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Abstract iii

Regularization of tensorial inverse problems via convex optimization
Applications in image and video processing

Abstract

Solving inverse problems in a multidimensional setting has become an active topic on
which many researchers in linear algebra are working. On the one hand, the construc-
tion of a higher dimensional model can be achieved using tensor algebra by adopting
the mechanisms developed recently in this field. On the other hand, the solution
to such problems is usually based on the regularization techniques that remedy the
ill-conditioning that can be exhibited in almost all inverse problems.
The present thesis aims to bring together the modeling of inverse problems in a higher
dimension and the generalization of some variational regularization methods in tensorial
form. Recently, the variational regularization methods are known as well-established
methods for solving inverse problems. For example, Tikhonov and total variation
regularizers are among the well-known approaches that we will generalize and develop
in the tensor form. Convex optimization approaches will play an essential role in the
resolution of the constrained regularization problems that we have proposed. As well as
a set of mechanisms, such as projection methods and extrapolation techniques, which
have contributed to enhancing the performance of the developed algorithms. Numerical
applications in image and video processing are given to illustrate the effectiveness of the
proposed approaches compared with some state-of-art methods.

Keywords: tensorial algebra, convex optimization, regularization methods, Tickonov,
total variation, projection methods, extrapolation techniques, image and video
processing.

Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA)
– 50, rue Ferdinand Buisson – CS 80699 – 62228 Calais Cedex – France
Laboratoire de Mathématiques Appliquées et Informatique (LAMAI) –
UCAM, FSTG, – BP 549 Marrakech – Maroc



iv Abstract

Régularisation des problèmes inverses tensoriels par l’optimisation convexe
Applications au traitement des images et des vidéos

Résumé

La résolution des problèmes inverses dans un cadre multidimensionnel est devenue un
sujet actif sur lequel travaillent de nombreux chercheurs en algèbre linéaire. D’une part,
la construction d’un modèle en dimension supérieure peut être réalisée en utilisant
l’algèbre tensorielle en adoptant les mécanismes développés récemment dans ce domaine.
D’autre part, la résolution de tels problèmes est généralement basée sur l’utilisation de
techniques de régularisation qui remédient au mauvais conditionnement que l’on peut
trouver dans presque tous les problèmes inverses.
La présente thèse vise à réunir la modélisation des problèmes inverses en dimension
supérieure et la généralisation de certaines méthodes de régularisation variationnelle
sous forme tensorielle. Les méthodes de régularisation variationnelle sont connues
comme des méthodes bien établies pour résoudre les problèmes inverses. Par exemple,
les régularisateurs de Tikhonov et de la variation totale font partie des approches bien
connues que nous généraliserons et développerons sous forme tensorielle. Les approches
d’optimisation convexe joueront un rôle essentiel dans la résolution des problèmes
de régularisation sous contraintes que nous avons proposés. Ainsi qu’un ensemble de
mécanismes, tels que les méthodes de projection et les techniques d’extrapolation, qui
ont contribué à améliorer les performances des approches développées. Des applications
numériques dans le traitement des images et des vidéos sont données pour illustrer
l’efficacité des approches proposées par rapport à certaines méthodes de l’état de l’art.

Mots clés : algèbre tensorielle, optimisation convexe, méthodes de régularisation, Ti-
ckonov, variation totale, méthodes de projection, techniques d’extrapolation, trai-
tement des images et des vidéos.
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CHAPTER1
Introduction générale en français

Les problèmes inverses existent depuis longtemps dans de nombreuses branches
de la physique, des sciences de la terre, de l’ingénierie et des mathématiques.
Depuis la naissance de la théorie de l’inversion, le problème inverse avec sa
conception de modélisation et d’optimisation devient un sujet multidisciplinaire,
qui a reçu beaucoup plus d’attention de nos jours. Sa théorie a été largement
développée en raison de l’importance de ses applications telles que la recon-
struction d’images, la tomographie, l’identification de paramètres, etc. L’objectif
des problèmes inverses, de la conception de modèles et de l’optimisation, est de
fournir une meilleure simulation, plus précise et plus efficace dans les applica-
tions pratiques.

Étant donné un système avec une entrée (voir Figure 2.1), le problème direct
consiste à calculer la sortie. En revanche, étant donné une sortie, le prob-
lème inverse consiste à calculer les paramètres du modèle, en tenant compte
de l’instabilité de la sortie (dans la plupart des situations, nous disposons de
mesures imprécises ou perturbées de la sortie). En d’autres termes, le prob-
lème inverse consiste à utiliser les résultats d’observations réelles ou de mesures
indirectes pour déduire les autres paramètres caractérisant le système étudié.

Figure 1.1: Illustration schématique générale d’un problème inverse.

Dans de nombreuses applications techniques et scientifiques, nous rencon-
trons de grands volumes de données multidimensionnelles, définies sur plusieurs
domaines. Par exemple, dans les communications sans fil, les données reçues
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2 CHAPTER 1. Introduction générale en français

par utilisateur peuvent être indexées dans l’espace, le temps et la fréquence
[134], ce qui signifie qu’elles sont représentées dans la troisième dimension.
De même, dans la reconnaissance faciale [66], nous pouvons associer à chaque
personne des conditions d’éclairage, des expressions faciales et une orientation
du visage différentes. Et aussi, lorsque l’on traite des données de graphes dans
un système de recommandation, les informations résident dans de multiples
domaines (par exemple, utilisateurs, films, musique, etc.) [129] ainsi que les
tâches de traitement d’images et de vidéos [10, 8].

Pour traiter de tels ensembles de données multidimensionnels, les méthodes
classiques consistent à convertir le modèle associé sous une forme bidimension-
nelle (forme matricielle). Cependant, avec l’avènement du tenseur algébrique et
le développement de ses capacités et caractéristiques dans une classe d’ouvrages
intéressants [96, 97, 35], tous les problèmes ci-dessus peuvent être modélisés à
l’aide des tenseurs d’ordre supérieur qui se sont avérés extrêmement utiles.

Parmi les points les plus intéressants qui ont alimenté l’intérêt pour la
représentation et l’analyse tensorielles, citons la capacité accrue des systèmes
de collecte de données à stocker de grands volumes de données multidimen-
sionnelles, ainsi que la modélisation précise qui peut être fournie en laissant les
données dans leur forme multidimensionnelle naturelle.

1.1 Problèmes inverses

Commençons par un rappel de la notion de problème inverse dans le contexte
linéaire. Nous considérons le problème inverse suivant

Au = g, (1.1)

où A : E → F est un opérateur linéaire borné et les ensembles E et F sont des
espaces de Banach. Désignons par ker(A) l’espace nul de l’opérateur A qui est
défini par

ker(A) = {u ∈ E | A(u) = 0} .

Nous appelons l’ensemble Im(A) le domaine de l’opérateur A, c’est l’image de E
sous A, c’est-à-dire Im(A) := A(E). Conformément à notre définition d’un prob-
lème inverse (1.1), nous cherchons une estimation de u à partir de l’observation
donnée g. Les problèmes inverses conduisent souvent à des problèmes qui ne
satisfont pas à la définition de Hadamard des problèmes bien posés.

Definition 1.1.1 (Problème bien posé au sens de Hadamard [46, 81]). Un problème
inverse est bien posé au sens de Hadamard, s’il vérifie les trois conditions suivantes:

1. Une solution existe ;
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2. La solution est unique ;

3. La solution dépend de façon continue des données initiales.

Un problème est dit mal posé si l’une des trois conditions n’est pas véri-
fiée. Les deux premières conditions de la définition 2.1.1 peuvent être réal-
isées lorsqu’un opérateur inverse A−1 existe, et que son domaine D(A−1) (ou
l’intervalle Im(A) de l’opérateur A) coïncide avec E, ce qui n’est rien d’autre que
la bijectivité de l’opérateur A. D’autre part, la troisième condition signifie que
l’opérateur inverse A−1 est continu. Notons que le caractère bien posé du prob-
lème inverse peut être défini autrement au sens de Nashed [121] si l’ensemble
des observations est un ensemble fermé (le domaine de l’opérateur est fermé).

Dans la littérature, la solution du problème linéaire (1.1) peut être approchée
par la méthode des moindres carrés [15]. Cette approche a été proposée in-
dépendamment par Gauss et Legendre au début du 19e siècle. Cette approche
a été publié par Legendre, en 1805, sous la forme d’une procédure algébrique
d’ajustement d’équations linéaires appliquée à l’astronomie et à la géodésie
[104]. Mais en 1809, Carl Friedrich Gauss a la témérité d’affirmer qu’il utilise la
méthode depuis 1795, comme méthode de calcul des orbites des corps célestes.

Supposons que les espaces E et F sont des espaces de Hilbert. Les deux points
de vue, celui de Gauss et celui de Legendre, s’accordent sur l’idée fondamen-
tale de résoudre le problème (1.1) en minimisant la fonctionnelle quadratique
suivantes

Φ(u) = ‖Au − g‖2F = 〈A∗Au,u〉E − 2 · 〈A∗g,u〉E + 〈g,g〉F , (1.2)

où A∗ est l’opérateur adjoint de A. Nous désignons par 〈·, ·〉E et 〈·, ·〉F les produits
scalaires dans les espaces E et F, respectivement. Puisque A∗A est une opération
définie positive, alors, Φ(u) est une fonctionnelle convexe. Il est bien connu que
pour une fonctionnelle convexe différentiable le problème de trouver

min
u

Φ(u),

est équivalent à celui de trouver un point stationnaire, notamment en résolvant
une équation de la forme

Φ ′(u) = 0.

On constate que {
Φ ′(u) = 2(A∗Au −A∗g) ,
Φ ′′(u) = 2A∗A ≥ 0.

(1.3)
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Alors, l’équation Φ ′(u) = 0 peut se transformer en équation algébrique linéaire

A∗Au = A∗g. (1.4)

On dit que l’équation (1.4) représente l’équation normale associée au problème
principal (1.1). Le nom “équation normale” provient du fait que pour toute
solution u, son résidu Au − g est orthogonal (normal) à Im(A). Pour tout v ∈ E,
on a

0 = 〈Av,Au − g〉F =
〈
v,A∗(Au − g)

〉
E ,

ce qui signifie que Au − g ∈ Im(A)⊥.

Definition 1.1.2. [46] Un élément u ∈ E est appelé

• une solution des moindres carrés de (1.1) si

‖Au − g‖F = inf {‖Av − g‖F , v ∈ E} .

• une solution de norme minimale (également appelée solution la plus approchée)
de (1.1) (est désignée par u†) si ∥∥∥u†∥∥∥

E
6 ‖v‖E ,

pour toutes les solutions des moindres carrés v.

Lemma 1.1.1. [1] Soient g ∈ F et l’ensemble S représente l’ensemble des solutions
des moindres carrés. L’ensemble S est non vide si et seulement si g ∈ Im(A)⊕ Im(A)⊥.

Puisque Im(A) n’est pas fermé en général (il n’est jamais fermé pour un
opérateur compact, à moins que l’intervalle soit de dimension finie), une solution
des moindres carrés peut ne pas exister. Si elle existe, alors la solution de la
norme minimale est unique. De plus, la solution de la norme minimale est donc
la projection orthogonale de l’élément zéro sur un sous-espace affine défini par

‖Au − g‖F = min {‖Av − g‖F , v ∈ E} . (1.5)

Theorem 1.1.1. [1] Soit g ∈ Im(A)⊕ Im(A)⊥. Il existe alors une solution unique de
norme minimale u† au problème inverse (1.1) et toutes les solutions des moindres
carrés sont données par

S =
{
u†

}
+ ker(A), (1.6)

où + désigne la somme de Minkowski.

Remark 1.1.1. Dans le cadre d’une dimension finie, il existe toujours une solution
des moindres carrés, puisque dans ce cas, le domaine de l’opérateur A est fermé.
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En général, si une solution des moindres carrés existe pour un g ∈ F donné,
alors la solution de la norme minimale peut être calculée à l’aide de l’inverse
généralisé de Moore-Penrose de A.

1.2 L’inverse généralisé de Moore-Penrose

L’inverse de Moore-Penrose est défini en théorie des opérateurs en restreignant
le domaine et l’étendue de A de telle sorte que l’opérateur restreint résultant soit
inversible[46]. En d’autres termes, l’inverse de Moore-Penrose est défini comme
suit.

Definition 1.2.1. [46] Soient A ∈ L(E,F) et

Ã := A|ker(A)⊥ : ker(A)⊥→ Im(A)

désigne la restriction de A à ker(A)⊥. L’inverse généralisé de Moore-Penrose, désignée
par A†, est défini comme l’unique extension linéaire de Ã−1 à

D
(
A†

)
= Im(A)⊕ Im(A)⊥,

avec
ker

(
A†

)
= Im(A)⊥.

Lorsque le domaine de A est fermé, l’inverse de Moore-Penrose A† est borné
[145, 42]. En générale, l’opérateur A† est non borné. Par conséquent, étant donné
une observation perturbée gδ telle que

∥∥∥gδ − g∥∥∥ 6 δ, on ne peut pas s’attendre au
résultat de convergence suivant

A†gδ→ A†g as δ→ 0. (1.7)

Cet inconvénient conduit à un manque d’intérêt pour le concept d’inverse
généralisé de Moore-Penrose, et par conséquence, A†g n’est pas une bonne
approximation de A†gδ en raison du caractère non borné de A†, même s’il existe.
Ainsi, pour assurer la convergence, nous remplaçons l’opérateur A† par une
famille d’opérateurs bien posés (bornés) Rµ satisfaits

Rµ
(
gδ

)
−→
δ→0

A†g, ∀g ∈D
(
A†

)
, gδ ∈ F, s.t.

∥∥∥g − gδ∥∥∥
F
6 δ, (1.8)

où µ = µ
(
δ,gδ

)
. La famille

{
Rµ

}
µ>0

d’opérateurs continus est appelée opérateurs

de régularisation de A†. En terme générale, la régularisation est l’approximation
d’un problème mal posé par une famille de problèmes voisins bien posés, comme



6 CHAPTER 1. Introduction générale en français

Figure 1.2: Illustration de l’instabilité de l’inverse de Moore-Penrose.

l’illustre la figure 1.2. Elle est définie par deux éléments essentiels: L’opérateur
de régularisation R et le paramètre de régularisation µ. Le choix de ces deux
éléments influence l’efficacité de l’approximation.

En 1963, le mathématicien russe Andrey Nikolayevich Tikhonov a formulé
une définition célèbre de l’algorithme de régularisation qui est une conception
de base dans la théorie moderne des problèmes mal posés.

Definition 1.2.2. [146] Un opérateur Rµ est appelé opérateur de régularisation

Rµ = R
(
µ,gδ

)
≡ Rµ

(
gδ

)
s’il possède deux propriétés :

1. L’opérateur R est défini de (0,+∞)×F à E, pour tout µ > 0 et gδ ∈ F.

2. Pour tout u ∈ E et gδ ∈ F tel que Au = g et
∥∥∥g − gδ∥∥∥ ≤ δ, on a

uδµ = Rµ
(
gδ

)
→ u as δ→ 0. (1.9)

où uδµ est une solution régularisée du problème inverse (1.1).

