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Résumé :
L’estimation bayésienne est une discipline im-

portante dans un grand nombre de domaines

scientifiques. Elle se base sur le théorème

de Bayes qui permet d’associer une obser-

vation avec une connaissance a priori sur

un évènement ou un paramètre. Cepen-

dant, ce théorème ne peut pas être résolu

analytiquement en présence de fortes non-

linéarités, aussi de nombreuses méthodes ont

été développées pour le traiter numérique-

ment, dont les filtres particulaires qui représen-

tent les densités de probabilités avec un nuage

de particules. Cette approche permet de traiter

des problèmes fortement non-linéaires avec

un cadre générique. Cependant, les filtres par-

ticulaires présentent des défis, tels que l’étape

de ré-échantillonnage, la résolution de prob-

lèmes de grande dimension, ainsi que la charge

calculatoire. En parallèle, de récentes études

portant sur des algorithmes d’estimation dans

les groupes de Lie ont montré l’intérêt de ces

approches sur de nombreux aspects. En ef-

fet, représenter les variables d’estimation sur

les groupes de Lie permet d’utiliser les pro-

priétés algébriques et géométriques de ces es-

paces et amène à une gestion naturelle des in-

certitudes. Ainsi, les filtres obtenus présentent

une amélioration de leur précision et de leur

robustesse par rapport aux approches clas-

siques. Cette thèse porte sur le domaine nou-

veau du filtrage particulaire dans les groupes

de Lie. Elle propose un ensemble de fil-

tres particulaires résolvant l’équation de Bayes

dans les groupes de Lie, ainsi qu’une borne

d’erreur minimale. De nouveaux algorithmes

sont développés en particulier pour l’étape

de ré-échantillonnage et pour la représenta-

tion des particules. Les méthodes proposées

sont appliquées à la navigation de systèmes

autonomes, qui exigent des algorithmes ro-

bustes pour estimer leur état (position, vitesse

et attitude) afin d’effectuer leur contrôle et

leur guidage. Les algorithmes de navigation

utilisent les mesures d’une centrale inertielle.

Cependant, les défauts de ce capteur génèrent

une dérive temporelle des grandeurs cinéma-

tiques estimées. Il est donc nécessaire de les

recaler en vol par les mesures de senseurs

auxiliaires, via un processus de fusion de don-

nées. Les algorithmes proposés dans la thèse

ont été testés sur des scénarios de navigation

exigeants, et ont montré un gain significatif

en précision et en robustesse par rapport aux

méthodes classiques.
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Abstract: Bayesian estimation is an important
discipline in many scientific and technical do-

mains. It is based on Bayes’ theorem, which

allows to associate an observation with an a

priori knowledge about an event or a param-

eter. However, this theorem cannot be solved

analytically in the case of strong non-linearities.

Thus, many methods were developed to ad-

dress this problem numerically. Among them,

particle filters represent probability densities

with a cloud of particles. This allows to solve

strongly nonlinear problems with a generic ap-

proach. However, particle filters present sev-

eral challenges, such as the resampling step,

the resolution of high-dimensional problems,

and the computational load. Moreover, studies

on estimation algorithms in Lie groups demon-

strated the interest of these approaches in

many aspects. Indeed, representing the esti-

mation variables on Lie groups allows the use

of algebraic and geometric properties of these

spaces and leads to a natural handling of un-

certainties. Thus, filters on Lie groups show

improved accuracy and robustness compared

to conventional approaches. This thesis fo-

cuses on the new field of particle filtering on

Lie groups. It establishes a class of particle

filters solving Bayes’ theorem on Lie groups

by focusing on different aspects of these algo-

rithms, such as the resampling step, the parti-

cle representation, and the lower error bound.

Furthermore, the proposed methods are ap-

plied to the navigation of autonomous systems

that need robust algorithms to estimate their

state (position, velocity, attitude) in order to

perform their control and guidance. An in-

ertial measurement unit (IMU) is usually used

to complete the navigation function. How-

ever, these sensors drift and need to be fre-

quently updated with aiding sensor measure-

ments, which requires a navigation filter for

data fusion. Thus, the algorithms presented in

this thesis are tested on challenging navigation

scenarios, and demonstrated a significant gain

in accuracy and robustness compared to con-

ventional methods.
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Nc Number of clusters in the prior density

wi Particle weight (normalized)

Wn
Prior density cluster weight

Xi
Particle

Lie Groups Analysis
[·, ·] Algebra hook

ε, ξ Log-Euclidean error

expG Group exponential

logG Group logarithm

AdG Group adjoint

adG Algebra adjoint

SE(d) Special Euclidean group of dimension d

SEp(d) Multiple Special Euclidean group of dimension d with p vectors

SO(d) Special Orthogonal group of dimension d

∂X Lie group derivative

ΦG Exponential Jacobian
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ϕG Logarithm Jacobian

Miscellaneous
Id ∈ Rd×d Identity matrix

Navigation
Ω Rotation rate skew-symmetric matrix

ω Rotation rate vector

Θ = (ψ, θ, φ) Euler angles: Yaw, Pitch, Roll

ba Accelerometer bias vector

bg Gyrometer bias vector

C Rotation matrix

g Gravity vector

p Landmark position vector

v Velocity vector

vDOP Doppler velocity

x Position vector

Probabilities
E [.] Probabilistic expectation

V [.] Probabilistic variance

NG(X;µ, P ) Lie group normal density of mean µ and covariance P

µ ∈ G Deterministic mean matrix

νq Process noise model

νr Measurement noise model

J Fisher information matrix

P Probabilistic covariance matrix

Q Covariance matrix for the process noise model

R Covariance matrix for the measurement noise model
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Spaces
Rd Euclidean Space of dimension d

C Cluster of particles

G State matrix Lie group

Gn Augmented Lie group

H Measurement matrix Lie group

M Manifold

g State Lie algebra

h Measurement Lie algebra

Variables
µ̂ ∈ G Probabilistic mean

X Augmented Lie group matrix

µ ∈ G Lie group matrix

µ∗ ∈ G Statemaximum a posteriori
a, b ∈ Rd Euclidean variables

u ∈ Rn Model input vector

X ∈ G Lie group state random variable

Y ∈ G Lie group measurement random variable
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1 - Introduction
1.1 . Context

Bayesian estimation is a broad statistical framework that has been widely used in various fields,

such as engineering, social sciences and finance, since they often involve parameters or events

subject to uncertainties. The Bayesian approach is based on the theory of probability and Bayes

theorem, which provides a way to update the belief of an event when new information becomes

available: it computes the posterior probability of the event by combining prior belief and the

likelihood of an observation. This has several advantages over deterministic methods since

it incorporates the knowledge of a model and uncertainty sources into the analysis process,

leading to insightful results. Besides, it provides a natural and generic way to handle complex

problems, where the parameters and events have strong dependencies.

Despite its advantages, Bayesian estimation raises some challenges that need to be addressed.

The computation of the posterior density may involve high-dimensional integrals and strongly

nonlinear models, which can be intractable analytically. However, advances in computational

methods led to efficient techniques for solving Bayes theorem. Some of the most popular tech-

niques are estimation filters, Monte Carlo Markov Chain algorithms and variational inference.

In particular, estimation filters are an active research field since the second half of the 20th

century. The most popular approaches like Extended Kalman Filter, Unscented Kalman Filter

or Particle Filter led to mature industrial systems. Nonetheless, high-dimensional and strongly

nonlinear scenarios are still challenging for these filters, and the implementation of a robust

algorithm often involves major engineering challenges. Over the last decade, Lie groups gained

increasing interest for Bayesian estimation. These spaces were introduced by Sophus Lie in the

late 19th century and later developed by numerous major mathematicians and physicists. Lie

groups have the geometric nature of a differential manifold and the algebraic structure of a

group, which makes them highly relevant to describe physical systems. Indeed, this specificity

enables to process the estimated variables in their natural space, which preserves their sym-

metries. Recent works demonstrated that this framework leads to substantial improvements

on the accuracy and robustness of Bayesian filters. This thesis investigates theoretical aspects

of particle filtering on Lie groups by addressing the Bayes theorem from different perspectives.

This approach led to several filters and theoretical tools suited to solve a broad range of estima-

tion problems. Besides, the methods developed through this work are applied to navigation,

which consists in finding the position of a device with respect to a reference frame. This dis-

cipline has been fundamental to transportation and mobile systems for centuries. Modern

techniques are based on estimation filters which calculate kinematics variables and systems

parameters. Usually, these filters are designed on the Euclidean space Rd since a vectorial
representation of the equations and variables is convenient for its vector-space properties.

However, this approach overlooks the non-Euclidean and nonlinear nature of some systems,

especially regarding the rotations. Indeed, angular uncertainties are usually treated with a lin-

ear approximation, assuming small errors between the estimate and the true state. Although
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1.2. AIM OF THE THESIS
such approaches are often relevant, the filter performance is undermined when the sensors

are strongly nonlinear or when the operating conditions do not provide a good estimate of

the state. On the other hand, errors described on Lie groups are accurate on a large domain,

which introduces an intrinsic robustness in the filters. Therefore, Lie groups provide a natural

and powerful framework to design filters, which often leads to elegant and efficient solutions

compared to their Euclidean counterparts.

1.2 . Aim of the Thesis
Recent studies proved the interest of Extended and Unscented Kalman filters on Lie groups

for nonlinear estimation. In the wake of these encouraging results, this thesis focuses on the

new field of Monte Carlo methods on Lie groups. The main goal is to derive, implement and

test innovative algorithms, and put their performance in perspective with usual Monte Carlo

algorithms such as Euclidean Particle Filters and existing Lie groups filters, when possible. In

addition, the application of these filters focuses on long range navigation which accounts for

terrestrial effects such as Coriolis force or variable gravity. More precisely, the thesis focuses

on:

• The derivation of particle filters from the Bayes Filter (also called Optimal Filter) on Lie
groups. These filters were designed to cope with strongly nonlinear estimation scenarios;

• The impact of the group chosen to design the filter, and the proper representations of
the state variables and noises, depending on the application;

• Providing a clear framework to implement these filters.

1.3 . Contributions of the Thesis
This thesis establishes a new framework for Monte Carlo filters on Lie groups which is derived

from the Bayes filter. In the light of the issues discussed in the previous section, these new ap-

proaches demonstrate their accuracy and robustness in strongly nonlinear and non-Gaussian

problems. Besides, cross-comparatives studies between Particle and Kalman filters defined on

the Euclidean space and their Lie groups counterparts proves the interest of representing the

variables in Lie groups. Additional works on the recursive Cramer-Rao Lower Bound show that

the Euclidean formulation can be naturally extended to unimodular matrix Lie groups. This

thesis led to several publications detailed hereafter.

International journals:

• Clément Chahbazian, Karim Dahia, Nicolas Merlinge, Bénédicte Winter-Bonnet, Aurélien
Blanc, Christian Musso, Discrete Recursive Posterior Cramer-Rao Lower Bound on Lie Groups,
Automatica 2022 (minor revisions).

24



CHAPTER 1. INTRODUCTION
• Clément Chahbazian, Nicolas Merlinge, Karim Dahia, Bénédicte Winter-Bonnet, Aurélien
Blanc, Christian Musso, Revisited Extended Kalman Filter on Matrix Lie Groups, IEEE Trans-
actions on Robotics 2022 (in preparation for submission).

International and national conferences:
• Clément Chahbazian, Nicolas Merlinge, Karim Dahia, Bénédicte Winter-Bonnet, Julien

Marini, Christian Musso, Laplace Particle Filter on Lie Groups Applied to Angles-Only Navi-
gation, IEEE International Conference on Information Fusion 2021, pages 1-8.

• Clément Chahbazian, Karim Dahia, Nicolas Merlinge, Bénédicte Winter-Bonnet, Kévin

Honore, Christian Musso, Improved Kalman-Particle Kernel Filter on Lie Groups Applied to
Angles-Only Navigation, IEEE International Conference on Robotics and Automation 2021,
pages 1689-1694.

• Clément Chahbazian, Nicolas Merlinge, Karim Dahia, Bénédicte Winter-Bonnet, Aurélien
Blanc, Christian Musso, Generalized Laplace Particle Filter on Lie Groups Applied to Ambigu-
ous Doppler Navigation, IEEE International Conference on Intelligent Robots, Kyoto, Japan,
2022, pp. 2387-2394.

• Christian Musso, Frédéric Dambreville, Clément Chahbazian, Filtering and Sensors Opti-
mization Applied to Angles-Only Navigation, IEEE International Conference on Information
Fusion 2021, pages 1-8.

• Clément Chahbazian, Karim Dahia, Nicolas Merlinge, Bénédicte Winter-Bonnet, Aurélien
Blanc, Christian Musso, Filtre particulaire sur groupes de Lie, GRETSI 2022.

1.4 . Organization of the Document
This thesis unfolds in three parts and thirteen chapters, including the introduction chapter.

Part I gives an overview of the state-of-the-art in unusual nonlinear estimation, an introduction

to Lie groups for Bayesian estimation and the state-of-the-art of filters on Lie groups. Part II

details the theoretical contributions of the thesis, that include new filters detailed from Chapter

5 to Chapter 8, a set of close-to-optimal resampling strategies on Lie groups in Chapter 9, and a

recursive Cramer-Rao Lower Bound in Chapter 10. Finally, Part III applies the filters developed in

this thesis to navigation scenarios. Chapter 11 sets the framework and equations of navigation.

Chapter 12 compares the filters in different test cases, and Chapter 13 concludes this thesis.
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Part I
Mathematical Preliminaries and State

of the Art
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2 - Bayesian Estimation
This chapter describes the Bayesian estimation framework which computes the posterior den-

sity of the state given a set of observations by combining the likelihood of a measurement

with prior knowledge on the state. It also outlines some of the usual filters designed on the

Euclidean space.

2.1 . Data Fusion and Bayesian Inference
Data fusion aims to extract relevant information out of uncertain data coming from heteroge-

neous sources. This broad domain applies to navigation which principle is to merge measure-

ments of different nature to estimate the position of a vehicle.

Bayesian inference is a popular technique to perform data fusion. Its principle is to compute

the posterior probability density of a hidden random variable from a prior dynamics model and

likelihood function derived from an observation model. Let x ∈ Rd and y ∈ Rm be two random
vectors such that: {

xk+1 = f(xk, uk+1, ν
q
k),

yk+1 = h(xk+1, ν
r
k+1), (2.1)

where uk+1 is a vector of inputs and (νqk, νrk+1) are two centered noise vectors. The Bayesian
framework is based on the following assumptions:

• The sequence x1:k = {x1, · · · , xk} follows a Markovian stochastic process where the tran-
sition density writes:

p(xk+1|x1:k) = p(xk+1|xk). (2.2)

• The observations y1:k are conditionally independent with respect to the state:

p(y1:k|x1:k) =
k∏
i=1

p(yi|xi). (2.3)

Bayesian inference uses prior knowledge from the state space model and observations to infer

the conditional density of the state xk given the observations y1:k.

The Bayes rule writes:

p(xk+1|y1:k+1) = p(yk+1|xk+1)p(xk+1|y1:k)
p(yk+1|y1:k)

, (2.4)

where:

• p(xk+1|y1:k+1) is the posterior density estimated with the Bayesian inference;

• p(yk+1|xk+1) is the likelihood derived from the observation model;
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• p(xk+1|y1:k) is the prior density, which relates to the knowledge of the propagated
density with respect to the model;

• p(yk+1|y1:k) is the marginal likelihood, which can be seen as a scale parameter as it
does not depend on xk nor xk+1.

The resolution of the Bayes rule is commonly referred to as the update step in filtering since it

fuses the information from the measurement with the prior density. The latter can be obtained

by the Chapman-Kolmogorov equation.

The Chapman-Kolmogorov equation writes:

p(xk+1|y1:k) =
∫
Rd
p(xk+1|xk)p(xk|y1:k)dxk, (2.5)

where:

• p(xk|y1:k) is the posterior density at time k;

• p(xk+1|xk) is the transition density which relates to the noisy dynamics model of the
state-space system.

Following these considerations, the Optimal Filter (also called Bayes Filter) can be obtained as

detailed in Algorithm 1. First, the prior density is propagated with the Chapman-Kolmogorov

equation, leading to the prior density, which is updated with the Bayes rule.

Algorithm 1 Optimal Filter
Result: p(xk|y1:k), k ∈ [1, N ]
Propagation step: p(xk+1|y1:k) =

∫
Rd
p(xk+1|xk)p(xk|y1:k)dxk

Update step: p(xk+1|y1:k+1) ∝ p(yk+1|xk+1)p(xk+1|y1:k)
Note that the Optimal Filter is only theoretical and cannot be exactly implemented in practice,

except in the case of linear Gaussian systems, which leads to Kalman Filter. Indeed, in the gen-

eral case, Optimal Filter contains integrals which are difficult to compute when the dimension is

high. Hence, Bayesian estimation filters are numerical methods designed to solve the Optimal

Filter with assumptions on the system. When the dimension of the state is small, nonlinear

filtering equations can be solved by grid methods [19, 2]. The following sections discuss the

main categories of filters.

2.2 . Estimators
2.2.1 . Mean and Covariance Matrix

Although Optimal Filter estimates the probability density p(xk|yk), most algorithms only focus
on its first and second statistical moments, also referred to as the mean and covariance ma-

trix. These parameters are often sufficient to describe the behavior of p when it is sufficiently

symmetric and unimodal.
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CHAPTER 2. BAYESIAN ESTIMATION
In the sequel, a probability density function is called unimodal when it is concentrated

around one predominant peak, involving one global maximum. On the opposite, a proba-

bility density function is called multimodal if it has several peaks.

Considering two vectors xk ∈ Rd and yk ∈ Rm, the conditional expectation at time k writes:

E [xk|y1:k] =
∫
Rd
xkp(xk|y1:k)dxk, (2.6)

and the conditional covariance matrix:

V [xk|y1:k] = E
[
(xk − E [xk|y1:k])(xk − E [xk|y1:k])T

]
. (2.7)

For compact notations, and in order to depict the different densities involved in the Optimal

Filter, the conditional expectation at different steps of the filtering process is denoted:

x̂k|k = E [xk|y1:k] ,
x̂k+1|k = E [xk+1|y1:k] .

(2.8)

Similar notations are applied to the variance. Hence, the prior density gives:

Pk|k = V [xk|y1:k] ,
Pk+1|k = V [xk+1|y1:k] .

(2.9)

The conditional mean and variance are often used in filtering as they are easy to obtain with

slight approximations, but other estimators exist.

2.2.2 . Maximum a Posteriori
The Maximum a Posteriori (MAP) estimates the state vector with the highest probability a poste-
riori. It is defined as:

x̂k+1 = arg max
xk+1

p(xk+1|y1:k+1). (2.10)

Besides, when the system verifies the assumptions of Bayesian inference, the MAP maximizes

the product of the likelihood and the prior density:

arg max
xk+1

p(xk+1|y1:k+1) = arg max
xk+1

p(yk+1|xk+1)p(xk+1|y1:k)
p(yk+1|y1:k)

,

= arg max
xk+1

p(yk+1|xk+1)p(xk+1|y1:k).
(2.11)

Hence, in filtering problems, the MAP is taken as:

x̂k+1 = arg max
xk+1

p(yk+1|xk+1)p(xk+1|y1:k). (2.12)

Note that for linear Gaussian systems, the MAP is equal to the conditional expectation.
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2.3. EXTENDED KALMAN FILTER
2.3 . Extended Kalman Filter
2.3.1 . Linear case

Kalman Filter [45] represents a major contribution in control and signal processing. It can be

obtained from theOptimal Filter assuming that the system (2.1) is linear with centered Gaussian

noises: {
xk+1 = Fkxk + νqk+1,

yk+1 = Hk+1xk+1 + νrk+1,
(2.13)

where νqk+1 ∼ N (0, Qk+1) and νrk+1 ∼ N (0, Rk+1).
Under these assumptions, the posterior density is a normal law which mean x̂k+1|k+1 and co-

variance matrix Pk+1|k+1 are tracked with Kalman Filter described in Algorithm 2. It is derived

from Algorithm 1 since integrals can be calculated explicitely.

Algorithm 2 Kalman Filter
Result: (x̂k|k, Pk|k), k ∈ [1, N ]
Propagation step:
x̂k+1|k = Fkx̂k|k
Pk+1|k = FkPk|kF

T
k +Qk+1

Update step:
Kk+1 = Pk+1|kH

T
k+1
(
Hk+1Pk+1|kH

T
k+1 +Rk+1

)−1

x̂k+1|k+1 = x̂k+1|k +Kk+1
(
yk+1 −Hk+1x̂k+1|k

)
Pk+1|k = (I −Kk+1Hk+1)Pk+1|k

Kalman Filter is optimal, which means that the posterior density is exactly obtained from these

equations since the posterior density is determined with its two first statistical moments. Be-

sides Kalman Filter stability is obtained under specific assumptions on the model [33].

2.3.2 . Extension to nonlinear systems
Extended Kalman Filter (EKF) follows the principle of Kalman Filter but applies to nonlinear

systems. It approximates a solution of Optimal Filter under the assumption that the noises of

(2.1) are centered and Gaussian. Therefore, it copes with nonlinear models such that:{
xk+1 = f(xk) + νqk+1,

yk+1 = h(xk+1) + νrk+1,
(2.14)

where νqk+1 ∼ N (0, Qk+1), νrk+1 ∼ N (0, Rk+1), and (f, h) are two nonlinear functions. Note that
additive noises are considered for simplicity, but non-additive noises are also suitable for EKF.

Although it has a similar structure to Kalman Filter, Extended Kalman Filter is based on strong

approximations on the nonlinear system which prevent optimality and stability properties. In-

deed, the matrices used in the filter are computed with a linearization of the propagation and

update model:

Fk = ∂f(x)
∂x

∣∣∣∣
x̂k|k

, Hk+1 = ∂h(x)
∂x

∣∣∣∣
x̂k+1|k

.
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This linearization point has to be accurate so the filter works properly, especially if the functions

are strongly nonlinear. Extended Kalman Filter is similar to Algorithm 2, where the matrices F

andH are defined in (2.3.2). Its versatility and light implementation makes a popular choice for

industrial applications. Nonetheless, it is still an active filed of research as its basic implemen-

tation can be substantially improved, depending on the estimation problem.

Without being exhaustive, a few improved implementations of EKF are:

• The Iterated Extended Kalman Filter (ItEKF) [8, 9] loops on the update step to update
the linearization point and get to a close-to-optimal computation ofHk+1;

• The Adaptive Extended Kalman Filter (AEKF) [43] address the case where the propa-
gation and measurement noises are poorly known. It provides a framework to com-

pute online Qk+1 and Rk+1 for improved accuracy;

• The Ensemble Kalman Filter (EnKF) [37] draws particles from the prior density to com-
pute the prior and posterior density with a sampling approximation;

• The Unscented Kalman filter (UKF) [44] uses a set of deterministic sample points
(called sigma points) to estimate the covariance matrix.

2.4 . Monte Carlo Methods

Monte Carlo methods estimate the complete density where other filters focus only on the sta-

tistical moments. Hence, they can be adapted to demanding scenarios where no prior assump-

tions can be made on the shape of the estimated densities. Particle filters were introduced in-

dependently by Gordon with Bootstrap Filter [39] and Del Moral with Interacting Particle Filter

[22]. Since then, many variants have been developed. Among them we can mention Auxiliary

Particle Filter [69], the sequential Monte Carlo methods [36], sequential data assimilation [68],

MCMC-based Particle Filter [50], Regularized Particle Filter [63], Kalman-Particle Kernel Filter

[31] and Box Particle Filter [55].

2.4.1 . Principle
Particle Filter (PF) hinges on the Monte Carlo approximation which principle is to approximate

the probability densities of Optimal Filter with weighted Dirac functions, referred-to as parti-

cles.

Formally, the Monte Carlo approximation writes:

p(xk|y1:k) ≈
Np∑
i=1

wikδxik
(xk). (2.15)
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This approximation is interpreted in the weak sense, meaning that for anymeasurable bounded

function φ: ∫
Rd
φ(x)p(x|y)dx ≈

Np∑
i=1

wiφ(xi). (2.16)

In the sequel, the generic nonlinear and non-Gaussian system is considered:{
xk+1 = f(xk, uk+1, ν

q
k),

yk+1 = h(xk+1, ν
r
k+1), (2.17)

with the assumptions of Bayesian inferenec.

Particle Filter uses the Monte Carlo approximation to solve the Optimal Filter. For the propaga-

tion step, the system evolves according to the dynamics of (2.17). The Chapman-Kolmogorov

equation gives:

p(xk+1|y1:k) ≈
∫
Rd
p(xk+1|xk)

Np∑
i=1

wikδxik
(xk)dxk,

≈
Np∑
i=1

wikp(xk+1|xik),

≈
Np∑
i=1

wikδxik+1
(xk+1).

where the propagated particles are xik+1 = f(xik, uk+1, ν
q,i
k ).

The propagation step is given by:

p(xk+1|y1:k) ≈
Np∑
i=1

wikδxik+1
(xk+1) (2.18)

Then, the estimated density is updated with the Bayes rule, according to the measurement

model of (2.17):

p(xk+1|y1:k+1) = p(yk+1|xk+1)
p(yk+1|y1:k)

Np∑
i=1

wikδf(xik)(xk+1),

=
Np∑
i=1

wik
p(yk+1|xik+1)
p(yk+1|y1:k)

δf(xik)(xk+1),

=
Np∑
i=1

wik+1δf(xik)(xk+1),

where wik+1 are the updated weights:

wik+1 ∝ wikp(yk+1|xik+1). (2.19)
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Hence, in practice, the updated weights are factorized with the likelihood and normalized

with the sum of the total weights:

w̃ik+1 = wikp(yk+1|xik+1), (2.20)

wik+1 =
w̃ik+1∑Np
i=1 w̃

i
k+1

, (2.21)

where w̃ denotes the non-normalized weights.

At any step, the mean and variance of the estimated density is approximated by the mean and

variance of the sample of particles:

x̂k|k =
Np∑
i=1

wikx
i
k. (2.22)

Pk|k =
Np∑
i=1

wik(xik − x̂k|k)(xik − x̂k|k)T . (2.23)

After a few successive updates, most particle weights tend to zero while a few tend to unity [39].

This phenomenon is called the degeneracy of Particle Filter, which is due to the augmentation

of the variance of the normalized weights [47]. The degeneracy of the filter must be avoided:

themore weights tend to zero, the less particles represent the estimated density, which leads to

substantial inconsistencies and eventually the divergence of the filter. The number of efficient

particles Neff , introduced by Kong [47], monitors the degeneracy of the filter as it is linked to

the variance of the unnormalized weights:

Neff = Np

1 + Var(w̃ik)
. (2.24)

In practice, the efficient number of particles can be approximated with the weights of the

normalized particles:

Neff ≈
1∑Np

i=1w
i
k

. (2.25)

Therefore, when the weights variance is high (i.e. when the filter degenerates), Neff tends to

unity. And when the variance is low (i.e. when the filter is consistent), it is close to Np. In

other words, the number of efficient particles depicts the number of particles which efficiently

contribute to the filter.

To prevent degeneracy, a resampling step is triggered when it goes below a given threshold

Nth. In general, common resampling strategies [49] duplicate the most probable particles (i.e.

the heavy weights), and delete the least probable ones (i.e. the lower weights). Particle Filter is

described in Algorithm 3 in its compact version.
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Algorithm 3 Particle Filter
Result: (x̂k|k, Pk|k) , k ∈ [1, N ]
Propagation step: xik+1 = f(xik, uk+1, ν

q
k)Update step: wik+1 ∝ wikp(yk+1|xik+1)

Resampling step: IfNeff < Nth draw x
i
k+1 using a resampling method

and set wik+1 = 1
NpCompute the moments: x̂k+1|k+1 and Pk+1|k+1

Theoretical analyses of the Monte Carlo errors of Particle Filter approximations can be found in

[32, 49] where central limit theorems are provided.

2.4.2 . Sequential Importance Sampling
Another popular method for particle filters is the Sequential Importance Sampling (SIS) [35]

where the particles are drawn according to a proposal density denoted q̃. This approach is

especially useful to lower the variance of the Monte Carlo estimation or when it is difficult to

sample the particles according to p. Therefore, if q̃ has to verify the following assumptions:

• The support of q̃(x)must include the support of p(x) ;

• The integral
∫
p(x)
q̃(x)dx is finite.

It is possible to build an estimator of p(x) by sampling according to q̃(x) since:

Ep [φ(X)] =
∫
φ(x)p(x)dx =

∫
φ(x)p(x)

q̃(x) q̃(x)dx = Eq̃
[
φ(X)p(X)

q(X)

]
, (2.26)

where φ is an integrable function.

Then, considering the Monte Carlo approximation from (2.15), the posterior density can be

approximated from a sample generated with q̃:

p(xk+1|y1:k+1) ≈
Np∑
i=1

wik+1δxik+1
(xk+1), (2.27)

where wik+1 = w̃ik+1/
∑Np

i=1 w̃
i
k+1 and:

w̃ik+1 =
p(yk+1|xik+1)p(xik+1|y1:k)

q̃(xik+1)
. (2.28)

Note that in the literature, the proposal density q̃ is also called importance function.

The choice of q̃ has an impact on the Monte Carlo approximation. A good indicator of the

quality of the proposal density is the variance of the unnormalized weights [64]:

V [q̃] = 1
Np

(∫
p(xk|yk)2

q̃(xk)
dxk − 1

)
. (2.29)
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One can notice that the lowest variance is obtained for q̃opt(xk+1) = p(xk+1|y1:k+1) since the
variance (2.29) would equal zero. Hence the optimal proposal density is the function to be esti-

mated.

2.5 . Laplace Particle Filter
Laplace Particle Filter (LPF) is introduced in [61, 70], and uses a close-to-optimal resampling

step based on the Laplace approximation for integrals. The resampling step is critical to particle

filters as it occurs at a point where the particle cloud is about to degenerate. According to the

previous section, choosing a good proposal density in the Monte Carlo approximation has a

substantial impact on the estimation process. Hence, the idea of LPF is to compute a proposal

density whose statistical moments are close to the ones of the posterior density.

2.5.1 . Laplace approximation
The Laplace approximation introduced in [79] and developed in [62, 61] for Particle Filter.

