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Résumé

Dans cette these, nous étudions les comportements collectifs des marchés boursiers, les
primaires ot se concentrent la plupart des ressources financieres. Donné un bourse, pour com-
prendre ses caractéristiques de comportement collectif et mécanisme, nous analysons de maniere
approfondie le marché dans de nombreux aspects, y compris sa structure de réseau, sa résis-
tance aux défaillances de composants, son facteur de marché déterminant principalement les
rendements des avoirs sous-jacents, 1’évolution de la défaillance en cascade et la dynamique de
son indice représentatif. Etant donné que les marchés financiers peuvent étre considérés comme
des systémes complexes, nous utilisons différentes techniques issues de la science complexe pour
étudier les marchés boursiers dans de tels aspects, notamment la science des réseaux, la théorie

des matrices aléatoires, la théorie de la prétopologie et ’analyse topologique des données.

Mots clés : marchés boursiers, réseaux complexes, théorie des matrices aléatoires, théorie de

la prétopologie, analyse topologique des données
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Abstract

In this thesis, we study the collective behaviors of stock markets, the primary ones where
most of financial resources concentrate. Given a stock market, to understand its collective behav-
ior’s characteristics and mechanism, we comprehensively analyze the market in many aspects,
including its network structure, its resilience under component fails, its market factor primarily
driving the returns of the underlying holdings, the cascading failure’s evolution, and its repre-
sentative index’s dynamics. Because financial markets can be considered as complex systems,
we use different techniques employed from complex science to investigate stock markets in such
aspects, including network analysis, random matrix theory, pretopology theory, and topological

data analysis.

Keywords : stock markets, complex networks, random matrix theory, pretopology theory,

topological data analysis
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Introduction

The financial market plays an important role in any economy, and therefore all market
players, including the banks, investors, regulators..., are very concern about its evolution and
stability. A financial crisis is often followed by a long economic downturn which is always painful.
For example, the recent financial crisis of 2007-2008 had a serious impact on the worldwide

economy. Many questions have been asked:
- Why did it happen? How can we predict it?
- How was it spreading throughout the world financial systems?

- How can we improve the financial market stability?

From the modern economic theory, a financial market’s collective behavior is neither deter-
ministic nor converges to a fixed equilibrium point as suggested in classical theories of economics.
Nevertheless, although the collective behavior is complicated, it is rational instead of random
due to the strong relationships between the market’s components and their abilities to learn
and adapt to the change of the environment. Especially, it can be extremely different from the
components’ behaviors. Extreme behaviors of a financial market illustrate the non-linearity char-
acteristic. The non-linearity is a complicated phenomenon in natural science such as physics
and is perhaps even more important in the social sciences (which include finance). It is the
consequence of the collective interactions between different sub-components of a system. Such
systems are often called complex systems, and their study becomes very demanding recently. In
order to answer the above questions, we need to consider financial markets as complex systems
and study their non-linearity aspects.

In this thesis, we study the collective behaviors of stock markets, the primary ones where
most financial resources concentrate on in economies. Given a stock market, knowledge about
its mechanism and characteristics is essential to prevent dramatic recessions. The structure of
this thesis includes five chapters performing the following contents:

Chapter 1 provides some basic concepts of complex systems and some common approaches
used to study such systems. Besides, details of the view that considers financial markets as
complex systems are also presented in this chapter.

In Chapter 2, we introduce the correlation-based network, which is often used to model
the mutual interactions between a complex system’s components. In our financial context, this

network helps model the co-movement of stock prices in a stock market. With two special
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subnetworks, the minimum spanning tree and the correlation-based threshold network, we can
use graph theory’s tools and the allometric scaling relation to study the market’s geometrical
structure and its resilience under random failures and intentional attacks. The result is important
to get information about the market’s stability as well as its robustness.

If we afraid of getting noises when calculating empirical cross-correlation matrices, random
matriz theory, introduced in Chapter 3, helps find the “true” interaction between a stock mar-
ket’s components. It is often used to study the spectrum of an empirical cross-correlation matrix.
According to this theory, the deviation of this matrix from the Wishart matrix gives information
about the nature of the correlations. We especially focus on the largest eigenvalue, which is often
significantly deviated from the theoretical spectral distribution, and its associated eigenvector
having the unit module. To examine their roles in our financial problem, we use the method of
principal component analysis. Because the first principal component of stock returns explains
most of the stock returns’ variances, it helps identify the market factor. We, therefore, provide
not only further analyzes of the first principal component but also an estimate of its loadings in
this chapter.

On the other hand, the collective behavior of a complex system is sometimes caused by a
cascading failure, a process in which the failure of several components triggers the failure of
their most correlated components and continues to spread to the entire system. This process is
caused by the strong relationships between the components, not by any attacks on the system.
To capture the cascading failure’s evolution, we use pretopology theory introduced in Chapter 4.
In this chapter, we propose a pretopological framework to model the diffusion of distress stocks
in a stock market.

Finally, in Chapter 5, we investigate how to detect abnormal dynamics of a stock market’s
collective behavior. This question takes great interest from market managers, businesses to
individual investors, especially after the world financial crisis 2007 — 2008. Although studying
the dynamics of the network structure or the first principal component of the assets’ fluctua-
tions can solve this problem, we use another approach basing on the market’s representative
index because this data is transparent, continuously updated, and free. Even though a market
index is not always replicate well the corresponding market’s collective behavior because of the
index’s calculating method, the market’s liquidity, etc. However, since the indexes are always
constructed to be able to capture the variation of the corresponding stock markets as much
as possible, it is deficient if we neglect the indices in studying the collective behaviors of such
markets. Therefore, we solve the anomalies detection problem by recognizing any significant
changes in the dynamics of market indices. To figure out important features of a market in-
dex’s dynamics, we use topological data analysis combined with the time-delay embedding to get
topological information of the dynamics’ state space. The result is expected to give warnings
about crises without analyzing a lot of micro and macro statistics.

In addition, in each chapter, we present empirical studies to examine our results in real
markets. For more specific, in chapters 2 and 3, we carry out empirical studies in the U.S.
stock market and the Vietnamese stock market to compare our results in two different cases - a

developed market and an emerging market. Especially, we use the S&P 500 Index’s components
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and the VN Index’s components to represent the two markets. The cause of our selection is that
the S&P 500 Index, which includes the common stocks of 500 large-cap companies, is widely
regarded as the best single gauge for U.S. equities since its components possess about 80% of
the available market capitalization. Similarly, the VN Index, which includes all companies listed
on the Hochiminh Stock Exchange (HSX), contains most large-cap companies in the Vietnamese
stock market. This index’s components also possess more than 80% of the market capitalization.
However, in chapters 4 and 5, we only do empirical studies for the U.S. stock market. The reason
is that the market’s information about recessions and historical stock prices before mergers,
acquisitions, bankruptcies, and removal decisions from the committee are more complete and
transparent. We need the database to test the capability of our research methods presented
in these chapters. All our empirical works, including data processing, modeling, analyzing
statistical results, and plotting, are implemented using the R language.

Our result helps understand the characteristics of stock markets, and generally, financial mar-
kets, such as the geometrical structure, the phase transition, the robustness, the market factor’s
approximation, the cascading failure’s evolution, and the markets’ dynamics. These insights are
important to get an overview of a stock market’s dynamics and stability, and subsequently, help

construct useful tools for managing the systemic risk.
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Chapter

Introduction to Complex Systems

Objective

This chapter provides basic knowledge about complex systems and some common
approaches of studying such systems in complex science. In addition, details of the
scientific point of view that financial markets are complex systems are also discussed.

Contents
1 What Is a Complex System? . . . . . . .. . .. L e 6
2 Complex SCIENCE . . . . v v v e e e e e e e e 7
3 Fundamental Tools of Complex System Analysis . . . . . . ... ... ... ... .... 8
3.1 Agent-based Modeling . . . . . . . ... L e 9
3.2 Network Analysis . . . . . . . . o 9
4 Financial Markets as Complex Systems . . . . . . . .. . . . . o e 11




Chapter 1. Introduction to Complex Systems

1 What Is a Complex System?

Complex science is a relatively new approach that helps study behaviors and properties
of a large variety of systems from physical to social systems, called complex systems. Even
though many aspects of this research topic has been studied for decades (dynamic system the-
ory, chaos theory, self-organization, cybernetics, agent-based modeling, computational modeling,
data-mining...), the definition of complex systems is still unconcise. Frequently, a complex sys-
tem is supposed as a system whose large populations of units can self-organize into aggregations
that generate patterns, store information, and engage in collective decision-making [Parrish,
1999]. More specifically, it mainly has the following features [Foote, 2007; Ladyman, 2013;
McCarthy, 2000; Newman, 2011]:

e Non-linearity: The system may respond in different ways to the same input depending on
their current state or context, and small changes might have large effects in a nonlinear
manner, while large ones could have little or no effect. This feature makes the system
difficult to predict. For example, in chemistry, a single step in the multistep synthesis of
a simple organic substance might include a lot of molecules of several types (each com-
prising many anharmonically oscillating bonds). The synthesis might proceed by different
strategies for making and breaking bonds, and for generating the intermediate compounds
that ultimately result in the final compound; each strategy might have a large number of
possible variants differing in synthetic detail [Whitesides, 1999]. Sometimes, this feature
makes complex systems confused with chaotic systems whose future state is also very sen-
sitive to the initial state. In fact, complex systems are chaotic systems, but the opposite

is generally not true.

o Adaption: The system’s components constantly interact and change their behaviors in
reaction to those of others and external conditions. For example, the course of each
member of a flock of birds depends on the proximity and bearing of the birds around, but
after one member adjusts its course, its neighbors also change their flight plans in response
in part to its trajectory. Similarly, in technology, alterations in the maximum power of
the engine of an automobile alter an optimal tire, suspension, and even highway design
[Kauffman, 1995].

e Emergence: The interactions between the system’s components and their responses to
the environment can generate behaviors on the macro scale, which might be different
from the local scale behaviors. In other words, the system’s overall behavior may have an
extreme level of magnitude, be qualitatively different from that of its parts, and usually not
predictable. For example, the weather is an emergent property of air, moisture, and land
interactions; global political dynamics are emergent from innumerable social, economic
and political interactions; animal aggregations function as an integrated whole, displaying
a complex set of behaviors not possible at the level of the individual organism such as the

ability to build a nest or thermoregulate the hive of bees and termites [Parrish, 1999].
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o Self-organization: The system that is formed and operates through many mutually adapt-
ing components is called self-organizing because no entity designs it or directly controls
it. Due to the ability to self-organize and feedback mechanisms, the system will adapt
autonomously to the environment’s changes including changes imposed by policymakers.

The best example of such a system is an ecosystem or the whole system of life on Earth.

Other reviews of researches in complex systems could be found in [Beinhocker, 2006; Kir-
man, 2011; Mitchell, 2011; Newman, 2003]. A few complex systems are known, such as weather
systems, ecosystems, the brain, the immune system, flocking or schooling behavior in birds or
fishes, condensed matter systems, the economy, financial markets, granular materials, road traf-
fic, insect colonies, the Internet, social networks, transportation, and engineering infrastructure

systems [Newman, 2011].

(a) A fly’s brain including 25000 neurons and 20 (b) The Internet IPv4 contained 47,610 au-
million synapses rolling between them ! tonomous systems and 148,455 links (according to
the Feb 2017 Internet Topology Data Kit)

Figure 1.1: Real complex systems.

2 Complex Science

The popularity and importance of complex systems in real life, along with the development of
technologies and data sciences, provide opportunities for substantial recent advances in the study
of these systems. It is an interdisciplinary domain that requires contributions from many diverse
disciplines, including statistical physics, information theory, nonlinear dynamics, anthropology,
computer science, meteorology, sociology, economics, psychology, and biology (Figure 1.2).

The studies of complex systems can be divided into two approaches. The first one includes
studies of the systems’ structure such as connectivity, rank-order correlation, clustering, struc-
tural change over time, huge systems whose sizes are unknown, visual representation... The

second one includes studies of the systems’ dynamic process such as forming and decomposing

"ttp://www.webmarketshop. com/25000-neurons-this-image-is-the-best-map-ever-made-of-a-brain/
Zhttp://www.caida.org/research/topology/as_core_network/2017/
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process, percolation process, containment control problem, phase transition, emergencies mod-

eling, prediction. ..

These two approaches can be combined and complement each other because

the better a complex system’s structure is understood, the more exactly its dynamic is described.
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Figure 1.2: Complex science as an interdisciplinary domain.?

3 Fundamental Tools of Complex System Analysis

Because the collective behavior of a complex system cannot be determined by understanding

the individual behaviors of the system’s components, tools that help to capture not only the in-

teraction between its parts but also its behavior as a whole are required. According to the review

of Newman [Newman, 2011], to create and study simplified mathematical models abstracting

the most important qualitative elements in a real complex system, there are some useful tools

including dynamical systems theory, information theory, cellular automata, networks, computa-

tional complexity theory, and numerical methods. Meanwhile, for creating and studying more

comprehensive and realistic models that represent the interacting parts or components of a com-

plex system to observe and measure its emergent behaviors, agent-based simulation and Monte

3https://en.wikipedia.org/wiki/Complex_system
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Carlo simulation are available tools.
Among these fundamental tools, network and agent-based modeling are typical approaches
that can be used to represent a complex system from its local scales to its global scale. More

details about these approaches are given in the following paragraphs.

3.1 Agent-based Modeling

In order to describe the particular behavior of a complex system, for example, an emerging
event as the “Black Monday” stock market fall in 1987, we need a new model that goes beyond
the limits of the classical models with rational agents. In recent years, agent-based modeling
with heterogeneous agents is developed to model the complex features of real systems. This
is a “bottom-up” approach that separately and individually simulates the agents in a complex
system and their interactions, allows the emergent behaviors of the system to appear naturally
rather than puts them in by hand [Berry, 2002]. The simulation results will produce a virtual
system that can be structured, or continue to be used to simulate the system’s dynamic process.
The agent-based modeling helps the researchers to conduct experiments, in terms of computer
simulations, to test hypotheses, and to validate ideas and conjectures. This approach has become
an important tool for understanding how real complex systems work, such as ecosystems [Grimm,
2005], social systems [Gilbert, 2008], the economy [Farmer, 2009]. Nevertheless, its disadvantage
is the lack of supporting theories and models since it mainly depends on artificial intelligence

and computer simulation. Hence, it is saved for our later researches.

3.2 Network Analysis

A complex system consists of many interacting components. So, a simplified representation
of such a system can be a graph whose nodes represent the system’s components, and each edge
represents the interaction between two components (Figure 1.3). The graph is called a complex
network. According to the research target, such networks can be directed or not. In the simplest
form, one can assume that nodes are homogeneous, i.e., the system consists of components having
the same natures, and an edge is defined between two nodes if they have any kind of interaction.
Such a simplified representation has both advantages and disadvantages. One of its advantages
is the support of many tools such as graph theory’s tools to make researches on the structure
and characteristics of the network. Another advantage is the universality because many diverse
systems in physics, biology, engineering, economics, social science. .., can be modeled as complex
networks. Some of the most well-known complex networks are the Internet [Albert, 1999], the
World Wide Web [Faloutsos, 1999], and metabolic networks [Jeong, 2000]. However, the huge
number of a complex system’s components, their multi-relations, as well as the heterogeneity of

the components cause troubles in constructing their network representations.
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(a) Interbank payment flow [Soraméki, 2007]  (b) Protein interaction network of the bacterium
Borrelia hermsii HS1 [Martin, 2016]

Figure 1.3: Real complex systems represented by: (a) a weighted network, and (b) an unweighted
network.

Another useful theory for complex network analysis is random matrix theory. It helps not
only predict spectral properties of a complex network successfully but also understand the sta-
tistical properties of the empirical cross-correlation matrix computed by the multivariate time
series of the system’s components [Jalan, 2007]. For example, the empirical correlation ma-
trix of price fluctuations in a stock market [Laloux, 2000; Plerou, 2002], EEG data of brain
[Seba, 2003], the variation of basic atmospheric parameters that characterize the state of the
atmosphere [Santhanam, 2001]...

On the other hand, to overcome the weakness of the network representation, complex systems
are also studied by using pretopology theory in recent years. This theory can be considered as
an extension of graph theory because it allows processing multiple relations among a complex
system’s components or its parts [Belmandt, 2011]. Consequently, under the new approach,
a complex system can be considered as a hypergraph, and each of the system’s components
can be modeled with its own nature. The most important tool of this theory is a map, called
pseudoclosure, that helps to expand a certain set of the system’s components by their relations
(Figure 1.4). This map and minimal closed subset, another pretopological concept, can help
model a proximity concept between a complex network’s subsets based on different types of
relations at the same time as well as examine the evolution of the network in each individual
step. Therefore, pretopology theory can be used to study the dynamic structure of a complex
network in many aspects; for example, formalizing the neighborhood concept to generalize the
systems’ percolation processes [Ben-Amor, 2006], modeling the systems’ dynamic processes such
as the information diffusion when combining with random set theory [Bui, 2019], understanding

the structure and dynamics of web communities [Levorato, 2010]. . .
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Figure 1.4: Pretopology Cascade Models on a network of 4 relations Rj, Ra, R3, Ry: the result
of the diffusion process originated from the set A0 of 2 nodes [Bui, 2019].

As a result, because of the complexity of a complex system, we should study it by different
approaches to get a comprehensive of its structure and dynamics. Although there are many
tools to carry out this task, in this work, we propose graph theory, random matrix theory, and
pretopology theory as efficient approaches because these theories provide an extensive set of
mathematical, computational, and statistical tools that can be used for analyzing, modeling,

and understanding complex systems.

4 Financial Markets as Complex Systems

Before the mid-twentieth century, economists view the economy as an equilibrium system
whose equilibrium point only changes under external forces. By contrast, modern economic
theory considers the economy as a system that is dynamic and complex, and that moves from
equilibrium point to equilibrium point over time, propelled along by shocks from technology,
politics, changes in consumer tastes, and other external factors. In other words, the economy is a
good example of complex systems. The literature of this perspective is mentioned in [Beinhocker,
2006; Kirman, 2011; Newman, 2011].

Similarly, from the scientific point of view, the financial market, which plays an important
role in any economy, is also a complex system. In fact, a financial market is a collection of many
constituents such as bonds, stocks, derivatives, currencies, banks, commodities that interact with
each other and have the ability to learn and change behaviors from their experiences, for example,
changes in security prices can affect each other and can be affected by negative information on
saving and loans institutions. In addition, even though the market’s collective behaviors are the
result of its constituents’ interactions as well as its response to the environment and external
impacts, they can be far in order-of-magnitude and degree-of-complexity of the characteristics

of its constituents. For example, the falling housing-related assets contributed to the collapse

11
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of many of the United States’ largest financial institutions and led to one of the greatest crisis
in history in 2008 [Williams, 2010]; the market can fall into a long economic downturn after
a policy of the government such as what happened in the stagflation in 1973 in the United
States [Merrill, 2007]. Extreme behaviors of a financial system illustrate its non-linearity which
makes its characteristic is too difficult to predict. However, similar to other complex systems,
they are still expected to have real attractors rather than theoretically anticipated attractors
[Lewin, 1994]. Therefore, considering financial markets as complex systems provides a new set of
theories and techniques for understanding or explaining the mechanism and effects of economic
phenomena such as phase transitions, the “fat-tail” price return distribution, volatility clustering
phenomena, cascading failures, financial crises, dynamism rather than equilibrium... Especially
after the worldwide financial crisis of 2008— 2009, rare-but-extreme volatile situations of financial
markets has got more notices. More understanding of these special situations can help to improve
the markets’ stability, predict the worst-case scenarios, or evaluate potential policies.

Although a financial market contains different parts, including stock markets, bond markets,
commodity markets, derivatives markets, futures markets, insurance markets, foreign exchange
markets, and mortgage markets, but stock markets are our selection because of the two following
reasons. Firstly, stock markets are the primary ones where most of the financial resources
concentrate. Secondly, their historical data are always take down frequently and transparently.
This is very important for our empirical studies, especially studies of developing markets like

Vietnamese market.
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Chapter

Financial Markets under Network

Representations

Objective

In this chapter, we learn about the correlation-based network and its application in
modeling the co-movement of stock prices in a stock market. Especially, we study
its two special subnetworks, the minimum spanning tree and the correlation-based
threshold network to get the most important information of the relationship be-
tween components of a stock market. Under this network representation, we can
apply graph theory’s tools and the allometric scaling relation to study the market’s
geometrical structure and its characteristic including its scale-free property, its re-
silience under failures and attacks, and its phase transitions in stress periods. Our
results are examined on the Vietnamese and U.S. stock markets.
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Chapter 2. Financial Markets under Network Representations

1 Correlation-based Networks in Financial Markets

As mentioned in Section 3 of Chapter 1, complex networks, the graph representations of
complex systems are one of direct tools to model the relationships or interactions between such
systems’ components. This approach is applied in a large range of real-life systems, from biology
to medicine, sociology, economics, and engineering [Mitchell, 2006; Jeong, 2000; Liljeros, 2001;
Onnela, 2003b; Cohen, 2001]. Similarly, a financial system can be modeled by a network that
is a collection of nodes (or vertices) and edges, where nodes represent the system’s components
and edges represent the relationships of nodes. For example, a network of corporations can be
represented by a graph whose nodes are corporations, and each edge connects a pair of nodes
if they have some common characteristic such as managers, investors, corporations. Also, a
network of banks can be a weighted directed graph whose nodes are banks, and each weighted
edge links a bank to another, where the weight is the value of the loan that the former write for
the latter.

One of the popular network representations of financial systems is the correlation-based
network [Bonanno, 2004]. This network helps infer the structure of cross-correlations among a
set of time series. It means that, for a given complex system, we take out the time series of
its components’ behaviors. Then, two components are connected by an edge whose weight is a
function of the correlation coefficient between the two corresponding time series. For example,
a correlation-based network of futures contracts can be a complete network such that edges’
weights depend on the correlation coefficients of pairs of contracts’ price fluctuations [Lautier,
2013]. Also, a correlation-based network of indexes of worldwide stock exchanges can be obtained
by the cross-correlations of the indexes’ fluctuations [Bonanno, 2000]... For stock markets, such
network is constructed such that nodes represent stocks while the correlation between two nodes
is the correlation coefficient between the logarithm differences of the two corresponding stocks’
prices as proposed by many works such as [Lux, 1999; Onnela, 2002; Plerou, 1999; Zheng, 2012].
More specifically, for N stocks i = 1, N, let S;(t) be the price of stock i at time ¢ (i = 1, N),
then:

Definition 2.1. The N x N matriz C = (¢;j) is called the cross-correlation matriz of the given
stocks if

e — i @) .7 @) = {ri @)y (), 1 (2.1)

where r; (t) = In(S; (t)) — In (S; (t — 1)) is the log-return of stock i at time t; (.) denotes the
temporal average of the inside variable; o; and o; are the standard deviation of r; and rj,
respectively. We call r; the return of stock i and c;; the correlation coefficient between stock i

and stock j.

However, because the correlation coefficient of two stocks does not satisfy the three axioms
of a metric’s definition. Indeed, although it is nonnegative and symmetric, but it can miss the
triangle condition. Therefore, a metric distance basing on the correlation coefficient is necessary
to get a topological arrangement of the stock system. In this study, we use the distance discussed
in [Gower, 1966]:
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1. Correlation-based Networks in Financial Markets

Definition 2.2. The distance between stock i and stock j is defined by the following non-linear

transformation of the correlation coefficient cy; between these stocks:
dz’j = 2 (1 — Cij) (22)

The N x N matrix D = (d;;) is called the distance matriz.
Proposition 2.1.
(1) 0 < d;j; <2 foralli,j,

(ii) The set of N stocks associated with the distance measure given in Definition 2.2 is a metric

space.

Proof.
(i) For all 7,7, since —1 < ¢;; < 1, it’s clearly that 0 < d;; < 2.
(ii) Let consider the three axioms of being a metric:

— From (i) we already get that d;; is nonnegative for all i, j.

On the other hand, d;; = 0 if and only if ¢;; = 1. In addition, the latter happens if

and only if ¢ = j in all empirical cross-correlation matrices of stock markets.
— The symmetry of d;; is the result of the symmetry of c;;.

— Let 7; is the normalization of r;, Vi = 1, N, i.e.

7i (1) = ’W Vt=1,T (2.3)

Then, (7 (1)) = 0, (s (£)*) = 1 and ei; = (% (1) .75 (1)) for all 4, j = T,N.

Therefore, we obtain

dw=\ﬂ—QQf=J«ﬁ@»$+(ﬁymf>—zwmwfmw>

[T 1 (2.4)
= (0 75 02) = = | S o) =75 () = = 17— )

\/< J > VT ; J JT j
where ||7; — 7| is the Euclidean distance of two vectors 7; = (7;(t)), and 7; =
(75 (1)), -
As a result, for all 4,5,k (i,7,k =1, N),

1 L _ - 1 .
dik +di; = % (7 = 7l + 17 = 7511) = Wix 175 = 75l = i (2.5)
|

According to Definition 2.2, the more correlated two stocks are, the smaller their distance is.

Consequently, the distance measure helps infer the topological arrangement of the stock market
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through the level of synchronous evolution of stock returns. Therefore, the stock system can be

represented by the following network:

Definition 2.3. The correlation-based network of given stocks is the graph whose nodes represent
stocks, and the adjacency matriz is the distance matrixz constructed from the cross-correlation
matriz of the stocks.

In summary, the correlation-based network is computed by using Algorithm 1:

Algorithm 1 Compute the correlation-based network of stocks

Require: Time series of stock prices (S; (t)),_17 i =1, N
1: procedure STOCKioORRELATIONiBASEDiNETWORK({ (S: (t))t:ﬁ| i=1, N})
2: > compute the stock returns
3: for i€ 1, N do
4: ri (t) < In(S; (1)) —In(S; (t — 1)) for all ¢t =2, T
5: end for
6: > compute the empirical cross-correlation matrix
7 for (i,j) € 1, N x 1, N do
8: cij — <Ti(t)-rj(ﬂ);((:i(t)%(w (t))
i9j
9: end for
10: > compute the distance matrix
11: for (i,j) € 1,N x 1, N do
12: di]' — 2(1 —Ci]')
13: end for
14: > build the network’s adjacency matrix
15: AdjacencyM atriz <+ (dij)izm TN > Output

16: end procedure

The idea of transforming the cross-correlation matrix C into the distance matrix D was
first introduced in [Mantegna, 1999] but in a different formula from Definition 2.2. However,
since the distance in Definition 2.2 is an Euclidean distance, as demonstrated in Proposition
2.1, this measure is more convenient to reflect the topological and geometrical structure of
the stock network. Also, because the correlation-based network of stocks is fully connected,
it contains all possible co-movements of pairs of asset values and their strengths in the stock
system. Therefore, such network is the subject of many studies about financial markets such as
[Bonanno, 2004; Lautier, 2013; Mantegna, 2007; Onnela, 2003b]... In our researches, we also
implement empirical studies about the correlation-based network of stocks (see [Nguyen, 2018;
Nguyen, 2019b; Nguyen, 2019c]).

In the remainder of this thesis, we agree on the following points. Firstly, because we don’t
know the exact correlations between stocks, the notation “cross-correlation matrix” refers to
the empirical cross-correlation matrix obtained from the historical data of assets. Secondly, we
only pay attention to the daily fluctuation of stock prices, so, in all of the empirical examples
below, except the ones referenced from other studies, the database is the daily closing prices of
stocks. Finally, all networks or graphs discussed in the following statements of this proposal are

undirected unless there’s additional information.

2 Important Subgraphs of a Correlation-based Network
It is not easy to observe the topological structure of a correlation-based network or study its
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dynamics. The main problem comes from the network’s huge size. Indeed, because the network
is complete, its number of nodes is IV, the size of the underlying system, which is very large in
most complex systems. Furthermore, its number of edges is N(N — 1)/2. Therefore, in order
to have a subgraph that contains enough important information of the relationship between
the original network’s nodes, we construct the following subgraphs: the minimum spanning tree
(MST) of the network and the subgraph of highly connected nodes.

2.1 Minimum Spanning Tree

The MST of the correlation-based network is favored in many studies about financial markets.

It is a concept of graph theory [West, 2001] and is defined as follows:
Definition 2.4. A minimum spanning tree of a weighted network is a subgraph that is

(i) connected, i.e., the subgraph contains all nodes of the original network, and there is a path

to reach out from any node to another,
(ii) formed a tree, i.e., the subgraph doesn’t have any node which loops back to itself, and

(iii) satisfied (i) and (ii) with the minimum total edge weight.

Figure 2.1: A network and its MST (bold).!

For constructing a MST of a given weighted network GG containing N nodes, we can use a
simple procedure called Kruskal’s algorithm [West, 2001]. This algorithm is described as follows.
At first, let M be a fully disconnected network associated with G, i.e., M includes all nodes of
G but edges. Next, we order the set of edges of G based on their weights increasingly. By this
order, we sequentially add each edge of G into M such that the additional edge doesn’t create
any cycle when combining with the edges of M. The adding process will stop when M has N —1
edges because, according to graph theory, this is the number of edges of a spanning tree if the
corresponding network contains N nodes.

Moreover, if all edges’ weights are mutually different, the network has only one MST. This

condition is satisfied by many real correlation-based networks including the stock networks.

"https://en.wikipedia.org/wiki/Minimum_spanning_tree
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Algorithm 2 Kruskal’s algorithm for finding the MST of a weighted network G

Require: Adjacency matrix D = (dij)i:ﬁj:ﬁ
1: procedure MST(D)

2: > set M = (Nodes, Edges) as a fully disconnected network

3: Nodes < 1, N

4: Edges <+ &

5: > add edges by the increasing order of edge weights

6: for (i,j) € 1, N x 1, N ordered by increasing d;; do

7 If (edge(i,j) ¢ Edges) and ({k|{edge(i, k), edge(k,j)} C Edges} = @) then

8: Edges < Edges U {edge(i, j) with weight d;;}

9: end for

10: M <+ (Nodes, Edges) > Output

11: end procedure

Theoretically, the correlation ¢ of two certain stocks can be any real number in the interval
[—1, 1], so the probability of a specific value of ¢ is zero. In reality, because we must consider
a time window that is long enough when calculating the empirical cross-correlation matrix to
prevent short-time noises, the chance to get two pairs of stocks having the same correlation is
null. Consequently, the MST of a correlation-based network of stocks is practically unique.
When using the MST of the original correlation-based network to represent a financial mar-
ket, there are many advantages. The first one is the MST’s simplicity because it has only N
nodes and N — 1 edges. In addition, since the MST of a correlation-based network corresponds
to the shortest path covering all nodes of the original network without loops, it is expected
to help extract the most important information contained in the network. Indeed, one of sig-
nificant information is the indexed hierarchical tree associated with the MST which exhibits a
meaningful economic taxonomy [Bonanno, 2004; Mantegna, 1999; Onnela, 2003c]. Furthermore,
the MST is the most probable path of a price shock’s propagation in the corresponding network
[Lautier, 2013]. The reason is clearly that the MST prefers edges whose weights d;; are smaller
than others, except when meeting loops back, so it prioritizes edges corresponding to strong
stock correlations c¢;j. It means that the MST models the fastest path that a price shock can
spread over the whole network. Consequently, the structure of the MST can provide meaningful
information about the properties of a market such as its clustering, stability, different market’s
states... Therefore, studying the MST’s structure and its dynamics in real financial networks
becomes an attractive research in recent decades. More details are given in Section 4.
However, the MST of a correlation-based network of stocks has a considerable weakness:
some edges associated with small weights, i.e., high stock correlations, may not belong to the
tree. This weakness is the result of the acyclic condition. Because of this disadvantage, although
the MST can provide an overall taxonomy of the market, the connections it creates may be misin-
terpreted to be more meaningful than they are [Onnela, 2004]. So, other subgraphs are proposed
to filter information in the original complex network such that the corresponding system’s clus-
ters are well-defined such as the average linkage minimum spanning tree [Tumminello, 2007], the
planar maximally filtered graph [Tumminello, 2005], the directed bubble hierarchical tree [Song,
2011; Song, 2012], and the triangulated mazimally filtered graph (TMFG) [Massara, 2017]. Em-
pirically, these subgraphs are proved to be able to model communities of economic sectors and
sub-sectors in a stock network slightly better than the MST does in developed markets such as
the New York Stock Exchange (NYSE) [Tumminello, 2005; Tumminello, 2007]. Nevertheless, in
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2. Important Subgraphs of a Correlation-based Network

emerging markets, we recognize that these subgraphs might not well clarify the stock network’s
partition. The reason is that the correlations between the listed stocks and some outstanding
stocks, such as stocks of financial companies (brokerage companies, banks...), can be higher
than the intra-correlations of economic sectors [Nguyen, 2019b; Nguyen, 2019c]. This remark is
clearly illustrated in Figure 2.2. This figure shows the TMFG of the correlation-based network
of 486 common stocks of large companies comprised in the S&P 500 Index and the TMFG of
the correlation-based network of all stocks listed on the HSX (262 stocks). The filter graphs
are constructed from the daily closing prices of stocks listed on the market from 04/01/2015
to 04/01/2020. It is easy to see that the clusters of the Vietnamese stock network are not

well-defined clearly as in the U.S. stock network whose clusters associate to economic sectors.
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Figure 2.2: The TMFG of the correlation-based network of stocks listed from 04/01/2015 to
04,/01,/2020.

In summary, we propose that the classical MST is a subgraph that is simple but efficient
enough to infer important information of stock markets, especially, emerging markets where the
market clusters are not well-defined. Moreover, understanding the MST’s structure is really
important for managing the systemic risk because the MST is the most probable path that
makes the transmission of a price shock spread throughout the market. Further investigation
about using the MST for risk management in financial systems can be found in the review
[Marti, 2021].

2.2 Correlation-based Threshold Network

Although the MST helps get an overview about the synchronic price fluctuation’s capability
of constituents in a stock network, it can sophisticate the network’s robustness under errors
of the elements. So, the network seems more fragile than it is under the MST representation.
We can explain this problem as follows. The MST might include edges associated with very
small correlation coefficients while neglecting other edges linking highly correlated stocks. This
happens because the MST must contain all nodes of the original network to be a spanning tree.
Thus, another interesting subgraph of the correlation-based network is the correlation-based

threshold network. It means that we only keep stocks and edges associated with enough high
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stock correlations. Works of [Garas, 2008; Onnela, 2003b; Onnela, 2004] are good examples of
this approach. In those studies, the authors first order the edge weights d;; of their correlation-
based networks increasingly. Then, according to this arrangement and starting with an empty
subgraph, they respectively add stocks and edges to the subgraph until its number of edges is
N — 1. They call it the asset graph. So, the asset graph has the same number of edges as the
MST. This similarity helps compare the MST with the asset graph. In general, the asset graph
is just a correlation-based threshold network because we can replace the condition about the
number of edges by a lower bound for the correlation coefficients c;;. This subgraph is computed
by Algorithm 3.

Algorithm 3 Compute the correlation-based threshold network
threshold co

Require: Cross-correlation matrix C = (¢ij )17
1: procedure THRESHOLD__NETWORK(C, cq)
: > set M = (Nodes, Edges) as an empty graph
Nodes <+ @
Edges < @

2
3
4:
5: > Add edges and nodes associated with high correlation coefficients
6.
7
8

for (i,7) € 1, N x 1, N do
If ¢;; > co then
: Nodes < Nodes U {1, j}
9: dﬁ(—y/?(lfcij)

10: Edges < EdgesU {edge (i,7) with weight d;; }

11: end if

12: end for

13: M <+ (Nodes, Edges) > Output

14: end procedure

Although the asset graph seems reflect the stock network’s partition associated with out-
standing economic sectors better than the MST [Onnela, 2003b; Onnela, 2004], the number of
nodes in the asset graph is extremely smaller than the one in the original network. For example,
let’s consider the correlation-based network constructed from the same data as the network in
Figure 2.2a, we show its MST and its asset graph in Figure 2.3a and Figure 2.3b, respectively.
As mentioned above, the asset graph in Figure 2.3b can be considered as the graph of stocks
corresponding to correlation coefficients that are higher or equal to 0.78. This value is really
high in stock markets. Therefore, although the number of nodes of the original network is 486,
the asset graph includes only 167 nodes, approximately 34.36% of the former. Because the asset
graph lacks a considerable amount of stocks, it only represents the market’s communities, whose
elements tightly correlate to each other, but it misses other information about the entire market.
In fact, as we can see in Figure 2.3b, the asset graph well models the intra-correlations of some
sectors such as financials, utilities, real estate and energy but mostly neglects other sectors.