Un problème est dit régularisable s’il existe au moins un opérateur de régu-
larisation. En général, tous les problèmes mathématiques peuvent être répartis
dans les classes suivantes:

1. Problèmes bien posés;

2. Problèmes mal posés régularisables;

3. Problèmes mal posés non régularisables.

Tous les problèmes bien posés sont régularisables, car on peut prendre Rµ = A−1

où la connaissance de µ > 0 n’est pas obligatoire dans ce cas. En revanche, la
connaissance du paramètre de régularisation µ est cruciale si notre problème est
mal posé.
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Considérons une régularisation linéaire où nous pouvons diviser l’erreur
totale entre la solution régularisée du problème perturbé Rµgδ et la solution de
norme minimale du problème u† = A†g comme suit∥∥∥Rµgδ −u†∥∥∥E 6 ∥∥∥Rµgδ −Rµg∥∥∥E +

∥∥∥Rµg −u†∥∥∥E︸           ︷︷           ︸
erreur totale

6 δ
∥∥∥Rµ∥∥∥L(F,E)︸        ︷︷        ︸

erreur de données

+
∥∥∥Rµg −A†g∥∥∥E︸          ︷︷          ︸

erreur d’approximation

(1.10)

Ceci peut également être illustré comme dans Figure 1.3. Figure 1.3 montre
que pour un petit paramètre de régularisation µ, l’erreur dans les données est
amplifiée par le caractère mal posé du problème et pour un grand paramètre µ,
l’opérateur Rµ est une mauvaise approximation de l’inverse de Moore-Penrose.
Cela signifie que le choix du paramètre de régularisation contrôle le compromis
entre l’approximation et la stabilité. En d’autres termes, le paramètre de régular-
isation équilibre l’importance respective entre les deux termes dans (1.10).

Figure 1.3: L’erreur totale entre une solution régularisée et la solution de norme
minimale se décompose en erreur de données et erreur d’approximation.

Notez que l’erreur de données définie comme δ
∥∥∥Rµ∥∥∥L(F,E)

ne reste pas bornée

pour µ −→ 0. Cependant, l’erreur d’approximation
∥∥∥Rµg −A†g∥∥∥E s’annule pour

µ −→ 0, à cause de la convergence ponctuelle de Rµ vers A†.
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1.3 Problématique et enjeux

Dans la littérature, la modélisation d’un problème linéaire peut se faire en
utilisant l’algèbre matricielle, en partant d’un modèle physique et en arrivant
à une équation matricielle à résoudre. Même dans les cas où le problème est
dans une dimension supérieure, les méthodes classiques consistent à projeter
le problème en 2D en utilisant le processus de vectorisation afin de fournir un
modèle matriciel. Aujourd’hui, compte tenu du développement de l’algèbre
tensorielle, nous pouvons modéliser et résoudre des problèmes dans des di-
mensions supérieures en utilisant des opérations tensorielles [97, 35, 96]. Le
principal avantage de la représentation et de l’analyse tensorielle est la capac-
ité de traiter d’énormes volumes de données, ainsi que de maintenir la nature
multidimensionnelle du problème à résoudre.

Contrairement au cas des matrices, l’algèbre tensorielle offre différents pro-
duits et décompositions selon l’ordre, la dimension et la similarité de structure
entre les éléments du modèle, ce qui rend la modélisation en haute dimen-
sion plus complexe. L’objectif principal de cette thèse était la représentation et
la régularisation de problèmes inverses de dimension supérieure en utilisant
l’algèbre tensorielle.

Le plan de cette thèse est présenté comme suit. Le chapitre 3 donnera un état
de l’art sur la forme variationnelle de la régularisation, y compris le caractère
bien posé du problème général de minimisation, certains choix du régularisa-
teur ainsi que les méthodes de sélection des paramètres de régularisation. Le
chapitre 4 est consacré à la terminologie de l’algèbre tensorielle qui servira à la
généralisation et à la modélisation de problèmes en dimension supérieure. Dans
le chapitre 5, le problème de régularisation tensorielle de Tikhonov est résolu
en étudiant différents cas, soit le cas du problème sans contraint passant par
les méthodes de type sous-espace de Krylov, soit dans le cas sous contraint en
développant l’algorithme du gradient conditionnel. Le problème de la variation
totale tensorielle sans contrainte est étudié dans le chapitre 6 où les techniques
de projection sont utilisées pour résoudre les sous-problèmes issus de la méthode
des directions alternée (ADMM). D’autre part, dans le chapitre 7, le problème de
la variation totale tensorielle sous contrainte convexe a été résolue en dévelop-
pant des approches de type gradient. Pour illustrer l’efficacité des approches
développées, une application au traitement d’images et de vidéos sera donnée
dans le chapitre 8. Enfin, nous énonçons les conclusions et les perspectives dans
le chapitre 9.



CHAPTER2
General Introduction

The field of inverse problems has existed in many branches of physics, earth
science, engineering, and mathematics for a long time. From the beginning of
the birth of the inversion theory, the inverse problem with its modeling design
and optimization becomes a multi-disciplinary subject, which has received much
more attention nowadays. Its theory has been widely developed due to the
importance of its applications such as in image reconstruction, tomography,
parameter identification, etc. All of which require powerful computers and
reliable solution methods to perform the calculation. Therefore, the aim of
the inverse problems, modeling design, and optimization is to provide a more
accurate, and more efficient simulation in practical applications.

Given a system with an known input, the forward problem consists of com-
puting the output (Figure 2.1). In contrast, the inverse problem consists of
computing either the input or the system, given the other two quantities taking
into account that in most situations, we have imprecise (disturbed) measure-
ments of the output. In other words, the inverse problem consists in using the
results of actual observations or indirect measurements to infer the model or the
values of the parameters characterizing the system under investigation.

Figure 2.1: A general schematic illustration of an inverse problem.

In many engineering and scientific applications, we encounter large volumes
of multidimensional data, defined over multiple domains. For example, in wire-
less communications, received data per user may be indexed in space, time, and

9
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frequency [134], which means it is represented in the third dimension. Similarly,
in facial recognition [66], we may associate with each person different lighting
conditions, facial expressions, and face orientation. And also, when dealing with
graph data in a recommender system, information resides on multiple domains
(e.g., users, movies, music, and so on)[129] as well as image and video processing
tasks [10, 8]. To process such multidimensional datasets, classical methods
consist in converting the associated model into a two-dimensional form (matrix
form). However, with the advent of the algebraic tensor and the development
of its capabilities and characteristics in a class of interesting works [96, 97, 35],
all of the above problems can be modeled using higher-order tensors that have
proven to be extremely useful.

Among the most interesting points that have fueled interest in tensor rep-
resentation and analysis are the increased ability of data collection systems to
store large volumes of multidimensional data, as well as the accurate modeling
that can be provided by leaving the data in its natural, multidimensional form.

2.1 Inverse problems

Let us start with a reminder of the notion of inverse problem in the linear context.
Considering the inverse problem

Au = g, (2.1)

where A : E→ F is a linear bounded operator and the sets E and F are Banach
spaces. Let us denote by ker(A) the null space of the operator A which is defined
by

ker(A) = {u ∈ E | A(u) = 0} .

We call the set Im(A) the range of the operator A, it is the image of E under A,
that is, Im(A) := A(E). In accordance with our definition of an inverse problem,
in (2.1), we seek an estimate of u starting by the given observation g.

Inverse problems frequently lead to mathematical problems that do not fulfill
Hadamard’s definition of well-posedness which is defined as follows.

Definition 2.1.1 (Hadamard well-posed problem [46, 81]). An inverse problem is
well-posed in the sense of Hadamard, if it verifies the three conditions:

1. A solution exists,

2. The solution is unique,

3. The solution depends continuously on the initial data.
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A problem is called ill-posed if one of the three conditions is not verified. The
first two conditions of Definition 2.1.1 can be reached when an inverse operator
A−1 exists, and its domain D(A−1) (or the range Im(A) of operator A) coincides
with E, which is nothing but the bijectivity of the operator A. On the other hand,
the third condition means that the inverse operator A−1 is continuous.

Remark 2.1.1. The well-Posedness of the inverse problem can be defined otherwise
in the sense of Nashed [121] if the set of observations is a closed set(the range of the
operator is closed).

In the literature, the solution of the linear problem (2.1) can be approximated
by the least square method [15]. This approach was proposed independently
by Gauss and Legendre in the beginning of the 19th century. The first clear and
concise exposition of the method of least squares was published by Legendre, in
1805, as an algebraic procedure for fitting linear equations applied in astronomy
and geodesy [104]. But in 1809, Carl Friedrich Gauss had the temerity to claim
that he had been using the method since 1795, as method of calculating the
orbits of celestial bodies.

In the rest of the current chapter, let us suppose that the spaces E and F are
Hilbert spaces. We denote the inner products in these spaces 〈·, ·〉E and 〈·, ·〉F ,
respectively. Both points of view, Gauss’s and Legendre’s, agree on the basic idea
of solving the problem (2.1) by minimizing the quadratic functional

Φ(u) = ‖Au − g‖2F = 〈A∗Au,u〉E − 2 · 〈A∗g,u〉E + 〈g,g〉F , (2.2)

where A∗ is adjoint operator of A . Since A∗A is positive-definite operation, then,
Φ(u) is a convex functional. It is well-known that for a convex differentiable
functional the problem to find

min
u

Φ(u),

is equivalent to that to find a stationary point, notably solving an equation of
the form

Φ ′(u) = 0.

It is easy to see that {
Φ ′(u) = 2 · (A∗Au −A∗g) ,
Φ ′′(u) = 2 ·A∗A ≥ 0.

(2.3)

Then, the equation Φ ′(u) = 0, which means that the gradient of the discrepancy
is equal to zero, is turned into the linear algebraic equation

A∗Au = A∗g. (2.4)
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We say that the equation (2.4) represents the normal equation associated with
the main problem (2.1). The name “normal” is derived from the fact that for
any solution u, its residual Au − g is orthogonal (normal) to Im(A). This can be
readily seen, as we have for any v ∈ E that

0 = 〈Av,Au − g〉F =
〈
v,A∗(Au − g)

〉
E ,

which means that Au − g ∈ Im(A)⊥.

Definition 2.1.2. [46] An element u ∈ E is called

• a least squares solution of (2.1) if

‖Au − g‖F = inf {‖Av − g‖F , v ∈ E} .

• a minimal-norm solution (also called the best-approximate solution )of (2.1)
(and is denoted by u† ) if ∥∥∥u†∥∥∥

E
6 ‖v‖E ,

for all least squares solutions v.

Lemma 2.1.1. [90, 1] Let g ∈ F. Let the set S stands for the set of least squares
solution. The set S is non-empty if and only if g ∈ Im(A)⊕ Im(A)⊥.

Since Im(A) is not closed in general (it is never closed for a compact operator,
unless the range is of finite dimension), a least squares solution may not exist.
If it exists, then the minimal-norm solution is unique. Moreover, the minimal-
norm solution is the orthogonal projection of the zero element onto an affine
subspace defined by

‖Au − g‖F = min {‖Av − g‖F , v ∈ E} . (2.5)

Theorem 2.1.1. [90, 1] Let g ∈ Im(A)⊕ Im(A)⊥. Then there exists a unique minimal
norm solution u† to the inverse problem (2.1) and all least squares solutions are given
by

S =
{
u†

}
+ ker(A), (2.6)

where + denotes the Minkowski sum.

Remark 2.1.2. In the finite dimensional setting, there always exists a least squares
solution, since in this case, the range of A is closed.

In general, if a least-squares solution exists for a given g ∈ F, then the minimal-
norm solution can be computed (at least in theory) using the Moore-penrose
generalized inverse of A, which will turn out to be the solution operator mapping
g onto the best-approximate solution of (2.1).
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2.2 Moore-Penrose inverse and the need of regular-
ization

The Moore-Penrose inverse is defined in an operator-theoretic way by restricting
the domain and range of A in such a way that the resulting restricted operator is
invertible, and its inverse will then be extended to its maximal domain [46]. In
other words, the Moore-Penrose inverse is defined as follows.

Definition 2.2.1. [46] Let A ∈ L(E,F) and let

Ã := A|ker(A)⊥ : ker(A)⊥→ Im(A)

denotes the restriction of A to ker(A)⊥. The Moore-Penrose inverse A† is defined as
the unique linear extension of Ã−1 to

D
(
A†

)
= Im(A)⊕ Im(A)⊥,

with
ker

(
A†

)
= Im(A)⊥.

A particular case when the operator A has furthermore a closed range, the
Moore-Penrose inverse A† is bounded [145, 42]. Otherwise, A† is unbounded.
Therefore, given a disturbed data gδ such that

∥∥∥gδ − g∥∥∥ 6 δ, we cannot expect the
convergence result

A†gδ→ A†g as δ→ 0. (2.7)

This drawback leads to a lack of interest in the concept of Moore-Penrose gen-
eralized inverse. As a consequence, A†g is certainly not a good approximation
of A†gδ due to the unboundedness of A† even if it exists. Thus, to ensure the
convergence, we replace the operator A† with a family of well-posed (bounded)
operators Rµ satisfied

Rµ
(
gδ

)
−→
δ→0

A†g, ∀g ∈D
(
A†

)
, gδ ∈ F, s.t.

∥∥∥g − gδ∥∥∥
F
6 δ, (2.8)

where µ = µ
(
δ,gδ

)
. The family

{
Rµ

}
µ>0

of continuous operators is called regular-

ization operators of A†. In general terms, regularization is the approximation
of an ill-posed problem by a family of neighbouring well-posed problems, as
illustrated in Figure 2.2. This regularized approximation is defined by two essen-
tial elements: The regularization operator R and the regularization parameter µ.
The choice of these two elements influences the efficiency of the approximation.
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Figure 2.2: Illustration of the instability of the Moore-penrose inverse.

In 1963, the Russian mathematician, Andrey Nikolayevich Tikhonov formu-
lated a famous definition of the regularizing algorithm that is a basic conception
in the modern theory of ill-posed problems. A classical definition was expressed
as follows.

Definition 2.2.2. [146] An operator Rµ is called a regularizing operator Rµ =

R
(
µ,gδ

)
≡ Rµ

(
gδ

)
if it is possessing two properties:

1. Rµ is defined for any µ > 0, gδ ∈ F, and is mapping (0,+∞)×F into E.

2. For any u ∈ E and for any gδ ∈ F such that Au = g and
∥∥∥g − gδ∥∥∥ ≤ δ, we have

uδµ = Rµ
(
gδ

)
→ u as δ→ 0. (2.9)

where uδµ is the regularized solution of (2.1).

After the efficiency of this concept, regulation has seen significant growth
by developing different definitions of this process depending on the framework
and field of work. A problem of solving an operator equation is called regular-
izable if there exists at least one regularizing operator. At the present time, all
mathematical problems can be divided into the following classes:

1. well-posed problems;

2. ill-posed regularizable problems;

3. ill-posed nonregularizable problems.

All well-posed problems are regularizable as it can be taken Rµ = A−1 where the
knowledge of the regularization parameter µ > 0 is not obligatory in this case.
Otherwise, the knowledge of the parameter µ which means the knowledge of
the error δ is crucial if our problem is ill-posed.
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Let us consider a linear regularization where we can split the total error
between the regularized solution of the disturbed problem Rµg

δ and the minimal
norm solution of the problem u† = A†g as follows∥∥∥Rµgδ −u†∥∥∥E 6 ∥∥∥Rµgδ −Rµg∥∥∥E +

∥∥∥Rµg −u†∥∥∥E︸           ︷︷           ︸
total error

6 δ
∥∥∥Rµ∥∥∥L(F,E)︸        ︷︷        ︸
data error

+
∥∥∥Rµg −A†g∥∥∥E︸          ︷︷          ︸

approximation error

(2.10)

This can also be illustrated as in Figure 2.3. Figure 2.3 shows that for a small
regularization parameter µ the error in the data gets amplified through the ill-
posedness of the problem and for large µ the operator Rµ is a poor approximation
of the Moore–Penrose inverse. Which means that the choice of the regularization
parameter controls the trade-off between approximation and stability. In other
words, the regularization parameter balances the respective importance between
the two terms in (2.10).

