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non-négative : cadre unifié pour les données textuelles
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Résumé

Depuis l’avenènement du Big data, les techniques de réduction de la dimension sont devenues es-

sentielles pour l’exploration et l’analyse de données hautement dimensionnelles issues de nombreux

domaines scientifiques. En créant un espace à faible dimension intrinsèque à l’espace de données origi-

nal, ces techniques offrent une meilleure compréhension dans de nombreuses applications de la science

des données. Dans le contexte de l’analyse de textes où les données recueillies sont principalement

non négatives, les techniques couramment utilisées produisant des transformations dans l’espace des

nombres réels (par exemple, l’analyse en composantes principales, l’analyse sémantique latente) sont

devenues moins intuitives car elles ne pouvaient pas fournir une interprétation directe. De telles appli-

cations montrent la nécessité de techniques de réduction de la dimensionnalité comme la factorisation

matricielle non négative (NMF), utile pour intégrer par exemple, des documents ou des mots dans

l’espace de dimension réduite. Par définition, la NMF vise à approximer une matrice non négative

par le produit de deux matrices non négatives de plus faible dimension, ce qui aboutit à la résolu-

tion d’un problème d’optimisation non linéaire. Notons cependant que cet objectif peut être exploité

dans le domaine du regroupement de documents/mots, même si ce n’est pas l’objectif de la NMF.

En s’appuyant sur la NMF, cette thèse se concentre sur l’amélioration de la qualité du clustering

de grandes données textuelles se présentant sous la forme de matrices document-terme très creuses.

Cet objectif est d’abord atteint en proposant plusieurs types de régularisations de la fonction objectif

originale de la NMF. En plaçant cet objectif dans un contexte probabiliste, un nouveau modèle NMF

est introduit, apportant des bases théoriques pour établir la connexion entre la NMF et les modèles

de mélange finis de familles exponentielles, ce qui permet d’offrir des régularisations intéressantes.

Cela permet d’inscrire, entre autres, la NMF dans un véritable esprit de clustering. Enfin, un modèle

bayésien de blocs latents de Poisson est proposé pour améliorer le regroupement de documents et de

mots simultanément en capturant des caractéristiques de termes bruyants. Ce modèle peut être relié à
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RESUME

la NMTF (Nonnegative Matrix Tri-Factorization) consacrée au co-clustering. Des expériences sur des

jeux de données réelles ont été menées pour soutenir les propositions de la thèse.

Mots-clés : classification croisée, factorisation, modèles des blocs latents, modèles de mélanges, text

mining.
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Abstract

Since the exponential growth of available Data (Big data), dimensional reduction techniques be-

came essential for the exploration and analysis of high-dimensional data arising from many scientific

areas. By creating a low-dimensional space intrinsic to the original data space, theses techniques offer

better understandings across many data Science applications. In the context of text analysis where the

data gathered are mainly nonnegative, recognized techniques producing transformations in the space

of real numbers (e.g. Principal component analysis, Latent semantic analysis) became less intuitive as

they could not provide a straightforward interpretation. Such applications show the need of dimensio-

nal reduction techniques like Nonnegative Matrix factorization (NMF) useful to embed, for instance,

documents or words in the space of reduced dimension. By definition, NMF aims at approximating a

nonnegative matrix by the product of two lower dimensional nonnegative matrices, which results in

the solving of a nonlinear optimization problem. Note however that this objective can be harnessed to

document/word clustering domain even it is not the objective of NMF. In relying on NMF, this thesis

focuses on improving clustering of large text data arising in the form of highly sparse document-term

matrices. This objective is first achieved, by proposing several types of regularizations of the origi-

nal NMF objective function. Setting this objective in a probabilistic context, a new NMF model is

introduced bringing theoretical foundations for establishing the connection between NMF and Finite

Mixture Models of exponential families leading, therefore, to offer interesting regularizations. This al-

lows to set NMF in a real clustering spirit. Finally, a Bayesian Poisson Latent Block model is proposed

to improve document and word clustering simultaneously by capturing noisy term features. This can

be connected to NMTF (Nonnegative Matrix factorization Tri-factorization) devoted to co-clustering.

Experiments on real datasets have been carried out to support the proposals of the thesis.

Keywords : co-clustering, factorization, latent block models, mixture models, text mining.
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0.1. MOTIVATION

In day-to-day situations, a humongous amount of data (numbers, texts, images, videos, etc) is

created around the world and stored into different entities. Taken individually, the majority of this

data is rather self-explanatory. However, gathered into a large collection, it may become challenging

to evaluate or synthesize the information. Throughout the years, Machine Learning has significantly

increased its lead into processing automatically such collections with the arriving of more powerful

computational resources and improved fitting models for the data. For those large collections that can

be retranscripted in the form of a highly dimensional data matrix X ∈ Rn×d, a key area referred to

as dimensional reduction was to create a low-dimensional representation of the original data. For this

task, one particular technique called Singular Value Decomposition (SVD) has led for many years the

award of dimensional reduction with applications across almost every domain. In the analysis of text

collections transcripted under the format of document-term matrices s.t. X ∈ Rn×d
+ , a corresponding

equivalent to SVD was made by the Latent Semantic Analysis (LSA) [1].

While real numbers appear in many domains (e.g. finance, meteorology, etc), those collecting data

such as occurrences, concentrations of substances, images, probabilities, signals or more generally any

nonnegative values would vouch for retaining a similar space of definition for the low-dimensional data

in order to derive a interpretable meaning. In this sense, SVD based techniques such as Principal

Component Analysis (PCA) (which in addition required the data matrix to be centered)[2, 3] or LSA

would trouble or prevent this interpretation by allowing in their factors the presence of negative values

which are initially not defined in the original data space and out of sense for the considered domain.

This eventually emphasized the evident need of techniques for nonnegative data such as Nonnegative

Matrix factorization (NMF)[4].

0.1 Motivation

As its origin will suggest, NMF was not designed for clustering purposes, however, in the last

decades, many applications led to observe its potential in this area [5]. Ever since, the underlying equi-

valence between NMF and precursors clustering techniques such as K-means [6] or powerful modeling

tools such as Finite mixture model under certain conditions were often mentioned but not formally ex-

plained. In the case of text analysis, several extensions of NMF have been suggested, however, with the

majority using an error function not necessarily adapted to the analysis of document-term matrices

(e.g. Frobenius). In this thesis, we undertake the problem of improving NMF document clustering
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0.2. THESIS OUTLINES

using cluster ensembles, regularized objective functions, Neural Word Embedding and Information

theory. Furthermore, we propose to cast NMF as a clustering optimization problem and describe the

exact relation between NMF, Kmeans-like algorithms and Finite Mixture Models. Ultimately, several

studies of the clustering performances of our proposal are achieved on highly dimensional and sparse

text data. Special attention is given to document-term matrices lying in the set of unit-sphere as this

normalization has been automatically applied for practicing NMF document clustering throughout

the years and found dedicated distributions in some continuous mixtures models relying for instance

on von Mises-Fisher distributions [7]. Several insights toward improving the clustering performance of

NMF and finite Mixture Models are also given.

0.2 Thesis outlines

— Chapter 1 : ”Preliminaries” reviews the existing techniques and algorithms for dimensional

reduction and clustering as for the probabilistic knowledge required for mixture models.

— Chapter 2 : ”Nonnegative Matrix Factorization” is an extended review of NMF, its several va-

riants and extensions, as well as the common algorithms used in practice to obtain local minima.

A comparison of NMF with respect to the Frobenius norm and the generalized Kullback-Leibler

divergence using the solutions of the multiplicative updates algorithm is given. Furthermore,

a study of the local minima regarding the clustering quality highlights several limitations and

the need of a consensus approach to extract better document clustering partitions out of NMF.

— Chapter 3 : Nonnegative Matrix Factorization with semantic leveraging details approaches

taken with NMF in the last decade and presents several regularizations of the original NMF

objective made to improve document clustering. A first approach consists in decomposing the

data matrix and a graph of semantic contextual relationships simultaneously into a shared

low-dimensional subspace. A second approach aims at leveraging subordinates semantic rela-

tions (such as hyponyms) using the Kantorovich–Rubinstein (Wasserstein) metric to obtain

regularization embeddings.

— Chapter 4 : ”Toward probabilistic factors for NMF and connections with Finite Mixture Mo-

dels”, initiates the optimization of a more constrained objective in order to embed NMF into a

straightforward clustering problem. By transforming one subspace into a set of probability dis-

tributions, and considering the class of entropy functionals from the Rényi family to regularize
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the NMF objective, this optimization results in major improvements of the clustering perfor-

mance. In addition, thanks to further properties of the approximation metric (Frobenius norm,

I-divergence, Itakura-Saito and any Bregman divergences), exact connections between NMF,

K-means and several Finite Mixture Models using exponential distributions (e.g. Gaussian, von

Mises-Fisher, Poisson) are established.

— Chapter 5 : ”Gamma-Poisson Latent Block Model for noisy text data” draws the attention

toward improving clustering of document-term matrices using co-clustering techniques of Pois-

son mixture. By taking advantages of the parameterization offered by the Latent Block Model,

we developed a coherent scheme for capturing noisy text features using Poisson mixture. The

estimation of the parameters is first achieved using Maximum Likelihood. Later on, Bayesian

Inference and Monte Carlo Markov Chain (MCMC) are used to estimate the parameters and

address the overfitting mixture (empty cluster solution) issue arising with finite mixture model.

— Conclusion and Perspectives reviews the main contributions in the thesis in terms of clustering,

co-clustering and data embedding contexts, and propose some perspectives.
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Notation glossary

C field of complex numbers
Q field of rational numbers
N field of natural numbers
N∗ field of natural numbers with 0 excluded
R field of real numbers
Rn set of real vectors of size n
Rn×d set of real matrices of size n× d
R+ set of nonnegative real numbers
Rn+ set of nonnegative real vectors of size n

Rn×d
+ set of nonnegative real matrices of dimension n× d

R− set of non-positive real numbers
Rn− set of non-positive real vectors of size n

Rn×d
− set of non-positive real matrices of dimension n× d

Sd−1 (d-1) dimensional unit-sphere embedded in R
U(., .) transportation polytope
∆n probability simplex of size n
≡ equivalent to
← assignment operator
:= assignment operator
∀ for all
⇐⇒ if and only if
∥.∥F Frobenius norm/spectral norm (matrix)
∥.∥2 Euclidean norm (vector)
⟨., .⟩ inner product
⟨., .⟩F Frobenius dot product/matrix inner product
⊙ Hadamard product (element-wise matrix multiplica-

tion)
A
B Hadamard/element-wise division of matrices A and B
Ap Hadamard/element-wise power of matrix A of order p
⊤ transpose operator (.)⊤

G G = (1/g, . . . , 1/g)⊤ is a vector of size g with all com-
ponents equals to 1

g

ek unit vector s.t. ek = (0, 0, . . . , 1
k−thposition

, . . . , 0)⊤

1n vector of all ones of size n
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Notation glossary

In identity matrix of size n× n
x x = (x1, . . . , xn)⊤ a natural vector
xi xi = (xi1, . . . , xid) is a row-vector in X
xj xj = (xj1, . . . , xjn)⊤ a column vector in X
xij (i,j)th entry of matrix X

xi. i-th row marginal of X, s.t. xi. =
∑︁d
j xij

x.j j-th column marginal of X, s.t. x.j =
∑︁n
i xij

Wp(., .) Wasserstein distance
W λ
p (., .) Smoothed Wasserstein distance

H(.) Shannon entropy
Hα(.) Rényi entropy
DKL(.||.) Kullback-Leibler divergence
DI(.||.) generalized Kullback-Leibler divergence/I-divergence
DIS(.||.) Itakura-Saito divergence
rank(X) rank of matrix X
ran(X) range of matrix X
dim(X) dimension of matrix X
diag(x) diagonal matrix with x on the diagonal
span(.) span of a vectors set
dom(.) domain of definition
int(X ) interior of a set X
ri(X ) relative interior of a set X
Tr(X) trace of a square matrix X
det(X) determinant of a square matrix X
[X]+ positive orthant of X
[X]− negative orthant of X∏︁b,d,f
a,c,e . . .

∏︁b
a=1

∏︁d
c=1

∏︁f
e=1 . . .∑︁b,d,f

a,c,e . . .
∑︁b
a=1

∑︁d
c=1

∑︁f
e=1 . . .

I canonical set of sample/document indexes s.t. I =
{1, . . . , n}

J canonical set of feature/term indexes s.t. J = {1, . . . , d}
Ik subset of row indexes in the cluster k
Jℓ subset of column indexes in the cluster ℓ
Ik × Jℓ subset of row and column indexes in the co-cluster/block

of indice (k, ℓ)
π vector of proportions s.t. π = (π1, . . . , πg)⊤ ∈ ∆g

ρ vector of proportions s.t. ρ = (ρ1, . . . , ρc)⊤ ∈ ∆c
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Acronyms

NMF Nonnegative Matrix Factorization
NMTF Nonnegative Tri-Matrix Factorization
SNMF Semantic Nonnegative Matrix Factorization
SNMF Spherical Nonnegative Matrix Factorization
WE-NMF WE-NMF Nonnegative Matrix Factorization
cNMF constrained Nonnegative Matrix Factorization
PCA Principal Component Analysis
SVD Singular Value Decomposition
LRA Low-Rank Approximation
LSA Latent Semantic Analysis
FMM Finite Mixture Model
PLSA Probabilistic Latent Semantic Analysis
LBM Latent Block Model
EM Expectation-Maximization
VEM Variational Expectation-Maximization
SEM Stochastic Expectation-Maximization
CEM Classification Expectation-Maximization
MH Metropolis-Hasting
NSPlbm Noisy Sparse Poisson Latent Block Model
B-NSPlbm Bayesian Noisy Sparse Poisson Latent Block Model
MI Mutual Information
PMI Pointwise Mutual Information
ACC Accuracy
NMI Normalized Mutual Information
ARI Adjusted Rand Index
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Chapitre 1

Preliminaries

This thesis requires basic knowledge on matrix theory. The notation is made to be intuitive throu-

ghout the paper. However, if needed, the reader can refer to Appendix A where more details on

the notation and reminders on matrix theory (e.g. vector space, operations, norms, distances, eigen

decomposition) are given.

1.1 Data representation in text analysis

Text data naturally arise in a unstructured fashion (e.g. text collections, tweets, articles, meta-

data, etc) and require some sort of representation to be analyzed or process automatically. The need

of processing theses large collections of text is essentially what describes the origin of Information

Retrieval (IR) and therefore IR summarizes the set techniques for searching for information in do-

cuments or for documents themselves or any types of text. Three mathematical basis are essentially

considered for representing and analyzing text data. Set-theoritic models based on boolean logic (e.g.

the Boolean model or the extended Boolden model [8]), algebric models based on linear algebra (e.g.

Vector space Model [9], [10]) and probabilistic Models. In terms of data representation, all basis tend

to represent the data in the form of a vector space and differ rather according to the mathematical

approach used for analyzing. A common methodology used to provide a vector space is to primarily

consider a Bag-of-words. Intuitively, this method allows us to represent each text input (e.g. a sentence

or a document) as an exhaustive list of terms (referred to as a bag), disregarding of grammar, punc-

tuation, perhaps numbers or any irrelevant vocabulary inputs defined as stopwords (e.g. repetitive

words or the most common words). Note that the stopwords may be carefully picked by the user or be
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1.1. DATA REPRESENTATION IN TEXT ANALYSIS

domain-specific. For every terms kept in the list, the model also retained its frequency (or occurrence)

in the original text input. Afterwards, the list of bags results in a structured text collections from

which we can construct a document-term matrix X representative of n documents and d terms where

the (i,j)-th scalar denotes the occurrence of the term j in the document i as illustrated below :

⎛⎜⎜⎜⎜⎜⎜⎜⎝

t1 . . . tj . . . tp

d1
...

...
di . . . xi,j . . .

...

dn

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Eventually, the resulting matrix is often sparse and highly dimensional. From this representation, se-

veral IR indexing techniques [11] adapted to vector spaces can take place in order to exhibit further

noisy samples or key features and narrow the relevant information. Their are referred to as automatic

indexing (or subject indexing) and highlight two notions of automatic indexing : exhaustivity which

expresses how deeply the various topics of a document are reflected in the list of terms (a high exhaus-

tivity increases the likelihood that all the relevant articles are being retrieved) and specificity which

expresses how exactly a term characterizes a given topic (a high specificity increases the likelihood

of retrieving articles that describes the topic precisely). In this thesis, we uses the later which arises

in the form of a term weighted normalization called TF-IDF [12, 13]. Considering a document-term

matrix X = (xij)n×d with a set of rows I = {i : 1, . . . , n} and columns J = {j : 1, . . . , d}, and its

indicator matrix X̄ ∈ {0, 1}n×d, TF-IDF can be stated as the following function :

TF-IDF(xij) = TFij × log n∑︁
i x̄ij

, (1.1)

where TFij = xij is the term frequency in the document i and log n∑︁
i
x̄ij

the Inverse Document

Frequency (IDF) which is a magnitude scaled by the number of documents in which the term j

appears.

Further cleaning techniques such as Stemming or Lemming are frequently applied but are not

discussed in this section. For in-depth information, the readers can refers to [14, 15].

Remark. In information retrieval, the use of clustering relies on the assumption that if a document is

relevant to a query, then other documents in the same cluster can also be relevant. This hypothesis can

be used at different stages in the information retrieval process, the two most notable being : cluster-

based retrieval to speed up search, and search result clustering to help users navigate and understand
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what is in the search results. The document clustering which still remains a hot topic can be tackled

under different approaches.

1.2 Clustering and Co-clustering

Clustering (or cluster analysis) is the task dedicated to identifying groups inside a population such

that individuals belonging to the same group are highly similar between each others. Let X be a data

matrix of size n× d with a set of individuals I = {i : 1, . . . , n} partitioned into g groups, the partition

can holds several representations :

— a labeling vector z = (z1, . . . , zn)⊤ ∈ {1, . . . , g}n where each variable zi equals the label of the

group in which i is in,

— a hard classification matrix Z = (zik) ∈ {0, 1}n×g where zik = 1 if i belongs to the group k

otherwise zik = 0,

— a soft classification matrix Z = (zik) ∈ [0, 1]n×g where zik is a conditional probability s.t.∑︁
k zik = 1.

In the first two representations, the partition is said to be hard since each individual can only belong

to one group. Clustering techniques building these representations are referred to as hard clustering.

In the third representation, where the partition is a set of probability distributions, an individual can

belong to several group. Clustering producing such partitions are referred to as soft/fuzzy clustering.

Let J = {j : 1, . . . , d} be the set of features partitioned into c groups, s.t. w ∈ {1, . . . , c}d is the

vector representation and W ∈ [0, 1]d×c is the classification matrix representation. Techniques seeking

to identify simultaneously two partitions for both sets are called co-clustering. Table 1.1 illustrates

the various representations. Several approaches for clustering are denoted (see [16] for a review) with

perhaps one of the most popular being the Hierarchical clustering. This technique works in a sequential

fashion and aims at generating a hierarchy of nested partitions depending on a distance function. As a

consequence, this approach do not require the number of clusters in input. Two types of Hierarchical

clustering are denoted :

— Hierarchical Agglomerative Clustering (HAC) referred to as the ”bottom-up” approach where

each data sample starts in its own cluster and clusters are consecutively paired to form the

hierarchy. Different agglomerative criteria can be found in the literature such as ”single-linkage”

[17], complete-linkage [18], ”average-linkage” [19] or the Ward criterion [20]. Lance and Williams
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Table 1.1 – Data matrix X and associated row and column partitions indicated respectively by the
representations z and Z, w and W , with g = 3.

columns (J )
z(n×1) Z = (zik)(n×g)1 · · · j · · · d

ro
w
s
(I

)

x1 x11 · · · x1j · · · x1d 1 1 0 0
...

...
...

...
xi xi1 · · · xij · · · xid 3 0 0 1
...

...
...

...
xn xn1 · · · xnj · · · xnd 2 0 1 0

w(1×d) 3 · · · 1 · · · 2

W T = (wkj)
0 · · · 1 · · · 0
0 · · · 0 · · · 1

(g × d) 1 · · · 0 · · · 0

showed in [21] that many agglomerative clusterings are variations of a recurrence formulas

for which further details are given in [22, 23, 24, 25, 26]. Standard HAC algorithn have time

complexity ofO(n3) meaning that their not easily scalable for large datasets. A lower complexity

of O(n2) can be reach for some cases using the ”single-linkage” or the ”complete-linkage” [27].

— Hierarchical Divisive Clustering (HDC) referred to as the ”top-down”approach were all the data

samples start in one cluster which and clusters are subsequently split to form the hierarchy.

Example of HDCs are given in [28, 23, 26]. Those approaches are less popular in practice due

to their higher computational costs.

Other popular clustering techniques such as Graph-Based clustering (see the review of Schaeffer [29]),

Spectral clustering [30] or Density-Based clustering [31, 32] are also denoted in the literature. For a

complete review of clustering techniques, the reader can refer to these comprehensive reviews [33, 16,

22, 34].

1.2.1 Metric-based approach for partitioning

In this section, we describe clustering algorithms that optimize a criterion derived directly from

the notion of distance or dissimilarity in order to determine an appropriate partition of the data.
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1.2.1.1 One-way clustering

Given a data matrix X = (xij)n×d, metric-based clustering represents a important class of par-

titioning clustering methods and aims at identifying a partition of g clusters of samples xi given a

chosen distance d computed between the samples and each cluster representative. The later can either

be defined : (i) as a center/centröıd which refers in this case to the method of K-means (MacQueen

et al. [6], also see Bock [35]) ; (ii) or be chosen from the set of samples which refers to the method

of K-medoids introduced by Kaufman & Rousseeuw in [36, 28]. While K-medoids is less sensitive to

outliers, K-means remains to this day one the most popular partitioning techniques. Such methods can

be formulated as an optimization problem which can be solved by an iterative process with guaranty

of finding a local minimum. In the case of K-means, the objective function takes the following form :

J(Z, g) =
n∑︂
i=1

g∑︂
k=1

zikd(xi,µk) =
n∑︂
i=1

g∑︂
k=1

zik∥xi − µk∥22, (1.2)

where d is the squared Euclidean distance (or the sum of squares/SSQ), xi = (xi1, . . . , xid) ∈ Rd

denote the i-th object, µk = (µk1, . . . , µkd)⊤ ∈ Rd is the centroid of the cluster k and zik ∈ Z the

cluster assignment defined as :

zik =

⎧⎨⎩ 1 if k = arg min
k=1,...,g

d(xi,µk)

0 otherwise

⎫⎬⎭ .
Note that minimizing the squared Euclidean distance here is equivalent to minimizing the distance

and preferred due to its strictly convex property and smoothness around near points [37]. Both K-

means and K-medoids are special cases of a more general centroid-based clustering approach known

as méthode des nuées dynamiques introduced by Diday in [38]. The latter makes it possible to have

centroids of various forms, not necessarily vectors in Rd. In terms of clustering of directional data (such

as text data), a variant of k-means called the Spherical K-means [39] where d is set as the (1 − cos)

dissimilarity has for objective function :

J(Z, g) =
n∑︂
i=1

g∑︂
k=1

zik(1− cos(xi,µk)), (1.3)

where cos(xi,µk) is given by the dot product since∥xi∥ = ∥µk∥ = 1 and zik is set similarly as in

K-means but according to the (1− cos) dissimilarity.

Another variation of K-means is known as k-medians (see Jain and Dubes [34], and Bradley et al.

[40]). It is based on the estimation of the median instead of the mean and minimizes the sum of absolute
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deviations (1-norm), which are equivalent to the Manhattan distance. A more recent generalization of

the k-means principle to any Bregman divergence (for which the euclidean distance arises as a special

case) has been proposed by Banerjee et al. in [41]. This relation will be of interest for the generalization

of the transition from NMF to FMMs of Exponential Families, arsing in Chapter 4.

1.2.1.2 Two-way clustering (Co-clustering)

The earliest co-clustering approach that can be found in the literature is known as Direct Clustering

or (Block clustering) and was proposed by Hartigan in [42]. The algorithm consists in identifying a

partition of K block-clusters {B1, . . . , BK} in a data matrix X = (xij)n×d by using the sum of squares

between the observed data xij and the average value of xij inside a block denoted as bk such as :

SSQ =
K∑︂
k=1

∑︂
i,j∈Bk

(xij − bk)2. (1.4)

To reach a reasonable solution, Hartigan have proposed an algorithm adapted from a splitting

algorithm used in one-way clustering that allows a set of rows Ik and columns Jk for a block Bk which

results in the pair (Ik, Jk). A split of Bk corresponds to either a row or column ”division” of Bk into

two subsets B′
k and B′′

k .

(a) (b) (c) (d)

Figure 1.1 – (a) : Original data - (b) : data reorganised according to the true row classes - (c) : data after diagonal
co-clustering - (d) : data after non-diagonal co-clustering.

Other types of co-clustering have emerged, we might also mentioned the works of Govaert [43, 44,

45], Bock [46], Marcotorchino [47], Arabie and Hurbert [48], Trejos and Castillo [49] Castillo and Trejos

[50], Duffy and Quiroz [51], Van mechelens and Scheppers [52], Rocci and Vichi [53], Labiod and Nadif

[54] and Ailem et al. [55] who proposed a range of algorithms suitable for continuous, binary and count

data (Figure 1.1). In Bio-informatics, two-way clustering approaches known as Bi-clustering have been

applied in gene expression. Cheng and Church [56] proposed an algorithm called Node-deletion that
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identifies partition with a low mean squared residue and allows block to overlap. Later, Cho et al.

[57, 58] proposed a fast k-means like algorithm utilizing a similar measure and Guapta and Aggarwal

[59] introduced the use of mutual information. Somes key surveys on co-clustering for biological data

are proposed by Madeira and Oliveira[7], Tanay et al.[60] and Busygin et al. [61]. Several comparaisons

and evaluations of Bi-clustering algorithms are proposed by Santamaŕıa et al.[62] and Li et al[63]. More

recently, Hanzcar and Nadif proposed an effective gene expression co-clustering method by developping

a new bagging approach [64, 65], and also pointed later in [66] the problem of comparing biclusters

obtained from several co-clustering algorithms.

1.2.2 Probabilistic modeling

In this section, we briefly review several generative models used in text mining including topic

models for abstract data representation and model-based approaches primarily designed for cluster

analysis. Most of the models presented in this section required the use of Exponential distributions.

As a reminder, the reader can refer to Appendix B where we present several continuous and discrete

Exponential distributions in terms of parameters, and their conjugate priors.

xi

zi

π

α

n g

(a) FMM

xij

zi wj

π ρ

α

d

n

g × c

(b) LBM

Figure 1.2 – FMM and LBM as graphical models.

1.2.2.1 Mixture Models

Model-based clustering (or mixture models) is a class of generative techniques aiming at modeling

a hidden distribution (the marginal) using a mixture of several known and relatively simpler distri-

butions, e.g. Gaussian, Poisson, etc (see Figure 1.3). The distributions (referred to as a components)

belong to the same family but vary in terms of parameters. The data [x1| . . . |xn]⊤ is assumed to be

generated from that mixture of distributions. Mixture models with limited number of components
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are called Finite Mixture Models (FMM) and are parametric. Models with unlimited (or unset) num-

ber of components are called Infinite Mixture Models (IMM) and are non-parametric. The marginal

probability density function is described as follows :

f(X; Θ) =
n∏︂
i=1

g∑︂
k=1

πkf(xi; θk) (1.5)

where π = (π1, . . . , πg) are the components weights, f(xi; θ) is a probability density (or mass) function

Figure 1.3 – Example of a mixture of 3 Gaussian distributions (univariate and multivariate).

with parameters ∈ θ and Θ = (π,θ) is the set of parameters of the model. Several optimization

techniques for eq (1.5) which include Maximum Likelihood Estimation (MLE) and Bayesian Inference

are detailed in the following sections (1.3.1 and 1.3.2). In the field of document clustering, we denote

the work of Tantrum et al. [67] which proposed a FMM with the Gaussian distribution. However, the

distribution was found to be inadequate. Dhillon and Sra [68] proposed a FMM using the von Mises-

Fisher distribution (analogue of the Gaussian distribution for directional data) and demonstrated its

relevance for document clustering. Subsequently, we can also mention the works of Banerjee and Gosh

[69, 70] using the same distribution. More recently, Li and Zhang [71] as well as Rigouste et al [72]

proposed their respective FMMs using the Multinomial distribution. Yin and Wang [73] proposed a

Dirichlet Multinomial mixture model for short text clustering and later, Qiang et al. [74] proposed a

Pitman-Yor process mixture model for the same application. On similar type of data (count data),

we might also mention the work of Rau et al. [75] which uses Poisson mixtures to cluster digital gene

expression profiles. We also denote several applications in supervised text analysis with the approach of

Nigam [76, 77] which uses a Multinomial mixture model combined with a Naives Bayes, or McCallum

et al. [78] which proposed to use the Multivariate Bernoulli for binarized document-term matrices.
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1.2.2.2 Model-based K-means (mK-means)

Model-based K-means is a generalization of the standard k-means algorithm presented in Section

1.2.1.1 where the distance function is replaced by the log-likelihood of the observed data as follows :

log p(X|Θ) =
∑︂
xi∈X

log p(xi|θzi), (1.6)

where zi = arg max
k=1,...,g

log p(xi|θk). It can be shown that this model is a special case of the a mixture

model with equal proportions where the log-likelihood is maximized using a Classification EM algo-

rithm [79]. When p(xi|θzi) is set as the Gaussian probability density function, with equal variance,

mK-means collapses to the original K-means algorithm [6]. Under the same conditions, a similar de-

duction can be made when p(xi|θzi) is the von Mises-Fisher distribution pdf which collapses to the

Spherical K-means [39] algorithm presented in Section 1.2.1.1.

1.2.2.3 Latent Block Models

The Block Mixture Model (BMM) or Latent Block Model (LBM) was introduced by Govaert and

Nadif in [80] for co-clustering of binary data. This model-based approach aims at identifying a pair

of partitions (z,w) of g × c co/block-clusters. Let X = (xij) be a data matrix of size n × d with a

set of rows I and columns J , the purpose is to model a marginal distribution where each observations

xij are assumed to be generated by block. Each observation xij are assumed to be iid. The marginal

density is denoted as follows :

f(X; Θ) =
∑︂

(z,w)∈Z×W
p(z)p(w)

n,d∏︂
i,j

f(xij ; θziwj ), (1.7)

where Z × W denote the set of all possible partitions I × J . p(z) =
∏︁n
i πzi and p(w) =

∏︁d
j ρwj

where π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρc) are the proportions for the row and column partitions

respectively.

LBM for contingency table/two-way tables. Later, Nadif and Govaert [81] proposed an application of

LBM on contingency tables using the Poisson distribution and a then several others [82, 83]. Conside-

ring X as a contingency table where the set of row and column indexes I and J are now assimilated to

the modalities of two categorical variables. Each observation xij can now be described by a joint pro-

bability and the marginal distributions x1.
N , . . . , xn.

N and x.1
N , . . . , x.d

N of the data matrix are therefore the
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probability distributions of each modalities in I and J respectively. The hypothesis of independence

can therefore be formulated as follows :

H0 : xij
N

= xi.
N
× x.j
N
,∀(i = 1, . . . , n and j = 1, . . . , d). (1.8)

Following this hypothesis, LBM can provide a parameterization taking in consideration a row and

column effect along side the block parameter.

Several procedures for optimizing eq (1.7) including Maximum Likelihood Estimation (MLE) and

Bayesian Inference are detailed in sections (1.3.1 and 1.3.2). The reader can refer to [84] for more

details on co-clustering using LBM.

1.2.2.4 Topic Modeling

The Topic model is one of the most popular generative model in text analysis. Considering a

document-term matrix X = (xij)n×d, in contrast to conventional approaches which interpret the

documents according to the entire set of terms, Topic models attempt to explain the documents

according to the hidden concepts (topics) embedded in the terms. Papadimitriou et al [85] described

an early Topic model referred to as probabilistic Latent Semantic Indexing (PLSI) in which a document

is seen as a probability distribution that is the convex combination of a small number of topics

while a topic is as a probability distributions on terms. Another generative model inspired by LSA is

Probabilistic LSA (PLSA) [86, 87]. As opposed to LSA which uses SVD to map the set of documents

and terms in a lower dimensional vector space by using Singular Value Decomposition, PLSA is based

on the statistical model called the Aspect model which defines a latent class variable (or partition)

Z = (z1, . . . , zK) over the set of all observations xij . Therefore, the joint probability of the model for

one observation is expressed as :

p(xi,xj) =
∑︂
z∈Z

p(xi|z)p(xj |z)p(z). (1.9)

Subsequently, the model parameter can be estimated using the EM algorithm (described in Section

1.3.1). By considering a Multinomial distribution denoted by p(|z), the model can be reformulated in

a matrix notation such as U = (p(xi|zk))ik, V = (p(xj |zk))jk and Σ = diag(p(z1), . . . , p(zg)) ∈ Rg×g
+

which allows the joint probability to be expression in the following matrix product P = UΣV ⊤ for

which an analogy can be established with LSA (see Section 1.6.4).
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PLSA was also shown by Gaussier and Goutte [88] to be equivalent to NMF. Assuming that∑︁
ij xij = 1 and denoting the approximation X ≈ W H⊤ where W n×g and Hd×g such that, wik =

p(xi|zk), hjk = p(xj |zk) and [W H⊤]ij = p(xi,xj). Introducing two diagonals scaling matrices A,B ∈

Rg×g such that
∑︁
k wik = akk and

∑︁
j hjk = bkk. W H⊤ can be re expressed as :

W H⊤ = (W A⊤A)(HB⊤B)⊤ = (W A⊤A)(B⊤BH⊤) = (W A⊤)(AB⊤)(BH⊤), (1.10)

where [W A⊤]ik = p(xi|zk), [BH⊤]⊤jk = p(xi|zk) and [AB⊤]kk = p(zk). In addition, the authors

showed that by joining the EM formulas (p(zk), p(xi|zk)) to re express p(xi|zk) and (p(zk), p(xi|zk))

to re express p(xi|zk), PLSA could be rewritten in the form of two multiplicative updates similarly as

those derived from the objective function of NMF with the I-divergence, which states that PLSA any

local maximum likelihood point estimate is a local minimum point for NMF with the I-divergence.

Thereafter, Ding et al. [89] showed that PLSA and NMF optimize the same objective function, but

the algorithms remain different and converge in practice to different solutions even if they share that

fixed point property.

Latent Dirichlet Allocation is another topic model, perhaps the more popular. Let V be an or-

dered set of terms called vocabulary (or dictionary) of size d. A term is expressed by a unit vec-

tor t = (tj) ∈ {0, 1}d where tj = 1 at the position of the term in V and 0 elsewhere. Therefore,

each document xi denote a sequence of Ni terms such that a document is express as the vector

xi = (t1, . . . , tNi). Subsequently, the corpus of n documents noted D can be expressed as the following

set D = {x1, . . . ,xn}. Following this notation, for a number of topics g, LDA is described as the

subsequent generative process for each document xi in the corpus, given by Algorithm 1.

Algorithm 1 LDA generative process

Choose Ni ∼ Poisson(ζ)
Choose θ ∼ Dirichlet(α) where α = (α1, . . . , αg)
for j′ = 1, . . . , Ni do
Choose a topic wj′ ∼ Multinomial(θ)
Choose a term tj′ according to the conditional probability on the topic p(tj′ |wj′ ,W )

end for

where W = (wjk) ∈ {0, 1}d×g is the matrix of the terms conditional probabilities such that

wjk = p(tj = 1|wj′ = k), w = (w1, . . . , wd) is the latent class (or topic) variable of the terms in V.

Note that the Ni are independent of the generating variables θ and w. The marginal distribution of
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a document is therefore equal to :

p(xi|α,W ) =
∫︂
p(θ|α)

(︃ Ni∏︂
j′=1

∑︂
wj′

p(wj′ |θ)p(tj′ |wj′ ,W )
)︃
dθ. (1.11)

The inference can be achieved through Laplace approximation, variational approximation or Monte

Carlo Markov Chain methods.

1.3 Probabilistic modeling inference

In this section, we detail the two approaches taken in this thesis for learning the set of parameters Θ

of FMMs and BMMs arising in the next chapters. The first two sections are overviews of the common

techniques, while sections 1.3.1 and 1.3.2 bring foundations for (i) the inference with BMMs and (ii)

solving intractable problems arising in Bayesian statistics.

1.3.1 Maximum Likelihood Estimation (MLE)

Following the formulation of a Mixture model given in the prior Section 1.2.2.1 where the likelihood

is stated as follows :

f(X; Θ) =
n∏︂
i=1

g∑︂
k=1

πkf(xi; θ), (1.12)

Several approaches can be taken in order to maximize the Likelihood of the model. The first approach

optimizes the log-likelihood of the data defined as :

L(Θ) =
n∑︂
i=1

log
(︃ g∑︂

k

πkf(xi; θ)
)︃
, (1.13)

by using the Expectation-Maximization algorithm (EM) introduced by Demptser et al. [90]. This

algorithm is based upon the notion that there exists a mapping between the observed data X and a

unobserved hidden variable z referred to as the complete-data s.t. :

p(z|X; Θ) = p(z,X; Θ)
p(X; Θ) (1.14)

with L(Θ) which can be re-written as follows :

L(Θ) = log p(X; Θ) = log p(z,X; Θ)− log p(z|X; Θ), (1.15)
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where Lc(Θ) = p(z,X; Θ) = p(X|z; Θ) × p(z; Θ) is known as the complete data-likelihood. Note

that the likelihood of the model can be rewritten as proposed in [80] to integrate the notion of the

complete data (z,X) as follows :

f(X; Θ) =
∑︂
z∈Z

p(z)p(X|z; θ), (1.16)

where Z denotes the set of all partitions z, p(X|z; θ) =
∏︁n
i f(xi; θzi) and p(z) =

∏︁n
i πzi . In order

to maximize L(Θ), EM uses a heuristic to obtain an estimate Θ∗ that maximizes the expectation of

Lc(Θ) given the observed data X and the current estimate Θ(t) [90]. This heuristic is closely related

to the Maximum A Posteriori (MAP) principle which will defined in the next section for Bayesian

inference. Note that this principle do not require derivation of L(Θ). In the following, we replace z by

the classification matrix format Z of conditional probabilities zik. The conditional expectation of the

complete data log-likelihood is expressed by the Q− function as follows :

Q(Θ,Θ(t)) = E[log p(Z,X; Θ)|X,Θ(t)]

=
∑︂
i,k

E[zik|X,Θ(t)] log
(︁
πkf(xi; θk)

)︁
=
∑︂
i,k

p(zik = 1|X,Θ(t)) log
(︁
πkf(xi; θk)

)︁
=
∑︂
i,k

z
(t)
ik log

(︁
πkf(xi; θk)

)︁
(1.17)

where Θ(t) is the current estimate of Θ. z
(t)
ik = π

(t)
k
f(xi;θ(t)

k
)∑︁

k′ π
(t)
k′ f(xi;θ(t)

k′ )
will be estimated at the Expecta-

tion phase and Θ = {π,θ} during the maximization phase such that Q(Θ,Θ(t)) is maximized. The

EM procedure is given in Algorithm 2. The second approach is called the Classification Maximum

Algorithm 2 Expectation-Maximization (EM)

initialize Z(0),Θ(0)

repeat
E-Step : compute Q(Θ,Θ(t))
M-Step : choose Θ(t+1) which maximizes Q(Θ,Θ(t))

until convergence

Likelihood (CML) and was proposed by Symons in [91, 92]. This alternative consists in adding the

classification labels z in the set of parameters Θ. z is estimated from the conditional probabilities

computed in the EM algorithm such as zi = arg max
k=1,...,g

z
(t)
ik . This optimization is referred to as the Clas-

sification EM (CEM) algorithm (introduced by Celeux and Govaert [79]) and is achieved by inserting

a classification phase (C-Step) before the maximization phase (M-step) in the EM algorithm. While
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this approach has several benefits in terms of scalability and convergence time, it might increase the

tendency of overffiting mixture.

1.3.2 Bayesian Inference

Let θ be a parameter of our mixture model, using the maximum Likelihood allows us to obtain a

point estimate θ∗ that maximizes the likelihood of the model. In contrast, by setting a prior probability

distribution for θ, Bayesian inference will allow the learning of the entire posterior distribution of the

parameter conditioned on the observed data as highlighted by the Bayes’ rule :

p(θ|X) = p(X|θ)p(θ)
p(X) .

Note that the inference is straightforward when p(X|θ) and p(θ) are conjugate. The likelihood p(X|θ)

is therefore augmented into a proper marginals distribution over the space of plausible parameters θ.

Consequently, this prior knowledge contributes in reducing uncertainly in the model. In cases where

p(θ) is chosen as a conjugate of p(X|θ), the augmented expectation of the complete data log-likelihood

Q(θ, θ(t)) + log p(θ) has usually a similar functional form to Q(θ, θ(t)), an therefore, the augmented

likelihood can be maximized through the EM algorithm using regularization point estimates including

hyperparameters.

1.3.3 Variational approximation methods

The origin of variational approximation goes back to variational calculus which is a mathematical

field focused on optimizing a functional (mapping of functions to a scalar, e.g. Shannon entropy) over

a class of functions on which that functional depends. Approximate solutions arise when the class of

functions is restricted [93, 94]. Often overshadowed by MCMC methods and the (analytical) Laplace

approximation, variational approximations represent much faster alternatives for large models (with

many parameter or hyperparameters) than MCMC, and more richer than Laplace approximation.

They are however limited in terms of approximation accuracy compared to Monte Carlo methods

which can be arbitrarily accurate by increasing the amount of simulations. See the reviews of Jordan

et al. [95, 96] for an introduction to variational and more information on variational approximation

accuracy.

Supposing that a model includes a set x of observed variables x, and unobserved (also referred to as
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hidden, missing or latent) variables θ. The goal is to determine p(θ|x) (which is might be intractable)

using an arbitrary density function q(θ). From the Bayes’ rule, we have

p(θ|x) = p(x|θ)p(θ)
p(x) , (1.18)

where p(x) is the marginal likelihood (or model evidence). Therefore

log p(x) = log p(x)
∫︂
q(θ)dθ (1.19)

=
∫︂
q(θ) log p(x)dθ (1.20)

=
∫︂
q(θ) log p(x|θ)p(θ)

p(θ|x) dθ (1.21)

=
∫︂
q(θ) log p(x|θ)p(θ)q(θ)

p(θ|x)q(θ) dθ (1.22)

=
∫︂
q(θ) log q(θ)

p(θ|x)dθ +
∫︂
q(θ) log p(x|θ)p(θ)

q(θ) dθ (1.23)

=DKL(q||p) +
∫︂
q(θ) log p(x|θ)p(θ)

q(θ) dθ (1.24)

Since DKL(q||p) ≥ 0 with equality when q = p, it follows that :

log p(x) ≥
∫︂
q(θ) log p(x|θ)p(θ)

q(θ) dθ = L(q(θ)), (1.25)

where L(q(θ)) is known as the evidence lower bound (ELBO) of the model marginal log-likelihood

log p(x). Therefore, maximizing log p(x) by maximizing L(q(θ)) can be considered whether the arbi-

trary density q manages to minimize DKL(q||p) properly. Tractability is achieved by restricting q to a

class of ”manageable” densities. Considering a partition of v disjoint groups for θ s.t. θ = {θ1, . . . ,θv},

a common restriction which takes its root in physics [97] is the mean-field approximation where q(θ)

factorizes independently such that :

q(θ) =
v∏︂

u=1
qu(θu). (1.26)

Another one would be to restrict q as a member of a parametric family of density functions.

In the case of a mixture model where z is set as a labeling latent variable and Θ as the set of

parameters for the density p(X|Θ) of the observed data X = [x1| . . . |xn]⊤ :

p(z|X; Θ) = p(X|z; Θ)p(z; Θ)
p(X; Θ) , (1.27)
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and

log p(X; Θ) =
∫︂
q(z) log q(z)

p(z|X; Θ)dz +
∫︂
q(z) log p(X|z; Θ)p(z; Θ)

q(z) dz (1.28)

=DKL(q||p) + L(q(z); Θ) (1.29)

If [x1| . . . |xn]⊤ are assumed to be independent and identically distributed (iid), an example/special

case of the mean-field approximation is where z form a partition of n groups, one for each variable

xi is q(z) =
∏︁n
i qi(zi). See [98, 99] for application of the variational application in the EM context.

In this thesis, we considered the Variational approximation for the Latent Block models where two

hidden latent variables z and w take place for a set X ∈ Rn×d of observed variables xij ,

p(z,w|X; Θ) = p(X|z,w; Θ)p(z,w; Θ)
p(X; Θ) , (1.30)

and

log p(X; Θ) =
∫︂
q(z,w) log q(z,w)

p(z,w|X; Θ)dzdw

+
∫︂
q(z,w) log p(X|z,w; Θ)p(z,w; Θ)

q(z,w) dzdw

=DKL(q||p) + L(q(z,w); Θ) (1.31)

The mean-field approximation results in a structure with further independence such that the

arbitrary density factorises as follows : q(z,w) = qz(z)× qw(w).

1.3.4 Markov Chain Monte Carlo methods (MCMC)

Introduced by Metropolis and Ulam [100] and generalized by Hastings [101], Markov Chain Monte

Carlo methods is a class of techniques for solving intractable integration problem such as highly di-

mensional probability distribution/density arising in Bayesian inference. Unlike Monte Carlo methods

capable of drawing independent samples, MCMC constructs a Markov Chain where the next sample

is drawn dependently to the current sample. With the arriving of computational resources, these

techniques have gained in popularity and are widespread in Machine Learning applications [102]. For

a review of MCMC approach, the reader can refers to [103, 104, 105]. In this thesis, two MCMC

approaches were used, namely, the Gibbs sampling and the Metropolis-Hastings sampling.
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1.3.4.1 Gibbs sampling

The Gibbs sampling was introduced by Geman and Geman [106] for simulating high-dimensional

complex distributions arising in image restorations and later popularised by Gelfand and Smith [102].

This methods is highly attractive since it requires no tuning. In addition it is a special case of the more

general Metropolis-Hastings algorithm. Considering the vector of parameters θ = (θ1, . . . , θs) for which

the marginal joint posterior is intractable, the Gibbs sampling procedure is given in Algorithm 3 : At

Algorithm 3 Gibbs sampler

initialize θ(0)

for t=1,2,3,. . . do

θ
(t)
1 ∼ p(θ1|θ(t−1)

2 , θ
(t−1)
3 , θ

(t−1)
4 , . . . , θ

(t−1)
s )

θ
(t)
2 ∼ p(θ2|θ(t)

1 , θ
(t−1)
3 , θ

(t−1)
4 , . . . , θ

(t−1)
s )

θ
(t)
3 ∼ p(θ3|θ(t)

1 , θ
(t)
2 , θ

(t−1)
4 . . . , θ

(t−1)
s )

...
θ

(t)
s ∼ p(θs|θ(t)

1 , θ
(t)
2 , θ

(t)
4 . . . , θ

(t)
s−1)

end for

each time t, the Gibbs sampler replicates the sampling from the marginal/posterior joint distribution

by sampling each variable θr knowing the full conditional distribution from all the other variables θr′ ̸=r.

Since the variables are randomly initialized, the first iterations are not representative of a sampling from

true marginal (burn-in period) and samples from this period may be discarded. Note that starting

values may also be supplied by maximum likelihood to reduce that effect. Raftery and Lewis also

suggested an approach based on the computation of the posterior quantiles for determining the numbers

of iterations required [107]. However, for t sufficiently large, the estimates can be considered to be

sample as if they were using the intractable marginal/joint posterior distribution [108]. The process is

ergodic (zero conditional probability should not occur). Whilst the Gibbs sampler is a powerful tool,

it has several limitations whether or not the conditional probabilities can be easily derived/recognized

in a known form or whether sampling from the conditional lead to ”slow mixing” (that is the sampler

sticks to a low density area and converges slowly to the center of the marginal distribution, see chapters

6 and 10 of [104]).
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1.3.4.2 Metropolis-Hasting

The Metropolis-Hasting (HM) aims at generating samples from a probability distribution using

the full marginal/joint density [101]. An example of its iterative procedure is given in Algorithm 4.

Algorithm 4 Metropolis-Hasting (MH)

initialize θ(0)

for t = 1,2,3,. . . do
Draw a candidate parameter θ(c) from a proposal density ψ(.).
Compute the ratio R = f(θ(c))ψ(θ(t−1)|θ(c))

f(θ(t−1))ψ(θ(c)|θ(t−1)) .

Compare R with a uniform random draw u ∼ U(0, 1). If R > u, set θ(t) = θ(c), otherwise, set
θ(t) = θ(t−1).

end for

As for the Gibbs sampler, starting values must be set for θ. They can be set randomly or could

be obtained for instance using maximum likelihood. MCMC theory guarantees that the stationary

distribution after convergence will be the posterior marginal of interest regardless of the starting

values [109]. Note that poor starting values might conduct the algorithm to reject many candidates

during the first phase of the convergence and lead to substantial running time. A solution for this issue

is discussed in [104] (chapter 6).

1.4 Information theory

Information theory provides an efficient framework for setting up probability distributions on the

basis of partial knowledge. The theory was fully characterized by Shannon [110] to solve fundamental

problem arising in communication theory (from Electrical Engineering) but finds relationships with

other fields such as Computer science (Kolmogorov complexity), Philosophy of Science, Physics (Ther-

modynamics), Mathematics (Probability theory and Statistics) and Economics (Interest). Entropy,

Relative entropy and Mutual information (MI) are the fundamental quantities in Information theory

which aim at characterizing the behavior of long sequence random variables [111]. They are defined

as functionals of probability distributions and allow us to estimate the probabilities of rare events.

Entropy and MI are direct answers for certain fundamental questions of communication theory. More

precisely, each of these functionals can be defined as follows :

— Considering the ultimate Data compression problem, Entropy is the minimum descriptive com-
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plexity of a random variable. In other words, it quantifies the average uncertainty involved in

the values of a random variable. The Entropy of a random variable X with probability mass

function p(X) is originally given as follows :

H(X) = −
∑︂
x

p(x) log2 p(x). (1.32)

— Considering the ultimate Transmission rate problem, MI is the communication rate in pre-

sence of noise. Specifically, it is the conditional Entropy defined as the entropy of one random

variable given another random variable. Therefore, it measures the decrease of uncertainty in

the presence of another variable and quantifies a dependence between both. Given two random

variables X and Y , MI takes the following form :

MI(X,Y ) = H(X)−H(X|Y ) =
∑︂
x,y

p(x, y) log p(x, y)
p(x)p(y) . (1.33)

— MI is the relative entropy, mainly referred to as the Kullback-Leibler (KL) divergence and

defined as follows :

DKL(P (X,Y )||Q(X,Y )) =
∑︂
X,Y

P (X,Y ) log P (X,Y )
Q(X,Y ) , (1.34)

where Q(X,Y ) = P (X)P (Y ).

1.5 Evaluation metrics

In order to measure the clustering performance of our algorithms, we evaluate them on several

benchmark datasets for which the ground-truth labels are available. In the literature, two families of

direct evaluation metrics used to assess the quality of partitions provided by clustering algorithms can

be distinguished :

— Internal metrics : which measure the quality of a partition according to the intrinsic properties

of the initial dataset exclusively. We denote : the Davies-Bouldin index [112], the Calinski-

Harabasz index [113], the BIC index of Raftery [114], the Silhouette validation model of Rous-

seeuw [115].