As a result, when constructing the correlation-based threshold network of stocks, in order
to not miss market information due to neglecting too many nodes, a suitable threshold for the
stock correlations is very important. The selected threshold must help reduce the size of the
original correlation-based network by removing unimportant connections but still build a repre-
sentative graph for the market. Especially, when analyzing a stock system’s characteristics, the
correlation-based threshold network helps avoid noises caused by unstable connections. Figure
2.3c shows the graph corresponding to the threshold 0.63 for the correlation coefficients of stocks
with the same database as Figure 2.3a and 2.3b. This value approximates the 97%-quantile of
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the empirical stock correlations. The graph has 349 nodes, approximating 71.81% of the num-
ber of nodes of the original correlation-based network. The graph’s number of edges is 3300. It
means that the original network can be figured well by keeping a small number of its edges (only
3% in this example) such that the selected edges corresponding to the most important connec-
tions. In addition, we propose that the threshold for the stock correlations should be selected
variously in different markets. For example, in [Nguyen, 2018], a study about the Vietnamese
stock market, the 97%-quantile of the empirical stock correlations is only 0.25 since the stock
correlations in an emerging market are usually smaller than the ones in a developed market.
Thus, in that work, we chose the threshold of 0.25.

In general, for the MST of a correlation-based network of stocks, we have a simple graph
spreading over the network by the shortest path to study the network’s overall structure and the
shock prices’ propagation problem. Meanwhile, for the correlation-based threshold network of
stocks with a suitable threshold, we have a graph that is more efficient to study the robustness

of the network.
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Figure 2.3: Some subgraphs of the correlation-based network of stocks listed on the NYSE from
04/01/2015 to 04/01,/2020.
3 Structural Measures of Financial Networks

In order to analyze the structure and characteristics of the correlation-based network of

stocks and its subgraphs, we use different measures provided by graph theory such as the degree
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distribution, the average shortest-path length, the betweenness centrality, the giant component’s
size, and the allometric scaling. We also study the change of the structure over time by con-
sidering the dynamics of these characteristics as well as the dynamics of the single-step survival
ratio and the same sector ratio. Besides, because the correlation-based network of stocks that
we study is undirected, the below concepts are introduced in case of undirected graphs only as

mentioned in previous section.

3.1 Degree Distribution

A simple but powerful tool to measure a network’s structure is the node degrees defined as

follows:
Definition 2.5. In a network, the degree of a node is the number of edges connected to it.

The degree of a node helps measure the node’s level of connectivity (Figure 2.4). Conse-
quently, in the representative network of a financial system, a node with a high degree plays an

important role in the system’s connectivity.

Figure 2.4: A graph having nodes labeled by degree.

Definition 2.6. In a network, let P(k) be the fraction of the number of nodes with degree k. A
histogram of P(k) is called the degree distribution of the network.

Equivalently, we can define P(k) as the probability that a node in the network has degree of

In a random graph, where each edge presents with the same probability, the degree distri-
bution is binomial or Poisson if the graph’s size is too large. However, in real-world complex
networks, their degree distributions are almost far from a Poisson distribution because of their
long right tail [Newman, 2003]. Therefore, a study about a financial network’s degree distri-
bution is really necessary to understand the network’s structure constructed from its elements’

relationship as well as its complexity.

3.2 Average Shortest-path Length

In a correlation-based network, to evaluate the effect level of the network’s nodes to each
other, or more generally, to measure the ability that information spreads between two nodes,
we need to compute the shortest path length between every pair of nodes. In graph theory, we

have the following definitions:
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Definition 2.7. A path connecting a pair of nodes in a network is a sequence of edges which
joins the two nodes. The length of the path is the total weight of the edges belonging to the path

if the network is weighted, and equals the number of these edges if the network is unweighted.

Definition 2.8. The average shortest-path length of a network is the average length of shortest

paths for all possible node pairs in a network, i.e.,

L="Nn=1

(2.6)

where N is the number of nodes and l(i, ) is the shortest path length from node i to node j.

The shortest path connecting two nodes in a correlation-based network of stocks can be
considered as the most probable path that the stocks affects each other. Meanwhile, the average
shortest-path length gives an expected distance between two randomly chosen nodes. Thus, it
is an intuitive characterization of how sensitive the current market is under a shock. That the

reason why this measure is an important factor to examine the network’s stability.

3.3 Betweenness Centrality

In graph theory, betweenness centrality is a measure of a network’s centrality based on the

fraction of shortest paths that go through each node. Its definition is given below:

Definition 2.9. The betweenness centrality of node i is given by:

. 8%
b(i) = Z L (2.7)
itk Sk

where s;i, is the number of the shortest paths connecting node j and node k, and sék is the

number of those paths that pass through node i (not where i is an endpoint).

Clearly, the node with the highest betweenness centrality is the node that connects “regions”
of dense nodes. In other words, the betweenness centrality of a node helps decide the node’s
importance in the percolation problem rather than concentrate on the node’s neighborhood only
as its degree. Indeed, let’s see Figure 2.5. We can see that a higher node degree does not imply
a higher node betweenness. Besides, let’s assume that we attack the network in this figure by
removing a node. If the node’s betweenness is highest, the network then breaks into pieces of
which the largest size is 4. However, if the node’s degree is highest, the largest size of the pieces
is 5. As a result, by removing the node with the highest betweenness, we break the network’s

connectivity better.
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Figure 2.5: Differences between node degree (given inside the circles) and the number of shortest
paths going through each node (given outside the circles).

Consequently, nodes with high betweenness play important roles in transaction-based net-
works such as the banking network. In case of the correlation-based networks of financial sys-
tems, this measure helps find the components that play significant roles in making a downtrend
broaden to other asset values in a recession or make the systems broken when the components

cannot maintain their functions. This information is really useful in managing the systemic risk.

3.4 Giant Component

In reality, with a significant number of damaged nodes, many complex networks are unable to
keep their normal operations. When a node is damaged, the node and its links are deleted from
the original network. Therefore, percolation theory, a theory studies the behavior of a network
when nodes or links are removed, is important to help characterize a network’s robustness
and fragility. For example, in a population system whose each potential host for a disease is
represented by a node, a node is occupied if the corresponding host is susceptible to the disease;
then, the percolation theory helps get more knowledge about the disease’s contagion to avoid
a pandemic. Similarly, the vaccination to get the immunity of a community, the information’s
propagation in a social system or a communication system, the financial shock’s spreading in a
financial system, etc., are other real percolation problems.

A key prediction of percolation theory is that the decomposition of a network under node
removal is not a gradual process with the fraction ¢ of removed nodes. With a wide range of ¢,
the network may still keep its normal operation but its integrity changes when ¢ is larger than a
critical threshold g.. To identify the threshold, we can depend on the existence of the network’s
giant component after the node removal. In percolation theory, this terminology is defined as

follows:

Definition 2.10. A giant component or giant cluster is a connected cluster of a network that
contains a significant proportion of the entire nodes in the network even when the network’s size

increases.

Remind that, in graph theory, a cluster or component of a network is a subgraph that there
is a path between every pair of nodes, but no node in the cluster can have an edge to another
cluster. Therefore, according to Definition 2.10, a node in a giant component can be reachable

to so many nodes of the current network even when the network’s size changes. Typically, the

24



3. Structural Measures of Financial Networks

giant component of a network is understood loosely as the biggest cluster (see Figure 2.6). In

all cases, the component must be the cluster that is much bigger than others.

Figure 2.6: Giant component (red) of a random network.

Because after deleting a fraction ¢ of nodes from a network, if the network fragments into
many significantly small clusters, its global connectivity will break up. So, the critical threshold
ge can be considered as the value such that the giant component is destroyed when ¢ goes
over. The following theorem provides the Molloy-Reed criterion [Cohen, 2000; Molley, 1995], a
popular criterion for the existence of a giant component in a random uncorrelated network, i.e.,
the network whose degrees of all nodes are independent, random integers drawn from a specified
distribution P(k).

Theorem 2.1. In a random uncorrelated network with degree distribution P(k), a giant com-

ponent exists if

_ (k)
R = W >2 (2'8)

where (k) and (k*) are the first and the second moment of P(k).

Proof. Let’s consider a random uncorrelated network with an arbitrary degree distribution
P(k). If the network has a giant component and if loops of connected nodes are neglected, the
percolation transition takes place when a node ¢, connected to a node j in the component, also
links to at least another node. Otherwise, the component is fragmented. Therefore, the degree
of node ¢ cannot be less than 2. Since the component must take up a large proportion of the
network, for a percolation transition to take place, the average degree of a node 7 in the network

must be at least 2 given that it is connected to another node j, i.e.,

(kili <> j)y =D kP (kli <> j) > 2 (2.9)
ki
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where k; is the degree of node i, and P (k;|i <+ j) is the conditional probability that node i has
degree k;, given that it is connected to node j.
Use Bayes’ rule, we obtain
P (ki,i < j) _ P(i< jlki) P (ki)

PRI D =655 = Pleg) )

where P (k;,i <> j) is the joint probability that node i has degree k; and that it is connected to
node j. Without degree correlations and loops, because of the fact that we can choose between
N — 1 nodes to link to, each with probability 1/(N — 1) where N is the number of nodes of the

network, and that we can try this k; times, we get:

ki
P (1 | ki) = 2.11
(i 0 3l k) = o (211)
and k)
P(i ¢ j) = = 2.12
(i 0 9) = oL (212)
Substitute (2.11) and (2.12) into (2.10), we obtain
k;.P (k;
P(ki|li < j) = (ki) (2.13)
(ki)
Consequently, the inequation (2.9) is rewritten as:
k2P (ks
> kP (k) >2 (2.14)
(ki)
The left-hand side of (2.14) is k, so the theorem is valid. [ |

Using the Molloy-Reed criterion, Cohen et al. [Cohen, 2000] shown the relation between g,

and x as follows:

Theorem 2.2. In a random uncorrelated network, we obtain:

1
Ko —1

1—q.= (2.15)

k:2
where kg = <<kg>> is computed from the initial distribution before the random breakdown.

Proof. Let P(k) be the initial degree distribution of a random uncorrelated network. After
randomly removing a fraction ¢ of the nodes, each node appears in the updated network with
probability 1 — ¢, independently with other nodes. Therefore, for a node with initial degree
kg, the distribution of its number of connectivity must follow the binomial distribution with
parameters kg and 1 — g, i.e., the probability that the new degree of the node is k (k < ko)

equals (120)(1 — q)quo_k. Consequently, the new degree distribution is

Prew(k) = i P(ko) (’?) (1= q)Fgho* (2.16)

ko=k
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Without loss of generality, we can assume that the smallest possible connectivity is 1. From

(2.16), we can identify the expected value of the new degree distribution:

[ee)

new Z new i ka ]{70 ( > ( _q)k qko—k

k=1 ko=1k=1

N (2.17)
0
ZP ko) Zk( ) q)* g
The inside sum is the expected value of a random variable drawn from the binomial distribution
with parameters kg and 1 — ¢, so the sum equals ky(1 — ¢). Replace this result into (2.17), we
obtain:

() pew = Z P (ko) ko(1 —q) = (1 — q) (ko) (2.18)

ko=1

Similarly, we can compute the second moment of the new degree distribution as follows:

(F) e = kanew ZP ko) Zkz( ) q)" g (2.19)

ko=1

The inside sum is the second moment of a random variable drawn by the binomial distribution
with parameters kg and 1 — ¢, so the sum equals ko (1 — ¢) ¢ + k3 (1 — q)2. Replacing this result

into (2.19), we obtain:

[e.9]
<k2> = > P(ko) [ko (1-q)g+k(1- q)ﬂ = (1—q)q (ko) + (1 —q)* <k§> (2.20)
new Kol
At the critical threshold ¢, because the network closes its giant component when ¢ goes over

qc, according to the Molloy-Reed criterion (2.8) and equations (2.18), (2.20), we get
+ (1 —qc) Ty ge + (1 — gc)ko = 2 (2.21)

Hence, we obtain (2.15). [ |

Theorem 2.2 helps measure the robustness of a network under random failures of nodes.
However, when we have more information about the network’s structure, we can break the
network more efficiently. Our study on the resilience of a stock network under both random

failures and intentional attacks is provided in Section 4.

3.5 Allometric Scaling Relation

Besides classical measures of graph theory, we also focus on another specific factor that
is helpful to measure the hierarchical degree of a network’s structure: the allometric scaling
relation. This relation, which takes the form of a power law C = A", is often used to model a
large number of relationships between size and rate in a biological or physical process, where

7 is a constant to specify the relationship. In fact, in biology, C' can be body mass and A can
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be the biological property of interest, for example, rates of resource used in individual plants
scale as about the 3/4 power of body mass, which is the same as metabolic rates of animals.
Consequently, the above relationship can link to the geometrical and topological properties of
a distribution network sustaining the supply for metabolic activity [McMahon, 1983; Schmidt-
Nielsen, 1984; West, 1997]. Similarly, this relation can use to consider the general structure
of branching networks (without loops) serving a particular volume in inanimate systems, for
example, in the drainage network of river basins, A stands for the total water flow coming from
the sub-basin area around each node and C stands for the total water flow that goes through
this node through the drainage direction [Banavar, 1999; Rodriguez-Iturbe, 2001]. Also, the
allometric scaling laws are the subject in other complex networks in different fields such as the
food webs [Garlaschelli, 2003], the world trade webs [Duan, 2007], the world investment networks
[Song, 2009], and so forth.

In economics, using allometric scaling relation to characterize the financial network com-
plexity is a novel idea and, according to our knowledge, only a few works have been done, for
instance, [Duan, 2007; Lautier, 2012; Lautier, 2013; Qian, 2010; Song, 2009]. Qian et al. [Qian,
2010] analyzed the MST of the visibility graph constructed from the time series of 30 worldwide
stock market indices where each data point is a node and an edge is drawn to connect two nodes
according to the rule that the two corresponding data points can see each other in the diagram
of the time series. Meanwhile, Lautier et al. [Lautier, 2013] analyzed the MST constructed
from future contracts in 14 derivatives markets, which is a subset of a larger graph of 250 future
contracts with different maturities [Lautier, 2012].

The original model of the allometric scaling on a spanning tree was developed by Banavar
et al. [Banavar, 1999]. For studying the structural property of the tree through the allometric
scaling relation, we must firstly assign a direction for each edge if the tree is not directed. The
rule is that the edges connecting a node and the hub with the highest degree must reach out
from the hub. Other edges must reach out from the node that connect to the hub with a less
number of edges (see Figure 2.7). We temporarily call the result of this direction assignment as
the directed spanning tree. Then, the allometric scaling relation is picked out by the power-law
relation between two variables A and C computed for each node of the network. These variables

are found in an iterative manner as follows [Qian, 2010]:

Definition 2.11. For each node i in the directed spanning tree, let

AZ:ZA]+1> CZ:ZC]—FA“ (222)
J J

where j stands for all nodes linked from node i. Then, the allometric exponent n is the fitting
power of the following expression:
C~ A" (2.23)

where the leaf nodes with A = C' =1 have to be ejected from fitting the exponent.

The allometric exponent 7 represents the complexity of the MST and lies between 1 and 2

for two extreme network structures: star network and chain network [Garlaschelli, 2003; Qian,
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2010]. This is demonstrated as follows. In a star network, all nodes (except the hub) connect
to only one single center-node which is the hub. So, all nodes (except the hub) are leaf nodes
and are ejected when fitting the allometric scaling exponent. Meanwhile, for the hub, we have
A = N and C = 2N —1 where N is the number of nodes. Hence, according to (2.23), we get n =
1 when N — oo. By contrast, in a chain network where all nodes are linked one after another,
there’s only one leaf node which is the final in the tree in the direction starting from the root.
Then, according to (2.22), the value C' of a node whose A = k is k(k +1)/2. So, when N — oo,
we get the fitting exponent 1 must be 2. Consequently, the allometric exponent must satisfy
1 <n <2 where n =17 for a star-like trees and = 2~ for a chain-like trees. For example, in
Figure 2.7, the tree on the left looks like a star structure more than the rest. This topological
information is reflected well through the allometric exponent: n ~ 1.227 for the tree on the left

and 1 ~ 1.622 for the rest. Clearly, the allometric exponent of the tree on the left is closer to 1.

(a) Star-like structure (b) Chain-like structure

Figure 2.7: Allometric scaling computation where A is inside the nodes and C' is nearby the
nodes.

Besides, for the direction originated from the largest hub, according to Definition 2.11, we
can see that variable A of a node i stands for the total number of nodes that can be reached
from i (including itself). Therefore, variable C' of node i can measure the total impact of the
node toward the network through its k-nearest neighbors, where the closeness level k goes to
infinity.

Moreover, it is empirically demonstrated that the allometric scaling relation really appears in
the MST network of a stock system. In Figure 2.8, we give some examples of well-fitting equation
(2.23) to the nodes of three MSTs associated with the HSX in different periods: 03/31/2009
- 10/19/2010, 05/16/2012 — 12/02/2013 and 01/14/2014 — 08/18/2019. The figure shows the
log-log plot of the relation between two variables A and C of each node. The number of nodes
of the MSTs are 140, 232, and 249, respectively, for each tree.
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Figure 2.8: The allometric scaling behaviors of MSTs representing the Vietnamese stock sys-
tem in three periods: 03/31/2009 — 10/19/2010, 05/16/2012 — 12/02/2013 and 01/14/2014 —
08/18/20109.

As a result, the allometric scaling relation of the MST associated with a financial system
can help quantify the global “shape” of the system and determine the influence level of each
constituent on others in the system. Hence, this relation plays an important role in studying

the system’s stability.

3.6 Survival Ratio

When studying a complex network, an outstanding question is how the network’s structure
changes over time. To measure its structure’s stability, we simply measure the number of
common edges found in the graphs representing the network in two consecutive periods. After
diving the result by the number of edges in the graph of the later period, we get a measure call
single-step survival ratio, or survival ratio for short, introduced in [Garas, 2008; Onnela, 2003b;
Onnela, 2003c]. However, in our study, we replace the denominator by the average number
of edges of the two consecutive graphs. Our reason is that the size of a stock network often
increases over time because more companies join in the market in general. Consequently, without
our adjustment, the survival ratio becomes smaller because of the denominator’s increase. The
ratio’s decrease does not usually relate to the changes in the network’s connectivity because
most new comers rarely have ability to change the old connectivity. For more specific, we define

this measure as follows:

Definition 2.12. Let Gy and Gi—1 be two consecutive graphs representing a complex network
and E; and E;_1 be the set of edges of Gy and Gi_1, respectively. Then, the survival ratio between
Gt and Gy_1 is defined by the following expression:

2||Ey N Ei—]||

S(Gy, Gy y) = -zt Bl 2.24
(Gt Com) = BT B (2:24)
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where ||.|| denotes the size of the inside set, i.e. the number of the set’s elements.

Proposition 2.2. The survival ratio between two consecutive graphs Gy and Gy_1 ranges between
0 and 1. It equals 1 if and only if £y and Ey—1 are the same, and equals O if and only if the two

graphs have no common edge.

Proof. Clearly, S (G, Gi—1) > 0, according to formula (2.24). In addition, for any ¢, since
[1Ee N Eea|| < | B¢l and [[Ee N Eea || < [|[Ei-1]l, we have 2|[Ey 0 By || < || E¢|| + || E¢-1]|, which
implies S (G, Gi—1) < 1.

Besides, we have S (G¢, Gy—1) = 1 if and only if ||E; N Ey_1|| = || E¢|| = || Ei-1]|, i-e., B¢ and
FE;_1 are the same.

On the other hand, S (Gt,G¢—1) =0 if and only if |E; N E;_1]| =0, ie. E;NE_; =2. A

3.7 Same Sector Ratio

For a stock network, to study the network’s structure and its dynamics, we also pay attention

to another measure — the same sector ratio.

Definition 2.13. The same sector ratio of the stock network is the fraction of the number of

edges that connect two stocks belonging to the same business sector.

Especially when using the MST to represent the correlation-based network of stocks, this
ratio also plays an important role in studying the stability of the tree’s structure because of
the following observation: stocks in the same business sector are generally more correlated than
stocks in different sectors, except some special sector such as the financial sector; however, in
crises, stock prices become more sensitive with many factors that can come from many other
sectors or external factors of the market. Consequently, in crises, the intra-correlation of a sector
is not almost higher than the inter-correlation. Therefore, this observation shows that significant
changes of the same sector ratio of the MST can give useful information about crucial changes
of the MST’s structure. Figure 2.9 visualizes the empirical cross-correlation matrix of stocks
comprised in the S&P 500 Index in two periods corresponding to the two states of the market:
the stress period and the normal period. The former is the time when the Great Recession 2007
— 2008 happened.
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(a) Data in the stress period (01/01/2007 (b) Data in the normal period (01/01/2015-01/01/2017)
- 01/01/2009)

Figure 2.9: Heatmap of the empirical cross-correlation matrix of stocks listed on the NYSE by
business sectors.

In brief, with many tools introduced in this section, we can have a various analysis about
the structure of the correlation-based networks of stock markets. The empirical results when we

study real stock networks are given in the next section.

4 Characteristics of Stock Networks

Let’s remind that to represent a stock system, instead of using its correlation-based network,
we can use the MST of the network or the correlation-based threshold network. Which one is
better? The answer depends on our research purpose. In this section, we focus on the network’s
stability and robustness. While the MST network is more suitable to study the network’s
stability, the correlation-based threshold networks is often used to study the second problem.
Both of these networks of a stock system have an essential characteristic, the scale-free property.

This is the common property of many complex systems.

4.1 Scale-free Property

Most real complex networks have a common property called the scale-free property, although
they can be constructed from objects of different natures [Newman, 2003]. In addition, networks
that are scale-free have a number of intriguing properties. Therefore, such property is of our
particular interest.

Definition 2.14. A scale-free network is a network whose degree distribution follows a power
law, i.e.,

P k)~ k™ (2.25)

The positive constant v is called the degree exponent of the distribution.
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The term “scale-free” comes from the fact, in many real scale-free networks, when the net-
work’s size goes to infinity, the second and higher moments of the degree distribution also go to
infinity (see [Barabasi, 2016] for more details).

Now, let’s take a logarithm of (2.25), we obtain
log P (k) ~ —vlogk (2.26)

So, for a scale-free network, log P(k) is expected to depend linearly on log k where the slope
of the line is —~.

Here, we just highlight some properties that will be relevant for our study about stock
networks:

Remark. A scale-free network with v > 1 has the following characteristics:
(i) It could have central nodes with extremely high degrees (often called “hubs”).
(ii) The largest hub’s degree grows with the network’s size.

(iii) Comparing with random networks having the same expected value, it lacks of internal

scale.

To demonstrate the first and second characteristics, because real networks are finite, let kpyin
and kpax be the lower and upper cutoffs for the node degree of a network, respectively. If the
network is scale-free, we can approximate the distribution (2.25) to a continuum which exacts
for 1 < kpin < kmax, and preserves the essential features of the discrete distribution even for

small kpin. Then, for the degree exponent v > 1, due to the normalization that

P (k)dk = ckVdk =1 (2.27)
kmin knlin
we obtain
¢ = (y = Dk (2.28)

To calculate kpax, we assume that the probability to have a node degree that is greater than

Emax is 1/N where N is the network size, i.e.,

o0 [ee) 1
P (k) dk = / ok k=~ (2.29)

kmax

If v > 1, from (2.28) and (2.29), we get

1

Fmax = N7 kmin (2.30)

Therefore, the largest hub’s degree can be extremely large with the growth of the network size.
It implies that the first characteristic is also valid. This makes the right tails of such networks’ the
degree distributions fatter than the ones of random networks whose degree distributions follow
Poisson distribution if their sizes are large. The difference is illustrated in Figure 2.10 where we

shows the probability density functions of two distributions having the same expected value: the
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Poisson distribution with parameter A = 11 and the power law distribution P (k) = 1.1k=%1.
The figure particularly points out the exceedingly large probability of nodes with small degrees.
It also shows that although having the same expected value, the power law distribution admits
a higher probability of central nodes than the one of the Poisson distribution.
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Figure 2.10: Poisson distribution vs. power law distribution.

Also, it is easy to indicate the third characteristic if the first is right. Indeed, according
to Definition 2.14, the probability of having a node with small degree is very large. Then,
if the first’s right, the network’s node degrees are widely diverse with a few of large degrees.
Consequently, when we randomly choose a node in the scale-free network, the node’s degree
could be very far from the average degree and tends to bias to the average’s left side. This fact
is quite different from a random network whose node degrees vary in a narrow range (Figure
2.10). Therefore, the scale-free network lacks of internal scale more than random networks
having the same expected value.

Real complex networks generally satisfy these three characteristics of a scale-free network.
So, their empirical degree distributions almost follows a power law distribution with the degree
exponent mostly ranges from 1.8 to 3.2 [Barabasi, 2016]. The network of film actors [Amaral,
2000; Watts, 1998], the network of sexual contacts [Liljeros, 2003; Liljeros, 2001], the network of
word co-occurrence [Cancho, 2001; Dorogovtsev, 2001}, Internet [Chen, 2002; Faloutsos, 1999],
peer-to-peer network [Adamic, 2001; Ripeanu, 2002] and metabolic network [Jeong, 2000] are
some examples of scale-free networks.

Similarly, when consider the MST of the correlation-based network as the representative
network for a financial system, there are some hubs with very high connections in the tree.
The hubs represent the components having high correlations with others. In stock market, they
could be common stocks of large corporations in business sectors or stocks of principal financial

organizations. Empirical researches demonstrate that the stock networks constructed by the
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MST method are almost scale-free. In fact, without crises, the MST of the correlation-based
networks of stocks listed on many exchanges such as the NYSE [Onnela, 2003b; Vandewalle,
2001], the Athen stock exchange [Garas, 2007], the Warsaw Stock Exchange (WSE) [Sienkiewicz,
2013] and the Frankfurt Stock Ezchange (FSE) [Wilinski, 2013] are some examples of scale-free
networks of stocks. In [Nguyen, 2019¢|, we also found a similar result on the Vietnamese stock
market, an emerging market, when analyzing the MST of the correlation-based network of stocks
listed on the HSX. Figure 2.11 provides two examples of scale-free networks of stocks modeled
by the MST method in a developed market and an emerging market. The figure displays the
log-log plot of the networks’ degree distribution, where our database is the closing prices of
stocks comprised in the S&P 500 Index and stocks listed on the HSX from 01/01/2017 to
01/01/2019. The empirical distributions on both of these markets are fitted well with the power
law distribution with the R square of 0.92 for the U.S. stocks and 0.98 for the Vietnamese stocks,
approximately. The degree exponent approximates 2.40 for the U.S. market and 2.04 for the

Vietnamese market.
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(a) Networks of stocks comprised in the S&P 500 (b) Networks of stocks listed on the HSX
Index

Figure 2.11: Degree distribution of stocks networks modeled by the MST method in the period
01/01/2017 — 01/01/2019.

In addition, we also study the correlation-based threshold network of stocks. As discussed
in Section 2, the network constructed by a suitable threshold of stock correlations can represent
the corresponding market. Moreover, with a large enough threshold, the network likely has
the scale-free property, even though that is not as clear as the MST network. In fact, when
constructing stock networks by keeping high correlations which are larger than 0.63 for the U.S.
stocks and 0.25 for the Vietnamese stocks, these networks’ degree distributions as histograms of
P(k) likely fit a power law distribution as shown in Figure 2.12. The database used to construct
the figure is the same as the database used in Figure 2.11. We presented a similar result in
[Nguyen, 2018].
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Figure 2.12: Degree distributions of the correlation-based threshold network of stocks on the
U.S. market and on the Vietnamese market in the period 01/01/2017 — 01/01/20109.

In general, both representative networks of a stock system that we study, the MST of the
correlation-based network and the correlation-based threshold network, are almost scale-free,
especially, the former. Furthermore, the emerging market’s degree exponent is always smaller
than the developed market’s one, so the former’s structure is denser than the latter’s one.
On the other hand, the property of scale-free networks that we’re most interested in is the
presence of hubs as well as their roles in the networks’ stability and robustness. Especially, in
financial distressing periods, due to the unpredicted behaviors of a stock system’s components
as well as the appearance of its collective behaviors, which can be significantly different from
the components’ behaviors, these networks might lose the scale-free property. All of these issues

will be discussed in the next sections.

4.2 Network Resilience

For many real complex systems, errors or failures of a few components can make the systems
hard to operate normally; for instance, the failure of a part in a car’s engine, a wiring error in a
computer chip. By contrast, many other systems still operate well if some of their components
fail from an accident. For example, the Internet still functions if some routers are down some-
where, the economy still runs if some corporations file for bankruptcy due to some management
mistakes. In this section, using a graph representation of a financial system, we will quantify
the system’s ability to keep its operation despite the faults of some components. The ability of a
network to provide and maintain an acceptable level of service in the face of faults and challenges
to its normal operation is known as network resilience. In the literature, the level of network

resilience is a good deal subject in many fields, such as the network of actors collaboration and
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science citations [Gallos, 2006], the Internet, the Word-Wide Web [Albert, 2000; Cohen, 2001},
the metabolic networks [Jeong, 2001}, food webs [Dunne, 2002]... Although some works study
the resilience of a network by the increase of the mean distance of node pairs (see more details
in the review of Newman [Newman, 2003]), we quantify the level of network resilience as the
fraction of node removal such that the network still keeps its global connectivity as discussed in
[Callaway, 2000; Cohen, 2000; Molley, 1995]. Obviously, if a node is removed from the network,
the related links are also deleted, and the network’s average short-test path length must increase
consequently. So, the two approaches are similar.

In economics, the vulnerability of a financial network under improper operations of some of
its parts becomes an important subject due to the requirement of systemic risk management to
prevent financial crises. In this section, we measure the level of a stock network’s resilience under
two types of node removals: failures and attacks. A network under failures of nodes means that
an arbitrary part of its nodes is damaged. By contrast, a network is under attack if some of its
nodes are damaged intentionally. In this case, the most probable damaged nodes are the most
important ones in the network. Frequently, a considerable attack strategy is removing the most
highly connected nodes since they often damage the integrity of the network most. Besides, we
also focus on another attack strategy — damaging nodes with the largest betweenness centrality.
This strategy is expected to rapidly fragment the network into many pieces because the nodes
help connect regions of dense nodes.

As discussed in Section 3, the level of a network’s resilience is computed by the critical
threshold q., the largest fraction of removed nodes such that the network’s giant component
is undestroyed. Besides, according to Theorem 2.2, ¢. of a network under random breakdown
can be calculated directly from the ratio of second-to first-moment of the network’s degree
distribution, k. We’re especially interested in the value of k in scale-free networks, the type
of network corresponding to our financial networks. Basing on x, Cohen et al. [Cohen, 2000]
theoretically found the relation between the resilience and degree exponent + of a scale-free
network under a random removal of its nodes for 1 < v < 3 and v # 2. We briefly present their

result with additional information for the case v = 2:

Theorem 2.3. In a large scale-free network with degree exponent v, under a random removal

of its nodes,

e for v > 3, the critical threshold q. approzrimates 1 — (%kmin — 1) , where kmin are the

smallest possible connectivity.
e for 1l <~ <3, the critical threshold q. approximates 1.

Proof. Let P (k) = ck™7 (k = kmin, Kmax, Y > 1) be the degree distribution of the network
and kpax be the largest possible connectivity. Using a continuum approximation which is valid
in the limit 1 < kpin < kmax and preserves the essential features of the discrete distribution

even for small ki, for v # 2 and v # 3, we get:

(R e R2P(k)dE e ck?dk 2 -y K3 — kY

o — _ _ — _/max min 231
(k) [ kP(k)dk [ cki=vdk 3= kinad — ki (2:31)
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Let N be the network’s size. According to equation (2.30), we can express kpyax in the above

equation in term of N and kpj,, then:

3— 3—
2y Nkl kY 24 N -

S, =7 o 2.32
3= NERZY — kXY 3TN T o1 232

min min

3— 2—
For v > 3, as IV approaches infinity, since both N 5T and N>—1 approach 0, equation (2.32)

implies that r approaches (2 —7)/(3 — ¥)kmin. Then, because g. = 1 — (k — 1)}, according to
—1
Theorem 2.2, we get that ¢. approaches 1 — (g%kmm — 1) as N approaches infinity.

2— 3
By contrast, for 2 < v < 3, as N approaches infinity, since N = approaches 0 and NV T
approaches infinity, x approaches infinity. So, according to Theorem 2.2, gq. must approaches 1

as N approaches infinity.
3—v
Similarly, for 1 < v < 2, because lim N;:i -1
N—o00 Nﬁ_l

approaches 1 as N approaches infinity.

= 00, k also diverges. This implies that q.

For v = 2, we calculate the value of x as follows:

2 max dk. _ .
. <k‘ > fkmm c o kmax kmln (233)

(k) ffmecek—lak In e

min

Using equation (2.30) to express kpmax in term of N and ki, we rewrite equation (2.33):

_ Nﬁkmin_kmin _ N -1
a ln N%kmin a lnN

min

K

Kmin (2.34)

]1\1[1 ;\,1 = 00, k diverges. Consequently, g. approaches 1 as N approaches infinity.

Theorem 2.3 plays an important role in determining the resilience level of many real complex

Since lim
N—oo

networks against random removal of nodes. Indeed, many of them, such as the film actors
network, the email messages network, the word co-occurrence, the Internet, the peer-to-peer
network, the metabolic network, the protein interactions are scale-free networks with degree
exponents mostly ranges from 17 to 37 (see the summary provided in [Cohen, 2010]. Therefore,
this theorem confirms that these networks’ giant components still exist with large fractions of
randomly removed nodes. It means that these real networks have an extremely high level of
resilience under failures. For example, over 99% of the Internet’s nodes must be damaged to
destroy the network’s giant component [Cohen, 2000].

On the other hand, if attackers know a network’s structure, they usually attack nodes playing
important roles in the network first. In many cases, the robustness of a node may depend on
its connectivity. That’s the reason why attacking nodes with the highest degrees is a strategy
worth considering. Under this intentional attack, many studies, such as [Albert, 2000; Callaway,
2000; Crucitti, 2004b; Gallos, 2006], found that a large scale-free network can be broken by

a comparatively small fraction of removed nodes. Cohen et al. [Cohen, 2001] demonstrated
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theoretically the vulnerability of a scale-free network against this attack strategy:

Theorem 2.4. In a large scale-free network with degree exponent v, under an intentional attack
to the most highly connected nodes, the probabzlzty that an edge links to a deleted node approz-
imates 1 for 1 < v < 2, and approximates q1 3 for v > 2, where q is the fraction of attacked

nodes.