Figure 2.3: The total error between a regularized solution and the minimal norm
solution decomposes into the data error and the approximation error.

Note that the data error defined as δ
∥∥∥Rµ∥∥∥L(F,E)

does not stay bounded for

µ −→ 0. However, the approximation error
∥∥∥Rµg −A†g∥∥∥E vanishes for µ −→ 0,

due to the pointwise convergence of Rµ to A†. Hence it becomes evident from
(2.10) that a good choice of µ depends on δ, in addition, it needs to be chosen
such that the approximation error becomes as small as possible, whilst the data
error is being kept at bay.
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2.3 Inverse source problem

Inverse problems can be found in many scientific fields. In this section, we
will give some well-known examples like the image degradation model and the
discrete computed tomography problem.

2.3.1 Image deblurring

Image deblurring is the process of reconstructing a digital image from a blurred
and noisy one, based on a mathematical model of the blurring operation. In
the continuous setting, image deblurring is considered as a first-kind Fredholm
integral equation of the generic form∫ 1

0

∫ 1

0
k(s, t)f (t)dt1dt2 = g(s), s ∈ [0,1]× [0,1], (2.11)

in which the two functions f and g, that represent the sharp and blurred images,
are both functions of two spatial variables s = (s1, s2) and t = (t1, t2). Let the two
N ×N arrays X and B represent the unknown, sharp image and the recorded
blurred and noisy image, respectively, and let Xi,j and Bi,j denote the array
elements, also known as pixels. Let the vectors x and b, of length n =N 2, consist
of the vectorized (stacked) columns of X and B, i.e.,

x` = Xij
b` = Bij

}
, where ` = (j − 1)N + i, (2.12)

where the operation described by (2.12) called the vectorization of a matrix,
denoted by vec (x = vec(X) and b = vec(B)). Then a good model for the blurring
is very often of the form Ax = b, where A is an N 2×N 2 given matrix, known also
as the blurring matrix. The construction of the blurring matrix depends on the
two essential ingredients the point spread function (PSF) that defines how each
pixel is blurred and the boundary conditions that specify our assumption on the
scene just outside our image[74, 89, 70]. Therefore, the process of restoring an
image amounts to solving an inverse problem of the form (2.1).

2.3.2 Computed Tomography Imaging

In general, tomography can be defined as the creation of an image from the
projection data associated with cross-sectional scans of an object[120, 93, 73].
The process can be described as follows. Suppose we apply multiple projections
to an object. In that case, all these projections will pass through the object and
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fall on a screen called a sensor, which will provide projection curves containing
the primary information used as an observation in our inverse problem (see
Figure 2.4).

Figure 2.4: The data acquisition process during scanning.

From a physical point of view, the computed tomography model is expressed
using intensities. As the high-energy photons pass through a material, their
energy is decreasing which is known as attenuation or absorption. This phe-
nomenon can be expressed, in the case of a poly-energetic x-ray source using the
spectral version of Beer’s law, by

Λi(E) = σi(E)exp
(
−
∫
Li

µ(r,E)dl
)
, i = 1, . . . ,M,

where M is the total number of rays, E is the energy, r ∈R3 defines the spatial
position, µ is the energy-dependent attenuation coefficient, σi is the energy-
dependent intensity flux of the x-ray source associated with ray i, and Λi(E) is
the spectrum of the x-ray beam incident on the detector[137, 73, 93].

By introducing the following parameterization

µ(r,E) =
N∑
j=1

µj(E)χj(r),

where N denotes the number of pixels, and by defining Aij =
∫
Li
χj(r)dl, we

arrive at the element-wise model

Λi (Ek) = σi (Ek)exp

− N∑
j=1

Aijµj (Ek)

 , i = 1, . . . ,M, k = 1, . . . ,K. (2.13)
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For basis functions χj(r), we use a pixel basis such that Aij is the length of the
intersection of the ith ray and the jth pixel and K denotes the number of the
consider separate channels corresponding to K energies E1, . . . ,EK .

For photon counting detectors, it is common to assume that the measure-
ments are Poisson distributed with a parameter Λ(E). This assumption leads to
the measurement model

Yik ∼ Poiss {Λi (Ek)} , i = 1, . . . ,M, k = 1, . . . ,K.

If we define Xjk = µj (Ek) and Sik = σi (Ek), we get the discrete linear model

Bik = − ln
(
Yik
Sik

)
=

N∑
j=1

AijXjk ,

which is clearly leads to a system of linear equations

b = Ãx,

where x = vec(X) ∈ RNK , b = vec(B) and the matrix Ã = IK×K ⊗A denotes the
projection matrix.

2.4 Problematic & outline

In the literature, modeling some linear problem can be done using matrix algebra,
as in the examples given in the previous section, starting with a physical model
and arriving at a matrix equation to solve. Even in the cases where the problem is
in a higher dimension, the classical methods consist in projecting the problem in
2D using the vectorization process in order to provide a matrix model. Nowadays,
in view of the development of tensor algebra, we can model and solve problems
in higher dimensions by using tensor operations [97, 35, 96]. The main purpose
of using tensor representation and analysis is the ability to treat huge data
volume, as well as, maintain the multidimensional nature of the problem to be
solved.

Unlike the matrix case, the tensor algebra offers different products and de-
compositions depending on the order, the dimension, and the structure similarity
between the elements of the model which make the modeling in high dimen-
sion more complex. The main goal of this thesis was the representation and
regularization of higher dimensional inverse problems using tensor algebra.

The outline of this thesis is presented as follows. Chapter 3 will give a state
of art on the variational form of regularization including the well-posedness
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of the general minimization problem, some choices of the regularizer as well
as the regularization parameter selection methods. Chapter 4 is devoted to
the tensor algebra terminology that will serve in the generalization and the
modeling of high dimensional problem. In Chapter 5, the tensorial Tikhonov
regularization problem is solved by investigating different cases, either the case
of the unconstrained problem passing by the Krylov subspace method or in the
constrained case by developing the conditional gradient algorithm. The problem
of unconstrained tensorial total variation is investigated in the Chapter 6 where
the projection techniques are using to solve the subproblems stemmed from
the alternating direction method for multipliers (ADMM). On the other hand,
in Chapter 7, the tensorial total variation under a convex constraint has been
solved by developing gradient-like approaches. To illustrate the efficiency of
the developed approaches, an application to image and video processing will
be given in Chapter 8. Finally, we state the conclusions and the perspectives in
Chapter 9.
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CHAPTER3
Variational form of regularization

3.1 Introduction

The regularization can be represented using different forms. The spectral reg-
ularization can be considered as the simplest one to treat. It is based on the
spectral decomposition of the operator in the inverse problem [74]. The main
idea behind the spectral decomposition is discarding the small singular value
that amplify the error during the inversion process. The resulting method is
referred to as the truncated SVD [72]. However, the most widely referenced
regularization method is of variational form[79, 146].

The variational form of regularization consists in solving a nearby well-posed
optimization problem and take its minimizer, denoted by uδµ : Ω −→ IR, as a
solution. The variational regularization problem is given by

min
u∈K

(
Jµ(u) := ‖Au − gδ‖p +µR(u)

)
. (3.1)

The objective functional of this minimization problem consists of two terms, the
fidelity term ‖Au − gδ‖p, which can be replaced by another fidelity term given
in Table 3.1 depending on the situation. The regularization term µR(u) which
consists of a regularization parameter µ and a regularization operator R. In
addition to the convex constraint K.

The fidelity term measures the likelihood of any u based on knowledge of
the observed data gδ and the observation process A. On the other hand, the
regularization operator R promotes the regularization effect on the solution.
While, the regularization positive parameter µ is used to balance the respective
importance of the two terms in the minimization problem. The choice of these
two terms has received much attention in the literature, so that the choice of

21
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the first depends on the structure of the perturbation (see Table 3.1), and the
choice of the second depends on the structure of the solution (smooth, sparse,
with discontinuities, etc.), see Table 3.2 for further choices of the regularization
operator.

Noise model Fidelity term

Additive Gaussian
∥∥∥Au − gδ∥∥∥2

L2

Additive impulsive
∥∥∥Au − gδ∥∥∥

L1

Poisson
∫
Ω

(
Au − gδ logAu

)
dx

Speckle noise
∫
Ω

(
logAu + gδ

Au

)
dx

Huber
∥∥∥∥Lδ (Au − gδ)∥∥∥∥

L1
,Lδ(t) =

{ 1
2t

2, |t| ≤ δ,
δ
(
t − δ2

)
, |t| > δ.

Table 3.1: Common fidelity functionals for different error structure.

Prior model The regularization operator R(u)
Generalized Gaussian ‖u‖pLp , 1 ≤ ν ≤ 2
Total variation (TV) or (BV) ‖u‖BV or |u|pTV
Sobolev ‖u‖W 1,p

Elastic-net ‖u‖`1 + γ
2 ‖u‖

2
`2

Sparsity ‖u‖p`p, 0 ≤ p < 2

Table 3.2: Common regularization operators.

The structure of the variational form of regularization comes back to the
Bayesian inference which is defined by the fundamental relation given by the
Bayes rule

P (U | V ) =
P (V |U )P (U )

P (V )
, (3.2)

where U and B are two events, P (U ) and P (V ) are the probabilities of the event
U and B, respectively, with P (V ) , 0 and P (U | V ) is the probability of U given
V , also known as the conditional probability. For two continuous random
variables X and Y , Bayes theorem may be similarly derived from the definition
of conditional density as follow:

fX |Y=y(x) =
fY |X=x(y)fX(x)

fY (y)
. (3.3)

Thus, by considering the elements u and gδ of our ill-posed problem Au = gδ as
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continuous random variables, the Bayes rule can be reformulated to the following
relation

fu|gδfgδ = fgδ |ufu . (3.4)

In the simplest situations, when we consider the additive Gaussian noise with
average 0 and standard deviation σ , the density for the probability of u knowing
gδ will be given by

fu|gδ = Z(gδ)e−p(u)− 1
2σ2

∑
i,j |gδi,j−(Au)i,j |2 , (3.5)

where p(u) is the priori probability density and Z(gδ) denotes a renormalization
factor. The idea of maximum a posteriori (MAP) reconstruction [113] is to find
the best approximation u as the one which maximize this probability which is
equivalent to solve the following discrete minimization problem

min
u

p(u) +
1

2σ2

∑
i,j

|gδi,j − (Au)i,j |2
 , (3.6)

which is nothing but the variational regularization model (3.1) with p = 2,
namely,

min
u

(
µR(u) + ‖Au − gδ‖22

)
, (3.7)

where the operation R is a functional corresponding to the a priori probability
density p(u), and the scalar µ > 0 denotes a weight balancing the respective
importance of the two terms in the problem.

3.2 Well-posedness of the variational regularization
problem

The well-posedness of the constrained minimization problem (3.1) will be stud-
ied by the verification of three characteristics which are the existence, the stabil-
ity and the consistency[63, 79].

3.2.1 Existence of a minimum

Theorem 3.2.1. [79] Let E be reflexive and the set K ⊂ E be convex and closed.
Suppose that

1. The functionalJµ is coercive, i.e., for any sequence (un)n such that the functional

value
(
Jµ (un)

)
is uniformly bounded, then, the sequence (un)n is uniformly
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bounded in E.

2. The functional R is sequentially weak lower semi-continuous.

3. The operator A is bounded.

Then for every µ > 0, there exists at least one minimizer uδµ to the functional Jµ
defined by (3.1).

Proof. Since the functional Jµ is nonnegative, there exists a minimizing
sequence (un)n ⊂ K, such that

lim
n→∞
Jµ(un) = inf

u∈K
Jµ(u) := η.

Hence, the sequence of functional values
(
Jµ (un)

)
n

is uniformly bounded. By
the coercivity of the cost function, there exists a subsequence of (un)n, also
denoted by (un)n, and there exist u∗ ∈ E such that (un)n converges weakly to u∗.
In addition, by the closedness and convexity of the set K, it follows that u∗ ∈ K.
On the other hand, from the lower semi-continuity of the operator R and the
weak lower semicontinuity of norms, we deduce∥∥∥Au∗ − gδ∥∥∥p +µR (u∗) ≤ liminf

n→∞

∥∥∥Aun − gδ∥∥∥p +µ liminf
n→∞

R (un)

≤ liminf
n→∞

(∥∥∥Aun − gδ∥∥∥p +µR (un)
)

= η

i.e., u∗ is a minimizer to Jµ.

Remark 3.2.1. In general, the existence result holds if the chosen fidelity functional
is weakly semicontinuous lower with respect to u, for any gδ ∈ F fixed.

3.2.2 Stability of a minimum

Let us first recall the H-property of a functional K [105].

Definition 3.2.1. A functional K : E −→ F is said to have the H-property on the
space E if any sequence (un)n ⊂ E that satisfies that the conditions un→ u weakly for
some u ∈ E and K (un)→ K(u) imply that un converges strongly to u in E.

Remark 3.2.2. Norms on Hilbert spaces, Lp spaces and Sobolev spaces Wm,p with
1 < p <∞ and m ≥ 1 satisfy the H-property.

Now we state the stability result.
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Theorem 3.2.2. [79] Let the three assumption in Theorem 3.2.1 hold. Let (gn)n ⊂ F
be the sequence that convergent to gδ in F, and let (un)n be a minimizing sequence
of the functional Jµ with gn in place of gδ. Then, there exist a subsequence of (un)n
converge weakly to a minimizer to Jµ. Further, if the minimizer to Jµ is unique, then
the whole sequence converges weakly. Moreover, the strong convergence verifies, if the
functional R satisfies the H-property.

Proof. Let uδµ be a minimizer to Jµ. The minimizing property of un yields

‖Aun − gn‖p +µR (un) ≤
∥∥∥Auδµ − gn∥∥∥p +µR

(
uδµ

)
.

Hence the sequences (‖Aun − gn‖p)n and (R (un))n are uniformly bounded. Fur-
ther, in view of the triangle inequality∥∥∥Aun − gδ∥∥∥p ≤ 2p−1

(
‖Aun − gn‖p +

∥∥∥gn − gδ∥∥∥p) ,
the sequence

(∥∥∥Aun − gδ∥∥∥)n is also uniformly bounded. Then, by the coercivity
of the functional Jµ, the sequence (un)n is uniformly bounded in E, and there
exists a subsequence, also denoted by (un)n, converging weakly in E to some
u∗ ∈ K. By the weak continuity of A and the convergence of gn to gδ in F, we
have Aun − gn→ Au∗ − gδ weakly. In addition, the weak lower semicontinuity of
norms and the operator R imply that∥∥∥Au∗ − gδ∥∥∥p +µR (u∗) ≤ liminf

n→∞
‖Aun − gn‖p +µ liminf

n→∞
R (un)

≤ liminf
n→∞

(‖Aun − gn‖p +µR (un))

≤ liminf
n→∞

∥∥∥Auδµ − gn∥∥∥p +µR
(
uδµ

)
≤

∥∥∥Auδµ − gδ∥∥∥p +µR
(
uδµ

)
. (3.8)

Hence, the limit u∗ is a minimizer to the functional Jµ. Suppose that the mini-
mizer uδµ is unique, then u∗ = uδµ, and every subsequence contains a subsubse-
quence that converges to u∗ weakly. Therefore, the whole sequence converges
weakly to the minimizer uδµ.

Now under the assumption thatR has theH-property, the proof is completed
by showing that the functional value (R (un))n converges to R (u∗). Conversely,
suppose that

limsup
n→∞

R (un) > liminf
n→∞

R (un) ≥R (u∗) .
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Then, there exists a subsequence
(
unk

)
of (un) such that

c := limsup
k→∞

R
(
unk

)
>R (u∗) .