— External metrics : which compare a partition obtained by a given clustering algorithm with the

ground-truth labels of the data. Hence, the more similar these partitions are, the better the

clustering algorithm performs.
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An empirical study of Rendon et al. that compares internal and external indexes can be found in [116].

In this section, we introduce two external metrics used in this thesis. In the following, we consider a

set of objects O = {O1, . . . , 0N} for which we denote two partitions C and T where C is a partition of

clusters {C1, . . . , Cg} obtained from a cluster analysis and T the partition of true groups {T1, . . . , Tg′}.

1.5.1 Accuracy

Accuracy (which refers exactly to the overall accuracy) is one of the simplest statistic used to

describe the correctness of a classification. The most common way to represent this measure is made

across the use of an error matrix (also referred to as confusion matrix or matching matrix). This matrix

takes the form of a contingency table between the predicted partition C with the actual partition T .

Let C × T be the contingency table formed by C and T as follows :

C⧹T T1 T2 · · · Tg′ T.

C1 n11 n12 · · · n1g′ n1.
C2 n21 n22 · · · n2g′ n2.
...

...
...

. . .
...

...
Cg ng1 ng2 · · · ngg′ ng.
C. n.1 n.2 · · · n.g′

where each count nkk′ denotes the number of objects in common between the groups (Ck, Tk′) s.t.

nkk′ = |Ck ∩ Tk′ | and the marginals (n1., . . . , ng.) and (n.1, . . . , n.g′) denote the cardinality for each

group in C and T respectively. Assuming that C × T is ordered such that the diagonal contains the

maximum number of well classified elements, the overall accuracy is therefore determine by summing

the elements inside the diagonal divided by the number of elements classified N (c) (in our case, most

of the time, all objects are classified s.t. N (c) = N). In the ideal case where each object is correctly

classified, C×T is a diagonal matrix. The accuracy (ACC) between two partitions can be formulated

as follows :

ACC(C,T ) = 1
N (c) max

∑︂
Ck,Tk′

|Ck ∩ Tk′ | = 1
N (c) max

g,g′∑︂
k,k′

nkk′ (1.35)

Aside the overall accuracy, C × T can be used to computed several others accuracy measures, e.g.

the normalized accuracy, the KHAT statistic κ̂ (see the review of Congalton [117] or Stehman [118])

the F1 score and many others. One major drawback of the accuracy is its bias relative to unbalanced

partition. For instance, considering an actual partition T of N = 100 objects divided into two groups

such that #T1 = 95 and #T2 = 5, a prediction partition C classifying all objects in one group will
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achieved 95% of overall accuracy. For this reason, throughout this thesis, we will omit this metric as

our proposals are evaluated on several heavily unbalanced datasets.

1.5.2 Normalized Mutual Information

The Mutual Information criterion defined in Section 1.4 is one of the external metric used in our

evaluations. However, by definition, it is not bounded. To increase its interpretability, we use the

Normalized Mutual Information (NMI) proposed by Strehl and Ghosh [119]. Taking advantages that

the conditional entropy (MI) is inferior or equal to the minimum respective entropy (H) :MI(C,T ) ≤

min(H(C), H(T )), several normalizations are possible. In the following, we refer to NMI using the

geometric mean which implies dom(NMI) = [0, 1]. From a statistical point of view this normalization

derives from first thinking of mutual information as an analogue to covariance and its computation is

related to the Pearson correlation coefficient. Finally we have :

NMI(C,T ) = MI(C,T )√︁
H(C)H(T )

. (1.36)

In addition, partitions with different number of clusters can also be compared using the NMI. For

details on other normalized versions of the mutual information, the reader can refer to the work of

Cahill [120].

1.5.3 Adjusted Rand Index

The second evaluation criterion employed in this thesis is the Adjusted Rand Index (ARI). We

explain this criterion by firstly defining the Rand Index, then subsequently its adjustment.

1.5.3.1 Rand Index

The Rand index (RI) is a intuitional approach aiming at comparing clustering by counting pairs of

objects that are gathered similarly in two partitions. In the following, we give the original formulation

of RI as defined by Rand in [121]. Considering the disjunctive table D ∈ {0, 1}N×N for O where each

element dii′ are set according to the partition C and T such as :

dii′ =

⎧⎪⎨⎪⎩
1 if ∃k, k′ such that (oi, oi′) ∈ Ck and (oi, oi′) ∈ Tk′ ,
1 if ∃k, k′ such that oi ∈ (Ck, Tk′) and oi′ /∈ (Ck, Tk′),
0 otherwise
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RI is given as follows :

RI(C,T ) =
N∑︂
i<i′

dii′
/︁(︄N

2

)︄
= a+ b

a+ b+ c+ d
, (1.37)

where
(︁N

2
)︁
is the number of all possible pairs and the ratio given by the second equality is a more

common formulation which can be proposed by defining the following quantities with respect to the

elements in O : (a) the number of pairs of elements that are in the same subset in C and in the same

subset in T ; (b) the number of pairs of elements that are in different subsets in C and in different

subsets in T ; (c) the number of pairs of elements that are in the same subset in C and in different

subsets in T ; (d) the number of pairs of elements that are in different subsets in C and in the same

subset in T . Considering the confusion table given in Section 1.5.1, a more efficient computational

form for RI can be achieved as follows :

RI(C,T ) =
[︃(︄
N

2

)︄
− 1

2

(︃ g∑︂
k

(︁ g′∑︂
k′

nkk′
)︁2 +

g′∑︂
k′

(︁ g∑︂
k

nkk′
)︁2)︃+

g,g′∑︂
k,k′

n2
kk′

]︃/︃(︄
N

2

)︄
. (1.38)

1.5.3.2 Adjusted Rand Index

The Adjusted Rand Index (ARI) was proposed by Hubert and Arabie in [122] to solve the lack

of uniqueness of the solution. While dom(RI) = [0, 1], the expected value of the RI for two random

partitions does not have a constant value. The idea behind ARI is to compare RI with the expected

Rand Index (ERI) under the hypothesis that two partitions are independent. Using a generalised

hypergeometric distribution as the model for randomness, we obtain the following equation :

ARI = RI − ERI
max(RI)− ERI =

∑︁g,g′

k,k′
(︁nkk′

2
)︁
−
[︂∑︁g

k

(︁nk.
2
)︁∑︁g′

k′
(︁n.k′

2
)︁]︂/︂ (︁N

2
)︁

1
2

[︂∑︁g
k

(︁nk.
2
)︁

+
∑︁g′

k′
(︁n.k′

2
)︁]︂
−
[︂∑︁g

k

(︁nk.
2
)︁∑︁g′

k′
(︁n.k′

2
)︁]︂/︂ (︁N

2
)︁ , (1.39)

which is has 1 for upper bound and takes on the value 0 when RI = ERI. As opposed to dom(RI) =

[0, 1], dom(ARI) = (−∞, 1]. However, negative values of ARI have no substantive use and therefore

the normalization would offer no practical benefits.

1.6 Dimensionality reduction

In this section, we briefly review several of the most prominent dimensionality reduction techniques

such as the Principal Component Analysis. Subsequently, techniques such as Latent Semantic Analysis
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with a high incidence in text analysis are reviewed in more detail and finally, an overview of Nonne-

gative Matrix Factorization including several extensions and variants, as well as several algorithms is

presented.

1.6.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is an essential tools in linear algebra which generalizes

the Eigen decomposition (see Appendix A) of a square matrix to any rectangular matrix. In contrast

to the Eigen decomposition, the SVD exists for all matrices. It is defined by the following theorem.

Theorem 1.6.1. (Singular Value Decomposition). Let A ∈ Rn×d, there exists orthogonal matrices

U = [u1| . . . |un] ∈ Rn×n and V = [v1| . . . |vd] ∈ Rd×d such that :

U⊤AV = Σ = diag(σ1, . . . , σp), p = min(n, d), (1.40)

where [u1| . . . |un] are referred to as the left singular vectors of A, [v1| . . . |vd] as the right singular

vectors and σ1, . . . , σp are called the singular values.

In practice, the SVD is not unique and the singular values are arranged along the diagonal of

Σ in a decreasing order σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 so that Σ is uniquely determined by A. The

number r of positive singular values (nonzero diagonal entries in Σ) is equal to the rank of A :

rank(A) = rank(Σ) = r. Also, A =
∑︁r
k ukσkv

⊤
k .

Note that diag(σ1, . . . , σp)
1
2 = diag(λ1, . . . , λn) where diag(λ1, . . . , λn) are the eigenvalues of A⊤A.

Proof of this theorem and the following properties are given in [123] (Chapter 2). For more insights

on matrix theory, the reader can refer to [123, 124].

1.6.2 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate analysis for data matrices in which a set

of samples is described by several quantitative variables. It was introduced by Pearson in [2] and

later developed and titled (Principal Component Analysis) by Hotling in [3]. It is likely the oldest

multivariate analysis and can actually be tracked back to the works of Cauchy in [125] and Jordan

in [126]. Let X ∈ Rn×d be a data matrix, PCA aims at producing a lower dimensional space for

X of orthogonal variables (called Principal components) such that the variance between the samples
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projections and the center is maximized. The principal components are ordered decreasingly such

that the first component is the one maximizing the variance the most. This achievement results in

performing the Eigen Decomposition of the covariance matrix or the correlation matrix where the

principal components are obtained by projecting the data samples onto the eigenvectors. This can

also be viewed as computing the SVD of X subject to a proper normalization. For instance, let

µ = (µ1, . . . , µd) be the barycenter of X. After centering X such that µ = 0 ∈ Rd, the variance of

the data sample is given by :
d∑︂
j=1

(xij − µj)2 =
d∑︂
j=1

x2
ij . (1.41)

Therefore, if we normalize each variables in X to unit-length such that [x1| . . . |xd] =
[︁ x1

∥x1∥ | . . . |
xd

∥xd∥
]︁
,

X⊤X becomes a correlation matrix. Consequently, as explained in Section A.1, the squared singular

values of X are the eigenvalues of X⊤X. It is also possible to normalize X so that X⊤X becomes

the covariance matrix instead, but most computations are achieved using the correlation matrix. For

more details, a nice coverage of PCA is given by Abdi and Williams in [127].

Definition 1.6.1. (Principal Component Analysis) [3]. Let X = (xij) ∈ Rn×d be a data matrix with

centered and normalized variables [x1| . . . |xd]. Let U = [u1| . . . |un] ∈ Rn×n and V = [v1| . . . |vd] ∈

Rd×d be the orthogonal matrices obtained by the SVD of X such that :

U⊤XV = Σ = diag(σ1, . . . , σp), p = min(n, d), (1.42)

where σ1 ≥ σ2 ≥ . . . ≥ σp are the singular values of X, rank(X) = r, and X =
∑︁r
k ukσkv

⊤
k . The

principal components C = [c1| . . . |cd] ∈ Rn×d also called the factor scores are given by :

C = UΣ. (1.43)

This is equivalent to projecting the data samples [x1| . . . |xn]⊤ onto the eigenvectors of X⊤X which

are given by V since :

C = UΣ = UΣV ⊤V = XV . (1.44)

1.6.3 Low-Rank Approximation

Low-Rank Approximation (LRA) is the mathematical problem of approximating a matrix by ano-

ther matrix which has a lower rank g [128]. It falls into the class of dimensionality reduction techniques
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and is a special of matrix nearness problems which attempt to approximate a matrix by a another

matrix given a distance measure (see the work of Dhillon and Tropp for a review of matrix nearness

with the class of Bregman divergences [129]). LRA can be formulated as the following optimization

problem.

Problem 1.6.1. (Low-rank Approximation). Given a matrix X = (xij) ∈ Rn×d, solve :

min
Y ∈Rn×d,rank(Y )≤g

D(X,Y ). (1.45)

When D is the Frobenius norm, the solution can be obtained using the SVD of X. This consequence

is the results of the following theorem.

Theorem 1.6.2. (Eckart-Young) [128]. Let U = [u1| . . . |un] ∈ Rn×n and V = [v1| . . . |vd] ∈ Rd×d be

the orthogonal matrices obtained by the SVD of X such that :

U⊤XV = Σ = diag(σ1, . . . , σp), p = min(n, d), (1.46)

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 are the singular values of X. Let r be the number of positive singular

values s.t. rank(X) = rank(Σ) = r and X =
∑︁r
k ukσkv

⊤
k . Considering the truncated SVD of rank g

giving Xg =
∑︁g
k ukσkv

⊤
k for 1 ≤ g ≤ r, we have that :

min
rank(Y )≤g

1
2∥X − Y ∥2F = ∥X −Xg∥2F =

r∑︂
k=g+1

σk (1.47)

A proof of this theorem is given in in Chpater 2 of [123].

Remark. As mentioned in Section 1.6.1, SVD is not unique. If the singular values are not ordered, we

denote
(︁r
g

)︁
possible stationary points for problem (1.47).

Since rank(Y ) ≤ g, Y can be decomposed as the product of two matrices such that Y = ZW ⊤

where Z ∈ Rn×g and W ∈ Rd×g and problem (1.45) can be rewritten as :

min
Z∈Rn×g ,W ∈Rd×g

1
2∥X −ZW ⊤∥2F . (1.48)

Let Z = UD
1
2 and W = V D

1
2 where D ∈ Rg×g

+ is diagonal, U⊤U = Ig and V ⊤V = Ig, solving

problem (1.45) is now equivalent to computing a compact SVD. More details about this optimization

can be found in [130].

If follows that the dimensionality reduction technique (NMF) presented in the next chapter can

be seen as special case of LRA with the nonnegativity constraint. The reader can refer to the survey

of Markovsky [131] for more insights on LRA.
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1.6.4 Latent Semantic Analysis

Latent Semantic Analysis (LSA) also referred to as Latent Semantic Indexing (LSI) is an automa-

tic indexing technique for information retrieval, introduced by Deerwester et al in [1] to improve the

detection of relevant documents given a subset of words. The concept arise due to the deficiency of

term matching retrieval during queries (e.g. retrievals that omit documents referencing ”automobile”

when querying ”car”), which makes the direct document-term relation not always reliable. The goal

was therefore to represent documents throughout a hidden latent structure instead of terms. This

structure is simply obtained by performing a SVD on the document-term matrix in order to obtained

a lower dimensional space mapping together the terms and the documents. The queries are subse-

quently projected onto the lower dimensional space to return the matching documents. LSA works by

retaining only the g largest singular values. This results in the exact low rank approximation tech-

nique introduced in the previous section. The lower rank g must be fixed relatively low to allow a fast

retrieval but also large enough to capture the real structure.

1.7 Conclusion

We have listed all the necessary elements to describe our various contributions in terms of clustering,

co-clustering and data embedding. Next, we focus on Non-negative Matrix Factorization (NMF) which

is more suitable than LSA to deal with document-terms matrices both in terms of clustering and data

embedding.
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Chapitre 2

Nonnegative Matrix Factorization

As mentioned in the introduction, NMF which was originally designed for dimensionality reduc-

tion has received throughout the years a tremendous amount of attention for clustering purposes and

showed multiple positives outcomes in several fields such as image processing or text mining. More spe-

cifically in text mining where NMF produces a meaningful interpretation for document-term matrices

in comparison to methods like SVD components or LSA [1] where factors may include negative values.

This chapter is fully dedicated to the presentation and evaluation of NMF toward clustering. In the

first section, we present the method in its original form, then several algorithms used to find a solution.

Stopping conditions as well as several initialization methods for these algorithms are also presented.

Subsequently, different variants and extensions of NMF with application in document clustering and

co-clustering are reviewed. The second section of this chapter is dedicated to the evaluation of NMF

for the task of document clustering. A thorough study of the clustering partitions obtained from the

best local minima is given and highlights the presence of better clustering partitions in lesser local

minima. Thereafter, a consensus approach is elaborated in order to overcome this issue and extract

the best the clustering performances from NMF.

2.1 Presentation of NMF

Given a nonnegative matrix X = (xij) ∈ Rn×d
+ , Nonnegative matrix factorization is a dimensio-

nality reduction method which aims at approximating X by the production of two lower dimensional

matrices Z ∈ Rn×g
+ and W ∈ Rd×g

+ , e.g.

X ≈ ZW ⊤. (2.1)
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An illustration of NMF is given in Figure 2.1 This method was first introduced by Paatero and Tapper

Figure 2.1 – NMF.

[4] under the name Positive Matrix Factorization (PMF) as a suitable and coherent alternative to PCA

and SVD for nonnegative values. The method was however later popularised by Lee and Seung [5, 132].

So far NMF has found many applications in areas such as document clustering [133, 134, 135], signal

processing/source separation [136, 137], computer vision such as image classification [138] or spectral

unmixing [139], and others.

Due to the nonnegative constraint on the approximation factors, NMF can be viewed as a weighted

sum of the original data sample xi. In this sense Z = [z1| . . . |zn]⊤ is assimilated as a coefficient or

weighting matrix while W = [w1| . . . |wd]⊤ contains the basis vector, e.g. :

xi ≈
g∑︂

k=1
zikwjk = ziW

⊤. (2.2)

This interpretation is often referred to as part-based analysis and reversible (e.g. xj ≈ Zwj) as long as

both factors are nonnegative. Several cost function are denoted in order to measure the approximation

to the data matrix. The most common is the sum of squared Frobenius norm (or sum of squares)

denoted as :
1
2∥X −ZW ⊤∥2F = 1

2

n,d∑︂
i,j

(︁
xij − [ZW ⊤]ij

)︁2
. (2.3)

Another popular measure is the generalized Kullback-Leibler divergence also called the I-divergence,

given as follows :

DI(X||ZW ⊤) =
n,d∑︂
i,j

[︃
xij log xij

[ZW ⊤]ij
− xij + [ZW ⊤]ij

]︃
. (2.4)

This cost function is often acknowledged for its better results when NMF applied on directional data.

The Itakura-Saito divergence is another cost function with substantial application in signal processing,
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it is denoted as :

DIS(X||ZW ⊤) =
n,d∑︂
i,j

[︃
xij

[ZW ⊤]ij
− log xij

[ZW ⊤]ij
− 1

]︃
. (2.5)

Afterwards, we formulate the problem of NMF in a form of any arbitrary cost function D(X,ZW ⊤).

Problem 2.1.1. (NMF). Let X ∈ Rn×d
+ and g < min(n, d), solve :

min
Z≥0,W ≥0

{︁
F(Z,W ) = D(X,ZW ⊤)

}︁
. (2.6)

For more details about the optimality conditions that must holds for a solution point of this

problem, an in-depth review of unconstrained and constrained optimization is given in appendix C.

Further connections between these conditions and the construction of the proofs of convergence for

several of ours algorithms are also highlighted.

The Lagrangian function function associated with this constrained problem is stated as follows :

L(Z,W ,γ,µ,ν) = D(X,ZW ⊤) + Tr(µZ⊤) + Tr(νW ⊤), (2.7)

where µ ∈ Rn×g
− and ν ∈ Rd×g

− are the Lagrange multipliers (note that in this thesis, the inequality

constraints are reversed and so the Lagrangian, e.g. Z ≥ 0 =⇒ −Z ≤ 0). Therefore according to the

first-order necessary conditions for inequality constrained optimization defined in Section C and refer-

red to as the Karush-Kuhn-Tucker (KTT) conditions, if (Z,W ) is a local minimum, overall we have

the following conditions for solving the constrained nmf problem using the first-order differentiation :

Z ≥ 0, W ≥ 0, (2.8)

∇ZL = 0, ∇WL = 0, (2.9)

µ⊙Z = 0, ν ⊙W = 0. (2.10)

Assuming that the gradient of F has the following form :

∇F = [∇F ]+ − [∇F ]−, (2.11)

where [∇F ]+ ≥ 0 and [∇F ]− ≥ 0. From eq (2.9), we obtain the following expressions for µ and ν :

µ = −[∇ZF ]+ + [∇ZF ]− = −∇ZF , ν = −[∇WF ]+ + [∇WF ]− = −∇WF .
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Since µ,ν ≤ 0, these equations add another condition on the gradient ∇L such that we require

the following conditions for a local minimum :

Z ≥ 0, W ≥ 0, (2.12)

∇ZL = 0, ∇WL = 0, (2.13)

µ⊙Z = 0, ν ⊙W = 0, (2.14)

∇ZF ≥ 0, ∇WF ≥ 0. (2.15)

Subsequently, (2.14) leads to the following equations :

Z ⊙ ([∇ZF ]− − [∇ZF ]+) = 0, W ⊙ ([∇WF ]− − [∇WF ]+) = 0.

These equations are called the stationary equations since their derivatives are indefinite at (Z,W ) =

(0,0). Similarly, (Z,W ) are called stationary points due to existence of saddle points (e.g. (Z,0) if

the partial derivative becomes null), since D is not jointly convex w.r.t. Z and W simultaneously.

2.1.1 Existing algorithms

Several algorithms used for performing NMF are review in this section. The initialization, the

convergence properties as well as the stopping condition of these algorithms are also mentioned. For

simplification, D(X,ZW ⊤) will be assumed to be the Frobenius norm given by eq(2.3).

2.1.1.1 Alternating Least Square

The Alternative Least Squares (ALS) algorithm was the first method proposed to solve the problem

of NMF [4]. By fixing one factor alternatively, the problem of NMF can be seen as a least square

problem with nonnegative constraint. The iterative procedure is stated in Algorithm 5 :

Algorithm 5 Alternating Least Squares (ALS)

initialize Z(0), W (0)

for t = 0,1,2,. . . do
Z(t+1) = arg min

Z≥0
1
2∥X −ZW ⊤∥2F

W (t+1) = arg min
W ≥0

1
2∥X −ZW ⊤∥2F

end for.
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2.1.1.2 Multiplicative updates

To this day, the most popular approach used for solving the problem of NMF (which will also

be utilized in this thesis) remains the Multiplicative Updates (MU) algorithm proposed by Lee and

Seung [132]. This algorithm is based on the Majoration-Minimization or Minorization-Maximization

(MM) algorithm proposed by Ortega and Rheinboldt during the study of line search methods [140]

(see an example of line search algorithm for NMF below). The methods consists in optimizing an

auxiliary/surrogate function G, in the case of NMF majorizing F such that :

G(Z,Z(t)) ≥F(Z), ∀Z ̸= Z(t), (2.16)

G(Z,Z) ≥F(Z). (2.17)

Minimizing G will therefore guarantee F to decrease. An example of the iterative procedure is given

in Algorithm 6 :

Algorithm 6 Multiplicative Updates (MU) for NMF

initialize Z(0), W (0)

for t = 0,1,2,. . . do
Z(t+1) = Z ⊙ XW

ZW ⊤W

W (t+1) = W ⊙ X⊤Z
W Z⊤Z

end for

The multiplicative updates can be seen as a gradient descent update :

Z ⊙ XW

ZW ⊤W
= Z − Z

ZW ⊤W
⊙∇ZF . (2.18)

where Z
ZW ⊤W

is the step size.

As pointed out in several studies (Chu et al [141], Gonzalez and Zhang [142], Lin [143]), Lee

and Seung showed in [132] that F is non-increasing under the multiplicative updates. Therefore, the

algorithm does not always converge to a local minimum point and can be trapped in a saddle point.

This comes down to the nature of the multiplicative update which prevent any readjustment of Z
(t+1)
ik

to meet the conditions given by eqs(2.12-2.15) once Z
(t)
ik equals zero. From eq(2.18), we can see that an

entry Z
(t)
ik may have its partial derivative ∇Zik

F either negative, positive or null in order to increase,

decrease or not modify Z
(t+1)
ik (in this case, the zero entry is admissible). However, in MUs, an entry

might become null (for instance due to machine precision) but has its derivative negative. Thereby,
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Z
(t+1)
ik will be trapped in a non-stationary point. Several solutions arise to overcome this issue while

keeping the MUs. Chi and Kolda [144] proposed to monitor the null entries in Z(t) and replace them

with a small constant when their partial derivative is negative. Lin [143] proposed to use the gradient

update where a constant ϵ is added in the step size denominator to ensure a stationary point at

convergence. This is equivalent to retain the MUs with ϵ added to the numerator and the denominator

such as :

zik −
zik

[ZW ⊤W ]ik + ϵ
∇Zik

F = zik
[XW ]ik + ϵ

[ZW ⊤W ]ik + ϵ
. (2.19)

However this methods leads to non sparse solutions which remain desirable in many NMF applications.

One could also use the equivalent gradient update given by eq(2.18) and applied a projection on the

nonnegative orthant. In this thesis where NMF is used for achieving document clustering, sparse

factors are appreciated as they convey less uncertainty for cluster assignment. Therefore, we rely on

the method proposed by Chi and Kolda [144] which allows sparse factors while avoiding inadmissible

zeros.

Remark. The same comments are valid for W .

2.1.1.3 Projected Gradient descent

The Gradient descent (GD) algorithm a first-order conditions iterative method which estimate a

local minimum point by taking a step in the direction of the negative gradient at the current point.

Due to nonnegativity, practicing GD for NMF results actually in a Projected gradient algorithm. To

ensure nonnegativity or the update, a projection on the nonnegative orthant is achieved by setting all

nonnegative elements to zero. Let α be the step size for Z and β the step size for W , a basic Projected

gradient algorithm for NMF is described in Algorithm 7 : However, this algorithm is very sensitive to

Algorithm 7 Projected Gradient (PG) for NMF

initialize Z(0), W (0) α(0), β(0)

for t = 0,1,2,. . . do
compute ∇F(Z((t))
choose a step size α(t)

Z(t+1) = [Z − α∇F(Z)]+
compute ∇F(W (t))
choose a step size β(t)

W (t+1) = [W − β∇F(W )]+
end for.
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the step size and little can be said about its convergence without a suitable setting α(t) and α(t).

2.1.1.4 Projected Gradient descent with line search methods

Another popular gradient projection methods consists in using a line search strategy. Considering

an unconstrained minimization problem of the form :

min
x
f(x), (2.20)

where f is differentiable. In order to find a local minimum x∗, the line search strategy works by setting

a direction p(t) at a current point estimate x(t) and searching along that direction a new estimate x(t+1)

with a lower function value. The distance necessary to move along p(t) can be found by solving this

one-dimensional minimization problem :

min
α
{ϕ(α) = f(x(t) + αx(t))}, α > 0. (2.21)

Solving the exact distance (commonly called the step length α) is however expensive and sometimes

unnecessary. In practice, a limited number of trials is set. The steepstep descent direction given by the

opposite gradient −∇f(x) is often the common direction used for the search line. A popular line search

condition is the Wolfe condition which states that α should primarily provide a sufficient decrease of

f which measures by this inequality :

f(x(t) + αp(t)) ≤ f(x(t)) + σα∇f(x(t))⊤p(t), (2.22)

for some constant σ ∈ [0, 1]. This condition is also known as the Armijo rule, and as shown by Lin

in [145], it can be adapted for projection on the nonnegative orthant for practicing NMF. Setting

x(t+1) = [x(t) +αp(t)], a Backtracking Line Search (BLS) algorithm which can be used to obtain α and

x(t+1) is given afterwards (see Algorithm 8).

Algorithm 8 BLS algorithm

input : x(t), σ ∈ [0, 1], β ∈ [0, 1]
α = 1
repeat
α = αβ
x(t+1) = [x(t) − α∇f(x(t))]

until f(x(t+1))− f(x(t)) ≤ σ∇f(x(t))⊤(x(t+1) − x(t))
return α, x(t+1)
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As shown by Lin [145], by projecting the update x(t+1) onto the negative orthant such as x(t+1) =

[x(t) − α∇f(x(t))]+, BLS can be used to obtain the update Z(t+1) and W (t+1) in NMF. The iterative

procedure is given in Algorithm 9.

Algorithm 9 Projected Gradient with Line Search (PGLS) for NMF

input : σ ∈ [0, 1], β ∈ [0, 1]
initialize Z(0), W (0)

for t=0,1,2,. . . do
Z(t+1) = BLS(Z, σ, β)
W (t+1) = BLS(W , σ, β)

end for

A pertinent review of first-order conditions for Line search methods is proposed by Nocedal and

Wright in [146].

Overall the reader can refer to the insightful reviews of Gillis [147] and Ho et al [148] for an overview

of algorithms for NMF.

2.1.2 Initialization

Several initializations for NMF are proposed in the literature. Since good starting points can

accelerate the convergence toward local minima points and reduce the amount of iterations, plenty of

attention has been devoted to that subject.

2.1.2.1 Random seeding

Naturally, the most common initialization technique is to generate random starting points. In

addition to its simplicity, this methods is actually justified since no knowledge is given about the

local minima. In practice, the algorithm may be sensitive to scaling and the random values are set

accordingly to the values observed in X. In this thesis, we mainly achieve this initialization using a

uniform distribution such that each scalar z
(0)
ik and w

(0)
jℓ are respectively set as equal to

√︁
α×max(X)

where α ∼ U(0, 1). Other variants of this seeding might be employed (e.g. using the mean instead of

the max) and thereby specified at the given time. We might also mention the work of Langville [149]

which introduced and compared several random initializations for NMF using the ALS algorithm. We

denote the random Acol method which initialize each column W
(0)
k of the basis matrix by averaging p
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random columns of X. However, this method might produce sparse factors which should be avoided

for algorithms with multiplicative updates.

2.1.2.2 Spherical K-means seeding

Wild et al [150, 151] proposed to initialize NMF using the Spherical K-means algorithms whose

objective function is recalled below :

J(z, g) =
n∑︂
i=1

g∑︂
k=1

zik(1− cos(xi,µk)).

This method is well suited for directional data such as high dimensional sparse document-term ma-

trices. Two Spherical K-means seeding were attempted in this thesis :

— z
(0)
ik :=

√︁
α×max(X) where α ∼ U(0, 1) and W (0) := {µ∗

1| . . . |µ∗
g},

— z
(0)
ik :=

⎧⎨⎩ 1 + ϵ if k = arg min
k=1,...,g

1− cos(xi,µ
∗
k)

ϵ otherwise

⎫⎬⎭ and W (0) := {µ∗
1| . . . |µ∗

g},

where µ∗ is the centröıd obtained after convergence. Several observations regarding to the advantages

and downsides of this methods when using the Frobenius norm and the I-divergence are made in the

following section.

2.1.2.3 SVD-based seedings

A popular SVD-based approach for generating starting values for NMF was introduced by Boutsidis

and Gallopoulos [152]. The method is referred to as Non Negative Double Singular Value Decomposition

(NNDSVD) is based on two SVD processes. The first requires the SVD of the data matrix X ∈ Rn×d
+

to create a set of unit rank matrices from the left and right singular vectors. The second successively

utilizes the positive orthants of each unit rank matrix to approximate a set of positive singular vectors.

In practice, the SVD is a low rank approximation produced with a truncated SVD (t-SVD). Let

U = [u1| . . . |un] ∈ Rn×n and [v1| . . . |vd] ∈ Rd×d be the orthogonal matrices obtained by the SVD of

X such that U⊤XV = Σ = diag(σ1, . . . , σp) where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 are the singular values

and p = min(n, d). From the Eckart-Young theorem, the LRA of X is given as :

arg min
rank(Y )≤g

∥X − Y ∥2F = Xg =
g∑︂

k=1
ukσkv

⊤
k =

g∑︂
k=1

σkCk, (2.23)
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where {C(1), . . . ,C(g)} is the set of unit rank matrices such that C(k) = ukv
⊤
k ∈ Rn×d. In the sequel,

we describe the basic routine for NNDSVD, however, the authors proposed a much efficient approach

results in the properties of the positive orthants {[C(1)]+, . . . , [C(g)]+} of the unit rank matrices with

respect to the Frobenius norm. The procedure is described in Algorithm 10.

Algorithm 10 NNDSVD

input : X, g
compute the t-SVD of X s.t. Xg =

∑︁g
k=1 ukσkv

⊤
k .

C(k) = ukv
⊤
k ,∀k = 1, . . . , g

compute [C(k)]+, ∀k = 1, . . . , g
Z

(0)
1 = √σ1u1

W
(0)
1 = √σ1v1

for k = 2,. . . ,g do

compute the t-SVD of [C(k)]+ s.t. [C(k)
2 ]+ =

∑︁2
l=1 ul

′σl
′vl

′⊤

Z
(0)
k = √σku1

′

W
(0)
k = √σkv1

′

end for
return Z(0), W (0)

This algorithm produces the same initialization for a given data matrix. Two variants named NND-

SVDa and NNDSVDar which replace null entries in the resulting initialization factors (Z(0),W (0)) are

denoted. The first replaces zeros with the average value of X, the second simulate uniform variables

following U(0,mean(X)/100).

Remark. This algorithm uses the fact that the first singular vector is positive if X ≥ 0.

Recently, Atif et al [153] proposed to correct the low rank approximation on the basis that the

approximation error should decrease as the rank increases.

We can also mention the work of Qiao [154] which proposed to use the absolute value of the SVD

singular vectors to provide starting values for the NMF factors. Moreover, this approach also consider

the fixation of the rank using a ”choosing” rule on the positive singular values.

2.1.2.4 Stopping conditions

Several stopping conditions are denoted for NMF algorithms. The most common are analogical to

linear optimization and consist in monitoring the evolution of the objective function F or the optimality

conditions or the estimates. Note that in practice, these conditions are usually associated with a
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maximum number of iterations. Monitoring the objective function remains the most popular approach

and is the one used in this thesis. It is achieved by measuring the decrease between F(Z(t+1),W (t+1))

and F(Z(t),W (t)) such that the algorithm is stopped when :

F(Z(t),W (t))−F(Z(t+1),W (t+1)) < ϵ, (2.24)

where ϵ is usually a very small constant. Several approaches for optimality stopping conditions are

reviewed and discussed in [147, 155].

Remark. In NMF applications for document clustering, the coefficient factor matrix Z is usually

normalized to have unit-length column vectors at the end of the procedure.

2.1.3 Extensions and variants

Several extensions and variants for NMF have been proposed to scope with a large range of appli-

cations. For instance, whether the data matrix is symmetric, we denote the variant called Symmetric

NMF which produces an approximation by the product of one matrix.

Symmetric NMF (Kuang et al. [156]). Let X ∈ Rn×n
+ , the problem of NMF when X is a symmetric

matrix can be stated as follows :

min
H≥0

∥X −HH⊤∥2F . (2.25)

Orthogonal NMF. Introduced by Ding et al [157], this approach consists in adding an orthogonality

constraint on one factor to produce straightforward clustering interpretation. Let X ∈ Rn×d
+ , Z ∈ Rn×g

+

and W ∈ Rd×g
+ , Orthogonal NMF (ONMF) where the cost function is the Frobenius norm can be stated

as the following optimization problem :

min
Z≥0,W ≥0,
Z⊤Z=1g

1
2∥X −ZW ⊤∥2F . (2.26)

The authors derived an optimization algorithm referred to as the Ding-Ti-Peng-Park (DTTP) algo-

rithm. It is based on the multiplicative update rules popularised by Lee and Seung [132]. One benefit

provides by the orthogonality constraints is the uniqueness of the solution. Later, Choi [158, 159] also

proposed to solve the optimization using a simpler approach which consists in placing Z in the Stiefel

Manifolds Vg(Rn) = Z ∈ Rn×g : Z⊤Z = I which is the set of all orthonormal g-frames.
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Another declination of NMF called Semi-NMF was introduced for real value data matrices. This

method consists in imposing the nonnegativity on one factor while the other lies in an unconstrained

space similar the one of the original data matrix.

Semi-NMF. Let X ∈ Rn×d be a real value matrix, Semi-NMF can be stated as the following optimi-

zation problem :

min
Z≥0,W ∈Rd×g

∥X −ZW ⊤∥2F . (2.27)

This methods has been proposed by Ding et al. [160] for several clustering applications including docu-

ment clustering. Another approach illustrated in the same paper was Convex-NMF. This method aims

at adding domain constraints on the basis vector vectors [w1| . . . |wg] stored in W such that their lies

in the columns space of the original data matrix. This constraint takes weighted-sum interpretation

due to the nonnegativity of one factor and subsequently constraint W to be equal to X⊤G. It follows

that this constraint takes places whether X is a nonnegative matrix or a real value matrix.

Convex-NMF. Let X ∈ Rn×d, Convex-NMF can be stated as the following optimization problem :

min
Z≥0,G≥0

∥X −ZG⊤X∥2F , (2.28)

where Z ∈ Rn×g
+ and G ∈ Rn×g

+ .

Projective NMF. This method was introduced by Yuan and Oja [161] after Lee and Seung pointed

out in [5] the benefits of nonnnegative constraints for retrieving sparses representations for images.

Projective NMF aims at improving this characteristic by learning spatially localized sparse part-based

factor of visuals patterns in images. Given a matrix P ∈ Rn×n
+ , the projection is equivalent to solving

the following minimization problem :

min
P ≥0
∥X − P X∥2F . (2.29)

Furthermore, the symmetric matrix projection P is set as the product of an orthogonal H ∈ Rn×g

matrix such that P = HH⊤ wich result in minimizing ∥X −HH⊤X∥2F subject to H ≥ 0. The pro-

blem with the Kullback-Leibler as a cost function was also treated in [161]. The authors highlighted

the connection with PCA after removing the nonnegative constraint. In the following chapters, we will
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use Projective NMF in our comparative studies since the performances of the method for clustering

tasks were later enhanced by Yuan and Erkki Oja in [162].

Regularized NMF. Considering the initial NMF problem where X ≈ ZW ⊤, we encapsulate the set of

NMF extensions where a regularization or penalization is added to the main objective function under

the following minimization problem :

min
Z∈Rn×g

+ ,W ∈Rd×g
+

∥X −ZW ⊤∥2F + αJ1(Z, .) + βJ2(W , .). (2.30)

In most applications, the regularization parameters (α, β) are constants set by the user, J1 = J2 or

the regularization is applied on only one factor. An example of regularized NMF employed in our

comparative studies is called Graph Regularized NMF (GNMF) and was proposed by Cai et al. [163].

The method aims at enforcing NMF at capturing the intrinsic geometry of the original data xi using

the Laplacian of a nearest neighbors graph. The graph is defined as an unoriented simple graph and

its symmetric adjacency matrix A = (aii′) ∈ {0, 1}n×n is given by :

aii′ =
{︄

1 if xi ∈ Np(xi′)
0 otherwise

}︄
,

where Np(xi′) denotes the p nearest neighbors subset of xi′ . The Laplacian matrix L is given by

L = D − A, where D = (dii′) ∈ Rn×n
+ is the diagonal degree matrix computed from A such that

dii =
∑︁
i′ aii′ . The optimization problem takes the following from :

min
Z∈Rn×g

+ ,W ∈Rd×g
+

∥X −ZW ⊤∥2F + αTr(Z⊤LZ). (2.31)

Besides, Shang et al. [164] proposed graph dual regularized NMF, which extends GNMF to model

both the data manifold and feature manifold simultaneously. In order to reduce the sensitivity of

GNMF to the nearest neighbor graph’s parameters, the authors in [165] developed multiple graph

regularized NMF where the the data manifold is approximated by a linear combination of several

nearest neighbor graphs having different parameters. In the same vein, more robust extensions of NMF,

which can handle data points lying in complex manifolds, have been recently proposed [166, 167].

For more NMF extensions and variants, the reader can refer to [168, 135] or [169] for a wider

perspective of NMF. Also, a series of works [170, 171, 160] established theoretical connections of NMF

with k-means and spectral clustering, which strengthen foundations for NMF-based clustering.
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2.1.3.1 Nonnegative Matrix Tri-Factorization

Given a nonnegative matrix X = (xij) ∈ Rn×d
+ , Nonnegative Matrix Tri-factorization (NMTF) is

a dimensionality reduction method which aims at approximating X by the production of three lower

dimensional matrices Z ∈ Rn×g
+ , S ∈ Rg×c

+ and W d×c
+ , e.g.

X ≈ ZSW ⊤. (2.32)

An illustration of NMTF is given in Figure 2.2 This method was introduced by Long et al [172] under

Figure 2.2 – NMTF.

the name Nonnegative Block Value Decomposition (NBVD) as an alternative to NMF for clustering

of dyadic data (e.g count data) arising an underlying two way structure. As for NMF, NMTF can be

expressed in a form of an optimization problem with the Frobenius norm remaining one of the most

common cost function.

Following the weighting-sum interpretation of NMF, the co-clusters is deduced from the coefficient

matrices Z and W whilst S can be seen as a summary (or block decomposition) of the original data

matrix X.

Problem 2.1.2. (NMTF). Let X ∈ Rn×d
+ , (g, c) < min(n, d), solve :

min
Z≥0,S≥0,W ≥0

1
2∥X −ZSW ⊤∥2F . (2.33)

Similarly to NMF, several extensions and variants for NMTF including additional constraints such

as orthogonality or a regularization in the objective are denoted.

Orthogonal Nonnegative Matrix Tri-Factorization (ONM3F). Ding et al.[157] introduced a 3 factors

NMF with bi-orthogonality constraints on 2 factors for practicing co-clustering with NMTF. Conside-
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ring X ∈ Rn×d
+ , Z ∈ Rn×g

+ , S ∈ Rg×c
+ and W ∈ Rd×c

+ , where Z and W are orthogonal matrices and

S acts as a relaxation factor, ONM3F can be stated as the following optimization problem :

min
Z≥0,W ≥0,

Z⊤Z=1g ,W ⊤W =1g

1
2∥X −ZSW ⊤∥2F . (2.34)

Similarly to its NMF counterpart, the optimization procedure was achieved using a set of multiplicative

update rules. As with NMF, it is possible to consider the Stiefel manifold for achieving orthogonality

on the NMTF outer factors. The method was suggested by yoo and Choi [173] and is referred subse-

quently as ONMTF SM .

Symmetric NMTF. As with NMF, a symmetric variant was considered by several authors. Long et

al [172] proposed a method called SNBVD for approximating a symmetric data matrix X ∈ Rn×n as

follows : X ≈HSH⊤, where S ∈ Rg×g
+ and H ∈ Rn×g

+ . This method can be stated as the subsequent

minimization problem :

min
H≥0,S≥0

1
2∥X −HSH⊤∥2F . (2.35)

Ding et al.[157] also proposed a variant called SONM3F which differs from the later by adding an

orthogonality constraint on H such that H⊤H = I.

We also denote several regularizations including the work of Gu et al. [174] which proposed a

Dual Regularized Co-clustering (DRCC) method based on semi-NMTF and a nearest neighbors graph

regularization. The proposals of Wang et al [175] referred to as Fast NMTF (FNMTF) which constrains

the factor matrices (Z,W ) to be cluster indicators and Locally Preserved FNMTF (LP FNMTF) which

adds a Graph regularization to the problem of FNMTF.

We can also mention the work of Wang [175] which focuses on High-Order co-clustering with

NMTF and decomposes conjointly multiple type of data. We summarizes in table 2.1 the objective

functions of several NMTF methods and evaluate in a comparative study of Febrissy [176] regarding

the task of document clustering.
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Table 2.1 – NMTF variants & extentions.

Methods Objective functions References

SONM3F ∥X −HSH⊤∥2
F s.t. H ≥ 0,S ≥ 0 and H⊤H = I [157]

SNBVD ∥X −HSH⊤∥2
F s.t. H ≥ 0,S ≥ 0 [172]

ONM3F ∥X −ZSW ⊤∥2
F s.t. Z ≥ 0,S ≥ 0,W ≥ 0 and Z⊤Z = I,W ⊤W = I [157]

NBVD ∥X −ZSW ⊤∥2
F s.t. Z ≥ 0,S ≥ 0,W ≥ 0 [172]

ONMTF SM ∥X −ZSW ⊤∥2
F s.t. Z ≥ 0,S ≥ 0,W ≥ 0 and Z⊤Z = I,W ⊤W = I [158]

DRCC ∥X −ZSW ⊤∥2
F + λTr(W ⊤LW W ) + µTr(Z⊤LZZ) s.t. Z ≥ 0,S ∈ Rn×gW ≥ 0 [174]

FNMTF ∥X −ZSW ⊤∥2
F s.t. Z ∈ Ψn×g, W ∈ Ψd×c [175]

LP FNMTF ∥X −ZSW ⊤∥2
F + α∥W −BdQd∥2 + β∥Z −Bf Qf∥2 s.t. Q⊤

d Qd = I,Q⊤
f Qf = I [175]

O-NMTF ∥R−GV G⊤∥2
F + λTr(G⊤LG) s.t. G ≥ 0,G⊤DG = I [177]

where R =

⎡⎢⎣ 0
n×n

X
n×d

X⊤
d×n

0
d×d

⎤⎥⎦, G =

⎡⎢⎣ Z
n×g

0
n×c

0
d×g

W
d×c

⎤⎥⎦, V =

⎡⎢⎣ 0
g×g

S
g×c

S⊤
c×g

0
c×c

⎤⎥⎦, I ↔ identity matrix, Ψ = {0, 1}.

2.2 A consensus approach to improve NMF document clustering

2.2.1 Motivations

Despite its mathematical elegance and simplicity, NMF has exposed a main issue which is its strong

sensitivity to starting points, resulting in NMF struggling to converge toward an optimal solution. On

another hand, we came to explore and discovered that even after providing a meaningful initialization,

selecting the solution with the best local minimum was not always leading to the one having the best

clustering quality, but somehow a better clustering could be obtained with a solution slightly off in

terms of criterion. Therefore in this section, we undertake to study the clustering characteristics and

quality of a set of NMF best solutions and provide a method delivering a better partition using a

consensus made of the best NMF solutions.

Unlike supervised learning, the evaluation of clustering algorithms - unsupervised learning - remains

a difficult problem. When relying on generative models, it is easier to evaluate the performance of a

given clustering algorithm based on the simulated partition. On real data already labeled, many papers

evaluate the performance of clustering algorithms by relying on indices such as Accuracy (ACC),
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Normalized Mutual Information (NMI) [119] and Adjusted Rand Index (ARI) [122]. However, the

algorithms commonly used which are of type k-means, EM [90], Classification EM [79], NMF [132]

etc. are iterative and require several initializations ; the resulting partition is the one optimizing the

objective function. Sometimes in these works, we observe comparative studies between methods on the

basis of maximum ACC/NMI/ARI measures obtained after several initializations and not optimizing

the criterion used in the algorithm. Such a comparison is thereby not accurate, because in fact these

measures cannot be calculated in practice and cannot be used in this way to evaluate the quality of a

clustering algorithm.

A fair comparison can only be made on the basis of objective functions considered in a clustering

purpose ; for example, within-cluster inertia, likelihood, classification likelihood for mixture models,

factorization, etc. Nonetheless, in our experiences, we realized that while the clustering results become

better in terms of ACC/NMI/ARI when the objective function value increases, the best value is not

necessarily associated with the best results. However, by ranking the objective values, the best partition

tends to be among those leading to the first best scores. We illustrate this behavior in Figure 2.6. This

remark leads us to consider an ensemble method that is widely used in supervised learning [178, 179]

but a little less in unsupervised learning [119]. If this approach, referred to as consensus clustering, is

often used in the context of comparing partitions obtained with different algorithms, it is less studied

considering the same algorithm.

In the following, the algorithm used to provide a solution for NMF is the multiplicative updates

(MU) and the optimization of NMF (problem 2.6) is considered when D is respectively equal to the

Frobenius norm and the KL divergence. The MU algorithm accordingly to each objective is given by

algorithm 11 and algorithm 12.

Algorithm 11 (NMF-F).

Input : X, g, Z(0) ; W (0).
Output : Z and W .
repeat
1. Z ← Z ⊙ XW

ZW ⊤W
;

2. W ←W ⊙ X⊤Z
W Z⊤Z

;
until convergence
5. Normalize Z so as it has unit-length column
vectors.

Algorithm 12 (NMF-KL).

Input : X, g, Z(0) ; W (0).
Output : Z and W .
repeat
1. zik ← zik

(︁
X

ZW ⊤ W
)︁
ik

/︁∑︁d
j wjk ;

2. wjk ← wjk
(︁

X⊤

W Z⊤ Z
)︁
jk

/︁∑︁n
i zik ;

until convergence
5. Normalize Z so as it has unit-length column
vectors.
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2.2.2 Cluster ensembles (CE)

In machine learning, the idea of utilizing multiple sources of data partitions firstly occurred with

multi-learner systems where the output of several classifier algorithms where used together in order to

improve the accuracy and robustness of a classification or regression, for which strong performances

were acknowledged [119, 180, 178]. At this stage, very few approaches have worked toward applying

a similar concept to unsupervised learning algorithms. In this sense, we denote the work of [181] who

tried to combine several clustering partitions according to the combination of the cluster centers. In

the early 2000, [119] were the first to consider an idea of combining several data partitions however,

without accessing any original sources of information (features) or led computed centers. This approach

is referred to as cluster ensembles. At the time, their idea was motivated by the possibility of taking

advantage of existing information such as a prior clustering partitions or an expert categorization

(all regrouped under the terms Knowledge Reuse), which may still be relevant or substantial for a

user to consider in a new analysis on the same objects, whether or not the data associated with these

objects may also be different than the ones used to define the prior partitions. Another motivation was

Distributed computing, referring to analyzing different sources of data (which might be complicated to

merge together for instance for privacy reasons) stored in different locations. In our concept, we will

use cluster ensembles to improve the quality of the final partition (as opposed to selecting a unique

one) and therefore extract all the possibilities offered by the miscellaneous best solutions created by

NMF.

In [119], the authors introduced three consensus methods that can produce a partition. All of them

consider the consensus problem on a hypergraph representation H of the set of partitions Hr. More

specifically, each partition Hr equals a binary classification matrix (with objects in rows and clusters

in columns) where the concatenation of all the set defines the hypergraph H.

— The first one is called Cluster-based Similarity Partitioning Algorithm (CSPA) and consists in

performing a clustering on the hypergraph according to a similarity measure.

— The second is referred to as HyperGraph Partitioning Algorithm (HGPA) and aims at optimi-

zing a minimum cut objective.

— The third one is called Meta-CLustering Algorithm (MCLA) and looks forward to identifying

and constructing groups of clusters.

Furthermore, in [119] the authors proposed an objective function to characterize the cluster ensembles
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problem and therefore allowing a selection of the best consensus algorithm among the three to deliver

its ensemble partition. Let Λ = {λ(q)|q ∈ {1, . . . , r}} be a given set of r partitions λ(q) represented as

labels vectors. The ensemble criterion denoted as λ(k−opt) is called the optimal combine clustering and

aims at maximizing the Average Normalized Mutual Information (ANMI). It is defined as follows :

λ(k−opt) = arg max˜︁λ
r∑︂
q=1

NMI(˜︁λ, λ(q)). (2.36)

The ANMI is simply the average of the normalized mutual information of a labels vector ˜︁λ with all

labels vectors λ(q) in Λ :

ANMI(Λ, ˜︁λ) = 1
r

r∑︂
q=1

NMI(˜︁λ, λ(q)). (2.37)

To cast with cases where the vector labels λ(q) have missing values, the authors have proposed a

generalized expression of (2.36) not substantially different that viewers can refer to in the original

paper [119].

2.2.3 Experiments

We conduct several experiences leading to emphasise the behavior of NMF regarding a clustering

task compared to a dedicated clustering algorithm such as Spherical K-means referred to as S-Kmeans

[39] which was introduced for clustering large sets of sparse text data (or directional data) and remains

appealing for its low computational cost beside its good performances. It was also retained along side

the random starting points (generated according to an uniform distribution U(0, 1) ×mean(X)) as

initialization for NMF. We use two error measures frequently employed for NMF : the Frobenius norm

(which will be referred to as NMF-F) and the Kullback-Leibler divergence (NMF-KL). Eventually, we

compute the consensus partition by using the Cluster Ensemble Python package 1 which utilizes the

consensus methods defined earlier [119].