Proof. Let P (k) = ck™7 (k = Kmins Kmax, Y > 1) where 1 < kpin < kmax. After the attackers
damage the most highly connected nodes, the nodes and their links are removed from the
network. Thus, the network has a new cutoff degree l;:max < kmax. Since the removal fraction
¢ is the probability that a node has a degree larger than kmay, using the hypothesis (2.29) and
the normalized constant ¢ given in equation (2.28), we obtain:

Kmax oo o0

g= [ Pk)dk= [ P(k)dk— P(k)dk = (v—1) k1 1/;; k‘”dk—% (2.35)

min
Kkmax Kmax kmax

Consequently, as N approaches infinity, from equation (2.35), we can estimate the value of

l%max as follows:

Fmax = kminqﬁ (236)

Let ¢ be the probability that an edge links to a deleted node. Then, ¢ equals the fraction of
edges belonging to deleted nodes, i.e., for v # 2,

max b P(k)dk 2—7 _ 2=
Iy k) —k

j= “hmax max 2.37
= JEmes kP(k)dk ﬁml K2 (2.37)

For large networks, we replace kp.x and l%max in the above equation by the expression given

in equations (2.30) and (2.36), respectively, to get:

2—y 2 2 22—y 2—y
q ~ N1 kmll:ly kmlr;yql 7 _ N1 — qt— (2 38)
~ 2— - 2— .
VR i N

2
Let N approach infinity in the right-hand side of equation (2.38). Then, for v > 2, N =

approaches 0, so we can approximate § as follows:
q~ql- (2.39)

By contrast, for 1 < v < 2, it’s easy to see that the limit of the right-hand side of equation
(2.38) is 1, as N approaches infinity. So, § ~ 1 for large N
In the case of v = 2, we have to rewrite the equation (2.37) as follows:

kmax kmax — max
S kP(k)dk  ffm kldk In (’;—)

max

fims kP(k)dk — fime k-l In (e )

min min

i= (2.40)

For large networks, we replace ky.x and kmax in the above equation by the expression given
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in equations (2.30) and (2.36), respectively. Then,

In (Nq)
In (N)

q~

(2.41)

The limit of the right-hand side of equation (2.41) is 1, as N approaches infinity, So, § ~ 1
for large N. |

For a large scale-free network with degree exponent 1 < v < 2, Theorem 2.4 shows that, with
an arbitrary fraction ¢ of removed nodes, we can destroy most of the edges when the removed
nodes have the highest degrees. Thus, attackers only need a little knowledge of these hubs to
break the network entirely.

The results of Theorem 2.3 and Theorem 2.4 can be explained as follows. There are a
few highly connected nodes in a scale-free network because of the inhomogeneity of its degree
distribution. These hubs control the network’s connectedness. Therefore, random node removal
does little damage due to the fact that the chances of selecting randomly one of the few hub
is negligible. By contrast, under the attack to the most connected nodes, the hubs’ removal
dramatically changes the network’s topology and decreases the ability of the remaining nodes
to communicate with each other. As a result, the network is extremely robust under random
failure but very fragile under the attack.

In our financial context, we already know that two representative graphs of a stock system,
the MST network and the correlation-based threshold network, can be considered scale-free net-
works. To study the vulnerability of the market under improper operations of some of its parts,
we use the correlation-based threshold network. The reason is that, with a suitable thresh-
old, the network helps get an overview of the research market by avoiding neglecting too many
connections as the MST network, and helps reduce noises from small stock correlations, which
are usually unstable over time. However, the degree exponent of a correlation-based threshold
network of stocks is often low, especially the networks associated with emerging markets (let’s
see examples given in Figure 2.12). Hence, as an emerging market, the Vietnamese market’s
robustness under failures of its arbitrary components has to be studied carefully. In [Nguyen,
2018], we perform the random breakdown of the correlation-based threshold network of stocks
listed on the HSX in the period from 01/01/2015 to 05/19/2017. The selected threshold is 0.25,

2

which equals the 97% -quantile of the empirical stock correlations . We plot the network in

Figure 2.13. Its size is N = 191, and its degree exponent of 1.3 is also close to 1.2

2We also try with different thresholds such as 0.3, 0.35, 0.4. .. and get similar results of the market’s robustness.

3To get an estimation for a power-law distribution from empirical data, we need a histogram of node degrees.
Hence, the estimated degree exponent depends on the bins’ size. However, the estimation doesn’t affect our results
about the network’s resilience because we break the network based on its real connections.
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Figure 2.13: The correlation-based threshold network of stocks listed on the HSX in the period
01/01/2017 — 01/01/2019 and its degree distribution.

Firstly, we in turn removing an arbitrary node until the giant component is destroyed, using
the Molloy-Reed criterion (2.8). We repeat this process many times to get the average critical
threshold according to the Monte-Carlo method (see Algorithm 4). As a result, we found that
the network still exceedingly robust under random breakdown with the critical threshold of 95%
approximately. In other words, one needs to randomly destroy over 95% of this network’s nodes
to make the spanning cluster collapse. So, Theorem 2.3 is valid for our financial network even
though the number of its nodes is much less than other real scale-free networks such as the

Internet, the protein interactions,. ..

Algorithm 4 Compute the critical threshold ¢. of network resilience under random failure

Require: Network G = (Nodes, Edges)

1: procedure RESILIENCE_RANDOM_FAILURE(G)
2 N < size of Nodes

3 > Take the Monte Carlo simulation with a large number M of iterations
4: sum,__qgc < 0

5: for m € 1, M do
6.
7
8

Gl + G
P(k) + degree distribution of G1.
number__removed__nodes < 0

2
9: while % >2do
10: i < a node chosen randomly from nodes of G1.
11: G1 <+ G1 after removing ¢ and edges linked to i.
12: P(k) + degree distribution of G1
13: number__removed__nodes < number__removed__nodes + 1
14: end while
15: sum__qc < sum__qgc + number_removed _nodes/ N
16: end for
17: ge = sum_qc/M > Output

18: end procedure

Next, we observe the resilience of the Vietnamese stock network under different attack strate-
gies, including the strategy based on the initial degrees of nodes (ID), the strategy based on

the initial betweenness centrality of nodes (IB), the strategy based on the recalculated degrees
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of nodes (RD), and the strategy based on the ecalculated betweenness centrality of nodes (RB).

For more specific, we perform these strategies as follows:

The ID strategy: We remove, in turn, a node in the network in the descending order of
the degree distribution of the original correlation-based network until the Molloy-Reed
criterion (2.8) is invalid in the current network. This process imitates the attack to highly

connected nodes we’ve just discussed.

The IB strategy: Similar to the ID strategy but the nodes are eliminated sequentially in
the descending order of their betweenness centrality. This strategy is expected to break a
large scale-free network into many small pieces more rapidly than the first strategy because
the betweenness centrality of a node can model the node’s ability to connect regions of

dense nodes in the network.

The RD strategy: A node is deleted from the current network if its degree is largest in the
current network. It means that we have to recalculate the degree distribution every time

we want to remove one node.

The RB strategy: A node is deleted from the current network if its betweenness centrality
is largest in the current network. It means that we have to recalculate the betweenness

centrality of nodes every time we want to remove one node.

In particular, similar to Algorithm 4, Algorithm 5 given below is used to find the critical

thres

hold ¢. based on the Molloy-Reed criterion (2.8) when we attack the highly connected nodes

of a network. This algorithm is applied for both cases: using the arrangement by node degree of

the initial network and using the updated arrangement after deleting a node. For the strategies

based on the betweenness centrality, we replace the arrangements by nodes’ degrees with the

corre

sponding arrangements by nodes’ betweenness.

Algorithm 5 Compute the critical threshold ¢, of network resilience under attacks to the highly
connected nodes.

Require: Network G = (Nodes, Edges)

1: pr

ocedure RESILIENCE ATTACK By DEGREE(G)
N « size of Nodes
degree__order < the decreasing arrangement of nodes in G by their degrees
Gl «+— G
P(k) < degree distribution of G1
numberf;’emovedinodes ~— 0
while % > 2do
If G is attacked by the ID strategy then
i < degree__order’s first node that appears in G1
Else
If G is attacked by the RD strategy then
i < the node with the most connections in G1
G1 + G1 after removing 7 and edges linked to 7.
P(k) < degree distribution of the network G1
number__removed__nodes < number__removed_nodes + 1
end while
gc = number_removed_nodes/ N > Output

18: end procedure
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The ID and IB strategies may less effective than the others since they use outdated infor-
mation, which may be very different from the current network’s structure. Our result on the
Vietnamese stock market shown in Figure 2.14 confirms this conjecture, and it is similar to the
one of Nie et al. [Nie, 2015]. In this figure, we plot the ratio of the giant component’s size
P, to the initial network’s size N after removing a fraction ¢ of nodes randomly or removing
nodes intentionally by the attack strategies. Obviously, the decrease of each recalculated strat-
egy is much sharper than ones of the strategy basing on similar structural information got from
the initial network. Consequently, while the ID and IB strategies make the network completely
broken with the critical threshold of 49.74% and 45.55%, respectively, the RD and RD strate-
gies only require a smaller critical threshold of respectively 36.65% and 43.98%. It means that
we have to remove more nodes to destroy the network’s global connectivity if we only use the
network’s initial information.

The considerable difference between the ID and RD strategies can be explained due to the
fact that just a few highly connected nodes in a scale-free network control its entire connectivity.
Thus, the removal of the most connected nodes makes extreme changes to the network’s topology.
As a consequence, the initial degree distribution no longer effectively reflects the new structure.
This issue also explains why the ID strategy is less efficient than the IB strategy.

On the other hand, we can see that the initial ranking by nodes’ betweenness only changes a
little, so the difference between the IB and RB strategies is relatively negligible. The reason is
that when removing nodes with the highest betweenness, we remove the paths that go through

these nodes, but other paths still exist, then the overall betweenness’ ranking is less affected.
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Figure 2.14: The relative size of the giant component as a function of the fraction of removed
nodes under the random failure of nodes and different attack strategies to the correlation-based
threshold network of stocks listed on the HSX in the period 01/01/2017 — 01/01/2019.
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Besides, when comparing the strategies using recalculated structural information, we found
an interesting phenomenon. Clearly, Figure 2.14 shows that the RB strategy almost reduces
the giant component’s size more rapidly than the RD strategy does. However, near the end
of the giant component’s disappearance, the RB strategy becomes slower in destroying the
component. Finally, the RB strategy stops to break the giant component of the network after
removing 43.98% of nodes. This critical threshold is much larger than the one of 36.65% under
the RD strategy. To understand this phenomenon, let’s remind that the RB strategy prefers
cutting nodes playing important roles in connecting concentrated clusters. Therefore, at the
beginning steps of the attack, the RB strategy breaks the network into many sub-networks. By
this method, the giant component’s size reduces more significantly. However, near the critical
point, the RD strategy gets stuck in a highly connected cluster, which has many nodes but low
betweenness. Meanwhile, the RB strategy removes nodes in other clusters, and the maximum
size remains unchanged. We illustrate this explanation in Figure 2.15. The figure plots the
network structure after removing 25%, 34%, 36%, and 41% of nodes, respectively, using the two

strategies.

RD,q= 025, RD,q= 0.34, RD,q= 0.36, RD,qg= 041,
P./N= 05585 P./N= 0.1915 P./N= 0.0851 P./N= 0.0213

RB,q= 0.25, RB,q= 0.34, RB,q= 0.36, RB,q= 041,
P./N= 0.3883 P../N= 0.0691 P./N= 0.0319 P./N= 00319

Figure 2.15: The correlation-based threshold network of stocks listed on the HSX in the period
01/01/2017 — 01/01/2019 after removing a fraction ¢ of nodes by the RD and RB strategies.
P is the giant component’s size.

However, the critical thresholds of the Vietnamese stock network under the research attack
strategies are drastically larger than the ones of theoretical scale-free networks, given by Theorem
2.4, and the ones of other real complex networks, which are often less than 10% [Albert, 2000;
Cohen, 2001]. For example, the critical threshold of the Internet, the WWW and the temozolo-
mide resistant network are 0.03, 0.067, and 0.02, respectively [Albert, 2000; Azevedo, 2015]. The

cause of the less vulnerability of the Vietnamese stock network under attacks is the low degree

44



4. Characteristics of Stock Networks

exponent of the network, which corresponding to a denser structure for the network’s topology.
Moreover, the perturbation at the right tail of the network’s empirical degree distribution also
makes Theorem 2.4 not perfectly available for this case.

Briefly, we used the correlation-based threshold network to study the robustness of a stock
market when its constituents get errors. Despite the low degree exponents of such networks,
we demonstrated that the networks behave similarly to other real scale-free networks due to
the presence of a few hubs: the networks are significantly robust under random failures of their
constituents, but much fragile under intentional attacks, especially under the attack to the most
connected nodes determined by recalculating the degrees of remaining nodes. However, if we
want to damage a stock network to only a level of its size rather than completely destroy it,
the RB strategy can be a better option. These results help construct a steady stock market
and protect it efficiently. For example, we should alert significant decreases in prices of stocks
corresponding to even a small fraction of nodes with high degrees or high betweenness centrality

because they may cause a considerable fall of the entire market.

4.3 Phase Transitions

In order to study the spreading of a price shock of one stock to the entire market, the MST of
the correlation-based network is more suitable than the correlation-based threshold network since
the MST provides the most probable path for the spreading. However, as a complex system,
the behavior of a stock market can be very complicated. So, the topological arrangement of
its MST network often changes due to the changes in the constituents’ behaviors and their
relationships, the environment’s variation, or the impacts of other external factors. When the
MST’s structure alters drastically, this especially affects the ability of a shock to spread overall
the corresponding market. Therefore, understanding phase transitions of the MST’s structure
becomes an attractive approach in evaluating the market’s stability and controlling the systemic
risk. In this section, our research subject is the change of the MST network’s structure over
time.

In [Nguyen, 2019¢c|, we found that the change is really homogenous to different states of
the market. Similar results are found on the Frankfurt Stock Exchange (FSE) [Wilinski, 2013]
and the Warsaw Stock Exchange (WSE) [Sienkiewicz, 2013]. The following remark gives more
details about this issue.

Remark The dynamic of the MST of a correlation-based network of stocks goes through

three phases:
 phase of hierarchical MST — a (relatively) stable stock market state
e phase of the superstar-like MST — a transient market state

 phase of hierarchical MST decorated by few local star-like trees — a (relatively) stable stock

market state.

Figure 2.16 shows the MST associated with the FSE in three different periods. Each tree

in the figure represents the general structure of the MST in every phase above. The result is
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Chapter 2. Financial Markets under Network Representations

provided in [Wilinski, 2013]. Besides, instead of reflecting the trees by their exact geometric
distance, a link between two nodes is in dark grey if the nodes’ distance is small. According to
the authors, this presentation makes the tree more readable. Meanwhile, Figure 2.17 shows a
similar result observed in an emerging market — the HSX, provided in our study [Nguyen, 2019c¢].
The degree distributions of the MSTs shown in this figure are provided in Figure 2.18 and Figure
2.19c, respectively.

0.33 1.33
E—

(a) The hierarchical MST for the period from (b) The superstar-like MST for the period from
01/03/2005 to 03/09/2006 04/20/2006 to 10/31,/2007

(¢c) The hierarchical MST decorated by few local star-like trees for the period from 06/01/2007
to 08/12/2008

Figure 2.16: Structural change of the MST network of stocks listed on the FSE [Wilinski, 2013].
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(¢) The hierarchical MST decorated by few local
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08/18/2015

Figure 2.17: Structural change of the MST network of stocks listed on the HSX.
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(a) The degree distribution of the hierarchi- (b) The degree distribution of the hierarchical
cal MST for the period from 03/31/2009 to MST decorated by few local star-like trees for the
10/19/2010 period from 01/14/2014 to 08/18/2015

Figure 2.18: Degree distribution of the hierarchical MST network of stocks listed on the HSX.

The MST in the first and third phases has the common structure of stock networks, the
scale-free structure. Especially when the MST is in the third phase, its local hubs are reflected
on the right tail of its degree distribution by the presence of more points near the line fitting
the power law (see Figure 2.18 where we plot the degree distributions of the hierarchical MST's
shown in Figure 2.17a, 2.17¢c). Generally, in both of the two phases, because there is no node
with an extremely large degree comparing with others in the MST, the network has a hierarchical
structure. In this case, the market is relatively stable under a shock of price fluctuations starting
from a small group of stocks because the shock’s propagation needs a long process to reach the
entire market. Besides, since the networks’ global connectivity doesn’t mostly depend on only
one stock as what happens in the star-like structure, it’s not easy to damage the network’s global
connectivity.

Now, let’s focus on the second phase, where the MST network has a star-like structure. In
this case, the network has a super hub, the largest hub whose degree is extremely higher than
the ones of other nodes. Remind that, in an MST, the number of connections equals N — 1.
So, the presence of the super hub implies the lack of connections between pairs of other nodes.
Because the usual structure of the MST network is absent, the network can close its scale-free
property. Indeed, in the scatter plot of the empirical degree distribution of a star-like MST
after neglecting the point representing the super hub, the remaining points fit well a power law.
Since this point is very far from the fitted line of the power law in the log-log plot, its existence
dissolves the scale-free property. This empirical result is illustrated in Figure 2.19, where we plot
the degree distributions of the star-like MST shown in Figure 2.17b of stocks listed on the HSX
and the star-like MSTs found on other developed markets, including the FSE and the WSE.
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(c) Degree distribution of the MST network on the HSX for the period from 05/16/2012 to 12/02/2013

Figure 2.19: Degree distribution of the star-like MST and the fitted line of a power law after
neglecting the super hub.

Consequently, a star-like structure of the MST network is a crucial sign informing us that
we are dealing with an exceptional event. An important hypothesis is that the event is a coming
stock market crash. This argument is compatible with our observation on the HSX and other
empirical studies on developed markets. For more specific, in [Nguyen, 2019¢|, we found that the
star-like MST appears in the period when the Vietnamese economy is under serious stressing.
During the stressing, the interest rate was particularly high when it went from 10% to as high as
30%/year in a short time of 8 months. Similarly, in [Wilinski, 2013] and [Sienkiewicz, 2013], the
authors show that the star-like MST network of stocks listed on the FSE and the WSE occurs
in the early period of the worldwide financial crash 2007 — 2008, so the authors speculate that
the star-like MST plays the role of a crash precursor for the corresponding market. Because of
the special role, the three following questions attract our attention. The first is why the star-like
structure likely relates to an unstable state of the corresponding market. Secondly, we wonder

how we can quantify the change in an MST’s structure from a chain-like one to a star-like one.
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Chapter 2. Financial Markets under Network Representations

The last is about the super hub’s role.

For the first question, although the star-like MST is exceptional, this strange is not enough
to confirm the connection between this special structure and financial instability. Instead, let’s
see how a stock market fragile when its MST network looks like a star. In this case, the most
probable paths connecting pairs of nodes in the correlation-based network are almost shorter.
Then, a price shock of one stock can transmit to the entire market more easily after a few steps
through the super hub. Therefore, with this structure, the network is more sensitive to shocks
than usual. For example, Figure 2.20 shows the synchronization between the small average
shortest-path length of the MST constructed by stocks listed on the HSX and the severe decline
period of the Vietnamese economy. In this figure, we construct the MST network in different
time windows of the same length in the period from 01/09/2008 to 12/31/2017. The length is
390, the number of trading days. The sliding time is 60 trading days. We also highlight the points
corresponding to the three MSTs illustrated in Figure 2.17. Besides, to normalize the length,
we divide it by the number of nodes of the corresponding MST. Without this normalization, the
average shortest-path length of the MST constructed in a period can be larger than the one of
the MST constructed in the preceding periods when more companies are listed. At that time,
this increment of the average shortest-path length is just a mechanical rise due to the increase
of the network’s size instead of reflecting meaningful information about the MST’s structural

variation.
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Figure 2.20: Synchronization between the small normalized average shortest-path length of the
MST network and the severe decline period of the Vietnamese economy in Phase II.

Due to the connection between a star-like MST and financial recessions, quantifying the
variation of the MST network from a hierarchical structure to a star-like structure is useful for
many problems such as setting automatic trading strategies, managing the systematic risk. ..
To measure the change of the MST network’s structure over time, the survival ratio introduced

in Definition 2.12 can be a useful tool. Because the ratio provides the proportion of common
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connections between two MSTs constructed in two consecutive periods, the network goes through
a phase transition of its structure at time ¢t if the ratio at this time point is significantly smaller
than the ones nearby. For example, using the same database as Figure 2.20, Figure 2.21 shows
the dynamics of the survival ratio of the MST network of stocks listed on the HSX. We can see
that the phase transitions of the market in Figure 2.20 are also well-defined in Figure 2.21.
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Figure 2.21: Synchronization between the depression of the survival ratio of the MST network
constructed on the HSX and the phase transitions of the Vietnamese economy.

However, the MST’s survival ratio is not a clearly measure to detect the star-like structure
because we have to observe the ratio for a long period to prevent confusing the time of phase
transitions. Therefore, we also use another measure, the allometric exponent, to easily get
the geometrical information of the MST network in a certain time window. As introduced in
Section 3, the allometric scaling relation appears in the MST network of a stocks system with the
allometric exponent 7 ranging from 1 to 2. The exponent is closer to 1 if the MST is more similar
to a star. For example, n equals 1.2894+0.011, 1.2134+0.013, and 1.301 +0.011, respectively, for
each MST drawn in Figure 2.17. Obviously, the allometric exponent of the second tree, which
has a star-like structure, is closer to 1 than the exponents of the others in the figure. Using
this allometric scaling relation, we can confirm that Phase II in Figure 2.20 is corresponding
to a different state of the MST’s structure, the star-like structure because of the low exponent
of the allometric scaling relation in the phase. Figure 2.22 shows the simultaneous variation
between the dynamics of the allometric exponent and the normalized average shortest-path
length, which was demonstrated to compatible with the depressed period of the corresponding

market in Figure 2.20.
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Figure 2.22: Synchronization between the normalized average shortest-path length’s decline and
the allometric exponent’s decline of the MST network constructed on the HSX.

In addition, remember that the allometric scaling relation can measure the hierarchical
degrees of nodes in the MST’s structure through variable C'. For a stock market, the value
C of a node represents how important the corresponding stock influences others in the market if
a crisis occurs. Therefore, the value helps explain the role of the super hub in a star-like MST.
For example, let’s draw the two MSTs in Figure 2.17b and 2.17c again such that the node size
is an increasing function of C'. We found that there is only one stock having an extremely high
impact C on the star-like network in Phase II (Figure 2.23a), while the total impact toward the
whole market is distributed to many stocks in Phase IIT (Figure 2.23b). Then, if a shock occurs
at the super hub, a propagation of this shock will occur almost instantly over the entire market.
By contrast, for the hierarchical tree, the cascading failure process performs more slowly because

the shock has to transfer to other important stocks before spreading throughout the network.
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Figure 2.23: MSTs constructed on the MST with log(C) as the node size.

Furthermore, the super hub’s emergence in phase II also makes changes in the usual rela-

tionships between stocks belonging to the same business sector. Indeed, in a star-like MST, the

number of a sector’s intra-connections must decrease since stocks prefer connecting the super

hub to connecting other stocks in the same sector. For example, for the same database with Fig-

ure 2.20, Figure 2.24 demonstrates the low same sector ratio of the MST in Phase II. However,

although this remark gives more information about the role of the super hub, the low same sector

ratio is not enough to confirm the instability of an arbitrary stock market. The reason comes

from the lack of sectors’ intra-connections in emerging markets, for instance, the Vietnamese

market (see Figure 2.17), which is very different from the plentiful of such intra-connections in

developed markets, for instance, the U.S. market (see Figure 2.3).
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Figure 2.24: Synchronization between the decline of the same sector ratio of the MST network
constructed on the HSX and the Vietnamese economy’s unstable period.
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Finally, it is meaningful to understand why a marginal company in the MST network becomes
a central node in financial stressing periods. A common result in many studies is that the
central node is relevant to companies providing financial services. Indeed, in the star-like MST
constructed on the HSX, we found that the central node is corresponding to the Saigon Securities
Incorporation — a stock brokerage company. Also, in such MST network constructed on the
WSE, the central node is corresponding to the Capital Partners — an investment company
[Sienkiewicz, 2013]. Similarly, in [Onnela, 2002; Onnela, 2003a], the central node of the U.S.
network represents the General Electric Co. — a technology and financial services company. The
companies’ evolution from a marginal one to a central one in Phase II supposedly originates from
the attractive financial products and available investment advice that the companies offered only
in this period. In distressing periods of an economy, the products and advice can be considered
as directions for corporations and investors to lean on to overcome the period. However, in
[Wilinski, 2013], the central node of the star-like MST constructed on the FSE is corresponding
to the Salzgitter AG—Stahl und Technologie, a company that manufactures steel and associated
products. Thus, a deep analysis of the central company’s characteristics should be taken in the
future.

In conclusion, the MST network’s structure of a stock system in both cases of developed
markets and emerging markets goes over 3 phases. Its normal structure is hierarchical, but the
structure becomes likely a star when the market is unstable. After the stress period, the MST’s
structure comes back to a hierarchical tree decorated with a few local hubs. The changes in the
MST’s structure from a hierarchical tree to a star-like tree and vice versa imply the changes in
its scale-free property, which is a crucial characteristic in the corresponding market’s robustness
under failures. The changes also affect the market’s ability of information’s spread. Especially,
we can determine the star-like structure of an MST network by the allometric exponent close to
1. Furthermore, the allometric scaling relation can help certify the roles of a stock in attending
the propagation of a price shock to the entire network. The meaning of variables A and C' of
this relation should be studied more carefully. Besides, the relation of the central company to
companies providing financial services is a far going hypothesis that we should study more. We
can see the importance of financial companies in contributing to the collective behavior of a

stock market in the next chapter.
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Chapter

Spectral Property of Stocks” Cross-correlation

Matrix

Objective

In this chapter, we study the spectral property of the correlation-based network, i.e.,
the spectrum of the cross-correlation matrix of stock returns. Because we only have
the sample matrix, we use random matrix theory to get the “true” stock correlations.
In particular, we pay attention to the sample matrix’s largest eigenvalue, which is
always extremely larger than the largest one predicted by the theory in our financial
problems. Also, we use Principal Component Analysis to investigate the role of the
unit eigenvector associated with the eigenvalue in reflecting the collective behavior
of a stock market and the affect of an individual stock to others. Our results are
empirically demonstrated in the Vietnamese and U.S. stock markets.
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Chapter 3. Spectral Property of Stocks’ Cross-correlation Matrix

In the previous chapter, we used the cross-correlation matrix of stocks to construct repre-
sentative networks for a stock market. However, we don’t know the exact correlations of stocks.
Instead, the correlations are empirically computed by finite time series of historical values of
stock prices. Then, the observed period’s length and the underlying market’s noises consider-
ably affect the estimation of the true correlations. Although the knowledge about the market
can help reduce noises, it doesn’t dissolve the problem completely. Meanwhile, random matriz
theory (RMT) and Pprincipal component analysis (PCA) support an available solution for this
problem. They helps understand the spectral property of a sample cross-correlation matrix.
From this matrix, we can estimate the “true” adjacency matrix of the correlation-based network
of a stock system. The sample matrix’s spectral property is very useful to capture important
information about the network’s structural characteristics [Cvetkovi¢, 1998]. In this chapter, we
use the spectral properties analyzed by RMT and PCA to understand not only a stock network’s

structural properties but also the common interaction between entities of the underlying market.

1 Random Matrix Theory Applied to Stock Systems

RMT is a physics theory that helps get the accurate cross-correlation matrix of numerous
entities. It’s applied in many works, namely [Laloux, 1999; Laloux, 2000; Lux, 1999; Mehta,
2004; Plerou, 1999; Plerou, 2002]... It was developed to deal with the statistics of energy
levels of complex quantum systems when physicists had difficulties in interpreting the spectra
of the nuclei because the exact nature of the interactions was unknown. In particular, in 1951,
Wigner used a real symmetric matrix with independent random elements to make predictions
representing an average over all possible interactions [Wigner, 1951]. The deviations of the
sample cross-correlation matrix compared to its RMT prediction are proposed to provide true
information of the interactions because the deviations identify non-random properties of the
research system [Guhr, 1998; Mehta, 2004]. Because of this benefit, the RMT’s prediction be-
comes popular to analyze the spectral distributions of sample cross-correlation matrices in many
complex systems such as the EEG data of brain [Seba, 2003], the variation of basic atmospheric
parameters that characterize the state of the atmosphere [Santhanam, 2001]. Similarly, in this
study, we use RMT to understand the nature of the correlations of stock price fluctuations in a
stock market.

From this point of view, let’s consider a system of N stocks. According to Definition 2.1, we
can compute the cross-correlation matrix C = (¢;;) of stocks from the log-price changes, also
call the stock returns, 7;, i = 1, N. Let 7 be the normalized return of stock i, i.e.

= T i) (3.1)
0
Obviously, 7; has zero mean and unit variance. Now, we can rewrite the formula of the

empirical correlation between stock i and stock j in Definition 2.1 as follows:

Cij = <f27:]> (32)
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1. Random Matrix Theory Applied to Stock Systems

Therefore, with T observations 7; (t), t = 1,7, the correlation between stocks i and j is
empirically estimated by the time average of the scalar product of two vectors (7; (t)),_77 and
(75 (t)),_177- Let X be the matrix whose rows are N vectors (7 (t)),_77, ¢ = 1, N, then the

cross-correlation matrix C can be expressed as

1
C= XX (3.3)

From equation (3.3), in RMT, to consider a null hypothesis that the stock returns are strictly
uncorrelated, we assume that the cross-correlation matrix C is equivalent to a purely random
matrix W obtained from standard normally distributed i.i.d. time series. Such matrix is in the
ensemble of Wishart matrix introduced by Wishart in 1928 [Wishart, 1928]. In particular, we're
only interested in the Wishart matrix of real entries because financial data only contains real

numbers.

Definition 3.1. A real Wishart matriz is a random symmetric matric W of the form:
1
W = TMM’ (3.4)

where > denotes matrix transposition, and M is a random matrix of size N x T such that:
o (M), <j<r are independent samples of a real-value random variable m;.
o (mi1, ...,my) is a Gaussian vector with given covariance matrix K.
T is called the degree of freedom.

Matrices W and K are both of size N x N. Besides, in our financial context, (mq,...,my)
is a standard normal vector with covariance K = diag(1,...,1) to interpret the null model of
C. This null hypothesis helps identify the effects of the randomness of C. In other words,
the difference of the spectral distribution of C from the one of W indicates the presence of
meaningful information about true correlation of the assets.

Especially in a large system, it’s demonstrated that the distribution of the spectrum of
a Wishart matrix W with K = diag(o,...,o) follows a certain distribution, the Maréenko -
Pastur distribution [Mar¢enko, 1967]. More detail is given in the below theorem, while its result

is illustrated in Figure 3.1.

Theorem 3.1. If N — 0o, T — o0 in such a way that % approaches a fized number o > 1, the
empirical spectral distribution of the Wishart matrizc W converges weakly, in probability, to the

Maréenko - Pastur distribution with density p supported on [A_; Ay] and given by

«

PN = 55/ =N (A= 1), VA € [AsAy] (3.5)

where Ay = o2 (1 + 017%)2.

Sketch of proof. As well as this theorem’s application, its proof is also an attractive subject of
many works such as [Dyson, 1971; Marcenko, 1967; Sengupta, 1999; Stein, 1969; Yaskov, 2016]
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Chapter 3. Spectral Property of Stocks’ Cross-correlation Matrix

using various techniques, for instance, the method of moments, free probability method, the
singular value decomposition, modification of the standard Cauchy—Stieltjes resolvent method.
The most natural but long method to prove this theorem is the moment method, i.e., we compare
the moments of the two distributions, the empirical distribution of the spectrum of W and the
Marcenko - Pastur distribution. The sketch of this proof is that, firstly, we show that the k-th

moment of the Marcenko - Pastur density p is

k o~ (k—l) (k)
/ Nep(N)dh = g?FFD N — v Lol (3.6)

= r+1

On the other hand, let Ay > Ao > ... > Ay be the eigenvalues of a sample of W, then the

empirical cdf of the spectrum of W is

1 N
Nz )\Z,oo) (37)

So, the k-th moment of the empirical density distribution of the spectrum of W is

dl
k -1 k
/ Mt = <N tr'W > (3.8)
The proof of Theorem 3.1 is accomplished by showing that:

o for each positive integer k, the expectation of N~ 1trW* converges to the right-hand side

of equation (3.6), and

o the variance of trW* converges to 0. |
o _
”™
. L
i)
&
D -
o |
[Te]
=
o
p= ; .
0 1 2 3 <
eigenvalue

Figure 3.1: Compatibility between the Marcenko - Pastur distribution (red line) and the spectral
distribution of the Wishart matrix obtained from N = 1000 i.i.d. standard normal random

vectors with oo = 1.05.

o8



1. Random Matrix Theory Applied to Stock Systems

In reality, many works found that most of eigenvalues of the cross-correlation matrices of asset
price changes in world-wide financial markets agree surprisingly well with the range provided
in Theorem 3.1. Some examples of these cross-correlation matrices can be listed as the matrix
of daily returns of stocks comprised in the S&P 500 Index [Laloux, 1999], the matrix of daily
returns of stocks corresponding to the largest companies traded on the NYSE [Plerou, 1999], the
matrix of daily returns of the most actively traded German stocks [Rosenow, 2008], the matrix of
daily returns of 20 world stock indices [Nobi, 2013], the matrix of daily returns of Korean stocks
[Nobi, 2013], and the matrix of daily returns of Vietnamese stocks in our study [Nguyen, 2019b].
In Figure 3.2, we provide an example of this agreement on the cross-correlation matrix of stocks
quoted on the HSX from 01/01/2017 to 01/01/2020. There are N = 271 stocks in this database
observed in T' = 749 trading days, i.e., o ~ 3.1.
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Figure 3.2: Explanation of the spectral distribution predicted by RMT (black line) for a large
part of the spectral distribution of the cross-correlation matrix of stocks quoted on the HSX
from 01/01/2017 to 01/01/2020 (insert: these two distributions when zooming in the eigenvalues
without the largest one).

Furthermore, since the largest eigenvalues of C are inconsistent with the null hypothesis,
we may consider another null hypothesis assuming that the matrix is purely random except
for some eigenvalues significantly exceeding the theoretical upper limit Ay. Then, we adjust
the parameter o to be less than 1 to subtract the contribution of these largest eigenvalues to
the normal value o = 1, as proposed by [Laloux, 1999]. Figure 3.3 provides an example given
in [Laloux, 1999]. This figure shows the remarkable compatibility of the spectral distribution
predicted by the new null model and the spectral distributions of the cross-correlation matrix
extracted by the daily closing price of N = 406 stocks of the S&P 500 in T' = 1309 trading days
during the year 1991-1996.
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Figure 3.3: Compatibility of the spectral distribution of the cross-correlation matrix of stocks
comprised in the S&P 500 during the year 1991-1996 (black line) and the spectral distribution
predicted by RMT. The blue curve is the predicted distribution with 02 = 0.85 obtained from
assuming that the matrix is purely random except its largest eigenvalue. The pink curve is the
RMT’s prediction that optimally fits the empirical distribution with ¢? = 0.74 obtained from
assuming that the matrix is purely random, except 6% the largest of its spectrum [Laloux, 1999].

Let’s notice that the theoretical upper bound A, given by Theorem 3.1 is obtained in the
limit N — oo, while an empirical cross-correlation matrix always has finite numbers of N and
T. Therefore, when N is large, the empirical largest eigenvalue that relates to the randomness
of the cross-correlation matrix may only be approximately the theoretical bound A. Therefore,
only eigenvalues that are substantially larger than Ay are expected to store information about
the exact inter-correlations of the system’s components that cannot be explained by the ran-
domness. These significantly large eigenvalues, as well as their associated eigenvectors, attract
much attention to understand the collective behavior of a system since they reflect the true
correlations of the system’s components.

In fact, many economically meaningful results are found from this point of view. One of them
is the role of the largest eigenvalue of the cross-correlation matrix of stocks. This eigenvalue is
always extremely larger than others regardless of whether the underlying market is a developed
one [Laloux, 1999; Plerou, 1999; Rosenow, 2008], a developing one [Nobi, 2013], or an emerging
one [Nguyen, 2019b] (see Figure 3.2 — 3.3). Especially, the largest eigenvalue’s predominance
becomes more outstanding during market crashes in different stock markets [Drozdz, 2000; Nobi,
2013]. We can explain this fact by a general observation that stock price fluctuations tend to
change simultaneously in a crisis. Because the stocks become more correlated, the effect of
randomness reflected by most of the remaining eigenvalues becomes less. It implies a narrower
distribution of the spectrum in the entire spectral distribution of the cross-correlation matrix.
By contrast, the distribution of the largest eigenvalues must be wider. A similar observation

is verified by Zheng et al. [Zheng, 2012] when they study the sum of the largest eigenvalues
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of the cross-correlation matrix contributed by the indexes of ten major sectors in the U.S. and
another similar matrix in Europe. They found that a steep increase in this sum can be used as
an indicator of systemic risk, in which the largest eigenvalue in the case of U.S. indexes accounts
for nearly 60% of the total variation. Besides, the assets’ true interactions estimated by the
RMT framework are very helpful in risk management and portfolio optimization [Laloux, 2000].
The important roles of the eigenvalues and their associated eigenvectors are explained deeply

through PCA. More details are given in the next section.