Meanwhile, by taking uδµ = u∗ in (3.8) yields

lim
k→∞

(∥∥∥Aunk − gnk∥∥∥p +µR
(
unk

))
=

∥∥∥Au∗ − gδ∥∥∥p +µR (u∗) .

This two identities together yield

lim
k→∞

∥∥∥Aunk − gnk∥∥∥p =
∥∥∥Au∗ − gδ∥∥∥p +µ (R (u∗)− c) <

∥∥∥Au∗ − gδ∥∥∥p ,
which is in contradiction with the weak lower semicontinuity of norms, i.e.,∥∥∥Au∗ − gδ∥∥∥ ≤ liminf

k→∞

∥∥∥Aunk − gnk∥∥∥ .
As a result, we have lim

n→∞
R (un) =R (u∗), which ends the proof.

3.2.3 Consistency of a minimum

Now, we turn to the behavior of the minimizer uδµ as the perturbation level δ
goes to zero. A fundamental analysis on the variational regularization method is
whether the approximate solution uδµ converges to the true solution as δ tends to
zero. This is referred to as the consistency in the literature.

Definition 3.2.2. An element u† ∈ E is called aR-minimizing solution to the problem
Au = g† if it satisfies

Au† = g† and R
(
u†

)
≤R(u) ∀u ∈

{
u ∈ K | Au = g†

}
Theorem 3.2.3. Let the three assumption in Theorem 3.2.1 hold. Then, there exists
at least one R-minimizing solution to the problem Au = g.

Proof. The existence of a Rminimizing solution follows from theorem 3.2.1.
Suppose, contrary to our claim, that there does not exist aR-minimizing solution
in K. Then, there exists a sequence (un)n ⊂ K of solutions to Au = g† such that

R (un)n→ c and c <R(u), ∀u ∈
{
u ∈ K : Au = g†

}
.

Hence, the functional Jµ (un), for any fixed µ, with g† in place of gδ is uniformly
bounded, and by the coercivity of Jµ, the sequence (un)n contains a subsequence,
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also denoted by (un)n, and some u∗ ∈ K such that un→ u∗ weakly. Then, we have
Au∗ = g† and R (u∗) = lim

n→∞
R (un) = c. This contradicts the assumption of the

weak lower semicontinuity of R and completes the proof.

Theorem 3.2.4. Under the assumptions of Theorem 3.2.1, let
(
gδn

)
n
⊂ F be a sequence

of disturbed data such that δn =
∥∥∥g† − gδn∥∥∥→ 0. Then the sequence of minimizers(

uδnµn
)

has a subsequence converging weakly to a R-minimizing solution u†, if the
regularization parameter µn ≡ µ (δn) satisfies

lim
n→∞

δ
p
n

µn
= 0 and lim

n→∞
µn = 0.

Further, if theR-minimizing solution u† is unique, then the whole sequence converges
weakly. Moreover, if the functional R satisfies the H-property, then the convergence is
strong.

Proof. The minimizing property of the minimizer uδnµn leads to∥∥∥∥Auδnµn − gδn∥∥∥∥p +µnR
(
uδnµn

)
≤

∥∥∥Au† − gδn∥∥∥p +µnR
(
u†

)
≤ δpn +µnR

(
u†

)
.

According to the definition of the sequence (µn)n, the sequences
(∥∥∥∥Auδnµn − gδn∥∥∥∥p)

n

and
(
R

(
uδnµn

))
n

are both uniformly bounded. Further, we have∥∥∥∥Auδnµn − g†∥∥∥∥p ≤ 2p−1
(∥∥∥∥Auδnµn − gδn∥∥∥∥p +

∥∥∥gδn − g†∥∥∥p) .
Thus the sequence

(∥∥∥∥Auδnµn − g†∥∥∥∥p)
n

is also uniformly bounded. By the coerciv-

ity of the cost function, the sequence
(
uδnµn

)
n

is uniformly bounded, and thus

contains a subsequence, also denoted by
(
uδnµn

)
n
, converging weakly to some

u∗ ∈ K according to the convexity and closedness of the set K. By the weak lower
semicontinuity of norms, we deduce∥∥∥Au∗ − g†∥∥∥p ≤ liminf

n→∞

∥∥∥∥Auδnµn − gδn∥∥∥∥p
≤ limsup

n→∞

∥∥∥∥Auδnµn − gδn∥∥∥∥p +µnR
(
uδnµn

)
= 0.
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which means that Au∗ = g†. It follows from the minimizing property of uδnµn and
weak lower semicontinuity of the functional R, that

R (u∗) ≤ liminf
n→∞

R
(
uδnµn

)
≤ lim
n→∞

(
δ
p
n

µn
+R

(
u†

))
=R

(
u†

)
. (3.9)

Then u∗ is a R-minimizing solution. Now if the R-minimizing solution u† is
unique, then u∗ = u†. Clearly, every subsequence of

(
uδnµn

)
contains a subsubse-

quence converging weakly to u†, and thus the whole sequence converges weakly.
On the other hand, by taking u† = u∗ in the inequality (3.9), we obtain

lim
n→∞
R

(
uδnµn

)
=R (u∗) .

This together with the H-property of R yield the strong convergence.

3.3 Major examples of variational regularization prob-
lem

In the remainder of this section, different choices of the regularization term are
presented.

3.3.1 Tikhonov regularization method

The general Tikhonov regularization problem takes the form of a penalized least
squares minimization problem as follows

min
u

(
‖Au − gδ‖22 +µ‖R(u)‖22

)
, (3.10)

where R is a regularization linear operator. The interpretation of this minimiza-
tion problem is that we are looking for a regularized solution that balances the
significance of the two terms. The first term is given by the square of the residual
norm that measures the goodness-of-fit of the solution u. On the one hand, if
the residual is too large, then Au does not fit the data gδ very well. On the
other hand, if the residual is too small, then it is very likely that u is influenced
by the error (perturbation) in the data. Otherwise, the second term involves
a smoothing norm; the L2 norm, and the regularization linear operator R. In
general, R can be chosen as an approximation to a derivative operator[16].

Since the cost function of the minimization problem in (3.10) is linear and
differentiable, the Euler-Lagrange formula can be used to compute the associated
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normal equation
A∗A(u) +µR∗R(u) = A∗gδ. (3.11)

3.3.2 Sparse regularization method

Another example of regularization method that has attracted a revived interest
and considerable amount of attention in the literature, is `1 sparsity regulariza-
tion. The sparse property of the solution is frequently used in the field of signal
processing when it is known a priori that the desired solution is sparse or almost
sparse in the following sense.

Definition 3.3.1. [48] Let (ek)k∈IN be a Schauder basis in E and let (uk)k∈IN be the
corresponding coefficients of some u in E. The Banach space element u is sparse with
respect to the basis (ek)k∈IN if only a finite number of coefficients do not vanish.

According to Definition 3.3.1, sparsity is a property of the coefficient se-
quence with respect to a basis and not of a Banach space element itself. Thus, we
may replace E with some sequence space such as the Banach space of absolutely
summable real sequences `1 that known to be the best choice in the literature [48,
80]. One way to obtain such sparse approximations is by solving the following
minimization problem

min
u∈K

(∥∥∥Au − gδ∥∥∥2
2

+µ‖u‖`1

)
, (3.12)

where ‖u‖`1 :=
∑
k

|uk | stands for the `1-norm which is weakly lower semi-

continuous. Then, the existence and stability of the minimizer follow from
the verified assumptions in the previous theorems.

3.3.3 Total variation regularization method

The total variation regularizer was first introduced by Rudin, Osher, and Fatemi
(ROF) in their well-known work [133] in 1992. It was designed with the explicit
goal of preserving sharp discontinuities (edges) while removing noise and other
unwanted fine scale detail. In other words, the total variation regularization
term in the minimization discourages the solution from having oscillations, and
it does allow the solution to have discontinuities. The regularization problem
for total variation is given by

min
u∈K

(
Jµ(u) :=

∥∥∥Au − gδ∥∥∥
L1(Ω)

+µ|u|TV(Ω)

)
, (3.13)
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where Ω ⊂R
N is an open bounded domain, the space BV(Ω) denotes the space

of functions of bounded variation which is defined as follows

BV(Ω) =
{
v ∈ L1(Ω) | ‖v‖L1(Ω) + |v|TV(Ω) <∞

}
, (3.14)

where the total variation semi-norm | · |TV(Ω) is given by

|v|TV(Ω) = sup
w∈C1

0(Ω;Rd)
‖w‖L∞(Ω)≤1

∫
vdiv(φ)dλ. (3.15)

Theorem 3.3.1. Let the operatorA be a continuous operator with respect to Lp(Ω),1 ≤
p < N

N−1 and 1 < ker(A). Then the regularization problem (3.13) has at least one
minimum.

Proof. On account to Theorem 3.2.1, let us consider the space E = BV(Ω) and
F = L1(Ω). By the compact embedding of the space BV(Ω) into Lp(Ω), 1 ≤ p <
N
N−1 [2], and the continuity of A in Lp(Ω), the operator A is weakly continuous.
The assumption 1 < ker(A) implies that functional is coercive on the space
BV(Ω). Furthermore, the regularization functional |u|TV is BV weak∗ lower semi
continuous. Therefore, by Theorem 3.2.1, there exists at least one minimum of
Jµ.

The L1 norm is usually avoided since the variation of expressions like
∫
Ω
|u|dx

produces singular distributions as coefficients (e.g. δ distribution) which cannot
be handled in a purely algebraic framework. However, the use of the BV semi-
norm allows the recovery of the edges which is impossible if the second term
in (3.13) were replaced by the strict convex and differentiable operator Rp(u) =∫
Ω
|∇u|p for any p > 1. The main reason for this effect is that for p > 1 the

derivative of Rp corresponds to a nondegenerate elliptic differential operator
of second order and thus has a smoothing effect in the optimality condition,
whereas for total variation the operator is degenerate and affects only the level
lines of the image [123].

The non differentiability issue of the Total Variation (TV) term is remedied
in some works [62] by introducing a smoothing parameter in the TV term so
that the cost functional becomes differentiable. The smoothed TV regularization
term promotes the same regularization effects as the original one, the sparsity of
the gradient of the solution as well as the well-defined edges. As a consequence,
this new consideration allows the resolution of the minimization problem by
classical gradient-based optimization methods.

Many algorithms for total variation image reconstruction have been devel-
oped, especially for the Gaussian noise model. To name a few, we found the effi-
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cient primal-dual hybrid gradient algorithm for total variation image restoration
[157], the split bregman algorithm, by Getreuer[54], and Chambolle’s projection
algorithm [28].

3.4 The regularization parameter selection

Besides a good choice of the regularization operator R, the efficiency of a regu-
larization method also strongly depends on an accurate selection of the regular-
ization parameter, as we have shown before. Although different authors have
proposed several approaches for proper regularization parameter selection. For
instance, the Morozov discrepancy principle [119], Generalized cross valida-
tion (GCV) method [60], the L-curve method [69, 100], and Unbiased predictive
risk estimation (UPRE) [109, 110], have been developed to automatically select
an optimal regularization parameter. The drawback of most of them is that they
can only be derived when the regularization term has a quadratic form.

3.4.1 Morozov’s discrepancy principle

Morozov’s discrepancy principle technique [119] selects the parameter µ by
matching the norm of the residual to some upper bound, i.e., a good regularized
solution uδµ should verifies

‖Auδµ − gδ‖22 = c(δ), (3.16)

where c is a constant that depends on the noise level δ. When the variance σ2 of
the noise is available, the upper bound is given by c(δ) = τn1n2σ

2, with τ being
a predetermined parameter, one sets τ = 1 [92]. If the variance σ2 of the noise is
unknown, it can be estimated using the median rule [116]. The existence of a
solution µ(δ) to equation (3.16) is given by the following result.

Theorem 3.4.1. [79] If the function
∥∥∥Auδµ − gδ∥∥∥ is continuous with respect to µ, and

lim
µ→+∞

∥∥∥Auδµ − gδ∥∥∥ > c(δ) and lim
µ→0+

∥∥∥Auδµ − gδ∥∥∥ < c(δ), then there exists at least one

positive solution µ(δ) to equation (3.16).

The equation (3.16) can be solved numerically using Newton’s method [41,
151]. Let us consider the functional

ϕ(µ) :=
∥∥∥Auδµ − gδ∥∥∥2 − c(δ). (3.17)
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Using Newton’s method, we have, for j = 0,1,2, . . .

µj+1 = µj −
ϕ

(
µj

)
ϕ′

(
µj

) .
From another point of view, the regularization parameter can be seen as a

Lagrange multiplier. Under the discrepancy principle, the variational regulariza-
tion problem can be represented as solving a constrained optimization problem
described as

min
u∈D

µR(u), (3.18)

where the subset D =
{
u ∈ K,

∥∥∥Au − gδ∥∥∥2
6 c(δ)

}
.

3.4.2 Generalized cross validation

Another popular method for choosing the regularization parameter that does
not require knowledge of the noise properties is the generalized cross-validation
(GCV) [60]. The basic idea behind cross validation is to minimize the set of
prediction errors that is, to choose µ so that the regularized solution obtained
with a data point removed predicts this missing point well when averaged over
all ways of removing a point. This viewpoint leads to the minimization with
respect to µ of the following GCV function

G(µ) =
‖gδ −Auδµ‖22[

trace
(
I −AÂ

)]2 , (3.19)

where Â denotes the linear operator that generate the regularized solution when
applied to data, so that uµ = Âgδ.

Remark 3.4.1. Note that only the data are used in the calculation of G(µ) and no
prior knowledge of the noise amplitude, is required. However, there are also a number
of difficulties related to the computation of the GCV cost in the equation (3.19). First,
the operator AÂ must be found, while specifying this quantity is straightforward. In
addition, it is well known that the GCV method tends to undersmooth the solution.
Finally, in some cases the GCV cost curve is quite flat, leading to numerical problems
in finding the minimum of G, which can result in overly small values of µ. Sometimes,
the GCV function can have multiple minimizers [94].
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3.4.3 L-curve method

Since all regularization methods involve a trade-off between fidelity to the data,
as measured by the residual norm, and the fidelity to some prior information,
as measured by the side constraint norm, it would seem natural to choose a
regularization parameter based on the behavior of these two terms as µ is varied.
Indeed, a graphical plot of ‖R(uδµ)‖2 versus ‖gδ −Auδµ‖2 on a log− log scale as
µ is varied is called the L-curve and has been proposed as a means to choose
the regularization parameter [71]. The L-curve, shown schematically in Figure

Figure 3.1: The generic form of the L-curve.

3.1, has a characteristic "L" shape (hence its name), which consists of a vertical
part and a horizontal part. The vertical part corresponds to under-regularized
estimates, where the solution is dominated by the amplified noise. In this region,
small changes to µ have a large effect on the size or energy of u, but a relatively
small impact on the data fit. The horizontal part of the L-curve corresponds to
over smoothed estimates, where the solution is dominated by residual fit errors.
In this region changes to µ affect the size of û weakly, but produce a large change
in the fit error.

The idea behind the L-curve approach for choosing the regularization pa-
rameter is that the corner between the horizontal and vertical portions of the
curve defines the transition between over and under regularization, and thus
represents a balance between these two extremes and the best choice of µ. The
point on the curve corresponding to this µ is shown as µ∗ in Figure 3.1. While
the notion of choosing µ to correspond to the corner of the L-curve is natural and
intuitive, there exists the issue of defining exactly what is meant by the "corner"
of this curve. A number of definitions have been proposed, including the point
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of maximum curvature, the point closest to a reference location, and the point of
tangency , etc. The last definition is especially interesting, since it can be shown
that the optimal µ for this criterion must satisfy

µ2 =
‖Auµ − g‖22
‖R(uµ)‖22

. (3.20)

The main difficulty with the L-curve method is that we need to solve (3.1)
many times for different µ values, and therefore, the algorithm is computationally
expensive. Sometimes, it is difficult to locate the corner or there does not exist a
corner. In addition, the regularized solutions obtained by the L-curve approach
fail to converge to the exact solution when the noise level δ→ 0 (see [45, 68] for
more details).

