample Y . This results in a gap of a factor log n between (5.13) or (5.14) and known lower bounds for ρ n (K) 2 L 2 , see [START_REF] Nagel | A new upper bound for sampling numbers[END_REF].

Computational aspects

The various results (5.9), (5.12), (5.13), (5.14) ensure the existence of good sampling and reconstruction algorithms in various settings. We end by a discussion on the computational cost of these strategies.

For the weighted least-squares methods from Section 5.2, the most expensive step consists in assembling the matrix G m as a sum of m matrices of size n, so the algorithmic complexity is of order O(mn 2 ) = O(n 3 log n). Besides, to obtain E(G m |E), this step may need to be repeated a few times, as explained in Remark 5.5, but this only affects the offline complexity by a small random factor.

Note that we assumed that an orthogonal basis (ϕ 1 , . . . , ϕ n ) of V n is explicitly known, which might not be the case for irregular domains Ω. However, under reasonable assumptions on Ω or V n , one can compute an approximately orthogonal basis ( ϕ 1 , . . . , ϕ n ), either by performing a first discretization of Ω with a large number of points, or by using a hierarchical method on a sequence of nested spaces [START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF][START_REF] Arras | Sequential sampling for optimal weighted least squares approximations in hierarchical spaces[END_REF][START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF][START_REF] Migliorati | Adaptive approximation by optimal weighted least-squares methods[END_REF][START_REF] Migliorati | Multivariate approximation of functions on irregular domains by weighted least-squares methods[END_REF] and [c]. These additional steps have complexities O(K n n 3 ) and O(n 4 ) respectively, where K n is the maximal value of the inverse Christoffel function 1 n n j=1 |ϕ j | 2 , which might grow with n for certain choices of spaces V n . Results similar to Lemma 5.4 have been obtained in the above references, with (ϕ j ) 1 j n replaced by ( ϕ j ) 1 j n .

V 1 ⊂ • • • ⊂ V n , see
One could stop at this point and compute the approximation ũ = E(P m n u|E), which satisfies error bounds both in expectation when comparing to e n (u) L 2 , see Lemma 5.4, or uniformly when comparing to e n (u) L ∞ , see Theorem 1 (iii) in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF]. Once the measurements of u are performed, the computation of ũ requires to solve a n × n linear system as in Remark 5.6, so the online stage takes a time O(τ n log n + n 3 ), where τ is the cost of each measurement of u.

However, in applications where the evaluation cost τ becomes very high (for example when each evaluation x → u(x) requires solving a PDE by some numerical code, or running a physical experiment), further reduction of the size of the sample may prove interesting, and justifies the interest for sparsification methods. The greedy selection method from [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF], which is used in [START_REF] Temlyakov | On optimal recovery in L 2[END_REF] and leads to (5.12), has a complexity in O(mn 3 ) = O(n 4 log n), but it can only be applied to the worst-case setting, with the uniform error bound e n (u) L ∞ .

On the other hand, the iterative splitting method that we have used in this chapter following the ideas from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF] is not easily implemented, and one obvious method consists in testing all partitions of {1, . . . , m} into sets S 1 and S 2 when applying Lemma 5.7. Note that this lemma is in practice used L times, with

L = O(log log n) since 2 L = O( m n ) = O(log n).
The algorithm consisting in subdividing the sample L times, each time checking that the Gram matrices corresponding to S 1 and S 2 are well conditioned, and keeping one such subset at random, thus has an exponential complexity O(2 m n 3 ) = O(n cn ). Having a different strategy that would produce the random sample in polynomial time is currently an open problem to us. Note that the hierarchical Monte-Carlo approaches from [START_REF] Krieg | Optimal Monte Carlo methods for L 2 -approximation[END_REF][START_REF] Wasilkowski | The power of standard information for multivariate approximation in the randomized setting[END_REF] have similar optimal error bounds with an optimal sampling budget, and without exponential complexity in the generation of samples, however under the additional assumption that is described in Remark 5.11.

We summarise these computational observations in the following table, which illustrates the conflicts between reducing the sampling budget, ensuring optimal approximation results, and maintaining a reasonable cost for sample generation. sampling algorithm sample cardinality m offline complexity

E( u -ũ 2 L 2 ) Ce n (u) 2 L 2 u -ũ 2 L 2 Ce n (u) 2 L ∞ conditioned σ ⊗m | E 10 n log(4n) O(n 3 log n)
+ deterministic sparsification [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF] (1 + ε)n O(n 4 log n)

+ random sparsification [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] Cn O(n cn ) → O(n r ) ?

As a final remark, let us emphasize that although the results presented in this chapter are mainly theorical and not practically satisfactory, due both to the computational complexity of the sparsification, and to the high values of the numerical constants C and K in Theorem 5.1, they provide some intuitive justification to the boosted least-squares methods presented in [START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF], which consist in removing points from the initial sample as long as the corresponding Gram matrix G m remains well conditioned. For instance, Lemma 5.7 allows to keep splitting the sample even after L steps, if one still has a framing 1 2 I G J 3 2 I and a sufficiently large ratio |J|/n. Nevertheless, it would be of much interest to find a randomized version of [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF] giving a bound of the form (5.9), since this would give algorithmic tractability, smaller values for C and K, and the possibility to balance these constants in Theorem 5.1.

Chapter 6

A sharp upper bound for sampling numbers in L 2

Abstract. For a class K of complex-valued functions on a set Ω, we denote by ρ n (K) L 2 its sampling numbers, i.e., the minimal worst-case error on K, measured in L 2 , that can be achieved with a recovery algorithm based on n function evaluations. We prove that there is a universal constant c ∈ N such that, if K is the unit ball of a separable reproducing kernel Hilbert space, then

ρ cn (K) 2 L 2 ≤ 1 n k n d k (K) 2 L 2 ,
where d k (K) L 2 are the Kolmogorov widths (or approximation numbers) of K in L 2 . We also obtain similar upper bounds for more general classes K, including all compact subsets of the space of continuous functions on a bounded domain Ω ⊂ R d , and show that these bounds are sharp by providing examples where the converse inequality holds up to a constant. The results rely on the solution to the Kadison-Singer problem, which we extend to the subsampling of a sum of infinite rank-one matrices.

Introduction and main results

The general question of how well point-wise evaluations perform for approximating a function, which is often called sampling recovery or approximation using standard information, is a classical question in theoretical and applied mathematics. A historical treatment and various basics may be found in the monographs [START_REF] Cucker | On the mathematical foundations of learning[END_REF][START_REF] Devore | Grundlehren der mathematischen Wissenschaften[END_REF][START_REF] Dũng | Hyperbolic cross approximation[END_REF][START_REF] Temlyakov | Multivariate approximation[END_REF][START_REF] Wendland | Scattered data approximation[END_REF] for general approximation theory and in [START_REF] Novak | Tractability of multivariate problems[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF] for information-based complexity. It is of particular interest to compare the power of function evaluations with the power of optimal linear measurements (which could be Fourier coefficients or derivatives), since the latter are well understood in many cases and easier to handle from a theoretical point of view, while the first are of larger practical relevance. The quest for a systematic comparison has attracted much attention recently. We will describe the history and related results below after presenting the setting and the main results, see also Section 6.1.1.

The power of a given class of measurements is often expressed in terms of the minimal error achievable with a given amount of such information. Here, we consider L 2 -approximation in a worst-case setting, so that these minimal errors correspond to sampling numbers and Kolmogorov (or approximation) numbers, as we summarize below.

Let (Ω, A, µ) be a measure space and L 2 := L 2 (Ω, A, µ) be the space of square-integrable complex-valued functions on Ω. Let K be a set of functions contained in L 2 . The Kolmogorov widths of K in L 2 are defined by

d n (K) L 2 := inf 1,..., n : K→C φ1,...,φn∈L 2 sup u∈K u - n j=1 j (u) φ j L 2
. This is the worst-case error of an optimal approximation within a linear space of dimension n. It coincides with the nth approximation number (or linear width) of K, which is the worst-case error of an optimal linear algorithm that uses at most n linear functionals as information, see Remark 6.5. On the other hand, the sampling numbers are given by

ρ m (K) L 2 := inf x 1 ,...,x m ∈Ω ψ1,...,ψm∈L 2 sup u∈K u - m i=1 u(x i ) ψ i L 2 ,
i.e., ρ m (K) L 2 is the minimal worst-case error of linear algorithms based on m function evaluations. Therefore, the task is to compare the numbers

d n (K) L 2 and ρ m (K) L 2 . It is clear that we have ρ n (K) L 2 ≥ d n (K) L 2 .
Here, we aim for an upper bound on ρ m (K) L 2 in terms of the numbers d n (K) L 2 . We first describe the situation where K is the unit ball of a separable reproducing kernel Hilbert space (RKHS). A priori, it is not clear whether such a bound is even possible. And indeed, there can be no such bound in the case that (d n (K) L 2 ) / ∈ 2 . More precisely, it is shown in [START_REF] Hinrichs | Linear information versus function evaluations for L 2 -approximation[END_REF] that for any non-negative and non-increasing sequence (σ n ) / ∈ 2 and any sequence (τ m ) tending to infinity, e.g. τ m = ln ln m, there exists a RKHS with unit ball K such that

d n (K) L 2 = σ n for all n but lim sup m→∞ τ m • ρ m (K) L 2 > 0.
The situation is completely different when (d n (K) L 2 ) ∈ 2 , which is equivalent to assuming that the kernel K of the Hilbert space has finite trace

ˆΩ K(x, x) dµ(x) < ∞, (6.1) 
see, e.g., [START_REF] Moeller | L 2 -norm sampling discretization and recovery of functions from RKHS with finite trace[END_REF]. Under this assumption, first upper bounds on ρ m (K) L 2 in terms of the numbers d n (K) L 2 were obtained more than 20 years ago in [START_REF] Wasilkowski | On the power of standard information for weighted approximation[END_REF]. These upper bounds were later improved in [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Kuo | On the power of standard information for multivariate approximation in the worst case setting[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF]. On the other hand, a lower bound from [95, Theorem 2] tells us how far these improvements might go: for every nonnegative and non-increasing (σ n ) ∈ 2 , there exists a separable RKHS with unit ball K such that d n (K) L 2 = σ n for all n ∈ N and

ρ n/8 (K) L 2 1 n k n d k (K) 2 L 2 (6.2)
for infinitely many values of n ∈ N. Anctually, it turns out that this is already the worst possible scenario. The main result of this chapter is an upper bound, which matches the above lower bound (6.2) up to a universal constant, and which is true for any separable reproducing kernel Hilbert space.

Theorem 6.1. There is a universal constant c ∈ N such that the following holds. Let µ be a measure on a set Ω and let K ⊂ L 2 (µ) be the unit ball of a separable RKHS on Ω such that the finite trace assumption (6.1) holds. Then, for all n ∈ N, we have

ρ cn (K) L 2 ≤ 1 n k n d k (K) 2 L 2 .
This settles the question on the power of standard information compared to general linear information for the problem of L 2 -approximation on Hilbert spaces, and solves the open problems from [START_REF] Hinrichs | Lower bounds for integration and recovery in L 2[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF], Open Problem 140 in [START_REF] Novak | Tractability of multivariate problems[END_REF], as well as Outstanding Open Problem 1.4 in [START_REF] Dũng | Hyperbolic cross approximation[END_REF] for L 2 -approximation. The latter is discussed in Example 6.28, where we consider tensor product spaces. We note that the case of L p -approximation (p = 2) is widely open. A slightly stronger version of Theorem 6.1 and explicit constants are given in Theorem 6.23.