2 Principal Components of Stock Returns

PCA is a well-known technique of multivariate analysis. The main idea of PCA is to reduce
the dimensionality of a dataset consisting of many correlated variables while retaining the present
variance of the dataset as much as possible. If we simply fix some initial variables, we can
reduce the dimensionality, but a considerable amount of the fixed variables’ variations can be
lost. Instead, we compose a new variable that is a linear combination of N initial variables
with maximum variance. The first new variable is called the first principal component (PC).
Similarly, we continue finding the second new variable, called the second PC, such that it is still
a linear combination of the initial variables, has a maximum variance, and is uncorrelated with
the first PC. Generally, the i-th PC is a linear combination of the initial variables such that it
has the maximum variance and is uncorrelated with the first (i —1) PCs. As a result, with PCA,
we transform a set of correlated random variables into a set of uncorrelated random variables
PCs. Furthermore, most of the initial dataset’s variation can be expressed by the first m PCs,
where m < N. Consequently, using the first m PCs, we can reduce the initial dimensionality
significantly while keeping most of the variations in the initial dataset. From this main idea, it
turns out that the PCs relate to the eigenvalues and the eigenvectors of the covariance matrix of
the initial variables. This issue is explained in the following paragraphs as proposed in [Jolliffe,
1986]. Moreover, we present the result for our situation, the cross-correlation matrix of stocks.

In particular, for a stock system containing N stocks, let r = (r;) where 7; is the

i=1,N°

7)i—1a> Where 77 = 7 is the standardized return of stock i. The

return of stock i, and r* = (7]
cross-correlation matrix C of variables in random vector r, also the cross-correlation matrix of
variables in random vector r*, can be replaced by the sample cross-correlation matrix. According
to the Spectral Theorem in linear algebra, because the matrix is real, symmetric and positive
semidefinite, it has N nonnegative eigenvalues (not necessary to be distinct), and there is an
orthonormal basis of the vector space RV consisting of eigenvectors of C. With financial data,
we suppose that the rank of matrix C equals the number of its columns, so C has N distinct

eigenvalues A1 > \o > ... > An. Then, the idea of PCs is concreted as follows:

Definition 3.2. Let u; (i = 1,N) be the eigenvector associated with the i-th eigenvalue \; such
that |Ju;|| = w;’u; = 1, A is the N x N matriz whose columns are w;s, and z = A’r*. Let z; be
the ith component of z. Then, z; is called the i-th PC of r.

Let’s notice that, in the following statements, when we mention a certain eigenvector associ-

ated with a given eigenvalue, this vector is the unit one, i.e., the vector whose elements’ sum of
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squares equals 1. Furthermore, if u is a unit eigenvector associated with an eigenvalue, vector
—u is also a unit eigenvector associated with the eigenvalue. For simplicity, we only focus on the
unit eigenvector that the number of nonnegative components are not smaller than the number
of negative components. The following theorem indicates that PCs defined in Definition 3.2 are
consistent with the idea of dimensionality reduction above. Besides, we notice that this theorem

is valid for any set of uncorrelated variables.
Theorem 3.2. PCs of the random vector r satisfy the following properties:
(i) The PCs are uncorrelated.

(ii) The variance of each PC equals the corresponding eigenvalue. i.e.,

Var (z;) =X\, Vi=1,N (3.9)

(iii) For all linear combination v’r* of variables in r*, where v is a unit vector, the first PC’s

variance is the largest, i.e.,

H]ana_X1 Var (v’r*) = Var (z1) (3.10)

(iv) For all non-zero linear combination v’r* of variables in v*, the first PC is the one that
maximizes the sum of squares of the Pearson correlation coefficients with each of stock

returns, i.e.,

N N
2 2
m E ; = E ; 3.11
y:v’ra’;i/;éo 2 (Piy) 2 (Piz1) ( )

where p; 4 is the correlation coefficient between y and r;, and p; ., is the correlation coef-

ficient between z1 and r;, i =1, N.

Proof. According to Definition 3.2, the i-th PC of r is

zi=w'r", Vi=1N (3.12)
Besides, since u; is the eigenvector associated with eigenvalue \;, we have
Cu,; = )\iui, Vi = 1,N (3.13)

From (3.12) and (3.13), we obtain the following statements:

(i) Remind that the set of eigenvectors (u;);,_77 is an orthonormal basis of the vector space

RY. So, for any numbers i # j (i,j = 1,N) ,u;’u; = 0, then

Cov (2, zj) = E ((wy’r*) (u;’r*)) — E (u;’r") .E (u;’r")

=F ((I‘*)’ Uiuj’r*) — (E (r*))’ uz‘-uj,E (I‘*) —0 (314)
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(ii) For any ¢ = 1, N, because the standardized return r; has unit variance

Var (z;) = Var (u;’r") = u;’Cu; = u;” (\iw;) = A ||ug| (3.15)

Since u; is a unit vector, we easily obtain (3.9) from (3.15).

(iii) Because (u;),_j is an orthonormal basis of the vector space RY, any vector v € RV\{0}
can be written in a unique way as a linear combination of u;s, i.e., v = Zz‘]\;1 a;u;, where

a;s (i = 1, N) are real constants that are not all simultaneously equal to zero.

So, for any vector v € RY,

Mz

N N
a;u )zZZaiajui’Cuj

i=1j=1

Var(vr)—v’Cv—(Zaz ) (
N
Zaa]uz)\u] Z

j=1 i=1j

2 2
=1

7

Mzﬂ

;i\ (u;’a;) ZazaZA [l || (3.16)

tnﬁz

s
Il
—

1

&

-
I
A

Moreover, if v is a unit vector, then

N /N N N
L=|vl= (Z ai“z’) (Z Oéz'ui) = Zzaiajui’uj
i=1 i=1

=15=1 (3.17)
N N
=>_of[luill =) _of
i=1 i=1
From (3.14) and (3.15), we get that
Var (v’r*) < \; (3.18)

Obviously, equation (3.10) is obtained directly from (3.9) and (3.18). The equality sign

occurs when v = uj.
(iv) For any ¢ = 1, N, the correlation coefficient between z; and r; is

E (riz1) — E (r;) E(21) _E (riug’r®) — E(r;) E (uy’r*)
Var (z1) oiv/ A
w’ B (rr) — E(r) E(r*)]  w’Cio;  Ciuy  Aul” (3.19)

oiv AL oA VA VA

Pi,z1 =

— V)

()

where C; is the i-th column of matrix C and u;’ is the i-th component of vector uj.
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Consequently, because u; is a unit vector, we obtain

N N s
> (piz)” = 2> (u?) =l = n (3.20)
=1 i=1

Similarly, for all non-zero linear combination y = v’r* of variables in r*, remind that

v = YN, aju;, where oys (i = 1, N) are real constants that are not all simultaneously

equal to zero, so

v’ [E (rir*) —F (7“1) FE (I‘*)] _ V’CZ'JZ‘ . Ci’V

Piy = 00y 00y N Oy
1 N 1 N 1 N 0) (3'21)
%
= — Ci’Zajuj = — ZO{jCi’uj = — Zaj)\juj
Oy j=1 Oy j=1 Oy j=1

@)
J
of eigenvector u;. Because unit vectors u;s, ¢ = 1, N, are mutually orthogonal, equation
(3.21) implies that

where o, is the standard deviation of random variable y, and u;” is the i-th component

N ) 1 N N N @ (0)
(A (A
(piy)” = 2 DD ajordideu uy
i=1 Y i=1j=1k=1
1 N N
= 5D D ajopdih (u;uy) (3.22)
Oy =1 k=1
1 al 242 1 al 242 )‘1 al 2
=52 Nyl =—3 afN <5 ) aj)
Y j=1 Y j=1 Y j=1

Let’s replace o) = Var (v'r*) = SN a2\, as demonstrated in (3.16), we get

N

> (pig)’ <M (3.23)

i=1

Obviously, equation (3.11) is obtained directly from (3.20) and (3.23). The equality sign

occurs when v = uj. [ |

According to Theorem 3.2, the first PC explains most of the variance in the data. For
investment and risk management, PCs of r, especially the first PC, have remarkable meanings.
Indeed, if every nonzero vector v represents an investment portfolio where the i-th component
v of v is the capital invested to stock 4, v’r is the portfolio’s return. Hence, the Jj-th PC z; is
the return of a portfolio whose the loading of stock ¢ is the fraction uy) /oi. We call this portfolio
is the j-th eigen-portfolio. Theorem 3.2 provides that the eigen-portfolios are uncorrelated to
each other, and the variances of their returns equal the corresponding eigenvalues. So, the first
eigen-portfolio is the one whose return has the largest variance. It means that this portfolio is
the riskiest eigen-portfolio. In general, according to (3.10), the first eigen-portfolio is the riskiest

NN .
of all portfolios satisfying the standardized condition } (U(Z)UZ’) =1, where v is the loading
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of stock i (i = 1, N). Consequently, the first PC is equivalent to the market factor in the capital
asset pricing model (CAPM), a well-known framework for pricing the return of an asset [Plerou,
2002]. Indeed, the market factor of the model monitors the state of the overall stock market as a
whole, so it is the primary driver of the stock market returns. Meanwhile, the first PC represents
the linear combination of all stock returns that explains most of the returns’ volatility because of
the dominance of the first eigenvalue in the spectrum. In addition, since the first eigen-portfolio
is the portfolio with the largest sum of squares of correlation coefficients with all stock returns,
according to the final property given in Theorem 3.2, it correlates the most with the entire
market. Thus, in [Nguyen, 2019b], we call it the most correlated portfolio (MCP). As a result,
this portfolio’s return tightly correlates with the return of a market portfolio represented by a
capitalization-weighted index. Figure 3.4 plots examples of this linear relationship in two cases
of markets having different development levels, the U.S market and the Vietnamese market.
The database used to obtain the cross-correlation matrices are the closing prices of the S&P 500
Index’s component stocks from the U.S. market and the VN Index’s component stocks from the
Vietnamese market, for a period of 5 years from 01/01/2013 to 12/31/2017. In these empirical
examples, we found a high correlation coefficient between the first eigen-portfolio and the market
index, which is about 0.983 for the U.S. market and about 0.818 for the Vietnamese market.
Therefore, from the portfolio management’s point of view, if one is risk-averse, she can choose the
eigen-portfolio associated with the smallest eigenvalue. Meanwhile, if one is bench-marked by
the overall market performance, the first eigen-portfolio is a considerable alternative. Obviously,
although both the market portfolio and the first eigen-portfolio diversify the idiosyncratic risks
of individual stocks, the former bases on the corporations’ capitals while the latter is just a pure
exposure to systematic risk - the risk affected by many external factors such as monetary, fiscal

policy, growth expectations, political risk, regulatory risk and so forth.
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(a) The S&P 500 Index vs the most correlated port- (b) The VN Index vs the most correlated portfolio
folio constructed on the index’s components constructed on the index’s components

Figure 3.4: The relative performance of the simulated most correlated portfolio (dash line) vs.
the corresponding market index from 2013 to the end of 2017.

The strong relationship between the largest eigenvalue and the correlations within the entire

market is also verified by Nguyen [Nguyen, 2013]. The author found that the eigenvalue ap-
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proximates the product of the number of stocks and the average stock correlations. As a result,
the largest eigenvalue and its associated eigenvector can offer an alternative way to study the
mechanism and evolution of a financial crisis, then construct indicators for the systemic risk. On
the other hand, the eigenvectors associated with the remaining eigenvalues, which significantly
exceed the upper bound predicted by RMT, also have interesting meanings. It is empirically
demonstrated that we can get predictions about a market’s clustering from these eigenvalues
because they contain information about business sectors or groups of stocks that exhibit com-
mon trends [Jiang, 2012; Plerou, 2002; Utsugi, 2004]. Furthermore, from these results, we can
compose portfolios that replicate the market index and sector indices such that their returns are

uncorrelated.

3 Loadings of the First Principal Component of Stock Returns

Because a few largest eigenvalues, which much deviate from the RMT’s upper bound, can
reflect the nature of the stock correlations and the PCs associated with these eigenvalues have
remarkably economic meanings as discussed in the previous section, a question is how individ-
ual stocks contribute to these PCs. Since a PC is a linear combination of the standardized
stock returns, we focus on the combination coefficients or the components of the corresponding

eigenvector.

Definition 3.3. For any number i = 1, N, the components uz(»j)(j =1, N) of eigenvector u; are

called the loadings of the i-th PC.

Basing on the loadings of the first PCs associated with the largest eigenvalues deviating
from the RMT’s upper bound, except A1, we can indicate that these PCs mainly contributes by
distinct groups such as the group of stocks with large market capitalization, the group of stocks
of firms in the same sector or a mixture of some sectors [Jiang, 2012; Plerou, 2002; Utsugi, 2004].

In this section, the first PC’s loadings are of our interest. Because the first PC is the
market factor which is the primary driver of the stock returns, its loadings provide meaningful
information about the common interaction among stocks in the underlying market and main
elements that affect the market’s collective behavior. Most studies found that the loadings
have the same sign [Gopikrishnan, 2001; Nguyen, 2013; Pan, 2007; Plerou, 2002]. Because the
sign of a linear regression’s coefficient indicates that the corresponding independent variable is
positively correlated or negatively correlated with the dependent variable, loadings of the first
PC are generally all of the same sign, whereas this is not the case for any of other PCs, confirms
that there is a dominant systematic factor totally impacting all or most of stocks in the market.
Figure 3.5 illustrates the same sign of the loadings in the U.S market and Vietnamese market.
The database used in this figure is the daily stock prices from 01/01/2013 to 12/31/2017, i.e., the
same database with Figure 3.4. Figure 3.5 also demonstrates that the loadings are uncorrelated
with the market capitalization of the corresponding firms. Therefore, using market capitalization
to weigh a stock is not the best way to have a portfolio capturing the common behavior of a stock

market. Let’s notice that in the figure, we plot the first eigenvector u;’s components divided by
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v/ A1. This division helps express how much the volatility of an individual stock contributes to
one unit of the market factor’s volatility. Thus, we have a better visual comparison between the

two markets.

Components of uy
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Figure 3.5: Components of u; (scaled by /A1) against the market capitalization of the corre-
sponding stocks in the S&P 500 Index and the VN Index in the period from 2013 to the end of
2017.

Obviously, a deep analysis of the loadings is necessary to study the strong common interaction

between components of our complex systems - stock markets.

4 Stocks’ Influence Reflected through the First Principal Com-

ponent of Stock Returns

According to property (iv) of Theorem 3.2, the first PC is corresponding to the portfolio
that most correlates with the overall market. On the other hand, the correlation between the
first PC and the return of any stock is generally positive. Consequently, we can guess that a
stock has a positively large loading in the first PC if the stock correlates positively and highly

with most stocks in the market. This is demonstrated by our following result:

Theorem 3.3. If the largest eigenvalue is extremely larger than other eigenvalues, the loading
of the first PC on a component nearly relates linearly to the average of correlation coefficients

between the stock corresponding to the component and other stocks.

Proof. By the spectral decomposition of the cross-correlation matrix C, we can express the
matrix as C = Zfil Aiu;u;’. However, because the eigenvectors are unit vectors and the largest
eigenvalue \; is dominant remaining eigenvalues, we can approximate the matrix by the first
term of the sum, i.e.,

C ~ \ujuy’ (3.24)

Using (3.24), for any stock i (i = 1, N) the average ¢; of correlation coefficients between the
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stock and others are estimated as follow:

J#i J
~ ﬁ ;Alugi)ugj) -1 (3.25)
= ﬁ Alugi) Zj:ugj) -1] = N 1)\1ﬂ1u§i) — ﬁ
where % is the average of the components of u;. Especially, when N — oo, we obtain
& ~ M) (3.26)
|

Theorem 3.3 is valid in our financial context due to the fact that a stock system is always
large, and the first eigenvalue of the cross-correlation matrix of stocks is often at least one
order of magnitude larger than other eigenvalues (see Figure 3.2 — 3.3). For example, with the
database used in Figure 3.4 — 3.5, the number of stocks equals 482 and 274, while the largest
eigenvalue A; is 144 and 33.1 for the S&P 500 Index and the VN Index, respectively. Figure
3.6 shows that the value of A; is nearly one order of magnitude larger than others in both the
U.S. case and the Vietnamese case. As a consequence, we can see that the components of u; are
linearly dependent on the average correlations of individual stocks, as mentioned in Theorem 3.3
(Figure 3.7). Furthermore, Figure 3.6 also illustrates the empirically general observation that

most stock correlations are positive while their distribution does not always follow a normal

distribution.
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Figure 3.6: Probability density of the cross-correlation matrix C obtained in the period from 2013
to the end of 2017 and its spectrum (upper insert: all eigenvalues; lower insert: all eigenvalues
excluding the largest).
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Figure 3.7: Relationship between the first eigenvector’s components and the average correlation
coefficient of the corresponding stocks for the S&P 500 Index and the VN Index in the period
from 2013 to the end of 2017.

As a result, if a stock is highly correlated with others on average, the loading of the first PC
on the stock is large. Since the PC is the market factor that most correlates with the overall
market and explains most of the variance of stock returns, the stock must have a strong influence
on the market stability. Indeed, for the database used in the previous figure, Figure 3.8 shows
that stocks with the largest loadings of the first PC are at the center hubs of the MST of the
corresponding cross-correlation network. It means that the stocks play an important role when
a systemic breakdown happens. Meanwhile, stocks with small loadings of the first PC are leaf
nodes mostly. The various magnitudes of the loadings of the first PC on different stocks are
illustrated by the diversification of the node sizes in Figure 3.8b. This observation is not obvious
in Figure 3.8a because the figure only focuses on selected stocks in the S&P 500 Index, which is
mainly composed of about 500 blue-chip stocks out of nearly 3000 stocks listed on the NYSE.
Meanwhile, the stocks composed in VN Index are all of the stocks listed on the HSX. Hence,

the influence of each stock on the entire market is clearly decentralized.
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Figure 3.8: The MST obtained in the period from 2013 to the end of 2017 with node size as the
logarithm of the first PC’s loading on the corresponding stock (tickers of the stocks corresponding
to the top 10 loadings are shown and their corresponding nodes are filled).

On the other hand, we realize that the largest loadings of the first PC correspond to stocks
of financial services (brokerage or investment advisory firms) in both these cases. Especially,
let’s measure the contribution as of a business sector s for the first PC by the average loading

of the first PC on stocks belonging to the sector!, i.e.,
1 &L
as=—> "5 (j.s) (3.27)
ns

where ¢ (j,s) = 1 if stock j belongs to sector s and § (j, s) = 0 otherwise; ny is the number of
stocks belonging to sector s. Then, we found that the financials sector’s contribution for the
first PC is the largest (see Figure 3.9). As a consequence, Figure 3.8 and Figure 3.9 show the
essentials of financial companies in contributing to the common behavior of a stock market.
This helps explain why a company of financial services can rise to a super-hub when the MST

network approaches its unstable state — a star-like structure — as discussed in Chapter 2.

1We use the first PC’s loadings instead of the square of the loadings as suggested in [Conlon, 2007; Coronnello,
2005] to evaluate sector contributions. This choice comes from the positive values of most of the loadings.
Moreover, we want to evaluate the co-movement between a sector and the entire market rather than just compute
how much the sector can influence the market positively or negatively on average.
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Figure 3.9: Sector contributions for the first PC of stock returns obtained in the period from
2013 to the end of 2017.

In brief, because the first PC of stock returns are most correlated with the overall market
and equivalent to the market factor, its loadings can reflect the influence of a stock or a group of
stocks on the overall market. We demonstrate, both theoretically and empirically, the positive
correlation between the loadings and the average correlations of individual stocks. We also found
that financial companies tend to have prominent loadings in the market factor. These results
are very useful in investment and managing systemic risk. Especially, the relationship between
the loading of the first PC on a stock and the role of the stock in the MST network shows that
the PC contains meaningful information about the MST’s structure. It means that PCA can be
a useful method to analyze the MST network. Moreover, because PCA encodes the whole data

of a cross-correlation matrix, it is expected to provide more information than the MST analysis.
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Chapter

Cascading Failure in Financial Systems and

Its Pretopological Model

Objective
The collective behavior of a complex system sometimes emerges from a cascading
failure caused by the strong relationships between the system’s components. In this
chapter, we use pretopology theory to construct a framework that can capture the
cascading failure’s evolution. The framework takes into account the relationship
between each pair of stocks, the relationship between each stock and a group, as
well as the crowd effect. It helps predict the impact magnitude of a stock’s price
fluctuation on others when the stock is in a negative price trend and also helps
predict stocks not affected by the stressed stock. Then, we apply our framework to
test the effect of the common stock of Merrill Lynch & Co. on others on the NYSE.
We also compare the effectiveness of our pretopological framework with ones of the
MST network and the correlation-based threshold network.
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1. Cascading Failure in Complex Systems

1 Cascading Failure in Complex Systems

In Chapter 2, we studied the complex networks or the graph representations of a complex
system basing on the inter-correlation between its components and discussed the resilience of
a complex network under intentional attacks and the random failure of nodes. Being different
from these failures whose percolation processes only depend on the role of each component
in the system’s structure or occur randomly, sometimes a complex system can be damaged
by the fault of just one or a few components because of the strong relationship between its
components. In particular, when one or a few components fail, some components most relating
to the failed components are first infected. Then, these components continue to trigger the failure
of others and so on. This diffusion process through the relationship of a system’s components is
called the cascading failure. It occurs in different complex systems such as computer systems,
transportation systems, power systems, social systems, biological systems [Schéfer, 2018; Sun,
2012]. In these systems, when a components fails, some others must compensate for the fail
components. This leads these components to overload, then infect others (see Figure 4.1). One
of the well-known cascading failures is the India blackouts that happened in July 2012. In this
event, a circuit breaker tripped, and power failures cascaded through the grid such that over
400 million people were affected '. Another example is the Internet congestion collapse that
happened in October 1986. At that time, traffic was rerouted to bypass malfunctioning routers,
eventually leading to an avalanche of overloads on other routers that were not equipped to
handle the extra traffic. Consequently, the system’s performance becomes extremely poor when
the connection speed between the two places of only 200 meters apart dropped by a factor of 100
[Crucitti, 2004a]. The present Covid-19 pandemic is also an illustration of the cascading failure
because the contagion passes from a person to whom having close contacts and rapidly spreads
to the community. Similarly, the cascading failure also appears in financial systems when a
financial institution’s failure may cause its counterparts to fail and evenly spread throughout
the market. For example, a decline of contracts in the equity market leads to a U.S trillion-dollar
stock market crash in May 2010 .

!See details on the site: https://en.wikipedia.org/wiki/2012_India_blackouts
2See details on the site: https://en.wikipedia.org/wiki/2010_flash_crash
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Network running normally Network rebalances load Network rebalances load

Network rebalances load Network fails

Figure 4.1: Cascading failure in a network.

Because of its serious impact, the cascading failure becomes an important research subject.
One of the first approaches to get more analysis about its mechanism and impacts is modeling
how it happens inside a system. In physical systems such as computer systems and transporta-
tion systems, by considering the systems as complex networks, this failure can be modeled by
the contagion of a node’s failure to its neighborhood. This model uses a flow concept that goes
through network connections and damages a node if the flow’s intensity of the node is higher than
the node’s capacity due to the failures of its neighbors [Crucitti, 2004a; Schifer, 2018]. However,
this idea is not suitable to apply for a stock system under its correlation-based network because
this network is complete but not all stock correlations are high enough to make stocks affect each
other. The MST of the network is also inappropriate since it just takes into account the most
probable path for the failure spreading from a node to the entire market instead of reflecting all
potential paths of the infection. For this point of view, the correlation-based threshold network
is more convenient because, with a suitable threshold, it keeps more connections that correspond
to meaningful stock correlations in the original correlation-based network. However, using this
threshold network, we still have trouble in modeling the cascading failure from a group of stocks
to another stock because the network only reflects the relationship between each pair of stocks.
Meanwhile, a stock’s price is often affected by the dramatic changes of a group of other stocks’
prices rather than by the price fluctuation of only one stock. This can be caused by the changes
of some common factors with influence the entire market or a certain part of the market, such

as stocks belonging to the same sector. Another reason is the crowd effect that makes more

Shttps://en.wikipedia.org/wiki/Cascading_failure
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2. Pretopology Theory

and more investors, governed by greed and fear, engage in buying or selling stocks frantically
and consequently creates economic bubbles or stock market crash. Therefore, in this chapter,
to model the cascading failure, in addition to continuing to focus on high correlations between
stocks as the correlation-based threshold network, we construct a new model that takes into
account both the relationship between each pair of stocks and the relationship between each
stock and a group. The new model is based on pretopology theory with more details given in

the next section.

2 Pretopology Theory

Pretopology theory was developed with objective to tracking the evolution of a diffusion
process and how it contributes to the final result [Belmandt, 2011]. In network analysis, a
diffusion model is usually defined via node’s neighbors and follows a diffusion rule. Similarly,
in pretopology theory, we start with a map represented the rule — pseudoclosure. Let E be a

nonempty set and P(E) be the set of all its subsets.

Definition 4.1. We call pseudoclosure defined on E any map a from P(E) into P(E) such that:
(i) a (@) =, and
(ii) VAC E,ACa(A).

Obviously, pseudoclosure is a more general concept defined simply as any expansion rule
for nonempty subsets of a system’s elements instead of basing only on the node connections as
diffusion rules studied in network analysis. With pseudoclosure, we can consider multi-relation
between the system’s elements or between an element and a group of elements to model an
appropriate proximity concept for each particular diffusion problem. Figure 4.2 illustrates an
example of a pseudoclosure a defined by two binary relations R; and Rs on five elements such
that a(A) is the union of A and the set of elements that have relation R; with all elements
of A and have relation Ry with at least one of elements of A. For instance, if A = {1,5},

a(A) = {1,2,5}.

a(A) = Au{i = 1,5|(Vj € A,iRyj) A (3] € A,iR,))}

Figure 4.2: A pseudoclosure defined by two relations R; and Ra, to model the proximity concept
between an element and a group of elements.
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By contrast, in order to model the dilution of a given set, we need a rule that helps to
remove the most irrelevant elements with the remaining ones. In pretopology theory, any map

that transfers a set to a smaller one or keeps the set as itself is defined as the below concept:
Definition 4.2. We call interior defined on E any map i from P(E) into P(E) such that:
(i) i (E) = E, and
(ii) VA C E,i(A) C A.

For simplicity, an interior defined on F is usually defined as the c-duality of a pseudoclosure
defined on F, i.e.:

Definition 4.3. We call interior defined on E any map i from P(E) into P(E) such that:
i(A)=FE\a(E\A), VACE (4.1)

where a is a pseudoclosure defined on E.

In this study, we consider i as a c-duality of a. Then, a pretopological space is defined simply

as the following;:

Definition 4.4. A pretopological space is a pair (E,a(.)) where a is a pseudoclosure defined on

the nonempty set E.

The first advantage of a pretopological space is that the successive computations of a pseu-
doclosure to a given set A helps model the evolution of a dilation process starting from A.
Meanwhile, the result of applying the interior successively to A can model a dilution process
starting from the set in individual steps (see Figure 4.3). In addition, we also take into account

the limits of these processes if they exist to get the processes’ final results.
Definition 4.5. Given a pretopological space (E,a(.)), for any subset A of E,
(i) A is said to be a closed subset of E if and only if A = a(A).
(ii) A is said to be an open subset of E if and only if A =1i(A).
Definition 4.6. Given a pretopological space (E,a(.)), for any subset A of E,

(i) we call closure of A, denoted by F(A), the smallest closed subset of E that contains A if

the subset exists.

(ii) we call opening of A, denoted by O(A), the biggest open subset of E that is included in A

if the subset exists.
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F(4)=a’(4)

i(4) (¥(A4)=0(4)

Figure 4.3: Successive computations of pseudoclosure and interior.

Especially, any topological space is a pretopological space whose pseudoclosure is the closure
operator. In addition, a pretopological space can be considered an extension of a usual graph or
even a hypergraph, a generalization of a graph in which an edge can join any number of nodes.
Indeed, according to [Dalud-Vincent, 2011], it is always possible to associate a pretopological
space to a hypergraph; furthermore, we can construct a pretopological space from a given

hypergraph such that their connectivity properties are equivalent:

Proposition 4.1. For any hypergraph (E, H) where nonempty set E is the set of nodes and
H C P(E)\{@} is the set of hyperedges, let R is a binary relationship defined on H by, for any
hyperedges e;, e; € H,

eiRe; & e; ﬂej # & (4.2)

Let a be a map defined on H by
a(A)=AU{ec HIRe.NA#w@}, VACH (4.3)

where R, = {e* € H |eRe* }. Then, we have:
(i) (H,a(.)) is a pretopological space.

(ii) Assume that there is no isolated node in (E, H), then (E,H) is a connected hypergraph if
and only if (H,a(.)) is a strongly connected pretopological space, i.e., for any nonempty
set AC HF(A) =H.

Proof.

(i) Obviously, from (4.3) we can see that A C a(A) for any subset A of H. Besides, since
R.N@ =@ for any e € H, we have a(2) = &. Thus, a is a pseudoclosure defined on H,

i.e., (H,a) is a pretopological space.

(ii) The hypergraph (E, H) is connected if and only if any two of its distinct nodes connect
to each other. Consequently, if A is a subset of H, for any e € A and for any e* € H\ A4,

there is at least one path from a node in e to a node in e*, i.e., there exists a sequence

77



Chapter 4. Cascading Failure in Financial Systems and Its Pretopological Model

of nodes (Ui)iz(fk C FE and a sequence of hyperedges (ei)i:ﬁ C H such that ug € e,
up € e, and {up,u1} C e1,{ui,ue} C ea,..., {ur—_1,ur} C ex. Hence, we have eRe,
e1Res, ..., er_1Rep and e Re*. Then, e* must belong to the set obtained from at most k
successive computations of a to the set A in pretopological space (H,a(.)). This implies
that e* € F(A). So, H\A C F(A). Besides, since A C F(A), we get H C F(A). Hence,
F(A)=H.

By contrast, let assume that (H,a(.)) is a strongly connected pretopological space. For
any pair of distinct nodes u,v € F, let e and e* are hyperedges in H such that v € e and
v € e*. Because F({e}) = H, so e* € F({e}). Then, there exists a number %k such that
e* € a¥({e}). It means that we can find a sequence of hyperedges (e;) i—1% C H such that
eReq, e1Res, ..., erp_1Rep and epRe*. The sequence is the path connecting two nodes

and v. Therefore, (F, H) is a connected hypergraph.

|

By contrast, a pretopological space is not always associated with a graph or a hypergraph.
For example, for the pretopological space given in Figure 4.2, we have to construct two graphs
to model two relations Ry, Ro of nodes, respectively.

As a result, graphs, hypergraphs, and topological spaces are particular cases of pretopolog-
ical spaces. Furthermore, pretopology theory still allows considering basic concepts of graph
theory such as degree, path, closeness centrality, betweenness centrality, and basics concepts
of topology theory such as closure, opening, neighborhood, filter [Belmandt, 2011; Levorato,
2014]. Therefore, when graphs and hypergraphs are inappropriate to study a system including
elements’ multi-relation and relationships between a group of elements and one element, or when
the evolution of dilation and/or diminution process is the research target, pretopology theory
can be a valuable solution. It is also used in different fields to investigate complex systems, for
instance, pollution modeling [Ben-Amor, 2010; Lamure, 2009], macroeconomics analysis [Auray,
1979], image analysis [Bonnevay, 2009], Smart Grid model [Guérard, 2015; Petermann, 2012]. ..

3 Pretopological Framework of Cascading Failure in Stock Mar-
kets

For a complex system, if its elements are related to each other by a valued relation, one
of the common ways to build a pseudoclosure a is that for any subset A of the elements, a(A)
is composed of A and all other elements whose relation to A is greater than a threshold. In
particular problems, the relation of an element x to a group can be defined by different measures,
for instance, the sum, the mean, the maximum, or minimum of relations between x and elements
of the group. In this way, we transfer the valued relation between pairs of elements to a binary
relation between one element and a group of other elements. This supports the main target:
constructing a proximity concept so that the spread of a special behavior from a part of the
system to the rest can be reflected as much as possible. For example, in [Ben-Amor, 2010;

Lamure, 2009], to construct a stochastic pretopological model of the spreading pollution in a
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geographic area, the authors use a lower limit for the concentration of an emitter’s pollutants
on a point to verify whether the emitter contaminates the point. Then, the pseudoclosure is
built by expanding a given subset of the area with all points polluted by at least one emitter of
the subset. Also, in [Auray, 1979], to establish a pretopological space to reflect the input-output
relation between activity sectors of an economy, a lower threshold of this relation is considered
to define a binary reflexive relation for each pair of sectors. Then, the pseudoclosure is built to
expand a group of sectors by other sectors having the binary relation with at least one sector of
the group.

Similarly, in a stock system, to model the cascading failure of a stock’s price shock, we
choose a lower limit of stock correlation to consider if stocks correlate highly enough to each
other so that a stock’s price fluctuation can affect others. Base on the threshold, we construct
a pseudoclosure to determine the closeness of a stock to be affected by the price changes of a
group of other stocks. In contrast to the works in [Auray, 1979; Ben-Amor, 2010; Lamure, 2009],
we don’t use two assumptions: a constant threshold of the relation between a stock and a group,
the spreading condition that the stock only needs to correlate highly enough to at least one
element of the group. The reason is that we want a model describing the group effect, which
usually takes place in financial markets due to the impact of some common factors such as the

market factor, sector factor... The three following assumptions are used in our model:

(i) If a stock has a price shock, stocks highly correlate with it are directly influenced.
(ii) The impact of a group on an outside stock is higher if the group is larger.

(iii) A change in the size of a group makes the group have more impact on an outside stocks if

the group’s size is larger.

The second assumption means that when more stocks have significant changes, the probabil-
ity that the stocks affect the price fluctuations of others is also higher. Especially if the number
of negative stocks is large enough, this can create a dramatic crash in the entire market due
to the psychological fear of investors. Then, a stock is also caught up in the crash despite its
low correlations to other stocks. Therefore, the last assumption is essential: the size increase
of a large group makes more impact than the size increase of a small group. Consequently,
the last two assumptions imply that the impact threshold of a group of stocks is a decreasing
and concave function of the group size. In addition, because we adjust the impact threshold
according to the group size, to identify if a stock is “close” enough to a group, we compare the
impact threshold of the group with the average correlation coefficient between the stock and the
group’s elements. As a result, if E be the set of all listed stocks in a stock market, and N be the

number of these stocks, we use the following pseudoclosure for our cascading failure problem:

Proposition 4.2. Let f be a decreasing and concave function from [1,N] into [0,1). Let a be
a map from P(E) into P(E) such that a(2) =@ and

a(4)=AU{ke B\A ”jl” S e > (1Al Y vae PE) {2} (4.4)

jEA
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where ||A|| is the size of A. Then, (E,a(.)) is a pretopological space with the interior i such that
i(F)=FE and

z’(A):{k:eA

Z ik < f (N IIAII)} , VAe P(E)\{E} (4.5)

N -] JEE\A

Proof. It’s clearly that a is a pseudoclosure by Definition 4.1, so (E, a(.)) is a pretopological
space.

According to Definition 4.3, we have i (A) = E\a (E\A) for any A C E. So, it A = E, we
get i (F) = E\a(E\F) = E\a(9)=E\@ =FE.