Remark 3.4.2. In the numerical point of view, and essentially in the case of iterative
resolution processes, it is useful to consider a sequence of regularization parameter
instead of fixed value. This consideration will improve the convergence in practice, as
well as the performance will be less dependent on the initial choice.



CHAPTER4
High order tensor algebra

Among the most interesting points that have fueled interest in tensor represen-
tation and analysis are the increased ability of data collection systems to store
large volumes of multidimensional data, as well as the accurate modeling that
can be provided by leaving the data in its natural; multidimensional form. In the
remainder of this chapter, we recall some interesting preliminaries and notation
of tensor algebra [35, 97, 103].

4.1 Definitions and basic properties

Definition 4.1.1 (Tensor). Let I1, I2, . . . , IN ∈ IN, X ∈ RI1×I2×···×IN is an N th-order
tensor of size I1 × I2 × · · · × IN , its entries are denoted Xi1,...,iN or X (i1, . . . , iN ) with
in ∈ (1, . . . , In) for every 1 ≤ n ≤N .

In other words, an N th-order tensor is multidimensional array of size I1 ×
I2 × · · · × IN . For example, a scalar is a tensor of zero-order, a vector is a tensor
of first-order, a matrix is a second-order tensor, and a tensor of order three or
higher are called high-order tensor.

Definition 4.1.2 (Order, Mode, Fibers and Slices). Let X ∈ R
I1×I2×···×IN be an

N th-order tensor.

• The order of a tensor is the number of dimensions. For example, the order of X
equal to N .

• Each dimension (way) is called a mode.

• Fibers are the higher-order analog of matrix rows and columns, it is defined by
fixing every index but one.

35



36 CHAPTER 4. High order tensor algebra

• Slices are two-dimensional section of a tensor, it is defined by fixing all but two
indices.

Figure 4.1: Fibers and slices of a third-order tensor.

Definition 4.1.3 (Symmetric tensor). A tensor X ∈RI1×I2×···×IN is symmetric if its
entries are invariant over any permutation of its indices, i.e, for every permutation p,
X satisfied :

Xi1,...,iN = Xip(1),...,ip(N )
for all i1, . . . , iN ∈ {1, . . . ,N },

with p ∈ πN where πN the symmetric group of degree N , and cardinal N !.

Definition 4.1.4 (Diagonal tensor). A tensor X ∈RI1×I2×···×IN is diagonal if Xi1...iN ,
0 for i1 = · · · = iN and zeros elsewhere. We use I to denote the identity tensor with
ones on the superdiagonal and zeros elsewhere.

A tensor X is called cubical if every mode has the same size, i.e. I1 = · · · =
IN = I , where X ∈RI×I×···×I .

Definition 4.1.5. Let k ≥ 1 be an integer. The norm of the tensor X is defined by

‖|X ‖|k =

 I1∑
i1=1

I2∑
i2=1

. . .
IN∑
iN=1

|X (i1, i2, . . . , iN )|k


1/k

,
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where | · | stands for the absolute value in R. The inner product of two same sized
tensors X ,Y ∈RI1×I2×···×IN is defined by

〈X |Y〉 =
I1∑
i1=1

I2∑
i2=1

. . .
IN∑
iN=1

X (i1, i2, . . . , iN )Y (i1, i2, . . . , iN ).

It follows immediately that ‖|X ‖|2 =
√
〈X |X 〉.

For simplicity of notation, we let ‖ . ‖F stand for the tensor norm in the case
when k = 2, namely, ‖ . ‖F = ‖| . ‖|2. On the other hand, in the case when N = 2,
which means 2 order tensors (matrices), it is important to make it clear that
the norm ‖| . ‖|2 is exactly the well-known Frobenius norm but not the induced
matrix norm ‖ . ‖2.

Definition 4.1.6 (The mode-n matrix (Matricization)). The mode-n matricization
(also known as mode-n unfolding) of a tensor X is denoted by the matrix X(n) of size
In × I1 · I2 · · · In−1 · In+1 · · · IN , and it is defined by

X(n)(in, j) = X (i1, i2, . . . , in, . . . , iN ) where j = 1 +
N∑
k=1
k,n

(ik − 1)
k−1∏
m=1
m,n

Im.

In other words, the mode-n matricization can be defined as the operation of arranging
the mode-n fibers to be the columns of the matrix X(n).

Example 4.1.1. The mode-n matricization of a third-order tensor X of size I1× I2× I3
can be illustrated as in Figure 4.2. Thus, we can express mode-n matrices using slices:

X(1) = [X (:, :,1),X (:, :,2), . . . ,X (:, :, I3)] ,

X(2) =
[
X (:, :,1)T ,X (:, :,2)T , . . . ,X (:, :, I3)T

]
,

X(3) = [X (1, :, :),X (2, :, :), . . . ,X (I1, :, :)] .

Similar to the vectorisation of a matrix, the vectorisation of a tensor is a linear
transformation that converts the tensor X ∈ RI1×I2×....×IN into a column vector.
The vectorization of X is denoted by vec(X ), where

vec : RI1×I2×···×IN →R
I1·I2···IN

stacks the entries of a tensor in reverse lexicographical order into a long column
vector.
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Figure 4.2: Illustration of matricizing a third-order tensor into a matrix in three
modes.

4.2 Tensor products and multiplications

The question that arises when one seeks to generalize an equation or a model in
a higher dimension is the operation that must be used between these multidi-
mensional data. In the following section, we will introduce a class of different
operations that will be useful for generalizing our model in high dimensions.

Definition 4.2.1 (The outer product). The outer product of a tensor X ∈RI1×I2×···×IN
and Y ∈ R

J1×J2×···×JM is a tensor denoted by Z = X ◦ Y ∈ R
I1×I2×···×IN×J1×J2×···×JM .

Elementwise,

Z(i1, i2, . . . , iN , j1, j2, . . . , jM) = X (i1, i2, . . . , iN )Y (j1, j2, . . . , jM).

In particular, let u ∈RIand v ∈RJ be two column vectors, their outer product
is given by the matrix W = u ◦ v ∈RI×J defined by W = uvT , namely,

(u ◦ v)i,j = u(i)v(j).

Definition 4.2.2. An N th-order tensor X ∈ R
I1×I2×···×IN is rank one if it can be

written as the outer product of N vectors, which means X = x1 ◦ x2 ◦ · · · ◦ xN , where

X (i1, i2, . . . , iN ) =
N∏
k=1

xk(ik) for all 1 ≤ ik ≤ IN , (4.1)

and xk(ik) denotes the ithk element of vector xk ∈RIk .
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Definition 4.2.3 (The contracted product). The contracted product of two tensors
X ∈ RI1×I2×···×IN and Y ∈ RJ1×J2×···×JM with IN = J1 , is denoted by the tensor Z =
X •Y ∈RI1×I2×···×IN−1×J2×···×IM . Elementwise, it is defined by

Z(i1, i2, . . . , iN−1, j2, . . . , jM) =
IN∑
ik=1

X (i1, i2, . . . , iN−1, ik)Y (ik , j2, . . . , jM),

for in = 1,2, . . . , IN , jm = 1,2, . . . , IM andm = 2, . . . ,M.

Notice that the contracted product is a generalization of the usual matrix
product.

Definition 4.2.4 (Kronecker product). Let A ∈Rm×n and B ∈Rp×q be two matrices.
Their Kronecker product is a matrix of size mp ×nq given by

A⊗B =


a11B . . . a1nB
a21B . . . a2nB

: . . . :
am1B . . . amnB


Definition 4.2.5 (Khatri-Rao product). Let A = [a1, a2, . . . , an] ∈ R

m×n and B =
[b1,b2, . . . , .bn] ∈ Rp×n be two matrices, their Khatri-Rao product is a matrix of size
mp ×n defined by

A�B = [a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn].

Remark 4.2.1. If a and b are vectors, then the Khatri-Rao product and the Kronecker
product are identical, i.e, a⊗ b = a� b.

Definition 4.2.6 (Hadamard product). Given matrices A and B, both of size I × J ,
their Hadamard product is denoted by the matrix A~B also of size I × J and defined
by:

A~B =


a11b11 . . . a1nb1n
a21b21 . . . a2nb2n

: . . . :
am1bm1 . . . amnbmn


Proposition 4.2.1. Let A,B,C be a three matrices, we have the following properties

1. vec(ABC) = (CT ⊗A)vec(B)

2. (A⊗B)⊗C = A⊗ (B⊗C).

3. (A�B)�C = A� (B�C).
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4. (A⊗B)T = AT ⊗BT .

5. (A�B)T (A�B) = (ATA)~ (BTB).

6. (A�B)† = ((ATA)~ (BTB))†(A�B)T with A† is the pseudo-inverse of A.

Proof. Readers can refer to [77] for more details about the proof.

4.2.1 The n-mode product

Definition 4.2.7 (The n-mode product matrix). Let X ∈ RI1×I2×···×IN be an N th-
order tensor and A ∈ RJ×In be a matrix. The n-mode product of the tensor X by the
matrix A is an N th-order tensor, denoted by X ×n A, of size I1 × I2 × · · · × In−1 × J ×
In+1 × · · · × IN and whose entries are given by

(X ×nA)i1,...,in−1,j,in+1,...,iN =
In∑
in=1

Xi1,...,iNAjin ,

i.e, each mode-n fiber of X is multiplied by the matrix A.

Proposition 4.2.2. [97, 102, 98] Given two tensors X ,Y ∈RI1×I2×···×IN , we have the
following properties:

1. (X ×nA)×m B = (X ×m B)×nA, for all A ∈RJn×In and B ∈RJm×Im , with m , n.

2. (X ×nA)×n B = X ×n (BA), for all A,B ∈RJn×In .

3. X ×n Id = X where Id ∈RIn×In stands for the identity matrix.

4. 〈X ×nA, Y〉 = 〈X , Y ×nAT 〉, for all A ∈RIn×In .

5. If A ∈RIn×Jn is full column rank matrix, then

X = Y ×nA⇒Y = X ×nA†.

6. If the matrix A ∈RI×Jn is orthonormal, then

X = Y ×nA⇒Y = X ×nA>.

7. If the matrix A is orthogonal, then, ‖X ×nA‖2F = ‖X‖2F .

Proof. The proof is straightforward using the elementwise definition.
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The next property is among the most important proportions that link the
tensor structure to the matrix structure and therefore facilitate the analysis and
manipulation of the tensor equation.

Proposition 4.2.3. Let X ∈ RI1×I2×···×IN and the sequence of matrices A(n) ∈ RJn×In
for all n ∈ {1, . . . ,N }. Then, for any n ∈ {1, . . . ,N }, we have

Y = X×1A
(1)×1· · ·×NA(N )⇔Y(n) = A(n)X(n)

(
A(N ) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)>
.

Proof. For more details, we refer the reader to see [98].

Definition 4.2.8 (The n-mode product vector). Let X ∈ RI1×I2×···×IN be an Nth-
order tensor and v ∈ RIn be a vector. The N − 1 order tensor X×nv denotes the
n-mode product of X by v, where it is a tensor of size I1 × · · · × In−1 × In+1 × · · · × IN
whose entries are given by

(X×nv)i1,...,in−1,in+1,...,iN =
In∑
in=1

Xi1,...,iN vin . (4.2)

4.2.2 Tensor t-product

This product based on the discrete Fourier transform (DFT) in order to reduce the
computation of the associated tensor operation. Let us first recall the definition
and some properties of the discrete Fourier transform.

Definition 4.2.9. The discrete Fourier transform matrix, called also the Fourier
matrix, is defined by the m-by-m square matrix Fm with entries given by

Fm(j,k) = e2πijk/m, ∀ j,k 6m, (4.3)

where i is the imaginary number. The matrix Fm is normalized by 1/
√
m, namely

(
1
√
m
Fm)(

1
√
m
Fm)T = Id .

Fast algorithms have been developed to reduce the complexity of computing
the discrete Fourier transform from O

(
m2

)
to O(m logm). For example, for

any m vector v, the matrix-vector multiplications Fmv, which is the discrete
Fourier transform of the vector v, can be computed in O(m logm) operations by
Cooley–Tukey Fast Fourier Transform (FFT) algorithm [53].

Definition 4.2.10. [40] A circulant matrix define as a matrix in which every row is
the same as the previous row, just shifted to the right by one. Let w = (w1, ...,wm)T
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be an m-vector, the circulant operation on w defined by the m-by-m circulant matrix
with w as the first column:

circ(w) =


w1 wm · · · w2
w2 w1 · · · w3

: :
wm wm−2 · · · w1

 . (4.4)

Let us denote by Γm(IK) the space of m-by-m circulant matrix define as

Γm(IK) =
{
C ∈ IKm×m; C = circ(w), w ∈ IKm} . (4.5)

Theorem 4.2.1. [40] For any integer m ∈ IN, the vector space containing all matrices
that can be diagonalized by Fm, is equal to Γm(IK), i.e.

Γm(IK) = {FmΛmF
∗
m | Λm is an m-by-m diagonal matrix.} (4.6)

The previous theorem proves that the Fourier matrix diagonalizes any cir-
culant matrix, as a consequence, all matrices in Γm(IK) have the same unitary
eigenvectors basis represent by Fm [40]. On the other side, the eigenvalues of
each circulant matrix are the Discrete Fourier Transformation (DFT) of its first
column, i.e. for any w ∈ IKm, then the eigenvalues of the circulant matrix Crm(w)

Λm = diag(FmCrm(w)e1) = diag(Fmw), (4.7)

which means that we can compute the eigenvalues of Γm(w) without using all the
elements of the matrix.

Based on the block circulant structure, the t-product for high order tensors
defined as follows.

Definition 4.2.11. [96] The t-product of two tensors A ∈RI1×I2×I3 and B ∈RI2×J×I3 ,
is a tensor A∗t B ∈RI1×J×I3 defined as

A∗t B = ibvec (bcirc(A) · bvec(B)) , (4.8)

where the dot · stands for the usual matrix product, the matrix bcirc(A) is a block
circulant matrix defined by using the frontal slices of A and bvec(B) defined as a
block vector contain the frontal slices of B, such as:

bcirc(A) =


A1 AI3 · · · A2
A2 A1 · · · A3

: . . . :
AI3 AI3−1 · · · A1

 and bvec(B) =


B1
B2
:
BI3

 .
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While ibvec stand for the inverse operation of bvec that transform a bvec(B) into a
tensor B.

Just as circulant matrices can be diagonalized by the DFT, block circulant
matrices can be block diagonalized as follows(

FI3 ⊗ II1
)
· bcirc(A) ·

(
F∗I3 ⊗ II2

)
.

As a consequence, the product defined in (4.8), can be computed inO
(
I1I2I3 log2 (I3)

)
flops using the FFT.

Definition 4.2.12. [96] The conjugate transpose of a tensor A ∈ R
I1×I2×I3 is the

A∗ ∈ RI2×I1×I3 obtained by conjugate transposing each of the frontal slice and then
reversing the order of transposed frontal slices 2 through I3.

Definition 4.2.13. The I × I × J identity tensor I is the tensor whose the first frontal
slice is the I × I identity matrix, and the other frontal slices are all zeros. It is clear
that A∗t I = I ∗tA =A given the appropriate dimensions.

For an I × I × J tensor, an inverse exists if it satisfies the following definition.