Let us add that, in principle, Theorem 6.1 does only imply the existence of (linear) sampling algorithms achieving the error bound. However, all upper bounds on ρ m (K) L 2 will be obtained by a suitable (unregularized) least squares method, see Remark 6.7 and Section 6.5. Theorem 6.1 is a direct continuation of the series of works initiated in [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF], in which the sampling numbers were bounded by

ρ cn ln n (K) L 2 ≤ 1 n k n d k (K) 2 L 2 ,
see also [START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF][START_REF] Ullrich | On the worst-case error of least squares algorithms for L 2 -approximation with high probability[END_REF], and an improvement from [START_REF] Nagel | A new upper bound for sampling numbers[END_REF], where the logarithmic oversampling was removed in exchange for an additional factor √ ln n on the right hand side. The ingredients for the proof are still the existence of good point sets with O(n ln n) points from [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF], and a subsampling of O(n) points based on the solution to the Kadison-Singer problem [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF]. The Kadison-Singer subsampling has already been applied for the related problem of sampling discretization in [START_REF] Limonova | On sampling discretization in L 2[END_REF] (see [START_REF] Kashin | Sampling discretization and related problems[END_REF] for a survey) and was subsequently introduced to the study of sampling numbers in [START_REF] Nagel | A new upper bound for sampling numbers[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF]. In these papers, the subsampling was, roughly speaking, only performed for a finite-dimensional sub-problem which resulted in the excessive factor √ ln n in [START_REF] Nagel | A new upper bound for sampling numbers[END_REF]. The new ingredient here is an infinite-dimensional version of the subsampling theorem that might be of independent interest, see Proposition 6.17.

If we apply Theorem 6.1 and the lower bound from [START_REF] Hinrichs | Lower bounds for integration and recovery in L 2[END_REF] to sequences with polynomial decay, we obtain the following characterization. Corollary 6.2. Let K be the unit ball of a separable RKHS with

d n (K) L 2 n -α ln -β n (6.3) for some α ≥ 1/2, β ∈ R and c > 0. Then ρ m (K) L 2 m -α ln -β m if α > 1/2, m -α ln -β+1/2 m if α = 1/2 and β > 1/2. (6.4)
Moreover, there exist classes K such that these bounds are sharp.

Here, a n b n means that there is a constant c > 0 such that a n ≤ c b n for all but finitely many n ∈ N; later we will also use the symbols and , which are defined accordingly. It is clear from Theorem 6.1 that the hidden constant in (6.4) is given by the product of the hidden constant in (6.3) and a constant that only depends on α and β.

We now turn to general function classes K that are assumed to satisfy the following assumption. Assumption A. Let K be a class of complex-valued functions on a set Ω and let µ be a measure on Ω. We say that K and µ satisfy Assumption A, if there is a metric on K such that K is continuously embedded into L 2 , separable, and function evaluation u → u(x) is, for each x ∈ Ω, continuous on K.

Note that Assumption A is satisfied, for example, if -K is a separable subset of the space of bounded functions equipped with the maximum distance and the measure µ is finite, or -K is the unit ball of a separable normed space that is continuously embedded in L 2 and on which function evaluation at each point is a continuous functional, or -K is a countable set of square-integrable functions, equipped with the discrete metric. In this setting, we prove the following bound. Theorem 6.3. Let 0 < p < 2. There is a constant c p ∈ N, depending only on p, such that for any K and µ that satisfy Assumption A and all n ∈ N,

ρ cpn (K) L 2 ≤ 1 n k n d k (K) p L 2 1/p . Theorem 6.
3 is an improvement over [START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF], where again we removed the excessive logarithmic factor. We will also show that the result is not true for p = 2, see Example 6.31. However, we provide a variant of Theorem 6.3, under the weaker condition (ln n) s d n (K) L 2 ∈ 2 for some s > 1/2, in Section 6.6.2. In Proposition 11 of the very recent paper [START_REF] Krieg | Sampling recovery in the uniform norm[END_REF], one can find a more general result encompassing Theorems 6.3 and 6.27. This leads to the following corollary. Corollary 6.4. Let K and µ satisfy Assumption A and

d n (K) L 2 n -α ln -β n (6.5)
for some α > 0 and β ∈ R. Then

ρ m (K) L 2        m -α ln -β m if α > 1/2, m -α ln -β+1 m if α = 1/2 and β > 1, 1 otherwise. 
(6.6)

Moreover, there exist classes K such that these bounds are sharp.

Again, the hidden constant in (6.6) is given by the product of the hidden constant in (6.5) and a constant that only depends on α and β. The difference compared to unit balls of RKHSs is the case α = 1/2, where we need β > 1 instead of β > 1/2, and lose a factor ln n instead of √ ln n, see Example 6.30. In addition, if (d n (K) L 2 ) / ∈ 2 , then ρ m (K) L 2 might be bounded below by a constant, opposite to the RKHS setting where ρ m (K) L 2 tends to zero as soon as d n (K) L 2 does, see [START_REF] Hinrichs | Linear information versus function evaluations for L 2 -approximation[END_REF]. However, for α > 1/2, the results for general classes are just as strong as before.

Remarks and related literature

We want to add several remarks on the history of the result and related topics. Remark 6.5 (Equivalent widths). There are several quantities to measure the "width" of a set K. Although we work here with the Kolmogorov numbers d n (K) L 2 as benchmark, let us add that these quantities coincide in L 2 with the approximation numbers of K, i.e.

d n (K) L 2 = a n (K) L 2 := inf 1,..., n : K→C linear φ1,...,φn∈L 2 sup u∈K u - n j=1 j (u) φ j L 2 ,
as the infimum in the definition of d n (K) L 2 for given φ 1 , . . . , φ n is attained by the L 2 -orthogonal projection onto their span, which is linear in any case. The approximation numbers of a class represent the worst-case error of an optimal linear algorithm that uses at most n linear functionals as information. If K is the unit ball of some Hilbert space H, then the approximation numbers agree with the singular values of the identity Id : H → L 2 . In this case, the d n (K) L 2 also coincide with the Gelfand n-widths g n (K) L 2 , which represent the minimal worst-case error of (possibly non-linear) algorithms based on n arbitrary linear functionals, see, e.g., Chapter 4 in [START_REF] Novak | Tractability of multivariate problems[END_REF].

Remark 6.6 (Extreme classes K). It is interesting to note that the lower bound (6.2) from [START_REF] Hinrichs | Lower bounds for integration and recovery in L 2[END_REF] is attained for univariate Sobolev spaces of periodic functions. By Theorem 6.1, this means that these basic classes already represent the most difficult RKHSs for sampling recovery when the numbers d n (K) L 2 are fixed.

Remark 6.7 (Least squares methods). The upper bounds in Theorem 6.1 and 6.3 are proved for a weighted least squares algorithm using samples from a set of c n points that is subsampled from a set of c n ln n i.i.d. random points, see Section 6.5. Depending on the function class K, the algorithm using the full set of random points may be constructive but the subsampling is based on an existence result from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] and is therefore not constructive.

It would be very interesting to make the subsampling constructive, see Remark 6.21.

Remark 6.8 (Spline algorithm). Let K be the unit ball of a RKHS H. If we fix the sampling points x 1 , ..., x m , it is known that the smallest possible worst case error is achieved by the spline algorithm

S m (u) := argmin v∈H : v(x i )=u(x i ) v H , that is, inf ψ1,...,ψm∈L 2 sup u∈K u - m i=1 u(x i ) ψ i L 2 = sup u∈K u -S m (u) L 2
, see e.g. [START_REF] Traub | A general theory of optimal algorithms[END_REF]Theorem 5.1]. The function S m (u) is also known as the minimal norm interpolant and, by the famous representer theorem, can be expressed as a linear combination of the kernel functions K(x i , •), see e.g. [START_REF] Wainwright | High-dimensional statistics[END_REF]Proposition 12.32]. Therefore, our upper bounds are true not only for the least squares algorithm, but also for the kernel-based approximation S m (u). Both types of algorithms are common in the context of learning, see e.g. the seminal paper [START_REF] Cucker | On the mathematical foundations of learning[END_REF]. Remark 6.9 (The power of i.i.d. sampling). It is remarkable that, up to a logarithmic factor, the upper bound from Theorem 6.1 is achieved with high probability for i.i.d. random sampling points, see [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Ullrich | On the worst-case error of least squares algorithms for L 2 -approximation with high probability[END_REF]. In regard of the personal history of the authors DK and MU, Theorem 6.1 is a byproduct of a series of work on the power of i.i.d. sampling for approximation and integration problems that started in [START_REF] Hinrichs | On the power of random information[END_REF][START_REF] Hinrichs | Random sections of ellipsoids and the power of random information[END_REF] and was also continued in [START_REF] Hinrichs | Random sections of p -ellipsoids, optimal recovery and Gelfand numbers of diagonal operators[END_REF][START_REF] Krieg | Recovery of Sobolev functions restricted to iid sampling[END_REF][START_REF] Krieg | Function recovery on manifolds using scattered data[END_REF][START_REF] Krieg | Random points are optimal for the approximation of Sobolev functions[END_REF]. Remark 6.10 (Expected error). A different approach to L 2 -approximation is by using randomized algorithms and taking the worst case expected error instead of a worst case deterministic error. The results in this randomized setting are quite different; the error of optimal algorithms does not depend on the tail of the sequence (d n (K) L 2 ). We refer to [59, 106, 122, 144, 185, d].

Remark 6.11 (Upper bounds for infinite trace). We note that our bounds make sense also if d n (K) L 2 is infinite for small n, but they are useless if the tail of (d n (K) L 2 ) is not square-summable, which is the case, e.g., if K is the unit ball of a RKHS with infinite trace, see (6.1). An alternative approach is to bound the numbers ρ m (K) L 2 by the Kolmogorov widths

d n (K) L ∞ in L ∞ : it is shown in [168] that there is a universal constant c ∈ N such that ρ cn (K) L 2 ≤ c d n (K) L ∞ for probability spaces (Ω, A, µ).
Although this bound is sometimes weaker than Theorem 6.3 (see Example 1 in [START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF]), it has the great advantage that it may be applied in situations where the Kolmogorov widths in L 2 are not square-summable, see, e.g., [START_REF] Temlyakov | Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness[END_REF][START_REF] Temlyakov | Approximation of functions with small mixed smoothness in the uniform norm[END_REF]. It would be very interesting to see whether it is possible to unify the two approaches. Remark 6.12 (Tractability). Assume now that a whole sequence of classes K d is given, where d could be the dimension of the underlying domain. For some classes we know that the curse of dimensionality is present, if only standard information (function values) is allowed, while the problem is tractable for general linear information, see e.g., [START_REF] Hinrichs | Lower bounds for the error of quadrature formulas for Hilbert spaces[END_REF][START_REF] Novak | Tractability of multivariate problems for standard and linear information in the worst case setting: Part I[END_REF][START_REF] Vybíral | A variant of Schur's product theorem and its applications[END_REF]. However, since the constants from Theorems 6.1 and 6.3 are independent of the dimension, it is possible to transfer certain tractability properties from linear information to standard information [START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF][START_REF] Krieg | Exponential tractability of L 2 -approximation with function values[END_REF][START_REF] Novak | Tractability of multivariate problems[END_REF]. Remark 6.13 (Separability of K). Contrarily to the 2 -summability of the Kolmogorov widths, it should be possible to remove the separability assumption on the class K, at least in Theorem 6.1, by adding a term tr 0 (K)/n inside the square root in the right-hand side, as done in [START_REF] Moeller | L 2 -norm sampling discretization and recovery of functions from RKHS with finite trace[END_REF]. Remark 6.14 (Discretization of continuous frames). A related problem is the question whether a continuous frame for a Hilbert space may be sampled to obtain a frame, see [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF] for details. This problem, which was originally posed in the physics book [START_REF] Ali | Coherent states, wavelets, and their generalizations[END_REF], has only recently been solved in [START_REF] Freeman | The discretization problem for continuous frames[END_REF], see also the survey [START_REF] Bownik | Continuous frames and the Kadison-Singer problem[END_REF]. Although seemingly independent, this line of research uses remarkably similar methods. We leave it to future research to better understand and expand the connections.

