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Automated MRI Lesion Analysis and reporting as a computer-assisted radiology tool for determination of McDonald Criteria. American Committee for Treatment and Research in Multiple Sclerosis intra-and inter-observer variability). In fact, lesion tracing is subjective, because of the more or less contrasted appearance of the lesion edges according to their type.

This approach is therefore difficult to apply, both in clinical routine and for studies on large cohorts of several thousand subjects. To address this issue, automatic segmentation methods have been proposed, such as LST (Lesion Segmentation Tool, Schmidt et al. (2012)), Lesion-TOADS (Lesion-TOpology-preserving Anatomical Segmentation, Shiee et al. (2010)) or WHASA (White matter Hyperintensities Automated Segmentation Algorithm, Samaille et al. (2012)). These methods yield the segmentation of WMH from T1 image and T2-FLAIR im-(CATI Neuroimaging -CEA, SU, ICM, https://cati-neuroimaging.com/)) and a French company (here Qynapse, http://www.qynapse.com).
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Résumé de thèse Introduction

Les progrès de l'imagerie par résonance magnétique (IRM) permettent aujourd'hui d'analyser in vivo les anomalies structurelles et fonctionnelles liées à différentes pathologies. En neurologie, l'IRM produit des images du système nerveux central (SNC) de haute résolution spatiale en deux ou trois dimensions, avec un meilleur contraste au niveau des tissus que la tomodensitométrie (CT). L'IRM est considérée aujourd'hui comme le meilleur outil d'investigation pour les pathologies touchant le SNC, que ce soit les maladies démyélinisantes comme la Sclérose en Plaques (SEP), ou les démences, comme la maladie d'Alzheimer. Aujourd'hui, la SEP est la maladie neurodégénérative la plus fréquente causant l'invalidité chez les jeunes adultes, avec une prépondérance chez les femmes (entre 1,3 et 2,5 millions de cas dans le monde). Selon l'Organisation Mondiale de la Santé1 , la démence est, quant à elle, une des causes principales de handicap et de dépendance parmi les personnes âgées dans le monde.

Elle touche 50 millions de personnes dans le monde, avec chaque année 10 millions de nouveaux cas. Les étiologies de ces deux pathologies reposent sur des bases distinctes : la SEP est une maladie chronique auto-immune, inflammatoire du système nerveux central, responsable d'une dégradation des gaines de myéline et d'une dégénérescence neuronale ; la démence peut être engendrée par différentes maladies, la plus fréquente étant la maladie d'Alzheimer (60 à 80% des cas). On considère le vieillissement et les facteurs génétiques (antécédents familiaux) comme les facteurs de risque les plus importants pour le développement de la maladie d'Alzheimer. D'autres formes de démence sont également assez fréquentes comme la démence vasculaire (15 à 25% des cas), la démence à corps de Lewy (5 à 15%) ou encore la démence frontotemporale, plus rare. La démence peut également avoir des origines mixtes, particulièrement à R ÉSUM É DE TH ÈSE un âge avancé.

Lorsque des symptômes apparaissent chez un patient (perte graduelle de la mémoire, difficultés croissantes à communiquer), un examen neuroradiologique par IRM est réalisé pour aider à en déterminer les causes, qui pourraient être par exemple un accident vasculaire cérébral ou des anomalies de la substance blanche. Ces dernières apparaissent hyperintenses sur les images T2-FLAIR, d'où leur nom de hyperintensité de la substance blanche, HSB. Dans le cas de la SEP, elles sont de forme arrondie, de volume variable (de 2,1 à 116 mL pour des sujets rémittents [START_REF] Wang | Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load[END_REF]) et disposées préférentiellement autour des ventricules cérébraux, mais également dans le cortex cérébral et dans la fosse postérieure. Dans le cas des démences, les HSB regroupent des atteintes diffuses de la substance blanche se rejoignant au fil du temps (confluence) et font partie des trois principaux types d'anomalies vasculaires liées à l'âge, avec les lacunes et les microsaignements.

La caractérisation en volume et en nombre de ces HSB est généralement effectuée manuellement par des neuroradiologues, via des échelles visuelles ou en les segmentant sur les images T2-FLAIR. Néanmoins, cette méthode est très coûteuse en temps humain et pose des problèmes de reproductibilité (variabilité intra-et inter-observateurs), étant donné l'aspect plus ou moins contrasté des bords des lésions selon leur type et leur stade d'évolution. Cette approche est par conséquent difficilement applicable en routine clinique et pour les études sur de grandes bases de données, regroupant plusieurs milliers de sujets.

Pour répondre à cette problématique, des méthodes de segmentation automatique ont été proposées, comme, par exemple, WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF], validée sur des données 2D de patients avec des anomalies liées à l'âge. Dans cette thèse, nous proposons WHASA-3D [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF], une amélioration majeure de la méthode WHASA, qui vise à mettre au point et valider une version de WHASA fiable et robuste sur tous les types de données T2-FLAIR et de lésions associées à ces deux pathologies, en restant adaptée au contexte multicentrique (nouvelles données à gérer : acquisitions à 3T et/ou en 3D, sur des patients SEP). Une fois cette version disponible, des extentions pour la méthode sont proposées, pour différencier les lésions selon leur localisation anatomique (cartographie des lésions), et pour permettre une analyse longitudinale fine pour suivre l'apparition de nouvelles lésions entre deux ou plusieurs R ÉSUM É DE TH ÈSE points dans le temps ; ceci est particulièrement important dans le contexte des maladies dégénératives et correspond à un besoin des cliniciens pour leur pratique clinique et un moyen pour concevoir des marqueurs de substitution plus fiables pour les essais cliniques.

Organisation du manuscrit

Le manuscrit est composé de trois grandes parties.

Dans une première partie (Partie I) je présenterai de manière succinte les principes de bases de l'IRM, puis décrirai l'aspect des HSB en IRM pour les patients atteints de SEP et des pathologies liées au vieillissement au Chapitre 1. Dans le Chapitre 2, je décrirai un état de l'art des méthodes utilisées pour la quantification des HSB, afin de pouvoir présenter les objectifs de la thèse. Dans la deuxième partie (Partie II), je présenterai tout d'abord WHASA-3D, une amélioration majeure de la méthode de segmentation automatique WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] dans le Chapitre 3. Le contexte clinique et physiopathologique des pathologies liées à l'âge et de la SEP est ensuite abordé, avec une présentation des contexte, symptômes et de l'épidémiologie associée. Je présenterai ensuite les différents aspects des lésions liées à l'âge et lésions de SEP en IRM, qui sont au coeur de ce projet. Pour la SEP, les lésions sont de forme arrondies et ovales. Elles peuvent être présentes dans n'importe quelle région du SNC. L'activité inflammatoire des lésions peut aussi être révélée par injection de produit de contraste, afin de déterminer si la lésion est active. Elles peuvent donc être catégorisées de deux façons : soit suivant leur localisation dans le cerveau (périventriculaire, infratentorielle, juxtacorticale/corticale ou dans la substance blanche profonde), soit suivant leur activité inflammatoire (lésions réhaussées par le produit de contraste, lésions hypointenses en T1 (trous noirs), lésions à croissance lente, lésions diffuses de la substance blanche). Une description détaillée et des illustrations ont été apportées pour chaque type de lésion. Pour les sujets âgés, l'aspect des HSB est différent et plus variable. Les HSB apparaissent souvent au début comme des bordures au niveau des cornes frontales et/ou occipitales, ainsi que fins liserets autour des ventricules latéraux (HSB périventriculaires). La progression des lésions aboutit à des formes diffuses s'étendant dans la substance blanche, avec un aspect confluent.

Les HSB apparaissent comme un marqueur d'intérêt pour les maladies associées comme la SEP ou encore la démence, et des méthodes ont été proposées pour les R ÉSUM É DE TH ÈSE caractériser quantitativement.

Chapitre 2: Etat de l'art de la quantification des HSB Je ferai une revue de l'état de l'art sur les stratégies utilisées pour la quantification des HSB, en insistant sur leur validation en comparaison avec des segmentations manuelles de référence. Une première quantification des HSB a été proposée par [START_REF] Fazekas | Mr signal abnormalities at 1.5 t in alzheimer's dementia and normal aging[END_REF] Le but des méthodes de segmentation automatique est donc de fournir des mesures quantitatives fiables sur des grands groupes de patients. De manière générale, on classe ces méthodes en deux grandes catégories : les méthodes non supervisées et les méthodes supervisées. Les premières s'appuient sur une modélisation qui a été spécifiquement adaptée. Les secondes, en revanche, utilisent une partie des données pour laquelle une segmentation manuelle est disponible, appelée "base d'apprentissage", et infèrent par des algorithmes de classification, les règles permettant d'obtenir ces segmentations. Ces règles sont ensuite appliquées à des données "nouvelles".

Parmi les méthodes non supervisées, des méthodes de seuillage des intensités de la T2-FLAIR ont été proposées, ainsi que des méthodes basées sur des tissus et atlas afin de guider la segmentation avec une information topologique ou statistique, sur l'appartenance d'un voxel à un tissu particulier. La méthode White matter Hyperintensities Automated Segmentation Algorithm (WHASA) [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] fait partie de cette catégorie. Parmi les méthodes supervisées, on peut distinguer les méthodes reposant sur l'apprentissage automatique classique (machine learning), de celles reposant sur l'apprentissage automatique profond (deep learning). Pour les méthodes conventionnelles, des algorithmes reposant sur la classification par k plus proches voisins ou des modèles de régression ont été proposés pour différencier les voxels non lésionnels des voxels lésionnels. Avec l'augmentation des données d'apprentissage disponibles ainsi que l'augmentation de la puissance de calcul, les R ÉSUM É DE TH ÈSE approches d'apprentissage profond sont de plus en plus utilisées aujourd'hui, en particulier les réseaux de neurones, comme les réseaux de neurones convolutifs.

Afin de mieux comparer les approches de la littérature, je présenterai l'évaluation des performances de ces méthodes, en mettant en avant les nombreuses métriques utilisées pour évaluer la robustesse et la précision, ainsi que les bases de données utilisées. Ceci a mis en évidence le fait qu'aucune méthode proposée n'a été validée à la fois sur les sujets âgés et SEP. Cette tendance pourrait s'inverser, avec la création de plusieurs bases de données communes de HSB liés à l'âge ou à la SEP.

Objectifs de la thèse

Les progrès de l'imagerie médicale permettent de proposer aujourd'hui des séquences 3D, isotropes ou quasi isotropes, pour les T2-FLAIR, qui remplacent les séquences traditionnellement acquises en 2D (coupe par coupe), fortement anisotropes dans la direction des coupes. Les HSB peuvent donc être définies en trois dimensions, ce qui est particulièrement intéressant pour les plus petites HSB, comme les lésions focales en SEP. Par ailleurs, de plus en plus de centres sont équipés d'IRM 3T, avec des antennes de réception dotées d'un plus grand nombre de canaux, permettant d'obtenir des données 3D T2 FLAIR moins bruitées ; cependant, ces données présentent des différences importantes au niveau du contraste et des artefacts, pouvant être interprétées comme des HSB. La méthode WHASA avait été développée et validée uniquement sur des données 2D acquises à 1.5T. L'adaptation aux données acquises en 3D et/ou à 3T demande donc de repenser la méthode sur de nombreux aspects, que ce soit au niveau de la gestion tridimensionnelle des lésions ou au niveau du contraste.

Par ailleurs, une difficulté importante vient de la nécessité d'assurer la robustesse de la méthode par rapport aux conditions d'acquisition et aux types de HSB à segmenter. Les caractéristiques des lésions (valeur d'intensité et contraste) dépendent fortement des conditions d'acquisition (type de machine, paramètres d'acquisition. . . ) [START_REF] Biberacher | Intra-and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis[END_REF], qui influencent également la qualité de l'image (contraste des tissus, bruit. . . ). Par ailleurs, les HSB de SEP et les HSB liées à l'âge n'ont pas les mêmes caractéristiques topographiques, de forme et de contraste [START_REF] Kim | Classification of white matter lesions on magnetic resonance imaging in elderly persons[END_REF].

Les objectifs de cette thèse seront donc : Partie II -Amélioration de la méthode WHASA pour les données 3D T2-FLAIR, 3T et patients SEP

R
Les travaux décrits aux chapitres 3 et 4 font partie intégrante de ma publication publiée dans le journal Neuroimage:Clinical [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF]. La méthode WHASA de [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF], repose sur une combinaison de diffusion non-linéaire et de segmentation par ligne de partage des eaux pour obtenir deux représentations de l'image T2-FLAIR à différents niveaux de détail. Une fois la T2-FLAIR découpée en régions distinctes, une étape de fusion de régions coupe par coupe est réalisée afin de fusionner les régions dont l'intensité moyenne est similaire. Ensuite, l'utilisation de trois critères (intensité, localisation dans la substance blanche, non connexité à l'interface substance grise/LCS) associée à une reconstruction géodésique permet d'obtenir la segmentation finale. Cette méthode a été développée spécifiquement pour les données 2D, avec des étapes implémentées avec une approche par coupe, ce qui n'est pas optimal ni adapté pour des données 3D T2-FLAIR.

Nous avons donc adapté ces étapes afin qu'elles soient mieux adaptées pour les images en trois dimensions. Les étapes de diffusion non-linéaire et de segmentation par ligne de partage des eaux ont été modifiées pour permettre d'avoir une image diffusée et parcellisée uniforme sur l'ensemble du volume. L'étape de fusion des régions adjacentes a totalement été repensée au niveau algorithmique, et optimisée pour fu-R ÉSUM É DE TH ÈSE sionner les régions dans les trois dimensions dans un délai compatible avec la routine clinique. Enfin, une amélioration a également été apportée au niveau du calcul du seuil d'intensité avec une estimation automatique des hyperparamètres de WHASA liés au contraste et à l'intensité de l'image en entrée, afin de permettre à la méthode de mieux s'adapter au sujet et au contraste substance blanche/substance grise de l'image à segmenter.

La validation sur un grand nombre de données variées est essentielle pour pouvoir conclure sur la fiabilité de la méthode. Une base d'évaluation a été constituée pour évaluer la généralisabilité de la méthode sur d'autres données issues de la routine clinique, à d'autres stades SEP et à d'autres pathologies neurodégénératives. Elle est composée de 60 patients, issus de quatre bases de données acquises sur sept machines IRM différentes, avec une importante variabilité de charge lésionnelle, la moitié des sujets étant atteints de SEP et l'autre moitié étant des sujets âgés et/ou atteints de démence. Une référence a également été créée grâce à un consensus construit à partir de segmentations manuelles effectuées par trois experts. Sur cette base hétérogène, la performance de WHASA-3D est supérieure à celle de WHASA, en terme d'accord volumique et spatial par rapport à la référence. En effet, nous observons en moyenne une augmentation du taux de recouvrement (indice Dice) de 0.63 à 0.67 et une réduction de l'erreur volumique en valeur absolue de 6.2 à 3.1 mL. Une analyse plus fine des résultats montre que l'amélioration est particulièrement importante pour les sujets SEP et moins visible sur les sujets âgés et/ou atteints de démences, pour lesquels de bonnes performances sont conservées sur des données 3D T2-FLAIR.

Afin de mieux évaluer les performances de WHASA-3D, une étude de comparaison a été menée avec d'autres méthodes de la littérature sur le même jeu de données, présentée dans le chapitre suivant.

Chapitre 4: Comparaison de WHASA-3D avec six autres méthodes de segmentation L'état de l'art (chapitre 2) présente plusieurs approches qui avaient été proposées pour la segmentation des HSB. Cependant, ces approches ont été évaluées sur des données différentes, empêchant une comparaison non biaisée de leurs performances.

Je présente dans cette thèse une évaluation de six méthodes automatiques dédiées, testées sur le même jeu de données que WHASA-3D, et représentant les approches proposées les plus utilisées (quatre non supervisées et deux supervisées). Cette com-
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paraison est focalisée sur des sujets atteints de SEP car la plupart des méthodes comparées ont été implémentées dans le but de segmenter les HSB en SEP. Les méthodes non supervisées sont LST-LGA [START_REF] Schmidt | BIBLIOGRAPHY An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis[END_REF], lesionBrain [START_REF] Coupé | Lesionbrain: an online tool for white matter lesion segmentation[END_REF], Lesion-TOADS [START_REF] Shiee | A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions[END_REF], LST-LPA [START_REF] Schmidt | Bayesian inference for structured additive regression models for largescale problems with applications to medical imaging[END_REF] ; les méthodes supervisées sont BIANCA [START_REF] Griffanti | Bianca (brain intensity abnormality classification algorithm): A new tool for automated segmentation of white matter hyperintensities[END_REF] et nicMSlesions [START_REF] Valverde | Automated tissue segmentation of mr brain images in the presence of white matter lesions[END_REF].

Pour les méthodes le permettant, la comparaison sera effectuée en deux étapes :

1. Avec les paramètres par défaut : toutes les méthodes de segmentation automatique seront évaluées sans modification des paramètres, donc avec le modèle pré-entraîné fourni. le diagnostic de la SEP [START_REF] Vellinga | Clinical correlations of brain lesion distribution in multiple sclerosis[END_REF][START_REF] Filippi | Mri criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines[END_REF] et est déjà utilisée dans les critères diagnostiques de McDonald (Polman et al., 2011;[START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF]. L'analyse spatiale permet de classer les lésions selon leur positionnement relatif aux ventricules, à la zone infratentorielle, au cortex ou encore au sein de la substance blanche (lésions paraventriculaires, infratentorielles, juxtacorticales ou encore profondes).

Je présenterai dans un premier temps les bases de données SEP utilisées pour • Périventriculaires : utilisation de la carte de distance aux ventricules pour un critère sur la distance minimale aux ventricules ;

• Infratentorielles : utilisation d'une zone infratentorielle générée à partir de la fusion du tronc cérébral et du cervelet pour un critère d'inclusion totale ;

• Juxtacorticales : utilisation d'une zone corticale construite à partir de la segmentation de la substance grise et des autres structures pour un critère d'inclusion partielle.

Si une HSB ne répond à aucun des critères mentionnés ci-dessus, elle sera dans la catégorie HSB profondes.

Une première validation a été réalisée sur 104 sujets SEP, provenant des bases 
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with Lewy bodies (5 to 15%) and the more rare frontotemporal dementia.

When symptoms appear for a patient (gradual loss of memory, increasing difficulty in communicating), a brain MRI scan is acquired to help determine the cause of the symptoms, that, among other possible explanations, could be a stroke or white matter abnormalities. The analysis of these abnormalities is currently the focus of many research groups. The aim is here to identify, from MRI images, features that reflect an underlying pathological mechanism. In MS, WMH are rounded in shape, variable in volume (from 2.1 to 116 mL for remitting subjects [START_REF] Wang | Survey of the distribution of lesion size in multiple sclerosis: implication for the measurement of total lesion load[END_REF])

and preferentially located around the cerebral ventricles, but also in the posterior fossa. In dementia, WMH are often a group of diffuse white matter lesions and are one of the three main types of age-related vascular abnormalities, together with lacunae and microbleeds. For both cases, WMH are visible on MRI data acquired with conventional sequences (T1, T2, T2-FLAIR weighting), and their volume can be quantified in order to analyse the inflammatory activity in a given subject. These 
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ages. However, such methods are usually validated only for a specific type of patholoy, e.g. WHASA had only been evaluated on elderly subjects with or without dementia, for whom lesions do not have the same characteristics as for MS patients. Furthermore, the method was only validated on images acquired in two dimensions, with a magnetic field of 1.5T. Although WHASA shows good multicentre segmentation capabilities [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] further adaptation was needed to consider its use in the context of MS on three dimensions images acquired on 3T MRI systems.

Thesis objectives

In this thesis, we propose WHASA-3D [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF], a major improvement of the WHASA method, aiming at being a reliable and robust version of WHASA for all acquisition types of T2-FLAIR data and for WMH associated with both pathologies, while remaining consistent on subjects acquired in a multicentre framework (3T and/or 3D acquisitions). Following the release of this method, extensions were proposed to yield complementary characterisation of WMH, namely to first classify WMH according to their anatomical location (WHASA-Spatial) and to segment new or enlarging lesions between two visits (WHASA-Longitudinal).

Industrial partnership

This work was done within the framework of a collaboration between research and industry. The developed algorithms (WHASA-3D, WHASA-spatial and WHASAlongitudinal) were implemented in a commercially available, CE-marked and FDAapproved, image processing software QyScore®. 

Thesis outline

The manuscript is organized in three main parts.

INTRODUCTION

In the first part (Part I), we will briefly present the basic principles of brain neuroanatomy and MRI, and then describe the appearance of WMH in MRI for patients with MS and age-related pathologies in Chapter 1. In Chapter 2, we will describe state-of-the-art methods used for the quantification of WMH.

In the second part (Part II), we will first present WHASA-3D [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF], a major improvement of the WHASA automatic segmentation method [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] in Chapter 3. We will then evaluate the performance of WHASA-3D in comparison with six other methods available in the literature in Chapter 4.

Finally, in the last part (Part III), we will detail two new extensions of the method aimed at providing complementary information for diagnosis and clinical monitoring.

We will focus on two specific aspects: the detection of new or enlarging lesions between two successive acquisitions with a comparison of two approaches developed at Qynapse : a non supervised method WHASA-Longitudinal and a deep-learning model U-Net, on a dataset composed of subjects who experienced a change in MRI scanner at follow-up (detailed in Chapter 6), and WHASA-Spatial, an algorithm that allows an automatic identification of lesions according to their anatomical location (detailed in Chapter 7).

The data used in the development and validation of these two extensions will be presented in Chapter 5. An additional Chapter 8 will be dedicated to the description of the implementation of WHASA-3D in the software QyScore® and in the CATI environment.

In this part, Chapter 1 will introduce the basic concepts of neuroanatomy of the brain and MRI.

We as it provides good contrast between grey (GM) and white matter (WM). It is nowadays considered as the best tool for visualising in-vivo abnormalities that manifest themselves as hyperintensities, reflecting a reaction in the white matter of the central nervous system. We will start by briefly introducing some bases in neuroanatomy, followed by the basic principles of MRI and then describe the abnormalities called white matter hyperintensities for patients with Multiple Sclerosis and age-related pathologies.

Neuroanatomy

The brain is an organ that controls all functions of the body, interprets information from the outside world, and embodies the essence of the mind and soul, for instance intelligence, creativity, emotion, or memory. In this section, we will present the brain and its main components, such as the cerebrum, cerebellum and brainstem. We will finally mention the cerebrospinal fluid of the brain through the ventricular system.

Brain

As illustrated in Figure 1.1, the brain is composed of the cerebrum, cerebellum and the brainstem:

1. Cerebrum: the largest part of the brain, embeds two hemispheres. It coordinates higher cognitive and executive functions, such as interpreting sensory information, as well as managing speech, reasoning or learning, or emotions or even fine control of movement.

2. Cerebellum: under the cerebrum. it coordinates muscle movements, and allows to maintain posture and balance.

3. Brainstem: at the top end of the spinal cord, it connects the cerebrum and cerebellum to the spinal cord, and is in charge of several crucial automatic functions such as monitoring breathing, heart rate or body temperature and many others. The cerebrum is the largest part of the brain and is made of two types of tissuegrey matter and white matter (Figure 1.2):

• Grey matter embeds neuronal bodies and is mainly at the outer border of each cerebral hemisphere (it forms the cerebral cortex), and is associated with information processing and cognition.

• White matter forms the deeper parts of the brain embeds myelinated axons that connect the various grey matter areas to allow transferring neuronal information.

The outer surface of each hemisphere of the cerebrum is highly convoluted, as shown in Figure 1.2, with sulci (valleys) alternating with gyri (round hills). The two hemispheres are connected by a white matter structure called the Corpus callosum.

Deeper sulci, almost stable between subjects, allow to classify the cerebral cortex into four lobes (Figure 1.3), named according to the name of the corresponding cranial bone overlying each part and associated with specific functions as described below.

• Frontal lobe: it is the most anterior region of the cerebrum, and is associated with personality, mood and social behaviour. • Occipital lobe: it is the most posterior part of the cerebrum, and is associated with the visual system.

• Parietal lobe: it is located between the frontal lobe and the occipital lobe and is associated with superior processes, such as language or calculation.

• Temporal lobe: it is inferior to the frontal and parietal lobes, around the brainstem, and is associated with memory, emotion and hearing. 

Cerebrospinal fluid within the brain

The CNS has to receive oxygen and nutriment constantly, with a very high oxygen demand -at rest it requires one fifth of the body's total oxygen consumption.

Furthermore, oxygen deprivation can have dramatic consequences, ischemic cell death resulting within minutes after oxygen deprivation. We will not go into details into the arterial supply and venous drainage of the brain as it is rather complex, and not relevant in this thesis. However, we will focus on cerebrospinal fluid (CSF), its functions, production and the anatomy of the ventricles that contain it.

The CSF is an ultrafiltrate of plasma located all around the brain and spinal cord.

It plays three main roles (protection, buoyancy and chemical stability). It originates from the ventricles, that are a set of communicating cavities within a brain. The ventricular system is responsible for the production, transport and removal of the CSF. It is lined by ependymal cells, forming the choroid plexus, in which CSF is produced. There are four ventricles (Figure 1.7):

• Left and right lateral ventricles: one is located within each hemisphere of the cerebrum. They have 'horns' which project into the frontal, occipital and temporal lobes.

• Third ventricle: The third ventricle is situated in between the right and the left thalamus. The lateral ventricles are connected to the third ventricle by the foramen of Monro.

• Fourth ventricle: The fourth ventricle lies within the brainstem, at the junction between the pons and medulla oblongata. It receives CSF from the third ventricle via the cerebral aqueduct.

Sources

• https://teachmeanatomy.info/neuroanatomy/

• https://www.mayfieldclinic.com/pe-anatbrain.htm

• https://www.ncbi.nlm.nih.gov/books/NBK234157/

• https://dana.org/article/neuroanatomy-the-basics/

• https://neuroanatomy.ca

Magnetic Resonance Imaging

As the main focus of this thesis lies in image processing rather than acquisition, we will limit ourselves here to the source of the MRI signal and physics principles allowing to obtain different contrasts in images, known as weightings, which are standard in MRI. In particular, the concepts of spatial encoding, fast imaging sequences and more advanced techniques such as diffusion or functional imaging will not be discussed.

CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI Interested readers are referred to [START_REF] Robert W Brown | Magnetic resonance imaging: physical principles and sequence design[END_REF] for an in-depth understanding of key fundamental and operational principles of MRI.

MRI principles derived from physics

In this section, we will briefly discuss the origin of the MR signal and the MRI principles allowing us to form different types of contrasts.

Source of the MR signal

Figure 1.8: (Left) Without an external magnetic field, the magnetic moments of the nuclei are distributed at random and the net magnetization vector is zero. (Right) When there is a strong external magnetic field, the spinning nuclei align parallel or antiparallel to the external field (B 0 ) with a few more parallel than antiparallel. This results in a net magnetization factor parallel to the external magnetic field. [START_REF] Van Geuns | Basic principles of magnetic resonance imaging[END_REF] The body is made up of atoms, a large proportion of which being hydrogen atoms.

The nuclei of hydrogen, which have only one proton, are charged and spin about themselves, behaving like little magnets. In normal conditions, these tiny magnets are randomly distributed in space; the magnetic moments thus cancel each other out, resulting in a net magnetic vector being null (Figure 1.8 (left)). However, when the patient is submitted to a strong external magnetic field (B 0 ), the nuclei adopt one of two possible orientations: parallel or antiparallel (Figure 1.8 (right)). Parallel CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI alignment is the lower energy state and is thus the preferred alignment, whereas antiparallel alignment is the higher energy state, and thus less frequent.

Individual nuclei do not strictly line up with the magnetic field but precess around the direction of the external field (Figure 1.9 (A)). The frequency of this precession is given by the Larmor equation : F = γB0 2π where F is the precessional frequency, B 0 is the magnetic field strength, and γ is the gyromagnetic ratio of the nucleus. The phase of the precession motion around the axis of the main external magnetic field is different for each individual nucleus (Figure 1.9 (B)).

