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Abstract

Supervised learning algorithms aim at identifying relationships between inputs and
outputs thanks to training sets of couples (input, output). The most studied setting
of supervised learning deals with high-dimensional inputs but low-dimensional out-
puts, as, for example, real numbers in the case of regression, and the values zero or one
in the case of binary classification. Nevertheless, being able to predict complex out-
puts, such as graphs, sequences, or images, allows for addressing much more practical
tasks. This is the so-called structured output prediction setting.

The question that has motivated this thesis is the following:How to take advantage
of the structure of the output space in order to obtain statistically and computationally
efficient structured prediction methods? We try to answer this question through the lens
of the structured prediction framework of surrogate methods.

More precisely, this manuscript starts by considering the problem of graph pre-
diction. We propose to leverage the Gromov-Wasserstein (GW) distance, carrying a
natural geometry for graph spaces, as a loss function. From this idea, we derive a new
family of models for graph prediction: GW barycentric models. In a second contribu-
tion, we propose a generalization of reduced-rank regression which allows handling non-
linear output spaces. It consists in solving the surrogate regression problems appear-
ing in surrogate methods thanks to a reduced-rank regression estimator. We carry out
a theoretical study of the reduced-rank estimator, taking values in a Hilbert space of
possibly infinite dimension, and prove under output regularity assumptions that the
rank regularization is statistically and computationally beneficial. Our results extend
the interest of reduced-rank regression beyond the standard setting where the op-
timum is assumed to be low-rank. In a third contribution, we propose the principle of
loss regularization. The method aims at obtaining a statistical and computational gain
in structured prediction, by exploiting additional output data, and regularity inform-
ation on the loss function. We study theoretically under which setting the method is
beneficial. Our results show, intuitively, that one had better adapt the level of detail
of the structured outputs predicted with respect to the quantity of training data, to
reduce the effects of the output variance (or labeling noise), and also to alleviate the
computational complexity of the pre-image in surrogate methods.



Résumé

Les algorithmes d’apprentissage supervisé ont pour objectif d’identifier des re-
lations entre des entrées et des sorties en utilisant des ensembles d’entraînement
constitués de couples (entrée, sortie). La situation d’apprentissage supervisé la plus
étudiée considère des entrées de grande dimension et des sorties de faible dimen-
sion, comme les nombres réels dans le cas de la régression, ou les valeurs zéro ou un
dans le cas de la classification binaire. Néanmoins, être capable de prédire des sorties
complexes, comme des graphes, des séquences ou des images, permet de résoudre
un éventail plus large de tâches en pratique. C’est précisément le défi adressé par la
prédiction structurée.

La question qui a motivé cette thèse est la suivante : comment exploiter la structure
de l’espace de sortie pour obtenir des méthodes de prédiction structurée qui soient à la
fois statistiquement et computationnellement performantes ? Plus précisément, com-
ment tirer parti d’une faible dimension intrinsèque des données de sortie pour obtenir
des gains statistiques et computationels ? Nous cherchons à répondre à cette question
à travers le prisme des méthodes à noyaux, et plus particulièrement des méthodes
de substitution pour la prédiction structurée. Ces méthodes de substitutions consist-
ent à substituer les problèmes de prédiction structurée par des problèmes de régres-
sion, plus aisés à résoudre, car bénéficiant eux d’espaces de sortie avec des structures
linéaires. Pour faire cela, chacune des sorties possibles est associée à une représenta-
tion dans un même espace de Hilbert. Cette famille de méthode peut être appliquées
à une très large variété de problèmes de prédiction structurée, et bénéficie de solides
garanties théoriques.

Ce manuscrit commence par aborder le problème de la prédiction de graphes.
Nous proposons de mettre à profit la distance de Gromov-Wasserstein, définissant une
géométrie naturelle pour les espaces de graphes, en tant que fonction de perte. Cela
nous conduit à une nouvelle famille de modèles pour la prédiction de graphes : les
modèles barycentriques de Gromov-Wasserstein. Deux versions de ces modèles sont
proposées : une version non-paramétrique et une version utilisant un réseau de neur-
ones. Nous fournissons des garanties statistiques pour la version non-paramétrique,
notamment en démontrant la consistance, et aussi des bornes d’excès de risque. En
outre, nous réalisons des expériences numériques à la fois sur un problème synthétique
et sur un problème de prédiction de métabolites. Une implémentation Python de cette
méthode est disponible sur GitHub.

Dans notre deuxième contribution, nous proposons une généralisation de la ré-
gression à rang réduit aux espaces de sortie non linéaires. La méthode proposée con-
siste à résoudre les problèmes de régression des méthodes de substitution en utilis-
ant un estimateur de régression à rang réduit. Nous menons une étude théorique de
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l’estimateur à rang réduit proposé, et prouvons, sous des hypothèses de régularité de
sortie, que la régularisation de rang offre des avantages à la fois statistiques et com-
putationnels. En particulier, nos résultats étendent l’intérêt de la régression à rang
réduit au-delà du cas standard où l’optimum est supposé de rang fini et faible. La
méthode de prédiction structurée de substitution induite par cet estimateur à rang
réduit bénéficie des mêmes garanties statistiques que l’estimateur à rang réduit. Nos
résultats théoriques sont illustrés par une étude expérimentale sur différentes tâches
de prédiction structurée : la reconstruction d’image, la classification multilabels, et
l’identification de métabolite.

Dans une troisième contribution, nous introduisons un principe de régularisation
de la fonction de perte. La méthode proposée vise à obtenir des améliorations à la
fois statistiques et computationnelles en prédiction structurée, grâce à l’exploitation
de données de sortie supplémentaires, d’informations sur la régularité de la fonc-
tion de perte, et de la faible dimension intrinsèque des données de sortie. Nous étu-
dions théoriquement les situations dans lesquelles cette méthode est effectivement
bénéfique sur le plan statistique et computationnel. Les résultats théoriques sont il-
lustrés par des études expérimentales sur différentes tâches de prédiction structurée:
la reconstruction d’image, et la prédiction sur une sphère.

Finalement, les résultats de la deuxième et troisième contributions répondent à la
question motivant la thèse en démontrant comment il est possible de tirer parti de la
faible dimension intrinsèque des données de sortie pour obtenir des gains statistiques
et computationels. Ces gains sont obtenus en contrôlant le niveau de détail des objets
structurés prédits (via le contrôle de la dimension des représentations des sorties),
en fonction de la quantité de données d’entraînement disponible, pour réduire les
effets de la variance de sortie (ou du bruit d’étiquetage) d’une part, et pour alléger la
complexité computationnelle de la prédiction d’autre part.



Notation

X Input space

Y Structured output space

Z Output Hilbert space

Hx Input embedding Hilbert space

Hy Output embedding Hilbert space

H̃y Alternate output embedding Hilbert space

φ : X 7→Hx Input embedding map

ψ : Y 7→Hy Output embedding map

ψ̃ : Y 7→ H̃y Alternate output embedding map

∆ : Y ×Y 7→R Loss function

χ,ψ : Y 7→Hy Implicit Loss Embedding maps

H Hypothesis space for regression

F Hypothesis space for structured prediction

n/nte Quantity of training/test data

∥ .∥HS Hilbert-Schmidt norm

∥ .∥∞ Operator norm

h∗ψ = x→ Ey|x[ψ(y)] Least-squares solution

ĥψ = x→ Ey|x[ψ(y)] Least-squares estimator

cψ = supy∈Y ∥ψ(y)∥2 Upper bound of the embedding norm

Cψ = E[ψ(y)⊗ψ(y)] Covariance of the embedding

ϵψ = ψ(y)− h∗ψ(x) Noise

Eψ = E[ϵψ ⊗ ϵψ] Output covariance or noise covariance

1A Indicator function of the set A

For the sake of readability, subscripts and superscripts may be omitted when the
dependency is clear from the context.





1
Introduction

Structured prediction goes beyond the standard supervised learning settings of clas-
sification and regression by dealing with complex outputs. Being able to predict se-
quences, graphs, functions, probability distributions, rankings of sets, allows to ex-
pand the interest of supervised learning to much more real-world applications: in
computational biology (molecule structure prediction (Brouard et al., 2016a), enzyme
network prediction (Geurts et al., 2006)), in natural language processing (handwriting
recognition (Cortes et al., 2005; LeCun et al., 2015), language translation (Bahdanau
et al., 2015), part-of-speech tagging and parsing (Collins, 2002)), or in computer vis-
ion (image segmentation (Nowozin et al., 2011), reconstruction of images (Weston
et al., 2003), and 3D human pose estimation (Li and Chan, 2014), and scene graph
prediction (Chen et al., 2019)).

The challenge of structured prediction is to deal with high-dimensional and non-
linear output spaces. Without correct handling of the output structure, learning meth-
ods suffer from the curse of dimensionality. Namely, statistical and computational per-
formances deteriorate exponentially when the output dimension increases.

In this thesis, we try to address this challenge through the lens of surrogate methods.
We propose structured prediction methods, and support them both with theoretical
guarantees and experimental assessments on synthetic and real-world data. Our con-
tributions mainly rely on nonparametric estimation tools, from the literature of kernel
methods. We detail the research work undertaken throughout this thesis in the fol-
lowing section.

1.1 Motivations and contributions

The goal of this section is to present the questions that have motivated this thesis and
provide an overview of the contributions. To this end, we start by introducing the
questions and the main lines of research that we considered. Then, for the sake of
illustration, we give an example of structured prediction task. Then, we propose a
definition of the notion of structured space. Then, we present the structured predic-
tion framework under which the research work in this manuscript has been mainly
carried out. Finally, it will allow us to outline our different contributions.

Motivating questions and starting point. The general question that guided us in
this work is the following: How to exploit the structure of the output space in order
to design statistically and computationally efficient structured prediction methods? We
were interested in tackling it through the lens of surrogate methods, motivated by
their generality (as applying to a wide range of structured problems), and their amen-
ability to theoretical analysis, allowing us to propose theoretically grounded methods
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with well-understood behaviors. More precisely, we started with the idea of dealing
with the curse of dimensionality occurring from the dimension of the output space
in structured prediction, by choosing, or learning, appropriate outputs’ representa-
tions. Intuitively, one aims at obtaining representations with a dimension equal to
or close to the intrinsic dimension of the data, which directly hinges on the available
a priori knowledge on the geometry of the output space. Nevertheless, we were in-
terested in studying the possible benefits of controlling the complexity of the output
representations depending on the quantity of training data. Furthermore, we were
motivated by exploiting additional data sets of outputs (without the corresponding
inputs), often available in large quantities in practice, typically allowing one to lever-
age partial knowledge on the output structure, as, for instance, a low-rank assump-
tion. Moreover, we had in mind possible links between output representations learn-
ing and metric learning, or more generally loss learning. This led us to the following
more specific questions: Would it be beneficial to add control on the complexity of
the output representations, or on the regularity of the loss function, in order to ob-
tain statistical and/or computational gains? How to leverage additional output data
in structured prediction?

The example of metabolite identification. An important problem in metabolomics
is to identify the small molecules, called metabolites, that are present in a biological
sample. Mass spectrometry is a widespread method to extract distinctive features
from a biological sample in the form of a tandem mass (MS/MS) spectrum. From
this spectrum, one can identify the molecular graph structure of the molecules in
the sample. Designing supervised learning methods able to accurately predict the
molecular graph structure of a metabolite given its tandem mass spectrum is an active
area of research. All the proposed methods in this work are experimentally assessed
on the metabolite identification problem, which is illustrated in Figure 1.1. In this
thesis, it will provide us with an archetypal example of structured prediction problem,
as graph spaces are high-dimensional and non-linear spaces.

Mass (m/z)

In
te

n
si

ty
 (

%
)

MS/MS spectra

Figure 1.1: The metabolite identification problem.

Structured space. We define a structured space (Y ,ψ) as a set equipped with an em-
bedding map taking values in a Hilbert space Hy . The linear structure of Hy provides
a non-linear structure to Y through the non-linear map ψ : Y → Hy . Interestingly, it
turns out to be a very general definition. Indeed, we will see that equipping a set Y
with an explicit map ψ : Y →Hy , with a kernel k : Y ×Y → R (Brouard et al., 2016b),
with a metric d : Y × Y → R, or more generally with a loss function ∆ : Y × Y → R

(Ciliberto et al., 2020) , all boils down, in most of the cases, to equip Y , explicitly or
implicitly, with an embedding map ψ taking values in a Hilbert space.
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Figure 1.2: Fingerprints are explicit embeddings for molecular graphs.

Surrogate methods for structured prediction. Surrogate methods can be described
as follows. First, an output embedding mapψ is chosen (explicitly or implicitly), prov-
ing Y with a structure. This gives rise to a surrogate regression problem x → ψ(y),
which is more convenient to address than the structured prediction problem x → y
as taking values in a linear space. This is solved using standard regression methods.
Finally, a structured prediction estimator is obtained via a pre-image step (or decod-
ing step) of an estimator of the surrogate regression problem. The construction of
surrogate methods can be illustrated as in Figure 1.3. Surrogate methods is a general
framework for structured prediction, applicable to a wide range of structured pre-
diction problems, and benefiting from strong theoretical guarantees (Ciliberto et al.,
2020). It will provide us with a sound framework for answering the questions raised
above.

Figure 1.3: Surrogate methods for Structured Prediction.

Now, we are ready to introduce the three contributions presented in this manu-
script.

How to deal with the non-linearity of the output space? Surrogate methods deals
with the non-linear structure of the output space by choosing the output embedding
map ψ. As said above, being able to define a relevant embedding map ψ relies, in
practice, on the available a priori information on the geometry of the output space. For
instance, molecular graphs can be represented with explicit embeddings called fin-
gerprints, which are high-dimensional multi-label vectors, whose each label indicates
the presence or absence of a certain molecular property (See Figure 1.2), or by using
kernels for molecules (Ralaivola et al., 2005). In Section 2.8, we discuss in detail the
role of ψ in surrogate methods. In particular, we will see that the choice of the output
structure ψ is crucial for obtaining learnable surrogate problems, and also computa-
tionally tractable pre-image steps. The following contribution (I) proposes a method
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dealing with the non-linearity of the output space, in the case of graph spaces, by
choosing an appropriate loss.

(I) A general output geometry for graph prediction. The first contribution presen-
ted in this manuscript deals with graph prediction. Namely, supervised prediction with
graphs as outputs. The main proposal is to use the Gromov-Wasserstein distance, and
its extension fused Gromov-Wasserstein distance, as a loss in graph prediction. We ar-
gue that it provides a generic metric over graph spaces that deals with their non-linear
geometries, and with the challenge of pre-image computation. We propose a kernel-
based estimator based on kernel ridge surrogate regression, benefiting from strong
theoretical guarantees. Then, we develop the idea by proposing a neural-network
version of the method, with a sparse parametrization of the output graph space, in or-
der to obtain both statistical and computational efficiency. The implementations are
provided on GitHub. This work is presented in Chapter 3.

How to deal with the high dimensionality of the output space? Once the structure
ψ is chosen, it remains to solve the induced high-dimensional surrogate regression
problem. Fortunately, in most real-world problems, the intrinsic dimension of the
data is smaller than the ambient dimension, namely the high-dimensional outputs of
the supervised learning problem lie in fact in a subspace Y0 with a smaller dimension
than the one of the known output space Y . For instance, in the case of vector-valued
regression, that is supervised prediction with a linear output space Y = R

d for d ∈N∗,
it is likely that some components of the outputs are linearly correlated. This means
that the outputs lie in a linear subspace Y0 of Y . In this case, a good idea, to obtain
statistical and computational improvements, is to perform reduced-rank regression,
which enforces the predictions to respect such structure of the output space. However,
in structured prediction, Y is not linearly structured. Hence, it is unlikely that the out-
puts lie in a linear structured subspace Y0 ⊂ Y . In this thesis, we refer to the principle
of making the predictions respect regularities of the output spaces as output regular-
ization, extending the idea of reduced-rank regression useful for high-dimensional
linear output spaces, to high-dimensional non-linear output spaces. The two follow-
ing contributions (II) and (III) propose methods dealing with the high-dimensionality
of the output space by means of output regularization techniques.

(II) Reduced-rank regression for non-linear output spaces. In structured pre-
diction, Y is not linearly structured, but the embedding space Hy is a Hilbert space.
Hence, it is natural to extend the reduced-rank method to non-linear output spaces by
solving the surrogate regression problems with reduced-rank regression. For instance,
in the case of molecule prediction with fingerprints representation, i.e. Hy = {0,1}d
with d ∈ N

∗, it would correspond to assuming that some labels are linearly correl-
ated. In this contribution, we consider the more general case where ψ can be induced
by an output positive definite kernel over Y (Brouard et al., 2016b). To this end, we
propose a reduced-rank estimator to solve surrogate regression problems with infinite
dimensional output Hilbert space. We study theoretically this estimator. In particular,
under output regularity assumptions, we prove that the estimator is statistically and
computationally beneficial, in comparison with its full-rank counterpart. The struc-
tured predictor obtained from this regression estimator inherits the same benefits.
The statistical gain is obtained by reducing the output variance (or noise). The com-
putational gain is obtained by alleviating the pre-image step. The proposed method

https://github.com/lmotte/graph-prediction-with-fused-gromov-wasserstein
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is tested experimentally on various structured prediction problems. We present this
work in Chapter 4.

(III) Calibrated structured prediction with loss regularization. The approach pro-
posed in (II) makes use of the structure provided by ψ, and is shown to be calibrated
with the induced loss: ∆(y,y′) = ∥ψ(y) − ψ(y′)∥2. We may ask ourselves: Can we ex-
ploit the geometry provided by an embedding ψ̃ : Y → H̃y while being calibrated with
another target loss ∆ : Y ×Y → R? Can we generalize the previous reduced-rank ap-
proach (II) to losses that are not of the form ∆(y,y′) = ∥ψ(y) − ψ(y′)∥2? Indeed, for
instance, if Y = R

d for d ∈N∗, ψ(y) = y ∈ Rd , and Y0 is the hypersphere with radius
one in R

d , one would prefer to exploit an embedding ψ̃ induced by a Gaussian ker-
nel (as Y0 has a small intrinsic dimension through ψ̃, but not through ψ), but to be
calibrated with the euclidean loss (the loss induced by ψ). Or, one may want to be
calibrated with the geodesic distance on the hypersphere, which cannot be written
as ∆(y,y′) = ∥ψ(y)−ψ(y′)∥2. This third work proposes a method answering positively
these questions. More precisely, given a target loss ∆, and an embedding ψ̃ defined
via a kernel k : Y × Y → R, we propose an estimator able to exploit a low intrinsic
dimension of the output data, by leveraging the structure defined by ψ̃, but being
calibrated with the loss ∆. This generalizes the setting of contribution (II). Similarly
to work (II), we show both theoretically and experimentally, how it allows improving
the statistical and/or computational performance, in comparison with the full-rank
counterpart. The proposed approach can be directly thought of as regularizing the tar-
get loss with respect to the regularity defined by the kernel k. Interestingly, this allows
an intuitive understanding of the statistical gain obtained by the resulting structured
estimator: one had better adapt the coarseness of the problem with respect to the out-
put space depending on the quantity of training data, by controlling the regularity of
the loss, or similarly, by making more or less fine-grained predictions, to reduce the ef-
fects of the output variance (or labeling noise), and also to alleviate the computational
complexity of the pre-image in surrogate methods.

1.2 Publications

• (Brogat-Motte et al., 2022a) Luc Brogat-Motte, Rémi Flamary, Céline Brouard,
Juho Rousu, and Florence d’Alché-Buc. Learning to predict graphs with fused
Gromov-Wasserstein barycenters. In International Conference on Machine Learn-
ing, 2022. Reproduced in Chapter 3.

• (Brogat-Motte et al., 2022b) Luc Brogat-Motte, Alesandro Rudi, Céline Brouard,
Juho Rousu, and Florence d’Alché-Buc. Vector-Valued Least-Squares Regression
under Output Regularity Assumptions. In Journal of Machine Learning Research,
2022. Reproduced in Chapter 4, along with additional work.

• Luc Brogat-Motte, and Florence d’Alché-Buc. Structured Prediction with Loss
Regularization. Preprint. Reproduced in Chapter 5.

• (Laforgue et al., 2020) Pierre Laforgue, Alex Lambert, Luc Brogat-Motte, and
Florence d’Alché-Buc. Duality in RKHSs with infinite dimensional outputs:
Application to robust losses. In International Conference on Machine Learning,
2020. The paper Laforgue et al. (2020) is a contribution to vector-valued regres-
sion with infinite dimensional output spaces using operator-valued kernels. It
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provides methods for solving empirical risk minimization over vector-valued re-
producing Hilbert spaces, for a wide range of loss functions, thanks to the use
of a Double Representer Theorem. Not reproduced in this manuscript.
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This chapter provides the necessary background for the next chapters of this manu-
script. We focus more particularly on the tools and results that play an important role
in this thesis. Furthermore, we conclude this chapter by discussing the importance of
a priori information on the output structure to overcome the curse of dimensionality
with respect to the output dimension in structured prediction, and by commenting on
our contributions in the light of this discussion.

2.1 Machine learning

In this section, we introduce supervised learning, and its mathematical formulation
through the framework of statistical learning theory.
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2.1.1 Learning from Data

What is Machine Learning? Computer programming aims at making computers
able to perform tasks. This requires being able to design a finite sequence of basic op-
erations solving the tasks in an accurate and computationally efficient manner. There
are tasks for which such sequence is unknown. This is typically the case when dealing
with high-dimensional input or output data such as, for instance, in image under-
standing, speech recognition, and sentence translation. On the other hand, there has
been enormous growth in available data, and computers’ computational capacities.
Machine Learning (ML) tries to leverage this fact to overcome the aforementioned dif-
ficulty. ML algorithms aim at making computers able to automatically learn to carry
out a task from a set of solved examples of the task. The science of ML lies at the
intersection between statistics and computer science.

Supervised learning. Supervised learning methods aims at automatically identi-
fying the underlying relationship between the inputs and the outputs, thanks to a
data set of input/output couples (xi , yi)

n
i=1 called the training set. Hence, in supervised

learning, tasks take the form of predicting the output associated with any given input.

Examples of supervised learning tasks. Supervised machine learning algorithms
have met with great success in numerous applications. To name a few, this includes
language translation (Bahdanau et al., 2015), image classification (Krizhevsky et al.,
2012), speech recognition (Dahl et al., 2011), handwriting recognition (LeCun et al.,
2015), spam detection (Wang et al., 2016), text categorization (Joachims, 1998), face
detection (Deng et al., 2019), or weather forecasting (Deb et al., 2017). Two examples
of supervised tasks are illustrated in Figures 2.1 and 2.2.

Figure 2.1: Example of supervised learning task: Image segmentation. (source: No-
wozin et al. (2011))
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Figure 2.2: Example of supervised learning task: Metabolite identification (Brouard
et al., 2016a).
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Unsupervised learning. In the unsupervised learning setting, one is given a data set
(xi)

n
i=1, which is said to be unlabeled as, in contrast with supervised learning, the data

are not couples (input, output/label). Despite this lack of labelling, there are valuable
information to get from such data sets.

Examples of unsupervised learning tasks. Unsupervised learning problems in-
clude, for example, clustering (Hartigan and Wong, 1979; Von Luxburg, 2007), anom-
aly detection (Liu et al., 2008; Chandola et al., 2009), representation learning (Hoff-
mann, 2007). Representation learning plays an important role as a pre-processing
step in supervised learning, and can also be used for data visualization (Ranzato et al.,
2007). As an example of representation learning method, the kernel principal com-
ponents analysis (KPCA) method estimates a fixed-size set of orthonormal functions
maximizing the variance of its values over the data.

max
f ∈F ,∥f ∥F =1

n∑
i=1

f (xi)
2 (2.1)

Put in another way, one seeks for the functions, with controlled regularity, defining
level sets that are higher on the data positions. Such functions constitute the non-
linear main components of the data clouds. They allow to reduce the dimension of the
data at hand by describing them with a number of components that is much smaller
than the ambient dimension, and with a very small loss of information.

2.1.2 Statistical learning framework

Supervised Learning has been mathematically formalized through the framework of
Statistical Learning Theory (Vapnik, 1999; Devroye et al., 2013). It makes it possible
to carry out mathematical analysis of learning methods, and hence, helps design novel
methods, allows to provide them with theoretical guarantees, to have a good under-
standing of their behaviors, and to compare them in terms of statistical and computa-
tional efficiency.

Statistical learning. Consider an input space X , an output space Y , a probability
measure ρ on X × Y , and a loss function ∆ : Y × Y → R measuring the discrepancy
between two outputs. The problem of supervised learning formulates as the one of
finding the measurable function f ∗ : X →Y minimizing the expected risk

R(f ) =
∫

∆(f (x), y)dρ(x,y), (2.2)

by using a training set of couples (xi , yi)
n
i=1 independently drawn from the unknown

distribution ρ. f ∗ is called the Bayes predictor and can be written as

f ∗(x) = argmin
ŷ∈Y

∫
∆(ŷ, y)dρ(y|x) (2.3)

where ρ(y|x) is the conditional probability of y given x.
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Empirical risk minimization (ERM). A general principle to obtain estimators fn of
f ∗ is to choose the function fn : X →Y in a chosen hypothesis space F that minimizes
the empirical risk (Devroye et al., 2013):

Rn(f ) =
1
n

n∑
i=1

∆(f (xi), yi). (2.4)

Rn(f ) is used as an approximation of the unknown expected riskR(f ) = E[∆(f (x), y)].

Statistical challenge of supervised learning. The statistical challenge of super-
vised learning is to obtain good prediction accuracy out of the training set. For in-
stance, when using ERM, for example, one minimizes the empirical risk but actually
wish to minimize the true risk. In general, without further information than the train-
ing data, successful learning is not possible, regardless of how large the training set
is. Inferring the map f ∗ from a finite set of (noisy) observed values (xi , f ∗(xi) + ϵ)ni=1
is only made possible by the exploitation of a priori information on f ∗ (also refereed
as inductive bias) restraining the hypothesis set F . Such results are known as the
No-Free-Lunch theorems (Devroye et al., 2013; Wolpert, 1996). The exploited bias goes
from general assumptions on f ∗, as for instance smoothness or manifold regularity
(Belkin et al., 2005), verified by many real-world problems, to more specific assump-
tions exploiting knowledge from experts on given learning problems. The smaller the
training data set, the stronger should be the bias in order to obtain the same statistical
performance. This can be seen from the insightful and standard following decompos-
ition of the risk:

R(f )−R(f ∗) =R(f )−R(f ∗F )︸          ︷︷          ︸
estimation error

+ R(f ∗F )−R(f ∗)︸           ︷︷           ︸
approximation error

(2.5)

where f ∗F = argmin f ∈F R(f ).

The approximation error comes from the fact that one may choose a hypothesis
space that does not contain the target f ∗. It decreases with the "size" of F . The estima-
tions error stems from the error done when substitutingRn(f ) withR(f ). It increases
with the "size" of F . This leads to a trade-off between the two errors when choosing F
to obtain the smallest risk possible. This is also called the overfitting and underfitting
trade-off. We illustrate this trade-off in Figure 2.3.

How to deal with the trade-off overfitting/underfitting? It turns out that the effect-
ive measure on F that controls the trade-off between the estimation and the approx-
imation errors is a notion of expressiveness of F , namely its ability to fit any data set.
In the case of the ERM estimator, the estimation error can be bounded as follows

R(fn)−R(f ∗F ) ≤R(fn)−Rn(fn) + Rn(fn)−Rn(f ∗F )︸              ︷︷              ︸
≤0

+Rn(f ∗F )−R(f ∗F ) (2.6)

≤ 2sup
f ∈F
|Rn(f )−R(f )|. (2.7)
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Underfitting Good fitting Overfitting

Figure 2.3: Illustration of the trade-off between overfitting and underfitting in regres-
sion. The blue line is estimated from the data points (black points). The dotted line is
the unknown target function.

Then, one can try to prove a so-called uniform bound on supf ∈F |Rn(f ) − R(f )|. For
instance, the Vapnik-Chervonenkis (VC) dimension of a hypothesis set is a measure of
expressiveness for binary classifiers (Christmann and Steinwart, 2008), such that, for
the 0− 1 loss

sup
f ∈F
|Rn(f )−R(f )| ≤O

VC(F )
√
n

 . (2.8)

The Rademacher complexity (Bartlett and Mendelson, 2002) is another example of meas-
ure of expressiveness, which is also applicable to the regression setting, defined by

Radn(F ,∆,ρ) = Eρ,σ [
1
n

n∑
i=1

σi∆(yi , f (xi))] (2.9)

where the σi are i.i.d. Rademacher variables P (σi = ±1) = 1/2. One can show, in
expectancy,

sup
f ∈F
|Rn(f )−R(f )| ≤ 2Rad(F ,∆,ρ). (2.10)

then Radn(F ,∆,ρ) can be bounded as follows

Radn(F ,∆,ρ) ≤ 2LκR
√
n

(2.11)

if ∆ is L-Lipschitz, and F are functions from a reproducing kernel Hilbert space F
with bounded kernel k(x,x′) ≤ κ2 such that ∥f ∥F ≤ R for any f ∈ F . R can be under-
stood then as controlling the expressiveness of F . Therefore, one obtains a similar
bound than with the VC-dimension.

How to choose the hypothesis space in practice? First, when choosing the hypo-
thesis space F , of course, one needs to use the maximum a priori information on the
learning problem to find the strongest possible bias such that f ∗ ∈ F . This will lead
to a smaller estimation error with a zero approximation error. For instance, one
might know that f ∗ ∈ F0 where F0 is a reproducing kernel Hilbert space (RKHS).
Then, in order to obtain the best trade-off underfitting/overfitting, one also needs
to control the expressiveness of the hypothesis space depending on the quantity of
training data. For instance, in the case of the kernel ridge regression method, under
standard assumptions, one considers F =

{
f ∈ F0 | ∥f̂ ∥F0

≤ 1
λ

}
with λ ∼ 1√

n
.
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Computational challenge of supervised learning. Besides the statistical aspect, the
other challenge of supervised learning is to obtain computationally tractable estimat-
ors. In particular, computing the ERM estimator can be very expensive when dealing
with large amounts of data, high dimensional data, and the estimation of complex
functions.

Different families of supervised learning problems. Depending on the output space
and the loss (Y ,∆) at hand, supervised learning problems fall into different subcat-
egories. We give the most extensively studied subcategories in the Machine Learning
literature in Table 2.1.

Subcategories Y ∆(y,y′)

Regression R
d ∥y − y′∥22

Binary classification {0,1} 1y,y′

Multi-class classification {0,1, . . . ,M}, 1y,y′

Multi-label classification {0,1}d
∑d
i=11yi,y′i

Table 2.1: Subcategories of Supervised learning depending on the output space (Y ,∆)
at hand. d ∈N∗, M ∈N∗.

2.2 Kernel methods

Kernel methods provide a tool for building space of functions. These spaces of func-
tions are well-suited for Machine Learning. We start by presenting how they are con-
structed. Then, we show why they are convenient by using them for solving the em-
pirical risk minimization problem.

2.2.1 Positive definite kernel

The building block of an RKHS is a positive definite kernel. It plays the role of an in-
ner product for the possibly non-linear space X , namely by mapping X into a feature
space equipped with an inner product. In our case, this will offer us a minimum struc-
ture to the set X to perform statistical learning and will be seen as a priori knowledge
on X .

Definition. A positive definite (p.d.) kernel on X is an application k : X → X → R

which is

1. Symmetric: k(x,x′) = k(x′ ,x) for any x,x′ ∈ X .

2. Positive definite: (k(xi ,xj ))
n
i,j=1 ∈R

n×n is positive definite for any (xi)
n
i=1 ∈ X

n.

k(x,x′) can be understood as a similarity measure between any x,x′ ∈ X . Moreover,
notice that for any Hilbert space H, and any embedding map φ : X →H, then x,x′ →
⟨φ(x), φ(x′)⟩H defined a positive definite kernel. The opposite is also true as we shall
see in the next section: any positive definite kernel can be written as a scalar product
in a Hilbert space through an embedding map.
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Examples of kernels. There is a vast literature that focuses on designing p.d. ker-
nels. The goal is to construct kernel providing a relevant structure to the input space
X at hand, by exploiting the a priori knowledge on X , while also keeping the compu-
tations tractable. We give some examples of kernels below.

• Three examples of kernels on R
d with d ∈N∗:

1. k(x,x′) = ⟨x, x′⟩
R
d is a p.d. kernel on R

d called linear kernel.

2. k(x,x′) = (1+⟨x, x′⟩
R
d )p with p ∈N∗ is a p.d. kernel on R

d called polynomial
kernel.

3. k(x,x′) = exp(γ∥x − x′∥2) with γ > 0 is a p.d. kernel called gaussian kernel.

• An example of kernel for graphs is the random walk kernel: given two graphs
x,x′, random walks are performed on both, and k(x,x′) is defined as the number
of matching walks.

• An example of kernel for strings is the spectrum kernel (Leslie et al., 2001):
k(x,x′) =

∑
s∈S(k) os(x)os(x′) where S(k) is the set of all possible sequence of length

k from a given finite alphabet A (hence |S(k)| = |A|k), and os(x) is the number of
occurrence of s in x.

• An example of kernel for probability distributions is the probability product
kernel (PPK) (Jebara et al., 2004): k(p,p′) = ⟨pβ , p′β⟩L2 with β > 0 (requiring
pβ ,p′β ∈ L2).

2.2.2 Scalar-valued reproducing kernel Hilbert spaces

We present now how scalar-valued Reproducing Kernel Hilbert Spaces (RKHSs) are
constructed. We refer the reader to (Aronszajn, 1950; Christmann and Steinwart,
2008) for more details on RKHSs.

Construction of RKHSs. Given a positive definite kernel k : X ×X → R, an RKHS
is built by taking linear combinations of the functions k(x, .)

H0
x = span {k(x, .) |x ∈ X } (2.12)

and equipping it with the inner product ⟨k(x, .), k(x′ , .)⟩H0
x

:= k(x,x′). The inner product
space H0

x is then completed into a Hilbert space taking the completion according to
the norm induced by the scalar product ⟨., ⟩H0

x
:

Hx = span {k(x, .) |x ∈ X } . (2.13)

Completeness allows to have the good convergence properties of finite-dimensional
Euclidean spaces.

By construction, the RKHS Hx verifies the following property.

Reproducing property. For any h ∈ Hx and x ∈ X , the following reproducing property
holds:

⟨h, k(x, .)⟩Hx = h(x). (2.14)

If a kernel k verifies the reproducing property for a Hilbert spaceH, and ifH contains
all the functions k(x, .), then k is called a reproducing kernel for H.
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Canonical feature map. As said above, any positive kernel can be written as a scalar
product in a Hilbert space through a feature map. This holds from the Reproducing
property, and defining φ(x) = k(x, .) ∈ Hx.

Notice that the canonical feature map φ(x) is infinite dimensional but there is no
need to compute φ(x) explicitly to evaluate k(x,x′) = ⟨φ(x), φ(x′)⟩Hx . Furthermore,
there is no unicity of the feature map: one can find another Hilbert space H̃x and a
feature map φ̃ : X → H̃x such that k(x,x′) = ⟨φ̃(x), φ̃(x′)⟩H̃x . Furthermore, while any p.
d. kernel can be seen as a scalar product, conversely, any feature map φ̃ : X →H with
H a Hilbert space, defines a p. d. kernel k(x,x′) = ⟨φ̃(x), φ̃(x′)⟩H.

One-to-one correspondence between RKHSs and reproducing kernels. It turns
out that there is a unique RKHS associated with a reproducing kernel, and conversely,
a unique reproducing kernel associated with a RKHS.

Because of this correspondence, we are allowed to call Hx the associated RKHS of
k, and conversely. Moreover, an alternative definition of RKHSs is possible as Hilbert
spaces equipped with reproducing kernels.

Another possible definition of RKHSs comes from the following property.

Continuity of the evaluations functionals. From the Cauchy-Schwarz inequality, it
is clear that the following map is continuous from the RKHS Hx to R

Fx : h→ h(x). (2.15)

It turns out that the reverse is also true, using the Riesz representation theorem: if
the continuity of functions evaluations holds for a Hilbert space H then it is a RKHS.
Notice that it leads to a second alternative definition of RKHS, which does not require
introducing a kernel.

2.2.3 Vector-valued reproducing kernel Hilbert spaces

The theory of vector-valued RKHSs (vv-RKHSs) extends the theory of scalar-valued
RKHS by enabling to construct space of vector-valued functions taking values in a
Hilbert space Y . We refer the reader to (Senkene and Tempel’man, 1973; Micchelli
and Pontil, 2005; Carmeli et al., 2010; Caponnetto et al., 2008) for more details on
vv-RKHSs.

Operator-valued positive definite kernel. We note A∗ the adjoint of any operator
A. An operator-valued kernel is a an application K : X ×X → L(Y ) with values in the
set of bounded linear operator on Y , satisfying the two following properties:

1. K(x,x′) = K(x′ ,x)∗.

2.
n∑

i,j=1
⟨K(xi ,x′j )yi , yj⟩Y ≥ 0 for any n ∈N∗, (x1, y1), . . . , (xn, yn) ∈ X ×Y .

Examples of operator-valued kernels. We give two examples of operator-valued
kernels, and refer the reader to Caponnetto et al. (2008) for more examples.
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• Separable kernel: K(x,x′) = k(x,x′)A with k a p.d. scalar-valued kernel, and
A ∈ L(Y ).

• Sum of separable kernels: K(x,x′) =
∑d
i=1Ki(x,x

′) with d ∈N∗, and (Ki)
d
i=1 are d

separable kernels.

Operator-valued kernels are the building blocks of vector-valued RKHSs. vv-RKHSs
are constructed in the same manner as RKHSs with scalar-valued kernels. All the
properties and observations given in the previous sections will have their counterpart
in this section.

Construction of Vector-valued reproducing kernel Hilbert spaces. Akin to scalar-
valued kernel, the vector-valued RKHS H the associated RKHS of K is constructed by
the completion of the space generated by linear combinations of the functions K(x, .)y
with x ∈ X , y ∈ Y :

H = span {K(x, .)y | (x,y) ∈ X ×Y } . (2.16)

according to the norm induced by the scalar product

⟨K(x, .)y, k(x′ , .)y′⟩H := ⟨K(x,x′)y, y′⟩Y . (2.17)

By construction, the RKHS H verifies the following property.

Reproducing property. For any h ∈ H, x ∈ X , y ∈ Y , the following reproducing prop-
erty holds:

⟨h, K(x, .)y⟩Hx = ⟨h(x), y⟩Y . (2.18)

Similarly to scalar-valued kernels, if an operator-valued kernel K verifies the repro-
ducing property for a Hilbert spaceH, and ifH contains all the functions K(x, .)y, then
K is called a reproducing kernel for H.

Moreover, we also have the counterpart of the definition of an RKHS as a Hilbert
space equipped with a reproducing kernel, because of the following property.

One-to-one correspondence between RKHSs and reproducing kernels. There is
a unique vector-valued RKHS associated with an operator-valued reproducing kernel
K , called the associated RKHS of K , and conversely, a unique operator-valued repro-
ducing kernel K associated with a vector-valued RKHS.

Furthermore, we also have the counterpart of the definition of RKHS via the con-
tinuity of functions evaluations.

Continuity of functions evaluations. H is a vector-valued RKHS if and only if the
functions evaluations

Fx,y : h→ ⟨h(x), y⟩Y . (2.19)

are continuous for any x ∈ X , y ∈ Y .
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2.2.4 Empirical risk minimization over RKHS

In this section, we explain why RKHSs are very good candidates to solve empirical
risk minimization (ERM) problems.

For this purpose, we recall from Section 2.1.2, what is at stake when choosing the
hypothesis space for solving ERM problems.