Outline

The rest of the chapter can be outlined as follows. Sections 6.2-6.5 form the proof of Theorem 6.1. In Section 6.2, we collect some basics on the RKHS setting. In Section 6.3, we obtain our initial sample of O(n ln n) points based on a concentration inequality for infinite matrices. The subsampling is performed in Section 6.4, which applies the solution to the Kadison-Singer problem in a slightly original way, leading to the core of the proof in Section 6.5. In Section 6.6, we prove our results for general function classes by constructing a suitable RKHS, on which a local version of Theorem 6.1 (Theorem 6.23) can be applied. Finally, in Section 6.7, we present examples, applying our result to tensor product problems and showing that our upper bounds are sharp.

Hilbert space setting

We first consider the case where K is the unit ball of a separable Hilbert space H with reproducing kernel K ∈ C Ω×Ω . We refer to [START_REF] Moeller | L 2 -norm sampling discretization and recovery of functions from RKHS with finite trace[END_REF] and references therein for theoretical background on RKHSs.

Thanks to the finite trace assumption (6.1), we know that the identity map Id : H → L 2 is Hilbert-Schmidt, thus its left and right singular vectors (ϕ n ) n∈I and (σ n ϕ n ) n∈I are orthonormal families in L 2 and H, respectively. Here, we only list the singular vectors with respect to the nonzero singular values σ n > 0, and the index set is of the form I = {n ∈ N 0 : n < N } with N ∈ N ∪ {∞}. The singular vectors satisfy u, ϕ n L 2 = u, σ 2 n ϕ n H for all u ∈ H and n ∈ I.

We use the convention that N 0 := {0, 1, 2, . . .} and the singular values are arranged in a non-increasing order. In particular, k∈I σ 2 k < ∞ and the Kolmogorov width d n (K) L 2 = σ n is attained by the L 2 -orthogonal projection

P n onto V n = span{ϕ k : k < n}.
Moreover, the separability of H ensures that the equality

K(x, y) = n∈I σ 2 n ϕ n (x)ϕ n (y)
holds for all x, y ∈ Ω 0 with some set Ω 0 ⊂ Ω satisfying µ(Ω \ Ω 0 ) = 0. We therefore have the identity

u(x) = n∈I u, ϕ n L 2 ϕ n (x) for all u ∈ H and x ∈ Ω 0 . (6.7) 
Our sampling points will be contained in the set Ω 0 . As a consequence of the following lemma, we only have to show the validity of Theorem 6.1 for all 1 n < N . Lemma 6.15. Let N = min{n ∈ N :

d n (K) L 2 = 0} < ∞. Then we have ρ m (K) L 2 = 0 for all m ≥ N .
Proof. For x ∈ Ω 0 , we write ϕ(x) = (ϕ 0 (x), . . . , ϕ N -1 (x)). Then there are points x 0 , . . . , x N -1 ∈ Ω 0 such that every ϕ(x) is contained in the span of the vectors ϕ(x i ). We write ϕ(x) = ψ i (x)ϕ(x i ) with coefficients ψ i (x) ∈ C. By (6.7), we have

u(x) = n<N u, ϕ n L 2 i<N ψ i (x)ϕ n (x i ) = i<N u(x i )ψ i (x),
for all x ∈ Ω 0 and u ∈ H. Thus, the identity u = u(x i )ψ i holds almost everywhere. Moreover, the functions ϕ 0 , . . . , ϕ N -1 restricted to Ω 0 form a basis of span{ψ i : i < N }, and thus ψ i ∈ L 2 .

We fix an integer 1 ≤ n < N for the rest of the proof of Theorem 6.1.

Concentration inequality

As proposed in [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF] and applied in [START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF][START_REF] Moeller | L 2 -norm sampling discretization and recovery of functions from RKHS with finite trace[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF][START_REF] Ullrich | On the worst-case error of least squares algorithms for L 2 -approximation with high probability[END_REF], we define the probability density

κ n (x) = 1 2 1 n k<n |ϕ k (x)| 2 + k n σ 2 k |ϕ k (x)| 2 k n σ 2 k ,
and draw i.i.d. random points x 1 , . . . , x m ∈ Ω according to this density. We define the N -dimensional vectors a 1 , . . . , a m by

(a i ) k = κ n (x i ) -1/2 ϕ k (x i ) if 0 ≤ k < n, κ n (x i ) -1/2 γ -1 n σ k ϕ k (x i ) if n k < N, where 
γ n := max σ n , 1 n k n σ 2 k > 0.
Note that κ n (x i ) > 0 almost surely. It follows from these definitions that a i ∈ 2 (I) with

a i 2 2 = κ n (x i ) -1 k<n |ϕ k (x i )| 2 + γ -2 n k n σ 2 k |ϕ k (x i )| 2 2n, and 
E(a i a † i ) = diag(1, . . . , 1, σ 2 n /γ 2 n , σ 2 n+1 /γ 2 n , . . . ) =: E, with E 2→2 = 1 since σ 2 k /γ 2 n 1 for k n.
Here, diag(v) denotes a diagonal matrix with diagonal v, and • 2→2 denotes the spectral norm of a matrix.

We apply the following concentration inequality for infinite matrices, which was proved by 168 n. In the sequel we take m = C 0 n ln(n + 1) , with C 0 large enough, so that the previous inequality holds true. (One can take C 0 = 10 4 , for instance.) Thanks to Lemma 6.16, we know that there exists a realization x 1 , . . . , x m ∈ Ω 0 of the random sampling such that the corresponding family a 1 , . . . , a m satisfies

1 m m i=1 a i a † i -E 2→2 1 2 . ( 6.8) 
We fix such a sequence for the rest of the proof of Theorem 6.1.

Subsampling of infinite vectors

We now want to apply the solution to the Kadison-Singer problem, or specifically to Weaver's conjecture, to the sum of rank-one matrices

1 m m i=1 a i a † i ,
in order to find a subsampling of order n preserving the spectral properties of the sum. The original result comes from the celebrated paper [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] by Marcus, Spielman and Srivastava, and has already been applied numerous times in approximation theory, see for instance [106, 113, 114, 135, 137, 140, 168, d]. However, the original subsampling strategy only works for finite matrices. The main result of this section is the following infinite-dimensional variant, which might be of independent interest. Proposition 6.17. There are absolute constants c 1 43200, c 2 50, c 3 21600, with the following properties. Let m, n ∈ N and a 1 , . . . , a m be vectors from 2 (N 0 ) satisfying a i 2 2

2n and

1 m m i=1 a i a † i - I n 0 0 Λ 2→2 ≤ 1 2 , (6.9) 
for some Hermitian matrix Λ with Λ 2→2 1, where I n ∈ C n×n denotes the identity. Then, there is a subset J ⊂ {1, . . . , m} with |J| ≤ c 1 n, such that The conclusion can be understood as an upper bound on the largest eigenvalue of A = i∈J a i a † i and a lower bound on the smallest eigenvalue of A <n . Note that the constants in Proposition 6.17, and hence also the final sampling size, are independent of m, the original sampling size. The rest of this section is devoted to the proof of this proposition.

Reduction to finite dimension

Let U 0 be a matrix whose columns form an orthonormal basis of span {(a i ) n : i = 1, . . . , m} ⊂ 2 , where (a i ) ≥n = ((a i ) k ) k≥n . Clearly, U 0 has at most m columns. Then we have that U † 0 U 0 is the identity matrix and in particular the spectral norm of U 0 and U † 0 equals one. We set

U = I n 0 0 U 0 ,
which is a matrix that satisfies U † U = I p , where p ≤ m + n, and therefore also U and U † have unit norm. We choose vectors b i ∈ C p that satisfy U b i = a i for all i ≤ m. Such vectors exist since a i is contained in the span of the columns of U . Then we also have b

i = U † U b i = U † a i .
Let E = I n 0 0 Λ be the matrix from Proposition 6.17. We define

Ê = U † E U = I n 0 0 E where E 2→2 ≤ E 2→2 1.
With the norm bounds on U and U † , equation (6.9) gives

1 m m i=1 b i b † i -Ê 2→2 = U † 1 m m i=1 a i a † i -E U 2→2 1 2 .

Approximating the identity

In addition to finite dimension, the result from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] requires the matrix 1 m m i=1 b i b † i to be close to the identity in spectral norm, and this is not ensured here. To circumvent this obstacle, we artificially add rank-one matrices b i b † i ∈ C p×p for i = m + 1, . . . , q in the following way. As I p -Ê is positive semi-definite, we can decompose it as a sum of rank-one matrices

I p -Ê = 0 0 0 I p-n -E = p-n j=1 t j t † j ,
where t j ∈ C p . We now choose

b i = m m j(i) t j(i) , m j = m 2n t j 2 2 ,
with j(i) ∈ {1, . . . , p -n} such that {b i : i = m + 1, . . . , q} contains exactly m j copies of each m/m j t j . In this way, for i > m, the first n entries of b i are zero since this is true of the t j ,

b i 2 2 = m m j(i) t j(i) 2 2 2n, and 
1 m q i=1 b i b † i -I p 2→2 = 1 m m i=1 b i b † i + p-n j=1 t j t † j -I p 2→2 = 1 m m i=1 b i b † i -Ê 2→2 1 2 . Remark 6.18. As t j 2 2 I p -Ê 2→2 1, we count q = m + p-n j=1 m j m + p-n j=1 1 + m 2n m + (p -n) m n = mp n .
Conversely, taking traces in C p×p , we find

p 2 = Tr 1 2 I p Tr 1 m q i=1 b i b † i = 1 m q i=1 b i 2 2 2nq m .
So, we obtain m/n q/p ≥ m/4n. Recall that, given n the dimension of the approximation space V n , we took m = O(n ln n) initial sample points, and vectors b i of size p = O(n ln n). Hence, the number of such vectors is q = O(n ln 2 n). Surprisingly, we do not use estimates on p and q in the rest of the argument.

Remark 6.19. In fact, we did not need an exponential speed of convergence in the concentration inequality.

The reduction of the sample size to O(n) points works for any initial set of sampling points satisfying (6.8). If the cardinality of the initial sample is m = n (n), where (n) is any positive function of n, we get p = O(n (n)) and q = O(n (n) 2 ).

Reduction of the sample size

We can now use the Kadison-Singer solution from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] in an iterated way, as proposed in Lemma 3 of [START_REF] Nitzan | Exponential frames on unbounded sets[END_REF], and later used in [113, 114, 121, 135, 137, 168, d]. The following lemma is obtained from Corollary B and Lemma 1 in [START_REF] Nitzan | Exponential frames on unbounded sets[END_REF]. [START_REF] Nitzan | Exponential frames on unbounded sets[END_REF], noting that the constant C from Lemma 1 is at most 36, we get a partition of {1, . . . , q} into sets J 1 , . . . , J t such that, for all s ≤ t, we have

25 δ I p i∈Js bi b † i 3600 δ I p . Now, using i∈Js b i b † i = M 1/2 i∈Js bi b † i M 1/2 ,
we get the statement.

Note that one could obtain better constants by adapting the proof of Theorem 2.3 from [START_REF] Nagel | A new upper bound for sampling numbers[END_REF]. In our case, we have δ = 2n, α = m/2 and β = 3m/2. The relation α > 100 δ is satisfied. We thus obtain After applying Lemma 6.20 and removing the indices from J ∩ {m + 1, . . . , q} corresponding to artificially added vectors, we are left with a set J := J ∩ {1, . . . , m} of cardinality |J| ≤ 43200 n.