2.2.3.1 Datasets

We apply NMF on 5 bench-marking document-term matrices for which the detailed characteristics

are available in Table 2.2 where nz indicates the percentage of values other than 0 and the balance

coefficient is defined as the ratio of the number of documents in the smallest class to the number

1. https ://pypi.org/project/Cluster Ensembles/
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of documents in the largest class. These datasets highlight several varieties of challenging situations

such as the amount of clusters, the dimensions, the clusters balance, the degree of mixture of the

different groups and the sparsity. We normalized each data matrix with TF-IDF and their respective

documents-vectors to unit L2-norm to remove the bias introduced by their length.

Table 2.2 – Datasets description : # denotes the cardinality.

Datasets Characteristics
#Documents #Words #Clusters nz(%) Balance

CSTR 475 1000 4 3.40 0.399
CLASSIC4 7095 5896 4 0.59 0.323
RCV1 6387 16921 4 0.25 0.080
NG5 4905 10167 5 0.92 0.943
NG20 18846 14390 20 0.59 0.628

2.2.3.2 NMF raw performances and initialization

The results obtained by NMF-F and NMF-KL according to S-Kmeans and the random starting points

are available in Table 2.3. The clustering quality of the S-Kmeans partitions given as entry to both

algorithms are also displayed. We make use of two relevant measures to quantify and assess the cluste-

ring quality of each algorithm. The first one is the NMI [119] which quantifies how much information

the clustering partition shares with the true partition, the second is the ARI [122], sensitive to the

clusters proportions and measures the degree of agreement between the clustering and the true parti-

tion. To replicate a relevant user experience achieving an unsupervised task, we refer to the criterion

of each algorithm in order to select the 10 first best solutions (out of 30 runs) and report their average

NMI and ARI with the true partition.

One can clearly see that NMF-F and NMF-KL do not react similarly to the different initializations.

While NMF-F substantially benefits from the S-kmeans initialization on every datasets compared to the

random initialization, NMF-KL does not seem to accommodate S-kmeans entries. In fact, S-Kmeans as

starting values seems to worsen NMF-KL solutions, especially on CLASSIC4 and NG5. For this reason,

we will avoid this initialization strategy for NMF-KL in the future although it improves on RCV1. Also,

NMF-KL with a random initialization provides much better results than the other algorithms on almost

all datasets. We reported in Figures 2.3-2.6 the clustering quality of the algorithm’s solutions ranked

from the best one in terms of criterion to the poorest one. The respective criterion of each algorithm

is normalized to belong to [0, 1].
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Table 2.3 – Mean and standard deviation of NMI and ARI computed over the 10 best solutions.

Datasets Metrics Skmeans NMF-F (Random) NMF-F (Skmeans) NMF-KL (Random) NMF-KL (Skmeans)

CSTR
NMI 0.76±0.007 0.65±0.002 0.73±0.04 0.73±0.03 0.76±0.006
ARI 0.80±0.007 0.55±0.002 0.75±0.10 0.77±0.04 0.80±0.006

CLASSIC4
NMI 0.60±0.001 0.53±0.003 0.59±0.002 0.71±0.02 0.61±0.03
ARI 0.47±0.0009 0.45±0.003 0.47±0.002 0.65±0.06 0.47±0.004

RCV1
NMI 0.38±0.0003 0.35±0.0005 0.38±0.0002 0.47±0.02 0.53±0.002
ARI 0.18±0.0004 0.13±0.0008 0.18±0.0003 0.42±0.02 0.46±0.02

NG5
NMI 0.72±0.02 0.56±1.0e-05 0.72±0.02 0.80±0.03 0.79±0.003
ARI 0.60±0.01 0.33±2.5e-05 0.60±0.01 0.82±0.04 0.76±0.005

NG20
NMI 0.49±0.02 0.41±0.01 0.49±0.02 0.48±0.02 0.51±0.01
ARI 0.30±0.02 0.23±0.01 0.30±0.02 0.34±0.02 0.32±0.02

(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) NG20

Figure 2.3 – NMF-F : NMI/ARI behaviour according to the objective function F (initializations by
S-Kmeans).

When one does have the real partition, a common practice to evaluate the clustering result, one

relies on the best solution obtained by optimizing the objective function. Figures 2.3 and 2.5 highlight

a critical behavior of NMF-F which tends to produce solutions with the lowest minima that do not fulfil

the best clustering partitions, sometimes with a substantial gap (see CSTR, RCV1, NG5 in Figure 2.3).

Moreover, a surprising lesser but still similar behavior is delivered by S-Kmeans which compared to

NMF, optimizes a clustering objective by definition. The results are displayed in Figure 2.4. In reality,
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this behavior can be observed with several types of what we refer to clustering algorithms hosting

an optimization procedure. Initializing NMF-F randomly as shown in Figure 2.5 seems to lighten this

effect (on CSTR, Classic4 and RCV1). On another hand, NMF-KL which to this day remains recognized

as a relevant method for document clustering [134] seems to consistently deliver solutions with the

lowest criteria aligned with the goodness of their clustering, sustaining the use of NMF for clustering

purposes. Furthermore, compared to all, NMF-KL is the only method emphasizing a wide variety of

solutions and therefore seems to explore way more possibilities than NMF-F or S-Kmeans. Its better

behavior might almost comfort the idea of selecting the best partition in terms of criterion as the one

to keep. However, it still fails on RCV1 which is the toughest dataset to partition mainly because

of its scant density. Eventually, it remains concerning to select the best partition just based on the

fact that, even with NMF-KL, the solution among the best ones providing the best clustering, is not

necessarily the first one (see on CSTR, CLASSIC4 and NG5).

(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) NG20

Figure 2.4 – S-Kmeans : NMI/ARI behaviour according to the objective function F (Random initia-
lizations).

In addition, while the best solutions possibly share a similar amount of information with the true

partition, they could be fairly distinct from each other, making their use appealing to deduce an

even more exhaustive solution. Figure 2.7 shows results of pairwise NMI and ARI between the top

10 partitions (criterion-wise) of each algorithm. NMF-KL’s best solutions appear to be fairly different
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among each other.

(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) NG20

Figure 2.5 – NMF-F : NMI/ARI behaviour according to the objective function F (Random initializa-
tions).

(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) NG20

Figure 2.6 – NMF-KL : NMI/ARI behaviour according to the objective function F (Random initiali-
zations).
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Figure 2.7 – Pairwise NMI & ARI averages between the top 10 solutions.

2.2.3.3 Consensus clustering

Table 2.4 – Mean and standard deviation, first best result and CE consensus computed over the 10
best solutions.

Datasets Metrics NMF-F (Skmeans) Skmeans NMF-KL (Random)

Mean±SD (best) CE Mean±SD (best) CE Mean±SD (best) CE

CSTR
NMI 0.73±0.04 (0.65) (0.76) 0.76±0.007 (0.77) (0.77) 0.73±0.03 (0.76) (0.80)

ARI 0.75±0.10 (0.56) (0.80) 0.80±0.007 (0.80) (0.80) 0.77±0.04 (0.81) (0.83)

CLASSIC4
NMI 0.59±0.002 (0.59) (0.59) 0.60±0.001 (0.59) (0.60) 0.71±0.02 (0.72) (0.74)

ARI 0.47±0.002 (0.47) (0.47) 0.47±0.0009 (0.47) (0.47) 0.65±0.06 (0.65) (0.72)

RCV1
NMI 0.38±0.0002 (0.38) (0.35) 0.38±0.0003 (0.38) (0.35) 0.47±0.02 (0.47) (0.52)

ARI 0.18±0.0003 (0.18) (0.26) 0.18±0.0004 (0.18) (0.26) 0.42±0.02 (0.43) (0.46)

NG5
NMI 0.72±0.02 (0.74) (0.76) 0.72±0.02 (0.73) (0.75) 0.80±0.03 (0.83) (0.86)

ARI 0.60±0.01 (0.61) (0.60) 0.60±0.01 (0.60) (0.64) 0.82±0.04 (0.85) (0.88)

NG20
NMI 0.49±0.02 (0.51) (0.50) 0.49±0.02 (0.51) (0.50) 0.48±0.02 (0.50) (0.61)

ARI 0.30±0.02 (0.32) (0.34) 0.30±0.02 (0.32) (0.34) 0.34±0.02 (0.36) (0.49)

Following the previous statement, we went ahead and computed a cluster ensemble (CE) for NMF-F

and NMF-KL according to their best initialization strategy as well as for S-Kmeans due to its pertinence

for initializing NMF-F and the method being widely known as relevant for document clustering. The

results are reported in Table 2.4. It appears that the consensus obtained with the top 10 results of

each method generally outperforms the best solution. This result is even stronger for NMF-KL where

the ensemble clustering increases the NMI and ARI by respectively 11 and 13 points on NG20. Note

that NG20 is the dataset where the average pairwise NMI and ARI between the 10 top partitions
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are the lowest, meaning the most different (see Figure 2.7). Furthermore, it is interesting to note that

these performances are obtained from solutions giving an average NMI and ARI smaller than the best

solution itself.

2.2.3.4 Consensus multinomial

Following the cluster-based consensus approach which implies a similarity-based clustering algo-

rithm, we decided to make use of a model-based clustering to go and try to obtain a better final

partition than the one delivered by cluster ensembles. In [182], the authors have used the Multinomial

mixture approach to propose a consensus function. In model-based clustering, it is assumed that the

data are generated by a mixture of underlying probability distributions, where each component k of

the mixture represents a cluster.

Let Λ ∈ Nn×r
0 be the data matrix of labels vectors from the top r solutions. Our data being

categorical, we used a Multinomial Mixture Model (MMM) in order to partition the elements λi.

Categorical data being a generalization of binary data ; assuming a perfect scenario where there is no

partition with an empty cluster, a disjunctive matrix M ∈ {0, 1}n×rg is usually used instead of Λ with

value m
(h)
iq where h ∈ {1, . . . , g} is a cluster label. Therefore, the data values m

(h)
iq are assumed to be

generated from a Multinomial distribution of parameter M(m(h)
iq ;α(h)

kq ) where α
(h)
kq is the probability

that an element mi in the group k takes the category h for the partition/variable λq. The density

probability function of the model can be stated as :

f(M ; Θ) =
n∏︂
i=1

g∑︂
k=1

πk

r∏︂
q=1

g∏︂
h=1

(α(h)
kq )m

(h)
iq , (2.38)

where Θ = (π,α) are the parameters of the model with π = (π1, . . . , πk) being the proportions and

α the vector of the components parameters.

The Rmixmod package 2 is used to achieve our analysis. We employ the default settings to com-

pute the clustering, allowing the selection between 10 parsimonious models according to the Bayesian

information Criterion (BIC) [183]. With CSTR, the model mainly selected is the one keeping the

proportions πk free with the model also independent from the variables (labels vectors), meaning

M(m(h)
iq ;αk). CSTR is the dataset with the highest pairwise NMI and ARI therefore with the most

similar best solutions. On CLASSIC4 and RCV1 where the pairwise NMI & ARI are a little bit lower,

2. https ://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf
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it is the model with free proportions and parameters α depending on distinct components and labels

vectors (M(m(h)
iq ;α(h)

kq )) which is mainly chosen. On NG5 where the best solutions are fairly similar

(high pairwise NMI & ARI), it is the model depending on the components and the labels vectors which

has been retained. However, the proportions here were kept equal. For NG20 where the best solutions

were fairly distinct, the model selected is the one depending on the components and the variables. As

previously, the proportions πk are kept equal. Following the characteristics in Table 2.2, it is notable to

see that the datasets where the proportions are kept equal are actually those with the more balanced

real clusters proportions. The results of the obtained consensus are displayed in Table 2.5 which only

retains prior results of NMF-KL top 10 solutions and CE consensus, as they were the best overall. Apart

from CSTR, we can see that MMM does a better job at computing a better partition from the top 10

solutions than CE.

Table 2.5 – MMM consensus results over the 10 best solutions.

Datasets Metrics NMF-KL (Random)

Mean±SD (best) CE MMM

CSTR
NMI 0.73±0.03 (0.76) (0.80) (0.77)

ARI 0.77±0.04 (0.81) (0.83) (0.82)

CLASSIC4
NMI 0.71±0.02 (0.72) (0.74) (0.77)

ARI 0.65±0.06 (0.65) (0.72) (0.75)

RCV1
NMI 0.47±0.02 (0.47) (0.52) (0.52)

ARI 0.42±0.02 (0.43) (0.46) (0.46)

NG5
NMI 0.80±0.03 (0.83) (0.86) (0.86)

ARI 0.82±0.04 (0.85) (0.88) (0.89)

NG20
NMI 0.48±0.02 (0.50) (0.61) (0.63)

ARI 0.34±0.02 (0.36) (0.49) (0.50)

2.3 Conclusion

We have presented NMF and several possible extensions to narrow its objective toward a clustering

point of view. We proposed to use the MU algorithm to solve the NMF problem and studied its solutions

from a clustering perspective. By using cluster ensembles, we have proposed a simple method to avoid

poor clustering results using the best local minimum and improved the overall clustering performances.

From its gathering nature, this process should also alleviate the uncertainty based around the overall

82



2.3. CONCLUSION

quality of the final partition compared to other selection practices such as keeping an unique solution

according to the best criterion. Furthermore, we have shown that it was possible to improve the

consensus quality through the use of finite mixture models, allowing more powerful underlying settings

than cluster-based consensus involving plain similarities or distances.

In the next chapter, we shall consider this approach along side our new NMF extensions and

perhaps, investigate the use of cluster ensembles for other recent clustering algorithms [184, 185, 186,

187, 188].
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Chapitre 3

Nonnegative Matrix Factorization with
semantic leveraging

NMF and its variants have been successfully used for clustering text documents. However, in its

original formulation, NMF do not explicitly account for the contextual dependencies between words.

To remedy this limitation, we propose in this chapter two regularizations for the NMF objective

considering respectively the Frobenius norm, and the generalized Kullback-Leibler divergence as cost

functions. The first approach draws inspiration from neural word embedding and posits that words

that frequently co-occur within the same context (e.g., sentence or document) are likely related to each

other in some semantic aspect. We then propose to jointly factorize the document-word and word-word

co-occurrence matrices. Due to to the low computational cost of its gradient, the Frobenius norm is

set a the cost function and the decomposition of the latter matrix encourages frequently co-occurring

words to have similar latent representations to reflect their relationships. Empirical results, on several

real-world datasets, provide strong support for the benefits of our approach and illustrates improvement

of the clustering performance of NMF. This approach is referred to as SNMF and presented in the first

section of this chapter. Following the results obtained in the previous chapter, cluster ensembles and

finite mixture models are also employed to enhance and validate the potential of a consensus approach

for NMF regularized objectives.

The second approach aimed at leveraging subordinates semantic relations (such as hyponyms) using

the Wasserstein 1 metric to obtain regularization embeddings. In the field of document clustering (or

dictionary learning), the Wasserstein distance showed some advantages for measuring the approxima-

1. In this paper, we use ”Wasserstein”, ”Earth Mover’s”, ”Kantorovich–Rubinstein” interchangeably
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tion of the original data. Further, It is able to capture redundant information, for instance synonyms

in bag-of-words, which in practice cannot be retrieved using classical metrics. However, despite the use

of smoothed approximation allowing faster computations, this distance suffers from its high computa-

tional cost and remains uneasy to handle with a substantial amount of data. To circumvent this issue,

we propose a different scheme of NMF relying on the generalized Kullback-Leibler divergence for the

term approximating the original data and a regularization term consisting in the approximation of the

Wasserstein embeddings in order to leverage more semantic relations. With experiments on benchmark

datasets, the results show that our proposal achieves good clustering and support for visualizing the

clusters. We refer to this approach as WE− NMF and present it in the second section of this chapter.

3.1 Improving NMF Clustering by Leveraging Contextual Relationships

Among Words

3.1.1 Motivations

Words having a common meaning—synonyms—or more generally words that are about the same

topic are not guaranteed to be mapped in the same direction in the latent space. This is simply due

to the fact that words with similar meanings are not necessarily used exactly in the same documents.

Consequently, similar embeddings are not guaranteed even for closely related documents using words

with similar meanings. Hence, our intuition is that, if we are successful in capturing the semantic

relationships among words in an NMF model we can expect document factors which are even better

for clustering.

The research question is how to capture and leverage the relationships among words in an NMF

model ? In this section, we draw inspiration from neural word embedding and rely on the distributional

hypothesis [189], which states that words in similar contexts have similar meanings. The context is a

modeling choice that could be data- or problem-specific. For instance, a document or a sentence is a

context in which words co-occur. Note that other definitions of ”contexts” are possible [190]. An early

application of that hypothesis in Matrix Factorization is the Hyperspace Analogue to Language (HAL)

[191] framework. It employs a word-word co-occurrence matrix whose entries encode the number

of times each pair of words has occurred in the same context. Thus, following the distributional

hypothesis, we assume that words which frequently co-occur in the same context are likely related to
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each other in some semantic aspect. We then, propose a new NMF model which jointly decomposes

the document-word and word-word co-occurrence matrices into two separate products that share one

factor. The intuition behind the decomposition of the latter matrix is to make the representations of

frequent co-occurring words closer to each other in the latent space so as to reflect the relationships

among them. We further consider a non-linear transformation of the word co-occurrences, based on

the Pointwise Mutual Information (PMI), for effectiveness and efficiency purposes.

In order to infer the factor matrices, we propose a scalable alternating optimization procedure

based on a set of multiplicative update rules, similar to original NMF, which guarantees to decrease

monotonically our objective function at each iteration, until convergence. We conduct extensive ex-

periments to illustrate the benefits of our model and better characterize the circumstances in which

it offers the most significant improvements. Our main finding is that, we can drastically improve the

clustering performance of NMF by leveraging explicitly the contextual relationships among words 2.

3.1.2 Related Works

Below we try to provide a brief review of works that are most closely related to our contribution.

In order to leverage the relationships among words in NMF, we draw inspiration from neural

word embedding. These approaches, seek continuous representations of words that reflect various

linguistic regularities between them [192, 193, 194]. To achieve their objective, most neural word

embedding methods rely on the distributional hypothesis of Harris [189]. For instance, the recently

proposed skip-gram model with negative sampling aims to maximize the dot-product between the

vectors of frequently occurring word-context pairs, and minimize it for random word-context pairs.

For more details please refer to [194]. What makes these models particularly appealing is their ability to

learn word vectors that are good at capturing meaningful semantic and syntactic regularities between

words [195]. Similar to word embedding techniques, the model we propose relies on the distributional

hypothesis to capture the semantic relationships between words in NMF. Our preliminary investigation

of infusing NMF with contextual relationships among words has appeared recently as a short paper

[196]. In the present manuscript, we delve in-depth into this idea and present several new theoretical

and empirical results.

2. We use « contextual relationships » and « semantic relationships » interchangeably. The former relationships
underlie the latter ones, and our objective is to rely on the words’ context to capture the semantic relationships among
them
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3.1.3 Preliminaries

The word co-occurrence matrix is represented by C = (cjj′) ∈ Rd×d′
+ , following the nomenclature in

neural word embedding, row j ∈ J corresponds to word wj , column j′ ∈ J ′ denotes context word wj′ ,

and each entry cjj′ denotes the number of times the word-context pair (wj ,wj′) occurred in the same

context (e.g., a sentence or a document). The word and context word vocabularies, J and J ′ might

be different. The PMI is an information theoretic measure widely used to quantify the association

between pairs of outcomes coming from discrete random variables. Formally, the PMI between word

wj and its context word wj′ is given by

PMI(wj , wj′) = log p(wj , wj′)
p(wj)p(wj′) . (3.1)

Given the word co-occurrence matrix C defined above, the PMI between wj and wj′ can be empirically

estimated as follows

PMI(wj , wj′) = log cjj
′ × c..

cj. × c.j′
, (3.2)

where c.. =
∑︁d
j=1

∑︁d′
j′=1 cjj′ , cj. =

∑︁d′
j′=1 cjj′ and c.j′ =

∑︁d
j=1 cjj′ .

The expected value of the PMI across all the possible events is the Mutual Information (MI) that

is positive. A null PMI indicates that the events are independent, negative values of PMI indicate

that those events occur less frequently than expected. Therefore a useful variation called Positive PMI

(PPMI) is to set all negative PMI values to zero. This transformation has been shown to produce good

semantic representations [197].

3.1.4 Method

3.1.4.1 Formulation

In this section, we describe our model, Semantic-NMF, which jointly performs NMF on the

document-word matrix and word-word PPMI matrix, with shared word factors, to better capture and

leverage the semantic relationships among words. Formally the objective function of Semantic-NMF,

to be minimized, is given by

F(Z,W ,Q) = D1(X,ZW ⊤)⏞ ⏟⏟ ⏞
NMF

+λD2(M ,W Q⊤)⏞ ⏟⏟ ⏞
word embedding

, (3.3)
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where D1 and D2, are cost functions for measuring the divergence between non-negative matrices, λ

is a regularization parameter, and following the nomenclature in neural word embedding, we refer to

Q ∈ Rd
′×g

+ as the context factor matrix. The above objective function can be viewed as regularizing

the word factors in NMF beyond usual regularization schemes (e.g., L2 norm). Note that, both terms

in (3.3) infer low dimensional representations of words. In the NMF term, word factors encode how

words are used in documents, while in the word embedding term, word representations encode word co-

occurrence patterns. Semantic-NMF seeks to leverage both of the above information, simultaneously.

Additionally, whilst d′ = d due to M defined as a word-word PPMI matrix, Semantic-NMF can easily

accommodate the definition of M as a word embedding matrix where d′ ̸= d (favorably d′ ≤ d).

Figure 3.1 provides a graphical illustration of Semantic-NMF.

3.1.4.2 Inference

In this section, we shall investigate the case where both D1 and D2 are the square of the Frobenius

norm, and derive an iterative optimization procedure to infer the latent factor matrices. In this case,

(3.3) takes the following form :

F(Z,W ,Q) =1
2 ||X −ZW ⊤||2F + λ

2 ||M −W Q⊤||2F

=1
2 Tr

(︂
(X −ZW ⊤)(X −ZW ⊤)⊤

)︂
+ λ

2 Tr
(︂
(M −W Q⊤)(M −W Q⊤)⊤

)︂
=1

2 Tr
(︂
XX⊤ − 2XW Z⊤ + ZW ⊤W Z⊤

)︂
+ λ

2 Tr
(︂
MM⊤ − 2MQW ⊤ + W Q⊤QW ⊤

)︂
. (3.4)

In the following, we derive a set of multiplicative update rules in order to minimize F under the

constraints of positivity of Z, W and Q. Let α ∈ Rn×g, β ∈ Rd×g, γ ∈ Rd′×g be the Lagrange

multipliers for the constraints, the Lagrange function L(Z,W ,Q,α,β,γ) = L is given by

L = F(Z,W ,Q) + Tr (αZ⊤) + Tr (βW ⊤) + Tr (γQ⊤).
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Figure 3.1 – Illustrative scheme of the proposed Semantic-NMF model. X ≈ ZW ⊤ and M ≈W Q⊤

The derivatives of L with respect to Z, W and Q are

∇ZL = −XW + ZW ⊤W + α, (3.5a)

∇WL = −(X⊤Z + λMQ) + W (Z⊤Z + λQ⊤Q) + β, (3.5b)

∇QL = −λM⊤W + λQW ⊤W + γ. (3.5c)

Setting these gradients to zero and making use of the Kuhn-Tucker conditions⎧⎪⎨⎪⎩
α⊙Z = 0

β ⊙W = 0
γ ⊙Q = 0

we obtain the following stationary equations :

−(XW )⊙Z + (ZW ⊤W )⊙Z = 0,

−(X⊤Z + λMQ)⊙W + W (Z⊤Z + λQ⊤Q)⊙W = 0,

−(M⊤W )⊙Q + (QW ⊤W )⊙Q = 0.

Based on the above equations we derive the following multiplicative update rules

Z ← Z ⊙ XW

ZW ⊤W
, (3.6a)

W ←W ⊙ (X⊤Z + λMQ)
W (Z⊤Z + λQ⊤Q) , (3.6b)

Q← Q⊙ M⊤W

QW ⊤W
. (3.6c)
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These update rules are analogous to those of NMF [132]. The difference is in how we update the

word factors in Semantic-NMF. In the latter, the update of W depends on two sources of data (i) the

document-word matrix and (ii) the PPMI co-occurence matrix M .

Theorem 1. The objective function of Semantic-NMF is non-increasing under the update formulas

(3.6a), (3.6b) and (3.6c).

Proof. Equations (3.6a) and (3.6c) are similar to those of NMF [132], therefore based on the proof

of [132] the objective function of Semantic-NMF is non-increasing under these two equations. Hence,

we only need to demonstrate that F is non-increasing under the update rule (3.6b), given Z and

Q. To this end, we follow a similar approach to the one described in [132], which is inspired by the

Expectation-Maximization (EM) algorithm [90] and consists in using an auxiliary function.

Definition. G(w,w′) is an auxiliary function for F(w) if the following conditions are satisfied G(w,w′) ≥

F(w) and G(w,w) = F(w).

A key point to the auxiliary function is described by the following lemma.

Lemma 1. If G is an auxiliary function for F , then F is non-increasing under the update

w(t+1) = arg min
w

G(w,w(t)). (3.7)

Proof.

F(w(t+1)) ≤ G(w(t+1), w(t)) ≤ G(w(t), w(t)) = F(w(t)).□

Now we will make use of an appropriate auxiliary function to demonstrate that our objective

function F is non-increasing under the update rule (3.6b). Let wjk denote any element in W , and let

F̃(wjk) denote the part of F containing wjk. As the update (3.6b) is element-wise, it is sufficient to

show that F̃ is non-increasing under the update of wjk based on equation (3.6b). The first and second

partial derivatives of F̃ noted F̃ ′
, F̃ ′′

are respectively given by

F̃ ′(wjk) =
(︂
−X⊤Z − λMQ + W (Z⊤Z + λQ⊤Q)

)︂
jk
,
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F̃ ′′(wjk) =
(︂
Z⊤Z + λQ⊤Q

)︂
kk
.

The following lemma yields an auxiliary function for F̃ .

Lemma 2. The function G defined as follows

G(wjk, w
(t)
jk ) = F̃(w(t)

jk ) + F̃ ′(w(t)
jk )(wjk − w

(t)
jk )

+

(︂
W
(︂
Z⊤Z + λQ⊤Q

)︂)︂
jk

2w(t)
jk

(wjk − w
(t)
jk )2 (3.8)

is an auxiliary function for F̃ .

Proof. Based on Lemma 2 it straightforward to verify that G(wjk, wjk) = F̃(wjk). We will now show

that G(wjk, w
(t)
jk ) ≥ F̃(wjk), by making use of the second order Taylor expansion of F̃ about w

(t)
jk given

by

F̃(wjk) = F̃(w(t)
jk ) + F̃ ′(w(t)

jk )(wjk − w
(t)
jk )

+

(︂
Z⊤Z + λQ⊤Q

)︂
kk

2 (wjk − w
(t)
jk )2. (3.9)

Since

(︂
W Z⊤Z

)︂
jk

=
g∑︂

k′=1
w

(t)
jk′

(︂
Z⊤Z

)︂
k′k
≥ w(t)

jk

(︂
Z⊤Z

)︂
kk

and similarly (︂
W Q⊤Q

)︂
jk
≥ w(t)

jk

(︂
Q⊤Q

)︂
kk
,

we have
(W(Z⊤Z+λQ⊤Q))

jk

w
(t)
jk

≥
(︂
Z⊤Z + λQ⊤Q

)︂
kk
. Thereby, from (3.8) and (3.9), G(wjk, w

(t)
jk ) ≥

F̃(wjk) holds. □

Thus, to prove Theorem 1 it is sufficient to show that equation (3.6b) for wjk satisfies Lemma 1

where the auxiliary function G is given by Lemma 2. Substituting equation (3.8) to G(wjk, w
(t)
jk ) in

Lemma 1 leads to solve
∂G(wjk,w

(t)
jk

)
∂wjk

= 0 or,

F̃ ′(w(t)
jk ) +

(︂
W (Z⊤Z + λQ⊤Q)

)︂
jk

2w(t)
jk

(2wjk − 2w(t)
jk ) = 0.
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Then w
(t+1)
jk = arg minw G(wjk, w

(t)
jk ) leads to

w
(t+1)
jk = −w(t)

jk

F̃ ′(w(t)
jk )

(W (Z⊤Z + λQ⊤Q))jk
+ w

(t)
jk

= w
(t)
jk

(X⊤Z + λMQ)jk
(W (Z⊤Z + λQ⊤Q))jk

.

It follows from the latter result and Lemma 1 that F̃ is non-increasing under the update of wjk in

equation (3.6b), ∀j, k. Given that (3.6b) is element-wise, the objective function of Semantic-NMF is

non-increasing under the update rule (3.6b). ■

Thereby, based on Theorem 1, the fact that (3.6a), (3.6b) and (3.6c) satisfy the KKT conditions

at convergence and F is bounded from below by 0, iteratively alternating the application of (3.6a),

(3.6b) and (3.6c) will monotonically decrease criterion (3.4) and converge to a locally optimal solution.

Our optimization procedure is depicted in Algorithm 13.

Algorithm 13 Semantic-NMF (SNMF).

Input : X, M , λ and g the dimension of the latent factors.
Output : Z, W and Q.
1. Initialization : Z ← Z(0) ; W ←W (0) and Q← Q(0) ;
repeat
2. Z ← Z ⊙ XW

ZW ⊤W
;

3. W ←W ⊙ (X⊤Z+λMQ)
W (Z⊤Z+λQ⊤Q) ;

4. Q← Q⊙ M⊤W
QW ⊤W

;
until convergence
5. Normalize Z so as it has unit-length column vectors.

3.1.4.3 Computational Complexity Analysis

The following Proposition shows that the computational complexity of the SNMF algorithm scales

linearly with the number of non-zero entries in the document-word and PPMI matrices. In practice

X and M are very sparse, i.e., nzX ≪ n × d and nzM ≪ d × d. Furthermore, multiplicative update

rules (3.6a), (3.6a) and (3.6c) are parallelizable across documents and words, thereby Semantic-NMF

can easily scale to large datasets.
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Proposition 1. Let nzX and nzM denote respectively the number of non-zero entries in X and M ,

and let it be the number of iterations. The computational complexity of Semantic-NMF is given in

O(it · g · (nzX + nzM ) + it · g2 · (n+ d)) .

Proof. The computational bottleneck of SNMF is with the multiplicative update formulas (3.6a), (3.6b)

and (3.6c). Equations (3.6a) and (3.6c) are similar to those of NMF, and their respective complexities

are O(nzX · g + (n + d) · g2) and O(nzM · g + d · g2). The number of operation in (3.6b), including

multiplications, additions and divisions, is g(2nzX +3nzM +3d+g(4d+2n+1)), where we used d′ = d.

The complexity of (3.6b) is thereby given in O(g · (nzX + nzM ) + (n + d) · g2). Therefore, the total

computational complexity of Semantic-NMF is

O(it · g · (nzX + nzM ) + it · g2 · (n+ d)).■

3.1.5 Experimental study

Our objective is to investigate the effect of the contextual relationships between words on NMF mo-

dels. To this end, we conduct extensive experiments in which we benchmark our model, Semantic-NMF

(SNMF), against several state-of-the-art algorithms (including NMF models and clustering algorithms)

on several real-world datasets. Furthermore, we also challenge the choice of the PPMI for M by consi-

dering another transformation arising from the word-word co-occurrence matrix, namely the Global

Vectors for Word Representation (GloVe) [198]. Note that, the Hellinger PCA (HPCA) [199] was also

tested but did not demonstrated good enough performances to be considered in our proposal.

3.1.5.1 Datasets

We use six popular benchmark datasets, described in Table 3.1, namely CSTR [200], CLASSIC4 3,

RCV1 containing the four largest classes of the Reuters corpus 4, the SPORTS dataset (from the

CLUTO toolkit [201]) containing documents relating to seven different sports, the 20-newsgroups

dataset NG203, and the NG5 dataset consisting of five classes 5 of NG20. These datasets are carefully

selected so as to represent various particular challenging situations : different numbers of clusters,

different sizes, different degrees of cluster overlap and different degrees of cluster balance (the Balance

3. http ://www.dataminingresearch.com/

4. http ://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

5. rec.sport.baseball, soc.religion.christian, talk.politics.mideast, sci.electronics and sci.med
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coefficient being the ratio of the minimum cluster size to the maximum cluster size). For each dataset,

we apply the TF-IDF weighting scheme and normalize each document to unit L2 norm so as to remove

the biases induced by the length of documents.

Table 3.1 – Description of Datasets, # denotes the cardinality.

Datasets Characteristics
#Documents #Words #Clusters nzX (%) Balance

CSTR 475 1000 4 3.40 0.399
CLASSIC4 7095 5896 4 0.59 0.323
RCV1 6387 16921 4 0.25 0.080
NG5 4905 10167 5 0.92 0.943
SPORTS 8580 14870 7 0.86 0.0358
NG20 18846 14390 20 0.59 0.628

3.1.5.2 Competing methods

Without the word embedding term in (3.4), when λ = 0, the proposed SNMF degenerates to the

original NMF (NMF) [202]. Hence, we can achieve our objective of studying the effects of the word

relationships on NMF, most effectively by comparing SNMF to NMF. Moreover, in order to show that

leveraging the contextual relationships among words in NMF is effective for text document clustering,

we also consider three strong NMF variants, namely orthogonal NMF (ONMF) [158], Projective NMF

(PNMF) [162] and graph regularized NMF (GNMF) [163]. All the above models have been found to

perform very well and better than several other approaches in terms of text document clustering.

A Deep-Learning algorithm, namely Deep Clustering Network (DCN) [203] is also considered in our

comparison ; it outperforms several clustering (k-means, Spectral Clustering), NMF based method

such as (LCCF) [204] and Deep Learning algorithms (e.g. SAE [205]). The Spherical k-means algorithm

Skmeans [39], which to this day, remains popular for the task document clustering is also included

rather than k-means that is not suitable for sparse data.

3.1.5.3 Evaluation metrics

We retain two widely used measures to assess the quality of clustering, namely the Normalized

Mutual Information (NMI) [119] and the Adjusted Rand Index (ARI) [122]. Intuitively, NMI quantifies

how much the estimated clustering is informative about the true clustering, while the ARI measures

the degree of agreement between an estimated clustering and a reference clustering ; both NMI and
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ARI are equal to 1 if the resulting clustering is identical to the true one.

3.1.5.4 Settings

For each dataset, g is the true number of clusters. To produce a fair comparison, the same ini-

tialization (namely Skmeans) was used across the NMF-like algorithms. Similar settings to the ones

used to in [198] are employed for producing the GloVe embeddings ; note that any other type of word-

embedding can be used for the matrix M . Therefore, the GloVe embeddings dimension (in our case d′)

was set to 100, xmax to 100, α to 3/4. A stochastic gradient descent algorithm with a learning rate of

0.15 was used to train the model. Subsequently, all negative entries in the GloVe embeddings are set to

zero. In the following, this transformation is referred to as PGLOVE. The setting of the regularization

parameter λ is achieved empirically and established w.r.t. the PPMI and PGLOVE matrices.

3.1.5.5 Empirical results

Below we comment on the results of our experiments and answer several questions related to our

proposal.

What is the impact of the regularization parameter on the performances of SNMF?

Figure 3.2 and 3.3 display the behaviors of SNMF w.r.t. the PGLOVE and PPMI matrices respecti-

vely. The results are shown in terms of NMI and ARI scores for several values of λ going from 0 to 103.

In the case PGLOVE (see Figure 3.2), the variations of the NMI and ARI scores are unfortunately

inconsistent across the range of λ values (see CSTR, RCV1, NG5, SPORTS) making the setting of λ

quite difficult and unreliable. However, a good trade off would be λ = 0.1. On the other hand, using

the PPMI (see Figure 3.2), the variations of the NMI and ARI scores are consistent and linear once

a jump is observed. In this case, setting λ is much trivial and reliable and we recommend to set λ to

0.1 since we observe good performance scores even for higher values of λ on all the datasets. For these

reasons, using the PPMI appears as safer alternative.

Table 3.2, summarizes the results of the different methods in terms of NMI and ARI, over all

datasets. All the scores are averages considering the 10 best solutions (in terms of criterion) among a

set of fifty different trials. As this table clearly shows, both versions of our model SNMF outperform the

other competing methods by an important margin, in most cases. Recalling that SNMF corresponds to
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(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) SPORTS (f) NG20

Figure 3.2 – Impact of the regularization parameter λ (PGLOVE).

(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) SPORTS (f) NG20

Figure 3.3 – Impact of the regularization parameter λ (PPMI).

NMF with an extra term encoding word co-occurrences. We can therefore attribute the improvement of

SNMF upon the performance of NMF to the additional factorization of the PGLOVE or PPMI matrix.
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In addition, between our two versions (PGLOVE, PPMI), using the PPMI appears to offer better

performance overall and will be the version considered in the rest of the paper.

Table 3.2 – Mean ± SD of NMI and ARI over different datasets.

Datasets Metrics Skmeans NMF ONMF PNMF GNMF DCN SNMF
(P GLOV E)

SNMF
(P P MI)

CSTR
NMI 0.76±0.00 0.73±0.04 0.65±0.00 0.72±0.04 0.69±0.00 0.63±0.024 0.76±0.00 0.76±0.01
ARI 0.80±0.00 0.75±0.10 0.60±0.03 0.73±0.09 0.75±0.02 0.53±0.03 0.80±0.00 0.80±0.01

CLASSIC4
NMI 0.60±0.00 0.59±0.00 0.49±0.02 0.51±0.00 0.62±0.00 0.57±0.01 0.61±0.02 0.61±0.03
ARI 0.47±0.00 0.47±0.00 0.41±0.01 0.42±0.00 0.45±0.00 0.42±0.01 0.47±0.00 0.47±0.00

RCV1
NMI 0.38±0.00 0.38±0.00 0.35±0.00 0.36± 0.00 0.34±0.00 0.34±0.00 0.51±0.08 0.56±0.00
ARI 0.18±0.00 0.18±0.00 0.14±0.00 0.16±0.00 0.12±0.00 0.12±0.00 0.39±0.15 0.45±0.00

NG5
NMI 0.72±0.02 0.72±0.02 0.52±0.01 0.69± 0.00 0.58±0.04 0.62±0.02 0.79±0.00 0.78±0.00
ARI 0.60±0.01 0.60±0.01 0.29±0.00 0.54±0.00 0.50±0.07 0.47±0.02 0.76±0.00 0.75±0.01

SPORTS
NMI 0.62±0.02 0.61±0.03 0.55±0.02 0.56±0.00 0.55±0.00 0.59±0.01 0.62±0.05 0.63±0.04
ARI 0.40±0.04 0.41±0.04 0.28±0.01 0.28±0.00 0.28±0.00 0.37±0.03 0.46±0.07 0.48±0.05

NG20
NMI 0.49±0.02 0.49±0.02 0.38±0.01 0.43±0.03 0.00±0.00 0.43±0.01 0.49±0.02 0.49±0.02
ARI 0.30±0.02 0.30±0.02 0.20±0.00 0.22±0.02 0.00±0.00 0.17±0.01 0.29±0.01 0.33±0.03

(a) CSTR (b) CLASSIC4 (c) RCV1

(e) NG5 (f) SPORTS (f) NG20

Figure 3.4 – Distribution of cosine similarities between pairs of documents belonging to the same
class, computed using the documents’ embeddings obtained by NMF and SNMF. The documents of the
same class tend to have more similar embeddings under SNMF than NMF.
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(a) CSTR (b) CLASSIC4 (c) RCV1

(e) NG5 (f) SPORTS (f) NG20

Figure 3.5 – Distribution of cosine similarities between the top 30 words characterizing each document
class, computed using the words’ embeddings obtained by NMF and SNMF. The top words of the same
class tend to have more similar embeddings under SNMF than NMF.

To gain further insights into the performances of SNMF and characterize the circumstances in which

it provides the most significant improvements, we investigate several research questions below.

What happens with document embeddings ? Figure 3.4 shows the distribution of the cosine simi-

larities between pairs of documents belonging to the same « true » class, computed using the document

embeddings produced by NMF (grey boxplots) and SNMF (green boxplots). We observe that documents

from the same class (topic) tend to have more similar embeddings under SNMF than NMF. This provides

empirical evidence that accounting for the semantic relationships among words yields document fac-

tors that encode the clustering structure even better.

Is SNMF actually capturing the semantic relationships between words ? Based on the

document-word matrix, we select the top thirty words of each true class. In Figure 3.5, we report

the distribution of the cosine similarities between pairs of top words of the same class, computed

using the word vectors inferred by NMF (grey boxplots) and SNMF (blue boxplots). Because the cosine

similarity is likely to be high between low dimensional vectors (e.g. g = 4), we vary g from the real

number of clusters to 400 for each dataset. As this figure shows clearly, the top words of each class

have more similar embeddings under SNMF than NMF. This confirms that SNMF does a better job than
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Figure 3.6 – Cluster interpretability : Average PMI score. Semantic-NMF leads more interpretable
document clusters than NMF.

NMF in capturing semantics, by making the representations of words which are about the same topic

(class) closer to each other in the latent space.

We also investigate the effect of the contextual relationships between words by comparing SNMF

with NMF in terms of cluster interpretability. To human subjects, interpretability is closely related to

coherence [206], i.e., how much the top words of each cluster are « associated » with each other. For

each cluster k, we select its top 30 words based on the kth column of W . We use the PMI, which is

highly correlated with human judgments [207, 208], to measure the degree of association between top

word pairs. For each cluster we average the PMI’s among its top words, and for a model we average

PMI across clusters. Because SNMF already exploits the PMI estimated from word co-occurrences in

each dataset, we propose to use an external corpus to estimate the PMI in this experiment. Following

Newman et al. [207], we use the whole English WIKIPEDIA corpus, that consists of approximately 4

millions of documents and 2 billions of words. Hence, p(wj) is the probability that word wj occurs in

WIKIPEDIA, and p(wj , wj′) is the probability that words wj and wj′ co-occur in a 5-word window in

any WIKIPEDIA document.

Figure 3.6 shows the average PMI obtained by SNMF and NMF, over the different datasets ; it is clear

that SNMF successes in capturing more semantics and inferring more interpretable clusters than NMF.
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3.1.5.6 Cluster Ensembles

Throughout our experiments, Skmeans has proved to be a good initialization for gaining better

NMF solutions with text data. However, we noticed that random starting values could sometimes

lead to better solutions. Table 3.3 reports results of SNMF initialized with Skmeans and randomly. We

can see that with RCV1, SNMF (Random) provides better partitions than SNMF (Skmeans). While this

improvement only appears with one dataset (other encountering losses, see CLASSIC4 and NG5), we

tried to benefit from that infrequent/inconsistent behavior by using the SNMF (Random) solutions along

side those obtained with a Skmeans initialization. Furthermore, in unsupervised learning, selecting

an unique partition among the set of trials has also been a reluctant problem which to this day

remains unclearly addressed. As with NMF, the objective function of Semantic-NMF is not defined

as a clustering problem, therefore, it often happens that the selection of the best run (criterion-wise)

among several does not account for getting the best clustering. However the best clustering could be

among a set of lead solutions (for instance the 10 first ones). In other words, a consensus approach

similar to the one introduced in the previous chapter will also help us to overcome this issue. Therefore,

in the following, we evaluate the performance gain for SNMF utilizing cluster ensembles (CE) and the

consensus obtained from the Multinomial Mixture Model (MMM).

Consensus results

Following the previous statements, we believe that using SNMF (Random) solutions could potentially

improve the quality of the final partition. While they look unattractive compared to those of SNMF

(Skmeans) due to their lower performance (see Table 3.3 where overall, SNMF (Random) appears

to be a bad initialization strategy except for RCV1), these solutions still lead to minima which in

an unsupervised situation, could benefit to other groups of individuals. More specifically, clusters

could be different to the ones captured by SNMF (Skmeans) and therefore might bring another source

of information to get closer to the actual partition. Our proposition referred to as SNMF (Skmeans &

Random) consists in retrieving the 5 top SNMF solutions given by each initialization strategy (Skmeans

and Random) and performing a consensus using the ensemble methods defined earlier. For comparison,

we also provide a consensus for SNMF (Skmeans) and SNMF (Random) individually. Table 3.3 also

reports the average performances of the mix of solutions of SNMF (Skmeans & Random). Consensus
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results obtained with CE and MMM for each strategy are also available.

Figure 2.7 displays the pairwise NMI and ARI between the top partitions of each strategy : SNMF

(Skmeans) denoted ”SNMF Sk”, SNMF (Random) denoted ”SNMF Ra” and SNMF (Skmeans& Ran-

dom) denoted ”SNMF Sk & Ra”. This allow us to assess how similar/related the respective partitions

of each strategy are among each other. For instance SNMF Sk & Ra will translate how different

SNMF (Random) solutions are from SNMF (Skmeans), while SNMF Sk relates how different SNMF

(Skmeans solutions) are between each other. The closer we are to 1, the less diversity there is in the

set of partitions.

Through our experiments, one can wonder what strategy should we use to improve clustering

performance ? As we are in an unsupervised context, this question is difficult but through our obtained

results we can nevertheless make some useful recommendations for the user.

1. First, it is clear that the MMM approach is undoubtedly superior to the CE approach [119] (see

Table 3.3).

2. Between the two approaches Skmeans and Random, the former seems more often better than

the latter. This can be due to the diversity it offers ; see for example SPORTS and NG20.

3. In the absence of diversity, the MMM approach does not bring improvement whatever the stra-

tegy used (Skmeans or Random). In this case combining them (Skmeans & Random) can even

degrade the result as is the case with RCV1. Otherwise, with a great diversity of the two stra-

tegies one can expect an improvement ; this is the case of NG20.

Figure 3.7 – Pairwise NMI & ARI averages between the top 10 solutions.
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Table 3.3 – Mean ± SD of NMI and ARI & consensus over different datasets using CE and the
Multinomial Mixture Model (MMM).

Datasets Metrics SNMF (Skmeans) SNMF (Random) SNMF (Skmeans & Random)

Mean±SD CE MMM Mean±SD CE MMM Mean±SD CE MMM

CSTR
NMI 0.76±0.01 (0.76) (0.76) 0.75±0.00 (0.75) (0.75) 0.75±0.00 (0.75) (0.77)

ARI 0.80±0.01 (0.80) (0.80) 0.80±0.00 (0.80) (0.80) 0.80±0.00 (0.80) (0.81)

CLASSIC4
NMI 0.61±0.03 (0.60) (0.60) 0.54±0.00 (0.49) (0.54) 0.58±0.05 (0.57) (0.65)

ARI 0.47±0.00 (0.47) (0.47) 0.38±0.00 (0.31) (0.38) 0.48±0.05 (0.40) (0.47)

RCV1
NMI 0.56±0.00 (0.56) (0.56) 0.61±0.00 (0.51) (0.61) 0.59±0.03 (0.51) (0.52)

ARI 0.45±0.00 (0.45) (0.45) 0.63±0.00 (0.38) (0.63) 0.54±0.04 (0.45) (0.45)

NG5
NMI 0.78±0.00 (0.78) (0.78) 0.67±0.00 (0.67) (0.67) 0.73±0.06 (0.67) (0.77)

ARI 0.75±0.01 (0.75) (0.74) 0.64±0.00 (0.64) (0.64) 0.69±0.06 (0.60) (0.79)

SPORTS
NMI 0.63±0.04 (0.63) (0.66) 0.43±0.00 (0.43) (0.43) 0.54±0.12 (0.53) (0.57)

ARI 0.48±0.05 (0.48) (0.54) 0.32±0.00 (0.32) (0.32) 0.41±0.10 (0.40) (0.46)

NG20
NMI 0.49±0.02 (0.50) (0.50) 0.47±0.01 (0.47) (0.47) 0.48±0.02 (0.50) (0.52)

ARI 0.33±0.03 (0.33) (0.30) 0.32±0.02 (0.33) (0.33) 0.32±0.02 (0.34) (0.37)

3.1.6 Discussion

In this section, we discuss some directions that we have already investigated since we developed

Semantic-NMF. We also discuss some weaknesses and possible improvements of Semantic-NMF.

3.1.6.1 The orthogonality constraint

The orthogonality constraint on Z is almost always adopted for the clustering task [157, 158]. With

this constraint NMF is equivalent to k-means clustering, and several work empirically demonstrated

that such constrain improves the clustering performance of NMF, in most situations. In our case, we

found that the orthogonality constraint on Z has only a slight impact on the performances of Semantic-

NMF. Since this constraint adds a little computational overhead, we have chosen not to consider it for

efficiency purposes. Note that, introducing the orthogonality constraint into Semantic-NMF is trivial

as we only need to replace the update rule of Z (7a) by the one of Orthogonal NMF [157, 158].
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3.1.6.2 Regularizing document factors using document-document co-occurrences

A natural extension of Semantic-NMF is to regularize the document factors using the document-

document co-occurrence information. While such an extension is expected to yield further impro-

vements, our first results show that in some cases adding this regularization declines the clustering

performance of Semantic-NMF. We believe that this is might be due to the fact that even the most

closely related documents do not necessarily use exactly the same words. We are currently performing

further investigations and try to figure out what is causing this issue.

3.1.6.3 Weaknesses and possible improvements

Although we have shown that Semantic-NMF improves the performances of NMF models by a

noticeable amount, Semantic-NMF has two potential weaknesses : (i) as in most NMF models, the

dimensionality, g, of the latent space is the same for both documents and words. For the clustering

task, g also denotes the number of clusters. When the latter is small (< 10), this may not be enough

to learn high quality word representations that capture finer linguistic regularities and patterns bet-

ween words. A better alternative, is to make the dimensionality of the word embeddings independent

from the number of clusters. This is possible using Non-Negative Matrix Tri-factorization [157]. (ii)

In some situations, when the PPMI matrix, M , is defined deterministically from the local corpus of

each dataset—as this is the case in this paper—, Semantic-NMF does not have a clear generative

interpretation, which could limit the scope of its use. We can overcome this weakness by using a huge

external corpora such as WIKIPEDIA and GOOGLE to build the PPMI matrix. In this case, not only

Semantic-NMF has a clear generative interpretation and can be embedded in a well defined probabi-

listic model [209], but also the PPMI matrix encodes richer and more accurate semantic regularities

between words. Leveraging a huge external corpora, such as the aforementioned ones, so as to preserve

semantics in NMF, constitutes our main focus for a future extension of Semantic-NMF.
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3.2 Wasserstein Embeddings for Nonnegative Matrix Factorization

3.2.1 Motivations

Despite all the notable efforts highlighting the potential of NMF for document clustering [135],

these approaches still exhibit some limitations, namely they do not explicitly account for the semantic

relationships between words as taken into account, for instance, by integrating a word embedding

model into NMF [196, 187, 188]. Therefore, words having a common meaning, synonyms or more

generally words that are about the same topic are not guaranteed to be mapped in the same direction

within the lower dimensional space produces by NMF. This is simply due to the fact that words with

similar meanings are not exactly used in similar documents (note that this issue reminds the founda-

tion of LSA). Consequently, the document embeddings resulting from the approximation are also not

guaranteed to share all potential similarities when the documents are actually from the same topic.