How to design the hypothesis space H? When choosing the hypothesis spaces for
solving ERM problems one faces two stakes:

(1) (Modelling). In order to obtain the best possible estimation of the target f ∗, one
needs to choose the hypothesis space, as follows:

(a) (Minimum bias ∀n). H should be the smallest possible but containing f ∗

exploiting available a priori information on the problem.

(b) (Complexity control w.r.t n). The expressiveness of H should be chosen
with respect to the quantity of training data to achieve the best possible
underfitting/overfitting trade-off.

(2) (Computational concern). The solution should be computationally tractable.

Let’s examine these requirements in the case of RKHSs.

(1.a) Kernels allow to express prior knowledge. A priori regularity information on
f ∗ can be quite conveniently induced on the RKHS by the choice of the kernel. As said
above, there is a vast literature about designing p.d. kernels. General regularity as-
sumptions as smoothness of the target can be carried by radial kernels. When dealing
with discrete space as spaces of graphs, or strings, a common methodology consists
in trying to find a "good similarity measure" between two objects of the input space,
then verifying the positive definiteness. This has shown to be efficient on a large range
of data, making RKHSs a general and user-friendly way of building function spaces
going from any input space X to any Hilbert space Y .

(1.a) Possible high expressiveness of RKHSs. One may aim at estimating a com-
plex target function, or one may know little a priori information about the target.
Therefore, it may be necessary to be able to build "large" hypothesis spaces, namely
with high expressiveness. The construction method of RKHSs does allow to generate
such expressive spaces. The concept of universality of a kernel has been defined as the
density of the induced RKHS with respect to the supremum norm in the space of all
continuous functions h : X →Y (Micchelli et al., 2006; Caponnetto et al., 2008; Christ-
mann and Steinwart, 2008). For instance, in the case where X is a compact subset of
R
d , the Gaussian kernel has been shown to be universal.

(1.b) Continuous control of the expressiveness. Moreover, RKHSs come with a nat-
ural control of the expressiveness via the RKHS norm ∥h∥H, typically by summing a
so-called regularization term to the empirical risk, controlled by a parameter λ > 0 :

min
h∈H

1
n

n∑
i=1

∆(h(xi), yi) +λ∥h∥2H. (2.20)
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(2) Computational tractability. It is easy to show that the function h ∈ Hminimiz-
ing the Eq. (2.20), can be written

h(x) =
n∑
i=1

αik(xi ,x) with α ∈Rn. (2.21)

This result, called representer theorem in the kernel method literature, makes the op-
timization problem Eq. (2.20), over an infinite dimensional space H, a finite dimen-
sional optimization problem over Rn. Moreover, if ∆ is convex then the ERM becomes
a convex optimization problem over Rn, making it computationally tractable.

To conclude, RKHSs fulfill the modeling and computational stakes given above.

Another important strength of kernel methods is the following.

Amenability to theoretical analysis. A good property of kernel methods is that
they are very amenable to mathematical study, allowing, among others, to derive stat-
istical guarantees. Indeed, the linear parametrization of the hypothesis space is not
only beneficial for computational tractability, but also the convenience of mathem-
atical analysis. Using the RKHS H induced by a positive definite kernel k(x,x′) =
⟨φ(x),φ(x′)⟩H corresponds to fit the model h(x) = Hφ(x). Then, the theoretical ana-
lysis can be carried out as with a linear model, which is convenient, as we shall see in
Section 2.4.

2.3 Neural networks

The goal of this section is to briefly present neural networks as another way of building
hypothesis space. Such modeling has obtained great practical successes, in particular
when dealing with large scale data sets. We refer the reader to Goodfellow et al. (2016)
for a detailed introduction to neural networks.

Neural network (NN) modeling. A neural network f with depth D ∈N∗ is a para-
meterized family of functions defined as the composition of D layers fi = R

ni−1 7→ R
ni

of sizes n1, . . . ,nD ∈N∗

fW,b(x) = fD ◦ fD−1 ◦ · · · ◦ f1(x) (2.22)

where each layer fi is an affine map composed with a non-linear map defined via a
so-called activation function σ : R 7→R applied pointwise on the outputs of each layer:

fi(x) = σ (Wifi−1(x) + bi) (2.23)

with Wi ∈ Rni×ni−1 , bi ∈ Rni , and n0 ∈N∗ is the dimension of the input space. We say
that fW,b : Rn0 7→R

nD hasD−1 hidden layers. The parameters of f are (Wi ,bi)
D
i=1. Deep

learning refers to deep neural networks, namely neural networks with a large number
of layers.

Architecture of a network. NN models can be designed by deciding how to connect
the neurons of one layer to the neurons of the next layer. This corresponds to impos-
ing zero values on some chosen components of theWi . Finding the appropriate neural
networks’ architectures for solving given machine learning tasks has been a very act-
ive research area in the past few years. A non-comprehensive list of commonly used
architectures includes:



CHAPTER 2. BACKGROUND 28

• Fully-connected NNs (FC-NNs) do not impose constraints on the (Wi)
D
i=1.

• Convolutional NNs (CNNs) (LeCun et al., 1995) deal with pattern recognition
tasks (e.g. on image, speech, or time-series data).

• Recurrent NNs (RNNs) (Sak et al., 2014) or Transformers (Vaswani et al., 2017)
deal with sequential data (e.g. sentences, biological sequences, videos).

• Graph NNs (GNNs) (Scarselli et al., 2008) deal with graph data (e.g. molecules,
social networks, physical systems (Sanchez-Gonzalez et al., 2018)).

• Generative NNs (e.g. GANs (Goodfellow et al., 2020), VAEs (Kingma and Welling,
2013), flow-based models (Prenger et al., 2019), diffusion models (Ho et al.,
2020)) aim at learning to generate samples (e.g. images) from an unknown dis-
tribution.

The challenge of ERM with NNs. Solving the ERM problem using a NN model is
very challenging as it is a non-convex optimization problem with local minima, saddle
points, and wide flat regions. Moreover, performing gradient descent is also com-
putationally extensive because of the gradient computations. Therefore, solving the
ERM with NNs has required implementing multiple strategies including: the back-
propagation algorithm (Rumelhart et al., 1995) for efficient computation of the gradi-
ent of the loss ∆(f (xi), yi) with respect to the parameters of the NN model f , batch or
stochastic gradient computation, parallel computing using Graphics processing units
(GPUs), choosing efficient optimizers (e.g. using momentum (Polyak, 1964), or adapt-
ative learning rates (Duchi et al., 2011)), parameters initialization strategies, or batch
normalization (Ioffe and Szegedy, 2015).

Learning theory of deep learning. In comparison with kernel methods NN-based
methods are less amenable to theoretical study. In particular, quantifying the express-
iveness of NN models is difficult, as also depends on the capacity of the optimization
algorithms in solving the ERM problem, while existing theoretical guarantees for non-
convex optimization problems are weak in general. It is worth mentioning the two
following lines of research in the emerging theory of deep learning. The first line con-
sists in studying the generalization behavior of over-parameterized neural networks,
by considering infinite-width neural networks, showing that at this limit a NN model
can be assimilated to a RKHS model with a particular kernel called Neural Tangent
Kernel (Jacot et al., 2018). This allows using the generalization theory of kernel meth-
ods. Another line consists in studying the benefits of implicit bias, when fitting neural
networks, due to the non-optimal optimization (Chizat and Bach, 2020).

Role of neural networks in this manuscript. The different contributions presented
in this manuscript mainly consider RKHS as hypothesis spaces. As explained above,
this allows us to make easier proofs, and obtain strong guarantees. Moreover, it is
worth mentioning that kernel methods can outperform neural networks on a vari-
ety of real-world problems, typically when dealing with small and high-dimensional
data sets, for instance in computational biology. Furthermore, if one problem is bet-
ter suited for NNs, most of the proposed methods can be straightforwardly adap-
ted to neural network modeling, by changing the hypothesis space by neural net-
work models. In Chapter 3 one contribution is precisely to propose a neural net-
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work graph prediction method, based on the structured prediction model of kernel-
based surrogate methods. The method proposed in Chapter 4 can be adapted as
follows: Let U be defined with the estimated main components in Hy as row, then
learn to predict the coordinate Uψ(y) ∈ Rp of the projected P ψ(y) = U ∗Uψ(y) with a
neural network ĥ : X → R

p instead of a kernel ridge, by minimizing the train mean
squared error. Then, the pre-image can be computed as ŷ = argmin y ∥U ∗ĥ−ψ(y)∥2Hy =

argmin y −2⟨ĥ(x), Uψ(y)⟩
R
d + ky(y,y). The method proposed in Chapter 5 could be ad-

apted as proposed in Chapter 3. Nevertheless, the adaptation of surrogate methods
with neural networks is not the main focus of this manuscript and is left for further
research. In particular, practical success would require choosing the best strategies
for solving ERM as mentioned above. Finally, the theoretical results obtained can be
valuable beyond kernel methods, as bringing insight into the understanding of the
role of the output geometry in structured prediction.

2.4 Regularized least-squares regression

In this section, we present the kernel ridge regression (KRR) method for solving least-
squares regression problems. First, we introduce the learning setting of least-squares
regression. Then, we describe the kernel ridge method. Finally, we provide theoretical
guarantees for the KRR estimator, with sketches of the proofs. We refer the reader to
Caponnetto and De Vito (2007); Ciliberto et al. (2020) for more details.

2.4.1 Setting of least-squares regression

Vector-valued Least-squares regression (Vv-LS). Vv-LS is defined as the problem
of estimating the function h : X → Y , taking values in a separable Hilbert space Y ,
minimizing the expected risk

R(h) = Eρ[∥h(x)− y∥2Y ], (2.24)

given a finite set (xi , yi)
n
i=1 independently drawn from an unknown distribution ρ on

X ×Y .

It corresponds to the supervised learning setting (described above) where: (1) the
output space Y is a Hilbert space, and (2) the loss ∆ is the squared norm (squared loss)
∆(y,y′) = ∥y − y′∥2Y .

Characterization of the optimal solution. The measurable function h∗ : X → Y
minimizing R(h) is given by

h∗(x) = Eρ(y|x)[y]. (2.25)

See, for instance, Lemma A.2 in Ciliberto et al. (2020) for a proof of this result.

2.4.2 Kernel ridge regression

The kernel ridge regression (KRR) method consists in solving the empirical risk min-
imization problem, associated with the squared loss, over a vector-valued RKHS as
hypothesis space, and controlling the expressiveness of the estimator via the RKHS
norm.
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KRR estimator. The KRR estimator is defined as the minimizer of the following
regularized empirical risk:

min
h∈H

1
n

n∑
i=1

∥h(xi)− yi∥2Y +λ∥h∥2H (2.26)

where H is the RKHS associated to an operator-valued kernel K : X ×X →L(Y ).

Closed-form expression. In this thesis, we will always consider operator-valued
kernels of the form K(x,x′) = k(x,x′)IY , where k : X × X → R is a positive definite
scalar-valued kernel on X . In this case, the solution of the problem above can be
computed in closed-form as follows:

ĥ(x) =
n∑
i=1

αi(x)yi , with α(x) = (K +nλ)−1kx (2.27)

where K = (k(xi ,xj ))
n
i,j=1 ∈R

n×n, and kx = (k(x,xi))
n
i=1 ∈R

n.

Computational complexity. We recall the computational complexity of kernel ridge
regression in Table 2.2. Notice that the time complexity of computing the kernel ridge
estimator is dominated by the inversion of the gram matrix K +λI ∈ Rn×n. The train-
ing computational complexity can be alleviated using approximation methods such as
Nyström subsampling or random features. Under regularity assumptions on h∗, the
approximated estimators benefit from the same learning rates as the not approxim-
ated ones (Rudi et al., 2015; Sterge et al., 2020; Rudi and Rosasco, 2017), with signi-
ficantly reduced computational complexities.

Time Space

Training O(n3 +n2 × c) O(n2)
Evaluation O(n× c) O(n)

Table 2.2: Computational complexity of kernel ridge regression. c is the cost of one
kernel evaluation.

2.4.3 Statistical analysis of KRR

In this section, we recall theoretical results on the ridge estimate. We present the main
ideas and steps of the proofs. We refer the reader to Caponnetto and De Vito (2007);
Ciliberto et al. (2020) for the full details of the analysis of KRR. We denote f (u) ≲ g(u)
if there exists c > 0 such that ∀u,f (u) ≤ cg(u), and use this notation to do not keep
track of multiplicative constants that do not depend on the parameters of interest.

KRR estimator. Because ĥ belongs to the chosen vv-RKHS, there existsHn ∈ Hy⊗Hx,
with ∥Hn∥HS < +∞, such that

ĥ(x) =Hnφ(x). (2.28)

So, defining the empirical covariances

Vn =
1
n

n∑
i=1

yi ⊗φ(xi) , Cn =
1
n

n∑
i=1

φ(x)⊗φ(x), (2.29)
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the regularized empirical risk can be expressed as

1
n

n∑
i=1

∥ĥ(xi)− yi)∥2Y +λ∥h∥2Hy⊗Hx =
1
n

n∑
i=1

∥Hnφ(xi)− yi)∥2Y +λ∥Hn∥2HS (2.30)

=
1
n

Tr((Hnφ(xi)− yi))⊗ (Hnφ(xi)− yi)) +λ∥Hn∥2HS

(2.31)

= Tr(Hn(Cn +λI)H ∗n)− 2Tr(HnV
∗
n) + cst indep. of Hn

(2.32)

= ∥Hn(Cn +λI)1/2 −Vn(Cn +λI)−1/2∥2HS + cst indep. Hn.
(2.33)

Then, one can obtain Hn as the minimizer of Eq. (2.39):

Hn = Vn(Cn +λ)−1. (2.34)

LS excess-risk is the L2-distance to target. First, from the characterization of the
optimal solution: h∗(x) = Ey|x[y], it is easy to show that

R(ĥ)−R(h∗) = Ex[∥ĥ(x)− h∗(x)∥2Y ]. (2.35)

Attainability assumption. Then, assuming the target h∗ belongs to the chosen vv-
RKHS, induced by the kernel Γ (x,x′) = k(x,x′)IY , it corresponds to the existence of
H ∈ Hy ⊗Hx such that:

h∗(x) =Hφ(x) (2.36)

with ∥H∥HS < +∞, and φ(x) = k(x, .). In this case, with similar derivations than previ-
ously for computingHn, theH verifying this condition with minimal Hilbert-Schmidt
norm (see Lemma B.9 in Ciliberto et al., 2020) is:

H = VC† (2.37)

with

V = E[y ⊗φ(x)] , C = E[φ(x)⊗φ(x)], (2.38)

and where C† denotes the Moore-Penrose generalized inverse (Engl et al., 1996).

KRR excess-risk as linear RR excess-risk. Moreover, with similar derivations than
for the empirical risk, one can express the LS excess-risk as

E[∥ĥ(x)− h∗(x)∥2Y ] = ∥(Hn −H)C1/2∥2HS. (2.39)

KRR as covariance estimation. At this point, we see that the kernel ridge estimate
writes as the product of empirical covariance operators, while the optimal solution
writes as the same product but with the ideal covariance operators. Moreover, the
excess-risk writes as a Hilbert-Schmidt norm of the difference of the empirical and
the optimal operators Hn and H , against the covariance C.

Hence, it is possible now to study the excess-risk, using linear algebra, and concen-
tration inequality in Hilbert space.
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Bias-variance decomposition. Defining the following "regularized" optimal estim-
ator

h∗λ(x) =Hλφ(x) with Hλ =HC(C +λI)−1, (2.40)

one can decompose the excess-risk as√
R(ĥ)−R(h∗) ≤ Ex[∥ĥ(x)− h∗λ(x)∥2Y ]1/2︸                      ︷︷                      ︸

variance

+ Ex[∥h∗λ(x)− h∗(x)∥2Y ]1/2︸                       ︷︷                       ︸
bias

. (2.41)

Variance bound. The first term can be bounded with high probability, using con-
centration inequality for random Hilbert-Schmidt operators, as

Ex[∥ĥ(x)− h∗λ(x)∥2Y ]1/2 = ∥(Hn −Hλ)C1/2∥HS (2.42)

≲ ∥(C +λI)−1/2C1/2∥HSn
−1/2 (2.43)

the proofs of (Ciliberto et al., 2016), with minor changes. For the sake of clarity, we
only keep the dominant term in n and λ (when n→ +∞, λ→ 0). This "variance term"
decreases when the regularization increases (i.e. when λ decreases).

This gives rise to the definition of the following capacity condition.

Capacity condition. The capacity condition (Caponnetto and De Vito, 2007) meas-
ures the regularity of the features φ(x), and can defined as

∥(C +λI)−1/2C1/2∥HS ≲ λ
−u (2.44)

with u ∈ [0,1/2]. The capacity condition is always verified for u = 1/2 because ∥C∥HS <
+∞. The faster the eigenvalue decay rate of C the smaller u. This is related to how
much the regularization facilitates the statistical problem by reducing it. Roughly
interpreting CC−1

λ as the projection on the main components of C with eigenvalues
greater than λ, we see that one hopes to have a fast eigenvalues decay for C. This cor-
roborates with the intuition that a small intrinsic input dimensions makes a statistical
learning problem easier.

Bias bound. The second term is deterministic and can be bounded as

Ex[∥h∗λ(x)− h∗(x)∥2Y ]1/2 = ∥(Hλ −H)C1/2∥HS (2.45)

= ∥H(C(C +λI)−1 − I)C1/2∥HS (2.46)

= λ∥H(C +λI)−1C1/2∥HS (2.47)

with β > 0. This "bias term" decreases when the regularization decreases (i.e. λ in-
creases).

This gives rise to the definition of the following source condition.

Source condition. The source condition (Caponnetto and De Vito, 2007) measures
the regularity of the target map h∗, and can defined as

∥H(C +λI)−1C1/2∥HS ≲ λ
−v (2.48)



CHAPTER 2. BACKGROUND 33

with v ∈ [0,1/2]. The source condition is always verified for v = 1/2 because ∥H∥HS <
+∞. The more the right eigenvectors of H are aligned with the eigenvectors of C the
smaller v. This is related to how much the target h∗ respect the regularity defined
by the RKHS norm. Namely, how much the RKHS norm regularization induces bias
when λ increases, making the RKHS norm regularization more or less relevant for the
learning problem at hand.

Trade-off bias-variance. Finally, the best learning rate (dependency in the number
of training data n) possible is obtained by taking the λ obtaining the best bias-variance

trade-off, which is λ = n−
1

2(1−v+u) , leading to:

Ex[∥ĥ(x)− h∗(x)∥2Y ] ≲ n−
1−v

2(1−v+u) . (2.49)

The stronger the capacity and the source condition, the faster the learning rate, from
n−1/4 to n−1/2.

Sharpness of the learning rates. One may ask: Are the obtained bounds sharp? Can
one find an estimator with better bounds? The optimally of the kernel ridge estimator
and the rates given above have been proved in Caponnetto and De Vito (2007), in
terms of minimax lower rates over the suitable class of priors.

2.5 Structured prediction

Structured prediction is the supervised prediction setting that interests us in this
thesis. The goal of this section is to define this setting and highlight its challenges.

What is structured output prediction? The most studied settings of supervised
learning deal with high-dimensional inputs, and predicts low-dimensional outputs, as
for example, real numbers in the case of regression, and the values zero or one in the
case of binary classification. In structured (output) prediction, one deals also with
high-dimensional outputs. Examples of structured objects include sequences, graphs,
sets, positive definite matrices, probability distributions, and permutations. A meth-
odological characterization of structured prediction problems is that predicting the
components of the outputs independently would be detrimental in terms of statistical
performance.

Example of structured prediction problems. Being able to predict complex outputs
makes it possible to address a much broader range of practical tasks. We give some
examples.

• In computational biology: molecule structure prediction (Brouard et al., 2016a),
find global alignments of related DNA strings, recognize functional portions of
a genome.

• In natural language processing: handwritting recognition (LeCun et al., 2015),
language translation (Bahdanau et al., 2015), part-of-speech tagging and parsing
(Collins, 2002).
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• In computer vision: image segmentation (Nowozin et al., 2011), reconstruction
of images (Weston et al., 2003), and 3D human pose estimation (Li and Chan,
2014), and scene graph prediction (Chen et al., 2019).

• Learning to rank (Korba et al., 2018).

• Prediction of probability distributions (Frogner et al., 2015; Luise et al., 2018).

• Manifold regression (Steinke et al., 2010; Rudi et al., 2018).

Challenge of lacking a linear structure. Vector-valued regression methods lever-
age the linear structure of the output space. The setting of structured prediction can
be characterized as the supervised setting where the output space does not benefit
naturally from a linear structure (Ciliberto et al., 2020). Nevertheless, Y does verify
another kind of non-linear structure. This has important implications when build-
ing supervised learning methods. In particular, it leads to serious challenges both in
terms of modeling and computational complexity. An important consequence of the
non-linear structure is that linear interpolation (computation of weighted averages)
of objects in Y becomes not relevant. Finding an appropriate way of interpolating
objects in Y is key to constructing an interpolant function f̂ : X →Y , that is to choose
the values of f̂ out of the training set (xi , yi)

n
i=1. On the opposite, linear interpola-

tion is relevant in the regression setting, and the classification setting (using one-hot
encoded classes).

About the size of Y . In structured prediction, the number of possible outputs |Y |
is very big. Indeed, if Y is not infinite (e.g. in manifold regression), then Y size is ex-
ponential in the dimension d of Y . For example, in the case of multi-label prediction
|Y | = 2d , in the case of ranking |Y | = d!. From statistical and computational perspect-
ives, this observation about the size of Y in structured prediction, makes clear that one
requires to make maximum use of the structure of the outputs in order to somehow
reduce the dimension of the learning problem. On the opposite, one-hot encoding all
the objects in Y , as in classification, would correspond to not considering at all the
structure of Y . This would give very poor statistical performance, and high computa-
tional costs.

Let’s illustrate the previous remarks on two subfamilies of structured prediction
problems: graph prediction, and multi-label prediction.

Graph prediction. We build a toy target map f ∗(x) : [1,5]→Y where Y is the space
of labeled graphs1 (see Figure 2.4). This example allows us to focus on the problem
of handling the non-linear structure of the output space, as the input space is just
one-dimensional. In this example, it is clear that linear interpolation of the repres-
entations adjacency/feature matrices C ∈ RN×N would not give a good estimation of
the true map. Put another way, the map x→ ∥C(x))∥2 is not smooth (because there is
no canonical ordering of the node), and so, standard regression methods would fail in
learning such map, as relying on this smoothness assumption. A real-world applica-
tion of graph prediction is the prediction of metabolites from mass spectra (see Figure
2.5). All methods proposed in this thesis will be tested on the metabolite identification
problem.

1We consider a continuous version of the block stochastic model with x blocks. The values of f ∗ for
not integer inputs are defined as linear interpolation between aligned adjacency and feature matrices.
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x1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 2.4: Graph prediction problem f ∗ : X = [1,5]→Y whereY is the labeled graphs
space. Plot of the values of f ∗(x) for x ∈ {1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}.

Figure 2.5: The metabolite identification problem. The goal is to be able to identify
the structure of a molecule from a mass spectrum. Inputs X are mass spectra, outputs
Y are molecular graphs of metabolites. A training set of couples (mass spectrum,
molecule’s structure) is available. Outputs are graphs with atoms as nodes.

Example of multi-label prediction. In this setting Y = {0,1}d with d ∈ N∗. If d is
not too big in comparison to the quantity of data n, one may just predict each of the
d labels independently, which corresponds to linearly interpolation in Y . When d in-
creases, one needs to use the potential correlations between labels, e.g. by estimating
a subset S ⊂ Y such that f ∗(x) ∈ S for any x ∈ X . This is the goal of the methods
proposed in Chapter 4 and Chapter 5.

The pre-image problem in structured Prediction. Structured predictions models
write as f (x;W ) = argminy∈Y g(x,y;W ). Without assumptions on g the computational
cost of one evaluation f (x;W ) is O(|Y |) if |Y | < +∞, and can not be computed exactly,
nor approximately, if |Y | = +∞. This inference step in structured prediction is called
decoding or pre-image computation. Existing structured prediction algorithms comes
with approximation methods to compute efficiently the pre-image (Nowozin et al.,
2011). This is possible by exploiting specific structures of g. One contribution of
this thesis is to provide methods to compute efficiently the pre-image in the case of
surrogate methods.

2.6 Overview of structured prediction methods

The goal of this section is to give a brief background on existing methods for struc-
tured prediction. We refer the reader to Nowozin et al. (2011) and Bakir et al. (2007)
for more details. Structured prediction methods can be presented in three main cat-
egories: Conditional Random Fields, Structured SVMs, and Surrogate methods. We
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present these three families of methods in the following Sections 2.6.1, 2.6.2, and
2.6.3.

2.6.1 Conditional random fields

CRFs generalize logistic regression classifiers to structured output prediction (Lafferty
et al., 2001).

Model. The conditional probability p(y|x) is modeled choosing a parameterized
graphical model:

pw(y|x) =
1

Z(x,w)
exp(−Ew(x,y)), with w ∈Rd (2.50)

where Z(x,w) is defined to ensure
∑
y∈Y pw(y|x) = 1. For example, one can choose

Ew(x,y) = ⟨w, φ(x,y)⟩ with φ a joint embedding map. For a given input x, a prediction
y is computed using the estimated pw(y|x), e.g. through maximum a posteriori (MAP)
inference ŷ = argmaxy pw(y|x), or using ŷi = argmaxyi pw(yi |x).

Training. Then, w is estimated to make pw(y|x) close to the true distribution p(y|x)
by maximizing the regularized conditional log-likelihood, for λ > 0:

wn = argmin
w∈Rd

n∑
i=1

⟨w, φ(xi , yi)⟩+
n∑
i=1

Z(xi ,w) +λ∥w∥2. (2.51)

The optimization problem defined in Equation (2.51) is a smooth convex optimization
problem. It is solved using gradient descent.

A difficulty comes from the NP-hard computations of the normalization term Z
for general graphical models: as this is a sum over Y whose size is exponential in the
dimension of the outputs y ∈ Y . As a result, inference and training are NP-hard for
CRFs. Nevertheless, by exploiting the structure of the graphical model, it is possible to
obtain computationally efficient approximate inference and training algorithms (e.g.
using the belief propagation algorithm (Nowozin et al., 2011)).

2.6.2 Structured support vector machines

SSVMs generalize SVM classifiers to structured output prediction (Tsochantaridis et al.,
2005; Taskar et al., 2005).

Model. The prediction function is modeled as:

f (x) = argmin
y∈Y

g(x,y,w) (2.52)

where g is called energy function in the literature of energy-based methods (LeCun
et al., 2006; Belanger and McCallum, 2016). Equivalently, the function s(x,y,w) =
−E(x,y,w) can be called score function, or compatibility function. For example, one
can choose g(x,y,w) = ⟨w, φ(x,y)⟩ (Tsochantaridis et al., 2005), or used a neural net-
work for g (Belanger and McCallum, 2016; Belanger et al., 2017). An interesting prop-
erty of SSVMs is that they can be kernelized as standard SVMs.
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Training. Then, w is estimated to make f (x) close to the true output y associated
to the input x. To do so, for a given loss ∆ a straightforward idea is to perform the
following ERM, with λ > 0:

wn = argmin
w∈Rd

1
n

n∑
i=1

∆(f (xi), yi) +λ∥w∥2. (2.53)

Nevertheless, solving this optimization problem with gradient descent is not possible
as ∆(f (xi), yi) is piece-wise constant with respect to w. Therefore, SVMs consider in-
stead minimizing a convex upper bound

wn = argmin
w∈Rd

n∑
i=1

l(xi , yi ,w) +λ∥w∥2 (2.54)

with l(x,y,w) = maxy′ ∆(y,y′)− g(x,y,w) + g(x,y′ ,w) ≥ ∆(f (x), y). Notice that l general-
izes the Hinge loss for binary classification to structured output space.

Similarly to CRFs, the size of Y creates computational difficulties when aiming to
compute wn (because of maxy∈Y ). Various algorithms have been proposed to compute
wn efficiently. We refer the reader to Nowozin et al. (2011) for more details.

Max-margin Markov (M3) networks. M3 networks (Taskar et al., 2003) is a family
of structured prediction methods that can be considered as a combination of SSVMs
and CRFs. Indeed g is defined as a graphical model, but then g is trained via a max
margin-based optimization problem. Knowing such structure on g allows obtaining
more efficient training procedures.

2.6.3 Structured prediction with least-squares surrogate regression

This family of methods generalizes least-squares surrogate classifier to structured out-
put prediction (Weston et al., 2003; Cortes et al., 2005; Brouard et al., 2016b; Ciliberto
et al., 2020). In this section, we start by presenting the least-squares surrogate method
proposed in Brouard et al. (2016b), then we present the one proposed in Ciliberto et al.
(2016, 2020).

Surrogate methods consist in transforming the structured prediction problems into
a surrogate regression problem by embedding the output in a Hilbert spaceHy thanks
to an embedding map ψ : Y → Hy , then using standard methods for regression. In
particular, least-squares surrogate methods consider solving the following least-squares
surrogate regression problem:

h∗ = argmin
h

E[∥h(x)−ψ(y)∥2]. (2.55)

Then, a structured predictor f̂ : X →Y is built from an estimate ĥ of h∗ using a decod-
ing function d :Hy →Y as:

f̂ = d ◦ ĥ. (2.56)

One can illustrate the construction of surrogate methods as in Figure 2.6.



CHAPTER 2. BACKGROUND 38

Figure 2.6: Surrogate methods for structured prediction.

Output Kernel Regression (OKR). Weston et al. (2003); Cortes et al. (2005); Brou-
ard et al. (2016b) propose to define ψ : Y → Hy as the canonical map associated to
a positive definite kernel ky on Y . Such kernel should be chosen with respect to the
available information on the geometry of Y .

Kernels on input spaces X are used to go from linear models to non-linear models,
while keeping a linear parametrization of the hypothesis space. A kernel on the output
space Y is used to go from euclidean loss to non-linear loss, while still solving a least-
squares regression problem.

Even ifψ(y) is infinite dimensional, by using kernel ridge regression with an operator-
valued kernel (Brouard et al., 2016b), it is still possible to build estimator ĥ as

ĥ(x) =
n∑
i=1

αi(x)ψ(yi), with α(x) = (K +nλ)−1kx(x) (2.57)

where K = (k(xi ,xj ))
n
i,j=1 ∈ R

n×n, kx(x) = (kx(x,xi))
n
i=1 ∈ R

n, kx is a kernel over X . At

training time only M = (K +nλ)−1
R
n×n can be computed.

Then, Brouard et al. (2016b) propose to obtain a structured estimator via

f̂ (x) = argmin
y∈Y

∥ĥ(x)−ψ(y)∥2Hy . (2.58)

Even if ψ(y) is infinite dimensional, the ∥ĥ(x) −ψ(y)∥2Hy can be computed because
one is able to compute the scalar products ⟨ψ(yi),ψ(y)⟩ = ky(yi , y):

argmin
y

∥ĥ(x)−ψ(y)∥2Hy = argmin
y

ky(y,y)− 2α(x)T ky(y) (2.59)

with ky(y) = (ky(y,yi))
n
i=1 ∈R

n.

Remark 2.1 (Beyond least-squares). In this thesis, we only consider least-squares prob-
lems as surrogate regression problems, but one may consider other kinds of surrogate prob-
lems (Brouard et al., 2016b; Nowak-Vila et al., 2019; Laforgue et al., 2020). In particular,
Brouard et al. (2016b) proposes to use other convex losses than the squared norm, as the
hinge loss.

Implicit Loss Embeddings (ILE) . Ciliberto et al. (2016, 2020) generalizes the method
to a wide variety of losses as follows.

First, Ciliberto et al. (2020) proves that most losses admit an Implicit Loss Embed-
ding, that is it can be written in the following form:

∆(y,y′) = ⟨χ(y),ψ(y′)⟩Hy (2.60)
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where Hy is a Hilbert space, and χ : Y →Hy , ψ : Y →Hy are two bounded maps.

Characterization of f ∗. Then, from the characterization of f ∗ (see Chapter 2), the
following holds:

f ∗(x) = argmin
ŷ∈Y

Ey|x[∆(ŷ, y)] (2.61)

= argmin
ŷ∈Y

Ey|x[⟨χ(ŷ),ψ(y)⟩Hy ] (2.62)

= argmin
ŷ∈Y

⟨χ(ŷ),Ey|x[ψ(y)]⟩Hy (2.63)

= argmin
ŷ∈Y

⟨χ(ŷ),h∗(x)⟩Hy (2.64)

where h∗(x) = Ey|x[ψ(y)] is the solution to the LS problem of predicting ψ(y) from x,
using the characterization of the solutions of LS problems.

From there, they naturally proposed the following structured estimator.

Proposed structured predictor. Ciliberto et al. (2020) proposed the estimator

f̂ (x) = argmin
ŷ∈Y

⟨χ(ŷ), ĥ(x)⟩Hy (2.65)

= argmin
ŷ∈Y

⟨χ(ŷ),
n∑
i=1

αi(x)ψ(yi)⟩Hy (2.66)

= argmin
y∈Y

n∑
i=1

αi(x)∆(ŷ, yi) (2.67)

where α(x) is the weight function of a kernel ridge estimator ĥ, or the weights function
of other regression estimators such as ĥ(x) =

∑n
i=1αi(x)ψ(yi) solves the LS regression

problem of predicting ψ(y) from x.

The ILE estimator can be understood as an estimate of f ∗ that is defined from the
characterization of f ∗ and estimating the scalar-valued maps x→ Ey|x[∆(y, ŷ)] for any
ŷ ∈ Y .

2.7 Theoretical guarantees for least-squares surrogates

This section focuses on theoretical guarantees for least-squares surrogate structured
prediction estimators. As we saw in the previous section, one can prove learning rates
for the KRR estimator. Can we provide similar theoretical guarantees for LS surrogate
structured prediction estimators? We present here the main idea of the analysis of
Ciliberto et al. (2020). For the theoretical study of other structured prediction meth-
ods such as SSVMs, CRFs, and M3N, we refer the reader to Nowak-Vila et al. (2019);
Nowak et al. (2020).

The construction of the ILE estimator, presented in the previous section, is based
on the implicit estimation of h∗ using ĥ. Hence, intuitively, the quality of the estimator
f̂ should relate to the quality of the estimator ĥ. The following result makes it clear.
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Comparison inequality (Ciliberto et al., 2020). The estimation f̂ relates to the
estimation ĥ through the following inequality:

R∆(f̂ )−R∆(f ∗) ≤ cχ E[∥ĥ(x)− h∗(x)∥2Hy ]
1/2 (2.68)

with cχ = supy∈Y ∥χ(y)∥Hy .

Sketch of the proof. The proof is based on the fact that h∗(x) = Ey|x[ψ(y)], the lin-
earity of the inner product, the Jensen inequality, and the inequality | infy∈Y u(y) −
infy∈Y v(y)| ≤ supy∈Y |u(y)− v(y)| for any functions u,v : Y →R.

Therefore, obtaining excess-risk bounds for the structured estimator f̂ can be done
by deriving excess-risk bounds for the regression estimator ĥ. For instance, defining
the weight function α from kernel ridge weights, we can use the learning bounds of
Section 2.4.3, and we obtain

R∆(f̂ )−R∆(f ∗) ≲ cχn
−1/4. (2.69)

Obtaining learning bounds for OKR. When choosing the loss ∆(y,y′) = ∥ψ(y) −
ψ(y′)∥2Hy to define the ILE estimator, the OKR and the ILE approaches differ as follows

f̂OKR(x) = argmin
y

∥ĥ(x)−ψ(y)∥2Hy (2.70)

= argmin
y

∥ψ(y)∥2Hy − 2⟨ĥ(x), ψ(y)⟩Hy , (2.71)

and

f̂ILE(x) = argmin
y

∑
i

αi(x)∥ψ(yi)−ψ(y)∥2Hy (2.72)

= argmin
y

∑
i

αi(x)

∥ψ(y)∥2Hy − 2⟨ĥ(x), ψ(y)⟩Hy . (2.73)

That is the estimators differ because of the multiplicative constant
∑
i αi(x) which can

be understood as the ridge estimator of the regression problem with input x and
constant output 1. Additional derivations allow to show that f̂OKR benefits from
the same guarantees than f̂ILE(x) (using the inequality | infy∈Y u(y) − infy∈Y v(y)| ≤
supy∈Y |u(y) − v(y)| for any functions u,v : Y → R, and the bound Ex[|

∑
i αi(x) − 1|] ≤

Ex[(
∑
i αi(x)− 1)2]1/2).

2.8 On the role of the output structure in structured
prediction

This section aims at discussing, through the lens of surrogate methods, the role of
the structure of the output space when solving supervised learning problems. We will
point out the importance of exploiting a priori information about the output structure
for obtaining statistical and computational efficiency. Then, in light of this discussion,
we will comment on the contributions presented in this manuscript.

Let us start by recalling the following definition, proposed in the introduction.
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Structured space. A structured space (Y ,ψ) is a set equipped with an embedding
map taking values in a Hilbert space. As shown above, ψ can be chosen explicitly, or
implicitly via the choice of a kernel, or a loss.

Questions. We would like to answer the following questions: What makes a struc-
tured problem harder to solve than a regression or a classification one? How the diffi-
culty of supervised learning is related to the output space? What makes a structured
prediction learnable? From the above definition of structured space, we can prop-
erly formulate these questions as: How does the output structured space (Y ,ψ) affect the
learning bounds? Which assumptions on (Y ,ψ) have been made to obtain these bounds?

Before giving the learning bounds, we need to introduce the following operator.

Output variance or noise. We define the following covariance operator:

E = E[ϵ⊗ ϵ] (2.74)

with ϵ = ψ(y)− h∗(x) = ψ(y)−Ey|x[ψ(y)].

Assuming that ϵ , 0 allows us to consider problems where there is variability in
the output y given the input x. This allows modeling labeling mistakes occurring
when building data sets, or modeling the variability arising from omitted explanatory
variables. Notice that this setting is especially relevant when one deals with high-
dimensional outputs.

Learning bounds. From the comparison inequality Eq. (2.68), and keeping track
of the dependency in (Y ,ψ) when deriving the learning bounds for the KRR estim-
ator, following the sketch of proofs given in Section 2.4.3, one obtains the following
learning bounds. The structured predictor f̂ verifies with high probability:

R∆(f̂ )−R∆(f ∗) ≲ cχ ∥H∥1/2HS ∥E
1/2∥1/2HS n−

1−v
2(1−v+u) (2.75)

keeping only the dominant terms in n (when n→ +∞).

Notice that the inequality is dimensionally homogeneous. In the following, we
comment on the dependency of the bound in ψ by structuring it in two insights (A)
and (B).

(A) Intrinsic output dimension of the learning problem. The bound depends on
the total output variance

Tr(E) = E[∥ϵ∥2] = E[∥ψ(y)∥2]−E[∥h∗(x)∥2] ≤ sup
y
∥ψ(y)∥2 := c2

ψ . (2.76)

Moreover, the bound also depends on the target’s RKHS norm ∥H∥HS, this term is
studied in Nowak et al. (2019), and bounded as ∥H∥2HS ≲ r where r ∈N∗ is called the
affine dimension. r can be understood as the intrinsic output dimension of the learning
problem, and can also be intuitively thought of as the "number of scalar values to be
predicted".

Remark 2.2 (Non-unicity of the ILE representation). When considering ψ implicitly
induced by a kernel or a loss, there is non-unicity of ψ for a given kernel or loss. The bound
applies for all valid ψ. Hence, one may ask, for a given loss, which valid embedding leads to
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the best affine dimension. (Nowak et al., 2019) prove sharp affine dimension for the most
standard losses. In particular, it is shown that for the 0-1 loss and the Hamming loss, the
constants r = 2d and r = d above are optimal.