Conversely, if A # E, since F\ A # &, we obtain

|E\AH Z c]k ||E\A||)})

JEE\A

Z cik = f HE\AH)}>

i (A) = B\ ((E\A) U {k: cAl——

:Aﬂ(E\{k:eA

_{keA [E\A| E%%140]1¢<f \E\AH)}

IEAAI S5

:{kEA _H Z C]k<f ”AD}

JGE\A

|

Thus, in our cascading problem, if we consider A as a set of failed elements, the pseudoclosure
defined by formula (4.4) satisfies the three assumptions of our model for the impact of A on
other stocks. On the other hand, when A # E, the corresponding interior i(A) is an extenuation
of A such that remaining stocks have small average correlations with the stocks outside A.
The remaining condition is determined by an upper limit which is equal to f (N — || A4]). So
differently from the pseudoclosure a, the interior’s threshold is an increasing and convex function
of the group size. Consequently, i(A) reflects the A’s subset of stocks mostly affected by stocks
of A more than others; moreover, the stock impact synchronizes with the size of A. Especially
when A is F, it means that the entire market is totally broken. As a result, with this model,
by finding the closure of a group of stocks, we can predict the impact magnitude of these
stocks’ price fluctuations on others when these stocks are in a negative price trend. Inversely,
the opening of the compensation of the group can help predict the stocks not affected by the
group’s negative price trend. With the pretopological space considered in Proposition 4.2, we

can find the closure and opening of a set of stocks by Algorithm 6 and Algorithm 7, respectively.
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Algorithm 6 Compute the closure of a set in the pretopological model of stocks.

Require: stock market F, subset A of F, decreasing and concave function f
1: procedure CLOSURE(E, A, f)
pseudoclosure < A
A—o
while pseudoclosure # A do
A + pseudoclosure

pseudoclosure < AU {k € E\A’m ZjEA Cjk > f(||A||)}

end while
closure < pseudoclosure > Output
end procedure

Algorithm 7 Compute the opening of a set in the pretopological model of stocks.

Require: stock market F, subset A of E, decreasing and concave function f
1: procedure OPENING(E, A, f)
interior < A
A+ FE
while interior # A do
A <« interior

interior < {k S A‘m ZjeE\A cik < f(N — ||AH)}
end while

opening < interior > Output
end procedure

4 Empirical Results on the NYSE

In this section, we empirically study how the pseudoclosure introduced in Proposition 4.2
can model the spreading of a price shock in a real stock market, the NYSE, and vice versa, how

the corresponding interior can help to predict stocks not affected by the shock.

4.1 Database

We examine the cascading failure starting from the common stock of Merrill Lynch & Co.,
which traded under the ticker MER on the NYSE, to others composed in the S&P 500 Index.
The cooperation is selected because of its important position in the U.S market for decades. It
was a bank with a remarkable brokerage network such that it could move stocks, securities, and
bonds base on its interests and those of its clients before the mortgage crisis of 2007. However,
it lost the position after serious losses from the second of 2007 and was finally acquired on
12/31/2008 *. We denote MER as stock io.

The day when ig got a considerable decrease in its price is defined as when the price fell more
than 70% within one year before its consolidated day. The day is 09/12/2008 and denoted by %
(see Figure 4.4). Let’s consider the set E of all components of the S&P 500 Index to represent
the U.S. stock market. From the viewpoint that E is a complex system, we say that the stock
fails at time t5. We use the daily closing prices of all research stocks in 2 years before ty to
calculate their correlations. To give a backtest for the efficiency of our pretopological framework
in modeling the cascading failure starting from ¢y, we use the daily closing prices of the index’s
components in 6 months from ¢, i.e., from 09/12/2008 to 03/12/2009. Similarly, in this period,

a component of the index is considered to be failed if its price drops more than 70%. The set of

1See details on the site: https://en.wikipedia.org/wiki/Merrill_Lynch_%26_Co
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failed stocks in this period is denoted by H. The size of E and the size of H are 489 and 102,
respectively.
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Figure 4.4: Adjusted daily closing price of MER from 12/31/2007 to 12/31/2008 (the point
corresponding with the price at time ¢y is colored in red).

4.2 Research Method

In order to construct the pretopological space (E,a(.)) as mentioned in Proposition 4.2, we
need a decreasing and concave function f from [1, N] into [0, 1) to verify the impact threshold
of a group of elements on another element. In [Nguyen, 2019a] and [Nguyen, 2021b], we try
different forms for this threshold function. In [Nguyen, 2019a], the following function is used:

f(@:@(NAil)v(x_}v_lH)V, vz € [1, N] (4.6)

where v > 0 and 0 < # < 1. Meanwhile, in [Nguyen, 2021b], we use the below function:

f(z)=1—-0e7, Vaell,N] (4.7)

where 0 < <land 0 <y < —N"'Iné.

To predict stocks influenced by the failure of iy, we use the closure of ig. We quantify the
prediction’s efficiency by two measures: the precision and recall of the prediction. In particular,
the prediction’s precision is the fraction of failed stocks in F({ip}) except ig, while its recall is
the fraction of failed stocks predicted by F({ip}). Furthermore, the successive computations of
pseudoclosure to get F({ip}) are expected to help study the evolution of the failure’s propagation.
On the other hand, according to the meaning of the interior mentioned in Section 3, the opening

of E\{ip} is expected to predict stocks not affected by the failure of 7.
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4.3 Transmission Process of a Price Shock

We found that it doesn’t matter what form of threshold function, our pretopological frame-
work with appropriate parameters can model the failure’s transmission better than the common
stock networks mentioned in Chapter 2.

Indeed, with v = 0, we have a simple pretopological model for the transmission of the failure
of ip with a constant threshold of the group impact. Another stock is included to a({ip}) if the
correlation between it and ig is greater than or equal to the threshold. In general, regardless
of the size of a given group of failed stocks affected by i, another stock j is affected by these
stocks’ behaviors if the average correlation between it and these stocks is not smaller than the
threshold. Then, there exists a stock ¢ of the group such that the correlation between ¢ and j is
not smaller than the constant. Thus, any stock j of F({ig}) is a constituent of the correlation-
based threshold network with the same threshold; moreover, there exist a path connecting ig
and j in the network. As a result, the set of stocks affected by ig in our pretopological model
is a subset of a cluster containing ¢ in this network. However, this network only focuses on
the relationship between any two stocks but neglects the role of the group impact. Under the
impact, the larger number of failed stocks implies the higher ability that these stocks’ negative
fluctuations influence another stock’s fluctuation. The impact is represented by the positive ~
in our model. This parameter plays an important role in deciding the flexure of the graph of f.
With a given 0, the larger v is, the larger the magnitude of the instantaneous rate of change of
the function is because of its concavity. Therefore, we use v to adjust the change of the group
impact corresponding to the change of the group size.

Let’s consider the dilation process from {ip} to F({ip}) in the pretopological space defined in
Proposition 4.2. Note that we want to use F({ip}) to predict stocks affected by the failure of 7.
In [Nguyen, 2019a] and [Nguyen, 2021b], we found that although different values of 6 and ~y lead
to different levels of the prediction’s efficiency as illustrated in Figure 4.5a, our pretopological
framework is better than the MST of the correlation-based network in modeling the cascading
failure caused by the price shock of ¢g. Indeed, when using the MST to model the cascading
failure, the propagation of the shock of iy to another stock j must spread through the path
connecting the two stocks. However, while the MST neglects too many stock connections in the
correlation-based network, our pretopological framework is more efficient since it depends on all
of the connections. For more details, Figure 4.5b shows the precision and recall of predicting
stocks affected by ig with different values of impact distance in the MST. We can see that at the
same level of recall, the precision of the prediction based on the MST’s connection in Figure 4.5a
is mostly less than the precision of the prediction based on F ({igp}) in Figure 4.5b. In addition,
successive computations of our pseudoclosure to get F ({ig}) can help forecast the evolution of
the failure contagion starting from ig. Especially, Figure 4.6 shows that the contagion can reach
distanced stocks in the MST °. We assume that this happens because the MST may contain
edges corresponding to small stock correlations to comprise all stocks of the system under the

acyclic condition.

°In Figure 4.5 and Figure 4.6, we use the function f defined by equation (4.7) as in [Nguyen, 2021b]. A similar
result is found in [Nguyen, 2019a] when f is defined by equation (4.6).
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Figure 4.5: Relationship between the precision and the recall of predicting stocks influenced by
the price shock of ig when (a) using F({io}), and (b) using the MST network.

7%; * Stocks added toa*({ic}) = F({ic})
BB o © Stocks added toa*({ip})
@ o © °. g S @ Stocks added to a({io})
@s @ Initially failed stockig
4 o Failed stocks not in F({ig})
¥ e Others
o%% aneo
Q
%OO 9 ©
oa:gw% o w @
&
@ 2 » PFgooow...
¢ &
‘ép 8 €s 5 R,
/& ¢ B \
& o
& s & ®
&
: y 4
4 "
8

Figure 4.6: Distanced stocks in the MST network reached in the dilation process from {ip} to
F({ip}) with § = 0.34 and v = 5 x 10~%.

A question is which values of parameters 6 and ~ are appropriate. For both threshold
functions given in equations (4.6) and (4.7), 6 plays a major role in determining the magnitude
of the group impact, especially the one of the group containing only one stock 7y. Let’s remind

that according to Proposition 4.2, we have

a({io}) = {io} U {k # dolcri, > f (1)} (4.8)

Therefore, if the dilation process from {ip} to F({ip}) starts with an extremely large impact
threshold f(1), there are very few stocks in a ({ip}). Due to the concavity of f, the threshold
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decreases slowly when the group size is small. So, the process stops quickly with very few stocks
in F ({ig}). As a result, when we use this closure to predict stocks affected by ig, the precision
is large because of the significantly tight relationships between the price fluctuations of stocks
in F ({ig}) and i9. However, since it is hard to extend {ip} with a too large lower threshold,
the recall is small. This remark is illustrated on the right of Figure 4.5a, where the precision
evenly reaches 80 — 100%, but the recall of lower than 3% is trivial. On the contrary, a too small
threshold at the first step of the process is also inappropriate because it is invaluable if many
stocks lowly correlating to ig are considered to be affected by ig.

In our opinion, since we are not sure that the fail of iy causes the fails of all stocks of H,
the precision of the prediction is more important than the recall. Therefore, we're interested
in choosing suitable values for 6 and « such that the impact threshold of expanding {ig} to
a ({ip}) in the first step of the dilation process is neither too large nor too small. In particular,
if we use equation (4.6), 6, which equals the threshold at the first step, should range from 0.65
to 0.72; if we use equation (4.7), the first threshold equals 1 — fe”, and € should range from
0.28 to 0.35. Then, the precision is acceptable enough, and the recall is not too small. For
example, the precision is 75% and the recall is 26.73% if we use equation (4.6) with 6§ = 0.66
and 42.5 < v < 62.5; the precision is 75.7% and the recall is 27.5% if we use equation (4.7) with
0 =0.34and vy =5 x 1074,

Inversely, in [Nguyen, 2021b], we use the opening of E\{iy} in the pretopological space given
in Proposition 4.2, where f is verified by equation (4.7), to predict stocks not affected by the
price shock of 5. In our database, there are 387 stocks whose prices did not decrease more than
70% during 6 months after the crash day ¢y of ig. We consider these stocks as usable nodes
of the stock system in the research period. These nodes are our objectives in this prediction.
Figure 4.7 shows the precision and recall of the prediction with different values of # and . There
are two extreme cases. Firstly, when the impact threshold at the first step of the extenuation
process from {ig} to O(E\{ip}) is too large, then O (E\ {ip}) = E\ {io}. Indeed, according to
Proposition 4.2, we have

i (E\{io}) = {k # dolcri, < f (1)} (4.9)

Therefore, if the impact threshold f(1) is larger than the maximum of the correlations
between g and other stocks, we obtain i (E\ {ip}) = E\ {ip}. So, the process stops at the first
extenuating step. Then, all of the usable nodes belong to the opening O (E\ {iy}). Consequently,
the recall is always equal to 100%, but it has no meaning because it’s equivalent to make no
prediction. Contrarily, if the impact threshold f(1) at the first step is too small, there are few
stocks, or even no stocks, satisfy the inequality in (4.9). Because f is decreasing, the impact
threshold decreases step by step. Consequently, the opening O (E\ {igp}) contains very few stocks
or even becomes empty. Thus, the recall is extremely small or even equal to zero. As a result,
we should consider suitable values for 6 and « such that the impact threshold is neither too large
nor too small. For example, we propose 0.2 < 6 < 0.36, then the precision of the prediction is

mostly from 79.3% to 88.9%, while the recall is from 60.5% to 100%.
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Figure 4.7: Relationship between the precision and the recall of predicting stocks not influenced
by the price shock of ig by O (E\ {ip}).

As a result, instead of using graph representations of a stock system to study the cascading
failure starting from a part of the system, we propose that pretopology theory is a better
option that provides necessary tools to consider multi-relation as well as the crowd effect. By
assuming that the number of failed stocks increases the impact of these stocks on another one,
the evolution of the cascading failure is modeled by our pseudoclosure better than by connections
in the MST network and the correlation-based threshold network. Meanwhile, the interior can
help solve the inverse problem. Although there is a little difficulty in choosing a particular
function determining the group impact’s threshold, our pretopology framework can be effective
when the function’s value at 1 is neither too small nor too large. To improve our pretopological
framework, we can try other threshold functions. Also, we can try additional combinations of
stocks’ relations that affect the co-movement of their prices, such as business sectors, investors,
market capitalization, because pretopology theory allows processing multiple relations between
a component with other components. Besides, in order to use other benefit tools of pretopology
theory, we can improve our pretopological space of a stock system such that it is one of the

special types introduced in the next section.

5 Types of Pretopological Spaces

There are four types of pretopological spaces: V-type spaces, Vp-type spaces, Vs-type spaces,

and topological spaces.

Definition 4.7. Let a pretopological space (E,a(.)), we say that it is:
(i) a V-type space if (A C B = a(A) C a(B)) for any subsets A, B of E.
(ii) a Vp-type space if a (AU B) = a(A)Ua(B) for any subsets A, B of E.

(tit) a Vg-type space if a (A) = Uyea a ({z}) for any subset A of E.
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The relationships of these types of pretopological spaces are demonstrated below:
Proposition 4.3. Any Vp-type space is a V-type space.

Proof. Let (E,a(.)) be a Vp-type space. Then, for any subsets A, B of E such that A C B,
since AU B = B, we have:

a(B)=a(AUB)=a(A)Ua(B) (4.10)

This implies that a(A) C a(B), so (E,a(.)) is of V-type. [ |
Proposition 4.4. Any Vg-type space is a Vp-type space.

Proof. Let (E,a(.)) be a Vs-type space. Then, for any subsets A, B of E, we have:

a(AuB)= |J a({z})= (U a({ﬂc})> U (U a({x})> =a(A)Ua(B) (4.11)
r€AUB €A reEB
Thus, (E,a(.)) is of Vp-type. [ |

The last level in pretopological spaces is the level of topological spaces.

Proposition 4.5. A pretopological space (E,a(.)) is a topological space if and only if it is of
Vp-type and a (a (A)) = a(A) for any subset A of E.

Proof. a is a pseudoclosure, hence by Definition 4.1, we have a (&) = @ and A C a(A).
Then, (E,a(.)) is a topological space < a is a Kuratowski closure operator [Kuratowski, 1922]
<a(a(A))=a(A) and a (AU B) = a(A) Ua(B) for any subsets A, B of E. [ |

The proposition shows that if the pseudoclosure a cannot extend a(A) for any subset A of
E, a becomes a closure operator, and (E,a(.)) becomes a topological space with more special
characteristics than pretopological spaces. One of the most important concepts of topological
spaces is the neighborhood which helps define many essential tools to study a complex network
such as connectedness, limits, continuity. However, the last level of pretopological spaces can’t
help describe the expanding process from A to its closure F (A) in individual steps as others.

As topology theory, the concept of neighborhoods in pretopology theory is defined as follows:

Definition 4.8. Given a pretopological space (E,a(.)), the family defined by
U(z)={BCFE|reciB)}, Ve e E (4.12)

1s called the family of neighborhoods of x.

However, despite Definition 4.8, we still have trouble in constructing the concept of connec-
tivity in pretopological spaces. Indeed, in a general pretopological space, if U is a neighborhood
of an element x of E, and U is included in V' C FE, because U C V does not always imply
i(U) C i(V), we're not sure that V' is also a neighborhood of z. Therefore, V-type spaces play a
particular role in pretopological spaces since the preservation of inclusion relation through the

interior is equivalent to the same preservation through the pseudoclosure. Moreover, according
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to Proposition 4.3 and Proposition 4.4, Vg-type spaces and Vp-type spaces are V-type spaces. In
a V-type space, we have many necessary tools to construct a proximity concept, such as basics
of neighborhoods of an element, connectedness, and minimal closed subsets. More details are
given in [Belmandt, 2011]. Therefore, we propose to improve the pretopological space in Section
3 such that it becomes a V-type space. For example, instead of considering the average of the
correlations between a stock and a given group of others as mentioned in Section 3, we can use

the maximum of them:

Proposition 4.6. Let f be a decreasing and concave function from [1,N] into [0,1). Let a be
a map from P(E) into P(E) such that a (&) = & and

a(A)= AU {k: c E\A‘rjneajccjk > f (||A|y)} . VAePE)\{o) (4.13)

where || Al| is the size of A. Then, (E,a(.)) is a pretopological space of V-type.

Proof. Tt’s clearly that the map a is a pseudoclosure by Definition 4.1, so (E,a(.)) is a
pretopological space.

Besides, for any subsets A, B of I, if A C B, we get max;ca c¢jr < max;ep c¢ji. On the other
hand, because ||A|| < ||B|| and f is decreasing, we obtain f (||B||) < f (||A]|). Therefore, for any
stock k € a(A), if k € E\A and maxjea cjr, > f (||Al]) then max;ep cjr > f (|| B]|), so k € a(B).
By contrast, if £ € A, we get directly k € a(B) since k € B. Consequently, a(A) C a(B).

Hence, (F,a(.)) is a pretopological space of V-type. [ |

Nevertheless, with the pseudoclosure defined in Proposition 4.6, the impact of a group of
stocks on another stock k£ depends only on the group’s size and the stock most correlated to k
in A.

As a result, thanks to pretopological spaces’ advantage of describing multi-relation between
a complex system’s components, modeling relationships between a component and a group, and
studying the evolution of diffusion processes and condensation processes taking place in the
system, we propose to use pretopology theory more in our future works about stock systems in
addition to network analysis. Meanwhile, deeper analysis of pretopological frameworks should
be studied. Especially, we plan to focus on the frameworks where the corresponding spaces is

at least of V-type spaces to use more beneficial tools of this theory.

88



Chapter

Topological Anomalies of Market Indices’

Dynamics

Objective
Because the collective behavior of a stock market is usually well captured through
the fluctuation of its representative index, our target in this final chapter is to detect
abnormal behaviors of a stock market through anomalies in the dynamics of its
representative index’s return. To figure out important features of the dynamics, we
use the approach of topological data analysis combined with the method of time-
delay embedding to get topological information about the dynamics’ state space.
Our method is demonstrated to be efficient in the case of the S&P 500 Index.
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Chapter 5. Topological Anomalies of Market Indices’ Dynamics

1 Market Indexes as Representations of Stock Markets’ Collec-

tive Behaviors

As a complex system with many components and complicated relationships, the movement of
a stock market as a whole is not easy to predict. It is also difficult to distinguish the movement’s
magnitude because the collective behavior of a stock market is not a simple synthetic of its
components’ behaviors. For example, a market crash may lead to a recession like the crash
of 1929 that only occurred in over four trading days but drowned out the market into a 10-
year depression '. In general, people often conjecture the market’s stability and then guess its
upturn or downturn. The conjecture usually bases on many macro factors that can directly
affect all of the market’s components and drive their movements in the same direction. These
factors can be the political situation, the government’s important policies and procedures, the
infrastructure, the import and export values, the monetary... Although the macro factors can
provide a valuable prediction of the market development, this method requires deep knowledge
about the economy and take our time to analyze many statistics in different types. So, it
is not suitable for individual investors. In addition, because the macro statistics are reported
periodically, this data may not be suitable for evaluating the market’s current situation if there is
suddenly any significant change, such as the occurrence of an epidemic or a disaster. Therefore,
in addition to using macro statistics, we can observe the current developments of the market
directly through technical analysis based on price fluctuations of the underlying holdings.

Especially, to get an overview of a stock market intuitively, people often depend on market
indexes. We know that a market index is a hypothetical portfolio of investment holdings. It can
be composed of all listed stocks or a basket of representative stocks satisfying many conditions
about market capitalization, liquidity, public float, earnings... Many stock market indexes
are capitalization-weighted indexes ? included the two indexes studied in this thesis, the S&P
500 Index and the VN Index. Let’s remind that in Chapter 3, the fluctuations of the two
indexes are respectively found to correlate highly with the fluctuation of all stock returns’ first
PC. Meanwhile, the first PC explains most of the stock returns’ variances and has the highest
sum of square of correlation coefficients with all of them, so its movement can represent the
movement of the market’s collective behavior. Consequently, we propose that a market index’s
fluctuation can be used to gauge the market’s collective behavior if it highly correlates with the
first PC’s fluctuation. The indexes’ occurrence made stock markets different from most complex
systems. Indeed, frequently in such systems, their collective behaviors are not easy to capture by
a measurement that is transparent, continuously updated, and provided free like market indexes
of stock systems. Therefore, in this chapter, our target is to detect abnormal behaviors of a
stock market through anomalies in the dynamics of its representative index’s fluctuation, i.e.,

the index’s return calculated by the log-difference of the index’s daily values.

!See details on the site: https://www.fdic.gov/about/history/timeline/1920s.html
20ther methods for weighting a stock market index are the price-weighted, fundamental-weighted, and equal-
weighted index construction methods.
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2 Time-delay Embedding of a Time Series

For discovering anomalies in the dynamics of an index return, we need to apprehend its
different states. In addition, we can’t avoid getting noises in the timing data of the index
return. To solve the first problem, Ruelle [Ruelle, 1979] and Packard et al. [Packard, 1980]
introduced a simple method named the time-delay embedding. When analyzing the point cloud
got from this method by its persistence diagram, an efficient tool given in the topological data

analysis (TDA), we can deal with the second problem.

2.1 Delay Reconstruction

According to the embedding theorem of Takens [Takens, 1981], a chaotic series can be
perfectly modeled by a smooth function when it is correctly embedded. From this point of
view, the main goal of the time-delay embedding method is converting a time series into a point
cloud of a higher-dimensional space such that it can capture different states of the time series’

dynamics. At first, let’s make acquaintance with the following concept:
Definition 5.1. A reconstructed vector obtained from a time series (xy) is defined by, for all t,

T,d

y = (Cﬁt, Ttgr, T2y - - - 7$t+(d71)7-) (5.1)

We call T the time-delay and d the embedding dimension.

In [Sauer, 1991], Sauer et al. found that, with probability one, there are suitable values for
parameters of the time-delay and the embedding dimension to fulfill the goal above. Hence,
Y = (ytT’d) is called the phase/state space. In time series analysis, this approach is used to
estimate a dynamical system’s attractor as a set of numerical values toward which the system
tends to evolve for various starting conditions [Kantz, 2003]. Therefore, in such a system, an
appropriate time-delay embedding of some system variable’s scalar observations over time helps
transform the one-dimensional data into a point cloud of a d-dimensional space to capture the
system’s deterministic properties, especially topological properties. For example, let’s consider
a time series (z¢) such that 1 = 1, and 2y = ayay—1 + 2sint + 5; for any integer ¢t > 1, where
ays are i.i.d. random normal variables with unit mean and standard deviation of 1072 and S;s
are i.i.d. random normal variables with zero mean and standard deviation of 10~2. Figure 5.1
shows a sample of (z;) with 200 sample points and how we construct the state space of (z;)
with 7 = 2 and d = 3. In this example, we map each reconstructed vector with a point of R? by
the vector’s components. Then, we get the time series’ topological feature on a certain scale, a

circle. Topological features will be discussed more in the next section.
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Figure 5.1: Time-delay embedding of a time series helps get the series’ topological features.

2.2 Selecting Time-delay

In practice, time-delay 7 and embedding dimension d should be selected based on the data
itself and the objective of the analysis. Frequently, an appropriate selection of 7 should make
the two series (z;) and (z44+,) are independent of each other as much as possible. Hence, the
measures below are common to choose time-delay parameters: autocorrelation and average

mutual information [Abarbanel, 1993].

o Autocorrelation: Time-delay 7 is selected as the first zero of the linear autocorrelation

function below:

A(r) = <(33t+<r(;$_)iﬂ)3;>_ 7)),

where (.), is the average over time and T = (z;),. A disadvantage of this method is that

(5.2)

the zero autocorrelation only confirms the linear independence between (z;) and (z44.),

while (z;) may contain nonlinear dependence.

o Average mutual information: According to information theory [Gallager, 1968], we can
quantify how much information one can learn about x;y, from measuring x; by the mutual

information of the two measurements as follows:

A

p (l’u 117t+r)
) P2 (Te1r)

I (z¢,214-) = logy — (5.3)
b1

where p is the estimated joint probability distribution of z; and z;1; p; and py are the
estimated marginal function of the joint probability distribution. Then, the average mutual
information of x; and x4, for a given time-delay 7, denoted AMI (7), is the average of all

possible measurements of I (x, x¢1;) , i.e.,

AMI (1) = Zﬁ (e, xpyr) I (x4, Togr) (5.4)

Hence, to get information of z;4, from observing x; as little as possible, a good hint of a
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choice for 7 is the time lag where the first minimum of AMI occurs. This method is more
popular than the previous one because it works well with both nonlinear and linear time

series.

2.3 Selecting Embedding Dimension

Different methods, usually dynamical tests and geometrical tests, are proposed to get the
optimal embedding dimension. In a dynamical system, reconstructed vectors are used to identify
the system’s deterministic properties, which do not depend on initial conditions or perturbations.
Hence, dynamical tests look for an embedding dimension that provides a unique future for every

data point. From this point of view, the following assumption is proposed:

dy;“ d
— F(y] .
Y Ry (55)
or equivalently, the concrete form of (5.5) is:
d d
Yy = f(yi) (5.6)

So, dynamical tests are carried out by increasing the embedding dimension until the typical
behavior of the time series appears. Lyapunov exponents’ estimation [Eckmann, 1986] is an
example of such tests. Another approach of dynamical tests is singular-value analysis [Broom-
head, 1986], where reconstructed vector ytT’d is assumed to be composed by the typical behavior

T,d . . .
z," plus some contamination c, i.e.,
T,d T,d
yi =27y tc (5.7)

Then, by analyzing the eigenvalue spectrum of the d x d sample covariance matrix of the recon-
structed vectors’ components, we can recognize which eigenvalues represent the noise c. So, the
number of remaining eigenvalues is a good choice for the optimal embedding dimension.
However, in our opinion, the geometrical tests which depend on the distance between points
of the state space, i.e., the reconstructed vectors, are more suitable for real-world time series.
The reason is that the main target of the reconstruction is to provide an Euclidean space RY
which is large enough so that the attractor obtained from the embedding can be unfolded without
ambiguity. In other words, if two points of the state space close to each other, this is caused
by the state space’s property instead of the small value of d. Therefore, the geometrical tests
are direct approaches to the reconstruction’s goal. The test of the saturation of some system
invariant with the embedding dimension’s change and the method of false nearest neighbor are

some examples of such tests.

e Saturation of system invariants: The method looks for the embedding dimension that pro-

vides independence with some function depending on distances between the state space’s
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points. A familiar example of such function is provided in [Grassberger, 1983]:
p—1
Cpr = <n (r, ytT’d> > (5.8)
¢

where n <7“, ytT’d) is the number of the state space’s points in the ball with center of yZ’d
and radius of r, (.), is the average over time. So, C),, is the average over the attractor
of moments of the number density n (r, yZ’d) and depends on the embedding dimension
because of the distances’ calculations between the state space’s points. Hence, for an
observed time-series, we compute C),, as a function of embedding dimension d and select

the necessary embedding dimension when the variation of ), , with d is small enough.

e Fulse nearest neighbor: Instead of basing on some functions associated with distances
between the state space’s points, Kennel et al. [Kennel, 1992] proposed this method as
a straightforward approach to the reconstruction’s goal because the distances are directly
considered. This method argues that if d is the optimal embedding dimension, the attractor
is unfolded in the state space with dimension d and higher. So, this method looks for d
as the smallest number such that for any point of the d-dimensional reconstructed space,
its nearest point is still close enough in the (d 4 1)-dimensional reconstructed space. In
particular, for each reconstructed vector ytT’d, let the reconstructed vector y;;d be the
nearest neighbor of ytT’d with nearest in the sense of some distance . Then, if the two
vectors move apart when the dimension increases, y:;d is called the false nearest neighbor of
v 7d, and d is not an appropriate embedding dimension. Hence, we need a given threshold
R, to identify a false nearest neighbor, and d should be the smallest number such that no

false nearest neighbor exists, i.e.,

7,d+1 7,d+1
‘ Yt Y H
a(t,d) = < R, Vi (5.9)
‘ Yi =Y ‘
where ||.|| is some measurements of distance. Without loss of generality, we use the Eu-

clidean distance in this work. The function a (t,d) measures the variation of the distance
between ytT’d and its nearest neighbor from d to d 4+ 1. Although this method is the most
common to select the embedding dimension, it has some drawbacks. Firstly, it is too
sensitive to the value of R;; secondly, the threshold may have different values for different
time series. To avoid these problems, in [Cao, 1997], the author suggested a modification
of this method by using the average of a (¢,d) over time and investigating the change of

the following measure:
1
El (d) — <a(t7d+ )>t
<CL (tv d)>t

E1 (d) measures the variation of the average (a(t,d)), from d to d + 1. Especially for

(5.10)

different time series, it is found to stop changing when d is large enough. Therefore, in

S1f y1? = y7?, we take y[2* as the second nearest neighbor of yj%.
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practice, when its change becomes trivial when the embedding dimension is larger than
some number dy, we take dy + 1 as the optimal embedding dimension. Figure 5.2 shows
how we use this modification of the method of false nearest neighbor to select the optimal

embedding dimension of the time series plotted in Figure 5.1, given 7 = 2.

1.0

0.6 0.8

E;
0.4

0.2

0.0

embedding dimension

Figure 5.2: Selecting the optimal embedding dimension (filled point) by looking for the stability
of the mean of distance’s variation between a reconstructed vector and its nearest neighbor when
the dimension increases.

3 Persistent Homology

In our financial context discussed in Section 1, the time series of an index return is a sequence
of scalar measurements representing the collective behavior of the corresponding stock system.
So, the point cloud Y = (y; 7d) is expected to define a state space such that each point in this
space specifies a state of the system. However, because time-series data tend to be considerably
noisy, there are numerous points in the state space, so the points’ coordinates don’t have more
meaning than the points’ arrangement. In this sense, we propose using persistence homology, the
main technique of TDA [Chazal, 2021; Edelsbrunner, 2002]. TDA is an approach that provides
topological and geometrical tools to infer information about the structure of a point cloud in
a metric space at different spatial resolutions. The below paragraphs provide the principal
notions of TDA. The final result helps understand the “shape” of the time series in different
spatial resolutions to get a valuable conclusion of the underlying system’s behavior without

worrying about noises.

3.1 Simplicial Complexes

The state space resulted from the time-delay embedding method is a point cloud of R
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This data is discrete. Hence, to study the points’ arrangement, an intuitive approach is merging
the points into a set of connected components such that the set’s structure gives meaningful
information about the points’ arrangement. In TDA, the set must be a simplicial complex to
easily study its topological features.

Let V = {vg,v1,...,v;} C R? be a set of affinely independent points.

Definition 5.2. A k-dimensional simplex o spanned by 'V is the convex hull of V, i.e.,

k
g = {Zaﬂ)i

1=0

k
dai=1A 0§a,-§1} (5.11)
=0

Vo, V1, ...,V are called vertices of 0. The convex hull of any subset of V is also a simplex called

a face of 0.

Intuitively, in R3, a 0-dimensional simplex is a point, a l-dimensional simplex is a line
segment, a 2-dimensional simplex is a triangle, a 3-dimensional simplex is a tetrahedron, a

4-dimensional simplex is a cell. ..
Definition 5.3. A simplicial complex G is a finite collection of simplices, such that:
(i) Any face of a simplex of G is a simplezx of G.
(i) The intersection of any two simplices of G is either empty or a common face of both.

For example, Figure 5.3a shows a collection of simplices including 0-dimensional simplices:
points vy, v1,v2, and vz, 1-dimensional simplices: line segments vgvi, vive, and vovs. Because
the faces of a line segment are its starting and ending point, the collection obviously satisfies two
properties (i) and (ii) proposed in Definition 5.3, so it is a simplicial complex. Hence, simplicial
complexes can be seen as higher-dimensional generalizations of graphs. Similarly, Figure 5.3b
shows the collection of simplices including points wvg, v1, va, v3, v4, and vs, line segments: vgvy,
V1V9, VU3, U3V4, U1V4, and vqvg, and the only 2-dimensional simplex: triangle vgvivs. Because
the faces of a triangle are its vertices and edges, the collection is a simplicial complex. However,
the collection of simplices in Figure 5.3c is not a simplicial complex since the intersection of two

triangles v1vovs and vgvivy is not a face of the latter.

(a) A simplicial complex (b) A simplicial complex (¢) Not a simplicial complex

Figure 5.3: Example and counterexample of simplicial complexes.

There are some ways to convert the set of affinely independent points V of a metric space

into a simplicial complex to summarize, visualize and explore the point cloud’s arrangement. We
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introduce two familiar simplicial complexes constructed from a given point cloud: the Vietoris-

Rips complex and the Cech complex.

Definition 5.4. Given a number a, the Cech complex Cechy, (V) is the set of simplices spanned
by subsets of V such that: for any simplex o € Cechy, (V), the closed balls B (v;, o) for all vertex

v; of o have a non-empty intersection.

Definition 5.5. Given a number «, the Vietoris-Rips complex (also called Vietoris complex
or Rips complex) Rips, (V) is the set of simplices spanned by subsets of V such that: for any

simplex o € Rips, (V), [|vi —vj|| < « for any vertices v;, v; of .

Vietoris-Rips complexes and Cech complexes are simplicial complexes. Figure 5.4 shows
an example of constructing these complexes of 9 points of R?. Besides, since we must find the
intersection of balls when constructing Cech,, (V), the number of calculations becomes numerous
if the dimension or the number of points increases. Therefore, Vietoris-Rips complexes are easier
to construct because we only have to compute the distances between points. Furthermore, for
any number «, Cech,, (V) C Rips,y, (V) (see Figure 5.4).

A~ (X))
o I

(a) Ripsy, (V)

Figure 5.4: Cech,, (V) as a subset of Ripsy, (V).

3.2 Homology Groups

To discover topological information of a simplicial complex, homology is a powerful approach
that helps distinguish the complex’s structures through detecting its holes. To understand the
notion holes in algebraic topology, we must know the notion boundary [Munkres, 1993]. Let’s
denote [vg,v1, ..., vk as a simplex spanned by points vg, v, .. ., v together with an orientation

of the vertices. We call it an oriented simplex.
Definition 5.6. The k-boundary map O : Cy, — Cyx—1 (k > 0) is defined by:

(i) for any oriented simplex o = [vg,v1, ...,V

k
8k (U) = Z(—l)i [vo,...,vi_l,viﬂ,..vk] (5.12)
i=0

)

and
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Chapter 5. Topological Anomalies of Market Indices’ Dynamics

(it) for any k-dimensional simplices o1, ...,0p, and coefficients a1, ...ap € Z,

8k (zp: OéiO'Z) = Xp: aiak (O’Z) (5.13)
=1 =1

where Cy, is the set of k-chains with coefficients in 7
For example,
¢ 0o (vo) =0,
o 1 ([vo,v1]) = v1 — vy,
o 09 ([vo,v1,v2]) = [v1,v2] — [v0, V2] + [vo, v1].

o For any closed polygonal curve ¢ = [vg, v1] + [v1,v2] + ... + [vg—1, VK] + [V, Vo]:

01 (c) =0 ([vo,n1]) + ...+ ([vk,v0]) =v1 —vo+v2 —v1 + ... +v9 — v = 0.
Definition 5.7. FElements of ker (0x) are called k-cycles.