Definition 4.2.14. An I × I × J tensor A has an inverse B provided that A∗t B = I ,
and B ∗tA = I .

Proposition 4.2.4. [96, 95] Let A ∈RI1×I2×I3 , B ∈RI2×J×I3 and C ∈RJ×K×I3 be third
order tensors. We have

• The t-product is associative: (A∗t B) ∗t C =A∗t (B ∗t C).

• The set of all invertible I × I × J tensors forms a group under ∗t operation.

• If A is an orthogonal tensor, then ‖A ∗t B‖F = ‖B‖F .

We say a tensor is "f-diagonal" if each frontal slice is diagonal. Likewise, a
tensor is f-upper triangular or f-lower triangular if each frontal slice is upper or
lower triangular, respectively.

Theorem 4.2.2 (Tensor Singular Value Decomposition (t-SVD)). [96] Let A be an
I1 × I2 × I3 real-valued tensor. Then A can be factored as

A = U ∗t S ∗t VT ,

where U ,V are orthogonal I1×I1×I3 and I2×I2×I3, respectively, and S is a I1×I2×I3
f-diagonal tensor.
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Remark 4.2.2. On the one hand, all the definition provided in this paragraph de-
veloped for the third-order tensor. However, all these notions can generalize to
higher-order tensors in a recursive manner. On the other hand, based on the same
concept, the authors in [95] developed the cosine-product using Discrete Cosine
Transformation (DCT).

4.2.3 Tensor Einstein product

Definition 4.2.15. Let the tensors A ∈RI1×I2×...×IL×K1×K2×...×KN and
B ∈ RK1×K2×...×KN×J1×J2×...×JM , the Einstein product of tensors A and B is a tensor of
size RI1×I2×...×IL×J1×J2×...×JM whose elements are defined by

(A∗N B)i1...iLj1...jM =
∑

k1,...,kN

ai1...iLk1...kN bk1...kN j1...jM .

Definition 4.2.16. Given a tensorA ∈RI1×···×IN×J1×···×JM , the tensorB ∈RJ1×···×JM×I1×···×IN
is the transpose of A, if bi1...iM j1...jm = aj1...jN i1...iM . We denote the transpose of A by
AT .

Definition 4.2.17. A tensor D ∈RI1×···×IN×J1×···×JN is said to be diagonal if all of its
entries are equal to zero except for di1...iN i1...iN . In the case di1...iN i1...iN = 1, the tensor
D is called the identity tensor and denoted by IN . We further use the notation O for a
the tensor having all its entries equal to zero.

Let A ∈ R
I1×I2×...×IN×I1×I2×...×IN . The tensor A is invertible if there exists a

tensor X ∈R1 × I2 × . . .× IN × I1 × I2 × . . .× IN such that

A∗N X = X ∗N A = IN .

4.3 Tensor decomposition

In addition to the t-SVD tensor decomposition, related to the t-product, recalled
in the previous section, two particular tensor decompositions can be considered
to be higher-order extensions of the matrix singular value decomposition: CAN-
DECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors[35],
and the Tucker decomposition is a higher-order form of principal component
analysis [142]. We will discuss these two decompositions in the following.

4.3.1 Tucker decomposition

The Tucker decomposition decomposes a tensor into a core tensor multiplied by
a matrix along each mode.
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Definition 4.3.1. Let I1, I2, . . . , IN ∈ IN, X ∈RI1×I2×···×IN is an N th-order tensor.
The Tucker decomposition of X is given by

X = G ×1U
(1) ×2U

(2) · · · ×N U (N ) = [|G;U (1),U (2), . . . ,U (N )|], (4.9)

where G ∈ RR1×R2×···×RN is called the core tensor it is contains the mode-n singular
values of X , U (n) ∈RIn×Rn are factor matrices and (R1, ...,RN ) is the multi-linear rank
of the Tucker decomposition.

The mode-n matricized version is given by

X(n) =U (n)G(n)(U
(N ) ⊗ · · · ⊗U (n+1) ⊗U (n−1) ⊗ · · · ⊗U (1))T .

Remark 4.3.1 (Non-uniqueness of Tucker decomposition). Let X ∈RI×J×K be an
third-order tensor. The Tucker decomposition of X is given by

X ≈ G ×1A×2 B×3 C = [|G,A,B,C|]. (4.10)

Let U ∈RP×P , V ∈RQ×Q and W ∈RR×R be nonsingular matrices. Then, we obtain

[|G,A,B,C|] = [|G ×1U ×2 V ×3W ;AU−1,BV −1,CW −1|].

In other words, we can easily construct two decomposition of X completely different.
Therefore, the Tucker decompositions are not unique [35, 97].

Definition 4.3.2 (Higher-Order SVD (HOSVD)). Let I1, I2, ...., IN ∈ IN, X ∈RI1×I2×....×IN
is an N th-order tensor and U (n) ∈ RIn×In be a unitary matrix containing a basis of
the left singular vectors of the frontal slices X(n). The core tensor is defined as

G = X ×1U
(1)T ×2U

(2)T ...×N U (N )T ∈RI1×I2×....×IN .

Then, the HOSVD of X expressed by the following decomposition

X = G ×1U
(1) ×2U

(2) ×3 ...×N U (N ).

4.3.2 CP decomposition

CP decomposes a tensor into a sum of component rank-one tensors[35].

Definition 4.3.3. Let I1, I2, . . . , IN ∈ IN, X ∈RI1×I2×···×IN is an N th-order tensor. The
CP decomposition of X is given by

X =
R∑
r=1

a1
r ◦ a2

r ◦ · · · ◦ aNr , with R ≤
N∏
n=1

In, (4.11)
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and akr are vectors of size Ik for all 1 ≤ k ≤N . Elementwise, we have

Xi1,...,iN =
R∑
r=1

a1
r (i1)a2

r (i2) · · ·aNr (iN ), for all i1, . . . , iN .

If we define An = [an1, a
n
2, . . . , a

n
R] for every n ∈ {1, . . . ,N }, the CP decomposition of X

becomes
X = A1 ◦A2 ◦ · · · ◦AN ,

where the matrices An ∈RIn×R is called the factor matrix. Then, we have:

X ≈ [|λ,A1,A2, . . . ,AN |] ≡
R∑
r=1

λra
1
r ◦ a2

r ◦ · · · ◦ aNr , where λ = [λ1,λ2, . . . ,λR] ∈RR.

The mode-n unfolding version is given by

X(n) ≈ AnΛ(AN � · · · �An+1 �An−1 � · · · �A1)T ,

where Λ = diag(λ).

Remark 4.3.2. It is interesting to note that the CP decomposition can be viewed as
a special case of Tucker, where the core tensor is superdiagonal and R1 = R2 = · · · =
RN = R.

Definition 4.3.4. The rank of a tensor X denoted rank(X ), is the smallest number of
rank-one tensors that generate X as their sum. In other words, the rank define as the
smallest number of components in an CP decomposition.

The definition of tensor rank is an exact analogue to the definition of matrix
rank, but the properties of matrix and tensor ranks are quite different. One
difference is that the rank of a real-valued tensor may actually be different over
R and C. Another major difference between matrix and tensor rank is that there
is no simple algorithm to determine the rank of a specific given tensor. In fact,
the problem is NP-hard which makes it impractical for most applications. Thus,
we define the n-rank and the multi-linear rank.

Definition 4.3.5 (Tensor n-rank). The n-rank of a tensor X ∈RI1×I2×....×IN is defined
as the number of linearly independent n-mode fibres of a tensor X :

rankn(X ) = rank(X(n)), where rankn(X ) ≤min(In,
N∏
i=1
i,n

Ii).
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Definition 4.3.6 ( Multi-linear rank). The multi-linear rank of a tensor X ∈
R
I1×I2×....×IN is a vector noted rankX and is given by:

rankX = (rank(X(1)), rank(X(2)), ..., rank(X(N )))

Where rank(X(n)), for 1 ≤ n ≤N is the rank of the unfolding matrix X(n).

Remark 4.3.3 (Uniqueness of CP decomposition). An interesting property of
higher-order tensors is that their rank decompositions are often unique, whereas
matrix decompositions are not [139, 97, 35].

Numerically, the first issue during the computation of the classical CP decom-
position is the choice of R; the number of components. To remedy this problem,
we fit multiple CP decompositions with different numbers of components until
one is good. Let us consider the third-order tensor X ∈ R

I×J×K . The fact of
computing a CP decomposition with R component that best approximates X can
be reformulated mathematically as follows

min
X̃
‖X − X̃ ‖ with X̃ =

R∑
r=1

λrar ◦ br ◦ cr = [|λ,A,B,C|], (4.12)

where λ = [λ1,λ2, . . . ,λR] is defined by normalization.
The minimization problem (4.12) can be solve using an Alternating Least

Squares (ALS) approach. By fixing B and C, solve the problem for A, then fixes
A and C to solve the problem for B, then fixes A and B to solve for C, and
continues to repeat the entire procedure until some convergence criterion is
satisfied. By adopting such approach and having fixed all but one matrix, the
problem reduces to a linear least-squares problem. For example, suppose that B
and C are fixed. Then, the problem to solve became as follows

Find A such as X̃(1) = A diag(λ)(C �B)T .

In addition, by considering Â = A diag(λ), we can rewrite the above minimization
problem in matrix form as

min
Â
‖X(1) − Â(C �B)T ‖F .

The optimal solution is then given by

Â = X(1)[(C �B)T ]†.
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According to Proposition 4.2.1, the matrix Â is written as

Â = X(1)(C �B)((CTC) ∗ (BTB))†.

The advantage of using the above equation is that we need only calculate the
pseudoinverse of an R × R matrix rather than a JK × R matrix. Finally, we
normalize the columns of Â to get A. Namely, we compute λ by

λr = ‖ãr‖, and ar =
ãr
λr
, ∀r = 1, . . . ,R.



CHAPTER5
Tensorial Tikhonov conditional

gradient method for solving

multidimensional ill-posed problems

5.1 Introduction

Let us consider the following tensor equation given by

X ×1H
(1)
1 ×2H

(1)
2 +X ×1H

(2)
1 ×2H

(2)
2 + · · ·+X ×1H

(r)
1 ×2H

(r)
2 = B, (5.1)

where the coefficient matrices H (i)
1 ∈ IRn1×n1 and H (i)

2 ∈ IRn2×n2 (∀i = 1, . . . , r) are
known, X ∈ IRn1×···×nN is the unknown tensor to be determined. Typically, the
right-hand side tensor B ∈ IRn1×n2×···×nN , is contaminated by an error E, i.e.

B = B̃ + E ,

where B̃ denotes the unavailable error-free right-hand side.
Recently, a lot of articles developed the global form of well-known iterative

projection methods in tensor forms to solve a class of tensor equations via the
n-mode tensor product [7, 6]. The iterative method in the present chapter is
well suited to solve such ill-conditioned tensor problems by enforcing double
regularization process, first by using the Tikhonov regularization techniques,
which is discussed in several reviews such as [13, 74, 19, 16, 88], and by mini-
mizing our main problem under a convex constraint. For an optimal choice of an
regularization parameter, we developed the Generalized Cross Validation (GCV)
technique [60].

In the remainder of this work and for the sake of clarity, we consider only

49
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the simplified case where r = 1. Then, the tensorial inverse problem is expressed
as follows

X ×1H1 ×2H2 = B̃ + E . (5.2)

5.2 Tensorial Tikhonov regularization problem

The constrained tensorial Tikhonov regularization problem associated with the
tensor equation (5.2) can be written as follows

min
X∈Ω
‖X ×1H1 ×2H2 −B‖2F +µ2‖X ×1 R1 ×2 R2‖2F , (5.3)

where H1 and H2 represent the coefficient matrices from the tensorial inverse
problem (5.2), R1 and R2 denote the regularization matrices, the set Ω is a convex
constraint over X , and µ is the regularization parameter. The convex set Ω can
be, for example, a closed ball or a box. By searching our solution in such subset,
we control the recovery of the edges.

Let us consider the following linear operation

H : IRn1×···×nN −→ IRn1×···×nN

X −→ X ×1H1 ×2H2,

R : IRn1×···×nN −→ IRn1×···×nN

X −→ X ×1 R1 ×2 R2.

By simple algebraic manipulations using n-mode product properties 4.2.2, we can
obtain the adjoint operators H ∗ andR ∗ of H andR , respectively,

H ∗ : IRn1×···×nN −→ IRn1×···×nN

X −→ X ×1H
T
1 ×2H

T
2 ,

R ∗ : IRn1×···×nN −→ IRn1×···×nN

X −→ X ×1 R
T
1 ×2 R

T
2 .

The convex set Ω ⊂ IRn1×···×nN can be a closed ball of radius r and center 0,

Ω = B̄r =
{
X ∈ IRn1×···×nN | ‖X ‖F 6 r

}
, (5.4)

or a box,
Ω = B(L,U ) =

{
X ∈ IRn1×···×nN | L 6 X 6 U

}
, (5.5)

where L and U are two given tensors and the inequality L 6 X between two
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Nth-order tensors L and X means Li1,...,iN 6 Xi1,...,iN for all i1, . . . , iN .

Now, by considering the following objective function,

Jµ : IRn1×···×nN −→ IR+

X −→ Jµ(X ) = ‖H (X )−B‖2F +µ2‖R(X )‖2F .
(5.6)

the tensorial convex constrained problem (5.3) is written as

min
X∈Ω
Jµ(X ). (5.7)

It is clear that the objective function is differentiable and its gradient is computed
in the following proposition. In addition, if the set Ω is further compact, then
this minimization problem has a unique solution.

Proposition 5.2.1. The gradient of Jµ at X ∈ IRn1×···×nN is given by

∇Jµ(X ) = 2
[
H ∗(H (X )−B) +µ2(R ∗(R(X ))

]
. (5.8)

Proof. Consider the function gµ defined by,

gµ : IR −→ IR
t −→ gµ(t) = Jµ(X + tK), for all K. (5.9)

It is clear that g
′
µ(0) = 〈∇Jµ(X ),K〉F . Furthermore, we have

g
′
µ(0) = 2〈H (X )−B,H (K)〉F + 2µ2〈R(X ),R(K)〉F

= 2〈H ∗(H (X )−B) +µ2R ∗(R(X )),K〉F .

As a consequence, the gradient of Jµ at X is then given by

∇Jµ(X ) = 2
[
H ∗(H (X )−B) +µ2R ∗(R(X ))

]
. (5.10)

In addition, we can prove that

Jµ(X +K) = Jµ(X ) + 〈∇Jµ(X ),K〉F + o(‖K‖F). (5.11)

Indeed, by applying Taylor’s formula on gµ, we got

gµ(1) = gµ(0) + g
′
µ(0) +

1
2
g
′′
µ(0),
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which implies

|o(‖K‖F)| =
∣∣∣∣∣12g ′′µ(0)

∣∣∣∣∣
6 ‖H (K)‖2F +µ2‖R(K)‖2F
6M‖K‖2F , (5.12)

where M = ‖H1‖2F‖H2‖2F +µ2‖R1‖2F‖R2‖2F , which verifies the equation (5.11).

The treatment of the minimization problem (5.3) differs according to the
presence or absence of the constraint Ω. In the unconstrained case, it is immedi-
ate to prove that the problem is equivalent to a generalized tensorial Sylvester
equation that we may solve using some Krylov subspace methods.

The Krylov subspace methods are considered the most efficient methods used
to solve a large linear equation. These methods are based on the structure and
the proprieties of the Krylov subspace developed by Russian mathematician and
naval engineer, Alexei Krylov, in 1931 [99]. The idea behind the construction
of its subspaces comes from the Cayley-Hamilton theorem, which says that the
inverse of a matrix A is expressed in terms of a linear combination of powers
of A[136]. Thereafter, Krylov subspaces are used in algorithms for finding ap-
proximate solutions to linear algebra problems [136]. These iterative approaches
search for a solution in the Krylov subspace associated with the linear equation
starting from an initial approximation and the corresponding residual.