(B) Regularity of f ∗. The bounds have been obtained under two conditions: the
capacity and source conditions. The capacity condition measures the regularity of the
input features φ(x), and does not depend on ψ. The source condition does depend
on ψ. Indeed, it quantities the regularity of the target h∗(x) = Ey|x[ψ(y)] (in the sense
explained in Section 2.4.3). Now, considering the noiseless setting y = f ∗(x), getting
rid of the problem of dealing with the output variance, this simply implies regularity
of the map

x→ ψ(f ∗(x)) (2.77)

and also consequently of all the maps

x→ ∆(ŷ, f ∗(x)) for ŷ ∈ Y . (2.78)

That is, by choosing ψ, one should arrange the points in Y at certain distances from
each other such that the map x → Ey|x[ψ(y)] (= x → ψ(f ∗(x)) in the noiseless set-
ting) respects the regularity of the chosen hypothesis space. Notice that the minimum
source condition (v = 1/2) corresponds to the assumption that h∗ belongs to the hy-
pothesis space, making the problem at hand learnable, as the target belongs to a PAC
learnable class of functions.

Example of Y = {0,1}d . Let’s consider, for instance, the case of multi-label classific-
ation, i.e. Y = {0,1}d . When choosing the 0-1 loss, it leads to an affine dimension r =
|Y | = 2d . Intuitively, this stems from the fact that it corresponds to solving a multiclass
classification problem with |Y | classes, by choosing ψ(y) = (1y=y′ )y′∈Y . All the points
in Y are arranged at equal distances. Even if the map x → Ey|x[ψ(y)] = (p(y|x))y∈Y
may strongly verify the source condition, when d increases the multiplicative con-
stant increases exponentially making the problem quickly statistically untractable
(Osokin et al., 2017). If one uses instead the Hamming loss ∆(y,y′) =

∑d
j=11yj,y′j , it

leads to r = d. Intuitively, this stems from the fact that it corresponds to choosing
ψ(y) = (21yj=y′j − 1)dj=1, and to solve d binary classification problems. In this case,
the points in Y are arranged at distances corresponding to the quantity of differ-
ing labels, providing a more informative geometry. The regularity condition is on
x→ Ey|x[ψ(y)] = (2p(yj |x)− 1)dj=1.

Take-home message. The discussion above points out the importance in structured
prediction of exploiting as much a priori information on the geometry of Y as possible,
for obtaining good learnability, i.e. fast learning rate, and not too large constants in
the bounds. In particular, it is preferable to use representationsψ(y) with low intrinsic
dimension (A), and whose values can be efficiently interpolated from the input space
thanks to the chosen hypothesis space (B).

(I) A general output geometry for graph prediction. In practice, finding an em-
bedding ψ that satisfies well the criteria described above, is not always obvious. The
main proposal of Chapter 3 is to consider the Gromov-Wasserstein distance as a loss



CHAPTER 2. BACKGROUND 43

(implicitly defining ψ) in the case of graph prediction. We discuss this choice in light
of the criteria raised above.

If f ∗ : x→ C(x) is a map taking values in the space of adjacency matrices, because
there is no canonical ordering of the nodes, the following maps are not likely to be
regular:

x→ ∥ŷ − f ∗(x)∥22 for ŷ ∈ Y . (2.79)

The Gromov-Wasserstein distance (Peyré et al., 2016) can be thought of as the euc-
lidean distance on adjacency matrices after "realignment of the nodes", in the hope of
obtaining regularity of the following maps (criterion (A))

x→GW(ŷ, f ∗(x)) for ŷ ∈ Y . (2.80)

The neural-network version of the method proposed in this work offers a way of con-
trolling the expressiveness of the model with respect to the output space. This can
be intuitively understood as aiming to control the output dimension of the learning
problem (criterion (B)).

Now, let’s consider the output embedding ψ fixed. Chapters 4 and 5 present
two methods exploiting the output structure in order to obtain a computational and
statistical gain. The statistical gain results from a reduction of the output variance,
namely a reduction of the constant ∥E1/2∥HS.

(II) Reduced-rank regression for non-linear output space (Chapter 4). Coming
back to the example of multi-label classification and the Hamming loss, the least-
squares surrogate estimator corresponds to predicting each label with an independent
least-squares surrogate binary classifier. If the labels are linearly dependent it is a
good idea to perform reduced-rank regression. Indeed, projecting the ĥ(x) on the main
components of h∗(x), will lead to a small bias, while can allow to substantially reduce
the output variance ϵ = ψ(y)−h∗(x). The contribution of Chapter 4 can be understood
as a generalization of reduced-rank regression for non-linear output space. Y is not a
linear space but the embedding map provides a linear structure to Y by embedding it
in the Hilbert space Hy . Hence, we propose to perform reduced-rank regression of ψ.
We will prove that reduced-rank regression allows indeed to significantly reduce the
constant ∥E1/2∥HS, under output regularity conditions that we will refer to as output
capacity condition, and output source condition. Notice that we will consider the
general case where Hy can be infinite dimensional. Finally, the resulting structured
predictor will benefit from the same statistical gain, and also from an alleviation of
the pre-image computational complexity.

(III) Calibrated structured prediction with loss regularization. (Chapter 5). The
method proposed in Chapter 4, exploits the low-rank structure of the h∗ψ(x) = Ey|x[ψ(y)],

and is shown to be calibrated with the loss ∆(y,y′) = ∥ψ(y)−ψ(y′)∥2Hy . The contribution
of Chapter 5 is to propose a method that separates the target embedding ψ : Y 7→ Hy
from an alternate embedding ψ̃ : Y 7→ H̃y whose structure is exploited. More precisely,
we propose to exploit the low-rank structure of the LS solution h∗

ψ̃
(x) = Ey|x[ψ̃(y)], but

we keep the regression estimator calibrated with the estimation of h∗ψ(x) = Ey|x[ψ(y)].
This allows for instance to exploit the structure provided by a Gaussian kernel over
Y , while being calibrated with the euclidean loss ∆(y,y′) = ∥y − y′∥2 when Y = R

d , or
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the geodesic loss over when Y is a manifold. Interestingly, the proposed structured
estimator can be thought of as the ILE estimator but with a regularized loss ∆ with
respect to the regularity defined by ψ̃. This leads to the following intuitive interpreta-
tion of the statistical gain: one had better make more or less fine-grained predictions,
depending on the quantity of training data, in order to deal with the output variance
(or noise).
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3.1 Introduction

Graphs allow to represent entities and their interactions. They are ubiquitous in real-
world: social networks, molecular structures, biological protein-protein networks, re-
commender systems, are naturally represented as graphs. Nevertheless, graphs struc-
tured data can be challenging to process. An important effort has been made to design
well-tailored machine learning methods for graphs. For example, many kernels for
graphs have been proposed allowing to perform graph classification, graph clustering,
graph regression (Kriege et al., 2020). Many deep learning architecture have also been
developed (Zhang et al., 2022), including Graph Convolutional Networks (GCNs) that
are powerful models for learning with graphs as inputs. Most of these existing works
in machine learning consider graphs as inputs, but predicting a graph as output given
an input has received much less attention.

In this work, we consider the difficult problem of supervised learning of graph-
valued functions. Some works address this learning problem in various settings.
Gómez-Bombarelli et al. (2018) try to obtain a continuous representation of molecules
using a variational autoencoding (VAE) of text representations of molecules (SMILES).
Kusner et al. (2017) incorporates in the VAE architecture knowledge about the struc-
ture of SMILES thanks to its available grammar. Li et al. (2018); Olivecrona et al.
(2017); Liu et al. (2017); You et al. (2018); Shi et al. (2020) propose models that gener-
ate graphs using a sequential process generating one node/edge at a time, and train it
by maximizing the likelihood.
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In this work we consider the supervised graph prediction problem as a structured
prediction problem. The abundant literature on the topic of structured prediction has
mainly explored three directions: energy-based models, surrogate approaches and
end-to-end learning. In energy-based models (Tsochantaridis et al., 2005; Chen et al.,
2015; Belanger and McCallum, 2016), predictions are obtained by maximizing a score
function for input-output pairs over the output space. In surrogate approaches (Cor-
tes et al., 2005; Geurts et al., 2006; Brouard et al., 2016b; Ciliberto et al., 2016), a
feature map is used to embed the structured outputs. After minimizing a surrog-
ate loss a decoding procedure is used to map back the surrogate solution. End-to-
end learning attempt to solve structured prediction by directly learning to generate a
structured object (Belanger et al., 2017; Silver et al., 2017) and leverage differentiable
and relaxed definition of energy-based methods (see for instance Pillutla et al. (2018);
Mensch and Blondel (2018)). In the case of supervised graph prediction, major chal-
lenges come from the fact that the number of possible outputs can be extremely large
and that the graphs have generally different sizes. Finding a good loss and output
representation is therefore particularly crucial. Typical graph representations usually
rely on graph kernels leveraging fingerprint representation, i.e. a bag of motifs ap-
proach (Ralaivola et al., 2005) or more involved kernels such the Weisfeiler-Lehman
kernel (Shervashidze et al., 2011). In this work, we propose to exploit another kind of
graph representation, opening the door to the use of an Optimal Transport loss, and
derive an end-to-end learning approach that constrasts to energy-based learning and
surrogate methods.

Successful applications of optimal transport (OT) in machine learning are becom-
ing increasingly numerous thanks to the advent of numerical optimal transport (Cu-
turi, 2013; Peyré and Cuturi, 2019; Altschuler et al., 2017). Examples include domain
adaptation (Courty et al., 2016), unsupervised learning (Arjovsky et al., 2017), multi-
label classification (Frogner et al., 2015), natural language processing (Kusner et al.,
2015), fair classification (Gordaliza et al., 2019), supervised representation learning
(Flamary et al., 2018). Optimal transport provide meaningful distances between prob-
ability distributions, by leveraging the geometry of the underlying metric spaces.
Supervised learning with optimal transport losses has been considered in Frogner
et al. (2015); Bonneel et al. (2016); Luise et al. (2018); Mensch et al. (2019) for pre-
dicting histograms. But traditional OT loss can be applied only between distribu-
tions lying in the same space, preventing their use on structured data such as graphs.
Mémoli (2011) proposed the Gromov-Wasserstein distance that can measure similar-
ity between metric measure space and has been used as a distance between graphs
in several applications such as computing graph barycenters (Peyré et al., 2016) or
for performing graph node embedding (Xu et al., 2019b) and graph partitioning (Xu
et al., 2019a). This distance has been extended to the Fused Gromov-Wasserstein dis-
tance (FGW) in Vayer et al. (2019, 2020) with applications to attributed graphs classi-
fication, barycenter estimation and more recently dictionary learning (Vincent-Cuaz
et al., 2021). Those novel divergences that can be used on graphs are a natural fit, first
as a loss term in graph prediction but also as a way to model the space of graphs for
instance using FGW barycenters.

Contributions. In this dissertation we present the following novel contributions.
First we propose a novel and and general framework in Sec. 3.3 for graph prediction
building on FGW as a loss and FGW barycenter as a way to interpolate in the target
space. The framework is studied theoretically in Sec. 3.4 in the non-parametric case
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for which we provide consistency and excess risk bounds. Then a parametric version
of the model building on deep neural network and learning of the template graphs is
proposed in Sec. 3.5 with a simple stochastic gradient algorithm. Finally we provide
some numerical experiments in Sec. 3.6 on synthetic and real life metabolite predic-
tion datasets.

3.2 Background on OT for graphs

We begin by introducing how to represent graphs and define distances between graph
by leveraging the Fused Gromov-Wasserstein distance.

Notations. 1p is the all-ones vector with size p. δx denotes the Dirac measure in x for
x in a measurable space. Identity matrix in R

p×p is noted Ip. L(A) the set of bounded
linear operator from A to A.M(A,B) the set of measurable functions from A to B.

Graph represented as metric measure spaces. Denote pmax ∈N∗ the maximal num-
ber of nodes (vertices) in the graphs we consider in this dissertation. We define
F ⊂ R

d a finite feature space of size |F | < ∞. A labeled graph y of p ≤ pmax nodes
is represented by a triplet y = (C,F,h) where C = CT ∈ {0,1}p×p is the adjacency
matrix, and F = (Fi)

p
i=1 is a p-tuple composed of feature vectors Fi ∈ F ⊂ R

d la-
beling each node indexed by i. The space of labeled graphs is thus defined as Ydis =
{(C,F,h) |p ≤ pmax,C ∈ {0,1}p×p,CT = C,F = (Fi)

p
i=1 ∈ F

p,h = 1
p1p}. Observe that we

equipped all graphs with a uniform discrete probability distributions over the nodes
µ =

∑p
i=1hiδui where ui = (vi ,Fi) represents the structure vi (encoded only through

C(i, j), ∀j) and the feature information Fj attached to a vertex i (Vayer et al., 2019).
These weights indicate the relative importance of the vertices in the graph. In ab-
sence of this information, we simply fix uniform weights hi = 1

p for a graph of size
p. Now, let us introduce the space of continuous relaxed graphs with fixed size p:
Yp = {(C,F,h) |C ∈ [0,1]p×p,CT = C,F ∈ Conv(F )p},h = p−11p}. Conv(F ) denotes the
convex hull of F in R

p×d . We call Y =
⋃

(Yi)
pmax
i=1 and want to emphasize that Ydis ⊂ Y .

Gromov-Wasserstein (GW) distance. The Gromov-Wassertein distance between
metric measure space has been introduced by Mémoli (2011) for object matching. The
GW distance defines an OT problem to compare these objects, with the key property
that it defines a strict metric on the collection of isomorphism classes of metric meas-
ure spaces. In this dissertation, we adopt this angle to address graph representation
and graph comparison, opening the door to define a loss for supervised graph predic-
tion. Let y1 = (C1,p

−1
1 1p1

) and y2 = (C2,p
−1
2 1p2

) be the representation of two graphs
with respectively p1 ∈N∗ and p2 ∈N∗ nodes, the Gromov-Wasserstein (GW) distance
between y1 and y2, is defined as follows:

GW2
2(y1, y2) = min

π∈Pp1 ,p2

p1∑
i,k=1

p2∑
j,l=1

(C1(i,k)−C2(j, l))2πi,jπk,l , (3.1)

where Pp1,p2
= {π ∈ Rp1×p2

+ |π1p2
= p−1

1 1p1
,πT1p1

= p−1
2 1p2

}. GW2 can be used to com-
pare unlabeled graphs with potentially different numbers of nodes, it is symmetric,
positive and satisfies the triangle inequality. Furthermore, it is equal to zero when
y1 and y2 are isomorphic, namely when there exist a bijection φ : ⟦1,p1⟧ → ⟦1,p2⟧
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X

x y

ΣM

Figure 3.1: Proposed supervised graph prediction model. The input x (left) is mapped
with α(x) onto the simplex (center) where the weights are used for computing the
prediction as a FGW barycenter (right).

such that C2(φ(i),φ(j)) = C1(i, j) for all i, j ∈ ⟦1,p1⟧. GW provides a distance on the
unlabeled graph quotiented by the isomorphism, making it a natural metric when
comparing graphs.

Fused Gromov-Wasserstein (FGW) distance. The FGW distance has been pro-
posed recently as an extension of GW that can be used to measure the similarity
between attributed graphs (Vayer et al., 2020). For a given 0 ≤ β ≤ 1, the FGW dis-
tance between two labeled weighted graphs represented as y1 = (C1,F1,p

−1
1 1p1

) and
y2 = (C2,F2,p

−1
2 1p2

) is defined as follows (Vayer et al., 2020):

FGW2
2(y1, y2) = min

π∈Pp1 ,p2

∑
i,k,j,l

[
(1− β)∥F1(i)−F2(j)∥2

R
d

+ β(C1(i,k)−C2(j, l))2
]
πi,jπk,l .

The optimal transport plan matches the vertices of the two graphs by minimizing the
discrepancy between the labels, while preserving the pairwise similarities between the
nodes. Parameter β governs the trade-off between structure and label information. Its
choice is typically driven by the application.

3.3 Graph prediction with Fused Gromov-Wasserstein

Relaxed Supervised Graph Prediction. In this work, we consider labeled graph pre-
diction as a relaxed structured output prediction problem. We assume that X is the
input space and that the predictions belong to the space Yp defined in Section 3.2, for
a given value of p, while we observe training data in the finite set Ydis. We define an
asymmetric partially relaxed structured loss function ∆ : Yp×Ydis→R

+. Given a finite
sample (xi , yi)

n
i=1 independently drawn from an unknown distribution ρ on X ×Ydis,

we consider the problem of estimating a target function f ∗ : X → Yp with values in
the structured objects Yp that minimizes the expected risk:

Rp
∆

(f ) = Eρ[∆(f (X),Y )], (3.2)
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by an estimate f̂ obtained by minimizing the empirical counterpart of the true risk,
namely the empirical risk:

R̂p
∆

(f ) =
n∑
i=1

∆(f (xi), yi), (3.3)

over the hypothesis space Gp ⊂M(X ,Yp). The goal of this work is to provide a whole
framework to address this family of problems instantiated by p ≤ pmax. Note that the
complexity of the task depends primarily on p.

FGW as training loss. We propose in this work to use the FGW distance as the loss.
More precisely, we define:

∀(y,y′) ∈ Yp ×Ydis, ∆FGW(y,y′) := FGW2
2(y,y′). (3.4)

As FGW is defined for graphs of different sizes, the expression in Eq. (3.4) is well
posed. Accordingly, for all i = 1, . . .n, we denote yi ∈ Ypi the relaxed version of yi ∈ Ydis
with number of nodes pi .

Supervised Graph Prediction with FGW. Having fixed a value for p and follow-
ing these definitions, the empirical risk minimization problem now writes as follows.
Given the training sample {(xi , yi)ni=1}, we want to find a minimizer over Gp ⊂M(X ,Yp)
of the following problem:

min
f ∈Gp

n∑
i=1

FGW2
2(f (xi), yi). (3.5)

Remark 3.1. Using FGW yields an interesting property for the family of problems defined
by Rp

∆
(f ) := Eρ[FGW2

2(f (X),Y )]. Assume we have different values for p, say p1 < p2 <
. . .pk ≤ pmax. Denote r∗1, . . . , r

∗
k , the corresponding minima of the respective true risks

Rp1
∆

(f ), . . . ,Rpk
∆

(f ), (3.6)

obtained respectively in M(X ,Yp1
), . . . ,M(X ,Ypk ). In the case of the FGW distance well

defined on Y ×Y , all these minimal risks r∗i are comparable, and thus there is a best value
p̃ among p1, . . . ,pk that corresponds to the best target f̃ ∗ that achieves the minimum of the
FGW risk. Hence, in principle, we should also tackle the problem of finding the best value
p̃ that allows to come closer to the solution in Ydis in expectation. We leave this bilevel
optimization problem as future work.

Structured prediction model. To address this structured regression problem, we
propose a generic model fθ : X → Yp expressed as a conditional FGW barycenter
computed over M template graphs ȳj ∈ Y (See Figure 3.1):

fθ(x) = argmin
y∈Yp

M∑
j=1

αj(x;W )FGW2
2(y, ȳj ), (3.7)

where the weights αi(x;W ) : X → R
+ are functions that can be understood as similar-

ity scores between x and xj . We include in a single parameter θ = (M, (ȳj )
M
j=1,W ) all

model’s parameters.
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A key feature of the proposed model fθ is that it interpolates in the graph space
Y by using the Fréchet mean with respect to the FGW distance. Therefore, it inherits
the good properties of FGW, especially including the invariance under isomorphism
(two isomorphic graphs have equal scores in Eq. (3.7)). Moreover, in terms of compu-
tations, the proposed model leverages the recent advances in computational optimal
transport such as Conditional Gradient descent (Vayer et al., 2019) or Mirror descent
for (F)GW with entropic regularization (Peyré et al., 2016).

Properties of fθ. Relying on recent works that studied in a large extent GW and
FGW barycenters, we now discuss the shape of the recovered objects (Peyré et al.,
2016; Vayer et al., 2020, Eq. 14). Let us call p the number of nodes of the graph
represented by fθ(x). The evaluation of fθ on input x writes as follows: fθ(x) =
(C(x;θ),F(x;θ),p−11p), where the structure and feature barycenters are:

C(x;θ) = p2
M∑
j=1

αj(x;W )π̄Tj C̄jπ̄j ∈ [0,1]p×p, (3.8)

F(x;θ) = p
M∑
j=1

αj(x;W )F̄jπ̄
T
j ∈R

p×d . (3.9)

The (π̄k)k are the optimal transport plans from (C̄k , F̄k)k to the barycenter (C(x;θ),F(x;θ))
(Cuturi and Doucet, 2014, Eq. 8) , and thus depend on θ. Note that a very appealing
property of using FGW barycenter is that the order p (that fixes the prediction space
Yp) of the prediction does not depend on the parameters θ. This means that a unique
trained model can predict several objects with a different resolution p allowing better
interpretation at small resolution and finer modeling at higher resolution. This will
be illustrated in the experimental section.
In the next sections, we propose two different approaches to learn and define the
conditional barycenter. The first one in Section 3.4 leads to a purely nonparametric
estimator with M = n and ȳj = yj and the second one proposed in Section 3.5 relies on
a deep neural network for the weight functions αjs’ while the template graphs (ȳj )

M
j=1

are learned as well.

3.4 Nonparametric conditional Gromov-Wasserstein
barycenter

Non-parametric estimator with kernels. Before addressing the general problem of
learning both the template graphs and the weight function α, we adopt a nonparamet-
ric point of view to address the structured regression problem. Under some conditions
we recover a FGW conditional barycenter estimator of the following form:

fW (x) = argmin
y∈Yp

n∑
j=1

αj(x;W )FGW2
2(y,yj ), (3.10)

where θ = W is now the single parameter to learn and the template graphs ȳj are not
estimated but set as all the training samples yj . Similarly to scalar or vector-valued
regression, one can find many different ways to define the weight functions αi in the
large family of nonparametric estimators (Geurts et al., 2006; Ciliberto et al., 2020).
We propose here a kernel approach that leverages kernel ridge regression.
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Defining a positive definite kernel on the input space k : X ×X → R, one can con-
sider the coefficients of kernel ridge estimation as in Brouard et al. (2016b); Ciliberto
et al. (2020) to define the weight function α : X →R

n:

α(x) = (K +λIn)−1kx (3.11)

with the Gram matrix K = (k(xi ,xj ))ij ∈ Rn×n and the vector kTx = (k(x,x1), . . . , k(x,xn)).
Such a model leverages learning in vector-valued Reproducing Kernel Hilbert Spaces
and is rooted in the Implicit Loss Embedding (ILE) framework proposed and studied
by Ciliberto et al. (2020).

Example 3.2. In the metabolite identification problem (see Section 3.6), the input takes
the form of tandem mass spectra. A typical relevant kernel k for such data is the probability
product kernel (PPK) (Heinonen et al., 2012).

3.4.1 Theoretical justification for the proposed model

The framework SELF (Ciliberto et al., 2016) and its extension ILE (Ciliberto et al.,
2020) concerns general regression problems defined by an asymmetric loss ∆ : W ×
Y → R that can be written using output embeddings, allowing to solve a surrogate
regression problem in the output embedding space. We recall the ILE property and
the resulting benefits, especially when working in vector-valued Reproducing Kernel
Hilbert Space.

Definition 3.3 (ILE). For given spacesW ,Y , a map ∆ :W×Y →R is said to admit an Im-
plicit Loss Embedding (ILE) if there exists a separable Hilbert space U and two measurable
bounded maps χ :W → U and ψ : Y → U , such that for any w ∈ W , y ∈ Ydis: ∆(w,y) =
⟨χ(w), ψ(y)⟩U .

Note that this definition highlights an asymmetry between the processing of w and
y. A regression problem based on a loss satisfying the ILE condition enjoys interest-
ing properties. The following true risk minimization problem: minf Eρ[∆(f (X),Y )] :=
Eρ[⟨χ(f (X)), ψ(Y )⟩U , can be converted into i) a surrogate (intermediate) and simpler
least square regression problem into the implicit embedding spaceU , i.e. minh:X→U Eρ[∥h(X)−
ψ(Y )∥2U ], and ii) a decoding phase: f ∗(x) := argminw⟨χ(w), h∗(x)⟩U , where h∗ is solu-
tion of problem i), i.e. h∗(x) = E[ψ(Y )|x]. A nice property proven by Ciliberto et al.
(2020) is the one of Fisher consistency, f ∗ is exactly the minimizer of problem in Eq.
(3.2), justifying the surrogate approaches.

Structured prediction with implicit embedding and kernels. Assuming the loss ∆
is ILE, when relying on a i.i.d. training sample {(xi , yi)ni=1}, one gets ĥ an estimator of
h∗ by minimizing the corresponding (regularized) empirical risk and then builds f̂ .

If we choose to search ĥ in the vector-valued Reproducing Kernel Hilbert SpaceHK
associated to the decomposable operator-valued kernel K : X ×X → L(U ) of the form
K(x,x′) = IUk(x,x′) where k is the positive definite kernel defined in Section 3.4 and
IU is the identity operator on the Hilbert space U , then the solution to the problem:

min
h∈HK

n∑
i=1

∥h(xi)−ψ(yi)∥2U +λ∥h∥H2
K
,
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for λ > 0, writes as ĥ(x) =
∑n
i=1αi(x)ψ(yi) with α(x) verifying Eq. (3.11). Then, f̂ (x)

can be expressed as

f̂ (x) = argmin
w∈Z

⟨χ(w),
n∑
i=1

αi(x)ψ(yi)⟩ =
n∑
i=1

αi(x)∆(w,yi)


We show in the following proposition that ∆FGW admits an ILE. This allows us to

obtain theoretical guarantees from Ciliberto et al. (2020) for our estimator.

Proposition 3.4. ∆FGW admits an ILE.

Proof Ydis is a finite space by definition. Yp is a compact space as [0,1]p×p and
Conv(F )p are compact (F is finite). Moreover, ∀y′ ∈ Ydis, y → ∆FGW(y,y′) is a con-
tinuous map (See Lemma 6.1). Therefore, according to Theorem 7 from Ciliberto
et al. (2020) ∆FGW : Yp ×Ydis→R admits an ILE.

3.4.2 Excess-risk bounds

Since ∆FGW is ILE, the proposed estimator enjoys consistency (See Theorem 6.2 in
Appendix). Moreover, under an additional technical assumption (Assumption 6.3 in
Appendix), it verifies the following excess-risk-bound.

Theorem 3.5 (Excess-risk bounds). Let k be a bounded continuous reproducing kernel
such that κ2 := supx∈X k(x,x) < +∞. Let ρ be a distribution on X ×Ydis. Let δ ∈ (0,1] and
n0 sufficiently large such that n−1/2

0 ≥ 9κ2

n0
log n0

δ . Under Assumption 6.3, for any n ≥ n0,
if fW is the proposed estimator built from n independent couples (xi , yi)

n
i=1 drawn from ρ,

then, with probability at least 1− δ

Rp
∆

(fW )−Rp
∆

(f ∗) ≤ c log(4/δ)n−1/4, (3.12)

with c a constant independent of n and δ.

Note that n−1/4 is the typical rate for structured prediction problems without fur-
ther assumptions on the problem (Ciliberto et al., 2016, 2020). Theorem 3.5 relies on
the attainability assumption 6.3. This can be interpreted as the fact that the proposed
GW barycentric model defined an hypothesis space which is able to deal with graph
prediction problems that are smooth with respect to the FGW metric. This corrob-
orates with the intuition that for such problems FGW interpolation will obtain good
prediction results. We illustrate this theoretical insight on a synthetic dataset in the
experimental section. Furthermore, both theorems are valid for any Yp,p ∈N∗, that is,
they provide guarantees for all regression problems defined in Eq. (3.2) for all p ∈N∗.

3.5 Neural network-based conditional Gromov-Wasserstein
barycenter

In this section, we discuss how to train a neural network model estimator as defined
in Equation (3.7) where the template graphs ȳi are learned simultaneously with the
weight function α. This provides a very generic model that inherits the flexibility of
deep neural networks and their ability to learn input data representation.
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Parameters of the model. First we recap the different parameters that we want to
optimize. First, the weights α(x,W ) of the barycenter are modeled by a deep neural
network with parameters W . Next the templates M graphs ȳj are also estimated al-
lowing the model to better adapt to the prediction task. It is important to note that M
is also a parameter of the model that will tune the complexity of the model and will
need to be validated in practice. Note that this parametric formulation is better suited
to large scale datasets since the complexity of the predictor will be fixed by M instead
of increasing with the number of training data n as in non-parametric models.

Stochastic optimization of the model. We optimize the parameters of the model us-
ing a classical ADAM (Kingma and Ba, 2014) stochastic optimization procedure where
the gradients are taken over samples or minibatches of the full empirical distribution.
We now discuss the computation of the stochastic gradient on a training sample (xi , yi).
First note that the gradient of FGW(fθ(xi), yi) w.r.t. θ is actually the gradient of a bi-
level optimization problem since fθ is the solution of a FGW barycenter. The barycen-
ter solutions expressed in Equations (3.8) and (3.9) actually depends on the optimal
OT plans (π̄j )j of the barycenter that depends themselves on θ. But in practice the OT
plans (π̄j )j are solutions of a non-convex and non-smooth quadratic program and are
with high probability on a border of the polytope (Maron and Lipman, 2018). This
means that we can assume that a small change in θ will not change their value and
a reasonable differential of (π̄j )j w.r.t. θ is the null vector. This actually corresponds
in Pytorch (Paszke et al., 2019) notation to "detach" the OT plan with respect to the
input which is done by default in POT toolbox (Flamary et al., 2021). The gradient of
the outer FGW loss can be easily computed as the gradient of the loss with the fixed
optimal plan πi using the theorem from Bonnans and Shapiro (1998). Computing a
sub-gradient of the loss FGW(fθ(xi), yi) can then be done with the following steps:

1. (π̄j )j ← Compute the barycenter fθ(xi).
2. πi ← Compute the loss FGW(fθ(xi), yi).
3. ∇θ← Compute the gradient of FGW(fθ(xi), yi) with fixed OT plans (π̄j )j and πi .

Note that for the matrices C̄j in the templates, the stochastic update is actually a pro-
jected gradient step onto the set of matrices with components belonging to [0,1].

3.6 Numerical experiments

x

f*(x)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

fθ(x)
Co n t i n u o u s

D i s c r e t e
R a n d o m s a m p l i n g

Figure 3.2: Graph prediction on the synthetic dataset as a function of the 1D input x.
(top) estimated continuous prediction fθ(x), (middle) discrete realizations following
the continuous prediction, (bottom) true graph prediction function f ⋆(x).
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In this section, we evaluate the proposed method on a synthetic problem and the
metabolite identification problem.

3.6.1 Synthetic graph prediction problem

Problem and dataset. We consider the following graph prediction problem. Given
an input x drawn uniformly in [1,6], y is drawn using a Stochastic block model with
⌊x⌋ blocks, such that the biggest block smoothly splits into two blocks when x is
between two integers (see Figure 3.2, bottom line). Each node has a label, which is
an integer indicating the block the node is belonging to. More precisely, we take ran-
domly from 40 to 45 nodes for each graph (uniformly in ⟦40,45⟧. There is a probab-
ility 0.9 of connection between nodes belonging to the same block, and a probability
0.01 of connection between nodes belonging to different blocks. The probability of
connection between nodes belonging to the splitting blocks is p(x) = 0.889(x − ⌊x⌋) +
0.01. When a node belongs to the new appearing block its label is the new block’s
label with probability (x − ⌊x⌋), and the splitting block’s label otherwise. We generate
a training set of n = 50 couples (xi , yi)

n
i=1. Notice that the considered learning problem

is highly difficult as one want to predict a graph from a continuous value in [1,6].

Experimental setting. We test the parametric version of the proposed method with
learning of the templates. We use M = 10 templates, with 5 nodes, and initialize
them drawing C̄i ∈ R

5×5, F̄i ∈ R
5×1 uniformly in [0,1]5×5 and [0,1]5×1. The weights

α(x;W ) ∈RM are implemented using a three-layer ( 100 neurons in each hidden layer)
fully connected neural network with ReLU activation functions, and a final softmax
layer. We use β = 1/2 as FGW’s balancing parameter and a prediction size of n = 40
during training. During training, we optimize the parameters θ of the model using
the continuous relaxed graph prediction model. Interestingly this prediction provides
us with continuous versions of the adjacency matrices so we can generate discrete
graphs by randomly sampling each edge with a Bernouilli distribution of parameter
given by C(x,θ).

Supervised learning result. The estimated graph prediction model on the syn-
thetic dataset is illustrated in Figure 3.2. We can see that the learned map is indeed
recovering the evolution of the graphs as a function of x. This shows, as suggested
by the theoretical results in Section 3.4, that the FGW metric is a a good data fitting
term and that FGW barycenters are a good way to interpolate continuously between
discrete objects. This is particularly true on this problem where a small change w.r.t x
induces small change in the output of f ∗(x) according to the FGW metric.

Interpretability and flexibility of the proposed model. We now illustrate how
interpretable is the estimated model. First we recall that the prediction is actually a
Fréchet mean w.r.t the FGW distance, according to the weights αj(x) and the templates
(ȳj )

m
j=1. In practice it means that we can plot the template graphs (ȳj )

m
j=1 to check that

the learned templates are indeed similar (with less nodes) to training data. But on this
synthetic dataset we can also plot the trajectory of the barycenter weights αj on the
simplex as a function of x which we did in Figure 3.3. We can see in the figure that in
practice the weights αj(x) are sparse concentrated on the templates on the left of the
Figure starting with a graph with one connected cluster and ending with a graph with
5 clusters following the true model f ⋆ .
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x

α(x)

Figure 3.3: Learned templates (ȳj )
m
j=1 on the synthetic dataset and trajectory of the

weights α(x) on the simplex as a function of x.

We now illustrate one very interesting property of our model: the ability to predict
graphs with a varying number of nodes p for a given input x. An example of the
predicted graphs for x = 5 is provided in Figure 3.4. It is interesting to note that even
with small templates of 5 nodes, the proposed barycentric graph prediction model is
able to predict big graphs while preserving their global structure. This is particularly
true for Stochastic Block Models graphs that can by construction be factorized with a
small number of clusters. Note that the number of nodes in the templates (ȳj )

m
j=1 can

be seen as a regularization parameter. The model is also very flexible in the sens that
the FGW barycenter modeling allows for templates with different number of nodes
allowing for a coarse to fine modeling of the data.

3.6.2 Metabolite identification problem

Problem and dataset. An important problem in metabolomics is to identify the
small molecules, called metabolites, that are present in a biological sample. Mass
spectrometry is a widespread method to extract distinctive features from a biological
sample in the form of a tandem mass (MS/MS) spectrum. The goal of this problem
is to predict the molecular structure of a metabolite given its tandem mass spectrum.
Labeled data are expensive to obtain, and despite the problem complexity not many
labeled data are available in datasets. Here we consider a set of 4138 labeled data, that
have been extracted and processed in Dührkop et al. (2015), from the GNPS public
spectral library (Wang et al., 2016).

Experimental setting. We test the nonparametric version of the proposed method,
using a probability product kernel on the mass spectra, as it has been shown to be a
good choice on this problem (Brouard et al., 2016a). We use β = 0.5 as FGW balancing
parameter. We split the dataset into a training set of size n = 3000 and a test set of
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n130100704010 p
Figure 3.4: Predicted graphs with the estimated model fθ(x) with a varying number
of nodes p for x = 5.

size nte = 1138. On this problem, structured prediction approaches that have been
proposed fall back on the availability of a known candidate set of output graphs for
each input spectrum (Brouard et al., 2016a). This means that in practice for predic-
tion on new data, we will not solve the FGW barycenter in (3.7) but search among the
possible candidates in Y the one minimizing the barycenter loss.
In a first experiment, we evaluate the performance of FGW as a graph metric. To this
end we compare the performance of various graph metrics D : Y × Y → R

+ used in
the model: argmin y∈Y

∑n
j=1αj(x;W )D(y,yj ). We consider the metric induced by the

standard Weisfeiler–Lehman (WL) graph kernel that consists in embedding graphs as
a bag of neighbourhood configurations (Shervashidze et al., 2011). The FGW one-hot
distance corresponds to the FGW distance and using a one-hot encoding of the atoms.
The FGW fine distance corresponds to the one-hot distance concatenated with addi-
tional atom features: number of attached hydrogens, number of heavy neighbours,
formal charge, is in a ring, is in an aromatic ring. Additional features are normalize
by their maximum values in the molecule at hand. The FGW diffuse distance cor-
responds to the FGW distance and using a one-hot encoding of the atoms which has
been diffused, namely: Fdiff = e−τLap(C)F, where τ > 0, Lap(C) denotes the normalized
Laplacian of C as proposed in Barbe et al. (2020). Fingerprints are molecule repres-
entations, well engineered by experts, that are binary vectors. Each value of the fin-
gerprint indicates the presence or absence of a certain molecular property (generally
a molecular substructure). Several machine learning approaches using fingerprints
as output representations have obtained very good performances for metabolite iden-
tification (Dührkop et al., 2015; Brouard et al., 2016a; Nguyen et al., 2018) or other
tasks, such as metabolite structural annotation (Hoffmann et al., 2021). In the last
two Casmi challenges (Schymanski et al., 2017), such approaches have obtained the
best performances for the best automatic structural identification category. Here we
consider the metrics induced by linear and gaussian kernels between fingerprints of
length d = 2765. We compute the test predictions using the test spectra with less
than 300 candidates for faster computation: 286 test points. For the FGW metrics, we
compute them using the 5 greatest weights αi(x). We evaluate the results in terms of
top-k accuracy: percentage of true output among the k outputs given by the k greatest
scores in the model. The two hyperparameters (ridge regularization parameter λ and
the output metric’s parameter) are selected using a validation set (1/5 of the training
set) and top-1 accuracy.

Graph metrics comparison. The results given in Table 3.1 shows that gaussian fin-
gerprints is state-of-the-arts on this dataset when a candidate set is available. We see
that the FGW greatly benefits from the improved fine and diffuse metrics showing the



CHAPTER 3. LEARNING TO PREDICT GRAPHS WITH FUSED

GROMOV-WASSERSTEIN BARYCENTERS 58

Table 3.1: Top-k accuracies for various graph kernels on the metabolite identification
dataset.

Top-1 Top-10 Top-20

WL kernel 28.7% 57.2% 71.2%

Linear fingerprint 33.6% 76.2% 80.1%

Gaussian fingeprint 48.7% 81.0% 86.0%

FGW one-hot 24.6% 64.2% 75.4%

FGW fine 31.2% 64.9% 76.1%

FGW diffuse 40.0% 72.3% 82.5%

0.0 0.2 0.4
dmin

0.2

0.3

0.4

0.5

FG
W

FGW
Closest

Figure 3.5: No candidate set setting. In average, the FGW barycenter (blue) using the
10 molecules with the greatest weights αj(x) is closer to the true molecule, than the
molecule with the greatest weight αj(x): closest template prediction (green).

adaptation potential of the FGW metric to the graph space at hand reaching compet-
itive performance against baselines and even beating Fingerprints with linear kernel
and WL kernels.

Predicting novel molecules. Being able to interpolate novel graphs without using
predefined candidate sets is a great advantage of the proposed method. Such com-
putation is in general intractable (e.g. with WL and fingerprints metrics). In this
experiment, we evaluate the performance of the estimator when computing the bary-
center over Yp, and not over the candidate sets. For a given test input x, let us define
d0(x) the FGW (one-hot) distance of the training molecule with the greatest αj(x) to
the true molecule. d0(x) measures the level of interpolation difficulty: very small d0
means that the true molecule is close to a training molecule and no interpolation is
required. We compute, over 1000 test data, the mean d0(x) and the mean FGW (one-
hot) distance between the predicted barycenter (using the 10 largest αj(x)) and the
true test molecule. In Figure 3.5, we plot the two mean distances, with respect to a
filtering threshold dmin such that only the test point with d0(x) > dmin are used when
computing these means. We can see that the FGW interpolation allows to become
closer to the true output than only predicting the output with the greatest weight
αj(x), even more when the interpolation is required (d0(x) big). This validates the
choice of FGW as a way to interpolate between real-world graphs.
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3.7 Conclusion

We proposed in this work a novel framework for graph prediction using optimal trans-
port barycenters to interpolate continuously in the output space. We discussed both
a non-parametric estimator with theoretical guarantees and a parametric one based
on neural network models that can be estimated with stochastic gradient methods.
The method was illustrated on synthetic and real life data showing the interest of the
continuous relaxation especially when targets are not available.
Future works include estimation of the target number of nodes p(x) and supervised
learning of complementary feature on the templates that can guide the FGW barycen-
ters.