Let {hλ}λ>0 be a family of functions in C4(Rd) and consider the integral:

Iλ =
∫
Rd

e−λhλ(x)dx. (2.30)

Assuming that ∃λ0 such that ∀λ > λ0:

• Iλ converges: ∫
Rd

e−λhλ(x)dx <∞, (2.31)

• hλ admits a global minimum denoted x̂λ;

• the four first derivatives of hλ are bounded with respect to λ.

Then, when λ→∞ [79]:

Iλ = (2π)d/2e−λhλ(x̂λ) det
[
λ
∂2hλ(x̂λ)
∂x2

]−1/2
(1 +O(λ−1)). (2.32)

The principle of this approximation is that when λ is large enough, the contribution of the

integrated function is mostly at the vicinity of x̂λ, leading to the obtained formula with a second

order approximation. Besides, this formula is evenmore accurate when the integrated function

has a fast decrease.

2.5.2 . Estimation of the posterior moments
The idea developed in the sequel is to use the Laplace approximation to compute the first and

second statistical moments of the posterior density (i.e. its mean and covariance matrix). This

statistical moments will be used to parametrize the importance density which will be close to

the posterior. The moment-generating function is given by:

M(a) = E
[
eaTX |y

]
, a ∈ R, X ∼ p(x|y), (2.33)
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and the conditional expectation and the variance write:

E [X|y] = M ′(0), (2.34)

V [X|y] = M ′′(0) +M ′(0)TM ′(0). (2.35)

From this expression, [70] shows that applying the Laplace approximation (2.32) to the

moment-generating function leads to accurate approximations of E [x|y] and V [x|y] with
analytic expressions:

E [X|y] ≈ x∗, (2.36)

V [X|y] ≈ J(x∗)−1, (2.37)

where x∗ is the MAP, and J(x∗) is the posterior Fisher information matrix computed at x∗.

Note that high-order corrective terms can be applied to x∗ and J(x∗) as described in [70]. In
practice, very high accuracy is obtained with the first-order approximation.

2.5.3 . Application to Particle Filtering
As mentioned in this Section 2.4.2, the optimal proposal density q̃opt is the posterior density.

Although it is impossible to obtain directly the posterior density, Laplace approximation enables

to calculate a proposal density whose mean and covariance matrix are close to the posterior

moments.

Thus, the resampled particles are drawn according to the proposal density q̃ :

xi ∼ q̃
(
x;x∗, J(x∗)−1) , (2.38)

where q̃ is usually taken as a normal law. In theory, any probability law could be chosen, pro-

vided that it copes with the assumptions of sequential importance sampling. The normal law

is a popular choice as it is simple to obtain and often relevant to describe a process. Higher

robustness can be obtained with Student laws as they have heavy tails and spread the particles

in a broader domain. Finally, more complex densities (e.g. non-symmetric, mixture...) can be

tailored to the nature of the problem for improved results.

After resampling the particles, the (non-normalized) weights are computed according to:

w̃ik+1 =
p(yk+1|xik+1)p(xik+1)

q̃(xik+1)
. (2.39)

Finally, the Laplace Particle Filter algorithm is described in Algorithm 4.
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Algorithm 4 Laplace Particle Filter
Result: (x̂k|k, Pk|k) , k ∈ [1, N ]
Propagation step: xik+1 = f(xik, uk+1, ν

q
k)Update step: wik+1 ∝ wikp(yk+1|xik+1)

if Neff < Nth then
MAP: x∗k+1 = arg max

xk+1
p(yk+1|xk+1)p(xk+1|y1:k)

Fisher informationmatrix: J(x∗k+1) = − ∂2 log(p(yk+1|xk+1)p(xk+1|y1:k))
∂x2

∣∣∣∣
xk+1=x∗k+1

Draw: xik+1 ∼ q̃
(
xk+1;x∗k+1, J(x∗k+1)−1)

Set: w̃ik+1 =
p(yk+1|xik+1)p(xik+1)

q̃(xik+1)
end if
Normalize: wik+1 = w̃ik∑Np

i=1 w̃
i
k+1

Another approach of LPF would be to compute a proposal density at each update step. How-

ever, this approach can be computationally intensive, and applying the Laplace method at each

resampling is sufficient to achieve good accuracy. Besides, in the framework of non-linear filter-

ing, the measurement model often involves only a part of the state, which allows a simplified

computation of the MAP [70, 58].
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2.6 . Kalman-Particle Kernel Filter
2.6.1 . Principle and Hypotheses

Kalman-Particle Kernel Filter was introduced in [30, 31] and can be seen as an hybrid between

Extended Kalman Filter and Particle Filter. The principle of this filter is to represent the particles

with a mixture of weighted Gaussians instead of Dirac functions.

The particularity of KPKF is that the norms of the covariance matrices of the Kalman filter are

small enough to justify the linearization of the equations.

Particle Filter

p(xk|y1:k) ≈
Np∑
i=1

wikδxik
(xk).

Kalman-Particle Kernel Filter

p(xk|y1:k) ≈
Np∑
i=1

wikφ(xk;xik, P ik).

This representation of the probability density leads to several improvements:

• The approximated density has a better coverage of the state-space;

• On a local scale, each particle can be processed with an Extended Kalman Filter;

• On a global scale, the cloud of particles can be treated with a Particle Filter process.

Therefore, without loosing the genericity of Particle Filter, the additional local Extended Kalman

Filter guide the particles towards the areas of highest probability, preventing early divergence

of the filter.

2.6.2 . Algorithm
Initialization
KPKF is initialized using the known density p(x0) of mean x0 and covariance matrix P0. The aim

of this step is to draw a Gaussian mixture such that:

p(x0) ≈
Np∑
i=1

wi0φ(x0;xi0, h2P0), (2.40)
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where h is the bandwidth factor [76] and the weights are wi0 = 1/Np. Assuming that p(x0) is a
Gaussian density function, the means xi0 have to be drawn such that:

xi0 ∼ N (x0, (1 + h2)−1P0), (2.41)

which ensures that the covariance matrix of the mixture equals the covariance matrix of p(x0).

Update Step
The update, involves a Kalman and a Particle Filter process [30]:

p(xk+1|y1:k+1) =
Np∑
i=1

wik+1φ(xk+1, x
i
k+1|k+1, P

i
k+1|k+1), (2.42)

where the updated particles are such that:
xik+1|k+1 = xik+1|k +Ki

k+1(yk+1 − h(xik+1|k)),
P ik+1|k+1 = P ik+1|k −K

i
k+1H

i
k+1P

i
k+1|k,

Ki
k+1 = P ik+1|kH

iT

k+1

(
H i
k+1P

i
k+1|kH

iT

k+1 +Rk+1

)−1
,

(2.43)

andH i
k+1 is the local Jacobian:

H i
k+1 = ∂h(xk+1)

∂xk+1

∣∣∣∣
xi
k+1|k

. (2.44)

Finally, the weights are updated according the sample importance sampling approach from

Section 2.4.2, where the proposal density is taken as the prior density:

wik+1 = wikp(yk+1|xik+1|k+1). (2.45)

Propagation Step
The particles are propagated according to the Chapman-Kolmogorov equation, and [30] shows

that the propagated density writes:

p(xk+1|y1:k) =
Np∑
i=1

wikφ(xk+1;xik+1, P
i
k+1|k), (2.46)

and the parameters are propagated with local Extended Kalman Filter equations :{
xik+1|k = f(xik|k, uk+1),
P ik+1|k = F ikP

i
k|kF

i
k
T +Qk+1,

(2.47)

where the local Jacobian F ik is such that:

F ik = ∂f(xk, uk+1)
∂xk

∣∣∣∣
xi
k|k

. (2.48)
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Note that with KPKF, the contribution of the process noise appears only in the propagation of

the covariance matrix and the particle means have a deterministic propagation. At this stage,

after several consecutive propagations, the norms of the particle covariance matrices P ik+1|k
are no longer guaranteed to be small, which undermines the linearization of the measurement

model. It is therefore important to resample the particles in order to preserve the structure of

the Gaussian mixture with small covariance matrices norms.

Resampling Step
KPKF has two distinct resampling steps. A partial resampling method, introduced in [30, 67,

31], is used to ensure that the covariance matrix of the particles remain small. This partial

resampling do not modifiy the particles weight.

When the variance of the particles weights is high, the particles degenerate according to the

criterion of Kong [47], and a new set of particles is drawn.

Note that in the case of a Laplace resampling with a Gaussian proposal density, the particles

covariance matrices are taken as P ik+1|k+1 = h2J(x∗)−1
. Besides, the particle means are drawn

according to a Gaussian of mean x∗ and covariance matrix (1+h2)−1J(x∗)−1
, so the resampled

mixture has a covariance matrix close to J(x∗)−1
.

It is demonstrated in [30] that the optimal value of h is the Silverman formula [76]:

h =
[

4
(2 + d)Np

] 1
d+4

, (2.49)

where d is the dimension of the state space and Np the number of particles.
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3 - Introduction to Lie Groups
Lie groups represent a broad mathematical field which have found numerous applications to

fundamental physics and computer science. This chapter is a pragmatic introduction to the

theory of Lie groups for Bayesian estimation, with a specific focus on unimodular matrix Lie

groups since their properties make them suitable to address filtering problems.

3.1 . General Definitions
A Lie group G is group which composition law denoted ◦ is differentiable. The algebraic prop-
erties of the group law ◦ verify the following axioms:

Stability: ∀g1, g2 ∈ G : g1 ◦ g2 ∈ G;
Neutral element: ∃I ∈ G such that ∀g ∈ G : g ◦ I = I ◦ g = g;

Inverse: ∀g ∈ G, ∃g−1 : g ◦ g−1 = g−1 ◦ g = I;
Associativity: ∀g1, g2, g3 ∈ G, g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3;

(3.1)

The differentiability of the group law implies that G is a differential manifold, and every point
admits a tangent space. In Lie groups theory, the tangent space at the identity plays a central

role, and is specifically referred to as the Lie algebra denoted g. The Lie algebra g is a vector

space of dimension d. It admits an isomorphism with Rd which is usually defined with the hat
and the vee maps [42]:

(hat) [·]∧ : Rd → g, and (vee) [·]∨ : g→ Rd. (3.2)

Besides, Lie groups curved geometry can be encoded into the algebra through two mappings

defined as the group exponential expG : g→ G and logarithm logG : G → g illustrated in Figure

3.1. The combination of the algebra isomorphisms with expG and logG are denoted:

exp∧G(·) , expG([·]∧) ; log∨G(·) , logG([·]∨). (3.3)

The geometric and algebraic nature of Lie groups enables a quite simple and powerful frame-

work. The group law gives simple and exact operations between elements which do not belong

to a vector space. Then, the exponential and logarithm maps create a link between the mani-

fold and Lie algebra, which is a vector space and can be mapped to the Euclidean space with an

isomorphism. Hence, the exact operations happening in the Lie group can be projected to the

Euclidean space where known theories apply (e.g. Kalman Filter).

The main advantage of using Lie groups compared to Riemannian manifolds is that there is

only one tangent space to use: the Lie algebra. Indeed, in the case of Riemannian manifold, ev-

ery tangent space have a different metric, which has to be calculated. In filtering, the transition

between the manifold and the Euclidean space has to be performed at many different points,

and the Lie group properties simplify greatly the approach as the exponential and logarithm

apply to all the points.
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𝓖

𝐼𝑑 ∈ 𝓖
𝟎 ∈ ℝ𝒅

ℝ𝒅
Bijective 

areas

𝐞𝐱𝐩𝓖 : 𝔤 ⟶ 𝓖

𝐥𝐨𝐠𝓖 : 𝓖 ⟶ 𝔤

[ ∙ ]∨∶ 𝔤 ⟶ ℝ𝒅

[ ∙ ]∧: ℝ𝒅 ⟶ 𝔤

Figure 3.1: Illustration of the Lie group structure. The group exponential exp∧G and logarithm
log∨G define a bijection of G into Rd, and the algebra g is the tangent space at Id.
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3.2 . Matrix Lie Groups

This thesis focuses on matrix Lie groups for which G is a group of invertible square matrices,
and the group operator ◦ is the usual matrix product. These Lie groups are particularly useful in
nonlinear estimation as they are suited to represent the usual variables encountered in physical

systems.

The exponential and logarithm are bijective at the vicinity of Id (otherwise the exponential is

surjective only) and their expressions reduce to matrix power series [42]:

∀a ∈ Rd : exp∧G(a) =
∞∑
n=0

([a]∧)n

n! , (3.4)

∀X ∈ G : log∨G(X) =
[ ∞∑
n=1

(−1)n+1 (X − Id)n

n

]∨
. (3.5)

Three groups are encountered in this thesis. The first one is the Special Orthogonal group of

dimension d ∈ N and defined by:

SO(d) =
{
C ∈ Rd×d|CCT = Id,det[C] = 1

}
. (3.6)

It is commonly referred to as the rotation matrices group. The algebra of SO(d) is the group of
skew-symmetric matrices of dimension d :

so(d) =
{
M = [mij ]i,j∈[1,d] |mij = −mji

}
. (3.7)

The second one is the Special Euclidean group SE(d). It involves a rotation matrix C ∈ SO(d)
and a vector v ∈ Rd:

SE(d) =
{[

C v
01,d 1

]
, C ∈ SO(d), v ∈ Rd

}
, (3.8)

and its algebra is:

se(d) =
{[

M u
01,d 0

]
, M ∈ so(d), u ∈ Rd

}
. (3.9)

The Special Euclidean group can be used to represent homogeneous transformations with pose

matrices (rotation and translation) which are ubiquitous in robotics and computer vision [3].

The last group used in this thesis is SEp(d) formally introduced in [4, 6, 10]. This structure is a
semi-direct product of SO(d) and Rp. It involves a rotation matrix C ∈ SO(d) and p ∈ N vectors
of Rd:

SEp(d) =
{[

C v1 · · · vp
0p,d Ip

]
, C ∈ SO(d), v1, · · · , vp ∈ Rd

}
, (3.10)

and its algebra is:

sep(d) =
{[

M u1 · · ·up
0p,d 0p

]
, M ∈ so(d), u1, · · · , up ∈ Rd

}
. (3.11)
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This group is popular since it enables to represent a pose and additional state variables such

as the velocity in the group matix, leading to performance improvements described in the next

chapters.

3.3 . Geometric and Algebraic Properties
This section focuses on the main tools for state estimation on matrix Lie groups.

3.3.1 . Group and log-Euclidean error
First, the group error is a fundamental concept. The group law is a natural approach to enable

a meaningful comparison which stays in the group. LetX1, X2 ∈ G be two matrices. The group
error betweenX1 andX2 can be defined in two different ways, as the group law generally does

not commute:

Left error: η = X−1
1 X2, (3.12)

Right error: η = X2X
−1
1 . (3.13)

Hence, this definition ensures that the error stays in G given the stability property of the group
law. The concept of group error can be extended to the log-Euclidean error:

Left case: ε , log∨G
(
X−1

1 X2
)
, (3.14)

Right case: ε , log∨G
(
X2X

−1
1
)
. (3.15)

Hence, the log-Euclidean error fully encodes the group error in a vector defined in the Euclidean

space. This formulation will be often used in the algorithms designed in this thesis.

3.3.2 . Adjoints
General commutativity is not possible on matrix Lie groups. However, it is a useful property in

calculus, and is naturally used in vector spaces. To that extent, the group adjoint AdG is a tool
which was introduced to behave like a pseudo-commutator:

∀X ∈ G, ε ∈ Rd : X exp∧G(ε) = exp∧G(AdG(X)ε)X, (3.16)

and its formal definition is [27]:

∀X ∈ G, a ∈ Rd : AdG(X)a ,
[
X[a]∧X−1]∨ . (3.17)

The group adjoint enables to define unimodular Lie groups whose properties will be used in

the following sections.
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The Lie algebra of a matrix Lie group also admits an adjoint operator denoted adG which is
defined by the Lie bracket:

∀(a, b) ∈ g : adG(a)b ,
[
[a]∧, [b]∧

]∨
, (3.18)

where: [
[a]∧, [b]∧

]
= [a]∧[b]∧ − [b]∧[a]∧. (3.19)

Note that AdG and adG are related with the following equation [27]:

∀a ∈ Rd, adG(a) = logm(AdG(exp∧G(a))), (3.20)

where logm denotes the usual matrix logarithm.

3.3.3 . Unimodularity
At this point of the chapter, all the previous definitions apply to general matrix Lie groups. How-

ever, a more restrictive framework needs to be set to introduce the different calculus tools at

the base of the filtering algorithms developed in this thesis. The unimodularity of a Lie group is

a momentous property which has direct repercussions of most theoretical concepts introduced

in the sequel. Indeed, Lie group theory covers a broad range of abstract mathematical aspects

which go far beyond the scope of this thesis, and nonlinear estimation in general.

Unimodular matrix Lie groups represent a specific class of Lie groups which are suited to most

problems encountered in nonlinear estimation. They ensure a simple framework which natu-

rally extends usual calculus tools to matrix Lie groups, as discussed in [27]. A unimodular Lie

group is defined by a unitary determinant of the group adjoint:

∀X ∈ G : det [AdG(X)] = 1. (3.21)

This class of groups shows interesting topological properties. First, a unimodular Lie group is

compact [27]. Compact groups all carry a bi-invariant Haar measure, meaning that it is un-

changed by a left or right multiplication. This enables a simplified definition of integrals and in-

variance properties which are alike the one encountered for the Euclidean space. Besides, the

Haar measure can be easily normalized to define a probability density function on the group,

which is highly relevant when working with stochastic systems.

In this thesis every reference to Lie group implies unimodular matrix Lie group, for which

the properties described in the sequel apply. Hence they enable a convenient algebraic

and geometric framework with a natural extension of most customary analysis tools.

3.3.4 . Group action
Operations between elements from the group and elements from outside the group can be

useful (e.g. a matrix-vector product). Let U be a set of elements of the same nature (i.e. a set
of vectors). A group action denoted ∗ is a left or right homomorphism:

Left : G × U → U , (3.22)

Right : U × G → U , (3.23)
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such that ∀u ∈ U ,X1, X2 ∈ G, the operator ∗ verifies the following properties:

Identity invariance: Id ∗ u = u ∗ Id = u (3.24)

Left associativity: X1 ∗ (X2 ∗ u) = (X1X2) ∗ u (3.25)

Right associativity: (u ∗X2) ∗X1 = u ∗ (X2X1). (3.26)

The group action is specially useful to derive IEKF described in Chapter 4.

3.3.5 . Group Jacobian
Lie groups are often represented as smooth curved spaces, such as in Figure 3.1. This curvature

is linked to the non-commutativity of the group law, which involves a distortion when a sum of

vectors from the algebra are projected to the group with the group exponential. This curvature

often appears in calculus, and is characterized by the Lie group Jacobian ΦG(ε) defined as the
derivative of the exponential with respect to the log-Euclidean error:

∀ε ∈ Rd,ΦG(ε) ,
∂ exp∧G(ε)

∂ε
=

+∞∑
n=0

adG(ε)n

(n+ 1)! . (3.27)

This term often appears when operations on the algebra (or the Euclidean space) are projected

to the group. This will be broadly discussed in the following section on the Baker-Campbell-

Hausdorff formula. Note that this Jacobian is specific to the group and should not be confused

with Jacobians of functions introduced in future sections.

The matrix inverse of ΦG is often useful. It is denoted ϕG , and writes:

∀ε ∈ Rd, ϕG(ε) =
+∞∑
n=0

BnadG(ε)n

n! , (3.28)

where Bn represent the Bernoulli numbers [1].

3.4 . The Baker-Campbell-Hausdorff Formula
The Baker-Campbell-Hausdorff formula, also referred to as BCH, plays a key role in information

theory on Lie groups. Indeed, the non-commutativity of the group law implies that:

log∨G
(
exp∧G(a) exp∧G(b)

)
= BCH(a, b) 6= a+ b. (3.29)

The integral expression of BCH is popular in physics. It is valid at the neighborhood of the

identity point of the group within the bounds of the inequality [42]:

(a, b) ∈ Rd : ‖a‖2 and ‖b‖2 <
1
2 log

(
2−
√

2
2

)
. (3.30)

Under this assumption, BCH writes:

log∨G
(
exp∧G (a) exp∧G (b)

)
= a+

[∫ 1

0
Ψ(exp∧G (adGa) exp∧G (t adGb))dt

]
b, (3.31)
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where Ψ is defined as:

Ψ(x) = x

∞∑
i=0

(−1)i(x− Id)i

i+ 1 . (3.32)

The Hausdorff Series is another widespread formulation of BCH for matrix Lie groups, and is

detailed in [42]. The knowledge of the first terms provides an accurate approximation:

log∨G
(
exp∧G (a) exp∧G (b)

)
≈ a+ b+ 1

2[[a]∧, [b]∧]∨ + · · · (3.33)

where [ · , · ] denotes the Lie brackets. Besides, when a and b are close to 0, a zero-order
approximation is often sufficient:

if a ≈ 0 and b ≈ 0 : log∨G
(
exp∧G (a) exp∧G (b)

)
≈ a+ b. (3.34)

Note taht other accurate formulations of BCH exist. The approach described in [46] shows that

a linearization in a or b leads to two different first-order expressions of BCH formula.

If ‖b‖2 is small with respect to ‖a‖2:

log∨G
(
exp∧G(a) exp∧G(b)

)
= b+ ϕG(b)a+O(‖a‖22). (3.35)

If ‖a‖2 is small with respect to ‖b‖2:

log∨G
(
exp∧G(a) exp∧G(b)

)
= a+ ϕG(−a)b+O(‖b‖22). (3.36)

In practice, other expressions provided in [14] are highly relevant as these configurations often

occur in calculus:

log∨G
(
exp∧G (−a) exp∧G (a+ b)

)
= ΦG(−a)b+O(‖b‖2), (3.37)

log∨G
(
exp∧G (a+ b) exp∧G (−a)

)
= ΦG(a)b+O(‖b‖2). (3.38)

3.5 . Differential and Integral Calculus
The usual derivative requires a slight adaptation to be applicable to Lie groups. Indeed, consid-

ering a smooth function f : G → R, its derivative is: limh→0 [f(X + h)− f(X)] /h. However the
+ operation is not group-stable: X + h /∈ G.
Another approach uses the directional derivative defined in the Lie algebra [28], which can be

defined in two ways. Let f : G → G be a smooth function, the left derivative on G writes:

∂Xf(X) , lim
t→0

f(X exp∧G (tε))− f(X)
t

, (3.39)

where ε ∈ Rd. For more natural notations, this paper uses:

∂

∂ε
f(X exp∧G (ε))

∣∣
ε=0 , ∂Xf(X). (3.40)
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In the sequel, the derivative is always implicitly computed for ε = 0.
The derivative on Lie groups preserves important properties of the derivative onRd. Let f and g
be two smooth functions on unimodular Lie groups. In that case, [27] shows that the customary

product rule applies for ∂X :

∂X(fg)(X) = ∂Xf(X) g(X) + f(X) ∂Xg(X). (3.41)

Besides, the derivative chain rule applies as well:

∂Xf(g(X)) = ∂f(u)
∂uT

∣∣∣∣
u=g(X)

∂Xg(X). (3.42)

The sequel focuses on the integrals on Lie groups. Let f be an integrable function defined on

G, a unimodular Lie group. Its integral is defined as [27]:∫
G
f(X)dX ,

∫
Rd
f(exp∧G (ε)) |det [ΦG(ε)]|dε, (3.43)

where dX is a Haar measure, dε is a Lebesgue measure, ΦG(ε) is defined in (3.27), and ε is the
log-linear error on the group. This definition can be seen as the change of measure:

dX → |det [ΦG(ε)]|dε. (3.44)

The integrals defined on unimodular Lie groups verify similar properties as the ones de-

fined on the Euclidean space [27]. First, the integral is unchanged by the inverse change of

measure: ∫
G
f(X)dX =

∫
G
f(X−1)dX. (3.45)

Another key property of the Haar measure for unimodular Lie group is its bi-invariance,

meaning that the integral is unchanged by a left or right multiplication:

∀µ ∈ G :
∫
G
f(X)dX =

∫
G
f(µX)dX =

∫
G
f(Xµ)dX. (3.46)

3.6 . Probability densities
The concept of probability densities on Lie groups is broadly discussed in [81]. Previous works

extended the customary probability density functions to unimodular matrix Lie groups. Indeed,

this category of Lie groups present important properties for the concept of density to hold.

3.6.1 . General introduction
Let X be a random matrix on G, a unimodular Lie group, and p : G → [0, 1] be a probability
density function. Then, according to [81], G has a Haar measure dX for which:∫

G
p(X)dX = 1. (3.47)
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The probability density can be also defined with the change of measure presented in (3.44),

leading to: ∫
Rd
p(exp∧G (ε)) |det [ΦG(ε)]|dε = 1. (3.48)

In this thesis, both formulations of the densities are used. For the sake of simplicity, the vari-

ables X and ε can be used in the same expressions when the context is clear. This notation

abuse enables compact calculus and more readability of long expressions.

3.6.2 . Mean and covariance matrix
LetX be a randommatrix and p(X) a probability density function on G, a unimodular Lie group.
Its first moment µ, also referred to as the expectation or mean value, is defined by:

µ such that

∫
G

log∨G
(
µ−1X

)
p(X)dX = 0. (3.49)

This definition also represent the expectation ofX :

µ = E [X] . (3.50)

The mean is the same regardless the side of the product between µ and X . Indeed, consider

the right formulation: ∫
G

log∨G
(
Xµ−1) p(X)dX = 0. (3.51)

The integral invariance property from (3.46) leads to the same definition of the mean. Note that

other definition of the mean exist, but this is the only one which is consistent either on the left

or the right. Similarly, the definition of covariance matrix holds in Lie groups as well.

The left covariance matrix P is defined as the second moment of p:

P ,
∫
G

log∨G
(
µ−1X

)
log∨G

(
µ−1X

)T
p(X)dX, (3.52)

which can be denoted:

P = E
[
log∨G(µ−1X) log∨G(µ−1X)T

]
(3.53)

Then, in the case of a right error, the covariance matrix writes:

P ,
∫
G

log∨G
(
Xµ−1) log∨G

(
Xµ−1)T p(X)dX, (3.54)

and the expectation notation is:

P = E
[
log∨G(Xµ−1) log∨G(Xµ−1)T

]
(3.55)
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3.6. PROBABILITY DENSITIES
Note that for the sake of brevity, the covariance matrix is denoted P = V [X], where the
left or right definition will be chosen according to the side of the error.

The covariance matrix can be also defined with the expectation using the log-linear error. It has

a general formulations which apply either to the left and right case:

P = E
[
εεT
]
. (3.56)

Unlike the mean, the right formulation of the covariance matrix differs from the left as it in-

volves a different error function: log∨G
(
µ−1X

)
6= log∨G

(
Xµ−1)

.

In this thesis, the computation of the mean and covariance matrix of a finite sample will be

required. The sequel describes this specific case:

A sample of matrices Xi, i ∈ [1, Np] on G, with the corresponding weights wi, i ∈ [1, Np]
such that

∑Np
i=1w

i = 1, and is denoted:{
Xi, wi

}
i∈[1,Np] . (3.57)

Based on the definition (3.49), the mean of the sample is:

µ such that

Np∑
i=1

wi log∨G
(
µ−1Xi

)
= 0. (3.58)

The notion of mean on Lie groups is broadly discussed in [66]. note that the definition (3.58) has

similar properties to the usual mean on the Euclidean space. It is bi-invariant, meaning that it is

consistent with a left or right multiplication of the sample: ∀g ∈ G the mean of
{
gXi, wi

}
i∈[1,Np]

is gµ.

Themean of a sample has to be carefully computed as Lie groups are not vector spaces. Hence,

it cannot be calculated with a direct sum of the weighted particles as the "+" operator does not
belong to the group:

µ 6=
Np∑
i=1

wiXi.

Another approach would be to use the group logarithm and exponential to bring the samples

to the Euclidean space, compute the mean on the Euclidean space, and send this mean back

to the group with the exponential: exp∧G
(∑Np

i=1w
i log∨G

(
Xi
))
. This expression is usually called

the group exponential barycenter. Although this formulation is group-stable, it is not invariant

under a right or left multiplication of the sample:

∀g ∈ G : g exp∧G

 Np∑
i=1

wi log∨G
(
Xi
) 6= exp∧G

 Np∑
i=1

wi log∨G
(
gXi

) .

As discussed in [66], the definition (3.58) is the only one which is consistent with the group

geometry and shows the usual properties.
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3.6.3 . Concentrated Gaussian

LetX ∈ G be a random matrix which follows a left concentrated Gaussian distribution on G:

X ∼ NL
G (X;µ, P ) ;X = µ exp∧G(ε), (3.59)

where ε ∼ NRd(0, P ). This definition holds when the density is concentrated around its mean,
that is to say, all eigenvalues of P are small enough [28]. Its probability density function writes:

p(X) ≈ 1√
(2π)d det [P ]

e−
1
2‖log∨G (µ−1X)‖2

P . (3.60)

This formulation is only an approximation as pointed out in [14], since a reparametrization

term appears on the covariance matrix of the normalization factor. The exact form of the left

Gaussian writes:

p(X) = 1√
(2π)d det

[
ΦG(ε)PΦT

G (ε)
]e− 1

2‖log∨G (µ−1X)‖2
P , (3.61)

where ε = log∨G
(
µ−1X

)
. However, since the density is assumed to be concentrated, ΦG(ε) is

close to identity. Thus, this term is often overlooked for simplicity.

Similarly, ifX follows a right concentrated Gaussian on G:

X ∼ NR
G (X;µ, P ) ;X = exp∧G(ε)µ, (3.62)

where ε ∼ NRd(0, P ). The density is given by:

p(X) ≈ 1√
(2π)d det [P ]

e−
1
2‖log∨G (Xµ−1)‖2

P . (3.63)

It is important to stress that the left and right Gaussian functions represent two different

densities. Although they will have the same mean, their variance can significantly differ as

log∨G
(
Xµ−1) 6= log∨G

(
µ−1X

)
in general. Also, for the sake of brevity and when the context is

clearly indicated, left and right Gaussians on G are both denotedNG(X;µ, P ).

3.6.4 . Dirac Distribution
The definition of the Dirac distribution is momentous for Particle Filter on Lie groups as it rep-

resents the mathematical nature of a particle.