We illustrate our idea in the following example : Taking two groups of documents group1={”The

professor is doing a lecture” (doc1), ”The professor is giving a lesson” (doc2)} and group2={”The

professor is on vacation in England” (doc3), ”The students are on vacation in England” (doc4), ”The

students and their professor are on vacation in England” (doc5)} in terms of meaning but different

regarding the words shared between each other. Considering a bag-of-word representation of these

sentences (Table 3.4). In this example, we recognize that lecture and lesson are synonym. Nonetheless,

Table 3.4 – Document×term matrix.

professor lecture lesson vacation students England

doc1 1 1 0 0 0 0
doc2 1 0 1 0 0 0
doc3 1 0 0 1 0 1
doc4 0 0 0 1 1 1
doc5 1 0 0 1 1 1

if we compute the cosine similarity between those terms from X as shown in Figure 3.8, they would

not be related. In order to leverage this relation, we draw inspiration from several NMF algorithms

[210, 211, 212] aiming to overcome this issue (also regularly encountered in image processing) by using

the Wasserstein distance [213]. This distance which aims to measure the gap between probability dis-

tributions/histograms is arguably less sensitive to these types of redundant representations. However,

computing the distance between two histograms of dimension n is expensive and requires to solve a
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linear program in O(n3 log(n)). Multiple works have shown that depending on the ground metric, it

could be computed in O(n2) time for instance using the L1 ground distance [214], or several orders of

magnitude faster using threshold ground distances [215]. But in a NMF learning process using large-

Documents similarities in X Documents similarities in H Terms similarities in X Terms similarities in G

Figure 3.8 – Cosine similarity between documents or terms. The color and size indicate the binding
force between the documents and the words in X ∈ Rn×d, H ∈ Rg×n and G ∈ Rg×d.

scale histograms for which the distance is computed between more than one pair, the process remains

very expensive and time consuming. Therefore, to go further and take advantages of the Optimal

Transport at a lower computational cost with NMF, we use the Wasserstein embeddings obtained

from the Wasserstein distance computed between the two probability marginals of X. The model

consists in transporting the weights of each marginal living in their respective simplex ∆n and ∆d into

a respective lower dimensional simplex ∆g using the data X and the lower dimensional factors data Z

and W . Subsequently, a regularization of Z and W according to those embeddings is achieved. WE-NMF

implies the computation of g(n + d) Wasserstein parameters that can be stored inside two matrices

G ∈ Rg×d
+ and H ∈ Rg×n

+ . These parameters deliver the optimal transportation for shifting the mass

of documents (resp. terms) into the mass of the latent factors wk with k ∈ {1, . . . , g} (resp. zk). As

shown in Figure 3.8, we can see that this distance allows to highlight the relation between the two

synonyms leading to a better understanding of relations between the documents citing those terms.

Overall, we believe that this distance will be also relevant to leverage relations such as hyponyms (for

instance : bus and car are hyponym of vehicle) which might be subject to reveal more proximities

between documents.

3.2.2 Optimal transport and Wasserstein distance

Let µ =
∑︁n
i=1 aiδxi be an empirical measure with a family of points X = (x1, . . . , xn) ∈ Ωn and

weights a = (a1, . . . , an) living in the probability simplex ∆n = {∀a ∈ Rn+ :
∑︁n
i=1 ai = 1} (where Ω

is an arbitrary space and δxi the Dirac unit mass on xi). Let ν be another empirical measure with
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family Y = (y1, . . . , ym) ∈ Ωm and weights b = (b1, . . . , bm) living in the simplex ∆m. The Wasserstein

distance between µ and ν, also known as the transportation problem is defined as the optimization of

the following problem :

Wp(µ, ν) = p(a, b,MX Y) = min
T ∈U(a,b)

⟨T ,MX Y⟩F (3.10)

where U(a, b) is the transportation polytope acting as the feasible set of all matrices T = (tij) ∈ Rn×m
+

with the row and column marginals respectively equal to a and b s.t.

U(a, b) =
{︁
T ∈ Rn×m

+ |
n∑︂
i=1

tij = ai,
m∑︂
j=1

tij = bj
}︁
,

MX Y = (mij) is the matrix of pairwise distances (also called the cost parameter) between elements

of X and Y, p(a, b,MX Y) is the Wasserstein distance in a form of the optimum of a linear program

on n ×m variables and parameter a, b and MX Y ; ⟨T ,MX Y⟩F = Tr(T ⊤MX Y) =
∑︁n,m
i,j tijmij is the

Frobenius dot-product.

3.2.3 Cuturi regularized Optimal Transport (Discrete)

Wp(µ, ν) is a linear function with a cubic complexity O(n3 log(n)) (when computed between two

histograms of dimension n). Moreover, when n is large, Wp(µ, ν) does not have a unique solution. In

order to leverage these difficulties, [216] introduced a penalized version of the criterion using Shannon’s

entropy which has for effects to smooth the linear problem and turns it into a strictly convex problem

which can be solved faster. The regularized criterion W λ
p (µ, ν) takes the following form :

pλ(a, b,MX Y) = min
T ∈U(a,b)

⟨T ,MX Y⟩F − λ−1H(T ) (3.11)

where H(T ) = −
∑︁n,m
i,j tij log(tij) is the Shannon entropy and λ ∈ [0,∞] the regularization parameter.

Depending on the value of λ, the smooth criterion converges toward the classical Wasserstein distance.

If λ −→∞, H(T ) decreases and leans towardWp(µ, ν) (Deterministic coupling). In this case,W λ
p (µ, ν)

becomes as or even more difficult to solve than the classical problem using an efficient linear solver. If

λ −→ 0, H(T ) increases and pulls away W λ
p (µ, ν) from Wp(µ, ν) (Independent coupling where µ and

ν are assumed to be more independent). To solve W λ
p (µ, ν), T can be formulated as the solution of a

scaling problem such as :

T = diag(a)K diag(b) (3.12)
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where K is the Gibbs kernel s.t. K = e−λMX Y . To obtain T , solution of W λ
p (µ, ν), the Sinkhorn-

Knopp’s algorithm which has a complexity O(nm) is commonly used. It involves matrix/vector mul-

tiplications and converges with a speed of several orders of magnitude faster than the regular EMD

(Earth Mover’s Distance) solvers. A version of the algorithm adapted for the Wasserstein distance

can be found in [216] as well as an updated version in [217] which also solves the dual problem of

eq(3.11). In the following, we will refer to this algorithm as SD for Sinkhorn Distance and its optimal

solution for T as T ∗. It is also notable to note that eq(3.11) can be seen as a relative entropy and

becomes a projection problem similar to the one encountered in NMF-KL ; eq(3.11) is equivalent to

min
T ∈U(a,b)

DKL(T ||K) where DKL is the Kullback-Leibler divergence. The Sinkhorn-Knopp’s algorithm

can easily be adapted to matrix/matrix multiplications to allow the computation of the Wasserstein

distance between one histogram and a set of histograms.

3.2.4 Wasserstein Embeddings NMF (WE-NMF)

Let X ∈ Rn×d
+ be a document-term matrix. NMF using the Wasserstein distance as an error

for approximating several histograms xj ∈ Rn+ in X can be stated as minimizing D(X,ZW ⊤) =∑︁d
j Wp(xj , [ZW ⊤]j) subject to ZW ⊤ ∈ (∆n)d, Z ≥ 0 and W ≥ 0. This implies a number of d

intermediate linear calculus of complexity O(n3 log(n)) using Wp, or d matrix scaling problems of

complexity O(n2) using W λ
p . Both methods, EMD-NMF [210] and W-NMF [211] propose solutions to

speed up the computational time. EMD-NMF uses the wavelet EMD approximation [218] while W-NMF

uses the Legendre-Fenchel conjugate of W λ
p which has a closed-form gradient and benefits from GPU

parallelization. However with both methods, the overall computational time remains substantial for

high dimensional data. With WE-NMF that we propose, we initiate a different approach aiming at

reducing the amount of intermediate matrix scaling problems by considering only 4 histograms :

the respective marginals of X of sizes d and n and their respective representations for the latent

factors zk ∈ Rd+ and wk ∈ Rd+ of size g. Therefore, in WE-NMF we have the computation of two

Wasserstein distances : W λ
p (µ, µbis) (with the cost computed between the column vectors xj ’s and

the factors zk’s) and W λ
p (ν, νbis) (with the cost computed between the row vectors xi ∈ Rd+ and

the factors wk’s). Let xi. =
∑︁d
j xij , x.j =

∑︁n
i xij and Z ∈ {0, 1}n×g (resp. W ∈ {0, 1}d×g) be the

classification matrix deduced from Z (resp. W ). We denote the respective weights for µ and µbis with

a = (x1.
n , . . . ,

xn.
n ) ∈ ∆n and abis = (

∑︁n
i aizi1, . . . ,

∑︁n
i aizig) ∈ ∆g ; the respective weights for ν and νbis
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with b = (x.1
d , . . . ,

x.d
d ) ∈ ∆d and bbis = (

∑︁d
j bjwj1, . . . ,

∑︁d
j bjwjg) ∈ ∆g. Let T be the transportation

matrix in the polytope U(b, bbis) associated with the cost matrix MZX =
[︁
D(zk,xj)p

]︁
kj
∈ Rg×d

+ , S the

transportation matrix in U(a,abis) associated with the cost matrix MW X =
[︁
D(wk,xi)p

]︁
ki
∈ Rg×n

+

and D is the ground metric. Thereby, we define the Wasserstein embedding matrices as :

G
def= T ⊙MZX and H

def= S ⊙MW X , (3.13)

where ⊙ refers to the Hadamard product. The parameter bbis denotes the samples weights detained

per each cluster of samples while abis denotes the features weights per cluster of features. Both are

respectively updated at each iteration of the algorithm. In the sequel, we aim to solve the following

problem which consists in minimizing the objective function F(Z,W ) taking the following form :

min
Z≥0,W ≥0

{︁
F(Z,W ) = DI(X||ZW ⊤) + γ

(︁
DI(H||Z⊤) +DI(G||W ⊤)

)︁}︁
, (3.14)

where γ ∈ R+ is a regularization parameter. Solving problem(3.14) can be achieved through a set

of multiplicative update rules. Let α ∈ Rn×g, β ∈ Rd×g and α ∈ Rd×g be the Lagrange multipliers,

the Lagrangian function L(Z,W ,α,β) is equal to F(Z,W ) + Tr(αZ⊤) + Tr(βW ⊤). The resulting

gradients are

∇zik
L = −

(︃
X

ZW ⊤ W

)︃
ik

+
d∑︂
j

wjk − γ
hki
zik

+ γ + αik,

and

∇wjk
L = −

(︃
X⊤

W Z⊤ Z

)︃
jk

+
n∑︂
i

zik − γ
gkj
wjk

+ γ + βjk.

Making use of the Karush-Kuhn-Tucker conditions, we obtain the stationary equations :

zik

(︃
X

ZW ⊤ W + γ
H⊤

Z

)︃
ik

− zik
(︃ d∑︂

j

wjk + γ

)︃
= 0,

and

wjk

(︃
X⊤

W Z⊤ Z + γ
G⊤

W

)︃
jk

− wjk
(︃ n∑︂

i

zik + γ

)︃
= 0,

which lead to the following update rules :

zik ←
(︁
Z ⊙ X

ZW ⊤ W + γH⊤)︁
ik∑︁d

j wjk + γ
(3.15) wjk ←

(︁
W ⊙ X⊤

W Z⊤ Z + γG⊤)︁
jk∑︁n

i zik + γ
. (3.16)
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Algorithm 14 Wasserstein Embeddings NMF (WE-NMF), O(ngd+ gN).
Input : X, γ, λ, p, a ∈ ∆n, b ∈ ∆d and g.
Output : Z, W , G, and H.
Initialization : Z ← Z(0) ; W ←W (0)

repeat
1. MZX =

[︁
D(zk,xj)p

]︁
kj
, update bbis

1′
. T ← T ∗ using SD(MZX , λ, b, bbis), G← T ⊙MZX

2. MW X =
[︁
D(wk,xi)p

]︁
ki
, update abis

2′
. S ← S∗ using SD(MW X , λ,a,abis), H ← S ⊙MW X

3. update Z with eq(3.15)
4. update W with eq(3.16)

until convergence
5. Normalize each zk to unit-norm.

In this case, D is the (1− cos) dissimilarity and p = 2. SD stands for Sinkhorn Distance. Note that steps (1,1’)
and steps (2,2’) are independent and can be parallelized.

3.2.4.1 Convergence analysis

Recalling the optimization problem of WE-NMF as follows :

min
Z≥0,W ≥0

{︁
F(Z,W ) = DI(X||ZW ⊤) + γ

(︁
DI(H||ZT ) +DI(G||W T )

)︁}︁
. (3.17)

Theorem 3.2.1. F(Z,W ) is non-increasing under the update of Z and W .

Definition 3.2.1. Let (z, z′) ⊆ Rg+ × Rg+, G(z, z′) is an auxiliary function for F(z) if the following

conditions are satisfied :

∀z,G(z, z′) ≥ F(z) and G(z, z) = F(z).

A key point to the auxiliary function is the following lemma :

Lemma 3.2.2. If G(z, z(t)) is an auxiliary function for F(z), F(z) is non-increasing under the update

z(t+1) = arg min
z

G(z, z(t))

Proof. F(z(t+1)) ≤ G(z(t+1), z(t)) ≤ G(z(t), z(t)) = F(z(t)).■

Re-writting F(Z) in a vector coordinates format and as a sum of convex functions. We denote
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F(z) = F1(z) + F2(z) where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(z) def=
d∑︂
j

[︃
xj log xj∑︁g

k zkwjk
− xj +

g∑︂
k

zkwjk

]︃
,

F2(z) def= γ

[︃ g∑︂
k

hk log hk
zk
− hk + zk +

g,d∑︂
k,j

hkj log hkj
wjk
− hkj + wjk

]︃
.

(3.18a)

(3.18b)

Proposition 3.2.1. G(z, z(t)) = G1(z, z(t)) + F2(z) is an auxiliary function for F(z) where

G1(z, z(t)) def=
d∑︂
j

(︁
xj log xj − xj

)︁
+

d,g∑︂
j,k

zkwjk

−
d,g∑︂
j,k

xj
z

(t)
k wjk∑︁g
ℓ z

(t)
ℓ wjℓ

[︄
log(zkwjk)− log

(︃
z

(t)
k wjk∑︁g
ℓ z

(t)
ℓ wjℓ

)︃]︄
. (3.19)

Lemma 3.2.3. G1(z, z(t)) ≥ F1(z).

Proof. Using the convexity of the negative logarithm, we derive the following inequality :

− log
(︂ g∑︂

k

zkwjk
)︂

= − log
(︂ g∑︂

k

µk
zkwjk
µk

)︂ Jensen
≤ −

g∑︂
k

µk log
(︂zkwjk

µk

)︂
, (3.20)

where µk = z
(t)
k
wjk∑︁g

ℓ
z

(t)
ℓ
wjℓ

and
∑︁g
k µk = 1. From the inequality (3.20), it follows that G1(z, z(t)) ≥ F1(z).□

Proof of Theorem 3.2.1. Finding the minimum of G(z, z(t)) with respect to zk gives :

∇zk
G(z, z(t)) =

d∑︂
j

wjk −
d∑︂
j

xj
z

(t)
k wjk∑︁g
ℓ z

(t)
ℓ wjℓ

1
zk

+ γ

[︃
1− hk

zk

]︃
. (3.21)

Setting the gradient to zero leads to :

z
(t+1)
k =

z
(t)
k

∑︁d
j

xj∑︁g

ℓ
z

(t)
ℓ
wjℓ

wjk + γhk∑︁d
j wjk + γ

. (3.22)

Rewritten in a matrix format, this is equivalent to the original update rule. Therefore Lemma 3.2.2 is

approved and F(Z,W ) is non-increasing under the update of Z. The same process can be reversed

to show that F(Z,W ) is non-increasing under update of W . ■
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3.2.4.2 Complexity analysis

In the worst case scenario, the complexities of the multiplicative updates(3.15,3.16) remain the

same as for NMF which is O(ngd). However the computational cost of updates(3.13) becomes the main

bottleneck as the complexity of WE-NMF depends directly on the complexity of the chosen algorithm

used to compute T and S. Using W λ
p of complexity O(gd) for G and O(gn) for H, the complexity for

Eqs.(3.13) is then O(gN) where N = max(d, n), leading to the overall complexity for one iteration at

O(ngd+ gN).

3.2.5 Experiments

To assess the performance of our model, we compare it with several NMF models commonly used for

document clustering as well as Sinkhorn Distance/Earth Mover’s Distance clustering methods. The

list includes : orthogonal NMF (ONMF) [158], Projective NMF (PNMF) [161], Graph Regularized

NMF (GNMF) [163], Spherical K-means [39], and Variational Wasserstein Clustering (VWC) [219],

which is equivalent to a Wasserstein Spherical-Kmeans with the (1− cos) dissimilarity as the ground

metric. Moreover, WE-NMF collapses to the original NMF when γ = 0 which will be our baseline for

comparing the direct gain of our model.

Five benchmarking document-term datasets highlighting several varieties of challenging situations

were selected for these experiments. Their characteristics are displayed in Table 3.5. They differ in

terms of amount of clusters, dimension, clusters balance (coefficient defined as the ratio of the number

of documents in the smallest class to the number of documents in the largest class), degree of mixture of

the different groups and sparsity (where nz indicates the percentage of non-zero values). We normalized

each data matrix with TF-IDF and their respective documents to unit L2-norm to remove the bias

introduced by their length. Two measures widely used to quantify the clustering performance of an

Table 3.5 – Datasets description (# denotes the cardinality).

Datasets Characteristics
#Documents #Words #Clusters nz (%) Balance

CSTR 475 1000 4 3.40 0.399
CLASSIC4 7095 5896 4 0.59 0.323
NG5 4905 10167 5 0.92 0.943
NG20 18846 14390 20 0.59 0.628
SPORTS 8580 14870 7 0.86 0.0358
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algorithm were employed, namely the Normalized Mutual Information (NMI) [119] and the adjusted

Rand Index (ARI) [122]. Both criteria reach a value of 1 when the clustering is identical to the ground

truth.

3.2.5.1 Settings

As defined earlier, matrices G and H can be recovered after solving problem(3.10) by using a

Sinkhorn-Distance algorithm in order to obtain the optimal transportation matrices T and S. The

results showcased here were obtained using algorithm 3 of [217] (Smooth Primal and Dual Optima) in

our algorithm. The number of clusters was set to the original number of classes for each dataset. The

results of each respective algorithm were obtained over an average of 30 random runs. Their respective

parameters (if required) were set according to the recommended settings ; for instance γ = 100 for

GNMF.

3.2.5.2 Other Optimal Transport algorithms

Algorithms such as SO-TROT (Second Order Row-Tsallis regularized Optimal Transport), KL-

TROT [220] and SAG (Stochastic Average Gradient) for discrete OT [221] were also tested. In our

model, S and T are quite small as the rank defined by the user remains low for clustering applica-

tion. Thereby most of the time, the use of stochastic methods become unnecessary as conventional

algorithms converge in a decent time. Nevertheless, they can become handy whether the user specifies

a large amount of clusters. After testing, we denote very similar results with SAG for discrete OT

compared to the ones obtained with SD. The results with SO-TROT and KL-TROT were similar on

CSTR. The TROT distance is appealing since it generalizes Optimal transport and [216] approach

as well as involving the escort distribution. Unfortunately, its very high computational cost makes it

unsuitable on larger dataset.

3.2.5.2.1 Ground metric. We chose to retain the (1−cos) dissimilarity as the ground metric function

to map elements (xj , zk) and (xi,wk). Despite its limitations for advanced semantic relations, this

measure is widely acknowledged as a referenced for text mining and remains relevant in most situations.

Indeed, It is particularly appealing when we are dealing with large amount of directional sparse data ;

it does not affect therefore the computational cost of this dissimilarity.
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3.2.5.2.2 λ setting. As λ increases, the objective of problem(3.11) is expected to converge toward

the classical Optimal Transportation distance. However, [216] has reported in his experiments that

(3.11) tends to hover above the classical OT distance by about 10% and that practical value of λ were

not necessarily the highest. Moreover, fixing λ has to be in regard to the order of magnitude of the

cost matrix. While in our case, mij ∈ [0, 1], other continuous function may attribute larger values of

mij which may result in constraining λ in a reduced interval to avoid numerical overflow.

3.2.5.2.3 γ setting. The regularization parameter γ has been studied across each data matrix along

a range going from 10−5 to 103. Figure 3.9 showcases variations of NMI and ARI with WE-NMF according

to the evolution of γ ; taking γ = 10 seems to be good trade-off. NG5 and NG20 are the only datasets

where γ = 1 will be better, however the performance at γ = 10 remains equal or superior to the one

of NMF. For γ > 10, the algorithm fails due to numerical overflow.

(a) CSTR (b) CLASSIC4 (c) NG5

(d) NG20 (e) SPORTS

Figure 3.9 – Impact of the regularization parameter γ of WE-NMF (SD).

3.2.5.3 Empirical results

Table 3.6 summarizes the different results. As we can see, WE-NMF provides better performances

overall. Notice also that NMF-KL gives similar achievements in terms of ARI on CSTR and NG5. Ack-
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nowledging the abilities of the Wasserstein embeddings to improve the clustering performances, we

decided to use them as supports for visualizing the data (samples and features) with respect to the clus-

tering for the set of terms and the available original partition for the documents. The different groups

are depicted in color. We observed that the embeddings matrices H and G respectively provide better

representations for the actual document clusters and even more significant ones for the term clusters

with a soaring separability. Figure 3.10 highlights different visualizations of the documents of each

Table 3.6 – Mean and standard deviation of NMI and ARI over different datasets.

Datasets Metrics NMF-KL ONMF PNMF GNMF S-Kmeans VWC WE-NMF(SD)

CSTR
NMI 0.77±0.02 0.65±0.05 0.66±0.01 0.57±0.08 0.76±0.01 0.55±0.03 0.78±0.03
ARI 0.81±0.02 0.56±0.04 0.56±0.01 0.53±0.11 0.79±0.01 0.50±0.03 0.81±0.03

CLASSIC4
NMI 0.72±0.09 0.55±0.09 0.59±0.05 0.65±0.04 0.60±0.001 0.54±0.02 0.74±0.01
ARI 0.65±0.10 0.39±0.09 0.44±0.01 0.49±0.05 0.47±0.001 0.45±0.01 0.72±0.01

NG5
NMI 0.83±0.01 0.65±0.04 0.65±0.05 0.63±0.07 0.74±0.03 0.68±0.04 0.84±0.01
ARI 0.86±0.01 0.48±0.08 0.47±0.09 0.62±0.09 0.64±0.07 0.68±0.06 0.86±0.01

NG20
NMI 0.49±0.01 0.44±0.02 0.45±0.02 0.50±0.01 0.50±0.02 0.41±0.01 0.51±0.01
ARI 0.35±0.01 0.22±0.02 0.24±0.02 0.35±0.05 0.31±0.02 0.27±0.01 0.38±0.02

SPORTS
NMI 0.53±0.01 0.55±0.02 0.56±0.001 0.55±0.001 0.62±0.02 0.55±0.02 0.58±0.01
ARI 0.40±0.01 0.28±0.01 0.28±0.001 0.28±0.001 0.40±0.04 0.39±0.01 0.43±0.01

dataset using UMAP’s (Uniform Manifold Approximation and Projection for Dimension Reduction)

components [222] obtained on X, Z and H⊤, where the true classes are projected. Figure 3.11 shows

similar projections for the set of terms where the depicted groups are the term clusters obtained from

the solution with the best criterion according to NMF-KL (for X⊤ and W ) and WE-NMF (for G⊤). In

Figure 3.10, UMAP does not always provide a meaningful visualization of the data samples xi (neither

the features xj , see line 1 in Figure 3.11). Several setups made according to the crucial parameters

(min dist and n neighbors) emphasized by the authors were tested with n neighbors ∈ {15, 80, 320} ;

neither of them was successful to circumvent these issues. Also, we observed that the use of different

metrics such as cosine similarity instead of the euclidean distance did surprisingly not improved the

visualization. Therefore, we conducted the rest of our experiments with the defaults parameters. CLAS-

SIC4 and NG20 are the datasets with the highest sparsity rates which might be the reason leading

UMAP to fail.

Furthermore, Figure 3.10 shows in some cases that a better separability between document clusters

can be observed from the Wasserstein Embeddings H⊤ of WE-NMF as opposed to NMF-KL factor Z.
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Figure 3.10 – Visualizations of true document classes by UMAP applied on a) X, b) Z obtained by
NMF-KL, and c) H⊤ by WE-NMF.
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Figure 3.11 – Visualizations of term clusters by UMAP applied on a) X⊤ using WE-NMF clusters, b)
W using NMF-KL clusters, and c) G⊤ using WE-NMF clusters.
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It is highlighted with CSTR and CLASSIC4 which in addition is the dataset where WE-NMF improves

the most in terms of NMI and ARI. With NG20 and SPORTS were we also see major improvements,

the document visualizations from H⊤ are substantially different from those of Z. In Figure 3.11, al-

though the true groups of terms are not available, our method seems to be more suitable by allowing

representations with substantial clusters separability compared to NMF-KL’s factor W and X⊤. UMAP

which builds its components according to the samples instead of the features does not provide any

meaningful visualizations for the terms on the transposed data matrix X⊤ although it could detect

groups of documents on X (Figure 3.10). In practice, terms are more difficult to classify. They can

appear in several contexts, be used in different topics or even be considered as noisy depending on

the pre-processing applied to build the document-term matrix. From these observations, dimensio-

nality reduction seems to be beneficial and WE-NMF which allows the decomposition matrices to be

approximated by not only X but also by H and W might already gain an advantage for this type of

data.

3.3 Conclusion

In this chapter, we have described two novel NMF approaches which explicitly account for the

semantic relationships among words. In SNMF, the joint decomposition of the data matrix and the

word-context (or word-word co-occurrence) matrix simultaneously into a shared factor proved its

efficiency in leveraging more relationships between words that were not emerging in the data matrix.

The low dimensional latent space is therefore enriched and the shared factor is able to transport

additional information for finding a decomposition of the data matrix more faithful to the original

partitions of clusters. Moreover, we identified in which situations Semantic-NMF does provide the

most significant improvements, which allows us to gain further insights into the benefits of leveraging

the word relationships. In addition, our approach does not necessarily require an additional source

of data but is versatile and can allow contexts from other resources. It is subject to many more

improvements using a consensus approach. With WE− NMF, we introduced a novel NMF model to take

in consideration semantic relationships such as synonyms and hyponyms (non linear relations). Using

the embeddings formed by the transportation matrix and the ground metric matrix of the Wasserstein

distance between the marginals of the data matrix and the decomposition factors, WE− NMF is able

to regularize the later according to the non linear relations capture by the Wasserstein distance.
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Furthermore, the low dimensionality of these embeddings and the regularization scheme allows to

utilize this distance in NMF at a much lower computational cost. The regularized factors were effective

to boost the clustering performances of the Kullback-Leibler NMF and the separability offers by the

Wasserstein embedings provides strong supports for observing the data within the lower dimensional

space.

Overall, while SNMF outperforms the results of several proven NMF extensions, it does not consis-

tently overcome the results of NMF with the I-divergence, let alone WE− NMF. This confirms the ack-

nowledgement of the I-divergence as a better cost function for achieving NMF document clustering.

The higher complexity of its gradient [223] has often led to more efforts being devoted to enhance the

clustering performance through the use of less expensive error measures such as the Frobenius norm.

However using this measure blurs the real potential of NMF for document clustering and therefore, in

the following, our focus will be mainly on the I-divergence.
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Chapitre 4

Toward probabilistic factors for NMF and
connections with Finite Mixture Models

In contrast to the previous proposals where several types of co-variables where introduced to

regularize the NMF factors, in this chapter, we present an approach which avoids adding any more

computational complexity to the problem of NMF with the I-divergence. In addition, this approach

offers a characterization of NMF as a direct clustering algorithm.

Thereby, in the first section, we achieve a regularization of the main NMF objective to simulta-

neously maximize the Shannon Entropy along side the distance function. It results that this opti-

mization coincides with the well known maximum entropy principle and implies one factor (namely

the document factor matrix) to be constrained as a set of probability distributions. Furthermore, the

uncertainty of the latter is shown to be modeled by the setting of a Lagrange multiplier and the charac-

teristic of the underlying probability distribution associated with our distance function. To emphasize

the impact of the Shannon Entropy, the class of entropy functionals from the Rényi family is conside-

red, which included several well know entropies such as Shannon’s or Hartley’s. Our algorithm, that its

convergence is guaranteed, is evaluated as similarly and demonstrates significant major improvements

compared to the state-of-the-art methods.

The subject described in the second section of this chapter originally takes its roots from our desire

to reduce the computational cost of the gradient of the I-divergence, to speed up the convergence.

Therefore, considering that one factor is now a set of probabilities, using the Jensen inequality, we

highlight the transition from NMF to mixture models and shows that solving NMF is equivalent to

maximizing a surrogate function of the complete log-likelihood. A common practice in NMF of text
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data is to normalize the data in the unit-sphere. Therefore, in addition, we study the impact of the

normalization of sparse random variables in the unit-sphere for NMF and FMMs and emphasize that

the discrete Poisson distribution with variables in the unit-sphere has minimum entropy. To complete

our comparison of NMF and FMMs, we also derive a new NMF method using the (1−cos) dissimilarity

referred to as Spherical NMF. Furthermore, several NMF regularizations (in which the first proposal

appears to be a special case) channeled from FMMs are also highlighted.

4.1 Constrained NMF with entropic regularization

4.1.1 Motivations

We focus on improving the clustering performance of NMF − KL by considering an optimization

procedure maximizing the non-linear entropy of a set of distributions Z subject to NMF’s data ap-

proximation X ≈ ZW ⊤. The information measure H(.) (known as Entropy) introduced by Shannon

[110] is a useful and popular concept for measuring the amount of information for an observed random

variable [111]. Let z = (p(w1), . . . , p(wg)) be the discrete probability distribution of a random variable

W = (w1, . . . , wg) :

H(z) = −
g∑︂

k=1
zk log zk. (4.1)

For z = (1/g, . . . , 1/g)⊤, the uncertainty among all events is total and H(z) is maximized. Therefore,

as enumerated by Jaynes [224], maximizing H(z) is established as what sounds logical to avoid bias

assumptions on the available data and produce unbiased inferences. On the other hand, as stated in

[225], the minimization of H(z) suggests clustering validity since the probability would tend toward 0

or 1. Following these ideas, our challenge was set to maximize H(z) accordingly to obtaining of high

quality approximation.

4.1.2 Related Works

The inspiration for our contribution can be traced back to the work of Jaynes [224, 226, 111] on

maximum-entropy distributions where H(.) is maximized given a probability marginal constraint and
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one or several moment constraints cj :

max
z

H(z) + γ
(︂ g∑︂

k

zk − 1
)︂

+
d∑︂
j

λj
(︂ g∑︂

k

zkfj(W )− cj
)︂
, (4.2)

where γ and λj are the associated Lagrange multipliers. The problem is often referred to as the

maximum entropy principle and collapses to many common probability distributions (e.g. uniform with

no moment constraint ; Gaussian with variance constraint ; exponential with the mean constraint).

In our case, we consider the non-linear version of this problem for a set of probabilities distribution

arranged in Z⊤ ∈ (∆g)n such that H(Z) = −
∑︁n,g
i,k zik log zik.

Subsequently, we undertake to study the amount of uncertainty arising in Z while maximizing

H(Z) under nonnegative matrix factorization constraint X = ZW ⊤. For instance, following the

exact low-rank reconstruction of the observed data where each observations is approximated as an

expectation such that xij =
∑︁g
k zikwjk = Ezi [wj ], the maximum entropy principle could be stated as

follows :

max
Z⊤∈(∆g)n,W ≥0

H(Z) +
n∑︂
i

γi
(︂ g∑︂

k

zik − 1
)︂

+ C, (4.3)

where C =
∑︁n,d
i,j λij

(︂∑︁g
k zikwjk − xij

)︂
. While this exact fitting would be beneficial in the search

of simpler solutions, the amount of observations implies the proliferation of n × d constraints and

Lagrange multipliers. Furthermore, decreasing the amount of parameters (to n) could be achieved by

considering a moment constraint defined in terms of intra-variance reminiscent of a clustering criterion.

In this case, we would have C =
∑︁n
i λi

(︂∑︁g
k zikd(xi,wk) − S

)︂
in problem (4.3). A further reduction

of the amount of parameters can be formulated as a constraint in terms of matrix approximation

involving the estimation of one Lagrange multiplier, such that C = λ(D(X,ZW ⊤)−S) ≤ 0. Whether

D(.) = 1
2∥.∥

2
F is the sum of squares (SSQ), it has a χ2 distribution which facilitates the setting of λ.

Otherwise, due to non-linearity, setting λ requires additional numerical computations.

Additionally, our work can be related to the subject of ill-posed problems such as Compressed

sensing [227, 228], maximum entropy inversion [229, 230, 231] or sparse recovery [232] in a linear

span where several attempts to recover sparse solutions using penalty functions such as the l1 −

norm (reminiscent of the Lasso technique in regression) or the Shannon entropy have been suggested.

Maximum entropy methods associated with maximum likelihood [233, 234] can also so be handful.

More generally, the reader can also refer to [235] for an application of ME with non-linear programming
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and [236, 237] for ME applied in Natural Language Processing.

4.1.3 Maximum-Entropy Inference

We reformulate our maximum-entropy problem as a non-linear minimization problem defined as :

min
Z⊤∈(∆g)n

−H(Z), s.t. D(X,ZW ⊤) ≤ S. (4.4)

Note that since H(Z) is Schur-concave, problem (4.4) remains convex in Z and W separately but not

jointly. Note that x log x has an infinite positive slope at 0 which by definition of the Shannon entropy,

is handled by replacing 0 log(0) with 0. The associated Lagrangian is therefore :

L(Z,W ,γ, λ) =−H(Z) +
n∑︂
i

γi
(︂ g∑︂

k

zik − 1
)︂

+ λ
(︁
D(X,ZW ⊤)− S

)︁
. (4.5)

D(X,ZW ⊤) is set as the I-divergence defined as :

DI(X||ZW ⊤) =
n,d∑︂
i,j

xij log
(︃

xij
[ZW ⊤]ij

)︃
− xij + [ZW ⊤]ij , (4.6)

and therefore, unlike the sum of squares, no information is available on the statistic S. Naturally,

differentiation w.r.t. γi and λ produce the constraint equations :

∇γiL =
g∑︂
k

zik − 1 = 0, (4.7)

∇λL = D(X,ZW ⊤)− S = 0. (4.8)

Differentiation w.r.t. zik gives the following gradient :

∇zik
L = 1 + log zik + γi + λ∂D(X,ZW ⊤)/∂zik. (4.9)

Setting this gradient to zero and substituting the resulting solution of zik in ∇γiL to obtain γi produce

the following solution :

zik = e−λ∂D(X,ZW ⊤)/∂zik∑︁g
k e

−λ∂D(X,ZW ⊤)/∂zik
. (4.10)

Substituting this expression into ∇λL leads to no closed-form solution for λ. In practice, λ is usually

obtained using root-finding algorithm (e.g. Newton-Raphson). However, in our case, the resulting
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equation is highly non-linear and finding a solution for λ is almost impossible despite a ”supervised”

fixing of S. W can be estimated using Projected gradient coordinate such as :

W ←
[︁
W − η∂∇WL

]︁+
, (4.11)

where η is the step parameter and [.]+ designates the positive orthant for the nonnegativity purpose.

Since problem (4.4) can be recast as the following minimization problem (where the nonnegativity

constraint on W can also be added) :

min
Z⊤∈(∆g)n,W ≥0

{︁
F(Z,W ) = −H(Z) + λD(X,ZW ⊤)

}︁
, (4.12)

we consider this formulation for a manual setting of λ. Note that in this formulation, S is set to zero

(which is equivalent to an exact reconstruction constraint D(X,ZW ⊤) = 0 in problem (4.4)). The

associated Lagrangian L(Z,W ,γ, λ) is given by

−H(Z) +
n∑︂
i

γi
(︂ g∑︂

k

zik − 1
)︂

+ λD(X,ZW ⊤)− Tr(βW ⊤)

and differentiation w.r.t. wjk leads therefore to :

∇wjk
L = −λ

(︃
X⊤

W Z⊤ Z

)︃
jk

+ λ
n∑︂
i

zik + βjk. (4.13)

Setting this gradient to zero and making use of the Karush-Kuhn-Tucker (KKT) conditions β⊙W = 0

to obtain the stationary equation, the multiplicative update rule (which can also be rewritten as a

gradient descent update) is stated as :

wjk ← wjk

(︁
X⊤

W Z⊤ Z
)︁
jk∑︁n

i zik
= wjk − η∇wjk

F , (4.14)

where η = wjk∑︁n

i
zik

. Differentiation w.r.t. zik gives the same solution for zik as in problem (4.4). Al-

gorithm 15 details the procedure for maximizing entropy under non-negative matrix factorization

constraint (ME− NMF).

Algorithm 15 ME− NMF

Input : X, g, λ, Z(0) ; W (0).
Output : Z and W .
repeat
1. update Z with Eq(4.10)
2. update W with Eq(4.14) ;

until convergence
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Note that whether η is a fixed step or set to equal the multiplicative update, F has a quadratic

convergence, or is non-increasing.

As mentioned in the introduction, H(Z) should be maximized for unbiased parameter estimations.

However minimum entropy also reduces uncertainty which increases clustering validity. From Eq(4.10),

it is obvious that :

lim
λ→0

zik = e0

ge0 = 1
g
, (4.15)

and setting λ closed to 0 will favor solutions with maximum uncertainty, while increasing λ lead to more

complex maximum-entropy distributions w.r.t. the constraint. Setting λ is therefore a key requirement

for finding a maximum-entropy distribution not drawn solely by a low setting of λ. Normally, this could

be achieved empirically. However, studying various values of λ with ME− NMF fell short of expectations.

Due to the non-linearity of D(X,ZW ⊤), ∂D(X,ZW ⊤)/∂zik implies summations over d dimensions.

Therefore, because of the exponential, numerical overflow is rapidly observed with Eq(4.10) as λ

increases. For solving this issue, we derive a new estimate for zik by explicitly specifying the nonnegative

constraint to allow the definition of another stationary equation using the KKT conditions. Since

nonnegativity constraints are familiar to NMF, we refer to this maximum entropy optimization problem

as ”constrained NMF with entropic regularization (cNMFH)”.

4.1.4 Constrained NMF and Discrete Entropic regularization

The problem of cNMFH is expressed as follows :

min
Z≥0,W ≥0,Z1g=1n

{︁
F(Z,W ) = −H(Z) + λDI(X||ZW ⊤)

}︁
. (4.16)

For distinction, the probability simplex constraint (Z⊤ ∈ (∆g)n) is now expressed using two constraints :

the nonnegativity constraint (Z ≥ 0) and the summation to unity constraint (Z1g = 1n). Solving

(4.16) w.r.t. W leads to the same update rules as in problem (4.4) and the original NMF−KL. Therefore,

we only derive the solution of Z. The associated Lagrangian to this problem is defined as follows :

L(Z,W ,γ, ϵ,β) = F(Z,W ) +
n∑︂
i

γi
(︂ g∑︂

k

zik − 1
)︂
− Tr(ϵZ⊤)− Tr(βW ⊤), (4.17)

where γ ∈ Rn+, ϵ ∈ Rn×g
+ , and β ∈ Rd×g

+ are the Lagrange multipliers. In the following, we define

the Lagrangian multipliers γi in terms of their respective positive and negative orthant as follows
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γi = [γi]+ − [γi]− where [γi]+ ≥ 0 and [γi]− ≥ 0. The gradient w.r.t. zik is defined as follows :

∇zik
L = 1 + log zik − λ

(︃
X

ZW ⊤ W

)︃
ik

+ λ
d∑︂
j

wjk + [γi]+ − [γi]− − ϵik. (4.18)

Setting this gradient to zero and making use of the KKT conditions ϵ⊙Z = 0 leads to the following

stationary equation :

zik

[︄
1 + log zik − λ

(︃
X

ZW ⊤ W

)︃
ik

+ λ
d∑︂
j

wjk + [γi]+ − [γi]−
]︄

= 0. (4.19)

Several multiplicative update rules can be derived from this equation. The first takes into account the

negativity of log zik (since zik ∈ [0, 1]) :

zik ← zik
λ
(︁

X
ZW ⊤ W

)︁
ik

+ [γi]−

λ
∑︁d
j wjk + 1 + log zik + [γi]+

. (4.20)

Substituting Eq(4.20) into ∇γiL gives :

[γi]− =
1−

∑︁g
k zik

λ
(︁

X

ZW ⊤ W
)︁

ik
Bik∑︁g

k
zik
Bik

, (4.21)

where Bik = λ
∑︁d
j wjk + 1 + log zik + [γi]+. From Eq(4.21), we have that [γi]− depends on [γi]+. Using

the numerator of Eq(4.21), we can derive the conditional value of [γi]+ as follows :

1−
g∑︂
k

zik
λ
(︁

X
ZW ⊤ W

)︁
ik

Bik
=

g∑︂
k

zik
∇zik
F + [γi]+

Bik
.

From this equality, [γi]+ = max(max(−∇zik
F|k = 1, . . . , g), 0) since [γi]+ ≥ 0. From the expression of

[γi]+, the following inequality guarantees Bik to be positive. If λ
∑︁d
j wjk + 1 + log zik ≤ 0, we have :

−λ
(︃

X

ZW ⊤ W

)︃
ik

+ λ
d∑︂
j

wjk + 1 + log zik ≤ 0

∇zik
F ≤ 0.

As a consequence λ
∑︁d
j wjk+1+log zik+max(max(−∇zik

F|k = 1, . . . , g), 0) ≥ 0. From the stationary

Eq (4.19), another multiplicative update rule can also be written s.t. log zik appears in the numerator

such as :

zik ← zik
λ
(︁

X
ZW ⊤ W

)︁
ik
− log zik + [γi]−

λ
∑︁d
j wjk + 1 + [γi]+

. (4.22)
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Deriving [γi]− by substituting Eq(4.22) into ∇γiL gives :

[γi]− =
1−

∑︁g
k zik

λ
(︁

X

ZW ⊤ W
)︁

ik
−log zik

Bik∑︁g
k
zik
Bik

, (4.23)

where Bik = λ
∑︁d
j wjk+1+[γi]+. Deriving the conditional value of [γi]+ from the numerator also leads

to [γi]+ = max(max(−∇zik
F|k = 1, . . . , g), 0). The positivity of this expression is straightforward since

− log zik is positive. In practice, we observed similar performance in terms of clustering from various

local minima. However, we found that Eq (4.20) is more subject to numerical overflow, especially on

small datasets and therefore prefer to use Eq (4.22). The optimization procedure is given by Algorithm

(16). Note that to guarantee the convergence to a stationary point, we use a modified version of the

multiplicative updates rules proposed by Chi and Kolda [144] which prevents inadmissible zeros that

do not satisfies the KKT conditions. Therefore, zeros entries in Z and W are monitored and replaced

by a small constant if their partial derivatives are negative (respectively).

Algorithm 16 cNMFH

Input : X, g, λ, Z(0), W (0).
Output : Z and W .
repeat
1. update Z with Eq(4.22) ;
2. update W with Eq(4.14) ;

until convergence

4.1.5 Uncertainty and clustering validity

Thank to the new expression of zik in cNMFH, maximum entropy distributions subject to several

values of λ can now be produced without reaching numerical overflow. In the following, we conduct

an empirical setting of λ regarding several clustering scores. A small real-word dataset is considered

for several illustrations (CSTR : X ∈ R475×1000
+ , #clusters g = 4, % of non-zero observations : 3.40).

Here, and in the following sections, the quality of a clustering is assessed using two measures

widely used for quantifying the correspondence between the clustering and the true partition. The

Normalized Mutual Information (NMI) [119], which measures the mutual dependency between two

random variables, and, the Adjusted Rand Index (ARI) [122], which measures the degree of agreement

between two partitions.

Figure 4.1 displays the averages of the min-max normalization of H(Z), the NMI and the ARI, for
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Figure 4.1 – H(Z) (min-max normalized) variations according to λ ∈ [10−10, 10]. Note that
min(H(Z)) := inf(H(Z)), ∀Z⊤ ∈ (∆g)n in the min-max function.

λ going from 10−10 to 10. The averages are computed over 30 epochs. As expected, H(Z) decreases

when λ increases which leads to more clustering validity. However, the NMI and ARI scores remain

similar alongside the variations of λ, resulting in no additional performance using local minima with

higher clustering validity. Since λ is not a solution of the constraint equation D(X,ZW ⊤) = S and

is a parameter for all the partial derivatives ∂D(X,ZW ⊤)/∂zik, ∀k = 1, . . . , g, ∀i = 1, . . . , n, this

behavior confirms that λ acts simply as a normalization parameter for increasing or decreasing H(Z)

based on the discrepancy between the partial derivatives. In this case, DI(X||ZW ⊤) leads to enough

difference such that H(Z) varies significantly for λ ∈ [10−10, 10]. However, as long as λ varies from

values distant from 0, the amount of uncertainty will not disturb the partial derivatives order (before

and after discretization) and therefore the underlying hard clustering. Based upon these remarks, λ

was set to 1. D(X,ZW ⊤) = 1
2∥X − ZW ⊤∥2F is an example where λ values with several orders of

(a) I-divergence, X (b) I-divergence, X̂ (c) SSQ, X (d) SSQ, X̂

Figure 4.2 – Heatmap of Z obtained from cNMFH. X̂ ∈ Sd−1.

magnitude higher might be required to impact H(Z). In the case of the I-divergence or the SSQ, this
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behavior can be described using the underlying probability distributions, namely the Poisson and the

Normal.

In fact, since Z⊤ ∈ (∆g)n, a surrogate of the respective likelihood obtained from these two dis-

tributions can be expressed using these Jensen inequalities defined on the convex negative logarithm

and power functions arising in DI(X||ZW ⊤) and 1
2∥X −ZW ⊤∥2F respectively :

− log
(︂ g∑︂

k

zikwjk
)︂
≤−

g∑︂
k

zik logwjk, (4.24)

resulting in DI(X||ZW ⊤) ≤
∑︁n,g
i,k zikDI(xi||wk), and

(︂ g∑︂
k

zikwjk
)︂2
≤

g∑︂
k

zikw
2
jk, (4.25)

resulting in 1
2∥X −ZW ⊤∥2F ≤

∑︁n,g
i,k zik

1
2∥xi −wk∥2F .

Additionally, the maximum entropy distributions subject to these surrogates will effectively leads to

discretization in the g-dimensional space of the Poisson and Normal likelihoods up to the normalizing

constant λ. As a consequence, Z obtained from problems (4.4) or (16), is therefore a set of probability

distributions defined in the neighborhood of the discretized likelihood s.t. :

e−λ∂D(X,ZW ⊤)/∂zik ≡ e−λD(xi,wk) ∝ e−λf(xi;wk), (4.26)

where f(xi; wk) is the probability distribution of xi. By way of illustration, we display in Figure

4.3-4.4 the Poisson pmf and the Normal pdf for 3 random Poisson variables in R1000
+ , namely x1 ∼

P(µ = 2), x2 ∼ P(µ = 8), and x3 ∼ P(µ = 32), where 900 observations are set to 0. In both

Figures, the subfigure (a) displays the probabilities of the original variables while (b) displays the

probabilities of their normalization given the L2-norm. The discrepancy between the probabilities

(P (x1), P (x2), P (x3)) is measured using the standard deviation (SD). Note that due to the excess of

zeros, SD is computed between probabilities of non-zero observations and denoted SD+.

As shown in Figures 4.3(a) and 4.4(a), the discrepancy between the probabilities of non-zero ob-

servations is small. In addition, a substantial gap is observed between those probabilities and the

probability of null observations. However, as shown by Figures 4.3(b) and 4.4(b), normalizing the

random variables substantially diminishes the impact of the sparsity. For Poisson, more discrepancy

is now observed between the probability of non-zero observations, whilst for the Normal distribution,
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(a) x, nz = 90% (b) x̂ = x
∥x∥ , nz = 90%

Figure 4.3 – Poisson probability mass functions, µ̄ designate the mean estimate.

(a) x, nz = 90% (b) x̂ = x
∥x∥ , nz = 90%

Figure 4.4 – Normal probability density functions, µ̄ designate the mean estimate.

the gap between probabilities of non-zeros elements and zero elements is substantially reduced. Fur-

thermore, we illustrate these behaviors in terms of clustering and display the heatmap of Z obtained

from cNMFH where D(X,ZW ⊤) is set as the I-divergence or the SSQ, whether X = [x1| . . . |xn]⊤ is

normalized in the unit-sphere Sd−1 = {xi ∈ Rd : ∥xi∥ = 1} (denoted by X̂) or not (denoted by X).

We can clearly see that the behavior expressed in Figures 4.3(a) and 4.4(a) leads to solutions which

favor one unique cluster (see Figures 4.2(a) and 4.2(c)) ; on the other hand, the behavior described in

Figure 4.4(b) leads to solution with maximum entropy despite higher value of λ (see Figure 4.2(d)) ;

finally, the behavior described by Figure 4.3(b) leads to the best distinction between the samples and
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the best clustering.

Moreover, to emphasize the interest around the maximization ofH(Z), we consider a generalization

of Shannon’s entropy and others referred to as the Rényi entropy [238] and stated as :

Hα(z) = 1
1− α log

(︂ g∑︂
k=1

zαk

)︂
, (4.27)

where α = 0 gives the Hartley entropy ; α→ 1 the Shannon entropy ; α = 2 the collision entropy (also

know as the Rényi entropy) ; α → ∞ the Min-entropy. We refer to the proposed method as cNMFHα .

Derivation of the algorithm w.r.t. the Rényi entropy is only achieved for α ∈ R+/]0, 1[ and without λ

(since λ := 1). cNMFHα is defined as the following non-linear optimization problem :

min
Z≥0,W ≥0,Z1g=1n

{︁
F(Z,W ) = −Hα(Z) +DI(X||ZW ⊤)

}︁
, (4.28)

where Hα(Z) =
∑︁n
i

1
1−α log

(︂∑︁g
k z

α
ik

)︂
. Further deductions will also highlight that setting α = 0 col-

lapses this problem to NMF − KL subject to the probability constraint and nonnegativity constraint

without maximization of H(Z). We refer to this case as cNMF or cNMFH0 :

min
Z≥0,W ≥0,Z1g=1n

DI(X||ZW ⊤). (4.29)

Moreover, for generalization purposes, we might refer to cNMFH as cNMFH1 . The derivation of cNMFHα

is completed in section 4.1.9.

4.1.6 Jensen upper bound

First, we shall notice that the Jensen inequality given by (4.24) provides a surrogate forDI(X||ZW ⊤)

that can be regarded as a clustering criterion. Furthermore, (4.24) takes equality when Z becomes a

classification matrix s.t. Z ∈ [0, 1]n×g and
∑︁g
k zik = 1, ∀i = 1, . . . , n. In order to improve the clustering

ability of our method, we choose to minimize the Jensen upper bound (denoted Q(Z,W )) of F(Z,W )

in problem (4.16) w.r.t wjk. Q(Z,W ) is expressed as :

Q(Z,W ) =−H(Z) + λ
n,g∑︂
i,k

zikDI(xi||wk)

=−H(Z) + λ

(︄ n,d∑︂
i,j

[︃
xij log xij − xij + [ZW ⊤]ij

]︃
−
n,g,d∑︂
i,k,j

zikxij logwjk

)︄
. (4.30)
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Naturally, the logarithm forces W to be positive or null. Differentiation w.r.t. wjk leads therefore to :

∇wjk
L = −λ

(︃ 1
wjk

(X⊤Z)jk
)︃

+ λ
n∑︂
i

zik. (4.31)

Setting this derivative to zero yields the following estimate for wjk :

wjk = (X⊤Z)jk∑︁n
i zik

. (4.32)

In section 4.1.8, W in Algorithms 16 and 17 is updated using Eq(4.32).