Among the best known methods, Generalized minimal residual method
(GMRES) is an iterative Krylov subspace method for solving indefinite non-
symmetric system of linear equations. The method approximates the solu-
tion by the approximation in a Krylov subspace with minimal residual. The
Arnoldi iteration is used to find this approximation by computing the Krylov
subspace basis. The GMRES method was developed by Yousef Saad and Mar-
tin H. Schultz in 1986 [135] as a generalization and improvement of Minimal
residual method (MINRES) [125] developed for symmetric matrices. We found
also the Lanczos algorithm for Hermitian matrices [136], the Least-squares
method (LSQR) based on Golub Khan bidiagonalization [124] and others. The
Block versions of all these techniques are developed also to solve systems of
linear equations with multiple right-hand sides [86, 50]. Recently, the Krylov
subspace methods are generalized in the tensor form [6, 64, 65].
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5.3 Tensorial Tikhonov conditional gradient method

In the presence of a convex constraint Ω, the conditional gradient method will
be used to solve the following tensorial constrained Tikhonov regularization
problem,

min
X∈Ω

(
‖H (X )−B‖2F +µ2‖R(X )‖2F

)
. (5.13)

This method was first introduced in [49] as one of successful gradient descent
algorithms used to solve nonlinear optimization problems, and used after in
several papers [19, 18, 11]. The idea of the method is to approximate the solution
of our minimization problem by a sequence (Xk)k∈IN defined as

Xk+1 = Xk +αkDk ,

for a given initial guess X0. It is clear that the effectiveness of the approach is
based on an appropriate choice of the direction Dk and the step size αk.

Suppose that we have a given iterate tensor Xk ∈Ω at the step k, we consider
the first-order Taylor polynomial to the objective function Jµ (see (5.6)) at Xk

Jµ(X ) ≈ Jµ(Xk) + 〈∇Jµ(Xk),X −Xk〉+ o(‖X −Xk‖F).

Then, our minimization problem (5.13) is approached, at each step k, by the
following linear optimization problem

X̄k
∗ = argmin

X∈Ω
〈∇Jµ(Xk),X〉. (5.14)

Since Ω is a convex set, the straight line segment [Xk , X̄k
∗] lies entirely inside Ω

and the tensor Dk = X̄k
∗ −Xk is a feasible direction.

On the other hand, the step size αk is defined as the minimizer of

min
06α61

Jµ(Xk +αDk). (5.15)

As a result, the tensorial conditional gradient algorithm can be summarized as
in Algorithm 5.1.

5.3.1 Direction Dk
The choice of the direction Dk in each step k, depends on the solution of (5.14)
which is depending on the choice of the convex constraint subset Ω. The follow-
ing proposition gives the iterate X̄k

∗ for two examples of Ω.
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Algorithm 5.1 Tensorial Conditional Gradient Algorithm

1: Choose a tolerance ε, an initial guess X0 ∈Ω, an integer kmax, and set k = 0.
2: while ‖Xk+1 −Xk‖F/‖Xk‖F > ε and k 6 kmax do
3: Solve the minimization problem over the set Ω:

X̄k
∗ = argmin

X∈Ω
〈∇Jµ(Xk),X〉. (5.16)

4: Compute the value: ρk = 〈∇Jµ(Xk), X̄k
∗ −Xk〉.

5: if |ρk | < ε then
6: Set Dk = X̄k

∗ −Xk and solve the one dimensional minimization problem
to find the step size:

α∗k = argmin
06α61

Jµ(Xk +αDk).

7: end if
8: Update Xk+1 = Xk +α∗kDk , and set k = k + 1.
9: end while

Proposition 5.3.1. At the iteration k, the solution X̄k
∗ of the minimization problem

(5.16) with compact constraint is given by:

i. If the set Ω = B(L,U ) is a box , then the iterate X̄k
∗ can be expressed as:

∀(i1, . . . , iN ), (X̄k
∗)i1,...,iN =

{
Li1,...,iN if (∇Jµ(Xk))i1,...,iN > 0
Ui1,...,iN if (∇Jµ(Xk))i1,...,iN < 0.

(5.17)

ii. If the set Ω = B̄r is a closed (metric) ball of center 0 and radius r, then X̄k
∗ is

written as:

X̄k
∗ = −r

∇Jµ(Xk)
‖Jµ(Xk)‖F

. (5.18)

Proof. The value of X̄k
∗ is based on the set Ω,

i. If the convex set Ω consists of a box B(L,U ), then, X̄k
∗ given by (5.17) leads

to the following inequality: for all X ∈ B(L,U ),

(∇Jµ(Xk))i1,...,iN (X̄k
∗)i1,...,iN 6 (∇Jµ(Xk))i1,...,iN (X )i1,...,iN .

and
〈∇Jµ(Xk), X̄k

∗〉 6 〈∇Jµ(Xk),X〉, ∀X ∈ B(L,U ).
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ii. If the convex set Ω consists of the closed ball B̄r , then, for all X ∈ B̄r , the
Cauchy-Schwarz inequality leads to

〈∇Jµ(Xk),X〉 > −‖∇Jµ(Xk)‖F‖X‖F

> −r‖∇Jµ(Xk)‖F =
〈
∇Jµ(Xk),−r

∇Jµ(Xk)
‖∇Jµ(Xk)‖F

〉
F

,

then, it immediate to see that,

〈∇Jµ(Xk), X̄k
∗〉 6 〈∇Jµ(Xk),X〉, ∀X ∈ B̄r ,

where X̄k
∗ is given by (5.18).

5.3.2 Step size αk

At the iteration k, the step size αk is defined as the minimizer of the functional
φ(α) = Jµ(Xk +αDk) which mean:

αk = argmin
06α61

Jµ(Xk +αDk). (5.19)

The previous minimization problem leads to a polynomial equation using the
definition of Jµ, which make the problem (5.19) equivalent to:

αk = argmin
06α61

(
akα

2 + bkα + ck
)
, (5.20)

where

ak =‖H (Dk)‖2F +µ2‖R(Dk)‖2F ,
bk =〈∇Jµ(Xk),Dk〉,
ck =Jµ(Xk).

At the iteration k, the solution of the problem (5.20) is expressed as

αk = P[0,1](α̃k), (5.21)

where P[0,1] : IR −→ [0,1] is the orthogonal projection on the segment [0,1], and
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α̃k := argmin
α̃

(
akα̃

2 + bkα̃ + ck
)
. Since ak > 0, then, the scaler α̃k is given by

α̃k = −1
2

〈∇Jµ(Xk),Dk〉
‖H (Dk)‖2F +µ2‖R(Dk)‖2F

.

According to the problem (5.14), we have 〈∇Jµ(Xk),Dk〉 6 0 showing that
α̃k > 0, then, the step size αk is given by

αk =
{
α̃k if 0 6 α̃k 6 1
1 if α̃k > 1

. (5.22)

5.3.3 Convergence results

Theorem 5.3.1. Let ρk be a sequence given by ρk = 〈∇Jµ(Xk), X̄k
∗ −Xk〉, where X̄k

∗

is a solution of the minimization problem (5.14), then

lim
k→+∞

ρk = 0. (5.23)

Proof. For any α ∈ [0,1], we set

Xk(α) = Xk +α(X̄k
∗ −Xk).

According to Taylor formula in (5.11), it follows that

Jµ(Xk(α))−Jµ(Xk) = α〈∇Jµ(Xk), X̄k
∗ −Xk〉+ o(α‖X̄k

∗ −Xk‖).

Furthermore, the equation (5.12) shows that

o(α‖X̄k
∗ −Xk‖) 6 α2M‖X̄k

∗ −Xk‖2 6 α2MC2,

where the constant C := max
X ,Y∈Ω

‖X −Y‖ is the diameter of the compact set Ω. As a

consequence, we get

Jµ(Xk(α))−Jµ(Xk) 6 αρk +α2MC2.

On the other hand, using the fact that Xk+1 = Xk(αk), with αk is the step size
given by (5.22), it follows that

Jµ(Xk+1) 6 Jµ(Xk(α)), ∀α ∈ [0,1].
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Then, we get
Jµ(Xk+1)−Jµ(Xk) 6 αρk +α2MC2. (5.24)

Since X̄k
∗ is the solution of (5.14), we have ρk = 〈∇Jµ(Xk), X̄k

∗ −Xk〉 6 0, then,

Jµ(Xk)−Jµ(Xk+1) > −αρk −α2MC2 = α|ρk | −α2MC2. (5.25)

In addition, for α = 0, the inequality (5.24) leads to

Jµ(Xk+1) 6 Jµ(Xk),

which mean that the sequence (Jµ(Xk))k is monotonically decreasing, in the
other hand, the sequence is also bounded below on Ω , due to

∀k, Jµ(Xk) >min
X∈Ω
Jµ(X ),

then, (Jµ(Xk))k is convergent. Consequently,

lim
k→+∞

Jµ(Xk)−Jµ(Xk+1) = 0.

Using (5.25), it follows that

0 < |ρk | 6
Jµ(Xk)−Jµ(Xk+1)

α
+αMC2. (5.26)

If we take a limit in (5.26) for k→ +∞, we obtain

0 6 liminf
k→+∞

|ρk | 6 limsup
k→+∞

|ρk | 6 αMC2,

for all α ∈]0,1[. Now, if we take again a limit in the last inequality for α→ 0, we
get the desired result.

Theorem 5.3.2. The sequence generated by Algorithm 5.1, is a minimizing sequence
of the functional Jµ on the set Ω which mean

lim
k→+∞

Jµ(Xk) = Jµ(X ∗). (5.27)

Proof. For any α ∈ [0,1], we set

Xk(α) = Xk +α(X̄k
∗ −Xk).

From Algorithm 5.1, the iterative approximations (Xk)k for the exact solution is
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given by
Xk+1 = Xk +αk(X̄k

∗ −Xk) = Xk(αk),

where αk is a solution of the problem (5.15). By the property of the convex
function, we have

Jµ(X ∗)−Jµ(Xk) > 〈∇Jµ(Xk),X ∗ −Xk〉F ,

where X ∗ ∈Ω is a solution of the problem (5.3). It follows that

0 6 Jµ(Xk)−Jµ(X ∗) 6 −〈∇Jµ(Xk),X ∗ −Xk〉F
6 −min

X
〈∇Jµ(Xk),X −Xk〉F

6 −〈∇Jµ(Xk), X̄ ∗k −Xk〉F
6 |ρk |.

Then, we have
0 6 Jµ(Xk)−Jµ(X ∗) 6 |ρk |.

According to Theorem 5.3.1, we obtain the desired result.

5.4 Parameter selection method for tensorial Tikhonov
regularization

For an optimal selection of the regularization parameter µ, we will generalize the
GCV method as being a method which does not depend on a prior knowledge
about the noise variance. According to the mode-3 matricization and based on
the classic definition of Generalized Cross Validation method [60], the following
definition gives the associated Tensorial GCV (t-GCV) function to the tensorial
model.

Definition 5.4.1. The t-GCV function associated to the tensorial minimization
problem (5.3) is defined as

G : IR∗+ −→ IR+

µ −→ G(µ) =
‖H (Xµ)−B‖2F

trace(I − H̄M−1
µ H̄T )2

,
(5.28)

where Xµ is the regularized solution of (5.3), the matrices H̄ = InN ⊗· · ·⊗In4
⊗H2⊗H1

and Mµ = (InN ⊗ · · · ⊗ In4
⊗HT

2 H2 ⊗HT
1 H1) +µ2(InN ⊗ · · · ⊗ In4

⊗RT2R2 ⊗RT1R1).
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Then the optimal parameter µ∗ for the proposed tensorial regularization method is
the one that minimizes the t-GCV function G,

µ∗ = argmin
µ>0

G(µ). (5.29)

Based on the spectral decomposition of the coefficient matrices and the regu-
larization matrices, the following proposition presents a simplified expression
of the t-GCV function G.

Proposition 5.4.1. Suppose the Generalized Singular Value Decomposition
(GSVD) [126, 61] of pairs (H1,R1) and (H2,R2) are given respectively by{

UT
1 H1V = S1 = diag(s1,1, s2,1, . . . , sn1,1), si,1 > 0,

W T
1 R1V = C1 = diag(c1,1, c2,1, . . . , cn1,1), ci,1 > 0,

(5.30)

and {
UT

2 H2Z = S2 = diag(s1,2, s2,2, . . . , sn2,2), si,2 > 0,
W T

2 R2Z = C2 = diag(c1,2, c2,2, . . . , cn2,2), ci,2 > 0
(5.31)

whereU1,U2,W1, andW2 are orthogonal matrices, V and Z are nonsingular matrices.
Let set S = InN⊗· · ·⊗In4

⊗S2⊗S1 = diag(s1, s2, . . . , sK ), andC = InN⊗· · ·⊗In4
⊗C2⊗C1 =

diag(c1, c2, . . . , cK ) with K = n1 · n2 · n4 · · ·nN . Then, the expression of the t-GCV
function associated with the regularization problem (5.3), is given by

G(µ) =

n3∑
i=1

K∑
j=1

 c2
j

s2j +µ2c2
j

uTj bi


2

 K∑
j=1

c2
j

s2j +µ2c2
j


2 , (5.32)

where uj for j = 1, . . . ,K and bi for i = 1, . . . ,n3 are defined below in the proof.

Proof. The regularized solution Xµ verifies the following normal equation
associated to the unconstrained minimization problem in (5.3),

Xµ ×1H
T
1 H1 ×2H

T
2 H2 +µ2Xµ ×1 R

T
1R1 ×2 R

T
2R2 = B ×1H

T
1 ×2H

T
2 . (5.33)

By applying the mode-3 matricization to the equation (5.33), we obtain

Xµ(3)Mµ = B(3)H̄, (5.34)

where B(3) ∈ IRn3×K represents the mode-3 matricization of the tensor B defined
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by B(3) = [b1, . . . , bn3
]T , H̄ and Mµ are K ×K matrices defined respectively by

H̄ = InN ⊗ · · · ⊗ In4
⊗H2 ⊗H1,

Mµ = (InN ⊗ · · · ⊗ In4
⊗HT

2 H2 ⊗HT
1 H1) +µ2(InN ⊗ · · · ⊗ In4

⊗RT2R2 ⊗RT1R1).

Then, it is immediate to observe that

‖H (Xµ)−B‖2F = ‖Xµ ×1H1 ×2H2 −B‖2F
= ‖Xµ(3)(InN ⊗ · · · ⊗ In4

⊗H2 ⊗H1)T −B(3)‖2F
= ‖B(3)

(
H̄M−1

µ H̄
T − IK

)
‖2F

By using the GSVD decomposition of the pairs matrices (H1,R1) and (H2,R2)
given by equations (5.30) and (5.31), the matrices H̄ and Mµ can be simplified
as follows

H̄ =USY −1, (5.35)

and
Mµ = Y −T (S2 +µ2C2)Y −1, (5.36)

where U = InN ⊗ · · · ⊗ In4
⊗U2 ⊗U1 = [u1,u2, . . . ,uK ] is K ×K orthogonal matrix,

S = InN ⊗ · · · ⊗ In4
⊗ S2 ⊗ S1 and C = InN ⊗ · · · ⊗ In4

⊗C2 ⊗C1 are diagonal matrices,
and Y = InN ⊗ · · · ⊗ In4

⊗Z ⊗V is nonsingular matrix.
As a consequence, we get

‖H (Xµ)−B‖2F = ‖B(3)U
(
S(S2 +µ2C2)−1S − IK

)
‖2F

= ‖
(
S(S2 +µ2C2)−1S − IK

)
UTBT(3)‖

2
F

=
n3∑
i=1

‖
(
S(S2 +µ2C2)−1S − IK

)
UT bi‖22

=
n3∑
i=1

K∑
j=1

[(
S(S2 +µ2C2)−1S − IK

)
UT bi

]2
j

=
n3∑
i=1

K∑
j=1


 s2j

s2j +µ2c2
j

− 1

uTj bi


2

=
n3∑
i=1

K∑
j=1

 µ2c2
j

s2j +µ2c2
j

uTj bi


2

.