4
Vector-valued Least-Squares Regression
under Output Regularity Assumptions

4.1 Introduction

Learning vector-valued functions plays a key role in a large variety of fields such as
economics (Lütkepohl, 2013), physics, computational biology, where multiple vari-
ables have to be predicted simultaneously. As opposed to solving multiple single re-
gression problems, the interest of vector-valued regression lies on the ability to take
into account the dependence structure among the output variables by appropriate
regularization (see for instance Micchelli and Pontil, 2005; Baldassarre et al., 2012;
Álvarez et al., 2012; Lim et al., 2015) or by imposing a low-rank assumption (Ander-
son, 1951; Izenman, 1975; Velu and Reinsel, 2013). Regarding the infinite dimen-
sional output case, besides functional output regression (Kadri et al., 2016), the mo-
tivation for vector-valued regression mainly comes from the application of surrogate
approaches in Structured Output Prediction (Weston et al., 2003; Geurts et al., 2006;
Kadri et al., 2013; Brouard et al., 2016b; Ciliberto et al., 2020). In order to learn a
model to predict an output with some discrete structure, surrogate approaches em-
bed the structured output variable into a Hilbert space and thus boil down to vector-
valued regression with a potentially infinite dimensional output space. At prediction
time, decoding allows to return a prediction in the original structured output space.
Image completion (Weston et al., 2003), label ranking (Korba et al., 2018) and graph
prediction (Brouard et al., 2016a) are all examples of structured prediction tasks that
can be handled by surrogate approaches.

One way to implement infinite dimensional output regression consists in learn-
ing in vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHS) (Micchelli and
Pontil, 2005). In particular, regularized least-squares estimators in vv-RKHS enjoy
strong theoretical guarantees (see Caponnetto and De Vito, 2007). However complex
tasks such as structure prediction very often involve a limited amount of training data
compared to the complexity of the input and output data. To overcome this issue, the
structure of the target output can be leveraged. This is typically the goal of reduced-
rank approaches (Mukherjee and Zhu, 2011; Luise et al., 2019).

In this chapter, our aim is to improve upon the regularized least-squares estimators
by imposing a rank constraint on the least-squares estimator. Our contributions are
three-fold.

As a first contribution, we introduce a novel reduced-rank estimator for vector-
valued least-squares regression in the general case of infinite dimensional outputs.
Denoting Z a Hilbert space and X a Polish space, we consider the following relation-
ship between the input variable and the output variable:

z = h∗(x) + ϵ, (4.1)
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where the pair of random vectors (x,z) takes its values in X×Z, ϵ ∈ Z is a random noise
independent of x with expectation E[ϵ] = 0 and h∗ : X →Z is a measurable function.
Assuming we have already an estimator ĥ : X → Z of h∗ built from a training i.i.d.
sample (xi , zi)

n
i=1, we propose to learn a linear operator P̂ of rank p, for p ∈ N

∗ al-
lowing to project ĥ(x) onto Z0 ⊂ Z with dim(Z0) ≤ p giving rise to the following new
estimator:

x 7→ P̂ ĥ(x).

This novel estimator generalizes the reduced-rank kernel ridge regression estimator
proposed by Mukherjee and Zhu (2011) to the infinite dimensional case.

The second contribution of this work is to study the proposed least-squares es-
timator under output regularity assumptions and provide excess-risk bounds. We
assume that h∗ belongs to a vector-valued reproducing kernel Hilbert Space, namely
h∗ = Hφ(.) with H ∈ Z ⊗Hx,∥H∥HS < +∞, and φ : X → Hx is a canonical map associ-
ated to a scalar-valued kernel k : X ×X →R. The difficulty of the learning problem in
Eq. (4.1) can be characterized by standard complexity measures. For instance, the ca-
pacity condition measures the regularity of the features in terms of eigenvalue decay
rate of the covariance operator C = E[φ(x)⊗φ(x)], and the source condition measures
the regularity of H in terms of alignment of H ∗H with C (Caponnetto and De Vito,
2007; Ciliberto et al., 2020; Varre et al., 2021). The more regular the problem is, the
better are the statistical guarantees. In this work, we consider regularity assumptions
on the outputs of the learning problem. We measure the eigenvalue decay rates of the
covariance operator E[h∗(x)⊗h∗(x)], and E[ϵ⊗ ϵ], and also the alignment of HH ∗ with
HCH ∗.

The third contribution of this work is a novel structured prediction method, which
leverages our reduced-rank estimator in the surrogate regression problem. The pro-
posed approach makes use of both an input and an output kernel. In this case, the
resulting surrogate regression problem’s output space is thus a reproducing kernel
Hilbert space. The least-squares analysis allows to prove the statistical and compu-
tational interest of the structured prediction method. In particular, consistency and
learning rates for our structured prediction method are given. Moreover, we show
by an extensive empirical study on different real world structured prediction tasks
that the proposed approach improves upon full rank and state-of-the art structured
prediction approaches.

Outline. The chapter is organized as follows. In Section 4.2, we provide a novel
reduced-rank method for solving vector-valued least-squares problems. In Section
4.3, we give learning bounds for the proposed least-squares estimator. Then, we study
under which setting this method improves the statistical and computational perform-
ance. In particular, our analysis includes and extends the interest of reduced-rank re-
gression beyond the standard setting of reduced-rank regression where the optimum
is assumed to be low-rank, and the noise homogeneous in Z. In Section 4.4, we show
how the proposed estimator can be advantageously used in structured prediction with
surrogate methods. We give an excess-risk bound for the resulting structured pre-
dictor, inherited from our least-squares theoretical analysis. In Section 4.5, we il-
lustrate our theoretical analysis on synthetic least-squares problems. We empirically
show the benefit of the method in structured prediction on three different problems:
image reconstruction, multi-label classification, and metabolite identification.
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4.2 Problem setting and proposed estimator

In this section, we introduce the learning setting of vector-valued least-squares regres-
sion. Then, we give background on kernel ridge regression. Finally, we present the
reduced-rank least-squares estimator proposed in this work.

Vector-valued least-squares regression. We consider the problem of estimating a
function h : X →Z with values in a separable Hilbert space Z with norm ∥.∥Z , given a
finite set {(xi , zi)ni=1} independently drawn from an unknown distribution ρ on X ×Z,
minimizing the expected risk

R(h) = Eρ[∥h(x)− z∥2Z]. (4.2)

The solution is given by h∗(x) := Eρ(z|x)[z]. We define the noise ϵ as the random variable
defined by the following equation

z = h∗(x) + ϵ. (4.3)

In practice, solving (4.2) requires the choice of an hypothesis space H. In this work,
we consider reproducing kernel Hilbert space (RKHS).

Reproducing kernel Hilbert spaces. Given a positive definite kernel k : X ×X →R,
one can build a Hilbert space Hx of scalar-valued functions Hx, called the associated
RKHS of k, defined by the completion Hx = span{k(x, .) |x ∈ X} according to the norm
induced by the scalar product ⟨k(x, .), k(x′ , .)⟩Hx := k(x,x′). There is a one-to-one rela-
tion between a kernel k and its associated RKHS (Aronszajn, 1950). A crucial tool is
the representer theorem which allows to solve in practice regularized empirical risk
minimization problems over RKHS (Wahba, 1990; Schölkopf et al., 2001).

Vector-valued reproducing kernel Hilbert spaces. The theory of vector-valued RKHSs
(vv-RKHSs) extends the theory of real-valued RKHS by enabling to build Hilbert
spaces of vector-valued functions (Senkene and Tempel’man, 1973; Micchelli and Pontil,
2005; Carmeli et al., 2010). We note A∗ the adjoint of any operator A. An operator-
valued kernel is an application K : X × X → L(Z) with values in the set of bounded
linear operator on Z, satisfying the two following properties: K(x,x′) = K(x′ ,x)∗ and∑n
i,j=1⟨K(xi ,x′j )zi , zj⟩Z ≥ 0 for any n ∈ N

∗, (x1, z1), . . . , (xn, zn) ∈ X × Z. Then, akin to
scalar-valued kernel, one can build a Hilbert spaceH of vector-valued function fromX
toZ, called the associated RKHS ofK , defined by the completionH = span{K(x, .)z | (x,z) ∈ X ×Z}
according to the norm induced by the scalar product ⟨K(x, .)z,K(x′ , .)z′⟩H := ⟨K(x,x′)z,z′⟩Z .
There is a one-to-one relation between a kernel K and its associated vv-RKHS. Learn-
ing with operator-valued kernels is also possible thanks to representer theorems (Mic-
chelli and Pontil, 2005).

Kernel ridge regression. The kernel ridge regression method (KRR) considers the
estimator minimizing the following empirical objective

min
h∈H

1
n

n∑
i=1

∥h(xi)− zi∥2Z +λ∥h∥2H (4.4)
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where H is the RKHS associated to an operator-valued kernel K . In this work, we
consider kernel of the form K(x,x′) = k(x,x′)IZ , where k : X × X → R is a positive
definite scalar-valued kernel on X . In this case, the solution of the problem above can
be computed in closed-form as follows:

ĥ(x) =
n∑
i=1

αi(x)zi , with α(x) = (K +nλ)−1kx (4.5)

where K = (k(xi ,xj ))
n
i,j=1 ∈R

n×n, and kx = (k(x,xi))
n
i=1 ∈R

n.

Related works in reduced-rank regression. Reduced-rank (or low-rank) estimat-
ors are estimators whose predictions ẑ ∈ Z lie in a linear subspace Z0 ⊂ Z, estimated
from the data. Reduced-rank regression methods have been proposed for both linear
models (Izenman, 1975) and non parametric models (Mukherjee and Zhu, 2011; Foy-
gel et al., 2012; Rabusseau and Kadri, 2016; Luise et al., 2019). Two ways of building
reduced-rank estimators have been proposed so far. A first way consists in imposing
small rank constraints on the estimated linear operator (Izenman, 1975; Mukherjee
and Zhu, 2011; Rabusseau and Kadri, 2016): on other words, the obtained estimators
can be written as full-rank estimators that has been projected with estimated projec-
tion operators for a chosen rank p. Among those works devoted to finite dimensional
vector-valued regression, the contribution of Rabusseau and Kadri (2016) differs in
many ways. They consider a tensor output (the constraint is thus a multilinear rank
constraint) and also provide learning bounds. Another way to address reduced-rank
regression is to use nuclear norm (or trace norm) penalization as a convex relaxation
to rank penalization as developed in (Romera-Paredes et al., 2013; Foygel et al., 2012;
Luise et al., 2019). It is worth mentioning that only Luise et al. (2019) tackle an infinite
dimensional vector valued-regression problem and provide a statistical study. More
precisely, in terms of statistical guarantees, Rabusseau and Kadri (2016) and Luise
et al. (2019) show improved constants in learning bounds when using reduced-rank
regression, in comparison with full-rank, in their respective settings.

Proposed least-squares estimator. We introduce a non-parametric estimator be-
longing to the family of reduced-rank estimators. Let λ1,λ2 > 0 and p ∈N∗. Let Pp be
the set of the orthogonal projections from Z to Z of rank p. We note ĥλ a KRR estim-
ator defined using with the training sample (xi , zi)

n
i=1 and a regularization parameter

λ > 0.
Ideally, we would propose the reduced-rank estimator x 7→ P ĥλ2

(x) where P is the
operator defined as follows:

P := argmin
P∈Pp

E[∥Ph∗(x)− h∗(x)∥2Z]. (4.6)

Nevertheless, P is unknown, so we replace it by the following empirical estimator

P̂λ1
:= argmin

P∈Pp

1
n

n∑
i=1

∥Pĥλ1
(xi)− ĥλ1

(xi)∥2Z , (4.7)

based on a KKR estimator ĥλ1
of h∗, with possibly λ1 , λ2. Eventually, this approx-

imation gives rise to the following proposition for our reduced-rank estimator with
hyperparameters (p,λ1,λ2):

x 7→ P̂λ1
ĥλ2

(x). (4.8)
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X input space
Y structured output space
Z regression output Hilbert space
∥.∥Z norm of the Hilbert space Z
n/nte number of training data/test data
h∗ least-squares optimum x→ Eρ(z|x)[z]
∆ structured loss ∆ : Z ×Z →R

+

f ∗ structured prediction optimum x→ argmin ẑ∈ZEρ(z|x)[∆(z, ẑ)]
k positive definite kernel on X
Hx RKHS associated to k
H vv-RKHS associated to K(x,x′) = k(x,x′)IZ
Pp space of orthogonal projections from Z to Z with rank p
P argminP∈PpE[∥Ph∗(x)− h∗(x)∥2Z]
A∗ adjoint of A

A ⪯ B ∀u,⟨u,Au⟩ ≤ ⟨u,Bu⟩
µp(A) p-th eigenvalue of A sorted in decreasing order
∥.∥HS Hilbert-Schmidt norm
∥.∥∞ operator norm
a⊗ b defined such as ∀x,a⊗ bx = ⟨b, x⟩a
Sp(A)

∑p
k=1µk(A)

Table 4.1: Notations

Remark 4.2.1. Note that P is the projection onto the span of the p eigenvectors of the
covariance operator E[h∗(x)⊗ h∗(x)] corresponding to the p greatest eigenvalues. Similarly,
P̂λ1

is the projection onto the span of the p eigenvectors of the empirical covariance operator
1
n

∑n
i=1 ĥλ1

(xi)⊗ ĥλ1
(xi) corresponding to the p greatest eigenvalues.

The proposed estimator allows to cope with any separable Hilbert output space
Z (potentially infinite dimensional), which is of practical interest (See Section 4.4).
Furthermore, efficient and theoretically grounded approximation methods for KRR
and kernel principal component analysis (Rudi et al., 2015; Rudi and Rosasco, 2017;
Sterge et al., 2020) can be straightforwardly leveraged to alleviate the computation of
this estimator. For sake of simplicity, in the remainder of the chapter, except when it
is necessary, we omit the dependency in λ1 and λ2 and use notations ĥ and P̂ .

Remark 4.2.2. The proposed estimator can be seen as a generalization of the reduced-rank
estimator defined in (Mukherjee and Zhu, 2011) for finite dimensional vector-valued to the
infinite dimensional output case and when λ1 and λ2 are not necessarily equal. In this
work, we additionally provide learning bounds by leveraging the linear structure of the
noise ϵ and those of the outputs h∗(x).

Notations are gathered in Table 4.1.

4.3 Theoretical analysis

In this section, we present a statistical analysis of the proposed estimator. We start, in
Section 4.3.1, by giving the assumptions on the learning problem that we considered.
Then, in Section 4.3.2, we provide learning bounds. Finally, in Section 4.3.3, we study
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under which setting reduced-rank regression is statistically and computationally be-
neficial.

4.3.1 Assumptions

Here, we introduce and discuss the main assumptions that we need in order to prove
our results.

Assumption 4.1 (attainable case). We assume that the solution h∗ belongs to the RKHS
associated to the kernel K(x,x′) = k(x,x′)IZ , i.e. there exists a linear operator H fromHx to
Z with ∥H∥HS < +∞ such that:

h∗(x) =Hφ(x). (4.9)

This assumption states that the solution h∗ indeed belongs to the chosen hypothesis
space H. It is a standard assumption in the learning theory (Ciliberto et al., 2020).

Assumption 4.2 (regularity of target’s outputs). The operator M = E[h∗(x)⊗ h∗(x)] sat-
isfies the following property. There exists α ∈ [0,1] such that:

c1 := Tr(Mα) < +∞. (4.10)

Assumption 4.2 is always verified for α = 1 (as Tr(M) ≤ ∥H∥2HSκ
2), and the smaller

the α the faster is the eigenvalue decay ofM. It quantifies the regularity of the target’s
outputs h∗(x) ∈ Z. As a limiting case, when M is finite rank α = 0. The capacity
condition is a standard assumption for least-squares problems, which can be written
Tr(Cr ) < +∞with r ∈ [0,1], and that characterises instead the regularity of the features
φ(x) ∈ Hx. Remark that it implies the Assumption 4.2 to hold with at least α ≤ r, but
α≪ r is possible.

Assumption 4.3 (output source condition). The operators H and C = E[φ(x) ⊗ φ(x)]
satisfy the following property. There exists β ∈ [0,1], c2 > 0 such that:

HH ∗ ⪯ c2M
1−β . (4.11)

Assumption 4.3 is always verified for β = 1 (as ∥H∥∞ < +∞), and the smaller the β
the stricter the assumption is. It quantifies the alignment of the left-singular vectors
of H with the main components of M. The source condition is a standard assumption
for least-squares problems, which can be writtenH ∗H ⪯ aC1−r with r ∈ [0,1], a > 0, and
that quantifies instead the alignment of the right-singular vectors of H with the main
components of C (See, e.g. Ciliberto et al., 2020; Caponnetto and De Vito, 2007). The
Assumption 4.3 allows to show a fast convergence rate of P̂ . In general, Assumption
4.3 can be maximum (β = 0) while the source condition is arbitrarily weak (r = 1).

Assumption 4.4 (diffuse noise and concentrated signal). The operatorsM and E = E[ϵ⊗
ϵ] satisfy the following property. There exists γ ∈ [0,1], c3 > 0 such that

c3M
1−γ ⪯ E. (4.12)

Assumption 4.4 quantifies the alignment of the main components of E and M,
and the greater the γ the more the noise is diffuse in comparison to the signal. As a
limiting case, when γ → 1, then σ2IZ ⪯ E with a certain σ2 > 0, which is only possible
in finite dimension (e.g. E = σ2IZ , homogeneous noise commonly assumed in low-
rank regression).
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Figure 4.1: Illustration of finite-rank setting with r = 5, σ2
c = 1,σ2

ϵ = 0.1 (Left) and
polynomial setting with rc = 3/2, rh = 5/4, re = 8/7 (Right). We plot p → µp(M) =
⟨vp,Mvp⟩Z and p→ µp(E) = ⟨vp,Evp⟩Z .

Example 4.5 (finite-rank example). The standard low-rank regression setting (See Figure
4.1 left) corresponds to Z = R

d , C = σ2
c IHx with σ2

c > 0, H =
∑r
i=1 vi ⊗ ui with r ∈ N

∗,
E = σ2

ϵ IZ with σ2
ϵ > 0, (ui)i , (vi)i being orthonormal bases (ONB) of respectively Hx and

Z. In this case, the assumptions are verified with α = 0,β = 0,γ = 1.

Example 4.6 (polynomial example). In this dissertation, we study reduced-rank regres-
sion beyond low-rank setting. For instance, we can consider polynomial forms (See Figure
4.1 right) for C =

∑+∞
i=1 i

−rcui⊗ui , H =
∑+∞
i=1 i

−rhvi⊗ui , E = 0.5×
∑+∞
i=1 i

−revi⊗vi , with (ui)i
and (vi)i being (ONB) of Hx and Z, respectively. In this case, the assumptions are verified
with α = 2

2rh+rc
, c1 = Tr(Mα) < 2, β = rc

2rh+rc
, γ = 1− re

2rh+rc
.

4.3.2 Main Result

Now, we present the main result of this work which is Theorem 4.7. Under Assump-
tions 4.1, 4.2, 4.3, 4.4, it provides a bound on the proposed estimator’s excess-risk for
a chosen p = rank(P̂ ).

Theorem 4.7 (Learning bounds). Let P̂ ĥ be the proposed estimator in Eq. (4.8) with
rank(P̂ ) = p, built from n independent couples (xi , zi)

n
i=1 drawn from ρ. Let δ ∈ [0,1].

Under the Assumptions 4.1, 4.2, 4.3, 4.4, there exists constants c4, c5, c8 > 0, n0 ∈ N
∗

defined in the proof, and independent of p,n,δ, such that, if µp+1(M) ≥ c8 log8(8
δ )n−

1
β+1 and

n ≥ n0, then with probability at least 1− 3δ,

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]1/2 ≤
(
c4
√
pn−1/4 + c5Sp(E)1/4

)
n−1/4 log(n/δ) +

√
3c1µp+1(M)1/2(1−α)

(4.13)

with Sp(E) =
∑p
i=1µi(E).

The bound is the sum of two terms: the first one increases with p, the second one
decreases with p. When p = o(

√
n), the first term is dominated by a term proportional

to Sp(E)1/4 log(n/δ)n−1/4, which should be compared to the dominating term of the
kernel ridge estimator’s bound Tr(E)1/4n−1/4 (cf. Lemma 6.10): instead of the total
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amount of noise Tr(E), the reduced-rank estimator only incurs the quantity within the
p main components of E, plus a logarithmic term in n. The second term of the sum
decays w.r.t p at the speed of the eigenvalue decay rates of Ex[h∗(x) ⊗ h∗(x)], modulo

an exponent 1−α. Finally, the condition µp+1(M) ≥ c8n
− 1
β+1 stems from the estimation

error of P , and can translate into the existence of a plateau threshold p∗ from which the
second term cannot decrease anymore (See Rudi et al. (2013)). Hence, the stronger is
Assumption 4.3, the faster is the estimation of P̂ and the divergence rate of the plateau
threshold. We give here a sketch of the proof for the Theorem 4.7. The complete proof
is detailed in Appendix 6.2.

Sketch of the proof. The proof consists in decomposing the excess-risk of the es-
timator P̂ ĥ as follows.

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]1/2 ≤ Ex[∥P̂ ĥ(x)− P̂ h∗(x)∥2Z]1/2︸                          ︷︷                          ︸
regression error on a subspace

+Ex[∥P̂ h∗(x)− h∗(x)∥2Z]1/2︸                         ︷︷                         ︸
reconstruction error

. (4.14)

Then each right-hand term is bounded using a dedicated lemma given in the Ap-
pendix 6.2. Lemma 6.5 bounds the regression error on the subspace defined by P̂
(akin to a variance). Lemma 6.9 bounds the reconstruction error (akin to a bias).
We exploit techniques and schemes similar to those used in (Rudi et al., 2013; Rudi
and Rosasco, 2017; Ciliberto et al., 2016, 2020; Luise et al., 2019) in order to prove
these lemmas. Namely, L2-norms of functions in H are expressed as Hilbert-Schmidt
norms of Hilbert-Schmidt operators in Z ⊗Hx. Relevant norms decompositions lead
to study the deviation of the sample operators from the true operators E[z⊗φ(x)] and
E[φ(x)⊗φ(x)]. For this purpose, Bernstein’s inequalities for the operator norm, or the
Hilbert-Schmidt norm, of random operators between separable Hilbert spaces are ap-
plied (Tropp, 2012). The previously introduced assumptions of Section 4.3.1 play an
important role in the proof of Lemma 6.9, allowing to obtain faster learning rate for
P̂ .

Remark 4.3.1 (Independence assumption on φ(x) and ϵ). In this work, we assume that
φ(x) is independent of ϵ. This allows to keep a clear exposition of the proofs, by perform-
ing lighter mathematical derivations. Nevertheless, such assumptions is not exploited by
the proposed method, and similar results hold without this assumption as we discuss in
Appendix 6.2.7.

4.3.3 Polynomial Eigenvalue Decay Rates

In this subsection, we discuss under which setting reduced-rank ridge regression can
be statistically and computationally advantageous in comparison to standard full-
rank ridge regression. For this purpose, we apply Theorem 4.7 considering polyno-
mial eigenvalue decay rates for M and E.

Assumption 4.8 (polynomial eigenvalue decay rates). M and E have polynomial eigen-
value decay rates with parameter s > 1 and e > 1, if there exist constants a,A,b,B > 0 such
that:

ap−s ≤ µp(M) ≤ Ap−s, (4.15)

bp−e ≤ µp(E) ≤ Bp−e. (4.16)
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Parameters s and e characterize the shapes of the signal’s and noise’s distributions
in Z, and provide information complementary to the total amounts of variance Tr(M)
and Tr(E). Moreover, notice that Assumption 4.8 does not require an exact polynomial
decay of the eigenvalues µk ∝ k−r . In particular, one can define a measure of distortion
of µk(M) and µk(E) from exact polynomial decays as the values A

a and B
b , respectively.

The greater are these ratios the greater are the distortions.

Remark 4.3.2 (Assumptions relationship). Assumption 4.8 implies that Assumption 4.2
holds with c1 = Tr(M

2
s ), and Assumption 4.4 holds with γ = 1− es and c3 = Ae/sb−1.

Under the Assumptions 4.1, 4.3, and 4.8 we derive the following corollary from
Theorem 4.7 in the special case of polynomial eigenvalue decay rates.

Corollary 4.9 (Learning bounds (polynomial decay rates)). Let δ ∈ ]0,1], n ≥ n0. Under
Assumptions 4.1, 4.3, and 4.8, assuming B

b ≤ θ with θ ≥ 1, then by taking only

p = c9(log8(
8
δ

))−
1
s n

1
(β+1)s , (4.17)

we have with probability at least 1− 3δ:

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]1/2 ≤ c10(s, e) log5/4(
n
δ

)n−1/4 + c11(e)n−
1
2

1−2/s
1+β log8(

8
δ

), (4.18)

where c10(s, e) = c̃10

(
e(e−1)
s

)1/4 (
1 + log

(
e
e−1

))
, c11(e) = c̃11

(
1 + log

(
e
e−1

))
. c̃10, c̃11, n0, are

constants independent of n,δ, s, e, and c9 is a constant independent of n,δ, defined in the
proofs.

As a first remark, note that the chosen components number p of order O(n
1

(β+1)s ) is
significantly smaller than n when s is big (concentrated signal). For instance, s = 2
yields at most to p =O(

√
n). Then, notice that the bound is the sum of two terms. The

first term is decaying in O(n−1/4) modulo a logarithm term in n, and its multiplicative
constant can be arbitrarily small when e is small (spread noise), as c10(s, e) −−−−−→

e→1+
0.

The decreasing rate of the second term varies within the open interval ]0,1/2[. The
greater is s and the smaller is β, the better is the rate.

Comparison with full-rank estimator’s bound. The bound provided in Eq. (4.18)
sheds light on the role of M and E’s shapes, flat (s, e → 1+) or concentrated (s, e →
+∞), in the performance of the reduced-rank estimator. At the opposite, remark
that the full-rank ridge estimator’s bound is dominated by a term of the form c(κ +
∥H∥HS)Tr(E)n−1/4 log(4

δ ) with c > 0 a constant independent of n,δ, s, e (See Lemma
6.10). So, the ridge estimator is not impacted by the shapes of M and E, but is only
affected by the total amounts of signal ∥H∥HS, and noise Tr(E).

Favorable settings for reduced-rank. Which situations are favorable to the pro-
posed reduced-rank method? To simplify the discussion, let us not consider the terms
(1 + log(e/(e−1))) appearing in c10, c11. If s is big enough and β small enough then the
right term of (4.18) is o(n−1/4) (e.g. s = 6, β = 0 gives O(n−1/3)). So, for n big enough, it
remains to compare the left term of the bound with the dominating term of the ridge
bound. When e becomes close to 1+ the left term can be arbitrarily smaller than the
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ridge bound, because c10(s, e)→ 0, while cTr(E) is unchanged. Let be q ∈N∗. For the
following family of settings:

β < 1− 4
s
, e ∈]1, e∗(n,q)] (4.19)

with e∗(n,q) = sup{e / c10(s, e) < cTr(E)1/4

q log5/4(n)
}, the reduced-rank bound is q times smaller

than the full-rank one, when n is big enough.
This gain is obtained because the projection yields to an important noise reduction
and a small increase in bias. This can be think as a direct generalization of the low-
rank regression setting.

In the following corollary, we duly show that, despite the (1 + log(e/(e − 1))) terms,
one can find settings (n,s, e) ∈ N

∗ × R+ × R+ such that the learning bound (4.18) is
arbitrarily smaller than the kernel ridge estimator’s one under the same assumptions
on the learning problem.

Corollary 4.10 (Statistical gain of reduced-rank regression). Let δ ∈]0,1] and ϵ > 0.
If β < 1, then there exists a setting s, e > 1, n ∈ N∗, such that, under the assumptions of
Corollary 4.9, with probability at least 1− 3δ,

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]
1
2 ≤ ϵ ×Tr(E)1/4 ×n−1/4. (4.20)

Proof We exhibit such a setting (n,s, e). We choose (s,β) such that β < 1− 4
s . One can

check that in this case c11n
− 1

2
1−2/s
1+β log(n/δ) = o(n−1/4), and also c10

(
eθ
ζ(e)s × log5(nδ )

)1/4
n−1/4 =

o(n−1/4) (when e→ 1+,n→ +∞, with e ≥ 1 + 1
na for any a > 0). So, taking n big enough

we obtain the desired inequality.

Corollary 4.10 shows that a significant statistical gain is possible using reduced-
rank regression, even if the support of h∗(x) covers the entire output space Z, i.e.
beyond the standard low-rank setting. Besides the statistical gain, reducing the rank
of the predictions’ space is of interest for reducing the computational complexity at
prediction time.

As it will be presented in the application to structured prediction (See Section 4.4),
decoding predictions in surrogate approaches or simply computing mean squared er-
rors require to calculate inner products between the predictions provided by the re-
gression estimator and elements of the output space. In the following lemma, we
analyze the complexity in time of such computations. Note that the same complexity
holds for computing distances between predictions and elements of the output space.
We consider the setting where the dimension of Z is bigger than n (e.g. infinite).

Corollary 4.11 (Computational gain of reduced-rank regression). Let ĥ : X → Z be
a kernel ridge estimator trained on n points. Let P̂ : Z → Z be a projection operator of

rank p. Given N output points (zi)
N
i=1, computing the inner products

(
⟨P̂ ĥ(x), zi⟩Z

)N
i=1

has a time and space complexity of order O(p(N + n)) while computing the inner products(
⟨ĥ(x), zi⟩Z

)N
i=1

has a time complexity O(nN ).
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Proof In order to compute
(
⟨P̂ ĥ(x), zi⟩Z

)N
i=1

one needs to compute

α(x)T︸︷︷︸
(1,n)

(UZtr )
T︸   ︷︷   ︸

(n,p)

UZ︸︷︷︸
(p,N )

(4.21)

with α(x) = (K + nλI)−1kx, kx = (k(x,x1), . . . , k(x,xn)), U =
∑p
i=1 ei ⊗ ui , where (ui)

p
i=1 is

an orthogonal basis of the range of P̂ , (ei)
p
i=1 an orthogonal basis of R

p, and Ztr is
the operator with the n training output points as columns, z the operator with the N
output points as columns. This costs p(N + n) in time and space complexity. In order

to compute the
(
⟨ĥ(x), zi⟩Z

)N
i=1

one needs to compute

α(x)T︸︷︷︸
(1,n)

Kz︸︷︷︸
(n,N )

(4.22)

with Kz the gram matrix between the n training points and N output points for the
kernel kz(z,z′) = ⟨z, z′⟩Z . This costs nN in time and space complexity.

Corollary 4.11 shows that a significant computational gain is possible when N ≫ p
and n≫ p, as in this case p(N+n)≪ nN . Combining this result with Corollary 4.10 we
conclude that, under the output regularity assumptions made, the proposed method
offers both statistical and computational gains by projecting the ridge estimator onto
an estimated linear subspace.

Remark 4.3.3 (Consequences for finite dimensional Z). The obtained results are not
limited to the infinite dimensional setting and are still valuable when Z = R

d . One can
notice that in the finite dimensional case Assumptions 4.2, 4.3, and 4.4 are always verified
choosing the best exponents α = β = 0,γ = 1 (if M,E ≻ 0), but it is at the price of very large
constants c1, c2 and very small c3, which make the bounds very large. In fact, it amounts to
using the rough inequalities Tr(A) ≤ d × ∥A∥∞ and A ⪯ µ1(B)

µd (B)B for any bounded operators
A,B, thereby loosing information on the shape ofM and E. At the opposite, choosing α,β,γ
such that the constants c1, c2, c3 remain close to 1 allows to obtain finer bounds, taking into
account the signal/noise configuration, closed to the observed behaviors.

Take-home message. The proposed reduced-rank regression estimator enjoys a
statistical gain under more general assumptions than standard low-rank assumptions.
As parameter λ, the rank p acts as a regularization parameter whose impact should
disappear when the size of the training sample increases, i.e. p −−−−−−→

n→+∞
+∞. The set-

tings where the proposed method performs better than the kernel ridge estimator
require faster eigenvalue decay rates for E[h∗(x)⊗h∗(x)] than for E[ϵ⊗ϵ] (concentrated
signal/diffuse noise). But this is not sufficient: Assumption 4.3 with a sufficiently
small β (β < 1 − 4

s ) is also necessary to ensure a fast enough estimation of P . Last
but not least, reducing the predicted outputs’ dimension can also yield to substantial
computational gains.
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4.4 Application to structured prediction

In this section, we develop an application of the reduced-rank estimator to structured
prediction. The novel method fits into the generic framework of surrogate approaches
for structured prediction and exploits an infinite dimensional embedding by the mean
of a kernel. We describe the algorithm and give learning bounds for the proposed
structured prediction estimator.

4.4.1 Surrogate Reduced-Rank Estimator for Structured Prediction

Structured prediction consists in solving a supervised learning task where the output
variable is a structured object. Denoting Y the structured output space, a structured
loss ∆ : Y ×Y → R measures the discrepancy between a true output and a predicted
output. The goal of structured prediction is to minimize the following expected risk:

R∆(f ) = Eρ[∆(f (x), y)], (4.23)

over a class of functions f : X → Y , using a finite set (xi , yi)
n
i=1 independently drawn

from an unknown distribution ρ on X ×Y . In other words, if we note f ∗ : X → Y the
minimizer of R∆(f ), the aim of learning is therefore to get an estimator f̂ of f ∗ based
on the finite sample (xi , yi)

n
i=1 with the best possible statistical properties.

A surrogate approach: Output Kernel Regression We consider here the case when
∆ is defined as a metric induced by a positive definite kernel ky acting over the struc-
tured output space Y :

∆(y,y′) = ∥ψ(y)−ψ(y′)∥2Hy . (4.24)

This boils down to embedding objects of Y into the Reproducing Kernel Hilbert Space
associated to ky using the canonical feature map ψ : Y → Hy associated to ky , and
then consider the square loss over Hy . Relying on the abundant literature about ker-
nels on structured objects (Gärtner, 2003), this class of losses covers a wide variety of
structured prediction problems.

However, learning directly f through ψ still raises an issue and a simple way to
overcome it consists in seeking instead a surrogate model h : X →Hy able to predict
the embedded objects in the infinite dimensional space Hy and leverage the kernel
trick in the output space. This approach is referred as Output Kernel Regression
(OKR) (Weston et al., 2003; Geurts et al., 2006; Brouard et al., 2016b). The original
structured prediction problem is then replaced by the following surrogate vector-
valued regression problem stated in terms of the surrogate true risk:

min
h:X→Hy

Eρ[∥h(x)−ψ(y)∥2Hy ]. (4.25)

Assume h∗ is the function x→ Ey[ψ(y)|x] (solution of Eq. (4.25)). Then at prediction
time, one can retrieve a prediction in the original space Y through an appropriate
decoding function d :Hy →Y :

y∗ = f ∗∗(x) := d ◦ h∗(x) := argmin
y∈Y

∥h∗(x)−ψ(y)∥2Hy . (4.26)

The overall approach is illustrated on Fig. 4.2.
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Figure 4.2: Schematic illustration of OKR.

Ciliberto et al. (2016) have proved that f ∗∗ solves exactly the original structured
prediction problem, i.e. f ∗∗ = f ∗. Fo that purpose, they have shown that ∆(y,y′) =
∥ψ(y) − ψ(y′)∥2Hy belongs to the wide family of Structure Encoding Loss Functions

(SELF), as it can be written y,y′ → ⟨γ(y),θ(y′)⟩ν with γ(y) = (
√

2ψ(y),∥ψ(y)∥2Hy ,1),

γ(y) = (−
√

2ψ(y′),1,∥ψ(y′)∥2Hy ), and ν =Hy ⊕R⊕R.

Moreover, when providing an estimator ĥ of h∗ using the training sample (xi , yi)
n
i=1,

we benefit from the so called comparison inequality from Ciliberto et al. (2016)

R∆(f̂ )−R∆(f ∗) ≤ c ×Ex[∥ĥ(x)− h∗(x)∥2Hy ]
1/2, (4.27)

where f̂ = d ◦ ĥ and the constants c and Q are defined as: c = 2
√

2Q2 +Q4 + 1, and
Q = supy ∥ψ(y)∥Hy .

Reduced-rank regression in structured prediction. The OKR problem depicted
in Eq. (4.25) can be solved in various hypothesis spaces and trees-based approaches
(Geurts et al., 2006) as well as kernel methods (Weston et al., 2003; Geurts et al., 2006;
Brouard et al., 2011; Kadri et al., 2013; Laforgue et al., 2020) have been developed so
far to tackle it. We focus here on Input Output Kernel Regression (IOKR), a method
that exploits operator-valued kernels (Brouard et al., 2016b) and assumes that h be-
longs to a vv-RKHS. In particular, IOKR-ridge solves the kernel ridge regression prob-
lem in Eq. (4.4) with the following choice s: the output space is Z := Hy , the chosen
operator-valued kernel writes as K(x,x′) = k(x,x′)IHy ,and the hypothesis spaceH is the
vv-RKHS associated to K . Instantiating Eq. 4.5, the solution to IOKR-ridge writes as:

ĥ(x) =
n∑
i=1

αi(x)ψ(yi), (4.28)

where αi ’s are defined according Eq. 4.5.

In this section, we propose to solve the surrogate problem in Eq. (4.25) using
our reduced-rank estimator based on the IOKR-ridge estimator. This gives rise to
the definition of a novel structured output prediction f̂ :

f̂ (x) := argmin
y∈Y

∥P̂ ĥ(x)−ψ(y)∥2Hy . (4.29)

Because of the comparison inequality Eq. (4.27), the resulting structured predictor
directly benefits from the learning bound on the least-squares problem.
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Theorem 4.12 (Excess-risk bound for the structured predictor). Let δ ∈]0,1], n ≥ n0.
Under Assumptions 4.1, 4.3, and 4.8, assuming B

b ≤ θ with θ ≥ 1, then by taking only

p = c9(log8(
8
δ

))−
1
s n

1
(β+1)s (4.30)

then with probability at least 1− 3δ

R∆(f̂ )−R∆(f ∗) ≤ c ×
(
c10(s, e) log5/4(

n
δ

)n−1/4 + c11(e)n−
1
2

1−2/s
1+β log8(

8
δ

)
)

(4.31)

where c10(s, e) = c̃10

(
e(e−1)
s

)1/4 (
1 + log

(
e
e−1

))
, c11(e) = c̃11

(
1 + log

(
e
e−1

))
. c̃10, c̃11, n0, are

constants independent of n,δ, s, e and c9 is a constant independent of n,δ, defined in the
proofs.

The bound provided in Theorem 4.12 is similar to the one of Corollary 4.9 modulo
the multiplicative constant c, and thus the interpretation is the same. In particular,
when s is sufficiently big and e,β sufficiently small, we can obtain a significant statist-
ical gain in comparison to the not projected estimator, as shown in Corollary 4.10.

4.4.2 Algorithms and Complexity Analysis

To define the final reduced-rank IOKR-ridge estimator f̂ , one has to apply Algorithm
4.1 to compute all the parameters of P̂ ĥ necessary to the decoding phase described in
Algorithm 4.2.