It remains to show that the artificial vectors do not interfere with our desired properties. For this, recall that (b i ) k = (a i ) k for k < n and i m, whereas the first n entries of b i ∈ C p are zero for i > m. Hence,

i∈J a i a † i <n = i∈J b i b † i <n 50 n I n ,
where we use a simple linear algebra fact on self-adjoint matrices A:

λ min (A <n ) = inf z∈C p , z 2=1 z k =0 for k n z † Az inf z∈C p , z 2 =1 z † Az = λ min (A).
Similarly, and using positive definiteness, we have

i∈J b i b † i i∈J b i b † i 21600 n I p .
With the orthogonal transformation U from Section 6.4.1, we get

i∈J a i a † i 2→2 = U i∈J b i b † i U † 2→2 ≤ i∈J b i b † i 2→2 21600 n.
This proves Proposition 6.17.

Remark 6.21. It would be an interesting improvement to use the result of Batson, Spielman and Srivastava, see [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF], instead of [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] for the subsampling. This earlier paper is applied to approximation theory in e.g. [START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Nitzan | A few remarks on sampling of signals with small spectrum[END_REF][START_REF] Temlyakov | The Marcinkiewicz-type discretization theorems[END_REF] and more recently in [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF]. It presents a slightly less powerful method, requiring additional weights, but comes with an almost linear algorithmic complexity, see [START_REF] Lee | Constructing linear-sized spectral sparsification in almost-linear time[END_REF], and much smaller constants, which could make the bound presented here sharp also in terms of numerical values. Another approach would consist in using randomized sampling strategies similar to the early work [START_REF] Spielman | Graph sparsification by effective resistances[END_REF], but with correlated inputs, which aim at avoiding the subsequent logarithmic oversampling. This optimality gap has for instance been reduced to O(log(n)/ log(log(n))) in [START_REF] Harvey | Pipage rounding, pessimistic estimators and matrix concentration[END_REF].

Remark 6.22. We recently learned that it might be possible to use results from [START_REF] Freeman | The discretization problem for continuous frames[END_REF], which work directly in an infinite-dimensional setting, to avoid the reduction to a finite dimension in § 6.4.1. However, as the core of our method is [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF], we decided to keep our more direct deduction.

Proof of the main theorem

We now have all the tools for proving Theorem 6.1. To obtain our sampling points, we combine (6.8) for our initial vectors a i ∈ 2 (I) with Proposition 6.17. Clearly, Proposition 6.17 stays true if we replace N 0 by the possibly finite index set I. We obtain points x 1 , . . . , x m ∈ Ω 0 with m ≤ 43200 n such that the vectors with V n and κ n as defined in Sections 6.2 and 6.3, respectively, see [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF]. This algorithm may be written as

(a i ) k = κ n (x i ) -1/2 ϕ k (x i ) if 0 ≤ k < n, κ n (x i ) -1/2 γ -1 n σ k ϕ k (x i ) if n k < N,
P m n u = n k=1 (D + F u) k ϕ k
where F : K → C m with F (u) := κ n (x i ) -1/2 u(x i ) i m is the information mapping and D + ∈ C n×m is the Moore-Penrose inverse of the design matrix

D := κ n (x i ) -1/2 ϕ k (x i ) i≤m, k≤n ∈ C m×n .
Since we have the identity D † D = ( m i=1 a i a † i ) <n , the matrix D has full rank and the spectral norm of D + is bounded by (50n) -1/2 . In particular, the argmin in the definition of P m n is uniquely defined and P m n satisfies P m n u = u for all u ∈ V n . Denoting with Q n the L 2 -orthogonal projection onto span{ϕ k : k ≥ n}, we obtain for any u ∈ H that

u -P m n u 2 L 2 = u -P n u 2 L 2 + P n u -P m n u 2 L 2 = Q n u 2 L 2 + P m n (u -P n u) 2 L 2 = Q n u 2 L 2 + D + F (u -P n u) 2 2 (C n ) ≤ σ 2 n Q n u 2 H + D + 2 2→2 • F (u -P n u) 2 2 (C m ) .
By (6.7) we have F (u -P n u) = Φξ u , where This finishes the proof of Theorem 6.1 with c = 43200 • 866.

Φ = κ n (x i ) -1/2 σ k ϕ k (x i ) i≤m,
In fact, equation (6.10) provides a local upper bound which is sometimes superior to Theorem 6.1. We therefore state it separately. Theorem 6.23. Let µ be a measure on a set Ω and let K ⊂ L 2 (µ) be the unit ball of a separable RKHS H such that the finite trace assumption (6.1) holds. For n ∈ N, let P n be the orthogonal projection onto the span V n of the singular vectors corresponding to the n largest singular values of the embedding of H into L 2 . Then there exist x 1 , . . . , x m ∈ Ω and ψ 1 , . . . , ψ m ∈ V n , where m ≤ 43200 n, such that, for all u ∈ H, u -

m i=1 u(x i ) ψ i 2 L 2 433 max d n (K) 2 L 2 , 1 n k n d k (K) 2 L 2 u -P n u 2 H .
Remark 6.24. For the purpose of Theorem 6.1 it was enough to bound u -P n u H ≤ u H . However, Theorem 6.23 will be of advantage later for the study of general classes since it is able to see additional decay of the Fourier coefficients u, ϕ k L 2 compared to the decay implied by u ∈ H. Note that faster decay of the Fourier coefficients often corresponds to higher smoothness of the function. In a certain sense, this means that the algorithm is universal. The error has the optimal rate of decay for any smoothness higher than the smoothness of H. κ n (x i )κ n (x j ) 1 i,j m   and r n (x i , x j )

κ n (x i )κ n (x j ) 1 i,j m = 1 n ΦΦ † C γ 2 n I
for some constants c, C > 0, where λ n denotes the nth eigenvalue. It would be interesting to find a property that only involves the kernel K directly (instead of the truncated kernels k n and r n above), or to verify that a similar property characterizes good point sets, in a way similar to Proposition 1 of [START_REF] Hinrichs | Lower bounds for the error of quadrature formulas for Hilbert spaces[END_REF] for integration.

Proof of Corollary 6.2

For the given bounds on the sampling numbers for sequences of polynomial decay, we only need to note that

1 n k≥n k -α ln -β k n -α ln -β n if α > 1, β ∈ R, n -α ln -β+1 n if α = 1, β > 1.
Hence, Corollary 6.2 immediately follows from Theorem 6.1, and the existence of K where the bounds are attained comes from (6.2), see [START_REF] Hinrichs | Lower bounds for integration and recovery in L 2[END_REF].

General function classes

We now prove all results related to general function classes.

6.6.1 Proof of Theorem 6.3

We will make use of the following observation from [START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF]Lemma 3]. We copy its proof for completeness.

Lemma 6.26. Let K ⊂ L 2 and let L 2 be infinite-dimensional. There is an orthonormal system (ϕ k ) k∈N0 in L 2 such that for all n ≥ 1, the orthogonal projection P n onto V n = span{ϕ k : k < n} satisfies

sup u∈K u -P n u L 2 ≤ 2 d n/4 (K) L 2 . (6.11)
Proof. Clearly it is enough to find an increasing sequence of subspaces of L 2 ,

U 1 ⊆ U 2 ⊆ U 3 ⊆ . . . , dim(U n ) ≤ n,
such that the projection P n onto U n satisfies (6.11). By the definition of d k (K) L 2 , k ∈ N 0 , there is a subspace W k ⊂ L 2 of dimension k and a mapping T k : K → W k such that

sup u∈K u -T k u L 2 ≤ 2 d k (K) L 2 .
This is also true if d k (K) L 2 = 0. We let U n be the space that is spanned by the union of the spaces W 2 over all ∈ N 0 such that 2 ≤ n/2. Note that U n contains a subspace W k with k ≥ n/4 . Therefore, P n u is at least as close to u as T k u for some k ≥ n/4 , which implies (6.11).

We now turn to the proof of Theorem 6.3. The basic idea is to construct a suitable reproducing kernel Hilbert space H that contains a dense subset of K and apply Theorem 6.23 to this Hilbert space. It will be important to use the local bound from Theorem 6.23 instead of the global bound from Theorem 6.1.

Proof of Theorem 6.3. Without loss of generality, we assume that L 2 is infinite-dimensional. Moreover, we assume that d k (K) L 2 is finite for k ≥ k 0 and that (d k (K) L 2 ) k≥k0 ∈ p . Otherwise, the statement is trivial.

By Lemma 6.26, there is an orthonormal system (ϕ k ) k∈N0 such that (6.11) is satisfied for all n ∈ N. We will consider ϕ k as a function, where we fix an arbitrary representer from the equivalence class in L 2 . We call û(k) := u, ϕ k L 2 the kth Fourier coefficient of u. Moreover, we fix a countable dense subset K 0 of K and set σ k = max{1, k} -α for all k ∈ N 0 and some α ∈ (1/2, 1/p). Then we have (σ k ) ∈ 2 .

We now want to define a RKHS on a set Ω 0 ⊂ Ω, with µ(Ω \ Ω 0 ) = 0, which admits the orthonormal basis (σ k ϕ k ) and contains the set K 0 . Such a Hilbert space will have the reproducing kernel

K(x, y) = k∈N0 σ 2 k ϕ k (x)ϕ k (y).
To find a suitable set Ω 0 , we first note that ˆΩ K(x, x) dµ(x) = k∈N0 σ 2 k < ∞ (6.12) and thus K(x, x) is finite for all x ∈ Ω \ E with a null set E ⊂ Ω. Moreover, for all u ∈ K 0 , we have

k≥1 k |û(k)| 2 = n≥0 k>n |û(k)| 2 = n≥0 u -P n u 2 L 2 < ∞,
where we use (6.11) and the assumptions on K. The Rademacher-Menchov Theorem, see e.g. [START_REF] Salem | A new proof of a theorem of Menchoff[END_REF], now implies that the Fourier series of u at x converges to u(x) for all x ∈ Ω\E u with a null set E u ⊂ Ω. We put Ω 0 := Ω\E 0 , where E 0 := E ∪ u∈K0 E u is a null set. Then for all x ∈ Ω 0 and u ∈ K 0 , we have K(x, x) < ∞ and u(x) = k∈N0 û(k) ϕ k (x).

We now define the space H as the set of all square-integrable functions u : Ω 0 → C which are point-wise represented by their Fourier series k û(k) ϕ k and which satisfy

u 2 H := k∈N0 |û(k)| 2 σ 2 k < ∞.
Then H is a separable reproducing kernel Hilbert space on Ω 0 since |u(x)| 2 K(x, x) u 2 H for all x ∈ Ω 0 and u ∈ H, and (σ k ϕ k ) k∈N0 is an orthonormal basis of H. The reproducing kernel is K, which has finite trace from (6.12).

We now show that K 0 (with functions restricted to Ω 0 ) is a subset of H. Recall that any u ∈ K 0 is point-wise represented by its Fourier series. Moreover, note that the Kolmogorov widths of K 0 and K are the same. We use where C > 0 only depends on p ∈ (0, 2) and α ∈ ( 1 2 , 1 p ).

d 2n (K) L 2 = d 2n (K) p
We now apply Theorem 6.23 to the newly constructed Hilbert space H to find m ≤ 43200 n and a linear algorithm P m n of the form for all u ∈ K 0 and some cp > 0 that only depends on p. Since K 0 is dense in K and both id : K → L 2 and P m n : K → L 2 are continuous, the last bound is true for all u ∈ K. This finishes the proof of Theorem 6.3 with c p = 43200 max(c p , 8).