Figure 1.9: (A) The individual nuclei spin around their own axes and precess around the direction of the external field (B 0 ). (B) The phase of the precession around the axis of the external magnetic field is different for each individual nucleus. [START_REF] Van Geuns | Basic principles of magnetic resonance imaging[END_REF] 

Excitation

The net magnetization vector from the nuclei inside the magnet in its equilibrium state is static and does not produce a measurable signal. To obtain information from the spins, the direction of the net magnetization vector has to be altered. To do so, the precessing spins are excited by applying an energy in the form of radiofrequency (RF) energy pulses at the Larmor frequency (resonance frequency). When the body is exposed to an RF signal at the resonance frequency, two phenomena occur: first, some protons absorb energy to switch from the parallel state to the higher level of the antiparallel state, and second, the spins are forced to precess in phase. The effect is that the net magnetization (Mz) flips at 90°from the positive z-axis to the transverse plane xy. The net magnetization in the transverse plane rotates around -→ B 0 at the Larmor frequency.

Return to equilibrium

The equilibrium state will be achieved (high to low energy) after the extinction of the RF frequency transmitter. This means that the magnitude of Mz in the transverse plane will decrease over time. This decreasing signal is called the free induction decay (FID) and the induced signal in the receiver coil will decrease. The time required The longitudinal relaxation process is characterized by the T 1 relaxation time, which is defined as the time required for the system to recover to 63% of its equilibrium value after being exposed to a 90°RF pulse. (Figure 1.11). The transverse relaxation is related to the phase of the spins. Initially, after the excitation by the RF pulse, the spins precess completely in phase. However, the spins will after dephase due to small differences in the Larmor frequency induced by local magnetic inhomogeneities, due to spin-spin interaction and inhomogeneity of the main static magnetic field -→ B 0 . This process is characterized by the T 2 relaxation time (Figure 1.10), defined as the time required for the signal to decrease to 37% of its original value (Figure 1.11). The T 2 time is different between tissues, but the T 2 time is always shorter than the T 1 time.

Figure 1.11: Longitudinal relaxation is characterized by the T 1 relaxation time, which is the time to recover 63 % of the original net magnetization vector. Transverse relaxation is characterized by the T 2 time, which is the time for the signal to decrease to 37% of the original signal. [START_REF] Van Geuns | Basic principles of magnetic resonance imaging[END_REF] The FID signal emitted due to the relaxation processes is measured after a certain period following the initial RF. The frequency information is converted in the signal from each location in the image plane to corresponding intensity levels via the Fourier transform, which are then displayed as shades of gray. Differences in relaxation time between tissues translate in different signals and accordingly tissue contrast appears in the resulting MR image.

Brain MRI sequences

MRI sequences essentially rely on two parameters, called echo time (T E ) and repetition time (T R ), which are optimized to provide image contrast based on T 1 and T 2 . The echo time represents the time between the start of the RF pulse and the maximum in the signal, and the repetition time is the time between successive RF pulses. Terms such as "T1-weighted" and "T2-weighted" are used to communicate to other physicians the type of MR pulse sequence employed to generate a series of images (Figure 1.12), indicating the main source of contrast in the images.

Standard MRI sequences are described below, and are illustrated in Figure 1.12.

Figure 1.12: MRI sequences from the same axial slice of a subject 1

• T1-weighted images: The T1-weighted sequence is the standard imaging obtained with short TE and short TR (TE < 30 ms, TR < 1000ms). In T1weighted brain MRI, the grey matter is seen as a dark grey area, the white matter is light grey and the cerebrospinal fluid (CSF) appears black. Structural T1-weighted images are acquired in most research studies because they allow an accurate differentiation of brain structures. This sequence has been improved

to allow an isotropic 3D acquisition, with only 5 min of acquisition time.

• T2-weighted images: The T2-weighted MRI is built with long TE and long TR (TE > 80ms, TR > 2000ms). In these images, the contrast between tissues is reversed compared to T1-weighted images: the CSF looks bright, GM is light grey and the WM appears dark grey. The T2-weighted images are particularly useful to observe inflammatory processes or oedemas.

• Proton density weighted images (PD): Unlike T1 and T2 weighted images, proton density (PD) does not display the magnetic characteristics of the hydrogen nuclei but the number of nuclei in the area being imaged. To get a PD weighted image we want to minimise the contribution of both T1 and T2 contrasts. This image is obtained with a short TE and a long TR, and has a more pronounced distinction between grey matter (bright) and white matter (darker grey), but with little contrast between brain and CSF.

• Fluid attenuated inversion recovery (FLAIR): These images use an inversionrecovery pulse to null signal from fluids. In the case of brain imaging, it can be used to suppress the signal from CSF to help differentiate the periventricular CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI hyperintensities in the ventricles from the CSF.

For the purpose of the present work, we will consider exclusively T1-w and T2-FLAIR images.

White matter hyperintensities

As MRI has greater sensitivity to subtle changes in brain water content, it is widely used in clinical routine to look for lesions in the brain. These areas appears hyperintense on T2-weighted and FLAIR MRI sequences, and are referred to as white matter hyperintensities (WMH). As their role and appearance is different between pathologies, we will first describe an overall clinical context and then focus on the appearance of WMH in conventional MRI for MS population and elderly individuals. In MS, lesions (also known as plaques) may be observed anywhere in the CNS white matter, including the supratentorium, infratentorium, and spinal cord. Since it is a demyelinating disease, MS lesions usually evolve differently in early versus chronic disease phases, and within each phase, different plaque types and plaques in different stages of demyelinating activity are found. On MRI, active plaques can be revealed with contrast enhancing sequences (e.g with gadolinium), and chronic plaques seem to be defined as dirty white matter or smoldering lesions in FLAIR sequences, and as black holes in T1-weighted images.

WMH in Multiple Sclerosis

After a short definition of a MS lesion, we will describe in this section the MS lesions according to their localization and then according to their inflammatory activity (contrast enhancing, black holes, smoldering, and dirty white matter lesions).

Definition

A lesion in MS is defined on MRI as an area of focal hyperintensity on a T2-weighted (T2, T2-FLAIR or similar) or PD-weighted sequence.

Typical multiple sclerosis lesions are round to ovoid in shape and their size ranges from a few millimetres to more than two centimetres in diameter. Generally, they should be at least 3 mm in their long axis to fulfill the diagnostic criteria, although the topography should also be taken into account. Lesions should be visible on at least two consecutive slices to exclude artefacts or small hyperintensities, although in acquisitions with larger slice thickness (e.g ≥3 mm), smaller lesions may be visible on a single slice. MS lesions typically develop in both hemispheres, but their distribution Periventricular MS lesions are typically distributed along the deep medullary veins (perivascular), thus having their main axis perpendicular to the lateral ventricles.

They have an ovoid shape on the axial plane and are generally defined as "Dawson's fingers". This pattern of lesion morphology is due to the selectively perivenular location of demyelination in MS. T2-FLAIR sequences (preferably 3D) have a high sensitivity to detect periventricular lesions and to distinguish lesions from enlarged perivascular space. A second sequence (T2-weighted, PD-weighted, or T1-weighted magnetization prepared rapid acquisition with gradient echo (MPRAGE)) may help to confirm periventricular involvement and distinguish periventricular "capping" at the frontal and occipital horns of the lateral ventricles that are considered as non pathological.

1.3.1.2.2.2 Infratentorial lesions An infratentorial lesion is defined as a T2-hyperintense area in the brainstem, cerebellar peduncles or cerebellum (Figure 1.16). Such lesions commonly occur near the surface or, when more centrally, usually have an ovoid/round shape, e.g. along the trigeminal tract. They may range from single, well-delineated lesions to discrete sub-pial "linings" along the periphery of the brainstem. They can occur in any portion of the cerebellar white matter and peduncles, frequently involving the middle and superior cerebellar peduncles.

Juxtacortical or cortical lesions

A juxtacortical lesion is defined as a T2-hyperintense area in the white matter lesion abutting the cortex without intervening normal white matter. In clinical routine, it is best detected using a T2-FLAIR sequence (preferably 3D). They typically involve the U-fibres and can be located in all brain lobes and in the cerebellum (Figure 1.17) Lesions close to the cortex can occur with ageing and in other neurological diseases, including migraine and ischaemic small-vessel disease.

Cortical lesions are defined as focal signal abnormalities completely within the Figure 1.17: Axial 3D T2-FLAIR sections showing juxtacortical white matter lesions abutting the cortex with no white matter in between [START_REF] Homos | Can white matter lesion burden predict involvement of normal appearing thalami in multiple sclerosis? study using 3d flair and dti[END_REF].

cortex or spanning the cortex and underlying white matter. In MS, these lesions are usually well depicted using T2-FLAIR but may be better detected/localized with dedicated MRI sequences, such as double inversion recovery (DIR) or phase-sensitive inversion recovery (PSIR). They also are a distinctive feature of multiple sclerosis and facilitate identification of patients with clinically isolated syndromes who are at higher risk of developing a second clinical attack. Imaging of cortical lesions in MS is challenging due to technical issues and their pathological features (i.e. most of them involve only the more superficial, less myelinated layers of the cortex). Thus, guidelines based on lesion signal characteristics and size have been proposed. A lesion confined to the cortex is called intracortical. • Type I are cortico-subcortical lesions affecting both grey matter and white matter (also known as leukocortical),

• Type II are small perivenous intracortical lesions not affecting white matter or the pial surface (also known as intracortical),

• Type III are characterized by demyelination extending inward from the pial surface of the brain and are the most frequent type of cortical lesions,

• Type IV are lesions extending through the whole cortical width but without passing its border with the white matter.

Current diagnostic criteria and guidelines for multiple sclerosis diagnosis acknowledge that clinical MRI scanners (e.g. 1.5T and 3.0T strength) cannot reliably distinguish between intracortical, leukocortical and juxtacortical lesions. Moreover, advanced MRI sequences recommended for their identification are not widely applied in the clinical setting, mostly because of their acquisition time, and can be difficult to interpret. Therefore, for practical reasons, the definition of juxtacortical involvement has been expanded to include all three types of lesion (I, II and III) but not to types IV lesions as they are difficult to notice in clinical MRI sequences. small (but at least 3mm), covering less than two vertebral segments and usually less than half of the transverse cord area. Plaques in the spinal cord tend to be located in the periphery of the cord and usually do not respect the boundaries between grey and white matter [START_REF] Lisa M Tartaglino | Multiple sclerosis in the spinal cord: Mr appearance and correlation with clinical parameters[END_REF]. Finding multiple short-segment spinal cord lesions is highly specific for MS and only rarely occurs in other inflammatory CNS diseases compared with brain T2-hyperintensities [START_REF] Kidd | Spinal cord mri using multi-array coils and fast spin echo: Ii. findings in multiple sclerosis[END_REF].

1.3.1.2.3 MS lesions according to their inflammatory activity

1.3.1.2.3.1 Gadolinium-enhancing lesions Contrast-enhanced MR imag-
ing is a sensitive method for detecting active MS lesions. Gadolinium (Gd) enhancement plays an important role in the evaluation of patients suspected of MS. Gd enhancement is a marker of blood-brain barrier breakdown and histologically correlates with the inflammatory phase of lesion development. Safety concerns regarding gadolinium administration and its tendency to accumulate in the brain can be mitigated by controlling the frequency of administration at follow-up. Enhancement in new inflammatory demyelinating lesions is a short-lived feature (typically 2-8 weeks, although typically <4 weeks) in most cases, thus generally differentiating recent from older lesions [START_REF] Filippi | Glatiramer acetate reduces the proportion of new ms lesions evolving into "black holes[END_REF]. Very rarely, plaques may enhance for more than 6 months [START_REF] He | Enhancing patterns in multiple sclerosis: evolution and persistence[END_REF]; lesions that enhance for longer than 3 months are already exceptional and should raise the possibility of alternative pathology, including sarcoidosis or vascular abnormality such as developmental venous anomaly. Approximately 80% of contrast enhancing lesions appear hypointense on the correlating unenhanced T1-weighted images. However, once contrast enhancement fades out, the hypointense lesions may become isointense, and less than 40% of them develop into persistent black holes [START_REF] Van Waesberghe | Patterns of lesion development in multiple sclerosis: longitudinal observations with t1-weighted spinecho and magnetization transfer mr[END_REF]. This return to the T1 isointense state or mild T1 hypointensity may indicate resolution of edema or partial remyelination. Black holes are considered to be acute when they coincide with a contrast en- , 1998;Bakshi et al., 2005) and when contrast enhancement disappears, these black holes may become isointense to the normal appearing white matter or develop hypointensities (14-41%). Lesions that show most profound hypointensity on T1-weighted images correlate pathologically with the most profound demyelination and axonal loss [START_REF] Bitsch | Mri-pathological correlates in ms[END_REF].

Longitudinal changes (Figure 1.24) of T1 hypointense lesion volume have been investigated in some clinical trials during recent years to determine if some drugs could prevent axonal loss irrespective of a decrease in enhancing lesions.

Slowly Expanding/Evolving Lesions Conventional brain MRI

provides reliable markers of acute inflammatory activity but has a low sensitivity and specificity for those tissue changes that characterize the progressive phase of MS. Identifying new or substantially enlarging T2 lesions, as done in clinical trials, is a marker for acute focal inflammation in MS, but does not capture the subtler chronic evolution of persistent T2 lesions. One of the neuropathological hallmarks of chronic inflamma-Figure 1.24: Axial T1-weighted without (a,c) and with (b,d) contrast images for baseline (upper images) and follow-up (lower images) of a patient with RRMS.

In the baseline images the patient has several Gd enhancing lesions (four of them have been marked by arrows) and some acute black holes. After 6 months, only one of the previously enhanced lesions has kept its signal intensity, i.e., changed into a chronic black hole [START_REF] Ali | MRI atlas of MS lesions[END_REF] tion in MS has been described as chronic active lesions or smoldering plaques. While acute MS plaques predominate in early relapsing MS patients and are likely substrate of clinical attacks, pathologically defined smoldering plaques are more prominent in progressive MS patients (12%-28% of plaques) [START_REF] Josa M Frischer | The relation between inflammation and neurodegeneration in multiple sclerosis brains[END_REF]. The largest analysis of histopathological lesion phenotypes in MS (2476 white matter plaques from 120 patients) showed that smoldering plaques were mainly seen in patients with disease duration beyond ten years, and peaked at approximately 20 years of disease duration and in patients of 50 years of age [START_REF] Josa | Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque[END_REF][START_REF] Luchetti | Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis[END_REF]. While some MS lesions remyelinate, completely or partially, other lesions re-CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI main, have a dark rim and appear to actively expand for many years. These persistent lesions have been given various names including chronic active, slowly expanding or smoldering lesions. After the acute phase of inflammatory demyelination at lesion onset, chronic lesions can show different pathological and repair outcomes, namely "chronic active/slowly expanding/smoldering," "chronic inactive" and, when repair is successful, "remyelinated. In two large histopathological studies, chronic active lesions accounted for approximately 30% of all analyzed lesions and prevailed in patients with higher disability. Several recent MRI pathological studies reported that chronic active lesions, which previously could only be detected at autopsy, can be identified on normal-appearing white matter (NAWM) on T2-weighted images [START_REF] Seewann | Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis[END_REF][START_REF] Ge | Dirtyappearing white matter in multiple sclerosis: volumetric mr imaging and magnetization transfer ratio histogram analysis[END_REF][START_REF] Grw Moore | Dirty-appearing white matter in multiple sclerosis[END_REF] and seems to be more prevalent in progressive MS (chronic phase) than RRMS (acute phase). They appear on T2-weighted images as a subtle, diffuse hyperintensity either surrounding or remote from focal WM lesions, sometimes identified in the periventricular or deep white matter (Figure for using MRI and cerebrospinal fluid analysis to speed the diagnostic process. MRI can be used to look for a second area of damage in a person who has experienced only one attack of MS-like symptoms -referred to as CIS. The MRI can also be used to confirm that damage has occurred at two different points in time [START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF].

DIS requires at least one T2-hyperintense lesion (of at least 3 mm in long axis), with or without symptoms, that are characteristic of MS in two or more of the four following locations:

• Periventricular (at least one lesion, unless the patient is over 50 in which case it is advised to seek a higher number or lesions)

• Cortical or juxtacortical

• Infratentorial brain regions

• Spinal cord
DIT can be demonstrated by the simultaneous presence of gadolinium-enhancing and non-enhancing lesions at any time or by a new T2-hyperintense or gadoliniumenhancing lesion on follow-up MRI, with reference to a baseline scan, irrespective of the timing of the baseline MRI [START_REF] Chris H Polman | Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria[END_REF][START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF]. 1.3.2 WMH in normal ageing and dementia

1.3.2.1 Clinical context
Dementia is a syndrome (a group of related symptoms) -usually of a chronic or progressive nature -in which there is a deterioration in cognitive function (i.e the abil- [START_REF] Debette | The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and metaanalysis[END_REF][START_REF] Vermeer | Silent brain infarcts and the risk of dementia and cognitive decline[END_REF]. Furthermore, vascular factors and cerebrovascular pathologies are increasingly recognized to be involved in the aetiology of Alzheimer's disease [START_REF] Lorius | Vascular disease and risk factors are associated with cognitive decline in the alzheimer's disease spectrum[END_REF][START_REF] Rufus O Akinyemi | Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer's disease and vascular dementia[END_REF][START_REF] John | Vascular risk factors and alzheimer's disease[END_REF]. In individuals with cognitive impairment, it is often challenging to determine the extent to which WMH contribute to the clinical picture. However, results

from prospective studies have provided strong evidence that WMH cause cognitive decline, in particular of information processing speed [START_REF] Niels D Prins | Cerebral smallvessel disease and decline in information processing speed, executive function and memory[END_REF][START_REF] Cees | Periventricular cerebral white matter lesions predict rate of cognitive decline[END_REF][START_REF] Garde | Decline in intelligence is associated with progression in white matter hyperintensity volume[END_REF][START_REF] Gary E Swan | Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy[END_REF].

The aspect of age-related WMH is quite variable. In their mild form, WMH often appear as small 'caps' on the frontal and/or occipital horns and as thin 'rims' along the walls of the lateral ventricles on transverse sections (periventricular WMH), or as punctuate foci in the subcortical white matter which are located apart from the cerebral ventricle (deep WMH). As the severity of the lesions increases, the periven-tricular WMH may extend into the subcortical white matter, where they can become confluent (Figure 1.29). In the general population, the prevalence of white matter hyperintensities increases with age (Zimmerman et al., 1986;[START_REF] Mmb Breteler | Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the rotterdam study[END_REF]De Leeuw et al., 2001a) and ranges from 11-21% in adults aged around 64 to 94% at age 82 [START_REF] Garde | Relation between age-related decline in intelligence and cerebral whitematter hyperintensities in healthy octogenarians: a longitudinal study[END_REF]Ylikoski et al., 1995). More than 90% of older subjects (>60 years old) exhibit WMH in brain MRI scans (De Leeuw et al., 2001a). These lesions are located in the deep white matter, typically sparing subcortical U-fibres, and are often seen together with vessels affected by small vessel disease. Until recently, WMH were considered clinically irrelevant, but recent sample-and population-based research has demonstrated their functional significance [START_REF] Faith | The cognitive correlates of white matter abnormalities in normal aging: a quantitative review[END_REF][START_REF] Bibliography | Neuroimaging of white matter in aging and dementia[END_REF]. Chronological age appears to be the strongest predictor of severity (De Leeuw et al., 2001b;[START_REF] Terry L Jernigan | Cerebral structure on mri, part i: Localization of age-related changes[END_REF][START_REF] Adam M Brickman | Brain morphology in older african americans, caribbean hispanics, and whites from northern manhattan[END_REF]; vascular risk factors, such as hypertension, also account for much variability in severity of WMH (De Leeuw et al., 2001b;[START_REF] Michael J Firbank | Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure[END_REF][START_REF] Manolio | Magnetic resonance abnormalities and cardiovascular disease in older adults. the cardiovascular health study[END_REF][START_REF] Spilt | Age-related changes in normal-appearing brain tissue and white matter hyperintensities: more of the same or something else?[END_REF]. White matter hyperintensities can be measured quantitatively and non-invasively on large population samples and have been proposed as an intermediate marker, which could CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI be used for the identification of new risk factors and potentially as a surrogate end point in clinical trials [START_REF] Schmidt | White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease[END_REF].

Figure 1.30: FLAIR scan of older subject presenting a high level of WMH [START_REF] Pelletier | Age-related modifications of diffusion tensor imaging parameters and white matter hyperintensities as inter-dependent processes[END_REF].

WMH in clinical routine

Because various pathologies can yield to increased MRI signal intensity in white matter, WMH alone are not specific enough to provide a diagnosis [START_REF] Schmidt | Heterogeneity in age-related white matter changes[END_REF]. WMH are considered to be particularly correlated with reductions in informationprocessing speed and executive function, although correlations with other cognitive domains have also been noted (Arvanitakis et al., 2016) qualitative rating scales, manual lesion annotations is the most reliable way to assess WM abnormalities, but the whole process is both time-consuming and prone to intraand inter-observer variability. Automated lesion segmentation techniques have been proposed to overcome these issues, and make it possible to assess WMH in larger number of subjects. In this chapter, we will review the state-of-the-art strategies for visual, manual and automated WMH segmentation for both MS and age-related WMH, with an enhanced focus on their validation for the latest, compared to manual segmentation by trained observers.

Visual scales

WMH visual rating scales are quick to perform, even with data coming from various scanners, and are commonly used in clinical and research settings, thus making them attractive for large epidemiological studies. One of the first scales proposed for the assessment of WMH is the Fazekas & Schmidt scale [START_REF] Fazekas | Mr signal abnormalities at 1.5 t in alzheimer's dementia and normal aging[END_REF], which is still commonly used today.

The scale divides the white matter in periventricular and deep white matter, and a grade is given for each region depending on the size and confluence of lesions (Figure [START_REF] Gerard | Mri periventricular lesions in adults[END_REF][START_REF] Shimada | Silent cerebrovascular disease in the elderly. correlation with ambulatory pressure[END_REF][START_REF] Van Swieten | Grading white matter lesions on ct and mri: a simple scale[END_REF][START_REF] Lo Wahlund | The brain in healthy aged individuals: Mr imaging[END_REF][START_REF] Wahlund | A new rating scale for age-related white matter changes applicable to mri and ct[END_REF][START_REF] Thomas R Mirsen | Clinical correlates of white-matter changes on magnetic resonance imaging scans of the brain[END_REF][START_REF] Scheltens | A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging[END_REF][START_REF] Erkinjuntti | Lack of difference in brain hyperintensities between patients with early alzheimer's disease and control subjects[END_REF][START_REF] Bocti | A new visual rating scale to assess strategic white matter hyperintensities within cholinergic pathways in dementia[END_REF]. [START_REF] Mantyla | Variable agreement between visual rating scales for white matter hyperintensities on mri: comparison of 13 rating scales in a poststroke cohort[END_REF] compared thirteen visual scales and concluded that some of them exhibit inconsistency with others and thus that a harmonization of WMH visual scale assessment is needed.

and

Visual scales suffer from several drawbacks. Indeed, categorical ratings have a restricted range of values that limits the power of association. Moreover, qualitative scales are highly subjective in their interpretation, thus limiting inter-rater and intra-rater reliability [START_REF] Mantyla | Variable agreement between visual rating scales for white matter hyperintensities on mri: comparison of 13 rating scales in a poststroke cohort[END_REF] and consistency within longitudinal studies [START_REF] Nd Prins | Measuring progression of cerebral white matter lesions on mri: visual rating and volumetrics[END_REF]. They are poorly comparable, are not fit for the study of longitudinal progression of WMH, show poor sensitivity to clinical group differences, suffer from high intra-and inter-rater variability and significant ceiling/floor effects, therefore leading to inconsistencies between WMH studies.

Manual segmentation

As an alternative to a qualitative rating scale, the manual segmentation and quantification of WMH appears as a more reliable way to assess WM abnormalities. Manual segmentation techniques are referred to as region-of-interest (ROI) methods, where the tracer uses a visualization software to manually draw WMH areas.

Manual segmentation procedures, although accurate, suffer from several limita- In the next sections, I will give more details about automated WMH segmentation methods and their validation, starting with unsupervised and followed by supervised methods.

Some methods have the potential to be categorized to multiple categories. For these methods, the category that has more relevance to the core algorithm implementing the method is used.

Unsupervised methods

Unsupervised methods formalize the definition of lesions through unsupervised algorithms and combine them with prior knowledge of anatomy and MRI. In this section, we will present methods relying mostly on unsupervised algorithms that have CHAPTER 2. QUANTIFICATION AND SEGMENTATION OF WHITE MATTER HYPERINTENSITIES been applied for the task of WMH segmentation. We will first detail data-based approaches which implements approaches such as thresholding, spatial or intensity analysis, or morphology topology analysis. Then, we will present atlas-and tissuebased methods, where methods uses statistical or topological atlases to provide the prior probability of each voxel belonging to a particular tissue class. These methods segment the normal tissues of the brain first and then the WMH appear as outliers on each normal tissue. These approaches usually detect lesions as outliers on each tissue rather than adding a new class to the classification problem.

Thresholding methods

Among unsupervised methods, Jack [START_REF] Jr | Flair histogram segmentation for measurement of leukoaraiosis volume[END_REF] proposed to segment WMH by using a simple threshold derived from a regression analysis on the histogram of the T2-FLAIR image. First, Jack [START_REF] Jr | Flair histogram segmentation for measurement of leukoaraiosis volume[END_REF] fitted a gaussian curve to each hemisphere's voxel intensity values and calculated its mean and standard deviation.

Second, they defined WMH seeds as having intensity greater than or equal to 2.5 standard deviations above the mean. Finally, they combined left and right seeds and passed them individually to a region-growing algorithm that used the seed voxel intensity as its starting mean and searched for voxels that fell within 5% of this value. After these voxels were found, they were added to the image and a new mean was created. This process was iterated until all seeds were included in the final WMH image. Thresholding techniques were also applied in the context of MS lesions segmentation.

Goldberg-Zimring et al. (1998) confined detection of MS lesions to regions with high intensities, a circular shape and a size within a predefined range with the use of T2-weighted, PD-weighted and T2-FLAIR images. Then, an adaptive thresholding algorithm was applied on every block of the image through a window. The pixel in the center was then assigned to 1 if its intensity is higher than the threshold. Then, artifacts with an area between 3 and 240 pixels and contours with shape index lower than 0.2 are eliminated.

Most of these segmentation algorithms rely only on intensity information, which is insufficient to reduce the number of false positives because of the presence of noise and other artefacts. The inclusion of spatial information was then explored to improve the WMH segmentation through the use of atlases. given tissue was more likely to be present, while the topological atlas provided information about the topology of the structures (e.g., WM must be a single connected component in a healthy brain).

In conclusion, atlas-based approaches can be used to segment both tissues and WMH. Moreover, atlases make it possible to consider WMH as outliers of the tissue classes to introduce spatial information into the segmentation process and to reduce false positive WMH segmentations. As a drawback, these approaches rely on building an atlas, and imply an atlas registration to the subject space. This registration step is even more difficult when dealing with cases with severe atrophy, large numbers of lesions, etc. and extracted the WMH.

Schmidt et al. (2012) have proposed the Lesion Segmentation Toolbox -Lesion

Growth Algorithm, (LST-LGA, included in the SPM framework), which computes the FLAIR intensity distribution for each of the three tissue classes to determine outliers, weighted according to the spatial probability of being WM. This resulted in three classes of belief maps summed to generate a single belief map. By thresholding these maps with a pre-chosen initial threshold, an intial binary lesion map was obtained and was subsequently grown along hyperintense voxels in the T2-FLAIR image. lesionBrain 1.0 was proposed as an online tool for white matter lesion segmentation [START_REF] Coupé | Lesionbrain: an online tool for white matter lesion segmentation[END_REF], integrated into the volBrain platform (https://volbrain MATTER HYPERINTENSITIES .upv.es/). The method first uses the T1-w images to segment several anatomical structures such as the intracranial cavity, brainstem, cerebellum and lateral ventricles and the brain tissue maps. From the T2-FLAIR image, a candidate map was generated with regions above a given intensity threshold, considered as candidate lesions.

Lesions were segmented based on a three-stage strategy: multimodal patch-based segmentation, patch-based regularization of the created probability map of lesions and patch-based error correction using an ensemble of shallow neural networks to limit false positives.