4.1.7 Convergence analysis

To show the convergence of F(Z,W ) under the update formulas (4.20) and (4.22), we use a similar

approach to the one used in [132, 239] and inspired by the Expectation-Maximization (EM) algorithm

which involves auxiliary functions. Thereby, the convergence is proved in relying on the following

Theorem 4.1.2. Note that the multiplicative updates rules for Z in cNMFH and cNMFHα are conditioned

on the Lagrange multipliers, so the convergence is analyzed for the Lagrangian functions.

Theorem 4.1.1. F(Z,W ) +
∑︁n
i γi

(︂∑︁g
k zik − 1

)︂
in problem (4.16) is non-increasing under the update

formulas (4.20) and (4.14).

Theorem 4.1.2. According to α, we have

1. Let α ∈]1,∞[, F(Z,W )+
∑︁n
i γi

(︂∑︁g
k zik−1

)︂
in problem (4.28) is non-increasing under Eq(4.61)

and Eq(4.14).

2. Let α = 0, DI(X||ZW ⊤) in problem (4.29) is non-increasing under Eq(4.61) and Eq(4.14)

Let ∆g = {∀z ∈ Rg+ :
∑︁g
k zk = 1} be a probability simplex, ek ∈ ∆g be a binary vector that only

the kth component is equal to 1, and G = (1/g, . . . , 1/g)⊤ ∈ ∆g denote the uniform vector in which

all component are equal to 1
g .

Definition 4.1.1. Let (z, z′) ⊆ ∆g × ∆g, H(z, z′) is an auxiliary function for L(z) if the following

conditions are satisfied :

∀z ̸= z′,H(z, z′) ≥ L(z) and H(z, z) = L(z).

A key point to the auxiliary function is the following lemma :
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Lemma 4.1.3. If H(z, z(t)) is an auxiliary function for L(z), L(z) is non-increasing under the update

z(t+1) = arg min
z

H(z, z(t))

Proof. L(z(t+1)) ≤ H(z(t+1), z(t)) ≤ H(z(t), z(t)) = L(z(t)).

In the following, we rewrite L(Z,W ,γ, ϵ,β) in a vector coordinates format.

Let ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
L1(z) def=

d∑︂
j

(︁
xj log xj∑︁g

k zkwjk
− xj

)︁
+

d,g∑︂
j,k

zkwjk + [γ]+
(︂ g∑︂

k

zk − 1
)︂
,

L2(z) def= − [γ]−
(︂ g∑︂

k

zk − 1
)︂
.

(4.33a)

(4.33b)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(z, z(t)) def=
d∑︂
j

(︁
xj log xj − xj

)︁
+

d,g∑︂
j,k

zkwjk −
d,g∑︂
j,k

xj
z

(t)
k wjk∑︁g
ℓ z

(t)
ℓ wjl

[︄
log(zkwjk)

− log
(︃

z
(t)
k wjk∑︁g
ℓ z

(t)
ℓ wjl

)︃]︄
+ [γ]+

(︂ g∑︂
k

zk − 1
)︂
,

H2(z, z(t)) def= L2(z(t)) +∇z(t)L2
(︂ g∑︂

k

z
(t)
k log zk −

g∑︂
k

z
(t)
k log z(t)

k

)︂
.

(4.34a)

(4.34b)

Lemma 4.1.4. H1(z, z(t)) ≥ L1(z)

Proof. From − log
(︂∑︁g

k zkwjk
)︂

= − log
(︂∑︁g

k µk
zkwjk

µk

)︂
, we use the convexity of the negative logarithm

to derive the following inequality :

− log
(︂ g∑︂

k

µk
zkwjk
µk

)︂ Jensen
≤ −

g∑︂
k

µk log
(︂zkwjk

µk

)︂
, (4.35)

where µk = z
(t)
k
wjk∑︁g

ℓ
z

(t)
ℓ
wjl

and
∑︁g
k µk = 1. From the inequality (4.35), it follows that H1(z, z(t)) ≥

L1(z).

Lemma 4.1.5. H2(z, z(t)) ≥ L2(z)

Proof. Since z is a probability distribution, we derive the following inequality :

g∑︂
k

z
(t)
k log z(t)

k

Gibbs
≥

g∑︂
k

z
(t)
k log zk. (4.36)
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Consequently,
∑︁g
k z

(t)
k log zk −

∑︁g
k z

(t)
k log z(t)

k ≤ 0. Since [γ]− ≥ 0,

−[γ]−
(︂ g∑︂

k

z
(t)
k log zk −

g∑︂
k

z
(t)
k log z(t)

k

)︂
≥ 0. (4.37)

Since L2(z(t)) = L2(z), using expression (4.37) leads to :

L2(z(t))− [γ]−
(︂ g∑︂

k

z
(t)
k log zk −

g∑︂
k

z
(t)
k log z(t)

k

)︂
≥L2(z), (4.38)

and therefore : H2(z, z(t)) ≥ L2(z).

4.1.7.1 Convergence for α = 1 (cNMFH1)

Let L(z) = L1(z) + L2(z)− L3(z) where L1(z) and L2(z) remain unchanged and

L3(z) def= −
g∑︂
k

zk log zk = H(z). (4.39)

Proposition 4.1.1. H(z, z(t)) = H1(z, z(t)) +H2(z, z(t))−H3(z, z(t)) is an auxiliary function for L(z)

where

H3(z, z(t)) = −
g∑︂
k

[︂
log zk(z

(t)
k log z(t)

k ) + zk
]︂
, (4.40)

and H1(z, z(t)), H2(z, z(t)) remain unchanged.

Lemma 4.1.6. −H3(z, z(t)) ≥ −L3(z)

Proof. Since z
(t)
k and zk are in [0, 1], log z(t)

k ≤ 0 ≤ zk and

z
(t)
k log z(t)

k ≤ zk

log zk(z
(t)
k log z(t)

k ) ≥ zk log zk
g∑︂
k

log zk(z
(t)
k log z(t)

k ) ≥
g∑︂
k

zk log zk

g∑︂
k

[︂
log zk(z

(t)
k log z(t)

k ) + zk
]︂
≥

g∑︂
k

zk log zk

−H3(z, z(t)) ≥ −L3(z).
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Proof of proposition 4.1.1. From Lemmas 4.1.4, 4.1.5 and 4.1.6, H(z, z(t)) ≥ L(z). ■

Proof of Theorem 4.1.1. To satisfy Lemma 4.1.3, we compute the gradient of H(z, z(t)) w.r.t. zk :

∇zk
H = − 1

zk
z

(t)
k

[︃ d∑︂
j

xj
wjk∑︁g
ℓ z

(t)
ℓ wjl

− log z(t)
k + [γ]−

]︃
+

d∑︂
j

wjk + [γ]+ + 1. (4.41)

Setting this gradient to zero leads to :

z
(t+1)
k = z

(t)
k

∑︁d
j

xj∑︁g

ℓ
z

(t)
ℓ
wjl

wjk − log z(t)
k + [γ]−∑︁d

j wjk + 1 + [γ]+
. (4.42)

Since H(z, z(t)) is an auxiliary function for L(z), L(z) is non-increasing under this update. Rewritten

in a matrix coordinates format, Eq(4.42) is similar to the update given by Eq(4.22).

■

Proposition 4.1.2. H(z, z(t)) = H1(z, z(t)) +H2(z, z(t))−H3(z, z(t)) is an auxiliary function for L(z)

where

H3(z, z(t)) =L3(z(t)) +∇⊤
z(t)L3(z − z(t))

=2L3(z(t)) +
g∑︂
k

zk log z(t)
k , (4.43)

and H1(z, z(t)), H2(z, z(t)) remain unchanged.

Lemma 4.1.7. H3(z, z(t)) ≥ L3(z) if L3(z(t)) ≥ L3(z).

Proof. L3(z) = H(z) is Schur-concave andH3(z, z(t)) is the first-order Taylor approximation of L3(z).

Therefore, using the property that the tangent to any point is an upper bound of a concave function,

H3(z, z(t)) ≥ L3(z).

L(z) is convex in z, however, the problem is not jointly convex in (z,W ). As a consequence,

the convergence of L(z(t)) s.t. L(z(t)) ≥ L(z(t+1)) ≥ L(z(t+2)) ≥ . . . ≥ L(z(∞)) does not yields the

same requirements for L3(z(t)). No strict order is required for the series L3(z(t)), L3(z(t+1)), L3(z(t+2)),

. . . ,L3(z(∞)) even though L3(z) is maximized overall. For instance, assuming that z(0) := G is set such

thatH(z) = sup(H(.)). Since λ is set manually to 1 and therefore not a solution of the active constraint

equation D(x, zW ⊤) = S. Since no constraint is defined on H(z), minimizing −H(z) +λD(x, zW ⊤)

w.r.t. zk cannot increase H(z), due to the Schur-concavity. Therefore, H(z(0)) ≥ H(z(1)).
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The following corollary is a one case scenario that will partially ensure that H(z, z(t)) ≥ L(z)

when H(z) increases or L3(z) ≥ L3(z(t)).

Corollary 4.1.7.1. Let (z, z′) ∈ ∆g ×∆g, we have :

−H3(z, z′) + L3(z) ≥ 0 if L3(z(t)) ≤ L3(z).

Proof. We have

−2L3(z(t)) ≥ −2L3(z)

−2L3(z(t)) + 2L3(z) ≥ 0. (4.44)

Using the Gibbs inequality, we have :

L3(z) = −
g∑︂
k

zk log zk ≤−
g∑︂
k

zk log z(t)
k . (4.45)

Therefore :

L3(z)− 2L3(z(t))−
g∑︂
k

zk log z(t)
k ≥2L3(z)− 2L3(z(t)),

L3(z)−H3(z, z(t)) ≥2L3(z)− 2L3(z(t)), (4.46)

From Eq (4.44), we have −H3(z, z(t)) + L3(z) ≥ 0 and therefore H(z, z(t)) ≥ L(z).

The overall convergence is guaranteed by the following lemma. For generalization with the following

proofs, the demonstration is achieved for Hα(.) since H(.) is a case of Hα(.) when αto1 and both

functions have the same extrema.

Lemma 4.1.8. H(z, z(t)) ≥ L(z) when L3(z(t)) ≥ L3(z).

Proof. Since
∑︁g
k zk = 1, we have that L2(z) = 0. A sufficient remaining condition forH(z, z(t)) ≥ L(z)

is therefore : (︁
H1(z, z(t)) +H2(z, z(t))−H3(z, z(t))

)︁
−
(︁
L1(z)− L3(z)

)︁
≥ 0. (4.47)

Based on the Schur-concavity of Hα(.), we show that the condition is respected when −H3(z, z(t)) =

inf(−Hα(.)) is the infimum for −H3(z, z(t)) while fixing −L3(z) at its supremum s.t. −L3(z) =

sup(−Hα(.)) = 0. Therefore, the condition will holds for any values of z ∈ ∆g s.t. −L3(z) ≤
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sup(−Hα(.)) as well as any value of z(t) ∈ ∆g s.t. −H3(z, z(t)) ≥ inf(−Hα(.)). From Eq(4.34a),

we have :

H1(z, z(t)) =
d∑︂
j

xj

g∑︂
k

ŵjk[z
(t)
k log z(t)

k − z
(t)
k log zk] + L̂1(z(t)), (4.48)

where ŵjk = wjk∑︁g

ℓ
z

(t)
ℓ
wjl

and

L̂1(z(t)) =
d∑︂
j

(︁
xj log xj − xj

)︁
−

d∑︂
j

xj log
(︂ g∑︂

ℓ

z
(t)
ℓ wjl

)︂
+

d,g∑︂
j,k

zkwjk + [γ]+
(︂ g∑︂

k

zk − 1
)︂
.

Let z = ek s.t. −L3(z) = sup(−H(.)) = 0 and z(t) = G s.t. −H3(z, z(t)) = − log(g). The difference

between H1 −H3 +H2 and L1 − L3 boils down to the following quantity :

Ω =
d∑︂
j

xj

g∑︂
k

ŵjk[z
(t)
k log z(t)

k − z
(t)
k log zk] + log(g)

d∑︂
j

xj

−
d∑︂
j

xj log
(︄
wjk|{zk = 1}∑︁g

ℓ wjl

)︄
− log(g) +H2(z, z(t)), (4.49)

where H2(z, z(t)) ≥ 0, ŵjk ≥ 0, ∀k = 1, . . . , g and wjk∑︁g

ℓ
wjl
∈ [0, 1]. Therefore, using the Gibbs inequality

and the negativity of the logarithm for value in [0, 1], we obtain the following inequalities :

d∑︂
j

xj

g∑︂
k

ŵjk[z
(t)
k log z(t)

k − z
(t)
k log zk] ≥ 0, (4.50)

−
d∑︂
j

xj log
(︄
wjk|{zk = 1}∑︁g

ℓ wjl

)︄
≥ 0. (4.51)

Consequently, − log(g) is the only negative term in Ω and, is cancelled out whenever
∑︁d
j xj ≥ 1. In the

context of document clustering, this condition holds for any raw document-term matrix or normalized

with the L2-norm.

Proof of Proposition 4.1.2. From Lemmas 4.1.4, 4.1.5, 4.1.8, and corollary 4.1.7.1, we haveH(z, z(t)) ≥

L(z). ■

Proof of Theorem 4.1.1. To satisfy Lemma 4.1.3, we compute the gradient of H(z, z(t)) w.r.t. zk :

∇zk
H = − 1

zk
z

(t)
k

[︃ d∑︂
j

xj
wjk∑︁g
ℓ z

(t)
ℓ wjl

+ [γ]−
]︃

+
d∑︂
j

wjk + [γ]+ + 1 + log z(t)
k . (4.52)
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Setting this gradient to zero leads to :

z
(t+1)
k = z

(t)
k

∑︁d
j

xj∑︁g

ℓ
z

(t)
ℓ
wjl

wjk + [γ]−∑︁d
j wjk + 1 + log z(t)

k + [γ]+
. (4.53)

Since H(z, z(t)) is an auxiliary function for L(z), L(z) is non-increasing under this update. Rewritten

in a matrix coordinates format, Eq(4.53) is similar to the update given by Eq(4.20).

■

4.1.7.2 Convergence for α ∈]1,∞[

Let L(z) = L1(z) + L2(z)− L3(z) where L1(z) and L2(z) remain unchanged and

L3(z) def= 1
1− α log

(︂ g∑︂
k

zαk

)︂
= Hα(z). (4.54)

Proposition 4.1.3. H(z, z(t)) = H1(z, z(t)) +H2(z, z(t))−H3(z, z(t)) is an auxiliary function for L(z)

where

H3(z, z(t)) def= L3(z(t)) +∇⊤
z(t)L3(z − z(t))

=L3(z(t)) +
g∑︂
k

αz
(t)
k

α−1

(1− α)
∑︁g
k′ z

(t)
k′
α (zk − z

(t)
k ), (4.55)

and H1(z, z(t)), H2(z, z(t)) remain unchanged.

Proof of Proposition 4.1.3. As for the Shannon entropy, Hα(z) = L3(z) is Schur-concave. H3(z, z(t))

is the first-order Taylor approximation of L3(z). Therefore, using the property that the tangent to

any point is an upper bound of a concave function, H3(z, z(t)) ≥ L3(z). Consequently, as previously,

H(z, z(t)) ≥ L(z) results from Lemmas 4.1.4, 4.1.5 and 4.1.8. ■

Proof of Theorem 4.1.2. To satisfy Lemma 4.1.3, we compute the gradient of H(z, z(t)) w.r.t. zk :

∇zk
H = − 1

zk
z

(t)
k

d∑︂
j

xj
wjk∑︁g
ℓ z

(t)
ℓ wjl

+
d∑︂
j

wjk + [γ]+ − αz
(t)
k

α−1

(1− α)
∑︁g
k′ z

(t)
k′
α −

1
zk
z

(t)
k [γ]−. (4.56)

Setting this gradient to zero leads to :

z
(t+1)
k = z

(t)
k

∑︁d
j

xj∑︁g

ℓ
z

(t)
ℓ
wjl

wjk + [γ]−

∑︁d
j wjk − αz

(t)
k

α−1
[(1− α)

∑︁g
k′ z

(t)
k′
α
]−1 + [γi]+

. (4.57)

Since H(z, z(t)) is an auxiliary function for L(z), L(z) is non-increasing under this update. Rewritten

in a matrix coordinates format, Eq(4.57) is similar to the update given by Eq(4.61). ■
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4.1.7.3 Convergence for α = 0 (cNMFH0)

Proof of Theorem 4.1.2. As α = 0, Hα(.) boils down to a constant s.t. L3(z) = log(g). From the prior

Lemmas 4.1.4 and 4.1.5, the convergence of cNMFH0 is demonstrated by setting L(z) = L1(z) +L2(z)

and H(z, z(t)) = H1(z, z(t)) +H2(z, z(t)).

■

4.1.7.4 Complexity analysis

The following propositions define the computational complexities scales linearly with the number

of entries n×d in X. Futhermore, multiplicative update rules are parallelizable. Matrix transpositions

are assumed to be in-place with complexity O(1).

Proposition 4.1.4. Let t be the number of iterations. The computational complexities of cNMFH1 and

cNMFHα (for {0} ∪ α ∈]1,∞[) remain similar to NMF− KL’s, which is O(t · (gnd)).

Proof. cNMFH1 and cNMFHα have partially the same update rules than NMF−KL. The number of opera-

tions including multiplications, additions and divisions of Eq (4.61) is nd·(2g+1)+dg+5ng+2n+C in

cNMFHα and nd·(2dg+1)+dg+2ng+C for Eq (4.20) and (4.22) in cNMFH1 where C = 5ng is the number

of operations required outside those involving the computations of the gradients. Their complexities

are both equal to O(gnd). The overall complexity of cNMFHα and cNMFH1 is then O(t · (gnd)). ■

4.1.8 Application on real-world text datasets

4.1.8.1 Datasets

We apply cNMFHα for α ∈ {0, 1, 2} on 8 bench-marking document-term matrices for which the

detailed characteristics are available in Table 4.1. Th term nz indicates the percentage of non-zero

scalar and the balance coefficient is defined as the ratio of the number of documents in the smallest

class to the number of documents in the largest class. These datasets highlight several varieties of

challenging situations such as the amount of clusters, the dimensions, the clusters balance, the degree

of overlapping of clusters and the sparsity. We normalized each data matrix with TF-IDF and their

respective documents-vectors to unit L2-norm to remove the bias introduced by their length.
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Table 4.1 – Datasets description : # denotes the cardinality.

Characteristics
Datasets #Documents #Words #Clusters nz(%) Balance

NG5 4905 10167 5 0.92 0.943
CLASSIC3 3891 4303 3 1.05 0.707
NG20 18846 14390 20 0.59 0.628
OHSCAL 11162 11465 10 0.53 0.437
CLASSIC4 7095 5896 4 0.59 0.323
LA12 6279 31472 6 0.48 0.282
RCV1 6387 16921 4 0.25 0.080
SPORTS 8580 14870 7 0.86 0.036

4.1.8.2 Empirical results on benchmark datasets

We compare our algorithm against several NMF models acknowledged for improving document

clustering with NMF. The list includes : the original NMF with the Frobenius norm (NMF) and the

I-divergence (NMF− KL), Orthogonal NMF (ONMF) [158], Projective NMF (PNMF) [161] and, Graph Re-

gularized NMF (GNMF) [163]. A Deep-Learning algorithm namely Deep Clustering Network (DCN) [203]

is retained. It showed significant improvements for document clustering against several clustering (K-

means, Spectral Clustering), NMF based method such as (LCCF) [204] and Deep Learning algorithms

(e.g. SAE [205]). All algorithms with parameters were launched accordingly to the respective settings

advocated by their authors.

Each of the algorithms was launched 30 times on every dataset. Among those 30 trials, only the 10

best solutions (ranked according to the criterion) were kept. Table 4.2 displays the NMI and ARI of

those subsets of solutions in terms of average and standard deviation (SD). From the results, it is clear

that cNMFHα outperforms by a substantial margin the stat-of-the-arts algorithms. Primarily, we point

that cNMFH0 improves slightly over NMF− KL, with noticeable improvements seen on 5 datasets (NG5,

NG20, OHSCAL, CLASSIC4, RCV1). The performance shown by cNMFH2 is less prominent. Using the

Collision entropy (α = 2) seems to vary the subset of best solutions (much higher standard deviation).

However those are not necessarily better at retrieving the original partition for some datasets. Finally,

the main advancements come down to cNMFH1 . On some datasets, the performance is up by 10 to

20% compare to NMF − KL or e.g. DCN (see NG20, LA12) with an average improvement rate of 7.2%.

Furthermore, the lower standard deviations for the subset of best solutions suggest that H(.) improves

clustering validity (lack of uncertainty), by shrinking the convergences toward the minima delivering
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Table 4.2 – NMI and ARI means and standard deviations (SD) over different datasets (Mean±SD).

Datasets Metrics NMF ONMF PNMF GNMF DCN NMF− KL cNMFH0 cNMFH2 cNMFH1

NG5
NMI 56±0.0 65±4.0 65±5.0 63±7.0 62±2.8 80±3.3 82±1.4 80±2.5 87±.01
ARI 33±0.0 48±8.0 47±9.0 62±9.0 47±2.7 82±4.3 84±1.4 83±2.8 90±.02

CLASSIC3
NMI 49±0.0 58±0.0 71±22 63±6.8 92±4.6 95±0.1 95±.03 95±0.2 96±.01
ARI 44±0.0 55±0.0 70±26 57±9.2 94±4.5 97±0.1 97±.02 97±0.1 98±0.0

NG20
NMI 42±0.8 44±2.0 45±2.0 50±1.0 43±1.0 48±2.2 50±0.9 50±1.1 66±1.2
ARI 23±0.8 22±2.0 24±2.0 35±5.0 17±1.5 34±2.2 36±1.4 35±1.6 56±2.4

OHSCAL
NMI 38±0.6 37±1.8 39±1.2 38±1.3 35±1.0 35±1.2 36±1.2 34±1.2 40±0.3
ARI 29±0.9 28±1.8 29±2.0 28±1.6 25±1.9 24±1.5 25±1.4 23±1.4 29±0.5

CLASSIC4
NMI 53±0.4 55±9.0 59±5.0 65±4.0 57±1.4 70±2.5 76±0.6 54±8.6 76±.01
ARI 45±0.3 39±9.0 44±1.0 49±5.0 42±1.3 64±5.9 66±1.8 41±9.4 68±0.0

LA12
NMI 42±1.6 44±2.2 43±3.0 47±2.0 52±3.5 48±3.9 43±3.3 44±3.6 57±0.4
ARI 36±2.8 40±4.1 37±6.0 43±3.0 44±5.6 45±4.4 38±4.3 40±5.0 54±0.4

RCV1
NMI 35±0.0 49±2.0 46±4.5 48±4.0 34±0.6 47±2.4 48±0.7 39±6.4 51±.09
ARI 13±0.0 39±4.0 37±5.3 39±3.0 12±0.8 42±2.2 43±1.0 36±7.0 46±.05

SPORTS
NMI 55±0.0 55±2.0 56±0.1 55±0.1 59±1.5 55±2.6 54±1.2 55±2.3 61±1.5
ARI 28±0.0 28±1.0 28±0.1 28±0.1 37±3.4 39±2.2 40±2.6 41±3.7 45±2.5

the best ”hard” clustering partition.

Figure 4.5 displays the Shannon entropy during the respective convergence of cNMFH0 and cNMFH1 ,

whereas the Rényi entropy is displayed for cNMFH2 . The same starting values Z(0), and W (0) were

used for each method. The results shows that H(.) offers a completely different behavior with cNMFH1

compared to cNMFH0 or Hα(.) in cNMFH2 . cNMFH1 seems to escape bad entropy maximum by leveraging

the entropy before settling down (see corollary 4.1.7.1 for variations of H(.) during the convergence

of cNMFH1) whilst the others tend to directly reduce H(.). cNMFH0 which does not maximize H(.) has

a much lower entropy. This behavior could be problematic as using multiplicative update leads to

noninterchangeable solution once zik = ∇zik
F = 0. Maximizing entropy does reduce cluster validity

in Z, but eventually also reduces the chance to meet noninterchangeable solutions. In addition, since

those problems are non jointly convex, the convergence rate and the set of solutions are drastically

limited in case of bad starting points. Therefore, the reshuffling ability of cNMFH1 before converging

toward a local minima looks appealing (even if we were to consider setting a higher value for λ). In

fact, the set of 30 trials for cNMFH1 was pretty much condensed in terms of solutions. Added up to the
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Figure 4.5 – Variations of H(Z) for cNMFH0 and cNMFH1 ; and H2(Z) for cNMFH2 .

observed behavior, this translates that cNMFH1 does not require extensive initialization.

4.1.9 cNMFHα algorithm where α ∈ R+/]0, 1[

The Lagrangian function associated with problem (4.28) is :

L(Z,W ,γ, ϵ,β) = F(Z,W ) +
n∑︂
i

γi
(︂ g∑︂

k

zik − 1
)︂
− Tr(ϵZ⊤)− Tr(βW ⊤), (4.58)

where γ ∈ Rn+, ϵ ∈ Rn×g
+ , and β ∈ Rd×g

+ are the Lagrange multipliers. In the following, we define

the Lagrangian multipliers γi in terms of their respective positive and negative orthants as follows

γi = [γi]+ − [γi]− where [γi]+ ≥ 0 and [γi]− ≥ 0. Differentiation w.r.t. wjk leads to the same update

as in problem (4.4). The gradient w.r.t. zik is given by :

∇zik
L = −

(︃
X

ZW ⊤ W

)︃
ik

+
d∑︂
j

wjk −
αzα−1

ik

(1− α)
∑︁g
k′ zαik′

+ [γi]+ − [γi]− − ϵik. (4.59)

Setting this gradient to zero and making use of the KKT conditions ϵ ⊙ Z = 0 lead to the following

stationary equation :

zik

[︄
−
(︃

X

ZW ⊤ W

)︃
ik

+
d∑︂
j

wjk −
αzα−1

ik

(1− α)
∑︁g
k′ zαik′

+ [γi]+ − [γi]−
]︄

= 0. (4.60)

From Eq(4.60), we obtain the following multiplicative update rule :

zik ← zik

(︁
X

ZW ⊤ W
)︁
ik

+ [γi]−∑︁d
j wjk − αzα−1

ik [(1− α)
∑︁g
k′ zαik′ ]−1 + [γi]+

, (4.61)
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Let Bik =
∑︁d
j wjk−αzα−1

ik [(1−α)
∑︁g
k′ zαik′ ]−1+[γi]+. Substituting Eq(4.61) into the constraint equation

gives :

[γi]− =
1−

∑︁g
k zik

(︁
X

ZW ⊤ W
)︁

ik
Bik∑︁g

k
zik
Bik

. (4.62)

From Eq(4.62), [γi]− depends on [γi]+. Using the numerator of Eq(4.62), we derive the conditional

value of [γi]+ :

1−
g∑︂
k

zik

(︁
X

ZW ⊤ W
)︁
ik

Bik
=

g∑︂
k

zik
Bik
Bik
−

g∑︂
k

zik

(︁
X

ZW ⊤ W
)︁
ik

Bik

=
g∑︂
k

zik
∇zik
F + [γi]+

Bik
.

From this equality, [γi]+ = max(max(−∇zik
F|k = 1, . . . , g), 0) since [γi]+ ≥ 0.

Note that for α ∈]0, 1[, update (4.61) is not guaranteed to be positive which violates the first-order

conditions for an optimal local minimum. The gradient ∇zik
L involves zα−1

ik which leads to negative

exponents for α ∈]0, 1[. For α = 0, ∇zik
L = 0.

Algorithm 17 cNMFHα

Input : X, g, Z(0), W (0), α ∈ R+/]0, 1[.
Output : Z and W .
repeat
1. update Z with eq(4.61) if α ∈ {0}∪]1,∞[ ;
2. update W with eq(4.14) ;

until convergence
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4.2 An unified framework for Nonnegative Matrix Factorization and Finite
Mixture Models in the unit-sphere

4.2.1 Motivations

Depending on the cost function D(X,ZW ⊤), NMF can be seen as the minimization of the negative

log-likelihood of some continuous or discrete distributions using the GEM algorithm while assuming,

for instance, Gaussian, Poisson or Erlang distributions of the xij ’s such that

P (X|Z,W ) = 1√
2π
e− 1

2 ∥X−ZW ⊤∥2
F , (4.63)

P (X|Z,W ) ∝ e−DKL(X||ZW ⊤) ∝
n,d∏︂
i,j

[ZW ⊤]xij

ij e
−[ZW ⊤]ij , (4.64)

or

P (X|Z,W ) ∝ e−DIS(X||ZW ⊤) ∝
n,d∏︂
i,j

e
−

xij

[ZW ⊤]ij

[ZW ⊤]ij
, (4.65)

where the NMF factors (from which we deduce a clustering) are set as parameters of the mixture

where Θ = {Z,W }.

Considering the additivity of Gaussian or Poisson random variables, NMF can also be cast as

a statistical composite model [240] which highlights the presence of a third tensor latent variable

C = (cijk) ∈ Rn×d×g
+ s.t.

∑︁g
k cijk = xij . By sticking with the ability to deduce a clustering from Z,

we apply a set of probabilistic constraints and use the convex part of most common cost functions.

This result in showing that NMF is equivalent to maximizing a bound of the log-likelihood of a Finite

Mixture Model (FMM) where the latent variable Z is shifted into the set of parameters Θ.

For example, by setting Z = [z1| . . . |zn]⊤ as a set of probability distributions s.t. Z⊤ ∈ (∆g)n

where ∆g = {∀zi ∈ Rg+ :
∑︁g
k zik = 1} is a probability simplex, the I-divergence between X and ZW ⊤

can be rewritten in terms of expectation s.t. [ZW ⊤]ij =
∑︁g
k zikwjk = Eziwj . Therefore,

DI(X||ZW ⊤) =
n,d∑︂
i,j

xij log xij
Eziwj

− xij + Eziwj (4.66)

≤ EZ

[︃
log

d∏︂
j

ewj w
−xij

j

x
−xij

ij exij

]︃
≡ Q(Θ′,Θ), (4.67)
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(a) Finite mixture as a graphical model.
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(b) NMF as a graphical model. x̂ij = z⊤
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Figure 4.7 – cNMFH0 as a graphical model. x̂ij = z⊤
i wj .

whereQ(Θ′,Θ) is the well knownQ−functionmaximized by the Expectation-Maximization (EM)

algorithm [241] for a Poisson finite mixture. By estimating the matching mixture model from the cost

function, further deduction will show that NMF intuitive shifting of the latent variable Z into the set

of parameters contributes to avoid a well known problem arising with balanced/parsimonious mixture

model which is maximum entropy. This problem is usually leveraged by specifying more parameters

to the model such as mixture weights or decomposition of the dispersion parameter (e.g. in Gaussian

mixture). Hence, more estimates are required which increases the computational time.

4.2.2 Related Works

In this contribution, we refocus on a prior work on entropy maximization subject to NMF constraints

referred to as cNMFH. This problem is expressed as follows :

min
Z≥0,W ≥0,Z1g=1n

{F(Z,W ) = −H(Z) + λD(X,ZW ⊤)}. (4.68)

where H(Z) =
∑︁n,g
i,k zik log zik is the Shannon entropy functional [110].

A graphical model of cNMFH0 is given in Figure 4.7 ; it displays a generalizing model including mixing

weights for the latent variable Z which will be discussed in Section 4.2.5. The generalized Kullback-

Leibler divergence is undoubtedly the most relevant cost function for achieving NMF for the task of

document clustering. An application on document-term matrices comparing several algorithms can be
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found in [223]. The main bottleneck with the I-divergence comes down to the high computational cost

of its gradient. Therefore, by taking advantages of the probability factor of cNMFHα and the convexity

of the negative logarithm, we aim at accelerating the convergence by deriving a surrogate function

(bounded by the Jensen inequality) which provides a less expensive gradient to compute. Eventually, we

notice that this transformation describes a larger relation between cNMFH1 using the class of Bregman

divergence and Finite mixture models. Our work goes back to the relation of Bregman divergence and

exponential families (Distributions) formulated by Banerjee [41] and the work of Hathaway [242] and

its alternative EM [241] objective function based upon the log-likelihood and the Shannon entropy.

In addition, a common practice in text analysis and NMF document clustering is to normalize the

observed data X = [x1| . . . |xn]⊤ into the unit-sphere Sd−1 = {xi ∈ Rd : ∥xi∥ = 1} so that the bias

introduced by their length vanishes and helps to improve the clustering. To our knowledge, no real

attention has been given to the impact of this normalization on the Poisson probability distribution

compared to a dedicated directional distribution (e.g. von Mises-Fisher). In this contribution, we will

define a version of NMF for directional data based upon the (1− cos) dissimilarity and show that this

normalization can benefit substantially more to discrete FMMs than to continuous FMMs or NMF as

the normalization in the unit-sphere circumvents the maximum entropy encountered with the discrete

Poisson distribution.

The paper is organized as follows. In Section 4.2.3, we describe the transition from NMF to mix-

ture models and quantify the difference between both methods. Section 4.2.4 presents a comparison

between NMF and the mixture models as well as against other state-of-the-art algorithms on several

benchmarking datasets. In Section 4.2.5, several properties of cNMFH and the perspectives offered by

this model are discussed.

4.2.3 From cNMF to finite mixture models

In order to distinguish the notion of classification log-likelihood based on hard indicator and its

expectation based on the conditional probabilities, we will adopt the following notation for more

convenience such that Z ∈ {0, 1}n×g will now denote a hard classification matrix, while ˜︁Z ∈ [0, 1]n×g

will be set as a matrix of conditional probabilities.

This section highlights the transition from cNMF to finite mixture models of the class of exponential

Families when D(X, ˜︁ZW ⊤) is set as a Bregman divergence. The Bregman divergence is a measure of
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the distance between two points defined in terms of a strictly convex function.

Definition 4.2.1. (Bregman divergence [243]). Let x,y ∈ Rd, and ϕ : S → R, S = dom(ϕ) be a strictly

convex function defined on a convex set S ⊂ Rd such that ϕ is differential on ri(S), the Bregman

divergence denoted dϕ : S × ri(S)→ [0,+∞) is given as follows :

dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨x− y,∇yϕ⟩. (4.69)

Let cNMFH be the problem of cNMFH1 where the entropic regularization is achieved using the Shannon

entropy H(.) such as :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n

{︁
F( ˜︁Z,W ) = D(X, ˜︁ZW ⊤)−H( ˜︁Z)

}︁
, (4.70)

where H( ˜︁Z) = −
∑︁n,g
i,k z̃ik log z̃ik. It can be shown that cNMFH is equivalent to maximizing a surrogate

of a log-likelihood function of a FMM. Let δΦ(X, ˜︁ZW ⊤) be the auxiliary function of D(X, ˜︁ZW ⊤)

obtained through a set of Jensen inequalities for one or several real convex or concave functions

Φ = [ϕ1, . . . , ϕm] such that :

δΦ(X, ˜︁ZW ⊤) def=
n,g∑︂
i,k

z̃ikD(xi,wk). (4.71)

Proposition 4.2.1. If D(X, ˜︁ZW ⊤) is a Bregman divergence, the minimization of the following objective

results in the maximization of the fuzzy criterion F̃( ˜︁Z,Θ) of a finite mixture model such as :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n

{︁
δΦ(X, ˜︁ZW ⊤)−H( ˜︁Z)

}︁
≡max

{︂
log

n,g∏︂
i,k

[︁
πkf(xi,θk)

]︁z̃ik +H( ˜︁Z)
}︂

≡max F̃( ˜︁Z,Θ), (4.72)

where f is a probability density (or mass) function of an exponential family, π = (π1, . . . , πg) the

proportions (assumed to be equal) and Θ = {π,θ} the set of parameters with θ = [w1| . . . |wg].

Lemma 4.2.1. Maximizing F̃( ˜︁Z,Θ) is equivalent to maximizing the expectation of the conditional

classification log-likelihood and therefore the likelihood L(Θ) =
∏︁n
i

∑︁g
k πkf(xi,θk).

Proof. F̃( ˜︁Z,Θ) is a sum of fuzzy complete data log-likelihood Lc( ˜︁Z,Θ) and entropy. Its maximization

has been shown by Hathaway to be equivalent to the maximization of the likelihood by the EM

algorithm (see [242]).
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Lemma 4.2.2. If D(X, ˜︁ZW ⊤) is a Bregman divergence, δΦ(X, ˜︁ZW ⊤) is equal to the logarithm of the

negative Bregman Soft clustering criterion [41] up to a normalizing constant
∑︁n
i log bϕ(xi).

Proof. Using proposition 4.2.1 leads to δΦ(X, ˜︁ZW ⊤) =
∑︁n,g
i,k z̃ikdϕ(xi,wk). This interpretation can

be generalized by the relation between Bregman divergence and Exponential Families/distributions

[41] stating that for a Bregman divergence dϕ derived from ϕ :

p(ψ,θ)(xi) = exp(−dϕ(xi,wk))bϕ(xi), ∀xi ∈ dom(ϕ) (4.73)

where p(ψ,Θ) is a probability density (or mass) function of a regular exponential family/distribution, ψ

is the cumulant closed convex function with natural parameter space dom(ψ), θ the natural parameter,

wk the expectation parameter, ϕ a convex conjugate function of ψ so that (
∫︁

(dom(ϕ)), ϕ) is the

Legendre dual of (dom(ψ), ψ) and bϕ(xi) is a real value function. Consequently :

− log
n,g∏︂
i,k

[p(ψ,θ)(xi)]z̃ik = −
n,g∑︂
i,k

z̃ik log
[︁
exp(−dϕ(xi,wk))bϕ(xi)

]︁
=

n,g∑︂
i,k

z̃ikdϕ(xi,wk))−
n∑︂
i

log bϕ(xi)

=δΦ(X, ˜︁ZW ⊤)−
n∑︂
i

log bϕ(xi). (4.74)

Proof of Proposition 4.2.1 when D is the I-divergence. Let denote the problem of cNMFH with the I-

divergence as follows :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n

{︁
F( ˜︁Z,W ) =

n,g∑︂
i,j

[︂
xij log xij

[ ˜︁ZW ⊤]ij
− xij + [ ˜︁ZW ⊤]ij

]︂
−H( ˜︁Z)

}︁
, (4.75)

where [ ˜︁ZW ⊤]ij =
∑︁g
k z̃ikwjk, ∀i = 1, . . . , n, ∀j = 1, . . . , d.

For any convex function ϕ : [0,+∞) → R, given a random variable Y = (y1, . . . , yn), the Jensen

inequality states that :

E[ϕ(Y )] ≥ ϕ(E[Y ]),

with equality when ϕ(Y ) reaches its canonical form s.t. ϕ(Y ) = Y . Considering the finite form of this

inequality defined as : ϕ
(︂∑︁n

i aiyi
)︂
≤
∑︁n
i aiϕ(yi), where the elements (a1, . . . , an) are weights. Since ˜︁Z
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denotes a matrix of probabilities s.t.
∑︁g
k z̃ik = 1 and because of the convexity of the function − log(x),

we can derive the following inequality :

− log
g∑︂
k

z̃ikwjk ≤ −
g∑︂
k

z̃ik logwjk. (4.76)

From this result, we can define an upper bound Q( ˜︁Z,W ) for F( ˜︁Z,W ) such that :

Q( ˜︁Z,W ) =
n,d∑︂
i,j

[︂
xij log xij −

g∑︂
k

xij z̃ik logwjk − xij + [ ˜︁ZW ⊤]ij
]︂
−H( ˜︁Z)

=
n,g∑︂
i,k

z̃ik

d∑︂
j

[︂
xij log xij − xij logwjk − xij +

d∑︂
j

wjk
]︂
−H( ˜︁Z)

=δΦ(X, ˜︁ZW ⊤)−H( ˜︁Z).

From Lemma 4.2.2, we have :

Q( ˜︁Z,W ) =
n,g∑︂
i,k

z̃ikdϕ(xi,wk)−H( ˜︁Z)

=− log
n,g∏︂
i,k

[p(ψ,θ)(xi)]z̃ik +
n∑︂
i

log bϕ(xi)−H( ˜︁Z)

=− F̃( ˜︁Z,W ) +
n∑︂
i

log bϕ(xi). (4.77)

where F̃( ˜︁Z,W ) is the fuzzy criterion assuming that the proportions are equal, and f(xij ;wjk) =

P(wjk) = w
xij
jk

e
−wjk

xij ! is the Poisson pmf’s, such that :

F̃( ˜︁Z,W ) = log
n,g,d∏︂
i,k,j

[︁
f(xij ;wjk)

]︁z̃ik +H( ˜︁Z). (4.78)

The optimization of Q( ˜︁Z,W ) given in Section 4.2.6 shows that minimizing Q( ˜︁Z,W ) is equivalent to

maximizing (4.78) with respect to z̃ik and wjk. In this particular case, we have that
∑︁n
i log bϕ(xi) =∑︁n,d

i,j log x
xij
ij

xij ! . In the Following, we refer to this model as PMM (Poisson Mixture Model).

Remarks.

— Since maximizing (4.78) is equivalent to maximizing the likelihood of Poisson mixture models

(where the proportions are assumed equal), the EM algorithm can be used.

— NMF with I-divergence can be viewed as an EM algorithm. Then a comparison between both

algorithms should be interesting.
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— We can insert the marginals in the model and propose variants of cNMF.

In the case of the I-divergence, Φ has an unique element ϕ = − log x. Consequently, the difference

between F( ˜︁Z,W ) in cNMFH and the fuzzy criterion results in :

E[ϕ(Y )]− ϕ(E[Y ]) = E[dϕ(Y,E[Y ])] = Iϕ(Y ),

where dϕ is a Bregman divergence. This difference is known as the Bregman information [244, 41].

In the case of cNMFH with the I-divergence, Iϕ(W ) results in E˜︁Z [dϕ(W , E˜︁Z [W ])] where dϕ is the

Itakura-Saito divergence since ϕ(x) = − log(x).

■

However, whilst the I-divergence involves only one convex functions to shift from cNMFH to a FMM,

the transition with other divergences such as the Logictic loss toward the Bernouilli FMM or the

Itakura-Saito divergence toward the Erlang FMM may involve several functions. In this case, the

difference between the objective function of cNMFH and the fuzzy criterion will be given as a sum of the

Bregman information criterion defined on each convex or concave functions. Recalling Φ = [ϕ1, . . . , ϕm],

we define the sum of Bregman information as follows :

n∑︂
m

Iϕm(W ) =E˜︁Z [dϕ1(W , E˜︁Z [W ])] + . . .+ E˜︁Z [dϕm(W , E˜︁Z [W ])]

=E˜︁Z [dϕ1(W , E˜︁Z [W ]) + . . .+ dϕm(W , E˜︁Z [W ])] = IΦ(W ). (4.79)

Several other examples are available in Appendix D.1 for other common Bregman divergences used in

NMF such as the Frobenius norm (relative to the Gaussian distribution) or the Itakura-Saito divergence

(relative to the Erlang or Exponential distributions). An example with the (1 − cos) dissimilarity

obtained through the Frobenius norm (relative to the Von Mises-Fisher distribution) is also given.

Table 4.3 summaries the relations between cNMF and the underlying mixture models according to the

distance function.

4.2.4 Numerical experiments

After establishing the relation between cNMFH with the I-divergence and the Poisson mixture model,

we tackle several numerical experiments aiming at comparing their clustering performances on several

document-term matrices. As mentioned earlier, normalizing the samples in the unit-sphere is a default
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Table 4.3 – Examples of cNMFH with Bregman divergences and the corresponding finite mixture
models.

Distance D(X, ˜︁ZW ⊤) NMF constraints Mixture

Frobenius norm 1
2∥X − ˜︁ZW ⊤∥2F ˜︁Z ≥ 0, W ≥ 0, ˜︁Z1g = 1n Gaussian

(1− cos) dissimilarity
∑︁n
i

(︁
1− ⟨xi, [ ˜︁ZW ⊤]i⟩

)︁ ˜︁Z≥0,W ≥0,˜︁Z1g=1n,

∥[˜︁ZW ⊤]i∥=1
von Mises-Fisher

I-divergence DI(X|| ˜︁ZW ⊤) ˜︁Z ≥ 0, W ≥ 0, ˜︁Z1g = 1n Poisson

Itakura-Saito div DIS(X|| ˜︁ZW ⊤) ˜︁Z ≥ 0, W ≥ 0, ˜︁Z1g = 1n Erlang/Exponential

practice in NMF. However, to our knowledge, nobody has so far considered to achieve NMF using

a directional measure such as the (1 − cos) dissimilarity and assess the impact of this normalization

across several methods. Therefore, for our comparative study, we introduced SpNMF (Spherical NMF)

along side the like of NMF with the Frobenius norm and the I-divergence. SpNMF is defined as the

problem of NMF where ∥xi∥ = ∥[ZW ⊤]i∥ = 1 and D(X,ZW ⊤) is the (1− cos) dissimilarity derived

from the Frobenius norm such as :

min
Z≥0,W ≥0

∥[ZW ⊤]i∥=1,∀i=1,...,n

{︁
F(Z,W ) =

n∑︂
i

(︁
1− ⟨xi, [ZW ⊤]i⟩

)︁}︁
, (4.80)

The derivation of SpNMF is available in Section 4.2.7. Note that, in regards to the notation established

earlier, Z ∈ Rn×g
+ for SpNMF.

As mentioned in the last section, estimating the conditional probabilities using EM for the Gaussian

and von Mises-Fisher mixture models lead to poor partitioning with maximum entropy. Therefore, only

the hard classifications of CEM were considered. Since the proportions and variance (or concentration)

parameters are assumed to be equal, these algorithms are equivalent to K-means and Spherical K-

means respectively and denoted subsequently in the following. For the opposite reason (also explained

in the last section), K-means with the Poisson log-divergence (equivalent to a CEM) was also omitted.

Naturally a Spherical version of cNMF could also be introduced. However, as shown in Section 4.2.7.3,

the optimization of this method is equivalent to a fuzzy Spherical K-means algorithm and therefore

would be affected by the maximum entropy since the criterion is also equal to the log-likelihood of a

von Mises-Fisher FMM with a missing normalization. Finally cNMF with the Frobenius norm was not

included in this section. Note that thanks to the low computational cost of its gradient, the Frobenius

norm has been widely employed in regularized NNF models assigned to document clustering. However,

in this domain, this distance remains less relevant compared to the I-divergence. Each algorithm was

150



4.2. AN UNIFIED FRAMEWORK FOR NONNEGATIVE MATRIX
FACTORIZATION AND FINITE MIXTURE MODELS IN THE UNIT-SPHERE

launched 30 times on every dataset. Among those 30 trials, only the 10 best solutions (ranked according

to the criterion) were kept.

4.2.4.1 Datasets

We draw our comparison on 8 bench-marking document-term matrices for which the detailed

characteristics are available in Table 4.4. nz indicates the percentage of non-zero scalar and the balance

coefficient is defined as the ratio of the number of documents in the smallest class to the number of

documents in the largest class. These datasets highlight several varieties of challenging situations such

as the amount of clusters, the dimensions, the clusters balance, the degree of overlapping of clusters

and the sparsity. We normalized each data matrix with TF-IDF and their respective documents-vectors

to unit L2-norm.

Table 4.4 – Datasets description : # denotes the cardinality.

Characteristics
Datasets #Documents #Words #Clusters nz(%) Balance

NG5 4905 10167 5 0.92 0.943
CLASSIC3 3891 4303 3 1.05 0.707
NG20 18846 14390 20 0.59 0.628
OHSCAL 11162 11465 10 0.53 0.437
CLASSIC4 7095 5896 4 0.59 0.323
LA12 6279 31472 6 0.48 0.282
RCV1 6387 16921 4 0.25 0.080
SPORTS 8580 14870 7 0.86 0.036

4.2.4.2 Empirical results on benchmark datasets

Several NMF models acknowledged for improving document clustering with NMF were added in

the parallel. The list includes : the original NMF with the Frobenius norm (NMF) and the I-divergence

(NMF − KL), Orthogonal NMF (ONMF) [158], Projective NMF (PNMF) [161] and, Graph Regularized

NMF (GNMF) [163]. A Deep-Learning algorithm namely Deep Clustering Network (DCN) [203] was

also included. The DCN algorithm showed significant improvements for document clustering against

several clustering (K-means, Spectral Clustering), NMF (LCCF) [204] and Deep Learning algorithms

(SAE)[205]. All algorithms requiring parameters were launched accordingly to the respective settings

advocated by their authors. The quality of the clustering was assess using two measures widely used

for quantifying the correspondence between the clustering and the true labels. The Normalized Mutual
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Information (NMI) [119], which measures the mutual dependency between two random variables, and,

the Adjusted Rand Index (ARI) [122], which measures the degree of agreement between two partitions.

Table 4.5 – NMI and ARI means and standard deviations (SD) over different datasets (Mean±SD).

Datasets Metrics NMF K-ms SpNMF S-Kms NMF− KL cNMF cNMFH PMMU

NG5
NMI 56±0.0 53±3.5 77±3.1 72±1.8 80±3.3 82±1.4 87±.01 90±10
ARI 33±0.0 31±2.7 72±6.8 60±1.0 82±4.3 84±1.4 90±.02 92±10

CLASSIC3
NMI 49±0.0 91±0.0 94±0.0 95±0 95±0.1 95±.03 96±.01 96±0.1
ARI 44±0.0 94±0.0 97±0.0 97±0.0 97±0.1 97±.02 98±0.0 98±0.0

NG20
NMI 42±0.8 40±1.9 46±1.8 49±2.1 48±2.2 50±0.9 66±1.2 70±0.8
ARI 23±0.8 14±2.4 32±2.0 30±2.4 34±2.2 36±1.4 56±2.4 57±1.4

OHSCAL
NMI 38±0.6 36±1.3 41±0.1 43±0.2 35±1.2 36±1.2 40±0.3 41±0.5
ARI 29±0.9 21±1.6 32±0.1 33±0.3 24±1.5 25±1.4 29±0.5 29±0.9

CLASSIC4
NMI 53±0.4 55±0.3 58±0.2 60±0.1 70±2.5 76±0.6 76±.01 76±0.0
ARI 45±0.3 37±0.3 47±0.1 47±0.1 64±5.9 66±1.8 68±0.0 63±0.0

LA12
NMI 42±1.6 45±6.6 47±0.6 58±3.0 48±3.9 43±3.3 57±0.4 50±3.5
ARI 36±2.8 31±8.5 44±0.7 53±2.2 45±4.4 38±4.3 54±0.4 45±4.9

RCV1
NMI 35±0.0 45±9.5 48±7.5 38±.02 47±2.4 48±0.7 51±.09 50±1.8
ARI 13±0.0 28±14.4 38±13 18±.03 42±2.2 43±1.0 46±.05 44±1.5

SPORTS
NMI 55±0.0 45±5.4 57±2.3 62±2.3 55±2.6 54±1.2 61±1.5 61±1.4
ARI 28±0.0 17±6.5 39±1.6 43±4.1 39±2.2 40±2.6 45±2.5 46±1.3

From the results in Table 4.5, the best performances are shared between cNMFH and the Poisson

mixture model in the unit-sphere (PMMU). Spherical K-means has the best scores on only one dataset

(OHSCAL) overall and its other best performances on LA12 and SPORTS can be matched by cNMFH and

PMMU respectively. In addition, SpNMF achieved better performance than Spherical K-means on two

datasets and remains close overall. Since the I-divergence is scale invariant, cNMF has similar results

to NMF − KL. The difference in performance between cNMFH and PMMU seems to be related to the

balanced of the partitions. When the datasets are very balanced, PMMU gives better results than

cNMFH (see NG5, NG20). For the oppositve, cNMFH seems to achieve better performance (see CLASSIC4,

LA12, RCV1). Overall, both algorithm deliver close results and the choice of the user might come back

to its needs. For a scalability, PMMU should undeniably be preferred. However, if the user can assess

the balanced of the partition (e.g. through visualisation), cNMFH could be chosen. In the context of this

contribution, PMMU fulfills our need for less computationally expensive gradients and therefore will
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be selected. In Table 4.6, we compare PMMU against several state-of the arts algorithm. As it was for

cNMFH, it is clear that PMMU outperforms and by a substantial margin.