P m n u = m i=1 u(x i )ψ i , x i ∈ Ω 0 , ψ i ∈ L 2 ,

The boundary case

We provide a variant of Theorem 6.3 under a weaker condition than (d k (K) L 2 ) ∈ p for p < 2. In fact, we show that the condition (ln k) s d k (K) L 2 ∈ 2 for some s > 1/2 is enough for a comparison of the sampling and the Kolmogorov widths, while the same assumption for s = 1/2 is not enough, see Example 6.31. Theorem 6.27. Let s > 1/2. There is a universal constant c ∈ N and a constant c s > 0, depending only on s, such that for every K and µ that satisfy Assumption A and all n ≥ 2,

ρ cn (K) 2 L 2 ≤ c s n -1 ln -2s+1 n k≥n d k (K) 2 L 2 • ln 2s k.
Proof. The proof follows the same lines as the proof of Theorem 6.3. The only difference is that we now choose σ k = k -1/2 ln -s k for k ≥ 2. Then, inequality (6. Likewise, inequality (6.15) becomes

max σ 2 n , 1 n k n σ 2 k n -1 ln -2s+1 n
and the stated inequality is obtained.

6.6.3 Proof of Corollary 6.4

Using the same bound as in the proof of Corollary 6.2, the case α > 1/2 immediately follows from Theorem 6.3 if we choose 1/α < p < 2, and the case α = 1/2, β > 1 from Theorem 6.27 if we choose 1/2 < s < β -1/2.

All bounds are attained with the same classes K as in Corollary 6.2 for the first case, and with the constructions from the next section for the two other cases.

Examples

We first apply Theorem 6.1 to tensor product spaces. Example 6.28. Let H be a RKHS on Ω that is compactly embedded into L 2 and let K be its unit ball. We consider L 2 -approximation on the unit ball K d of the d-fold tensor product H d of H, which is a RKHS on the domain Ω d . We assume that ρ m (K) L 2 m -α for some α > 0. The famous Smolyak algorithm, see [START_REF] Smolyak | Quadrature and interpolation formulas for tensor products of certain classes of functions[END_REF], gives the estimate ρ m (K d ) m -α ln (α+1) (d-1) m. (6.16)

An example of such tensor product spaces are the spaces of dominating mixed smoothness α > 1/2, see [START_REF] Dũng | Hyperbolic cross approximation[END_REF].

For these spaces, it is known that the error bound (6.16) for the Smolyak algorithm can be improved [START_REF] Sickel | The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness[END_REF]; the exponent of the logarithm can be reduced to (α + 1/2)(d -1). With Corollary 6.2 and known results on the approximation numbers of tensor product operators, see [START_REF] Babenko | Approximation of periodic functions of many variables by trigonometric polynomials[END_REF][START_REF] Mitjagin | Approximation of functions in L p and C spaces on the torus[END_REF], we now obtain

ρ m (K d ) m -α ln α(d-1) m if α > 1/2. (6.17)
This bound is asymptotically optimal for the spaces of mixed smoothness, see [START_REF] Temlyakov | On a way of obtaining lower estimates for the errors of quadrature formulas[END_REF]Theorem 1] or [START_REF] Temlyakov | Multivariate approximation[END_REF]Theorem 6.4.3]. More generally, it is known that d n (K) L 2 n -α implies d n (K d ) n -α ln α (d-1) n (see e.g. [START_REF] Krieg | Tensor power sequences and the approximation of tensor product operators[END_REF]) and therefore the asymptotic bound (6.17) is optimal whenever the approximation numbers in the univariate case are of order n -α . Let us note, however, that also preasymptotic estimates on the sampling numbers (say, for m < d d ) are of interest, especially if the dimension d is high, see [START_REF] Krieg | Tensor power sequences and the approximation of tensor product operators[END_REF][START_REF] Kühn | Approximation of mixed order Sobolev functions on the d-torus: asymptotics, preasymptotics, and d-dependence[END_REF][START_REF] Wasilkowski | Explicit cost bounds of algorithms for multivariate tensor product problems[END_REF]. Remark 6.29. Note that, for Sobolev spaces with mixed smoothness r > 1/p and 1 < p < 2, the nonlinear sampling numbers in L 2 decay faster than the linear sampling numbers (and the Kolmogorov widths in L 2 ) if the dimension d is large, see [START_REF] Jahn | Sampling numbers of smoothness classes via 1 -minimization[END_REF].

We now present two examples that show that our upper bounds cannot be improved without further assumptions on the class K.

First, we show that the worst possible behavior of the sampling numbers in the case d n (K) L 2 n -1/2 ln -β n with β > 1 is indeed m -1/2 ln -β+1 m. Note that the series u c converge uniformly, since the inner sum is bounded by ( + 1) -β . If K β is equipped with the maximum distance on [0, 1), it is a separable metric space, function evaluation is continuous, and the embedding in L 2 ([0, 1)) is continuous.

For every L ∈ N 0 , the span V L of the functions χ ,k with ≤ L has dimension 2 L . If P L is the L 2 -orthogonal projection onto V L , we have for all c ∈ C β that We now show a lower bound for the sampling numbers. Let x 1 , . . . , x m ∈ [0, 1). For all ∈ N 0 , we let J be the set of indices 1 ≤ k ≤ 2 such that I ,k contains at least one of these points. Clearly, the cardinality of J is at most m. We choose L ∈ N 0 of order ln m and define

u L := >L |J | -1/2 ( + 1) -β k∈J χ ,k .
This function is contained in K β and for all i ≤ m, we have

h := u L (x i ) = >L |J | -1/2 ( + 1) -β m -1/2 ln -β+1 m,
where h is independent of i. On the other hand, as shown by our previous calculation,

ˆ1 0 u L (x) dx ≤ u L 2 2 -L/2 L -β m -1/2 ln -β m.
Thus, if we set u = h -u L , the function is contained in K β , vanishes at all points x 1 , . . . , x m , and satisfies

u 2 ≥ ˆ1 0 u(x) dx ≥ h - ˆ1 0 u L (x) dx m -1/2 ln -β+1 m.
This shows ρ m (K β ) m -1/2 ln -β+1 m.

The next example shows that, in the case d n (K) L 2 n -1/2 ln -β n with β ≤ 1, no general statement on the sampling numbers is possible. The finiteness of the sequences ensures that K, equipped with the maximum distance, is still a separable metric space, where function evaluation is continuous, and the embedding in L 2 ([0, 1)) is continuous. As above, we obtain d n (K) L 2 n -1/2 (ln n) -1 (ln ln n) -1 .

In particular, we have (d n (K) L 2 ln 1/2 n) ∈ 2 . On the other hand, given x 1 , . . . , x m and ε > 0, we choose L ∈ N 0 with The above norm is the discrete 2 norm for the empirical measure 1 m m i=1 w i δ x i . Analogously, we denote by •, • m the associated discrete inner product.

It is well known that least squares approximations may be inaccurate even when the measured samples are noiseless. For example, if V n is the space R n-1 [X] of algebraic polynomials of degree less than n over the interval [-1, 1] and if we choose m = n, this corresponds to Lagrange interpolation. This setting is known to be highly unstable, failing to converge towards u when given values at uniformly spaced samples, even when u is infinitely smooth. This is the so-called Runge phenomenon [START_REF] Runge | Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten[END_REF]. When considering non-uniform points, for instance Fekete [START_REF] Fekete | Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten[END_REF] or Leja [START_REF] Leja | Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme[END_REF] sequences, better results are obtained, however the Lebesgue constant still increases polynomially with n on general domains, see [START_REF] Andrievskii | A simple upper bound for Lebesgue constants associated with Leja points on the real line[END_REF][START_REF] Chkifa | On the stability of polynomial interpolation using hierarchical sampling[END_REF][START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF].

Regularization by taking m larger than n is therefore required to achieve optimality up to a constant. We present below our main theorem, which provides a new bound on this constant, depending on the ratio between m and n, and on a constant γ ∈ [0, 1] which can be picked arbitrarily by the user. Theorem 7.1. For any m n and γ ∈ [0, 1], the weighted least-squares approximation ũ ∈ V n provided by Algorithm 5 using m evaluations of u at points selected by Algorithm 4 simultaneously satisfies where r = (n -1)/m < 1 is the oversampling ratio.

E( u -ũ 2 L 2 ) 1 + 1 1 -γ 1 (1 - √ r) 2 min v∈Vn u -v 2
In particular, one can take m = n in (7.5) and (7.6), leading to a statement on interpolation in L 2 .

Corollary 7.2. For m = n and any γ ∈ [0, 1], the interpolation ũ ∈ V n of u at random points x 1 , . . . , x n selected by Algorithm 4 achieves the accuracy bounds Instance optimality statements in expected L 2 norm such as (7.5) and (7.7), of the form

E( u -ũ 2 L 2 ) 4n 2 1 -γ min v∈Vn u -v 2
E( u -ũ 2 L 2 ) C u -P n u 2 L 2 ,
have already been obtained in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF] for i.i.d. sampling according to µ, but with a sample size m growing polynomially with n in classical approximation settings. With the weighted least-squares introduced in [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], only a logarithmic oversampling is needed. In [d], such an inequality is reached for some universal constants C and r. However these constants are quite large, and the proof involves the Kadison-Singer solution [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF], resulting in exponential computational complexity with respect to n.

On the other hand, uniform bounds such as (7.6) and (7.8) follow the approach developed in [START_REF] Dai | Random points are good for universal discretization[END_REF][START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Pozharska | A note on sampling recovery of multivariate functions in the uniform norm[END_REF][START_REF] Temlyakov | On optimal recovery in L 2[END_REF], attaining sharper constants, especially in the case where m is close to n. Note that by allowing the right-hand side to be infinite, we do not require u and functions from V n to belong to L ∞ .

A third context where similar bounds can also be obtained is the deterministic L 2 setting, in which more regularity is assumed on u through a nested sequence of approximation spaces (V n ) n 1 . If ( u -P n u 2 L 2 ) n 1 is summable, the approximation error can be bounded almost surely by tails of this sequence in a Hilbert space while asking a certain control on the norm of each term. This lower bound can be rewritten in the following equivalent ways.

-Matrix formulation: G m αI,

where A B means that the hermitian matrix A -B is positive semi-definite. -Frame inequality:

1 m m i=1 w i n j=1 c j ϕ j (x i ) 2 α|c| 2 , c ∈ C n .
-Marcinkiewicz-Zygmund inequality:

1 m m i=1 w i |u(x i )| 2 α u 2 L 2 , u ∈ V n .
All three versions have been extensively used in the litterature for emphasizing the relations with subsampling of frames and discretization of continuous norms, see [START_REF] Freeman | The discretization problem for continuous frames[END_REF][START_REF] Limonova | On sampling discretization in L 2[END_REF][START_REF] Nitzan | A few remarks on sampling of signals with small spectrum[END_REF][START_REF] Nitzan | Exponential frames on unbounded sets[END_REF]. Here we adopt the matrix formulation for concision.

We start with the following greedy Algorithm 4, inspired by [START_REF] Lee | Constructing linear-sized spectral sparsification in almost-linear time[END_REF] and [START_REF] Lee | An SDP-based algorithm for linear-sized spectral sparsification[END_REF], which are themselves randomized versions of [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF]. The algorithm ouputs points x i and weigths w i from which one can compute the discrete inner product • m and the Gram matrix G m = 1 m (A m+1 + (mδ -n)I). Given a matrix R, one main tool in the analysis is the effective resistance ϕ(x) † Rϕ(x), coined after [START_REF] Spielman | Graph sparsification by effective resistances[END_REF], which quantifies the interaction between ϕ(x) and the eigenvectors of R. During the entire process, the parameters γ ∈ [0, 1] and δ ∈ (0, 1) are fixed. Define κ i (x) = ϕ(x) † R i ϕ(x)χ ϕ(x) † Riϕ(x) γ 1-δ δ 6:

Draw x i according to κi(x)dµ(x) ´κidµ 7:

Let w i = 1 κi(x i )

8:

Update A i+1 = B i + w i ϕ(x i )ϕ(x i ) † 9: end for Before analyzing the algorithm, a few comments are in order.