Supervised methods

In the last decade, improvements in medical imaging, exponential increase in computational power of affordable computing platforms, and greater availability of neuroimaging data sets, for example, from the Alzheimer's Disease Neuroimaging Initiative (ADNI), have increased opportunities to develop machine learning approaches to automate detection, classification, and quantification in neurological diseases. Conventional machine learning methods for automatic WMH segmentation will be explained first and the more recent deep learning methods will be developed at the end of this section. between the downsampling and upsampling paths, and has been an active field research [START_REF] Dolezal | Detection of cortical lesions is dependent on choice of slice thickness in patients with multiple sclerosis[END_REF][START_REF] Kumar | A dense u-net architecture for multiple sclerosis lesion segmentation[END_REF][START_REF] Kang | Acu-net: A 3d attention context u-net for multiple sclerosis lesion segmentation[END_REF][START_REF] Salem | Multiple sclerosis lesion synthesis in mri using an encoder-decoder u-net[END_REF].

U-Net has been widely used in segmenting biomedical images because it can work efficiently even with limited training samples [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. [START_REF] Li | Fully convolutional network ensembles for white matter hyperintensities segmentation in mr images[END_REF] proposed three identical U-Net models with different randomly-initialized weights, that were assembled to rank the highest in the 2017 WMH segmentation challenge [START_REF] Hugo J Kuijf | Standardized assessment of automatic segmentation of white matter hyperintensities and results of the wmh segmentation challenge[END_REF].
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Performance assessment

We have discussed in the previous section about existing approaches and methodologies about automated WMH segmentation. In this section, we will first detail the performance measures needed to evaluate an automated method, then we will briefly present the validation strategies of the methods mentioned in the previous section, and we will conclude with the recent initiatives done towards the creation of a benchmark MRI databases for WMH and MS lesion segmentation.

Evaluation measures

A variety of measures are used in the literature to evaluate the automated methods proposed for the segmentation of MS lesions and WMH. All of these measures are based on comparing the result of the automated segmentation against the ground truth. It must be pointed out that there are many more evaluation metrics for assessing the segmentation but in this thesis, we will only cover the most commonly used ones, which are detailed in the Appendix B.

Literature validation results

Validation results of the aforementioned methods have been summarized in 

MS lesions challenges

In recent years, there has been some progress towards the creation of benchmark MRI databases for MS lesion segmentation techniques. MICCAI and ISBI MS Lesion Segmentation Challenges [START_REF] Styner | 3d segmentation in the clinic: A grand challenge ii: Ms lesion segmentation[END_REF][START_REF] Carass | Longitudinal multiple sclerosis lesion segmentation: resource and challenge[END_REF][START_REF] Commowick | Objective evaluation of multiple sclerosis lesion segmenta-BIBLIOGRAPHY tion using a data management and processing infrastructure[END_REF][START_REF] Hugo J Kuijf | Standardized assessment of automatic segmentation of white matter hyperintensities and results of the wmh segmentation challenge[END_REF] provided common databases that were used by some of the state of-the-art approaches for evaluation. It allows reliable and direct comparisons to be made between different approaches. Each challenge is composed of two distincts datasets: the training dataset provided in amount of the challenge, which allows participants to train their algorithms on; and the testing dataset which contains data similar to the training dataset, were only used to validate their algorithms, during the challenge. On demand, all datasets are available after the challenges. 

Conclusion

In this chapter, we have reviewed the different methodologies and approaches used to visually assess and automatically segment age-related WMH or MS lesions, with the aim of better understanding the underlying mechanisms of neurological diseases CHAPTER 2. QUANTIFICATION AND SEGMENTATION OF WHITE MATTER HYPERINTENSITIES and reducing the intra-and inter-observer variability, by processing hundreds of MRI scans. To the best of our knowledge, there is no method that is widely used today.

The differences in validation strategies, choice of evaluation metrics makes it difficult to choose between all those methods, besides the fact that most of them are not freely available for everyone.

Thesis objectives

The available methods presented in this chapter are currently validated either on healthy controls and MS patients or vascular and neurodegenerative disease patients, but not on both age-related WMH and MS lesions.

In this thesis, we will present a fully automated unsupervised method WHASA-3D, a major improvement of WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] adapted for 3D T2-FLAIR acquisitions. Our work will then address the need of a method that is validated on both age-related WMH and MS lesions, and will be presented in the second part of this thesis.

The development of the new version of WHASA, already initiated in the framework of an existing collaboration, will be finalised and this extended method will be evaluated accurately and as comprehensively as possible. The first challenge to be addressed is the reliability of the method with respect to acquisition parameters and lesion types. According to [START_REF] Biberacher | Intra-and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis[END_REF], the characteristics of the lesions (signal and contrast) are highly dependent on the acquisition protocol (manufacturer type, magnetic field, acquisition parameters, etc.). This also influences the intrinsic quality of the resulting image (tissue contrast, lesion contrast, noise...) and has a strong impact on lesion segmentation. Furthermore, MS lesions and age-related WMH do not share the same topographical, shape and contrast characteristics and this difference must be incorporated into the segmentation algorithm for a reliable quantification [START_REF] Kim | Classification of white matter lesions on magnetic resonance imaging in elderly persons[END_REF]. These two difficulties have been partly addressed by developing an automatic estimation of the contrast and signal related hyperparameters of WHASA to help improve the method to be more adaptive to the image.

This methodology has given very encouraging results but needs to be confirmed on a larger group of subjects with more diverse acquisition protocols, and the study of hyperparameters needs to be pursued on other parameters of the method; furthermore, topographical differences of lesions need to be taken into account to improve MATTER HYPERINTENSITIES the detection of some MS-specific lesions. At the same time, advances in medical imaging make it possible to consider 3D acquisition of T2-FLAIR sequences, whereas previously they were mainly acquired in 2D (slice by slice). The novelty of 3D data lies mainly in the fact that they are isotropic or quasi-isotropic, with an in-plane resolution comparable to that of 2D data (which are highly anisotropic in the direction of the slice). Lesions can then be defined in 3D, which is particularly interesting for focal MS lesions. In addition, more centres are equipped with 3T MRI scanners, allowing for less noisy 3D acquisitions, but with significant differences in contrast and artefacts that may look like lesions. The WHASA method has so far only been developed and validated on 2D data acquired at 1.5T.

In a second part, we will propose dedicated methods for lesion characterisation.

Indeed, several features are considered of interest in addition to volume characterisation, and they will provide a more complete analysis of the lesion burden: anatomical location, contrast and shape as well as temporal evolution. According to Vellinga et al., 2011;[START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF], information such as the presence or absence of a lesion in a certain area of the brain combined with the number of attacks (relapses) is required to establish that a person has MS. Spatial analysis, or mapping, of lesions would thus make it possible to quantify the lesion volume according to lobes (for example from atlases), or their positioning relative to the ventricles or cortex (juxtacortical, paraventricular, or even deep lesions) for example from adapted distance maps. This possibility of spatially discriminating lesions would thus be a great added value. Finally, the evolution of lesions over time is an essential aspect for their analysis in a diagnostic context. A key challenge for the segmentation of white matter hyperintensities is the longitudinal analysis [START_REF] Carass | Longitudinal multiple sclerosis lesion segmentation: resource and challenge[END_REF][START_REF] Maillard | Longitudinal follow-up of individual white matter hyperintensities in a large cohort of elderly[END_REF]. A reliable method for longitudinal analysis will therefore need to be considered to quantify the evolution of lesions across multiple time points. In this chapter, we aim at proposing WHASA-3D, a major improvement of the unsupervised method WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF], that was up to now only validated on elderly subjects or with dementia with 2D T2-FLAIR sequences. We address here the automatic segmentation of WMH on MS patients, healthy controls and patients suffering from neurodegenerative diseases (AD, fronto-temporal dementia (FTD), cognitive impairments) in order to yield a method that is reliable on both age-related WMH and MS lesions. To do so, we will use a database with 60 subjects (healthy controls, MS patients and patients with cognitive disorders) with 3D T2-FLAIR scans from seven centres and with a large lesion load variability, provided with manual segmentations of WMH representing the standard of truth, for the vali-

dation of WHASA-3D.
This chapter is part of our paper recently published in Neuroimage: Clinical as [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF].

Material

WHASA-3D has been evaluated on a composite database built from several databases.

As described below, the database includes various populations, acquired on different scanners and using different imaging protocols, and has been divided into several datasets for the different stages of this work. MR parameters are summarized for all three datasets in Table 3.1 and demographic information in Table 3.2.

Multiple Sclerosis database

Datasets from a freely available cohort (LITMS 1 ) of 30 MS patients were acquired using a 3T Siemens Magnetom Trio MR system at the University Medical Center

Ljubljana [START_REF] Žiga ; Lesjak | A novel public mr image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus[END_REF]. Each MR dataset consisted of 2D T1-weighted, 3D

T2-weighted and 3D T2-FLAIR images. T1-w and T2-FLAIR images are used here.

They had been interpolated during reconstruction, resulting in 0.43x0.43x 0.82mm and 0.80x0.47x0.47 mm apparent resolutions. In order to make these datasets more comparable with those described below, they have been resampled to, respectively, CHAPTER 3. ADAPTATION OF WHASA FOR 3D T2-FLAIR SEQUENCES 1x1x0.82mm and 0.80x1x1mm.

Various dementia database

Three cohorts (including two from publicly available databases), embedding 3D

T1-w and 3D T2-FLAIR images, were used and combined to cover a wide range of WMH lesion loads and to have an insight on robustness with respect to MRI scanners and acquisition settings. 

3

Manual segmentation

The performance of WHASA-3D will be evaluated through systematic comparison with a reference. This ground truth has been defined for all 60 3D T2-FLAIR images as the consensus of manual segmentations performed by three neuroradiologists, as described below.

Multiple Sclerosis database

Manual lesion segmentations created by three raters were available within the freely available database, as described in [START_REF] Žiga ; Lesjak | A novel public mr image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus[END_REF]: one rater was a secondyear radiology intern, while the other two raters were senior radiologists with more than 10 years of experience in assessing MR scans of MS patients. The separate segmentations were carefully revised with the ITK-SNAP software (Yushkevich et al., 2005) by all raters in terms of lesion locations and borders to create the final consensus segmentation.

Various dementia database

Three trained neuroradiologists (with three, six and 18 years of experience in neuroradiology) performed manual segmentation of WMH on 3D T2-FLAIR images.

Lesion maps were first generated from T1-w and 3D T2-FLAIR images using LST (Lesion Segmentation Tool), implemented in SPM [START_REF] Schmidt | BIBLIOGRAPHY An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis[END_REF]. The neuroradiologists then corrected each lesion map when necessary, using the manual editing tool ITK-SNAP. The ground truth was then defined as the consensus among those three corrected segmentations, obtained through the LOP-STAPLE algorithm [START_REF] Akhondi-Asl | A logarithmic opinion pool based staple algorithm for the fusion of segmentations with associated reliability weights[END_REF].

Reference WMH volume

Reference volumes ranged from 0.3 to 68 mL, with a mean of 21 mL and a standard deviation of 15 mL for the whole database (17 ± 16 mL [0.3 -52] for the MS database and 24 ± 14 mL [0.3 -68 mL] for the various dementia database).

Building databases for evaluation

In order to ensure a fair and unbiased evaluation, this section will provide more details about the data used for the development and evaluation of WHASA-3D. We CHAPTER 3. ADAPTATION OF WHASA FOR 3D T2-FLAIR SEQUENCES split our evaluation database (MS and various dementia databases) into a training set and a validation set. Eight subjects (two from each cohort, with a wide range of lesion load and age, MRI systems and pathology) were used to optimize the development of WHASA-3D, while the remaining 52 subjects were used as an independent validation base.

Methods

This section first gives a brief description of the original automated WMH segmentation method WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] and details the specific steps of WHASA-3D to address the segmentation of 3D T2-FLAIR images, and will show the evaluation of the two methods (WHASA and WHASA-3D) in comparison with the manual segmentations performed on the MS and various dementia databases.

The original WHASA method

WHASA relies on the coupling of non-linear diffusion and watershed parcellation;

regions considered as corresponding to WMH are then selected based on intensity and location characteristics then finally refined with geodesic dilation. Figure 3.1 shows the general overview of WHASA and WHASA-3D.

Standard pre-processing steps using SPM12 (Ashburner and Friston, 2005) extract tissue probability maps from the T1-w image, register them to the T2-FLAIR image and correct the T2-FLAIR image for intensity inhomogeneities. Non-linear diffusion then enables to enhance the contrast between hyper-intense areas and surrounding healthy tissue and to reduce the contrast between GM and WM on the inhomogeneity corrected T2-FLAIR image; its combination with the watershed-resulting parcellation yields a piecewise constant image (step "parcellation of T2-FLAIR" on Figure 3.2).

Candidate lesions are extracted from this piecewise constant image with an automatically computed threshold. Tissue probability maps drive the selection of the relevant candidate lesions according to their location. Finally, a geodesic dilation is applied in order to refine borders of lesions, with the help of a second lighter non-linear diffusion (diffusion parameter twice smaller) to better take into account large or diffuse WMH [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF]. 

WHASA-3D

The original algorithm was designed for 2D T2-FLAIR images with thick slices and several steps were initially implemented using a 2D slice-by-slice approach to ensure robustness; some steps were thus not consistent for 3D T2-FLAIR images.

In the following subsections, we will describe how these steps were redesigned and implemented for 3D T2-FLAIR datasets. All hyperparameters and parameters set in the WHASA-3D method are presented in Table 3 

Parcellation of 3D T2-FLAIR

This step aims at parcellating the T2-FLAIR image in homogeneous regions, with alternating iterations of non-linear diffusion [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]) and watershed, followed by a final region merging step, as described for 2D and 3D pipelines in 3.1. The non-linear diffusion is determined by a diffusion parameter λ 1 which is a compromise between the local contrast (LC) computed on the T2-FLAIR image (set as the mean of the intensity gradient on the GM/WM interface) and the standard deviation of the WM tissue σ W M , that introduces a relationship with the intrinsic noise due to lesions within the WM tissue:

LocalContrast(LC) = mean(grad 3D (GM |W M interf ace )) λ 1 = α * σ W M + (1 -α) * LC
The optimized α = 0.75 value was found in a previous work where the parameters of the 2D non-linear diffusion of WHASA original were optimized on a dataset only CHAPTER 3. ADAPTATION OF WHASA FOR 3D T2-FLAIR SEQUENCES composed of 2D T2-FLAIR with manual segmentation, based on the highest Dice obtained after varying the value between 0 and 2. This process results in a good definition of λ 1 value, essential for the smoothing of areas where the contrast is less than λ 1 and thus enhance the contrast of the interfaces between two areas whose contrast is greater than λ 1 .

For 2D T2-FLAIR images, 2D non-linear diffusion was run, with the diffusion parameter λ 1 obtained from the preprocessing step. A series of 100 iterations with a time-step of 0.1 alternated with a 2D watershed parcellation step until convergence of the whole process, which was reached when two consecutive watershed results were strictly identical. Each region of the final watershed was then labelled with its mean intensity as computed on the T2-FLAIR image. Adjacent regions with close intensity values (mean intensity difference lower than the diffusion parameter) were merged together to reduce the number of regions considered in the candidate region selection step.

For 3D T2-FLAIR images, ten iterations of 3D non-linear diffusion have now been added to minimise the between-slice discrepancies yielded by the 2D diffusion process, while still benefiting from its speed and robustness. A 3D watershed in combination with a gaussian gradient ensures to obtain a 3D-consistent piecewise constant image. Adjacent regions of the watershed parcellation are then labelled using their mean intensity on the T2-FLAIR image, then merged with a dedicated iterative 3D process: starting from the region with maximum intensity, neighbouring regions are iteratively merged according to their intensity contrast with the initial region, the merging criterion being the diffusion parameter. This step is crucial to ensure time efficiency for the following steps, as the number of regions generated by the 3D watershed is much larger than for 2D T2-FLAIR images (about 75000 and 9000 regions generated for 3D and 2D T2-FLAIR respectively).

Selection of candidate regions

Candidate regions still have to be identified as WMH (MS lesions or age-related WMH) through intensity and anatomical rules.

In this step, we select hyperintense regions using an intensity threshold followed by spatial information about regions location, in order to refine the set of candidate lesions. Hyperintense areas corresponding to WMH could be defined as outliers for the WM intensity distribution, as they are mostly found in white matter.

Considering Gaussian distribution, the threshold to detect WMH could thus be defined as follows:

T hr W M = µ W M + γ * σ W M (1)
where γ is set at 2.698 to retrieve values outside 99% of the gaussian distribution, µ W M and σ W M are the mean and standard deviation of the WM intensity distribution, computed from the inhomogeneity corrected T2-FLAIR image.

However, depending on acquisition parameters and patients age range, two types of images can be observed among 3D T2-FLAIR images, based on GM/WM contrast characteristics, as shown in Figure 3.3: high GM/WM contrast (first row), with a clear distinction between WM and GM intensity modes, and low GM/WM contrast (second row), with nearly merged WM and GM intensity modes. For high contrast images, the threshold may result in embedding voxels with intensity belonging to the GM intensity distribution. A threshold using the GM intensity distribution, as introduced in the LST method [START_REF] Schmidt | BIBLIOGRAPHY An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis[END_REF], may thus be more robust:

T hr GM = µ GM + x * σ GM (2)
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where µ GM and σ GM are the mean and standard deviation of the GM intensity distribution, computed from the inhomogeneity corrected T2-FLAIR image. However, for low contrast images, this threshold may result in embedding normal tissue, that would remain below the threshold if the standard deviation of GM is lower than that of WM.

These two intensity behaviours have been confirmed on the training set: T hr W M yields better results on low GM/WM contrast T2-FLAIR images (Figure 3.3c), while

T hr GM yields better results on high GM/WM contrast T2-FLAIR (Figure 3.3d). A contrast-based barycentre was thus introduced between the two thresholds (1) (2) to obtain a generalized threshold robust to GM/WM contrast:

T hr generalized = ρ * T hr GM + (1 -ρ) * T hr W M with ρ = µ GM -µ W M β * γ * σ W M and β = 1.5 (Optimization detailed in Appendix D)
with ρ the contrast-based weighting factor, derived from contrast and standard deviation values computed on the tissue probability maps and validated on the training set.

False positive detection and removal

Some false positives, namely voxels mistakenly considered as WMH, remain after the candidate selection and border refinement step; they are often located in the cortical grey matter, even more frequently for 3D T2-FLAIR with high GM/WM contrast, for which cortical folding may result in focal high intensity areas. Although some WMH may truly be located in the cortical grey matter, these are very difficult to distinguish from false positives with only 3D T2-FLAIR image. An automatic post-processing step is thus applied to remove all hyperintense voxels within the cortex from the segmentation mask as illustrated in Figure 3.4.

We identify the voxels most likely to belong to GM by creating an exclusion map from the tissue probability maps for WM, GM, CSF previously extracted from the T1-w image at the preprocessing step. A morphological erosion is then applied on this resulting exclusion mask, and the largest connected component is kept as the final exclusion mask to embed only the cortical regions. Candidate lesions are then discarded if they overlap the exclusion mask for more than half of their voxels. 

Results

Evaluation metrics

Please refer to the Appendix B for the evaluation metrics.

Statistics

Statistical analysis was performed using the Scipy version 1.2.1 Python library.

For the comparison of WHASA-3D with WHASA, a non-parametric Wilcoxon test was used for the volumetric (absolute volume error) and spatial agreement (dice score)

with respect to the manual segmentation, and results were considered statistically significant upon p-value < 0.05. Regarding the comparison of WHASA-3D with multiple methods, a non-parametric Friedman test of differences among repeated measures and post-hoc analyses with two-sided Wilcoxon signed-rank tests (non parametric version of the paired Student t-test) was conducted with a Bonferroni correction applied, resulting in a significance level set at p < 0.05/n with n the number of comparisons made for the volumetric and spatial agreement.

Comparison of WHASA-3D with WHASA

WHASA-3D was first qualitatively and quantitatively evaluated and compared with WHASA on the MS and Various dementia databases.

WHASA-3D showed consistent behaviour on the MS database, while WHASA exhibited insufficient WMH segmentation as illustrated in Figure 3.5 and 3.6. Comparison results of quantitative metrics for WHASA and WHASA-3D with reference Most metrics showed an improvement for WHASA-3D compared to WHASA: the average Dice score has increased from 0.63 to 0.67, the F1-score from 0.37 to 0.42 and the absolute volume error has decreased from 6.2 to 3.1 mL; the ICC value has increased from 0.78 to 0.96, and TPR has also increased from 0.60 to 0.67 demonstrating a better correlation of WHASA-3D with the experts' reference volumes compared to WHASA. TPR, resp. FPR, has increased from 0.60 to 0.67, resp. from 0.23 to 0.31, with WHASA-3D, which meant a better detection of WMH but also a higher risk of detecting false positives. Regression analysis between manual and automated lesion volume, as illustrated in Figure 3.7, showed increased correlation (R² from 0.62 to 0.93) and a better regression slope (from 0.68 to 0.90) using WHASA-3D on the combination of MS and Various dementia databases. difference for the absolute volume error for the whole database and the MS database (MS and Various dementia, p = 3.93E-5; MS database, p = 1.97E-5), but not for the Various dementia database.

Conclusion

We have presented here WHASA-3D, an extension of WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] The chapter 3 shows that the performance of WHASA-3D is both reliable and robust with 3D T2-FLAIR acquisitions and for MS patients. The state of the art presented in 2 however shows that several approaches have been previously proposed for MS lesion segmentation. Unfortunately, those existing methodologies have been applied to different databases, with different evaluation measures, thus providing a reliable comparison of the state-of-the-art methods is difficult at present. Ideally, all methods would be applied on a common database and its accompanying ground truth.

Then, the techniques would be directly and reliably comparable using the same evaluation measures. We are aware of the recent establishment of MS lesion segmentation Challenges (MICCAI) which provides a common framework MS lesion segmentation algorithms, allowing reliable and direct comparisons to be made between different approaches [START_REF] Commowick | Objective evaluation of multiple sclerosis lesion segmenta-BIBLIOGRAPHY tion using a data management and processing infrastructure[END_REF], but due to commercial restrictions, we were not allowed to use this data.

In this chapter, we have therefore decided to assess the performance of WHASA-3D on a wide selection of freely available methods, with unsupervised and supervised approaches, on a dedicated MS database [START_REF] Žiga ; Lesjak | A novel public mr image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus[END_REF]. The selection of the proposed methods was driven by their availability and the details of their implementation were found in their associated publications.

This work was recently published in Neuroimage: Clinical [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF].

Methods selection

An optimization of the parameters or a model retraining was performed on a optimization dataset for methods that allow it. The methods, and their re-optimisation step, when needed, are described below.

CHAPTER 4. COMPARISON OF WHASA-3D WITH SIX STATE-OF-THE-ART LESION SEGMENTATION METHODS tion, using the same spatial prior as WM; lesions and WM are then separated by selecting the region with the higher membership value. Prior knowledge about areas where false positives commonly appear is used to determine penalty weights based on the distance to these areas (e.g., distance to ventricles). This method segments multichannel input images simultaneously, using an intensity-weighing scheme that optimises the effect of each channel onto the segmentation of each tissue class. Performance evaluation of Lesion-TOADS was performed on MS patients and simulated images from the Brainweb MS [START_REF] Shiee | Multiple sclerosis lesion segmentation using statistical and topological atlases[END_REF]. [START_REF] Schmidt | Bayesian inference for structured additive regression models for largescale problems with applications to medical imaging[END_REF].

Supervised methods

nicMSlesions

nicMSlesions is a deep learning based method (Valverde et al., 2018) 

Implementation of proposed methods

We have decided to perform two comparisons. First, a comparison of our algorithm WHASA-3D with the other methods on their default settings (implemented as is, or with parameters found in their associated publications). And, for the methods that allow optimization, we will re-compare our results to the optimized versions.

Building a database for comparison

The comparison to state-of-the-art methods was focused on the MS database as we wanted to guarantee that our method works properly for MS patients, since most methods had been designed and evaluated for MS patients. The comparison to the methods with their default parameters was conducted on the remaining 28 subjects from the MS database, as two subjects were included in the base used to develop WHASA-3D. Since some state-of-the-art methods could be optimized/re-retrained, we then randomly split the MS database into an optimization subset of 10 subjects with a wide range of lesion load for optimization and re-training purposes, while the remaining 20 subjects were used as an independent validation subset. LGA, the default probability threshold was kept at 0.5. The optimization of the initial threshold is detailed in Appendix Table D.1 showing an optimal threshold of 0.05.

BIANCA has many possible configurations since the method offers the possibility to tune many parameters: number of lesion points, non-lesion points, location of nonlesion points, probability threshold. Every combination of these options is reported in Appendix Table D.2 and the optimal configuration reached was as follows: 2000 lesion points, 2000 non-lesion points and "any" location of the non-lesion training points, no spatial weighting and no 3D patch used. Finally, in order to obtain binary masks from probability maps, optimal thresholds have also been determined for nicMSlesions and BIANCA, with values of 0.6 and 0.75 respectively (Appendix Table D.3).

Comparison of WHASA-3D with other lesion segmentation methods

In this section, we will present a comparison of WHASA-3D with the methods previously described in the methods section, based on results obtained on the MS database as it appeared to be the most challenging task for WHASA-3D. To ensure fair comparison, methods will be run with their default settings and with parameter optimization and/or model re-training whenever possible.

Default settings

Results of WMH segmentations with all methods at default settings are displayed on WHASA-3D outperfoms all the method considered, with a significant difference between WHASA-3D and the other methods for the spatial and volumetric agreement.

All p-values for volumetric and spatial agreement are reported in the Appendix, Ta- 

Optimized settings

With the optimized settings, we observed largely improved segmentation performances for LST-LGA, BIANCA and nicMSlesions compared to the large under or over-segmentation with their default settings, as displayed in Figure 4.6.

Results of the comparisons between WHASA-3D and the three methods for which optimisation could be undertaken are reported in Figure 4.7 for the validation subset of the MS database.

Performance in terms of overlap and volume agreement after optimization are both revealed by the Average Dice score (LST-LGA default/optimized = 0.41/0.51;

BIANCA default/optimized = 0.22/0.39; nicMSlesions default/optimized = 0.17/0.63) LESION SEGMENTATION METHODS 

Processing time

In order to consider using methods in clinical routine, results have to be delivered in a short time. All methods were run on a computer with an Intel CPU 3.50 GHz (8 cores) processor and 16go RAM. Table 4.2 shows the computational time for each method. It greatly varies depending on the underlying framework. Unlike unsuper- 

Discussion

WHASA-3D outperformed WHASA when evaluated in comparison with consensus manual segmentation masks in terms of overlap and volume agreement. We also compared WHASA-3D with three unsupervised methods and three supervised methods with default and optimized settings when recommended. When default "pretrained" parameters were used, WHASA-3D showed the best volume and spatial agreement with the highest ICC and Dice, followed by LST-LGA, lesionBrain and Lesion-TOADS. After retraining the methods that could be retrained on a separate subset, nicMSlesions performances improved dramatically (average Dice score and F1score raised from 0.17 to 0.63 and from 0.06 to 0.56) showing the best performance.

However, nicMSlesions outperformed WHASA 3D exclusively in the Dice score and F1-score, while WHASA 3D still showed better performances for ICC.

In order to have an estimate of a consistent aim for the best performance results

were assessed by comparing them to available state-of-the-art methods. As stated in previous work [START_REF] Caligiuri | Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review[END_REF], several automated segmentation methods have been developed for MS lesions detection, similarly to methods focused on WMH segmentation, but the techniques trained on MS patients perform only moderately well when applied to elderly patients. On the other hand, automated segmentation methods developed for WMH segmentation might perform poorly when applied to MS patients. We therefore focused the comparison study on the MS database, since such data had not been used previously for the WHASA validation [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF], and to guarantee that our method worked properly for MS patients. The three unsupervised methods (LST-LGA , lesionBrain, Lesion-TOADS) and the three supervised methods (LST-LPA, BIANCA, and the deep-learning based method nicMSlesions)

were compared with default settings in order to give an insight of the feasibility of using the same set of parameters for all datasets (new or returning patient), for a convenient use in clinical routine [START_REF] Commowick | Objective evaluation of multiple sclerosis lesion segmenta-BIBLIOGRAPHY tion using a data management and processing infrastructure[END_REF]. While unsupervised methods are designed to adapt well to new datasets, most supervised methods are made available with a pre-trained model obtained on a specific dataset, in addition to default parameters settings. We therefore used pre-trained models provided with nicMSlesions and LST-LPA methods [START_REF] Valverde | Automated tissue segmentation of mr brain images in the presence of white matter lesions[END_REF][START_REF] Schmidt | BIBLIOGRAPHY An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis[END_REF]; and as for BIANCA, no pre-trained model was available, and it was thus trained on CHAPTER 4. COMPARISON OF WHASA-3D WITH SIX STATE-OF-THE-ART LESION SEGMENTATION METHODS the same 8 subjects training database as used for WHASA-3D development, but the optimal set of parameters reported in [START_REF] Griffanti | Bianca (brain intensity abnormality classification algorithm): A new tool for automated segmentation of white matter hyperintensities[END_REF] was used.