Table 4.6 – NMI and ARI means and standard deviations (SD) over different datasets (Mean±SD).

Datasets Metrics ONMF PNMF GNMF DCN PMMU

NG5
NMI 65±4.0 65±5.0 63±7.0 62±2.8 90±10
ARI 48±8.0 47±9.0 62±9.0 47±2.7 92±10

CLASSIC3
NMI 58±0.0 71±22 63±6.8 92±4.6 96±0.1
ARI 55±0.0 70±26 57±9.2 94±4.5 98±0.0

NG20
NMI 44±2.0 45±2.0 50±1.0 43±1.0 70±0.8
ARI 22±2.0 24±2.0 35±5.0 17±1.5 57±1.4

OHSCAL
NMI 37±1.8 39±1.2 38±1.3 35±1.0 41±0.5
ARI 28±1.8 29±2.0 28±1.6 25±1.9 29±0.9

CLASSIC4
NMI 55±9.0 59±5.0 65±4.0 57±1.4 76±0.0
ARI 39±9.0 44±1.0 49±5.0 42±1.3 63±0.0

LA12
NMI 44±2.2 43±3.0 47±2.0 52±3.5 50±3.5
ARI 40±4.1 37±6.0 43±3.0 44±5.6 45±4.9

RCV1
NMI 49±2.0 46±4.5 48±4.0 34±0.6 50±1.8
ARI 39±4.0 37±5.3 39±3.0 12±0.8 44±1.5

SPORTS
NMI 55±2.0 56±0.1 55±0.1 59±1.5 61±1.4
ARI 28±1.0 28±0.1 28±0.1 37±3.4 46±1.3

4.2.5 Discussion

4.2.5.1 Additional regularizations for cNMF

From the link established between cNMF and FMMs in the previous section, several regularizations of

cNMF’s objective can be provided. By adding the proportions term, we denote the following optimization

problem referred to as cNMFπ,H :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n,π⊤1g=1

{︁
F( ˜︁Z,W ) = D(X, ˜︁ZW ⊤) +

n∑︂
i

DKL(z̃i||π)
}︁
. (4.81)

cNMFH is therefore a special case of cNMFπ,H where the proportions are assumed to be equal. Another ob-

jective regularization could also be suggested using only the proportions. We refer to this optimization
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problem as cNMFπ :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n,π⊤1g=1

{F( ˜︁Z,W ) = D(X, ˜︁ZW ⊤)−
n,g∑︂
i,k

z̃ik log πk}. (4.82)

4.2.5.2 Scale change invariance

cNMF was initially introduced with the I-divergence which by definition is invariant to scale. Howe-

ver, when D(X, ˜︁ZW ⊤) is scale sensitive (e.g. the Frobenius norm), ˜︁Z defined as a set of probability

distribution drastically reduces the space of possible solutions and leads to a sensible decrease of the

performance.

Considering two discretized random variables p ∈ ∆d and q ∈ ∆d, a divergence Dinv is said to be

invariant by changing of scale w.r.t. q if :

Dinv(p||q) = Dinv(p||aq), ∀a ∈ R+. (4.83)

The I-divergence is naturally invariant to scale. Consequently, the linear approximation xi ≈ [ ˜︁ZW ⊤]i
w.r.t. the sum marginal of xi gives :

DI(xi||a[ ˜︁ZW ⊤]i) = DI(xi||[ ˜︁ZW ⊤]i). (4.84)

Therefore, the change of scale produced by the following constraint : z̃i ∈ ∆g, ∀i = 1, . . . , n, does not

affect cNMF. For solving this issue with the class of scale sensitive divergence, we illustrate the approach

of Eguchi and Kato [245] for building invariant divergences by introducing a positive invariance factor

κ(p, q) such that D(p||κq) = Dinv(p||q). As emphasized by Lantéri [246], a divergence D can be

made invariant according to several invariance factor w.r.t. the fundamental properties of invariant

divergences based on the gradient of D(p||κq) w.r.t. q and the differential equation stated as follows :

d∑︂
j

qj
∂D(p||κq)

∂qj
= 0, (4.85) κ+

d∑︂
j

qj
∂κ

∂qj
= 0. (4.86)

In this contribution, we draw our interest in the use of a invariance factor defined directly from D

[245]. This factor is referred to as the nominal invariance factor κ0(p, q) such that :

κ0(p, q) = arg min
κ>0

D(p||κq). (4.87)
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Note that : D(p||κ0q) ≤ D(p||κ1q), for any non-nominal invariance factor κ1(p, q). Therefore, in

the following, we construct an invariant Frobenius norm and introduce a modified version of the

multiplicative updates algorithm for practicing cNMF, cNMFπ,H or cNMFH without scale perturbation.

More precisely, we consider a set of n nominal invariance factors κ0(xi, [ ˜︁ZW ⊤]i),∀i = 1, . . . , n, one

for each linear transformation regarding each approximation xi ≈ [ ˜︁ZW ⊤]i.

4.2.5.2.1 Invariant Frobenius norm for cNMF Let DF (X|| ˜︁ZW ⊤) be the squared Frobenius norm

between X and ˜︁ZW ⊤, we denote by

Dinv−F (X||diag(κ) ˜︁ZW ⊤)

its invariant transformation w.r.t. a set of invariance factor κ = {κ1, . . . , κn} as follows :

Dinv−F (X||diag(κ) ˜︁ZW ⊤) =
n,d∑︂
i,j

(︂
xij − κi

g∑︂
k

z̃ikwjk
)︂2
. (4.88)

The partial derivative of Dinv−F (X||diag(κ) ˜︁ZW ⊤) w.r.t. κi is therefore :

∂Dinv−F
∂κi

=
d∑︂
j

[︂
2κi
(︂ g∑︂

k

z̃ikwjk
)︂2
− 2xij

g∑︂
k

z̃ikwjk
]︂
. (4.89)

Setting this derivative to zero, we obtain the following expression for a nominal invariance factor :

κi =
∑︁d
j xij

∑︁g
k z̃ikwjk∑︁d

j (
∑︁g
k z̃ikwjk)2

. (4.90)

4.2.5.2.2 cNMFπ,H, cNMFH and cNMF with the invariant Frobenius norm cNMFπ,H where D(X, ˜︁ZW ⊤)

is set as the invariant Frobenius norm is described as the following optimization problem :

min˜︁Z≥0,W ≥0˜︁Z1g=1n,π⊤1g=1

{F( ˜︁Z,W ,κ) = 1
2∥X − diag(κ) ˜︁ZW ⊤∥2F +

n∑︂
i

Dξ,ι
KL(z̃i||π)}, (4.91)

where Dξ,ι
KL(p||q) def= ξ

∑︁n
i pi log pi − ι

∑︁n
i pi log qi, with ξ ∈ {0, 1} and ι ∈ {0, 1} s.t. cNMFπ,H collapses

to cNMFH for ι = 0 and cNMF for ξ = ι = 0. The associated Lagrangian function is expressed as follows :

L( ˜︁Z,W ,κ,γ, τ, ϵ,β) = F( ˜︁Z,W ,κ)+
n∑︂
i

γi
(︂ g∑︂

k

z̃ik−1
)︂
+τ
(︂ g∑︂

k

πk−1
)︂
+Tr(ϵ ˜︁Z⊤)+Tr(βW ⊤), (4.92)
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where γ ∈ Rn, τ ∈ R, ϵ ∈ Rn×g, and β ∈ Rd×g are the Lagrange multipliers. In the following, we

define the Lagrange multipliers γi in terms of their respective positive and negative orthants such as

γi = [γi]+ − [γi]− where [γi]+ ≥ 0 and [γi]− ≥ 0. Let K = diag(κ) The partial derivative w.r.t. z̃ik

and wjk are denoted as follows :

∇z̃ik
L = −(KXW )ik + (K2 ˜︁ZW ⊤W )ik + ξ(1 + log z̃ik)− ι log πk + ϵik + [γi]+ − [γi]−, (4.93)

∇wjk
L = −(X⊤K ˜︁Z)ik + (W ˜︁Z⊤K2 ˜︁Z)jk + βjk. (4.94)

Setting these gradients to zero and making use of the Karush-Kuhn-Tucker conditions ϵ⊙ ˜︁Z = 0 and

β ⊙W = 0 lead to the following stationary equations :

z̃ik
[︁
(KXW )ik − (K2 ˜︁ZW ⊤W )ik − ξ(1 + log z̃ik)− ι log πk − [γi]+ + [γi]−

]︁
= 0, (4.95)

wjk
[︁
(X⊤K ˜︁Z)jk − (W ˜︁Z⊤K2 ˜︁Z)jk

]︁
= 0. (4.96)

From these equations, we obtain the following multiplicative update rules :

z̃ik ← z̃ik
(KXW )ik − ξ log z̃ik + [γi]−

(K2 ˜︁ZW ⊤W )ik + ξ − ι log πk + [γi]+
, (4.97)

wjk ← wjk
(X⊤ ˜︁Z)jk

(W ˜︁Z⊤K ˜︁Z)jk
. (4.98)

Let Bik = (K2 ˜︁ZW ⊤W )ik + ξ − ι log πk + [γi]+. Plugging eq(4.97) into the constraint gives :

[γi]− =
1−

∑︁g
k z̃ik

(KXW )ik−ξ log z̃ik+[γi]−
Bik∑︁g

k
z̃ik
Bik

. (4.99)

From eq(4.99), [γi]− depends on [γi]+. Using the first term of eq(4.99), we derive the conditional

value of [γi]+ :

1−
g∑︂
k

z̃ik
(KXW )ik − ξ log z̃ik + [γi]−

Bik
=

g∑︂
k

z̃ik
Bik
Bik
−

g∑︂
k

z̃ik
(KXW )ik − ξ log z̃ik + [γi]−

Bik

=
g∑︂
k

z̃ik
∇z̃ik
F + [γi]+

Bik
.

From this equality, [γi]+ = max(max(−∇z̃ik
F|k = 1, . . . , g), 0) since [γi]+ ≥ 0.
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The partial derivative of L( ˜︁Z,W ,κ,γ, τ, ϵ,β) w.r.t. πk is :

∇πk
L = −ξ

n∑︂
i

z̃ik
1
πk

+ τ. (4.100)

Setting this derivative to zero leads to : πk = ξ
∑︁n

i
z̃ik

τ . Plugging this expression into
∑︁g
k πk = 1 gives :

πk =
∑︁n
i z̃ik
n

, (4.101)

The optimization procedure is given by Algorithm (18).

Algorithm 18 cNMFπ,H, cNMFH & cNMF with Dinv−F

Input : X, g, ˜︁Z(0) ; W (0), ξ ∈ {0, 1}, ι ∈ {0, 1}.
Initialization : π(0) using eq(4.101).
Output : ˜︁Z, W , κ.
repeat
1 (if ι = 1). update π using eq(4.101) ;
2. update κ using eq(4.90) ;
3. update ˜︁Z with eq(4.97) ;
4. update κ using eq(4.90)
5. update W with eq(4.98) ;

until convergence

4.2.5.2.3 Convergence analysis The update formula for W given by eq(4.98) is identical to the one

obtained with the original NMF. Therefore, from [132], F( ˜︁Z,W ,κ) in problem(4.91) is non-increasing

under the update rule (4.98). The convergence analysis for the update of z̃ik is given subsequently.

Theorem 4.2.3. F( ˜︁Z,W ,κ) in problem(4.91) is non-increasing under eq(4.97) and eq(4.98).

Considering the Lagrangian function for problem(4.91) defined as :

L(z̃ik) = F(z̃ik) +
n∑︂
i

γi
(︂ g∑︂

k

z̃ik − 1
)︂

+ τ
(︂ g∑︂

k

πk − 1
)︂
, (4.102)

and following the definition of an auxiliary function recalled subsequently :

Definition 4.2.2. H(z, z′) is an auxiliary function for L(z) if the following conditions are satisfied :

∀z ̸= z′,H(z, z′) ≥ L(z) and H(z, z) = L(z).

A key point to the auxiliary function is the following lemma :
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Lemma 4.2.4. If H(z, z(t)) is an auxiliary function for L(z), L(z) is non-increasing under the update

z(t+1) = arg min
z

H(z, z(t))

Proof. L(z(t+1)) ≤ H(z(t+1), z(t)) ≤ H(z(t), z(t)) = L(z(t)).

We formulate the following proposition.

Proposition 4.2.2.

H(z̃ik, z̃
(t)
ik ) =L(z̃(t)

ik ) + L′(z̃(t)
ik )(z̃ik − z̃

(t)
ik )

+ (K2 ˜︁ZW ⊤W )ik − ι log πk + ξ + [γi]+

2z̃(t)
ik

(︂
z̃ik − z̃

(t)
ik

)︂2
, (4.103)

where L′(z̃(t)
ik ) = −ι log πk−(KXW )ik+(K2 ˜︁ZW ⊤W )ik+ξ(1+log z̃ik)+[γi]+− [γi]−, is an auxiliary

function for L(z̃ik).

Proof. It is straightforward to verify that H(z̃ik, z̃ik) = L(z̃ik). We will demonstrate that H(z̃ik, z̃
(t)
ik ) ≥

L(z̃ik) by using the second order Taylor expansion of L(z̃ik) denoted as follows :

L(z̃ik) = L(z̃(t)
ik ) + L′(z̃(t)

ik )(z̃ik − z̃
(t)
ik ) + κ2

i (W ⊤W )kk + ξ[z̃(t)
ik ]−1

2
(︂
z̃ik − z̃

(t)
ik

)︂2
. (4.104)

From (K2 ˜︁ZW ⊤W )ik = κ2
i

∑︁g
k′ z̃

(t)
ik′(W ⊤W )k′k,

(K2 ˜︁ZW ⊤W )ik ≥κ2
i z̃

(t)
ik (W ⊤W )kk

(K2 ˜︁ZW ⊤W )ik + ξ − ι log πk + [γi]+ ≥κ2
i z̃

(t)
ik (W ⊤W )kk + ξ

(K2 ˜︁ZW ⊤W )ik + ξ − ι log πk + [γi]+

z̃
(t)
ik

≥
κ2
i z̃

(t)
ik (W ⊤W )kk + ξ

z̃
(t)
ik

≥κ2
i (W ⊤W )kk + ξ[z̃(t)

ik ]−1. (4.105)

From this inequality, we have that H(z̃ik, z̃
(t)
ik ) ≥ L(z̃ik).

Proof of Theorem 4.2.3. In order to satisfy Lemma 4.2.4, we compute the gradient of H(z̃ik, z̃
(t)
ik ) w.r.t

z̃ik :

∇z̃ik
H = L′(z̃ik(t)) + (K2 ˜︁ZW ⊤W )ik + ξ − ι log πk + [γi]+

2z̃ik

(︂
2z̃ik − 2z̃(t)

ik

)︂
. (4.106)
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Setting this gradient to zero leads to :

z̃
(t+1)
ik = z̃

(t)
ik

(KXW )ik − ξ log z̃ik + [γi]−

(K2 ˜︁ZW ⊤W )ik + ξ − ι log πk + [γi]+
, (4.107)

Since H(z̃ik, z̃
(t)
ik ) is an auxiliary function for L(z̃ik), L(z̃ik) is non-increasing under this update. By

reversing z̃ik and wjk, L(wjk) can be shown similarly to be non-increasing under the update rules of

wjk.

■

4.2.5.2.4 Evaluation of cNMFπ,H, cNMFH & cNMF with Dinv−F and DI Solving (4.81) is achieved in

our experiment considering the invariant Frobenius norm and the I-divergence. Table 4.7 shows the

results of (NMF, cNMF) using the Frobenius norm, and (cNMF, cNMFH, cNMFπ,H) using Dinv−F . First, the

results illustrate the benefits of using the invariant Frobenius divergence compared to the original

Frobenius norm. Second, the results of cNMFπ,H show that assuming mixed proportions improves the

clustering of highly unbalanced text datasets compared to cNMFH (see LA12, RCV1). However, with the

I-divergence, cNMFπ,H showed less performance than cNMFH. Similarly, we noticed that assuming mixed

proportions in PMMU (equivalent mixture model) deteriorates the quality of the clustering, especially

on unbalanced datasets which usually benefits from that extra parameterization in FMMs. Further

assumptions and comments behind that behavior are discussed in the following (Section 4.2.5.3).

4.2.5.3 ˜︁Z low entropy in discrete mixture models

Let F̃( ˜︁Z,θ) be the Fuzzy criterion of any random mixture model where the proportions are spe-

cified, we have :

F̃( ˜︁Z,Θ) = log
n,g∏︂
i,k

[︁
πkf(xi,θk)

]︁z̃ik +H( ˜︁Z)

= log
n,g∏︂
i,k

[︁
f(xi,θk)

]︁z̃ik −
n∑︂
i

DKL(z̃i||π), (4.108)

where z̃ik = πkf(xi;θk)∑︁g

ℓ
πℓf(xi;θℓ) ∈ [0, 1]. Hathaway [242] pointed out that −

∑︁n
i DKL(z̃i||π) in eq(4.108) acts

as a penalization. Consequently, maximizing F̃( ˜︁Z,Θ) when the proportion are assumed to be equal

tends to produce equal conditional probabilities z̃ik. Indeed, since −DKL(z̃i||π) reaches its maximum

when π = z̃i, ∀i = 1, . . . , n as shown with the Gibbs inequality : −
∑︁g
k z̃ik log z̃ik ≤ −

∑︁g
k z̃ik log πk.
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Table 4.7 – Comparison of cNMF using the original and invariant form of the Frobenius norm. Mean
± SD (standard deviation) of NMI and ARI scores are given over different datasets.

∥.∥2
F Dinv−F (., .)

Datasets Metrics NMF cNMF cNMF cNMFH cNMFπ,H

NG5
NMI 56±0.0 56±4.8 71±2.3 68±7.0 68±3.6
ARI 33±0.0 35±6.8 63±1.8 66±10.0 63±6.1

CLASSIC3
NMI 49±0.0 68±0.1 93±0.2 89±1.4 93±0.8
ARI 44±0.0 65±0.1 96±0.1 93±1.3 96±0.5

NG20
NMI 42±0.8 40±1.7 45±1.1 46±1.8 45±1.0
ARI 23±0.8 21±1.4 31±1.3 31±1.6 30±0.9

OHSCAL
NMI 38±0.6 33±1.8 40±2.2 32±2.4 32±2.3
ARI 29±0.9 23±2.3 32±2.5 23±3.3 22±3.2

CLASSIC4
NMI 53±0.4 45±1.4 57±1.3 63±8.2 57±9.0
ARI 45±0.3 27±1.9 46±1.2 59±9.6 49±11.0

LA12
NMI 42±1.6 37±1.5 43±3.3 50±3.5 57±0.4
ARI 36±2.8 24±2.4 38±4.3 45±4.9 54±0.4

RCV1
NMI 35±0.0 36±0.0 39±0.4 36±3.1 43±4.1
ARI 13±0.0 14±0.0 21±0.9 29±3.4 37±4.6

SPORTS
NMI 55±0.0 51±1.6 57±2.6 56±1.6 55±1.2
ARI 28±0.0 23±0.4 37±1.6 37±1.5 36±1.1

This describes the problem of maximum entropy which occur quite frequently with balance FMMs. It

follows that most mixture derived from proposition 4.2.1 in the previous section present this behavior.

Note that FMMs with mixing proportions or unfixed variance are special cases which decrease this

phenomenon but at the expense of computing more parameters. Another solution can be enhanced

through the use of algorithms such as Classification EM (CEM) or K-means which by setting z̃ik ∈

{0, 1}, essentially contributes to force ˜︁Z to have minimum entropy (H( ˜︁Z) = 0) at each iteration and

therefore bypass −
∑︁n
i DKL(z̃i||π).

However, depending on the characteristics of the observed variable xi and the nature of the dis-

tribution f assumed for the model (continuous or discrete), the entropy of f(xi; θk) will not always

be maximum when the proportions are not specified. For instance, it is well known that the Gaussian

distribution with fixed mean and variance or the Gamma distribution with fixed mean have maximum

entropy. In the case of a directional distribution such as the von Mises-Fisher where xi ∈ Sd−1 by
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definition, the entropy is maximum for a fixed mean and concentration [247]. For the Poisson and

Binomial distributions, the maximum entropy is observed on suitably defined sets [248, 249]. In our

situation where the observations xi are highly sparse (resulting in low means around 0) and normali-

zed s.t. xi ∈ Sd−1, the Poisson probability mass function f(xi; θk) has a low entropy. This behavior

was illustrated in the previous section of this chapter where we displayed the values of the Poisson

pmf and the Gaussian pdf for a sparse and normalized discrete Poisson random variable x̂ ∈ R1000
+ .

Therefore, the conditional probability z̃ik will naturally tend toward 0 or 1, bypassing the effect of

−
∑︁n
i DKL(z̃i||π) in eq(4.108), assuming that the proportions are equal. Moreover, in these conditions,

a CEM will instantaneously be trapped at the first iteration.

In this sense, it is appealing to study the performance of a parsimonious Poisson FMM for sparse

random variables in the unit-sphere, and the effect of the unit-norm in NMF to know which method

benefits more from that practice.

4.2.6 Optimization of cNMFH with Q(˜︂Z, W ) obtained from the I-divergence

To verify Lemma 4.2.1, we minimize Q( ˜︁Z,W ) w.r.t. the constraints formulated in problem(4.75).

This optimization requires the definition of the following Lagrangian function :

L( ˜︁Z,W ,γ, ϵ,β) = Q( ˜︁Z,W ) +
n∑︂
i

γi
(︂ g∑︂

k

z̃ik − 1
)︂

+ Tr(ϵ ˜︁Z⊤) + Tr(βW ⊤), (4.109)

where γ ∈ Rn, ϵ ∈ Rn×g, and β ∈ Rd×g are the Lagrange multipliers. Its gradient w.r.t each factor

are denoted as follows :

∇z̃ik
L = −(X log W )ik +

d∑︂
j

wjk + 1 + log z̃ik + γi + ϵik, (4.110)

∇wjk
L = −(X⊤ ˜︁Z)jk

wjk
+

n∑︂
i

z̃ik + βjk. (4.111)

Setting these gradients to zero and making use of the Karush-Kuhn-Tucker conditions ϵ⊙ ˜︁Z = 0,

β ⊙W = 0 lead to the following stationary equations :

z̃ik(X log W )ik − z̃ik
(︂ d∑︂

j

wjk + 1 + log z̃ik + γi
)︂

= 0, (4.112)

(X⊤ ˜︁Z)jk − wjk
n∑︂
i

z̃ik = 0. (4.113)
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Since the gradient of Q w.r.t z̃ik will now leads to the term (X log W )ik ∈ R due to the logarithm,

deriving a multiplicative update w.r.t the positivity of ˜︁Z using the KTT conditions becomes difficult.

In addition, log z̃ik is also negative. ϵ can be cancelled out and a closed-form expression for ˜︁Z is

obtained from the gradient of H namely 1 + log z̃ik. Consequently, we obtain the following update

rules forming an Expectation-Minimization procedure :

z̃ik ←
e

(X log W )ik−
∑︁d

j
wjk

e1+γi
, (4.114) wjk ←

(X⊤ ˜︁Z)jk∑︁n
i z̃ik

, (4.115)

where e1+γi =
∑︁g
k[e

(X log W )ik−
∑︁d

j
wjk ]ik. This is equivalent to an EM algorithm derived from the

negative fuzzy criterion (4.78).

4.2.7 Spherical NMF (SpNMF)

In the likes of Spherical PCA, several attempts in linear dimensional reduction working toward a

transformation of the data in the unit-sphere are denoted [250, 251]. While their transformations lie

in R, we propose an approach which keeps the reconstruction data in the nonnegative real space R+

faithful to the original data space.

Recalling that Z ∈ Rn×d
+ , we define the problem of NMF where ∥xi∥ = ∥[ZW ⊤]i∥ = 1 and

D(X,ZW ⊤) is (1− cos) dissimilarity as follows :

min
Z≥0,W ≥0

∥[ZW ⊤]i∥=1,∀i=1,...,n

{︁
F(Z,W ) =

n∑︂
i

1
2∥xi − [ZW ⊤]i∥2F

}︁
, (4.116)

where

F(Z,W ) =
n∑︂
i

1
2
(︂
∥xi∥2 + ∥[ZW ⊤]i∥2 − 2

d∑︂
j

xij

g∑︂
k

zikwjk
)︂

(4.117)

collapses to
∑︁n
i (1−

∑︁d
j xij

∑︁g
k zikwjk). Note that the optimization of problem(4.116) requires that the

reconstruction matrix ZW ⊤ lies in the unit-sphere s.t. ∀i = 1, . . . , n, ∥[ZW ⊤]i∥2 =
∑︁d
j

(︁∑︁g
k zikwjk

)︁2 =∑︁
j,k,k′ zikwjkzik′wjk′ = [Z(W ⊤W )Z⊤]ii = 1.
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4.2.7.1 Optimization

Minimizing F(Z,W ) w.r.t the constraints formulated in problem(4.116) requires the definition of

the Lagrangian function

L(Z,W ,γ, ϵ,β) = F(Z,W ) +
n∑︂
i

γi(∥[ZW ⊤]i∥ − 1) + Tr(ϵZ⊤) + Tr(βW ⊤), (4.118)

where γ ∈ Rn, ϵ ∈ Rn×g, and β ∈ Rd×g are the Lagrange multipliers. The gradients of L w.r.t zik and

wjk are stated as follows :

∇zik
L = −(XW )ik + γi

(ZW ⊤W )ik
∥[ZW ]i∥

+ ϵik, (4.119)

∇wjk
L = −(X⊤Z)jk +

n∑︂
i

γi
(W Z⊤)jizik
∥[ZW ⊤]i∥

+ βjk. (4.120)

Setting these gradients to zero and making use of the Karush-Kuhn-Tucker conditions ϵ⊙Z = 0,

β ⊙W = 0 lead to the following stationary equations :

zik(XW )ik − zikγi
(ZW ⊤W )ik
∥[ZW ]i∥

= 0, (4.121)

wjk(X⊤Z)jk − wjk
n∑︂
i

γi
(W Z⊤)jizik
∥[ZW ⊤]i∥

= 0. (4.122)

The update rule of zik and wjk takes the following form :

zik ← zik
(XW )ik∥[ZW ⊤]i∥
γi(ZW ⊤W )ik

, (4.123)
wjk ← wjk

(X⊤Z)jk∑︁n
i γi

(W Z⊤)jizik

∥[ZW ⊤]i∥

. (4.124)

Let ẑik = zik
(XW ⊤)ik

(ZW ⊤W )ik
, replacing zik with eq(4.123) into the constraint gives :

∥[ZW ⊤]i∥ =1⌜⃓⃓⎷∑︂
j

(︃∥[ZW ⊤]i∥)
γi

ẑikwjk

)︃2
=1 =⇒ γi = ∥[ZW ⊤]i∥

⌜⃓⃓⃓
⎷ d∑︂

j

(ẑikwjk)2.

Plugging γi into eq(4.123) and eq(4.124) gives :
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zik ← zik
(XW )ik

(ZW ⊤W )ik
√︂∑︁d

j (ẑikwjk)2
, (4.125)

wjk ← wjk
(X⊤Z)jk∑︁n

i (W Z⊤)jizik
√︂∑︁d

j (ẑikwjk)2
.

(4.126)

Remark. The normalization of [ZW ⊤] in the unit-sphere is subject to a row multiplier γi only.

Consequently, its estimation from one derivative is a sufficient condition since it acts as a constant for

every column vector.

The optimization procedure is given by Algorithm (19).

Algorithm 19 SpNMF

Input : X, g, Z(0) ; W (0).
Output : Z and W .
Normalize X s.t. xi = xi

∥xi∥ , ∀i = 1, . . . , n
repeat
1. update Z with eq(4.125) ;
2. update W with eq(4.126) ;

until convergence

The convergence analysis is given in Section 4.2.7.2.

4.2.7.2 Convergence analysis for SpNMF

Theorem 4.2.5. F(Z,W ) in problem(4.116) is non-increasing under eq(4.125) and eq(4.126).

Considering the Lagrangian function for problem(4.116) defined as :

L(zik) =
n∑︂
i

(︂
1−

d∑︂
j

xij

g∑︂
k

zikwjk
)︂

+
n∑︂
i

γi

(︄⌜⃓⃓⃓⎷ d∑︂
j

(︂ g∑︂
k

zikwjk
)︂2
− 1

)︄
, (4.127)

and following Definition (4.2.2), we formulate the following proposition.

Proposition 4.2.3.

H(zik, z
(t)
ik ) = L(z(t)

ik ) + L′(z(t)
ik )(zik − z

(t)
ik ) + γi(ZW ⊤W )ik

2∥[ZW ⊤]i∥
(︂
zik − z

(t)
ik

)︂2
, (4.128)

where L′(z(t)
ik ) = −(XW )ik + γi

(ZW ⊤W )ik

∥[ZW ]i∥ is an auxiliary function for L(zik).
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Proof. It is straightforward to verify that H(zik, zik) = L(zik). We will demonstrate that H(zik, z
(t)
ik ) ≥

L(zik) by using the second order Taylor expansion of L(zik) denoted as follows :

L(zik) = L(z(t)
ik ) + L′(z(t)

ik )(zik − z
(t)
ik ) + γi

2

[︄
(W ⊤W )kk
∥[ZW ⊤]i∥

− (ZW ⊤W )2
ik

∥[ZW ⊤]i∥3

]︄(︂
zik − z

(t)
ik

)︂2
. (4.129)

From (ZW ⊤W )ik =
∑︁g
k′ z

(t)
ik′(W ⊤W )k′k,

(ZW ⊤W )ik
∥[ZW ⊤]i∥

≥
z

(t)
ik (W ⊤W )kk
∥[ZW ⊤]i∥

−
z

(t)
ik (ZW ⊤W )2

ik

∥[ZW ⊤]i∥3

(ZW ⊤W )ik
z

(t)
ik ∥[ZW ⊤]i∥

≥(W ⊤W )kk
∥[ZW ⊤]i∥

− (ZW ⊤W )2
ik

∥[ZW ⊤]i∥3
. (4.130)

From this inequality, we have that H(zik, z
(t)
ik ) ≥ L(zik).

Proof of Theorem 4.2.5. In order to satisfy Lemma 4.2.4, we compute the gradient of H(zik, z
(t)
ik ) w.r.t

zik :

∇zik
H = L′(zik(t)) + γi(ZW ⊤W )ik

2z(t)
ik ∥[ZW ⊤]i∥

(︂
2zik − 2z(t)

ik

)︂
. (4.131)

Setting this gradient to zero leads to :

z
(t+1)
ik = z

(t)
ik

(XW )ik
γi(ZW ⊤W )ik∥[ZW ⊤]i∥−1 . (4.132)

Since H(zik, z
(t)
ik ) is an auxiliary function for L(zik), L(zik) is non-increasing under this update. By

reversing zik and wjk, L(wjk) can be shown similarly to be non-increasing under the update rules of

wjk.

■

4.2.7.3 Spherical cNMF

In the case of cNMF with the (1 − cos) dissimilarity, since the normalization constraint vanishes

the convex part of the Euclidean distance, the probability constraint on ˜︁Z is a sufficient condition for

producing the equivalence of a fuzzy Spherical K-means.

Proposition 4.2.4. Solving the following minimization problem :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n

∥[˜︁ZW ⊤]i∥=1,∀i=1,...,n

{︁
F( ˜︁Z,W ) =

n∑︂
i

1
2∥xi − [ ˜︁ZW ⊤]i∥2F

}︁
, (4.133)

is directly equivalent to minimizing the Spherical K-means algorithm.
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Proof. Since ˜︁Z1g = 1n, ∥[ ˜︁ZW ⊤]i∥ = 1 =⇒ ∥wk∥ = 1

F( ˜︁Z,W ) =
n∑︂
i

(︂
1−

d∑︂
j

xij

g∑︂
k

z̃ikwjk
)︂

=
n,g∑︂
i,k

z̃ik
(︂
1−

d∑︂
j

xijwjk
)︂

(4.134)

which is the Spherical K-means criterion.

4.3 Conclusion

We proposed a regularized NMF algorithm which brings major improvements for the task of do-

cument clustering. More specifically, we have seen that embedding the clustering into a probabilistic

factor and applying an entropic regularization increase clustering validity (lack of uncertainty). Fur-

thermore, we have shown that the algorithm, whose convergence is guaranteed, is less sensitive to

initialization than the classical NMF − KL algorithm. In addition, using the properties of convex func-

tions and Bregman divergences, we have established the connection between cNMFH and FMMs of

Exponential distributions, and proposed a straightforward comparison between both methods. We

highlighted that the underlying Poisson mixture model with data in the unit-sphere could match and

particularly overcome cNMFH on balanced datasets. Moreover, the cheaper computation of its gradient

allows for larger scalability. In addition, thanks to this property, we have shown that the Poisson FMM

requires as much or less parameters than a FMM using a dedicated directional distribution such as

the von Mises-Fisher to give good partitions. Following the great interest shown by this distribution

in FMMs, in the next chapter, we will study its performance in the context of finite block mixture

modeling through the Latent Block Model.
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Chapitre 5

Gamma-Poisson Latent Block Model for
noisy text data

In text mining, where data are usually high-dimensional, co-clustering has shown its ability to

handle and simplify the interpretation of large, complex sparse structures such as document-term

datasets. Due to its flexibility, the Latent Block Model is undoubtedly a good way of dealing with

this kind of data, allowing a parameterization that is appropriate to the underlying structure of

the particular data in question. The Sparse Poisson Latent Block Model can identify a diagonal

mixture of blocks that favors co-clustering. However, in text analysis, noisy terms features often arise

as the amount of data grows making the learning process less efficient. Good pre-processing techniques

tend to be time-consuming, and as a consequence are not always used. In this chapter, by exploiting

the flexibility of LBM, we propose a new model-based co-clustering for analyzing document-term

matrices and tackling the automatic recognition of noisy term features during the learning phase.

Furthermore, we propose a suitable Bayesian version of the model in order to address the overfitting

mixture issue encountered with finite mixture models. As a novelty, we investigate the impact of the

prior on the model clustering performance and takes advantages of the parsimony of our model to

introduce additional hyperparameters for the component parameters priors.
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(a) (b)

Figure 5.1 – (a) Boxplots of m for each dataset (with outliers). The percentage of outliers is indicated
in blue. The red line indicates the number of documents. (b) Boxplot of m per datasets (without
outliers).

5.1 Capturing noisy features in diagonal document-term co-clustering

5.1.1 Motivations

In a case of text analysis where the data arise in the form of highly dimensional and sparse

document-term matrix, co-clusters will often lack of heterogeneity because of the substantial preva-

lence of zeros in each block, reflecting the overall sparsity and resulting in no meaningful lower inter-

pretations/summary. To overcome this deficiency, an effective method known as diagonal co-clustering

has been proposed [252]. This method attempts to identify an optimal block diagonal structure of

samples and features. Diagonal co-clustering does not eliminate words but instead puts more focus on

the most discriminating words so as to reach a good separability in terms of document clustering. This

is natural since documents are grouped together because they share similar words, which induces a

block diagonal structure, as it has been demonstrated by several recent works [253, 254]. The present

contribution addresses an additional but major issue relating to text analysis, namely the presence

of noisy terms, which can impact the learning and the clustering quality negatively (see [255]). More

precisely, we refer to the concept of noise based upon to the prevalence of a term within the entire

collection of documents, independently of the document clustering. In practice, several pre-processing

steps can be applied to filter and remove the most common and irrelevant terms from the set (e.g. stop-

words). However, these processes can be overshadowed. For instance, due to the substantial amount

of documents, generic lexical stopwords are frequently used instead of domain-specific stopwords. Fur-

thermore, normalization steps (e.g. such as stemming or lemmatization), which replace specific terms
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with their roots naturally increase the prevalence in the remaining set of terms. Indeed, a root will be

more common than its descendants but the later were perhaps not as common or irrelevant). Also, a

threshold or interval of citations could be employed to label terms as noisy. However, with no a priori

knowledge on the document partitions, this could lead to removing cluster-specific terms, sensibly

useful for learning accurate partitions. Overall, there are different methods for cleaning textual data,

which may be selected according to users’ requirements. Careful cleaning can have a substantial time

cost when processing large amounts of data, and will sometimes be avoided by users who wish to obtain

results as quickly as possible. In the following, we illustrate the presence of noise in a document-term

matrix. Let M = (mij) be the presence-absence (binary) matrix derived from X. Let m.j =
∑︁n
i=1mij ,

we denote the vector of column marginals m = (m.1, . . . ,m.d) which indicates for each term j, the

number of documents in which it appears.

Figure 5.1(a) and 5.1(b) display the boxplots of m for several benchmarking and pre-processed

document-term matrices which will be described and utilized later in the manuscript. Figure 5.1(a) also

includes the outliers and their proportions (in percentage) for each dataset. Using the upper whisker

as statistical threshold, Figure 5.1(a) shows that there is a small percentage of terms which appear

in a large majority of documents, sometimes in every documents. On the other hand, Figure 5.1(b)

highlights the main distributions of these marginals with the quartiles suggesting that overall, 50% of

the terms are cited in less than 20 documents, and 75% in less than 40 documents. These observations

questions how to define what is an excessive amount of citations and stresses out the suggestion

that this factor should be learned having no information on the optimal partition. Therefore, in this

contribution, we provide an approach that can overcome a weak or bad pre-processing by estimating

the probability of a term to be noisy. To this end, we harness the flexibility of the Latent Block Model

(lbm) in introducing a new parameterization pattern for identifying a column structure of noisy terms

as well as a diagonal structure into dense blocks (see Figure 5.2(c)). The derived model, called Gamma

Poisson LBM and referred to as GPlbm, is particularly suitable for co-clustering of sparse data with

or without noise while introducing inference for the noisy term-cluster to decide automatically which

terms will be affected.
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(a) Plbm (b) SPlbm (c) GPlbm

Figure 5.2 – Different variants of lbm : SPlbm taking into account sparsity, and GPlbm taking into
account sparsity and noise.

5.1.2 Related Works

In the field of unsupervised learning, several contributions using feature selection are proposed

[256, 255]. In contrast, the approach introduced in this paper does not explicitly select and remove

noisy features from the learning set but consists in identifying a subset of noisy features to facilitate

the learning of parameters. The key materials of our contribution can be traced backed to the work

on co-clustering carried out in [80, 257] . The authors introduced a model-based approach called the

Latent Block Model (lbm) which aims at identifying a couple of partitions (Z,W ) from X. The

partition Z = [z1| . . . |zn]⊤ is a latent variable indicating the cluster membership of each element

i ∈ I among g clusters using a binary vector zi = (zi1, . . . , zig)⊤ ∈ {0, 1}g|
∑︁g
k zik = 1,∀i = 1, . . . , n ;

W = [w1| . . . |wd]⊤ is a latent variable indicating the cluster membership of each j ∈ J among c

clusters where wj = (wj1, . . . , wjc)⊤ ∈ {0, 1}c|
∑︁c
ℓ wjℓ = 1,∀j = 1, . . . , d. (Z,W ) can be referred to as

the classification matrices. For convenience, they will sometimes be expressed as categorical vectors

denoted z = (z1, . . . , zn) ∈ {1, . . . ,g}n and w = (w1, . . . ,wd) ∈ {1, . . . , c}d which indicate the group

label for each element i ∈ I and j ∈ J respectively.

The marginal density is denoted as follows :

p(X; Θ) =
∑︂

Z∈Z,W ∈W
p(X|Z,W ; Θ)p(Z,W ; Θ), (5.1)

where Z and W denote the set of all possible partitions I and J respectively. Learning the double

latent structure of lbm is quite challenging as p(Z,W ; Θ) is intractable. To this end, we restrict

(Z,W ) to be independent. p(Z; Θ) and p(W ; Θ) are set as Multinomial distributions with parameters

π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρc) s.t. πk = p(zik = 1),∀i ∈ I and ρ = (ρ1, . . . , ρc), ρℓ = p(wjℓ =

1), ∀j ∈ J . The observation xij are assumed to be drawn independently. p(X; Θ) from Eq(5.1) is now
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equal to

∑︂
(Z,W )∈Z×W

n,g∏︂
i,k

πzik
k

d,c∏︂
j,ℓ

ρ
wjℓ

ℓ

n,d,g,c∏︂
i,j,k,ℓ

f(xij ; θkℓ)zikwjℓ ,

where Θ = (π,ρ,θ) and θ is the set of parameters for the density f . In this paper, we get interest

in an application of this model for contingency tables, called the Poisson Latent Block Model (Plbm,

see Figure 5.2(a)), which additionally, takes into account the independence structure of these tables.

In Plbm, λij is assumed to be drawn by block s.t. λij = xi.x.jγziwj . f(xij ; θziwj ) is therefore set as the

Poisson probability mass function s.t. P(xij;λij) = λ
xij
ij e−λij

xij ! and θ = (µ,ν,γ) where γ = (γkℓ) ∈ Rg×c
+

are the block parameters and µ and ν are set as the marginals of X s.t. µ = (x1., . . . , xn.) and

ν = (x.1, . . . , x.d) given that xi. =
∑︁d
j xij and x.j =

∑︁n
i xij . The identifiability of the model is

discussed in [257].

More recently, Ailem et al. [254] introduced the Sparse Poisson Latent Block Model (SPlbm, see

Figure 5.2(b)) to identify a diagonal structure with dense co-clusters. This leads to posit the that blocks

inside the diagonal get their respective parameters while those outside share the same parameter.

In Plbm and SPlbm, the authors considered the Variational Maximum Likelihood Estimation

(MLE) to estimate the parameters of the model. However, lbm as most mixture models is subject

to mixture overfitting. To address this issue, we will adopt a similar approach to [258] with the

Multinomial lbm and use Variational Bayesian inference. Additionally, Markov Chain Monte Carlo

(MCMC) techniques will be exploited to simulate estimates from the exact posterior since Variational

Bayesian inference only provides a locally optimal approximation of the joint posterior probability.

5.1.3 GPlbm model

As described in Figure 5.2(c), GPlbm dedicates the rightmost column of blocks for the noisy

observations and a diagonal structure into dense blocks. An observation xij follows a conditional

distribution depending on the value of zi and wj . To achieve Bayesian inference, a non-informative

prior distribution is provided for each parameter of the model present in Θ respectively, to learn

the posterior distribution. Therefore, we denote the Gamma distribution as a conjugate prior for the

Poisson distribution, and the Dirichlet distribution for the Multinomial s.t. the sampling process of
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GPlbm ∀i = 1, . . . , n, ∀j = 1, . . . , d and ∀k = 1, . . . , g, ∀ℓ = 1, . . . , g is denoted as :

zi|π ∼M(1,π), π ∼ D(a),

wj |ρ ∼M(1,ρ), ρ ∼ D(b),

xij |zikwjc = 1 ∼ P(xi.x.jσ), σ ∼ G(ζ, η),

xij |zikwjk = 1 ∼ P(xi.x.jϵk), ϵk ∼ G(αk, βk),

xij |zikwjℓ = 1 ∼ P(xi.x.jϕ), ∀ℓ ̸= k, ϕ ∼ G(τ, υ),

where c = g + 1, a = (a1, . . . , ag), b = (b1, . . . , bc), α = (α1, . . . , αg), β = (β1, . . . , βg), ϵ = (ϵ1, . . . , ϵg)

is the set of diagonal block parameters, ϕ is the parameter for the blocks outside the diagonal and

σ is the parameter for the rightmost column of blocks. The conditional probability of X relative to

Eq(5.1) is expressed as follows :

p(X|Z,W ,θ) =
n,d,g∏︂
i,j,k

P(xij ;xi.x.jσ)zikwjc ×
n,d,g∏︂
i,j,k

P(xij ;xi.x.jϵk)zikwjk ×
n,d,g,c−1∏︂
i,j,k,ℓ ̸=k

P(xij ;xi.x.jϕ)zikwjℓ ,

(5.2)

where θ = (µ,ν, σ, ϵ, ϕ). Figure 5.3 reports the graphical model of GPlbm.

θxij

zi

wj

π

ρ

ϵ
σ

ϕ

Poisson

Mult.

Mult.

Dirichlet

Dirichlet

Gamma
Gamma

Gamma

a

b

α β
ζ η

τ υ

d

n g + 2

1

1g

Figure 5.3 – GPlbm as a graphical model.

5.1.3.1 Inference and algorithms

To simplify the notation and avoid the computation of Z and W w.r.t. (σ, ϵk|∀k = 1, . . . , g, ϕ)

independently, we use the following settings. Let γ = (γkℓ) ∈ Rg×c
+ be the matrix of block parameters,
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∀k = 1, . . . , g, ∀ℓ = 1, . . . , c,

γkℓ = σ, ∀k = 1, . . . , g,∀ℓ = c, (5.3)

diag(γ) = ϵ, (5.4)

γkℓ = ϕ, ∀k = 1, . . . , g, ∀ℓ ̸= k|ℓ ∈ {1, . . . , c− 1}. (5.5)

As mentioned earlier, a Variational Bayes Expectation-Maximization (EM) algorithm was introduced

in [259] to estimate Θ for the Multinomial lbm. However, as pointed by the authors, this algorithm

was subject to prominent overfitting. In this section we propose another variational Bayes EM (VBEM)

algorithm which will be showed to be a much better alternative against mixture overfitting later in

section 5.1.4. In the variational approximation, the maximization of the log-likelihood log p(X; Θ) is

replaced by the maximization of the Evidence Lower bound (ELBO).

From the notion of complete-data, lbm includes a set of latent variables (Z,W ) for which we want

to estimate the probability given the observed data X s.t.

p(Z,W |X; Θ) = p(X|Z,W ; Θ)p(Z,W ; Θ)
p(X; Θ) . (5.6)

Since p(Z,W |X; Θ) is intractable, we introduced an arbitrary density denoted q(Z,W ) to estimate

p(Z,W |X; Θ). Using Eq(5.6), we have :

log p(X; Θ) = log p(X; Θ)
∑︂

Z,W

q(Z,W )

=
∑︂

Z,W

q(Z,W ) log p(X; Θ)

=
∑︂

Z,W

q(Z,W ) log p(X|Z,W ; Θ)p(Z,W ; Θ)
p(Z,W |X; Θ)

=
∑︂

Z,W

q(Z,W ) log p(X|Z,W ; Θ)p(Z,W ; Θ)q(Z,W )
p(Z,W |X; Θ)q(Z,W )

=
∑︂

Z,W

q(Z,W ) log q(Z,W )
p(Z,W |X; Θ)

+
∑︂

Z,W

q(Z,W ) log p(X|Z,W ; Θ)p(Z,W ; Θ)
q(Z,W )

=DKL(q||p) +
∑︂

Z,W

q(Z,W ) log p(X|Z,W ; Θ)p(Z,W ; Θ)
q(Z,W ) . (5.7)

Since DKL(q||p) ≥ 0 with equality when q = p, it follows that :

log p(X; Θ) ≥
∑︂

Z,W

q(Z,W ) log p(X|Z,W ; Θ)p(Z,W ; Θ)
q(Z,W ) = L(q(Z,W ); Θ), (5.8)
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where L(q(Z,W ); Θ) is known as the evidence lower bound (ELBO) of the model marginal log-

likelihood log p(X; Θ). Therefore, maximizing log p(X; Θ) by maximizing L(q(Z,W ); Θ) can be

considered whether the arbitrary density q manages to minimize DKL(q||p) properly. Tractability

is achieved by restricting q to a class of ”manageable” densities. Finding the latter for which Z and

W can be dependent is also highly intractable. Therefore, we use the mean-field approximation so

that q(Z,W ) is restricted and factorises independently s.t. q(Z,W ) = qz(Z)×qw(W ). Consequently,

L(q(Z,W ); Θ) can now be decoupled into several forms w.r.t. qz(Z) or qw(W ), reminiscent of Hinton

and Neal interpretation of EM [260]. The ELBO can now be expressed as follows :

L(q(Z,W ); Θ) =
∑︂

Z,W

qz(Z)qw(W ) log
(︃
p(X,Z,W ; Θ)
qz(Z)qw(W )

)︃
=
∑︂

Z,W

qz(Z)qw(W ) log p(X,Z,W ; Θ) +H(Z) +H(W ), (5.9)

where H(Z) = −
∑︁

Z qz(Z) log qz(Z) and H(W ) = −
∑︁

W qw(W ) log qw(W ) are entropy functionals.

In addition, L(q(Z,W ); Θ) can also be expressed in terms of an expectation of p(X,Z,W ; Θ) knowing

one of the latent variable s.t.

L(q(Z,W ); Θ) =
∑︂
Z

qz(Z) log
(︃
p̃(X,Z; Θ)
qz(Z)

)︃
+H(W )

=L(q(Z|W ); Θ) +H(W ) + c1, (5.10)

where c1 is a normalizing constant added since p̃(X,Z; Θ) = exp
(︁∑︁

W qw(W ) log p(X,Z,W ; Θ)
)︁
is

not a true density. Similarly, L(q(Z,W ); Θ) can be expressed w.r.t. L(q(W |Z); Θ) as follows :

L(q(Z,W ); Θ) =
∑︂
W

qw(W ) log
(︃
p̃(X,W ; Θ)
qw(W )

)︃
+H(Z)

=L(q(W |Z); Θ) +H(Z) + c2. (5.11)

where c2 is a normalizing constant and p̃(X,W ; Θ) = exp
(︁∑︁

Z qz(Z) log p(X,Z,W ; Θ)
)︁
. Therefore,

it follows that maximizing L(q(Z,W ); Θ) can be achieved by respectively maximizing L(q(Z|W ); Θ)

and L(q(W |Z); Θ) using two inner variational EM algorithms successively.
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Development of L(q(Z,W ); Θ) leads to :

L(q(Z,W ); Θ) =
∑︂

Z,W

qz(Z)qw(W ) log p(X,Z,W ; Θ) +H(Z) +H(W )

=
∑︂

Z,W

qz(Z)qw(W ) log
(︃ n,g∏︂
i,k

πzik
k

d,c∏︂
j,ℓ

ρ
wjℓ

ℓ

n,d,g,c∏︂
i,j,k,ℓ

P(xij ;xi.x.jγkℓ)zikwjℓ

)︃
+H(Z) +H(W )

=
n,g∑︂
i,k

∑︂
zik∈{0,1}

qz(zik)zik log(πk) +
d,c∑︂
j,ℓ

∑︂
wjℓ∈{0,1}

qw(wjℓ)wjℓ log(ρℓ)

+
n,d,g,c∑︂
i,j,k,ℓ

∑︂
zik∈{0,1}

qz(zik)zik
∑︂

wjℓ∈{0,1}
qw(wjℓ)wjℓ logP(xij ;xi.x.jγkℓ)

+H(Z) +H(W ). (5.12)

Since zik and wjℓ are binary indicators, their expectations lead to probabilities, i.e.
∑︁
zik∈{0,1} qz(zik)zik =

q(zik = 1) and
∑︁
wjℓ∈{0,1} qw(wjℓ)wjℓ = q(wjℓ = 1). Moreover, the entropy can be easily re-written in

terms of each integration as follows :

H(Z) +H(W ) =−
n,g∑︂
i,k

∑︂
zik∈{0,1}

qz(zik) log(qz(zik))−
d,c∑︂
j,ℓ

∑︂
wjℓ∈{0,1}

qw(wjℓ) log(qw(wjℓ))

=−
n,g∑︂
i,k

qz(zik = 0) log(qz(zik = 0))−
n,g∑︂
i,k

qz(zik = 1) log(qz(zik = 1))

−
d,c∑︂
j,ℓ

qw(wjℓ = 0) log(qw(wjℓ = 0))−
d,c∑︂
j,ℓ

qw(wjℓ = 1) log(qw(wjℓ = 1))

=H0(Z) +H1(Z) +H0(W ) +H1(W ). (5.13)

Let z̃ik = q(zik = 1) and w̃jℓ = q(wjℓ = 1) denote the conditional probabilities s.t.
∑︁g
k z̃ik = 1,∀i =

1, . . . , n,
∑︁c
ℓ w̃jℓ = 1,∀j = 1, . . . , d where ˜︁Z = (z̃ik) ∈ [0, 1]n×g and ˜︂W = (w̃jℓ) ∈ [0, 1]d×c ; we denote

the fuzzy ELBO as L(q( ˜︁Z, ˜︂W ); Θ) s.t.