-Contrarily to most variations on the algorithm presented in [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF], no upper potential is used to bound the eigenvalues of A i from above. In fact, we will only need an upper bound on E( v 2 m ) in the randomized setting, and a bound on the weights w i in the deterministic setting.

-The initialization A 0 = n is arbitrary, this particular choice is made in order to have Tr(A -1 0 ) = 1 and δ < 1. By a scaling invariance, one could multiply all A i , B i , w i and δ by the same factor, while dividing all R i , κ i and γ accordingly, without changing the results.

-In comparison to [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF], we exploited a translation invariance to replace the lower barrier and lower potential Φ (A) = Tr(A -I) -1 by 0 and Tr(A -1 ) respectively. This choice is only made to simplify notations.

Remark 7.5. An important application is the case of a finite set Ω = {x 1 , . . . , x N }, with µ the uniform measure on Ω. Then the orthonormality (7.10) of the basis ϕ rewrites

1 N N i=1 ϕ i ϕ † i = I,
where ϕ i = ϕ(x i ), and we recover a randomized subsampling algorithm for sums of rank-one matrices. The idea of using the algorithm of [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF] with non-discrete measures seems to originate in [START_REF] Dai | Entropy numbers and Marcinkiewicztype discretization[END_REF], which investigates Marcinkiewicz-type discretization theorems.

We now address the performance of the algorithm. We start with the following loop invariant.

Lemma 7.6. The algorithm is well-defined, and for any 1 i m + 1, the matrices A i and B i are positive definite with Tr(A -1 i ) = 1.

Proof. We use an induction on index i. Observe that Tr(A -1 1 ) = 1. For 1 i m, assume that A i is positive definite with Tr(A -1 i ) = 1. Then

λ min (A i ) = λ max (A -1 i ) -1 (Tr A -1 i ) -1 1 > δ, so B i is positive definite. As B i ≺ A i implies A -1 i ≺ B -1
i , the denominator in the definition of R i is positive. Next, using (7.10), ˆΩ ϕ(x) † R i ϕ(x)dµ(x) = ˆΩ Tr(R i ϕ(x)ϕ(x) † )dµ(x) = Tr(R i ).

We rewrite the computations of [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF], Lemma 3.5 and Claim 3. where we used the definition of R i in the first line, equations (7.12) and (7.13) to go to the second line, the fact that δ < 1 and Tr Y = 1 to reach the third, and finished with a Cauchy-Schwarz inequality. As γ 1, this proves that

µ x ∈ Ω : ϕ(x) † R i ϕ(x) γ 1 -δ δ > 0,
hence ´Ω κ i dµ > 0 and it is possible to draw x i according to its prescribed law. Finally, by the Shermann-Morrison formula,

Tr(A -1 i+1 ) = Tr B -1 i - ϕ(x i ) † B -2 i ϕ(x i ) 1/w i + ϕ(x i ) † B -1 i ϕ(x i ) = Tr A -1 i = 1,
which concludes the induction.

δ γ(1 -δ) |u(x i )| 2 δ γ(1 -δ) u 2 L ∞ .
Finally we consider the third statement. We denote

Ω i = {x ∈ Ω : κ i (x) > 0} = x ∈ Ω : ϕ(x) † R i ϕ(x) γ 1 -δ δ
and observe that ˆΩ κ i dµ = ˆΩ ϕ(x) † R i ϕ(x)dµ(x) -ˆΩc i ϕ(x) † R i ϕ(x)dµ(x)

Tr(R i ) -ˆΩ γ 1 -δ δ dµ (1 -γ) 1 -δ δ .
Therefore

E u 2 m = 1 m m i=1 E w i |u(x i )| 2 = 1 m m i=1 E ˆΩi 1 κ i (x) |u(x)| 2 κ i (x) ´Ω κ i dµ dµ(x) 1 m m i=1 E u 2 L 2 ´Ω κ i dµ δ (1 -γ)(1 -δ) u 2 L 2 ,
which concludes the proof.

Weighted least-squares

Recall that the least-squares solution can be computed by solving the linear system (7.11). We use the sample (x 1 , . . . , x m ) and weights (w 1 , . . . , w m ) provided by Algorithm 4. Proof of Theorem 7.1. We follow an approach similar to Lemma 1 in [d], which consists in using the results from Proposition 7.7 to exchange continuous norms • L 2 and discrete norms • m . Denote g = u -P n u the residual, for which according to (7.2) we have

Algorithm 5 Weighted least-squares approximation

g 2 L 2 = u -P n u 2 L 2 = min v∈Vn u -v 2 L 2 .
By Pythagoras theorem one has u -ũ 2 L 2 = g 2 L 2 + ũ -P n u 2 L 2 , so that we only need to bound the term

ũ -P n u 2 L 2 = P m n (u -P n u) 2 L 2 = P m n g 2 L 2
in expectation. This is achieved thanks to Proposition 7.7 using the estimate

E( P m n g 2 L 2 ) g 2 L 2 = E( P m n g 2 L 2 ) E ( P m n g 2 m ) E P m n g 2 m E ( g 2 m ) E g 2 m g 2 L 2 m mδ -n + 1 × 1 × δ (1 -γ)(1 -δ)
.

Recalling that r = (n -1)/m, this last bound is equal to 1/(1 -γ) times

mδ (mδ -n + 1)(1 -δ) = 1 (1 -r/δ) (1 -δ) = 1 (1 - √ r)
estimates at the same time, up to a factor 2 in the stability constants, compared to the optimal choices γ = 0 in the randomized setting and γ = 1 in the deterministic setting.

Remark 7.10. In the randomized setting, we do not need (Ω, A, µ) to be a probability space, a measure space is sufficient. The uniform results also hold when µ is a measure of finite mass, if one multiplies all the L ∞ norms by a factor µ(Ω). Lastly, Theorem 7.3 holds for any sigma-finite measure µ, by rescaling µ with a density of mass 1.

Remark 7.11. In the deterministic setting, it is not necessary to draw each point x i with a density proportional to κ i (x). If g is uniformly bounded (and not just essentially bounded), one can drop the "almost sure" limitation, and the only requirement is that

ϕ(x i ) † R i ϕ(x i ) γ 1 -δ δ , 1 i m,
which may be easier from a numerical point a view. However, it seems that searching for x i by rejection sampling works better in practice than sorting Ω and looking for the first point that achieves this condition.

Remark 7.12. Moreover, in the deterministic setting, one can replace each weight w i by its upper bound for any v ∈ V n and g ∈ L ∞ , and therefore achieves the bound (7.6). We refer to [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF] for earlier results on subsampling of frames with unweighted discrete norms.
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 112113 Figure 1.3 -Example of a partition of Ω = [-1, 1] 2 into d = 2 subdomains Ω 1 = [-1, 0] 2 and Ω 2 = Ω \ Ω 1 . If we take a source term f = 1 and a piecewise constant diffusion coefficient a = y j on Ω j with y 1 1 and y 2 = 1, the solution u(y), plotted on the right, is almost constant on Ω 1 , with a value close to zero due to the homogeneous Dirichlet boundary conditions

. 4 .

 4 Equivalently, we have V z = u + W ⊥ m and we could have defined u * = arg min v∈Vz v -P Vn v V and ũ = arg min v∈Vn P Wm (u -v) V .

Figure 1 . 4 -

 14 Figure 1.4 -Approximation of u in a linear reduced model V n , based on measurements by projection on W m .

Theorem 1 . 15 .

 115 Let r ∈ N and a 1 , . . . , a m ∈ C n such that 1 m m i=1 a i a † i = I and |a i | 2 δ for 1 i m. Then there exists a partition {S 1 , . . . , S r } of {1, . . . , m} such that

d j=1 y j χ

  Ωj , which corresponds to the affine form (2.5) with a = 0 and ψ j = χ Ωj for 1 j d, now with Y := (0, ∞) d . (2.11) We take (2.11) as the definition of the parameter domain Y for the remainder of this chapter. The solution u(y) satisfies the variational formulation d j=1

Figure 2 . 1 -

 21 Figure 2.1 -Partition of [0, 1] d by the inverse rectangles R -1 in the case d = 2.

Figure 2 . 2 -

 22 Figure 2.2 -A Lipschitz partition of Ω (left) and a counter-example (right) since Ω 1 ∪ Ω 4 is not Lipschitz.

)

  for all y ∈ Y = (0, ∞] d . The positive constants c and C only depend on d, C f , c f , and on the geometry of the partition through the constant C 0 .

- 4 ,

 4 with n = 15, 36, 55 for d = 3, and n = 35, 120, 220 for d = 4, which is far better than the value of exp(-n 1 d ).
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 23 Figure 2.3 -Different partitions of Ω = [-1, 1] 2 into four subdomains, considered in the numerical tests
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 24 Figure 2.4 -Galerkin (left) and H 1 0 (right) projection error, both measured in H 1 0 relative error, maximized over the parameter domain, for different reduced bases, case d = 1.

Figure 2 .

 2 Figure 2.4 displays on the left the evolution of the maximal relative error of the Galerkin projection
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 25 Figure 2.5 -Galerkin and H 1 0 projection error (both measured in H 1 0 relative error maximized over the parameter domain) for different reduced bases, case d = 2.
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 26 Figure 2.6 -The Galerkin projection of Greedy Galerkin method for increasing dimensionality in geometries satisfying (left) or not (right) the assumptions.
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 31 Figure 3.1 -Example of extension of the indicator of a half-plane on B to the indicator of a smooth domain D on Ω
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 32 Figure 3.2 -Convergence curves and rates for the linear and nonlinear recovery methods

Figure

  Figure3.2 shows the convergence rates of the three methods in the L 1 norm. The expected h 2 decay is observed in both non-linear methods while the linear method lays behind with a decay rate of h. It is relevant to note that although both non-linear methods benefit from the same rate, the associated constants differ by an order of magnitude, showing the practical improvement gained by imposing consistency. This improvement is also visible on Figure3.3 which shows that in the LinearInterface method, the interfaces that minimize the

Figure 3 . 3 -

 33 Figure 3.3 -(a) The target function, (b) its recovery by PiecewiseConstant showing the cell-average data, and the recovered boundaries by (c) LinearInterface and (d) LinearInterfaceCC methods.

Theorem 3 . 22 .

 322 One has IOP (n, C 0 ) ⇒ N SP (2n, C 0 ) and conversely N SP (2n, C 1 ) ⇒ IOP (n, 2C 1 ).

  which by (3.23) and (3.22) gives N SP (2n, C 1 ) with C 1 = 3 and IOP (n, C 0 ) with C 0 = 5.
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 34 Figure 3.4 -Structure of the proof, each leaf corresponds to a different case, and each node contains a general treatment valid for all its sons

Figure 3 . 5 -

 35 Figure3.5 -Left: 3 × 3 stencil S, with x its center, and an example of function u ∈ V 2,T with directing vector n u and offset c u > 0. Here the dotted line corresponds to ∆ u , and the shaded region to u = 1, while u = 0 elsewhere. Right: Representation of Case 1 ( n u = n v ), here c v < 0 < c u so w = -1 on the shaded region and w = 0 elsewhere

Node c :

 c Consider the situation where ( n u • e 2 )( n v • e 2 ) > 0. As n u = n v and n u = -n v , the lines ∆ u and ∆ v intersect at one point X ∈ R 2 . Moreover, the above condition implies X + e 2 / ∈ C. Using the fact that | arg(∆)| π 4 , we also get X + e 1 / ∈ C.

6 - 5 Case 2 :Case 3 :

 6523 Figure 3.6 -Cases 2, 3, 4, and 5

Case 5 : 2 h -z z 2 , 4 .