Complexity in time At decoding/prediction time, one needs to compute nte times
the prediction f̂ (xi), for the testing data points (xi)

nte
i=1. Each prediction requires to

calculate the distances in Eq. (4.26). This is made possible by using the kernel trick,
avoiding to compute the infinite dimensional vectors ĥ(x) and ψ(y). These computa-
tions cost O(nten|Y |) in time, where n and |Y | ∈ N

∗ are the size of the training data
set and the number of output candidates, respectively. Note that |Y | is typically very
big in structured prediction. For instance, in multilabel classification with d labels
|Y | = {0,1}d = 2d . In practice, one often chooses a subset of Y as a candidate set. Hence,
the decoding phase badly scales with n, and in general is computationally expensive.
Because of the projection onto a finite dimensional space, the proposed method can
significantly alleviate these computations. When using P̂ ĥwith P̂ of rank p, the decod-
ing time complexity reduces to O(ntep|Y |) as shown in Corollary 4.11. Furthermore,
the training phase consists in a matrix inversion for computing ĥ plus a singular value
decomposition for computing P̂ . Hence, the time complexity of the training algorithm
without approximation is O(2n3). It can still be reduced using efficient and theor-
etically grounded approximation methods for KRR and kernel principal component
analysis developed in (Rudi et al., 2015; Rudi and Rosasco, 2017; Sterge et al., 2020).

Algorithm IOKR Reduced-rank IOKR

Training O(n3) O(2n3)
Decoding O(nten|Y |) O(ntep|Y |)

Table 4.2: Time complexity of IOKR versus reduced-rank IOKR.
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Algorithm 4.1 Reduced-rank IOKR-ridge - Training phase

Input: Kx,Ky ∈Rn×n, λ ≥ 0, p ∈N∗

KRR estimation: W = (Kx +nλI)−1 ∈Rn×n
Subspace estimation:
Kh =WKxKyKxW ∈Rn×n

β =


| |
u1√
µ1

. . .
up√
µp

| |

 ∈Rn×p← SVD(Kh) =
∑n
l=1µlulu

T
l

Training outputs projection:
Kyh = KyWKx ∈Rn×n
UY = Kyhβ ∈Rn×p
Return: W (KRR coefficients), β (projection coefficients), UY (projected training
outputs)

Algorithm 4.2 Reduced-rank IOKR-ridge - Decoding phase

Input: ktex ∈Rn, Ycandidates ∈Rnc×d , UY ∈Rn×p, W ∈Rn×n
Output candidates projection:
Kyh =WKxK

tr/c
y ∈Rn×nc

UYc = Kyhβ ∈Rnc×p
Distances computation:
α =Wktex ∈Rn
Uhte =UY Tα ∈Rp
S := ”⟨P̂ ĥ(xte), ψ(Ycandidates)⟩Hy” = (Uhte)TUYc ∈Rnc

N := ”∥ψ(Ycandidates)∥2Hy” =
(
Ky(y,y)

)
y∈Ycandidates

∈Rnc

D =N − 2S
1-NN prediction :
î = argmin i∈[1,nc]Di
ŷ = Ycandidates[î] ∈ Y
Return: ŷ (prediction)

4.5 Numerical experiments

We now carry out experiments with the methods proposed in this work. In Section
4.5.1, we illustrate our theoretical insights on synthetic least-squares problems. In
Section 4.5.2, we test the proposed structured prediction method on three different
problems: image reconstruction, multi-label classification, and metabolite identifica-
tion.

4.5.1 Reduced-rank regression: statistical gain and importance of
Assumption 4.3

We illustrate, on synthetic least-squares problems, the theoretical insights, given in
Subsection 4.3.3. For d = 300, X = Hx = Z = R

d , we choose µp(C) = 1√
p , µp(E) = 0.2

p1/10 .

We draw randomly the eigenvector associated to each eigenvalue. We draw H0 ∈Rd×d
with independently drawn coefficients from the standard normal distribution. We
consider two different optimums H =H0 (β = 1) and H = (H0CH0)H0 (β = 1/3). Then,
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we generate n ∈ [102, . . . ,5 × 103],nval = 1000,ntest = 1000 couples (x,z) such that x ∼
N (0,C), ϵ ∼ N (0,E), and z = Hx + ϵ. We select the hyper-parameters of the three
estimators ĥ, P ĥ, and P̂ ĥ in logarithmic grids, with the best validation MSE. On the
Figure 4.3 we plot the test MSE obtain by the three estimators for various p and n,
and for the two different optimums H = H0 (left) and H = (H0CH0)H0 (right). There
exists for both H (left/right) a minimum MSE w.r.t p for P ĥ below the MSE of ĥ when
n is big enough: P offers a valuable regularization of ĥ. Moreover, we observe that the
selected p increases when n increases with a decreasing gain, following the provided
bounds’ behavior. Furthermore, we observe that because of the estimation error of P̂ ,
there is no gain for P̂ ĥ when H =H0, while when H = (H0CH0)H0 there is a gain for n
big enough. This illustrates the faster convergence rate of P̂ when β is small.

n n

Figure 4.3: Test MSE w.r.t p (x axis) and the quantity of training data n (color bar),
obtained with the optimal projection P and its estimation P̂ , for various output source
condition. (Left) Output source condition β = 1, H = H0. (Right) Output source con-
dition β = 1/3, H = (H0CH0)H0.

4.5.2 Experiments on Structured Prediction

In this section, we assess the performance of the reduced-rank IOKR estimator calcu-
lated using Algorithms 4.1 and 4.2 proposed in Section 4.4 on three real-world struc-
tured prediction tasks: image reconstruction, multi-label classification, and metabol-
ite identification. Our experiments show how reduced-rank regression can be ad-
vantageously used for surrogate methods in structured prediction in order to improve
both statistical and computational aspects. In these experiments, we choose λ1 = λ2
in order to reduce the quantity of hyperparameters.

State of the art approaches For each task, we compared our reduced-rank method
to relevant existing SOTA approaches. SPEN (Belanger and McCallum, 2016), a neural
network learned by minimizing the structured hinge loss, is an Energy-Based Model
(EBM), considered as a strong benchmark in the literature. Contrary to surrogate ap-
proaches, EBM involves the computation of the decoding phase during the training
phase. Kernel Dependency Estimation (KDE) (Weston et al., 2003) shares with IOKR
the use of kernels in the input and output space with the following differences: in
KDE, Kernal PCA is used to decompose the output feature vectors into p orthogonal
directions. Kernel ridge regression is then used for learning independently the map-
ping between the input feature vectors and each direction. By applying KPCA on the
outputs KDE aims at estimating the linear subspace of the output embedding ψ(y)
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while the proposed reduced-rank estimator aims at estimating the linear subspace of
the h∗(x). Additionally, for the multi-label classification problem, we choose the exact
setting of previous benchmark experiments (See for instance, (Gygli et al., 2017; Lin
et al., 2014)) and thus benefited from the collected results and comparison with other
methods.

4.5.2.1 Image Reconstruction

Problem and data set. The goal of the image reconstruction problem provided by
Weston et al. (2003) is to predict the bottom half of a USPS handwritten postal digit
(16 x 16 pixels), given its top half. The data set contains 7291 training labeled images
and 2007 test images.

Experimental setting. As in Weston et al. (2003) we used as target loss an RBF
loss ∥ψ(y) −ψ(y′)∥2Hy induced by a Gaussian kernel k and visually chose the kernel’s

width σ2
output = 10, looking at reconstructed images of the method using the ridge

estimator (i.e. without reduced-rank estimation). We used a Gaussian input kernel of
width σ2

input. For the pre-image step, we used the same candidate set for all methods
constituted with all the 7291 training bottom half digits. We considered λ := λ1 = λ2
for the proposed method. The hyper-parameters for all tested methods (including
σ2
input ,λ,p, and SPEN layers’ sizes) have been selected using logarithmic grids via 5

repeated random sub-sampling validation (80%/20%).

Reduced-rank estimator for surrogate problem. We start by evaluating the per-
formance of the reduced-rank estimator in solving the Hilbert space valued least-
squares problem described in Eq. (4.25). We plot on Figure 4.4 the test mean squared
error of our estimator, and of the ridge estimator, w.r.t the quantity of training data
n from n = 500 to n = 7000. We observe that the reduced-rank estimator (p < +∞)
always performs better than the kernel ridge estimator (p = +∞). Nevertheless, we see
that this gain is smaller for small n or big n. This is a typical behavior observed in our
experiments, which can be interpreted as a difficulty in estimating P̂ when n is small,
and the diminishing usefulness of regularization when n increase. Indeed p can be
thought of as a regularization parameter exploiting a different regularity assumption
than λ, but whose action, similarly to λ, should decrease when n increases, such that
p→ +∞ when n→ +∞.

2000 4000 6000
ntr

0.425

0.450

0.475

0.500

0.525

M
SE

p = +
p < +

Figure 4.4: Test MSE of the proposed reduced-rank estimator (p < +∞), and of the
ridge estimator (p = +∞) w.r.t n on the USPS problem.
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Comparison with SOTA methods. Then, in a second experiment, we compare the
structured predictor (see Eq. (4.29)) using reduced-rank estimation, to state-of-the-art
methods: SPEN (Belanger and McCallum, 2016), IOKR (Brouard et al., 2016b), and
Kernel Dependency Estimation (KDE) (Weston et al., 2003). We fix n = 1000 where
the reduced-rank estimation seems helpful, according to Figure 4.4. For SPEN we em-
ployed the standard architecture and training method described in the corresponding
article (cf. supplements for more details). We evaluated the results in term of RBF
loss (e.g. Gaussian kernel loss), as in Weston et al. (2003). The obtained results are
given in Table 4.3. Firstly, we see that SPEN obtains worse results than KDE, IOKR,
and reduced-rank IOKR. Furthermore, note that the number of hyperparameters for
SPEN (architecture and optimization) is usually larger than reduced-rank IOKR. Fi-
nally, notice that IOKR correspond to the proposed method with p = +∞. Hence, this
shows the benefit of exploiting output regularity thanks to reduced-rank estimation
in structured prediction.

Method RBF loss p

SPEN 0.801 ± 0.011 128
KDE 0.764 ± 0.011 64
IOKR 0.751 ± 0.011 ∞
Reduced-rank IOKR 0.734 ± 0.011 64

Table 4.3: Test mean losses and standard errors for the proposed method, IOKR, KDE,
and SPEN on the USPS digits reconstruction problem where n = 1000, and ntest =
2007.

4.5.2.2 Multi-label Classification

Problem and data set. Bibtex and Bookmarks (Katakis et al., 2008) are tag recom-
mendation problems, in which the objective is to propose a relevant set of tags (e.g.
url, description, journal volume) to users when they add a new Bookmark (webpage)
or Bibtex entry to the social bookmarking system Bibsonomy. Corel5k is an image
data set and the goal of this application is to annotate these images with keywords.
Information on these data sets is given in Table 4.4.

data set n nte nf eatures nlabels l̄

Bibtex 4880 2515 1836 159 2.40
Bookmarks 60000 27856 2150 208 2.03
Corel5k 4500 499 37152 260 3.52

Table 4.4: Multi-label data sets description. l̄ denotes the averaged number of labels
per point.

Experimental setting. For all multi-label experiments we used a Gaussian input
and output kernels with widths σ2

input and σ2
output = l̄ , where l̄ is the averaged num-

ber of labels per point. As candidate sets we used all the training output data. We
measured the quality of predictions using example-based F1 score. We selected the
hyper-parameters λ and p in logarithmic grids.
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Comparison with SOTA methods. We compare our method with several multi-
label and structured prediction approaches including IOKR (Brouard et al., 2016b),
logistic regression (LR) trained independently for each label (Lin et al., 2014), a two-
layer neural network with cross entropy loss (NN) by (Belanger and McCallum, 2016),
the multi-label approach PRLR (Posterior-Regularized Low-Rank) (Lin et al., 2014),
the energy-based model SPEN (Structured Prediction Energy Networks) (Belanger
and McCallum, 2016) as well as DVN (Deep Value Networks) (Gygli et al., 2017). The
results in Table 4.5 show that surrogate methods (first two lines) can compete with
state-of-the-art dedicated multilabel methods on the standard data sets Bibtex and
Bookmarks. With Bookmarks (n/nte = 60000/27856) we used a Nyström approxim-
ation with 15000 anchors when computing ĥ to reduce the training complexity, and
we learned P̂ only with a subset of 12000 training data. ĥ decoding took about 56
minutes, and P̂ ĥ decoding less than 4 minutes. With a drastically smaller amount of
time, P̂ ĥ (first line) achieves the same order of magnitude of F1 as ĥ (line two) at a
lower cost (see Table 4.6) and still has better performance than all other competitors.

Method Bibtex Bookmarks

Reduced-rank IOKR 43.8 39.1
IOKR 44.0 39.3
LR 37.2 30.7
NN 38.9 33.8
SPEN 42.2 34.4
PRLR 44.2 34.9
DVN 44.7 37.1

Table 4.5: Tag prediction from text data. F1 score of reduced-rank IOKR compared to
state-of-the-art methods. LR (Lin et al., 2014), NN (Belanger and McCallum, 2016),
SPEN (Belanger and McCallum, 2016), PRLR (Lin et al., 2014), DVN (Gygli et al.,
2017). Results are taken from the corresponding articles.

IOKR Reduced-rank IOKR

Bibtex 2s/13s 15s/4s
Bookmarks 465s/3371s 617s/214s
USPS 0.1s/9s 0.4s/1s

Table 4.6: Fitting/Decoding computation time of IOKR compared to our method (in
seconds)

Small training data regime. We evaluate the reduced-rank structured predictor in
a setting where only a small number of training examples is known. For this setting,
we consider only the 2000 first couples (xi , yi) of each multi-label data set as train-
ing set. Hyper-parameters have been selected using 5 repeated random sub-sampling
validation (80%/20%) and the same λ was used for IOKR. The results of this compar-
ison are given in Table 4.7. We observe that the proposed reduced-rank structured
predictor obtains higher F1 scores than the one using kernel ridge regression in this
setup. This highlights the interest of our method in a setting where the data set is
small in comparison to the difficulty of the task.
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Bibtex Bookmarks Corel5k

n 2000 2000 2000
nte 2515 2500 499

IOKR 35.9 22.9 13.7
Reduced-rank IOKR 39.7 25.9 16.1

Table 4.7: Test F1 score of reduced-rank IOKR and IOKR on different multi-label
problems in a small training data regime.

About the selected rank p. We selected the rank p with integer logarithmic scales,
ensuring that the selected dimensions were always smaller than the maximal one of
the grids. From Table 4.7 to Table 4.5, the selected dimension p for Bibtex/Bookmarks
are 80/30, then 130/200. In Table 4.7 recall that we used a reduced number of training
couples. Interpreting p as a regularisation parameter, we see that when n increases
then the p increases, i.e. the rank regularisation decreases.

4.5.2.3 Metabolite Identification

Problem and data set. An important problem in metabolomics is to identify the
small molecules, called metabolites, that are present in a biological sample. Mass
spectrometry is a widespread method to extract distinctive features from a biological
sample in the form of a tandem mass (MS/MS) spectrum. The goal of this problem
is to predict the molecular structure of a metabolite given its tandem mass spectrum.
The molecular structures of the metabolites are represented by fingerprints, that are
binary vectors of length d = 7593. Each value of the fingerprint indicates the presence
or absence of a certain molecular property. Labeled data are expensive to obtain, and
despite the problem complexity only n = 6974 labeled data are available. State-of-the-
art results for this problem have been obtained with the IOKR method by Brouard
et al. (2016a). The median size of the candidate sets is 292, and the biggest candidate
set is of size 36918. Hence, the metabolite identification data set is characterized by
high-dimensional complex outputs, a small training set, and a very large number of
candidates.

Experimental setting. We adopt a similar numerical experimental protocol (5-CV
Outer/4-CV Inner loops) than in Brouard et al. (2016a), probability product input ker-
nel for mass spectra, and Gaussian-Tanimoto output kernel on the molecular finger-
prints (with parameter σ2 = 1). We selected the hyper-parameters λ,p in logarithmic
grids using nested cross-validation with 5 outer folds and 4 inner folds.

Improved prediction with reduced-rank estimation . We compare the proposed
reduced-rank structured predictor with SPEN, and with the state-of-the art method
on this problem IOKR (which corresponds to our method with p = +∞). The result are
given in Table 4.8. We observe that reduced-rank IOKR improved upon plain IOKR,
in this context of supervised learning with complex outputs and a small training data
set.
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Method MSE Tanimoto-Gaussian loss Top-k accuracies
k = 1 | k = 5 | k = 10

SPEN − 0.537± 0.008 25.9% |54.1% |64.3%
IOKR 0.781± 0.002 0.463± 0.009 29.6% |61.1% |71.0%
Reduced-rank IOKR 0.766± 0.003 0.459± 0.010 30.0% |61.5% |71.4%

Table 4.8: Test mean losses and standard errors for the metabolite identification prob-
lem. SPEN MSE in Hz is not defined as predictions are directly done in Z.

4.6 Extension: leveraging unsupervised output data

In this section, we extend the proposed approach in order to leverage unsupervised
output data.

4.6.1 Extended setting and proposed method

Setting. We consider that an additional data set Um = (yuj )mj=1 of m output data,
independently draw from the marginal distribution ρy , is given, in addition to the
supervised data set Sn = (xi , yi)

n
i=1. Such data is generally easy to obtain for many

structured output problems, including the metabolite identification task described in
the experiments.

Extended method. We propose to extend the proposed reduced-rank method pro-
posed above in order to leverage the data set Um as follows. Instead of using the
projection

P̂λ1
:= argmin

P∈Pp

1
n

n∑
i=1

∥Pĥλ1
(xi)− ĥλ1

(xi)∥2Y , (4.32)

we use the projection

P̂λ1
:= argmin

P∈Pp

c
n

n∑
i=1

∥Pĥλ1
(xi)− ĥλ1

(xi)∥2Y +
(1− c)
m

m∑
j=1

∥Pψ(yuj )−ψ(yuj )∥2Y , (4.33)

with a chosen c ∈ [0,1].

Then, as previously we define the following extended reduced-rank estimator:

x→ P̂λ1
ĥλ2

(4.34)

The resulting Algorithm is provided just below.

[algo]

4.6.2 Extended theoretical analysis

We only provide a sketch of the proof for obtaining learning bounds for the exten-
ded reduced-rank estimator. We leave the derivation of the complete proof, and the
analysis of the statistical behavior of the extension for future work.
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First notice that the ideal counterpart of the objective Eq. (4.33) is

P := argmin
P∈Pp

cE[∥Ph∗(x)− h∗(x)∥2Y ] + (1− c)E[∥Pψ(y)−ψ(y)∥2Y ] (4.35)

= argmin
P∈Pp

cTr((P− I)M) + (1− c)Tr((P− I)Cψ) (4.36)

= argmin
P∈Pp

∥(P− I)M1/2
c ∥2HS. (4.37)

with M = E[h∗(x)⊗ h∗(x)], Cψ = E[ψ(y)⊗ψ(y)], and Mc = cM + (1− c)Cψ.

Then, one can carry out similar proof than done for the non extended reduced-
rank estimator, by measuring the alignments of Mc with M, and with E = E[ϵ⊗ϵ], via
assumptions of the form

aM1−u ⪯Mc bM1−v
c ⪯ E (4.38)

with u,v ∈ [0,1], a,b > 0.

4.6.3 Numerical experiments

We carry out an experimental study of the proposed extension, by considering the
three same problems : image reconstruction, multi-label classification, metabolite
identification.

4.6.3.1 Image reconstruction

Experimental setting. We consider the exact same setting as in Table 4.3, but ex-
ploiting m = 6000 additional outputs as unsupervised data set. In particular, we also
select the hyper-parameters (λ, c, p) using logarithmic grids via 5 repeated random
sub-sampling validation (80%/20%).

Improved statistical performance. When leveraging the m = 6000 unsupervised
output data, we obtain an improvement of the test mean loss (See Table 4.9.

Method RBF loss p

Reduced-rank IOKR 0.734 ± 0.011 64
Extended Reduced-rank IOKR 0.725 ± 0.011 98

Table 4.9: Test mean losses and standard errors for Reduced-rank IOKR, and its ex-
tended version leveraging m = 6000 unsupervised output data.

4.6.3.2 Multi-label classification

Experimental setting. We consider the exact same setting as in Table 4.5, but
exploiting additional outputs as unsupervised data set (m = 2880 for Bibtex, m =
4000 for Bookmarks, m = 2500 for Corel5k). In particular, we also select the hyper-
parameters (λ, c, p) using logarithmic grids via 5 repeated random sub-sampling val-
idation (80%/20%).

Improved statistical performance. When leveraging the m unsupervised output
data, we obtain an improvement of the test mean F1 score (See Table 4.10).
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Bibtex Bookmarks Corel5k

n 2000 2000 2000
m 2880 4000 2500
nte 2515 2500 499

Reduced-rank IOKR 39.7 25.9 16.1
Extended Reduced-rank IOKR 39.7 27.1 19.0

Table 4.10: Test F1 score of Reduced-rank IOKR, and its extended version leveraging
m unsupervised output data, on different multi-label problems in a small training
data regime.

Study of the number of unsupervised data m. We further show the impact of ad-
ditional unsupervised data on the Bookmarks dataset by training the KRR with only
n = 2000 data, and training the extended reduced-rank IOKR method with various
numbers of unexploited data from 0 to 50000 randomly selected. Figure 4.5 shows
that adding unsupervised output data through the right term of Equation (4.33) al-
lows to improve the results up to a certain level.

0 10000 20000 30000 40000 50000
m

27.7

27.8

27.9

28.0

28.1

28.2

F1

Figure 4.5: Test F1 of extended Reduced-rank IOKR on Bookmarks dataset with
n/nte = 2000/27856 w.r.t the quantity of randomly selected unsupervised data m ∈
[0,50000] used.

4.6.3.3 Metabolite identification

Experimental setting. We consider the exact same setting as in Table 4.8, but ex-
ploiting additional outputs as unsupervised data set (m = 2880 for Bibtex, m = 4000
for Bookmarks, m = 2500 for Corel5k). Using randomized singular value decompos-
ition we trained the extended Reduced-rank IOKR with m = 105 molecular finger-
prints, which are not exploited with Reduced-rank and Full-rank IOKR, as the corres-
ponding inputs (spectra) are not known.

Improved statistical performance. When leveraging the m = 105 unsupervised
output data, we obtain an improvement of the test Top-k accuracies (See Table 4.11)
upon reduced-rank and full-rank IOKR. The selected balancing parameter by a inner
cross-validation on training set is ĉ = 0.75 in average on the outer splits, imposing a
balance between the influence of the small size labeled dataset and the large unsuper-
vised output set.
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Method Gaussian Top-k accuracies
-Tanimoto loss k = 1 | k = 5 | k = 10

IOKR 0.463± 0.009 29.6% |61.1% |71.0%
Reduced-rank IOKR 0.459± 0.010 30.0% |61.5% |71.4%
Extended Reduced-rank IOKR 0.441± 0.009 31.2% |63.5% |72.7%

Table 4.11: Test mean losses and standard errors of Reduced-rank IOKR, and its ex-
tended version to leverage m = 105 unsupervised output data, on the metabolite iden-
tification problem.

4.6.4 Conclusion

These experiments empirically show that the proposed extension can take advantage
of additional output data.
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5.1 Introduction

Structured Output Prediction (SOP) consists in learning a function whose outputs are
structured objects. The key difficulty of SOP usually comes from the discrete nature
of the output space itself that does not enjoy the wishable properties of Euclidean
spaces. To overcome this issue, various approaches have been proposed in the liter-
ature to relax both the inference and learning problems. The wide and emblematic
family of energy-based methods rely on an energy function that measures how much
an output structured object is fitted to a given input. Inference is processed by solv-
ing an "arg max" problem over the output candidate set. Learning then boils down
to determine this energy function with the additional price of inference. Probabilistic
graphical models with or without deep neural networks are certainly the most well
known instances of these methods together with Structured Support Vector Machines.
Recently, efforts to improve upon these approaches and overcome the inference cost
at training time have led to two distinct lines of research. Some recent works have
focused on relaxing the "arg max" problem into a differentiable problem opening the
door to end-to-end learning while others have explored the so-called surrogate ap-
proaches that embed structured outputs into a Hilbert space and solve consequently a
vector-valued regression problem instead of the original structured output prediction
task. Notice that this allows to considerably alleviate the computational burden of
training but still does not avoid to pay the price of the "arg max" at testing time.
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Surrogate methods benefit from strong theoretical guarantees (Bartlett et al., 2006;
Mroueh et al., 2012; Ciliberto et al., 2020). In particular, Ciliberto et al. (2020) propose
an estimator that is universally consistent, and provide learning rates under standard
assumptions. Namely, the excess-risk bounds associated to a loss ∆(y,y′) are of the
form cn−r where c and r are positive constants independent of the number n of train-
ing data. The chosen loss ∆ carries a geometry on the output space. In particular,
it affects the regularity of the target optimal predictor, and thus the learning rate
(through the so-called source condition (Caponnetto and De Vito, 2007)). Moreover,
it also impacts the constant c. We note it as c∆Y to make explicit this dependence. This
constant plays an important role: it can be very big (potentially of the same order than
|Y |1/2), making then the bounds very large (Osokin et al., 2017; Nowak et al., 2019).

Objectives of this work. In this chapter, we aim at proposing a general method, with
theoretical guarantees, allowing to exploit the structure of the output space, thanks to
an unsupervised data set Um = (yj )

m
j=1, in order to obtain a computational and statistical

gain in structured prediction.

Contributions. First, we show that in structured prediction the structure of the out-
put space can be formulated as regularity conditions on the loss function. It allows us
to propose a principle of loss regularization exploiting such regularity in order to ob-
tain computationally and statistically efficient structured prediction methods. Then,
we study under which setting the approach leads to a computational and statistical
gain. Finally, we assess the method experimentally on synthetic and real-world prob-
lems.

Related works. The following works are related to this one as they also aim at ex-
ploiting non-linear structure of the output space in structured prediction. Luise et al.
(2019) propose to leverage the structure of the output space by using trace norm regu-
larized regression estimators. (Ciliberto et al., 2017) propose a method for multi-task
learning, and prove improved constants in the learning bounds when leveraging the
relations between the tasks rather than treating them independently. (Ciliberto et al.,
2019) propose a method for exploiting local structure (input and output data made
by parts), showing also improved constants in the learning bounds when exploiting
this structure. The first main difference with this work is the formulation of the struc-
ture of the output space. We will show that the formulation proposed in this chapter
is general, in the sense that most space structures can be expressed within our for-
mulation. The second important difference is that, in this work, we make use of an
unsupervised data set of outputs (yj )

m
j=1. Finally, another specificity of this chapter is

to address the problem of alleviating the computational complexity of the pre-image.

Structure of the chapter. In Section 5.2, we present a background on the ILE es-
timator. In Section 5.3, we present the loss regularization principle. In Section 5.4, we
carry out its theoretical analysis. In Section 5.5, we test the method numerically.

5.2 Background

In this section, we recall standard results on Least-squares regression. Then, we in-
troduce the framework of Implicit Loss Embeddings (Ciliberto et al., 2016, 2020): a
general method for structured prediction benefiting from strong theoretical guaran-
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tees. It will provide us a sound framework for instantiating our principle in the next
section.

5.2.1 Non-parametric estimator for least-squares regression

Least-Squares (LS) regression. Given a Hilbert space Z, a probability distribution
ρ over X ×Z, and a measurable function h : X → Z, the expected square loss of h is
defined as:

RLS(h) = Eρ[∥h(x)− z∥2Z]1/2. (5.1)

and its minimizer over the space of measurable functions from X to Z (Bayes pre-
dictor) is:

h∗z : x 7→ Ez|x[z]. (5.2)

Solving a regression problem consists in estimating h∗z : X → Z from a given training
sample (xi , zi)

n
i=1, independently drawn from ρ.

Non-parametric regression estimators. Well-known non-parametric estimators for
LS regression (trees, random forests, L2-boosting, k-nearest neighbors) with scalar
outputs can be extended to vectorial outputs as shown in several works, enjoying the
following general form:

ĥz(x) =
n∑
i=1

αi(x)zi , (5.3)

where the weight function α : X →R
n provides the coefficients of a linear combination

of output training data.

These estimators come along with theoretical guarantees of the form RLS(ĥz) −
RLS(h∗z) ≤ O(n−r)) with r > 0 depending on regularity assumptions on the learning
problems (Micchelli and Pontil, 2005; Caponnetto and De Vito, 2007; Ciliberto et al.,
2020; Cabannes et al., 2021b). For example, the ridge regression approach builds an
estimator of h∗z by minimizing the empirical counterpart of the true risk RLS(h) plus
a ℓ2 regularization term weighted by some positive parameter λ > 0. In this work, we
consider Kernel Ridge Regression (KRR) where the functional space to search the min-
imizer ĥz is a vector-valued Reproducing Kernel Hilbert Space (vv-RKHS). (Micchelli
and Pontil, 2005) showed that similarly to the scalar case, i.e. Z := R, the function
α : X →R

n enjoys a close-form.

Remark 5.1 (About the weight function α). Note that KRR in vv-RKHS enjoys an ap-
pealing property when the operator-valued kernel is chosen as the decomposable identity
kernel: K(x,x′) = k(x,x′)IZ with IZ the identity operator on Z, and k is a positive definite
(scalar-valued) kernel overX : the weight function α is the same than in the scalar regression
case. As for k-nearest neighbors estimators, their weight functions are the same whether it
be in the case of scalar outputs or vectorial outputs.

5.2.2 Structured prediction

Structured space. Let Y be a set of structured objects. In this chapter, we call a
structured space the couple (Y ,∆) where ∆ : Y ×Y → R is a dissimilarity on Y that in
practice, takes into account the structure of the objects in Y . Having no prior inform-
ation about the structure of the objects in Y would correspond to use ∆(y,y′) = 1y,y′ .
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Conversely, for example, a dissimilarity that compares two objects y and y′ using a
dictionary of substructures brings much more information. Furthermore, note that in
the following ∆ is not necessarily symmetric.

Structured output prediction. Given a structured space (Y ,∆), a probability distri-
bution ρ over X ×Y and a function f : X → Y , we define the expected structured risk
over Y ×Y as follows:

R∆(f ) = Ep[∆(f (x), y)]. (5.4)

It can be shown that the function minimizing the expected risk (5.4) is defined as:

f ∗(x) = argmin
ŷ∈Y

Ey|x[∆(ŷ, y)]. (5.5)

Structured output prediction refers to the problem of estimating f ∗ using a training
dataset Sn = (xi , yi)

n
i=1 of n samples independently drawn from the probability distri-

bution ρ over X ×Y .

In this work, we consider the general family of surrogates approaches that allows
to avoid direct minimization of the empirical counterpart ofR∆(f ) by solving instead
a surrogate LS regression problem. In particular, we anchor our contribution within
the Implicit Loss Embedding framework introduced by Ciliberto et al. (2020).

Implicit output embeddings and surrogate estimation. Surrogate approaches for
Structured Prediction leverage the notion of output representation: the structured
objects of Y are implicitely embedded into a Hilbert space, in that way, the struc-
tured prediction problem is turned into a (surrogate) regression problem. While sev-
eral works have emphasized the role of a so-called "output kernel" and vector-valued
RKHS to implement in practice this approach, an important line of research (Ciliberto
et al., 2016, 2020) has focused on the definition of a general framework for surrogate
approaches benefiting from strong theoretical guarantees. The cornerstone of this
framework called Implicit Loss Embedding is an assumption on the loss function ∆.

Assumption 5.2 (Implicit Loss Embedding (ILE) condition). There exists a separable
Hilbert space Hy and two measurable bounded maps χ,ψ : Y → Hy , such that for any
y,y′ ∈ Y we have:

∆(y,y′) = ⟨χ(y), ψ(y′)⟩Hy . (5.6)

Ciliberto et al. (2020) showed that Assumption 5.2 is very mild, and is verified in
practice by most couples (Y ,∆). In particular, it is verified for any finite output space
Y .

Surrogate regression. Instead of solving directly the structured prediction prob-
lem, one can solve a surrogate vector-valued regression problem with target h∗ψ : x 7→
Ey|x[ψ(y)]. Using the training sample Sn, a non-parametric estimator of h∗ψ can be
defined:

ĥψ(x) =
n∑
i=1

αi(x)ψ(yi), (5.7)

where α is the associated weight function.
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ILE estimator. Given Assumption 5.2, defining the estimator of f ∗ as:

f̂ (x) := argmin
y∈Y

⟨χ(y), ĥψ(x)⟩Hy , (5.8)

yields to the ILE estimator proposed by Ciliberto et al. (2020):

f̂ (x) = argmin
y∈Y

n∑
i=1

αi(x)∆(y,yi). (5.9)

Remark 5.3 (Links with KDE and IOKR). When ∆ is defined from a positive definite
kernel normalized ky over Y such as ∆(y,y′) = ∥ky(y, ·) − ky(y′ , ·)∥2Hy = −2ky(y,y′), one
retrieve the framework of Kernel Dependency Estimation (Cortes et al., 2005) and ridge
Input Output Kernel Regression (ridge-IOKR) (Brouard et al., 2016b).

Curse of the pre-image An important limitation of the ILE estimator is the compu-
tational complexity of computing f̂ (x) because of the optimization problem over Y
which need to be solved. The first contribution of this work, is to provide a method to
alleviate the computational complexity of the pre-image with theoretical guarantees.

5.2.3 Theoretical guarantees

In the following, we recall excess-risk results in the case of kernel-based methods.
Let kx be a positive definite kernel over X and Hx be the RKHS associated to kx. It
can be shown that the vector-valued RKHS associated to the operator-valued kernel
K(x,x′) = k(x,x′)IHy is isometric to Hy ⊗Hx. In the following, we note h ∈ Hy ⊗Hx
when h : X →Hy belongs to the RKHS associated to K .

In order to obtain finite sample bounds, the following assumption is required.

Assumption 5.4 (attainability assumption). We have

x 7→ Ey|x[ψ(y)] ∈ Hy ⊗Hx. (5.10)

This assumption says that the target is in the hypothesis space considered, which
is a standard condition in statistical learning (Caponnetto and De Vito, 2007).

Learning bounds. Under the Assumptions 5.2 and 5.4, the ILE estimator (5.9) bene-
fits from the following excess risk bounds:

R∆(fn)−R∆(f ∗) ≤ c∆Y n
−1/4 log(4/δ) (5.11)

where c∆Y is a constant that depends on the structured space at hand (Y ,∆).

Choice of ∆. The constant c∆Y can be understood as a measure of the size or dimen-
sion of the output space Y . For a given output set Y , c∆Y depends on the choice of the
loss ∆. Being able to choose a loss ∆ that leads to a small c∆Y is directly linked to the
available a priori information on the geometry of Y . The study of this constant for
the most common couples (Y ,∆) has been done in (Osokin et al., 2017; Nowak et al.,
2019). As an example, if Y = {0,1}d and ∆(y,y′) = 1y,y′ , corresponding to do not have
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any a priori on the structure of Y (all the y ∈ Y lie at the same "distance"), leads to the
very large constant |Y |1/2 = 2d/2. That is in order to obtain an excess-risk smaller than
a desired quantity, the quantity of data required depends exponentialy on the output
dimension d. Choosing instead the Hamming loss ∆(y,y′) =

∑d
i=11yi,y′i , leads to the

constant d (linear dependence in the output dimension).

5.3 Structured prediction with loss regularization

In this section, we introduce the structured prediction with additional output train-
ing data and leverage this information to define a novel estimator based on output
regularization, or equivalently loss regularization. We leave to Section 5.4 the formal
assumptions required to back up theoretically this estimator.

Structured prediction with additional output training data. All along this chapter,
we assume that in addition to the training sample Sn, we also have access to an addi-
tional sample Um = (yuj )mj=1 of m output data independently drawn from the marginal
distribution ρy . Our goal is then to build an estimator of f ∗ defined in Eq. (5.5) using
both Sn and Um within the ILE context augmented with novel assumptions.

Regularity of the loss on the output distribution ρy . The core idea of this chapter
is to express the output space’s structure as a regularity assumption on the loss ∆ and
replace it by its smoothed version anchored onm elements of Um. It allows us to derive
a theoretically sound principle to exploit the output structure in structured prediction
and by this way reduce the size of the constant c∆Y in corresponding bounds.

More precisely, we assume that the loss ∆ can be well approximated by its regular-
ized version anchored on m elements of Um:

∆m(ŷ, y) =
m∑
j=1

βj(y)∆(ŷ, yuj ), (5.12)

where β : Y → R
p is a weight function associated to the problem of regressing y 7→

∆(ŷ, y).
If the marginal distribution ρy lies on a submanifold of the structured space (Y ,∆),
then this informal hypothesis will be satisfied. In Section 5.4, we properly define
the set of assumptions needed to i) convert this informal hypothesis and ii) the addi-
tional conditions for which the novel estimator we propose benefit from interesting
theoretical guarantees. We adopt the ILE setting that we augment with additional
hypotheses.

As for standard ILE framework, the structured prediction estimator relies on the
definition of the surrogate regression estimator.

Surrogate regression estimator with output regularization. Given Sn and Um,

hn,m(x) =
n∑
i=1

αi(x)
m∑
j=1

βj(yi)ψ(yuj )

︸            ︷︷            ︸
ψ̂(yi )

, (5.13)
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Novel estimator with loss regularization. Given Sn and Um, we propose the fol-
lowing estimator for the Structured Bayes Predictor in (5.5):

fn,m(x) = argmin
ŷ∈Y

n∑
i=1

m∑
j=1

αi(x)βj(yi)∆(ŷ, yuj ), (5.14)

where α and β are weight functions of two LS regression estimators (see Equation
(5.3)): α : X → R

n is the weight function of a non parametric estimator defined with
the training data (xi ,ψ(yi))

n
i=1, while β is the weight function of a non parametric

estimator defined with the training data (yui ,ψ(yui ))mi=1.

Computation of α and β. Depending on the problem at hand, α and β can be
defined with the weights of various non parametric LS estimators: kernel ridge re-
gression (Micchelli and Pontil, 2005; Cortes et al., 2005; Caponnetto and De Vito,
2007; Brouard et al., 2011), k-NN regression (Cabannes et al., 2021b), regression trees
(Geurts et al., 2006) or boosting (Geurts et al., 2007; Ciliberto et al., 2020). This choice
is not neutral since k-nearest neighbours and kernel methods require the prescription
of a metric or a kernel, while tree-based methods empirically learn an input kernel.

Remark 5.5 (Relationship with double representation theorem in vector-valued kernel
methods ). Learning in vv-RKHS has been studied in (Laforgue et al., 2020) at the lens
of duality principle for general convex loss functions. A "double representation theorem"
(see Theorem 4 in (Laforgue et al., 2020) was proved. In particular, it can be applied to
surrogate regression problems with infinite dimensional output spaces. It expresses that
under mild conditions on the Fenchel-Legendre Transform of the loss ℓ and on operator-
valued kernel K , the minimizer of the corresponding empirical regularized ℓ-risk writes as:
gℓn(x) =

∑n
i,j=1K(x,xi)ω̂ijψ(yi) where the matrix Ω̂ = (ωij )

n
i,i=1 is solution to an associated

optimization problem.

Illustrative minimal example. In the following, we provide an illustration of the
whole approach on a simple toy problem. Let us consider the problem of estimating a
step function h∗ : R→R taking only two values, thanks to a data set (xi , yi)

n
i=1 with xi =

2i/(n−1), and yi = h∗(xi)+ϵi with noise ϵ ∼N (0,0.2). An unsupervised training data set
(yuj )mj=1 is available. Here Y = R, and we choose ∆(y,y′) = (y−y′)2. On this problem, the
outputs verify indeed a strong structure: if x follows a uniform distribution on [0,2],
ρy(y) is a mixture of two normal distributions with means 0 and 1. Such regularity
translates as the possibility to estimate y → ∆(ŷ, y), and x → Ey|x[∆(ŷ, y)] with few
anchors (See Equations (5.12) and (5.14)).