In the Euclidean case, it is formally defined as the Lebesgue measure δ(x) such that:∫
R
f(x)δ(x) = f(0). (3.64)

Besides, the Dirac function can be translated at any point a ∈ R according to the following
notation:

δa(x) , δ(x− a). (3.65)

The framework of unimodular Lie groups admits an extension of the Dirac function as described

in [27]. Let X and µ be two matrices in G, a unimodular Lie group. They can be written as a
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linear combination of the basis of the Euclidean space [e1 · · · en] projected to the group with the
group exponential:

X = exp∧G
(∑d

n=1 anen

)
,

µ = exp∧G
(∑d

n=1 bnen

)
,

(3.66)

where an, bn ∈ R.
The Dirac function on G at point µ ∈ G is defined as:

δµ(X) ,
d∏

n=1
δbnen(anen). (3.67)

Note that in the sequel, there will be no distinctions in the notation of a Dirac function on

Lie groups and a Dirac function on the Euclidean space. When the inputs of δ are Rd vectors,
definition (3.64) holds, and when they are Lie group matrices, definition (3.67) holds.

3.6.5 . Sampling
A sample of N elements on a Lie group G is denoted

{
Xi
}
i∈[1,N ] =

{
X1, · · · , XN

}
. It is usu-

ally obtained from a centered sample on the Euclidean space projected on the Group with an

exponential and a left or right multiplication of the mean. Let
{
εi
}
i∈[1,N ] be a centered sample

such that εi ∼ π(ε; 0, P ) where π is a probability law on the Euclidean space. Then, the sample
of mean µ on the Group writes:

Left: Xi = µ exp∧G
(
εi
)
,

Right: Xi = exp∧G
(
εi
)
µ.

(3.68)

This sample copes with the geometry of the group and often has a curved shape, as illustrated

in Figure 3.2.

3.7 . Fisher Information Matrix
Let p be a probability density function on an unimodular Lie group G and X̂ be an estimator of
a random matrix X . Assuming that p is symmetric p(X−1) = p(X) , [27] shows that its Fisher
information matrix is defined by:

J ,
∫
G

1
p(X)

(
∂p(X exp∧G (ε))

∂ε

)(
∂p(X exp∧G (ε))

∂ε

)T
dX. (3.69)

Besides, a covariance matrix on G defined as (3.54) verifies:

P ≥ J−1, (3.70)

in the sense that the eigenvalues of P − J−1
are positive.
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Figure 3.2: Illustration of the sampling process on Lie groups.

Lemma 1. The Fisher information matrix J defined in (3.69) can be written in the alternativeform:
J = −E

[
∂2 log p(X exp∧G (ε) exp∧G (ξ))

∂ε∂ξ

]
. (3.71)

Proof. Consider the following derivative denoted (D):

(D) = ∂2

∂ε∂ξ
log p(X exp∧G (ε) exp∧G (ξ)). (3.72)

The derivation with respect to ξ gives:

(D) = ∂

∂ε

1
p(X exp∧G (ε))

∂

∂ξ
p(X exp∧G (ε) exp∧G (ξ)). (3.73)

Then, the derivation with respect to ε leads to two terms:

(D) = 1
p(X)2

∂

∂ε
p(X exp∧G (ε)) ∂

∂ξ
p(X exp∧G (ξ)) + 1

p(X)
∂2

∂ε∂ξ
p(X exp∧G (ε) exp∧G (ξ)). (3.74)

By applying the expectation on the second term of (3.74) gives:

E
[

1
p(X)

∂2

∂ε∂ξ
p(X exp∧G (ε) exp∧G (ξ))

]
=
∫
G

∂2

∂ε∂ξ
p(X exp∧G (ε) exp∧G (ξ))dX,

= ∂2

∂ε∂ξ

∫
G
p(X exp∧G (ε) exp∧G (ξ))dX.

(3.75)
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The invariance property of the integral from (3.46) gives:∫

G
p(X exp∧G (ε) exp∧G (ξ))dX =

∫
G
p(X)dX = 1, (3.76)

leading to:

E
[

1
p(X)

∂2

∂ε∂ξ
p(X exp∧G (ε) exp∧G (ξ))

]
= 0. (3.77)

By applying now the expectation to the first term of (3.74):

E

[
1

p(X)2
∂p(X exp∧G (ε))

∂ε

∂p(X exp∧G (ξ))T

∂ξ

]

=

∫
G

1
p(X)

(
∂p(X exp∧G (ε))

∂ε

)(
∂p(X exp∧G (ε))

∂ε

)T
dX,

(3.78)

which concludes the proof.

This alternative formulation is equivalent to the one proposed in [48], which can be seen as a

Hessian on the group.

3.8 . Link with Riemannian manifolds
The properties introduced in this Chapter can be extended to Riemannian manifolds, as de-

tailed in [75]. The main advantage of Lie groups is to have a unique bi-invariant metric with the

group logarithm.
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4 - Bayesian Filters on Lie Groups and Manifolds
Over the last decade, estimation filters on Lie groups has gained interest among researchers

and engineers for a wide range of applications. This Chapter introduces some of the main

methods developed in the literature. The works of Barrau and Bonnabel on a specific class

of nonlinear systems on Lie groups led to the Invariant Extended Kalman Filter (IEKF) which

was adapted to a new version of Rao-Blackwellized particle filter. At the same time, Giremus

and Bourmaud developed the Extended Kalman Filter on Lie groups (LG-EKF), which provides

a generic formulation for EKF on matrix Lie groups. Following the works of Barrau, Brossard

developed the Unscented Kalman Filter on Lie groups which became a popular approach to

solve Visual Inertial Odometry (VIO) and Visual Simultaneous Localization and Mapping (V-

SLAM) problems. A different approach was developed by Snoussi et al. with Particle Filter

where the system is constained on a Riemannian manifold.

4.1 . Invariant Filtering
4.1.1 . Invariant Kalman Filter

Invariant Extended Kalman Filter (IEKF) is one of the first breakthrough introduced by the use

of Lie groups in estimation. When the observation and dynamics models verify hypothesis de-

scribed in the sequel, IEKF uses geometric and algebraic properties of Lie groups to obtain a

linear behavior for a class of nonlinear system described in [7]. This unique result in nonlinear

estimation led to stability properties [4, 6].

Let Xk ∈ G be a matrix whose evolution is described by the general discrete observation sys-
tem: {

Xk+1 = f(Xk, uk+1, ν
q
k),

Yk+1 = h(Xk+1, ν
r
k+1). (4.1)

IEKF theory is based on two core assumptions on f and h such that the propagation and update

errors are autonomous with respect to the estimated state. First, it is assumed that f verifies:

∀X1, X2 ∈ G : f(X1, X2) = f(X1)f(Id)−1f(X2). (4.2)

In that case, f is group-affine [7]. Besides, it is assumed that h describes a group action of G on
a set S as defined in (3.23):

∀X ∈ G, s ∈ S : h(Xk) = Xk ∗ sk. (4.3)

Then, the estimation error on the deterministic system (4.1) is autonomous with respect to the

state [7]. This specific result enables to design a filter with invariance properties, which leads

to stability results for this class of nonlinear systems [6]. Technical developments on IEKF can

be found in [4].
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4.1.2 . Imperfect Invariant Extended Kalman Filter

Although IEKF suits to a quite general framework, its implementation does not cope with the

estimation of some parameters such as biases. In that case, [7] shows that IEKF framework

does not apply as the dynamics model function is not group-affine.

This problem is soved with the "Imperfect" IEKF introduced in [4]. The state variables are rep-

resented by a matrix and a vector (Xk ∈ G, θk ∈ Rn) and follows the system:
Xk+1 = fθk(Xk, uk+1),
θk+1 = g(θk),
Yk+1 = h(Xk+1 ∗ b, θk),

(4.4)

where b ∈ Rp, fθk is groupe-affine in the sense of (4.2). The imperfect IEKF is built on the state
error (in the left case):

ek =
[

log∨G
(
X̂−1
k Xk

)
θk − θ̂k

]
. (4.5)

This hybrid error describes a groupe-affine dynamic with the matrix product and includes the

parameters on the Euclidean space. The matrix error on X is handled with IEKF and the vec-

torial error is handled with EKF. Thus, in practical navigation problems, the main kinematics

variables are represnted in the matrix and the biases in the vector.

Although this filter does not have mathematical stability properties, the core of the state is esti-

mated with an IEKF, making the imperfect IEKF highly accurate and robust in practice. Besides,

(4.4) is suitable to most estimation problems, and generalizes IEKF framework.

4.1.3 . Invariant Rao-Blackwellized Particle Filter
Invariant Particle Filter is an extension of IEKF where specific parameters are identified with

a Monte Carlo approach. Indeed, IEKF framework cannot handle biases often encountered in

nonlinear estimation (e.g. accelerometer or gyrometer biases).

The approach developed in [5, 4] splits the state variables in amatrixX and a vector θ, following

the continuous-discrete state space model:
θ̇ = f(θ, ν),
Ẋ = g(θ,X, u) +Xv,
Yk = hθ(Xkp+ wk),

(4.6)

where (ν, v, wk) are noise vectors, and p is a vector. Besides, it is assumed that g is group-affine
with respect toX in the sense of (4.2) and verifies:

g(θ,X, u)− g(θ, I, u)X = g(0, X, u)− g(0, I, u)X. (4.7)

Under these assumptions, [5] describes a process where X is estimated with an IEKF and θ

with a particle filter, which can be identified as an Invariant Rao-Blackwellized Particle Filter.

This filter benefits from the properties of IEKF as the Kalman gains are independent from both

θ and X . Hence, a single Kalman gain is sufficient to update all the particles during the update

step.
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4.2 . Extended Kalman Filter on Lie Groups

Extended Kalman Filter on Lie groups (LG-EKF) was introduced by Bourmaud et al. in [15]. It

consists in a direct linearization of the group error, leading to a formalism close to usual EKF.

Although LG-EKF does not have theoretical convergence properties, it comes with a natural

robustness. Besides, to some extent, IEKF can be seen as a linear version of Extended Kalman

Filter on Lie groups (LG-EKF).

Consider the discrete state space system:{
Xk+1 = f(Xk, uk+1, w

q
k),

Yk+1 = h(Xk+1, w
r
k+1), (4.8)

where the state matrix Xk belongs to a matrix Lie group G and Yk+1 to a matrix Lie group H.
The approach described by [15] assumes that the system (4.8) writes:

Left case: f(Xk, uk+1, ν
q
k) = Xk exp∧G

(
Ω(Xk, uk+1) + νqk+1

)
, (4.9)

Right case: f(Xk, uk+1, ν
q
k) = exp∧G

(
Ω(Xk, uk+1) + νqk+1

)
Xk, (4.10)

where nqk is a centered Gaussian noise vector and Ω a smooth function. Also, the observation
model is assumed to have a Gaussian multiplicative noise:

h(Xk, ν
r
k) = h(Xk) exp∧G (νrk) . (4.11)

The filter obtained with this system is described in Algorithm 5 where the propagation Jacobian

is given by [14]:

Fk = AdG
(
exp∧G

(
−Ω(µ̂k|k, uk+1)

))
+ ΦG(−Ω(µ̂k|k, uk+1))Ck, (4.12)

where:

Ck =
∂ log∨G

(
Ω(µ̂k|k exp∧G (ε) , uk+1)

)
∂ε

. (4.13)

The update Jacobian is a direct linearization of the measurement model:

Hk+1 = −
∂ log∨H

(
h(µ̂k+1 exp∧G (ε))−1Yk+1

)
∂ε

. (4.14)

Algorithm 5 Left Lie Group Extended Kalman Filter
Result: (µ̂k|k, Pk|k), k ∈ [1, N ]
Inputs: µ̂0, P0, y1:N
Propagation:
µ̂k+1|k = µ̂k|k exp∧G

(
Ω(µ̂k|k, uk+1)

)
Pk+1|k = FkPk|kF

T
k + ΦG(Ω(µ̂k|k, uk+1))Qk+1ΦT

G (Ω(µ̂k|k, uk+1))
Update:
Kk+1 = Pk+1|kH

T
k+1
(
Hk+1Pk+1|kH

T
k+1 +Rk+1

)−1

µ̂k+1|k+1 = µ̂k+1|k exp∧G
(
Kk+1 log∨H

(
h(µ̂k+1|k)−1yk+1

))
Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k
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4.3 . Unscented Kalman Filter on Lie Groups

Lie Group Unscented Kalman Filter (LG-UKF) hinges on the same principle of UKF developed

by Uhlmann [44]. It was introduced by Brossard et al. [17] and demonstrated its interest for

robotics applications [18, 51, 20].

Assume that the state matrixX belongs to a Lie group G of dimension d, ane follows a discrete
process according to the following state-space model, where Yk belongs to H, a Lie group of
dimensionm: {

Xk+1 = Xk exp∧G
(
Ω(Xk, uk+1) + νqk+1

)
,

Yk+1 = h(Xk+1) exp∧H
(
νrk+1

)
,

(4.15)

where νqk+1 ∼ N (0, Qk+1) and νrk+1 ∼ N (0, Rk+1). The difference with the usual UKF is to draw
the sigma-points in the Lie algebra, which copes with the geometry of the group.

Similar approaches exist where only the rotation matix is defined on the Lie group [20]. Also,

[18] simplifies this algorithm by considering a vectorial measurement model (i.e. H = Rm) with
additive noise.

4.4 . Particle Filter on Manifolds
Particle Filter on Manifold is related to this thesis as it focuses on Monte Carlo methods on

non-Euclidean spaces. It was developed by Snoussi and al. in [77] and it sets a framework

for particle filtering in Riemannian manifolds. The specificity of this approach is to define the

stochastic processes in tangent spaces to themanifold. Then, the inner product of each tangent

space can be used to define an error which is analogous to the log-Euclidean error.

Lie groups and Riemannian manifolds have several similarities. Indeed, every tangent space

of the manifold admits an exponential and a logarithm which work in the same ways as for

Lie groups. Besides, every tangent space at the manifold is a vector space with a bi-invariant

metric, which enables to design filters. However, the main advantage of Lie group is the unicity

of these elements. In the case of Riemannian manifolds, the exponential and logarithm differ

from one tangent space to another, which involves the definition of a new metric for each

tangent space.
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5 - Bayes Optimal Filter on Lie Groups
This Chapter represents the first theoretical contribution of the thesis. It characterizes the

Bayes Filter on Lie groups based on the probabilistic considerations of Chapter 3. It sets the

framework of all the Chapters of Part II which are based on the assumptions described in the

sequel.

5.1 . Framework and Assumptions
This section focuses on the filtering aspects of Bayesian fusion on Lie groups discussed in [81,

27]. All the filters proposed in the next chapters will be derived from this formulation.

Let {Xk}k∈N ∈ G be the discrete-time randomprocess describing the evolution of a sequence of
hidden states, according to a set of observations {Yk}k∈N ∈ H, where G andH are unimodular
matrix Lie groups of respective dimensions d andm. Consider the generic state-space model:{

Xk+1 = f(Xk, uk+1, ν
q
k),

Yk+1 = h(Xk+1, ν
r
k+1), (5.1)

where f and h are two nonlinear functions.

Similarly to the Euclidean case, the filtering problem on Lie groups lies in the estimation of the

posterior density p(Xk|Y1:k), where Y1:k = {Y1 , ... , Yk}, under the following assumptions:

• The sequence X1:k = {X1, · · · , Xk} describes a Markov process which transition density
is known:

p(Xk+1|X1:k) = p(Xk+1|Xk). (5.2)

• The observations Y1:k are conditionally independent given the state process:

p(Y1:k|X1:k) =
k∏
i=1

p(Yi|Xi). (5.3)

• The initial state probability density function p(X0) is known.

5.2 . Derivation of the Filter
The estimation process hinges on the Optimal Filter (or Bayes filter) which is the most general

approach in Bayesian estimation. The Bayes filter applies to Lie groups as they enable the

definition of probability densities [27]. The sequel assumes unimodular Lie groups for which

the analysis and probability tools described in Chapter 3 apply. The propagation step is given by

the Chapman-Kolmogorov equation which is obtained with a marginalization on the group:
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p(Xk+1|Y1:k) =
∫
G
p(Xk+1|Xk)p(Xk|Y1:k)dXk, (5.4)

where p(Xk+1|Xk) is the transition density and p(Xk|Y1:k) is the posterior density.

The update is performed by the Bayes rule, which is obtained following the same principles as

the Euclidean space:

p(Xk+1|Y1:k+1) = p(Yk+1|Xk+1)p(Xk+1|Y1:k)
p(Yk+1|Y1:k)

. (5.5)

The Bayes rule computes the posterior density p(Xk|Y1:k) from the fusion of the likeli-

hood p(Yk+1|Xk+1) derived from ameasurement model, and the prior density p(Xk+1|Y1:k)
which represents the propagated density from (5.4).

Note that p(Yk+1|Y1:k) is the marginal likelihood. Ii is obtained with the following integral:

p(Yk+1|Y1:k) =
∫
G
p(Yk+1|Xk+1)p(Xk+1|Y1:k)dXk+1. (5.6)

The marginal likelihood is considered as a normalization term, and it is not computed in prac-

tice. The Optimal Filter on Lie group can be expressed with the following algorithm:

Algorithm 6 Lie Group Optimal Filter
Result: p(Xk|Y1:k), k ∈ [1, N ]
Propagation step: p(Xk+1|Y1:k) =

∫
Rd
p(Xk+1|Xk)p(Xk|Y1:k)dXk

Update step: p(Xk+1|Y1:k+1) ∝ p(Yk+1|Xk+1)p(Xk+1|Y1:k)

5.3 . Estimators
Estimators play a key role in the filters of this thesis. As in the Euclidean case, the sequel focuses

on the conditional mean and the Maximum A Posteriori (MAP).
5.3.1 . Conditional mean

The conditional mean at different steps of the filtering process is defined with the expectation

on Lie groups introduced in Chapter 3:

µ̂k|k , E [Xk|Y1:k] , (5.7)

µ̂k+1|k , E [Xk+1|Y1:k] . (5.8)

Because of the properties of unimodular Lie groups discussed in Chapter 3, these definitions

are the same ifX is a left or right random variable.

Then, the log-Euclidean error at different times is denoted:
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Left case:

εk|k , log∨G
(
µ̂−1
k|kXk

)
, (5.9)

εk+1|k , log∨G
(
µ̂−1
k+1|kXk+1

)
. (5.10)

Right case:

εk|k , log∨G
(
Xkµ̂

−1
k|k

)
, (5.11)

εk+1|k , log∨G
(
Xk+1µ̂

−1
k+1|k

)
. (5.12)

Similarly, the conditional variance on Lie groups is denoted at different steps:

Pk|k , V [Xk|Y1:k] = E
[
εk|kε

T
k|k

]
, (5.13)

Pk+1|k , V [Xk+1|Y1:k] = E
[
εk+1|kε

T
k+1|k

]
. (5.14)

Unlike the mean, the covariance matrix differs in the left and right cases as it involves two

different errors.

5.3.2 . Maximum A Posteriori
The Maximum A Posteriori on Lie groups has a similar definition to the Euclidean case. It is the
point µ∗ ∈ G which maximizes the posterior density:

µ∗k+1 = arg max
Xk+1

p(Xk+1|Y1:k+1). (5.15)

Then, by applying the Bayes equation, a simplified expression of the MAP can be obtained as

the product of the prior density and the likelihood:

µ∗k+1 = arg max
Xk+1

p(Xk+1|Y1:k)p(Yk+1|Xk+1). (5.16)

5.4 . Conclusion
This Chapter introduces the Bayes Filter on unimodular matrix Lie groups with the definitions of

the conditional expectation, conditional variance and Maximum A Posteriori on the group. This
framework has strong similarities with its Euclidean counterpart, and enables the existence of

all the tools required for nonlinear estimation. Therefore, this Chapter demonstrates that the

Bayesian framework holds on unimodular matrix Lie groups, which establishes the theoretical

background of the works introduced in this thesis. In the sequel, the Bayes Filter will be solved

with different assumptions on the state space system. First, the assumption of Gaussian pro-

cesses leads to the revisited Lie group Extended Kalman Filter (LG-EKF) described in in Chapter
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5.4. CONCLUSION
6. Then, Optimal Filter will be solved without assumption on the model in Chapters 7 and 8,

leading to new formulations of particle filters on Lie groups. Eventually, Chapter 9 focuses on

the case where the noises are Gaussian and the estimated density is represented by a mixture

of concentrated Gaussians.
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6 - Extended Kalman Filter on Lie Groups Revisited
This Chapter solves the Optimal Filter on Lie groups presented in Chapter 5 assuming that the

state X and the measurement Y are Gaussian random variables on G and H. These assump-
tions lead to a formulation of Extended Kalman Filter on Lie groups (LG-EKF).

This filter was presented in previous works under similar hypothesis [14, 15] and is close to

the Imperfect IEKF from [4]. The specificity of this chapter is to demonstrate that LG-EKF can be

retreived from the Bayes filter equations on Lie groups. Also, it establishes a revisited approach

of LG-EKF where the propagation noise follows a multiplicative model on the group. Besides, it

describes a simplified formulation for the left and right Jacobians in the case where the state

belongs to the multiple Special Euclidean group SEp(3) defined in [10, 6].

6.1 . Problem statement
Let {Xk}k∈N ∈ G be the discrete-time process describing the evolution of a sequence of hidden
states, according to a set of observations {Yk}k∈N ∈ H, where G and H are unimodular matrix
Lie groups, and the assumptions of the optimal filter from Chapter 5 are verified.

A left propagation and measurement model writes:{
Xk+1 = f(Xk) exp∧G

(
νqk+1

)
,

Yk+1 = h(Xk+1) exp∧G
(
νrk+1

)
,

(6.1)

and a right model writes: {
Xk+1 = exp∧G

(
νqk+1

)
f(Xk),

Yk+1 = exp∧G
(
νrk+1

)
h(Xk+1), (6.2)

where (νqk+1, ν
r
k+1) are centered noise vectors following centered Gaussian distributions:

{
νqk+1 ∼ N (0, Qk+1),
νrk+1 ∼ N (0, Rk+1), (6.3)

where Qk+1 and Rk+1 are two definite semi-positive matrices.

The Lie group Extended Kalman filter tracks the expectation and covariance matrix of Xk. The

notations of Chapter 5 detailed in (5.7), (5.11) and (5.13) are taken in the sequel.

6.2 . General solution
The solution to the Bayes filter leads to the Extended Kalman Filter on Lie group (LG-EKF), which

tracks the temporal evolution of the statistical moments of the prior and posterior densities.

The equations derived in the next sections can be summarized as the following algorithm.
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6.2. GENERAL SOLUTION

Algorithm 7 Lie Group Extended Kalman Filter
Result: (µ̂k|k, Pk|k), k ∈ [1, N ]
Propagation step:
µ̂k+1|k = f(µ̂k|k, uk+1)
Pk+1|k = FkPk|kF

T
k +Qk+1

Update step:
Kk+1 = Pk+1H

T
k+1(Hk+1Pk+1H

T
k+1 +Rk+1)−1,

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k,
Left case: µ̂k+1|k+1 = µ̂k+1|k exp∧G

(
Kk+1 log∨H

(
Y −1
k+1h

(
µ̂k+1|k

)))
,

Right case: µ̂k+1|k+1 = exp∧G
(
Kk+1 log∨H

(
h
(
µ̂k+1|k

)
Y −1
k+1
))
µ̂k+1|k.

The Jacobians Fk and Hk+1 depend on the side of the Lie group error (either left or right)
and are computed as:

- Left case:

Fk = ∂

∂εk|k
log∨G

(
f(µ̂k|k)−1f

(
µ̂k|k exp∧G

(
εk|k
)))

,

Hk+1 = ∂

∂εk+1|k
log∨H

(
Y −1
k+1h

(
µ̂k+1|k exp∧G

(
εk+1|k

)))
.

(6.4)

- Right case:

Fk = ∂

∂εk|k
log∨G

(
f
(
exp∧G

(
εk|k
)
µ̂k|k

)
f(µ̂k)−1) ,

Hk+1 = ∂

∂εk+1|k
log∨H

(
h
(
exp∧G

(
εk+1|k

)
µ̂k+1|k

)
Y −1
k+1
)
.

(6.5)

Note that in the specific case where G = Rd andH = Rm, the expressions of the jacobians
are equivalent to their definitions in the euclidean space. Indeed, the group law is the

customary vector addition + and the groups exponentials and logarithms boil down to the
identity map.

In the general case, when G has no specific structure, the main implementation difficulty of a
LG-EKF is the computation of the Jacobians from (6.4) or (6.5). The sequel establishes LG-EKF

equations from Optimal Filter derived in Chapter 5.

6.2.1 . Propagation Step
Since the propagation model is Gaussian, the Chapman-Kolmogorov equation (5.4) writes:

p(Xk+1|Yk) =
∫
G
p(Xk+1|Xk)φG(Xk; µ̂k|k, Pk|k)dXk. (6.6)
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Proposition 1. LetXk ∈ G describing the discrete-time sequence either defined by (6.1) or (6.2). The propagated density writes:
p(Xk+1|Yk) ≈ φG(Xk+1; µ̂k+1|k, Pk+1|k), (6.7)

where µ̂k+1|k is the propagated mean:
µ̂k+1|k = f(µ̂k|k), (6.8)

and Pk+1|k is the propagated covariance matrix:
Pk+1|k = FkPk|kF

T
k +Qk+1. (6.9)

Besides, the Jacobian Fk depends on the side of the error. In the left case, it writes:
Fk = ∂

∂εk|k
log∨G

(
f
(
µ̂k|k

)−1
f(µ̂k|k exp∧G

(
εk|k
)
)
)
. (6.10)

And in the right case, it writes:
Fk = ∂

∂εk|k
log∨G

(
f(exp∧G

(
εk|k
)
µ̂k|k)f

(
µ̂k|k

)−1
)
. (6.11)

Proof: Proposition 1 is based on the Chapman-Kolmogorov equation (5.4) assuming a Gaussian
process on G. Hence the transition density p(Xk+1|Xk) writes:

p(Xk+1|Xk) = φG(Xk+1; f(Xk), Qk+1), (6.12)

and the prior density writes:

p(Xk|Y1:k) = φG(Xk; µ̂k|k, Pk|k), (6.13)

the propagated density (6.6) writes:

p(Xk+1|Y1:k) =
∫
G
φG(Xk+1; f(Xk), Qk+1)φG(Xk; µ̂k|k, Pk|k)dXk. (6.14)

The sequel of the proof depends on the side of the error (left or right). Thus, the two cases are

separated.

Left Case Linearization
In this development, the left concentrated Gaussian (3.60) is considered:

p(Xk+1|Y1:k) =
∫
G
α−k+1 exp

−1
2

∥∥∥∥∥log∨G
(
f(Xk)−1Xk+1

)
log∨G

(
µ̂−1
k|kXk

) ∥∥∥∥∥
2

Σk+1

dXk, (6.15)
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where α−k+1 is the normalization factor from the products of Gaussian density functions in

(6.14):

α−k+1 =
(

(2π)2d det
[
Pk|kQk+1

])− 1
2
, (6.16)

and Σk+1 is such that:

Σk+1 =
(
Qk+1 0

0 Pk|k

)
. (6.17)

Focusing on the transition term, considering thatXk = µ̂k|k exp∧G
(
εk|k
)
:

f(Xk)−1Xk+1 = f
(
µ̂k|k exp∧G

(
εk|k
))−1

f(µ̂k|k) exp∧G
(
εk+1|k

)
. (6.18)

Therefore the linearization of the logarithm of the latter expression with respect to εk|k and

εk+1|k at the linearization point εk|k = εk+1|k = 0 gives:

log∨G
(
f
(
µ̂k|k exp∧G

(
εk|k
))−1

f(µ̂k|k) exp∧G
(
εk+1|k

))
= εk+1|k − Fkεk|k +O(‖εk|k‖22, ‖εk+1|k‖22),

(6.19)

where Fk is a Jacobian:

Fk ,
∂

∂εk|k
log∨G

(
f(µ̂k|k)−1f

(
µ̂k|k exp∧G

(
εk|k
)))

. (6.20)

The change from the Haar measure dXk to the Lebesgue measure dεk|k can now be applied

according to (3.44) with the previous linearization:

p(Xk+1|Y1:k) =
∫
Rd
α−k+1 exp

(
−1

2

∥∥∥∥[I −Fk
0 I

] [
εk+1|k
εk|k

]∥∥∥∥2

Σk+1

)∣∣det
[
ΦG(εk|k)

]∣∣ dεk|k. (6.21)

Right Case Linearization
The proof of the right case unfolds in the same way. Considering a right Gaussian on the group

(3.63):

p(Xk+1|Y1:k) =
∫
G
α−k+1 exp

−1
2

∥∥∥∥∥log∨G
(
Xk+1f(Xk)−1)

log∨G
(
Xkµ̂

−1
k|k

) ∥∥∥∥∥
2

Σk+1

dXk. (6.22)

The transition term in the logarithm gives:

Xk+1f(Xk)−1 = exp∧G
(
εk+1|k

)
f(µ̂k|k)f

(
exp∧G

(
εk|k
)
µ̂k|k

)−1 . (6.23)

Proceeding with the same linearization as (6.19), and the change of measure gives the same

result as (6.21) where Fk is the (right) propagation Jacobian defined as:

Fk ,
∂

∂εk|k
log∨G

(
f
(
µ̂k|k exp∧G

(
εk|k
))
f(µ̂k|k)−1) . (6.24)

Note that this change of measure is the same whether εk|k is defined with a right or a left error

with the invariance property of the measure for unimodular Lie groups [27].
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Propagated Mean and covariance matrix
Starting from this point, the proof is the same for the left and right case. Applying the Maha-

lanobis norm on (6.21) and the inversion of the matrix with the Schur complement gives:

p(Xk+1|Y1:k) =
∫
Rd
α−k+1 exp

(
−1

2

∥∥∥∥[εk+1|k
εk|k

]∥∥∥∥2

Mk+1

)∣∣det
[
ΦG(εk|k)

]∣∣dεk|k, (6.25)

whereMk+1 inverse is:

M−1
k+1 =

[
Q−1
k+1 −Q−1

k+1Fk
−F Tk Q

−1
k+1 P−1

k|k + F Tk Q
−1
k+1Fk

]
. (6.26)

The sequel of the proof computes M and its determinant. By applying the matrix inversion

lemma detailed in Appendix B, (6.26) gives:

Mk+1 =
[
FkPk|kF

T
k +Qk+1 FkPk|k

Pk|kF
T
k Pk|k

]
, (6.27)

and the determinant is:

detMk+1 = det
[
FkPk|kF

T
k +Qk+1 FkPk|k

Pk|kF
T
k Pk|k

]
,

= det
([
I Fk
0 I

] [
Qk+1 0

0 Pk|k

] [
I 0
F Tk I

])
,

= det
[
Qk+1 0

0 Pk|k

]
,

= detQk+1 detPk|k.