 5224 If X is in the lower central cell T , denote l = |∂T ∩ C + | ∈ (0, h) the distance between ∆ u and ∆ v when they pass from T to the central cell T , and z = dist(X, T ) ∈ (0, h) the depth of the point of intersection. Then |T ∩ C + | = zl 2 and |T ∩ C -| zl so min(|T ∩ C + |, |T ∩ C -|)hl On the other hand, the parallelogram of base ∂T ∩ C + , of height h, and with sides orthogonal to ∆ belongs to (S \ T ) ∩ C + (it does not escape to the right of S because ∆ is close to the horizontal axis, so the sides of the parallelogram are at an angle at most π 4 with the vertical axis), and has an area hl, which proves that
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 37 Figure 3.7 -Generic situation for Node d, and partition of S into 5 columns: here, in addition to the 4 vertical lines delimiting the cells of S, we added 2 vertical lines passing through the intersections of ∆ with the 2 horizontal cell delimiters

Figure 3 . 8 -Cases 6 , 7 , 8 , 9 and 10 Case 6 :

 38678106 Figure 3.8 -Cases 6, 7, 8, 9 and 10

Case 8 :

 8 applying a symmetry with respect to the horizontal axis and exchanging C + with C -brings us back to Cases 6 and 7. If T is the central cell, P 1 , P 2 ∈ C + and P 3 , P 4 ∈ C -the two other cells are included in C + and C -, and we conclude as in Case 6.Case 9:If T is the central cell, P 1 , P 2 ∈ C + , P 3 ∈ C -but P 4 / ∈ C -, the top cell is included in C + , and there is a rectangle R ⊂ C -of same width and height as T ∩ C -in the bottom cell, so
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 39 Figure 3.9 -Cases 11, 12, 13, 14 and 15

Theorem 4 . 3 .

 43 Under the sampling budget conditionm γ w k n L ∞ n ln(2n/ε),(4.14)

Algorithm 1 1 : 2 :

 112 Offline stage of a two-step sampling strategy Draw a certain amount M of points y 1 , . . . , y M independently according to µ Define the inner product u, v M := 1 M M i=1 u(y i ) v(y i ) (4.19)

3 : 4 : 2 5:

 342 Construct from (φ j ) 1 j n an orthonormal basis ( ϕ j ) 1 j n of V n with respect to • M Define the approximate inverse Christoffel functionk n (x) = 1 n n j=1 | ϕ j (x)| Define the normalization factor Z = ´Ω k n dµ, and the sampling measure

Theorem 4 . 7 .c 2 c 1

 471 Assume that (4.22) holds for some 0 < c 1 c 2 . Then, under the sampling budget condition m γ n ln(2n/ε), (4.23) one has P x G m -I 2 1 2

4 γ

 4 ln(2n/ε) .

Corollary 4 . 10 . 1 2 2 1 2 }

 410122 Assume that the amount of sample points M used in the offline stage described by Algorithm 1 satisfies (4.28) for some given ε > 0. Then, under the sampling budget condition m 3 γ n ln(2n/ε), (4.29)for the online stage, the event E := { G m -I 2 and G M -I satisfies P(E c ) 2ε. In addition, one has the convergence bounds

. 31 ) 4 γ 1 2

 3141 where η(m) = 12 n m ln(2n/ε) . Proof. The estimate on P(E c ) follows from a union bound. Since G M -I 2 ensures the framing (4.22) with c 1 = 2/3 and c 2 = 2, the bound (4.30) follows from (4.24) in Theorem 4.7. Finally, the bound (4.31) follows from (4.30) and the probability estimate on E c by the same argument as in the proof of Theorem 4.3.

Algorithm 2 1 : 2 : for p = 1 to q do 3 :

 2123 Offline stage of a multi-step sampling strategy Start with w 0 = 1 and σ 0 = µ Draw a certain amount M p of points y p,1 , . . . , y p,Mp independently according to σ p-1

Algorithm 3 2 :

 32 Offline stage of a multi-step adaptive sampling strategy 1: Start with w 0 = 1, σ 0 = µ and m 0 = 0 for p = 1, 2, . . . do 3:

Lemma 4 . 19 .

 419 For x ∈ Ω, let R be such that x ∈ R ⊂ Ω and β |Ω| |R| for some β ∈ (0, 1]. Then

Figure 4 . 1 -

 41 Figure 4.1 -The three domains (disc, polygon, cusp) and the function k n for n = 231.

  Figure 4.1 displays the three domains and the value of k n for the maximal value n = 231 which, as explained by the results in Section 4.5, grows near to the boundary, faster at the outward corners (and even faster at outward cusps), and slower in smooth regions or at re-entrant singularities.

c 1 .

 1 We first illustate the sample complexity M in the offline stage of Algorithm 1. As discussed in § 4.3.2, a sufficient condition to ensure the framing (4.22) between k n and k n is the matrix framing property (4.26) which expresses the fact that the condition number of G M satisfies the bound κ(G M ) c 2 For the constants c 1 = 2/3 and c 2 = 2, this occurs with high probability when M is larger than K n , or a known upper bound B(n), multiplied by logarithmic factors, as expressed by (4.27).
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 42 Figure 4.2 -Conditioning of the matrix G M for the disc (left), polygon (center) and cusp (right) domains, averaged over 100 realizations, with theoretical value of M suf (n) (full curve) and adjusted value M adj (n) (dashed curve). The x-coordinate stands for n and the y-coordinate for M ; moreover, the plotted values are saturated at 10 since we are only interested in small condition numbers.

Figure 4 .

 4 Figure 4.2 displays the condition number κ(G M ), averaged over 100 realizations of the offline sample {y 1 , . . . , y M }, as a function of n and Mn, for the three considered domains. We observe a transition region that illustrates the minimal offline sampling budget M min (n) that should be practically invested in order for G M to be well conditioned. For example, if M min (n) is defined as the minimal value of M such that E(κ(G M )) 3, this value can be estimated and visualized on Figure4.2 as the transition to the dark blue color.We also draw in full line the value of the sufficient value

Figure 4 . 3 -

 43 Figure 4.3 -Conditioning of the matrix T for the disc (left), polygon (center) and cusp (right) domains, and value of M emp (n) (dashed curve), averaged over 100 realizations.

Figure 4 .

 4 3 displays the conditioning κ(T ) again averaged over 100 realizations of the offline sample, as well as the curve showing the empirical value M emp (n) which corresponds to the smallest value of M such that κ(T ) 3. It reveals the relevance of the empirical approach: due to the very good fit between κ(T ) and κ(G M ), the value M emp (n) appears as a much sharper estimate for M min (n) than M suf (n).
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 44 Figure 4.4 -Conditioning of G m = ϕ j , ϕ k m depending on m and n for the disc (left), polygon (center) and cusp (right) domains, using an average over 100 realizations with k n (up), or a single realization with the estimated k n (down).

Figure 4 .

 4 Figure 4.4 displays the condition number κ(G m ), as a function of m and n, for both choices and the three domains.In order to illustrate the fluctuations of κ(G m ), we display an averaging over 100 realizations when using k n , and one single realization when using k n . While the behaviour for a single realization is more chaotic, we find that in both case, as expected, the online sampling budget m(n) which ensures that G m is well conditioned, for example κ(G m ) 3, grows linearly with n (up to logarithmic factors), now independently of the domain shape.
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 45 Figure 4.5 -Mean-square reconstruction error for the disc (left), polygon (center) and cusp (right) domains, with total polynomial degree p = 15, and sampling measures µ (blue), σ * (orange), σ (green). Horizontal red line: best approximation error e n (u) 2 L 2 = 10 -4 . Vertical black line: polynomial dimension n = 136.

Figure 4 .

 4 Figure 4.5 displays the error curves (obtained by averaging u -P m n u 2L 2 over 100 realizations) for the three domains and polynomial degree p = 15 that corresponds to the dimension n = 136. For all domains, we observe that the best approximation error is attained up to multiplicative factor 2 with a sampling budget m that is thrice larger than n, when using either the optimal sampling measure σ * based on k n or the measure σ based on k n obtained in the offline stage Algorithm 1. This does not occur when sampling according to the uniform measure µ: the error remains orders of magnitude above the best approximation error and this effect is even more pronounced as the domain becomes singular. This reflects the fact that with the uniform sampling, the budget m needs to be larger than n K n , which has faster growth with n for singular domains.

n k=1 c k ϕ k , since c = (c 1

 1 , . . . , c n ) † solves the system of normal equationsG m c = b,

Lemma 5 . 7 . 1 - 5

 5715 Let a 1 , . . . , a m ∈ C n be vectors of norm |a i | 2 δm for i = 1, . . . , m, satisfying δ < α β. Then there exists a partition of {1, . . . , m} into two sets S 1 and S 2 such that

1 n i∈J a i a † i <n c 2 I n and 1 n i∈J a i a † i c 3

 123 I,where A <n := (A k,l ) k,l<n and A B denotes the Loewner order of Hermitian matrices A and B.

Lemma 6 . 20 . 2 2i=1 bi b † i = I p and bi 2 2

 62022 Let b 1 , . . . , b q ∈ C p with b i some β ≥ α > 100 δ > 0. Then there is a partition of {1, . . . , q} into sets J 1 , . . . , J t such that, for all s ≤ t, Since the matrixM = q i=1 b i b †i is positive, we may define bi = M -1/2 b i . Then we have q ≤ δ/α =: δ < 1/100. By Corollary B and Lemma 1 in

  for every J s from the partition. Moreover, the inequality implies that one of the sets J = J s from the partition must satisfy |J ∩ {1, . . . , m}| ≤ m t ≤ 43200 n.

  the notation A ≥n = (A k,l ) k,l≥n for a matrix A.As in earlier papers, we use the weighted least squares estimatorP m n u := argmin v∈Vn m i=1 |u(x i ) -v(x i )| 2 κ n (x i )

Φ * Φ = γ 2 n m i=1 a i a † i ≥n and therefore its spectral norm is bounded by 21600 n γ 2 n 1 / 2 2 2n ξ u 2 2

 21222 k n and ξ u = ( u, σ k ϕ k H ) k n .The matrix Φ satisfies . Thus,F (u -P n u) (C m ) ≤ 21600 n γ 2 = 21600 n γ 2 n Q n u 2 H .In summary, as 1 + 21600/50 = 433, we obtain for all 1 ≤ n < N the bound u -u ∈ H and some m ≤ 43200 n. Taking the supremum over u ∈ K and using that

Remark 6 . 25 .

 625 The condition on the point sets can also be given by finite matrices that are related to the kernel K of the Hilbert space. For this, let us define k n (x, y) := 1 n k<n ϕ k (x)ϕ k (y), and r n (x, y) :=1 n k≥n σ 2 k ϕ k (x)ϕ k (y).The non-zero singular values of DD † are the same as those of D † D, and the non-zero singular values of ΦΦ † are the same as those of Φ † Φ, where D and Φ are from above. Hence, the algorithm P m n based on points x 1 , . . . , x m satisfies the error bound above (up to a constant) if c ≤ 1 n λ n DD † = λ n   k n (x i , x j )

2 ≤ 4 ∈N0n2 +1 2α d n2 - 2 (K) 2 L 2 ≤ 4 ∈N0.

 242224 and obtain for any n ∈ 8N and u ∈ K 0 thatu -P n u 2 H = k≥n k 2α |û(k)| 2 ≤The last expression is finite for n ≥ 8k 0 , since 2α -2/p < 0. This implies that u ∈ H andu -P n u H C n α 1 n

2 L 2 ≤ 32 k≥ n/ 8 ln

 22328 [START_REF] Anderson | Extensions, restrictions, and representations of states on C * -algebras[END_REF] becomesu -P n u 2 H = k≥n |û(k)| 2 k ln 2s (k) ≤ k≥n |û(k)| 2 n≤r≤2k ln 2s (r) ≤ r≥n ln 2s (r) k≥r/2 |û(k)| 2 ≤ 4 r≥n ln 2s (r) d r/8 (K) 2s (8k + 7) d k (K) 2 L 2 .