As could be expected, unsupervised methods mostly outperformed supervised methods used with their default configuration regarding segmentation accuracy. Among all methods, WHASA-3D shows the best volume and spatial agreement with the highest ICC and Dice, followed by LST-LGA, lesionBrain and Lesion-TOADS. These methods had been specifically designed and validated for MS subjects [START_REF] Schmidt | BIBLIOGRAPHY An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis[END_REF][START_REF] Coupé | Lesionbrain: an online tool for white matter lesion segmentation[END_REF][START_REF] Shiee | A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions[END_REF]. Regarding supervised methods, although better results were reported in recent WMH or MS lesion segmentation challenges after retraining on specific training datasets [START_REF] Commowick | Objective evaluation of multiple sclerosis lesion segmenta-BIBLIOGRAPHY tion using a data management and processing infrastructure[END_REF][START_REF] Hugo J Kuijf | Standardized assessment of automatic segmentation of white matter hyperintensities and results of the wmh segmentation challenge[END_REF], these methods may show generalisation issues when faced with subjects from new centers or with unseen pathological characteristics. This is true for both LST algorithms, where LST-LGA (unsupervised) performed better than LST-LPA (supervised), with an ICC of 0.83 compared to 0.61. It is worth mentioning that the retraining of nicMSlesions using only one manual delineated subject as input data is possible, but only if input lesion volumes in the given training data are sufficient enough to retrain the last layers of the network [START_REF] Mm Weeda | Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation[END_REF].

We also compared the performance of three methods (LST-LGA, BIANCA and nicMSlesions) after dedicated retraining or parameter optimisation, in order to ensure fair comparison and assess the impact of optimization and re-training on the segmentation performance. In fact, even though it allows to optimise the final segmentation on a given type of data, it may be difficult to apply on larger multicentre studies. Please note that no optimization step was done for WHASA-3D for the specific dataset, as variability was already taken into account in the automatic contrast-adapted intensity parameters. After optimisation and retraining for the three methods, results were improved both in terms of overlap and volume agreement, nicMSlesions showing the larger improvement (average Dice and F1-score raised from 0.17 to 0.63 and from 0.06 to 0.56), thus outperforming all other methods. Results were also improved for LST-LGA even though the optimized threshold k for LST-LGA, reported in the Appendix Table D.1, corresponded to the lower limit of the search range, suggesting a sub-optimal behaviour for this dataset. As the best supervised method in the comparison study was nicMSlesions after retraining, we propose to address the issue of LESION SEGMENTATION METHODS generalisability through evaluating again the performance of nicMSlesions, but on the dataset with which WHASA was developed (8 subjects, various pathology and acquisitions). The inference was thus run again on the validation set of the MS database (n=20) and the results were compared with WHASA-3D (Detailed results are presented in Appendix D.2.2). We thus observed that the performance of nicMSlesions was then not as high as before, its median Dice now reaching 0.62, thus lower than WHASA-3D (median Dice=0.64). This confirms the influence of the training set on the performance of nicMSlesions and the need of retraining it on a similar dataset to ensure high level performances.

Deep-learning based methods have been proven very efficient in segmentation tasks [START_REF] García-Lorenzo | Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging[END_REF] but may require retraining to adapt to new datasets, that is likely to involve high computational power to run the training step on a specific hardware GPU, while most algorithms can run on regular computer CPU [START_REF] Hugo J Kuijf | Standardized assessment of automatic segmentation of white matter hyperintensities and results of the wmh segmentation challenge[END_REF]. Here, the retraining of nicMSlesions took 15 hours to re-train the full 11-layer cascaded CNN on the optimization subset. While the comparison study presented in this paper allows to evaluate of the performance on subjects with wide range of lesion load and different clinical stages, the MS database used contained data from one center only, acquired on a single MRI system (Siemens Magnetom Trio) [START_REF] Žiga ; Lesjak | A novel public mr image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus[END_REF]. Ensuring a consistent performance on all data type would require a multi-centered dataset, representative of the acquisition variability with different MRI acquisition protocols and MRI systems. To overcome this issue, an initiative has been proposed to standardize MRI sequences for MS [START_REF] Arevalo | Standardizing magnetic resonance imaging protocols, requisitions, and reports in multiple sclerosis: an update for radiologist based on 2017 magnetic resonance imaging in multiple sclerosis and 2018 consortium of multiple sclerosis centers consensus guidelines[END_REF][START_REF] Brisset | New ofsep recommendations for mri assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions[END_REF], but no open-access database of MRI images is yet available [START_REF] Marek | The parkinson progression marker initiative (ppmi)[END_REF][START_REF] Bradley T Wyman | Standardization of analysis sets for reporting results from adni mri data[END_REF].

In addition, although accuracy and robustness across different scanners and acquisitions is the most widely performed type of validation, clinicians are also very concerned with reproducibility of measures over time and between MRI systems [START_REF] García-Lorenzo | Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging[END_REF]. An automated method is considered reproducible and consistent if it shows low volume difference and high spatial agreement between the scan and the rescan in dedicated experiments [START_REF] Mário | Automated detection of white matter and cortical lesions in early stages of multiple sclerosis[END_REF][START_REF] Jain | Automatic segmentation and volumetry of multiple sclerosis brain lesions from mr images[END_REF][START_REF] Mm Weeda | Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation[END_REF]. This was not yet evaluated for WHASA-3D as no such dataset was available, but will be undertaken in the future to ensure that differences in segmentation result from pathological changes rather than from changes related to acquisition and LESION SEGMENTATION METHODS segmentation.

Conclusion

The proposed automated white matter lesion segmentation algorithm WHASA-3D has proven to be a reliable extension for MS patients of the original method WHASA.

WHASA-3D automatically segments age-related WMH and MS lesions from 3D T2-FLAIR and T1-w images in multi-centered datasets with a processing time of twenty minutes per subject.

As detailed in Chapter 3, evaluation was performed on 60 patients, acquired on different MRI scanners displaying various diagnosis and a wide range of lesion load, by computing volume and spatial agreement measures as compared to expert manual segmentations. In this chapter, performances have been further compared with six other methods (three unsupervised and three supervised), with their default settings to recreate the use in clinical routine, and after optimization when available, to illustrate the maximum potential of methods. Better results have been observed in the default settings for WHASA-3D over all methods, and the method still shows among the best volumetric and spatial agreement after optimization and retraining of methods that could be optimized.

This suggests that WHASA-3D is a fast, reliable and easy-to-use method with no optimisation or retraining needed for the automated segmentation of MS lesions and age-related WMH for a potential use in clinical setting for early detection and monitoring of dementia and MS patients. Nevertheless, further validation on larger datasets and reproducibility studies are needed to fully validate our method.

In this part, the aim was to devise new tools to In the framework of collaborations between clinical centers and Qynapse, we gathered three MS datasets that will allow us to develop and validate our algorithms (including the validation required for commercial use) for our new WHASA features, WHASA-Longitudinal and WHASA-Spatial.

In this chapter, we will present the demographic, MR parameters and available sequences for each of these MS datasets.

CHU-Bordeaux

The data presented in this section have been analyzed as part of a collaboration with Pr. Bruno Brochet, Dr. Delphine Lamargue-Hamel, Dr. Mathilde Deloire and Pr. Aurélie Ruet of the CHU-Bordeaux.

SCICOG

The SCICOG (Syndrome Cliniquement Isolé -COGnitive -in french-) cohort is a one-year prospective longitudinal study of the correlation between cognitive impair-CHAPTER 5. DATASETS ment detected at the stage of CIS suggestive of MS and markers of brain damage on imaging [START_REF] Koubiyr | Longitudinal study of functional brain network reorganization in clinically isolated syndrome[END_REF]. A total of 40 patients with CIS were prospectively recruited less than 6 months after a first neurological episode of the type seen in MS and presented with at least two clinically silent cerebral lesions on fast T2-FLAIR images, characteristic of MS. Patients were included in the prospective study without intervention, analyzing early brain damage in patients with CIS (SCICOG, ClinicalTrials.gov identifier: NCT01865357). MRI acquisition was performed on a 3T MRI system (Achieva TX system, Philips Healthcare, Best, The Netherlands) for 29 patients and the remaining 13 on another 3T system (GE Healthcare, Discovery MR 750w, Milwaukee, WI, USA). For each patient, 3D T1-w images and 2D T2-FLAIR were provided. MR acquisitions parameters and demographic information are referenced in Table 5.2 and 5.1.

REACTIV

The REACTIV study is a blinded, randomized, controlled clinical trial of cognitive rehabilitation of people with psoriasis, including a specific cognitive rehabilitation program, conventional, computerized and ecological behavioral assessments as well as MRI assessments. The REACTIV database includes 24 image sets from patients with relapsing-remitting MS, acquired with a Philips Achieva 3T. Each patient has two data sets with two different acquisition times, and 3D T1-w images and 2D T2-FLAIR were provided. MR acquisitions parameters and demographic information are referenced in Table 5.2 and Table 5.1. We have only used the first timepoint for our validation work. 

MS Longitudinal (HCL)

The data presented in this section have been analyzed as part of a collaboration with Pr. François Cotton of the Hospices Civils de Lyon (HCL). The database name is MS Longitudinal since it is characterized by a series of longitudinal scans from MS patients acquired using 1.5 or 3T scanners and with the follow-up acquisition on the same of different scanner machine. All the MRI data were acquired according to the French Observatory of MS (OFSEP) recommendations for MS [START_REF] Brisset | New ofsep recommendations for mri assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions[END_REF].

Description

40 longitudinal MRI brain scans were acquired in the context of regular followup visits in the HCL with the MRI protocols from OFSEP. The protocol contained two 3D sequences for each timepoint (T1-weighted and FLAIR), and their details are described in Appendix C (machine, sequences, field strength, FOV, voxel size...). Half of the dataset is composed of subjects for whom the MRI system/sequence on which their images were acquired has changed during their clinical monitoring. Demographic information (age, sex, clinical status) for each timepoint is presented in 

Manual segmentations

Three trained neuroragiologists (with three, six and 18 years of experience in neuroradiology) performed manual segmentation of new lesions on 3D T2-FLAIR images, registered in a common space halfway between the two original subject's spaces, by comparing one timepoint to another. The ground truth was then defined as the consensus among the three segmentations, obtained through the LOP-STAPLE algorithm [START_REF] Akhondi-Asl | A logarithmic opinion pool based staple algorithm for the fusion of segmentations with associated reliability weights[END_REF]. They were also asked to count the number of new lesions for each subject.

Chapter 6

Automatic identification of new multiple sclerosis lesions et al., 2011;[START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF]. DIT can be demonstrated by the simultaneous presence of gadolinium-enhancing and non-enhancing lesions at any time or by a new T2-hyperintense or gadolinium-enhancing lesion on follow-up MRI, with reference to a baseline scan, irrespective of the timing of the baseline MRI. However, long term follow up is difficult to organize while ensuring that all acquisitions will be done on the same MRI system and with the same acquisition parameters. These changes may alter image characteristics such as contrast, signal-to-noise ratio, or intensity nonuniformity. New lesions' detection may become less reliable in such circumstances.

This marker is even more crucial than the total number and volume of lesions as the accumulation of new lesions allows clinicians to know if a given anti-inflammatory DMD (disease modifying drug) is beneficial for a patient. The only indicator of drug CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS efficacy is indeed the absence of new T2 lesions within the central nervous system.

Performing this new lesions count manually is however a very complex and time consuming task. Automating the detection of these new lesions would therefore be a major advance for the evaluation of the patient disease activity.

Introduction

Existing methods

Several algorithms have been proposed to measure and segment new MS lesions with the comparison of two serial MRI scans and most of them used difference images [START_REF] Jain | Two time point ms lesion segmentation in brain mri: an expectation-maximization framework[END_REF]Battaglini et al., 2014;[START_REF] Schmidt | Automated segmentation of changes in flair-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging[END_REF][START_REF] Eichinger | A novel imaging technique for better detecting new lesions in multiple sclerosis[END_REF] and deformation fields [START_REF] Bibliography | Automatic change detection in multimodal serial mri: application to multiple sclerosis lesion evolution[END_REF][START_REF] Salem | A supervised framework with intensity subtraction and deformation field features for the detection of new t2-w lesions in multiple sclerosis[END_REF]. Also, intensitybased approaches using local context between scans have been proposed [START_REF] Žiga ; Lesjak | Validation of whitematter lesion change detection methods on a novel publicly available mri image database[END_REF]. More recently, deep-learning based methods are becoming more and more popular, leading to an increase in the number of available automated segmentation tools, mostly with convolutional neural networks (CNNs) and U-Nets [START_REF] Birenbaum | Multi-view longitudinal cnn for multiple sclerosis lesion segmentation[END_REF][START_REF] Salem | A fully convolutional neural network for new t2-w lesion detection in multiple sclerosis[END_REF][START_REF] Krüger | Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3d convolutional neural networks[END_REF][START_REF] Macar | Team neuropoly: Description of the pipelines for the miccai 2021 ms new lesions segmentation challenge[END_REF][START_REF] Abdellah Kamraoui | Longitudinal detection of new ms lesions using deep learning[END_REF]. Currently, for segmentation purposes, the most commonly used networks follow a U-net-like architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Brosch | Deep convolutional encoder networks for multiple sclerosis lesion segmentation[END_REF] with an encoder-decoder structure and long-range connections between the encoder and decoder. The network usually uses (a portion of) an MRI scan as input and produces a segmentation mask indicating lesions as an output [START_REF] Danelakis | Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging[END_REF] or new lesions if we provide longitudinal scans as inputs.

To the best of our knowledge, none of the methods cited above is widely used in clinical routine so far. However, commercial medical devices exist to automatically quantify new MS lesions, for instance NeuroQuant MS®(https://www.cortechs

.ai/products/neuroquant/neuroquant-ms/) [START_REF] Brune | Lesionquant for assessment of mri in multiple sclerosis-a promising supplement to the visual scan inspection[END_REF] or Icobrain MS®(https://icometrix.com/services/icobrain-ms) [START_REF] Jain | Two time point ms lesion segmentation in brain mri: an expectation-maximization framework[END_REF].

MICCAI2021 challenge

The and FLI (France Life Imaging, devoted to setup a national distributed e-infrastructure to manage and process medical imaging data).

Data

The MSSEG-2 challenge's dataset includes MRI scans of 100 patients, each with two time-points (acquired from one to three years apart). For each time-point, a 3D-FLAIR image is available. Forty patients' scans are available to the participants for training, and the remaining 60 are kept for the testing phase. The images provided are already co-registered to the mid-space between the two time-points with no additional pre-processing. The annotations of new appearing lesions from four experts, as well as a consensus derived from their segmentations are provided. Overall, 15 MRI scanners (both at 1.5T and 3T) from three manufacturers were used to acquire the data. There were very few changes in MRI systems between the two acquisitions, and, in any cas, the manufacturer remained unchanged and the MRI protocol remained the OFSEP's https://zenodo.org/record/5824568#.YtbEPkjP1TY.

Results

The results are available at this address https://files.inria.fr/empenn/ msseg-2/Challenge Day MSSEG2 Results 2021.pdf, where the organizers gave a preliminary analysis and overview of the challenge. 24 teams participated in this challenge (including three companies) and only one non deep learning pipeline was submitted. On the 60 subjects kept for the testing phase, 28 subjects had no new lesion at follow-up and 32 patients had one new lesion or more at follow-up. For the subjects group with no new lesion, the ground truth is empty; dedicated metrics have been found to evaluate those subjects: number of lesions detected and volume of lesions detected. For the subjects group with new lesion, a detection (F1-score) and segmentation metric (Dice score) have been selected to rank all participants.

On the no lesion subset of patients (n=28), the non deep learning method (team MIAL), have detected an average of 1.46 new lesions (rank 23/30), whereas the top method deep-learning based LYLE have detected an average of 0.04 new lesions (result of the best expert = 0 new lesion).

On the lesions subset of patients (n=32), team MIAL's method obtained an average Dice of 0.31 (rank 25/30) and the top method deep-learning based MedICL had CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS 0.51 (best expert = 0.63).

Overall, deep learning methods performed better on the provided testing dataset, on subjects with no new lesions and with new lesions. However, they all agreed that the MS new lesions segmentation and detection are a very difficult task, even for experts.

Objectives

We first aimed at introducing and validating a non supervised automated algorithm for the segmentation of new MS lesions, using the WHASA-3D framework.

The goal of this longitudinal extension of WHASA-3D, called WHASA-Longitudinal, was to automatically detect new and enlarging lesions, while being robust to changes in MRI system or acquisition protocol more consistent with clinical practice. Although our approach enables the analysis of multiple timepoints in principle, we will here focus on the segmentation of new MS lesions between two timepoints, assuming available cross-sectional WHASA-3D segmentation of both timepoints.

In parallel, a deep-learning model has been trained at Qynapse (by Achille Mascia, data scientist), aiming at segmenting and detecting new and enlarging lesions from two consecutive scans. This offers several advantages compared to a non supervised method for an easy integration in a medical device product: faster processing time (inference only takes up minutes) and only T2-FLAIR scans from the two timepoints being required.

During clinical routine, many patients have their MRI acquisitions on different types of MRI systems during follow-up, we had the opportunity to compare the two proposed methods on a dataset composed of subjects both with and without an MRI system and protocol change between timepoints. This allowed us to assess the robustness of these algorithms in a real life setting, with the initial assumption that deep learning may perform better for subjects without change, but should be hindered by MRI system and protocol changes.

In this chapter, we will first present the two methods developed at Qynapse: the non-supervised approach WHASA-Longitudinal developped for this thesis and the supervised model (U-Net model). We will then detail the comparison of the two methods with a consensus of new MS lesions on the composite dataset characterized of patients who experienced an MRI system and protocol change, and patients who did not.

CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS

Proposed methods for detecting new or extending lesions

We will first present the general workflow of the method, and then detail each step in section 6.2. Section 6.3 will present the dataset used for the evaluation of the methods, as well as the metrics used to assess accuracy and reproducibility. Finally, in section 6.4, we will compare both our automated segmentation of new lesions with a consensus provided by experts.

WHASA-Longitudinal (non-supervised method)

WHASA-Longitudinal overall principle is summarized in Figure 6.1. It mainly consists in three steps:

1. a pre-processing step, in which we will register the F LAIR t and F LAIR t+1 in a common halfway space and correct differential bias, overall intensity and contrast differences associated with serial MRI; we will derive a difference image,

showing new and enlarging lesions.

2. a new lesion candidates extraction step, in order to separate lesion voxels from non-lesion voxels in the difference image.

3. and a post-processing step, to reduce the rate of false positive detections.

We will use the terms timepoint t, to refer to the first timepoint (baseline), and timepoint t+1, to refer to the following timepoint (follow-up).

Precomputed inputs

The method is built as an extension of WHASA-3D. Hence, it will uses outputs previously generated by WHASA-3D as inputs as well as outputs of the U-Net model detailed in the previous chapter, for both time points, in both T2-FLAIR native spaces:

• Bias corrected T2,

• Grey and white matter probability maps,

• WHASA-3D cross-sectional WMH segmentation masks,

• Ventricles from the U-Net model. SCLEROSIS LESIONS Figure 6.1: WHASA Longitudinal overall workflow.

6.2.1.2 Preprocessing 6.2.1.2.1 Resampling As mentioned before, we may have to process longitudinal images with differences in MRI systems or MRI acquisition protocols. Acquired images can therefore be different across acquisitions, in terms of dimensions, resolution, field of view, contrast... In order to prepare the data for the registration step, we need to perform a resampling step to harmonize dimensions and resolution between timepoints t and t+1 T2-FLAIR data. To be closer to the real acquired voxel size, we have decided to resample both timepoints to an isotropic voxel size (1 x 1 x 1 mm 3 ) with an average field of view. An example is provided in 1) Estimation of the tranformation matrix M between timepoint t and t+1 space, in order to compute the halfway and inverse transformation matrix H and H -1 .

2) Apply the transformation matrix H to F LAIRt and H -1 to F LAIR t+1 .

6.2.1.2.2 Registration to halfway space Images of both timepoints have to be in the same space to make the comparison possible. Images will thus be registered to a halfway space, namely a space at equal distance of the native spaces of the SCLEROSIS LESIONS two timepoints, using an affine transform in order to avoid biases that would be introduced if registering one time-point to the other [START_REF] Stephen | Normalized accurate measurement of longitudinal brain change[END_REF]. Here, images of two timepoints are aligned to a point that lies in between the scans of different time points, the so-called Halfway space. This step is achieved using an inverse-consistent and symmetric algorithm [START_REF] Modat | Global image registration using a symmetric block-matching approach[END_REF] with NiftyReg, to compute the transformation matrix M between timepoints t and t+1. From this matrix, halfway and inverse halfway transformations H and H -1 are computed as follows:

H = 1 2 * M (6.1) H -1 = 1 H (6.2)
Images and corresponding masks are then linearly registered and resampled into the halfway space by applying accordingly the halfway H and inverse halfway H -1 transformations. The whole process is illustrated in Figure 6.3, and examples of halfway space are given in Figure 6.4.

Differential bias correction and intensity normalisation At this

stage, global intensity and contrast differences remain between the two timepoints.

In fact, despite the previous cross-sectional inhomogeneity correction, slight intensity inhomogeneity can still be observed, that are different between the two timepoints and need to be corrected to avoid creating artifactual signal changes between the two timepoints. Furthermore, image intensities of tissues or structures differ on successive scans, even with the same acquisition setting and even more with different MRI system and/or acquisition protocol. Thus, normalization algorithms are required to compensate these global intensity changes, to allow a better comparison between tissues, structures and lesions.

A longitudinal differential bias correction (DBC) proposed by [START_REF] Emma | Correction of differential intensity inhomogeneity in longitudinal mr images[END_REF] was thus used to remove the residual intensity inhomogeneity-derived differences serial scans. This method considers intensity inhomogeneity as purely multiplicative in order to isolate it through log-transforming the two longitudinal images.

It then relies on the assumption that the intensity difference image between the two co-registered log-transformed images embeds two types of information: small scale differences due to noise and/or real changes between the two images and large scale differences due to residual differential bias between the two images. A median filter is then sufficient to isolate differential bias, which is then transformed back to obtain a ratio between the two bias fields, such that its square root can be applied on the images in halfway space to homogenise the resulting bias between the two images. It has been previously used for T1-weighted images in a longitudinal framework [START_REF] Emma | Correction of differential intensity inhomogeneity in longitudinal mr images[END_REF]. We have reimplemented this method and applied this DBC on our serial T2-FLAIR MRI scans. By removing all large-scale differences between the two longitudinal images, this method also ensures intensity normalisation. Figure 6.6 shows intensity histograms in the WM (first row) and the GM (second row) for each timepoint. The mean intensity of WM differs between timepoints t and t+1 (Figure 6.6 left), whereas the two modes are well alligned after correction (Figure 6.6 right). On this image, new, enlarging or brightening lesions will appear as hyperintense signal intensity areas, as seen in Figure 6.8. Note, however, that the output of the subtraction step may provide a large number of false positives due to local artifactual differences, most of them located outside the white matter.

6.2.1.3 New and enlarging lesions candidates 6.2.1.3.1 Joint lesion map The difference image obtained, at this stage, embeds all intensity differences, and all are not necessarily related to lesions. The WHASA SCLEROSIS LESIONS cross-sectional segmentation masks enable us to identify lesion voxels from non-lesion voxels. We here assume that WHASA is sensitive enough for each cross-sectional scan, and that there are no remaining false negatives in the segmentation. This allows us to use a joint lesion map by applying the union operator in a voxel-wise OR logical operator in both masks (t and t+1) to split the difference image voxels into lesion voxels (which are part of any lesion at any time point) and non-lesion voxels. Figure 6.9 second column shows the final difference image restricted to the joint lesion map.

Automated intensity thresholding

The aim is then to select regions that are most likely to contain lesion changes in the difference image masked with the joint lesion map (Figure 6.9 third column). This is achieved by using an automatically computed threshold, based on the average intensity and standard deviation of the difference image within the WM tissue. We consider new and enlarging lesion activities as voxels with intensity values larger than α times the standard deviation. 6.2.1.3.5 Remove timepoint t WMHs The second postprocessing step allows differentiating brightening lesions from real new or enlarging lesion candidates. In fact, depending on the MRI protocols used between timepoint t and timepoint t+1, MRI system changes might induce a difference in intensity and contrast in stable lesions (lesions observed at timepoint t and timepoint t+1) with possible higher intensities at timepoint t+1. These will thus be detected in the difference image. By removing the WMH voxels that were already detected at timepoint t, new/enlarging lesions candidates will thus be differentiated from brightening lesions (Figure 6.9 fourth column).

6.2.1.3.6 Size threshold We finally applied a size threshold to discard small clusters of voxels that may appear due to image artifacts or local registration failures.

We assumed that lesion size should be greater than two voxels (Figure 6.9 fifth column). This lesion size was optimized on our subset of four subjects (selected based on MRI change and presence of new lesions or not). This is consistent with previous approaches, where authors [START_REF] I Leng Tan | Image registration and subtraction to detect active t2 lesions in ms: an interobserver study[END_REF] also mentioned that small spots should not be considered since most of them were caused by noise or due to partial volume effects.

6.2.2 UNet (supervised method)

Architecture

The chosen architecture for this task is an U-Net, and more specifically the nnU-Net deep learning framework as illustrated in Figure 6.10. nnU-Net is publicly avail-

able as an open-source tool that can effectively be used out-of-the-box, making state of the art segmentation accessible to non-experts and catalyzing scientific progress as a framework for automated method design. For more information about the implementation and details of the nnU-Net, please refer to the following paper [START_REF] Isensee | nnu-net: Self-adapting framework for u-net-based medical image segmentation[END_REF]. SCLEROSIS LESIONS 

Dataset and evaluation

Longitudinal MRI brain scans from 40 MS patients with two visits were used to evaluate the method, described in a previously dedicated chapter (MS Longitudinal database). The MS Longitudinal database includes 20 patients for whom there was no change of MRI system between timepoints t and t+1 and 20 patients for whom there was a change of MRI system between the two timepoints. where nb T rueP ositives is the number of lesions detected by the automated method and the reference, nb F alseP ositives is the number of lesions in the automated method but not present in the reference and nb F alseN egatives is the number of lesions in the reference but not in the automated method. Four patients were selected (MRI not changed/changed, no new lesion/new lesion) for the development of WHASA-Longitudinal and the remaining 36 subjects were kept for the validation of the two methods.

Comparison of the proposed methods with the consensus

In this section, we will compare the results of WHASA-Longitudinal (WL) and Qynapse's U-Net (U-Net) with the consensus provided by three experts on the validation subset. For this validation, we will first study ICC and linear regression for volume agreement, before considering spatial agreement at voxel level and the consistency of lesion count. For each part, we will first detail results for the whole dataset before focusing on presenting the results at subgroup level: patients who had their second MRI on the same MRI system and patients who had their second MRI on another MRI system. between V Ref and V Seg are displayed for either subjects without any MRI system change or subjects with MRI system change. Both correlation coefficients are high (for WL: R²(same) = 0.97, R²(different) = 0.83 and for U-Net: R²(same) = 0.79, R²(different) = 0.88), meaning a good correlation between V Ref and V Seg , but with a R²(same) higher than R²(different), that could, at first, suggest that WL works better for subjects who did not experience an MRI system change, as could be expected.

However, for the U-Net model, R²(different) is higher than R²(same), and this would need to be confirmed on further data, and the influence of the outlier needs to be further investigated.