(6.28)

Hence, the normalization factor α−k+1 from (6.16) also writes:

α−k+1 =
(

(2π)2d detMk+1

)− 1
2
. (6.29)

Hence, the prior density writes:

p(Xk+1|Y1:k) =
∫
Rd
p(εk+1|k, εk|k)

∣∣det
[
ΦG(εk|k)

]∣∣ dεk|k, (6.30)

where p(εk+1|k, εk|k) is a Gaussian density such that:

p(εk+1|k, εk|k) ∼ N
([
εk+1|k
εk|k

]
;
[
0
0

]
,

[
Pk+1|k Pk|kFk
F Tk Pk|k Pk|k

])
, (6.31)

where the propagated matrix is defined as Pk+1|k , FkPk|kF
T
k +Qk+1. This probability density

can be factorized with the conditional probabilities formula:

p(εk|k, εk+1|k) = p(εk|k|εk+1|k)p(εk+1|k), (6.32)
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and factorizing the integral of (6.30) gives:

p(Xk+1|Y1:k) =p(εk+1|k)
∫
Rd
p(εk|k|εk+1|k)

∣∣det
[
ΦG(εk|k)

]∣∣ dεk|k, (6.33)

and the integral equals to unity as p(εk|k|εk+1|k) is a concentrated Gaussian for εk|k:∫
Rd
p(εk|k|εk+1|k)

∣∣det
[
ΦG(εk|k)

]∣∣dεk|k = 1. (6.34)

Eventually, the Chapman-Kolmogorov equation boils down to:

p(Xk+1|Y1:k) = p(εk+1|k), (6.35)

where p(εk+1|k) denotes either a left or right concentrated Gaussian on G, which mean is given
by µ̂k+1|k = f(µ̂k|k) and covariance matrix Pk+1|k = FkPk|kF

T
k +Qk+1. �.

6.2.2 . Update Step
The Kalman update is derived by applying the Bayes rule to the measurement model of (6.1)

(6.2) and verifies the following proposition.

Proposition 2. LetXk+1 ∈ G and Yk+1 ∈ H two random matrices describing the discrete-timesequence either defined by the state-space model (6.1) or (6.2). Then, the posterior density is:
p(Xk+1|Yk+1) ≈ φG(Xk+1; µ̂k+1|k+1, Pk+1|k+1), (6.36)

where the updated covariance matrix Pk+1|k+1 writes:
Kk+1 = Pk+1|kH

T
k+1(Hk+1Pk+1|kH

T
k+1 +Rk+1)−1,

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k.
(6.37)

The JacobianHk+1 depends on the side of the error. In the left case it writes:
Hk+1 = ∂

∂ε
log∨H

(
Y −1
k+1h

(
µ̂k+1|k exp∧G

(
εk+1|k

)))
. (6.38)

And in the right case:
Hk+1 = ∂

∂ε
log∨H

(
h
(
exp∧G

(
εk+1|k

)
µ̂k+1|k

)
Y −1
k+1
)
. (6.39)

The updated mean also depends on the side of the error. In the left case:
ξk+1 = log∨H

(
Y −1
k+1h

(
µ̂k+1|k

))
µ̂k+1|k+1 = µ̂k+1|k exp∧G (Kk+1ξk+1) , (6.40)
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and in the right case:

ξk+1 = log∨H
(
h
(
µ̂k+1|k

)
Y −1
k+1
)

µ̂k+1|k+1 = exp∧G(Kk+1ξk+1)µ̂k+1|k,
(6.41)

Proof. The Bayes equation writes:
p(Xk+1|Y1:k+1) = p(Yk+1|Xk+1)p(Xk+1|Y1:k)

p(Yk+1|Y1:k)
, (6.42)

where the prior density and the likelihood are concentrated Gaussians on two unimodular Lie

groups G andH:
p(Xk+1|Y1:k) = φG

(
Xk+1; µ̂k+1|k, Pk+1|k

)
, (6.43)

p(Yk+1|Xk+1) = φH (Yk+1;h(Xk+1), Rk+1) . (6.44)

For the sake of clarity, this proof unfolds in 5 distinct steps aiming to derive the expression

of the posterior density p(Xk+1|Y1:k+1), which leads to the equations of LG-EKF. The first step
details the linearization of the measurement model in the left and right case. The second step

derives the update equation of the covariance matrix with the Kalman gain. The third step

calculates the marginalized likelihood of the Bayes equation (5.5), leading to the expression of

the posterior density detailed in the fourth step. The fifth step gives the update equation of the

mean in the case of a left or right problem.

1- Linearization of the Measurement Model
This step of the proof applies (6.43) and (6.44) to the Bayes equation (5.5) and linearizes the

measurement model.

(Left case) In the case of a left concentrated Gaussian density on Lie groups, the posterior
density writes:

p(Xk+1|Y1:k+1) = α+
k+1 exp

−1
2

∥∥∥∥∥∥log∨H
(
h (Xk+1)−1 Yk+1

)
log∨G

(
µ̂−1
k+1|kXk+1

) ∥∥∥∥∥∥
2

Λk+1

 , (6.45)

where:

Λk+1 =
[
Rk+1 0

0 Pk+1|k

]
, (6.46)

and the normalization constant α+
k+1 is the product of the normalization constants from the

Gaussian density functions of (6.43) and (6.44):

α+
k+1 =

(
(2π)d+m detRk+1 detPk+1|k

)− 1
2
. (6.47)

Then, given that a left random variable on G writes:

Xk+1 = µ̂k+1|k exp∧G
(
εk+1|k

)
, (6.48)
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the term log∨H

(
h (Xk+1)−1 Yk+1

)
from (6.45) can be linearized such that:

log∨H
(
h
(
µ̂k+1|k exp∧G

(
εk+1|k

))−1
Yk+1

)
= zk+1 −Hk+1εk+1|k +O(‖εk+1|k‖2), (6.49)

where zk+1 is the innovation:

zk+1 = log∨H
(
h
(
µ̂k+1|k

)−1
Yk+1

)
, (6.50)

andHk+1 is the measurement Jacobian:

Hk+1 = ∂

∂εk+1|k
log∨H

(
Y −1
k+1h

(
µ̂k+1|k exp∧G

(
εk+1|k

)))
. (6.51)

(Right case) In the case of a right concentrated Gaussian density, the posterior density is:

p(Xk+1|Y1:k+1) = α+
k+1 exp

−1
2

∥∥∥∥∥log∨H
(
Yk+1h(Xk+1)−1)

log∨G
(
Xk+1µ̂

−1
k+1|k

) ∥∥∥∥∥
2

Λk+1

 , (6.52)

By applying the same principle as for the left case, and given that a right random variable writes:

Xk+1 = exp∧G
(
εk+1|k

)
µ̂k+1|k, (6.53)

the expression can be linearized as:

log∨H
(
Yk+1h(Xk+1)−1) = zk+1 −Hk+1εk+1|k +O(‖εk+1|k‖2), (6.54)

whereHk+1 is the right measurement Jacobian:

Hk+1 = ∂

∂εk+1|k
log∨H

(
h
(
exp∧G

(
εk+1|k

)
µ̂k+1|k

)
Y −1
k+1
)
, (6.55)

and the innovation zk+1 is defined by:

zk+1 = log∨H
(
Yk+1h

(
µ̂k+1|k

)−1
)
. (6.56)

2- Kalman Gain and Covariance Matrix Update Equations
The sequel of the proof establishes the gain and covariance matrix update expressions, which

are the same in the left and the right case. Given the previous linearized expressions (6.49) and

(6.54), the posterior density writes:

p(Xk+1|Y1:k+1) = α+
k+1 exp

(
−1

2

∥∥∥∥[I −Hk+1
0 I

] [
zk+1
εk+1|k

]∥∥∥∥2

Λk+1

)
. (6.57)

Developing the square Mahalanobis norm in the exponential of (6.57) gives:∥∥∥∥[I −Hk+1
0 I

] [
zk+1
εk+1|k

]∥∥∥∥2

Λk+1

=
[
zk+1
εk+1|k

]T [ R−1
k+1 −R−1

k+1Hk+1
−HT

k+1R
−1
k+1 P−1

k+1|k +HT
k+1R

−1
k+1Hk+1

] [
zk+1
εk+1|k

]
.

(6.58)
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The latter matrix can be inverted with (B.11):[

R−1
k+1 −R−1

k+1Hk+1
−HT

k+1R
−1
k+1 P−1

k+1|k +HT
k+1R

−1
k+1Hk+1

]−1

=
[

Sk+1 Hk+1Pk+1|k
Pk+1|kH

T
k+1 Pk+1|k

]
, (6.59)

where Sk+1 , Rk+1 +Hk+1Pk+1|kH
T
k+1 is obtained with the Woodburry identity (B.12):(

R−1
k+1 +R−1

k+1Hk+1(P−1
k+1|k +HT

k+1R
−1
k+1Hk+1)−1HT

k+1R
−1
k+1

)−1
= Rk+1 +Hk+1Pk+1|kH

T
k+1.

(6.60)

Using the matrix factorization (B.3) from Appendix B, the latter expression gives:[
Sk+1 Hk+1Pk+1|k

Pk+1|kH
T
k+1 Pk+1|k

]
=
[

I 0
Kk+1 I

] [
Sk+1 0

0 Pk+1|k+1

] [
I KT

k+1
0 I

]
, (6.61)

where Kk+1 , Pk+1|kH
T
k+1S

−1
k+1 is commonly known as the Kalman gain, and the covariance

matrix Pk+1|k+1 = Pk+1|k −Kk+1Hk+1Pk+1|k is the updated covariance matrix. The inverse of

the expression (6.61) with the inversion formulas (B.13) and (B.14) gives:[
Sk+1 Hk+1Pk+1|k

Pk+1|kH
T
k+1 Pk+1|k

]−1
=
[
I −KT

k+1
0 I

][
S−1
k+1 0
0 P−1

k+1|k+1

] [
I 0

−Kk+1 I

]
. (6.62)

Thus, the calculus from (6.58) to (6.62) lead to:∥∥∥∥[I −Hk+1
0 I

] [
zk+1
εk+1|k

]∥∥∥∥2

Λk+1

=
∥∥∥∥[ I 0
−Kk+1 I

] [
zk+1
εk+1|k

]∥∥∥∥2

Υk+1

, (6.63)

where Υk+1 writes:

Υk+1 =
[
Sk+1 0

0 Pk+1|k+1

]
. (6.64)

Thus, the product of the likelihood and prior densities is such that:

p(Yk+1|Xk+1)p(Xk+1|Y1:k) ≈ α+
k+1 exp

(∥∥∥∥[ zk+1
εk+1|k −Kk+1zk+1

]∥∥∥∥2

Υk+1

)
, (6.65)

where (Kk+1, Pk+1|k+1, Sk+1) are the customary matrices of the Kalman filter update:

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1, (6.66)

Kk+1 = Pk+1H
T
k+1S

−1
k+1, (6.67)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k. (6.68)

3- Calculus of the normalization term
The normalization density p(Yk+1|Y1:k) can be marginalized with respect toXk+1:

p(Yk+1|Y1:k) =
∫
G
p(Yk+1|Xk+1)p(Xk+1|Y1:k)dXk+1. (6.69)
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According to (6.65), and by applying the change of variable detailed in Chapter 3:

dXk+1 =
∣∣det ΦG(εk+1|k)

∣∣ dεk+1|k, (6.70)

this marginalization is approximated by:

p(Yk+1|Y1:k) ≈
∫
Rd
α+
k+1 exp

(
−1

2

∥∥∥∥[ zk+1
εk+1|k −Kk+1zk+1

]∥∥∥∥2

Υk+1

)∣∣det ΦG(εk+1|k)
∣∣dεk+1|k, (6.71)

which can be split in two parts as the innovation term does not depend on εk+1|k:

p(Yk+1|Y1:k) ≈ α+
k+1 exp

(
−1

2 ‖zk+1‖2Sk+1

)
∫
Rd

exp
(
−1

2
∥∥εk+1|k −Kk+1zk+1

∥∥2
Pk+1|k+1

) ∣∣det ΦG(εk+1|k)
∣∣ dεk+1|k,

(6.72)

The normalization constant α+
k+1 defined in (6.47) can be expressed with matrices Sk+1 and

Pk+1|k+1. Since the determinant of the block diagonal matrices is equal to unity (see Appendix

B) the following determinant product writes:

detR−1
k+1 detP−1

k+1|k = det
[
R−1
k+1 0
0 P−1

k+1|k

]
,

= det
([

I 0
−HT

k+1 I

][
R−1
k+1 0
0 P−1

k+1|k

] [
I −Hk+1
0 I

])
,

= det
[

R−1
k+1 −R−1

k+1Hk+1
−HT

k+1R
−1
k+1 P−1

k+1 +HT
k+1R

−1
k+1Hk+1

]
.

(6.73)

The developments from (6.58) to (6.62) give:

[
R−1
k+1 −R−1

k+1Hk+1
−HT

k+1R
−1
k+1 P−1

k+1 +HT
k+1R

−1
k+1Hk+1

]
=
[
I −KT

k+1
0 I

][
S−1
k+1 0
0 P−1

k+1|k+1

] [
I 0

−Kk+1 I

]
,

(6.74)

which leads to:

detR−1
k+1 detP−1

k+1|k = det
([

I −KT
k+1

0 I

][
S−1
k+1 0
0 P−1

k+1|k+1

] [
I 0

−Kk+1 I

])
,

= detS−1
k+1 detP−1

k+1|k+1.

(6.75)

Thus, the term α+
k+1 also writes:

α+
k+1 =

(
(2π)d+m detSk+1 detPk+1|k+1

)− 1
2
. (6.76)
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Applying this expression to (6.71) and splitting the factors to the appropriate terms leads to:

p(Yk+1|Y1:k) ≈
1√

(2π)m detSk+1
exp

(
−1

2 ‖zk+1‖2Sk+1

)
∫
Rd

1√
(2π)d detPk+1|k+1

exp
(
−1

2
∥∥εk+1|k −Kk+1zk+1

∥∥2
Pk+1|k+1

) ∣∣det ΦG(εk+1|k)
∣∣ dεk+1|k.

(6.77)

The integral term of the latter expression equals to unity since it is the integral of a concentrated

Gaussian density on G:∫
Rd

1√
(2π)d detPk+1|k+1

exp
(
−1

2
∥∥εk+1|k −Kk+1zk+1

∥∥2
Pk+1|k+1

) ∣∣det ΦG(εk+1|k)
∣∣ dεk+1|k = 1.

(6.78)

Eventually, the Bayes rule normalization term writes:

p(Yk+1|Y1:k) ≈
1√

(2π)m detSk+1
exp

(
−1

2 ‖zk+1‖2Sk+1

)
. (6.79)

4- Expression of the Posterior Density
Then, by applying the results from (6.79) and (6.65) to the Bayes rule (5.5), and using the ex-

pression of the constant α+
k+1 from (6.47) gives:

p(Xk+1|Y1:k+1) ≈

1√
(2π)d+m detRk+1 detPk+1|k

exp
(
−1

2

∥∥∥∥[ zk+1
εk+1|k −Kk+1zk+1

]∥∥∥∥2

Υk+1

)
1√

(2π)m detSk+1
exp

(
−1

2 ‖zk+1‖2Sk+1

) , (6.80)

which writes:

p(Xk+1|Y1:k+1) ≈√
(2π)m detSk+1√

(2π)d+m detRk+1 detPk+1|k

exp
(
−1

2

∥∥∥∥[ zk+1
εk+1|k −Kk+1zk+1

]∥∥∥∥2

Υk+1

+ 1
2 ‖zk+1‖2Sk+1

)
.

(6.81)

Focusing on the multiplicative term of (6.81), the equality (6.75) leads to the simplification:√
(2π)m detSk+1√

(2π)d+m detRk+1 detPk+1|k

= 1√
(2π)d detPk+1|k+1

. (6.82)
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The exponential term of (6.81), can be written as following:

exp
(
−1

2

∥∥∥∥[ zk+1
εk+1|k −Kk+1zk+1

]∥∥∥∥2

Υk+1

+ 1
2 ‖zk+1‖2Sk+1

)

= exp
(
−1

2 ‖zk+1‖2Rk+1

)
exp

(
−1

2
∥∥εk+1|k −Kk+1zk+1

∥∥2
Pk+1|k

)
exp

(
+1

2 ‖zk+1‖2Rk+1

)
,

= exp
(
−1

2
∥∥εk+1|k −Kk+1zk+1

∥∥2
Pk+1|k

)
.

(6.83)

Combining the results of (6.82) and (6.83) to (6.81):

p(Xk+1|Y1:k+1) ≈ 1√
(2π)d detPk+1|k+1

exp
(
−1

2
∥∥εk+1|k+1

∥∥2
Pk+1|k+1

)
.

(6.84)

Thus, the updated density is a Gaussian on G of covariance matrix Pk+1|k+1 where the updated

log-Euclidean error is:

εk+1|k+1 = εk+1|k −Kk+1zk+1. (6.85)

5- Mean Update Equation
(Left case) In the left case, the updated log-Euclidean error writes:

εk+1|k+1 = log∨G
(
µ̂−1
k+1|k+1Xk+1

)
, (6.86)

= log∨G
(
µ̂−1
k+1|k+1µ̂k+1|k exp∧G

(
εk+1|k

))
, (6.87)

and from (6.85):

log∨G
(
µ̂−1
k+1|k+1µ̂k+1|k exp∧G

(
εk+1|k

))
= εk+1|k −Kk+1zk+1, (6.88)

which gives:

µ̂−1
k+1|k+1µ̂k+1|k exp∧G

(
εk+1|k

)
= exp∧G

(
εk+1|k −Kk+1zk+1

)
. (6.89)

Then, by isolating the term µ̂−1
k+1|k+1 on the left side and by inverting both sides of the latter

equation:

µ̂k+1|k+1 = µ̂k+1|k exp∧G
(
−εk+1|k +Kk+1zk+1

)
exp∧G

(
εk+1|k

)
, (6.90)

µ̂k+1|k+1 = µ̂k+1|k exp∧G
(
BCH(−εk+1|k +Kk+1zk+1, εk+1|k)

)
. (6.91)

To conclude the proof and to obtain the form described in Proposition 2, the BCH terms have

to be applied from (3.38):

µ̂k+1|k+1 ≈ µ̂k+1|k exp∧G
(
ΦG(−εk+1|k)Kk+1zk+1

)
. (6.92)
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Finally, it is assumed that the covariance matrix is sufficiently small, and the Lie group Jacobian

can be approximated by the identity. This zero-order approximation is suitable to all the studied

scenarios:

µ̂k+1|k+1 ≈ µ̂k+1|k exp∧G (Kk+1zk+1) . (6.93)

(Right case) In the right case, the error equation writes:

εk+1|k+1 = log∨G
(
Xk+1µ̂

−1
k+1|k+1

)
, (6.94)

= log∨G
(

exp∧G
(
εk+1|k

)
µ̂k+1|kµ̂

−1
k+1|k+1

)
, (6.95)

Following an approach similar to the left case gives:

µ̂k+1|k+1 = exp∧G
(
−εk+1|k +Kk+1zk+1

)
exp∧G

(
εk+1|k

)
µ̂k+1|k. (6.96)

The introduction of BCH formula gives:

µ̂k+1|k+1 = exp∧G
(
BCH(−εk+1|k +Kk+1zk+1, εk+1|k)

)
µ̂k+1|k, (6.97)

and the zero-order approximation of BCH gives the desired formula:

µ̂k+1|k+1 ≈ exp∧G (Kk+1zk+1) µ̂k+1|k. (6.98)

6.3 . Jacobians on the Special Euclidean Group
In practice, filters on Lie groups often use specific structures for the state matrices depending

on the estimation problem. This section focuses on the Special Euclidean group (SEp(3)) which
is broadly used in robotics and signal processing problems. The sequel introduces substantial

simplifications in the expressions of the propagation Jacobians (6.4) and (6.5). For the sake of

simplicity, the temporal index k is overlooked in this section. T

6.3.1 . Expression of the Jacobians
LetX ∈ SEp(3) be a random state matrix and f : SEp(3)→ SEp(3) be a smooth function. Since
f is in SEp(3) it can be separated in several components such that:

f(X) =
[
fC(X) f1(X) · · · fp(X)

0p,3 Ip

]
, (6.99)

where fC : SEp(3) → SO(3) is the component of f for the rotation and fi : SEp(3) → R3, i ∈
[1, p] are the components of f for the vector variables. Recall that in the left caseX = µ exp∧G (ε)
and in the right caseX = exp∧G (ε)µ.
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Theorem 1. Let X ∈ G, where G = SEp(3), be a state matrix following either a left or rightstate space model (6.1) and (6.2). The propagation Jacobian F ∈ Rd×d at the linearization point
µ ∈ G writes in the left case:

F =



∂

∂ε
log∨SO(3)(fC(µ)−1fC(µ exp∧G (ε)))

fC(µ)−1 ∂

∂ε
f1(µ exp∧G (ε))
...

fC(µ)−1 ∂

∂ε
fp(µ exp∧G (ε))


. (6.100)

In the right case, F writes:

F =



∂

∂ε
log∨SO(3)(fC(exp∧G (ε)µ)fC(µ)−1)

∂

∂ε
f1(exp∧G (ε)µ)− fC(exp∧G (ε)µ)fC(µ)−1f1(µ)

...
∂

∂ε
fp(exp∧G (ε)µ)− fC(exp∧G (ε)µ)fC(µ)−1fp(µ)


. (6.101)

6.3.2 . Proof for the left case
The left Jacobian defined in Proposition 1 is the derivative of the smooth function g defined as:

g(ε) , f(µ)−1f(µ exp∧G (ε)). (6.102)

Since g is also on SEp(3), it has a similar decomposition to (6.99):

g(ε) =
[
gC(ε) g1(ε) · · · gp(ε)
0p,3 Ip

]
, (6.103)

where:

gC(ε) = fC(µ)−1fC(µ exp∧G (ε)),
gi(ε) = fC(µ)−1(fi(µ exp∧G (ε))− fi(µ)), i ∈ [1, p]. (6.104)

Applying the decomposition of g to (6.10):

F = ∂

∂ε
log∨G (g(ε)) ,

= ∂

∂ε
log∨G

([
gC(ε) g1(ε) · · · gp(ε)
0p,3 Ip

])
.

(6.105)

The definition of the logarithm of SEp(3) and the algebra isomorphism detailed in Appendix A
gives:

F = ∂

∂ε


log∨SO(3)(gC(ε))

ϕSO(3)(gC(ε))g1(ε)
.
.
.

ϕSO(3)(gC(ε))gp(ε)

 . (6.106)
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The derivative product rule on the vectorial terms taken at ε = 0 gives:

F = ∂

∂ε


log∨SO(3)(gC(ε))

g1(ε)
.
.
.

gp(ε)

 , (6.107)

as gi(0) = 0, gC(0) = I3 and ϕSO(3)(I3) = I3. Then, expressing the terms of g gives:

F = ∂

∂ε


log∨SO(3)(fC(µ)−1fC(µ exp∧G (ε)))
fC(µ)−1 (f1(µ exp∧G (ε))− f1(µ)

)
.
.
.

fC(µ)−1 (fp(µ exp∧G (ε))− fp(µ)
)
 , (6.108)

leading to:

F = ∂

∂ε


log∨SO(3)(fC(µ)−1fC(µ exp∧G (ε)))

fC(µ)−1f1(µ exp∧G (ε))
.
.
.

fC(µ)−1fp(µ exp∧G (ε))

 , (6.109)

which proves the left expression of F in Theorem 1. �

6.3.3 . Proof for the right case
The proof for the right case unfolds similarly as the left case from equation (6.105), (6.106) and

(6.107), with g from (6.104) redefined as:

g(ε) , f(µ exp∧G (ε))f(µ)−1, (6.110)

where:

gC(ε) = fC(exp∧G (ε)µ)fC(µ)−1,
gi(ε) = fi(exp∧G (ε)µ)− fC(exp∧G (ε)µ)fC(µ)−1fi(µ), i ∈ [1, p]. (6.111)

�
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6.4. CONCLUSION
6.4 . Conclusion

This chapter derives LG-EKF with the Bayesian approach on unimodular Lie groups provided in

Chapter 5 and introduces a direct approach to calculate the Jacobians on the Special Euclidean

group SEp(3).
This revisited approach of LG-EKF differs from the literature as the stochastic processes of the

propagation step are multiplicative in the group. Besides, the formulation of the model dynam-

ics is directly defined from state-space model without the introduction of a dynamics function

in the algebra as proposed in [15]. This allows a more natural approach to complex dynamics

systems, and a framework closer to conventional EKF. The other contribution of this chapter

develops a simplified formulation of the Jacobians when the state belongs to SEp(3), which is a
popular Lie group for navigation and tracking applications.
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7 - Particle Filter on Lie Groups
In this Chapter, the Optimal filter from Chapter 5 is solved using a sampling Monte Carlo ap-

proximation on Lie group without further assumptions on the state nor the measurement. This

generic approach leads to Particle Filter on Lie groups (LG-PF), which formulation is similar to

Particle Filter described in Chapter 2. Hence, this Chapter describes a flexible backgroundwhich

can be adapted to multiple estimation problems.

This Chapter on LG-PF unfolds in three sections. First the problem is stated for general non-

linear and non-Gaussian discrete time systems. Then, a general algorithm is proposed, and its

steps are detailed in a second section. Finally, a last section concludes the chapter.

7.1 . Problem Statement
This chapter focuses on the general discrete state-space system:{

Xk+1 = f(Xk, uk+1, ν
q
k),

Yk+1 = h(Xk+1, ν
r
k+1), (7.1)

where uk+1 is an input vector and ν
q
k, ν

r
k+1 are two centered noise vectors. Also, it is assumed

that this system verifies the probabilistic framework and the assumptions described in Chapter

5. Particle Filter on Lie groups (LG-PF) solves Optimal Filter equations using a Monte-Carlo

approximation of the probability densities.

Based on the definition of the Dirac impulse on Lie groups described in Chapter 3, the

Monte Carlo approximation gives:

p(Xk|Y1:k) ≈
Np∑
i=1

wikδXi
k
(Xk), (7.2)

where wik denotes the weight such that
∑Np

i=1w
i
k = 1.
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7.2. GENERAL SOLUTION
7.2 . General Solution

Particle Filter on Lie groups formalism is alike usual particle filter. It is described in Algorithm 8.

Algorithm 8 Lie Group Particle Filter
Result: (µ̂k|k, Pk|k), k ∈ [1, N ]
Initialization step: X i

0 ∼ p(X0), ∀i ∈ [1, Np]
Propagation step: X i

k+1 = f(X i
k, uk+1, ν

q,i
k ),

Update step: w̃ik+1 = wikp(Yk+1|X i
k+1),

Normalization: wik+1 = w̃ik+1/
∑Np

i=1w
i
k+1,

if Neff < Nth then
Resampling step: Draw {X i

k+1, w
i
k+1
}
with a resampling strategy.

end if
Output: µ̂k+1|k+1 = E [Xk+1|Y1:k+1] , Pk+1|k+1 = V [Xk+1|Y1:k+1]

The sequel details every step of LG-PF.

7.2.1 . Initialization Step
The filter is initialized with a sample of Np particles drawn from the density p(X0) chosen by
the user. Sampling on matrix Lie groups is detailed in Chapter 3.

For instance, if the initial density is a left concentrated normal law on G such that p(X0) ∼
NG(X0;µ0, P0), a first sample of vectors are sampled as:

εi0 ∼ NRd(ε; 0, P0). (7.3)

Then, this sample is projected to the group at the vicinity of Id with the group exponential and

shifted around the mean with a left multiplication:

Xi
0 = µ0 exp∧G

(
εi0
)
. (7.4)

7.2.2 . Propagation Step
The propagation step is a shift of the prior particle sample according to the dynamics function

f with the inputs uk+1 and the process noise ν
q,i
k denotes a realization of νqk wich differs for

every particle.

The propagation step is obtained with the Chapman-Kolmogorov equation (5.4) which can be

developed with the Monte Carlo approximation (7.2):

p(Xk+1|Y1:k) =
∫
G
p(Xk+1|Xk)p(Xk|Y1:k)dXk,

≈
∫
G
p(Xk+1|Xk)

Np∑
i=1

wikδXi
k
(Xk)dXk,

≈
Np∑
i=1

wik

∫
G
p(Xk+1|Xk)δXi

k
(Xk)dXk.

(7.5)
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CHAPTER 7. PARTICLE FILTER ON LIE GROUPS
By definition of the Dirac impulse function:∫

G
p(Xk+1|Xk)δXi

k
(Xk)dXk = p(Xk+1|Xi

k). (7.6)

Thus, the prior density becomes:

p(Xk+1|Y1:k) ≈
Np∑
i=1

wikδXi
k+1

(Xk+1), (7.7)

whereXi
k+1 denotes the i

th
propagated particle according to the dynamics of (5.1) :

∀i ∈ [1, Np] : Xi
k+1 = f(Xi

k, uk+1, n
q,i
k ). (7.8)

Note that the propagated weights are unchanged.

7.2.3 . Update Step
The update step consists in a weight update and normalization. The Bayes equation 5.5 is

solved with the approximation (7.7) obtained in the prediction:

p(Xk+1|Y1:k+1) ≈
Np∑
i=1

p(Yk+1|Xk+1)
p(Yk+1|Y1:k)

wikδXi
k+1

(Xk+1). (7.9)

By definition of the Dirac impulse:

p(Yk+1|Xi
k+1) = p(Y1:k+1|Xk+1)δXi

k+1
(Xk+1). (7.10)

Thus, the new weights can be identified as:

w̃ik+1 =
p(Yk+1|Xi

k+1)
p(Yk+1|Y1:k)

wik. (7.11)

After a normalization step:

wik+1 =
w̃ik+1∑Np
i=1 w̃

i
k+1

, (7.12)

the estimated posterior density writes:

p(Xk+1|Y1:k+1) ≈
Np∑
i=1

wik+1δXi
k+1

(Xk+1). (7.13)

7.2.4 . Proposal density
Lie group particle filter also enables a Sequential Importance Sampling (SIS) approach. Given

the properties of unimodular matrix Lie groups, it is possible to use an instrumental density q̃

to perform the updated of LG-PF. Assuming that the customary assumptions of SIS are verified:

• The support of q̃ includes the support of p;
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• The integral
∫
p(X)2

q̃(X) dX is finite.

then, the Monte Carlo approximation gives:

p(Xk+1|Y1:k+1) ≈
Np∑
i=1

wik+1δXi
k+1

(Xk+1), (7.14)

where the weights are:

wik+1 = w̃ik+1/
N∑
i=1

w̃ik+1 such that w̃
i
k+1 =

p(Yk+1|Xi
k+1)p(Xi

k+1|Y1:k)
q̃(Xi

k+1)
(7.15)

7.2.5 . Resampling step
A resampling step is performed if the particles are degenerated with the same principle de-

scribed in [47] and recalled for Particle Filter in Chapter 2. Besides, the resampling strategy is

unchanged compared to usual PF. Indeed, classic resampling steps focus on the weights of the

particles which are independent from the nature and the space of which the particles belong

to. In this thesis, the usual resampling is based on a multinomial strategy which duplicates the

heavy weights and removes the weights close to zero. After the resampling, all the weights are

set to
1
Np .