Example 6 . 30 . 2 k=1c

 6302 For ∈ N 0 and k ∈ {1, . . . , 2 }, define the interval I ,k = [(k -1)2 -, k2 -) and denote χ ,k the indicator function of I ,k . Let β > 1. We set C β := c = (c ,k ) ∈N0, 1≤k≤2 : 2 k=1 |c ,k | 2 ≤ ( + 1) -2β for all ∈ N 0 and consider the class K β := u c = ∈N0 ,k χ ,k : c ∈ C β .

u c -P L u c 2 ≤( 2 -

 22 /2 ( + 1) -β 2 -L/2 L -β , and thusd 2 L (K β ) 2 -L/2 L -β , or equivalently d n (K β ) n -1/2 ln -β n.

Example 6 . 31 . 2 k=1c

 6312 Similar to Example 6.30, we define C := c = (c ,k ) ∈N0, 1≤k≤2 : 2 k=1 |c ,k | 2 ≤ ( + 1) -2 ln( + e) -2 for all ∈ N 0 and consider the class K := u c = ∈N0 ,k χ ,k : c ∈ C, c finite .

>L 2 -

 2 /2 ( + 1) -1 (ln( + e)) -1 ≤ ε, define the sets J as above, and choose L ∈ N 0 such thath := L =L+1 |J | -1/2 ( + 1) -1 (ln( + e)) -1 ≥ 1.The functionu L := 1 h L =L+1 |J | -1/2 ( + 1) -1 (ln( + e)) -1 k∈J χ ,k ,is contained in K, its integral is at most ε, and it satisfies u L (x i ) = 1 for all i ≤ m. Then u = 1 -u L is contained onto V n with respect to v

Algorithm 4 sampling 1 : 1 2: for i = 1 to m do 3 : 4 : 1 i-Tr A - 1 i- 1 B - 2 i-

 411341112 Randomized Initialize A 1 = nI, 0 γ 1, 0 < δ < Let B i = A i -δI Define R i = Tr B -

6 .Tr Z 2 -

 62 Using the eigendecompositionA i = n j=1 λ j u j u † Tr(Y Z) = n j=1 1 (λ j -δ) 2 -1 λ j (λ j -δ) = n j=1 δ λ j (λ j -δ) 2 = δ Tr(Y Z 2 ).

Tr R i = Tr Z 2

 2 Tr Z -Tr Y -Tr Z = Tr(Y Z) + δ Tr(Y Z 2 ) δ Tr(Y Z) -Tr Y -δ Tr(Y Z)

1 : 4 :

 14 Evaluate u(x 1 ), . . . , u(x m )2: Compute 1 m D † f = 1 m m i=1 w i u(x i )ϕ(x i ) 3: Solve G m c = 1 m D † f Return ũ = n j=1 c j ϕ j

  L 2 and g m g L ∞ a.s.

Table 1 .

 1 .1. 1 -Different n-widths can be defined, depending on the constraints on the encoder E and decoder D. Observe that d n a n

	Decoder		
	E	D	linear	nonlinear
	Encoder			
	nonlinear		d n Kolmogorov widths	δ n nonlinear widths
	linear		a n approximation numbers	s n sensing numbers
	point values	ρ n sampling numbers	ρn nonlinear sampling numbers

  , see Lemmas 4.1 and 5.3. Proposition 1.10. Let a 1 , . . . , a m ∈ C n be i.i.d random vectors such that E(a i a † i ) = I and |a i | 2 n a.s. Then

	P λ min	1 m	m i=1

  so u| S is the indicator of a domain delimited by a C s,s function ψ, with ψ C s,s

R,M s,s at point x: as R 3 √ 2 h, the stencil S is contained in the domain {x + x1 e 1 + x2 e 2 : |x 1 |, |x 2 | R},

  Mendelson and Pajor in [130, Theorem 2.1]. We use a version of this result from [135, Theorem 1.1] and [137, Theorem 5.3]. Lemma 6.16. Let m 3 and a 1 , . . . , a m be i.i.d. random sequences from 2 (I) satisfying a i

	surely and E 2→2 1, with E = E(a i a † i ). Then, for 0 ≤ t ≤ 1,		2 2	2n almost
	P	1 m	m i=1	a i a † i -E	2→2	> t	2 3/4 m exp -	mt 2 42 n	.
	For t = 1/2, this probability is less than 1/2 as soon as m ln(4m)		
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in K, vanishes at all points x 1 , . . . , x m , and satisfies

This shows ρ m (K) L 2 ≥ 1 for all m ∈ N 0 .

We note that the lower bounds in Example 6.30 and 6.31 already hold for the easier problem of numerical integration on K β . Thus, the upper bounds from Corollary 6.4 are also sharp for the minimal error of quadrature rules on probability spaces.

Chapter 7

Randomized least-squares with minimal oversampling Abstract. When approximating functions based on point values, least-squares methods provide more stability than interpolation methods, at the expense of increasing the sampling budget. We show that nearoptimal approximation results can nevertheless be achieved, in an expected L 2 sense, as soon as the sample size m is larger than the dimension n of the approximation space by a constant ratio. On the other hand, for m = n, we obtain an interpolation strategy with a stability factor of order n in L 2 and n 3/2 k n 1/2 L ∞ in L ∞ , with k n the normalized inverse Christoffel function. The sampling algorithm is a greedy procedure based on [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF] and [START_REF] Lee | Constructing linear-sized spectral sparsification in almost-linear time[END_REF], with polynomial computational complexity.

Introduction and main results

Let (Ω, A, µ) be a probability space. We consider the problem of estimating an unknown function u : Ω → C from observations (u(x i )) 1 i m of u at chosen points x 1 , . . . , x m ∈ Ω. We assess the error between u and its estimator ũ either in the L 2 (Ω, µ) norm

of such spaces, we would like to compute the best approximation of u in V n . This is given by the L 2 (Ω, µ) orthogonal projection onto V n , which we denote by P n , i.e. P n u is the unique solution to the optimization problem

In general, we may not have access to any information about u apart from its point evaluations. In this case we cannot explicitly compute P n u. A natural approach in this setting is to consider a solution to the weighted least-squares problem

where w 1 , . . . , w m > 0 are weights chosen in order to account for the difference between dµ and the density of sample points. We are interested in the case where m n, which is the regime where this problem may admit a unique solution.

Compared to the orthogonal projection P n for the L 2 norm (7.1), the operator P m n is the orthogonal projector 133 setting [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF][START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Moeller | L 2 -norm sampling discretization and recovery of functions from RKHS with finite trace[END_REF][START_REF] Nagel | A new upper bound for sampling numbers[END_REF], and by tails possibly involving an additional logarithmic factor in general Banach spaces [114, e]. An important application in the case m = n is interpolation in L ∞ , which is obtained by combining (7.8) with an inverse inequality between L 2 and L ∞ in V n . Here we assume that V n ⊂ L 4 (Ω, µ), which is the case as soon as the natural assumption

where nk n is the inverse Christoffel function associated to V n on L 2 (Ω, σ) for any probability measure σ.

Note that in the case m = n, the values of the weights have no importance given that the minimum in (7.3) is zero. In fact, we exhibit a constructive set of points such that the Lebesgue stability constant

L ∞ . Although Fekete points achieve Λ n = n, resulting in a factor only 1 + n in (7.9) (see [START_REF] Novak | Tractability of multivariate problems[END_REF], Theorem 29.7, for a discussion of this result in the context of Information Based Complexity), their computational complexity is exponential in n. Greedy strategies, based on Leja points [START_REF] Andrievskii | A simple upper bound for Lebesgue constants associated with Leja points on the real line[END_REF][START_REF] Chkifa | On the stability of polynomial interpolation using hierarchical sampling[END_REF], have polynomial complexity but only achieve Λ n ∼ n 13/4 or Λ n ∼ n 1+log 2 (3) , even in one-dimensional settings.

Remark 7.4. One can also use an inverse inequality between L 2 and L ∞ in the least-squares regime m > n. This is investigated in [START_REF] Krieg | Sampling recovery in the uniform norm[END_REF] for general classes of functions in Banach spaces, with error bounds in any L p norm. We also refer [START_REF] Geng | On the power of standard information for tractability for L ∞ approximation of periodic functions in the worst case setting[END_REF], where implications in the field of Information Based Complexity are drawn, in a specific Hilbert setting. These two very recent papers rely on the earlier work [START_REF] Pozharska | A note on sampling recovery of multivariate functions in the uniform norm[END_REF], and on the infinite-dimensional adaptation [e] of the result from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF], see also [START_REF] Freeman | The discretization problem for continuous frames[END_REF]. This adaptation is itself based on the pioneering works [START_REF] Krieg | Function values are enough for L 2 -approximation[END_REF][START_REF] Krieg | Function values are enough for L 2 -approximation: Part II[END_REF]. In Section 7.2 we introduce our randomized algorithm and prove that it achieves stability and continuity bounds for sampling discretization of functions in V n . This allows in Section 7.3 our main results. The strategy we adopt is in the same flavor as [d] and [START_REF] Temlyakov | On optimal recovery in L 2[END_REF].

Randomized sampling algorithm

where ϕ(x) † stands for the row vector ϕ 1 (x), . . . , ϕ n (x) . Taking the inner product against ϕ k , the leastsquares solution ũ = n j=1 c j ϕ j ∈ V n from (7.3) can be characterized by

where f = ( √ w i u(x i )) 1 i m and

is the design matrix associated to the basis (ϕ j ) and sample (x i ).

Our goal is to obtain a stability property on the linear system (7.11), or equivalently a lower bound on the eigenvalues of the Gram matrix

if we take δ = √ r. This proves inequality (7.5). In order to deal with (7.6), we denote by

the Chebyshev projection of u onto V n with respect to the Banach norm • L ∞ , and take g = u -P ∞ n u the associated residual. By an argument similar to [START_REF] Cohen | Optimal weighted least-squares methods[END_REF] and [START_REF] Temlyakov | On optimal recovery in L 2[END_REF], we have

and we conclude by bounding the operator norm P m n L ∞ →L 2 by

where the last inequality stems from the same reasons as above.

Proof of Corollary 7.2. Taking m = n, we simply observe that r = 1 -1 n and thus

Remark 7.8. Some intuition is given in [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF], where an explanation is given on why their algorithm cannot achieve a better bound than the so-called twice-Ramanujan bound

This in some sense implies that the analysis of Algorithms 4 and 5 yields at least a factor (1 -√ r) -2 in Theorem 7.1 when r is close to 1, and therefore a factor of order 4n 2 in Corollary 7.2. When r is close to 1, the factor (1 -√ r) -2 is also slightly better than the (1 -r) 3 obtained in [START_REF] Bartel | Constructive subsampling of finite frames with applications in optimal function recovery[END_REF].

Proof of Theorem 7.3. Let σ be a probability measure on Ω, and define the associated inverse Christoffel function

.

The rest of the proof follows the same path as made previously: by letting g = u -P ∞ n u, we have

and according to (7.14), with µ replaced by σ, we also that

which concludes the proof. Note that in Theorem 7.3 the choice of σ is left to the user. An important question is whether one can find a probability measure σ making k n L ∞ bounded for general spaces Ω and V n , which would result in a Lebesgue interpolation constant of order O(n 3/2 ). To our knowledge, this is an open problem. Remark 7.9. A nice feature of the randomized and deterministic results is that they are obtained with the same algorithm, up to a choice of parameter γ. If one takes an intermediate value γ = 1 2 , we attain both