For α, we use KRR weights with a Gaussian kernel, and we select the ridge regu-
larization parameter λ, as well as the kernel parameter, using a validation set of size
100. For β, we use k-NN with a number of neighbors k equal to half of the size of the
unsupervised training data set, i.e. k = 50.

First, we consider a training set with n = 10 and m = 100. In this setting, the
quantity of training data, compared to the "difficulty" of the learning problem, is such
that the proposed regularization leads to a significant statistical gain. We draw a test
set of size 100, and observe indeed that, in terms of test mean squared error, the KRR
estimator obtains an error equal to 0.044 for without loss regularization, and 0.018
when using the loss regularization. Notice that because the output space is Y = R,
and ∆(y,y′) = (y − y′)2, here we can write f̂ (x) = argmin ŷ∈Y

∑n
i=1αi(x)∆(ŷ, ȳi) defining
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ȳi =
∑m
j=1βj(yi)y

u
j . Therefore, in the case of the square loss, the loss regularization

can be easily interpreted as substituting the output training points (yi)
n
i=1 with the

local averaging (ȳi)
n
i=1. This allows to reduce the effect of the noise ϵ. We plot the two

estimated maps in Figure 5.1. We also plot the training points (yi)
n
i=1 (in blue), the

surrogate training points (ȳi)
n
i=1 (in orange), the unsupervised training points (yj )

m
j=1

(black crosses on the right border of the plot).

0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5 h *

KRR
reg. KRR

Figure 5.1: Minimal example.

Then, we consider a training set with n = 1000 and m = 100. In this setting, the
quantity of training data, compared to the difficulty of the learning problem, is such
that the proposed regularization do not leads to a significant statistical gain. Indeed,
in terms of test mean squared error, the KRR estimator with and without loss regu-
larization obtain the same error equal to 0.004. Nevertheless, the estimator with loss
regularization only requires m = 100≪ n = 1000 output anchors. This allows to ob-
tain a computational gain when computing the pre-image over a finite candidate set
of size s ∈N∗: m(n+ s) instead of ns which is significant when m≪ s and m≪ n.

5.4 Theoretical analysis

In this section, we present a statistical analysis of the proposed estimator. We start,
in Section 5.4.1 by giving the assumptions on the learning problem that we consider.
Then, in Section 5.4.2, we present the main theoretical results of this work, which are
learning bounds, and, finally, we study under which setting the output regularization
is computationally and statistically beneficial.

5.4.1 Assumptions

Here, we present and comment the assumptions that we make in order to prove the
learning bounds.

Assumption 5.6 (A priori on the regularity of (Y ,∆)). We assume that ∆ admits an ILE

∆(y,y′) = ⟨χ(y),ψ(y′)⟩Hy (5.15)
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and that we know a kernel ky : Y ×Y →R with RKHS H̃y , such that

ψ ∈ Hy ⊗ H̃y . (5.16)

More precisely, here, "knowing ky" stands for being able to compute ky(y,y′) for
any y,y′ ∈ Y . Assumption 5.6 should be understood as corresponding to have a priori
information about the regularity of the maps y 7→ ∆(ŷ, y) for all ŷ ∈ Y . Indeed, it re-
quires to have an ILE for ∆, and also information about the right embedding. Notice
that there is no unicity of the embeddings. Assumption 5.6 can be equivalently formu-
lated as the existence of a Hilbert spaceHy , an embedding χ : Y →Hy , a known kernel
ky with canonical map ψ̃(y) = ky(y, .), and a Hilbert-Schmidt operator W : H̃y → Hy
such that

∆(y,y′) = ⟨χ(y),W ψ̃(y′)⟩Hy . (5.17)

As we will see just below through the examples, Assumption 5.6 is mild, in the
sense that having such a priori is possible in most of the practical case. It corresponds
to having information about the regularity of the loss ∆.

Examples. Here are some examples, for common structured output spaces (Y ,∆),
of kernels ky that verifies Assumption 5.6.

1. Finite output spaces. If |Y | < +∞, Ciliberto et al. (2016) show how to construct
explicit loss embeddings χ,ψ with finite output dimension. Therefore, ky(y,y′) =
⟨ψ(y), Iψ(y′)⟩ verifies Assumption 5.6 with ψ̃ = ψ and W = I . This includes, for
instance, the following settings.

• Multi-label classification. ∆(y,y′) =
∑d
j=11yj,y′j with Y = {0,1}d .

• Loss induced by a kernel. ∆(y,y′) = ∥ψ(y) −ψ(y′)∥2Hy with ψ : Y → Hy an
embedding map taking values in a Hilbert space Hy , and |Y | <∞.

2. Smooth structured spaces. Smoothness conditions on the maps ∀y′ ∈ Y , y 7→
∆(y,y′) (e.g. are s-times differentiable, or are analytical functions), can be typic-
ally translated as Assumption 5.6 with radial kernels ky (e.g. Laplace and Gaus-
sian kernel). This is based on the fact that radial kernels can generate Sobolev
spaces. Let’s give two examples of such result.

• Manifold prediction. If ∆ is the squared geodesic distance on the hyper-
sphere Sd−1, d ∈N∗, then H̃y can be chosen as a Sobolev space on Sd−1 (See
Rudi et al. (2018)).

• Probability distribution prediction. Luise et al. (2018) show that S ∈
H̃y ⊗H̃y where S is the Sinkhorn distance between probability distribution
over a finite space, and H̃y is a Sobolev space which is a RKHS.

The following assumption measures how much the outputs h∗
ψ̃

(x) = Ey|x[ψ̃(y)] are

concentrated in comparison to the noise ϵψ̃ = ψ̃(y) − Ey|x[ψ̃(y)]. Let define ψ̃(y) =
ky(y, .), and the operators Mψ̃ = E[h∗

ψ̃
(x)⊗ h∗

ψ̃
(x)], Eψ̃ = E[ϵψ̃ ⊗ ϵψ̃].
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Assumption 5.7 (concentrated targets). The operators Mψ̃ and Eψ̃ satisfy the following
property. There exists γ > 0, c1 > 0 such that:

Mψ̃ ⪯ c1E
γ

ψ̃
, (5.18)

This assumption is always verified for γ = 0 as ∥Mψ̃∥∞ < +∞, and the greater is γ
the more the noise is diffuse in comparison to the targets h∗

ψ̃
(x): Mψ̃ has a faster eigen-

value decay rate than Eψ̃. As a limiting case, when γ → +∞ then because ∥Eψ̃∥HS < +∞,
it implies that Mψ̃ is finite-rank.

Mildness of Assumption 5.7. How likely is this regularity assumption to be verified
in practice? While Assumption 5.6 makes the proposed model eligible to estimate f ∗,
Assumption 5.7 makes it possible with m≪ n. This can be understood as a measure
of the quantity of output anchors (yuj )mj=1 required to make the model able to estimate
f ∗. Taking the minimal example in Section 5.3, this assumption is strongly verified.
At the opposite, the generic kernel ky , proposed in Ciliberto et al. (2020) for any finite
output space Y , indeed verifies Assumption 5.6, but corresponds in fact to do not
have more structure information about (Y ,∆) than only the values (∆(y,y′))y,y′∈Y . In
this case, Assumption 5.7 is only verified for γ = 0: one can not interpolate the values
of ∆ from a subset of the values (∆(y,y′))y,y′∈Y without more information on ∆.

Assumption 5.8 (diffuse noise). The operator Eψ̃ satisfies the following property. There
exists τ ∈ [0,1[, c2 > 0 such that:

Tr(Eψ̃(Eψ̃ +µI)−1) ≥ c2µ
−τ (5.19)

for all µ ≤ ∥E∥∞.

This assumption is always verified for τ = 0, c2 = 1/2, and the greater is τ the more
the noise is diffuse, namely Eψ̃ has a slow eigenvalue decay rate. This assumption will
quantify how much noise one can removed when using the proposed regularization.

5.4.2 Main result

We focus on the weights α,β defined via kernel ridge regression with kernel kx, ky
respectively, and regularization parameter λ,µ respectively. That is fn,m(x) is the pro-
posed estimator Eq. (5.14), with α(x) = (Kx + nλI)−1kx(x) with Kx = (kx(xi ,xj ))

n
i,j=1 ∈

R
n×n, and kx(x) = (kx(x,x1), . . . , kx(x,xn)) ∈ Rn, and β(y) = (Ky +mµI)−1ky(y) with Ky =

(ky(yi , yj ))
m
i,j=1 ∈R

m×m, and ky(y) = (ky(y,y1), . . . , ky(y,ym)) ∈Rm. The proofs of Theorem
5.9, and Corollaries 1 and 2, are provided in Appendix 6.3.

Theorem 5.9 (Learning bounds). Under Assumptions 5.4, 5.6, and 5.7, using the λ

defined in the proof, if µ ≥
9c2
ψ̃

m log(mδ ), then with probability at least 1− δ

R∆(fn,m)−R∆(f ∗) ≲ ∥WPµE
1/2
ψ̃
∥1/2HSn

−1/4 +µγ/2 (5.20)

with Pu = (Cψ̃ +µI)−1Cψ̃.

When µ = 0, we recover the bound obtained without loss regularization, which is
R∆(fn,m)−R∆(f ∗) ≲ ∥WE1/2

ψ̃
∥1/2HSn

−1/4. Pu = (Cψ̃+µI)−1Cψ̃ can be understood as a projec-
tion operator over the main components of Cψ̃ whose rank is continuously controlled
by µ.
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Remark 5.10. For the sake of clarity, we use the notation a ≲ b when there exists c > 0
independent of the parameters of interest (here n,γ and τ) such that a ≤ c×b. The constants
c are explicitly defined in the proofs. In particular, the bounds holds with probability at least
1− δ, and the dependency of the constants on δ are in log2(4/δ).

Now, we derive from Theorem 5.9 two corollaries studying when the proposed
method can lead to significant computational and statistical gain.

Corollary 1 (Computational gain). Under Assumptions 5.4, 5.6, and 5.7, taking µ =
9c2
ψ̃

m log(mδ ), as soon as

m
log(m)

≳ n
1

2γ (5.21)

then we have with probability at least 1− δ

R∆(fn,m)−R∆(f ∗) ≲ n−1/4 (5.22)

Hence, when Assumption 4 is verified with a small γ , then Corollary 1 shows that
f ∗ can be well estimated with only few anchors. This leads to a significant compu-
tational gain when computing the pre-image. Indeed, let s ∈ N

∗ be the size of the
candidate set Yc ⊂ Y over which is computed the pre-image. Without loss regulariz-
ation, one needs to compute α(x)∆tr,c where ∆tr,c = (∆(yi , yc))i∈⟦1,n⟧,yc∈Yc ∈ R

n×s, and
α(x) ∈ Rn. The computational complexity for one prediction is then O(ns). With loss
regularization, one needs to compute α(x)∆tr,uβtr,c where βtr,c = (βj(yc))j∈⟦1,m⟧,yc∈Yc ∈
R
m×s, ∆tr,u = (∆(yi , y

u
j ))i∈⟦1,n⟧,j∈⟦1,m⟧ ∈ Rn×m, and α(x) ∈ Rn. The computational com-

plexity for one prediction is then O(m(n+ s)).

Corollary 2 (Statistical gain). Under Assumptions 5.4, 5.6, 5.7, and 5.8 taking µ defined
in the proof, under the same assumptions than in Theorem 5.9, we have with probability at
least 1− δ

R∆(fn,m)−R∆(f ∗) ≲ ∥E1/2
ψ̃
∥1/2HS (1−n−(1−τ)/γ )1/4n−1/4. (5.23)

This corresponds to the bound obtained without loss regularization multiplied by
(1−n−(1−τ)/γ )1/4. In particular, for any k ∈N∗, one can obtain a constant k times smaller
when using loss regularization than without using it, as soon as:

n ≤
(
1− 1

k4

)− γ
1−τ

. (5.24)

That is, one obtains a constant divided by k, when γ is big enough (concentrated
signal), τ close enough to 1 (spreaded out noise), and n not too big to benefit from this
regularization.

To put it in a nutshell, when Assumptions 5.6 and 5.7 are verified, one can ensure
that the proposed loss regularization induces a negligible bias and a significant com-
putational gain. When, in addition, Assumption 5.8 is verified, one can ensure also a
significant statistical gain (decreasing with n), through a noise reduction.
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Remark 5.11 (Alternative to Assumption 5.7 for the computational gain). Corollary
1 could be obtained under an alternative condition than the concentration of the targets
h∗
ψ̃

(x) in comparison to the noise ϵ (Assumption 5.7), by assuming instead concentration of

the embeddings ψ̃(y), via an assumption of the form Tr(Cψ̃(Cψ̃ + µI)−1) ≤ cµ−τ with τ < 1,
c > 0. Assumptions 5.4 and 5.6 are required to obtain the following Corollary 2. For the
sake of simplicity, in this work, we consider Assumptions 5.4 and 5.6 for Corollary 1, in
order to have only one set of assumptions for the two corollaries.

5.5 Numerical experiments

Figure 5.2: Output regularization on the sphere. Left: training data (black points) lie
on a noisy submanifold of the sphere (black line). Middle: Predicted map’s values with
no output regularization. Right: Predicted map’s values with output regularization.

In this section, we provide an empirical study to emphasize the relevance of loss
regularization on synthetic and real-world structured prediction problems.

5.5.1 Synthetic problem

We first give an illustration of how the proposed method operates when dealing with
a non-Euclidean output space.

Problem and data set. Here is the experimental setup: the output training data lie
on a known manifoldM, and the chosen loss ∆ is the geodesic distance. Furthermore,
the target function f ∗ : X →M takes values on a submanifold S ⊂ M. Our aim is to
measure how much loss regularization with the help of the additional ouput training
data allows to exploit this property and improves upon the loss without regularization
scheme.

As an instance of such a setting, we assume thatM is a 3D-sphere, x is a random
continuous variable uniformly distributed on [0,1] and the y = (φ,θ) ∈ M are rep-
resented in spherical coordinates. ρy|x is defined by the equation y = f ∗(x) + ϵ with
f ∗ making 8 cycles at uniform speed from 0 to 1 inside the Clelia curve φ = cθ with
c = 1, and ϵ ∼ N (0,0.1I

R
2) is a Gaussian noise. More precisely, f ∗(x) = (8x,8x). The

probability distribution ρy is marginalized out using ρx and ρy|x. We consider n = 100
training supervised data, with m = 1000 additionnal output data.

Experimental setting. We use KRR weights for both α and β with regularization
parameters λx,λy , defined from two Gaussian kernels kX , wit kY and bandwidth
σX ,σY , respectively. All hyperparameters λx,λy ,σx,σy are selected using a validation
set of size 1000. The mean test error defined with ∆ is computed over a test set of size
1000.
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Results. We observe that the proposed regularization in this setting indeed yields
to a gain in accuracy: the mean test error obtained with and without output regular-
ization on this problem are 0.133 and 0.200, respectively. We plot the training data
(yi)

n
i=1, the true map’s outputs f ∗(x), and the estimated maps’ outputs f̂ (x) (with and

without regularization) from left to right in Figure 5.2. We note that the output regu-
larization enforces the model to respect the structure of the output space observed in
the unsupervised training set.

Remark 5.12. Notice that, as for the minimal example presented above of Section 5.6, the
problem is very low dimensional for vizualisation purpose. Hence, the quantity of training
data considered are very small to make the benefits of output regularization significant.
Indeed, the statistical benefits of regularization decreases when n increases, this intuitive
result, observed in the minimal example of Section 5.6, corroborates with the theoretical
analysis (See Equation (5.24)).

5.5.2 Image reconstruction

The goal of this experiment is to assess the benefits of the proposed regularization
on both a higher dimensional space and a real-world problem. Image reconstruction
is emblematic of the literature in structured prediction (see for instance Cortes et al.
(2005); Geurts et al. (2006)) and will serve here as ....

Problem and data set. The aim of this image reconstruction problem provided by
Weston et al. (2003) is to predict the bottom half of a USPS handwritten postal digit
(16 x 16 pixels), igen its top half. The data set contains 7291 training labeled images
and 2007 test images.

Experimental setting. We consider a number of training data n = 1000, and build a
validation set with 3000 training data. As in Weston et al. (2003) we used as target loss
and RBF loss ∆(y,y′) = ∥ψ(y)−ψ(y′)∥2Hy induced by a Gaussian kernel ky , and visually

chose the kernel’s parameter σ2
y = 10, looking at reconstructed images of the method

on the validation set. For α, we use a KRR weight function with a Gaussian kernel of
width σ2

x and regularization parameter λx. For β, we use a KRR weight function with a
Gaussian kernel of width σ2

y and regularization parameter λy . We select all the hyper-
parameters using the validation set. For the ILE approach (with and without loss
regularization), we compute the pre-image by using the s = 7291 training outputs.

Comparison with a SOTA method. We start by comparing the ILE approach with
the SPEN method Belanger and McCallum (2016) employing the standard architec-
ture and training method described in Belanger and McCallum (2016). Results are
given in Table 5.1. We can see that on this problem ILE outperforms SPEN. On this
data set the loss regularization does not lead to a gain in performance, but does lead
to a computational gain as we will see just below.

Alleviating the decoding computations. The ILE approach decoding complexity
for one test point is O(n(n + s). When using the loss regularization with m anchors,
the decoding complexity reduces to O(m(n+ s)). We illustrate this experimentally by
building unsupervised training sets (yuj )mj=1 for various m in ⟦1,300⟧. In Figure 5.3,
we plot the decoding time (in orange), and the Mean test loss (in blue), w.r.t. m, along
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Method RBF loss

SPEN 0.801 ± 0.011
ILE 0.752 ± 0.011

Table 5.1: Test mean losses and standard errors for the ILE and SPEN methods on the
USPS digits reconstruction problem where n = 1000, and ntest = 2007.

with the Mean test loss obtained without regularization. We can see that when m
increases the Mean test loss quickly reach the same level of accuracy than the ILE es-
timator with n = 1000 anchors. At the opposite, the decoding time increases linearly
with m. Hence, using a reduced number of anchors helps to reduce significantly the
decoding time while incurring a negligible loss of performance.
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Figure 5.3: Computational gain on USPS.

5.6 Conclusion

Output regularity assumptions in structured prediction can be formulated as regu-
larity conditions on the loss function. In particular, we show that knowledge about
the marginal output distribution can be used to smooth the loss function allowing to
obtain statistical and computational gain. Backed up by theoretical guarantees, the
approach relies on the simplicity of non-parametric estimators and can be applied on
a large variety of problems where additional output data are available. Moreover, it
completes the set of tools available to improve upon surrogate approaches alongside
with low rank approaches whose purpose is different and focused on the control over
output dimension. However nothing prevents to combine those approaches or even
leverage the same idea in other approaches for structured prediction (energy-based or
end-to-end).
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6.1 Proofs and additional results of Chapter 3

6.1.1 Theory

6.1.1.1 Proof of FGW continuity

We prove the continuity of FGW(., y) : Yp → R for any y′ ∈ Ydis. Such result is crucial
to prove the ILE property of FGW : Yp ×Ydis→R.

Lemma 6.1 (FGW continuity). Let y = (C2,F2) with C2 ∈ Rp2×p2 ,F2 ∈ Rp2×d , p2,d ∈N∗.
The map FGW(., y′) : Yp→R is continuous.
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Proof Recall that for any y = (C,F) ∈ Yp:

FGW2
2(y,y′) = min

π∈Pp1 ,p2

∑
i,k,j,l

[
(1− β)∥F(i)−F2(j)∥2

R
d + β(C(i,k)−C2(j, l))2

]
πi,jπk,l . (6.1)

Using the inequality |minπ f (π)−minπ g(π)| ≤ supπ |f (π)− g(π)| for any f ,g : Pp1,p2
→

R, we have for any dy = (dC,dF) ∈ Yp

|FGW2
2(y + dy,y′)−FGW2

2(y,y′)| ≤ sup
π∈Pp1 ,p2

|
∑
i,k,j,l

[
(1− β)

(
⟨dF(i)|F2(j)⟩

R
d + o(∥dF(i)∥

R
d )
)

(6.2)

+ β
(
dC(i,k)C2(j, l) + o(dC(i,k))

) ]
πi,jπk,l |

≤ pp2

[
(1− β)

(
∥dF∥

R
p×d∥F2∥Rp×d + o(∥dF∥

R
p×d )

)
(6.3)

+ β
(
∥dC∥

R
p×p∥C2∥Rp2×p2 + o(∥dC∥

R
p×p )

) ]
= O(∥dy∥

R
p×p×Rp×d ) −−−−−→

dy→0
0 (6.4)

where from (13) to (14) we have used the Cauchy–Schwarz inequality, and the fact
that ∀(i, j) ∈ ⟦1,p⟧× ⟦1,p2⟧,πij ≤ 1.

We conclude that y→ FGW2
2(y,y′) is a continuous on R

p×p ×Rp×d , hence on Yp.

6.1.1.2 Universal consistency theorem

We restate the universal consistency theorem from Ciliberto et al. (2020) that is veri-
fied by our estimator because of the proved ILE property.

Theorem 6.2 (Universal Consistency). Let k be a bounded universal reproducing kernel.
For any n ∈ N and any distribution ρ on X × Ydis let fW be the proposed estimator built
from n independent couples (xi , yi)

n
i=1 drawn from ρ. Then, if λ = n−1/2,

lim
n→+∞

Rp
∆

(fW ) =Rp
∆

(f ∗) with probability 1. (6.5)

6.1.1.3 Attainability assumption

The following assumption is required to obtain finite sample bounds. It is a standard
assumption in learning theory (Caponnetto and De Vito, 2007). It corresponds to
assume that the solution h∗ of the surrogate problem indeed belongs to the considered
hypothesis space, namely the reproducing kernel Hilbert space induced by the chosen
operator-valued kernel K(x,x′) = k(x,x′)IU .

Assumption 6.3 (attainable case). We assume that there exists a linear operatorH :Hx→
U with ∥H∥HS < +∞ such that

EY |x[ψ(Y )] =Hk(x, .) (6.6)

with Hx the reproducing kernel Hilbert space associated to the kernel k(x,x′).
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6.1.2 Neural network model and training algorithm

Choice of the templates. As always in deep learning, parameter initialization is an
important aspect and we discuss now how to initialize the templates ȳj . In practice
they can be initialized at random with matrices C̄j drawn uniformly in [0,1] or chosen
at random from training samples as suggested by the non-parametric model. One
interesting aspect is that the number of nodes do not need to be the same for all tem-
plates. This means that one can have both templates with few nodes and templates
with a larger number of nodes allowing for a coarse to-fine modeling of the graphs.

Pseudocode. We give the pseudocode for the proposed neural network training al-
gorithm. This algorithm has been implemented in Python using the POT library:
Python Optimal Transport (Flamary et al., 2021), and Pytorch library (Paszke et al.,
2019).

Algorithm 6.1 Neural network-based model training - One stochastic gradient descent
step

Input: x → α(x) neural network’s parameters W . Templates (ȳj )
M
j=1. Dictionary

learning (True or False).
1. If Dictionary learning is True: θ = (W, (ȳj )

M
j=1). Otherwise: θ =W .

2. (π̄j )
M
j=1← Compute the barycenter fθ(xi).

3. πi ← Compute the losses FGW(fθ(xi), yi)).
4. ∇θ← Compute the gradient of FGW(fθ(xi), yi)) with fixed OT plans (π̄j )j and πi .

Return: Updated neural network’s parameters W , updated templates (ȳj )
M
j=1.

6.1.3 Justification of the algorithms

Reminder on ILE and surrogate problem:
Recall that ĥ is solving a least-squares problem, that is estimate h∗(x) = Ey|x[ψ(y)].
Moreover, we can write f ∗(x) = argmin ŷEy|x[∆(ŷ, y)]. Now, we can provide intuition

in the following derivations about the construction of f̂ exploiting the linearity of
expectation.

f̂ (x) = argmin
ŷ
⟨χ(ŷ), ĥ(x)⟩H

≈ argmin
ŷ
⟨χ(ŷ), h∗(x)⟩H.

Moreover, we have:

⟨χ(ŷ), h∗(x)⟩H = Ey|x[⟨χ(ŷ), ψ(y)⟩H]

= Ey|x[∆(ŷ, y)]

and thus, taking the "arg min" gives:

f̂ (x) ≈ f ∗(x).
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6.2 Proofs and additional results of Chapter 4

In this section we prove Theorem 4.7 and Corollary 4.9. The proofs are organized as
follows:

• Appendix 6.2.1 introduces some necessary notations and definitions.

• Appendix 6.2.2 provides the proof for bounding E[∥P̂ (ĥ(x) − h∗(x))∥2Z] (Lemma
6.5).

• Appendix 6.2.3 provides the proof for bounding E[∥P̂ h∗(x) − h∗(x)∥2Z] (Lemma
6.9).

• Appendix 6.2.4 provides the proof for bounding E[∥P̂ ĥ(x) − h∗(x)∥2Z] (Theorem
4.7) using Lemmas 6.5 and 6.9.

• Appendix 6.2.5 provides the proof for the Corollary 4.9 using Theorem 4.7.

• Appendix 6.2.6 gives some technical results used in the proofs.

• Appendix 6.2.7 discusses the assumption that φ(x) and ϵ are independent.

6.2.1 Notations and Definitions

In the following we consider X to be a Polish space, and Z a separable Hilbert space.
We define here the ideal operators that we will use in the following

• The feature map φ : X →Hx, ∀x ∈ X , φ(x) = k(x, .), with ∥φ(x)∥Hx ≤ κ with κ > 0.

• The target h∗(.) ∈ H = Ez|.(z), and Q > 0 such that ∀z ∈ Z,∥z∥Z ≤Q.

• S : f ∈ Hx→ ⟨f ,φ(.)⟩Hx ∈ L
2(X ,ρX )

• Z : z ∈ Z → ⟨z,h∗(.)⟩Z ∈ L2(X ,ρX )

and their empirical counterparts

• The KRR estimator ĥ(.) ∈ H trained with n couples (xi , zi)
n
i=1

• Sn : f ∈ Hx→ 1√
n

(⟨f ,φ(xi)⟩Hx )1≤i≤n ∈Rn

• Zn : z ∈ Z → 1√
n

(⟨z,zi⟩Z))1≤i≤n ∈Rn

From there, we can define the following covariance operators

• C = Ex[φ(x)⊗φ(x)] = S∗S

• V = Ez[z⊗ z]

• M = Ex[h∗(x)⊗ h∗(x)]

• Z∗S = Ex,z[z⊗φ(x)]

and their empirical counterparts
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• Cn = 1
n

n∑
i=1
φ(xi)⊗φ(xi)

• Vn = 1
n

n∑
i=1
zi ⊗ zi

• Mn = 1
n

n∑
i=1
ĥ(xi)⊗ ĥ(xi)

• Z∗nSn = 1
n

n∑
i=1
zi ⊗φ(xi)

From Lemmas 16 and 17 in Ciliberto et al. (2016) we recall that we have

• h∗(.) =Hφ(.) with H = Z∗SC† ∈ Z ⊗Hx
• ĥ(.) =Hnφ(.) with Hn = Z∗nSn(Cn +λI)−1 ∈ Z ⊗Hx
• M =HCH ∗

• Mn =HnCnH ∗n

6.2.2 KRR Error on a Subspace

In this subsection we prove a bound on the kernel ridge regression error on the sub-
space defined by P̂ :

Ex[∥P̂ ĥ(x)− P̂ h∗(x)∥2Z]1/2 = ∥P̂ (Hn −H)S∗∥HS. (6.7)

Equation (6.7) is obtained by definition of the operators Hn,H,S (see e.g. Ciliberto
et al. (2016)).

In order to bound (6.7), one can not directly apply standard learning bounds for
kernel ridge estimator on the learning problem (x, P̂ y) with (x,z) ∼ ρ, as P̂ depends on
the training data. That is why we will decompose (6.7) as

∥P̂ (Hn −H)S∗∥HS ≤ ∥P̂ (A+ tI)1/2∥HS × ∥(A+ tI)−1/2(Hn −H)S∗∥∞ (6.8)

with a well chosen operator A : Z →Z.

As a first step, we give a bound on the KRR estimator excess-risk with respect to
the operator norm.

Lemma 6.4 (Bound ∥(Hn −H)S∗∥∞). Let k : X × X → R be a bounded kernel with ∀x ∈
X , k(x,x) ≤ κ2. Let ρ be a distribution on X ×Z such that its marginal w.r.t z is supported
on the ball ∥z∥Z ≤ Q. Let ĥ = Hnφ(.) be the KRR estimator trained with n independent
couples drawn from ρ, and regularization parameter λ2 >

9κ2

n log(nδ ). Let δ ∈ [0,1]. Then,
under Assumption 4.1, HnS∗ −HS∗ = A1 +A2, with

A1 := Z∗nSn(Cn +λ2I)
−1S∗ −HCn(Cn +λ2I)

−1S∗ (6.9)

A2 :=HCn(Cn +λ2I)
−1S∗ −HS∗ (6.10)

and with probability at least 1− 2δ

∥A1∥∞ ≤

√
24η(Q2 + ∥E∥∞λ−1

2 κ2)
n

+
8κQη

3
√
λ2n

; ∥A2∥∞ ≤
√

2
√
λ2∥H∥∞ (6.11)

with η = log(
4( 2Tr(C)

λ2
+ Tr(E)
∥E∥∞

)
δ ), E = E[ϵ⊗ ϵ], ϵ = z − h∗(x), R = ∥H∥HS.
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Proof

Decomposition. The decomposition HnS∗ −HS∗ = A1 +A2 is obtained noticing that
we have Hn = Z∗nSn(Cn +λ2I)−1 (See section 6.2.1).

1. Bound ∥A1∥∞. We have

∥A1∥∞ ≤ ∥(Z∗nSn −HCn)(C +λ2I)
−1/2∥∞ × ∥(C +λ2I)

1/2(Cn +λ2I)
−1S∗∥∞ (6.12)

1.1 Bound ∥(Z∗nSn −HCn)(C +λ2I)−1/2∥∞. We define

ξi = ϵi ⊗φ(xi)(C +λ2I)
−1/2 (6.13)

with ϵi = zi − h∗(xi). In this way,

∥(Z∗nSn −HCn)(C +λ2I)
−1/2∥∞ = ∥1

n

n∑
i=1

ξi∥∞ (6.14)

We aim at applying the Bernstein inequality given in Theorem 14 to the random linear
operator ξ. So, we define

T = 2κQλ−1/2
2 ≥ ∥ξi∥∞, (6.15)

σ2 = max(∥E[ξξ∗]∥∞,∥E[ξ∗ξ]∥∞), (6.16)

d = Tr(E[ξ∗ξ] +E[ξξ∗])/σ2. (6.17)

Note that ∥ϵ∥ ≤ ∥z∥Z + ∥h∗(x)∥Z ≤ 2Q, and ∥φ(x)∥ ≤ κ. Then, we have

∥E[ξξ∗]∥∞ = ∥E[ϵi ⊗ ϵi × ⟨φ(xi), (C +λ2I)
−1φ(xi)⟩Hx ]∥∞ (6.18)

≤ ∥E[ϵ⊗ ϵ]∥∞ ×
κ2

λ2
. (6.19)

and

∥E[ξ∗ξ]∥∞ = ∥(C +λ2I)
−1/2C(C +λ2I)

−1/2∥∞ ×E[∥ϵ∥2Z] (6.20)

≤ 4Q2. (6.21)

Moreover, if λ2 < ∥C∥∞,

d ≤ Tr(E[ξ∗ξ])
∥E[ξ∗ξ]∥∞

+
Tr(E[ξξ∗])
∥E[ξξ∗]∥∞

≤ 2Tr(C)
λ2

+
Tr(E)
∥E∥∞

. (6.22)

Thus, by applying the Bernstein inequality given in Theorem 6.11, we have

∥(Z∗nSn −HCn)(C +λ2I)
−1/2∥∞ ≤

√
2η(4Q2 + ∥E∥∞κ2λ−1

2 )
n

+
4κQλ−1/2

2 η

3n
(6.23)

where η = log(
4( 2Tr(C)

λ2
+ Tr(E)
∥E∥∞

)
δ ), E = E[ϵ⊗ ϵ].
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1.2 Bound ∥(C + λ2I)1/2(Cn + λ2I)−1S∗∥∞. We apply Lemma B.6 in Ciliberto et al.
(2020), with λ2 ≥ 9κ2

n log(nδ ), and get with probability at least 1− δ,

∥(C +λ2I)
1/2(Cn +λ2I)

−1S∗∥∞ ≤ ∥(Cn +λ2I)
−1/2(C +λ2)1/2∥2∞ ≤ 2. (6.24)

Finally, we have

∥A1∥∞ ≤

√
24η(Q2 + ∥E∥∞κ2λ−1

2 )
n

+
8κQλ−1/2

2 η

3n
. (6.25)

Bound ∥A2∥∞. We have

∥A2∥∞ = ∥H(Cn(Cn +λ2I)
−1 − I)S∗∥∞ (6.26)

= ∥H(−λ2(Cn +λ2I)
−1)S∗∥∞ (6.27)

≤ λ2∥H∥∞∥(Cn +λ2I)
−1S∗∥∞ (6.28)

and

∥(Cn +λ2I)
−1S∗∥∞ ≤ λ−1/2

2 ∥(Cn +λ2I)
−1/2S∗∥∞ (6.29)

= λ−1/2
2 ∥(Cn +λ2I)

−1/2C1/2∥∞ (6.30)

≤ λ−1/2
2 ∥(Cn +λ2I)

−1/2(C +λ2)1/2∥∞ (6.31)

≤
√

2λ−1/2
2 (6.32)

because ∥(Cn +λ2I)−1/2(C +λ2)1/2∥2∞ ≤ 2 from Equation (6.24).

Finally, we have

∥A2∥∞ =
√

2
√
λ2∥H∥∞. (6.33)

Conclusion. The bound on ∥(Hn −H)S∗∥∞ is obtained by summing the two bounds
on ∥A1∥∞ and ∥A2∥∞.

We are now ready to prove a bound on the excess-risk of the ridge estimator on the
random subspace defined by P̂ , namely ∥P̂ (Hn −H)S∗∥HS.

Lemma 6.5 (KRR excess-risk on a subspace). Let k : X × X → R be a bounded kernel
with ∀x ∈ X , k(x,x) ≤ κ2. Let ρ be a distribution on X ×Z such that its marginal w.r.t z
is supported on the ball ∥z∥Z ≤ Q. Let ĥ be the KRR estimator trained with n independent
couples drawn from ρ. Let δ ∈ [0,1]. Define Sp(E) =

∑p
i=1µi(E). Then, under the Assump-

tions 4.1, 4.3, 4.4, taking for n big enough λ2 = max(Sp(E)1/2n−1/2,n−1, 9κ2

n log(nδ )), then
with probability at least 1− 2δ

Ex[∥P̂ ĥ(x)− P̂ h∗(x)∥2Z]1/2 ≤
(
c4
√
pn−1/4 + c5Sp(E)1/4

)
n−1/4 log(n/δ)
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with c4 = (7Q + 4κQ + 2∥H∥HS(1 + 3κ))(1 + c6), c5 = 10
√

(1 + c6)κ∥E∥1/2∞ + 2∥H∥HS, c6 =

log(8( Tr(C)
∥E∥1/2∞

+ Tr(E)
∥E∥∞

)).

Proof

Decomposition. We decompose ∥P̂ (Hn −H)S∗∥HS as follows

∥P̂ (Hn −H)S∗∥HS ≤ ∥P̂ A1∥HS + ∥P̂ A2∥HS (6.34)

with A1,A2 defined above in Lemma 6.4. Then, let be t1, t2 > 0,

∥P̂ A1∥HS ≤ ∥P̂ (E + t1I)
1/2∥HS × ∥(E + t1I)

−1/2A1∥∞ (6.35)

= Tr(P̂ (E + t1I))
1/2 × ∥(E + t1I)

−1/2A1∥∞ (6.36)

≤
√
Sp(E) + pt1 × ∥(E + t1I)

−1/2A1∥∞. (6.37)

and similarly

∥P̂ A2∥HS ≤
√
Sp(HH ∗) + pt2 × ∥(HH ∗ + t2I)−1/2A2∥∞. (6.38)

Sketch of the following proof. We are going to bound ∥(E + t1I)−1/2A1∥∞ and
∥(HH ∗ + t2I)−1/2A2∥∞, using the Lemma 6.4 two times. This is done noticing that
∥(E + t1I)−1/2A1∥∞ is exactly the error "part A1" of the KRR estimator trained with
data (xi , (E + t1I)−1/2z)ni=1, trying to solve the least-squares problem : (E + t1I)−1/2z =
(E + t1I)−1/2Hφ(x) + (E + t1I)−1/2ϵ. The same trick is used for ∥(HH ∗ + t2I)−1/2A2∥∞. In
the two cases, we compute then the resulting modified constants in the bound because
of these left linear operators multiplications.

1. Bound ∥(E + t1I)−1/2A1∥∞. We apply Lemma 6.4 on the KRR estimator trained
with (xi , (E + t)−1/2zi).

We have

∥(E + t1I)
−1/2E(E + t1I)

−1/2∥∞ ≤ 1 (6.39)

∥(E + t1I)
−1/2z∥ ≤ t−1/2

1 Q (6.40)

∥(E + t1I)
−1/2H∥HS ≤ t−1/2

1 ∥H∥HS. (6.41)

Furthermore, if ∥E∥∞ ≥ t1, we have

Tr(E(E + t1)−1)
∥E(E + t1)−1∥∞

= Tr(E(E + t1)−1)
∥E∥∞ + t
∥E∥∞

(6.42)

≤ 2Tr(E(E + t1)−1) (6.43)

≤ 2Tr(E)t−1
1 . (6.44)

Thus we get with probability at least 1− 2δ

∥(E + t1)−1/2A1∥∞ ≤

√
24η(Q2t−1

1 +λ−1
2 κ2∥E∥∞)

n
+

8κQt−1/2
1 η

3
√
λ2n

. (6.45)

with η = log(
8( Tr(C)

λ2
+ Tr(E)

t1
)

δ ), E = E[ϵ⊗ ϵ], ϵ = z − h∗(x).



CHAPTER 6. PROOFS AND ADDITIONAL RESULTS 109

2. Bound ∥(HH ∗+ t2I)−1/2A2∥∞. We apply Lemma 6.4 on the KRR estimator trained
with (xi , (HH ∗ + t2)−1/2zi). We have

∥(HH ∗ + t2I)−1/2H∥∞ = ∥(HH ∗ + t2I)−1HH ∗∥1/2∞ ≤ 1. (6.46)

So,

∥(HH ∗ + t2I)−1/2A2∥∞ ≤
√

2
√
λ2 (6.47)

Conclusion. We conclude by summing the bound. We have

∥P̂ (Hn −H)S∗∥HS ≤
√
Sp(E) + pt1 ×


√

24η(Q2t−1
1 +λ−1

2 κ2∥E∥∞)
n

+
8κQt−1/2

1 η

3
√
λ2n


+
√
Sp(HH ∗) + pt2 ×

(√
λ2
√

2
)
.

Taking t1 = p−1Sp(E) ≤ ∥E∥∞, and t2 = p−1Sp(HH ∗), we get

∥P̂ (Hn −H)S∗∥HS ≤

√
48η(Q2p+ 2Sp(E)λ−1

2 κ2∥E∥∞)

n
+

4κQ
√
pη

√
λ2n

+ 2
√
Sp(HH ∗)

√
λ2.