7.3 . Conclusion
This chapter introduces Particle Filter on Lie groups (LG-PF) which solves on the Bayes Filter

described in Chapter 5. The developments on LG-PF show that is is similar to conventional Par-

ticle Filter (PF) designed on the Euclidean space. The propagation step is a temporal integration

of the dynamics model for every particle, and the posterior density is computed by updating

the weights according to the likelihood or a chosen proposal density. Besides, conventional re-

sampling strategies which only take into account the weight distribution of the estimated prior

density can be applied.

LG-PF differs from PF on some aspects. The sampling of the particles has to account for the

group geometry, which involves a specific process described in Chapter 3. Furthermore, the

computation of the conditional mean and covariancematrix also differ from the Euclidean case.

This filter is expected to provide a better representation of the probability densities on a large

domain due to the definition of the variables on the Lie group. However, it is also expected

that LG-PF faces similar challenges as PF such as the curse of dimensionality [71] or accurate

the resampling when there is little overlap between the likelihood and the prior density. These

issues will be addressed in the next chapters, leading to substantial improvements of LG-PF.
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8 - Laplace Particle Filter on Lie Groups
This chapter completes Particle Filter on Lie Groups (LG-PF) introduced in Chapter 7. It follows

the Bayesian estimation framework described in Chapter 5 and focuses on the resampling step.

The ideas developed in this chapter are inspired by the works on the Laplace Particle Filter (LPF)

[62, 72, 56] discussed in Chapter 2 in the Euclidean case. Indeed, LPF involves an optimization

process which computes an accurate proposal density for the resampling step, leading to im-

proved robustness and accuracy.

The algorithms introduced in the sequel are based on a similar principle, and lead to Laplace

Particle Filter on Lie groups (LG-LPF). Specific attention has been paid to the optimization algo-

rithm, focusing on its efficiency and simplicity of implementation.

The chapter unfolds in several sections. First, the problem is stated in Section 8.1. Then, Sec-

tion 8.2 introduces a first solution in the case where the probability densities are unimodal, and

Section 8.3 extends this solution when the probability densities are multimodal.

8.1 . Problem Statement
This chapter unfolds in the same framework as LG-PF with the generic system:{

Xk+1 = f(Xk, uk+1, ν
q
k),

Yk+1 = h(Xk+1, ν
r
k+1), (8.1)

where uk+1 is an input vector and (νqk, νrk+1) are two centered noise vectors. The sequel aims
to calculate a proposal density denoted q̃, which mean and covariance matrix are close to the

statistical moments of the posterior density.

The two methods presented in this chapter follow the same principle. Laplace resampling step

draw a new set of particles in themost probable areas, that is to say, at the vicinity of the highest

values of the posterior density. According to the Bayes rule, the posterior density writes:

p(Xk+1|Y1:k+1) ∝ p(Yk+1|Xk+1)p(Xk+1|Y1:k). (8.2)

Therefore the areas which maximize the posterior density are close to the set of local ex-

tremums:

µ̃nk+1 =
{

arg max
Xk+1

p(Yk+1|Xk+1)p(Xk+1|Y1:k)
}
n∈[1,Ñc]

. (8.3)

This represents a difficult optimization problem in practice, as it involves nonlinear models with

possibly several local maximums. Hence, this chapter introduces efficient numerical methods

to solve the maximization (8.3) with close-to-optimal solutions.

First, the problem is solved in the unimodal case, where the densities present a predominant

peak. Then, it is addressed in the multimodal case, where the prior density and the likelihood

may have several local maxima in various regions of the state space.
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8.2. UNIMODAL LAPLACE RESAMPLING
8.2 . Unimodal Laplace Resampling

In this section, it is assumed that the probability densities have a single peak. According to LPF

theory, the proposal density mean and covariance matrix should be respectively close to the

conditional expectation E [Xk+1|Y1:k+1] and the conditional variance V [Xk+1|Y1:k+1] [70]

A suitable definition for the proposal density is to take the mean and covariance matrix of

q̃ as:

E [Xk+1|Y1:k+1] ≈ µ∗k+1, (8.4)

V [Xk+1|Y1:k+1] ≈ J(µ∗k+1)−1, (8.5)

where µ∗k+1 is the Maximum A Posteriori (MAP) and J(µ∗k+1) is the Fisher information ma-
trix defined in Chapter 3, calculated at the MAP. Then, q̃ can be taken as a concentrated
Gaussian on G:

q̃(Xk+1) = φG
(
Xk+1; µ̃k+1, P̃k+1

)
, (8.6)

where its parameters are taken as µ̃k+1 = µ∗k+1 and P̃k+1 = J(µ∗k+1)−1
.

Algorithm 8.2 details the full LG-LPF process. It is similar to LG-PF presented in Algorithm 8 from

Chapter 7 for the initialization step, propagation step and update step. LG-LPF solve the Opti-

mal Filter on matrix Lie groups from Chapter 5 in the case where the densities are represented

with a sum of weighted Dirac functions. The novelty of this section is about the resampling

step where an optimization algorithm computes an approximation of the MAP and the inverse

of the Fisher information matrix, which are close to the conditional expectation and variance.

Then, they are used as parameters of a proposal density q̃, from which a new set of particles is

drawn. Then the weights are updated and normalized.

Algorithm 9 Lie Group Laplace Particle Filter (Unimodal)
Result: (µ̂k|k, Pk|k), k ∈ [1, N ]
Initialization step: X i

0 ∼ p(X0)
Propagation step: X i

k+1 = f(X i
k, uk+1, ν

q,i
k ),

Update step: w̃ik+1 = wikp(Yk+1|X i
k+1),

Normalization: wik+1 = w̃ik+1/
∑Np

i=1 w̃
i
k+1,

if Neff < Nth then
Optimization: µ̃k+1 = µ∗k+1 and P̃k+1 = J(µ∗k+1)−1

from Algorithm 10

Draw: X i
k+1 ∼ q̃

(
Xk+1; µ̃k+1, P̃k+1

)
Update weights: w̃ik+1 =

p(Yk+1|X i
k+1)p(X i

k+1|Y1:k)
q̃
(
Xk+1; µ̃k+1, P̃k+1

)
Normalization: wik+1 = w̃ik+1/

∑Np
i=1 w̃

i
k+1,

end if
Output: µ̂k+1|k+1 = E [Xk+1|Y1:k+1] , Pk+1|k+1 = V [Xk+1|Y1:k+1]
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CHAPTER 8. LAPLACE PARTICLE FILTER ON LIE GROUPS
8.2.1 . Optimization

The Maximum A Posteriori (MAP) and the information matrix are obtained by solving the opti-
mization problem (8.3). In practice, any relevant optimization algorithm is suitable to solve this

problem. However, finding an exact solution could lead to a time consuming process since the

models are nonlinear and the state can have a large dimension.

The core idea developed in this section is to solve the optimization problem with fitted Gaus-

sians on the propagated density and the likelihood.

p(Xk+1|Y1:k) ≈ φG
(
Xk+1; µ̂k+1|k, Pk+1|k

)
, (8.7)

p(Yk+1|Xk+1) ≈ φH
(
Yk+1;h(µ̂k+1|k), Rk+1

)
. (8.8)

This enables to use the Iterated Extended Kalman Filter on Lie groups (LG-ItEKF) introduced in

[14], which leads to highly accurate solutions. The idea of Iterated Extended Kalman filter is to

refine the update linearization point by repeating the Kalman update process, which leads to

an approximation of the MAP. This process can also be encountered in the Euclidean space [9].

Then, the Bayes rule on the fitted Gaussian leads to the approximation:

p(Xk+1|Y1:k+1) ≈ φG
(
Xk+1; µ̂k+1|k, Pk+1|k

)
φH
(
Yk+1;h(µ̂k+1|k), Rk+1

)
(8.9)

Maximizing this density can be performed with LG-ItEKF for optimization presented in Algo-

rithm 10 introduced in [14]. This algorithm solves the optimization problem (8.3) with a formal-

ism which is identical to LG-EKF. Besides, the updated covariance matrix is a good approxima-

tion of the inverse of the Fisher information matrix. Indeed, extended Kalman filter estimated

covariance matrix matches the inverse of the Fisher information matrix (i.e. the Cramer-Rao

Lower Bound) when it is optimal. This process is illustrated in figure 8.1.

Algorithm 10 LG-ItEKF for Optimization
Inputs: µ̂k+1|k, Pk+1|k, Yk+1, ε
Initialize: X0 = µ̂k+1|k, P0 = Pk+1|k
while ∥∥log∨G

(
X−1
j Xj+1

)∥∥ > ε do
Hj =

∂ log∨H
(
h(Xj exp∧G (ε))−1Yk+1

)
∂ε

Kj = PjH
T
j

(
HjPjH

T
j +Rk+1

)−1

Pj = (Id −KjHj)Pj
Xj = µ̂k+1|k exp∧G

(
Kj log∨H (h(Xj)−1Yk+1)

)
end whileMaximum A Posteriori: µ∗k+1 = Xj

Fisher Information matrix: J(µ∗k+1)−1 = Pj

In practice, the convergence is obtained in a few iterations, depending on the threshold ε.
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𝑮

Maximum A 
Posteriori

𝝁𝒍

𝑷
𝝁𝒍+𝟏

𝝁𝒍+𝟐
𝝁𝒍+𝟑

{𝜹𝒍} ∈ {𝑻𝑿𝒍𝑮}

𝜹𝒍
𝜹𝒍+𝟏

𝜹𝒍+𝟐

Updated 
covariance

Figure 8.1: Illustration of the optimization process with LG-ItEKF presented in Algorithm 10

8.2.2 . Proposal Density
Once the parameters of the proposal density are obtained with Algorithm 10, a new set of

particles is drawn:

Xi
k+1 ∼ q̃

(
Xk+1; µ̃k+1, P̃k+1

)
, (8.10)

and the weights are computed through the importance sampling process:

w̃ik+1 =
p(Yk+1|Xi

k+1)p(Xi
k+1|Y1:k)

q̃
(
Xi
k+1; µ̃k+1, P̃k+1

) . (8.11)

Remark 1. The proposal density q̃ can be chosen freely by the user. The closer it is from theposterior density the more accurate it is. Concentrated Gaussians are often chosen, althoughheavy-tailed densities (e.g. Student) could lead to more robustness [57].
8.2.3 . Discussion

This section extends the approach of Laplace Particle Filter to matrix Lie groups with the prob-

abilistic framework described in Chapter 3 and Chapter 5. The main interest of the proposed

algorithm is the Gaussian approximation of the likelihood and the prior density which enables

an optimization process based on LG-ItEKF detailed in Algorithm 10. This method provides a

generic framework leading to accurate approximation of theMAP on the group. Besides, it does

not require the explicit calculation of the Fisher information matrix as the updated covariance

matrix of LG-ItEKF is a good approximation of its inverse. For this reason, even when G boils
down to Rd, the approach is simpler to implement than previous works on Euclidean Laplace
Particle Filter (see Chapter 2).
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CHAPTER 8. LAPLACE PARTICLE FILTER ON LIE GROUPS
8.3 . Multimodal Laplace Resampling

This section solves the optimization problem 8.3 assuming that the likelihood and the prior

densities are multimodal (i.e. they present several peaks). When this is the case, using a uni-

modal proposal density for the resampling step would lead to a poor accuracy and could even

overlook important components of the prior density as displayed in Figure 8.2. Thus, the se-

quel introduces a general formulation of the Laplace resampling by computing an accurate

multimodal proposal density.

Prior 

𝑋

Likelihood 

𝑋

Unimodal proposal density

𝑋

Multimodal proposal density

Figure 8.2: Illustration of the interest of amultimodal proposal density in the case ofmultimodal

scenarios. A unimodal proposal density cannot properly represent a multimodal prior density.
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8.3. MULTIMODAL LAPLACE RESAMPLING
8.3.1 . Notations

The solution described in the next sections requires the introduction of approximated Gaussian

mixtures for the likelihood and the prior density.

p(Xk+1|Y1:k) ≈
Nc∑
n=1

Wn
k+1φG(Xk+1;µnk+1, P

n
k+1), (8.12)

p(Yk+1|Xk+1) ≈
Nl∑
n=1
Wn
k+1φH(Yk+1;hn(Xk+1), Rnk+1). (8.13)

Since the prior density and the likelihood present several peaks, the posterior density is ex-

pected to be multimodal as well. To that extent, this chapter aims to compute a multimodal

proposal density defined by a kernel mixture, in order to resample the particles close to the

areas of highest probability of the posterior density:

q̃(Xk+1) =
Ñc∑
n=1

W̃ n
k+1φG(Xk+1; µ̃nk+1, P̃

n
k+1). (8.14)

For the sake of clarity, the main elements are summarized in Table 8.1.

Mean covariance matrix Weight Number of kernels

Prior density µnk+1 P n
k+1 W n

k+1 Nc

Likelihood hn(Xk+1) Rn
k+1 Wn

k+1 Nl

Proposal density µ̃nk+1 P̃ n
k+1 W̃ n

k+1 Ñc

Table 8.1: Summary of the fitted mixture parameters for the prior density, the likelihood and
the proposal density.

8.3.2 . General solution
The resampling step of LG-LPF is based on the solution of the optimization problem (8.3). This

problem is hard to address in practice, since the local maximums of the posterior density can

be distributed on a large domain. Similarly to the previous section, the goal is to use the LG-

ItEKF locally at the vicinity of the areas of highest probability. These areas can be determined

with simple considerations on the Bayes equations. Since the posterior density is proportional

to the product of the prior density and the likelihood, the areas of highest probability are found

where the two latter densities overlap. This consideration is illustrated in Figure 8.3.
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Algorithm 11 Generalized Lie Group Laplace Particle Filter
Initialization: sample X i

0 ∼ p(X0) ;
Propagation: X i

k+1 = f(X i
k, ν

i
q,k) , i ∈ [1, Np]

Update: wik+1 ∝ wikp(Yk+1|X i
k+1)

if Neff < Nth then
Expectation Maximization on prior: {µnk+1, P

n
k+1,W

n
k+1}n∈Nc

Find the consistent pairs: Statistical test (8.25)
for n ⊂ {Consistentpairsindex} do
Compute µ̃nk+1 and P̃

n
k+1 with Algorithm 10.

Compute W̃ n
k+1 according to (8.26).

end for
Draw: X i

k+1 ∼ q̃(Xk+1) according to (8.28)
Re-initialize weights: wik+1 according to (8.30)

end if
Output: µ̂k+1|k+1 = E [Xk+1|Y1:k+1] , Pk+1|k+1 = V [Xk+1|Y1:k+1]

The resampling step generalized LG-LPF described in Algorithm 11 is based on the previous

statement. The first step fits Gaussian mixtures to the prior density and the likelihood with

an Expectation Maximization algorithm (EM). Then, a screening strategy based statistical tests

identifies the modes of prior density and the likelihood which are close to each other, defining

the areas where there is a good overlap between the two densities. The overlapping modes

of the prior density and the likelihood will be used as initialization points for local LG-ItEKF

optimizations. Then, their solutions are taken as parameters of a multimodal proposal density

which will resample the particles in the areas of highest probability. This process is illustrated in

Figure 8.3. Similar approaches have been proposed in the Euclidian space framework [56, 59]

using clustering algorithms.

8.3.3 . Approximation of the prior density
This section aims to approximate the prior density with a parametric Gaussian kernels mixture.

The sequel describes a process which determines the parameters of (8.12).

The clusters of particles denoted
{
C1, ..., CNc

}
are identified with an Expectation-Maximization

(EM) algorithm [52, 12]. Since this algorithm holds on the Euclidean space, the set of particles on

the group is converted into a set of particles on the Euclidean space using the group logarithm:

Left case: εik+1 = log∨G
(
µ̂−1
k+1|kX

i
k+1

)
, (8.15)

Right case: εik+1 = log∨G
(
Xi
k+1µ̂

−1
k+1|k

)
. (8.16)

The particles

{
εik+1|k

}
i∈[1,Np]

are sorted in the set of cluster
{
C1, ..., CNc

}
using EM algorithm.

The mean of the modes µnk+1, n ∈ [1, Nc] are defined by:

µnk+1 = E
[{
Xi
k+1
}
⊂ Cn

]
, (8.17)
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Figure 8.3: Illustration of the clustering and local optimization algorithm. Step 1 represents

the approximated prior density with particles and the likelihood in red. Step 2 represents the

mixture fitted to the prior with two kernels (1) and (2), and the likelihood with four kernels (A),

(B), (C) and (D). Step 3 finds the consistent pairs based on a χ2
with (8.25). Step 4 uses local

optimizations based on LG-ItEKF for each consistent pair leading to the proposal density. In

Step 5, the updated kernels of Step 4 are used for importance resampling.

94



CHAPTER 8. LAPLACE PARTICLE FILTER ON LIE GROUPS
and the covariance matrices Pnk+1, n ∈ [1, Nc] are given by:

Pnk+1 = V
[{
Xi
k+1
}
⊂ Cn

]
. (8.18)

Then, their weightsWn
p are defined as the total weight of the particles belonging to the cluster:

Wn
k+1 =

∑
Xi
k+1⊂Cn

wik+1. (8.19)

Note that their sum is equal to unity:

Nc∑
n=1

Wn
k+1 = 1. (8.20)

At the end of this process, the prior density function is approximated by a Gaussian mixture of

Nc peaks:

p(Xk+1|Y1:k) ≈
Nc∑
n=1

Wn
p φG

(
Xk+1;µnk+1, P

n
k+1
)
. (8.21)

8.3.4 . Likelihood definition
The likelihood is obtained from the physical model and properties of a sensor. Multimodal and

non-Gaussian likelihood can occur in specific applications such as terrain-based navigation or

ambiguous measurements.

This thesis focuses on the case where the likelihood can be approximated with a mixture of

Gaussians on the groups of measurementH:

p(Yk+1|Xk+1) ≈
Nl∑
l=1

Wn
l φH

(
Yk+1;hl(Xk+1), Rlk+1

)
, (8.22)

which fits most estimation scenarios.

8.3.5 . Computation of the Proposal Density
This section computes the parameters of q̃ defined in (8.14). According to the Bayes rule, the

posterior density is proportional to the product of the prior density and the likelihood:

p(Xk+1|Y1:k+1) ∝ p(Xk+1|Y1:k)p(Yk+1|Xk+1). (8.23)

Thus, the areas of highest probability are at the vicinity of the overlap between p(Xk+1|Y1:k)
and p(Xk+1|Y1:k). Since the likelihood and the prior density are approximated with Gaussian
mixtures, the optimization problem (8.3) writes:

µ̃nk+1 ={
arg max

Xk+1

Nc∑
n=1

Nl∑
l=1

Wn
k+1W l

k+1φG(Xk+1;µnk+1, P
n
k+1))φH(Yk+1;hl(Xk+1), Rlk+1)

}
i∈[1,Ñc]

.

(8.24)
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8.3. MULTIMODAL LAPLACE RESAMPLING
As discussed in the previous sections, finding the exact solution to this problem is difficult,

especially when the dimension of the state is large with a strongly nonlinear measurement

model.

The proposed method is based on the idea that the solutions to the maximization problem

(8.24) are close to the areas where there is a good overlap between the peaks of the prior

density and the likelihood. This overlap is quantified by a χ2
test between the kernels of the

likelihood and the prior mixtures, and defines the notion of consistent pair, as illustrated in

Figure 8.3.

A consistent pair is a set of two Gaussian kernels, one from the prior density and one from

the likelihood, which are close according to a statistical test.

More precisely, let Xk+1 ∈ G be a random matrix following (8.1), φG(Xk+1;µnk+1, P
n
k+1) be a

kernel of the prior density and φH(Yk+1;hm(Xk+1), Rmk+1) a kernel of the likelihood. Then,
the two kernels are a consistent pair if:

ξTk+1S
−1
k+1ξk+1 < K, (8.25)

where K is chosen from the χ2
test p(χ2(m) 6 K2), d is the dimension of the Lie algebra,

ξk+1 is the log-linear error between Yk+1 and h
m(µnk+1), Sk+1 = Hk+1P

n
k+1H

T
k+1 +Rmk+1, and

Hk+1 is the Lie group Jacobian of h
m
at µnk+1.

When the consistent pairs are obtained, an LG-ItEKF process is stated for each pair. Then,

the updated mean and covariance matrix obtained at each optimization process are used as

parameters for a Gaussian kernel of the proposal density q̃.

The last step determines the weights W̃ n
k+1 of the proposal density. Each weight is defined

by the product of the likelihood and the prior density taken at the posterior mean of each

consistent pairs:

W̃n
k+1 ∝ p(Yk+1|µ̃nk+1)p(µ̃nk+1|Xk), n ∈ [1, Ñc]. (8.26)

These weights are normalized such that:

Ñ∑
n=1

W̃n
k+1 = 1. (8.27)

Thus, the proposal density becomes:

q̃(Xk+1) =
Ñc∑
n=1

W̃n
k+1φG

(
Xk+1; µ̃nk+1, P̃

n
k+1
)
. (8.28)

Eventually, a new set of particles is drawn according to (8.28):

Xi
k+1 ∼ q̃(Xk+1), i ∈ [1, Np], (8.29)

and their weights are computed according to the sample importance sampling (SIS) process:

w̃ik+1 =
p(Yk+1|Xi

k+1)p(Xi
k+1|Y1:k+1)

q̃(Xi
k+1)

. (8.30)
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CHAPTER 8. LAPLACE PARTICLE FILTER ON LIE GROUPS
Then, the weights are normalized:

wik+1 =
w̃ik+1∑N
i=1 w̃

i
k+1

. (8.31)

8.3.6 . Discussion
This section extends LG-LPF to multimodal scenarios. This method holds under the assumption

that the likelihood and the prior density can be approximated by Gaussian mixtures, which is

the case of most estimation scenarios. In this chapter, Expectation Maximization is performed

with the Matlab function firgmdist based on [53].

8.4 . Conclusion
This Chapter describes an adaptation of Laplace Particle Filter (LPF) to Lie groups in the case

of unimodal and multimodal densities. It focuses on the resampling step that computes an

accurate proposal which draws the particles close to the areas where the posterior density is

highly probable. The proposal density is obtained by solving the Bayes equation of Chapter 5

with an optimization. Hence, LG-LPF solves Bayes filter with two approaches (filtering and opti-

mization), which is expected to improve the filter’s performance.

The optimization methods are also important contributions of this chapter since they involve

Iterated Extended Kalman Filter on Lie groups (LG-ItEKF). This algorithm greatly simplifies the

computations as LG-ItEKF provides a good approximation of the Maximum A Posteriori (MAP)
and the Fisher information matrix on the group. Besides, implementing the optimization on

the group shows better results in practice compared to conventional optimization in the Eu-

clidean space [13].
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9 - Kalman-Particle Kernel Filter on Lie Groups
This Chapter solves the Bayes filter with a hybrid approach based on Chapters 6 and 8. The

main idea is to approximate the prior density with a weighted concentrated Gaussian mixture

on Lie groups instead of Dirac functions as illustrated in Figure 9.1.

Posterior Density Gaussian Kernels

𝑋

𝑝 𝑋

Figure 9.1: Representation of the estimated density with a weighted Gaussian mixture.

This approach was initially proposed in [30] for variables belonging to the Euclidean space, and

named Kalman-Particle Kernel Filter (KPKF). The adaptation to Lie groups enables to develop a

general Monte Carlo method which copes with high dimensions and shows improved accuracy,

and is named Lie Group Kalman-Particle Kernel Filter (LG-KPKF). In the sequel, Section 9.1 states

the problem. Then, Section 9.2 describes the general algorithm, and its steps are described in

detail. Section 9.3 focuses on the specific case where the system is group-affine and Section

9.4 concludes the Chapter.

9.1 . Problem Statement
The following discrete state-space model is considered in this Chapter:{

Xk+1 = f(Xk, uk+1, ν
q
k),

Yk+1 = h(Xk+1, ν
r
k+1). (9.1)

Also, it is assumed that this system verifies the probabilistic framework and the assumptions

described in Chapter 5. LG-KPKF solves the Chapman Kolmogorov equation (5.4) and the Bayes

rule (5.5) by approximating the prior density mean with a mixture of weighted Gaussians.
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9.2. GENERAL SOLUTION
The definition of the concentrated Gaussian density on a matrix Lie group G is detailed in
Chapter 3. The mixture approximation is:

p(Xk|Y1:k) ≈
Np∑
i=1

wikφG

(
Xk;µik|k, P

i
k|k

)
, (9.2)

where wik denotes the weights such that
∑Np

i=1w
i
k = 1 and φG represents either a left or

right concentrated Gaussian on G.

Similarly, LG-KPKF assumes that the transition density and the likelihood are Gaussian func-

tions:

p(Xk+1|Xk) = φG (Xk+1; f(Xk), Qk+1) , (9.3)

p(Yk+1|Xk+1) = φH (Yk+1;h(Xk+1), Rk+1) . (9.4)

Although these assumptions are restrictive compared to LG-LPF, they are suitable to most ap-

plications. Since LG-KPKF can be seen as a hybrid between LG-EKF and LG-PF, a specific termi-

nology is used. A particle refers to a weighted Gaussian kernel on the group. The quantity µik|k
denotes the particle’s mean and represents an abuse of notation since it is not a conditional

expectation. The same remark applies to the particle’s covariance matrix P ik|k. This abusive no-

tation is kept in what follows for the sake of clarity with respect to the prediction step (µik+1|k)

and uptate (µik+1|k+1) steps of LG-KPKF.

This formalism is kept as it is relevant to consider every particle as a local LG-EKF since their

mean and covariance matrix follow a similar process.

9.2 . General Solution

The main steps of LG-KPKF are summarized in Algorithm 12. It shows a hybrid structure be-

tween LG-EKF and LG-LPF which involves the main steps of these two algorithms. Note that the

resampling step of LG-KPKF is simpler than the one of KPKF dercribed in Chapter 2, since the

linearization on the group is valid on a large domain. Hence, LG-KPKF does not have a partial

resampling step.
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Algorithm 12 Lie Group Kalman-Particle Kernel Filter
Result: (µ̂k|k, Pk|k), k ∈ [1, N ]
Initialization step:
µi0 ∼ p(X0;µ0, (1 + h2)−1P0) , P i

0 = h2P0
Propagation step ∀i ∈ [1, Np]:
µik+1|k = f(µik|k, uk+1)
P i
k+1|k = F i

kP
i
k|kF

i
k
T +Qk+1

Kalman update step ∀i ∈ [1, Np]:
Sik+1 = Hk+1P

i
k+1|kH

i
k+1

T +Rk+1,

Ki
k+1 = P i

k+1|kH
i
k+1

T (Sik+1)−1,

P i
k+1|k+1 = (I −Kk+1Hk+1)P i

k+1|k,

Left case: µik+1|k+1 = µik+1|k exp∧G
(
Ki
k+1 log∨H

(
Y −1
k+1h

(
µik+1|k

)))
,

Right case: µik+1|k+1 = exp∧G
(
Ki
k+1 log∨H

(
h
(
µik+1|k

)
Y −1
k+1

))
µik+1|k.

Weight update step: w̃ik+1 = wikφH

(
Yk+1;h

(
µik+1|k+1

)
, Sik+1

)
,

Normalization: wik+1 = w̃ik+1∑Np
i=1 w

i
k+1
,

Resampling step: µik+1 = multinomial(wik+1) , wik+1 = 1
Np
,

Output: µ̂k+1|k+1 = E [Xk+1|Y1:k+1] , Pk+1|k+1 = V [Xk+1|Y1:k+1]

9.2.1 . Initialization step
The initialization step draws an initial mixture of weighted Gaussian kernels. As discussed in

[30] the particles are sampled with:

µi0 ∼ p(X0;µ0, (1 + h2)−1P0) (9.5)

P i0 = h2P0 (9.6)

where (µ0, P0) are the mean and covariance matrix of p(X0) and h is the Silverman scaling
parameter [76]. The sampling process on the group is described in Chapter 3.

9.2.2 . Propagation step
The propagation step solves the Chapman-Kolmogorov equation on Lie groups (5.4) with the

mixture approximation from (9.2):

p(Xk+1|Y1:k) ≈
∫
G
φG (Xk+1; f(Xk), Qk+1)

Np∑
i=1

wikφG

(
Xk;µik|k, P

i
k|k

)
dXk. (9.7)

Using the linearity property of integrals gives:

p(Xk+1|Y1:k) ≈
Np∑
i=1

wik

∫
G
φG (Xk+1; f(Xk), Qk+1)φG

(
Xk;µik|k, P

i
k|k

)
dXk. (9.8)
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9.2. GENERAL SOLUTION
Eventually, the Chapman-Kolmogorov equation boils down to:

p(Xk+1|Y1:k) ≈
Np∑
i=1

wikp(εik+1|k), (9.9)

where p(εik+1|k) denotes either a left or right concentrated Gaussian on G. Hence the prior
density is a concentrated Gaussian mixture on G such that:

p(Xk+1|Y1:k) ≈
Np∑
i=1

wikφG(Xk+1;µik+1|k, P
i
k+1|k), (9.10)

and its parameters are obtained with a LG-EKF propagation on each particle as defined in Chap-

ter 6:

µik+1|k = f(µik|k), (9.11)

P ik+1|k = F ikP
i
k|kF

i
k
T +Qk+1, (9.12)

and the particle weights remain unchanged.