Additionally, the ICC between V Ref and V Seg for patients who experienced no MRI system change was 0.80 (WL) and 0.74 (U-Net) while it was 0.86 (WL) and 0.89 (U-Net) for patients with a change in MRI system, indicating a good volume concordance in both cases.

Spatial agreement

Global results

Table 6.2 shows values for AVE and Dice scores for both methods on the validation subset. The median Dice scores are 0.43/0.59 (WL/U-Net). Note that the Dice score is a metric computed relative to the object's size and thus is very sensitive for small objects (and is meaningless when there is no change in the consensus). Here, we only consider new lesions or new parts of existing lesions, thus small lesion load can explain the median Dice score that was obtained. In addition, the median AVE are 0.10/0.05 mL (WL/U-Net) between V Ref and V Seg , which is very low. Figures 6. 13 Identity line in black and regression line in orange.

Detecting and accurately counting the number of new lesions is crucial for MS monitoring. Therefore detection measures are displayed in Table 6.4 with TPR, FPR and FNR. Overall, in the whole validation subset, the TPR is higher for the U-Net than WL (81%/63%). FPR and FNR are lower as well for the U-Net than WL (46%/89% and 19%/38%). According to the MRI system change, the U-Net seems to have better results on the subset of subjects who did not experience a system change at timepoint t+1 (TPR 86% (same) and 74% (different)) whereas this difference of performance is less pronounced for WL (TPR 64% (same) and 60% (different)). This behavior is confirmed as well on FNR for the U-Net (FNR 14% (same) and 26%

(different)) and WL (FNR 36% (same) and 40% (different)).

The linear regression between the number of new lesions in the consensus and our proposed methods is displayed in Figure 6.15. Figure 6.16 illustrates regions falsely detected by our method (in red). The U-Net model obtained better results, with a correlation coefficient R² of 0.82 compared to 0.08 for WL and an intercept close to 0 for the U-Net (+0.7) compared to WL (+11.5). We observe a higher number of regions detected in WHASA-Longitudinal compared to the consensus, and will be discussed in the next section. 

Discussion

We have thus presented a proof of concept for our extension, WHASA-Longitudinal, for automatic new and enlarging lesion segmentation, based on image difference in a halfway space from two cross-sectional WHASA-3D segmentations, and a deep-learning based method Qynapse'S U-Net, in order to compare the two approaches on a realistic dataset. The methods have been evaluated with respect to a reference segmentation on a validation subset of the MS Longitudinal dataset (total of 40 patients with MS, among whom half were acquired on a different MRI system for the two timepoints).

Overall, in the whole validation subset (n=36) the performance of the supervised method U-net was better than the non-supervised method WL both in terms of volume and spatial agreement. Even though volume agreement appeared good for WL (R²=0.90 and ICC=0.80), low lesion changes were overestimated and the median dice score on the whole validation subset was 0.43, while the AVE remained good (0.11 mL) but with a high number of false positives (FPR=89%). The results are lower for the U-Net volumetric-wise (R²=0.80 and ICC=0.76) but all superior for the spatial agreement on the whole validation subset (median dice 0.59 and AVE 0.05 mL).

The goal in this study was to evaluate if a change in MRI system at follow-up would alter the performance of our automated method. Therefore, our validation subset was split in two halves, where half of subjects (n=18) experienced an MRI system change and not the other half. We finally observed that the performance of the U-Net model seems to be better on the group of subjects where the MRI machine remained the same (TPR 86% (same) and 74% (different)), whereas WL seems to be less impacted by this change of scanner (TPR 64% (same) and 60% (different)).

The small number of subjects (only ten with lesion changes in each group) and the presence of an outlier in the group of patients with no MRI system change might have biased the comparison. Thus, further evaluation on a higher number of subjects is needed to better assess the performance of our method and the differences for patients with and without MRI system change between the two timepoints.

Finally, the lesion count proved to be an issue for this first version of WHASA-Longitudinal, as many false positive lesions were detected (FPR 89%). In fact, many regions were detected (Figure 6.15), with most false positives (FP) (Figure 6.16) being CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS smaller than ten voxels (377 candidates, i.e 79% of all total FP), while only 11 true positives (TP) were also smaller than 10 voxels, i.e 18 % of all the total TP (Figure 6.17 As described in the methods section, the minimum lesion size was set at two voxels in the post-processing step. This setting was purely empirical, to be the as sensitive as possible to minimise the number of FN. To assess the influence of this parameter on the final result, we have run the method on the whole dataset with varying minimum lesion size (2, 5 and 10 voxels).

The figure 6.18 shows FP and TP according to the minimum lesion size parameter, only for patients with new lesion or enlarging lesions (n=20). The number of false positives decreased strongly between 2 and 5 voxels (median FP number at 9 for minimum 2 lesion size and 2 for minimum 5 lesion size) and then remains stable for 10 voxels. For true positives, the median number of TP did not change between the different minimum lesion size, even though the larger numbers of TP decreased (two subjects with respectively 10 and 9 number of TP with the minimum 2 lesion size, have their values decreased at minimum 5 lesion size at 8 and 6 respectively).

The figure 6.19 displays the spatial agreement (Dice score and AVE) with respect to the minimum lesion size parameter. The median Dice score was improved between 2 and 5 voxels, slightly increasing from 0.43 to 0.46, and the median AVE was reduced by more than 50% (0.10 to 0.04 mL), thus showing an overall effect of these small false positives.

In conclusion, although automatic lesion count remains a difficult task, the minimum lesion size could be optimised on a subsample to improve lesion count and overall performance.The methods presented here did not participate at the MSSEG-2 As mentioned in Chapter 2, The Fazekas scale [START_REF] Fazekas | Mr signal abnormalities at 1.5 t in alzheimer's dementia and normal aging[END_REF] was the first to provide the assessment of periventricular and deep WMH separately. Then, [START_REF] Kim | Classification of white matter lesions on magnetic resonance imaging in elderly persons[END_REF] defined criteria were proposed to better distinguish these two types of lesions in the elderly population. For those patients, the presence and severity of WMH have been consistently related to cognitive function [START_REF] Cees | Cerebral white matter lesions and cognitive function: the rotterdam scan study[END_REF], and the risks of dementia and severity of cognitive impairment [START_REF] Bracco | Alzheimer's disease: role of size and location of white matter changes in determining cognitive deficits[END_REF] were preferentially associated with periventricular rather than deep WM lesions. The rate of cognitive decline [START_REF] Cees | Periventricular cerebral white matter lesions predict rate of cognitive decline[END_REF] and medial temporal lobe atrophy (de [START_REF] Bibliography | White matter lesions are associated with progression of medial temporal lobe atrophy in alzheimer disease[END_REF] were also preferentially associated with the severity of periventricular rather than deep white matter lesions. Recently, differences in WMH subcortical patterns between cerebral amyloid angiopathy and hypertensive arteriopathy (most common forms of small vascular disease) were also demonstrated by [START_REF] Charidimou | White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy[END_REF].

Furthermore, MS plaques in the brain are also classified based on their location according to the 2017 McDonald criteria [START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF]. Three classes are mainly identified: (i) periventricular lesions, in direct contact with lateral ventricles;

(ii) infratentorial lesions, below the cerebellar tentorium line, that separates cerebrum from cerebellum and brainstem; and (iii) juxtacortical lesions, close to the cortex. All the remaining white matter FLAIR hyperintensities are referred to as deep white matter lesions.

Commercial medical devices exist to automatically classify lesions according to their localization. Among them, the most known are: NeuroQuant MS® (https:

//www.cortechs.ai/products/neuroquant/neuroquant-ms/) or Icobrain MS® (https://icometrix.com/services/icobrain-ms) [START_REF] Rakić | icobrain ms 5.1: Combining unsupervised and supervised approaches for improving the detection of multiple sclerosis lesions[END_REF].

Thus, being able to classify and quantify lesions according to the spatial localization in the brain may be meaningful for both MS diagnosis, and characterisation of lesions in normal ageing and dementia.

In this chapter, we will introduce WHASA-Spatial, an extension of WHASA-3D to THEIR SPATIAL LOCALIZATION extracted in the T1 space, and then detail the creation of reference ROIs.

Segmentation of brain structures from T1-weighted image

The aforementioned segmentations are provided by two different approaches and both uses the T1-w as it offers the best GM/WM contrast:

• SPM12 (Ashburner and Friston, 2005): the grey probability map was obtained with the unified segmentation method within the WHASA-3D pipeline and is thus already available at this stage, The top of figure 7.2 also shows brain structures extracted from the T1-w image.

Registration to T2-FLAIR

This step is achieved by using the Coregister: Estimate and Reslice tool from SPM12, as in WHASA-3D.

It estimates rigid transformations to align the images globally. Once a transformation between the T1-w and the T2-FLAIR image has been established through registration, it can be extracted, and applied to the grey probability map and the U-Net prediction (basal ganglia, ventricles, cerebellum, brainstem) in the T1-w space to the T2-FLAIR space.

We finally obtained the grey matter probability map and the U-net derived structures in the T2-FLAIR space (Figure 7.2).

Building of the reference ROIs

We then created reference ROIs to guide the classification of lesions based on their location. In this section, we will present how these reference ROIs will be generated:

distance maps with respect to ventricles, and binary masks for cortical region and THEIR SPATIAL LOCALIZATION infratentorial area, that will then be used to guide the classification of periventricular, juxtacortical and infratentorial lesions respectively.

7.1.2.3.1 Distance maps from ventricles Lesions will be classified as periventricular lesions if they are near the ventricles, but will never overlap with them.

Thus we decided to use a distance map by assigning to each point outside the ventricles its Euclidean distance to the nearest ventricle point, using SciPy. We then applied the brain mask in order to restrict the distance map to the brain. Figure 7.3 illustrates the distance map with color-coded absolute distances (in voxels).

Cortical region

The goal of this step is to extract the cortical region, using the grey matter probability map provided by SPM12 (thresholded at 0.5). However, grey matter embeds cortex, subcortical structures and infratentorial area.

Furthermore, the brain tissue segmentation derived by SPM12 can be disturbed by WMH, that appear with an intensity similar to that of GM on T1-weighted images.

This leads to misclassifications in the tissue maps, where some WMH can be wrongly

Classification

The classification process takes as inputs the reference ROIs in the T2-FLAIR space, generated in the preprocessing step, together with the lesion mask generated by WHASA-3D.

In this section, we will detail how WMH present in the WHASA-3D final lesion mask are classified into periventricular, infratentorial, juxtacortical and deep white matter lesions, in this specific hierarchical order. For each location, we will also indicate the definition of the associated lesion and develop the criteria that was used.

Periventricular lesions

Definition. A periventricular lesion is defined as a T2-hyperintense cerebral white matter lesion in direct contact with the lateral ventricles, without intervening white matter.

Criteria. The distance map from the ventricles provides us with distances from all lesion voxels to the ventricles. If the minimum distance within a lesion to the ventricles is ≤ two voxels, it will be classified as periventricular (Figure 7.6). The limit of two voxels was chosen to prevent possible small segmentation errors for the ventricles. Criteria. if the lesion intersects with the cortical region for more than 50% of the lesion's volume, it will be classified as juxtacortical (Figure 7.8). A spatial WMH frequency map was created for each lesion type according to their localization.

Results

The spatial analysis of WHASA-3D has been applied to a sample of 104 MS patients that has been described in the Chapter 5. A visual evaluation of the performance of the spatial classification was performed by an experienced expert neuroscientist. A projection on a standard MNI template of all resulting masks has also been displayed for an overall evaluation of anatomical consistency. Finally, a comparison between WHASA-Spatial and the spatial classification performed by lesionBrain will be presented in the last part of the results section. are considered here as connected components as a whole (Figure 7.12). Misclassifica-Figure 7.12: Large deep WMH extended to the infratentorial area.

Datasets

tion of deep WMH as juxtacortical (or the opposite) have also been reported by our expert. The cortex reference object here was built with SPM12, which is noticeably influenced by the presence of large and diffuse WMH. Some parts of the WM had been misclassified as GM by SPM12, and were not removed after the preprocessing step; this results in some deep WMH beeing wrongly classified as juxtacortical due to a faulty reference object. Finally, these preliminary results showed good behaviour, with overall 100 % excellent or good classification for periventricular, 97 % for deep, 98 % for cortical and 91 % for the infratentorial region, on data from various centers and protocols.

Projection on a standard MNI template

The frequency maps thus reveal the consistency of the classification of the lesions according to their anatomical location. In Figure 7.13, we can observe that lesions are correctly classified as periventricular as they all are located around the ventricles.

The same reasoning can be applied for infratentorial lesions (Figure 7.16), where no lesion is present outside of the infratentorial area in the MNI152 space; for cortical lesions (Figure 7.15), most lesions are very near the cortical area, and deep white matter lesions (Figure 7.14) are essentially found in the white matter. volumes in each category.

In order to compare lesionBrain with WHASA-Spatial, based on their own lesion segmentation, we will compute, for each subject, the ratio of lesions assigned to a specific type by a given method with respect to the total lesion volume obtained by each method. sion in all the data sample). However, for the juxtacortical and deep white matter lesions, WHASA-Spatial tends to classify more lesions into the deep region (9%) than the juxtacortical region (2%), whereas lesionBrain has an opposite behavior, with more lesions classified as juxtacortical (6%) than in deep white matter lesions (2%).

An example is shown in Figure 7.17. A visual assessment as detailed in Section 7.2.2 was also performed on this subset of 30 MS patients by our expert. However, as the study was not performed at the same time and not in a randomly blind fashion like we did in Section 7.2.2, the results may be biased and are thus not shown here.

CHAPTER 7. AUTOMATIC CLASSIFICATION OF LESIONS ACCORDING TO THEIR SPATIAL LOCALIZATION taken as well, as it is interesting to distinguish between periventricular from deep WMH [START_REF] Kim | Classification of white matter lesions on magnetic resonance imaging in elderly persons[END_REF]. The use of such gold standard could also be interesting to compare our method to other methods, particularly against lesionBrain. Other aspects needs to be considered as well on our capacity to accurately segment certain structures on elderly subjects with our U-Net and SPM12, mandatory for the classification step. Indeed, the behavior of our U-Net model needs to be tested on elderly patients, who might have larger ventricles compared to healthy controls. We also need to assess the GM segmentation performed by SPM12 on patients with large and diffuse lesions, as it can be disturbed by WMH.

Finally, it would also be interesting to get the clinical feedback of the use of this tool in clinical practice, in order to assess its clinical value for the diagnosis and clinical monitoring of MS and elderly subjects.

In this last part, we will detail in the Chapter 8 the implementation of WHASA-3D into the medical device QyScore® and its use in the CATI environment.

Part IV

Integration of WHASA-3D 

CATI-Neuroimaging

Regarding the CATI environment, WHASA is routinely used in their framework to assess WMH, and was run and quality controlled on more than 3500 elderly subjects Age-related WMH and MS lesions have different appearance and localisation, but retain some common characteristics. In fact, for age-related WMH, WMH tend to become confluent with time, thus showing an aspect of diffuse WMH in the WM [START_REF] Alber | White matter hyperintensities in vascular contributions to cognitive impairment and dementia (vcid): knowledge gaps and opportunities[END_REF]. Similarly, in MS, it is frequent to find diffuse changes in the normal-appearing white matter along with focal WMH (Lassmann, 2018). A multiscale approach on T2-FLAIR intensity, coupled with shape or texture features, could yield both a more reliable segmentation of diffuse lesions and an automatic distinction between diffuse and focal WMH as a new feature for WHASA-3D.

Future work might also be carried out on the two extensions we propose. First, for the automated classification of WMH according to their anatomical location, WHASA-Spatial, improvements may be considered for the classification of deep WMH and juxtacortical/cortical WMH with the implementation of multiple classifications for a single WMH and a better cortical GM segmentation, as mentioned in the corresponding chapter. An additional quantitative evaluation of this feature with a manual segmentation on elderly subjects and/or patients with dementia remains needs to be undertaken as well. Application of such a method on patients from MS cohorts with different disease status (CIS, RRMS, SPMS, PPMS) would give insights on the usefulness of such information for patient monitoring. Then, for WHASA-Longitudinal, lesion count for two consecutive MRI brain scans has to be improved, as mentioned in the dedicated chapter. Besides, more than two visits for a MS patient is very frequent [START_REF] Brochet | Cognitive impairment in multiple sclerosis with regards to disease duration and clinical phenotypes[END_REF], and it will thus be necessary to consider several visits at once, to reduce the processing time (registration in a common space for all visits for instance) and increase the overall longitudinal consistency. In addition, this version needs to be validated on a larger and unseen cohort, in order to reduce our high number of false positives detected and therefore improve the accuracy of the count of new lesions. The study of the longitudinal evolution of WMH in elderly subjects and/or patients with dementia [START_REF] Maillard | Longitudinal follow-up of individual white matter hyperintensities in a large cohort of elderly[END_REF] needs to be considered and validated, as they are known to evolve and could be associated with cognitive decline (De Leeuw et al., 2001b). * * * 

Résumé

Les hyperintensités de la substance blanche (HSB) sont de plus en plus prises en compte dans le suivi clinique des personnes âgées et/ou des patients atteints de démences, et sont cruciales chez les patients atteints de Sclérose en Plaques (SEP). Des méthodes d'analyse ont été proposées pour aider à quantifier ces lésions à grande échelle, afin de mieux comprendre les mécanismes sous-jacents de ces pathologies. Cependant, à notre connaissance, il n'y a pas de consensus aujourd'hui sur la méthode à utiliser et aucune méthode n'est validée sur ces deux types de sujets.

Cette thèse présente plusieurs outils et leurs validations dans le but de mieux caractériser les HSB. Tout d'abord, (i) WHASA-3D [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF] est une nouvelle méthode de segmentation automatique des HSB adaptée pour les données 3D T2-FLAIR et aux patients SEP dans un cadre multicentrique. C'est une amélioration majeure de WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF]. Les performances de WHASA-3D sont comparées ici avec six méthodes de la littérature avec leurs paramètres par défaut et optimisés lorsque cela est possible. Deux extensions ont alors été développées dans le but d'apporter une aide lors du diagnostic et du suivi clinique des patients. Une comparaison de (ii) WHASA-Longitudinal et d'un modèle U-Net, approches permettant de segmenter automatiquement les nouvelles lésions ou lésions élargies entre deux acquisitions successives a été réalisée sur une même base de données avec patients ayant subi un changement machine entre visites. Les performances des méthodes se sont révélées satisfaisantes et doivent être confirmés sur une plus grande base de sujets. Enfin, (iii) WHASA-Spatial est une extension pour caractériser spatialement les HSB fournies par WHASA-3D selon quatre classes (périventriculaire, infratentorielle, juxtacorticales/corticales, profondes). La classification a été évaluée visuellement sur 104 sujets SEP et a montré des résultats très satisfaisants.

Abstract

White matter hyperintensities (WMH) are more and more taken into account in the clinical monitoring of elderly subjects and/or dementia patients, and are crucial in patients with Multiple Sclerosis (MS). Automated methods have been proposed to better quantify these lesions on a large scale, in order to better understand the underlying mechanisms of these pathologies. However, to our knowledge, no automated method has reached consensus today for the segmentation of WMH, and no method has been validated on these two types of subjects.

This thesis introduces several tools and their validations in order to better characterize WMH. First of all, (i) WHASA-3D [START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF] is a new automated method for WMH segmentation adapted for 3D T2-FLAIR data and MS patients in a multicenter setting. It is a major improvement of WHASA [START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF]. WHASA-3D's performances are here compared with six state-of-the-art methods with their default parameters and optimized settings, when possible. Two extensions have then been developped to support the clinician for patient diagnosis and clinical monitoring. A comparison between (ii) WHASA-Longitudinal and an U-Net model, methods that allows the automatic segmentation of new or enlarged lesions between two successive acquisitions has been performed on a common dataset with subjects who experienced a change in MRI scanner at follow-up. The performance of the methods were satisfactory and need to be confirmed on a larger number of subjects. Finally, (iii) WHASA-Spatial is an extension for the automatic spatial characterization of WMH provided by WHASA-3D according to four classes (periventricular, infratentorial, juxtacortical/cortical, deep). The visual assessment on 104 MS subjects showed that the global classification was very satisfactory.
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  'évaluerai ensuite la performance de WHASA-3D en comparaison avec six autres méthodes disponibles dans la littérature au Chapitre 4. Enfin, dans la dernière partie (Partie III), je détaillerai deux nouvelles extensions de la méthode visant à apporter une aide au suivi clinique. Je me concentrerai sur deux aspects spécifiques : WHASA-Spatial, une identification automatique des lésions en fonction de leur localisation anatomique (détaillé au Chapitre 7) et WHASA-Longitudinal, permettant de segmenter automatiquement les nouvelles lésions entre deux acquisitions successives (détaillé au Chapitre 6). Les données utilisées dans le cadre du développement et de la validation de ces deux outils seront présentées en amont au Chapitre 5. Le Chapitre 8 sera dédié à l'implémentation de WHASA dans le logiciel QyScore® et à la plateforme CATI. Le contenu de chaque partie est résumé ci-dessous. Partie I -Quantification des HSB chez les sujets âgés et les patients souffrant de démence ou de SEP Chapitre 1: Visualisation des HSB en IRM Je commencerai ce chapitre par présenter les principes de bases de l'IRM, de la source du signal jusqu'à la formation de l'image. En s'appuyant sur les principes présentés, différentes séquences IRM ont été développées et sont utilisées en neuroimagerie. Nous nous intéresserons ici aux images pondérées T1, dans lesquelles la substance grise apparaît grise, la substance blanche plus claire et le liquide cérébrospinal (LCS) sombre, et aux images T2-FLAIR : avec un contraste inversé par rapport à celui des images T1 et utilisant le principe d'inversion-récupération pour annuler le signal provenant du LCS, elles permettent de mieux visualiser les HSB près des ventricules cérébraux.

Chapitre 3 :

 3 Développement et validation de WHASA-3D Je développerai ici la mise au point d'une version améliorée et enrichie de WHASA, initiée dans le cadre d'une collaboration entre ARAMIS, le CATI et Qynapse. L'amélioration majeure de WHASA, WHASA-3D, devra être robuste aux conditions d'acquisitions (données T2-FLAIR 2D ou 3D, à champ 1.5 ou 3T) et aux différents types d'HSB à segmenter (liés à l'âge, aux démences ou SEP).

  2. Avec les paramètres optimisés (LST-LGA) ou ré-entraînement du modèle (BIANCA et nicMSlesions) : une optimisation des paramètres et/ou un réentraînement complet du modèle sera effectué sur un sous-jeu de données d'entraînement, afin d'obtenir la meilleure performance possible sur l'autre partie du jeu de données. Concernant la comparaison avec les paramètres par défaut, WHASA-3D a obtenu le plus haut taux de recouvrement (indice Dice) moyen. Les méthodes supervisées fournissent de faibles performances en termes d'accord spatial et volumique. Après optimisation/réentraînement des méthodes LST-LGA, BIANCA et nicMSlesions, les performances sont largement améliorées pour l'accord volumique et spatial. nicM-Slesions obtient un taux de recouvrement moyen légèrement meilleur que WHASA-3D dans ce cas. WHASA-3D obtient donc des performances supérieures aux autres méthodes disponibles dans la littérature avec les paramètres par défaut, et de très bons résultats face aux méthodes après une ré-optimisation (qui, elles, nécessitent donc des données avec référence pour chaque type de nouvelles données). Partie III -Développement d'extensions pour WHASA-3D pour l'aide au suivi des patients Dans cette partie, je proposerai des méthodes dédiées pour la caractérisation des HSB segmentées. En effet, certaines caractéristiques spécifiques permettent de fournir une analyse plus complète de la charge lésionnelle, en particulier l'évolution temporelle ainsi que la localisation anatomique des HSB. En effet, les pathologies R ÉSUM É DE TH ÈSE associées aux HSB décrites dans cette thèse sont intrinsèquement évolutives. L'étude de l'évolution des lésions au cours du temps est donc un aspect essentiel pour leur analyse. Une méthode fiable pour l'analyse longitudinale sera donc envisagée pour quantifier l'évolution des lésions à travers plusieurs points dans le temps. Par ailleurs, la localisation des HSB au sein des différentes régions cérébrales pourrait améliorer

Chapitre 7 :

 7 l'étude de ces deux extensions, avant de développer chacune des extensions et son évaluation associée (comparaison de deux méthodes pour le longitudinal et validation visuelle pour le spatial). Une étude d'évaluation de ces deux outils sur des populations âgées et/ou des patients atteints de démence avait été initiée mais n'a pas pu être ménée à terme à cause de problème d'accès aux données. Chapitre 5: Description des données SEP pour la validation Des collaborations ont été établies entre Qynapse et plusieurs centres en France, le CHU-Bordeaux et les Hospices Civils de Lyon (HCL) en particulier. Les bases de données SCICOG et REACTIV issues du CHU-Bordeaux contiennent 40 patients atteints de Syndrome Cliniquement Isolé (SCI) et 24 patients rémittents SEP respectivement. Concernant la collaboration avec les HCL, la base de données comprend 40 patients SEP sans critère diagnostique précis, pour lesquels nous disposons de deux visites. Ces données ont été acquises sur des machines de modèles différents des trois principaux constructeurs (Philips, General Electric, Siemens) avec plusieurs protocoles d'acquisitions, correspondant donc à un contexte multicentrique. Chapitre 6: Segmentation automatique des nouvelles lésions entre deux acquisitions (WHASA-Longitudinal et modèle U-Net)La détection des nouvelles lésions est couramment utilisée dans le cadre du diagnostic et du suivi clinique pour les patients souffrant de SEP[START_REF] Thompson | Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria[END_REF]. Dans ce chapitre, je présenterai une seconde extension de WHASA, WHASA-R ÉSUM É DE TH ÈSE Longitudinal (WL) permettant la détection et la segmentation automatique des nouvelles lésions SEP ainsi qu'une seconde approche supervisée avec un modèle U-Net développé en parallèle à Qynapse. Cette étude permettra de comparer ces deux approches avec une segmentation manuelle de nouvelles lésions, sur une base de données composée de moitié de patients ayant subi un changement de machine entre deux visites, ce qui correspond à un cas plus représentatif de la routine clinique. Les méthodes sont uniquement dédiées à la détection de nouvelles lésions entre deux acquisitions. Pour plus de clarté, nous appellerons acquisition t la première acquisition, et acquisition t+1 l'acquisition suivante. Le modèle U-Net a été entraîné sur des T2-FLAIR (sans 3D-T1) sur une base de données provenant du challenge MICCAI2021 et de LITMS longitudinal, avec une segmentation manuelle de nouvelle lésions. Afin d'évaluer la performance des deux approches, une première validation a été réalisée sur la base de données MS Longitudinal, pour laquelle un consensus de segmentation manuelle de nouvelles lésions était disponible dans un cadre longitudinal. Cette base de données de 40 patients SEP est composée pour moitié de patients pour lesquels la machine IRM est la même durant leur suivi clinique, et pour moitié de patients pour lesquels la machine IRM a changé, avec de potentiels changements entre 3T et 1.5T. Au niveau volumétrique, la corrélation avec la référence est bonne, avec un coefficient de corrélation R² de 0.80 pour WL et 0.76 pour le U-Net. La validation spatiale montre un taux de recouvrement médian de 0.43 pour WL et 0.59 pour le U-Net, avec une erreur volumique en valeur absolue de 0.11 mL pour WL et 0.05 pour le U-Net sur l'ensemble des sujets. Sur les patients sans/avec changement de machine IRM, le coefficient de corrélation R² est de 0.97/0.83 pour WL et 0.79/0.88 pour le U-Net, et au niveau spatial, le dice médian est de 0.41/0.43 pour WL et 0.68/0.59 pour le U-Net, démontrant une baisse de performance sur les patients ayant subi un changement de scanner à l'acquisition suivante pour le U-Net. Une perte de performance a également été relevée sur WL mais moins marquée que le U-Net. Le problème majeur pour WL à ce stade semble une identification de nombreux faux positifs qui, pour la plupart, sont de très petite taille (<5 voxels) ; une modi-R ÉSUM É DE TH ÈSE fication d'un critère de seuil dans l'étape de post-traitements pourrait sensiblement améliorer les performances (augmentation du taux de recouvrement médian et réduction de l'erreur volumique sur l'ensemble des sujets) d'après les premiers tests mais demande à être confirmée sur plus de données. Ces premiers résultats de validation sont donc encourageants, même s'il reste des améliorations à envisager pour la réduction des faux positifs, qui ont un effet restreint dans le volume mais faussent actuellement le nombre de nouvelles lésions. Classification automatique des HSB en fonction de leur localisation (WHASA-Spatial) Je présenterai le développement et la validation du nouvel outil de localisation automatique des HSB à partir de la segmentation globale des HSB fournie par WHASA-3D. Je présenterai une classification quatre catégories : (i) périventriculaires, en contact direct avec les ventricules latéraux ; (ii) infratentorielles, présentes dans la zone infratentorielle (sous la tente du cervelet, séparant le cerveau du cervelet); (iii) juxtacorticales, proche du cortex et enfin les (iv) HSB profondes de la substance blanche, correspondant aux HSB restantes. Cette méthode repose sur la création de régions d'intérêt guidant la classification des HSB en fonction de leur proximité à ces régions. Elle repose donc sur deux étapes principales. L'étape de prétraitements commence par l'extraction des structures cérébrales nécessaires à partir de l'image pondérée T1 : carte de probabilité de substance grise obtenue avec le logiciel SPM12 (Ashburner and Friston, 2005), ventricules, cervelet, tronc cérébral, noyaux gris centraux, obtenus à partir d'une prédiction fournie par un modèle U-Net spécifiquement entraîné. Ces structures sont ensuite recalées dans l'espace de la T2-FLAIR avec le logiciel SPM12, pour finalement construire les régions d'intérêts spécifiquement utilisés par chaque classe d'HSB. L'étape de classification est centrée sur l'application des critères aux HSB de façon séquentielle, par rapport aux régions d'intérêts, afin d'attribuer une classe dédiée à chaque HSB extraite par WHASA-3D :

  WMH, or plaques, observed on MRI images are characteristic of subjects with MS and vascular dementia: they can contribute to the diagnosis, provide information on the prognosis of the possible evolution of the disease, or on the response to a treatment. The development of imaging biomarkers based on these plaques can thus be considered as very relevant for assisted diagnosis and disease monitoring. * * * Quantification of volume and number of WMH is usually performed manually by neuroradiologists, by segmenting them on T2-FLAIR images. However, this method is very costly in terms of human time and raises issues of reproducibility (due to
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 1 Figure 1.1: Different parts of the brain. [Source: https://teachmeanatomy.info/neuroana tomy/]
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 1 Figure 1.2: Grey matter and white matter. [Source: Mayfield Clinic]
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 13 Figure 1.3: Brain lobes. [Source: https://teachmeanatomy.info/neuroanatomy/]
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 15 Figure 1.5: The three major parts of the brainstem. [Source: https://teachmeanatomy.i nfo/neuroanatomy/]
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 17 Figure 1.7: Ventricles of the brain. [Source: https://teachmeanatomy.info/neuroanatomy/]

  Figure 1.10: Longitudinal relaxation and transverse relaxation. (Van Geuns et al., 1999)

CHAPTER 1 .