Now, taking λ2 = max(Sp(E)1/2n−1/2,n−1, 9κ2

n log(nδ )), we get

∥P̂ (Hn −H)S∗∥HS ≤ 7

√
ηQ2p

n
+ 7

√
2ηSp(E)λ−1

2 κ2∥E∥∞
n

+
4κQ
√
pη

√
λ2n

+ 2∥H∥HS

√
λ2

≤ 7

√
ηQ2p

n
+ 7

√
2ηSp(E)1/2κ2∥E∥∞

n1/2
+

4κQ
√
pη

n1/2

+ 2∥H∥HS

(
Sp(E)1/4n−1/4 +n−1/2 + 3κn−1/2 log1/2(

n
δ

)
)

≤
(7√ηQ+ 4κQη + 2∥H∥HS(1 + 3κ log(

n
δ

))
)
√
pn−1/4

+
(
10
√
ηκ∥E∥1/2∞ + 2∥H∥HS

)
Sp(E)1/4

n−1/4

≤
(
c4
√
pn−1/4 + c5Sp(E)1/4

)
n−1/4 log(n/δ)

with c4 = (7Q + 4κQ + 2∥H∥HS(1 + 3κ))(1 + c6), c5 = 10
√

(1 + c6)κ∥E∥1/2∞ + 2∥H∥HS, c6 =

log(8( Tr(C)
∥E∥1/2∞

+ Tr(E)
∥E∥∞

)), as η ≤ c6 + log(n/δ) ≤ (c6 + 1)log(n/δ) if p ≤ n.
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6.2.3 Supervised Subspace Learning

In this subsection we prove a bound on the supervised reconstruction error:

Ex[∥P̂ h∗(x)− h∗(x)∥2Y ]1/2 = ∥(P̂ − I)M1/2∥HS. (6.48)

We use the proof scheme of Rudi et al. (2013) for subspace learning, retaking also
the Lemma 6.6 restated just below. The novelty to deal with is that the random vari-
able, whose reconstruction error is minimized here, is h∗(x). The unknown h∗(xi) are
estimated via our supervised subspace learning method (4.7) thanks to the couples
(xi , yi)

n
i=1. This leads to additional derivations in our proofs.

We start by restating the Lemma 3.6 from Rudi et al. (2013) in a convenient form
for our purposes.

Lemma 6.6 (Convergence of covariance operators). Let X ,Y be two Hilbert spaces, H ∈
Y ⊗X , A = Ex[Hx⊗Hx], (xi)

n
i=1 i.i.d from a distribution ρ on X supported on the unit ball,

An = 1
n

n∑
i=1
Hxi ⊗Hxi , B ∈ Y ⊗ Y any positive semidefinite operator, 9

n log(nδ ) ≤ t ≤ ∥A∥∞,

then with probability at least 1− δ it is√
2
3
≤ ∥(A+B+ tI)

1
2 (An +B+ tI)−

1
2 ∥∞ ≤

√
2

Proof By defining Bn = (A+B+ tI)−
1
2 (A−An)(A+B+ tI)−

1
2 , we have

∥(A+B+ tI)
1
2 (An +B+ tI)−

1
2 ∥∞ = ∥(I −Bn)−1∥1/2∞ (6.49)

and B is positive semidefinite so

∥Bn∥∞ = ∥(A+B+ tI)−
1
2 (A−An)(A+B+ tI)−

1
2 ∥∞ (6.50)

≤ ∥(A+ tI)−
1
2 (A−An)(A+ tI)−

1
2 ∥∞ (6.51)

Now, by applying Lemma 3.6 from Rudi et al. (2013), we get with probability at least
1− δ, if 9

n log(nδ ) ≤ t ≤ ∥A∥∞

∥Bn∥∞ ≤
1
2
. (6.52)

We conclude by observing that

1√
1 + ∥Bn∥∞

≤ ∥(I −Bn)−1∥1/2∞ ≤
1√

1− ∥Bn∥∞
. (6.53)

The two following lemmas handle the estimation of M = HCH ∗ = E[h∗(x)⊗ h∗(x)]
in our supervised subspace learning method. In particular, here is exploited the As-
sumption 4.3, whose the divergence rate of the plateau threshold pmax, from which
the error remains constant (See Rudi et al. (2013)), depends on.
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Lemma 6.7. Let be ξ > 0,δ ∈ [0,1]. Under Assumptions 4.1, 4.3, taking

t ≥ n−
1
β+1 (ξ/2)−

4
β+1

4κ(Q+κR)
(
1 + 2κ∥M∥

1
4 (1−β)
∞

)
log2 8

δ
+ c1/2

2


4
β+1

(6.54)

and
λ1 = t−

1−β
2 n−1/2

is enough to achieve with probability at least 1− δ

∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞ ≤ ξ. (6.55)

Proof We note for convenience A = (HCH ∗ + tI)−
1
2 . We proceed as in the proof of

Lemma 18 and Theorem 5 in (Ciliberto et al., 2016) (showing a learning bound for the
kernel ridge estimator). However, we monitor the action of A, and we use Assumption
4.3, in order to obtain the best bound w.r.t t and n, decreasing fast when n and t
increase. We have

∥A(Hn −H)S∗∥∞ = ∥AZ∗nSn(Cn +λ1)−1S∗ −AZ∗∥∞ (6.56)

≤ (I) + (II) + (III) (6.57)

with

(I) = ∥AZ∗nSn(Cn +λ1)−1 −AZ∗S(Cn +λ1)−1S∗∥∞

≤
√

1
t
× ∥Z∗nSn(Cn +λ1)−1 −Z∗S(Cn +λ1)−1S∗∥HS

(II) = ∥AZ∗S(Cn +λ1)−1S∗ −AZ∗S(C +λ1)−1S∗∥∞

≤
√

1
t
× ∥Z∗S(Cn +λ1)−1S∗ −Z∗S(C +λ1)−1S∗∥HS

(III) = ∥AZ∗S(C +λ1)−1S∗ −AZ∗∥∞

Bound (III). From Assumption 4.1 we have Z∗ =HS∗, and

(III) = ∥AZ∗(S(C +λ1)−1S∗ − I)∥∞ (6.58)

= ∥AHS∗(S(C +λ1)−1S∗ − I)∥∞ (6.59)

= ∥AH(S∗ −λ1(C +λ1)−1 − S∗)∥∞ (6.60)

= λ1∥AH(C +λ1)−1S∗∥∞ (6.61)

≤ ∥AH∥∞ ×λ1∥(C +λ1)−1S∗∥∞ (6.62)

≤ ∥AH∥∞ ×
√
λ1. (6.63)

Using Assumption 4.3 we have

∥AH∥∞ = ∥(M + tI)−
1
2H∥∞ (6.64)

≤ ∥(HCH ∗ + tI)−
1
2 c1/2

2 M(1−β)/2∥∞ (6.65)

≤ c1/2
2 × t−

β
2 . (6.66)

Bound (I) and (II). We bound (I) and (II), as in Ciliberto et al. (2016) (Lemma 18).
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Conclusion. This leads to the following bound with probability at least 1− δ:

∥A(Hn −H)S∗∥∞ ≤ 4κ
Q+κR
√
λ1nt

1 +

√
4κ2

λ1
√
n

 log2 8
δ

+ c1/2
2

√
λ1t
− β2 . (6.67)

Now, choosing λ1 = t−
1
2 (1−β)
√
n

, if t ≤ ∥M∥∞, we obtain

∥A(Hn −H)S∗∥∞ ≤
(
4κ(Q+κR)

(
1 + 2κt

1
4 (1−β)

)
log2 8

δ
+ c1/2

2

)
n−1/4t−

1
4 (β+1) (6.68)

≤

4κ(Q+κR)
(
1 + 2κ∥M∥

1
4 (1−β)
∞

)
log2 8

δ
+ c1/2

2

n−1/4t−
1
4 (β+1) (6.69)

Hence, taking t ≥ n−
1
β+1 (ξ/2)−

4
β+1

4κ(Q+κR)
(
1 + 2κ∥M∥

1
4 (1−β)
∞

)
log2 8

δ + c1/2
2


4
β+1

is enough

to achieve

∥A(Hn −H)S∗∥∞ ≤ ξ. (6.70)

We combine Lemmas 6.6 and 6.7 to finally prove a concentration bound forHnCnH ∗n
deviating from HCH ∗.

Lemma 6.8 (Convergence of the supervised covariance Mn). Let be δ ∈ [0,1]. Under
Assumptions 4.1, 4.3, and defining

Bn = (HCH ∗ + tI)−
1
2 (HnCnH

∗
n −HCH ∗)(HCH ∗ + tI)−

1
2

if t ≥ c8 log8(8
δ )n−

1
β+1 , n ≥ n0 (constant independent of δ), then with probability 1− 2δ

∥Bn∥∞ ≤
1
2

with c8 = (ξ/2)−
4
β+1

4κ(Q+κR)
(
1 + 2κ∥M∥

1
4 (1−β)
∞

)
+ c1/2

2


4
β+1

and ξ = 1
14 , n0 ∈ N

∗ con-

stant defined in the proof.

Proof We decompose in 7 terms the difference of products, then we will bound each
associated term in ∥Bn∥∞.

HnCnH
∗
n −HCnH ∗ = (Hn −H)CH ∗ (i)

+HC(Hn −H)∗ (ii)

+ (Hn −H)C(Hn −H)∗ (iii)

+ (Hn −H)(Cn −C)H ∗ (iv)

+H(Cn −C)(Hn −H)∗ (v)

+ (Hn −H)(Cn −C)(Hn −H)∗ (vi)

+H(Cn −C)H ∗ (vii)
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Bound (i) and (ii).

∥(HCH ∗ + tI)−
1
2HC(Hn −H)∗(HCH ∗ + tI)−

1
2 ∥∞ ≤ ∥(HCH ∗ + tI)−

1
2HS∗∥∞

× ∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞

But:

∥(HCH ∗ + tI)−
1
2HS∗∥∞ = ∥(HCH ∗ + tI)−

1
2HS∗SH ∗(HCH ∗ + tI)−

1
2 ∥1/2∞

= ∥(HCH ∗ + tI)−
1
2HCH ∗(HCH ∗ + tI)−

1
2 ∥1/2∞

≤ 1

And from Lemma 6.7, defining c8 = (ξ/2)−
4
β+1

4κ(Q+κR)
(
1 + 2κ∥M∥

1
4 (1−β)
∞

)
+ c1/2

2


4
β+1

,

ξ = 14,if t ≥ c8 log8(8
δ )n−

1
β+1 we get with probability at least 1− δ

∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞ ≤

1
14

Bound (iii). As for (i) and (ii), from Lemma 6.7 we have

∥(HCH ∗ + tI)−
1
2 (Hn −H)C(Hn −H)∗(HCH ∗ + tI)−

1
2 ∥∞ ≤ ∥(HCH ∗ + tI)−

1
2 (Hn −H)S∗∥2∞

≤ 1
142 ≤

1
14
.

Bound (iv) and (v). We decompose

∥(HCH ∗ + tI)−
1
2 (Hn −H)(Cn −C)H ∗(HCH ∗ + tI)−

1
2 ∥∞ ≤

∥(HCH ∗ + tI)−
1
2 (Hn −H)C1/2

t ∥∞ × ∥C
−1/2
t (Cn −C)C−1/2

t ∥∞ × ∥C1/2
t H ∗(HCH ∗ + tI)−

1
2 ∥∞.

We bound

∥(HCH ∗ + tI)−
1
2 (Hn −H)C1/2

t ∥∞ = ∥(HCH ∗ + tI)−
1
2 (Hn −H)Ct(Hn −H)∗(HCH ∗ + tI)−

1
2 ∥1/2∞

≤ ∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞ + t1/2∥(HCH ∗ + tI)−

1
2 (Hn −H)∥∞

≤ ∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞ + ∥Hn −H∥∞

and similarly,

∥C1/2
t H ∗(HCH ∗ + tI)−

1
2 ∥∞ ≤ ∥(HCH ∗ + tI)−

1
2HS∗∥∞ + t1/2∥(HCH ∗ + tI)−

1
2 cH∥∞

≤ ∥(HCH ∗ + tI)−
1
2HS∗∥∞ + ∥H∥∞

≤ 1 + ∥H∥∞

finally we obtain

∥(HCH ∗ + tI)−
1
2 (Hn −H)(Cn −C)H ∗(HCH ∗ + tI)−

1
2 ∥∞ ≤(

∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞ + ∥Hn −H∥∞

)
× ∥C−1/2

t (Cn −C)C−1/2
t ∥∞

×
(
1 + ∥H∥∞

)
.
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From Lemma 6.7, ∥(HCH ∗ + tI)−
1
2 (Hn −H)(Cn − C)H ∗(HCH ∗ + tI)−

1
2 ∥∞ ≤ 1/14 if t ≥

c8 log8(8
δ )n−

1
β+1 . From Lemma 6.12, ∥Hn −H∥∞ ≤ 2log8(8

δ )R if n ≥ n1 with n1 a con-
stant independent of δ. So, defining u = (1/14 + 2R)× (1 +R). Now, using Lemma 3.6
from Rudi et al. (2013), we can have ∥C−1/2

t (Cn − C)C−1/2
t ∥∞ ≤ 1/14 × u−1 log−8(8

δ ) if

t ≥ a1
logn/δ
n with a1 > 0 a constant independent of δ. We conclude that

∥(HCH ∗ + tI)−
1
2 (Hn −H)(Cn −C)H ∗(HCH ∗ + tI)−

1
2 ∥∞ ≤

1
14
.

Bound (vi). Similarly as for (v), we have

∥(HCH ∗ + tI)−
1
2 (Hn −H)(Cn −C)(Hn −H)∗(HCH ∗ + tI)−

1
2 ∥∞ ≤(

∥(HCH ∗ + tI)−
1
2 (Hn −H)S∗∥∞ + ∥Hn −H∥∞

)2

× ∥C−1/2
t (Cn −C)C−1/2

t ∥∞

and, if t ≥ a2
logn/δ
n , with a2 a constant independent of δ, we also have

∥(HCH ∗ + tI)−
1
2 (Hn −H)(Cn −C)(Hn −H)∗(HCH ∗ + tI)−

1
2 ∥∞ ≤ 1/14.

Bound (vii). As previously, from Lemma 3.6 from Rudi et al. (2013), there exists a
constant a3 > 0 such that with probability at least 1− δ if t ≥ a3

logn/δ
n , with a3 > 0, we

have

∥(HCH ∗ + tI)−
1
2H(Cn −C)H ∗(HCH ∗ + tI)−

1
2 ∥∞ ≤ 1/14.

Conclusion. But there exists n0 independent of δ such that ∀n ≥ n0 ≥ n1, c8 log8(8
δ )n−

1
β+1 ≥

max(a1, a2, a3) logn/δ
n . So, we conclude that, if t ≥ c8 log8(8

δ )n−
1
β+1 , and n ≥ n0,

∥Bn∥∞ ≤
1
2
.

We are now ready to prove the main result of this section. We prove a bound
on the reconstruction error of P̂ when reconstructing the h∗(x), namely Ex[∥P̂ h∗(x) −
h∗(x)∥2Y ]1/2.

Lemma 6.9 (Supervised subspace learning). Let (xi , yi)
n
i=1 be drawn independently from

a probability measure ρ and (yi)
m
i=1 be drawn independently from the marginal ρ w.r.t y

with support in the ball ∥y∥Y ≤Q. Let P̂ be the estimated projection in the proposed method.
Then, under Assumptions 4.1, 4.2 and 4.3, there exist constants c8 > 0,n0 ∈N∗, such that,

if µp+1(M) ≥ c8 log8(8
δ )n−

1
β+1 , n ≥ n0, λ1 = µp+1(M)−

1−β
2 n−

1
2 , then with probability at least

1− 3δ
Ex[∥P̂ h∗(x)− h∗(x)∥2Y ]

1
2 ≤

√
3c1µp+1(M)1/2(1−α).

Proof We have (See Proposition C.4. in Rudi et al. (2013)):

Ex[∥P̂ h∗(x)− h∗(x)∥]1/2 = ∥(P̂ − I)M
1
2
c ∥2HS (6.71)
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Then, as in the proofs of Rudi et al. (2013), we split (6.71) into three parts, and
bound each term,

∥(P̂ − I)M
1
2 ∥HS ≤ ∥(M + tI)

1
2 (Mn + tI)−

1
2 ∥∞︸                          ︷︷                          ︸

A

× (µp+1(Mn) + t)
1
2︸             ︷︷             ︸

B

×∥(M + tI)−
1
2M

1
2 ∥HS︸                 ︷︷                 ︸

C

BoundA = ∥(M + tI)
1
2 (Mn + tI)−

1
2 ∥∞. We have:

∥(M + tI)
1
2 (Mn + tI)−

1
2 ∥∞ = ∥(M + tI)

1
2 (Mn + tI)−1(M + tI)

1
2 ∥1/2∞

= ∥(I −Bn)−1∥1/2∞

with Bn = (M + tI)−1/2(M −Mn)(M + tI)−1/2. So, if ∥Bn∥∞ < 1,

1√
1 + ∥Bn∥∞

≤ ∥(M + tI)
1
2 (Mn + tI)−

1
2 ∥∞ ≤

1√
1− ∥Bn∥∞

Then applying Lemma 6.8, if t ≥ c8 log8(8
δ )n−

1
β+1 , with probability 1− 3δ it is√

2
3
≤ ∥(M + tI)

1
2 (Mn + tI)−

1
2 ∥∞ ≤

√
2

Bound B = (µp+1(Mn) + t)
1
2 .

√
2
3 ≤ ∥(M + tI)

1
2 (Mn + tI)−

1
2 ∥∞ is equivalent to Mn + t ⪯

3
2 (M + t) (by Lemma B.2 point 4 in (Rudi et al., 2013)). Then, ∀k ∈ N∗,µk(Mn + t) ≤
3
2µk(M + t), so we have

√
µp+1(Mn) + t ≤

√
3
2

√
µp+1(M) + t. (6.72)

Bound C = ∥(M + tI)−
1
2M

1
2 ∥HS. We have

C2 = Tr(M(M + t)−1) (6.73)

= Tr(MαM1−α(M + t)−1) (6.74)

≤ Tr(Mα)∥M1−α(M + t)−1∥∞ (6.75)

≤ c1 × t−α (from Assumption 4.2 and Young’s inequality for products). (6.76)

Finally, we get the following upper bound.

Ex[∥P̂ h∗(x)− h∗(x)∥]1/2 ≤
√

3
√
µp+1(M) + t × c1/2

1 × t−α/2 (6.77)

Taking t = µp+1(M), which is possible if µp+1(M) ≥ c8 log8(8
δ )n−

1
β+1 , we get

Ex[∥P̂ h∗(x)− h∗(x)∥]1/2 ≤
√

3c1µp+1(M)1/2(1−α). (6.78)

We get the wanted upper bound.
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6.2.4 Theorem

In this subsection we give the main result of this chapter which is a learning bound
for the proposed method. That is we bound:

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]. (6.79)

The proof consists in decomposing this excess-risk in two terms, as in equation (4.27),
then bounding each term applying the two lemmas previously proved.

Theorem 4.7 (Learning bounds). Let P̂ ĥ be the proposed estimator in Eq. (4.8) with
rank(P̂ ) = p, built from n independent couples (xi , zi)

n
i=1 drawn from ρ. Let δ ∈ [0,1].

Under the Assumptions 4.1, 4.2, 4.3, 4.4, there exists constants c4, c5, c8 > 0, n0 ∈ N
∗

defined in the proof, and independent of p,n,δ, such that, if µp+1(M) ≥ c8 log8(8
δ )n−

1
β+1 and

n ≥ n0, then with probability at least 1− 3δ,

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]1/2 ≤
(
c4
√
pn−1/4 + c5Sp(E)1/4

)
n−1/4 log(n/δ) +

√
3c1µp+1(M)1/2(1−α)

(4.13)

with Sp(E) =
∑p
i=1µi(E).

Proof We decompose the excess-risk as follows

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]1/2 ≤ Ex[∥P̂ ĥ(x)− P̂ h∗(x)∥2Z]1/2︸                          ︷︷                          ︸
regr. error on a subspace

+Ex[∥P̂ h∗(x)− h∗(x)∥2Z]1/2︸                         ︷︷                         ︸
reconstruction error

. (6.80)

We apply the Lemmas 6.5 and 6.9, and we get, if µp+1(M) ≥ c8 log8(8
δ )n−

1
β+1 , with prob-

ability at least 1− 3δ:

Ex[∥P ĥ(x)− h∗(x)∥2Z]1/2 ≤
(
c4
√
pn−1/4 + c5Sp(E)1/4

)
n−1/4 log(n/δ) +

√
3c1µp+1(M)1/2(1−α).

(6.81)

with c4 = (7Q + 4κQ + 2∥H∥HS(1 + 3κ))(1 + c6), c5 = 10
√

(1 + c6)κ∥E∥1/2∞ + 2∥H∥HS, c6 =

log(8( Tr(C)
∥E∥1/2∞

+ Tr(E)
∥E∥∞

)).

6.2.5 Corollary

In this subsection we derive from the Theorem 4.7 a corollary in the case whereM and
E have polynomial eigenvalue decay rates. This allows to explicit the optimal quantity
of components p, and also obtaining a condition on the decay rates s, e > 1 in order to
obtain a statistical gain.

Corollary 4.9 (Learning bounds (polynomial decay rates)). Let δ ∈ ]0,1], n ≥ n0. Under
Assumptions 4.1, 4.3, and 4.8, assuming B

b ≤ θ with θ ≥ 1, then by taking only

p = c9(log8(
8
δ

))−
1
s n

1
(β+1)s , (4.17)
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we have with probability at least 1− 3δ:

Ex[∥P̂ ĥ(x)− h∗(x)∥2Z]1/2 ≤ c10(s, e) log5/4(
n
δ

)n−1/4 + c11(e)n−
1
2

1−2/s
1+β log8(

8
δ

), (4.18)

where c10(s, e) = c̃10

(
e(e−1)
s

)1/4 (
1 + log

(
e
e−1

))
, c11(e) = c̃11

(
1 + log

(
e
e−1

))
. c̃10, c̃11, n0, are

constants independent of n,δ, s, e, and c9 is a constant independent of n,δ, defined in the
proofs.

Proof The proof consists in applying the Theorem 4.7 in the specific case of poly-

nomial eigenvalue decay rates. If µp+1(M) ≥ c8 log8(8
δ )n−

1
β+1 , with probability at least

1− 3δ:

Ex[∥P ĥ(x)− h∗(x)∥2Z]1/2 ≤
(
c4
√
pn−1/4 + c5Sp(E)1/4

)
n−1/4 log(n/δ) +

√
3c1µp+1(M)1/2(1−α).

(6.82)

Bound Sp(E). The polynomial eigenvalue decay assumption, give us that a
ps ≤ µp(M) ≤

A
ps . So, Assumption 4.1 is verified with α = 2

s , and c1 = Tr(Mα) ≤
∑
i i
−2 ×Aα ≤ 2Aα.

Hence,

√
3c1µp+1(M)1/2(1−α) ≤

√
6AαA1/2(1−α)

p
1
α−1

=

√
6A

p
s
2−1

. (6.83)

Moreover,

Sp(E) =
p∑
i=1

µi(E) ≤ B
p∑
i=1

i−e ≤ B(1 +
∫ p

x=1
x−edx) ≤ B

1− e−1 × (1− e−1

pe−1 ) (6.84)

and using (1− 1/x) ≤ log(x) ≤ x − 1, we get

Sp(E) ≤ B

1− e−1 ×
(
(e − 1)log(p) + log(e)

)
(6.85)

≤ B

1− e−1 ×
(
(e − 1)log(p) + (e − 1)

)
(6.86)

=
B

1− e−1 × (e − 1)(log(p) + 1) (6.87)

≤ B

1− e−1 × 2(e − 1)log(p) (if p > 3) (6.88)

= 2Be log(p). (6.89)

Now, taking p = c9(log8(8
δ ))−

1
s n

1
s(β+1) , defining c9 = ( c8

a )−
1
s , ensures µp(M) ≥ c8 log8(8

δ )n−
1
β+1 .

Moreover, B ≤ θ × b ≤ θTr(E)(
∑+∞
i=1 i

−e)−1 = θTr(E)
ζ(e) by definition of the Riemann zeta

function. So, using this defined p, we get,

Sp(E) ≤ 2Be

1
s

log

 ac8

+
log(n)
s(β + 1)

 (6.90)

≤
2θTr(E)e log(n)

ζ(e)s

log

 ac8

+ 1

 (if n > 3) (6.91)
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Bound
√

3c1µp+1(M)1/2(1−α). Now, taking p = c9(log8(8
δ ))−

1
s n

1
s(β+1) , defining c9 = ( c8

a )−
1
s ,

ensures µp(M) ≥ c8 log8(8
δ )n−

1
β+1 . Using this defined p, we get

√
3c1µp+1(M)1/2(1−α) ≤

√
6A(

c8

a
log8(

8
δ

))
1
2 (1− 2

s )n−
1
2

1− 2
s

1+β (6.92)

≤
√

6A(

√
c8

a
+ 1)log8(

8
δ

)n−
1
2

1− 2
s

1+β . (6.93)

Bound
√
pn−1/2. Furthermore, one can check that (1

2 −
1

2s(β+1) ) >
1
2

1−2/s
1+β , hence we

have

√
pn−1/2 ≤

 ac8

1/2s

n−( 1
2−

1
2s(β+1) ) ≤

 ac8
+ 1

n− 1
2

1−2/s
1+β . (6.94)

Studying c4, c5, c8,n0 dependencies in s, e. In this work we study the behavior of
the bound when the shape of E and M vary, i.e. when s and e vary. Therefore, it’s
important to make some derivations to studying c4, c5, c8,n0’s dependencies in s and e.
First, c8,n0 are independent of δ,s, e.

Then, observing that we have ∥E∥−1
∞ = µ1(E)−1 ≤ b−1 ≤ θ

B ≤ θ
ζ(e)

Tr(E) , leads to c6 ≤

log(8(θ
1/2 Tr(C)
Tr(E)1/2 +θ)) + log(ζ(e)). So, we have

c4 = (7Q+ 4κQ+ 2R(1 + 3κ))(1 + c6) (6.95)

≤
(
log(ζ(e)) + 1

)1 + log(8(
θ1/2 Tr(C)
Tr(E)1/2

+θ))

(7Q+ 4κQ+ 2R(1 + 3κ)
)

(6.96)

and also

c5 = 10
√

(1 + c6)κ∥E∥1/2∞ + 2∥H∥HS (6.97)

≤
(
log(ζ(e) + 1)

)1 + log(8(
θ1/2 Tr(C)
Tr(E)1/2

+θ))

(10κ∥E∥1/2HS + 2∥H∥HS

)
. (6.98)

Conclusion. Thanks to the previous derivations we obtain the following bound

Ex[∥P ĥ(x)− h∗(x)∥2Z]1/2 ≤ c10(s, e) log5/4(
n
δ

)n−1/4 + c11(e)n−
1
2

1−2/s
1+β log8(

8
δ

)

with c10(s, e) = c̃10(log(ζ(e)) + 1)
(

e
ζ(e)×s

)1/4
, c11(e) = c̃11(log(ζ(e)) + 1). c̃10 and c̃11 are

constants independent of n,δ, s, e, defined below

c̃10 =

1 + log(8(
θ1/2 Tr(C)
Tr(E)1/2

+θ))

(10κ∥E∥1/2HS + 2∥H∥HS

)2θTr(E)(log(
a
c8

) + 1)

1/4

(6.99)

c̃11 =
√

6A(

√
c8

a
+ 1) +

 ac8
+ 1


1 + log(8(

θ1/2 Tr(C)
Tr(E)1/2

+θ))

(7Q+ 4κQ+ 2R(1 + 3κ)
)
.

(6.100)
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The inequalities 1
e−1 ≤ ζ(e) ≤ e

e−1 allow to conclude the proof.

6.2.6 Auxiliary Results

In this section, we give four auxiliary results:

• A bound on the KRR estimator which monitors the role of the total amount of
noise Tr(E).

• A Bernstein inequality for bounded operator and the operator norm.

• A bound on ∥Hn −H∥∞, used in the proof of Lemma 6.9.

• Some properties of Löwner’s partial ordering

Lemma 6.10 (Full-rank KRR excess-risk ). Let k : X ×X → R be a bounded kernel with
∀x ∈ X , k(x,x) ≤ κ2. Let ρ be a distribution on X × Z such that its marginal w.r.t y is
supported on the ball ∥y∥Z ≤ Q. Let ĥ be the KRR estimator trained with n independent
couples drawn from ρ. Let δ ∈ [0,1]. Then, under the assumption 4.1 and 4.3, taking

λ1 = max

1
n
,
∥E1/2∥HS√

n

 (6.101)

the following holds with probability at least 1− δ

Ex[∥ĥ(x)− h∗(x)∥2Z]
1
2 ≤ C(p)n−

1
4 log

4
δ

(6.102)

with C(p) = 10

O(n−
1
4 ) + (κ+R)∥E1/2∥

1
2
HS

, R = ∥H∥HS.

Proof We follow the proofs of (Ciliberto et al., 2020) in order to derive a learning
bound of the KRR estimator. We carefully monitor the role of the total amount of
noise Tr(E).

We make appear the conditional variance by modifying the Proposition B.7 in
(Ciliberto et al., 2020), with the following change from equation (B.55) to (B.58):

Ex[∥C−1/2
λ φ(x)∥2σ (x)2] ≤ κ

2

λ
×Ex[σ (x)2] (6.103)

=
κ2

λ
×E[∥ϵ∥2Z] (6.104)

=
κ2

λ
× ∥E1/2∥2HS (6.105)

by defining the noise ϵ = ψ(y)− h∗(x), and E = E[ϵ⊗ ϵ].



CHAPTER 6. PROOFS AND ADDITIONAL RESULTS 120

Then, doing the same proof than Theorem B.8 from (Ciliberto et al., 2020), we get
the following bound

Ex[∥P ĥ(x)− P h∗(x)∥2Z]1/2 ≤
8κ log 2

δ√
λn

× (Q+κ∥L−1/2
λ Z∥HS)

+
1
√
n
×
√

64(deff(λ)× ∥E1/2∥2HS +κ2λ∥L−1
λ Z∥

2
HS) log

4
δ

+ 10×λ∥L−1
λ Z∥HS

Now, using the assumption 1, we have

∥L−1
λ Z∥HS = ∥L−1

λ SH
∗∥HS (6.106)

≤ ∥L−1
λ S∥HS × ∥H∥HS (6.107)

≤ λ−
1
2 ×R (6.108)

and similarly ∥L−1
λ Z∥HS ≤ R. Moreover,

deff(λ) := Tr((C +λI)−1C) ≤ λ−1κ2. (6.109)

So, we get

Ex[∥ĥ(x)− h∗(x)∥2Z]1/2 ≤ κ(Q+κR)
√
λn

× 10log
4
δ

+
1
√
n
×
√

(λ−1κ2∥E1/2∥2HS +κ2R)× 10log
4
δ

+λ
1
2 ×R× 10log

4
δ

Now, we define λ in order to minimize this bound, with

λ = max

1
n
,
∥E1/2∥HS√

n


so we obtain

Ex[∥ĥ(x)− h∗(x)∥2Z]1/2 ≤ n−
1
4 × 10log

4
δ
×

(κ(Q+κR))n−
1
4

+
√
κ2∥E1/2∥HS +κ2R2n−

1
2

+
(
n−

1
4 + ∥E1/2∥

1
2
HS

)
×R

.

We conclude

Ex[∥ĥ(x)− h∗(x)∥2Z]1/2 ≤ C(p)n−
1
4 log

4
δ

(6.110)
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with

C(p) = 10

(κ(Q+κR))n−
1
4 +κ

√
∥E1/2∥HS +R2n−

1
2 +

(
n−

1
4 + ∥E1/2∥

1
2
HS

)
R


= 10

O(n−
1
4 ) + (κ+R)∥E1/2∥

1
2
HS

.

Theorem 6.11 (Concentration inequality on the operator norm, Tropp (2012)(The-
orem 7.3.2)). Let ξi be independent copies of the random variable ξ with values in the space
of bounded operators over a Hilbert space H such that E[ξ] = 0. Let there be R > 0 such
that ∥ξ∥∞ ≤ T . Define σ2 = max(∥E[ξξ∗]∥∞,∥E[ξ∗ξ]∥∞), and d = Tr(E[ξ∗ξ]+E[ξξ∗])/σ2.
Then, if δ ∈ [0,1], with probability at least 1− δ∥∥∥∥∥∥∥∥1

n

n∑
i=1

ξi

∥∥∥∥∥∥∥∥∞ ≤
√

2ησ2

n
+

2T η
3n

(6.111)

where η = log(4d
δ ).

Proof This theorem is a restatement of Theorem 7.3.2 of (Tropp, 2012) generalized to
the separable Hilbert space case by means of the technique in Section 3.2 of (Minsker,
2017).

Lemma 6.12 (Bound ∥Hn −H∥∞). With probability at least 1− 2δ it is

∥Hn −H∥∞ ≤
4log 2

δ

λ1
√
n

(Qκ+κ2∥h∗ψ∥H) + ∥h∗ψ∥H

Proof In order to bound ∥Hn−H∥∞ we do the following decomposition in three terms,
and bound each term:

∥Hn −H∥∞ = ∥Z∗nSn(Cn +λ1I)
−1 −Z∗SC†∥∞

≤ ∥(Z∗nSn −Z∗S)(Cn +λ1I)
−1∥∞︸                               ︷︷                               ︸

(A)

+∥Z∗S((Cn +λ1I)
−1 − (C +λ1I)

−1)∥∞︸                                        ︷︷                                        ︸
(B)

+ ∥Z∗S((C +λ1I)
−1 −C†)∥∞︸                           ︷︷                           ︸

(C)

Bound (A). We have:

(A) = ∥(Z∗nSn −Z∗S)(Cn +λ1I)
−1∥∞ ≤

1
λ1
∥Z∗nSn −Z∗S∥HS

From Ciliberto et al. (2016) (proof of lemma 18.), with probability 1−δ: (A) ≤ 4Qκ log 2
δ

λ1
√
n

.
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Bound (B). We have:

(B) = ∥Z∗S((C +λ1I)
−1 − (Cn +λ1I)

−1)∥∞
= ∥Z∗S((C +λ1I)

−1(Cn −C)(Cn +λ1I)
−1)∥∞

≤ ∥Z∗S(C +λ1I)
−1∥∞∥(Cn −C)∥∞∥(Cn +λ1I)

−1∥∞

≤ 1
λ1
∥h∗ψ∥H∥(Cn −C)∥∞

where we used the fact that for two invertible operators A,B: A−1 − B−1 = A−1(B −
A)B−1, and noting that ∥Z∗S(C + λ1I)−1∥∞ ≤ ∥Z∗S(C + λ1I)−1∥HS ≤ ∥H∥HS = ∥h∗ψ∥H.

From Ciliberto et al. (2016), with probability 1− δ: (B) ≤
4∥h∗ψ∥Hκ2 log 2

δ

λ1
√
n

.

Bound (C). We have:

(C) = ∥Z∗S((C +λ1I)
−1 −C†)∥∞

= ∥HS∗S((C +λ1I)
−1 −C†)∥∞

= ∥H(C(C +λ1I)
−1 − I)∥∞

= λ1∥H(C +λ1I)
−1∥∞

≤ ∥h∗ψ∥H

We conclude by union bound, with probability at least 1− 2δ:

∥Hn −H∥∞ ≤
4Qκ log 2

δ

λ1
√
n

+
4∥h∗ψ∥Hκ

2 log 2
δ

λ1
√
n

+ ∥h∗ψ∥H

Notice that if we choose λ1 = (c8 log8(8
δ ))−

1−β
2 n−

β
β+1 as chosen in Lemma 6.7, we obtain

∥Hn −H∥∞ ≤ (4Qκ+Rκ2) log
2
δ
× a×n

β
1+β−

1
2 +R (6.112)

with a = c8 log8(8
δ )

1
2 , such that ∥Hn −H∥∞ ≤ 2R log9(8

δ )
1
2 when n ≥ N with N > 0 a

constant independent of δ.

Lemma 6.13 (Properties of Löwners’s partial ordering ⪯). Let A,B be positive semidef-
inite linear operators on Y such that A ⪯ B, and M a bounded linear operator on Y , then

1. If A,B are random variables then E[A] ⪯ E[B].

2. MAM∗ ⪯MBM∗.

Proof

1) For any u ∈ Y , we have ⟨u,E[A]u⟩Y = E[⟨u,Au⟩Y ] ≤ E[⟨u,Bu⟩Y ] = ⟨u,E[B]u⟩Y .
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2) From Lemma B.2 in Rudi et al. (2013).

6.2.7 About the Independence of φ(x) and ϵ

In this section, we discuss the assumption that the random variables φ(x) and ϵ are
independent.

In this work, this assumption allows to obtain shorter and lighter derivations, and
an easier reading of the proofs. Nevertheless, such assumption is not exploited by the
proposed method, and similar results can be proven without this assumption. More
precisely, one can prove bounds with the same dependencies in the parameters of the
learning setting, leading to the same conclusions. We discuss how below.

How to obtain similar bounds without this assumption? The independence of
φ(x) and ϵ allow simpler derivations when bounding expectations involving products
of these two random variables using E[f (φ(x))g(ϵ)] = E[f (φ(x))×E[g(ϵ)]. This is used
multiple times from Equations (38) to (48) to prove the Lemma 6.4, and only there.

We carried out derivations below in order to bound the same quantities but we do
not make use of the assumption. Then, we will check that the dependencies in the
parameters of the learning setting are similar.

Sketch of the proof (Bound ∥(Z∗nSn−HCn)(C+λ2I)−1/2∥∞ without the independence
assumption). We define

ξi = ϵi ⊗φ(xi)(C +λ2I)
−1/2 (6.113)

with ϵi = yi − h∗(xi). In this way,

∥(Z∗nSn −HCn)(C +λ2I)
−1/2∥∞ = ∥1

n

n∑
i=1

ξi −E[ξ]∥∞. (6.114)

We aim at applying the Bernstein inequality given in Theorem 6.11 to the random
linear operator u := ξ −E[ξ]. So, we define

T := 4κQλ−1/2
2 ≥ ∥u∥∞, (6.115)

σ2 := max(∥E[uu∗]∥∞,∥E[u∗u]∥∞), (6.116)

d := Tr(E[u∗u] +E[uu∗])/σ2. (6.117)

Note that ∥ϵ∥ ≤ ∥z∥Z + ∥h∗(x)∥Z ≤ 2Q, and ∥φ(x)∥ ≤ κ. Then, we have

E[uu∗] = E[(ϵ⊗φ(x)−E[ϵ⊗φ(x)])(C +λ2I)
−1(ϵ⊗φ(x)−E[ϵ⊗φ(x)])∗] (6.118)

⪯ λ−1
2 E[(ϵ⊗φ(x)−E[ϵ⊗φ(x)])(ϵ⊗φ(x)−E[ϵ⊗φ(x)])∗] (6.119)

= λ−1
2 E[(ϵ⊗φ(x)(ϵ⊗φ(x))∗]−E[ϵ⊗φ(x)]E[ϵ⊗φ(x)]∗ (6.120)

⪯ λ−1
2 E[ϵ⊗ ϵ∥φ(x)∥2] (6.121)

⪯ λ−1
2 κ2

E[ϵ⊗ ϵ] = λ−1
2 κ2E (6.122)
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where ⪯ denotes the Löwner’s partial ordering of positive semidefinite operators. We
used properties of Löwner’s partial ordering (cf. Lemma 6.13). So, we have

∥E[uu∗]∥∞ ≤ λ−1
2 κ2∥E∥∞. (6.123)

Then, similarly, we have

E[u∗u] = (C +λ2I)
−1/2

E[(ϵ⊗φ(x)−E[ϵ⊗φ(x))∗(ϵ⊗φ(x)−E[ϵ⊗φ(x))](C +λ2I)
−1/2

(6.124)

= (C +λ2I)
−1/2

(
E[φ(x)⊗φ(x)∥ϵ∥2]−E[φ(x)⊗ ϵ]E[φ(x)⊗ ϵ]∗

)
(C +λ2I)

−1/2

(6.125)

⪯ (C +λ2I)
−1/24Q2C(C +λ2I)

−1/2 (6.126)

⪯ 4Q2IZ . (6.127)

So, we have

∥E[u∗u]∥∞ ≤ 4Q2. (6.128)

Now, from previous derivations, if λ2 < ∥C∥∞, we also have

Tr(E[uu∗]) ≤ λ−1
2 Tr(E)κ2, (6.129)

Tr(E[u∗u]) ≤ 4Q2λ−1
2 Tr(C), (6.130)

∥E[uu∗]∥∞ ≥
∥Var(ϵ⊗φ(x))∥∞

2∥C∥∞
. (6.131)

by defining Var(ϵ ⊗φ(x)) = E[(ϵ ⊗φ(x) −E[ϵ ⊗φ(x)])(ϵ ⊗φ(x) −E[ϵ ⊗φ(x)])∗]. So, we
have

d ≤ Tr(E[u∗u]) + Tr(E[uu∗])
∥E[uu∗]∥∞

(6.132)

≤ λ−1
2

2(Tr(E)κ2 + 4Q2 Tr(C))∥C∥∞
∥Var(ϵ⊗φ(x))∥∞

. (6.133)

Conclusion. Then, one can bound ∥(Z∗nSn −HCn)(C + λ2I)−1/2∥∞ as in the proof of
Lemma 6.4 by applying the Bernstein inequality given in Theorem 6.11.