9.2.3 . Update step
The update step proof is similar to the one of LG-EKF from Chapter 6. The general Bayes equa-

tion writes:

p(Xk+1|Y1:k+1) = p(Yk+1|Xk+1)p(Xk+1|Y1:k)
p(Yk+1|Y1:k)

, (9.13)

where the prior density and the likelihood are such that:

p(Xk+1|Y1:k) ≈
Np∑
i=1

wikφG(Xk+1;µik+1|k, P
i
k+1|k), (9.14)

p(Yk+1|Xk+1) = φH(Yk+1;h(Xk+1), Rk+1). (9.15)

Similarly to LG-EKF from Chapter 6, this proof unfolds in 5 steps and leads to the expression

of the posterior density p(Xk+1|Y1:k+1). First, the measurement model is linearized in the left
and the right case at the vicinity of every particle mean. Then, the second step derives the

expression of the updated covariance matrix of every particle. The third step calculates the

marginalized likelihood p(Yk+1|Y1:k) and the fourth step leads to the expression of the posterior
density. The fifth and last step leads to the update equation of the particles mean.

1- Linearization of the Measurement Model
(Left case) According to the Bayes rule, the posterior density writes:

p(Xk+1|Y1:k+1) ∝
Np∑
i=1

wikα
i
k+1 exp

−1
2

∥∥∥∥∥ log∨H
(
h(Xk+1)−1Yk+1

)
log∨G

(
(µik+1|k)

−1Xk+1

)∥∥∥∥∥
2

Λik+1

 , (9.16)
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where:

Λik+1 =
[
Rk+1 0

0 P ik+1|k

]
, (9.17)

and the normalization constant is:

αik+1 =
(

(2π)d+m detRk+1 detP ik+1|k

)− 1
2
. (9.18)

Similarly to the propagation step, the local left log-Euclidean error εik+1|k gives:

Xi
k+1 = µik+1|k exp∧G

(
εik+1|k

)
. (9.19)

The term log∨H
(
h(Xk+1)−1Yk+1

)
can be linearized locally around every particle mean:

log∨H
(
h(Xk+1)−1Yk+1

)
= zik+1 −H i

k+1ε
i
k+1|k +O(‖εik+1|k‖

2), (9.20)

whereH i
k+1 is the measurement Jacobian:

H i
k+1 = ∂

∂εik+1|k
log∨H

(
Y −1
k+1h

(
µik+1|k exp∧G

(
εik+1|k

)))
, (9.21)

and zik+1 is the local innovation:

zik+1 = log∨H
(
h
(
µik+1|k

)−1
Yk+1

)
. (9.22)

(Right case) Considering now right densities:

p(Xk+1|Y1:k+1) ∝
Np∑
i=1

wikα
i
k+1 exp

−1
2

∥∥∥∥∥ log∨H
(
Yk+1h(Xk+1)−1)

log∨G
(
Xk+1(µik+1|k)

−1
)∥∥∥∥∥

2

Λik+1

 , (9.23)

where Λik+1 and α
i
k+1 are the same as the left case. By applying the sape approach as the left

case, the linearized equation writes:

log∨H
(
Yk+1h(Xk+1)−1) = zik+1 −H i

k+1ε
i
k+1|k +O(‖εik+1|k‖

2), (9.24)

whereH i
k+1 is the measurement Jacobian for the i

th
particle:

H i
k+1 = ∂

∂εik+1|k
log∨H

(
h
(

exp∧G
(
εik+1|k

)
µik+1|k

)
Y −1
k+1

)
, (9.25)

and zik+1 is the local innovation for the right error:

zik+1 = log∨H
(
Yk+1h

(
µik+1|k

)−1
)
. (9.26)
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2- Kalman Gain and Covariance Matrix Update Equations
The sequel of the proof is the same for the right and left case. It establishes the gain and covari-

ance matrix update expressions for every particle. Given the previous linearized expressions,

the posterior density writes:

p(Xk+1|Y1:k+1) ∝
Np∑
i=1

wikα
i
k+1 exp

−1
2

∥∥∥∥[I −H i
k+1

0 I

] [
zik+1
εik+1|k

]∥∥∥∥2

Λik+1

 . (9.27)

Following the same approach as the update equation proof for LG-EKF from Chapter 6 gives:

p(Xk+1|Y1:k+1) ∝
Np∑
i=1

wikα
i
k+1 exp

−1
2

∥∥∥∥[ zik+1
εik+1|k −K

i
k+1z

i
k+1

]∥∥∥∥2

Υik+1

 , (9.28)

which also writes:

p(Xk+1|Y1:k+1) ∝
Np∑
i=1

wikα
i
k+1 exp

(
−1

2
∥∥zik+1

∥∥2
Sik+1

)
exp

(
−1

2

∥∥∥εik+1|k −K
i
k+1z

i
k+1

∥∥∥2

P i
k+1|k+1

)
,

(9.29)

where (Ki
k+1, P

i
k+1|k+1, S

i
k+1) are the customary matrices of the Kalman filter update:

Sik+1 = H i
k+1P

i
k+1|kH

i
k+1

T +Rk+1, (9.30)

Ki
k+1 = P ik+1H

i
k+1

T (Sik+1)−1, (9.31)

P ik+1|k+1 = (I −Ki
k+1H

i
k+1)P ik+1|k. (9.32)

and Υi
k+1 writes:

Υi
k+1 =

[
Sik+1 0

0 P ik+1|k+1

]
. (9.33)

3- Expression of the Posterior Density
The posterior density is calculated by applying the Bayes rule (5.5) to (9.29):

p(Xk+1|Y1:k+1) =
Np∑
i=1

wik+1 exp
(
−1

2

∥∥∥εik+1|k −K
i
k+1z

i
k+1

∥∥∥2

P i
k+1|k+1

)
(9.34)

where the new weights wik+1 are:

wik+1 ∝ wikαik+1 exp
(
−1

2
∥∥zik+1

∥∥2
Sik+1

)
. (9.35)

Hence, the weights of the posterior density are updated with a similar process to LG-PF and

LG-LPF from Chapters 7 and 8. Besides, the particles covariance matrices are updated with the

equation of LG-EKF from Chapter 6.
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4- Mean Update Equation
The expression of the log-linear error for every particle of the posterior density is alike Section

6.2.2. Thus, the updated particles write:

Left case: µik+1|k exp∧G
(
Ki
k+1z

i
k+1
)
, (9.36)

Right case: exp∧G
(
Ki
k+1z

i
k+1
)
µik+1|k. (9.37)

9.2.4 . Resampling step
The resampling step of LG-KPKF can be chosen freely by the user. It is triggered when the par-

ticles are degenerated according to the criterion [47]. In the case of a multinomial approach,

the heavy-weighted particles mean and covariance matrix are duplicated. The weights are set

to 1/Np.

In the case of Laplace resampling, LG-KPKF uses the Gaussian proposal density to resample

the particle mean and covariance matrix. The general proposal density is given by (8.28) and

recalled hereafter

q̃(Xk+1) =
Ñp∑
n=1

Wn
k+1φG

(
Xk+1; µ̃nk+1, P̃

n
k+1
)
.

The means are sampled according to a Gaussian mixture which kernel covariance matrix with

modified kernel covariance matrix:

Xi
k+1 ∼

Ñc∑
n=1

Wn
k+1φG

(
Xk+1; µ̃nk+1, (1 + h2)P̃nk+1

)
, (9.38)

in order to have a resampled mixture consistent with the proposal density. The covariance

matrix of the particles are taken from the covariance matrix of the proposal density. If a particle

was sampled on the nth
kernel, its covariance matrix is taken as h2P̃nk+1, where h is a tuning

parameter.

9.3 . Specific Case of Group-Affine Dynamics
Group-affine systems enable an autonomous propagation error in the sense that it does not

depend on the estimated mean. Assume that the noises are Gaussian, and that f is group-

affine:

∀X1, X2 ∈ G : f(X1X2) = f(X1)f(Id)−1f(X2). (9.39)

Note that the input vector u and the noise are omitted for the sake of brevity. Applying this

property to the propagation Jacobian leads to a formulation which is independent from the

linearization point.
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9.4. CONCLUSION
In the group-affine case, the left and right Jacobian are the same for every particle and

write:

Left case: Fk = ∂

∂ε
log∨G

(
f(Id)−1f(exp∧G (ε))

)
. (9.40)

Right case: Fk = ∂

∂ε
log∨G

(
f(exp∧G (ε))f(Id)−1) . (9.41)

Proof. In the left case the propagation Jacobian for every particle writes:
F ik = ∂

∂ε
log∨G

(
f(µik|k)

−1f(µik|k exp∧G (ε))
)
. (9.42)

Applying the group-affine property gives:

f(µik|k)
−1f(µik|k exp∧G (ε)) = f(µik|k)

−1f(µik|k)f(Id)−1f(exp∧G (ε)), (9.43)

= f(Id)−1f(exp∧G (ε)). (9.44)

Therefore the left Jacobian writes:

F ik = ∂

∂ε
log∨G

(
f(Id)−1f(exp∧G (ε))

)
. (9.45)

A similar calculus leads to the Jacobian in the right case:

F ik = ∂

∂ε
log∨G

(
f(exp∧G (ε))f(Id)−1) . (9.46)

In both equations (9.45) and (9.46), the expression of the Jacobians are the same for every

particle.

Hence, when the state-space model is group-affine, the propagation Jacobians are all the same

for KPKF. This represents an interesting property in practice, as the computation of the prop-

agation Jacobians for every particle can be costly. Besides, the linearization is exact as it does

not involve the estimated state.

9.4 . Conclusion
This chapter introduces the Kalman Particle Filter on Lie Groups (LG-KPKF) which can be seen

as an hybrid approach between LG-EKF and LG-PF introduced in Chapters 6 and 7 respectively.

This approach is expected to require less particles than conventional particle filters and should

manage high-dimensional problems due to the use of local Kalman filters on every particle.

In addition, LG-KPKF is suitable to use Laplace resampling described in Chapter 8 for improved

robustness and accuracy. Finally, the group-affine property on the dynamics model leads to

a lighter and more efficient implementation of KPKF, which lowers the computational cost. In

practice, many nonlinear systems encountered in robotic navigation hold a group-affine prop-

erty [7]. This filter is expected to perform at close-to-optimal accuracy in the sense of the Op-

timal Filter introduced in Chapter 5, given the continuousness of the Gaussian mixture which

enables an accurate approximation of the posterior density.
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10 - Recursive Posterior Cramer-Rao Lower Bound
Cramer-Rao Lower Bound (CRLB) calculates the theoretical lowest asymptotic variance achiev-

able by any estimator for a given scenario [73, 29]. It is ubiquitous in signal processing and

control since it provides valuable insights for numerous applications. indeed, the CRLB evalu-

ates the observability of a problem in the sense that one can unambiguously identify the hidden

variables using noise-free measurements [34]. In the general case, if the CRLB is singular, the

hidden state is not observable. Hence, CRLB has played a key role in industrial systems’ robust-

ness, dimensioning and performance evaluation. It found historical applications in tracking and

navigation problems [74, 41]. Besides, the comparison of the root-mean square error (RMSE)

of a filter with the CRLB shows if it is efficient. Since CRLB is the lowest attainable variance, the

best performance is obtained when the RMSE equals CRLB. Note that this comparison holds

only when the posterior is unimodal. In filtering problems, the posterior density mostly be-

comes unimodal asymptotically.

When designing a system, the bound gives valuable information on the highest accuracy ex-

pected from a data fusion process. If the specifications are below CRLB, even an optimal algo-

rithm would be helpless to reach the requirements, and more accurate or additional sensors

have to be used. Then, the bound is also a good means to quantify the impact of a configu-

ration of sensors, which is helpful for a relevant design. On the opposite, if a specification is

significantly higher than CRLB, the system may be too high-end for the expected applications.

Thus, a simpler sensor setup (and probably cheaper) is sufficient to reach the desired accuracy.

Thichavsky et al. proposed a recursive formulation of the posterior CRLB on the Euclidean

space (E-CRLB) [78]. The main asset of this formulation is the simplicity of its implementation,

and its recursive form which enables to compute the lowest variance over a time sequence.

Previous works on CRLB for matrix Lie groups were introduced in [11, 48]. However, these

works do not account for the recursive aspect of the bound which are important when design-

ing a filter.

Hence, this Chapter focuses on a recursive formulation the Cramer-Rao Lower Bound on ma-

trix Lie groups (LG-CRLB). This enables to fully characterize the behavior of errors on Lie groups

and it would help a robust design of filters on Lie groups for industrial applications.

10.1 . Problem Statement
Let Xk be a random matrix of an unimodular matrix Lie group G following the discrete-time
state-space system: {

Xk+1 = f(Xk, uk+1, ν
q
k),

Yk = h(Xk, ν
r
k), (10.1)

where f and h are two nonlinear functions, (νrk, ν
q
k) are centered noise vectors, and H is a uni-

modular matrix Lie group. According to the results of Chapter 3, two equivalent formulations

of the Fisher information matrix on Lie groups can be used.
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Expectation formulation:

J = −E
[
∂2 log p(X exp∧G (ε) exp∧G (ξ))

∂ε∂ξ

]
. (10.2)

Integral formulation:

J =
∫
G

1
p(X)

(
∂p(X exp∧G (ε))

∂ε

)(
∂p(X exp∧G (ε))

∂ε

)T
dX. (10.3)

The LG-CRLB is the inverse of the Fisher information matrix [27]. Based on the previous formu-

lations, the sequel derives a recursive formulation of LG-CRLB in the case of unimodular matrix

Lie groups.

10.2 . A Recursive Lower Bound on Lie Groups
The concepts developed in this section provide a natural formulation for the recursive Cramér-

Rao Lower Bound of [78] when the state and the observations belong to unimodular matrix Lie

groups.

10.2.1 . The State Recursive Formulation
Starting from the formulation of the Fisher information matrix, a recursive bound computes

the information matrix of the discrete-time sequence X0:k = [X0, · · · , Xk], where the bound at
time k uses the previous value at time k − 1.

In the spirit of [78], the augmented state matrix is introduced:

Xk = diag(X0, · · · , Xk) ∈ Gk+1, (10.4)

where Gk+1
is defined from the Cartesian product of Lie groups detailed in Appendix C. The

information matrix for Xk writes:

J(Xk) = −E

∂2 log p
(
Xk exp∧Gk+1(ε0:k) exp∧Gk+1(ξ0:k)

)
∂ε0:k∂ξ0:k

 , (10.5)

where ε0:k = [εT0 , · · · , εTk ]T ∈ R(k+1)d
. This consideration enables to extend the recursive bound

of [78].

Proposition 3. The Lie group Fisher information matrix of the state at time k verifies:
J(Xk) = Ck −BT

k A
−1
k Bk, (10.6)
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where the matrices (Ak, Bk, Ck) are:

Ak , −E

∂2 log p
(
Xk exp∧Gk+1(ε0:k) exp∧Gk+1(ξ0:k)

)
∂ε0:k−1∂ξ0:k−1

 , (10.7)

Bk , −E

∂2 log p
(
Xk exp∧Gk+1(ε0:k) exp∧Gk+1(ξ0:k)

)
∂ε0:k−1∂ξk

 , (10.8)

Ck , −E

∂2 log p
(
Xk exp∧Gk+1(ε0:k) exp∧Gk+1(ξ0:k)

)
∂εk∂ξk

 . (10.9)

Proof: The augmented state Xk has the following decomposition:
Xk =

[
Xk−1 0

0 Xk

]
. (10.10)

The Lie group derivative of the latter expression with respect to ε0:k leads to the Fisher infor-

mation matrix J(Xk) :

J(Xk) =
[
Ak Bk
BT
k Ck

]
, (10.11)

where Ak, Bk and Ck are defined as in Proposition 3. Since these matrices are invertible, the

Schur complement can be applied to the bottom right block which leads to the desired result.

�

10.2.2 . A Posterior Recursive Bound
The posterior information matrix is computed from the joint probability density p(Xk, Yk),
where Yk ∈ H is a measurement matrix andH a unimodular Lie group of dimensionm.

Proposition 4. The posterior information matrix on an unimodular Lie group G follows therecursive formula:
J(Xk+1) = D22

k −D21
k (J(Xk) +D11

k )−1D12
k (10.12)

where the matrices are defined as:
D11
k , −E

[
∂2 log p

(
Xk+1|Xk exp∧G(εk) exp∧G(ξk)

)
∂εk∂ξk

]
, (10.13)

D12
k , −E

[
∂2 log p

(
Xk+1 exp∧G(εk+1)|Xk exp∧G(ξk)

)
∂εk+1∂ξk

]
, (10.14)
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D22
k , −E

[
∂2 log p

(
Xk+1 exp∧G(εk+1) exp∧G(ξk)|Xk

)
∂εk+1∂ξk

]

− E

[
∂2 log p

(
Yk+1|Xk+1 exp∧G(εk+1) exp∧G(ξk+1)

)
∂εk+1∂ξk+1

]
,

(10.15)

andD21
k = D12

k
T .

Proof. The recursive formulation is computed with the same approach as in the previous sec-
tion. Considering the state augmented sequence Xk, the measurement augmented sequence
Yk and proceeding as [78], the joint probability of Xk and Yk can be factorized as:

p(Xk+1,Yk+1) = p(Xk,Yk)p(Xk+1|Xk)p(Yk+1|Xk+1). (10.16)

Applying the logarithm gives:

log p(Xk+1,Yk+1) = log p(Xk,Yk) + log p(Xk+1|Xk) + log p(Yk+1|Xk+1). (10.17)

Then, applying the Fisher information matrix leads to:

J(Xk) =

Ak Bk 0
BT
k Ck +D11

k D12
k

0 D21
k D22

k

 , (10.18)

where (Ak, Bk, Ck) are defined in the previous section and the other matrices are given by
(10.13) to (10.15). The sequel unfolds exactly as in [78]. Considering the Schur complement of

the lower-right block:

J(Xk+1) = D22
k −

[
0 D21

k

] [Ak Bk
BT
k Ck +D11

k

]−1 [ 0
D21
k

]
,

= D22
k −D21

k

(
D11
k + Ck +BT

k A
−1
k Bk

)−1
D12
k ,

(10.19)

from which the expression of J(Xk) = Ck +BT
k A
−1
k Bk can be identified.

10.3 . Application to Gaussian Nonlinear Systems
This section applies the previous results to Gaussian systems as they are often encountered in

estimation.

10.3.1 . Definition of the system
In the sequel, we consider the left discrete-time system:{

Xk+1 = f(Xk, uk+1) exp∧G
(
νqk
)
,

Yk = h(Xk) exp∧H (νrk) (10.20)
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where the state and the measurement belong to two unimodular matrix Lie groups G,H, and
uk+1 ∈ Rc is a command input. For the sake of simplicity, the command inputs will be omitted
in the notations:

f(Xk) , f(Xk, uk+1). (10.21)

Besides, noise vectors aremutually independent and follow centeredNormal laws νqk ∼ NRd(0, Qk),
νrk ∼ NRm(0, Rk), where:

Qk = E{νqkν
q
k
T } and Rk = E

{
νrkν

r
k
T
}
. (10.22)

The transition and likelihood densities are assumed to be concentrated Gaussian on the Lie

groups G andH:

p(Xk+1|Xk) ∼ NG(Xk+1; f(Xk), Qk), (10.23)

p(Yk|Xk) ∼ NH(Yk;h(Xk), Rk). (10.24)

10.3.2 . Computation of the recursive matrices
The sequel computes the Lie groups CRLB from Proposition 4. The definition of the concen-

trated Gaussian gives:

log p(Xk+1|Xk) = c1 + 1
2
∥∥log∨G

(
f(Xk)−1Xk+1

)∥∥2
Qk
, (10.25)

where c1 is a constant. Therefore, applying the generic expression ofD
11
k from (10.13) leads to:

D11
k = E

[
F Tk Q

−1
k Fk

]
, (10.26)

where Fk is a Jacobian defined as:

Fk = ∂

∂ε
log∨G

(
f(Xk exp∧G (ε))−1Xk+1

)
, (10.27)

Given the logarithm of the transition density (10.23) and (10.14), and using the previous defini-

tion from (10.27), the matrixD12
k is:

D12
k = E

[
F Tk Q

−1
k

]
. (10.28)

Since the observation model is Gaussian onH, the log-likelihood writes:

log p(Yk|Xk) = c2 + 1
2
∥∥log∨H

(
h(Xk)−1Yk

)∥∥2
Rk
, (10.29)

where c2 is a constant. Applying the definition ofD
22
k from (10.15) gives:

D22
k = Q−1

k + E
[
HT
k+1R

−1
k+1Hk+1

]
(10.30)

whereHk+1 is a Jacobian such that:

Hk+1 = ∂

∂ε
log∨G

(
h(Xk+1 exp∧G (ε))−1Yk+1

)
. (10.31)
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information matrix for the system (10.1) is: From the previous developments, the recursive

matrices write:

D11
k = E

[
F Tk Q

−1
k Fk

]
, (10.32)

D12
k = E

[
F Tk Q

−1
k

]
, (10.33)

D22
k = Q−1

k + E
[
HT
k+1R

−1
k+1Hk+1

]
. (10.34)

Note that (10.32) is alike the formulation from [78], with a different definition for Jacobians. In

practice, a first approximation of the expectations is given by:

E
[
F Tk Q

−1
k Fk

]
≈ F Tk Q−1

k Fk, (10.35)

E
[
F Tk Q

−1
k

]
≈ F Tk Q−1

k , (10.36)

Q−1
k + E

[
HT
k+1R

−1
k+1Hk+1

]
≈ Q−1

k +HT
k+1R

−1
k+1Hk+1, (10.37)

where Fk andHk+1 are calculated on the true state.

10.4 . Conclusion
This Chapter derives a recursive Cramer-Rao Lower Bound on unimodular Lie groups which

is close to the method proposed by Tichavsky [78]. The proposed approach was applied to

Gaussian systems on Lie groups, which leads to a direct computation of the bound using the

Jacobians introduced in LG-EKF from Chapter 6. Note that if the state or the measurement

belongs to SEp(3), the Jacobians calculus theorem of Chapter 6 holds.
This work on CRLB introduces a new tool to analyze and design algorithms onmatrix Lie groups.
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Application to Navigation
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11 - Generalities on Navigation
This Chapter details the kinematics equations and the physics for long range and short range

navigation taken from [40]. Besides, the last section presents the generic sensor models which

were built on purpose for the numerical simulations presented in Chapter 12.

11.1 . Notations and Conventions
The notations and mathematical conventions used in this Chapter follow the same formalism

as [40].

Let [α] , [β] and [γ] be three distinct frames. The notations have the following conventions:

• uγβα ∈ R3
denotes the physical quantity u of frame [α] with respect to frame [β] resolved

in frame [γ].

• uγ ∈ R3
denotes the physical quantity u resolved in frame [γ] which does not relate to a

quantity between two frames (e.g. the gravity vector).

• Ωγ
βα ∈ so(3) denotes the rotation rate matrix of the frame [α] with respect to [β] resolved
in γ.

• Cβα ∈ SO(3) denotes the rotation matrix from [α] to [β]

These elements have calculus properties described in the sequel. Vectors can be decomposed

such as:

uγβα = uγαγ + uγγβ, (11.1)

besides uγβα = −uγαβ .
Rotation rate matrices are skew-symmetric and can be denoted from a rotation rate vector

ω =
[
ωx ωy ωz

]T
such that:

Ωγ
βα = [ωγβα]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (11.2)

Note that rotation rate matrices can be decomposed like vectors:

Ωγ
βα = Ωγ

αγ + Ωγ
γβ, (11.3)

and Ωγ
βα = −Ωγ

αβ and the matrix-vector product of a skew-symmetric matrix is equivalent to a

vectorial product:

∀u ∈ R3 : ω × u = [ω]× u = Ωu. (11.4)

The composition of two rotation matrices writes:

Cγα = CγβC
β
α , (11.5)
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and a rotation matrix applied to a vector is such that:

uββα = Cβαu
α
βα. (11.6)

Besides, the time derivative of a rotation matrix writes:

Ċβα = CβαΩα
βα. (11.7)

11.2 . Frames Definition
Long-range navigation requires the introduction of various frames:

• The Earth-Centered Inertial frame (ECI) [i];

• The Earth-Centered Earth-Fixed frame (ECEF) [e];

• The Navigation frame [n];

• The Body frame [b];

• The sensor frame [s];

which will be introduced in the sequel. Also, Figure 11.1 gives an illustration of these frames

with respect to the Earth.

b
b

b

Figure 11.1: Visualization of the ECI [i], ECEF [e], Navigation [n] and Body [b] frames.
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11.2.1 . The Earth-Centered Inertial Frame (ECI) denoted [i]

The Earth-Centered Inertial Frame (ECI) is defined as the frame which originates at the Earth

center of mass, with the z axis pointing from the Earth’s center of mass towards the North pole,

and the x, y axis pointing towards two remote stars in the equatorial plan. One can point out

that this frame is not strictly inertial since Earth is spinning around the Sun, and the Sun itself is

spinning around the Solar system center of mass. But these effects are negligible considering

the range and the duration of the missions, and are beyond the sensors’ reach.

The Earth-Centered Earth-Fixed frame (ECEF) denoted [e]
The Earth-Centered Earth-Fixed frame (ECEF) is similar to the ECI, except its axis are attached

to the rotating Earth. It originates at the Earth’s center of mass, its z axis points towards the

North pole, its x axis points towards the Greenwich meridian, and y is chosen to make a direct

frame. Thus this frame is not inertial and is spinning around the z axis of the ECI frame.

The Local Tangent-Plane Frame (LTP) denoted [l]
The Local Tangent-Plane frame origins at a fixed point on Earth and its axes point to relevant

directions defined by the user. This frame can be used for indoor or short range problems,

which is often the case in robotics applications.

The Navigation Frame denoted [n]
The Navigation frame is attached to the vehicle and its origin can be an arbitrarily chosen

reference point. In our application, this point is chosen as the projection of the Inertial Mea-

surement Unit reference point on the WGS84 ellipsoid. Its axis are moving with respect to the

vehicle and are pointing North, East and Down. Hence, this frame is often called NED.

The Body Frame denoted [b]
The Body Frame is attached to the vehicle and its origin can be an arbitrarily chosen reference

point. Unlike the navigation frame, its axis are defined with respect to the vehicle. Several

conventions exist, and a common choice is to use the IMU as reference point, direct the x axis

toward the front, the y axis towards its right wing, and the z axis down.

The Sensor Frames [s]
In practice, each sensor has its own frame assumed fixed with respect to the rigid vehicle’s

body. Its origin is located on a precise point of the sensor. In practice, these frames differ from

the body frame because of internal misalignments. Thus, the link between the body frame and

each sensor’s frame can be expressed by constant rotation matrices estimated after calibra-

tion.
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11.3 . Gravity Modeling

The gravity vector resolved in the frame [α] is denoted gα. It is defined as the acceleration
sensed for a stationary accelerometer, which includes the gravitational force γα due to Earth’s

gravity field and the centrifugal force due to Earth’s rotation.

11.3.1 . The navigation frame gravity
The local gravity vector resolved in the navigation frame is denoted gn. It is directly computed

from the vehicle’s latitude Lb and geodetic height hb. In these computations, g
n
unique non-

zero component is on the Down axis.

The gravity at sea level writes:

g0(Lb) = g
1 + a sin2 Lb√
1− e2 sin2 Lb

. (11.8)

with the constants: 
g = 9.7803253359m/s2,
a = 0.001931853,
e = 0.0818191908425.

(11.9)

Then, the gravity vector in [n] is:

gn(Lb, hb) = g0(Lb)
[
1− 2

R0

(
1 + f + ω2

ieR
2
0RP
µ

)
hb + 3

R2
0
h2
b

]
. (11.10)

Note that the geodetic height hb has the biggest impact on the gravity’s accuracy. The later

equation should be used for systems navigating as off a hundred meters above (or below) the

sea level.

11.3.2 . The ECEF gravity
The gravity vector in the ECEF can be obtained with the rotation of the gravity vector in [n] from

(11.10):

ge(Lb, hb) = Cen(Lb, hb)gn(Lb, hb), (11.11)

where the rotation matrix is given by:

Cen(Lb, hb) =

− sinLb cosλb −sinλb − cosLb cosλb
− sinLb sinλb cosλb − cosLb sinλb

cosLb 0 − sinLb

 . (11.12)

11.3.3 . The LTP gravity
The gravity vector in the LTP is a constant down component:

gl =

 0
0

9.81m/s2

 . (11.13)
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11.4 . Navigation Equations
11.4.1 . Navigation equations resolved in the navigation frame

The navigation frame enables to work with geodetic coordinates and have easier measurement

equations when using sensors working in this very frame. This frame is often chosen for accu-

rate long range - long duration applications.

Attitude equation in [n]
The attitude of the vehicle in the navigation frame is represented by Cnb . Differentiating this

matrix leads to:

Ċnb = Cnb Ωb
nb. (11.14)

Splitting the skew symmetric rotation matrix in this expression gives:

Ċnb = Cnb (Ωb
ib − Ωb

ie − Ωb
en). (11.15)

By applying the change of frame leads to:

Ċnb = Cnb Ωb
ib − (Ωn

ie − Ωn
en)Cnb , (11.16)

where Ωb
ib denotes the rotation rate of the body frame with respect to the navigation frame,

which is measured from an inertial measurement unit. Then, Ωn
ie denotes the Earth rotation

rate:

Ωn
ie = ωie

 0 sin(Lb) 0
− sin(Lb) 0 − cos(Lb)

0 cos(Lb) 0

 , (11.17)

where ωie = 7.29211510−5rad/s. Finally, Ωn
en denotes the induced rotation of the vehicle due to

its movement on a spherical coordinate frame, and is often called the transport rate matrix:

ωnen =



vneb,E
RE(Lb) + hb
−vneb,N

RN (Lb) + hb
−vneb,E tanLb
RE(Lb) + hb

 , (11.18)

and Ωn
en = [ωnen]×.

Velocity equation in [n]
The velocity equation resolved in the navigation frame writes:

v̇neb = Cnb f
b
ib + gn(Lb)− (Ωn

en + 2Ωn
ie)vneb, (11.19)

where f bib is the specific force measured by the IMU, 2Ωn
iev

n
eb represent the Coriolis force, and

Ωn
env

n
eb the transport rate.
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Geographic position equation in [n]
The position equation in the geographic coordinates writes:

L̇b =
vnen,N

RE(Lb) + hb

λ̇b =
vnen,E

cos(Lb)(RN (Lb) + hb)
.