L(q( ˜︁Z, ˜︂W ); Θ) =
n,g∑︂
i,k

z̃ik log(πk) +
d,c∑︂
j,ℓ

w̃jℓ log(ρℓ) +
n,d,g,c∑︂
i,j,k,ℓ

z̃ikw̃jℓ logP(xij ;xi.x.jγkℓ)

+H( ˜︁Z) +H(˜︂W ) + Φ, (5.14)

where H( ˜︁Z) + H(˜︂W ) effectively equals H1(Z) + H1(W ) and Φ = H0(Z) + H0(W ). Since the ex-

pectation only depends on q(zik = 1) and q(wjℓ = 1), Φ may be omit in various expressions of

L(q( ˜︁Z, ˜︂W ); Θ) and for the following optimization problem. Maximizing the resulting L(q( ˜︁Z|˜︂W ); Θ)
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and L(q(˜︂W | ˜︁Z); Θ) so that L(q( ˜︁Z, ˜︂W ); Θ) is maximized overall leads to solving the following maxi-

mization problems :

max˜︁Z⊤∈(∆g)n

L(q( ˜︁Z|˜︂W ); Θ) (5.15) max˜︂W ⊤∈(∆c)d

L(q(˜︂W | ˜︁Z); Θ) (5.16)

where ∆g and ∆c are probability simplex-es defined respectively as ∆g = {∀z̃i ∈ Rg+ :
∑︁g
k z̃ik = 1}

and ∆c = {∀w̃j ∈ Rc+ :
∑︁c
ℓ w̃jℓ = 1}. The respective associated Lagrangian functions are :

L( ˜︁Z|˜︂W ,λ) = L(q( ˜︁Z|˜︂W ); Θ) +
n∑︂
i

λi
(︂ n∑︂

k

z̃ik − 1
)︂
, (5.17)

L(˜︂W | ˜︁Z,ω) = L(q(˜︂W | ˜︁Z); Θ) +
d∑︂
j

ωj
(︂ c∑︂

ℓ

w̃jℓ − 1
)︂
, (5.18)

where λ = (λi) ∈ Rn+ and ω = (ωj) ∈ Rd+ are the Lagrange multipliers. Differentiation w.r.t. z̃ik leads

to :

z̃ik =
πk exp

(︁∑︁d,c
j,ℓ w̃jℓ logP(xij ;xi.x.jγkℓ)

)︁
exp(λi + 1) . (5.19)

Substituting this expression into the constraint yields

exp
(︁
λi + 1) =

∑︂
k

πk exp
(︁ d,c∑︂
j,ℓ

w̃jℓ logP(xij ;xi.x.jγkℓ)
)︁
,

and therefore

z̃ik ∝ πk exp
(︂ d,c∑︂
j,ℓ

w̃jℓ logP(xij ;xi.x.jγkℓ)
)︂
. (5.20)

In the same manner, differentiation w.r.t. w̃jℓ leads to :

w̃ik ∝ ρℓ exp
(︂ n,g∑︂
i,k

z̃ik logP(xij ;xi.x.jγkℓ)
)︂
. (5.21)

With Bayesian inference, Θ is estimated by maximizing the posterior joint probability p(Θ|X),

which leads to the Maximum A Posteriori (MAP) estimate :

Θ̂MAP = arg max
Θ

p(Θ|X).
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From the Bayes formula :

p(Θ|X) = p(X|Θ)p(Θ)
p(X) ,

it is straightforward to define an EM algorithm [90, 261]. The likelihood p(X|Θ) is therefore augmented

into a proper marginal distribution over the space of plausible parameters Θ. In the same way for the

variational case, the augmented ELBO denoted LA(q(Z,W ); Θ) has a similar functional form that

L(q(Z,W ); Θ). For GPlbm, we have

LA(q(Z,W ); Θ) =
∑︂

Z,W

qz(Z)qw(W ) log p(X,Z,W |Θ)p(Θ)
qz(Z)qw(W )

=L(q(Z,W ); Θ) +
∑︂

Z,W

qz(Z)qw(W ) log p(Θ)

=L(q(Z,W ); Θ) + log p(Θ), (5.22)

where p(Θ) takes the following form :

D(π; a)×D(ρ; b)× G(σ; ζ, η)× G(ϕ; τ, υ)×
g∏︂

k=1
G(ϵk;αk, βk).

This holds also for LA(q( ˜︁Z, ˜︂W ); Θ) and additionally LA(q( ˜︁Z|˜︂W ); Θ) = L(q( ˜︁Z|˜︂W ); Θ) + log p(Θ),

LA(q(˜︂W | ˜︁Z); Θ) = L(q(˜︂W | ˜︁Z); Θ) + log p(Θ) (up to a constant).

Development of LA(q( ˜︁Z, ˜︂W ); Θ) leads to :

LA(q( ˜︁Z, ˜︂W ); Θ) =
n,g∑︂
i,k

z̃ik log πk +
g∑︂
k

[︃
(ak − 1) log πk + log Γ

(︃ g∑︂
k

ak

)︃]︃
−

g∑︂
k

log Γ(ak)

+
d,c∑︂
j,ℓ

w̃jℓ log ρℓ +
c∑︂
ℓ

[︃
(bℓ − 1) log ρℓ + log Γ

(︃ c∑︂
ℓ

bℓ

)︃]︃
−

c∑︂
ℓ

log Γ(bℓ)

+
n,d,g∑︂
i,j,k

(︃[︁
z̃ikw̃jcxij + (ζ − 1)

]︁
log(σ)− σ(z̃ikw̃jcxi.x.j + η)

)︃

+
n,d,g∑︂
i,j,k

(︃[︁
z̃ikw̃jkxij + (αk − 1)

]︁
log(ϵk)− ϵk(z̃ikw̃jkxi.x.j + βk)

)︃

+
n,d,g,c−1∑︂
i,j,k,ℓ ̸=k

(︃[︁
z̃ikw̃jℓxij + (τ − 1)

]︁
log(ϕ)− ϕ(z̃ikw̃jℓxi.x.j + υ)

)︃

−
n,g∑︂
i,k

z̃ik log z̃ik −
d,c∑︂
j,ℓ

w̃jℓ log w̃jℓ + c
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where c is equal to
∑︁n,d
i,j xij log(xi.x.j)− log(xij !)+n×d. Differentiation w.r.t. πk, ρℓ, σ, ϵk and ϕ leads

to the following estimates :

πk = (ak − 1) +
∑︁n
i z̃ik∑︁g

k(ak − 1) + n
, (5.23)

ρℓ =
(bℓ − 1) +

∑︁d
j w̃jℓ∑︁c

ℓ(bℓ − 1) + d
, (5.24)

σ =
∑︁n,d,g
i,j,k z̃ikw̃jcxij + (ζ − 1)∑︁n,d,g
i,j,k z̃ikw̃jcxi.x.j + η

, (5.25)

ϵk =
∑︁n,d
i,j z̃ikw̃jkxij + (αk − 1)∑︁n,d
i,j z̃ikw̃jkxi.x.j + βk

, (5.26)

ϕ =
∑︁n,d,g,c−1
i,j,k,ℓ ̸=k z̃ikw̃jℓxij + (τ − 1)∑︁n,d,g,c−1
i,j,k,ℓ ̸=k z̃ikw̃jℓxi.x.j + υ

. (5.27)

The VBEM procedure for GPlbm is reported in Algorithm 20. Note that by setting a1 = . . . = ag = 1,

b1 = . . . = bc = 1, ζ = α1 = . . . = αg = τ = 1 and β1 = . . . = βg = η = υ = 0, VBEM collapses to a

Variational EM algorithm (VEM) maximizing the non-augmented fuzzy ELBO function.

Algorithm 20 VBEM algorithm for GPlbm

input : X, g, c = g + 1, a, b, ζ, η, τ , υ ; α, β ;
initialization : ˜︁Z, ˜︂W , πk, ρℓ ; σ, ϵk, ϕ ;
repeat
repeat

step 1 : compute z̃ik using eq(5.20) ;
step 2 : compute πk, ϵk, σ and ϕ using eq(5.23), eq(5.26), eq(5.25), eq(5.27) ;

until convergence of LA(q( ˜︁Z|˜︂W ); Θ)
repeat

step 3 : compute w̃jℓ using eq(5.21) ;
step 4 : compute ρℓ, ϵk, σ and ϕ using eq(5.24), eq(5.26), eq(5.25), eq(5.27) ;

until convergence of LA(q(˜︂W | ˜︁Z); Θ)
until convergence of LA(q( ˜︁Z, ˜︂W ); Θ)

Considering the posterior probability from the complete-data, the Bayes formula leads to : p(Θ|Z,W ,X) ∝

p(X|Z,W ,Θ)p(Z,W |Θ)p(Θ). The developments and results of this expression are given in the sup-

plementary materials. From here, we recognize the following posterior distributions for Θ :

π ∼ D
(︂∑︂n

i
zi1 + a1, . . . ,

∑︂n

i
zig + ag

)︂
, (5.28)
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ρ ∼ D
(︂∑︂d

j
wj1 + b1, . . . ,

∑︂d

j
wjc + bc

)︂
, (5.29)

σ ∼ G
(︃∑︂n,d,g

i,j,k
zikwjcxij + ζ,

∑︂n,d,g

i,j,k
zikwjcaij + η

)︃
, (5.30)

ϵk ∼ G
(︃∑︂n,d

i,j
zikwjkxij + αk,

∑︂n,d

i,j
zikwjkaij + βk

)︃
, (5.31)

ϕ ∼ G
(︄ n,d,g,c−1∑︂
i,j,k,ℓ ̸=k

zikwjℓxij + τ,
n,d,g,c−1∑︂
i,j,k,ℓ ̸=k

zikwjℓaij + υ

)︄
, (5.32)

where aij = xi.x.j . From these distributions, we implemented a Gibbs sampler described in Algorithm

21.

Algorithm 21 Gibbs sampler for GPlbm

input : X, g, c = g + 1, a, b, ζ, η, τ , υ ; α, β ;
initialization : Z, W , πk, ρℓ, σ, ϵk, ϕ ;
for iteration t=1,2,. . . do

step 1 : compute z̃ik using eq(5.20) ;
step 2 : zi ∼M(1, z̃i1, . . . , z̃ig) ;
step 3 : compute w̃jℓ using eq(5.21) ;
step 4 : wj ∼M(1, w̃j1, . . . , w̃jc) ;
step 5 : draw π, ρ, σ, ϵ, ϕ using (5.28-5.32) ;

end for

5.1.4 Experiments on Text data

5.1.4.1 Datasets and clustering scores

Nine different real-world text datasets were chosen. They present a number of challenges in relation

to the data structure (overlapping clusters), clusters balance (proportion-wise), the number of clusters,

and in some case the data dimension. The datasets are the following : CLASSIC3, built from the

CLASSIC4 database (a collection of medical documents) ; K1A, K1B, and WAP, created for the WebAce

project and containing Yahoo web pages ; Reuters40, extracted from the forty largest groups in the

Reuters-21578 database, comprising newspapers published in 1978 ; SPORTS, to be found in the CLUTO

toolkit [201] and containing documents relating to seven different sports ; TDT2, the NIST Topic

Detection and Tracking (TDT2) corpus consisting of data acquired during the first half of 1998 from
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six sources, including two newswires (APW, NYT), two radio programs (VOA, PRI) and two television

programs (CNN, ABC) ; NG5, consisting of five groups from NG20. Their characteristics are reported

in Table 5.1.

Table 5.1 – Data characteristics.

Datasets Documents Words #Clusters 0(%) Balance

CLASSIC3/C3 3891 4303 3 99.86 0.708
CLASSIC4/C4 7095 5896 4 99.41 0.322
NG5 4905 10167 5 99.08 1
K1B 2340 21819 6 99.41 0.0432
SPORTS/SPS 8580 14870 7 99.14 0.036

WAP 1560 8460 20 98.33 0.0147
K1A 2340 21839 20 99.32 0.0182
TDT2/T2 9394 36771 30 99.65 0.028
Reuters40/R40 8203 18914 40 99.75 0.003

The numbers of clusters in each algorithm (g in ours) is set as the ground truth. The document

clustering quality is assessed using two scores widely acknowledged for quantifying the correspondence

between the clustering and the true labels. These are, first, Normalized Mutual Information (NMI)

[119], which measures the mutual dependency between two random variables, and, second, Adjusted

Rand Index (ARI) [122], which measures the degree of agreement between two partitions. The term

clustering cannot be assessed with these metrics since the true term labels are unknown.

5.1.4.2 Degree of overtiffing

In this section, we compare the various alternatives found in the literature to maximize LA(q( ˜︁Z, ˜︂W ); Θ)

or especially L(q( ˜︁Z, ˜︂W ); Θ) since the hyperparameters are set s.t. VBEM collapses to VEM. This compa-

rison aims at quantifying the level of overfitting (more precisely empty-clusters solutions) arising with

MLE given that Bayesian inference is usually portrayed as an alternative to decrease this behavior.

The first version (v1) is the one introduced in this contribution which maximizes LA(q( ˜︁Z, ˜︂W ); Θ) by

alternatively maximizing (until convergence) LA(q( ˜︁Z|˜︂W ); Θ) and LA(q(˜︂W | ˜︁Z); Θ). The second ver-

sion (v2) is inspired by [254, 262] and maximizes LA(q( ˜︁Z, ˜︂W ); Θ) by maximizing LA(q( ˜︁Z|˜︂W ); Θ) and

LA(q(˜︂W | ˜︁Z); Θ) respectively during one iteration only. The third version (v3) is the one introduced in

[258] which attempts to maximize LA(q( ˜︁Z, ˜︂W ); Θ) directly. The normalized variational densities z̃ik
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(a) (b)

Figure 5.4 – (a) % of correct solutions returned by the VEM versions. (b) Boxplots of
√
g̃ × c̃ for each

VEM version.

and w̃jℓ are computed successively and followed by one maximization step (arg max
Θ

LA(q( ˜︁Z, ˜︂W ); Θ)).

The procedures of v2 and v3 are given in algorithm 22) and 23) respectively. Furthermore, note that in

each version, a classification step may also be included after an expectation step so as to produce hard

partitions from ˜︁Z and ˜︂W respectively to maximize LA(q(Z,W ); Θ) overall. The resulting algorithm

would be referred to as Variational Bayes Classification EM (VBCEM) and would be useful for speeding

up the convergence [79, 257]. Similarly, a stochastic step that successively draws z
(t+1)
i , ∀i = 1, . . . , n

and w
(t+1)
j ,∀j = 1, . . . , d from P ( ˜︁Z; Θ(c)) and P (˜︂W ; Θ(c)) after their respective expectation steps can

be introduced. This algorithm would be referred to as Variational Bayes Stochastic EM (VBSEM).

Algorithm 22 VBEM algorithm for GPlbm (v2)

input : X, g, c = g + 1, a, b, ζ, η, τ , υ ; α, β ;
initialization : ˜︁Z, ˜︂W , πk, ρℓ ; σ, ϵk, ϕ ;
repeat

step 1 : compute z̃ik using eq(5.20) ;
step 2 : compute πk, ϵk, σ and ϕ using eq(5.23), eq(5.26), eq(5.25), eq(5.27) ;
step 3 : compute w̃jℓ using eq(5.21) ;
step 4 : compute ρℓ, ϵk, σ and ϕ using eq(5.24), eq(5.26), eq(5.25), eq(5.27) ;

until convergence of LA(q( ˜︁Z, ˜︂W ); Θ)

Figure 5.4(a) displays the percentage of correct solutions (no-empty-clusters) returned by each

version of VEM over 30 trials. The results show that v2 and v3 are strongly subject to overfitting.

Clearly, both struggle substantially more than v1 which remains fairly consistent on all the datasets

(except R40). Figure 5.4(b) shows the boxplots of the square root of the number of non-empty co-

clusters ĝ× ĉ returned by each version of their 30 trials. As a reference, a red line is drawn at
√
g × g
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Algorithm 23 VBEM algorithm for GPlbm (v3)

input : X, g, c = g + 1, a, b, ζ, η, τ , υ ; α, β ;
initialization : ˜︁Z, ˜︂W , πk, ρℓ ; σ, ϵk, ϕ ;
repeat

step 1 : compute z̃ik using eq(5.20) ;
step 2 : compute w̃jℓ using eq(5.21) ;
step 3 : compute πk, ρℓ, ϵk, σ and ϕ using eq(5.23), eq(5.24), eq(5.26), eq(5.25), eq(5.27) ;

until convergence of LA(q( ˜︁Z, ˜︂W ); Θ)

for each dataset. This figure reveals the error margin (or degree of overfitting) for v1, v2 and v3.

From the results, it appears that v2 and v3 overfit undeniably more than v1. This effect is increased

on datasets with larger number of clusters (K1A, WAP, TDT2, R40) where the partitions retrieved

have substantially less co-clusters than the expected numbers. Overall, while v2 and v3 are definitely

faster than v1, they produce the wort procedures in terms of overfitting with optimally local MLE.

Therefore they should not be used as baselines when solving this issue since v1 is already a much

better alternative.

5.1.4.3 Noise detection and clustering performance with MLE

We evaluate the ability of GPlbm to detect a sample of noisy features without any prior knowledge on

Θ. Therefore, the hyperparameters are set s.t. VBEM collapses to VEM. Note that to reduce the sensitivity

of VEM to starting values, we use the solutions of a stochastic algorithm called SEM-Gibbs (which is the

Gibbs sampler where the simulation of Θ (step 5) is replaced by the maximum Likelihood closed-

form estimates [259]) as initialization for VEM. Additionally, to provide a faithful user case, among

30 correct trials, only the first 10 are kept for evaluation (the trials are ranked criterion-wise using

L(q( ˜︁Z, ˜︂W ); Θ)). Figure 5.5(a) shows the average value of ρc, as well as the percentage of improvement

with regards to SPlbm in terms of NMI and ARI. The graphic shows that GPlbm noisy cluster wc has

an average proportion (ρc) of 20% of features across the datasets (with a maximum of 33.3% on C3

and minimum of 2.23% on R40). Undeniably, the best NMI and ARI improvements w.r.t. SPlbm are

observed when ρc are high. When ρc is low and the number of expected co-clusters is high (e.g. K1A,

R40), GPlbm seems to struggle and can be outperformed by its predecessor (SPlbm). Moreover, from

Figures 5.1(a)-5.1(b) presented earlier in the introduction, K1A, R40 are the datasets with the lowest

prevalence of documents per term, which intuitively makes intricate the detection of noisy features

for those partitions. From the experiments in last section, VEM also substantially struggles to provide
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correct partitions on R40, which potentially restricts the learning of better solutions.

(a) (b)

Figure 5.5 – (a) Average ρc using VEM ; % of improvements in terms of NMI and ARI, w.r.t. SPlbm.
(b) Average prevalence for terms in wℓ,∀ℓ = 1, . . . , g and terms in wc.

Additionally, Figure 5.5(b) depicts the average prevalence of documents per term, in the non-noisy

clusters wℓ, ∀ℓ = 1, . . . , g and in the noisy cluster wc respectively. Clearly, the features gathered in wc

have a much higher prevalence compared to those in wℓ. Furthermore, a comparative study of GPlbm

with MLE against several state-of-the-art algorithms was achieved to demonstrate the superiority of

GPlbm. The pertinence of ρc was assessed by making ρc vary manually in {0, . . . , .35} and displaying

the NMI and ARI curves for each dataset. The results (given the the following) show robustness for the

learning of ρc as its estimated value matches the best clustering partitions and avoid overestimation

which could deteriorate the classification (e.g. on R40). Moreover, due to the lack of true labels for

the set of features, additional experiments using the Wikipedia corpus were achieved to assess to the

partitions of terms found by GPlbm against other co-clustering algorithms.

5.1.4.3.1 Clustering scores using MLE. To leverage the impact of GPlbm’s parameterization, we

compared it against Plbm and SPlbm within the framework of MLE. For each model, the empirical

results of VEM initialized with SEM-Gibbs are used and denoted by ”sg+v”. Algorithms such as ITCC

(Information Theory Co-Clustering) [252] and the popular Latent Dirichlet Allocation (LDA) [263] are

also inserted for reference. 30 trials are ran for each algorithm on each of the datasets. The results are

displayed in Tables 5.2-5.3 and show the means and standard deviations of the NMI and ARI scores
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for the 10 best solutions (w.r.t. each dataset and algorithm). The score of the best solution (which is

ultimately selected by the user) among the set of 10 is given in parenthesis. Note that this score can

sometimes be inferior to the average as the best solution does not always provide the best clustering.

This problem, often overlooked in unsupervised learning, has been raised and solved in [264] by using

an ensemble approach.

Table 5.2 – NMI scores averages and standard deviations (Mean±SD) for GPlbm with MLE.

Data LDA ITCC PLBMsg+v SPLBMsg+v GPlbmv GPlbmsg GPlbmsg+v

C3 0.91±0.0028 0.93±0.002 0.93±0.0017 0.93±0.0015 0.95±0.00082 0.95±0.0034 0.95±0.0019

(0.91) (0.93) (0.93) (0.93) (0.95) (0.95) (0.95)

C4 0.75±0.0023 0.58±0.02 0.63±0.0033 0.68±0.072 0.78±0.018 0.74±0.045 0.75±0.048

(0.75) (0.59) (0.63) (0.78) (0.78) (0.77) (0.79)

NG5 0.68±0.054 0.68±0.032 0.67±0.04 0.59±0.074 0.71±0.054 0.75±0.032 0.75±0.032

(0.58) (0.71) (0.7) (0.7) (0.78) (0.8) (0.8)

K1B 0.58±0.014 0.57±0.027 0.61±0.029 0.53±0.057 0.55±0.031 0.59±0.044 0.58±0.033

(0.58) (0.6) (0.6) (0.64) (0.61) (0.64) (0.64)

SPORTS 0.48±0.029 0.55±0.034 0.54±0.033 0.51±0.046 0.62±0.048 0.66±0.044 0.66±0.045

(0.43) (0.58) (0.61) (0.5) (0.67) (0.69) (0.69)

WAP 0.57±0.011 0.56±0.013 0.56±0.02 0.53±0.024 0.47±0.024 0.54±0.02 0.54±0.02

(0.55) (0.56) (0.58) (0.52) (0.53) (0.58) (0.58)

K1A 0.58±0.012 0.49±0.013 0.58±0.021 0.53±0.019 0.45±0.029 0.51±0.022 0.5±0.023

(0.6) (0.5) (0.63) (0.56) (0.51) (0.53) (0.53)

TDT2 0.72±0.0066 0.74±0.017 0.74±0.012 0.75±0.014 0.79±0.022 0.77±0.013 0.77±0.012

(0.72) (0.76) (0.76) (0.77) (0.8) (0.79) (0.79)

R40 0.49±0.0037 0.49±0.0082 0.43±0.015 0.52±0.012 0.51±0.021 0.42±0.033 0.42±0.054

(0.49) (0.49) (0.41) (0.51) (0.55) (0.47) (0.51)

First, we note that GPlbmsg and GPlbmsg+v are comparable and outperform GPlbmv ; in the sequel

we retain GPlbmsg+v. With GPlbmsg+v, we observe an improvement over PLBMsg+v and SPLBMsg+v,

and a clear superiority on LDA and ITCC commonly used for the same tasks.
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Table 5.3 – ARI scores averages and standard deviations (Mean±SD) for GPlbm with MLE.

Data LDA ITCC PLBMsg+v SPLBMsg+v GPlbmv GPlbmsg GPlbmsg+v

C3 0.94±0.0022 0.96±0.0014 0.96±0.0012 0.95±9e-04 0.97±7e-04 0.97±0.0025 0.97±0.0013

(0.94) (0.96) (0.96) (0.96) (0.97) (0.97) (0.97)

C4 0.76±0.0035 0.42±0.02 0.5±0.0038 0.59±0.15 0.78±0.023 0.68±0.14 0.7±0.15

(0.76) (0.44) (0.5) (0.79) (0.79) (0.78) (0.8)

NG5 0.63±0.062 0.62±0.057 0.58±0.047 0.47±0.097 0.68±0.088 0.74±0.071 0.74±0.071

(0.53) (0.66) (0.65) (0.67) (0.78) (0.82) (0.82)

K1B 0.34±0.021 0.36±0.046 0.4±0.042 0.37±0.087 0.41±0.083 0.46±0.1 0.41±0.061

(0.36) (0.4) (0.39) (0.54) (0.53) (0.52) (0.52)

SPORTS 0.4±0.03 0.42±0.035 0.41±0.036 0.39±0.065 0.56±0.094 0.64±0.11 0.65±0.1

(0.34) (0.43) (0.47) (0.33) (0.65) (0.7) (0.7)

WAP 0.35±0.022 0.37±0.041 0.38±0.049 0.47±0.028 0.33±0.074 0.53±0.023 0.53±0.023

(0.32) (0.38) (0.37) (0.45) (0.45) (0.54) (0.55)

K1A 0.37±0.02 0.31±0.043 0.4±0.051 0.49±0.036 0.37±0.055 0.52±0.027 0.52±0.026

(0.38) (0.31) (0.48) (0.52) (0.41) (0.55) (0.55)

TDT2 0.47±0.017 0.48±0.037 0.47±0.028 0.71±0.032 0.74±0.049 0.77±0.017 0.77±0.017

(0.47) (0.5) (0.48) (0.72) (0.76) (0.79) (0.79)

R40 0.2±0.017 0.18±0.024 0.33±0.06 0.48±0.021 0.47±0.046 0.46±0.06 0.46±0.065

(0.19) (0.14) (0.3) (0.44) (0.5) (0.58) (0.51)

5.1.4.3.2 GPlbm noise estimation pertinence. In this section, we evaluate the ability of GPlbm

to estimate an amount of noise matching a good clustering performance. Therefore, we display the

behavior of GPlbm (in terms of clustering performance) for different values of ρc using MLE (VBEM is

set to collapse to VEM and initialized with the solutions of SEM-Gibbs).

Assuming that ρc is fixed, the remaining weights of the non-noisy clusters ρℓ ; ∀ℓ = 1, . . . , c− 1 are

obtained by introducing the following constraint :
∑︁c−1
ℓ ρℓ = 1− ρc into the maximization problem of

L(q( ˜︁Z, ˜︂W ); Θ). Let
∑︁d,c
j,ℓ w̃jℓ log ρℓ =

∑︁d,c−1
j,ℓ w̃jℓ log ρℓ +

∑︁d
j w̃jc log ρc and λ be a Lagrange multiplier

for the constraint, from eq(5.14) where the terms where ρ appears, we can express the Lagrangian
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L(ρ, λ) by
d,c−1∑︂
j,ℓ

w̃jℓ log ρℓ +
d∑︂
j

w̃jc log ρc + λ

(︃
1− ρc −

c−1∑︂
ℓ

ρℓ

)︃
.

Setting the gradient of L w.r.t ρℓ to 0 leads to ρℓ =
∑︁

j
w̃jℓ

λ . Plugging ρℓ into L and using the constraint

leads to λ = (
∑︁c−1
ℓ

∑︁d
j w̃jℓ)/(1− ρc). Thereby, we denote

ρℓ =
(1− ρc)

∑︁d
j w̃jℓ[︁∑︁c−1,d

ℓ,j w̃jℓ
]︁ .

Figure 5.6 shows how NMI and ARI change as ρc varies from 0.05 to 0.35 by increments of 0.05.

(a) CLASSIC3 (b) CLASSIC4 (c) NG5 (d) K1B (e) SPORTS

(f) WAP (g) K1A (h) TDT2 (i) R40

Figure 5.6 – NMI and ARI evolution with GPlbm according to ρc.

The starting value corresponds to ρc = 0, and therefore to SPlbm. For reference, Table 5.4 recalls the

values of ρc found by GPlbm on each dataset.

Table 5.4 – GPlbm : estimated ρc.

C3 C4 NG5 K1B SPORTS WAP K1A TDT2 R40

ρc 0.33 0.21 0.29 0.14 0.33 0.13 0.11 0.27 0.02

Focusing on (K1B, K1A, WAP, and especially R40) where the estimated values of ρc are the lowest,

GPlbm gives estimates of ρc that look to avoid poor clustering performance. In addition, this behavior

seems to be also consistent when there are little scores fluctuations and performance to be gained (see

C3, C4, NG5, SPORTS and TDT2).

186



5.1. CAPTURING NOISY FEATURES IN DIAGONAL DOCUMENT-TERM
CO-CLUSTERING

Figure 5.7 – PMI of the top 15 terms per cluster in Wikipedia (window size = 10).

5.1.4.3.3 Assessing the term clusters. Successively, we evaluate the quality of the term clusters ob-

tained with GPlbm against Plbm and SPlbm. NG5, C4, K1A and WAP are the only document-term

matrices in our set for which the respective list of terms is available. We applied a similar approach

to the one used in [265] to build a context matrix. Then, we used a sliding window which consists in

searching for pairwise occurrences of terms within an interval of L-words in every article in the entire

Wikipedia corpus. We fixed L = 10, and for each partition selected the top 15 terms per cluster. Fur-

thermore, we computed the Point-wise Mutual Information (PMI) in order to measure the association

between the different top terms. The posterior conditional probability w̃jℓ, ∀j = 1, . . . , d, ∀ℓ = 1, . . . , c

are used to rank the terms in each cluster and select the top 15 terms. Figure 5.7 displays the average

PMI obtained for each model. The top terms for the five best solutions (criterion-wise) were retained.

The graphic shows that GPlbm obtains the highest PMI on average.

5.1.4.4 Hyperparameters settings and overfitting

As shown earlier, GPLBM tends to leave one or several empty clusters (in Z or W ) which is one case of

finite mixture model overfitting. Another case is when two or more vector-components parameters θk =

(θk1, . . . , θkd) are rather identical. In the literature, Bayesian inference with specific priors P(e1, . . . , eg)

has often been suggested to address this issue in a finite mixture model. Usually, the prior (on the

weights) is a Dirichlet and the hyperparameters are exchangeable s.t. ek ≡ e0|∀k = 1, . . . , g ; the

popular and often-discussed uniform distribution D(1, . . . , 1) is an example. Frühwirth-Schnatter [266]
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(a) (b)
(c)

Figure 5.8 – (a) % of correct solutions with priors for VBEM. (b) % of correct solutions with priors for
the Gibbs sampler. (c) Average ρc using VBEM ; % of improvements in terms of NMI and ARI, w.r.t.
SPlbm.

(Section 4.2.2) advocated e0 = 4 to bound the posterior outside regions allowing empty clusters

and later recommended to use e0 = 16.5 [267] when dim(θk) > 8, or to set e0 appropriately as

dim(θk) increases. This recommendation follows the results of the asymptotic analysis of Rousseau

and Mergersen [268] which showed that : (a) mink=1,...,g ek > dim(θk)/2 concentrates the posterior

where at least two components are rather identical ; (b) maxk=1,...,g ek < dim(θk)/2 concentrates the

posterior within regions leaving empty groups. With lbm, given the double latent structure and the

block parameters θ = (θkℓ) ∈ Rg×c, the vector-components for the row partition Z are denoted as

θk = (θk1, . . . , θkc) ∈ Rc, ∀k = 1, . . . , g. The vector-components for the column partition W are

denoted θ⊤
ℓ = (θℓ1,..., ℓg)⊤ ∈ Rg, ∀ℓ = 1, . . . , c. Several experiments following Frühwirth-Schnatter

recommendations were conducted. The prior hyperparameters for each weight were set equally s.t.

a1 = . . . = ag = e0 and b1 = . . . = bc = e0 with e0 ∈ {1, 4, 16.5} in VBEM and the Gibbs sampler

(in these cases, all the elements in {ζ, η,α,β, τ, υ} are set to one). However, compared to VEM, no

significant improvements were noted with VBEM whilst the Gibbs sampler showed a bit of refinement

against SEM-Gibbs. The diagonal restriction in GPlbm guarantees that θ1, . . . ,θg, ∀k = 1, . . . , g are not

identical despite having g−1 parameters in common (the same remarks apply to the column partition

components θ⊤
1 , . . . ,θ

⊤
c−1, ∀ℓ = 1, . . . , c − 1). As a consequence, this restriction diminishes the usual

impact of the weights priors aiming at producing identical component-vectors. Therefore, to reduce

the discrepancy between the diagonal elements whilst keeping distinction between ϵ and ϕ (for a sparse

recovery), we considered two specific priors for the block parameters in addition to the weights priors.
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Thereby, the diagonal parameters were given the same prior G(10∗, 1) (s.t. α1 = . . . = αg = 10∗,

β1 = . . . = βg = 1) while ϕ was subject to G(1, 10∗) (τ = 1, υ = 10∗), where ∗ ∈ {2, 3}. With a higher

value for the shape parameter, G(10∗, 1) aims at favoring higher and identical estimates for ϵ whilst

G(1, 10∗) should fit a lower and spreaded distribution for ϕ. ∗ := 3 for datasets with g ≤ 8 and ∗ := 2

when g > 8. Figures 5.8(a)-5.8(b) displays the percentages of correct solutions returned by each prior

setting using VBEM (denoted as ”vb”) and the Gibbs sampler (”g”) respectively over 30 trials. The

percentage of VEM (”v”) and SEM-GIBBS (”sg”) are added for reference. The graphics show clearly that

our settings allow a substantial decrease of empty clusters solutions by GPlbm. In practice, ∗ should

be decreased as g increases and leads to lower values for ϵ. This was achieved on R40 where ∗ := 1.5

led to small improvements.

5.1.4.5 Clustering performance

Overall, Bayesian inference with our settings (in most situations) and the recommended settings

[267] (using the Gibbs sampler) undeniably limits empty clusters solutions. However it is key to ensure

that the clustering performances are better if not at least similar to those obtained using MLE. Doing

so, we achieve a statistical study of the clustering performance regarding to all the settings mentioned

previously using VBEM and the Gibbs sampler compared to the MLE algorithms. We use the Nemenyi

non-parametric statistical test [269, 270] which quantifies the performance between several algorithms

by measuring the pairwise Critical Difference (CD) between their average ranks. The results (available

in the next section) suggest, to guarantee the best clustering partitions, the following hyperparameters :

a1 = . . . = ag = b1 = . . . = bc = 1 ; α1 = . . . = αg = υ = 103 ; β1 = . . . = βc = τ = 1 where g ≤ 8

and a1 = . . . = ag = b1 = . . . = bc = 16.5 where g > 8. Following these priors, we compared GPlbm

(using the results obtained from VBEM initialized with the solution of Gibbs sampler) against several

benchmark algorithms acknowledged for their good performance or popularity in document clustering.

Algorithms such as : ITCC (Information Theory Co-Clustering) [252], Latent Dirichlet Allocation (LDA)

[263], Spherical K-means (S-Kmeans) [39, 271], the recently introduced Deep Clustering Network (DCN)

[203], K-means and SPlbm are used for reference. Note that DCN showed significant improvements for

document clustering against several clustering (K-means, Spectral Clustering), NMF (LCCF) [204]

and Deep Learning algorithms (SAE)[205]. Algorithms which require parameters settings are launched

accordingly to the settings advocated by their authors. As previously, a set of 30 runs is made for each

189



5.1. CAPTURING NOISY FEATURES IN DIAGONAL DOCUMENT-TERM
CO-CLUSTERING

Table 5.5 – Clustering scores.

Data Scores K-Means S-Kmeans LDA ITCC DCN SPlbm GPlbm

C3 NMI 0.37±0.17 0.92±0.001 0.91±0.003 0.93±0.002 0.92±0.046 0.93±0.001 0.95±0.002
(0.27) (0.91) (0.91) (0.93) (0.93) (0.93) (0.95)

ARI 0.21±0.22 0.95±0.001 0.94±0.002 0.96±0.001 0.94±0.045 0.95±0.001 0.97±0.001
(0.1) (0.95) (0.94) (0.96) (0.96) (0.96) (0.97)

C4 NMI 0.29±0.008 0.54±0.001 0.75±0.002 0.58±0.02 0.57±0.014 0.68±0.072 0.79±0.013
(0.29) (0.54) (0.75) (0.59) (0.58) (0.78) (0.79)

ARI 0.16±0.003 0.43±0.001 0.76±0.003 0.42±0.02 0.42±0.013 0.59±0.15 0.79±0.018
(0.16) (0.43) (0.76) (0.44) (0.42) (0.79) (0.8)

NG5 NMI 0.035±0.007 0.38±0.021 0.68±0.054 0.68±0.032 0.62±0.028 0.59±0.074 0.76±0.035
(0.035) (0.37) (0.58) (0.71) (0.59) (0.7) (0.8)

ARI 0.003±0.001 0.22±0.024 0.63±0.062 0.62±0.057 0.47±0.027 0.47±0.097 0.75±0.066
(0.003) (0.21) (0.53) (0.66) (0.46) (0.67) (0.81)

K1B NMI 0.47±0.023 0.62±0.02 0.58±0.014 0.57±0.027 0.66±0.047 0.53±0.057 0.6±0.028
(0.5) (0.61) (0.58) (0.6) (0.64) (0.64) (0.64)

ARI 0.39±0.066 0.41±0.024 0.34±0.021 0.36±0.046 0.64±0.093 0.37±0.087 0.46±0.065
(0.45) (0.4) (0.36) (0.4) (0.64) (0.54) (0.52)

SPS NMI 0.17±0.04 0.46±0.048 0.48±0.029 0.55±0.034 0.59±0.015 0.51±0.046 0.64±0.027
(0.24) (0.42) (0.43) (0.58) (0.60) (0.5) (0.61)

ARI 0.023±0.016 0.26±0.054 0.4±0.03 0.42±0.035 0.37±0.034 0.39±0.065 0.61±0.065
(0.046) (0.22) (0.34) (0.43) (0.40) (0.33) (0.59)

WAP NMI 0.45±0.016 0.56±0.009 0.57±0.011 0.56±0.013 0.58±0.016 0.53±0.024 0.53±0.021
(0.47) (0.56) (0.55) (0.56) (0.56) (0.52) (0.57)

ARI 0.14±0.03 0.28±0.026 0.35±0.022 0.37±0.041 0.32±0.030 0.47±0.028 0.53±0.038
(0.14) (0.27) (0.32) (0.38) (0.30) (0.45) (0.56)

K1A NMI 0.43±0.011 0.57±0.009 0.58±0.012 0.49±0.013 0.59±0.008 0.53±0.019 0.53±0.017
(0.44) (0.57) (0.6) (0.5) (0.58) (0.56) (0.55)

ARI 0.13±0.024 0.29±0.037 0.37±0.02 0.31±0.043 0.34±0.029 0.49±0.036 0.51±0.046
(0.12) (0.27) (0.38) (0.31) (0.38) (0.52) (0.54)

T2 NMI 0.41±0.009 0.76±0.007 0.72±0.007 0.74±0.017 0.78±0.01 0.75±0.014 0.79±0.013
(0.42) (0.77) (0.72) (0.76) (0.79) (0.77) (0.8)

ARI 0.042±0.005 0.45±0.026 0.47±0.017 0.48±0.037 0.48±0.028 0.71±0.032 0.77±0.017
(0.044) (0.48) (0.47) (0.5) (0.51) (0.72) (0.77)

R40 NMI 0.38±0.023 0.47±0.008 0.49±0.004 0.49±0.008 0.50±0.008 0.52±0.012 0.52±0.019
(0.41) (0.47) (0.49) (0.49) (0.50) (0.51) (0.53)

ARI 0.11±0.046 0.11±0.01 0.2±0.017 0.18±0.024 0.13±0.012 0.48±0.021 0.47±0.041
(0.15) (0.11) (0.19) (0.14) (0.13) (0.44) (0.44)
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algorithm from which the 10 best results (criterion-wise) are extracted. The results in Table 5.5 are

shown in terms of mean and standard deviation. The scores of the run with the best criterion is shown

in parenthesis. They show that GPlbm is clearly superior for the task of document-term clustering.

Additionally, as with Figure 5.5(a), Figure 5.8(c) depicts the performance gain of GPlbm using VBEM

over SPlbm. The graphic shows that GPlbm using VBEM outperforms SPlbm substantially with much

better improvements overall on the majority of datasets. Furthermore, the performance deficiency

observed on K1A and R40 in Figure 5.5(a) using VEM has now been leveraged.

5.1.5 Hyperparameters settings selection

Table 5.6 describes the hyperparameters settings used for the different priors. Figure 5.9(a) dis-

plays the percentage of correct solutions returned by VBEM and the Gibbs sampler over 30 trials and

according to the Dirichlet priors settings (1, 4, 16). Figure 5.9(b) displays the percentage of correct

solutions using the new priors settings (1, 10∗), (4, 10∗), (16, 10∗).

(a) (b)

Figure 5.9 – Percentage of correct solutions for GPlbm with VBEM and the Gibbs sampler regarding
the various settings.

From Figure 5.9(a), it is clears that g(16) consistently outperforms g(1) and g(4) and looks like

a better alternative for producing more correct solutions. However, from [266, 267], (4) is the recom-

mended setting when g ≤ 8 and (16) when g > 8. On the other hand, From Figure 5.9(b), all the new

settings perform similarly with the Gibbs sampler. Therefore, in the light of the above, we required

a statistical test to decide which setting should be advocated for each type of partition (g ≤ 8 and
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Table 5.6 – Hyperparameters settings, ∗ ∈ {2, 3}.

Dirichlet priors Gamma priors

settings a1, . . . , ag b1, . . . , bc ζ η α1 . . . , αg β1, . . . , βg τ υ

(1) 1 1 1 1 1 1 1 1
(4) 4 4 1 1 1 1 1 1
(16) 16.5 16.5 1 1 1 1 1 1

(1,10∗) 1 1 1 1 10∗ 1 1 10∗

(4,10∗) 4 4 1 1 10∗ 1 1 10∗

(16,10∗) 16.5 16.5 1 1 10∗ 1 1 10∗

g > 8) according to the clustering scores. Several studies [272, 273, 274] have shown the relevance of

statistical comparisons in analyzing the behavior of multiple algorithms in an experimental set-up. In

ours, the difference between the mean scores of each settings is of interest and quantified using the

average ranks (AR) method proposed by Brazdil and Soares in [275] w.r.t. each algorithm, namely

VBEM initialized with the Gibbs sampler solutions (denoted g+vb”), VBEM (denoted ”vb”) and the

Gibbs sampler (denoted ”g”). This method is inspired by Friedman’s M statistic and consists in mea-

suring the error rates (here the NMI and ARI mean scores respectively) to assign a rank accordingly.

In addition, we also use the Nemenyi non-parametric statistical test [269, 270] (part of the ”scmamp”

R package 1) which quantifies the performance between several classifiers by measuring the pairwise

Critical Difference (CD) between their average ranks. Tables 5.7 and 5.8 display the empirical results

in terms of mean and standard deviation obtained over the best 10 solutions (criterion-wise) from a set

of 30 trials. The average score and average rank are also given for each setting w.r.t. each algorithm.

SEM-Gibbs and VEM are respectively denoted ”sg” and ”v”.

In terms of NMI and ARI, it is clear that partitions where g ≤ 8 undeniably favor (1, 10∗) indiffe-

rently of the algorithm employed. For partitions where g > 8, the narrative is more complex. Overall

(16) is selected as the best setting when g > 8 since (16) obtains the best rank in terms of NMI.

However, in terms of ARI, MLE seems to outperform Bayesian Inference as sg+v and sg obtain better

ranks than g+vb(16) and g(16) respectively. Using VBEM, vb(16) remains ahead of VEM. These results

are summarized in Figure 5.10 which shows the diagrams of pairwise Critical Difference (CD) between

the settings in terms of NMI and ARI for g+vb. Each figure illustrates the critical difference between

the various settings according to their average ranks. Therefore, the far-left setting is supposedly the

1. https://cran.r-project.org/web/packages/scmamp/vignettes/Statistical_assessment_of_the_

differences.html
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one with the best average rank, while the far-right will be the worst. In our graphics, there is only one

bold line, indicating that the differences between results are not significant.

(a) NMI (g ≤ 8) (b) ARI (g ≤ 8)

(c) NMI (g > 8) (d) ARI (g > 8)

Figure 5.10 – Critical Difference (CD) between the results of GPlbm according to the various hy-
perparameters settings.
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5.2. CONCLUSION

5.2 Conclusion

The objective of co-clustering can be achieved by different approaches. In our proposal, we chose the

approach based on the Poisson Latent Block Model [257] for its flexibility. By handling the noisy data

directly in the inference, we have proposed a variant of this model which ensures that the clustering

remains unbiased in regards to irrelevant information leaked despite the pre-processing. The diagonal

and column parameterization looks well suited to detect the presence of noisy features while improving

the learning of latent variables. In addition, the model provides an estimate of the precise amount of

noise contained within a document-term matrix. We also showed, in various noisy situations, that our

model guaranties better results compared to competitive methods devoted to the same task.

The Bayesian inference introduced to reduce the number of empty cluster solutions proves effective

and leads overall to better clustering performances. In the future, it be would interesting to modulate

the heterogeneity factor, which appears to play an important role in the clustering performance of

LBM. Diagonal parameterization appeared beneficial as regards block heterogeneity in sparse data

analysis, but even better performance might be obtainable with more homogeneous parameterization.

Different ways of achieving this might be explored, including, for instance, Bayesian inference on Plbm.

Consideration of other conjugate priors, such as the newly weighted Lindley distribution [276] for the

block parameters, could also be useful in handling heterogeneity.
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NMF

regularized
NMF

SNMF WE− NMF

constrained NMF
(cNMF)

cNMF
+

entropic regularization

cNMFHα cNMFH

FMM

cNMFπ,H

FMM with π

Figure 5.11 – Summary of the algorithms and relations explored in this thesis

Two different clustering approaches for the analysis of text data were studied in this thesis. The

first through dimensionality reduction using Nonnegative Matrix Factorization, the second throughout

the use of Finite mixture models and Latent Block Models. In the light of the above, we have presented

several paths for improving document clustering of highly dimensional datasets.

First, regarding NMF, we reveal that the ultimate best solutions do no necessarily carry the best

clustering after a study of the optimal local minima obtained by some usual cost functions. As a

consequence, we have suggested a consensus approach for handling this behavior and extracting the

best clustering partition. This approach uses a set of optimal best solutions and proved effective as

the consensus partition successfully outperforms the clustering retrieved from the best local minimum.

(Chapter 2)

Secondly, we tackled the problem of NMF from an optimization point of view and undertook to

improve clustering using several objective regularizations. In the context of text analysis, we suggested

two semantic regularizations. The first with a Neural Embedding method, supplying a word-context

matrix (SNMF). The regularization is achieved by performing the joint decomposition of the data matrix

and the word-context matrix simultaneously into a shared factor. The Frobenius norm is set as the cost

function. The second regularization is achieved using the embedding of the Kantorovich–Rubinstein
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distance, which proved effectiveness in capturing non linear relations between histograms in general

as much as term features (WE− NMF). In this case, the cost function is the I-divergence. For both ap-

proaches, a set of multiplicative update rules is derived. In both cases, the regularization shows success

in leveraging hidden semantic relationships which ultimately led to an improvement of the clustering

partitions. In addition, the consensus approach introduced for the original NMF was confirmed to be

feasible for the class of regularized NMF problems. Moreover, the solutions obtained with the Frobe-

nius norm were shown to be less prominent than the ones derived from the I-divergence, for the task

document-term clustering. (Chapter 3)

Thirdly, we proposed a clustering characterization of NMF called cNMF which introduced an addi-

tional probability constraint in the optimization problem of NMF. Thanks to this new representation,

Information theoretic measures from the class of Rényi entropies are integrated to cNMF’s objective

and maximized in order to increase cluster validity (cNMFHα). This new method proves effectiveness in

handling the search of the best clustering partitions while diminishing NMF’s sensitivity to starting

points. Extended experiments on several benchmark datasets shows the superiority of cNMFH1 compa-

red to the current state-of-the-art algorithms. In an attempt to derive an more efficient gradient for

accelerating the convergence, the connection of this new method with the Poisson Finite mixture mo-

del is characterized. Furthermore, using the properties of convex function and Bregman divergences,

this connection is generalized to FMMs of exponential Famillies. Finally, a comparative study between

directional and count data methods across the unit-sphere highlights the minimum entropy of the

Poisson distribution for sparse random variables and its advantage in this case. (Chapter 4)

Finally, using Finite mixture of Poisson distributions and taking advantages of the Latent Block

Model flexibility, we are able to tackle the recurrent problem of noisy features encountered in text

analysis. Thanks to the block parameterization of LBM, a dedicated column cluster of noisy features

is implemented, and inference for learning its unique parameter is easily integrated to the VEM algo-

rithm. Besides, Bayesian Inference is later employed to resolve the overfitting issue leading to empty

cluster solutions. A study of the advocated priors usually applied in this situation is achieved in

terms of clustering, and highlighted performance losses. Due to the parsimony of our model (Diago-

nal parameterization), to remedy, we allow specific priors on the block parameters which results in

improvements in terms of diminished overfitting as well as clustering performance. (Chapter 5)

In Figure 5.11, we illustrate a summary of the different algorithms proposed in this thesis and their
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relations

Following the results obtained with NMF, several perspectives can be determined. As mentioned

previously, the context matrix M in SNMF can be built using larger external corpora. M could also

be domain-specific, e.g. in sentiments analysis where M could describe relationships between words

in terms of their positivity, negativity or neutrality. Regarding the clustering characterization, for

instance, cNMF could be extended to Nonnegative Matrix Tri-Factorization (NMTF) as described by

the following problem :

min
Z∈Rn×g

+ ,S∈Rg×c
+ ,W ∈Rd×c

+ ,

Z1g=1n,W 1c=1d

{︁
F(Z,S,W ) = D(X,ZSW ⊤)

}︁
. (5.33)

This optimization remains manageable. However, setting a double entropic regularization becomes

more challenging and would be a key achievement to establish the relation with the Latent block

model. Naturally, a comparison of both algorithms would be interesting.

As reviewed in 2, several algorithms for solving the problem of NMF are denoted. Therefore deriving

them for our extensions in order to achieve a comparative study of their solutions in terms of clustering

would be key.

Similarly, as forGPlbm, integrate the noise parameterization into a matrix approximation problem

could be effective for gaining better low dimensional spaces.

Furthermore, in the case of GPlbm, it be would interesting to adapt GPlbm to the class of infinite

mixture models by deriving a non-parametric version of the model using the Dirichlet process so that

the number of co-clusters can also be estimated.
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[113] T. Caliński et J. Harabasz, “A dendrite method for cluster analysis,” Communications in

Statistics-theory and Methods, vol. 3, no. 1, p. 1–27, 1974.

[114] A. E. Raftery, “A note on bayes factors for log-linear contingency table models with vague prior

information,” Journal of the Royal Statistical Society : Series B (Methodological), vol. 48, no. 2,

p. 249–250, 1986.