 1 WHITE MATTER HYPERINTENSITIES ON MRI is often mildly assymetric in the early stages. While lesions may occur in any CNS region, they tend to affect specific white matter regions, such as periventricular and juxtacortical white matter, corpus callosum, infratentorial areas (especially the pons and the cerebellum) and spinal cord (Figure 1.14).

Figure 1 .

 1 Figure 1.14: Characteristic appearance and location of MS lesions.

(

  A) Juxtacortical lesions; (B) Periventricular lesions (Dawson's fingers); (C) Infratentorial lesions; (D) Spinal cord lesions at C5-C6; (E) Gadolinium-enhancing lesions 3 1.3.1.2.2 MS lesions according to their localization 1.3.1.2.2.1 Periventricular lesions A periventricular lesion is defined as a T2-hyperintense area in the cerebral white matter in direct contact with the lateral ventricles, without intervening white matter. Lesions abutting the ventricles and located in the corpus callosum are also included in this definition (Figure 1.15).

Figure 1 .

 1 Figure 1.15: Characteristic features of periventricular lesions in MS are illustrated on T2-weighted (A) or T2-FLAIR (B, C) images in three patients. A: Lesions typically oval or ovoid in morphology and >5 mm in diameter. B: Perpendicular orientation of lesions in the deep white matter in relation to the long axis of the lateral ventricles is commonly seen on sagittal images. C: Periventricular lesions in MS tend to come into direct contact with the ventricular ependyma, with little or no normal-appearing white matter separating lesions from the ventricles (Bakshi et al., 2005).

Figure 1 .

 1 Figure 1.16: Axial 3D T2-FLAIR sections showing infratentorial multiple sclerosis lesions[START_REF] Homos | Can white matter lesion burden predict involvement of normal appearing thalami in multiple sclerosis? study using 3d flair and dti[END_REF] 

Figure 1 .

 1 Figure 1.18: Different types of cortical lesions as detected with 7 T T2*-w MRI[START_REF] Bibliography Iris | Multicontrast mr imaging at 7t in multiple sclerosis: highest lesion detection in cortical gray matter with 3d-flair[END_REF] 
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 4 Spinal cord lesions MS spinal cord lesions are often multiple and short in cranio-caudal diameter. They are hyperintense on T2-weighted sequences and may occur along the entire spinal cord (cervical, thoracic or lumbar), although the cervical portion is more frequently involved. The spinal cord is usually assessed in the sagittal plane (Figure1.19). To be considered as supporting a diagnosis of MS, spinal cord lesions should be focal, with clearly demarcated border, cigar-shaped on sagittal images and wedge-shaped on axial images. MS spinal cord lesions are often

Figure 1 .

 1 Figure 1.19: T2-(a) and proton density-weighted (b,c) images of the entire cord showing typical focal lesions at several cord levels.Corresponding T2-hyperintense lesions are noted at respective levels demonstrating the location and extent of the lesion in the cross-sectional perspective[START_REF] Ali | MRI atlas of MS lesions[END_REF] 

Figure 1 .

 1 Figure 1.21: Axial T1-weighted with Gd image of a patient with RRMS demonstrates a ring-enhancing lesion in the deep white matter of the left parietal lobe (a) and its monthly follow-up (for 5 months) (b-f). (Sahraian and Radue, 2007)

Figure 1 .

 1 Figure 1.23: Axial T1-weighted image without (a) and with contrast (b) images of a patient with RRMS demonstrate several enhancing lesions on the T1-weighted with contrast. Some of these enhancing lesions appear hypointense on T1-weighted without contrast (arrows), and some of them appear isointense (arrowheads) (Sahraian and Radue, 2007)
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 7 T and 3-T susceptibility-based MRI in vivo as non-gadolinium-enhancing chronic lesions with a paramagnetic rim (Figure 1.25).

Figure 1 .

 1 Figure 1.25: Representative examples of MS lesions in which a paramagnetic rim (red arrows) can be easily seen on both 7T and 3T phase images[START_REF] Absinta | Identification of chronic active multiple sclerosis lesions on 3t mri[END_REF] 

  1.26). Such abnormalities tend to affect deep WM more frequently especially around CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI the ventricles. Defining the extent of DAWM is a challenging task, because signal intensity changes associated with it are difficult to clearly separate from those of the surrounding tissues. They may contribute to the development of clinical disability in MS, but the underlying mechanisms and MRI characteristics remain largely unknown.

Figure 1 .

 1 Figure1.26: Dirty-appearing white matter in multiple sclerosis. Axial T2-FLAIR image shows diffuse, subtle hyperintensities in the deep white matter (arrows), in addition to typical periventricular and deep white matter lesions.[START_REF] Miki | Magnetic resonance imaging diagnosis of demyelinating diseases: An update[END_REF] 

  monitoring The clinical course of MS can follow different patterns over time, but is usually characterized by acute episodes of worsening neurologic function (relapses), followed by variably complete recovery (RR course).Clinical activity and subclinical activity (new lesion formation), demonstrated by MRI, are frequent in the RR form of MS, which accounts for 85% of cases of MS diagnosis. After approximately 15 years of the RR course, more than 50% of untreated patients will develop progressive disability with or without occasional relapses, or minor remissions (SP course). Disease activity in MS is strongly linked to the formation of new lesions, which involves a complex sequence of inflammatory, degenerative and reparative processes. Serial analysis of new lesion formation by means of conventional and advanced magnetic resonance techniques provides relevant data related to inflammatory activity and repair mechanisms, changes occurring in the evolution of individual lesions, and the relationship between damaging and reparative mechanisms, starting from the early stages of lesion formation as described above. All this information could be highly useful in the assessment of the specific effects of new treatments (neuroprotective or regenerative).Longitudinal MRI studies have shown that the formation of new MS plaques is nearly always associated with a focal area of contrast enhancement on T1-weighted images after gadolinium injection, at least in patients with RR or SPMS (Figure1.27).New contrast-enhanced lesions are almost invariably associated with a hyperintense lesion in the same location on T2-weighted and T2-FLAIR images. Conventional MRI is highly sensitive in detecting disease activity in MS, and is commonly used for monitoring and predicting treatment response in clinical trials and in clinical practice.

Figure 1 .•

 1 Figure 1.27: Serial MR follow-up of a MS lesion (arrows) in the right parieto-occipital white matter of a 37-year-old man.Contrast-enhanced (top) and proton density-weighted (bottom) MR images of the brain at a comparable anatomic level are shown at first detection of the lesion and at subsequent time points. The images were created with the signal intensity range (window and level) adjusted to enhance the contrast in the diseased white matter.[START_REF] Cr Guttmann | The evolution of multiple sclerosis lesions on serial mr[END_REF] 

Figure 1 .

 1 Figure 1.28: Number of patients with dementia in low and middle income countries compared to high income countries. 5

Figure 1 .

 1 Figure 1.29: FLAIR MRI scans showing typical examples of WMHs of presumed vascular origin. (A) Punctate deep subcortical WMH in the left hemisphere and periventricular caps. In the right thalamus, a lacune can be seen. (B, C) Two examples of severe confluent WMH. Note that borders between periventricular and deep subcortical WMHs become difficult to define[START_REF] Alber | White matter hyperintensities in vascular contributions to cognitive impairment and dementia (vcid): knowledge gaps and opportunities[END_REF] 

Figure 2

 2 Figure 2.1: Fazekas criteria for periventricular hyperintensities and deep white matter hyperintensities. Fujino et al. (2017)

  CHAPTER 2. QUANTIFICATION AND SEGMENTATION OF WHITE MATTER HYPERINTENSITIES2.3.1.2 Atlas-and tissue-based methodsAn atlas is a brain map providing either statistical or topological information. A statistical atlas provides the prior probability for each voxel to belong to a particular tissue class. On the other hand, a topological atlas encodes a specific topology for each structure and group of structures.De[START_REF] De Boer | White matter lesion extension to automatic brain tissue segmentation on mri[END_REF] extended an existing automated tissue segmentation method to embed WMH segmentation. Brain tissues (GM, WM, CSF) were segmented using an atlas-based kNN classifier on multi-modal data (T1-w, PD and T2-FLAIR). This classifier was trained by non-linearly registering 12 brain atlases that have been obtained by manual segmentation of scans from the Rotterdam Scan Study(De Leeuw et al., 2001a) to the actual subject. The resulting GM segmentation was used to automatically determine a threshold for WMH on the histogram of the T2-FLAIR scan.[START_REF] Shiee | A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions[END_REF] introduced an extension of the TOpology-preserving Anatomical Segmentation (TOADS) algorithm[START_REF] Shiee | Multiple sclerosis lesion segmentation using statistical and topological atlases[END_REF]. The TOADS algorithm incorporated statistical and topological atlases to yield a topologically consistent segmentation of healthy brain anatomy. Initially, the atlases were registered with the subject's MRI dataset. Then, the method built upon previous work[START_REF] Shiee | Multiple sclerosis lesion segmentation using statistical and topological atlases[END_REF] by using the aforementioned segmentation and handling MS lesions as topological outliers. Finally, taking into account the intensity profile of the lesions, a postprocessing step for reducing false positives was applied.[START_REF] Shiee | A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions[END_REF] modified the fuzzy C-means algorithm to include anatomical information using both anatomical and topological atlases. The anatomical atlas provided information on where a

  CHAPTER 2. QUANTIFICATION AND SEGMENTATION OF WHITE MATTER HYPERINTENSITIES[START_REF] Samaille | Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation[END_REF] developed the White matter Hyperintensities Automated Segmentation Algorithm (WHASA), specifically designed for being robust to variations due to both acquisition parameters and pathology, with T1-w and 2D T2-FLAIR images. This segmentation method relies on a non-linear diffusion framework[START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] in order to enhance contrast rather than focusing on intensity. False positives removal was carried out by taking into account the location of the WMH, using anatomical priors and tissue segmentation from SPM (http://www.fil.ion.ucl.ac.uk/spm/).A multistage segmentation of WMH, cortical infarcts and lacunar infarcts was recently applied to T1 and T2-w and T2-FLAIR images of 272 old adults by[START_REF] Wang | Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts[END_REF]. The following tissue segmentations from T1 images was obtained with FreeSurfer[START_REF] Fischl | Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain[END_REF]: GM, CSF and WM, ventricular and subcortical structures, as well as hypointense regions. Segmentation of hyperintense regions on T2-FLAIR images was done by applying two consecutive Gaussian mixture models, the first with three tissue classes (CSF, WM, WMH) and the second, applied only on WM and subcortical regions, with only two classes (normal, hyperintense). WMH and cortical infarcts were further distinguished based on their location.Zhan et al. (2015) present an unsupervised WMH segmentation method for T1weighted and T2-FLAIR data. The T1-weighted image was first segmented into different normal tissues, among which regions of white matter and grey matter are combined to provide a region of interest that is subsequently mapped to the FLAIR image. Secondly, the authors calculated the z-score of the intensities in the ROI and defined a threshold to find the abnormalities in normal tissues. They then employed a level set method to improve the preliminary thresholding-based segmentation results

  2.3.3.3.1 MICCAI2008 The first MSSEG Challenge 2008 organized by Styner et al. (2008) is one of the early contests for comparing the methods for automatic extraction of MS lesions from 3D T1-w, 2D T2-w and 2D T2-FLAIR MRI data (http://www.ia.unc.edu/MSseg/about.html). Brain MRI images are provided for a range of patients and pathology; they were acquired from the Children's Hospital Boston and University of North Carolina using a 3T Siemens Allegra scanner. All cases have been segmented by expert raters at each institution. The training dataset were composed of 20 training cases with manual segmentation and 25 testing cases without expert segmentations. 2.3.3.3.2 ISBI2015 This challenge focused on longitudinal MS lesions (Carass et al., 2017) specifically, but it has been used for validating automated cross-sectional MS lesion techniques (https://smart-stats-tools.org/lesion-challenge). Participants were provided with 5 anonymized training and 14 testing cases data acquired using a 3T Philips scanner with the following sequences: 3D T1-w, 2D T2w, 2D T2-FLAIR and 2D PD-w images. Training cases were accompanied by their ground truth segmentations. 2.3.3.3.3 MICCAI2016 The MSSEG Challenge 2016 (https://portal.fli -iam.irisa.fr/msseg-challenge/english-msseg-data/) was organized by Commowick et al. (2018) and hosted in conjunction of the MICCAI conference of 2016. This challenge gathered a database of MS patients, coming from three different centers CHAPTER 2. QUANTIFICATION AND SEGMENTATION OF WHITE MATTER HYPERINTENSITIES for four different MRI scanners (1.5T Siemens Aera, 3T Siemens Verio, 3T Philips Ingenia and 3T GE Discovery), and all following a common consensus protocol. Each patient scans were delineated by seven experts to evaluate the methods performance, on a dedicated computing platform provided by France Life Imaging (FLI, https: //www.francelifeimaging.fr/en). 15 training and 38 testing cases were provided, with the following MR sequences: 3D T2-FLAIR, 3D T1-w, 3D T1-w with Gadolinium and 2D T2-w. 2.3.3.3.4 MICCAI2017 A WMH Segmentation Challenge 2017 (https://wmh. isi.uu.nl/) was held for a standardized comparison of the automatic segmentation of WMHs (Kuijf et al., 2019) in conjunction with the 20th International Conference on MICCAI. The Challenge provided a public platform to standardize the evaluation of WMHs segmentation methods based on a unified dataset of MRI, evaluation metrics, and expert labeling. A total of 60 training and 110 test images were used in this challenge, acquired from five different scanners (3T Philips Achieva, 3T Siemens TrioTim, 3T GE Signa HDxt, 1.5 GE Signa HDxt and 3T Philips Ingenuity) in three different institutes, along with their binary masks. For each subject, a 3D T1-w and 2D T2-FLAIR image were provided. 2.3.3.3.5 MICCAI2021 Following the success of the MSSEG Challenge in 2016, another MSSEG challenge (MICCAI online sponsored) was organized to evaluate new MS lesion detection rather than accuracy of cross-sectional segmentations (ht tps://portal.fli-iam.irisa.fr/msseg-2/). A total of 100 MS patients were gathered with two timepoints (40 for training and 60 for testing) with 3D T2-FLAIR provided at each timepoint. They were acquired with 15 different MRI scanners (part of the OFSEP cohort). New lesion segmentation was performed by 4 expert neuroradiologists and a consensus was formed in two steps: a senior expert finally declined or confirmed disputed lesions among the expert and a majority fusion was performed.

  et al. (2009); Filippi et al. (2016) the localization of lesions within different brain regions could improve the diagnosis of MS. As stated in the McDonald diagnostic criteria (Polman

  This thesis intends first to finalize an extended validation of a fast and reliable version of the White matter Hyperintensities Automatic Segmentation Algorithm adapted to 3D-FLAIR datasets (WHASA-3D)[START_REF] Tran | Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects[END_REF], designed to be implemented in clinical practice for the detection of both MS lesions and age-related WMH in the brain. The second part of the thesis will be focused on the development of innovative tools for the characterization of the WMH according to their anatomical In this part, we aim at proposing WHASA-3D, a major improvement of the unsupervised method WHASA in the Chapter 4, capable of segmenting WMH on 3D T2-FLAIR datasets in MS, healthy controls and patients suffering from neurodegenerative diseases. We will continue in the Chapter 5 to assess the performance of WHASA-3D in comparison with six other methods freely available in the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 31 Figure 3.1: General overview of WHASA and WHASA-3D for 2D and 3D T2-FLAIR

Figure 3 . 2 :

 32 Figure 3.2: Parcellation of the T2-FLAIR for 2D and 3D cases to obtain candidate regions.

Figure 3

 3 Figure 3.3: 3D T2-FLAIR images with two types of GM/WM contrasts, with respective histograms and WMH segmentations. The first row shows high GM/WM contrast, the second row shows low GM/WL contrast. (a) FLAIR (b) Histogram (c) Segmentation with T hr W M (d) Segmentation with T hr GM .
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 3 Figure 3.4: False positive detection and removal.

Figure 3

 3 Figure 3.5: Illustrations of WHASA and WHASA-3D results on a MS subject with (a) low lesion load (reference volume: 2.51 mL; WHASA volume: 1.30 mL, WHASA-3D volume: 3.71 mL).

Figure 3 . 6 :

 36 Figure 3.6: Illustrations of WHASA and WHASA-3D results on a MS subjects with (b) high lesion load (reference volume: 50.04 mL, WHASA volume: 7.27 mL, WHASA-3D volume: 37.24 mL).

Figure 3 . 7 :

 37 Figure 3.7: Scatter plots of manual vs automated lesions volume quantification and linear regression for WHASA (on the left, green crosses) and WHASA-3D (on the right, blue dots) on both MS and Various Dementia database.

  , designed to automatically segment MS lesions from several brain MRI sequences, and validated on MS patients. Only T1-w and T2-FLAIR images are mandatory. The method is based on a cascade of two convolutional neural networks (CNN), the first being trained to be more sensitive to candidate lesion voxels, and the second being trained to reduce the number of false positives. A pre-trained model called "baseline 2ch" is therefore provided and the output is a lesion probability map. It was fully trained on two public MS lesion datasets (MSSEG MICCAI challenges 2008 and 2016) and CHAPTER 4. COMPARISON OF WHASA-3D WITH SIX STATE-OF-THE-ART LESION SEGMENTATION METHODS evaluated with a private MS dataset and the ISBI2015 challenge dataset, using spatial and volumetric agreement (Valverde et al., 2018). 4.1.2.3 BIANCA Brain Intensity AbNormality Classification Algorithm (BIANCA) (Griffanti et al., 2016) is a fully automated supervised method for WMH segmentation embedded in the FSL toolbox. The algorithm is based on the k-nearest neighbor framework (k-NN) and classifies the voxels based on their intensity and spatial features. BIANCA is flexible in terms of MRI modalities to use (either T1-w and T2-FLAIR or T2-FLAIR only) and offers several options (spatial weighting, local spatial intensity averaging, choice of the number and location of the training points). The output image is a probability map. The method has been validated on a cohort of neurodegenerative and vascular patients with manual segmentations. The training dataset consisted of a combination of those two datasets to train and optimize the model parameters, with a leave-one-out cross validation. Once optimized, BIANCA was used to segment WMH on the remaining subjects of the two cohorts, to be further evaluated with spatial and volumetric agreement.

CHAPTER 4 .

 4 COMPARISON OF WHASA-3D WITH SIX STATE-OF-THE-ART LESION SEGMENTATION METHODS Table 4.1: Default settings used for the methods in the comparison experiment.Optimization was performed on LST-LGA, BIANCA and nicMSlesions, based on the highest average Dice score in comparison to expert manual segmentation on the optimization subset of 10 subjects from the MS database. For LST-LPA and LST-

Figure 4 .

 4 Figure 4.1: MS database 3D T2-FLAIR images and superposed segmentations from the consensus reference segmentation and all methods with their default settings on subjects with the (a) highest and (b) lowest Dice (0.86 and 0.21 resp.) for WHASA-3D in comparison to the reference segmentation. Yellow arrows shows WMH that are correctly detected by WHASA-3D but either missed or underestimated by other methods, and blue arrows shows WMH missed by all methods.

Figure 4 .

 4 Figure 4.2: MS database 3D T2-FLAIR images and superposed segmentations from the consensus reference segmentation and all methods with their default settings on subjects with the (a) highest and (b) lowest Dice (0.86 and 0.21 resp.) for WHASA-3D in comparison to the reference segmentation. Yellow arrows shows WMH that are correctly detected by WHASA-3D but either missed or underestimated by other methods, and blue arrows shows WMH missed by all methods.

Figure 4 .

 4 Figure 4.3: Box-and-whisker plots (median, interquartile range and extrema) showing Dice score, F1-score, Absolute Volume Error, True Positive Rate and False Positive Rate in comparison to the manual lesion segmentation on the MS database for WHASA-3D (a), LST-LGA default (b), LST-LPA (c), lesionBrain (d), Lesion-TOADS (e), BIANCA default (f) and nicMSlesions default (g).

Figure 4 . 4 :

 44 Figure 4.4: Scatter plots of manual vs automated lesion volume and linear regression for methods with default parameters on the MS database. Identity is represented as a dotted line.

Figure 4 .

 4 Figure 4.5: Bland-Altman plots for methods with default parameters on the MS database. Mean bias (straight line) and 95% limits of agreements (dotted lines) are also displayed for each method.

Figure 4 .

 4 Figure 4.6: 3D T2-FLAIR image and superposed segmentations from LST-LGA, BIANCA and nicMSlesions methods with default (first row) and optimized settings (second row).
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 47 Figure 4.7: Box-and-whiskers plot (median, interquartile range and extrema) showing Dice, F1-score, Absolute Volume Error, True Positive Rate and False Positive Rate in comparison to the manual lesion segmentation on the validation subset of the MS database for WHASA-3D (a), LST-LGA default (b), LST-LGA optimized (c), BIANCA default (d), BIANCA optimized (e), nicMSlesions default (f) and nicMSlesions optimized (g).
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 48 Figure 4.8: Scatter plots of the manual vs automated lesions volume quantification on the validation subset of the MS database obtained from WHASA-3D, LST-LGA, lesionBrain, Lesion-TOADS, BIANCA and nicMSlesions optimized and linear regression for each method. Identity is represented as a dotted line.

  support diagnosis and clinical monitoring of lesions. We focused on two specific aspects: the automatic detection of new and enlarging lesions between longitudinal scans, introduced in Chapter 6 and the automatic classification of WMH according to their localization (described in Chapter 7). The datasets used for the development and validation are presented in Chapter 5. -Bordeaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.1 SCICOG . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.2 REACTIV . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2 MS Longitudinal (HCL) . . . . . . . . . . . . . . . . . . . . . . . 143 5.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2.2 Manual segmentations . . . . . . . . . . . . . . . . . . . 144

  MICCAI2021 -Longitudinal Multiple Sclerosis Lesion Segmentation Challenge (MSSEG-2) took place as part of a joint effort of the OFSEP (French registry on multiple sclerosis aiming at gathering, for research purposes, imaging data, clinical CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS data and biological samples from the French population of multiple sclerosis subjects)
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 62 Figure 6.2: Example of an axial FLAIR slice for each timepoint before and after resampling.

Figure 6 . 3 :

 63 Figure 6.3: Graphical representation of the halfway registration step.

Figure 6 . 4 :

 64 Figure 6.4: Example of axial slices for each timepoint before and after halfway registration.

  Figure 6.5 displays an example of the differential bias CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS correction on T2-FLAIR images, after registration to the halfway space.
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 66 Figure 6.6: Intensity histograms of white matter (first row) and grey matter (second row). Left: Before differential bias correction. Right: After differential bias correction.

Figure 6 . 8 :

 68 Figure 6.8: Example of a difference image on multiple axial slices.

First column :

 column Timepoint t. Second column: timepoint t+1. Third column: difference image in grey colormap. Fourth column: difference image with jet colormap.

  Intensity threshold = µ(N AW M ) + α * std(N AW M )The α parameter was set to 1.5, because it offers a trade-off between sensitivity and specificity in a subset of four subjects selected based on MRI change and presence of new lesions or not. The threshold was chosen very low in order to enhance sensitivity to new changes, and thus obtain lesion candidates with as few false negatives as possible.

Figure 6 . 9 :

 69 Figure 6.9: Candidates generation and post-processing step.

First

  column: difference image. Second column: difference image masked with the joint lesion map(*). Third column: * intensity thresholded (**). Fourth column: ** with timepoint t WMH removed (***). Fifth column: *** with only voxels greater than 2. 6.2.1.3.3 False positive removal In order to minimize false positive detection, we introduce three post-processing rules that allow cleaning the new and enlarging lesion candidates generated at the previous step. SCLEROSIS LESIONS 6.2.1.3.4 Cleaning regions around ventricles The first one aims at discarding the regions detected around the ventricles in the difference image due to registration inaccuracies. These regions are indeed false positives even though they do not present high intensities in timepoint t+1.

Figure 6 .

 6 Figure 6.10: Manual and proposed automated configuration of deep learning methods. a) Current practice of configuring a deep learning method for biomedical segmentation: An iterative trial and error process of manually choosing a set of hyperparameters and architecture configurations, training the model, and monitoring performance of the model on a validation set. b) Proposed automated configuration by nnU-Net: Dataset properties are summarized in a "dataset fingerprint".A set of heuristic rules operates on this fingerprint to infer the data-dependent hyperparameters of the pipeline. These are completed by blueprint parameters, the data-independent design choices to form "pipeline fingerprints". Three architectures are trained based on these pipeline fingerprints in a 5-fold cross-validation. Finally, nnU-Net automatically selects the optimal ensemble of these architectures and performs postprocessing if required[START_REF] Isensee | nnu-net: Self-adapting framework for u-net-based medical image segmentation[END_REF] 

  Figure 6.11: Linear regressions between V seg and V ref on the validation subset of the MS longitudinal database. Identity line in black and regression line in orange for WHASA-Longitudinal and blue for Qynapse's U-Net.

Figure 6 .

 6 Figure 6.13: Axial slices on the subject with the highest Dice score by WHASA-Longitudinal. Timepoints t and t+1 T2-FLAIR (first and second column) and timepoint t+1 T2-FLAIR with superposed segmentations of WHASA-Longitudinal and consensus (third column). Red: False positives. Yellow: True positives. Green: False negatives. For this subject, V Ref = 0.4mL, V Seg = 0.22mL, Dice = 0.67

Figure 6 .