ḣb = −vnen,D,

(11.20)

Geographic navigation equation set in [n]
The navigation equations resolved in the navigation frame write:

Ċnb = Cnb Ωb
ib − (Ωn

ie − Ωn
en)Cnb ,

v̇neb = Cnb f
b
ib + gn(Lb)− (Ωn

en + 2Ωn
ie)vneb,

L̇ =
vneb,N

RN (Lb) + hb
,

λ̇ =
vneb,E

(RE(Lb) + ḣb) cos(Lb)
,

ḣb = −vnen,D.

(11.21)

11.4.2 . Navigation equations resolved in the ECEF
The ECEF equations involve less non-linear terms than those resolved in the navigation frame:

Ċeb = CebΩb
ib − Ωe

ieC
e
b ,

v̇eeb = Cebf
b
ib + ge(xeeb) + 2Ωe

iev
e
eb,

ẋeeb = veeb.
(11.22)

In this set of equations, 2Ωe
iev

e
eb is the Coriolis term and g

e(xeeb) is the ECEF gravity vector.

11.4.3 . Navigation equations resolved in the LTP
The navigation equations in LTP are also referred-to as flat Earth equations. Since this frame is

assumed to be inertial, there is no Coriolis term:
Ċ lb = CibΩb

lb,
v̇llb = C lbf

b
lb + gl,

ṙllb = vllb

(11.23)

11.5 . Generic Sensor Models
This section introduces the generic sensor models used for the simulations of this thesis. The

first section introduces the Inertial Measurement Unit (IMU) which enables the time integration

of the kinematic model. Section 2 and 3 detail two measurement models based on signals

emited by fixed beacons. In the sequel, the true variables (i.e. unbiased and free of noise) are

denoted with a bar.

120



CHAPTER 11. GENERALITIES ON NAVIGATION
11.5.1 . Inertial Measurement Unit

The Inertial Measurement Unit (IMU) gathers several sensors:

• Three gyrometers (one per axis) measuring the rotation rate ωbib of the sensor with re-
spect to the inertial frame;

• Three accelerometers (one per axis) measuring the inertial acceleration f bib of the sensor
with respect to the inertial frame.

In the case of short-range navigation, the IMUmeasurements are in the LTP [l].

In this thesis, it is assumed that measurements from the IMU are corrupted by centered Gaus-

sian noises with constant biases:

ωbib = ω̄bib + bg + νg,
abib = ābib + ba + νa,

(11.24)

where bg ∈ R3
are the gyrometers biases, ba ∈ R3

are the accelerometers biases. In addition,

the noises are assumed to be Gaussian and uncorrelated: νg ∼ N (0, Qg) ∈ R3
, νa ∼ N (0, Qa) ∈

R3
, and E

[
(νg)T νa

]
= 0.

11.5.2 . Angles of Arrival (AOA)
The Angle of Arrival sensor measures the azimuth θ and elevation ϕ of the line of sight be-

tween a beacon and the vehicle carrying the sensor as illustrated in Figure 11.2. The angular

measurements equations are given by:{
θb = arctan 2

(
∆b
y,∆b

x

)
,

ϕb = arctan 2
(
−∆b

z,
√

(∆b
x)2 + (∆b

y)2
)
,

(11.25)

where∆b = Cbe(peeb,k−xeeb) is the relative distance between a landmark and the vehicle resolved
in the body frame [b] defined in Figure 11.1, and arctan 2(y, x) is such that ∀(x, y) 6= (0, 0):

arctan 2(y, x) =


sign(y) arctan

∣∣ y
x

∣∣ x > 0,
sign(y)π2 x = 0,
sign(y)(π − arctan

∣∣ y
x

∣∣) x < 0.
(11.26)

In this thesis, the noise model of the Angle of Arrival sensor is assumed to be Gaussian:[
θb

ϕb

]
=
[
θ̄b

ϕ̄b

]
+ νr, (11.27)

where νr ∼ N (0, R) and R ∈ R2×2
.

11.5.3 . Doppler Velocity or Frequency of Arrival (FOA)
A Doppler sensor computes the frequency shifts of signals emitted from a beacon on the

ground. The Doppler shift∆f of a signal emitted at frequency f0
is such that:

∆f = vDOP
c

f0, (11.28)
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𝑥𝑏

𝑦𝑏

𝑧𝑏

𝛼𝑛
𝑏

𝑦𝑒

𝑥𝑒

𝑧𝑒
𝛽𝑛
𝑏

Figure 11.2: Representation of angle of arrival measurements

where c is the speed of light in vacuum and vDOP is the projection of the vehicle velocity on the

line of sight of the beacon described by the unitary vector
−→e :

vDOP =
−→
veeb ·
−→e . (11.29)

The line of sight vector is obtained with the scaled distance vector pointing towards the beacon:

~e =
−→
peeb −

−→
xeeb

||
−→
peeb −

−→
xeeb||

, (11.30)

where peeb denotes the position of the beacon. In this thesis, the noise model of the Doppler

sensor is assumed to be Gaussian:

vDOP = v̄DOP + νr, (11.31)

where νr ∼ N (0, σR).
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𝑥𝑏

𝑦𝑏

𝑣𝑒𝑏
𝑏

Ԧ𝑒
ℎDOP

Figure 11.3: Representation of Doppler measurements
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12 - Filters Comparative Study
This Chapter provides a numerical analysis of the filters introduced in this thesis. They are

compared to state-of-the-art algorithms, either designed on Lie groups or on the Euclidean

space. The filters will be compared on several simulation scenarios to assess their performance

on different operational contexts. Section 12.1 provides the evaluation criteria for the filters.

Then, Section 12.2 tests LG-LPF from Chapter 7 in unimodal and multimodal scenarios. Section

12.3 compares LG-KPKF with LG-EKF respectively from Chapters 7 and 9. Then, Section 12.4

studies the revisited LG-EKF from Chapter 6 and the Section 12.5 discusses the results of the

Posterior Cramer-Rao Lower Bound on Lie groups introduced in Chapter 10.

12.1 . Evaluation Criteria
This section first describes a convergence criteria based on the Cramer-Rao Lower Bound.

Then, it introduces the Root Mean Square Error formulation for variables on Lie groups and

on the Euclidean space. Eventually, it describes the Average Root Mean Square Error (ARMSE)

which quantifies the accuracy of a filter.

12.1.1 . Cramer-Rao Lower Bound and Convergence Rate
The robustness of a filter is assessed by the convergence rate, which is the ratio (in percent) of

convergent runs with respect to the total number of Monte Carlo runs.

A run is considered convergent if the mean position component of the state is contained inside

the confidence ellipsoid Γk computed from the Cramer-Rao Lower Bound (CRLB) [78]:

Γk =
{
xeeb,k|(xeeb,k − x̂eeb,k)TJk(xeeb,k − x̂eeb,k) ≤ κ

}
, (12.1)

where the threshold κ is chosen from the test p(χ2(d) ≤ κ2) = 0.99, d is the dimension of the
state vector and Jk the Fisher information matrix for the position at step k.

The interest of using the J to determine the convergence is that it is independent from the

measurements. Besides, [78] enables a recursive computation.

12.1.2 . Root Mean Square Error
The accuracy and speed of convergence of a filter is assessed with the Root Mean Square Error

(RMSE). The Lie group Root Mean Square Error (LG-RMSE) is defined as:

LG− RMSE(k) =

√√√√ 1
Nconv

Nconv∑
m=1

∥∥log∨G
(
µ−1
k µ̂k|k,m

)∥∥2
2, (12.2)

where Nconv is the number of convergent runs according to (12.1). The log-Euclidean error

vector εk is decomposed with respect to each component of the state matrix:

Left case: εk = log∨G
(
µ−1
k µ̂k|k

)
, (12.3)

Right case: εk = log∨G
(
µ̂k|kµ

−1
k

)
. (12.4)
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Lie group filter Euclidean filter

X̂ x̂

LG-RMSE E-RMSEE-RMSE LG-RMSE

X̂ → x̂ x̂→ X̂

Figure 12.1: Illustration of the estimation scheme. The LG-RMSE and E-RMSE are calculated

for both UKF and LG-ItEKF using the exact transformation (12.7) between a state matrix from

SEp(3) and a state vector from Rd. The true trajectory enables to compute the LG-RMSE, the
E-RMSE and their respective CRLB.

The Euclidean Root Mean Square Error (E-RMSE) is computed from the state vector xk:

E− RMSE(k) =

√√√√ 1
Nconv

Nconv∑
m=1

‖xk − x̂k,m‖22. (12.5)

The Euclidean error is denoted δk:

δk = xk − x̂k|k. (12.6)

Note that it is possible to derive an Euclidean error from a Lie group matrix by extracting its

variables into a vector and vice versa:

X =

 C u1 · · ·
01×3 1
.
.
.

. . .

↔ x =

Θ
u1
.
.
.

 , (12.7)

whereΘ represents the Euler attitude angles of the rotationmatrixC. Similarily, a log-Euclidean
error can be computed from an usual filter defined on the Eudlidean space according to the

process described in Figure 12.1 .

12.1.3 . Average Root Mean Square Error
The Average Root Mean Square Error (ARMSE) is computed from the RMSE over the time period

T of NT steps ranging from kini to kend:

ARMSE = 1
NT

kend∑
k=kini

RMSE(k). (12.8)

In the sequel, the ARMSE is computed from the Euclidean RMSE (E-RMSE) to compare the accu-

racy of the filters.
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12.2 . Laplace Particle Filter on Lie Groups

This section describes the numerical results obtained with Laplace Particle Filter on Lie Groups

(LG-LPF) on two navigation scenarios presented in [25] and [26]. The novelty of this filter is to

represent the probability densities on Lie groups and resample the particles with an accurate

proposal density. The first scenario is unimodal, which enables to test the unimodal resam-

pling strategy from Section 8.2. Then, the second scenario is designed to be multimodal, which

requires the use of the strategy introduced in Section 8.3.

12.2.1 . Long Range Angles-Only Scenario
In this first scenario, LG-LPF from Chapter 7 is compared with two filters on the Euclidean space:

the Laplace Particle Filter (LPF) [70] and the Regularized Particle Filter (RPF) [60]. The state

follows a long-range kinematics model in the ECEF, and the aiding measurements are angles of

arrival described in Section 11.5.3.

Figure 12.2: Illustration of the vehicle’s true trajectory (red) with the trajectory of every Monte

Carlo run (blue dashed), and the landmarks (∗).

The vehicle has a straight line trajectory illustrated in Figure 12.2. In this scenario, the state

matrix estimated with LG-LPF belongs to SE2(3) and the particles at time k are defined as:

∀i ∈ [1, Np] : Xi
k =

Ce,ib,k ve,ibe,k xe,ibe,k
01,3 1 0
01,3 0 1

 . (12.9)
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On the other hand, the state vector estimated by LPF and RPF is given by:

∀i ∈ [1, Np] : xik =

Θe,i
b,k

ve,ibe,k
xe,ibe,k

 . (12.10)

The choice of SE2(3) allows couplings between the attitude matrix Ceb and the other variables,
which is expected to bring more consistency during the updates.

The propagation of the particles is obtained with a time discretization of time step dt. Thus, the
propagation step of LG-LPF writes:

Ce,ib,k+1|k = Ce,ib,k expSO(3)

(
dt(Ωb

ib − C
b,i
e,kΩe

ieC
e,i
b,k) + νir,k

)
,

ve,ieb,k+1|k = ve,ieb,k + dt
(
Cikf

b
ib + ge(xik)− 2Ωe

iev
i
k

)
+ νiv,k,

xe,ieb,k+1|k = xe,ieb,k + dtve,ieb,k + νix,k,

(12.11)

where the stochastic processes are Gaussian:

∀k > 0,∀i ∈ [1, Np], νik =
[
νir,k νiv,k νix,k

]T ∼ N (0, Qk). (12.12)

Themeasurements are angles of arrival from known landmarks displayed in Figure 12.2. Hence,

the measurements belong to the space H = R2
, which is a Lie group such that logH = expH =

I2. Thus the likelihood of the angle of arrival measurement model writes:

p(Yk+1|Xi
k+1) =

exp
(
−1

2
∥∥Yk+1 − h(Xi

k+1)
∥∥2
Rk+1

)
√

(2π)2 det[Rk+1]
, (12.13)

where h is computed for each landmark with (11.25) and R is the measurement noise matrix.

H =
[
[∆b(X)]× 03,3 −I3

]  −
∆b
y

ρ2
∆b
x

ρ2 0

∆b
x∆b

z

ρ||∆b||2
∆b
y∆b

z

ρ||∆b||2
−ρ
||∆b||2

 , (12.14)

where [u]× is the skew-symmetric matrix of the vector u.
The simulations are run for 100 Monte Carlo realizations and their parameters are gathered

in Table 12.1. The Average Root Mean Square Error (ARMSE) for the last minute of flight is

displayed in Table 12.2. On the left side of Table 12.2, the comparison between RPF, LPF and

LG-LPF shows that Laplace resampling significantly increases the convergence rate. This was

expected since the particles are resampled in accurate areas, which improves the weights con-

sistency and slows the filter’s degeneracy.

In addition, comparing LG-LPF and LPF shows that the first approach substancially increases the

accuracy of the filter on every state variable. This improvement was also expected as Lie groups

enable a better representation of rotation matrices. Besides, the group SE2(3) involves curva-
ture terms in the densities which behave like a natural constraint for the particles. Also, the
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Sensor Parameters

Sensor rates (Hz) IMU: 50Hz AOA: 1Hz

IMU noise (1σ) Gyrometer:

2 deg/h Accel: 10−3m/s2

RDF noise (1σ) Azimuth: 0.6◦ Elevation: 0.6◦

Filter parameters

Initial uncertainties Attitude Velocity Position

Nominal (1σ) 0.115◦ 10ms−1 1km
Poor (1σ) 11.50◦ 50ms−1 10km
Process noise (1σ) Attitude: 20◦ Velocity: 10−2m/s Position 10−2m

Update noise Azimuth: 2.8◦ Elevation: 2.8◦

Resampling threshold Nth = 0.6Np

Table 12.1
Simulation and filters parameters for the two scenarios.

Filter RPF LPF LG-LPF LG-LPF LG-LPF LG-LPF
Np 500 500 500 100 500 1000

Convergent runs 47% 100% 100% 78% 84% 82%

Position (m) 66.0 12.6 7.89 17.4 8.86 8.78

Velocity (m/s) 2.21 0.95 0.69 2.1 0.85 0.71

Yaw (
◦
) 0.048

∗
0.299 0.092 0.311 0.082 0.041

Pitch (
◦
) 0.032

∗
0.142 0.088 0.248 0.099 0.079

Roll (
◦
) 0.026

∗
0.101 0.072 0.282 0.092 0.073

Table 12.2: Comparison of the ARMSE for RPF, LPF and LG-LPF with a nominal initialization (left
side) and a poor initialization (right side).

∗
These values are not relevant considering the low convergence rate.
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Figure 12.3: Illustration of an abiguous Doppler measurement in the case of two emitters.

optimization based on LG-ItEKF copes with the geometry of the group, leading to a smoother

process.

The right side of Table 12.2 presents the results of LG-LPF with different numbers of particles in

the specific case of a poor initialization. These results show that the filter converges even with

a low number of particles.

Note that only LG-LPF converged with these large initialization errors. Besides, the result of RPF

regarding the ARMSE of attitude variables are strongly affected by the survivor bias: only the

runs having a small attitude uncertainty were able to converge, which leads to lower ARMSE

than LG-LPF. This means that RPF is not robust to attitude errors, which is confirmed by the low

convergence rate.

12.2.2 . Short Range Ambiguous Doppler Scenario
The scenario presented in the sequel involves ambiguous Doppler measurements leading to

a multimodal likelihood. The ambiguity of Doppler measurements is illustrated in Figure 12.4.

The generalized LG-LPF presented in Chapter 7 is suited to such scenarios as it introduces a

multimodal proposal density to resample the particles at the most probable areas. It is com-

pared to LPF having the same resampling strategy. These results were published in [25]. The

propagation equations are given by the short-range navigation model described in Chapter 11.

They are defined with respect to the Local Tangent Plane frame (LTP) denoted [l]:
C l,ib,k+1 = C l,ib,k expSO(3)

(
dt(Ωb

lb,k + νir,k)
)
,

vl,ilb,k+1 = vl,ilb,k + dt
(
C l,ib,kf

b
lb,k + gl + νiv,k

)
,

xl,ilb,k+1 = xl,ilb,k + dt(vl,ilb,k + νix,k).

(12.15)

Regarding the measurement model, the Doppler shift for one signal is in R and the left Lie
group Jacobian for the jth signal is given by:

Hj
k+1 =

[
01,3

(∆j
k+1)T

||∆j
k+1||

C lb,k+1 −J∆j
k+1

C lb,k+1

]
. (12.16)
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Sensor Parameters

Sensor rates (Hz) IMU: 50Hz Doppler: 1Hz

IMU noise (1σ) Gyrometer: 2 deg/h Accelerometer:

10−3m/s2

Doppler noise (1σ) vDOP = 10m/s
Altimeter noise (1σ) 20m

Filter parameters

Initial uncertainties Attitude Velocity Position

1(σ) 0.6◦ 10ms−1 1km
Process noise (1σ) Attitude: 2◦/h Velocity: 10−2m/s Position 10−6m

Update noise 10m/s

Resampling threshold Nth = 0.1Np

Table 12.3
Simulation and filters parameters for the two scenarios.

Where∆j = pe,jeb,k+1 − x
e
eb,k+1 = [∆j

x,k,∆
j
y,k,∆

j
z,k]T , and :

J∆j
k+1

=



1
||∆j

k+1||
−

(∆j
x,k+1)2

||∆j
k+1||3

−
∆j

x,k+1∆j
y,k+1

||∆j
k+1||3

−
∆j

x,k+1∆j
z,k+1

||∆j
k+1||3

−
∆j

x∆j
y,k+1

||∆j
k+1||3

1
||∆j

k+1||
−

(∆j
y,k+1)2

||∆j
k+1||3

−
∆j

y,k+1∆j
z,k+1

||∆j
k+1||3

−
∆j

x,k+1∆j
z,k+1

||∆j
k+1||3

−
∆j

y,k+1∆j
z,k+1

||∆j
k+1||3

1
||∆j

k+1||
−

(∆j
z,k+1)2

||∆j
k+1||3


(12.17)

The measurement Jacobian for all the beacons writes:

H =
[
HT

1 . . . HT
N

]T
. (12.18)

Assuming that the measurement vector writes y = [y1, ..., yNb ]T , whereNb represents the num-

ber of beacons, each component of y represents the Doppler shift of a signal coming from a

specific beacon. Since the Doppler sensor is not able to assign the signal to its source, a mea-

surement component yj , j ∈ [1, Nb] can be assigned to every beacon pj , j ∈ [1, Nb]. Thus, there
exist Nb factorial equiprobable combinations of beacons, and each one of them generates a

mode in the likelihood:

g(Xk+1) ∝
Nb!∑
n=1

exp
(
−1

2 ||y
n
k+1 − hn(Xk+1)||2Rk+1

)
. (12.19)
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Figure 12.4: RMSE for LG-LPF with 500, 1000 and 5000 particles compared to the Cramer Rao

Lower Bound (CRLB). The roll has low observability in this scenario, as indicated by the slow

convergence of the CRLB on this variable. The synchronized peaks on the attitude variables re-

sult from integration errors due to strong dynamics. The position and velocity plots correspond

to the norm L2 of the RMSE of their three axes.
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Filters LG-LPF LPF

Np 500 1000 5000 1000 5000

Position (m) 91.6 75.9 73.3 235.2 189.8

Velocity (m/s) 3.43 1.82 1.35 8.90 5.31

Roll (
◦
) 0.704 0.673 0.625 4.400 3.531

Pitch (
◦
) 0.453 0.256 0.189 1.233 0.782

Yaw (
◦
) 0.305 0.173 0.130 0.577 0.574

Convergent runs 86% 94% 98% 64% 92%

Table 12.4: Comparison of LG-LPF and LPF. The ARMSE is computed for the last 10 seconds of
simulation and only for the convergent runs in the sense of (12.1). The position and velocity

values correspond to the norm L2 of the ARMSE of their three axes.

The results detailed in Table 12.4 show that LG-LPF substantially improves the robustness and

precision of LPF for every variable. This improvement was expected since the error function

defined on Lie group is accurate on a large domain, which improves the cluster’s consistency.

Besides, the local optimizations benefit from the properties of LG-ItEKF which is known to be

more robust and accurate than ItEKF.

Similarly to the previous scenario, LG-LPF shows improved performance for a lower amount of

particles. This is linked to the improved accuracy of the importance function and the natural

constraint involved by the group geometry. The plot of the RootMean Square Error (RMSE) com-

pared to the Euclidean Cramer Rao Lower Bound (CRLB) shows that the filter is close to optimal

performance even with 500 particles. Besides, the CRLB is computed in the case where the

source of the signals are known, whereas the filter cannot associate a given measurement with

a source. This result demonstrates the capacity of this method to obtain good performance

without knowing the source of the signals. The peaks on the RMSE of the attitude angles in

Figure 12.4 are due to integration errors as they occur during maneuvers in the trajectory.
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Figure 12.5: Illustration of the true trajectory horizontal position (blue line), the four beacons

(triangles) and the particle cloud represented at different times. The red stars represent the

true state at the time where the particles were captured.

This scenario confirms the interest of LG-LPF over LPF, as it shows substantial improvements

on the accuracy and robustness for a lower amount of particles. This is due to the Lie group

representation of the variables which enables accurate computations between the rotationma-

trices. Besides, the correlations and the curved geometry of the group behaves like a natural

constraint on the particles, which limits LG-LPF divergence.

12.3 . Kalman-Particle Kernel Filter on Lie groups

This section compares Kalman-Particle Kernel Filter on Lie groups (LG-KPKF) described in Chap-

ter 9 with LG-EKF described in Chapter 6. This comparison aims to assess the interest of LG-

KPKF over LG-EKF in the case where computational resources are not a limitation. Indeed,

LG-KPKF is expected to require more computations as it is based on several local LG-EKF. On

the other hand, the Gaussian mixture representation of the estimated density with the Laplace

method is expected to substancially improve the accuracy of LG-KPKF compared to LG-EKF.

The comparison is based on a short-range angles-only navigation scenario which parameters

are described in Table 12.5. Each particle mean is propagated according to the flat Earth model
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Sensor Parameters
Sensor rates (Hz) IMU: 100 Hz Angles: 1 Hz

IMU noise (1σ) Gyro: 2◦/h Accel: 10−4 m/s2

Angles noise (1σ) Azimuth: 0.6◦ Elevation: 0.6◦

Filter parameters
Initial errors Attitude Velocity Position Landmarks

(1σ) 11.50◦ 10 m/s 1 km 10 m
Process noise (1σ) Attitude Velocity Position Landmarks

0.6◦ 10−4 m/s ∅ ∅

Update noise (1σ) Azimuth 1.8◦ Elevation 1.8◦

Resampling threshold Nth = 0.6Np

Table 12.5
Simulation and filters parameters for the two scenarios.

equations: 
C l,ib,k+1 = C l,ib,k expSO(3)

(
dtΩb

lb,k

)
,

vl,ilb,k+1 = vl,ilb,k + dt
(
Cikf

b
lb,k + gl

)
,

xl,ilb,k+1 = xl,ilb,k + dtvl,ilb,k,

(12.20)

and every particle covariance is propagated according to the Ricatti equation as detailed in

Chapter 9:

P ik+1|k = FkP
i
k|kF

T
k +Qk+1, (12.21)

where Fk is such that:

Fk =


−Ωb

lb,k 0 0 0
−[f blb,k]× −Ωb

lb,k 0 0
0 I3 −Ωb

eb,k 0
0 0 0 −INl ⊗ Ωb

lb,k

 . (12.22)

Note that ⊗ denoted the Kronecker product, and Fk is the same for every particle as the kine-
matics equation model is group-affine and the framework described in Chapter 9 Section 3

applies.

The simulation scenario was run for 100 Monte-Carlo runs. Table 12.6 gathers the ARMSE of

LG-EKF and LG-KPKF for 100, 500 and 1000 particles. LG-KPKF shows an improvement on the

convergence rate over LG-EKF, even with 100 particles. This was expected as the prior density

has a more accurate representation due to the Gaussian mixture.

Furthermore, LG-KPKF has a higher accuracy than LG-EKF on every state variable. This improve-

ment is due to the mixture representation and Laplace resampling which guides the particles
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Figure 12.6: Comparison between LG-KPKF and LG-EKF Euclidean RMSE.
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Filters LG-KPKF LG-EKF

Np 100 500 1000 N.A.

Position (m) 71.3 58.1 52.7 69.13

Velocity (m/s) 2.04 1.72 1.66 3.15

Yaw (
◦
) 0.195 0.160 0.171 0.326

Pitch (
◦
) 0.150 0.133 0.115 0.131

Roll (
◦
) 0.142 0.100 0.107 0.149

Convergent runs 90% 98% 98% 87%

Table 12.6: Comparison of the ARMSE and convergence rate of the LG-KPKF and LG-EKF for
different amounts of particles. ARMSE are computed starting 60s of simulation and only on the

convergent runs in the sense of (12.1).

near the Maximum A Posteriori.
The comparison of RMSE plots in Figure 12.6 is consistent with the results of Table 12.6, as LG-

KPKF RMSE plots are lower than LG-EKF at convergence.

Focusing at the beginning of the plots, LG-KPKF has a faster convergence than LG-EKF on every

variable. Regarding the position and the attitude angles, LG-KPKF is close to the Cramer-Rao

Lower Bound at the first measurement, where LG-EKF takes around 30 seconds to converge

(e.g. 30 measurement updates). This improvement is due to the Laplace method for resam-

pling which computes a proposal density close to the posterior density. Such result shows the

interest of LG-KPKF in application where a fast convergence of the estimation filter is critical.

Therefore, LG-KPKF shows competitive results compared to LG-EKF, and presents improve-

ments on the asymptotic accuracy and convergence rate. Besides, its fast convergence and ro-

bustness make it suited for challenging initialization scenarios. Arguably, LG-KPKF has a higher

computational cost than LG-EKF. Nevertheless it can be used in targeted phases of an estima-

tion process.

12.4 . Extended Kalman Filter on Lie groups

This section focuses on the revisited formulation of LG-EKF(A) described in Chapter 6. It is com-

pared to the formulation of LG-EKF(B) proposed in [15] and Euclidean Extended Kalman Filter.

The scenario is based on a long-range trajectory, which is similar to the one of a commercial

aircraft. The aiding sensor measures the angle of arrival of signals emitted by VOR beacons

which are visible within a radius of 50km around the aircraft. The position of the beacons is

assumed to be known with an uncertainty of 10m, and they are located at the position of active

VOR in UK.
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Figure 12.7: Illustration of the long-range trajectory (blue) with the VOR landmarks (red marks)

used for Angle of Arrival updates.

In this scenario, the state variables are represented in the ECEF. The state matrix of LG-EKF(A)

with the formulation proposed in Chapter 6 is:

X =
[

Ceb veeb xeeb ba bg pe1 · · · peNb
04+Nb,3 [I4+Nb ]

]
, (12.23)

where the frames are detailed in Chapter 11, pe1, · · · , peNb denote the position of the beacons on
the map, and (ba, bg) respectively denote accelerometer and gyrometer biases. On the other
hand, LG-EKF(B) from [15] splits the state matrix in two diagonal blocks with the rotation matrix

in the top left corner and the other state variables in the bottom-right block:

X =

 Ceb 03,1 · · · 03,1
03,3 I3 veeb xeeb ba bg pe1 · · · peNb

04+Nb,3 04+Nb,3 [I4+Nb ]

 . (12.24)

Note that this structure is equivalent to the space SO(3)× Rd−3
.

The state vector of EKF is:

x =
[
ΘT
be veeb

T xeeb
T baT bgT pe1

T · · · peNb
T
]T
, (12.25)
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where Θbe represents the Euler attitude angles.

The propagation of the mean are based on the ECEF kinematics model:

Ceb,k+1 = Ceb,k exp∧SO(3)

(
dt[ωbib,k+1 + wqg − bgk − ωbie,k]

)
,

veeb,k+1 = veeb,k + dt
(
Cbe,k(f bib,k+1 − bak) + ge(xeeb,k+1)− abie,k

)
,

xeeb,k+1 = xeeb,k + dtveeb,k,
bak+1 = bak,
bgk+1 = bgk,
pen,k+1 = pen,k, n ∈ [1, Nb].

(12.26)

The propagation Jacobian of LG-EKF(A) is:

Fk =


A1 03,3 03,3 03,3 A2
A3 A4 03,3 A5 03,3
03,3 dtEk Ek 03,3 03,3
03,3 03,3 03,3 Ek 03,3
03,3 03,3 03,3 03,3 Ek

 , (12.27)

where Ωk , dt[ωbk+1 − bgk − Ceb,k+1ω
e
ie], Ek = exp∧G (Ωk), and the blocks Ai ∈ R3, i ∈ [1, 5] are

such that:

A1 = Ek,
A2 = −dtϕSO(3)(−Ωk)Ceb ,
A3 = −dtEk[ab]×,
A4 = Ek(I3 − 2dt[Cbeωeie]×),
A5 = −dtEkCeb .

(12.28)

On the other hand, the propagation Jacobian of LG-EKF(B) is calculated according to [15].

Regarding the update step, the Jacobian of the AOAmeasurement model is computed from the

results of Chapter 6. Let∆b : G→ R3
be the smooth function such that h(X) = h(∆b(X)):

∆b(X) =

 ∆b
1(X)
.
.
.

∆b
Nb

(X)

 ,
 C

b
e(peeb,1 − xeeb)

.

.

.