For example, as demonstrated above, points are 0-cycles, closed polygonal curves are 1-cycles.
Definition 5.8. A k-dimensional hole is a k-cycle that is not a boundary of a (k+1)-dimensional
stmplicial complez.

For example, let ¢; and ¢z be the simplicial complex in Figure 5.3a and 5.3b, respectively.

Then:

o For ¢y, since ker (01) = &, ¢; doesn’t contain any 1-cycle.

o For ¢y, let ¢5 = [v1,v2] + [v2, v3] + [v3, va] + [v4, v1]. Because ¢} is a closed polygonal curve,
it is a 1-cycle. On the other hand, for the only 2-dimensional simplex [vg, v1, v4] of c2, we
get,

92 ([vo, v1,v4]) = [v1,v4] — [v0, va] + [V, v1] # ¢

So, ¢5 ¢ Im(02). We conclude that ¢ is a 1-dimensional hole. By contrast, the closed
polygonal curve ¢5* = [vg, v1] + [v1,v4] + [v4, Vo] is not a 1-dimensional hole although it is

a 1-cycle. The reason is ¢5* = 92 ([vo, v1, v4]).

The k-dimensional holes are the topological features that we pay attention to when distin-
guishing the shape of a simplicial complex. Definition 5.8 suggests detecting k-dimensional holes

by homology groups defined by:

Definition 5.9. Given a simplicial complex G, the k-dimensional homology group of G is
Hy (G) = ker (0g) /Im (Ox+1) (5.14)

Therefore, the 0-dimensional homology group Hy represents the connected components of the
complex, the 1-dimensional homology group H; represents the 1-dimensional holes or loops, the
2-dimensional homology group Hs represents the 2-dimensional holes or cavities,... For example,

in Figure 5.4a, the complex has two 0-dimensional features and one 1-dimensional feature.
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3. Persistent Homology

3.3 Persistence Diagram

With homology, we have a way to detect topological features in the arrangement of a point
cloud. However, even though we use only one method, ex., the Vietoris-Rips complex, to con-
vert the point cloud to a simplicial complex, the result is too sensitive to the selected spatial
resolution. For instance, different values of « lead to different Vietoris-Rips complexes whose
homology characteristics can distinct from each other, as illustrated in Figure 5.5. In this figure,
when « increases from o’ to «”, the number of 0-dimensional features decreases from two to

one.

Figure 5.5: Topological changes of Rips, (V) when « changes.

To get an overview of homology groups’ appearance in a simplicial complex when the spatial

resolution changes, we can use the main tool of TDA, the persistence diagram.

Definition 5.10. A filtration is a sequence of simplicial complexes (Ga)oecrcr 0rdered by in-

clusion, i.e., Go» C Gor if &’ < «” for any numbers a’,a” of L

Definition 5.11. A persistence diagram of a filtration (Ga),crcr 9 the diagonal
{(z,y) € R?|x =y} together with a set of points { (b,d) € R?|b < d} such that each point (b,d)
corresponds to a topological feature as follows: b is the smallest value of a € I such that the
feature appears in Gq, and d is the smallest value of a € I such that o > b and the feature
disappears in G,.

We call b the birth scale, and d the death scale of the feature. The difference d — b is called

the persistence of the feature.

Given a point cloud, to merge the points into connected components, we should construct
simplicial complexes for different spatial resolutions such that the complexes compose a filtration.
Because the filtration’s persistence diagram encodes topological information’s change of the
point cloud’s arrangement when the spatial resolution changes, we know how “long” (for scale)
a topological feature persists before it is filled in. So, we can get the arrangement’s principal
features, which are less affected by noises, to acquire the point cloud’s structural characteristics
such as the classification, the attractor. ..

There are many ways to construct a filtration that covers a certain point cloud. The Vietoris-

Rips complexes and the Cech complexes are familiar options.
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Theorem 5.1. Given a set of affinely independent points V of a metric space, the families of
(Rips, (V) > and (Cecha (V)) Lo are filtrations.
> a>

Proof. Let numbers o’,a” € R such that 0 < o’ < o”.

 According to Definition 5.5, for any simplex o € Rips, (V), we get [|v; —vj]| < o’ < a”
for any vertices v;, vj of 0. So, o € Rips,» (V). Consequently, Rips,: (V) C Rips,» (V).

« On the other hand, according to Definition 5.4, for any simplex ¢ € Cech, (V), if ¢ is
spanned by {v;};cx C V, then @ # Niex B (vi, @) C Niex B (vi,@”). So, o € Cechyr (V).
Consequently, Cech,: (V) C Cechy» (V). [ ]

Figure 5.6 illustrates how to construct the persistence diagram of (Rips, (V)),~q, where
V is the set of 18 points in Figure 5.6a. At first, when o = 0, there are 18 0-dimensional
features in Rips, (V), i.e., 18 connected components corresponding to these points. So, the
birth scales of these features are 0. When « increases a little, points closed together can be
included in a sub-simplex of Rips, (V), as illustrated in Figure 5.6b. In this case, some first
connected components are merged together. So, such values of o become the death scales of
some first O-dimensional features. This change of Rips, (V) is tracked by the circle points whose
z-coordinates equal 0 in the persistence diagram (Figure 5.6d). When « increases to a certain
value such that Rips, (V) first contains a 1-dimensional feature, as shown in Figure 5.6¢, this
value is the feature’s birth scale. When « continues to increase, the feature’s death scale is the
first value of « that the loop is filled in Rips, (V). Its birth and death scales are coordinates
of the first triangle point (from the left to the right) in the persistence diagram (Figure 5.6d).
Obviously, from points corresponding to 1-dimensional features in the persistence diagram, we
get that, with suitable scales, we can respectively have 2 loops. However, although there is
also one point corresponding to a 2-dimensional feature in the persistence diagram, the feature
doesn’t give meaningful information about the point cloud’s arrangement. The reason is that
the point is too closed to the diagonal { (z,y) € RQ‘ z =y}, so the feature’s persistence is very
small with respect to the scale’s change. In general, features represented by points near the
diagonal can be considered as noises. On the other hand, in Figure 5.6d, we can divide points
corresponding to O-dimensional features into 2 groups: one group of the point on the top and
one group of the remaining points. This reflects the fact that the original point cloud V can be
divided into 2 groups: one group of eight points on the top right corner and one group of the
remaining points. Indeed, since the groups are only merged with a large enough «, the death
scale of one of the first connected components is so larger than the others. In general, the group
classification of 0-dimensional features on the persistence diagram associated with a point cloud

provides a good hint for the point cloud’s classification problem.
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(a) A point cloud V (b) Rips,, (V) where some connected components are

merged

dimension
* 0
A1
= 2

Feature disappearance

7
N

- soess

2 4
Feature appearance

6

(¢) Rips,, (V) where the first loop appears (d) The persistence diagram

Figure 5.6: Constructing the persistence diagram of (Rips, (V)),>0-

In time series analysis, by constructing the persistence diagram associated with the state
space Y = (ytT’d) of a time series, we can extract the state space’s topological information, which
is robustness to noises [Cohen-Steiner, 2007]. As a result, we can draw a meaningful conclusion
for the underlying system’s movement. For example, the groups of dense O-dimensional features
on the persistence diagram help classify the system’s behaviors, while 1-dimensional features

having high persistence relate to the periodic trend of the system’s dynamics.

3.4 Bottleneck Distance and Wasserstein Distance

A question is how to compare the “shapes” of two different time series. This leads to com-
paring their corresponding persistence diagrams of filtrations of the same type. An approach to
measuring the similarity between two persistence diagrams is constructing a distance function
that gets a smaller value if the diagrams are more “similar” to each other. A common way to
build the function is firstly matching every point not belonging to the diagonal in one persistence
diagram to only one point in the other persistence diagram; then, using a metric to aggregate
differences between matched points. After considering all possible pairs of matched points be-

tween the two diagrams, the distance between the diagrams corresponds to the best matching,
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which is intuitively the matching providing the infimum of the matched points’ aggregate differ-
ence. From this point of view, there are two familiar distance functions of persistence diagrams:
the Bottleneck distance and the Wasserstein distance [Chazal, 2021].

Definition 5.12. The Bottleneck distance between two persistence diagrams D1 and Do is de-
fined by:
Weo (D1,D2) = inf sup |lu — vl (5.15)

matching m (u,v)EM

Definition 5.13. The Wasserstein distance between two persistence diagrams D1 and Dy is
defined by:

W, (D1, Do) = inf — o 5.16
p(D1,Dy) = i (u%;m\lu vl (5.16)

where ||s|| ., = max,_i5|si| for any s = (s;) € RY.

However, we concern that the metrics are not appropriate to measure the difference between
two persistence diagrams if their numbers of points, except points on the diagonal, are too
different. In this case, evenly for the best matching of the diagrams, too many points in the

denser diagram are matched to the diagonal because there are no other options.
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(b) The persistence digrams of (Rips, (V1)),, (Rips, (V2)), and (Rips, (V3)),,, respectively

Figure 5.7: A counterexample of the Bottleneck distance and the Wasserstein distance.

For instance, let’s observe point clouds Vi,Vs and Vg3 in Figure 5.7. V7 is the set of

100 points determined by adding noises to the coordinates of 100 points drawn randomly on
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a circumference of radius 2. The noises are i.i.d normal random variables of zero mean and
standard deviation of 0.2. V3 is the set of 100 points drawn similarly to Vi but with the
noises’ standard deviation of 0.3. V3 includes 300 points such that 2/3 of them oscillate around
the circumference with noises similar to V1 while others are points of V5. The persistence
diagrams of the Vietoris-Rips complex filtration of these point clouds are denoted D1, Dy and
D3, respectively (see Figure 5.7b). Although both Vg and V3 have the same attractor as V7,
from the statistical view, it’s easier to get the attractor of Vi from V3 than from Vs. So, Dy
must more “similar” to D3 than Ds. Nevertheless, the Bottleneck distance and the Wasserstein
distance between D3 and D; approximate 0.971 and 0.977, respectively. They are too larger
than such distances between Dy and Dj, which is just about 0.377 and 0.389, respectively. This
irrational result comes from remarkable differences between the numbers of points of Dy, Do,
and D3, which equal 110, 115, and 349, respectively.

4 Detecting Anomalies of a Market Index’s Dynamics from its

Topological Characteristics

TDA combined with the time-delay embedding method has recently used in many studies
about time series’ characteristics, such as the periodicity of biological time series [Perea, 2015],
the global behavior of biological aggregations [Topaz, 2015], the classification problem of volatile
time series [Umeda, 2017], analyzing a bridge’s deterioration based on its vibration data [Umeda,
2019]... Similarly, in this section, we use this method to detect anomalies in a stock system’s

behavior.

4.1 Research Methods

As a complex system, a stock market has a collective behavior that is complicated but
rationally instead of randomly. Therefore, we can suppose the existence of its attractor, although
the attractor is dynamical rather than fixed. This viewpoint is suggested in modern economic
theory [Beinhocker, 2006; Kirman, 2011; Lewin, 1994]. Even though the attractor is changeable
to adapt to the internal and external factors’ movement, its change is usually not too dramatic
if there are no significant impacts on the market. Because the fluctuation of a stock market’s
representative index can store meaningful information about the entire market’s behavior, as
discussed in Section 1, in [Nguyen, 2021a], we study the time series of a market index’s return
and consider the return’s dramatically strange dynamics as the market’s anomalies.

To recognize whether the index return fluctuates too differently from its historical variation,
we compare the topological structure of the index return with its previous topology. This leads
to comparing persistence diagrams that encode the topological information of its state space in
the present period and previous periods. This information helps get principal characteristics of
the index return’s dynamics in the periods. Similar to machine learning, we use the terms “test
data” and “training data” for the index return’s time series that we want to detect anomalies and
its time series in previous periods, respectively. Obviously, the period used to get the training

data should be close to the periods used to get the test data.
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Firstly, we use the time-delay embedding method to construct the training data’s state space.
The state space is a set of points in R%, where d is the embedding dimension. Similarly, we find
the test data’s state space using the same parameters of the time-delay and the embedding
dimension.

Next, we divide the training data’s state space into s consecutive segments having the same
size as the test data’s state space. Our target is detecting significant differences in the topological
structures between these segments and the test data’s state space. In other words, we compare
the persistence diagrams associated with s point clouds received from the training data and the
persistence diagram associated with the point cloud received from the test data, where all of
these point clouds have the same number of points, denoted by m. So, we have s historical
samples to test the current dynamics of the index return. The same size of these point clouds
enables the proper observation of periodic property or timing pattern of the index return’s
dynamics in a period of a certain length.

For simplicity, we can compute the maximum or the average distance of the persistence
diagram constructed from a historical sample and the persistence diagram constructed from the
test data’s state space, using some metrics such as the Bottleneck distance or the Wasserstein
distance. However, we're afraid that this method is less statistical because s is not large enough.
Indeed, to confirm whether a stock market behaves dramatically to fall into a recession, people
often observe its circumstance in about 6 months to neglect its transient states. Hence, we use
this time length for the test data in our empirical study presented below. Meanwhile, because
of stock markets’ adaption, like other complex systems, we shouldn’t use data taken in periods
that distance too much from the test period. Consequently, in our empirical study, we observe
the index return within three years before the test period. Then, s is even smaller than 10 to
divide the training data’s state space into segments such that each segment has the same size
as the test data’s state space.

Accordingly, our method is merging persistence diagrams constructed from segments of the
training data’s state space. The result is called the total diagram. It provides all the index
return’s topological features that appeared in the nearest periods. Like the case demonstrated
in Figure 5.7, we shouldn’t directly compare the persistence diagram constructed from the test
data’s state space with the total diagram because the number of points of the latter can be
10 times greater than the former’s. Instead, we first divide the total diagram’s points, except
the diagonal, into & small clusters based on their locations and the homology groups of their
corresponding features. Then, for any of these clusters, each one is used to define a region of
space R%. The rest of the space is the last region. With s persistence diagrams constructed
from the training data, we easily approximate the empirical probability P; that a point selected
randomly from a persistence diagram associated with the index return in a 6-months period

belongs to a certain region of R? as follows:

P_<”J> Li=T1,k+1 (5.17)

1

Jj=1,s

where n;; is the number of points belonging to region 7 in persistence diagram j, n; is the number
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of points in persistence diagram j, except the diagonal, and (.) ;18 the average over all of s
persistence diagrams constructed from the training data. According to our region classification,
we get Pyy1 = 0.

Obviously, P;s provide an empirical point distribution of a persistence diagram associated
with the index return in a 6-months period, using the training data. Hence, to determine
if the persistence diagram constructing from the test data implies any considerably strange
topological information, we calculate the diagram’s point distribution (); based on the same
region classification, then quantify the difference between the two point distributions by the

following measure:

(5.18)

As a result, § helps measure the deviation of the index return’s topological structure from
its earlier structures. A larger value of ¢ implies more variation of the index return’s dynamics

from the test period to the previous ones. Our method is summarized in Algorithm 8.

Algorithm 8 Compute the topological structure’s deviation § of the index return’s dynamics
from a certain period to the previous ones.

Require: index return (:rt)t:L—T as training data, index return (m;)tzl’T, as test data,
1: procedure TOPOLOGICAL STRUCTURE__VARIATION((z+¢), (z;))

2 T < the optimal time-delay of (z¢)

3 d <+ the optimal embedding dimension of ()

4 > compute the time-delay embedding of (z:) and (xt)

5: Yt < (wt,mt+7,a¢t+2n e ,$t+(d_1)f) ,t=1T—(d-1r

6 Vi & (xt, TyyrrTyprs-- '7wt+(d—1)q—) ,t=1,T" —(d— )T

7 m<« T —(d—1)T > the number of vectors y,s

8 > divide y; into s consecutive segments of length m

9: segment; < (Y1+(j—1)m, yQ+(j—1)m,..-,yjm), j=1,s

10: > compute persistence diagrams

11: dgm < the persistence diagram constructed from (yt)

12: dgm; < the persistence diagram constructed from segment;, j =1,s
13: total__dgm < merging all persistence diagrams dgm;, j =1, s
14: > compute the point distribution of the persistence diagrams
15: cluster; < points assigned to the i-th group after partitioning points out of the diagonal of total dgm into k

clusters based on the points’ locations and their corresponding homology groups
16: forie1,k+1do
17: region; < the region of R? identified by cluster;, where the last region is the rest of the space

18: P; % i where n;; and n; are the number of points in dgm; belonging to region; and the number of
Jj=1,s
points in dgm, except the diagonal, respectively

19: Q; +— %, where n; is the number of points in dgm belonging to region;, and n’ is the number of points in dgm,
except the diagonal, respectively
20: end for

21: > compute how the point distributions of the diagrams constructed from the test data and the training data are
different
220 5 /M (P - Q)2 > Output
i=1

23: end procedure

4.2 Empirical Results with the S&P 500 Index

In [Nguyen, 2021a], we check our method’s efficiency in the case of the S&P 500 Index.
We use the daily closing values of the index to compute its daily returns from 12/18/1972 to
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08/04/2020. In this period, we consider each time window of 132 trading days with 22 rolling
trading days. As a result, we get 541 time windows. The index return’s dynamics in each of
these time windows is compared with its dynamics of 750 trading days ago. Approximately, we
compare the index return’s dynamics of a 6-months period with its dynamics of 3 previous years
with 1-month sliding.

For each of these time windows, to construct the suitable time-delay embedding of the cor-
responding training data, we find the ideal time-delay by using the average mutual information
to not neglect any nonlinear dependence. Meanwhile, the ideal embedding dimension is selected
by finding the stop changing of the function defined in formula (5.10) (see subsection 2.3).

For less computation, we use the family of the Vietoris-Rips complexes to construct the
persistence diagrams mentioned in Algorithm 8. As a result, we observe the lack of points
representing 2-dimensional features on the diagrams. The features have small persistence and
high birth scales, so they can be considered as noises. Hence, we only focus on the 0-dimensional
and 1-dimensional features.

In order to partition points of the total diagram, except the diagonal, into small clusters,
we need to use a clustering algorithm. Because the partition also bases on the homological
dimensions of the features corresponding to the points, we can embed the points into R3, where
the homological information is considered the third coordinate. Due to the simple arrangement
of these points in R?, we use the k-mean algorithm [Hartigan, 1979] to fast solve the problem
and get an acceptable result, as illustrated in Figure 5.9a and Figure 5.10a.

Next, we have to partition R? into regions such that each contains one of the clusters above,
except the last region. Equivalently, the problem is how we can assign a point in R? to a given
cluster. Intuitively, for any point of the persistence diagram constructed from the test data,
except the diagonal, after embedding it into R, we assign the embedded point to its nearest
cluster. However, if the feature’s persistence corresponding to the point is too different from
the ones corresponding to the cluster’s points, the point should be assigned to the last region.
Hence, in our empirical study, we only assign a point to its nearest cluster if its corresponding
persistence is not greater than the sum of the average persistence of the cluster’s corresponding
features and 3 times of the persistence’s standard deviation.

In Figure 5.8, we present two of 541 samples of our test data. The two examples demon-
strate that our method can detect the significant difference by measuring the deviation of the
persistence diagram constructed by the test data and the total diagram. In deed, when the test
data’s dynamics is too different from the historical dynamics in three years ago (Figure 5.8a),
then there are so much differences between the two diagram (Figure 5.9). So, we get a large
value of ¢ which equals 83.7%. Inversely, when the test data mostly has no dramatically differ-
ent fluctuation (Figure 5.8b), the persistence diagram constructed by the test data is nearly a
subset of the total diagram (Figure 5.10). As a result, we have § is 11.9%, a very small value.
Therefore, we think that § is efficient in measuring the difference of the index return’s behavior

between a certain period and consecutively previous periods.
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Figure 5.8: Two sample databases where the test data is on the right of the dashed line and the
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Figure 5.9: Detecting topological anomalies of the test data in the database illustrated in Figure
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The black sign x denotes abnormal features that cannot be assigned to any clusters of the total
diagram.
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Figure 5.10: There is no abnormal feature in the persistence diagram constructed by the test
data illustrated in Figure 5.8b. Circles represent 0-dimensional features, and triangles represent
1-dimensional features.

Especially for all 541 samples of our test data, we found that whenever § is greater than 60%,
there are serious market crashes or recessions in the corresponding test period. Figure 5.11b
shows the value of § on the corresponding test period’s last day. The periods corresponding to

the values greater than 60% are named from A to H in Figure 5.11a.
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(a) Daily return of the S&P 500 Index from 01/02/1972 to 08/04/2020
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(b) Value of ¢ plotted at the last days of test periods

Figure 5.11: Dynamics of § and the S&P 500 Index’s return.
In particular, in [Nguyen, 2021a], we show that the strange dynamics of the S&P 500 Index’s

daily return discovered in periods A and B are corresponding to the 1973 — 1974 stock market
crash spreading from January 1973 to December 1974. Besides, periods B also relates to the
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1970s stagflation, where the OPEC oil embargo signed on 10/19/1973 is widely blamed for
causing the stagflation. Similarly, period C relates to the “Black Monday”, a rapid and severe
stock market crash of U.S. stock prices in late October 1987. In addition, this period is sensitive
with the 1989 savings and loan crisis where more than 1000 of the country’s savings and loans
had failed. In fact, the crisis is an outcome of uncontrollable bad loans and losses for a long
time, especially after the Federal Savings and Loan Insurance Corporation, an institution that
administered deposit insurance for savings and loan institutions in the United States, had become
insolvent by 1987. How about period D? It just contains a fast crash in October 1997. The crash
is considered as the beginning of the end of the 1990s economic boom in the U.S. Meanwhile,
period E is corresponding to the stock market downturn of 2002, also known as the internet
bubble bursting with a dramatic decline in July and September 2002. In fact, the crash is just
the worst result of the dot-com crash 2000 — 2002. Especially, the longest period, period F, is
clearly related to the 2008 financial crisis, the worst crisis in the U.S. from the Great Depression
of 1929. The crisis officially lasted from December 2007 to Jun 2009, and the bankruptcy of
the investment bank Lehman Brothers in September 2008 is often thought to play a major role
in the unfolding of the crisis. Period G relates to a stock market selloff occurring from August
2015 to Jun 2016. Finally, the last period is corresponding to the COVID-19 recession, which
started in February 2020. In most of these recessions, except the dot-com crash 2000 — 2002,
we find that although 6 doesn’t get such high values before the recessions occur, it still helps
measure the severity of the problem. This explains why the measure can help recognize most of
the crises above at the beginning when its value become greater than 60%.

As a result, we propose our method as an efficient tool to detect anomalies in the dynamics
of a market index. Its result provides a simple way to recognize the beginning of a financial
crisis through analyzing the corresponding stock market’s representative index instead of getting
a full analysis of many micro and macro statistics. Therefore, we suggest that the topological
deviation § of an index return’s dynamics can be an effective measure of the systemic risk. It is

especially appropriate for individual investors and auto-trading systems.
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Conclusion

In this thesis, we used various techniques from complex science, including network analysis,
RMT, pretopology theory, and TDA, to investigate the characteristics and mechanism of a
stock market’ collective behavior in different aspects. Concretely, we studied actual markets,
including the U.S stock market and the Vietnamese stock market, and we used the R language
to implement our empirical works.

In particular, we found that the MST of a stock market’s correlation-based network is com-
mon to summarize the network’s structure because the MST provides the most probable path
in which a stock price shock spreads to the entire market. By contrast, the correlation-based
threshold network is more appropriate than the MST in studying the market’s resilience because
of the MST’s disadvantage in neglecting many stock correlations, which can be very large. How-
ever, since the cross-correlation matrix is computed from historical stock prices, we only get the
sample matrix. According to RMT, the largest eigenvalue of the sample matrix and its associ-
ated unit eigenvector can give information about the “true” correlations of stocks because the
eigenvalue is extremely greater than the upper limit of the Marcenko - Pastur distribution. So,
we can use the first PC whose loadings are the eigenvector’s components to study the market’s
collective behavior. This behavior is also reflected in the market index’s dynamics.

With these tools, we provided a comprehensive analysis of the dynamics and stability of a
stock market in this thesis. Firstly, after studying the dynamics of the market’s MST network, we
confirmed that the market’s unstable state can reflect on the star-like structure of the network
or the goner of the network’s scale-free property. Also, this state can be quantified by the
remarkable decline of different measures such as the shortest path length, the survival ratio, the
same sector ratio, and the allometric coefficient. In addition, as a scale-free network, we also
established by using real data that the correlation-based threshold network remains robust under
random failure but very fragile under intentional attacks to its most connected nodes or its most
loading nodes. This result demonstrated a stock market’s robustness when some companies
go bankrupt because of their wrong management. However, when the companies’ common
stocks play important roles in the network’s structure, for instance, they are the most connected
nodes or the most loading nodes, the bankruptcies will damage the network’s connectivity. This
negatively impacts the markets’ stability.

Next, we studied the largest eigenvalue of the empirical cross-correlation matrix of stocks

and its associated unit eigenvector. While other works found that the eigenvalue becomes larger
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in financial crises, we suggested composing the most correlated portfolio from the first PC of
stock returns. Since the eigenvalue is always dominant in the matrix’s spectrum, the first PC
explains most variances of stock returns. So, it can be considered as the market factor and
highly correlates with the corresponding market index. In addition, we established a simple
formula to approximate its loadings based on the loadings’ asymptotically linear relationship
with the stocks’ average correlation coefficients.

On the other hand, we empirically showed the principal role of financial companies in a stock
market’s stability because the companies usually stay at hubs in the MST network, especially
the star-like network. Also, the financial sector is dominant in the first PC’s loadings.

In addition, since a market’s collective behavior can be caused by a cascading failure, we
proposed a method to study the failure’s evolution. We considered a stock as a failed component
if its price declines dramatically. With the assumption that the number of failed stocks increases
the impact of these stocks on another stock and triggers its failure if the impact is large enough,
we designed a pretopological space in which the pseudoclosure models the contagion of a stock
group’s failure. By contrast, the opening of the group’s compensation can be used to predict
stocks not affected by the failed stocks. We found that our pretopological framework is more
efficient than the MST network and the correlation-based threshold network in modeling the
cascading failure’s evolution. The efficiency comes from taking into account all the stocks’
correlations, obviously illustrating the contagion in individual steps and noting not only the
relationship of stocks but also the relationship between a stock and a group.

Finally, we suggest a method to detect anomalies in a stock market’s collective behavior.
Since the market factor represented by the first PC of the stock returns often correlates highly
with the market’s index return, the index return’s dynamic is suitable data to study the market’s
collective behavior. We establish a measure to recognize how topological features of the index’s
time series got in a certain period are different from the ones of the index’s time series got in
previous periods. This measure is tested in the case of the S&P 500 Index. We found that the
deviation measure really helps detect significant crashes in the U.S. market when it is greater
than 60%. Because it often takes such a large value from the beginning of financial crises,
this value can be a warning of crises instead of spending much time analyzing many economic
statistics.

As a result, this thesis helps get deep knowledge of stock markets’ evolution, geometrical
structures and signs of stability which are extremely valuable in controlling the systemic risk.
We can improve the above researches with more appropriate models, such as pretopological
spaces of V-type for the cascading failure of stock markets, or improve the deviation measure
of an index market’s topological features with other tools of TDA. In addition, we also plan
to study more about the first PC’s role in calculating the 3 coefficient of a stock. In general,
the scientific point of view that financial markets are complex systems opens up new theories
and technologies for researching such markets’ characteristics and dynamics. Therefore, this
approach will continue taking more interest in our future works with other methods of complex

science such as agent-based modeling.
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Introduction

Le marché financier joue un réle important dans toutes les économies, et donc tous les acteurs
du marché sont trés préoccupés par son évolution et sa stabilité. Avec des théorie économique
moderne, les systémes financiers peuvent étre considérés comme des systémes complexes.

Dans cette these, en utilisant des techniques de science complexe, nous étudions les comporte-
ments collectifs des marchés boursiers, les components principaux sur lesquels se concentrent
la plupart des ressources financiéres dans les économies. La structure de cette thése comprend
cinq chapitres réalisant les contenus suivants:

Le chapitre 1 fournit la litérature des systémes complexes et des approches communes utilisées
pour étudier de tels systemes. En outre, I'idée que les marchés financiers sont considérés comme
des systemes complexes est également présentés en détails dans ce chapitre.

Dans le chapitre 2, nous introduisons le réseau basé sur la corrélation, qui est souvent utilisé
pour modéliser les interactions mutuelles entre les composants d’un systéme complexe. Dans
notre contexte financier, ce réseau permet de modéliser le co-mouvement des prix boursiers dans
un marché. Avec deux sous-réseaux spéciaux, ’arbre couvrant minimal et le réseaux a seuils
basé sur la corrélation, nous pouvons utiliser les outils de la théorie des graphes et la relation
d’échelle allométrique pour étudier la structure géométrique du marché et sa résilience en cas
de défaillances aléatoires et d’attaques intentionnelles. Le résultat est important pour obtenir
des informations sur la stabilité du marché ainsi que sa robustesse.

Comme nous travaillons toujours avec des matrices empiriques de corrélation croisée des
actions, la théorie des matrices aléatoires, présentée au chapitre 3, aide a trouver l'interaction
“essentiele” entre les composants d’'un marché boursier. Cette théorie est utile pour étudier le
spectre d’une matrice empirique de corrélation croisée. Nous nous concentrons particulierement
sur la plus grande valeur propre et son vecteur propre associé ayant le module unitaire. Pour
examiner leurs roles dans notre probléme financier, nous utilisons la méthode de I’analyse en
composantes principales. Etant donné que la premiére composante principale des rendements
boursiers joue le réle du facteur de marché, nous fournissons non seulement des analyses profonds
de la premiere composante principale, mais également une estimation de ses chargements dans
ce chapitre.

D’autre part, le comportement collectif d’un systéme complexe est parfois causé par une
défaillance en cascade. Pour capturer I’évolution de I’échec en cascade, nous utilisons la théorie

de la prétopologie présentée au chapitre 4. Dans ce chapitre, nous proposons un modele pré-
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topologique pour modéliser la diffusion des actions de détresse dans un marché boursier.

Enfin, au chapitre 5, nous étudions comment détecter les dynamiques anormales du com-
portement collectif d’un marché boursier. Bien que I’étude de la dynamique de la structure du
réseau ou de la premiere composante principale des fluctuations des actifs puisse résoudre ce
probleme, nous utilisons une autre approche basée sur l'indice représentatif du marché car ces
données sont transparentes, mises a jour en continu et gratuites. Pour comprendre les caractéris-
tiques importantes de la dynamique d’un indice de marché, nous utilisons I’analyse topologique
des données combinée a I'intégration de retard pour obtenir des informations topologiques sur
I’espace d’état de la dynamique. Le résultat devrait donner des avertissements sur les crises sans
analyser beaucoup de statistiques micro et macro.

De plus, nous menons des études empiriques sur le marché boursier américain et le marché
boursier vietnamien pour comparer nos résultats dans deux cas différents - un marché développé
et un marché émergent. Plus concretement, nous utilisons les composantes de I'indice S&P 500, y
compris les actions ordinaires de 500 sociétés a grande capitalisation sur la bourse américaine, et
les composantes de l'indice VN, y compris toutes les actions cotées de la bourse de Hochiminh
(HSX), pour représenter les deux marchés. Ces deux indices détiennent plus de 80% de la
capitalisation des marchés correspondants. Tous nos travaux empiriques, y compris le traitement
des données, la modélisation, l'analyse des résultats statistiques et le tracage, sont mis en ceuvre
a ’aide du langage R.

Notre résultat permet de comprendre le mécanisme et les caractéristiques des marchés bour-
siers, et plus généralement des marchés financiers, tels que la structure géométrique, la transition
de phase, la robustesse, 'approximation du facteur de marché, I’évolution des défaillances en
cascade et la dynamique des marchés. Ces informations sont importantes pour obtenir une vue
d’ensemble de la dynamique et de la stabilité d’un marché boursier et, par la suite, aider a con-

struire des outils utiles pour gérer le risque systémique afin d’éviter des récessions dramatiques.
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Chapitre

Introduction aux systemes complexes

1 Qu’est-ce qu’un systeme complexe?

Fréquemment, un systeme complexe est supposé d’étre un grand systéme ayant les caractéris-
tiques suivantes [Foote, 2007; Ladyman, 2013; McCarthy, 2000; Newman, 2011]: non-linéarité,
adaptation, émergence et auto-organisation. Il existe un certain nombre de systemes complexes,

varié des systémes physiques aux systémes sociaux [Newman, 2011].

2 Sciences complexes

La science complexe est un domaine interdisciplinaire qui nécessite des contributions de nom-
breuses disciplines diverses, notamment la physique statistique, la théorie de I'information, la dy-
namique non linéaire, ’anthropologie, I'informatique, la météorologie, la sociologie, I’économie,
la psychologie et la biologie.

Les études de systémes complexes peuvent étre divisées en deux approches. La premiere
comprend des études sur la structure des systemes. La seconde comprend des études sur le
processus dynamique des systemes. Ces deux approches peuvent se combiner et se compléter
car mieux la structure d’un systéme complexe est comprise, plus sa dynamique est décrite avec
précision.

3 Outils fondamentaux de ’analyse des systéemes complexes

Pour modéliser des systéemes complexes et étudier leur dynamique, les réseaux et la modéli-
sation a base d’agents sont des approches typiques.

3.1 Modélisation a base d’agents

La modélisation a base d’agents est une approche “bottom-up” qui simule séparément et
individuellement les agents d’un systéme complexe et leurs interactions, permet aux comporte-
ments émergents du systeme d’apparaitre naturellement plutot que de les mettre en place a
la main [Berry, 2002]. L’inconvénient de cette approche est le manque de théories et de mod-
eles a I'appui, car elle dépend principalement de l'intelligence artificielle et de la simulation

informatique. Par conséquent, il est conservé pour nos recherches ultérieures.
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3.2 Science des réseaux

Une représentation simplifiée d'un systéme complexe peut étre un graphe dont les noeuds
représentent les composants du systeme, et chaque aréte représente l'interaction entre deux com-
posants. Le graphe est appelé un réseau complexe. Cependant, le grand nombre de composants
d’un systéeme complexe, leurs multi-relations, ainsi que 1’hétérogénéité des composants posent
des problemes dans la construction de leurs représentations en réseau.

En raison de la complexité d’un systeme complexe, nous devons 1’étudier par différentes
approches pour obtenir une compréhension compléte de sa structure et de sa dynamique. Dans
ce travail, nous proposons la théorie des graphes, la théorie des matrices aléatoires et la théorie
de la prétopologie comme approches efficaces car ces théories fournissent un ensemble complet
d’outils mathématiques, informatiques et statistiques qui peuvent étre utilisés pour analyser,

modéliser et comprendre des systemes complexes.

4 Les marchés financiers en tant que systemes complexes

Du point de vue scientifique, les marchés financiers peuvent étre considérés comme des
systemes complexes. En fait, un marché financier est un ensemble de nombreux composants
tels que des obligations, des actions, des produits dérivés, des devises, des banques, des matiéres
premieres qui interagissent les uns avec les autres et ont la capacité d’apprendre et de changer
les comportements a partir de leurs expériences.

Considérer les marchés financiers comme des systemes complexes fournit un nouvel ensem-
ble de théories et de techniques pour comprendre ou expliquer le mécanisme et les effets des
phénomenes économiques tels que les transitions de phase, la distribution des rendements de
prix “fat-tail”, les phénomeénes de regroupement de volatilité, les défaillances en cascade, les
crises, dynamisme plutét qu’équilibre... Une meilleure compréhension de ces phénomenes peut
permettre d’améliorer la stabilité des marchés, de prévoir les pires scénarios ou d’évaluer les
politiques potentielles.