The dependencies in the learning setting’s parameters of the resulting bound will
depend on the dependencies in the learning setting’s parameters of the obtained bounds
on ∥E[u∗u]∥∞, ∥E[uu∗]∥∞, and d.

Notice that the bounds on ∥E[u∗u]∥∞, ∥E[uu∗]∥∞ have the same dependencies in
the learning setting’s parameters than the ones obtained in Lemma 6.4 on ∥E[ξ∗ξ]∥∞,
∥E[ξξ∗]∥∞.

The bound on d obtained above without the independence assumption has poorer
dependencies in the learning setting’s parameters than the one obtained in Lemma
6.4. More precisely, d has poorer dependencies in t1 and λ2. Nevertheless, it remains
polynomial dependencies in t−1

1 and λ−1
2 , such that the resulting η = log(4d

δ ), in the
proof of Lemma 6.5, has similar dependencies in the learning setting’s parameters
than the one obtained in Lemma 6.5.
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We conclude that, without the independence assumption of φ(x) and ϵ, one can
prove bounds similar to Theorem 4.7, namely with the same dependencies in the para-
meters of the learning setting.

In this section, we give an additional synthetic experiment (Section 6.2.8) that aims
at discussing the difference between the output source condition (Assumption 4.3)
and the standard source condition (Ciliberto et al., 2020). We also give additional
details on the experiments for the sake of reproducibility (Sections 6.2.9, 6.2.10).

6.2.8 Difference Between Standard Source Condition and Assumption
4.3.

From Assumption 4.1 we have M = HCH ∗. Hence, Assumption 4.3 measures the
alignment between HCH ∗ and HH ∗. Notice that it’s a different assumption than re-
quiring the alignment of C and H ∗H (source condition). Indeed, in general strong
Assumption 4.3 doesn’t imply strong source condition. For instance, when H is finite
rank (e.g. H = z0⊗h0 with z0 ∈ Y ,h0 ∈ Hx), Assumption 4.3 is verified with β = 0 (best
case), while the source condition can be arbitrarily bad (e.g. if ⟨h0|C−(1−v)h0⟩Hx = +∞
with v > 0, then the source condition can’t be verified for r ≤ v). Source condition
is verified with r = 1 − 2u by operators of the form H = H0C

u with H0 ∈ Y ⊗ Hx,
∥H0∥HS < +∞, u ∈ [0, 1

2 ]. Similarly, Assumption 4.3 is verified with β = 1
2u+1 by operat-

ors of the form H = (H0CH
∗
0)uH0 with ∥H0∥∞ < +∞, u ∈ [0,+∞[.

We illustrate this empirically. For d = 200, X = Hx = Z = R
d , we choose µp(C) = 1

p2

and draw randomly the eigenvector associated to each eigenvalue. We drawH0 ∈Rd×d
with independently drawn coefficients from the standard normal distribution. No-
tice that β and r can be measured as the increasing rates, when t,λ→ 0, in t−β and
λ−r of the quantities ∥(M + t)−

1
2H∥2∞ and ∥H(C + λ)−

1
2 ∥2∞. Hence, we compute and

plot on Figure 6.1 ∥H(C + λ)−
1
2 ∥2∞ w.r.t λ (left), and ∥(M + t)−

1
2H∥2∞ w.r.t t (right),

with H = (H0CH
∗
0)γH0 for various γ ∈ [0,1.5]. We also plot in Figure 6.1 (right) the

slopes β = 1
2γ+1 . Firstly, we see that Assumption 4.3 indeed improved when γ in-

creases, while the source condition is low and does not change. Then, as explained
H = (H0CH

∗
0)γH0 verifies Assumption 4.3 with at least β = 1

2γ+1 , but depending on

H0 it might be verified for β≪ 1
2γ+1 . Nonetheless, notice that with our generated H0,

β = 1
2γ+1 are sharp for H = (H0CH

∗
0)γH0.
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Figure 6.1: Source condition ∥H(C +λ)−
1
2 ∥2∞ w.r.t λ (left) and output source condition

∥(M + t)−
1
2H∥2∞ w.r.t t (right) in log-log scale for H = (H0CH

∗
0)γH0 and various γ ∈

{0,0.1,0.25,0.5,0.9,1.5}.
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6.2.9 Image Reconstruction

Link to downloadable data set. web.stanford.edu/~hastie/StatLearnSparsity_

files/DATA/zipcode.html

SPEN USPS experiments’ details. We used an implementation of SPEN in python
with PyTorch by Philippe Beardsell and Chih-Chao Hsu (cf. github.com/philqc/deep-
value-networks-pytorch). Small changes have been made. SPEN was trained using
standard architecture from Belanger and McCallum (2016), that is a simple 2-hidden
layers neural network for the feature network with equal layer size nh = 110, and
a single-hidden layer neural network for the structure learning network with size
ns = 50. The size of the two hidden layers nh ∈ [10,30,50,70,90,110,130] was selected
during the pre-training of the feature network using 5 repeated random sub-sampling
validation (80%/20%) selecting the best mean validation MSE (cf. Figure 6.2 for con-
vergence of this phase). ns ∈ [5,10,20,50,70] was selected during the training phase
of the SPEN network (training of the structure learning network plus the last layer
of the feature network) doing approximate loss-augmented inference (cf. Figure 6.2
for inferences’ convergences), and minimizing the SSVM loss, using 5 repeated ran-
dom sub-sampling validation (80%/20%) selecting the best mean validation MSE (cf.
Figure 6.2 for convergence of this phase).
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Figure 6.2: Left: Convergence of train/validation MSE when pre-training the feature
network. / Center: approximate loss-augmented inferences’ convergences. / Right:
Convergence of train/validation SSVM loss when training the SPEN network.

6.2.10 Multi-label Classification

Link to downloadable data set http://mulan.sourceforge.net/datasets-mlc.

html

6.3 Proofs and additional results of Chapter 5

In this section, we provides the proofs for the Theorem 1, and Corollary 1 and 2.

6.3.1 Definitions and notations

• ⪯ denotes the Loewner partial order for positive definite operators: A ⪯ B iff
⟨u, Au⟩ ≤ ⟨u, Bu⟩ for any u.

• We note ψ̃(y) = ky(y, .), cψ = supy ∥ψ(y)∥, cψ̃ = supy ∥ψ̃(y)∥, cχ = supy ∥χ(y)∥, κ =
supx ∥kx(x, .)∥Hx .

web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/zipcode.html
web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/zipcode.html
http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
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• We define the following Least-squares solutions h∗ψ(x) = Ey|x[ψ(y)], h∗
ψ̃

(x) = Ey|x[ψ̃(y)].

• We define the following ideal covariance operators: Cx = E[kx(x, .)⊗kx(x, .)], Cψ̃ =
E[ψ̃(y)⊗ψ̃(y)], Cψ = E[ψ(y)⊗ψ(y)],Mψ̃ = E[h∗

ψ̃
(x))⊗h∗

ψ̃
(x)],Eψ̃ = E[ϵψ̃⊗ϵψ̃],Mψ =

E[h∗ψ(x))⊗ h∗ψ(x)],Eψ = E[ϵψ ⊗ ϵψ].

• We note Rψ = ∥Hψ∥HS,Rψ̃ = ∥Hψ̃∥HS,RW = ∥W ∥HS.

Let’s recall the following results giving a closed-form formula for the kernel ridge
estimator.

Lemma 6.14 (KRR estimator). Let Z be a separable Hilbert space, let H be the RKHS in-
duced by the operator-valued kernel K(x,x′) = k(x,x′)IZ . Then, the solution to the following
regularized empirical risk minimization

min
h∈H

1
n

n∑
i=1

∥h(xi)− zi∥2Z +λ∥h∥2H (6.134)

is given by

ĥz(x) :=
n∑
i=1

αi(x)zi with α(x) = (Kx +nλ)−1kx(x) (6.135)

with Kx = (kx(xi ,xj ))
n
i,j=1 ∈ R

n×n, and kx(x) = (kx(x,x1), . . . , kx(x,xn)) ∈ Rn. Moreover, the
following inequality holds

ĥz(x) = Ĥzkx(x, .) with Ĥz = Ĉzx(Ĉx +λ)−1 (6.136)

with Ĉx = 1
n

∑n
i=1 kx(xi , .)⊗ kx(xi , .)⊗ kx(x, .), and Ĉzx = 1

n

∑n
i=1 zi ⊗ kx(xi , .).

Proof Equation (6.136) holds from B.4 in Ciliberto et al. (2020). Equation (6.135)
can be obtained from the Woodbury matrix identity and the Equation (6.136) (see for
example Lemma 3 in Ciliberto et al. (2016)).

Now, we can make the following definitions and notations.

• We note ĥψ̃ = ĥψ̃(y), and ĥψ = ĥψ(y).

• We define Ŵ = Ĉψ,ψ̃(Ĉψ̃+µI)−1 withCψ,ψ̃ = 1
m

∑m
j=1ψ(y)⊗ψ̃(y), such that Ŵ ψ̃(y) =∑m

j=1βj(y)ψ(yj ) with β(y) = (Ky+mµ)−1ky(y) withKy = (ky(yi , yj ))
m
i,j=1 ∈R

m×m, and
ky(y) = (ky(y,y1), . . . , ky(y,ym)) ∈Rm.

We recall the comparison inequality, and a kernel ridge excess-risk bounds from
Ciliberto et al. (2020) (Theorem 3 and Theorem B.8).
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Lemma 6.15 (Comparison inequality). Let f ∗ : X → Y be the measurable function min-
imizing the expected risk R(f ) = E[∆(f (x), y]. Then the following inequality holds

R∆(f̂ )−R∆(f ∗) ≤ cχ E[∥ĥ(x)− h∗ψ(x)∥2Hy ]
1/2, (6.137)

with f̂ (x) = argmin ŷ∈Y
∑n
i=1

∑m
j=1αi(x)βj(yi)∆(ŷ, yj ), and ĥ(x) =

∑n
i=1

∑m
j=1αi(x)βj(yi)ψ(yj ).

Lemma 6.16 (Kernel ridge excess-risk bounds). Let ĥz = Ĥzkx(x, .) be the kernel ridge
estimator from X to Z, with regularization parameter µ > 0 and training data (xi , zi)

n
i=1, as

defined in Lemma 6.14. Let be E = E[ϵ⊗ ϵ] with ϵ = z − h∗z(x). In the attainable case, i.e. if
h∗z(x) := Ez|x[z] =Hzkx(x, .) with ∥Hz∥HS < +∞, then with probability 1− δ, we have

E[∥ĥz(x)− h∗z(x)∥2Hy ]
1/2 ≤ 8log(4/δ)(sup

y
∥z∥+κ∥Hz∥HS)µ−1/2n−1 (6.138)

+ 8κ∥E1/2∥HSµ
−1/2n−1/2 log(4/δ) (6.139)

+κµ1/2n−1/2 log(4/δ)∥Hz(Cx +µI)−1C1/2
x ∥HS (6.140)

+ 10µ∥Hz(Cx +µI)−1C1/2
x ∥HS. (6.141)

We show an excess-risk bounds for the kernel ridge estimator, in the noiseless case
E = 0.

Lemma 6.17 (Kernel ridge excess-risk bounds in the noiseless regime). Let ĥz = Ĥzkx(x, .)
be the kernel ridge estimator from X to Z, with regularization parameter µ > 0 and training
data (xi , zi)

n
i=1, as defined in Lemma 6.14. Let be E = E[ϵ ⊗ ϵ] with ϵ = z − h∗z(x). In the

attainable case, with h∗z(x) := Hzkx(x, .) with ∥Hz∥HS < +∞, and the noiseless case E = 0,
µ ≥ 9κ2

n log(nδ ), then with probability 1− δ, we have

E[∥ĥz(x)− h∗z(x)∥2Hy ]
1/2 ≤ 4µ∥Hz(C +µI)−1/2∥HS. (6.142)

Proof Performing similar derivations than in the proof of Theorem B.5 in Ciliberto
et al. (2020), and then applying Lemma B.6, we obtain directly with probability at
least 1− δ, if µ ≥ 9κ2

n log(nδ ), then

E[∥ĥz(x)− h∗z(x)∥2Hy ]
1/2 ≤ 4µ∥Hz(C +µI)−1/2∥HS. (6.143)

6.3.2 Proof of Theorem 1 (Learning bounds)

In this section, we prove the main theorem of this chapter, which is an excess-risk
bounds for ĥ that carrefully monitors the three following parameter: n,λ,µ. Then, it
will allow us to show that having non zero µ (output regularization parameter) can
leads to better constants, exploiting a regularized output embedding ψβ(y) that leads
to a greater variance reduction than a bias increase.

To this end, we start by proving the two following lemmas.
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Lemma 6.18. Let δ ∈ [0,1]. If µ ≥
9c2
ψ̃

m log(mδ ), then the following holds with probability at
least 1− δ

E[∥(Ŵ −W )h∗
ψ̃

(x))∥2Hy ]
1/2 ≤ 4c1/2

1 µγ/2RW . (6.144)

Proof Notice that,

Eψ̃ ⪯ Cψ̃ (6.145)

because ψ̃(y) = h∗(x) + ϵ, and h∗(x) = Ey|x[ψ̃(y)].

Using Mψ̃ ⪯ c1E
γ

ψ̃
, and Eψ̃ ⪯ Cψ̃, we have

E[∥(Ŵ −W )h∗
ψ̃

(x))∥2Hy ]
1/2 = ∥(Ŵ −W )M1/2

ψ̃
∥HS (6.146)

≤ c1/2
1 ∥(Ŵ −W )Cγ/2

ψ̃
∥HS (6.147)

Now, notice that Ŵ is the ridge estimate for the noiseless problem ψ̃(y)→ ψ(y). So,
we can use the kernel ridge bound Lemma 6.17, and we get

∥(Ŵ −W )Cγ/2
ψ̃
∥HS ≤ 4µ∥W (Cψ̃ +µI)−1/2C

(γ−1)/2
ψ̃

∥HS (6.148)

≤ 4µγ/2∥W ∥HS. (6.149)

Lemma 6.19. Let δ ∈ [0,1], and Pµ = Cψ̃(Cψ̃+µI)−1. When λ = max(∥WPµE
1/2
ψ̃
∥HSn

−1/2,n−1),

and
9c2
ψ̃

m log(mδ ) ≥ µ ≤ ∥Cψ̃∥∞, then the following holds with probability at least 1− δ

E[∥Ŵ ĥψ̃(x)− Ŵ h∗
ψ̃

(x))∥2Hy ]
1/2 ≤ c log2(4/δ)×

[
n−1/4∥WPµE

1/2
ψ̃
∥1/2HS +µγ/2 +n−1/2

]
(6.150)

with c3 = 20(cψ + 4cψ̃ + 5κ(Rψ +Rψ̃) + 3RW (1 + 4κ+ c1/2
1 ) +κ+Rψ + c−1

ψ̃
).

Proof From the attainability assumption, we have

h∗
ψ̃(x) =Hψ̃kx(x, .) with ∥Hψ̃∥HS < +∞. (6.151)

Then, using the kernel ridge bound from Lemma 6.16, we have

E[∥Ŵ ĥψ̃(x)− Ŵ h∗
ψ̃

(x))∥2Hy ]
1/2 ≤ 8log(4/δ)(sup

y
∥Ŵ ψ̃(y)∥+κ∥ŴHψ̃∥HS)λ−1/2n−1

(6.152)

+ 8κ∥ŴE1/2
ψ̃
∥HSλ

−1/2n−1/2 log(4/δ) (6.153)

+κλ1/2n−1/2 log(4/δ)∥ŴHψ̃(Cx +λI)−1C1/2
x ∥HS

(6.154)

+ 10λ∥ŴHψ̃(Cψ̃ +λI)−1C1/2
x ∥HS. (6.155)

Let’s bound each of the four terms depending on Ŵ .
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1. Bound ∥Ŵ ψ̃(y)∥. First,

∥Ŵ ψ̃(y)∥ ≤ ∥Wψ̃(y)∥+ ∥Ŵ −W ∥∞∥ψ̃(y)∥ (6.156)

= ∥ψ(y)∥+ ∥Ŵ −W ∥∞∥ψ̃(y)∥. (6.157)

Then, from Lemma 15 in Brogat-Motte et al. (2022), with probability at least 1− δ:

∥Ŵ −W ∥∞ ≤ 4log(2/δ)µ−1m−1/2(sup
y
∥ψ(y)∥κ+ c2

ψ̃
∥W ∥∞) + ∥W ∥∞ (6.158)

Hence, we conclude

sup
y
∥Ŵ ψ̃(y)∥ ≤ cψ + cψ̃

(
4log(2/δ)µ−1m−1/2(cψκ+ c2

ψ̃
RW ) +RW

)
. (6.159)

2. Bound ∥ŴHψ̃∥HS. Similarly as before,

∥ŴHψ̃∥HS ≤ ∥WHψ̃∥HS + ∥Ŵ −W ∥∞∥Hψ̃∥HS (6.160)

= ∥Hψ∥HS + ∥Ŵ −W ∥∞∥Hψ̃∥HS. (6.161)

Then, using the same bound than in the previous paragraph, we get

∥ŴHψ̃∥HS ≤ Rψ +
(
4log(2/δ)µ−1m−1/2(cψκ+ c2

ψ̃
RW ) +RW

)
Rψ̃ . (6.162)

3. Bound ∥ŴHψ̃(Cx +λI)−1C1/2
x ∥HS. First,

∥ŴHψ̃(Cx +λI)−1C1/2
x ∥HS ≤ ∥(Ŵ −W )Hψ̃(Cx +λI)−1C1/2

x ∥HS + ∥WHψ̃(Cx +λI)−1C1/2
x ∥HS.

(6.163)

Then,

∥WHψ̃(Cx +λI)−1C1/2
x ∥HS ≤ ∥Hψ∥HS ×λ−1/2. (6.164)

Moreover, as previously

∥(Ŵ −W )Hψ̃(Cx +λI)−1C1/2
x ∥HS ≤ ∥(Ŵ −W )Hψ̃C

1/2
x ∥HS ×λ−1 (6.165)

= ∥(Ŵ −W )M1/2
ψ̃
∥HS ×λ−1 (6.166)

≤ c1/2
1 ∥(Ŵ −W )Cγ/2

ψ̃
∥HS ×λ−1 (6.167)

From Lemma 6.17 this term can be bounded with probability at least 1 − δ, as
follows

∥(Ŵ −W )Cγ/2
ψ̃
∥HS ≤ 4µγ/2∥W ∥HS. (6.168)

To conclude, we sum up the two bounds on each term in Equation (6.163), and we
obtain:

∥ŴHψ̃(Cx +λI)−1C1/2
x ∥HS ≤ 4c1/2

1 µγ/2RWλ
−1 +Rψλ

−1/2. (6.169)
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4. Bound ∥ŴE1/2
ψ̃
∥HS. We note Pµ = Cψ̃(Cψ̃ +µI)−1, and Wµ =WPµ,

∥ŴE1/2
ψ̃
∥HS ≤ ∥(Ŵ −WPµ)E1/2

ψ̃
∥HS + ∥WPµE

1/2
ψ̃
∥HS (6.170)

Then, using Eψ̃ ⪯ Cψ̃, we have

∥(Ŵ −WPµ)E1/2
ψ̃
∥HS ≤ ∥(Ŵ −WPµ)C1/2

ψ̃
∥HS. (6.171)

Following similar proof than the one of Lemma 6.17, and using Lemma 3.6 in Rudi
et al. (2013), this term can also be bounded as

∥(Ŵ −Wµ)C1/2
ψ̃
∥HS ≤ 4µγ/2∥W ∥HS. (6.172)

Conclusion We come back to Equation (6.155), summing up all the bounds obtained

just above, and choosing λ = max(∥WPµE
1/2
ψ̃
∥HSn

−1/2,n−1), and
9c2
ψ̃

m log(mδ ) ≤ µ ≤ ∥Cψ̃∥∞,
we get:

∥Ŵ (Ĥψ̃ −Hψ̃)S∗∥HS ≤ c log2(4/δ)×
[
n−1/4∥WPµE

1/2
ψ̃
∥1/2HS +µγ/2 +n−1/2

]
(6.173)

with c3 = 20(cψ + 4cψ̃ + 5κ(Rψ +Rψ̃) + 3RW (1 + 4κ+ c1/2
1 ) +κ+Rψ + c−1

ψ̃
).

We can now state and prove the theorem.

Theorem 6.20 (Learning bounds). Let ĥ(x) =
∑n
i=1

∑m
j=1αi(x)βj(yi)ψ(yj ), with α(x) =

(Kx +mµ)−1kx(x) with Kx = (kx(xi ,xj ))
n
i,j=1 ∈ R

n×n, and kx(x) = (kx(x,xi))
n
i=1 ∈ R

n, and
β(y) = (Ky +mµ)−1ky(y) with Ky = (ky(yi , yj ))

m
i,j=1 ∈R

m×m, and ky(y) = (ky(y,yi))
m
i=1 ∈R

m.

Using the λ defined in the proof, if µ ≥
9c2
ψ̃

m log(mδ ), then with probability at least 1− δ

R∆(f̂ )−R∆(f ∗) ≤ c log2(4/δ)×
(
n−1/4∥WPµE

1/2
ψ̃
∥1/2HS +µγ/2 +n−1/2

)
(6.174)

c4 = 20cχ(cψ + 4cψ̃ + 5κ(Rψ +Rψ̃) + 4RW (1 + 4κ+ c1/2
1 ) +κ+Rψ + c−1

ψ̃
).

Proof First, we use the Lemma 2 6.15 to bound the structured excess-risk by the Least-
squares excess-risk. Then, we decompose the Least-squares excess-risk as follows.

Least-squares risk decomposition. By definition of ĥψ̃, ĥψ, and Ŵ , we have

ĥψ = Ŵ ĥψ̃ . (6.175)

From Assumption 3, we have

ψ(y) =Wψ̃(y) with ∥W ∥HS < +∞. (6.176)
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So, we have

E[∥ĥ(x)− h∗ψ(x)∥2Hy ] = E[∥Ŵ ĥψ̃(x)−Wh∗
ψ̃

(x))∥2Hy ] (6.177)

≤ E[∥Ŵ ĥψ̃(x)− Ŵ h∗
ψ̃

(x))∥2Hy ]︸                            ︷︷                            ︸
(1)

+E[∥(Ŵ −W )h∗
ψ̃

(x))∥2Hy ]︸                       ︷︷                       ︸
(2)

. (6.178)

Bound (1) and (2). We bound the two terms by applying Lemma 6.19 and Lemma
6.18.

Conclusion. We conclude the proof by summing up the two bounds on (1) and (2).
We obtain the same bound than for (1):

E[∥ĥ(x)− h∗ψ(x)∥2Hy ]
1/2 ≤ c log2(4/δ)×

[
n−1/4∥WPµE

1/2
ψ̃
∥1/2HS +µγ/2 +n−1/2

]
(6.179)

but with the slightly modified constant c4 = 20(cψ + 4cψ̃ + 5κ(Rψ +Rψ̃) + 4RW (1 + 4κ +

c1/2
1 ) +κ+Rψ + c−1

ψ̃
).

6.3.3 Proof of Corollary 3 (Computational gain)

Here, we show that one can use a very reduce number of anchorsm≪ n and obtaining
the same statistical guarantees, but a significantly improved computational complex-
ity of the pre-image step.

Corollary 3 (Computational gain). Taking µ =
9c2
ψ̃

m log(mδ ), under the same assumptions
than in Theorem 6.20, as soon as

m
log(m)

≳ n
1

2γ (6.180)

then we have with probability at least 1− δ

R∆(f̂ )−R∆(f ∗) ≲ n−1/4 (6.181)

Proof Notice that ∥WPµE
1/2
ψ̃
∥1/2HS = ∥WCψ̃(Cψ̃+µI)−1E1/2

ψ̃
∥1/2HS ≤ ∥WEψ̃(Eψ̃+µI)−1E1/2

ψ̃
∥1/2HS ≤

∥WE1/2
ψ̃
∥HS using Cψ̃ ⪯ Eψ̃. Then, using the Theorem 6.20, with µ =

9c2
ψ̃

m log(mδ ) and , we
obtain the desired result.

That is, we proved the same learning rate n−1/4 than the kernel ridge estimator
using n anchors (all the training data) for the proposed method that only requires a

reduced numbers of anchors O(n
1

2γ ) (negleting the log term). This depends on the
parameter γ , when γ increases the number of required anchors decreases. For in-
stance, if the assumption holds with γ = 1, O(n

1
2 ) ≪ n is required for obtaining the

learning rate n−1/4.
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6.3.4 Proof of Corollary 4 (Statistical gain)

In this section we derive the Corollary 4 which aims at showing from Theorem 6.20,
that the excess-risk bounds with loss regularization can be significantly smaller than
without regularization under the same assumptions.

Corollary 4 (Statistical gain). Taking µ = c
−(1−τ)−1

5 n−1/γ ≥
9c2
ψ̃

m log(mδ ), under the same
assumptions than in Theorem 6.20, we have with probability at least 1− δ

R∆(f̂ )−R∆(f ∗) ≤ c log2(4/δ)×n−1/4
(
∥E1/2

ψ̃
∥1/2HS (1−n−(1−τ)/γ )1/4 + (1 + c−γ/2(1−τ)

5 )n−1/4
)

(6.182)

with c the constant defined in Theorem 6.20, and c5 = c2 Tr(Eψ̃)−1(1 + c1)τ .

Proof From h∗
ψ̃

(x) = Ey|x[ψ̃(y)], ϵ = ψ̃(y)− h∗(x), we have E[h∗(x)⊗ ϵ] = Ex[Ey|x[h∗(x)⊗
ϵ]] = Ex[h∗(x)⊗Ey|x[ϵ]] = 0, which gives

Cψ̃ =Mψ̃ +Eψ̃ . (6.183)

We have ∥WPµE
1/2
ψ̃
∥HS ≤ ∥W ∥∞∥Cψ̃(Cψ̃+µI)−1E1/2

ψ̃
∥HS. Then, usingMψ̃ ⪯ c1E

γ

ψ̃
, we have

∥PµE1/2
ψ̃
∥2HS = Tr(P 2

µ Eψ̃) (6.184)

= Tr((Mψ̃ +Eψ̃)2(Mψ̃ +Eψ̃ +µI)−2Eψ̃) (6.185)

≤ Tr(((1 + c1)Eψ̃)((1 + c1)Eψ̃ +µI)−1Eψ̃) (6.186)

= Tr(Eψ̃(Eψ̃ +µ(1 + c1)−1I)−1Eψ̃). (6.187)

But for any µ > 0, denoting ek the k-th top eigenvalue of Eψ̃, we have

Tr(Eψ̃(Eψ̃ +µI)−1Eψ̃) =
+∞∑
k=1

ek
ek +µ

ek (6.188)

=
+∞∑
k=1

ek −µ
+∞∑
k=1

ek
ek +µ

(6.189)

= Tr(Eψ̃)−µTr(Eψ̃(Eψ̃ +µI)−1) (6.190)

≤ Tr(Eψ̃)− c2µ
1−τ . (6.191)

by using Assumption 5. So, we have

Tr(Eψ̃(Eψ̃ +µ(1 + c1)−1I)−1Eψ̃) ≤ Tr(Eψ̃)(1− c5µ
1−τ ), (6.192)

defining c5 = c2 Tr(Eψ̃)−1(1 + c1)τ .

Therefore, we have by applying Theorem 6.20

E[∥ĥ(x)− h∗ψ(x)∥2Hy ]
1/2 ≤ c log2(4/δ)×

(
n−1/4∥E1/2

ψ̃
∥1/2HS (1− c5µ

1−τ )1/4 +µγ/2 +n−1/2
)

(6.193)
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Now, using µ = c−(1−τ)−1

5 n−1/γ , we have

E[∥ĥ(x)− h∗ψ(x)∥2Hy ]
1/2 ≤ c log2(4/δ)×n−1/4

(
∥E1/2

ψ̃
∥1/2HS (1−n−(1−τ)/γ )1/4 + (1 + c−γ/2(1−τ)

5 )n−1/4
)

(6.194)

That is, we have

E[∥ĥ(x)− h∗ψ(x)∥2Hy ]
1/2 ≲

(
∥E1/2

ψ̃
∥1/2HS (1−n−(1−τ)/γ )1/4

)
n−1/4. (6.195)

Which should be compare to the kernel ridge bound under the same assumptions,
which essentially is

E[∥ĥ(x)− h∗ψ(x)∥2Hy ]
1/2 ≲ ∥WE1/2

ψ̃
∥1/2HSn

−1/4 (6.196)

where ≲ is used here to simplify the discussion, by only keeping the dependencies
in the dominant terms with respect to n,γ,τ , but the constants are explicited in the
proofs.

In particular, for any k ∈ N∗, one can obtain a constant k times smaller with the
proposed estimator (kernel ridge with output regularization) than with the mere ker-
nel ridge estimator, as soon as:

n ≤
(
1− 1

k4

)− γ
1−τ

. (6.197)

That is, one obtains a constant divided by k, when γ is enough big (concentrated
signal), τ enough close to 1 (spreaded out noise), and n not too big to benefit from this
regularization.

To put it in a nutshell, when Mψ̃ has a fast eigenvalue decay rate, then Corrolary 3
shows that ŷ ∈ Y ,x→ E[y|x][∆(ŷ, y)] can be well approximated with few anchors. This
leads to a significant computational gain when computing the pre-image. Moreover, if
Eψ̃ has a slow eigenvalue decay rate, then Corrolary 4 shows that this approximation
substantially reduces the noise. This leads to a significant statistical gain.





7
Conclusion and Perspectives

7.1 Summary of the contributions

In this manuscript, we tackled the problem of dealing with high-dimensional and
non-linear output spaces in supervised learning. We pointed out the importance of
making maximum use of the available information on the output geometry to avoid
suffering from the curse of dimensionality with respect to the output dimension. Con-
sistent with this idea, we proposed statistically and computationally efficient struc-
tured prediction methods, supported by theoretical guarantees, and experimental as-
sessments on both synthetic and real-world problems. In Chapter 3, we proposed a
novel model for graph prediction by exploiting the natural geometry provided by the
Gromov-Wasserstein metric on graph space: Gromov-Wasserstein barycentric mod-
els. The method is proposed in two versions: kernel-based and neural network based.
Well-documented and user-friendly Python implementation of the method was made
publicly available on GitHub. In Chapters 4 and 5, we proposed two least-squares
estimators exploiting the structure provided by a kernel over the output space. We
carried out a theoretical analysis of these estimators, showing, under output regular-
ity assumptions, that the estimators allow reducing the output variance (or labeling
noise), and the pre-image computational cost when used as surrogate regression es-
timators in structured prediction. These works highlight the principle of output reg-
ularization or loss regularization in structured prediction, which can be intuitively un-
derstood as the idea of tailoring the level of detail of predictions, depending on the
quantity of training data, by imposing regularity conditions on the outputs of an es-
timator.

7.2 Perspectives

The work of Chapter 3 opens different perspectives.

• Neural-network barycentric models to deal with complex output spaces. The
Gromov-Wasserstein barycentric model allows one to deal with output graph
spaces. This principle could be generalized to other structured spaces by con-
sidering barycentric models induced by different metrics. As with the model
proposed for graph prediction, such modeling would be intended to deal with
the curse of dimensionality with respect to the output dimension.

• Graph regularization. From a theoretical point of view, it would be insightful
to study the bias-variance trade-off with respect to the chosen size of the pre-
dicted graphs which can be understood as a resolution in the case of the Gromov-
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Wasserstein metric. Similarly, it would be interesting to study the bias-variance
trade-off with respect to the chosen number and size of the graph templates.

• Large scale experiments. From an experimental point of view, the proposed
graph prediction approach could benefit from experimental tests on large scale
real-world graph prediction problems, as for instance other molecular graph
predictions problems than the metabolite identification one, or shape prediction
problems (Pavlakos et al., 2018). This would lead to consider algorithmic im-
provements to deal with the computational complexity of the pre-image, which
badly scales with the number of templates used. For instance, this could be done
by leveraging recent advances in computational optimal transport for comput-
ing Gromov-Wasserstein barycenters.

• Fine-tuning the GW distance. The proposed model depends on the chosen
geometry on the space of nodes’ labels. This could be beneficially fine-tuned for
specific graph spaces. For instance, in the case of molecular graph spaces, this
would consist in well choosing the distances between atoms.

The work of Chapters 4 and 5 open various perspectives.

• Direct estimation of the conditional expectations. These works focused on
exploiting information on the structure of the output space, given by a kernel
over the output space Y . One could consider leveraging regularity information
on the maps x, ŷ→ Ey|x[∆(ŷ, y)], by means of a kernel over X ×Y .

• Learning Unknown Losses. A direct extension of the work in Chapter 5 is to
consider settings where the target loss is unknown, namely when one is only
given a finite number of loss evaluations.

• Transfer learning. A straightforward generalization of the method proposed in
Chapter 5 would be to consider unsupervised output data y whose distribution
differ from the supervised output data z, assuming one is provided two data sets
(xi , zi)

n
i=1 and (zj , yj )

m
j=1. Allowing us to consider much more practical situations.

• Beyond ridge regularization. In Chapter 5, other loss regularization than the
ridge one could be studied, for instance, other spectral regularizations (Rosasco
et al., 2005; Bauer et al., 2007) or manifold regularizations (Zhu et al., 2003;
Cabannes et al., 2021a; Belkin et al., 2005).

• Dictionary approach. The proposed method in Chapter 5 could be also used in
a setting where (yj )

n
j=1 is a well-chosen set of outputs instead of using random

output data (Bouche et al., 2021).

• Non-homogeneous source condition. From our theoretical analysis it is natural
to complete the set of assumptions by allowing non-homogeneous conditioning
over dimensions of the output space.
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Titre : Prédiction structurée avec régularisation de sortie : améliorer les performances statistiques et compu-
tationnelles

Mots clés : théorie de l’apprentissage statistique, prédiction structurée, méthodes à noyaux, transport optimal

Résumé : Les algorithmes d’apprentissage supervisé
visent à identifier des relations entre des entrées et des sor-
ties grâce à des jeux d’entraı̂nement constitués de couples
(entrée, sortie). La situation d’apprentissage supervisé la
plus étudiée considère des entrées de grande dimension
et des sorties de faible dimension, comme les nombres
réels dans le cas de la régression, et les valeurs zéro
ou un dans le cas de la classification binaire. Néanmoins,
être capable de prédire des sorties complexes, comme
des graphes, des séquences ou des images, permet de
résoudre plus de tâches en pratique. C’est le problème
traité par la prédiction structurée. La question qui a mo-
tivé cette thèse est la suivante : comment tirer parti de la
structure de l’espace de sortie pour obtenir des méthodes
de prédiction structurée statistiquement et computationnel-
lement performantes ? Nous essayons de répondre à cette
question à travers le prisme des méthodes de substitution
pour la prédiction structurée. Plus précisément, ce manus-
crit commence par considérer le problème de la prédiction
de graphes. Nous proposons de mettre à profit la distance
de Gromov-Wasserstein (GW), définissant une géométrie
naturelle pour les espaces de graphes, en tant que fonction
de perte, donnant lieu à une nouvelle famille de modèles
pour la prédiction de graphes : les modèles barycentriques

de GW. Dans une deuxième contribution, nous proposons
de généraliser la régression à rang réduit aux espaces
de sortie non linéaires. La méthode proposée consiste à
résoudre les problèmes de régression des méthodes de
substitution grâce à un estimateur de régression à rang
réduit. Nous menons une étude théorique de l’estimateur de
rang réduit proposé, et prouvons sous des hypothèses de
régularité de sortie que la régularisation de rang est statisti-
quement et computationnellement bénéfique. En particulier,
nos résultats étendent l’intérêt de la régression à rang réduit
au-delà du cas standard où l’optimum est supposé de rang
fini et faible. Dans une troisième contribution, nous propo-
sons un principe de régularisation de la fonction de perte.
La méthode proposée vise à obtenir des gains statistique et
computationnel en prédiction structurée, grâce à l’exploita-
tion de données de sortie supplémentaires et des informa-
tions de régularité sur la fonction de perte. Nous étudions
théoriquement dans quelle situation la méthode est en ef-
fet bénéfique. Nos résultats montrent qu’il est bénéfique
d’adapter le niveau de détail des objets structurés prédits,
en fonction de la quantité de données d’entraı̂nement dispo-
nible, pour réduire les effets de la variance de sortie (ou du
bruit d’étiquetage) d’une part, et pour alléger la complexité
computationnelle de la prédiction d’autre part.

Title : Structured Prediction with Output Regularization: Improving Statistical and Computational Efficiency

Keywords : statistical learning theory, structured prediction, kernel methods, optimal transport

Abstract : Supervised learning algorithms aim at identi-
fying relationships between inputs and outputs thanks to
training sets of couples (input, output). The most studied
setting of supervised learning deals with high-dimensional
inputs but low-dimensional outputs, as, for example, real
numbers in the case of regression, and the values zero
or one in the case of binary classification. Nevertheless,
being able to predict complex outputs, such as graphs, se-
quences, or images, allows for addressing much more prac-
tical tasks. This is the so-called structured output predic-
tion setting. The question that has motivated this thesis is
the following: How to take advantage of the structure of
the output space in order to obtain statistically and com-
putationally efficient structured prediction methods? We try
to answer this question through the lens of the structu-
red prediction framework of surrogate methods. More pre-
cisely, this manuscript starts by considering the problem
of graph prediction. We propose to leverage the Gromov-
Wasserstein (GW) distance, carrying a natural geometry for
graph spaces, as a loss function. From this idea, we derive
a new family of models for graph prediction: GW barycen-
tric models. In a second contribution, we propose a gene-

ralization of reduced-rank regression which allows handling
non-linear output spaces. It consists in solving the surro-
gate regression problems appearing in surrogate methods
thanks to a reduced-rank regression estimator. We carry
out a theoretical study of the reduced-rank estimator, ta-
king values in a Hilbert space of possibly infinite dimension,
and prove under output regularity assumptions that the rank
regularization is statistically and computationally beneficial.
Our results extend the interest of reduced-rank regression
beyond the standard setting where the optimum is assumed
to be low-rank. In a third contribution, we propose the prin-
ciple of loss regularization. The method aims at obtaining
a statistical and computational gain in structured prediction,
by exploiting additional output data, and regularity informa-
tion on the loss function. We study theoretically under which
setting the method is beneficial. Our results show, intuitively,
that one had better adapt the level of detail of the structu-
red outputs predicted with respect to the quantity of training
data, to reduce the effects of the output variance (or labeling
noise), and also to alleviate the computational complexity of
the pre-image in surrogate methods.
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