Cbe(peeb,Nb − x
e
eb)

 . (12.29)

Hence the derivation chain rule for the left case gives:

H = ∂h(∆)
∂∆

∣∣∣∣
∆b(X)

J∆, (12.30)

where J∆ is such that:

J∆ ,
∂∆b(X expSEp(3)(ε))

∂ε

∣∣∣∣∣
ε=0

. (12.31)

Then, taking∆b =
[
∆b
x ∆b

y ∆b
z

]T
and ρ =

√
(∆b

y)2 + (∆b
x)2:

∂h(∆)
∂∆

∣∣∣∣
∆=∆b(X)

=

 −
∆b
y

ρ2
∆b
x

ρ2 0

∆b
x∆b

z

ρ||∆b||2
∆b
y∆b

z

ρ||∆b||2
−ρ
||∆b||2

 , (12.32)
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Filters LG-EKF(A) LG-EKF(B)[15] EKF

Position (m) 74.8 104.5 195.3

Velocity (m/s) 1.06 1.69 2.90

Roll (mrad) 0.66 1.24 1.77

Pitch (mrad) 0.50 0.88 1.17

Yaw (mrad) 0.91 0.91 1.79

Accel Bias (m/s2
) 0.022 0.024 0.033

Gyro Bias (mrad/s) 0.149 0.285 0.288

Table 12.7: Comparison of the ARMSE for the Euclidean Extended Kalman Filter (EKF), the Lie
Group Extended Kalman Filter (B) from [15] and the Lie-Group Extended Kalman Filter proposed

in this paper (A). The ARMSE is computed on the whole trajectory for 50 Monte Carlo runs.

and J∆ writes:

J∆ =

 [∆b
1(X)]× 0 −I3 0 I3 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

[∆b
Nb

(X)]× 0 −I3 0 0 I3

 , (12.33)

where the zeros refer to null blocks of consistent size according to the state and measurement

model.

The results gathered in Table 12.7 give the ARMSE of LG-EKF(A), LG-EKF(B) and EKF on the whole

trajectory and for 50 Monte Carlo runs. Both formulations of LG-EKF present higher accuracy

than EKF. This was expected as Lie groups enable a better formulation of the attitude with a

rotation matrix, which improves the estimation accuracy of all the state variables.

Comparing the two Lie group filters, LG-EKF(A) shows a substantial accuracy improvement on

every state variable compared to LG-EKF(B), except for the yaw for which both filters have the

same performance. This behavior was also expected since the error on the matrix Lie group

SEp(3) involves couplings between the attitude and the vectorial variables. These couplings
enable the filter to get most of the available information and lead to more consistent state and

covariance updates. Note that this improvement is linked to the state representation that in-

volves a different error function.

An unexpected improvement is observed in the estimation of the gyroscope bias. The plot of

E-RMSE for Euclidean bias in Figure 12.8 shows that LG-EKF(A) enables the asymptotic conver-

gence of the gyroscope bias. This point is interesting as the biases are often difficult to estimate

[38]. The comparison of the RMSE on the other variables show that the representation of LG-

EKF(A) greatly limits the divergence of the filter in the area where the measurements provide

limited information, around 1000s after the beginning of the simulation. This effect can be ob-

served on the attitude variables in Figure 12.10. The limited divergence of LG-EKF(A) filter is due

to the couplings involved by its error function.

This study demonstrates the interest of LG-EKF over EKF for long-range applications. Besides,

the formulation LG-EKF(A) introduced in Chapter 6 leads to significant improvements compared

to LG-EKF(B), which are due to the different group representation.
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Figure 12.8: Root Mean Square Error of Gyrometer Biases
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Figure 12.9: Root Mean Square Error of the position norm.

141



12.4. EXTENDED KALMAN FILTER ON LIE GROUPS

0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0 500 1000 1500 2000 2500

0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

Figure 12.10: Root Mean Square Error of the attitude represented by Euler angles.

2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440

0

0.1

0.2

0.3

0.4

0.5

Figure 12.11: Zoom on a peak of the Root Mean Square Error of the attitude. The peaks are due

to integration errors.
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The representation of the state is an important aspect of this thesis. Mathematically, all the

state representations are equivalent as they are based on the same propagation and update

models. In practice, some choice of representation lead to better results as they enable strong

correlations between the state variables.

12.5 . Cramer-Rao Lower Bound
This section illustrates the developments of Chapter 10 on the recursive Posterior Cramer Rao

Lower Bound on matrix Lie groups. The results are based on a short-range navigation sce-

nario with angle of arrival and Doppler updates. Hence, the system is Gaussian and uses the

equations 10.32. The Cramer-Rao Lower Bound on Lie groups (LG-CRLB)from Chapter 10 is

compared to the Euclidean Cramer-Rao Lower Bound from [78] in Figure 12.12 for the attitude

variables, Figure 12.14 for the velocity variables and Figure 12.15 for the position variables. The

consistency of the bound on Lie groups is assessed by comparison with the Root Mean Square

Error (RMSE) from two filters:

- An Iterated Extended Kalman Filter on Lie groups (LG-ItEKF) designed on SEp(3) [15, 16].
Its state is represented by the matrixXk from (12.7);

- An Unscented Kalman Filter (UKF) designed on Rd [80]. Its state is represented by the
vector xk from (12.7);

The LG-RMSE for LG-ItEKF is calculated directly from the estimated state matrix and the E-RMSE

for LG-ItEKF is calculated from the estimated state vector obtained from the transformation

(12.7). Similarily, E-RMSE from UKF is calculated directly from the estimated state vector, and

the LG-RMSE for UKF is obtained from (12.7). This process is illustrated for both filters in Figure

12.1. The attitude angles RMSE are displayed in Figure 12.12. For both Euclidean and Lie group

case, the RMSE shows a good consistency with the CRLB. Also, the first attitude components

of the LG-CRLB and the E-CRLB are similar. This was expected since the rotation matrix con-

vention starts its first rotation around the z axis, which defines the yaw. Hence, the yaw and
the first component of the attitude angles log-Euclidean error define the same quantity. The

corresponding plots are overplayed with a zoom in Figure 12.13. Although these variables are

mathematically identical, the LG-CRLB plot is slightly higher than the of the E-CRLB. This phe-

nomenon is connected to the log-Euclidean error formulation, which is exact, while the error

on Euler angles is accurate only at the vicinity of the true state. This discrepancy is known to

yield over-optimistic observability assessment which is part of the inconsistency problem of

the EKF. Indeed, similarly to the Euclidean Extended Kalman Filter, the Euclidean bound is too

optimistic.

In the case of the velocity errors displayed in Figure 12.14, the two bounds have very different

behaviors. Again, the Lie groups bound shows a strong sensitivity to the turns of the vehicles

compared to the Euclidean bound, which is due to the couplings implied by the log-Euclidean

error between the velocity and the attitude angles. The bound on the position variables shows a
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Figure 12.12: Illustration of the Euclidean and Lie groups attitude angles CRLB on the navi-

gation scenario. The bounds show a similar behavior for the yaw due to the rotation matrix

convention.
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Figure 12.13: Comparison of the Yaw and the first component of the attitude angles log-

Euclidean error (zoom). Although the representation of this variable is mathematically equiva-

lent for Euler angles and rotations matrices due to the angles convention. The LG-CRLB shows

a higher level, implying a better consistency without false observability.

similar behavior in Figure 12.15. This was predictable as the log-Euclidean error on the position

is also coupled with the attitude angles.
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Figure 12.14: Comparison of the Lie group (left) and Euclidean (right) CRLB for the velocity

errors.
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Figure 12.15: Comparison of the Lie group (left) and Euclidean (right) CRLB for the position

errors.
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13 - Conclusion of the Thesis
Filtering techniques on Lie groups gained increasing interest over the last decade in the fields

of transportation and robotics. These approaches solve strongly nonlinear problems with im-

proved accuracy and robustness compared to usual filters designed with variables belonging

to the Euclidean space. This thesis has explored the new field of particle filtering on Lie groups

by focusing on several aspects of these algorithms.

• First, the Bayes Filter is solved in the case where prediction and measurement models
are described by Gaussian noises on Lie groups. This leads to a formulation of Extended

Kalman Filter on Lie groups (LG-EKF) which is similar to the version introduced by Bour-

maud et al. , but it differs in the way that the noises and linearizations are handled.

In particular, a formulation for the Jacobians on the Special Euclidean group SEp(3) is
detailed for accurate and simplified calculus. This revisited LG-EKF presents substantial

improvements in the estimation process.

• Then, the Bayes Filter on Lie groups is solved in the general case by approximating the
estimated density with a sum of weighted Dirac functions, leading to Particle Filter on

Lie groups (LG-PF). The formulation of filter is similar to its couterpart on the Euclidean

space. In practice, LG-PF only differs from PF on the sampling step and the computation

of the statistical moments.

• The thesis also developed the resampling step of LG-PF with an approach similar to
Laplace Particle Filter (LPF), which consists in resampling the particles according to an

accurate proposal density. This method was first extended to Lie groups assuming that

the densities are unimodal (i.e. they present only one predominant peak), leading to

Laplace Particle Filter on Lie Groups (LG-LPF). Then, this approach is generalized to the

case where the probability densities are multimodal (i.e. they present several peaks), by

approximating the prior density and the likelihood with Gaussian mixtures on the group.

The optimization processes for the proposal density are based on an Iterated Extended

Kalman Filter on Lie groups (LG-ItEKF) which enables a simplified optimization frame-

work with accurate results. LG-LPF demonstrated substantial improvements compared

to equivalent filters on the Euclidean space, especially on the robustness and accuracy.

Besides, LG-LPF works with a very limited number of particles, which greatly limits its

computational load.

• Another contribution of this thesis is the Kalman Particle Kernel Filter on Lie Groups (LG-
KPKF) which is tailored to solve strongly nonlinear problems with large dimensions. Such

problems can be difficult to solve with EKF because of the nonlinearities and with PF

because of the curse of dimensionality. The core idea of LG-KPKF is to approximate the

densities with a sum of weighted Gaussian functions instead of Dirac functions. This

approach enables to process each particle mean and covariance with a local LG-EKF and
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the weight is processed with a Lie group particle filter. This filter is derived by solving the

Bayes Filter assuming that the estimated density is represented by a sum of weighted

Gaussians on the group in the unimodal case. LG-KPKF was also studied in the case

where the propagation model is group-affine [7], leading to substantial simplifications in

the propagation step. This approach demonstrated improved accuracy and robustness

compared to LG-EKF even with a small number of particles. Another important result is

its fast convergence, which makes it interesting for applications requiring high accuracy .

• The thesis introduces a recursive formulation for the Cramer-Rao Lower Bound on uni-
modular matrix Lie groups. Although previous works derived the CRLB on Lie groups

[11, 48], the recursive formula on these spaces, is a novelty and enables an efficient

computation of the bound. The computation of this bound shows a consistent behav-

ior compared the Lie Groups Root Mean Square Error (LG-RMSE) of a LG-ItEKF.

The filtering framework developed in this thesis provides a robust and flexible solution to non-

linear estimation problems on Lie groups. The theoretical foundations of the particle filters

and recursive Cramer-Rao lower bound on Lie groups have been established, and their effec-

tiveness has been demonstrated through various simulations. The results highlight the ad-

vantages of using particle filters on Lie groups for navigation. In particular, their ability to ac-

curately estimate the state of nonlinear systems and track the underlying dynamics has been

demonstrated, even with a very low amount of particles compared to usual approaches. It

important implications for a wide range of navigation applications, including autonomous vehi-

cles, robotics, and satellite navigation. Also, the particle filters developed in this thesis can find

broader applications in image and signal processing.

In future works, the framework developed in this thesis can be extended to incorporate addi-

tional factors such as general density functions for the noises processes or refined optimization

solutions. Additionally, the methods can be applied to more complex and challenging naviga-

tion problems, such as multi-sensor fusion and cooperative navigation. A robustness study will

have to be conducted to evaluate, for example, the impact of the Gaussian noise assumption

on the behavior of the proposed filters.

In conclusion, this thesis provides a significant contribution to the field of nonlinear and non-

Gaussian estimation and demonstrates the potential of particle filters on Lie groups for solving

complex estimation problems.
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A - Usual Lie Groups
A.1 . The Special Orthogonal Group SO(d)

The Special Orthogonal group of dimension d ∈ N is defined by:

SO(d) =
{
C ∈ Rd×d|CCT = Id,det[C] = 1

}
. (A.1)

The case SO(3) represents the group of 3d rotation matrices which is broadly used in robotics
and navigation. Its algebra is so(d) which denotes the group of real skew-symmetric d × d

matrices:

so(d) =
{
M = [mij ]i,j∈[1,d] |mij = −mji

}
. (A.2)

A.1.1 . Algebra isomorphisms
Let u ∈ R3

be a vector denoting attitude angles. The associated skew-symmetric matrix is:

[u]∧ = [u]× =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , (A.3)

and its reciprocal isomorphism is denoted [M ]∨ whereM ∈ so

A.1.2 . Exponential and Logarithm
The Rodrigues formula gives a closed-lood formulation of the exponential and logarithm on

SO(3).
Let u ∈ R3

:

exp∧SO(3)(u) = I3 + sin(‖u‖)
‖u‖

[u]× + 1− cos(‖u‖)
‖u‖2

[u]2×. (A.4)

Let C ∈ SO(3) be a rotation matrix. The logarithm writes:

log∨SO(3)(C) = θ

2 sin(θ) [C − CT ]∨, (A.5)

where:

θ = arccos
(

tr(C)− 1
2

)
. (A.6)

A.1.3 . Adjoints
The algebra adjoint writes:

adSO(3)(u) = [u]∧, (A.7)

and the group adjoint writes:

AdSO(3)(C) = C. (A.8)
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A.2. THE SPECIAL EUCLIDEAN GROUP SEP(D)

A.2 . The Special Euclidean Group SEp(d)

The Special Euclidean group of dimension d ∈ N with p ∈ N vectors is defined by:

SEp(d) =
{[

C v1 · · · vp
0p,d Ip

]
, C ∈ SO(d), v1, · · · , vp ∈ Rd

}
, (A.9)

and its algebra by:

sep(d) =
{[

M u1 · · ·up
0p,d up

]
,M ∈ so(d), u1, · · · , up ∈ Rd

}
, (A.10)

The sequel describes useful elements for state estimation on SEp(3).

A.2.1 . Algebra isomorphism
Let u ∈ R3+3p

such that u =
[
uTC uT1 · · · uTp

]T
with uC , u1, · · · , up ∈ R3

:

[u]∧ =
[
[uC ]× u1 · · ·up
0p,3 Ip

]
. (A.11)

The reciprocal map is denoted [ ]∨.

A.2.2 . Exponential and Logarithm
Let uC , u1 · · · up ∈ R3

be a set of vectors and u =
[
uTC uT1 · · · uTp

]T
. The exponential on

SE(3) writes:

exp∧SEp(3)(u) =
[
exp∧SO(3)(uC) ΦSO(3)(uC)u1 · · ·ΦSO(3)up

0p,3 Ip

]
, (A.12)

where ΦSO(3) is the group Jacobian defined in (3.27) for SO(3) [3][65]:

ΦSO(3)(uC) = I3 + (1− cos(‖uC‖))
‖uC‖2

[uC ]× + ‖uC‖ − sin(‖uC‖)
‖uC‖3

[uC ]2× (A.13)

LetX ∈ SEp(3) be a matrix defined as (A.9). The logarithm in its closed form writes:

logSEp(3)(X) =
[
logSO(3)(C) ϕSO(3)(C)u1 · · ·ϕSO(3)(C)up

0p,3 Ip

]
, (A.14)

where ϕSO(3) is the inverse group Jacobian defined in (3.28) for SO(3):

ϕSO(3)(C) = I3 −
1
2w + 1

θ2

[
1− θ sin(θ)

2(1− cos(θ))

]
w2, (A.15)

with w = logSO(3)(C), and θ = arccos
(

tr(C)− 1
2

)
.
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A.2.3 . Adjoints

LetX ∈ sep(3) be a matrix such that:

X =
[
M u1 · · ·up
0p,d 0p

]
(A.16)

The algebra adjoint writes:

adSEp(3)(X) =


M 0 · · · 0

[v1]× M · · · 0
.
.
. 0 . . . 0

[vp]× 0 · · · M

 . (A.17)

LetX ∈ SEp(3) be a matrix such that:

X =
[
C v1 · · · vp

0p,d 0p

]
(A.18)

The group adjoint writes:

AdSEp(3)(X) =


C 0 · · · 0

[v1]×C C · · · 0
.
.
. 0 . . . 0

[vp]×C 0 · · · C

 . (A.19)
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B - Matrix Calculus
This Appendix describes matrices identities.

B.1 . Basic Properties
Let U be a square matrix. A first property is the inverse of the transposed matrix:

(M−1)T = (MT )−1. (B.1)

Assume that U has the following block structure:

M =
[
A B
C D

]
.

IfD is invertible, U can be factorized such that:

M =
[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
, (B.2)

where I and 0 represent identity and zero blocks of appropriate size. Similarly, if A is invertible,
M can be factorized such that:

M =
[

I 0
CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
. (B.3)

B.2 . Inverse
Let U be an invertible marix such that:

U =
[
A B
C D

]
.

The inverse of U is obtained from (X,Y, Z, U) by solving the following system:[
A B
C D

] [
X Y
Z U

]
= I, (B.4)

and it writes:

U−1 =
[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
. (B.5)

Similarly, the inverse of U can be obtained by solving:[
X Y
Z U

] [
A B
C D

]
= I, (B.6)
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which leads to:

U−1 =
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
. (B.7)

Since the inverse matrices from (B.5) and (B.7) are equal, the blocks of U verify the following

equalities:

A−1B(D − CA−1B)−1 = (A−BD−1C)−1BD−1, (B.8)

D−1C(A−BD−1C)−1 = (D − CA−1B)−1CA−1. (B.9)

Hence, from (B.8) and (B.9), the inverse of U also writes:

U−1 =
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
, (B.10)

and:

U−1 =
[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
. (B.11)

Another useful equality is the Woodburry identity. Let (X,Y, Z, U) be four matrices whereX is
invertible:

(X + Y ZU)−1 = X−1 −X−1Y
(
Z−1 + UX−1Y

)−1
ZX−1. (B.12)

Also, the inversion equalities are used in this thesis:[
I A
0 I

]−1
=
[
I −A
0 I

]
, (B.13)

[
I 0
B I

]−1
=
[
I 0
−B I

]
. (B.14)

B.3 . Determinant
Basic properties of determinants which will be useful in this paper are first reminded:

- The determinant of the identity is 1:

det Id = 1. (B.15)

- The determinant of a triangle or block triangle matrix is the product of the determinant

of the diagonal terms:

det
[
A B
0 D

]
= det

[
A 0
C D

]
= det(A) det(D). (B.16)

- The determinant of the inverse is the inverse of the determinant:

detA−1 = 1
detA. (B.17)
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Considering the factorization (B.2):[

A B
C D

] [
I 0

−D−1C I

]
=
[
A−BD−1C B

0 D

]
, (B.18)

the determinant of U writes:

det
[
A B
C D

]
= det(A−BD−1C) det(D). (B.19)
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C - Cartesian Product of Lie Groups
This section introduces the main definitions and properties of Cartesian products of matrix Lie

groups. Let X ∈ G and Y ∈ H be two elements of matrix Lie groups G and H of dimensions d
andm.

The Cartesian product of G andH is defined by:

G ×H ,
{
Z =

[
X 0
0 Y

]
, ∀X ∈ G, Y ∈ H

}
. (C.1)

Define F = G ×H, then the space F verifies the following properties:

1. F is a matrix Lie group.

2. If G andH are unimodular Lie groups, then F is a unimodular Lie group.

3. The Lie algebra of F is defined by:

f =
{
z =

[
x 0
0 y

]
∀x ∈ g, y ∈ h

}
. (C.2)

4. F exponential verifies:

exp∧F (·) =
[
exp∧G (·) 0

0 exp∧H (·)

]
. (C.3)

5. F logarithm verifies:

log∨F (·) =
[
log∨G (·) 0

0 log∨H (·)

]
. (C.4)

6. The product of n ∈ N Lie groups G1 × · · · × Gn verifies all the previous properties.

Proof:
1. By definition, Z is an invertible square matrix which copes with the group axioms. The

group action is still the matrix product which is differentiable, and F is a differential
manifold. Hence, F is a matrix Lie group.

2. Let Z1, Z2 ∈ F be two Lie group matrices. Since F is a matrix Lie group, its group adjoint
writes:

AdF (Z1)Z2 = Z1Z2Z
−1
1

=
[
X1 0
0 Y1

] [
X2 0
0 Y2

] [
X−1

1 0
0 Y −1

1

]
=
[
AdG(X1)X2 0

0 AdH(Y1)Y2

]
.

(C.5)

Thus det [AdF (Z)] = det [AdG(X)] det [AdH(Y )].
If G andH are unimodular, det [AdF (Z)] = 1 and F is an unimodular Lie group.
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3. The algebra of a direct product of Lie groups is the direct product of their algebras.

4. Let c = [aT bT ]T ∈ Rd+m
be a vector, where a ∈ Rd, b ∈ Rm. The definition of the group

exponential gives:

exp∧F (c) =
∞∑
n=0

([c]∧)n

n!

=
∞∑
n=0

1
n!

[
[a]∧ 0

0 [b]∧
]n

=
[
exp∧G(a) 0

0 exp∧H(b)

] (C.6)

5 The group logarithm proof is similar to 4.

6 Let G1, · · · ,Gn n be a set of matrix Lie groups. The proofs of 1 to 5 prove 6 for G1 × G2,

then consider the induction (G1 × · · · × Gn−1)× Gn.

A specific case used in this thesis is n Cartesian products of the same group G, denoted Gn, and
which elements write:

diag(X0:k) ,


X0 0 · · · 0
0 X1 0 · · ·

0 · · · . . . · · ·
0 · · · 0 Xk

 ∈ Gk+1, (C.7)

where Gk+1
is a unimodular Lie group of dimension (k + 1)d. �
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D - Résumé en Français - French Summary
Contexte

L’estimation Bayésienne regroupe un ensemble de méthodes statistiques qui permettent de

traiter des données ou des évènements comportant des incertitudes. Ce domaine se base sur

le théorème de Bayes, qui permet de fusionner les données issues d’observations avec une

connaissance a priori sur l’évènement. L’avantage de cette approche est de pouvoir prendre
en compte les incertitudes de modélisation d’un système, ce qui amène à des résultats plus

cohérents et plus précis. Cependant, cette approche théorique peut être difficile à mettre en

œuvre lorsque le système traité est fortement non linéaire ou de grande dimension. En effet,

seul les systèmes linéaires et Gaussiens amènent à une solution exacte : le filtre de Kalman

[45].

Ainsi, de nombreuses méthodes numériques ont été développées pour résoudre le théorème

de Bayes dans un cadre non linéaire, qui se présente fréquemment dans la pratique. Parmi ces

méthodes, les filtres d’estimation tels que le filtre de Kalman étendu (EKF), représentent des

solutions efficaces et matures. En outre, les filtres particulaires (PF) permettent de traiter des

cas fortement non linéaires et non-Gaussiens en représentant la densité de probabilité estimée

par un nuage de particules [54, 70, 56]. Cependant, les filtres d’estimation classiques présen-

tent des limitations dans leur tolérance aux non linéarités du système et aux incertitudes.

Des études récentes sur des filtres implémentés dans les groupes de Lie
1
ont démontré l’intérêt

d’utiliser ces espaces pour représenter les variables d’estimation. En effet, les groupes de Lie

possèdent la double nature de groupe et de variété différentielle, ce qui représente un cadre

d’intérêt lorsque des grandeurs difficiles à traiter (telles que les rotations) entrent dans la con-

ception du filtre [14, 4, 21]. Ainsi, cette thèse se place dans la lignée des travaux qui ont été

réalisés ces dernières années, en étendant le formalisme des groupes de Lie aux filtrage par-

ticulaire.

Les travaux de cette thèse s’appliquent à la navigation d’un système mobile, qui englobe les

techniques permettant l’estimation de sa position, de sa vitesse et de son orientation. Cette

discipline utilise un ensemble de capteurs embarqués dont les mesures sont imparfaites, ainsi

que des modèles cinématiques comportant des incertitudes, ce qui en fait une application

classique du problème d’estimation Bayésienne. Ces dernières années, les mesures à traiter

sont devenues de plus en plus complexes à cause de nouvelles problématiques industrielles et

opérationnelles. L’utilisation combinée du filtrage particulaire et de la théorie des groupes de

Lie développée dans cette thèse s’est donc révélé être une voie prometteuse pour adresser ces

problématiques nouvelles.

1
Les groupes de Lie sont des espaces non-Euclidiens (courbes) ayant des propriétés mathématiques

particulières. Leur principal intérêt est de permettre une meilleure représentation des variables d’un

système non-linéaires et d’exploiter les symétries d’un modèle.
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Objectifs Scientifiques
L’objectif de la thèse est d’établir les bases du filtrage particulaire sur groupes de Lie et d’en

étudier l’intérêt pour des problèmes de navigation optimale. Cela implique l’adaptation des

principaux aspects du filtre particulaire à ce nouveau formalisme. Une attention particulière est

portée à la faisabilité des méthodes proposées, en terme d’implémentation, de performances

et de coût de calcul.

Méthodes et développements
Un filtre de navigation a pour principe d’estimer les variables cinématiques d’un système en se

basant sur un modèle de mouvement et un modèle de mesure associé à un capteur. Ces mod-

èles sont décrits par des processus aléatoires qui sont traités par une approche Bayésienne

2
adaptée aux groupes de Lie. Cette nouvelle approche développée dans la thèse a mené à

l’algorithme de base du filtre particulaire sur groupes de Lie, nommé LG-PF pour Lie Group Par-

ticle Filter. Par ailleurs, une attention particulière a été portée à l’étape de ré-échantillonnage

qui intervient lorsque l’ensemble des particules doit être régénéré. En se basant sur la théorie

du filtre particulaire Laplacien (LPF), une approche innovante a été proposée pour générer des

particules dans les zones où la densité a posteriori est la plus probable. L’approche se for-

malise comme un problème d’optimisation qui se résout en utilisant un filtre de Kalman itéré

sur groupes de Lie [14]. Ce nouveau filtre, nommé LG-LPF (Lie Group Laplace Particle Filter) a

fait l’objet d’une première publication [26] et a démontré un gain significatif en performances

par rapport aux algorithmes classiques sur un scénario de recalage par angles d’arrivée. Ces

résultats on été confirmés dans une seconde publication portant sur desmesures Doppler [23].

Par ailleurs, cette approche a été généralisée dans des cas où les densités de probabilités

présentent de fortes multi modalités. La méthode proposée établit une recherche des zones

les plus probables sur un critère statistique, et étend des méthodes de partitionnement (clus-

tering) aux groupes de Lie, ce qui constitue également une nouveauté introduite par la thèse.

L’application de ces travaux à un scénario de navigation optimale par mesures Doppler am-

bigües a donné lieu à une seconde publication [25], et a démontré que l’utilisation des groupes

de Lie améliore la précision et la robustesse du filtre particulaire, même pour un nombre faible

de particules. Malgré les résultats encourageants du LG-LPF, ce filtre est toujours sujet au fléau

de la dimension
3
. Pour cela, les travaux de thèse se sont tournés vers le LG-KPKF (Lie Groups

Kalman-Particle Kernel Filter), qui a pour principe de représenter la densité de probabilités de

l’état par une mixture de Gaussiennes sur groupes de Lie. L’application du formalisme Bayésien

à cette nouvelle formulation montre que chaque particule peut être traitée par un filtre de

Kalman étendu local, et l’ensemble des poids est régi par un filtre particulaire. Ainsi, les filtres

locaux guident les particules vers les zones les plus probables et l’approche particulaire per-

2
L’inférence Bayésienne est une méthode permettant de calculer la probabilité de divers évènements

étant donné des observations.
3
Le fléau de la dimension est un phénomène qui se présente lorsqu’un grand nombre de variables

(supérieur à six) sont estimées par le filtre particulaire.

162



APPENDIX D. RÉSUMÉ EN FRANÇAIS - FRENCH SUMMARY
met de traiter des problèmes non-Gaussiens. De plus, le LG-KPKF a été étudié dans le cas où

le modèle cinématique vérifie des propriétés de symétrie définies dans la théorie du filtre de

Kalman étendu invariant (IEKF), améliorant significativement les performances du filtre. Cette

nouvelle approche a fait l’objet d’une publication [24] et a démontré l’intérêt du LG-KPKF par

rapport à des algorithmes de premier plan de la littérature (LG-EKF [14] et LG-LPF).

Un autre aspect des travaux de thèse s’est porté sur l’étude dune borne statistique sur groupes

de Lie. Ces bornes calculent l’erreur asymptotique minimale atteignable pour un problème

d’estimation (quelle que soit la méthode employée pour le résoudre), ce qui représente un outil

puissant pour évaluer les performances d’un algorithme et concevoir un système robuste. Des

études préliminaires ont été réalisées à propos de la borne de Cramer-Rao sur groupes de Lie

[48, 11]. Cependant, les formulations proposées dans la littérature n’incluaient pas les aspects

temporels des simulations. Ainsi, une borne de Cramer-Rao récursive sur groupes de Lie ma-

triciels a été introduite dans cette thèse. Plus spécifiquement, les travaux de thèse ont montré

que la formulation proposée est une extension naturelle de la borne proposée par Tichavsky

[78]. Ce nouvel élément théorique a fait l’objet d’un article soumis dans la revue Automatica.

Les travaux de thèse sur le filtre particulaire ont permis des développements sur des méth-

odes connexes. En particulier, le filtre de Kalman étendu sur groupes de Lie (LG-EKF) est un

algorithme de référence dans la littérature et surclasse le filtre de Kalman étendu classique.

Cependant, les approches proposées dans la littérature présentent des formulations problé-

matiques pour l’estimation des biais des capteurs inertiels. Une formulation adaptée a été

proposée dans la thèse, apportant un gain dans l’estimation des biais gyrométriques et qui se

traduit par une amélioration globale de la précision du filtre. De plus, un calcul analytique des

matrices Jacobiennes sur groupes de Lie a été établi, ce qui a permis d’obtenir une implémen-

tation plus simple et plus précise du filtre tout en diminuant la charge de calcul. Ces travaux

ont fait l’objet d’un article en finalisation pour la revue IEEE Transactions on Robotics.

Conclusion et Perspectives
Cette thèse a permis d’établir les bases théoriques du filtre particulaire sur groupes de Lie, qui

représente un champ de techniques d’estimation nouvelles. Par ailleurs, un ensemble de filtres

innovants a été implémenté sur des problèmes de navigation exigeants. Les résultats obtenus

ont justifié l’intérêt de l’utilisation des groupes de Lie, menant à une amélioration nette de la

robustesse et de la précision des algorithmes pour un nombre réduit de particules (un à deux

ordres de grandeur inférieur). De plus, la mise en place de la borne de Cramer-Rao récursive

dans les groupes de Lie constitue une avancée significative pour caractériser le comportement

des filtres développés.
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