 6 Figure 6.16: Axial slices on a patient with a high number of regions segmented. Timepoint t and t+1 T2-FLAIR (first and second column) and timepoint t+1 T2-FLAIR with superposed segmentations of WHASA-Longitudinal and consensus (third column). Red: False positives. Yellow: True positives. Green: False negatives.

  Figure 6.17: WHASA-Longitudinal True and false positives distribution according to their size.

CHAPTER 6 .

 6 Figure 6.18: FP (top) and TP (bottom) numbers in the new lesion masks of WHASA-Longitudinal with respect to to the minimum lesion size parameter

•

  a prediction delivered by an U-Net model yields the basal ganglia, ventricles, cerebellum and brainstem segmentation. The architecture of this U-Net model was first presented by Ronneberger et al. (2015), and it consists of two paths, the encoder and decoder paths. The encoder path captures the context of the image producing feature maps. The decoder path is used to enable precise localization. This U-Net was trained on 80 subjects and validated on 50 healthy controls with an average age of 69 years (std=12, min-max=[20-89]). Several axial slices of the U-Net prediction are provided in Figure 7.1.

Figure 7 . 1 :

 71 Figure 7.1: Axial slices with superimposed segmentation provided by the prediction of the U-Net model.

Figure 7 .

 7 Figure 7.6: Periventricular WMH classification with the distance map.

First

  column: T2-FLAIR axial slice. Second column: T2-FLAIR axial slice with superposed WHASA segmentation (in red). Third column: Distance map with superposed WHASA segmentation. Blue zone is < 2 voxels. Fourth column: Focus on a WMH close to the ventricles (< 2 voxels). Fifth column: Final spatial WMH classification.

  An infratentorial lesion is defined as a T2-hyperintense lesion in the brainstem, cerebellar peduncles or cerebellum. THEIR SPATIAL LOCALIZATION Criteria. All lesions intersecting with the reference ROI in the infratentorial area are considered as infratentorial lesions (Figure 7.7).

Figure 7 . 7 :

 77 Figure 7.7: Infratentorial WMH classification.

First

  column: T2-FLAIR axial slice. Second column: T2-FLAIR axial slice with superposed WHASA segmentation (in red). Third column: T2-FLAIR axial slice with superposed infratentorial area segmentation. Fourth column: Final spatial WMH classification.7.1.3.3 Juxtacortical/cortical lesionsDefinition. A juxtacortical lesion is defined as a T2-hyperintense white matter lesion abutting, i.e. in direct contact with, the cortex without intervening normal white matter. A cortical lesion is defined as a focal signal abnormality completely within the cortex or spanning the cortex and underlying white matter.

Figure 7 .

 7 Figure 7.8: Juxtacortical/cortical WMH classification.

First

  column: T2-FLAIR axial slice. Second column: T2-FLAIR axial slice with superposed WHASA segmentation (in red). Third column: T2-FLAIR axial slice with superposed cortex segmentation. Fourth column: (a) WMH classified as deep (b) WMH classified as juxtacortical/cortical Fifth column: Final spatial WMH classification.

For

  the visual assessment of WHASA-Spatial and the projection on a standard MNI space, 104 MS patients were extracted from the SCICOG, REACTIV and HCL databases, previously described in the Chapter 5. Only the first timepoint was used for the patients from the MS Longitudinal and REACTIV databases. Furthermore, we randomly picked 10 subjects from each dataset to form a subset of 30 subjects to perform the comparison between lesionBrain and WHASA-Spatial. THEIR SPATIAL LOCALIZATION 7.2.2 Visual assessment 7.2.2.1 Qualitative score For each subject, two types of scores were assigned: a global score and specific scores for each lesion class. Values ranged between 0 and 3; a score of 3 indicated a complete failure or a large misclassification, for instance a periventricular lesion being labeled as cortical. A score of 2 indicates a borderline classification, where more than two misclassifications are detected. A score of 1 indicates a good classification, where most lesions are correctly classified, with only one or two misclassifications. A score of 0 indicates a perfect classification, where all lesions are correctly classified into their anatomical region. Figures 7.9, 7.10 and 7.11 show examples of patients corresponding to the different values of the global score. Since no subject was rated 3 as global score, it is not possible to display an example for this global score. The colors of each location are given as follows:

Figure 7 . 9 :

 79 Figure 7.9: Example of a subject rated 0 (Excellent)

CHAPTER 7 .

 7 Figure 7.13: Periventricular WMH frequency map for all study subjects in anatomic MNI reference space.

Figure 7 .

 7 Figure 7.14: Deep WMH frequency map for all study subjects in anatomic MNI reference space.

Figure 7 .

 7 Figure 7.15: Juxtacortical WMH frequency map for all study subjects in anatomic MNI reference space.

Figure 7 .

 7 Figure 7.16: Infratentorial WMH frequency map for all study subjects in anatomic MNI reference space.

Figure 7 .

 7 Figure 7.17: WHASA-Spatial (second column) and lesionBrain (third column) classification of lesions. The red arrow shows a lesion classified as deep by WHASA-3D and juxtacortical by lesionBrain.

Figure 7 .

 7 Figure 7.18: Linear regression between percentage automated volumes between WHASA-Spatial and lesionBrain according to their spatial localization on the subset of 30 MS patients.

Figure 8 . 3 :

 83 Figure 8.3: QyScore® report from a MS subject. The WM abnormalities overview shows the quantification of WMH according to their localization in a vertical barplot. Volumes are also normalized with the intracranial volume (ICV).

CHAPTER 8 .

 8 INTEGRATION OF WHASA-3D AND ITS EXTENSIONS or patients with dementia at a prodromal stage, on 2D T2-FLAIR images. The new version of WHASA, adapted to 3D T2-FLAIR datasets, WHASA-3D, is currently being integrated to handle these types of data in ongoing clinical studies mainly on elderly subjects and patients with dementia, as illustrated in Figure 8.4.

Figure 8 . 4 :

 84 Figure 8.4: T2-FLAIR images (first row) and superposed T2-FLAIR with WHASA-3D segmentations in red (second row) on data unseen by WHASA-3D with different pathologies and manufacturers.

  (a) First psychotic disorder (GE) ; (b) Parkinson disease (Philips) ; (c) Elderly subject (Siemens) ; (d) Elderly subject (Philips) ; (e) MS (Siemens)CONCLUSIONT1w and T2-FLAIR images and a deep-learning model U-net, developed in parallel at Qynapse. The goal was to compare these two approaches on a composite dataset composed of a total 40 MS patients, with and without MRI system change during their clinical monitoring. Both methods showed good volume agreement across the whole validation subset, and the performance appeared robust to MRI change for WL. We noticed a bigger drop in performance for the U-Net model on this type of patients than for WL, but the results are still higher for the U-Net than WL. Many small false positives lesions were detected by WL preventing its use for lesion count in the current form and thus requiring further developments. However, further analyses on more patients are necessary to fully validate both methods.An automatic localization of WMH has been developed to automatically characterize the WMH provided by WHASA-3D. We are now able to characterise periventricular, infratentorial, juxtacortical/cortical and deep WMH. A visual assessment of 104 MS subjects was performed on a four point scale, rating the classification result from excellent to total failure. The overall classification was judged excellent or good in 98% of the cases, which reflects an excellent first evalutation. This automatic localization of WMH could be interesting in the context of MS diagnosis (dissemination in space) and for the study of periventricular and subcortical WMH in elderly subjects and/or patients with dementia. * * *We were thus able to propose a method for cross sectional segmentation that is robust to lesion type and acquisition protocol, together with proofs of concept for spatial and longitudinal characterisation. This work could be pursued on several aspects.First of all, regarding WHASA-3D in itself, the mandatory inputs may need to be reconsidered. In fact, according to the 2021 revision of the MRI protocols for MS by the MAGNIMS -CMSC -NAIMS Cooperative 1[START_REF] Wattjes | magnims-cmsc-naims consensus recommendations on the use of mri in patients with multiple sclerosis[END_REF], a high resolution 3D T1-w acquisition is no longer mandatory for diagnosis and assessment of disease activity and even no longer required for the safety monitoring for diseasemodifying treatment in MS. Currently, a T1-weighted image is mandatory as input, in order to extract a reliable estimate of grey matter/white matter interface, that is now derived from the tissue segmentation from SPM12. The improvement of 3D FLAIR acquisition sequences resulted in better quality 3D T2-FLAIR images may be CONCLUSION sufficient to derive this segmentation. Future work is planned to create a new version of WHASA-3D, without the need of T1-weighted images.

  Wilcoxon tests p-values for the spatial (Dice scores) in the comparison between default methods. P-values (Dice score) WHASA-3D LST-LGA LST-LPA lesionBrain Lesion-
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 a First psychotic disorder (GE) ; (b) Parkinson disease (Philips) ; (c) Elderly subject (Siemens) ; (d) Elderly subject (Philips) ; (e) MS (Siemens) . . . . . . . A.1 Clinical course of MS. (Filippi et al., 2016) . . . . . . . . . . . . . . . D.1 Optimization of the x parameter of the GM threshold (a) and the β parameter of the generalized threshold (b) in our training set (n=8). Parameters were chosen based on the highest Dice: x = 1 and β = 1.5. . . . . . . D.2 nicMSlesions retrained on the development dataset of WHASA-3D. . .

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  avec l'échelle visuelle de Fazekas & Schmidt, encore couramment utilisée aujourd'hui. Ce type d'échelle est facile à utiliser mais ne fournit pas de données volumétriques. Afin d'obtenir une mesure du volume des HSB, des techniques de segmentation manuelles ont donc été mises en place grâce à des logiciels de traite-

ment d'images. Néanmoins, même si la segmentation manuelle reste la référence, elle souffre de nombreuses limitations : c'est un exercice fastidieux, peu reproductible, et fortement sensible à la variabilité inter et intra-observateur, ce qui la rend difficilement applicable à de grandes bases de données.

  ÉSUM É DE TH ÈSE 1. La finalisation et la validation étendue d'une version de WHASA rapide et fiable pour les données de patients atteints de SEP, les données acquises 3T et/ou en

	3D, dans un contexte multicentrique
	2. L'élaboration d'outils innovants pour la caractérisation des lésions selon leur
	type (contraste, forme), leur localisation anatomique (proximité par rapport au
	cortex ou aux ventricules) et leur évolution dans le temps (analyse longitudinale)

  SCICOG, REACTIV et MS Longitudinal, à partir d'une estimation visuelle de la qualité de la classification par une experte. Une note globale et spécifique à chaque type de lésion entre 0 (parfait) et 3 (échec) a été attribuée pour chaque sujet. Longitudinal et un modèle U-Net, permettant toutes deux de segmenter automatiquement les nouvelles lésions ou lésions élargies entre deux acquisitions successives. Les performances des deux approches ont été comparées sur une base de données composée pour moitié de sujets ayant subi un changement machine au suivi, qui est représentatif de la réalité clinique. Les résultats de l'évaluation des performances des deux méthodes se sont révélées satisfaisantes au niveau de la volumétrie avec pour les deux méthodes une baisse de performance sur les sujets ayant subi un changement machine au suivi, sur une base de données SEP en comparaison à un consensus de segmentation manuelles de nouvelles lésions.

	ACRONYMS			
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	Sclerosis	Sclerosis		
	PSIR Phase-Sensitive Inversion Recov-Dans ce chapitre, je présenterai, à l'aide de captures d'écran, l'intégration de WHASA SVD Small Vessel Disease ery TP True Positive dans l'interface de QyScore®et le rapport PDF généré pour chaque analyse. Le nouveau code de WHASA-3D a également été transféré avec succès au CATI pour y être intégré dans son propre pipeline. Un test de non régression a été réalisé sur les ROI Region Of Interest TPR True Positive Rate Acronyms RF RadioFrequency RRMS Relapsing-Remitting Multiple VOI Volume Of Interest Introduction
	Sclerosis mêmes données entre Qynapse et le CATI et les résultats ont été similaires. WHASA WHASA White matter Hyperintensi-ties Automated Segmentation Algo-
	est aujourd'hui utilisé pour l'évaluation des HSB chez plus de 3500 patients âgés ou AD Alzheimer's Disease COGnitive FPR False Positive Rate SCICOG Syndrome Cliniquement Isolé rithm
	atteints de démence au stade prodromal et sur de nouvelles données jamais vues par ADNI Alzheimer's Disease Neuroimag-Gd Gadolinium SPECT Single-Photon Emission Com-WM White Matter Advances in magnetic resonance imaging (MRI) have enabled the in vivo measure-
	WHASA-3D auparavant (pathologies/scanners). ing Initiative GPU Graphical Processor Unit puterized Tomography WMH White Matter Hyperintensities ment of structural and associated functional abnormalities. The technique has a wide
	AVE Absolute Volume Error SPM Statistical Parametric Mapping	GM Grey Matter		
	BIANCA Brain Intensity Abnormality	HC Healthy Controls		
	Classification Algorithm	HCL Hospices Civils de Lyon	
	CIS Clinically Isolated Syndrome	ICC Intraclass Correlation Coefficient
	CEL Contrast Enhancing Lesion	ISBI International	Symposium	of
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	CNS Central Nervous System	kNN k-Nearest Neighors	
	CSF Cerebrospinal Fluid	Lesion-TOADS Lesion-TOpology-preserving Anatomical Segmenta-
	CT Computed Tomography	tion		
	CVS Central Vein Sign	LST-LGA Lesion Segmentation Tool -
		Lesion Growth Algorithm	
	DAWM Diffusely Abnormal White Matter	LST-LPA Lesion Segmentation Tool -Lesion Prediction Algorithm
	DBC Differential Bias Correction	MCI Mild Cognitive Impairment
	DIT Dissemination In Time	MICCAI Medical Image Computing
	DIR Double Inversion Recovery	and Computer Assisted Interven-tion society
	DIS Dissemination In Space	MNI Montreal Neuroimaging Institute
	DTI Diffusion Tensor Imaging	MPRAGE Magnetization	Prepared
	DWI Diffusion Weighted Imaging	Rapid Acquisition with Gradient
		Echo		
	FLAIR Fluid Attenuated Inversion Re-covery	MRI Magnetic Resonance Imaging
	FID Free Induction Decay	MS Multiple Sclerosis		
	FOV Field Of View	MSSEG Multiple Sclerosis SEGmenta-tion challenge
	FTD Fronto-Temporal Dementia	OFSEP Observatoire Français de la
	FTLDNI FrontoTemporal Lobar De-	Sclérose En Plaques	
	generation Neuroimaging Initiative	PD Proton Density		
	FP False Positive	PET Positron Emission Tomography

La qualité globale de la classification est considérée excellente ou très bonne dans plus de 98% des cas (scores globaux de 0 et 1) et aucun score de 3 n'a été attribué.

Les résultats par localisation sont concordantes : 100% de classifications excellentes ou très bonnes pour les HSB périventriculaires, 91% pour les HSB infratentorielles, 98% pour les HSB juxtacorticales et 97% pour les HSB profondes de la substance blanche. Les performances pour les HSB infratentorielles sont apparues moins bonnes, cependant, en grande partie car certaines HSB profondes de la substance blanche peuvent s'étendre jusqu'à la zone infratentorielle. Ceci pourrait être amélioré en attribuant plusieurs classifications pour une HSB dans certains cas. Une comparaison avec la méthode lesionBrain a également été réalisée sur un souséchantillon (n=30) représentatif de ces 104 sujets où nous avons comparé les classifications des lésions pour chaque algorithme. Un accord a été trouvé entre les deux méthodes pour la classification périventriculaire et juxtacorticale, et un désaccord pour la classification profonde des HSB. Une évaluation quantitative par rapport à une classification de référence reste à envisager, de même qu'une étude permettant de valider l'utilité de cette extension dans le cadre clinique.

Chapitre 8: Implémentation de WHASA dans QyScore®et au CATI En parallèle à mes travaux de recherche, j'ai pu concrétiser mes contributions avec l'implémentation de WHASA-3D dans le logiciel de traitement de neuroimagerie, QyScore®, développé par Qynapse (http://www.qynapse.com). Dans un contexte d'intégration d'algorithmes dans un dispositif médical, un travail d'optimisation et R ÉSUM É DE TH ÈSE d'efficacité dans le code développé est primordial. Le code a également été revu, testé unitairement et validé par les pairs avant intégration dans le dispositif médical. Conclusion Les HSB prennent une place de plus en plus prépondérante dans le suivi clinique et radiologique des personnes âgés et/ou des patients atteints de démences, ainsi que des patients atteints de SEP. C'est pourquoi plusieurs méthodes d'analyse ont été proposées pour quantifier les processus neurodégénératifs à grande échelle, afin de mieux comprendre les mécanismes sous-jacents de ces pathologies. Cependant, à notre connaissance, aucune méthode automatique n'est aujourd'hui largement utilisée pour la segmentation des HSB, ni est validée sur ces deux types de population. Dans cette thèse, je propose plusieurs outils afin de caractériser les HSB. Je présente tout d'abord WHASA-3D, une nouvelle méthode de segmentation des HSB adaptée pour les données 3D T2-FLAIR et aux patients SEP dans un cadre multicentrique. C'est une amélioration majeure de WHASA, validée sur des données 2D T2-FLAIR et des sujets âgés et/ou patients atteints de démences. WHASA-3D montre de bons résultats en comparaison avec un consensus de segmentations manuelles sur 60 sujets, présentant une grande variabilité au niveau des conditions d'acquisitions et pathologies (SEP et démences variées). La comparaison avec plusieurs méthodes proposées dans la littérature montre également que les performances de WHASA-3D sont comparable ou meilleures sur une base de patients SEP, avec les paramètres par défaut et optimisés lorsque cela était possible. J'ai également proposé deux extensions pour WHASA-3D, afin d'aider dans le suivi clinique des patients. La question de la caractérisation longitudinale des HSB a été abordée dans cette R ÉSUM É DE TH ÈSE thèse, sous la forme de deux approches: WHASA-Cependant, des faux positifs subsistent, qui nécessiteront un travail supplémentaire d'optimisation sur de nouvelles données et d'une validation plus étendue sur un plus grand nombre de sujets. Une méthode automatique de localisation des HSB a ainsi également été développée afin de caractériser spatialement les HSB fournies par WHASA-3D. L'évaluation visuelle de cette classification des HSB en périventriculaires, infratentorielles, juxtacorticales/corticales et profondes sur 104 sujets SEP a montré que la classification globale était très satisfaisante. Cette localisation automatique des HSB pourrait être utile dans le contexte du diagnostic de la SEP (dissémination dans l'espace) et dans l'étude des HSB périventriculaire et profondes chez les sujets âgés et/ou atteints de démence. range of applications for medical diagnosis in many pathologies, and has become crucial in neurology, as MRI produces two-or three-dimensional high resolution images of the central nervous system (CNS) without any radiation, and with a better contrast between grey (GM) and white matter (WM) than in computerized tomography (CT). MRI has thus become the investigative tool of choice for neurological cancers over CT, as well as for many diseases affecting the CNS, including demyelinating diseases, cerebrovascular disease or Alzheimer's disease and related dementia. It is thus nowadays considered as the best tool for visualising in-vivo abnormalities reflecting a reaction in the white matter of the CNS, called white matter hyperintensities (WMH) as they appear bright on a specific type of images (T2-weighted sequences). Today, Multiple Sclerosis (MS) is the most common neurodegenerative disease causing disability in young adults, with a majority of women (approximately 2.8 million cases worldwide). On the other hand, according to the World Health Organization 2 , dementia is one of the main causes of disability and dependency: it mainly affects people over 65 years of age, with currently more than 55 million people living with dementia worldwide, and nearly 10 million new cases every year. The etiologies of these two pathologies are distinct: MS is an autoimmune, chronic inflammatory disease of the CNS, responsible for degradation of the myelin sheaths and neuronal degeneration, while dementia can be the consequence of different disorders, especially in old age. The most common cause of dementia is Alzheimer's disease (60 to 80% of cases), its most important risk factors being aging and genetic (family history); other forms of dementia include vascular dementia (15 to 25% of cases), dementia
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	Number of attacks	Number of lesions with objective clinical evidence	Additional data needed for a diagnosis of multiple sclerosis
	≥ 2	≥ 2	None
		1 (as well as clear-cut histori-	
	≥ 2	cal evidence of a previous at-tack involving a lesion in a dis-	None
		tinct anatomical location)	
	≥ 2	1	Dissemination in space on MRI
			Dissemination in time on MRI
	1	≥ 2	or demonstration of CSF-
			specific oligoclonal bands
			Dissemination in space on
			MRI and dissemination in
	1	1	time on MRI or demonstra-
			tion of CSF-specific oligo-
			clonal bands

.1). Since 1950's, there have been many attempts to develop various criteria to increase sensitivity and specificity in the diagnosis of MS, in order to discriminate other disorders that might mimic MS clinically and radiologically. McDonald criteria were first developed in 2001, and were later revised in 2005, CHAPTER 1. WHITE MATTER HYPERINTENSITIES ON MRI
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.1: The 2017 McDonald criteria for the diagnosis of multiple sclerosis in patiet with an attack at onset 2010 and lately in 2017. The Revised McDonald Criteria, published in 2017 by the International Panel on the Diagnosis of Multiple Sclerosis, include specific guidelines

  ). There are over 10 million new cases of dementia each year worldwide, implying one new case every 3.2 seconds 6 . The total estimated worldwide cost of dementia was $818 billion in 2015. The annual global cost of dementia is now above $1 trillion 7 .

	1.3.2.1.3 Common forms of dementia There are many different types of de-
	mentia although some are far more common than others. They are often named
	according to the underlying pathology that has led to dementia. Some of the more
	common types include: Alzheimer's disease, Vascular dementia, Dementia with Lewy
	bodies, Fronto-temporal dementia, or Parkinson's disease dementia.
	1.3.2.2 WMH in dementia

Although WMH are frequently found in clinically healthy elderly people, at some extent WMH are related to various geriatric disorders: cerebrovasuclar diseases, cardiovascular diseases, dementia. Therefore the presence, form and severity of WMH may provide additional characterization of aging, pathophysiology of geriatric disorders, and the relation between aging and geriatric disorders. Clear evidence exists that WMH have a role in the aetiology of dementia

[START_REF] Adam M Brickman | Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts alzheimer's disease incidence[END_REF][START_REF] Debette | The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and metaanalysis[END_REF] 

  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.5 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Volume and shape analysis of WMH might provide further insight into healthy aging and the pathophysiology of associated disorders, such as small vessel disease,

	2.3.3.3	MS lesions challenges . . . . . . . . . . . . . . 92
		2.3.3.3.1	MICCAI2008 . . . . . . . . . . . . . 92
		2.3.3.3.2	ISBI2015 . . . . . . . . . . . . . . . . 92
		2.3.3.3.3	MICCAI2016 . . . . . . . . . . . . . 92
		2.3.3.3.4	MICCAI2017 . . . . . . . . . . . . . 93
		2.3.3.3.5	MICCAI2021 . . . . . . . . . . . . . 93
	2.4	

. Longitudinal studies in diverse populations consistently demonstrate that increasing WMH volume predicts cognitive decline, mild cognitive impairment, incident dementia, stroke and death

[START_REF] Niels | White matter hyperintensities, cognitive impairment and dementia: an update[END_REF][START_REF] Debette | The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and metaanalysis[END_REF][START_REF] Kloppenborg | Presence and progression of white matter hyperintensities and cognition: a meta-analysis[END_REF][START_REF] Verdelho | White matter changes and diabetes predict cognitive decline in the elderly: the ladis study[END_REF]

. Nevertheless, a given individual may have extensive WMHs but minimal cognitive impairment. WMH location, individual resilience factors, and cognitive reserve likely determine clinical impact. MATTER HYPERINTENSITIES stroke, dementia or MS. Thus, identifying and segmenting WMH is a crucial step for a better characterization of the diseases, and for the development of more specific metrics of the underlying damage. Unfortunately, since age-related WMH or MS lesions patterns are heterogeneous, ranging from low contrast large confluent to high contrast focal lesions, their classification is not straightforward. As an alternative to
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	.1).

Several versions of the Fazekas scale exist and a simplified version classifies the lesions into three stages: Mild, Moderate and Severe (Figure

2

.2). Several alternative scales have been proposed

  QUANTIFICATION AND SEGMENTATION OF WHITE MATTER HYPERINTENSITIESversion of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. Segmentation based on CNNs use relatively little pre-processing compared to other image classification algorithms. This means that the network learns to optimize the filters (or kernels) through automated learning, whereas in traditional algorithms these filters are hand-engineered. More recently, CNNs have been shownto have enough capacity to model complex nonlinear functions to perform multi-class classification tasks such as those required for the description and understanding of highly heterogeneous problems, such as brain lesion segmentation[START_REF] Kamnitsas | Multi-scale 3d convolutional neural networks for lesion segmentation in brain mri[END_REF][START_REF] Brosch | Deep convolutional encoder networks for multiple sclerosis lesion segmentation[END_REF][START_REF] Valverde | Multiple sclerosis lesion detection and segmentation using a convolutional neural network of 3d patches[END_REF][START_REF] Valverde | Automated tissue segmentation of mr brain images in the presence of white matter lesions[END_REF].

	CHAPTER 2. QUANTIFICATION AND SEGMENTATION OF WHITE
	MATTER HYPERINTENSITIES
	WMH. It combined intensity and location features from T2-FLAIR, T1-, T2-and PD-
	weighted MRI and manually labelled training data, to provide a continuous subject-
	specific WMH map displaying different levels of tissue damage along with a binary
	segmentation.
	Ding et al. (2020) presented a supervised segmentation method called OASIS-
	AD. This approach is derived from a previous method OASIS (Sweeney et al., 2013)
	developed for MS lesion segmentation, which used a logistic regression model involving
	several imaging modalities to determine the probability of a voxel to be a WMH or
	not.
	As an alternative to LST-LGA, the Lesion Prediction Algorithm (LST-LPA) is a
	classical machine learning approaches, deep neural networks require lower feature
	engineering which, in conjunction with the increase in the available computational
	Griffanti et al. (2016) use this method for the implementation of BIANCA, the power and the amount of available training data (with annotated labels), makes these
	Brain Intensity Abnormality Classification Algorithm of the FMRIB Software Library type of techniques very interesting and popular. In particular, convolutional neural
	(FSL http://fsl.fmrib.ox.uk/fsl/fslwiki). It is a freely available implementa-networks (CNN) have demonstrated high performance in different domains such as
	tion, which offers different options for input modalities (i.e. only T2-FLAIR or multi computer vision semantic segmentation (Girshick et al., 2014) or natural language
	sequences). processing (Sutskever et al., 2014).

2.3.2.1 Conventional machine learning methods 2.3.2.1.1 k-nearest neighbors (k-NN) k-NN is a pattern recognition method that, for WMH segmentation, was used to compare each voxel's spatial and intensity features with those extracted from a training set, and thus assign a probability of being a WMH voxel based on the result. This algorithm was first proposed for this task by

[START_REF] Simon K Warfield | Adaptive, template moderated, spatially varying statistical classification[END_REF] 

and improved by additionally using spatial tissue type priors in further works

[START_REF] Martijn D Steenwijk | Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (knn-ttps)[END_REF]

.

2.3.2.1.2 Regression models

[START_REF] Dadar | Validation of a regression technique for segmentation of white matter hyperintensities in alzheimer's disease[END_REF] 

proposed a multispectral linear regression classifier that uses the least-squares parameters estimation to segment method that relied on a logistic regression model (https://edoc.ub.uni-muench en.de/20373/). A binary regression model for the classification of voxels in lesion and non-lesion voxels was used, and by including a spatially varying intercept the model is able to (a) account for differences in lesion appearance across the brain and (b) provide valid results even for voxels where no lesions have been observed due to limited sample size of the training set. The parameters of this model fit were then used to segment lesions in new images by providing an estimate for the lesion probability for each voxel.

2.3.2.2 Deep learning methods

In the field of machine learning, the Artificial Neural Networks, or simply Neural Networks (NN) are a family of models inspired by biological neural networks. Those models are particularly efficient because they have a very high distributed processing capacity that allows them to quickly process large amounts of data. Compared to 2.3.2.2.1 Convolutional neural network (CNN) A convolutional neural network (CNN, or ConvNet) is a class of artificial neural network, built as a regularized CHAPTER 2.