Bien qu’un marché financier contienne différentes parties, les marchés boursiers sont notre
sélection pour les deux raisons suivantes. Premiérement, les marchés boursiers sont les prin-
cipaux ou se concentrent la plupart des ressources financiéres. Deuxiémement, leurs données
historiques sont mise-a-jour et de maniere transparente. Ceci est trés important pour nos études

empiriques, en particulier les études sur les marchés en développement.

120



Chapitre

Marchés financiers sous représentations en

réseau

1 Reéseaux basés sur la corrélation dans les marchés financiers

L’une des représentations de réseau populaires des systémes financiers est le réseau basé sur
la corrélation [Bonanno, 2004]. Concrétement, pour N actions i = 1, N, soit S;(¢) le prix de
'action i & l'instant ¢ (i = 1, N).

Définition 2.1. La matrice N x N C = (c¢;;) est appelée la matrice de corrélation croisée des

actions données si

e — i @) @) = (@) (), 1y (2.1)

0i0;

otur; (t) =1In(S; (t))—1In(S; (t — 1)) est le log-changement du action i a instant t; (.) désigne la
moyenne temporelle de la variable interne; o; et o; sont l’écart type de r; et rj, respectivement.
Nous appelons r; le rendement de l'action i et c;; le coefficient de corrélation entre l'action i et

laction j.

Sur la base du coefficient de corrélation, une distance métrique est construite pour obtenir
un arrangement topologique du systéme d’action. Dans cette étude, nous utilisons la distance
discutée dans [Gower, 1966]:

Définition 2.2. La distance entre l'action i et l'action j est définie par la transformation non

linéaire suivante du coefficient de corrélation c;; entre ces actions:
dij = /2 (1 = cij) (2.2)

La matrice N x N D = (d;;) est appelée la matrice des distances.

Définition 2.3. Le réseau basé sur la corrélation de valeurs donmées est le graphe dont les
neeuds représentent les valeurs, et la matrice d’adjacence est la matrice de distance construite a

partir de la matrice de corrélation croisée des valeurs.
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Parce que le réseau d’actions basé sur la corrélation est entierement connecté, il contient tous
les co-mouvements possibles de paires de valeurs d’actifs et leurs points forts dans le systeme
d’actions.

Dans la these, nous sommes d’accord sur les points suivants. Premierement, parce que nous
ne connaissons pas les corrélations exactes entre les actions, la notation “matrice de corrélation
croisée” fait référence a la matrice de corrélation croisée empirique obtenue & partir des données
historiques des actifs. Deuxiémement, nous ne prétons attention qu’a la fluctuation quotidienne
des cours des actions, donc, dans tous les exemples empiriques ci-dessous, a ’exception de ceux
référencés dans d’autres études, la base de données correspond aux cours de cléture quotidiens
des actions. Enfin, tous les réseaux ou graphiques abordés dans les énoncés suivants de cette

proposition ne sont pas directioné, a moins qu’il n’y ait des informations supplémentaires.

2 Sous-graphes importants d’un réseau basé sur la corrélation

Pour avoir un sous-graphe contenant suffisamment d’informations importantes sur la relation
entre les noeuds du réseau d’origine, nous construisons les sous-graphes suivants: I’arbre couvrant
minimal (MST) du réseau et le sous-graphe des nceuds hautement connectés.

2.1 Arbre couvrant minimal
Définition 2.4. Un arbre couvrant minimal d’un réseau pondéré est un sous-graphe qui est

(i) connected, c’est-a-dire que le sous-graphe contient tous les neuds du réseau d’origine et

w’il existe un chemin pour aller de n’importe quel neud a un autre
b

(ii) formé un arbre, c’est-a-dire que le sous-graphe n’a pas de neud qui revient sur lui-méme,
et

(iii) satisfait (i) et (ii) avec le poids de bord total minimum.

Le MST est le chemin le plus probable qui fait que la transmission d’un choc de prix se
propage a travers le marché [Lautier, 2013; Marti, 2021]. Cependant, en raison de la condition
acylique, le MST d’un réseau d’actions basé sur la corrélation présente une faiblesse considérable:
certaines arétes associées a de faibles poids et certaines arétes associées a des corrélations élevées
peuvent étre négligés. Par conséquent, les connexions de 'arbre peuvent ne pas bien définir les
clusters du systéme correspondant qui suivent souvent les secteurs d’activité.

Nous proposons que le MST soit un simple sous-graphe du réseau basé sur la corréla-
tion qui soit suffisamment efficace pour déduire des informations importantes sur les marchés
boursiers, en particulier les marchés émergents ou les corrélations entre les actions cotées et
certaines actions importants/particuliers peuvent étre supérieures aux intra-corrélations des
secteurs économiques [Nguyen, 2019b; Nguyen, 2019¢|. Comprendre la structure du MST est

vraiment important pour gérer le risque systémique.

2.2 Réseaux a seuils basé sur la corrélation

Sous la représentation MST, un réseau basé sur la corrélation semble plus fragile qu’il ne
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I’est. Ainsi, nous considérons le réseaux a seuils basé sur la corrélation ot nous ne conservons
que les actions et les arétes associés a des corrélations d’actions suffisamment élevées. Le réseaux
a seuils basé sur la corrélation qui a le méme nombre d’arétes que le MST est appelé le graphe
d’actifs [Garas, 2008; Onnela, 2003b; Onnela, 2004]. Bien que le graphe des actifs semble mieux
refléter la partition du réseau boursier associée aux secteurs économiques exceptionnels que le
MST [Onnela, 2003b; Onnela, 2004], le graphe des actifs manque d’une quantité considérable
d’actions du réseau d’origine. Par conséquent, il néglige d’autres informations sur I’ensemble du
marché (la figure 2.1b).

Un seuil approprié pour les corrélations d’actions permet de réduire la taille du réseau basé
sur la corrélation d’origine tout en créant un graphique représentatif du marché. En particulier,
lors de ’analyse des caractéristiques d’un systéme d’action, le réseaux a seuils basé sur la cor-
rélation permet d’éviter les bruits causés par des connexions instables. Dans notre étude, le
seuil est le quantile & 97% des corrélations empiriques des actions. Par exemple, la figure 2.1c
montre le réseau basé sur la corrélation du marché américain ou le seuil est de 0.63. Le réseau
contient 71.81% de noeuds du réseau basé sur la corrélation d’origine alors qu’il ne contient que
3% des connexions les plus importantes du réseau d’origine. Le quantile & 97% des corrélations
empiriques entre les actions du marché boursier vietnamien n’est inférieur que de 0.25, car les
corrélations boursiéres sur les marchés émergents sont généralement plus faibles que celles des

marchés développés.
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Figure 2.1: Quelques sous-graphes du réseau basé sur la corrélation des actions cotées sur le

(a) Le MST
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(b) Le graphique des actifs (c) Le réseaux a seuils basé sur
la corrélation ou le seuil est le
quantile & 97% des corrélations
empiriques d’action.

NYSE du 01/04/2015 au 01/04/2020.
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En général, le MST est utile pour étudier la structure globale du réseau et le probléeme de
propagation des prix des chocs. Pendant ce temps, le réseaux a seuil basé sur la corrélation avec

un seuil approprié est plus efficace pour étudier la robustesse du réseau.

3 Mesures structurelles des réseaux financiers

Nous utilisons différentes mesures pour analyser la structure et les caractéristiques d’un
réseau boursier:

3.1 Répartition des degrés

Définition 2.5. Dans un réseau, le degré d’un neud est le nombre d’arétes qui lui sont connec-

tées.
Le degré d'un nceud permet de mesurer le niveau de connectivité du noeud.

Définition 2.6. Dans un réseau, soit P(k) la fraction du nombre de neeuds de degré k. Un

histogramme de P(k) est appelé la distribution des degrés du réseau.

De maniére équivalente, nous pouvons définir P(k) comme la probabilité qu’un nceud du

réseau ait un degré de k.

3.2 Longueur moyenne du plus court chemin

Définition 2.7. Un chemin reliant une paire de neuds dans un réseau est une séquence d’arétes
qui relie les deux neeuds. La longueur du chemin est le poids total des trongcons appartenant au
chemin si le réseau est pondéré, et est égale au nombre de ces troncons si le réseau est mon

PONdEre.

Définition 2.8. La longueur moyenne du chemin le plus court d’un réseau est la longueur
moyenne des chemins les plus courts pour toutes les paires de neeuds possibles dans un réseau,
c’est-a-dire,

2 i) 135 9)

L= N(N —1)

(2.3)
ot N est le nombre de neeuds et I(i,7) est le chemin le plus court du neud i au neud j.

La longueur moyenne du plus court chemin est une caractérisation intuitive de la sensibilité

du marché actuel & un choc.

3.3 Centralité intermédiaire

Définition 2.9. La centralité d’intermédiarité du neud i est donnée par:

i)=Y (2.4)

itk 5k

ot sj, est le nombre de chemins les plus courts reliant le neeud j, et le neud k et sék est le

nombre de ces chemins qui passent par le neud i (pas ot i est un point de terminaison).
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Le nceud avec la centralité d’intermédiarité la plus élevée est le nceud qui relie les «régions»

de noeuds denses.

3.4 Composant géant

Définition 2.10. Un composant géant ou cluster géant est le cluster connecté d’un réseau qui
contient une proportion importante de l’ensemble des neeuds du réseau, méme lorsque la taille

du réseau augmente.

En générale, le composant géant d’un réseau est vaguement associé au plus grand cluster. Le
théoreéme suivant fournit le critere de Molloy-Reed [Cohen, 2000; Molley, 1995] pour I’existence

d’une composante géante dans un réseau aléatoire non corrélé:

Théoréme 2.1. Dans un réseau aléatoire non corrélé avec une distribution de degrés P(k), une

composante géante existe si

_ (F%)
K= ) > 2 (2.5)

ot (k) et (k*) sont le premier et le deuziéme moment de P(k).

Une prédiction clé de la théorie de la percolation est que la décomposition d’un réseau par
suppression de nceuds n’est pas un processus graduel avec la fraction ¢ de nceuds supprimés. En
réalité, avec un nombre important de nceuds endommagés, de nombreux réseaux complexes sont
incapables de maintenir leur fonctionnement normal. Le seuil g. peut étre considéré comme la
valeur telle que la composante géante est détruite au franchissement de ¢q. En utilisant le critére

de Molloy-Reed, Cohen et al. [Cohen, 2000] a montré la relation entre ¢. et x comme suit:
Théoréme 2.2. Dans un réseau aléatoire non corrélé, on obtient:

1
1—gq.= 2.6
qc Ko — 1 ( )

ol Ko = o) est calculé a partir de la distribution initiale avant la répartition aléatoire.

3.5 Relation d’échelle allométrique

Pour étudier la propriété structurelle de ’arbre a travers la relation d’échelle allométrique,
il faut d’abord attribuer une direction a chaque aréte si ’arbre n’est pas orienté. La regle est
que les bords reliant un noceud et le hub avec le degré le plus élevé doivent s’étendre a partir
du hub. D’autres arétes doivent atteindre le nceud qui se connecte au concentrateur avec un
nombre inférieur d’arétes. Nous appelons temporairement le résultat de cette affectation de
direction I'arbre couvrant dirigé. FEnsuite, la relation d’échelle allométrique est choisie par la
relation de loi de puissance entre deux variables A et C calculées pour chaque nceud du réseau.
Ces variables sont trouvées de maniére itérative comme suit [Qian, 2010] :

Définition 2.11. Pour chaque neud i dans ’arbre couvrant dirigé, soit
AZZZAJ+17 CIZZC]—I—A“ (27)
J J
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ot j représente tous les neeuds liés d partir du neud i. Alors, exposant allométrique n est la

puissance d’ajustement de [’expression suivante:
C~ A" (2.8)

ot les neuds feuilles avec A = C =1 doivent étre éjectés de lajustement de I’exposant.

L’exposant allométrique 7 est compris entre 1 et 2 pour deux structures de réseau extrémes:
le réseau en étoile et le réseau en chaine. Ainsi, un arbre en forme d’étoile a n = 17 tandis que
pour un arbre en forme de chaine a n = 2~ [Garlaschelli, 2003; Qian, 2010]. En particulier, la
valeur de C a un noeud peut mesurer 'impact total du nceud vers le réseau a travers ses k-voisins
les plus proches, ou le niveau de proximité k va a 'infini.

Nous démontrons empiriquement que la relation d’échelle allométrique apparait réellement
dans le réseau MST d’un systéme d’action. Ainsi, la relation d’échelle allométrique du MST
associée a un systeme financier peut aider a quantifier la “forme” globale du systeme et a

déterminer le niveau d’influence de chaque constituant sur les autres dans le systeme.

3.6 Taux de survie

Définition 2.12. Soient G; et Gy_1 deux graphes consécutifs représentant un réseau complexe
et By et Ey_1 U’ensemble des arétes de Gy et Gy_1, respectivement. Ensuite, le tauxr de survie
entre Gy et Gy—1 est défini par l’expression suivante:

2By N By

S(Gy, Gy y) = - Bl 2.9
(G G1) = R B (2:9)

ot ||.|| désigne la taille de l’ensemble intérieur, c’est-a-dire le nombre d’éléments de l’ensemble.

Le taux de survie permet de mesurer 1’évolution de la structure du réseau dans le temps.
Cette mesure a été introduite dans [Garas, 2008; Onnela, 2003b; Onnela, 2003c]. Cependant,
dans notre étude, nous remplagons leur dénominateur par le nombre moyen d’arétes des deux

graphes consécutifs pour éviter les bruits causés par I'augmentation de la taille du réseau.

3.7 Ratio du méme sector

Définition 2.13. Le ratio du méme sector du réseau boursier est la fraction du nombre d’arétes

qui relient deux cours appartenant au méme secteur d’activité.

Fréquemment, les actions du méme secteur d’activité sont généralement plus corrélées que les
actions de différents secteurs, a ’exception de certains secteurs particuliers tels que les services
financiers. Cependant, dans certaines crises, il arrive que 'intra-corrélation d’un secteur n’est
presque pas plus élevée que l'inter-corrélation. Par conséquent, des changements significatifs
du méme ratio sectoriel du MST peuvent donner des informations utiles sur les changements

cruciaux de la structure du MST ainsi que sur la phase du marché.
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4 Caractéristiques des réseaux boursiers

La plupart des réseaux complexes réels ont une propriété commune appelée propriété sans
échelle, bien qu’ils puissent étre construits a partir d’objets de natures différentes [Newman,
2003].

4.1 Propriété sans échelle

Définition 2.14. Un réseau sans échelle est un réseau dont la distribution des degrés suit une
loi de puissance, c’est-a-dire,

P(k)~k™7 (2.10)
La constante positive v est appelée le degré exposant de la distribution.
Remarque. Un réseau sans échelle avec v > 1 a les caractéristiques suivantes :

(i) Il pourrait avoir des noeuds centraux avec des degrés extrémement élevés (souvent appelés

“hubs”).
(ii) Le degré du plus grand hub croit avec la taille du réseau.

(iii) Comparé a des réseaux aléatoires ayant la méme valeur attendue, il manque d’échelle

interne

Semblable aux marchés développés [Onnela, 2003b; Sienkiewicz, 2013; Wilinski, 2013], dans
[Nguyen, 2018; Nguyen, 2019¢], nous avons constaté que le MST et le réseaux a seuils basé sur
la corrélation des actions vietnamiennes sont presque sans échelle dans sa situation normale, en
particulier le MST. De plus, ’exposant de degré du marché émergent est toujours plus petit que
celui du marché développé, donc la structure du premier est plus dense que celle du second (les
figures 2.2 et 2.3).
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Figure 2.2: Distribution en degrés des réseaux d’actions modélisés par la méthode MST sur la
période 01/01/2017 — 01,/01/2019.
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Figure 2.3: Distributions en degrés du réseau de seuils de corrélation des actions sur le marché
américain et sur le marché vietnamien sur la période 01/01/2017 — 01/01/2019.

4.2 Résilience du réseau

Dans cette section, a l'aide d’une représentation graphique d’un systéeme financier, nous
quantifierons la capacité du systeme a maintenir son fonctionnement malgré les défauts de

certains composants. Cette capacité est connue sous le nom de résilience du réseau. Nous
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quantifions le niveau de résilience du réseau comme la fraction de suppression de nceuds telle
que le réseau conserve sa connectivité globale, comme indiqué dans [Callaway, 2000; Cohen,
2000; Molley, 1995]. Nous mesurons le niveau de résilience d’un réseau d’action sous deux types
de suppressions de nceuds: les pannes aléatoires et les attaques. Un réseau en panne aléatoires
signifie qu’une partie arbitraire de ses nceuds est endommagée. En revanche, un réseau est
attaqué si certains de ses noeuds les plus importants sont intentionnellement endommagés.
Comme discuté dans la section 3, le niveau de résilience est calculé par le seuil critique ¢..
En utilisant le théoréme 2.2, nous présentons le résultat de Cohen et al. [Cohen, 2000] avec des
informations supplémentaires pour le cas v = 2 comme suit:
Théoréme 2.3. Dans un réseau sans grande échelle avec un exposant de degré vy, sous une

suppression aléatoire de ses neeuds,

-1
e poury > 3, le seutl critique q. se rapproche de 1 — (%kmin - 1) , 0l kmin sont la plus

petite connectivité possible.
e pour 1 <~ < 3, le seuil critique q. se rapproche de 1.

De nombreux réseaux complexes réels sont des réseaux sans échelle avec des exposants de
degré allant principalement de 17 & 3~ [Cohen, 2010]. Par conséquent, le théoréme 2.3 confirme
que les réseaux ont un niveau de résilience extrémement élevé en cas de pannes. En revanche,
Cohen et al. [Cohen, 2001] a démontré théoriquement la vulnérabilité d’un réseau sans échelle

contre 'attaque intentionnelle des nceuds les plus connectés:

Théoréme 2.4. Dans un réseau sans grande échelle avec un exposant de degré vy, sous une

attaque intentionnelle vers les neeuds les plus connectés, la probabilité qu’un bord se connecte a
2=y

un neud supprimé est d’environ 1 pour 1 < v < 2, et se rapproche de 1= pour v > 2, ot q est

la fraction de neeuds attaqués.

Pour un réseau sans grande échelle avec un exposant de degré 1 < v < 2, le théoreme 2.4
montre que les attaquants n’ont besoin que d’une petite connaissance des hubs du réseau pour
le casser entiérement.

Dans notre contexte financier, pour étudier la résilience d’un systéme boursier, nous utilisons
le réseau de seuils basé sur la corrélation. Dans [Nguyen, 2018], nous effectuons une simulation
de deffaillant aléatoire d’un tel réseau d’actions cotées sur le HSX (la figure 2.4). Le seuil

sélectionné est de 0.25, ce qui équivaut au quantile & 97% des corrélations empiriques d’action
1

Le résultat similaire est trouvé lorsque nous vérifions avec différents seuils tels que 0.3, 0.35, 0.4. ..
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Figure 2.4: Le réseaux a seuils basé sur la corrélation des actions cotées sur le HSX dans la
période 01/01/2017 — 01/01/2019 et sa distribution de degré.

Nous utilisons la méthode de Monte-Carlo et le critere de Molley-Reed pour calculer le seuil
critique ¢.. Nous avons constaté que le réseau était extrémement robuste en cas de panne
aléatoire avec le seuil critique de 95% malgré le faible exposant de 1.3. Ensuite, nous at-
taquons les noeuds les plus importants du réseau, en utilisant respectivement les mesures suiv-
antes pour définir le niveau affectant d’un nceud: les degrés initiaux des nceuds (ID), la centralité
d’intermédiarité initiale des noeuds (IB), les degrés recalculés des nceuds apres chaque suppression
de nceud (RD) et la centralité d’intermédiarité recalculée des nceuds apres chaque suppression
de noeud (RB). De ce fait, nous avons constaté que le réseau est fragile sous les attaques inten-
tionnelles, notamment sous la stratégie ID (la figure 2.5). Cependant, nous proposons que si
nous voulons endommager un réseau d’action uniquement & un niveau de sa taille plutot que de
le détruire compléetement, la stratégie RB peut étre une meilleure option. Ces résultats aident

a construire un marché boursier stable et a le protéger efficacement.
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Figure 2.5: La taille relative de la composante géante en fonction de la fraction de nceuds
supprimés sous 1’échec aléatoire des nceuds et des différentes stratégies d’attaque au réseau de
seuil basé sur la corrélation des actions cotées sur le HSX dans la période 01/01/2017 — 01
/01/20109.

4.3 Transitions de phase

Pour étudier la propagation d’un choc de prix d’une action a ’ensemble du marché, le réseau
MST est plus adapté que le réseaux a seuil basé sur la corrélation. Dans cette section, notre
sujet de recherche est ’évolution de la structure du réseau MST dans le temps. Comprendre
les transitions de phase de la structure du MST permet d’évaluer la stabilité du marché et de
contréler le risque systémique.

Dans certaines marchés développés, on a observé que [Wilinski, 2013; Sienkiewicz, 2013]:

Remarque La dynamique du MST d’un réseau d’actions basé sur la corrélation passe par
trois phases:

phase de MST hiérarchique - un état boursier (relativement) stable
phase de la superstar MST - un état de marché transitoire

phase de MST hiérarchique décorée par quelques arbres en forme d’étoiles locales — un

état boursier (relativement) stable.

Dans [Nguyen, 2019¢|, nous avons trouvé le méme résultat sur le marché vietnamien (la

figure 2.6).

131



Appendix. Thesis Abstract in French

. e
. o o
.
oo
a3 »
°
.
% .
. "n..
. ° Fe
.
. o..’ o o o o '.o o'.
¢ fo O\ $/ 3
- :
. s g o Se < % .:;: " >
‘. o o se :
o' % . —pos
of See ” »/ . e 7
L 5 ..n: = . . .o
» - S§! .o . . *
o8& ®se o o o -. L .
L . .
. ° 0
.: i % » oy .
L) .. .
© ° ¢
3 L)
.

(a) Le MST hiérarchique pour
31/03/2009 au 19/10/2010

la période du (b) Le MST aux allures de superstar pour la péri-
ode du 16/05/2012 au 02/12/2013

Sector
D Industrials
o - Real Estates
| - Materials
. K o ’
A :. I; *s s, D Financials
e, * e .
' .
. IT-Telecom
¥ & 2 e Ji=
ek | SS| ® - [ PO
o o S . - Health Care
. . ® .‘.. 2 '.
2% ) e "o
P H - y D Consumer Disc
¢ y ': - 2 "‘
< . - Energy-Utilities
L]
. D Consumer Stap
»

(c) Le MST hiérarchique décoré de quelques arbres
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Figure 2.6: Changement structurel du réseau d’actions MST cotées sur le HSX.

132



Appendix. Thesis Abstract in French

e  Empirical data B e  Empirical data
e slope = -1.289 £0.011 . —— slope =-1.301£0.011
. .
- -
o
@ .
. .
= . e =
a \d [
.
.
- - .
o o
t . - © .
ee o e e
8 8
o o
1 2 5 10 1 2 5 10 20

k k

(a) La distribution des degrés du MST hiérarchique (b) La distribution en degrés du MST hiérarchique
pour la période du 31/03/2009 au 19/10/2010 décorée par quelques arbres étoilés locaux pour la
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Figure 2.7: Degré de répartition du réseau hiérarchique MST des actions cotées a la HSX.

Le MST dans les premiéere et troisieme phases a la structure commune des réseaux d’action,
la structure sans échelle (la figure 2.7). Par contre, dans la deuxiéme phase, le MST a un super
hub, ce qui implique I’absence de la plupart des connexions entre les paires d’autres nceuds et

le réseau perd sa propriété scale-free (la figure 2.8).
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Figure 2.8: Distribution des degrés du MST en étoile sur le HSX pour la période du 16,/05/2012
au 02/12/2013 et la droite ajustée d’une loi de puissance apres avoir négligé le super hub.

Par conséquent, une structure en étoile du réseau MST est un signe crucial signifiant un
événement exceptionnel. Il a été montré dans [Wilinski, 2013], [Sienkiewicz, 2013] et dans notre
étude [Nguyen, 2019¢| que le MST en forme d’étoile apparait lorsque I’économie est soumise a
un stress important. La raison est donnée lors de I’analyse de la longueur moyenne du plus court
chemin du MST.

Pour quantifier le changement dans la structure d’'un MST d’une structure en chaine a une
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structure en étoile, nous pouvons utiliser le rapport de survie, le méme rapport sectoriel et, plus

directement, I’exposant allométrique introduit dans la section 4.2 (la figure 2.9).
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Figure 2.9: Synchronisation entre le déclin de la longueur moyenne normalisée du plus court
chemin et le déclin de I'exposant allométrique du réseau MST construit sur le HSX.

De plus, lors de 'analyse de la relation d’échelle allométrique, la valeur C' d’un nceud
représente 'importance de l'influence du action correspondant sur les autres sur le marché en
cas de crise. Nous avons constaté qu’il n’y a qu’un seul action ayant un impact extrémement
élevé C sur le réseau en forme d’étoile dans la phase II (la figure 2.10a), tandis que I'impact
total sur l’ensemble du marché est distribué a de nombreux actions dans Phase III (la figure

2.10b). Par conséquent, le réseau en étoile est extrémement sensible & un choc de son hub.
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(a) Superstar-like MST pour la période du (b) MST hiérarchique décoré de quelques arbres
16/05/2012 au 02/12/2013 étoilés locaux pour la période du 14/01/2014 au
18/08/2015

Figure 2.10: MST construits sur le HSX avec log(C) comme taille de nceud.

En outre, un résultat courant dans de nombreuses études est que le nceud central d’un MST
en forme d’étoile est pertinent pour les entreprises fournissant des services financiers [Sienkiewicz,
2013; Onnela, 2002; Onnela, 2003a]. Nous obtenons le méme résultat dans notre étude empirique
sur le marché vietnamien. Notre nceud central correspond a la Saigon Securities Incorporation,

une société de courtage en valeurs mobilieres.
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Chapitre

Propriété spectrale de la matrice de

corrélation croisée des actions

Dans ce chapitre, nous utilisons les propriétés spectrales analysées par la théorie des matrices
aléatoires (RMT) et 'analyse en composantes principales (PCA) pour comprendre non seulement
les propriétés structurelles d’un réseau boursier, mais également l'interaction commune entre les

entités du marché.

1 Théorie des matrices aléatoires appliquée aux systémes d’action

Le RMT est une théorie physique qui permet d’obtenir la matrice de corrélation croisée
précise de nombreuses entités. Dans cette étude, nous utilisons le RMT pour comprendre la
nature des corrélations des fluctuations des cours boursiers sur un marché boursier.

Considérons un systeme d’actions N. Selon la définition 2.1, nous pouvons calculer la matrice
de corrélation croisée C = (¢;;) des actions & partir des rendements boursiers, r;, i = 1, N.
Dans le RMT, pour considérer une hypothéese nulle selon laquelle les rendements boursiers sont
strictement non corrélés, nous supposons que la matrice de corrélation croisée C est équivalente
a une matrice purement aléatoire W obtenue a partir de la norme normalement IID distribué des
séries chronologiques. Une telle matrice est dans I’ensemble de la matrice de Wishart [Wishart,
1928].

Définition 3.1. Une vraie matrice de Wishart est une matrice symétrique aléatoire W de la
forme:

1
W = _MM’ (3.1)
T
ot ’ désigne la transposition matricielle, et M est un matrice de taille N x T telle que:
¢ (Mij),<j<r sont des échantillons indépendants d’une variable aléatoire & valeur réelle m.
e (mq, ...,mp) est un vecteur gaussien avec une matrice de covariance donnée K.

T est appelé degré de liberté.
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De plus, dans notre contexte financier, (my, ..., my) est un vecteur normal standard de co-
variance K = diag(1,...,1) pour interpréter le modeéle nul de C. La différence de la distribution
spectrale de C de celle de W indique la présence d’informations significatives sur la véritable
corrélation des actifs. Surtout dans un grand systéme, pour K = diag(o,...,0), nous avons
[Marcenko, 1967]:

Théoréme 3.1. Si N — oo, T — oo de telle sorte que % se rapproche d’un nombre fire a > 1,
le spectre empirique distribution de la matrice de Wishart W converge faiblement, en probabilité,

vers la distribution Marcenko - Pastur avec la densité p supportée sur [A_;\;] et donné par

PN = 555/ =N (A=), YA € A Ay (3.2)

ot Ay = o2 (1 + a_%>2.

En réalité, de nombreux travaux ont montré que la plupart des valeurs propres des matrices
de corrélation croisée des variations des prix des actifs sur les marchés financiers mondiaux
concordent étonnamment bien avec 'intervalle fournie dans le théoréme 3.1, mais la plus grande
valeur propre est nettement supérieure & A} que le marché soit développé [Laloux, 1999; Plerou,
1999; Rosenow, 2008], en développement [Nobi, 2013] ou émergent [Nguyen, 2019b] (Figure
3.1). Selon le RMT, la plus grande valeur propre permet de refléter les véritables corrélations
des composants du systeme. En particulier, la prédominance de la plus grande valeur propre

devient plus importante lors des “crashes” boursiers [Drozdz, 2000; Nobi, 2013; Zheng, 2012].
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Figure 3.1: Explication de la distribution spectrale prédite par le RMT (trait noir) pour une
grande partie de la distribution spectrale de la matrice de corrélation croisée des valeurs cotées
sur le HSX du 01/01/2017 au 01/01/2020 (insérer: ces deux distributions lors du zoom sur les
valeurs propres sans la plus grande).
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2 Composantes principales des rendements boursiers

L’idée principale de 'PCA est de réduire la dimensionnalité d’un ensemble de données com-
posé de nombreuses variables corrélées en transformant ’ensemble de données en un ensemble
de variables aléatoires non corrélées, appelées composantes principales (PC), tout en conser-
vant la plupart des variations dans l’ensemble de données initial [Jolliffe, 1986]. Dans notre
contexte financier, pour un systéme d’actions contenant des actions de N, soit r = (r;) =T €t
r* = (r]),—i ou r; = ¢* est le rendement standardisé de I'action . Soit Ay > A2 > ... > Ay
N valeurs propres distinctes de C.

Définition 3.2. Laisser u; (i = 1, N) soit le vecteur propre associé a la i-iéme valeur propre \;
tel que ||u;|| = u;u; = 1, A est la matrice N x N dont les colonnes sont u;s, et z = A’r*. Soit

z; le itéme composant de z. Ensuite, z; est appelé le i-ieme PC de r.

Dans les énoncés suivants, lorsque nous mentionnons un certain vecteur propre associé a une

valeur propre donnée, ce vecteur est 'unité.
Théoreme 3.2. Les PC du vecteur aléatoire r satisfont les propriétés suivantes:
(i) Les PC ne sont pas corrélés.

(i) La variance de chaque PC' est égale d la valeur propre correspondante, c’est a dire.,

Var (z;)) =X, Vi=1,N (3.3)

(iit) Pour toute combinaison linéaire v’r* de variables dans r*, ot v est un vecteur unitaire, la

variance du premier PC est la plus grande, c’est-a-dire

Hm‘?xl Var (v’r*) = Var (21) (3.4)

(iv) Pour toute combinaison linéaire non nulle v’r* de variables dans r*, le premier PC est
celut qui mazimise la somme des carrés des coefficients de corrélation de Pearson avec

chacun des rendements boursiers, c’est-a-dire

N N
2 2
max i = iz 3.5
s 3 () = 3 (i) (35)

ol p;y et p;z, sont le coefficient de corrélation entre y et r; et le coefficient de corrélation

entre z1 et r;, 1 = 1, N, respectivement.

Si chaque vecteur non nul v représente un portefeuille d’investissement ou la i-ieme com-
posante v de v est le capital investi pour action 7, v’r est le rendement du portefeuille. Ainsi,
le j-ieme PC z; est le rendement d'un portefeuille dont le chargement de ’action 7 est la fraction
ugl) /oje. Ce portefeuille est appelé le j-th eigen-portfolio. Le théoreme 3.2 propose que le pre-

mier PC soit équivalent au facteur de marché dans le modéle CAPM bien connu [Plerou, 2002].
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La figure 3.2 montre la synchronisation du premier portefeuille propre et de I'indice de marché

correspondant.
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Figure 3.2: La performance relative du portefeuille simulé le plus corrélé (ligne pointillée) par
rapport a 'indice de marché correspondant de 2013 a la fin de 2017.

3 Charges de la premiere composante principale des rendements

boursiers

(j)(

Définition 3.3. Pour tout nombre i =1, N, les composants w;”’ (j = 1, N) du vecteur propre u;

sont appelés les chargements du i- e PC.

Dans cette section, les premiers chargements du PC sont de notre intérét car les chargements
aident a comprendre comment les actions individuelles contribuent au facteur de marché. De
nombreuses études ont montré que les chargements ont généralement le méme signe [Gopikr-
ishnan, 2001; Nguyen, 2013; Pan, 2007; Plerou, 2002] alors que ce n’est le cas pour aucun des
autres PC. Cela confirme qu’il existe un facteur systématique dominant impactant totalement
la totalité ou la plupart des actions du marché. Par ailleurs, les chargements sont décorrélés
de la capitalisation boursiere de lentreprise correspondante (la figure 3.3). Par conséquent,
I'utilisation de la capitalisation boursiere pour peser une action n’est pas la meilleure fagon

d’avoir un portefeuille capturant le comportement commun d’un marché boursier.
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Figure 3.3: Les composantes de u; (relevé par /A1) par rapport a la capitalisation boursiere des
actions correspondantes dans 'indice S&P 500 et 'indice VN en la période de 2013 a fin 2017.

4 Influence des actions reflétée par la premiere composante prin-

cipale des rendements des actions

Théoréme 3.3. Si la plus grande valeur propre est extrémement supérieure aux autres valeurs
propres, le chargement du premier PC sur un composant est presque linéairement lié da la
moyenne des coefficients de corrélation entre ’action correspondant au composant et les autres
actions.

Concrétement, pour tout actioni (i = 1, N ), soit ¢; la moyenne des coefficients de corrélation

entre laction et les autres, ensuite nous avons:
_ i
& ~ Ml (3.6)

Nous montrons empiriquement que le théoreme 3.3 est valide dans notre contexte financier
(la figure 3.4).
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Surtout, la relation entre le chargement du premier PC sur une action et le réle du action

dans le réseau MST montre que le PC contient des informations significatives sur la structure

MST (la figure 3.5). Cela signifie que 'PCA peut étre une méthode utile pour analyser le réseau

MST.
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Figure 3.5: Le MST obtenu dans la période de 2013 a fin 2017 avec la taille du nceud comme
logarithme du chargement du premier PC sur I'action correspondant (les tickers des actions
correspondant aux 10 premiers chargements sont affichés et leurs noeuds correspondants sont

remplis).

De plus, nous avons construit la mesure as pour quantifier la contribution d’un secteur
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d’activité s dans le premier vecteur propre:
L, 0)
as=— 3 u3 (j,s) (3.7)
ns

ou d (j,s) = 1sil’action j appartient au secteur s et § (j, s) = 0 sinon; ns est le nombre d’actions
appartenant au secteur s.

Nous avons constaté que les sociétés financieres ont tendance a avoir des charges importantes
dans le facteur de marché (la figure 3.6). Cela aide a expliquer pourquoi une entreprise de services
financiers peut devenir un super-hub lorsque le réseau MST approche de son état instable — une

structure en étoile — comme discuté dans le chapitre 2
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(a) Le premier PC est construit a partir des com- (b) Le premier PC est construit a partir des com-
posants boursiers de 'indice S&P 500 posants boursiers de 'indice VN

Figure 3.6: Contributions sectorielles pour le premier PC des rendements boursiers obtenus dans
la période de 2013 & fin 2017.

142



Chapitre

Détaillances en cascade dans les systemes

financiers et son modele prétopologique

1 Défaillances en cascade dans les systémes complexes

Parfois, un systéme complexe peut étre endommagé par la défaillance d’un seul ou de quelques
composants, car les composants les plus liés aux composants défaillants sont d’abord infectés
et continuent de déclencher la défaillance d’autres, etc. Ce processus de diffusion a travers
la relation entre les composants d’un systeme est appelé défaillance en cascade. De méme, la
défaillance en cascade apparailt également dans les systemes financiers lorsque la défaillance d’une
institution financiere peut entrainer la défaillance de ses homologues et se propager uniformément
sur le marché. Pour les systémes d’action, nous proposons d’utiliser la théorie de la prétopologie
pour modéliser la défaillance en cascade en raison des caractéristiques du systeme et de la

faiblesse de la modélisation du réseau.