[115] P. J. Rousseeuw, “Silhouettes : a graphical aid to the interpretation and validation of cluster

analysis,” Journal of computational and applied mathematics, vol. 20, p. 53–65, 1987.

209



BIBLIOGRAPHIE

[116] E. Rendón, I. M. Abundez, C. Gutierrez, S. D. Zagal, A. Arizmendi, E. M. Quiroz et H. E.

Arzate, “A comparison of internal and external cluster validation indexes,” dans Proceedings of

the 2011 American Conference, San Francisco, CA, USA, vol. 29, 2011, p. 1–10.

[117] R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,”

Remote sensing of environment, vol. 37, no. 1, p. 35–46, 1991.

[118] S. V. Stehman, “Selecting and interpreting measures of thematic classification accuracy,”Remote

sensing of Environment, vol. 62, no. 1, p. 77–89, 1997.

[119] A. Strehl et J. Ghosh, “Cluster ensembles—a knowledge reuse framework for combining multiple

partitions,” Journal of machine learning research, vol. 3, no. Dec, p. 583–617, 2002.

[120] N. D. Cahill, “Normalized measures of mutual information with general definitions of entropy for

multimodal image registration,” dans International workshop on biomedical image registration.

Springer, 2010, p. 258–268.

[121] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the Ame-

rican Statistical association, vol. 66, no. 336, p. 846–850, 1971.

[122] L. Hubert et P. Arabie,“Comparing partitions,”Journal of classification, vol. 2, no. 1, p. 193–218,

1985.

[123] G. H. Golub et C. F. Van Loan, Matrix computations. JHU press, 2013, vol. 4.

[124] L. Eldén, Matrix methods in data mining and pattern recognition. SIAM, 2007.
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Annexe A

Matrix theory and Vector Spaces

Vectors which were initially introduced in the field of geometry and physics (mechanics) are the

basis to the construction of vector spaces. In this thesis, we use Caley’s representation of a vector

space denoted as a matrix. A n × d matrix is a n − row and d − column table containing scalars. In

this thesis, matrices in several fields are considered :

— The set of all n× d real matrices is denoted by Rn×d.

— The set of all n× d nonnegative real matrices is denoted by Rn×d
+ .

— The set of all n× d binary matrices is denoted by {0, 1}n×d.

We use bold uppercase letter to denote a matrix (e.g. X). The matrix scalars at the (i,j)-th positions

are denoted in lower case (e.g. xij). At each time, the position indexes are given when defining a matrix

following these two manners : X = (xij) ∈ Rn×d or X = (xij)n×d (for an arbitrary matrix) making

the sets of row and column indexes intuitive (in this case, i = 1, . . . , n and j = 1, . . . , d). Therefore

the i-th row of a matrix is denoted xi and the j-th column is given by xj .

A column vector is a matrix with one column (e.g. (1, 2, 0)⊤). A row vector is a matrix with one

row (e.g. (1, 2, 0)). Unless explicit statement, a vector is always a column vector. We use bold lower

case to denote a vector (e.g. x).

— The set of all n− size real vector is denoted by Rn.

— The set of all n− size nonnegative real vector is denoted by Rn+.

— The set of all n− size binary vector is denoted by {0, 1}n.

Remark. Let X = (xij)n×d, a vector accessed by a row index in a matrix (e.g. xi) is a row vector. A

vector accessed by a column index (e.g. xj) is a column vector.
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A.1. BASIC LINEAR ALGEBRA

A matrix is said to be square if the number of rows equals the number or columns. A squared matrix

X = (xi,i′)n×n is said to be symmetric if xi,i′ = xi′,i. A diagonal matrix is a square matrix with

non-zero elements on the diagonal and zero elsewhere. A matrix X is said to be positive semidefinite

if it can be obtained by the product of a matrix by its transpose, e.g. :

X = AA⊤. (A.1)

This implies that a positive semidefinite matrix is always symmetric.

Elementary vector operations such as addition, scalar-vector multiplication, inner product (or dot

product), and elementary matrix operations such as transposition (.)⊤, addition, scalar-matrix multi-

plication, matrix-matrix multiplication (dot product), point-wise operation such as point-wise multi-

plication ⊙ (Hadamard product), point-wise power (Hadamard power), point-wise division (Hadamard

division), are assumed to be part of the reader knowledge.

A.1 Basic linear algebra

This section reviews some basic properties of linear algebra necessary in the understanding of the

following sections.

Subspace. A subspace of Rn is a subset that is also a vector space, similarly for Rn×d.

Linear Independence. Considering the set of vectors {v1, . . . ,vd} ∈ Rn, the smallest set of all linear

combinations of these vectors is a subspace called a span of {v1, . . . ,vd} denoted as :

span({v1, . . . ,vd}) =
{︂ d∑︂

j

αjvj , αj ∈ R
}︂
. (A.2)

{v1, . . . ,vd} is said to be linearly independent if and only if :

d∑︂
j

αjvj = 0 ⇐⇒ αj = 0, ∀j = 1, . . . , d, (A.3)

where 0 = (0, . . . , 0) ∈ Rn. In this case, span(v1, . . . ,vd) is a set with an unique linear combination

of the vectors vj . Otherwise, if there is a nontrivial combination of the vj equals to 0, {v1, . . . ,vd} is

said to be linearly dependent and span(v1, . . . ,vd) has multiple elements.

Basis. A set of linearly independent vectors {v1, . . . ,vd} in Rn is called a basis if no vector vj can be

removed from the set without changing span({v1, . . . ,vd}), e.g. V = {v1, . . . ,vd} and span(V ) = V .
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A.1. BASIC LINEAR ALGEBRA

Dimension. Let V = {v1, . . . ,vd} ∈ Rn×d be a vector space, all possible bases for V have the same

exact number of vectors and this number is called the dimension and denoted dim(V ).

Range. Let V ∈ Rn×d, the range of a matrix denoted ran(V ) is the equivalent to the span of the set of

column-vectors (or columns space) (v1, . . . ,vd). It is therefore the set of all possible linear combinations

u ∈ Rn of the column-vectors such that :

ran(V ) = {u ∈ Rn : u = V x, for some x ∈ Rd}. (A.4)

Rank. Let V ∈ Rn×d, the rank of a matrix denoted rank(V ) is the maximum number of linearly

independent columns or rows (the columns rank and the row rank are always equal) and can be stated

as follows :

rank(V ) = dim(ran(V )). (A.5)

A matrix V is said to be full rank if rank(V ) = min(n, d) and rank deficient if rank(V ) < min(n, d).

Orthogonality. A set of vectors {v1, . . . ,vd} ∈ Rn is said to be orthogonal if ∀j ̸= j′, ⟨vj ,vj′⟩ = v⊤
j vj′ =

0 and orthonormal if ⟨vj ,vj′⟩ = δjj′ where δjj′ = 1 if i = i′ and 0 otherwise.

A squared matrix Qn×n is said to be orthogonal if Q⊤Q = I.

Determinant. The determinant is a scalar value function defined over any square matrix. It allows

to characterize the linear map of the matrix. Given a finite dimensional square vector space Ωn×n,

we denote det : Ωn×n → Ω. It can be computed using the recursive Laplace approximation. Let

A = (aij) ∈ Rn×n :

det(A) =
d∑︂
j

(−1)j+1aij det(B), (A.6)

where B = A/{A1,Aj} is the submatrix obtained by removing the first row and the j-th column

of A. Note that det(A) = a if A = (a) ∈ R1×1. If det(A) = 0, A is a singular matrix (or linearly

dependent).

A.1.1 Eigenvalues and Eigenvectors

The eigenvalues of a data matrix A ∈ Cn×n are the zeros for the characteristic polynomial :

p(x) = det(A− xI). (A.7)
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In other words, they are the values x for which the matrix C = A− xI becomes singular. Therefore,

every n×n matrix denotes n eigenvalues. The set of eigenvalues of a matrix A is denoted as follows :

λ(A) = {x : det(A− xI) = 0}, (A.8)

where λ(A) = {λn(A), . . . , λ1(A)} is an ordered set ranking the eigenvalues from the largest (denoted

by λn(A)) to the lowest (λ1(A)).

If λ is an eigenvalue of A (λ ∈ λ(A)), it exists an eigenvector x such as Ax = λx. If A has n

independant eigenvectors xj such that Axj = λjxj , A is said to be diagonalizable such as :

X−1AX = diag(λ1, . . . , λn), (A.9)

where X = [x1, . . . ,xn] is the eigenvectors matrix and X−1 its inverse. This factorization is also

referred to as the Eigen decomposition. Note that not all square matrices are diagonalizable but, if A

is positive semidefinite, its Eigen decomposition always exists.

Remark. In data analysis, the eigenvectors are also referred to as the principal axes or principal

directions.

A.2 Norms and distances in vector spaces

Definition A.2.1. A distance function d given a random set M is a function d : M ×M → R+ such as

∀x, y, z ∈M :

— d is nonnegative, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y

— d is symmetric, d(x, y) = d(y, z)

— d satisfies the triangular inequality, d(x, z) ≤ d(x, y) + d(y, z)

In the context of clustering where the data usually lies in a vector space, we will consider the

following functionals for measuring the magnitude of a vector in Ωd or a finite vector space in Ωn×d.

Definition A.2.2. (Vector and Matrix norms properties). Let Ωn (or Ωn×d) be a finite dimensional

vector space over an arbitrary field (R, Q or C), a norm ∥.∥ : Ωn (or Ωn×d) → R+ is a real value

functional such that :

— ∥ω∥ ≥ 0, ∀ω ∈ Ωn (or Ωn×d) where ∥ω∥ = 0 ⇐⇒ ω = 0,

— ∀k ∈ Ω, ∥kω∥ = |k|∥ω∥, ∀ω ∈ Ωn (or Ωn×d),
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— ∥ω + ψ∥ ≤ ∥ω∥+ ∥ψ∥, ∀ω, ψ ∈ Ωn (or Ωn×d).

A vector space Ω on which a norm is defined is called a normed vector space. A normed vector

space associates a metric d such as d(ω, ψ) = ∥ω − ψ∥, ∀ω, ψ ∈ Ωn (or Ωn×d).

Remark. If d is complete, then Ω is a Banach space.

A.2.1 Vector norms characteristics

The Euclidean vector space (Ω = R) is one of the most fundamental space of geometry. Let x ∈ Rn,

its norm is referred to as the Euclidean norm and given as : ∥x∥ =
√︂∑︁n

i x
2
i . In data analysis, ones

usually refers to the Euclidean norm, however, in some situations, it might not be relevant and others

may be used. The p-norm (or Lp-norm) for vectors is an example which generalizes several popular

alternatives. It is defined as :

∥x∥p =
(︂ n∑︂

i

|xi|p
)︂ 1

p
, p ∈ N∗, (A.10)

where the most common values for p are {1, 2,∞}. The 2-norm is the Euclidean norm. A unit-vector

x w.r.t the norm ∥.∥ is a vector that satisfies ∥x∥ = 1.

An analogical metric to the p-norm in the Euclidean vector space is the Minkowski distance of

order p denoted as follows :

D(x,y) =
(︂ n∑︂

i

|xi − yi|p
)︂ 1

p
, p ∈ N∗,y ∈ Rn, (A.11)

for x,y ∈ Rd. For p = 1, we denote the Manhattan distance, for p = 2, the Euclidean distance and for

p→∞, the Chebyshev distance. As for the p-norm.

A.2.2 Matrix norms characteristics

Let A ∈ Rn×d, the most commonly used matrix norms is the Frobenius norm defined as : ∥A∥F =√︂∑︁n,d
i,j a

2
ij and the p-norms for matrix :

∥A∥p = sup
x̸=0

∥Ax∥p
∥x∥p

, x ∈ Rn. (A.12)

Note that the matrix p-norms are defined in terms of vector p-norm. For more insights, the readers

can refer to the books of Horn and Johnson [277] or Golub and Van Loan [123].
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A.3 Other distances and dissimilarities

Other distances such as the Manhalobis distance are also widely used for cluster analysis. In the

context of text analysis where the data matrix might be binarized, one may consider the Jaccard

distance (firstly denoted as ”coefficient de communauté” [278]) suitable for discontinuous variables

defined as follows :

DJ(x,y) = 1− J(x,y), (A.13)

where x,y are two finite binary sample sets, J(x,y) = |x∩y|
|x∪y| is the Jaccard index measures the

similarity between x and y. By definition, we have 0 ≤ J(x,y) ≤ 1. For text analysis with nonnegative

data or more generally application with count data, one may also consider the chi-squared (χ2) distance

([43]). Another relevant measuring function which gained a substantial popularity in text analysis is

the (1− cos) dissimilarity (also referred to as the ”Cosine distance”) defined as follows :

CD(x,y) = 1− cos(x,y) = ⟨x,y⟩
∥x∥∥y∥

, ∀x,y ∈ R. (A.14)

Remark. The (1 − cos) dissimilarity is not a proper distance since it does not have the triangular

inequality property. Usually, x and y are unit-vectors and the distance results in computing the inner

product.
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Annexe B

Distributions for Mixture Models

In this section, we review the set of several parametric exponential families/distributions (also

referred to as the set of Koopman–Darmois family) of interest for the model-based approach introduced

in the following chapters and the underlying relations highlighted with the class of Bregman divergences

used in NMF.

B.1 Exponential Families

Exponential Families form the basis for generalized linear model (GLM). Such distributions are

also key in Bayesian Inference since they provide conjugate priors. (Note : to not be confused, an

exponential family is an exponential distribution varying according according to a parameter, e.g. the

Normal distribution is an exponential family). We denote several sub class family depending on the

number of parameter : (i) single (one scalar parameter), (ii) or multiple (vector of parameters) ; and

the random variable (scalar of vector).

B.1.1 Single-parameter exponential families

Let x be a random variable in R, a single-parameter (also referred to as one-parameter) exponential

family is a set of probability distributions for which the probability density function (for continuous

support) or probability mass function (for discrete support) can be written in the following form :

p(x|θ) = h(x) exp
(︁
η(θ)S(x)−B(θ)

)︁
, (B.1)
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where h is nonnegative and η,B are real value functions. B(θ) act as a normalization function for p(x)

defined once h, η have been set. If η(θ) = θ, the exponential family is said to be in its canonical form.

By defining a transformer s.t. η = η(θ), we denote the following probability function :

q(x|η) = h(x) exp
(︁
ηS(x)−A(η)

)︁
, (B.2)

whereA(η) is the finite cumulant function acting as a normalization for q(x) s.t.A(η) = ln
∫︁
h(x)exp(ηS(x))dx

and S(x) is a sufficient statistic. In this case, η is referred to as the natural parameter whereas η(θ)

is referred to as the link function. Let Ω be the set of all η s.t. A(η) is finite, Ω is referred to as the

space of natural parameter. Ω is a convex and A(η) are convex functions.

If η(θ) = θ and S(x) = x, the exponential family is a special case referred to as natural exponential

family (NEF) s.t.

p(x|θ) = h(x) exp
(︁
θx−B(θ)

)︁
. (B.3)

Examples of single-parameter discrete exponential families are the Bernoulli distribution, the Poisson

distribution. Example of continuous family is the Exponential distribution. See details in Table B.1.

Table B.1 – Single-parameter exponential families.

Family B(θ) n(θ) A(η) S(x)
Bernoulli ln(1− θ) ln

(︁
θ

(1−θ)
)︁
− ln(1 + exp(η)) x

Poisson −θ ln(η) exp(n) x

Exponential log θ θ − ln(−η) x

B.1.2 Vector-parameter exponential families

Vector-parameter exponential families (also denoted as k-parameter families) are indexed by several

parameter forming the vector θ s.t.

p(x|θ) = h(x) exp
(︃ s∑︂

r

ηr(θ)Sr(x)−B(θ)
)︃
, (B.4)

for a random variable x ∈ x, where η(θ) = [η1(θ), . . . , ηr(θ)]⊤ and S(x) = [S1(x), . . . , Sr(x)]⊤. The

canonical form when ηr(θ) = θr gives η = [η1, . . . , ηr]⊤ s.t. :

q(x|η) = h(x) exp
(︁
S(x)⊤η −A(η)

)︁
. (B.5)

A vector exponential family is said to be curved when the dimension of the set of parameter θ is

inferior to the one of η(θ).
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An example of continuous vector exponential family is the Gaussian distribution where θ = {µ, σ2}.

More examples are given in Table B.2.

Table B.2 – Vector-parameter/vector-variable exponential families.

Family B(θ) η(θ) A(η) S(x)
Gaussian −1

2

(︂
µ2

σ2
+ ln(2πσ2)

)︂ {︁ µ
σ2
,− 1

2σ2
}︁

- 1
2

(︂
η2

1
2η2

+ ln
(︁
π
η2
)︁)︂

{x, x2}

Gamma − ln βα

Γ(α) {(α− 1),−β} log Γ(η1+1)
log(−η2)(η+1) {ln x, x}

B.1.3 Vector-parameter and vector-variable exponential family

The vector-parameter exponential family for one scalar variable x can easily be extended to a

vector random variable x ∈ Rd such that :

p(x|θ) = h(x)exp
(︃ s∑︂

r

ηr(θ)Sr(x)−B(θ)
)︃
, (B.6)

where S(x) = [S1(x), . . . , Sr(x)]⊤ with Sr(x) ∈ Rd, ∀t = 1, . . . , s.

An example of a discrete vector-parameter family over a vector random variable is the Multinomial

distribution with parameters (π1, . . . , πd). A continuous one would be the von Mises-Fisher. See details

in Table B.3.

Table B.3 – Vector-parameter/vector-variable exponential families.

Family B(θ) η(θ) A(η) S(x)

Multinomial ln
(︁
1−

∑︁d−1
j′ πj′

)︁
− ln

(︃
θj

1−
∑︁d−1

j′ θj′

)︃
ln
(︁
1 +

∑︁d−1
j′ exp(ηj′)

)︁
x1, . . . , xd

von Mises-Fisher 0
{︁
{µ1, . . . , µd}, κ

}︁
0 x1, . . . , xd

More generally, the set of exponential families includes these most common distributions :

Discrete Continuous

Bernoulli, Poisson, normal, log-normal, inverse-gaussian, exponential,
categorical, geometric gamma, chi-squared, beta, Dirichlet,

von Mises, von Mises-Fisher, Wishart, inverse-Wishart

Note some families are exponential families under certain conditions. For instance if their parame-

ters are fixed (e.g. fixed numbers of trials for the Multinomial and Binomial families).
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B.1.4 Conjugate priors

As mentioned previously, a key property of exponential families is that they denote a natural

conjugate prior family. Let p(x|θ) be the probability distribution of a particular exponential family

and p(θ) a prior family, the posterior distribution results in a functional with the same form as the

prior family. Considering a k-parameter family with pdf or pmf p(x|θ), the conjugate distribution on

θ is given by the exponential family of k + 1 parameters such that :

p(θ) = exp
(︂ s∑︂

r

ηr(θ)λr − λs+1B(θ)− f(λ)
)︂
, (B.7)

where λ is the natural parameter vector of size k+1 and f a real value function. The sufficient Statistic

is given by the set {ηr(θ),−B(θ)}. The canonical form making appearance for the (k+1)th parameter

ν is given by :

q(λ, ν) = exp
(︂ s∑︂

r

ηrλr − νA(η)− f(λ, ν)
)︂
. (B.8)

The Gamma prior

The Gamma family is conjugate for the Poisson. Its pdf and log-pdf (considering the shape and

rate parameter parameterization) are given as below :

p(θ|α, β) = βαθα−1e−βθ

Γ(α) , (B.9)

and

log p(θ|α, β) = log βα

Γ(α) + (α− 1) log θ − β log(exp(θ)). (B.10)

The parameters are then expressed as follows : {(λ− 1), β}, f(λ, ν) = − log βα

Γ(α) , η(θ) = log θ, B(θ) =

log(exp(θ)) and A(η) = exp(η).

Example with the Conjugate Gamma-Poisson Model

Let x = (x1, . . . , xd)⊤ ∈ Rd+, the Gamma-Poisson model where xi
iid∼ P(λ) is described as follows :

x ∼
d∏︂
i

P(xi;λ) =
d∏︂
i

λxie−λ

xi!
, λ ∼ G(λ;α, β) = βαλα−1e−βλ

Γ(α) ,

where P(xi;λ) is the Poisson distribution with parameter λ and G(λ;α, β) the Gamma distribution

with parameter α and β. Computing the joint probability gives :

p(x|λ)p(λ) =
n∏︂
i

λxie−λβαλα−1e−βλ

xi!Γ(α) = λ
∑︁n

i
xi+α−1e−λ(n+β)βα

n∏︂
i

1
xi!
, (B.11)
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B.1. EXPONENTIAL FAMILIES

Table B.4 – EDM equivalent distributions. (1) Normal (2), Gamma, (3) Inverse Gaussian, (4) Poisson,
(5) Binomial, (6) Negative Binomial.

Distribution θ λ κ(θ) a(λ, x) V (µ) Ω
1. N (µ, ϕ) µ

ϕ ϕ 1
2θ

2 (︁ 1
2π
)︁ 1

2 e− x2
2λ µ0 (−∞,∞)

2. G(µ, ϕ) − 1
ϕ µ − log(−θ) Γ(λ)−1xλ−1 µ2 (0,∞)

3. IG(µ, ϕ) −ϕ
2µ2

√
ϕ −

√
−2θ λ√

2πx3 e
− λ2

2x µ3 (0,∞)

4. P(λµ) logµ 1 eθ λ
x! µ1 (0,∞)

5. B(λ, µ) log µ
1−µ λ log(1 + eθ)

(︁λ
x

)︁
µ(1− µ) (0, 1)

6. NB(λ, µ) logµ λ − log(1− eθ)
(︁λ+x−1

x

)︁
µ(1 + µ) (0,∞)

By making use of the conjugacy, and reintegrating the missing normalization, we denote the posterior

Gamma distribution G(λ;
∑︁n
i xi + α, n+ β) = (n+β)

∑︁n

i
xi+α

λ

∑︁n

i
xi+α−1

e−(n+β)λ

Γ
(︁∑︁n

i
xi+α

)︁ .

Another form a generalization for a subset of exponential family is known as the Exponential

Dispersion Model introduced by Jorgensen [279, 280]. An exponential dispersion model can be defined

by the following probability density function :

f(x; θ, λ) = a(λ, x)eθx−λκ(θ), (B.12)

where (θ, λ) ∈ (R,R+). This expression originally highlights exponential dispersion model for dis-

crete data. Nevertheless, both continuous and discrete exponential dispersion models can be reviewed

through this unique expression [279, 281]. We denote X∼ED(θ, λ) with expectation E(X) = λµ and

variance V (X) = λV (µ) where µ = κ′(θ) and the variance function V (µ) = κ′′(θ) for κ being the

cumulant generative function, θ the natural parameter, and λ the dispersion parameter. A couple of

prior studies of Tweedie [282], Bar-Lev and Enis [283] and Hougaard [284, 285] have focused on the

link between exponential dispersion models and power variance functions (since Tweedie models are

EDMs), denoting V (µ) = µp for an initial p > 0. Jorgensen [279] showed later that EDMs exist for

all p /∈]0, 1[. Table B.4 shows the different forms of the suitable function a(λ, θ) and other parameters

allowing the correspondence between 6 common continuous and discrete families.

In the following chapters, we will focus mainly on the Normal, Gamma, Erlang, Dirichlet, von

Mises-Fisher as a set of continuous distributions and, the Poisson, Binomial and Negative Binomial
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as a set of discrete distributions.

B.2 Exponential Families and Bregman divergences

The Bregman divergence is a generalizing measure of the distance between two points defined in

terms of a strictly convex function. It is nonnegative and equals zero when both arguments are equal.

Definition B.2.1. (Bregman divergence [243]). Let x,y ∈ Rd, and ϕ : S → R, S = dom(ϕ) be a strictly

convex function defined on a convex set S ⊂ Rd such that ϕ is differential on ri(S), the Bregman

divergence denoted dϕ : S × ri(S)→ [0,+∞) is given as follows :

dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨x− y,∇yϕ⟩. (B.13)

Several studies have emphasized the close relation between the Bregman divergence and Expo-

nential Families. More precisely, Forster and Warmuth [286] pointed that the negative log-likelihood

f(x,θ) of several exponential families could be express as the sum of a negative uniquely determined

Bregman divergence and a normalizing function independent of the parameters of the distribution

such as :

log f(x,θ) = −dϕ(x, µ(θ)) + log(bϕ(x)), (B.14)

where µ = µ(θ) is the expectation parameter corresponding to θ and bϕ(x) a real value function. Later,

Banerjee et al showed in [41, 287] that the results holds for all instance x regarding to any Exponential

Family by establishing a bijection between regular Exponential families and regular Bregman divergence

using the Legendre duality.

236



Annexe C

Optimization

In this thesis, NMF will be essentially formulated as a constrained nonlinear programming pro-

blem. In this section, we will first review the definition of unconstrained nonlinear problems and the

conditions that must hold at a solution point of this problem. Then, we will extend the theory to

problems under inequality or mixed constraints (inequality and equality).

C.1 Convex set and convex function

Definition C.1.1. (Convex sets). A set Ω is said to be convex if ∀x, y ∈ Ω and ∀α ∈ [0, 1], we have :

αx+ (1− α)y ∈ Ω. (C.1)

Geometrically, this definition states that given any two points in Ω, if every point on the line

segment joining those two points is in Ω, then Ω is a convex set.

Definition C.1.2. (Convex function). A function f defined on a convex set Ω is said to be convex if

∀x, y ∈ Ω and ∀α ∈ [0, 1]

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (C.2)

f is said to be strictly convex if f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

Theorem C.1.1. (Duality theorem)
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C.2 Unconstrained Optimization

Let Rn be the Euclidean space of n-dimensional vectors. Considering the optimization problem of

the form :

minimize f(x)

subject to x ∈ Ω (C.3)

where f is a real-valued function and Ω the feasible set of solutions, subset of Rn (Ω ⊂ Rn). From

the theorem of Weierstras, a solution exists if f is continuous and Ω is compact (or closed), however,

several kinds of solution points arise : local minima and global minima.

Definition C.2.1. (Local minimum). A point x∗ ∈ Ω is said to be a local minimum point of f over Ω if

there is a neighborhood Nϵ(x∗) of x∗ with magnitude ϵ such that |x− x∗| < ϵ, and ∀x ∈ Nϵ(x∗) ∩Ω,

f(x) ≥ f(x∗). If f(x) > f(x∗),∀x ∈ Nϵ(x∗) ∩Ω and x ̸= x∗, x∗ is said to be a strict local minimum.

Definition C.2.2. (Global minimum). A point x∗ ∈ Ω is said to be a global minimum point of f over

Ω if ∀x ∈ Ω, f(x) ≥ f(x∗). If f(x) > f(x∗), ∀x ∈ Ω and x ̸= x∗, x∗ is said to be a strict global

minimum.

Solving problem (C.3) leads to a global minimum expectation. However unless f has some convexity

properties which guarantee that any local minimum is a global minimum, in practice, this expectation

is rarely achievable. Consequently, solving problem (C.3) usually refer to obtain a local minimum point

which may be global if some further appropriates conditions holds.

We distinguish two conditions which must hold at a local solution point x∗ called the first- and

second-order conditions. These are simple extensions to Rn to the derivative conditions that holds at a

minimum or maximum point x∗ for a function of one variable in R. The idea is to consider movement

away from the point in a feasible direction d.

Definition C.2.3. (Feasible direction). Given x ∈ Ω, a vector d ∈ Rn is a feasible direction at x if there

is an ᾱ > 0 such that x+αd ∈ Ω, ∀α ∈ [0, ᾱ]. From this definition, we define the first-order conditions

for a local minimum.

Proposition C.2.1. (First-order necessary conditions). Let Ω ⊂ Rn and f be a continuously differen-

tiable function on Ω. If x∗ is a local minimum of f over Ω, for every feasible direction d ∈ Rn at x∗ :
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∇f(x∗)⊤d ≥ 0. (C.4)

Proof. The proof using the first order approximation of f in the neighbourhood of the local minimum

point is given in [288] (chapter 7, section 7.1).

Note that, when x is an interior point of Ω (x ∈ int(Ω)), every direction d at x∗ is a feasible di-

rection. Therefore, ∇f(x∗)⊤d ≥ 0, ∀d ∈ Rn which implies that ∇f(x∗) = 0. The necessary conditions

lead to n equations (one for each derivative in ∇f(x)) with n unknowns (one for each value in X∗).

Note that the optimization problem is solved directly without attempting to solve the equation arising

from the first-order necessary conditions. Moreover, any local minimum point x∗ that satisfies eq(C.4)

is called a stationary point.

The second-order conditions is defined in terms of the Hessian matrix (n × n matrix of second

partial derivatives of f) given by ∇2f(x∗).

Proposition C.2.2. (Second-order necessary conditions). Let Ω ⊂ Rn and f be a twice continuously

differentiable function on Ω. If x∗ is a local minimum of f over Ω, for every feasible direction d ∈ Rn

at x∗ :

1) ∇f(x∗)⊤d ≥ 0, (C.5)

2) if ∇f(x∗)⊤d = 0, then d∇2f(x∗)⊤d ≥ 0. (C.6)

Proof. 1) is just proposition C.2.1. For 2), the proof using the second order approximation of f in the

neighbourhood of the local minimum point is given in [288] (chapter 7, section 7.3).

Similarly as for the first-order conditions, when x is an interior point of Ω (x ∈
∫︁

(Ω)), every

direction d at x∗ is a feasible direction. Therefore, d∇2f(x∗)⊤d ≥ 0, ∀d ∈ Rn and ∇f(x∗) = 0.

This implies therefore than the Hessian is positive semidefinite. Note that this matrix plays a key role

the convergence analysis of iterative algorithms for solving unconstrained problems and our following

NMF constrained minimization problems that will defined in the incoming chapters (More specifically

for the convergence of SNMF). By strengthening those propositions, a sufficient condition for x∗ to

be a local minimum in the unconstrained case can also be derived. For more results, refer to [288]

(Chapter 7, section 7.3). In the following, we denote the Hessian matrix by F (x∗).
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C.3 Optimization with equality constraint

Let x = (x1, . . . , xn) be a n-dimensional vector of unknowns, the general mathematical nonlinear

programming constrained problem can be stated as :

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m ⇐⇒ h(x) = 0

x ∈ Ω ∈ Rn

where f is twice continuously differentiable, h = [h1(x), . . . , hm(x)] referred to the functional constraints

on x also continuously twice differentiable, and X ∈ Ω is a set constraint. The first-order necessary

conditions requires that the local minima point is a regular point whose definition is given subsequently.

Definition C.3.1. (Regular point). A point x∗ which satisfies the constraints h(x∗) = 0 is said to be a

regular point of the constraints (h(x) = 0) if the gradient vectors ∇h1(x∗), . . . ,∇hm(x∗) are linearly

independent.

Lemma C.3.1. (First-order necessary conditions for equality constraints). If x∗ is a regular point of

h(x) and a local extremum point (minimum or maximum) of f subject to h(x) = 0, then all vectors

y ∈ Rn which satisfy ∇h(x∗)⊤y = 0 must also satisfy ∇f(x∗)⊤y = 0.

Proof. The proof is given in chapter 7 of [288]

This Lemma naturally implies that f(x∗) is a linear combination of ∇h(x∗). This relation subse-

quently introduced the relation with the Lagrange multiplier λ.

Theorem C.3.2. (Lagrange multiplier duality). Let x∗ be a local extremum point (minimum or maxi-

mum) of f subject to h(x) = 0 and also a regular point of theses constraints, there exists a λ ∈ Rm

such that :

∇f(x∗)⊤ + λ∇h(x∗)⊤ = 0. (C.7)

Proof. From lemma C.7, we have that maximizing ∇f(x∗)⊤y subject to ∇h(x∗)⊤y = 0 results in

∇f(x∗)⊤y = 0, by duality of linear optimization, ∃λ ∈ Rn such that : ∇f(x∗)⊤ +λ∇h(x∗)⊤ = 0.
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The Lagrangian associated with the constrained problem used commonly for solving non linear

constrained optimization problem is defined as follows :

L(x,λ) = f(x) + λh(x)⊤ (C.8)

Supposing that f and h are twice continuously differentiable, the second-order conditions is par-

tially expressed according to the tangent plane defined by the constraints h(x) = 0 at a regular point

x∗. Let M be the tangent plane defined as M = {y : ∇h(x∗)⊤y = 0} at a regular point x∗

Proposition C.3.1. (Second-order necessary conditions). If x∗ is a local minimum of f subject to

h(x∗) = 0 and a regular of point of these constraints, ∃λ ∈ Rm such that :

f(x∗) + λ∇h(x∗)⊤ = 0 (C.9)

L(x∗) = F (x∗) + λH(x∗)⊤, (C.10)

where H(x∗)⊤ = ∇h2(x∗) and L(x∗) is semidefinite on M such as yL(x∗)⊤y ≥ 0,∀y ∈M .

Proof.

L is the matrix of second partial derivatives w.r.t x from the Lagrangian.

C.4 Optimization with inequality constraints

In the following chapters, we present several new NMF problems which arise equality and inequality

constraints formulated in the form of functional. In this section we review the theory behind their

optimization and present some results which also benefits to the analysis of their convergences. Let x =

(x1, . . . , xn) be a n-dimensional vector of unknowns, the general mathematical nonlinear programming

constrained problem can be stated as :

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m ⇐⇒ h(x) = 0

gj(x) ≤ 0, j = 1, . . . , p ⇐⇒ g(x) ≤ 0

x ∈ Ω ∈ Rn
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where f , h = [h1(x), . . . , hm(x)], g = [g1(x), . . . , gp(x)] are real vector-value functional on x. An

important concept that simplify the theory is of an active constraint, moreover, as it allows the gene-

ralization of mixed constrained optimization. At a feasible point x, an inequality constraint gi(x) ≤ 0

is said to be active if gi(x) = 0 and inactive if gi(x) < 0. By convention, an equality constraint

hi(x) = 0 is active at any feasible point. Active constraints at a feasible point x restricts the neigh-

borhood of x while the inactive constraints have no influence in it. Therefore, the conditions of a

local minimum are studied only for active constraints. Consequently, by generalization of the previous

definition (C.3.1), we are looking for a regular point x∗ of the constraints h(x) = 0 and g(x) = 0 such

that the gradient vector ∇h1(x∗), . . . ,∇hm(x∗) and ∇g1(x∗), . . . ,∇gp(x∗) are linearly independent

respectively. In these case, the first-order necessary conditions are stated as follows :

Proposition C.4.1. (Karush-Kuhn-Tucker (KTT) conditions for inequality constraints). If x∗ is a local

minimum of f and supposedly a regular point of the constraints h(x) and g(x). Then, there exists a

vector λ ∈ Rm and a vector µ ∈ Rp+ such that :

∇f(x∗)⊤ + λ∇h(x∗)⊤ + µ∇g(x∗)⊤ =0 (C.11)

g(x∗)⊤µ =0 (C.12)

The Lagrangian associated with the constrained problem whose expression is used in the following

chapters for solving non linear constrained optimization problem is defined as follows :

L(x,λ) = f(x) + λh(x)⊤ + µg(x)⊤ (C.13)

Assuming that f , h and g are twice continuously differentiable, the second-order conditions are

defined afterwards.

Proposition C.4.2. (Second-order necessary conditions for inequality constraints). If x∗ is a local

minimum of f and supposedly a regular point of the constraints h(x) and g(x). Then, there exists a

vector λ ∈ Rm and a vector µ ∈ Rp+ such that :

∇f(x∗)⊤ + λ∇h(x∗)⊤ + µ∇g(x∗)⊤ =0 (C.14)

g(x∗)⊤µ =0 (C.15)

L(x∗) = F (x∗) + λH(x∗)⊤ + µG(x∗)⊤, (C.16)

where L(x∗) is semidefinite on the tangent subspace of the active constraints at x∗.
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The proof (available in [288]), chapter 7) states an interesting fact that is x∗ is also a minimum

point for the subset that defines the active constraint gj(x∗) ≥ 0 to zero. Therefore the first KTT

condition holds if µj = 0 and gj(x∗) ̸= 0. This implication lead the so-called stationary equations

which are key in the derivation of the Multiplicative Update algorithm for NMF.
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Annexe D

An unified framework for Nonnegative
Matrix Factorization and Finite Mixture
Models in the unit-sphere

D.1 NMF to FMM transition examples with other divergences

D.1.1 From NMF to Gaussian mixtures (Euclidean distance)

Lemma D.1.1. Let
∑︁g
k z̃ik = 1, ∀i = 1, . . . , g and δF (X, ˜︁ZW ⊤) be the auxiliary of D(X, ˜︁ZW ⊤) =

1
2∥X − ˜︁ZW ⊤∥2F given by the Jensen inequality,

δF (X, ˜︁ZW ⊤) ∝ − log
n,g,d∏︂
i,k,j

N (xij ;wjk, σ2)z̃ik , (D.1)

where N (xij ;wjk, σ2) = 1
σ

√
2πe

− 1
2σ2 (xij−wjk)2

is the Gaussian probability density function (pdf) and

σ2 = 1.

Proof. From

1
2∥X −

˜︁ZW ⊤∥2F =
n,d∑︂
i,j

x2
ij − 2xij

g∑︂
k

z̃ikwjk +
(︂ g∑︂

k

z̃ikwjk
)︂2
, (D.2)

we use the convexity of the power function and define δF (X, ˜︁ZW ⊤) as follows :

δF (X, ˜︁ZW ⊤) =
n,d∑︂
i,j

x2
ij − 2xij

g∑︂
k

z̃ikwjk +
g∑︂
k

z̃ikw
2
jk

=
n,d,g∑︂
i,j,k

z̃ik
(︁
xij − wjk

)︁2
. (D.3)
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Rewritting (D.3) with the exponential function, we obtain :

δF (X, ˜︁ZW ⊤) = − log
n,d,g∏︂
i,j,k

[︄
e− 1

2 (xij−wjk)2
]︄z̃ik

∝ − log
n,g,d∏︂
i,k,j

N (xij ;wjk, σ2)z̃ik . (D.4)

Remark. Miniminzing eq(D.3) w.r.t ˜︁Z ∈ {0, 1} is equivalent to the K-means algorithm.

The optimization to guaranty Lemma 4.2.1 when δF (X, ˜︁ZW ⊤) is given by eq(D.3) is available in

Appendix D.2.1.

D.1.2 From NMF to Von Mises-Fisher mixtures ((1− cos) dissimilarity)

Lemma D.1.2. Let D(X, ˜︁ZW ⊤) = 1
2
∑︁n
i ∥xi − [ ˜︁ZW ⊤]i∥2F be the (1 − cos) dissimilarity function for

NMF where xi ∈ Sd−1, [ ˜︁ZW ⊤]i ∈ Sd−1 and
∑︁g
k z̃ik = 1, ∀i = 1, . . . , n. Let δCD(X, ˜︁ZW ⊤) be the

auxiliary function of D(X, ˜︁ZW ⊤) given by the Jensen inequality,

δCD(X, ˜︁ZW ⊤) ∝ − log
n,g∏︂
i,k

fp(xi; wk, κ)z̃ik , (D.5)

where fp(xi; wk, κ) = Cp(κ)e(−κxiwk) is the von Mises-Fisher pdf, Cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ) , Ip/2−1(κ)

is the Bessel function of the first kind and κ = 1.

Proof. Recalling the convexity of the power function, we define δCD(X, ˜︁ZW ⊤) as follows :

δCD(X, ˜︁ZW ⊤) =1
2

n∑︂
i

[︃ d∑︂
j

x2
ij +

∑︂
j,k

z̃ikw
2
jk − 2

∑︂
j,k

xij z̃ikwjk

]︃

=
n,g∑︂
i,k

z̃ik
(︁
1−

d∑︂
j

xijwjk
)︁

=− log
n,g∏︂
i,k

[︄
e

−(1−
∑︁d

j
xijwjk)

]︄z̃ik

∝ − log
n,g∏︂
i,k

fp(xi; wk, κ)z̃ik . (D.6)

Since ∥xi∥2 = ∥wk∥2 = 1, the vMF distribution is obtained from the Gaussian distribution after

remarginalizing the pdf with X over the unit-sphere.

The optimization to guaranty Lemma 4.2.1 when δCD(X, ˜︁ZW ⊤) is given by eq(D.6) is available

in Appendix D.2.2.
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Remark. Miniminzing eq(D.6) w.r.t ˜︁Z ∈ {0, 1} is equivalent to the Spherical K-means algorithm.

D.1.3 Erlang mixture from the Itakura-Saito NMF

The Itakura-Saito divergence with support on [0,+∞) is defined as follows :

DIS(X|| ˜︁ZW ⊤) =
n,d∑︂
i,j

[︄
xij

[ ˜︁ZW ⊤]ij
− log xij

[ ˜︁ZW ⊤]ij
− 1

]︄
. (D.7)

Proposition D.1.1. Let
∑︁g
k z̃ik = 1, ∀i = 1, . . . , g and δIS(X, ˜︁ZW ⊤) be the auxiliary ofDIS(X|| ˜︁ZW ⊤)

given by the Jensen inequality,

δIS(X, ˜︁ZW ⊤) ∝ − log
n,g,d∏︂
i,k,j

E(xij ;α,wjk)z̃ik , (D.8)

where E(xij ;α,wjk) = xα−1
ij e

xij
wjk

wα
jk

(α−1)! is the Erlang pdf with α = 1 (note that the Erlang distribution is

generalized by the Gamma distribution).

Proof. After rewritting eq(D.7) as follows :

DIS(X|| ˜︁ZW ⊤) =
n,d∑︂
i,j

[︂
xij [ ˜︁ZW ⊤]−1

ij − log xij + log[ ˜︁ZW ⊤]ij − 1
]︂
, (D.9)

The convexity of the multiplicative inverse function on [0,+∞[ and the concavity of the logarithm

lead to define δIS(X, ˜︁ZW ⊤) as follows :

δIS(X, ˜︁ZW ⊤) =
n,d∑︂
i,j

[︂
xij

g∑︂
k

z̃ikw
−1
jk − log xij +

g∑︂
k

z̃ik logwjk − 1
]︂

=−
n,d∑︂
i,j

[︂
log xij + 1] +

n,d,g∑︂
i,j,k

z̃ik
[︁
xijw

−1
jk + logwjk

]︁

=−
n,d∑︂
i,j

[︂
log xij + 1] +

n,d,g∑︂
i,j,k

z̃ik log
[︃
e

xij
wjk wjk

]︃

=−
n,d∑︂
i,j

[︂
log xij + 1]− log

n,d,g∏︂
i,j,k

[︄
e

−
xij
wjk

wjk

]︄z̃ik

∝− log
n,g,d∏︂
i,k,j

E(xij ;α,wjk)z̃ik . (D.10)
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As expressed in eq(D.10), the Itakura-Saito translates an underlying Erlang distribution with a

normalizing parameter wjk where α = 1.

Remarks.

— Let wjk := 1
wjk

in δIS . This leads to δIS(X, ˜︁ZW ⊤) ∝ − log
∏︁n,g,d
i,k,j E(xij ;wjk)z̃ik where E(xij ;wjk) =

1− wjke−wjkxij is the Exponential density function.

— Minimizing eq(D.10) w.r.t z̃ik ∈ {0, 1} is equivalent to a K-means with the Erlang log-divergence.

D.2 Optimization of cNMFH with Q(˜︂Z, W )

D.2.1 Optimization from the Frobenius norm

Reformulating cNMFH with respect to D = δF gives the following minimization problem :

min˜︁Z≥0,W ≥0,˜︁Z1g=1n

{︁
Q( ˜︁Z,W ) = δF (X, ˜︁ZW ⊤)−H( ˜︁Z)

}︁
. (D.11)

Minimizing Q( ˜︁Z,W ) w.r.t the constraints formulated in problem(D.11) requires the definition of the

Lagrangian function

L( ˜︁Z,W ,γ, ϵ,β) = Q( ˜︁Z,W ) +
n∑︂
i

γi
(︂ g∑︂

k

z̃ik − 1
)︂

+ Tr(ϵ ˜︁Z⊤) + Tr(βW ⊤), (D.12)

where γ ∈ Rn, ϵ ∈ Rn×g, and β ∈ Rd×g are the Lagrange multipliers. Its gradient w.r.t each factor

are denoted as follows :

∇z̃ik
L = 1

2

d∑︂
j

(x2
ij + w2

jk)− (XW )ik + 1 + log z̃ik + γi + ϵik, (D.13)

∇wjk
L = −(X⊤ ˜︁Z)jk +

n∑︂
i

z̃ik + βjk. (D.14)

Setting these gradients to zero and making use of the Karush-Kuhn-Tucker conditions ϵ ⊙ ˜︁Z = 0,

β ⊙W = 0 lead to the following stationary equations :

z̃ik(XW )ik − z̃ik
(︃1

2

d∑︂
j

(x2
ij + w2

jk) + 1 + log z̃ik + γi

)︃
= 0, (D.15)

wjk(X⊤ ˜︁Z)jk − w2
jk

n∑︂
i

z̃ik = 0. (D.16)
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Canceling out ϵ and using the gradient ∇z̃ik
H to ensure the positivity of z̃ik, we obtain the following

update rules forming an Expectation-Minimization procedure which is equivalent to an Expectation-

Maximization (EM) algorithm derived from the negative fuzzy criterion (4.78) :

z̃ik ←
e

(XW )ik− 1
2
∑︁d

j
(x2

ij+w2
jk)

e1+γi
, (D.17) wjk ←

(X⊤ ˜︁Z)jk∑︁n
i z̃ik

, (D.18)

where e1+γi =
∑︁g
k e

(XW )ik− 1
2
∑︁d

j
(x2

ij+w2
jk)

and the conditional probabilities z̃ik are missing the

normalization constant 1√
2π .

D.2.2 Optimization from the (1− cos) dissimilarity

Minimizing Q( ˜︁Z,W ) w.r.t the constraints formulated in problem(D.11) (where δCD(X, ˜︁ZW ⊤) is

now given by equation (D.6)) requires the definition of the Lagrangian function

L( ˜︁Z,W ,α,γ, ϵ,β) = Q( ˜︁Z,W )+
n∑︂
i

αi
(︂ g∑︂

k

z̃ik−1
)︂

+
g∑︂
k

γk(∥wk∥−1)+Tr(ϵ ˜︁Z⊤)+Tr(βW ⊤), (D.19)

where α ∈ Rn, γ ∈ Rg, ϵ ∈ Rn×g, and β ∈ Rd×g are the Lagrange multipliers. ∇wjk
L obtained from

eq(D.19) is similar to the gradient of the Lagrangian of Spherical NMF given by eq(4.120). Therefore

we obtain the same expression for wjk which is given by eq(4.126). Consequently, the gradient of

eq(D.19) w.r.t z̃ik is :

∇z̃ik
L = −(XW )ik + 1 + log z̃ik + αi + ϵik. (D.20)

Setting this gradient to zero and making use of the Karush-Kuhn-Tucker conditions ϵ⊙ ˜︁Z = 0 gives

z̃ik(XW )ik − z̃ik(1 + log z̃ik + γi) = 0. (D.21)

Canceling out ϵ and using ∇z̃ik
H to ensure the positivity of z̃ik, we obtain the following update rules

forming an Expectation-Minimization procedure which is equivalent to an Expectation-Maximization

(EM) algorithm derived from the negative fuzzy criterion (4.78) :

z̃ik ←
e(XW )ik

e1+γi
. (D.22)

Replacing z̃ik with eq(D.22) into the constraint gives e1+γi =
∑︁g
k e

(XW )ik .
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Mickaël FEBRISSY

Modèles probabilistes et factorisation
matricielle non-négative : cadre unifié pour

les données textuelles

Résumé : Depuis l’avenènement du Big data, les techniques de réduction de la dimension sont devenues essentielles pour l’exploration et

l’analyse de données hautement dimensionnelles issues de nombreux domaines scientifiques. En créant un espace à faible dimension intrinsèque à

l’espace de données original, ces techniques offrent une meilleure compréhension dans de nombreuses applications de la science des données. Dans

le contexte de l’analyse de textes où les données recueillies sont principalement non négatives, les techniques couramment utilisées produisant

des transformations dans l’espace des nombres réels (par exemple, l’analyse en composantes principales, l’analyse sémantique latente) sont

devenues moins intuitives car elles ne pouvaient pas fournir une interprétation directe. De telles applications montrent la nécessité de techniques

de réduction de la dimensionnalité comme la factorisation matricielle non négative (NMF), utile pour intégrer par exemple, des documents

ou des mots dans l’espace de dimension réduite. Par définition, la NMF vise à approximer une matrice non négative par le produit de deux

matrices non négatives de plus faible dimension, ce qui aboutit à la résolution d’un problème d’optimisation non linéaire. Notons cependant

que cet objectif peut être exploité dans le domaine du regroupement de documents/mots, même si ce n’est pas l’objectif de la NMF. En

s’appuyant sur la NMF, cette thèse se concentre sur l’amélioration de la qualité du clustering de grandes données textuelles se présentant

sous la forme de matrices document-terme très creuses. Cet objectif est d’abord atteint en proposant plusieurs types de régularisations de la

fonction objectif originale de la NMF. En plaçant cet objectif dans un contexte probabiliste, un nouveau modèle NMF est introduit, apportant

des bases théoriques pour établir la connexion entre la NMF et les modèles de mélange finis de familles exponentielles, ce qui permet d’offrir des

régularisations intéressantes. Cela permet d’inscrire, entre autres, la NMF dans un véritable esprit de clustering. Enfin, un modèle bayésien de

blocs latents de Poisson est proposé pour améliorer le regroupement de documents et de mots simultanément en capturant des caractéristiques

de termes bruyants. Ce modèle peut être relié à la NMTF (Nonnegative Matrix Tri-Factorization) consacrée au co-clustering. Des expériences

sur des jeux de données réelles ont été menées pour soutenir les propositions de la thèse.

Mots clés : classification croisée, factorisation, modèles des blocs latents, modèles de mélanges, text mining.

Abstract : Since the exponential growth of available Data (Big data), dimensional reduction techniques became essential for the exploration

and analysis of high-dimensional data arising from many scientific areas. By creating a low-dimensional space intrinsic to the original data space,

theses techniques offer better understandings across many data Science applications. In the context of text analysis where the data gathered

are mainly nonnegative, recognized techniques producing transformations in the space of real numbers (e.g. Principal component analysis,

Latent semantic analysis) became less intuitive as they could not provide a straightforward interpretation. Such applications show the

need of dimensional reduction techniques like Nonnegative Matrix factorization (NMF) useful to embed, for instance, documents or words in

the space of reduced dimension. By definition, NMF aims at approximating a nonnegative matrix by the product of two lower dimensional

nonnegative matrices, which results in the solving of a nonlinear optimization problem. Note however that this objective can be harnessed

to document/word clustering domain even it is not the objective of NMF. In relying on NMF, this thesis focuses on improving clustering

of large text data arising in the form of highly sparse document-term matrices. This objective is first achieved, by proposing several types

of regularizations of the original NMF objective function. Setting this objective in a probabilistic context, a new NMF model is introduced

bringing theoretical foundations for establishing the connection between NMF and Finite Mixture Models of exponential families leading,

therefore, to offer interesting regularizations. This allows to set NMF in a real clustering spirit. Finally, a Bayesian Poisson Latent Block model

is proposed to improve document and word clustering simultaneously by capturing noisy term features. This can be connected to NMTF

(Nonnegative Matrix factorization Tri-factorization) devoted to co-clustering. Experiments on real datasets have been carried out to support

the proposals of the thesis.

Keywords : co-clustering, factorization, latent block models, mixture models, text mining.
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