For instance,

[START_REF] Brosch | Deep convolutional encoder networks for multiple sclerosis lesion segmentation[END_REF] 

proposed a deep convolutional encoder network which combined feature extraction and segmentation prediction on MS lesions. Their work was later extended to a 3D deep encoder network with shortcut connections, which consistently outperformed other methods across a wide range of lesion sizes

[START_REF] Brosch | Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation[END_REF]

. Furthermore,

Valverde et al. (2018) 

have introduced a new pipeline for automated MS lesion segmentation (called nicMSlesions) based on a cascade of two CNNs, where white matter lesion voxels are inferred using 3D neighboring patch features from different input modalities. Very recently,

[START_REF] Ghafoorian | Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities[END_REF] 

integrated the anatomical location information into the CNN, in which several deep CNN architectures that consider multi-scale patches or take explicit location features were proposed.

2.3.2.2.2 U-Net

Recently, a frequently used CNN architecture is the U-net

[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]

, which is a fully convolutional network with skip connections
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 2 There are only a few cases where a (small) number of techniques were tested on the same database. Ideally, all methods would be applied on a common database and its accompanying ground truth. The use of different evaluation metrics, as well

	as evaluations against manually WMH delineations by different experts, makes it
	difficult to compare the performance of segmentation methods from various studies
	systematically.

.2 with information about the population tested, MRI protocols, and performance (Dice score), if the Dice score was available.

It is worth mentioning that not all the approaches of the state-of-the-art are publicly available to the research community. Furthermore, many of the methodologies are tested on proprietary MRI databases, making the comparison between them unreliable.
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 2 2: Sample characteristics, type of segmentation algorithm proposed and average Dice with reference segmentations in the relevant dataset used, from the studies reviewed. Studies appear in year of publication order. Multiple Sclerosis, MCI: Mild Cognitive Impairment. HC: Healthy Controls, AD: Alzheimer's Disease, SVD:

	Small Vessel Disease						
	Author		Method	Sample size Population	Sequences		Field	Method type	Average
	(Year)		name						Strength	Dice
	De Leeuw	/	6	Non-demented	T1-w (3D), FLAIR	1.5T	Unsupervised	0.72
	et	al.					(2D)		
	(2001b)								
	Shiee et al.	Lesion-	10	MS		T1-w (3D), FLAIR	3T	Unsupervised	0.63
	(2010)		TOADS				(2D)		
	Samaille		WHASA	67	MCI, CADASIL	T1-w (3D), FLAIR	1.5T	Unsupervised	0.72
	et	al.					(2D)		
	(2012)								
	Schmidt		LST-LGA	70	MS, HC		T1-w (3D), FLAIR	3T	Unsupervised	0.77
	et	al.					(3D)		
	(2012)								
	Wang et al.	/	272	Normal aging	T1-w (3D), T2-w	3T	Unsupervised	0.77
	(2012)						(2D), FLAIR (2D)	
	Steenwijk	OASIS-AD	36	MS, HC		T1-w (3D), FLAIR	3T	Supervised	0.74
	et	al.					(3D)		
	(2013)								
	Zhan et al.	/	40	N/A		T1-w	(N/A),	1.5T	Unsupervised	0.75
	(2015)						FLAIR (N/A)	
	Griffanti		BIANCA	559	Neurodegenerative	T1-w (3D), FLAIR	3T	Supervised	0.76
	et	al.			cohort, vascular	(2D)		
	(2016)				cohort				
	Dadar		/	130	Normal	aging,	T1-w (3D), FLAIR	1.5T,	Supervised	0.62
	et	al.			AD, MCI		(2D)		3T
	(2017)								
	Valverde		nicMSlesions 60	MS		T1-w (3D), T2-w	3T	Supervised	0.56
	et	al.					(2D), FLAIR (2D)	
	(2017)								
	Ghafoorian	/	453	SVD		T1-w (3D), FLAIR	1.5T	Supervised	0.79
	et	al.		(train=378,			(2D)		
	(2017)			test=50)					
	Coupé		lesionBrain	15	MS		T1-w (3D), FLAIR	1.5T,	Unsupervised	0.72
	et	al.					(3D)		3T
	(2018)								
	Li et al.	/	170	MS		T1-w (3D), T2-	1.5T,	Supervised	0.80
	(2018)			(train=60,			FLAIR (2D)	3T
				test=110)					
	Ding et al.	/	20	MS		T1-w (3D), FLAIR	1.5T,	Supervised	0.78
	(2020)						(3D)		3T

MS:
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 3 .1.2.1 Alzheimer's Disease Neuroimaging Initiative MRI data from ten subjects (three with Alzheimer's Disease and seven elderly nor-1: MR acquisition parameters as given in the DICOM headers. SPMS = secondary progressive multiple sclerosis, PPMS = primary progressive multiple sclerosis, CIS = Clinically Isolated Syndrome, AD = Alzheimer's Disease, HC = Healthy Control (elderly subjects), FTD = FrontoTemporal Dementia

	3.1.2.2 FrontoTemporal Lobar Degeneration Neuroimaging Initiative
	(FTLDNI, nicknamed NIFD)
	MRI data from 15 subjects (six with frontotemporal dementia (FTD), two elderly
	normal controls and seven with unspecified diagnostic) were randomly selected from
	the FTLDNI (nicknamed NIFD). MR images were acquired on a 3T Siemens TrioTim.
	FTLDNI was funded through the National Institute of Aging, and started in 2010.
	The primary goals of FTLDNI were to identify neuroimaging modalities and methods
	of analysis for tracking frontotemporal lobar degeneration and to assess the value of
	imaging versus other biomarkers in diagnostic roles. The Principal Investigator of
	NIFD was Dr. Howard Rosen, MD at the University of California, San Francisco.
	The data are the result of collaborative efforts at three sites in North America. For

mal controls) were randomly selected from the ADNI database (Petersen et al., 2010), a longitudinal multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease. MR images were acquired on 3T GE Discovery MR750W and 3T Philips Ingenia scanners. The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information, see www.adni-info.org. RRMS = Relapsing remitting multiple sclerosis,
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 3 3: Hyperparameters set in WHASA-3D by default. Optimized type means that the parameter was optimized on a subset of subjects with manual segmentation according to the Dice coefficient. The only hyperparameter set a priori is the γ in the T hr W M .

	.3.

Table 3 .

 3 4: Mean and standard deviations for measures of overlap and volumetric agreement with the reference segmentation for WHASA and WHASA-3D.

		Metrics						
		WMH						
	Database	mean ± std	AVE	Dice	F1-score	TPR	FPR	ICC
		volume						
		(min -max)						
		21.1 ± 15.7						
	MS	Reference	N/A	N/A	N/A	N/A	N/A	N/A
		(0.3 -68.0)						
	and							
		16.5 ± 13.6	6.2 ± 8.8	0.63 ± 0.22	0.37 ± 0.14	0.60 ± 0.26	0.23 ± 0.19	
	Various	WHASA						0.78
		(0.2 -58.3)	(0 -42.8)	(0.13 -0.92)	(0.08 -0.70)	(0.11 -0.90)	(0.01 -0.83)	
	Dementia							
		19.7 ± 14.6	3.1 ± 3.2	0.67 ± 0.20	0.42 ± 0.11	0.67 ± 0.19	0.31 ± 0.23	
		WHASA-3D						0.96
		(0.5 -67.5)	(0 -13.8)	(0.21 -0.91)	(0.15 -0.63)	(0.26 -0.95)	(0.02 -0.83)	
		17.4 ± 16.1						
		Reference	N/A	N/A	N/A	N/A	N/A	N/A
	MS	(0.3 -52.5)						
		8.13 ± 8.55	9.3 ± 11.3	0.50 ± 0.23	0.31 ± 0.13	0.40 ± 0.22	0.22 ± 0.22	
		WHASA						0.61
		(0.2 -31.4)	(0.1 -42.8)	(0.13 -0.82)	(0.08 -0.53)	(0.11 -0.74)	(0.01 -0.83)	
		13.9 ± 12.6	3.9 ± 4.1	0.58 ± 0.22	0.39 ± 0.10	0.55 ± 0.17	0.36 ± 0.27	
		WHASA-3D						0.95
		(0.5 -45.7)	(0 -13.8)	(0.21 -0.86)	(0.20 -0.56)	(0.26 -0.79)	(0 -0.82)	
		24.8 ± 14.5						
		Reference	N/A	N/A	N/A	N/A	N/A	N/A
	Various	(0.3 -68.0)						
	Dementia	24.9 ± 12.6	3.2 ± 2.8	0.77 ± 0.11	0.44 ± 0.12	0.80 ± 0.10	0.25 ± 0.14	
		WHASA						0.95
		(0.7 -58.3)	(0 -11.1)	(0.41 -0.92)	(0.22 -0.70)	(0.43 -0.90)	(0.06 -0.76)	
		25.4 ± 14.4	2.3 ± 1.8	0.76 ± 0.14	0.45 ± 0.12	0.80 ± 0.12	0.26 ± 0.16	
		WHASA-3D						0.98
		(1.0 -67.5)	(0 -5.8)	(0.26 -0.91)	(0.15 -0.63)	(0.32 -0.95)	(0.12 -0.83)	
			114					
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	CHAPTER 4. COMPARISON OF WHASA-3D WITH SIX STATE-OF-THE-ART
	LESION SEGMENTATION METHODS
	4.2.3
	dedicated to the automatic segmentation of age-related WMH and MS lesions
	from 3D T2-FLAIR images in a multicenter and multi-disease framework. Validation
	of WHASA-3D was undertaken on a database with 60 subjects, built from four differ-
	ent cohorts, with subjects acquired on seven MRI scanners, displaying a wide range
	of lesion load and including 30 patients with age-related WMH (elderly subjects and
	various dementia patients) and 30 patients with MS lesions. WHASA-3D outper-
	formed WHASA when evaluated in comparison with consensus manual segmentation
	masks in terms of overlap and volume agreement.
	A complete evaluation of the segmentation method would require a comparison

of the results with other segmentation methods available in the literature in order to fully assess its performance. This comparison is the subject of the next chapter.

Table 4 .

 4 2: Computational time of the different methods per subject.

					Segmentation
			Training time	Preprocessing time
	Type	Methods			time
			(approx.)	(approx.)
					(approx.)
		WHASA-3D	None	10 min	10 min
		LST-LGA	None	3 min	2 min
	Unsupervised			
					Results available
		LesionBrain	None	N/A	after
					30 min
		Lesion-TOADS	None	N/A	45 min
			No	
		LST-LPA	retraining	3 min	2 min
	Supervised		possible	
				1-2
		BIANCA	5 min		2 min
				hours (FSL)
		nicMSlesions	15 hours	15 min	5 min

Table 5 .

 5 1: SCICOG and REACTIV demographic data.

CIS: Clinically Isolated Syndrome. RR: Relapsing remitting MS.

Table 5 .

 5 2: SCICOG and REACTIV MR acquisition parameters.

  Table 5.3.

	Clinical	n (M/F)	Age mean (sd)		Inter-acquisition	Protocol
	status				mean time (days)	(same/different)
			t	t+1		
	RRMS	23 (9/14)	40.9 (13.7)	41.2 (13.9)	306	9/14
	PPMS	3 (1/2)	58.8 (13.7)	60.5 (14)	899	3/0
	SPMS	4 (1/3)	50.3 (13.7)	50.3 (13.9)	673	1/3
	N/A	10 (1/9)	48.3 (13.7)	48.7 (13.9)	336	7/3
	Total	40 (12/28)	44.9 (12.8)	45.2 (13.1)	392	20/20

Table 5 .

 5 3: MS Longitudinal timepoint t and t+1 demographic data. Relapsing remitting MS, PPMS: Primary Progressive MS, SPMS: Secondary Progressive MS, N/A: unspecified
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.1: Example of FOV and voxel size after resampling SCLEROSIS LESIONS

  For each group, only CHAPTER 6. AUTOMATIC IDENTIFICATION OF NEW MULTIPLE SCLEROSIS LESIONS half of the subjects were considered by experts as developing new MS lesions. Average ± std [min -max] reference lesion volume changes for the whole database are 0.64 ±1.13 mL [0.004 -4.83]. For the subjects with no MRI system change, the reference

	lesion volume changes are 0.82 ± 1.45 mL [0.014 -4.83]. For the subjects with MRI
	system change, the reference lesion volumes changes are 0.44 ± 0.64 mL [0.004 -1.98].
	Please note that an outlier was detected in the first group, namely a patient with a
	far larger lesion volume change (V Ref = 4.83mL) compared to the other subjects.
	Without this outlier, the reference lesion volume changes become 0.42 ± 0.62 mL
	[0.014 -2.03] for the subject with no MRI system change. Evaluation metrics can
	be found in Appendix B. In addition, detection metrics, such as the True Positive
	Rate (TPR), False Positive Rate (FPR) and False Negative Rate (FNR), will be
	used to evaluate the number of lesions correctly detected by the automated methods:
	T P R = nb T rueP ositives nb Lesions Ref erence	F P R =	nb F alseP ositives nb Lesions Segmentation	F P R =	nb F alseN egatives nb Lesions Ref erence

  and 6.14 show a few axial slices on subjects with the highest and lowest Dice scores for WL.

	SCLEROSIS LESIONS		
	Spatial	Validation subset (n=36)
	agreement	min mean max med std
	Dice score	WL U-Net 0.00 0.54 0.00 0.34	0.67 0.43 0.24 0.85 0.59 0.29
	AVE (mL)	WL U-Net 0.00 0.35 0.00 0.22	2.43 0.11 0.42 5.27 0.05 0.92
	Table 6.2: Values for Dice score and Absolute Volume Error (AVE) for new and
	enlarging lesions between masks from WHASA-Longitudinal (WL) and Qynapse's
	U-Net with the consensus, on the validation subset of the MS longitudinal dataset.
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	CHAPTER 7. AUTOMATIC CLASSIFICATION OF LESIONS ACCORDING TO
	THEIR SPATIAL LOCALIZATION
	7.2.1 7.2.2.2	Projection on a standard MNI template . . . . 186
	7.2.2.3	Comparison with lesionBrain . . . . . . . . . . 187
	7.3	

  All lesions that do not fall in any of the precedent categories are considered as deep white matter lesions. To do so, individual FLAIR images were registered to a structural T1-w image in MNI space via linear and non-linear registration with NiftyReg. Resulting warp fields were applied to lesion masks for transferring spatial WMH lesion masks to MNI152 space. All registration steps were visually inspected. Frequency WMH maps for each group were created by summing the lesion masks in the MNI152 space.

	CHAPTER 7. AUTOMATIC CLASSIFICATION OF LESIONS ACCORDING TO
	THEIR SPATIAL LOCALIZATION
	Criteria. 7.1.4 Building the frequency maps
	In order to indirectly evaluate the classification method, a first visualization of the
	automated classification was analyzed in a common space. Segmented spatial WMH
	lesion masks were projected to a standard brain template in the Montreal Neurological
	Institute (MNI) 152 space for each anatomical location in Figure 7.13, 7.14, 7.15
	and 7.16.

7.1.3.4 

Deep white matter lesions Definition. Deep white matter lesions are, by definition, lesions that do not fall in any of the precedent categories (periventricular, infratentorial, juxtacortical/cortical).

Table 7 .

 7 THEIR SPATIAL LOCALIZATION %vol lesionT ype = 2: Comparison of spatial lesion classification between WHASA-Spatial and lesionBrain. Results are reported in percentage of total lesions volume

	vol lesionT ype
	vol total

Table 7

 7 

.2 thus shows the results of the spatial lesion classification as percentages of total lesion volume on the subset of 30 MS patients. We have obtained similar results between the two methods in the periventricular region, with 87% median volume percentage for WHASA-Spatial and 91% for lesionBrain and for infratentorial lesions, both median volume percentage are 0% (lesionBrain repporting no infratentorial le-

  Table C.1: OFSEP MR acquisition parameters (machine, sequence, field strength, TR, TE, TI, FOV, Voxel sizes) for timepoint t and t+1.

  Table C.1: OFSEP MR acquisition parameters (machine, sequence, field strength, TR, TE, TI, FOV, Voxel sizes) for timepoint t and t+1.

Table D .

 D 7: Wilcoxon tests p-values for the volumetric agreement (AVE) in the comparison between default methods. P-values (AVE) WHASA-3D LST-LGA LST-LPA lesionBrain Lesion-TOADS

	OTHER METHODS OTHER METHODS								
	NicMSlesions	default	1.73E-06 3.7E-05	2.56E-06 0.016	3.79E-06 0.011	2.56E-06 9.6E-04	1.72E-06 0.001	0.021 0.221	/ /
	BIANCA	default	1.73E-06 6.9E-06	0.95 0.001	4.4E-04 0.001	6.6E-06 0.033	7.49E-05 1.4E-04	/ /	0.021 0.221
			1.73E-06 2.8E-04	0.95 0.041	0.77 0.012	0.59 0.42	/ /	7.49E-05 1.4E-04	1.72E-06 0.001
			1.73E-06 3.7E-05	0.50 0.61	0.85 0.47	/ /	0.59 0.42	6.6E-04 0.033	2.56E-06 0.001
			-06 3.2E-06	0.52 0.71	/ /	0.85 0.47	0.77 0.012	4.4E-04 0.001	3.79E-06 0.011
			3.2E-06	/ /	0.52 0.71	0.50 0.61	0.94 0.041	0.0018 0.001	2.56E-06 0.016
			/	2.56E-06 3.2E-06	1.73E-06 3.2E-06	1.73E-06 3.7E-05	1.73E-06 2.8E-04	1.73E-06 6.9E-06	1.73E-06 3.7E-05
			WHASA-3D	LST-LGA LST-LGA	LST-LPA LST-LPA	lesionBrain lesionBrain	Lesion-TOADS Lesion-TOADS	BIANCA BIANCA	default default	NicMSlesions NicMSlesions	default default

Table D .

 D 8: Wilcoxon tests p-values for the spatial (dice scores) in the comparison between optimized methods.

	P-values (Dice score)	WHASA-3D	LST-LGA optimized	BIANCA optimized	nicMSlesions optimized
	WHASA-3D	/	0.0013	1.3E-04	0.18
	LST-LGA optimized	0.0013	/	6.3E-04	0.0038
	BIANCA optimized	1.3E-04	6.3E-04	/	2.0E-04
	NicMSlesions optimized	0.18	0.0038	2.0E-04	/

Table D .

 D 9: Wilcoxon tests p-values for the volumetric agreement (AVE) in the comparison between optimized methods.

		P-values (AVE)	WHASA-3D	LST-LGA optimized	BIANCA optimized	nicMSlesions optimized
	WHASA-3D	/		0.12		0.0007		0.94	
		LST-LGA optimized	0.12	/		0.0064		0.39	
		BIANCA optimized	0.0007	0.0064	/		0.0057	
	NicMSlesions optimized	0.94	0.39		0.0057		/	
	D.2.2 Retraining of nicMSlesions on the training set used for
		developping WHASA-3D					
			nicMSlesions retrained			WHASA-3D
	Metrics Vol ref Vol seg	ave	dice	f1	tpr	fpr Vol seg ave dice	f1	tpr	fpr
	min	0.34	0	0.1	0	0	0	0	0.52	0.18 0.21 0.2 0.26 0.02
	max	52.45	52.13	30.87 0.8 0.71 0.78 0.81	45.67	9.48 0.86 0.56 0.79 0.82
	median	15.62	12.57	2.14 0.62 0.47 0.65 0.25	10.74	1.59 0.64 0.42 0.59 0.27

Table D .

 D 10: Min, max and average performance measures (AVE, Dice, F1-score, TPR, FPR) with manual segmentation for nicMSlesions retrained on 8 training subjects and WHASA-3D. Validation performed on the validation subset of the MS database (n=20).
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Detection measures and lesion count

CHAPTER 7. AUTOMATIC CLASSIFICATION OF LESIONS ACCORDING TO THEIR SPATIAL LOCALIZATION automatically classify lesions according to their anatomical location (periventricular, infratentorial, juxtacortical and deep white matter lesions). We will then propose a visual evaluation of the results on 104 subjects from the datasets described before, and we will compare the results of our classification with the new feature of lesionBrain [START_REF] Coupé | Lesionbrain: an online tool for white matter lesion segmentation[END_REF], an automatic open source software for the segmentation of WMH and its localization.

Methods

In this section, we will first provide a general overview of the method, which is composed of a pre-processing and a classification step. The following sections will discuss about these specific steps and we will finish by explaining how our spatial WMH frequency maps were built, which will be required for the results part.

General overview

The method operates on WHASA-3D outputs and will use segmentations of cerebral structures to create reference regions of interests (ROIs) in order to guide the classification of lesions based on their proximity of those reference structures. It consists of two main steps:

1. (i) a pre-processing step, that uses previously segmented cerebral structures: grey matter probability map, ventricles, basal ganglia, cerebellum and brainstem, extracted from the T1-w image; the images are warped to the T2-FLAIR space in order to create reference ROIs (periventricular distance map, infratentorial area, cortical region) needed to guide the classification;

2. (ii) a classification step, where we apply hierarchical rules in order to associate a dedicated class to each lesion (namely each connected component of WHASA-derived segmentation), in this specific order: periventricular, infratentorial, juxtacortical and deep white matter lesions, with respect to reference ROIs previously extracted.

Preprocessing

We will first extract brain structures in the T1-w space to create our reference ROIs in the T2-FLAIR space. In this section we will first present the structures 

Discussion and Conclusion

In this chapter, we introduced WHASA-Spatial, an extension of WHASA-3D, which automatically classify WMH according to their anatomical location. The method uses extracted brain regions from T1-w images to create reference ROIs in order to guide the classification of WMH. Distance maps from ventricles, infratentorial area and cortical region are then extracted from the segmentations obtained from the T1-w and will be used to classify lesions with a specific order:

1. Periventricular WMH, Nevertheless, improvement of our method WHASA-Spatial may be considered regarding the classification of deep WMH, especially the ones that extend from the deep WM region to the infratentorial area. In fact, WMH may extend from one region to another, when multiple "core" of lesions start aggregating into each other, as disease progresses, as it usually happens in MS. We could then also consider multiple classifications for a single WMH, subdividing one WMH into multiple parts depending on the localization in the brain. It could be added as an additional rule to the classification of infratentorial WMH, e.g. if the volume inside the infratentorial area exceeds 50% of its total volume. A better cortical GM segmentation could resolve the issue of juxtacortical lesions wrongly detected as deep WMH because of WMH being misclassified as GM during the gray matter segmentation step.

An additional quantitative evaluation of this new feature with a manual segmentation on elderly subjects and/or patients with dementia remains needs to be under-Chapter 8

Integration of WHASA-3D

and its extensions

In this chapter, the implementation of WHASA-3D into the medical device QyScore® and in the CATI environment will be presented.

Qynapse

QyScore® is an advanced processing and visualization software for automatic labeling and volumetric quantification of segmented central nervous system structures for patients older than 18 years of age. The software is intended to be used by medical personnel or neuroimaging trained personnel to support diagnosis of CNS diseases. It is designed to analyze non-injected 3D T1-w and T2-FLAIR sequences (1.5 or 3T).

QyScore® retrieves DICOM MRI data from a DICOM server, sends it to an analysis server, and then displays the results into a dedicated graphical user interface (Figures 8.1 and 8.2), allowing the user to browse the segmentations and the measures in comparison to a reference population, and also to read and edit a PDF report. At the end of the analyses, all quantifications of all segmented cerebral structures (including WMH) are summarized into a PDF report presented in Figure 8.3.

The software currently uses WHASA-3D and its extension (WHASA-Spatial)

to quantify and segment WMH, and provides information about WMH localization (periventricular, infratentorial, juxtacortical/cortical and deep WMH). The second extension of WHASA-3D, capable of detecting new lesions between two visits, WHASA-Longitudinal, is not implemented in the actual certified version of QyScore®, as the preliminary results do not allow us to integrate it yet. 

Conclusion

The detection of WMH has become crucial for the clinical and radiological monitoring of elderly and/or patients with dementia, and MS patients. Today, many methods have been proposed to quantify WMH on large databases in order to better understand the underlying mechanisms of these pathologies. However, to the best of our knowledge no automatic method has reached consensus today for WMH segmentation, and no method has been validated on these two types of WMH lesions. * * *

In this thesis, we aimed at proposing several tools for the characterization of WMH.

We first presented WHASA-3D, our new WMH segmentation method dedicated to 3D T2-FLAIR data for both MS patients and ageing subjects or patients with dementia. This is a major improvement of WHASA, which was only validated on 2D T2-FLAIR data of elderly and/or patients with dementia. In order to validate this method, we compared the segmentation obtained by WHASA-3D with a consensus manual segmentation on a set of 60 subjects, presenting a large variability in MRI acquisition protocols and pathologies (MS and various dementia). Moreover, we ran several methods proposed in the literature and compared their performances on a common MS database, with default parameters but also with and optimized parameters or retrained classification when possible. In MS, on T2* sequences, hemorrhages and hemosiderin deposits are detected as hypointense, and can potentially reveal a vein at the center of MS lesions, commonly known as central vein sign (CVS) [START_REF] Guisset | The central vein sign in multiple sclerosis patients with vascular comorbidities[END_REF]. The WMH segmentation provided by WHASA, if associated to a T2* image, could help detect these CVS as a complementary feature for MS, as the presence of a vein at the center is a prominent feature of the pathology. Another distinctive feature of MS is the presence of cortical lesions, currently detected using T2-FLAIR sequence, but poorly visible on such sequences as their intensity is comparable to the intensity found in the cortex.

However, in research studies, the DIR sequence is now often used, as it is a dedicated sequence that nulls out the signal from CSF and WM, making it easier to detect cortical lesions than on the T2-FLAIR [START_REF] Ahmed S Abdelrahman | Diagnostic utility of 3d dir mri in the estimation of ms lesions overall load with special emphasis on cortical subtypes[END_REF]. Adding this type of sequence in the WHASA-3D framework, could greatly improve our cortical lesion detection and help exclude potential false positives.

Finally, the DWI can detect abnormalities in the WM that appear normal on conventional MR imaging (Bhadelia et al., 2009) and quantitative measures of the motion of water molecules using diffusion tensor imaging (DTI) metrics have shown microstructural changes in the WM in WMH areas [START_REF] Wardlaw | What are white matter hyperintensities made of? relevance to vascular cognitive impairment[END_REF] in cognitively healthy and prodromal Alzheimer's Disease patients [START_REF] Svärd | The effect of white matter hyperintensities on statistical analysis of diffusion tensor imaging in cognitively healthy elderly and prodromal alzheimer's disease[END_REF]. The use of parametric maps together with WMH masks derived from WHASA-3D could allow the analysis of complementary information on myelin damage in aging. 

B.1.2 Linear regression

The ICC measure provides us with a quantification of the agreement between the reference volume, V ref and the automated segmentation volume V Seg . However, it does not inform us if one of the two volumes is systematically underestimated.

We will then use a linear regression between V Seg and V ref , and this way we can report the linear regression equation and the correlation coefficient, R². The comparison of the regression line with the identity line is used to detect the values for which V Seg underestimates or overestimates V ref .

B.1.3 Absolute volume error (AVE)

Total WMH volume gives an overall indication of the performance of the method between automatic and reference segmentation. The relative volume difference is classically used for this type of evaluation, but would emphasize too much on small differences for small lesion loads, and thus make it difficult to compare differences between small and large lesion loads. The absolute volume error was used instead, in mL, and is computed as follows:

Voxel-wise

Total WMH volume gives no indication about spatial agreement. The automatic segmentation could have the same volume as the reference segmentation without any common voxel. In order to comprehend the spatial agreement measures, four basic terms and their clinical meaning should be understood:

• True positive (TP): refers to correctly segmented WMH areas.

• True negative (TN): refers to correctly rejected WMH areas.

• False positive (FP): refers to incorrectly segmented WMH areas.

• False negative (FN): refers to incorrectly rejected WMH areas.

The spatial agreement between reference and automatic segmentation is evaluated 

MS Longitudinal MR parameters Three architectures are trained based on these pipeline fingerprints in a 5-fold cross-validation. Finally, nnU-Net automatically selects the optimal ensemble of these architectures and performs postprocessing if required [START_REF] Isensee | nnu-net: Self-adapting framework for u-net-based medical image segmentation[END_REF] .

6.11 Linear regressions between V seg and V ref on the validation subset of the MS longitudinal database.