2 Théorie de la prétopologie

La théorie de la prétopologie a été développée dans le but de suivre I’évolution d’un processus
de diffusion et comment il contribue au résultat final [Belmandt, 2011]. Soit £ un ensemble non
vide et P(FE) soit ’ensemble de tous ses sous-ensembles.

Définition 4.1. On appelle pseudofermeture définie sur E toute carte a de P(E) dans P(E)
tel que:

(i) a(2) =g, et
(ii) VAC E,ACa(A).

Définition 4.2. Nous appelons l'intérieur défini sur E toute application i de P(E) dans P(E)

telle que:
(i) i (E)=F, et
(ii) VA C E,i(A) C A.
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Dans cette étude, nous considérons 7 comme une c-dualité de a.

Définition 4.3. Un espace prétopologique est un couple (E,a(.)) ot a est une pseudo-fermeture

définie sur l’ensemble non vide E.

Les calculs successifs d'une pseudofermeture & un ensemble A donné permettent de mod-
éliser ’évolution d’un processus de dilatation & partir de A. Pendant ce temps, le résultat de

I’application successive de I'intérieur & A peut modéliser un processus de dilution a partir de A.

Définition 4.4. Etant donné un espace prétopologique (E, a(.)), pour tout sous-ensemble A de
E,

(i) A est dit étre un sous-ensemble fermé de E si et seulement si A = a(A).
(i) A est un sous-ensemble ouvert de E si et seulement si A = i(A).

Définition 4.5. Etant donné un espace prétopologique (E, a(.)), pour tout sous-ensemble A de
E,

(i) nous appelons fermeture de A, notée F(A), le plus petit sous-ensemble fermé de E qui

contient A si le sous-ensemble existe.

(i) nous appelons ouwverture de A, notée O(A), le plus grand sous-ensemble ouvert de E qui

est inclus dans A si le sous-ensemble existe.

Un espace prétopologique est une extension d’un hypergraphe [Dalud-Vincent, 2011]. Pour
étudier un systeme incluant la multi-relation d’éléments et les relations entre un groupe d’éléments
et un élément, ou lorsque 1’évolution du processus de dilatation et/ou de diminution est I’objectif

de la recherche, la théorie de la prétopologie peut étre une solution intéressante.

3 Cadre prétopologique des défaillances en cascade des marchés

boursiers

Similaire & [Auray, 1979; Ben-Amor, 2010; Lamure, 2009] pour résoudre le probleme de
propagation de la pollution, nous construisons un espace prétopologique des actions en consid-
érant a(A) comme une composition de A et tous les autres éléments dont la relation avec A est
supérieur & un seuil, pour tout ensemble d’actions A. Cependant, nous n’utilisons pas de seuil
constant. Les trois hypotheses suivantes sont utilisées dans notre modele:

(i) Si une action subit un choc de prix, les actions qui ont des corrélations élevées avec elle

sont directement influencées.
(ii) L’impact d’un groupe sur les autres actions est plus important si le groupe est plus grand.

(iii) Un changement dans la taille d’un groupe fait que le groupe a plus d’impact sur une action

extérieur si la taille du groupe est plus grande.
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Par conséquent, si E est I’ensemble de toutes les actions cotées sur un marché boursier, et
N est le nombre de ces actions, nous utilisons la pseudo-fermeture suivante pour notre probleme

d’échec en cascade:

Proposition 4.1. Soit f une fonction décroissante et concave de [1,N] dans [0,1). Soit a une
application de P(E) dans P(E) telle que a (&) = & et

a(A)=Au ke B\l Z cir > FUIAID Y, VAe P(E)\ {2} (4.1)

jEA

ot ||A]l est la taille de A. Alors, (E,a(.)) est un espace prétopologique d’intérieur i tel que
i(E)=FE et

i(A) = keA — Z cik < f(N —||A]) ¢, YA€ P(E)\{E} (4.2)
H jema

Avec ce modele, en trouvant la fermeture d’'un groupe d’actions, nous pouvons prédire
I’ampleur de I'impact des fluctuations de prix de ces actions sur les autres lorsque ces actions
sont dans une tendance de prix négative. A l'inverse, I’ouverture de la rémunération du groupe

peut permettre de prédire les valeurs non impactées par I’évolution négative des cours du groupe.

4 Reésultats empiriques sur le NYSE

Dans cette section, nous étudions empiriquement comment la pseudo-fermeture introduite
dans la proposition 4.1 peut modéliser la propagation d’un choc de prix dans un marché boursier
réel, le NYSE, et vice versa, comment l'intérieur correspondant peut aider a prédire les actions
non touché par le choc.

4.1 Base de données

Nous examinons ’échec en cascade a partir de MER, ’action ordinaire de Merrill Lynch &
Co. sur le NYSE, a d’autres composés dans l'indice S&P 500. Cet action est sélectionnée en
raison de sa position importante sur le marché américain pendant des décennies, mais elle a
perdu la position & partir du deuxiéme de 2007 et a finalement été acquise le 31/12/2008. Nous
désignons MER comme action ig. Le jour ou ¢g a connu une baisse considérable de son prix est
défini comme le moment ou le prix a chuté de plus de 70% dans I’année précédant son jour de
consolidation, noté ty. On dit que 'action échoue au temps tg.

Considérons 'ensemble E de toutes les composantes de I'indice S&P 500 pour représenter
le marché boursier américain. Nous utilisons les cours de cléture quotidiens des actions de F
dans 2 ans avant ty pour calculer les corrélations des actions. On note H comme ’ensemble des
composants défaillants du systéeme complexe E pendant une période de 6 mois apres .

4.2 Meéthode de recherche

Dans [Nguyen, 2019a], pour construire ’espace prétopologique (F,a(.)) selon la proposition
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4.1, les fonctions ci-dessous sont utilisées pour définir le seuil affecté:

f(m)z@(N]\_fl)y(x_]{[_l%—l)V, v € [1, N] (4.3)

ouy>0et0<O <.

Pendant ce temps, dans [Nguyen, 2021b], nous utilisons la fonction ci-dessous:
f(z)y=1—-0e", Vzell,N] (4.4)

onl0<f<let0<y<—N"llné.

Nous utilisons F({ig}) pour prédire les actions influencées par I’échec de iy tandis que
O(E\{ip}) est utilisé pour prédire les actions non affectés par la défaillance de ig. Nous quan-
tifions Defficacité de la prédiction par deux mesures: la précision et le rappel de la prédiction.

4.3 Processus de transmission d’une chute du prix d’action

Nous avons constaté que notre cadre prétopologique avec des parametres appropriés peut
mieux modéliser la transmission de la chute a partir de ig que le réseau MST. En effet, la
précision de la prédiction basée sur la connexion du MST dans la figure 4.1a est généralement
inférieure a la précision de la prédiction basée sur F ({i¢}) dans la figure 4.1b au méme niveau de
rappel. De plus, la contagion des échecs modélisée par les calculs successifs de pseudofermeture
pour obtenir F ({ig}) a partir de ig peut atteindre des actions éloignés dans le MST (la figure
4.2).
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Figure 4.1: Relation entre la précision et le rappel de la prédiction des actions influencées par
le choc de prix de ig lorsque (a) en utilisant F({ip}), et (b) en utilisant le réseau MST.

146



Appendix. Thesis Abstract in French
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Figure 4.2: Actions distants dans le réseau MST atteints dans le processus de dilatation de {ig}
aF({ig}) avec § =0.34 et v =5 x 1074

Une question est de savoir quelles valeurs de 6 et v sont appropriées. Nous proposons de
choisir des valeurs appropriées pour eux tels que le seuil d’impact de l'expansion de {ip} a
a ({ip}) dans la premiere étape du processus de dilatation n’est ni trop grand ni trop petit si la
précision de la prédiction est plus importante que le rappel.

Inversement, dans [Nguyen, 2021b], on utilise O(E\{io}) dans l’espace prétopologique donné
dans la proposition 4.1, ou f est vérifié par (4.4), pour prédire les actions non affectées par le
choc de prix de ig (la figure 4.3). Nous avons trouvé que 6 et -y devraient étre choisis de telle

sorte que le seuil d’impact ne soit ni trop grand ni trop petit.
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Figure 4.3: Relation entre la précision et le rappel des actions prédites non influencées par le
choc de prix de ig par O (E\ {ip}).
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5 Types d’espaces Prétopologiques

Dans cette section, nous introduisons quelques types particuliers d’espaces prétopologiques
et leurs relations.

Définition 4.6. Soit un espace prétopologique (E,a(.)), on dit que c’est:

(i) un espace de type V si (A C B = a(A) C a(B)) pour tout sous-ensemble A, B de E.
(ii) un espace de type Vp sia (AU B) =a(A)Ua(B) pour tout sous-ensemble A, B de E.
(tit) un espace de type Vg st a (A) = Uyea a ({z}) pour tout sous-ensemble A de E.

Proposition 4.2. Tout espace de type Vp est un espace de type V.
Proposition 4.3. Tout espace de type Vg est un espace de type Vp.

Proposition 4.4. Un espace prétopologique (E,a(.)) est un espace topologique si et seulement

s’tl est de type Vp et a(a(A)) = a(A) pour tout sous-ensemble A de E.

Dans un espace de type V, nous disposons de nombreux outils nécessaires pour construire
un concept de proximité, tels que les bases des voisinages d’un élément, la connexité et les sous-
ensembles fermés minimaux [Belmandt, 2011]. Par conséquent, nous proposons d’améliorer

I’espace prétopologique de la section 4.3 pour qu’il devienne un espace de type V, par exemple:

Proposition 4.5. Soit f une fonction décroissante et concave de [1, N| dans [0,1). Soit a une
application de P(E) dans P(E) telle que a (&) = rien et

o(d) = au{ke B\almacci > £(1AD ], vA € PE) (o) (4.5)

ol

Al est la taille de A. Alors, (E,a(.)) est un espace prétopologique de type V.
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Chapitre

Anomalies topologiques de la dynamique des

indices de marché

1 Les indices boursiers comme représentations des comporte-

ments collectifs des marchés boursiers

En tant que systéme complexe avec de nombreux composants et des relations compliquées,
le mouvement d’'un marché boursier dans son ensemble n’est pas facile a prévoir. Pour avoir une
vue d’ensemble intuitive d’un marché boursier, les gens dépendent souvent des indices boursiers.
Selon I’étude du chapitre 3, nous proposons que la fluctuation d’un indice de marché puisse étre
utilisée pour évaluer le comportement collectif du marché si elle est fortement corrélée avec la
fluctuation du premier PC. L’occurrence des indices a rendu les marchés boursiers différents de la
plupart des systémes complexes car nous pouvons facilement saisir les comportements collectifs
des marchés par une mesure transparente, mise a jour en permanence et fournie gratuitement.
Par conséquent, dans ce chapitre, notre objectif est de détecter les comportement anormaux
d’un marché boursier a travers des anomalies dans la dynamique du rendement de son indice

représentatif.
2 Incorporation a retardement d’une série temporelle

Pour découvrir des anomalies dans la dynamique d’un retour d’indice, il faut appréhender ses
différents états. Nous utilisons la méthode d’intégration a retardement [Packard, 1980; Ruelle,

1979] pour résoudre ce probléme.

2.1 Retarder la reconstruction

Définition 5.1. Un vecteur reconstruit obtenu a partir d’une série temporelle (x¢) est défini

par, pour tout t,

d
y© = (xtaxt+77xt+277 e ,$t+(d—1)r) (5.1)
Nous appelons T le délai et d la dimension de plongement.

L’objectif principal de la méthode d’intégration a retardement est de convertir une série
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chronologique en un nuage de points d’un espace de dimension supérieure afin qu’il puisse
capturer différents états de la dynamique de la série chronologique. Alors, Y = (yZ’d) est
appelé l'espace des phases/états et nous pouvons obtenir Pattracteur de la série temporelle &

partir de la topologie de I'espace fonctionnalité.

2.2 Sélection du délai

Nous introduisons les méthodes courantes pour choisir le parameétre de délai [Abarbanel,
1993]:
o Autocorrélation: T est sélectionné comme premier zéro de la fonction d’autocorrélation

linéaire:

(@tr —7) (2 = T)),
A(r) = 5.2
S Y (5.2
ou (.), est la moyenne dans le temps et T = (xy),.

e Information mutuelle moyenne: T est sélectionné comme le décalage dans le temps que le

premier minimum de l'information mutuelle moyenne (AMI) de z; et z44 (g0, OU

~ ﬁ($t7$t+7)
AMI (1) = Tt, Trar)logy — — 5.3
( ) Zt:p( b ) 82 b1 (l‘t)Pz ($t+r) ( )

p est la distribution de probabilité conjointe estimée de x; et x¢yr; P1 et Pa sont la fonction

marginale estimée de la distribution de probabilité conjointe.

2.3 Sélection de la dimension d’intégration

Nous introduisons deux approches pour choisir une dimension de plongement appropriée: les
tests dynamiques et les tests géométriques. Les tests dynamiques sont effectués en augmentant
la dimension de plongement jusqu’a ce que le comportement typique de la série temporelle
apparaisse [Broomhead, 1986; Eckmann, 1986] tandis que les tests géométriques dépendent de
la distance entre les points de I’espace d’état. Nous pensons que les tests géométriques sont plus
adaptés aux séries temporelles du monde réel car de tels tests se rapprochent directement de
I’objectif de la reconstruction. Quelques exemples courants de tests géométriques:

e Saturation des invariants du systéme: la méthode recherche la dimension de plongement

qui fournit I'indépendance avec une certaine fonction en fonction des distances entre les

points de 'espace d’états [Grassberger, 1983].

o Fauzx voisin le plus proche: cette méthode recherche d comme le plus petit nombre tel que
pour tout point de I’espace reconstruit de dimension d, son point le plus proche soit encore
assez proche dans le (d+1)— espace reconstruit dimensionnel [Kennel, 1992]. De plus, dans
notre étude, nous utilisons la version modifiée proposée dans [Cao, 1997]. En particulier,

. T,d . . tau,d A
pour chaque vecteur reconstruit y,””, soit le vecteur reconstruit y,« étre le plus proche

.. T.d . .
voisin de y;* avec le plus proche dans le sens d'une certaine distance .

A _ rd d " . d
b1t vt =y;% on prend y;.” comme deuxiéme voisin le plus proche de y;**.
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SOit d+1 d+1
yT, 7y7’92
a(t,d):‘ i — j’d | <R, Wt (5.4)
‘ Yo =Y
et
E (d) — M (5 5)
BT a(td), '

ot ||.|| est quelques mesures de distance. Sans perte de généralité, nous utilisons la distance
euclidienne. Lorsque le changement de E7 devient trivial lorsque la dimension d’intégration
est supérieure a un certain nombre dy, nous prenons dg+ 1 comme dimension d’intégration

optimale.

3 Homologie persistante

Pour étudier les informations topologiques de 'espace d’état Y = (yz’d), Nnous proposons
d’utiliser I'homologie persistante, la principale technique d’analyse topologique des données(TDA)
[Chazal, 2021].

3.1 Complexes simpliciels

Soit V = {wp,v1,...,0x} C R? un ensemble de points affinement indépendants.
Définition 5.2. Un simplexe k-dimensionnel o englobé par V est l’enveloppe convere de V,
c’est-a-dire,

k
Zal-:l/\ogaigl} (5.6)

1=0

k
g = {ZO@W

1=0

Vg, V1, ...,V sont appelés sommets de o. L’enveloppe convexre de tout sous-ensemble de V est

aussi un simplexe appelé face de o.

Définition 5.3. Un complexe simplicial G est une collection finie de simplexes, telle que:
(i) Toute face d’un simpleze de G est un simplex de G.
(i) L’intersection de deuz simples de G est soit vide, soit une face commune des deuz.

Nous introduisons deux complexes simpliciaux familiers construits & partir d’'un nuage de

points donné: le complexe de Vietoris-Rips et le complexe Cech.

Définition 5.4. Etant donné un nombre «, le compleze Cech Cech, (V) est Uensemble des
simples par des sous-ensembles de 'V tels que: pour tout simplex o € Cechy (V), les boules

fermées B (v;, &) pour tout sommet v; de o ont un intersection.

Définition 5.5. Etant donné un nombre «, le compleze de Vietoris-Rips (appelé aussi complexe
de Vietoris ou complexe de Rips) Rips, (V) est l’ensemble des simplexes englobés par des sous-
ensembles de 'V tels que: pour tout simpleze o € Rips, (V), ||[vi —vj|| < a pour tout sommet

v, vj de o.
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3.2 Groupes d’homologie

Pour découvrir les informations topologiques d’un complexe simplicial, 'homologie est une
approche puissante qui permet de distinguer les structures du complexe en détectant ses trous.
Définition 5.6. La carte des limites k Oy : Cy, — Cx—1 (k > 0) est défini par:

(i) pour tout simplex orienté o = [vg,v1,...,Vk],
k .
Ok (o) = Z (=1)" [vgy -+, Vi—1, Vit1, V] (5.7)
i=0
et
(it) pour tout simplex de dimension k o1,...,0p, et coefficients aq, ..., € Z,

8k (Z aiai> = Z a,ﬁk (Ul) (58)
=1 i=1

ot Cy, est l’ensemble des k-chaines avec des coefficients dans 7
Définition 5.7. Les éléments de ker (0f) sont appelés k-cycles.

Définition 5.8. Un trou de dimension k est un cycle de k qui n’est pas une frontiére d’un

complexe simplicial de dimension (k4 1).
Les trous de dimension k peuvent étre détectés par des groupes d’homologie définis par:

Définition 5.9. Etant donné un compleze simplicial G, le groupe d’homologie k-dimensionnel
de G est
Hy (G) = ker (0g) /Im (Ox+1) (5.9)

Par conséquent, le groupe d’homologie a 0 dimension Hy représente les composantes con-
nexes du complexe, le groupe d’homologie a 1 dimension H; représente les trous ou boucles
a 1 dimension, le groupe d’homologie a 2 dimensions Hy représente les trous ou cavités en 2

dimensions,...

3.3 Diagramme de persistance

Définition 5.10. Une filtration est une séquence de complexes simpliciaur (Gq),crcr 0rdonnés

par inclusion, c’est-a-dire G, C Gg» st o’ < a” pour n’importe quel nombre a’,a” de I.

Définition 5.11. Un diagramme de persistance d’un filtrage (Ga)yercr €5t la diagonale
{(z,y) € R*|z =y} avec un ensemble de points { (b,d) € R?|b < d} tel que chaque point (b,d)
correspond a une caractéristique topologique comme suit: b est la plus petite valeur de a € [
telle que la caractéristique apparaisse dans Gy, et d est la plus petite valeur de o € I telle que
a > b et la caractéristique disparaisse dans Gg,.

Nous appelons b I’échelle de naissance, et d ’échelle de mort du trait. La différence d —b est

appelée la persistance de la caractéristique.
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En analyse de séries temporelles, en construisant le diagramme de persistance associé a
I’espace d’état Y = (yZ’d) d’une série temporelle, on peut extraire les informations topologiques
de 'espace d’état intrinseque sous le changement de la résolution spatiale. Ainsi, I'information
est la robustesse aux bruits [Cohen-Steiner, 2007]. Les filtrages (Rips, (V)),>¢ et (Cecha (V))

sont souvent utilisés pour construire le diagramme de persistance.

a>0

3.4 Distance du goulot d’étranglement et distance de Wasserstein

Il existe deux mesures usuelles pour quantifier la similarité entre deux diagrammes de per-
sistance: la distance du goulot d’étranglement et la distance de Wasserstein [Chazal, 2021].
Définition 5.12. La distance du goulot d’étranglement entre deux diagrammes de persistance
Dy et Dy est définie par:

Wy (D1,D2) = inf sup |lu — vl (5.10)

matching m (u,v)EM

Définition 5.13. La distance de Wasserstein entre deuxr diagrammes de persistance D1 et Do

est définie par:

1
p
- _olP
Wy (DD = wf (S fu ol (5.11)
(u,v)EM
ot ||s|| o = max,_15|si| pour tout s = (s;) € RY.

Cependant, nous montrons que les métriques ne sont pas appropriées pour mesurer la dif-
férence entre deux diagrammes de persistance si leurs nombres de points en dehors de la diagonale

sont trop différents.

4 Détection d’anomalies de la dynamique d’un indice de marché

a partir de ses caractéristiques topologiques

Dans [Nguyen, 2021a], nous utilisons le TDA combiné a la méthode d’intégration a retarde-
ment pour détecter des anomalies dans le comportement d’un marché boursier.
4.1 Méthodes de recherche

Nous étudions la série chronologique du rendement d’un indice de marché et considérons
la dynamique dramatiquement étrange du rendement comme des anomalies du marché. Cela
conduit a comparer des diagrammes de persistance construits a partir du rendement de 'indice
dans la période courante et les périodes précédentes. Nous utilisons les termes “données de test"
et “données d’entrainement" pour la série chronologique du retour de I'indice que nous voulons
détecter des anomalies et sa série chronologique dans les périodes précédentes, respectivement.
Notre méthode est résumée dans l'algorithme 9.

0 permet de mesurer I’écart de la structure topologique du retour d’index par rapport a ses
structures antérieures. Une valeur plus élevée de § implique une plus grande variation de la

dynamique de retour de 'indice de la période de test aux précédentes.

153



Appendix. Thesis Abstract in French

Algorithm 9 Calculer I’écart de la structure topologique § de la dynamique de retour de I'indice
d’une certaine période aux précédentes.

t=1,T
1: procedure VARIATION DE LA STRUCTURE TOPOLOGIQUE((z:), (z}))

Require: retour d’index (x¢) comme données d’apprentissage, retour d’index (xt) — comme données de test,

t=1,T"

2: 7 < le délai optimal de (z¢)

3: d < la dimension d’encastrement optimale de (z¢)

4: > calculer le temps d’intégration de (z¢) et (xt)

o Yt (It7xt+77$t+2‘r7 - 7xt+(d71)-r) yt=1T—(d-1)r

6: y; (a:;, x;+7,x;+7_, . .,$;+(d71)7_) L t=1,T7"—(d—1)r

T m«« T —(d—1)r > le nombre de vecteurs y,s

8: > diviser y¢ en s segments consécutifs de longueur m

9: segment; < (Y1+(j71)m7 YZJr(j—l)mv---v}’jm) , J=1,s

10: > calculer des diagrammes de persistance

11: dgm <+ le diagramme de persistance construit & partir de (yt)

12: dgm; < le diagramme de persistance construit & partir de segment;, j =1,s
13: total__dgm < fusionner tous les diagrammes de persistance dgm;, j = 1,s

14: > calculer la distribution ponctuelle des diagrammes de persistance

15: cluster; < points attribués au i-éme groupe apres partitionnement des points hors de la diagonale de total__dgm

en k clusters sur la base des emplacements des points et de leurs groupes d’homologie correspondants
16: forie1l,k+1do

17: region; < la région de R? identifiée par cluster;, ot la derniére région est le reste de l’espace
18: P, + T:L” , oll nj; et m; sont respectivement le nombre de points de dgm; appartenant & region; et le
J -
j=1,s

nombre de points de dgm;, sauf la diagonale

19: Qi + %, ou n; est le nombre de points dans dgm appartenant a region;, et n’ est le nombre de points dans
dgm, & ’exception de la diagonale, respectivement

20: end for

21: > calculer comment les distributions ponctuelles des diagrammes construits & partir des données de test et des

données de formation sont différentes
k+1
220 S /S (P - Qi)? > Output
23: end procedure

4.2 Résultats empiriques avec I’indice S&P 500

Nous vérifions efficacité de notre méthode dans le cas de I'indice S&P 500 du 18/12/1972 au
04/08/2020. Nous utilisons ’AMI pour trouver le délai idéal et la méthode donnée dans [Cao,
1997] pour trouver la dimension de plongement idéale. Pour moins de calcul, nous utilisons la
famille des complexes de Vietoris-Rips pour construire les diagrammes de persistance. Etant
donné que les caractéristiques bidimensionnelles de nos diagrammes de persistance peuvent étre
considérées comme des bruits, nous nous concentrons uniquement sur les caractéristiques 0 et 1
dimension. Pour partitionner les points du diagramme total, a ’exception de la diagonale, en
petits clusters, nous utilisons 1’algorithme k-mean [Hartigan, 1979] pour résoudre rapidement le
probléme et obtenir un résultat acceptable.

Pour tout point du diagramme de persistance construit a partir des données de test, a
I’exception de la diagonale, nous attribuons le point & son cluster le plus proche ayant le méme
groupe d’homologie si la persistance de la caractéristique correspondant au point n’est pas trop
différente de celles correspondant aux points du cluster .

Nous montrons que notre méthode peut détecter la différence significative entre le comporte-
ment du retour d’index et son comportement historique (les figures 5.1, 5.2 et 5.3). En fait, §

vaut 83.7% dans le cas de la figure 5.1a mais seulement 11.9% dans le cas de la figure 5.1b.
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24/10/2005 au 27,/04,/2000. 18/02/2016 au 19,/08/2019.

Figure 5.1: Deux exemples de bases de données ou les données de test sont a droite de la ligne
pointillée et les données d’apprentissage sont a gauche.
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Figure 5.2: Détection d’anomalies topologiques des données de test dans la base de données
illustrée a la figure 5.1a. Les cercles représentent les entités a 0 dimension et les triangles
représentent les entités a 1 dimension. Le signe noir x indique des caractéristiques anormales
qui ne peuvent étre attribuées a aucun groupe du diagramme total.
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Figure 5.3: Il n’y a aucune caractéristique anormale dans le diagramme de persistance construit
a partir des données de test dans la base de données illustrée dans la figure 5.1b. Les cercles
représentent les entités a 0 dimension et les triangles représentent les entités a 1 dimension.

Surtout pour I’ensemble de nos 541 données de test, nous avons constaté que chaque fois que
0 est supérieur a 60%, il y a de graves krachs ou récessions du marché, y compris le krach boursier
de 1973-1974, la stagflation des années 1970, le “lundi noir” de 1987, la crise de I’épargne et
du crédit de 1989, le début du boom économique de la fin des années 1990 aux Etats-Unis, le
ralentissement du marché boursier de 2002 - le pire résultat du krach de la dot-com 2000 - 2002,
la crise financiére de 2008 - la pire crise aux Etats-Unis depuis la Grande Dépression de 1929, la

récession COVID-19. Les périodes correspondant a ces grandes valeurs de d sont nommées de
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(a) Rendement quotidien de 'indice S&P 500 du 01/02/1972 au 08/04,/2020.
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Figure 5.4: Dynamique de § et rendement de I'indice S&P 500.
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En conséquence la méthode que nous proposons est un outil efficace pour détecter des anoma-
lies dans la dynamique d’un indice de marché. Son résultat fournit un moyen simple de recon-
naitre le début d’une crise financiére en analysant 'indice représentatif du marché boursier cor-
respondant au lieu d’obtenir une analyse compléte de nombreuses statistiques micro et macro.
Par conséquent, nous suggérons que 1’écart topologique ¢ de la dynamique de rendement d’un
indice peut étre une mesure efficace du risque systémique. Il est particulierement approprié pour

les investisseurs individuels et les systémes de négociation automatique.
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Conclusion

Dans cette these, nous avons utilisé diverses techniques issues de la science des ssytemes
complexes, notamment la science des réseaux, la théorie des matrices aléatoires, la théorie de
la prétopologie et la TDA, pour étudier les caractéristiques et le mécanisme du comportement
collectif d’'un marché boursier sous différents aspects. Concrétement, nous avons étudié des
marchés réels, dont la bourse américaine et la bourse vietnamienne, et nous avons utilisé le
langage R pour mettre en ceuvre nos travaux empiriques.

En particulier, nous avons constaté que le MST d’un réseau basé sur la corrélation d’un
marché boursier est courant pour résumer la structure du réseau, car le MST fournit le chemin
le plus probable dans lequel un choc boursier se propage a I’ensemble du marché. En revanche, le
réseaux a seuil basé sur la corrélation est plus approprié que le MST pour étudier la résilience du
marché en raison de I'inconvénient du MST & négliger de nombreuses corrélations d’actions, qui
peuvent étre tres importantes. Cependant, étant donné que la matrice de corrélation croisée est
calculée a partir des cours boursiers historiques, nous n’obtenons que la matrice d’échantillon.
Selon le RMT, la plus grande valeur propre de la matrice d’échantillonnage et son vecteur propre
unitaire associé peuvent donner des informations sur les “vraies” corrélations des actions car la
valeur propre est extrémement supérieure a la limite supérieure de la distribution de Marc¢enko -
Pastur. Ainsi, nous pouvons utiliser le premier PC dont les chargements sont les composantes du
vecteur propre pour étudier le comportement collectif du marché, comportement qui se reflete
également dans la dynamique de I’indice de marché.

Avec ces outils, nous avons fourni une analyse compléte de la dynamique et de la stabilité
d’un marché boursier dans cette theése. Tout d’abord, apres avoir étudié la dynamique du réseau
MST du marché, nous avons confirmé que I’état instable du marché peut se refléter sur la
structure en étoile du réseau ou sur la disparition de la propriété sans échelle du réseau. De
plus, cet état peut étre quantifié par le déclin remarquable de différentes mesures telles que la
longueur du chemin le plus court, le taux de survie, le méme rapport de secteur et le coefficient
allométrique. De plus, en tant que réseau sans échelle, nous avons également établi en utilisant
des données réelles que le réseaux a seuil basé sur la corrélation reste robuste en cas de défaillance
aléatoire mais tres fragile en cas d’attaques intentionnelles contre ses nceuds les plus connectés
ou ses noeuds les plus chargés. Ce résultat a démontré la robustesse d’un marché boursier lorsque
certaines entreprises font faillite a cause de leur mauvaise gestion. Cependant, lorsque les actions

ordinaires des entreprises jouent un role important dans la structure du réseau, par exemple,

158



Appendix. Thesis Abstract in French

elles sont les neeuds les plus connectés ou les noeuds les plus chargés, les faillites nuiront a la
connectivité du réseau. Cela a un impact négatif sur la stabilité des marchés.

Ensuite, nous avons étudié la plus grande valeur propre de la matrice de corrélation croisée
empirique des actions et son vecteur propre unitaire associé. Alors que d’autres travaux ont
montré que la valeur propre devient plus grande dans les crises financieéres, nous avons suggéré de
composer le portefeuille le plus corrélé & partir du premier PC des rendements boursiers. Etant
donné que la valeur propre est toujours dominante dans le spectre de la matrice, le premier
PC explique la plupart des variances des rendements boursiers. Ainsi, il peut étre considéré
comme le facteur de marché et est fortement corrélé a l'indice de marché correspondant. De
plus, nous avons établi une formule simple pour approximer ses charges en fonction de la relation
asymptotiquement linéaire des charges avec les coefficients de corrélation moyens des actions.

D’autre part, nous avons montré empiriquement le réle principal des sociétés financieres
dans la stabilité d’un marché boursier car les sociétés restent généralement dans les hubs du
réseau MST, en particulier le réseau en étoile. Aussi, le secteur financier est dominant dans les
chargements des premiers PC.

De plus, comme le comportement collectif d’'un marché peut étre causé par une défaillance en
cascade, nous avons proposé une méthode pour étudier I’évolution de la défaillance. Nous avons
considéré une action comme un composant défaillant si son prix baisse de fagon spectaculaire.
En partant de 'hypotheése que le nombre d’actions défaillants augmente 'impact de ces actions
sur un autre action et déclenche sa défaillance si 'impact est suffisamment important, nous
avons congu un espace prétopologique dans lequel la pseudo-fermeture modélise la contagion de
la défaillance d’'un groupe d’actions. En revanche, I'ouverture de la rémunération du groupe
permet de prédire les actions non impactés par les actions défaillantes. Nous avons constaté que
notre cadre prétopologique est plus efficace que le réseau MST et le réseaux a seuil basé sur la
corrélation pour modéliser I’évolution de la défaillance en cascade. L’efficacité vient de la prise
en compte de toutes les corrélations des actions, illustrant évidemment la contagion par étapes
individuelles et notant non seulement la relation des actions mais aussi la relation entre une
action et un groupe.

Enfin, nous proposons une méthode pour détecter les anomalies dans le comportement col-
lectif d’un marché boursier. Etant donné que le facteur de marché représenté par le premier PC
des rendements boursiers est souvent fortement corrélé au rendement de I'indice du marché, la
dynamique du rendement de l'indice est une donnée appropriée pour étudier le comportement
collectif du marché. Nous établissons une mesure pour reconnaitre comment les caractéristiques
topologiques de la série chronologique de I'indice obtenues au cours d’une certaine période sont
différentes de celles de la série chronologique de I'indice obtenues au cours des périodes précé-
dentes. Cette mesure est testée dans le cas de 'indice S&P 500. Nous avons constaté que la
mesure de I’écart aide vraiment a détecter les crashs importants sur le marché américain lorsqu’il
est supérieur a 60%. Parce qu’elle prend souvent une telle valeur des le début des crises finan-
ciéres, cette valeur peut étre un avertissement de crises au lieu de passer beaucoup de temps a
analyser de nombreuses statistiques économiques.

En conséquence, cette thése permet d’acquérir une connaissance approfondie de 1’évolution

159



Appendix. Thesis Abstract in French

des marchés boursiers, des structures géométriques et des signes de stabilité qui sont extréme-
ment précieux pour contrdler le risque systémique. Nous pouvons améliorer les recherches ci-
dessus avec des modeles plus appropriés, tels que les espaces prétopologiques de type V pour
I’échec en cascade des marchés boursiers, ou améliorer la mesure de I’écart des caractéristiques
topologiques d’un marché indiciel avec d’autres outils de TDA. En outre, nous prévoyons égale-
ment d’étudier davantage le role du premier PC dans le calcul du coefficient 5 d’une action.
En général, le point de vue scientifique selon lequel les marchés financiers sont des systéemes
complexes ouvre de nouvelles théories et technologies pour étudier les caractéristiques et la dy-
namique de ces marchés. Par conséquent, cette approche continuera a prendre plus d’intérét
dans nos futurs travaux avec d’autres méthodes de science complexe telles que la modélisation

a base d’agents.
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RESUME

Dans cette thése, nous étudions les comportements collectifs des marchés boursiers, les primaires ou se concentrent
la plupart des ressources financiéres. Donné un bourse, pour comprendre ses caractéristiques de comportement collectif
et mécanisme, nous analysons de maniére approfondie le marché dans de nombreux aspects, y compris sa structure de
réseau, sa résistance aux défaillances de composants, son facteur de marché déterminant principalement les rendements
des avoirs sous-jacents, I'évolution de la défaillance en cascade et la dynamique de son indice représentatif. Etant
donné que les marchés financiers peuvent étre considérés comme des systémes complexes, nous utilisons différentes
techniques issues de la science complexe pour étudier les marchés boursiers dans de tels aspects, notamment la science

des réseaux, la théorie des matrices aléatoires, la théorie de la prétopologie et I'analyse topologique des données.

MOTS CLES

marchés boursiers, réseaux complexes, théorie des matrices aléatoires, théorie de la prétopologie, analyse
topologique des données

ABSTRACT

In this thesis, we study the collective behaviors of stock markets, the primary ones where most of financial resources
concentrate. Given a stock market, to understand its collective behavior’s characteristics and mechanism, we compre-
hensively analyze the market in many aspects, including its network structure, its resilience under component fails, its
market factor primarily driving the returns of the underlying holdings, the cascading failure’s evolution, and its represen-
tative index’s dynamics. Because financial markets can be considered as complex systems, we use different techniques
employed from complex science to investigate stock markets in such aspects, including network analysis, random matrix
theory, pretopology theory, and topological data analysis.

KEYWORDS

stock markets, complex networks, random matrix theory, pretopology theory, topological data analysis
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