On the other hand, by using the decompositions (5.35) and (5.36) , it is
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immediate to prove that

trace(IK − H̄M−1
µ H̄

T ) = trace(IK − S(S2 +µ2C2)−1S)

=
K∑
j=1

µ2c2
j

s2j +µ2c2
j

.

Finally, we get the expression of the t-GCV function as given in equation(5.32).

We obtain the following algorithm describing the tensorial conditional gradi-
ent Tikhonov method t-CGT.

Algorithm 5.2 Tensorial Conditional Gradient Tikhonov(t-CGT).

1: Given B, X0, H ,R , Ω, ε, an integer kmax, and set k = 0.
2: Compute the parameter µ by minimizing the t-GCV function (5.32).
3: while (‖Xk+1 −Xk‖F/‖Xk‖F > ε and k 6 kmax) do
4: Compute X̄k

∗ depends on the choice of Ω using the proposition 5.3.1.
5: Set the direction of descent: Dk = X̄k

∗ −Xk.
6: Compute the step size αk verifies (5.22).
7: Compute Xk+1 = Xk +αkDk ,
8: end while

5.5 Conclusion

We presented in this chapter a new approach for solving multidimensional
ill-posed problems regularized by Tikhonov penalty. The tensorial Tikhonov
minimization problem is solved either using the tensorial global GMRES in the
unconstrained case, or by using the conditional gradient method in the presence
of a constraint Ω. In addition, we generalized the GCV method to compute
the optimal regularization parameter. The Tikhonov regularization produces
a smoothing effect on the resulting solution as it determines smooth features
while blurring jumps in the regularized solution, a characteristic known as over-
smoothing that can be considered a significant drawback of this method, mainly
if we aim to preserve edges. In this case, an edge-preserving regularization
technique should be used.
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CHAPTER6
Tensorial total variation

regularization problem with

optimized projection methods

6.1 Introduction

We are interesting in this chapter to the tensorial representation of the total
variation method to regularize ill posed tensor equation. Tensorial total variation
(TTV) regularization problem can be expressed as a non-linear minimization
problem of the form

min
X

(
‖|H (X )−B‖|kk +µTTVp(X )

)
, k,p = 1,2, (6.1)

where H stands for a tensorial linear operation, T T Vp is the tensorial total
variation term and µ denotes the regularization parameter. Unlike the Tikhonov
regularization problem, the cost function in this case is non-linear and non-
differentiable, which makes solving the problem more complex. For this reason,
an alternating technique will be used to split the main problem until some
feasible subproblems are obtained.

63
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6.2 Tensorial total variation regularization model

The discrete form of the tensorial total variation term T T Vp is given by

TTVp(X ) =
∑

i1,i2,...,iN

 N∑
n=1

|(∇(n)X )i1,i2,...,iN |
p


1/p

, p = 1,2, (6.2)

where (∇(n)X )n are the partial derivatives of X given by

∀n = 1, . . . ,N , (∇(n)X )i1,...,iN =
{
Xi1,...,in+1,...,iN −Xi1,...,in,...,iN if in < In

0 if in = In

The gradient of X can be defined as the column block tensor ∇X of size N · I1 ×
· · · × IN consisting of the partial derivatives (∇(n)X )n, i.e.

∇X =

∇(1)X
:

∇(N )X

 .
By using the properties of the n-mode product (see Chapter 4), the partial
derivatives are given by the following proposition.

Proposition 6.2.1. Let X ∈ IRI1×···×IN be an N th order tensor. The partial derivatives
(∇(n)X )n of X can be expressed as follows

∀1 6 n 6N, ∇(n)X = X ×n Cn, (6.3)

where Cn =


−1 1

. . . . . .
−1 1

0

 ∈ IRIn×In . Its transpose is given by

∇T(n)X = X ×n CTn .

Proof. Let n be an integer with 1 6 n 6N . According to the definition of the
n-mode product, we have for all 1 6 j 6 In,

(X ×n Cn)i1,...,in−1,j,in+1,...,iN =
In∑
in=1

Xi1,...,iN cj,in .
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Based on the structure of the square matrix Cn = (ci,j)i,j , it follows that

(X ×n Cn)i1,...,in−1,j,in+1,...,iN =
{
Xi1,...,j+1,...,iN −Xi1,...,j,...,iN if j < In

0 if j = In
=(∇(n)X )i1,...,j,...,iN ,

which establishes the formula.
We say that T T Vp term is isotropic, when we set p = 1, and anisotropic when

p = 2 [62]. The main difference between the properties of these two choices is
that isotropic total variation is rotationally invariant [62, 29]. On the other hand,
the minimization problem (6.1) is referred to as T T Vp/L1, when k = 1, and as
T T Vp/L

2 when k = 2. Finally, the existence and the uniqueness of the solution of
the minimization problem (6.1) have ensured by supposing some conditions of
regularity on the operator H and the second member B (see [67, 148] for more
details).

Unfortunately, to solve both TTV/L1 and TTV/L2 models directly is very
difficult due to the non-differentiability and non-linearity of the tensorial total
variation term. For that purpose, we are going to use Alternating direction
method for multipliers (ADMM) [51, 22]. The idea behind ADMM approach
is to transform the unconstrained minimization problem into an equivalent
constrained optimization problem, that will be splitted into easier and smaller
subproblems using augmented Lagrangian method (ALM)[128]. These subprob-
lems can be solved using some optimization properties and tensor projection
methods such as GMRES, conjugate gradient method, and LSQR in an optimized
way.

6.3 Tensorial total variation T T V2/L
1 problem

Let us consider the following tensorial T T V2/L
1 regularization problem

min
X

(‖|H (X )−B‖|1 +µT T V2(X )) , (6.4)

whereH stands for a tensorial linear operator. The tensorial total variation mini-
mization problem (6.4) can be written as the following constrained minimization
problem 

min
R,Y (1),...,Y (N )

‖|R‖|1 +µ
∑
i1,...,iN

 N∑
n=1

(Y (n)
i1,...,iN

)2


1/2


subject to R =H (X )−B and ∇(n)X = Y (n), ∀n.

(6.5)
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This constrained minimization problem can be also formulated as follows min
R,Y

(F (R) +G (Y ))

subject to R =H (X )−B and ∇X = Y .
(6.6)

where we consider the functionals G (Y ) = µ
∑

i1,i2,...,iN

 N∑
n=1

(Y (n)
i1,i2,...,iN

)2


1/2

, and

F (R) = ‖|R‖|1, and the column block tensors ∇X = [∇(1)X ,∇(2)X , . . . ,∇(N )X ]T

and Y = [Y (1),Y (2), . . . ,Y (N )]T .
The augmented Lagrangian function associating to (6.6) is defined as follow

Lβ,ρ(X ,R,Y ,V ,W ) = F (R) +G (Y ) + 〈V |H (X )−B −R〉+ 〈W|∇X −Y〉

+
β

2
‖H (X )−B −R‖2F +

ρ

2
‖∇X −Y‖2F ,

where V ∈ IRI1×···×IN and W ∈ IRN ·I1×···×IN are the Lagrange multipliers of the
linear constraints, and β,ρ > 0 are the penalty parameters for the violation
of these linear constraints. The convex problem (6.6) can be solved using the
classical alternating direction method of multipliers (ADMM) that generates an
iterative sequence (Xk ,Rk ,Yk ,Vk ,Wk)k>0 given as follows. For given initial guess
X0,R0,Y0,V0 andW0, we consider the following subproblems

1. Yk+1 = argmin
Y
Lβ,ρ(Xk ,Rk ,Y ,Vk ,Wk),

2. Rk+1 = argmin
R

Lβ,ρ(Xk ,R,Yk+1,Vk ,Wk),

3. Xk+1 = argmin
X

Lβ,ρ(X ,Rk+1,Yk+1,Vk ,Wk),

4. Vk+1 = Vk + β(H (Xk+1)−B −Rk+1),
5. Wk+1 =Wk + ρ(∇Xk+1 −Yk+1).

(6.7)

Then the resolution of the main minimization problem consists of the resolution
of three subproblems 1-3 in 6.7 followed by an update of the Lagrange multi-
pliers Vk and Wk. To solve Y-subproblem and R-subproblem, the Shrinkage
formula will be used to produce the following results.

Proposition 6.3.1. Given X and R, computing the iterate Yk+1 from the problem
(6.7) is equivalent to compute

Y (n) = max
{
K(n) −

µ

ρ
,0

}
sign(K(n)), ∀n, (6.8)
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where K(n) = ∇(n)X + 1
ρW

(n)
k .

Proof. The iterate Yk+1 can be obtained by solving the following minimization
problem

Yk+1 = argmin
Y

µ ∑
i1,...,iN

 N∑
n=1

(Y (n)
i1,...,iN

)2


1/2

+
ρ

2
‖∇X −Y‖2F + 〈Wk |∇X −Y〉

 ,
= argmin
Y (1),...,Y (N )

µ ∑
i1,...,iN

 N∑
n=1

(Y (n)
i1,...,iN

)2


1/2

+
ρ

2

∥∥∥∥∥Y −∇X − 1
ρ
Wk

∥∥∥∥∥2

F

 ,
= argmin
Y (1),...,Y (N )

µ ∑
i1,...,iN

 N∑
n=1

(Y (n)
i1,...,iN

)2


1/2

+
ρ

2

N∑
n=1

∥∥∥∥∥Y (n) −∇(n)X −
1
ρ
W (n)
k

∥∥∥∥∥2

F

 ,
= argmin
Y (1),...,Y (N )

 ∑
i1,...,iN

µ
 N∑
n=1

(Y (n)
i1,...,iN

)2


1/2

+
ρ

2

N∑
n=1

(Y (n)
i1,...,iN

−K(n)
i1,...,iN

)2


 ,

where K(n) = ∇(n)X + 1
ρW

(n)
k . We remark that the subproblem is separable, then,

it is equivalent to solve, for every i1, . . . , iN , the minimization problem

min
Yi1,...,iN

µ
 N∑
n=1

(Y (n)
i1,...,iN

)2


1/2

+
ρ

2

N∑
n=1

(Y (n)
i1,...,iN

−K(n)
i1,...,iN

)2

 ,
for which the unique minimizer is given by the following well-known two-
dimensional shrinkage formula [106]:

Y (n)
i1,...,iN

= max
{
K(n)
i1,...,iN

−
µ

ρ
,0

}
sign(K(n)

i1,...,iN
) ∀n, ∀i1, . . . , iN . (6.9)

which is exactly

Y (n) = max
{
K(n) −

µ

ρ
,0

}
sign(K(n)) ∀n.

According to the ADMM process, the iterate Rk+1 is defined as the solution
of the following minimization problem

min
R

(
‖|R‖|1 + 〈Vk |H (X )−B −R〉+

β

2
‖H (X )−B −R‖2F

)
. (6.10)
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Similarly to Y subproblem, it is immediate to prove the following result using
one-dimensional Shrinkage formula [106].

Proposition 6.3.2. Given X and Y , the iterate Rk+1 can be obtained by computing

R = max
{
|H (X )−B +

1
β
Vk | −

1
β
,0

}
sign(H (X )−B +

1
β
Vk), (6.11)

where the absolute value operation | . | and the sign operation sign(.) are defined in an
element-wise manner.

On the other hand, given R and Y , the iterate Xk+1 is obtained by solving the
minimization problem

min
X

(
〈Vk |H (X )−B −R〉+ 〈Wk |∇X −Y〉+

β

2
‖H (X )−B −R‖2F +

ρ

2
‖∇X −Y‖2F

)
. (6.12)

Due to the linearity and the differentiability of this minimization subproblem, we can
update different projection methods to solve (6.12). We outline in the next paragraphs
some interesting classical projection methods in a developed optimized form.

6.3.1 GMRES-BTF optimized algorithm

Using Euler-Lagrangian formula, the equation (6.12) is equivalent to the following
normal equation

ρH T (H (X )) + β∇T (∇(X )) = βH T (B) +H T (ρR−Vk) +∇T (βY −Wk). (6.13)

Considering the symmetric operator A defined as

A : IRI1×···×IN −→ IRI1×···×IN

X −→ A (X ) = ρH T (H (X )) + β∇T (∇(X ))
(6.14)

and the second member Gk = βH T (B) +H T (ρR−Vk) +∇T (βY −Wk), the equation (6.13)
is simplified to the following form

A (X ) = Gk , ∀k > 0. (6.15)

Since the second member change at each step, the total tensor variation approach re-
quired solving the tensor equation at each step k. As we have seen previously, solving a
linear equation by a Krylov subspace method consists of two main points: the computa-
tion of the Krylov subspace basis and the resolution of the projected matrix problem
associated to the tensor equation. The tensor basis computation at each step k will
definitely increase the cost of computation and affect the speed of the algorithm. For
that purpose, instead of computing the krylov bases at each iteration,we will calculate
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only the base in the first iteration and then we will complete the bases of the following
iterations with a single element.

First, let us solve the linear equation A(X1) = G0 using GMRES-BTF, which means
constructing an F-orthonormal basis Vm = {V1,V2, . . . ,Vm} of the following tensor Krylov
subspace

Km(A ,P0) = span{P0,A (P0), . . . ,A m−1(P0)},

where P0 = G0 −A(X0) is the residual, and X0 is an initial guess of X1. Then, it follows
easily that

A (Vj ) = Vm×̄N+1Hm(:, j), ∀j = 1, . . . ,m, (6.16)

where Hm ∈ IR(m+1)×m is an upper Hessenberg matrix and Vm is a N + 1 order tensor
of size I1 × · · · × IN ×m such that Vm(:, . . . , :, j) = Vj for all j = 1, . . . ,m. We search an
approximated solution of X1 that satisfies

X (m)
1 = X0 +Vm×̄N+1y

(m), (6.17)

where y(m) is the solution of the following reduced minimization problem

min
y
‖βe1 −Hmy‖2.

On the other hand, using the vec operator, the relations (6.16) and (6.17) will be in the
following matrix forms, respectively,

[vec(A (V1)),vec(A (V2)), . . . ,vec(A (Vm))] = VmHm, (6.18)

and
x = x0 +Vmy

(m), (6.19)

where x = vec(X ), x0 = vec(X0), and Vm = [vec(V1),vec(V2), . . . ,vec(Vm)]. In the same
spirit of developing an optimized approach, we compute the QR factorization of
[vec(A (V1)), . . . ,vec(A (Vm))] in the first step, namely,

[vec(A (V1)), . . . ,vec(A (Vm))] =QmRm, (6.20)

where Qm ∈ IRI1···IN×m is an orthogonal matrix and Rm ∈ IRm×m is an upper triangular
matrix.

Once we apply the basic process in the first iteration, we will adopt a completion
technique in the following iterations, to complete both the krylov subspace basis as well
as the QR factorization. We now turn to the solution of

A (X ) = Gk , k = 1,2, . . .

without repeating the same process in each iteration, we are going to use the F-orthonormal
basis and the solution of the previous iteration. For example, in the beginning of
solving A (X ) = G1, we use again the F-orthonormal basis Vm and we extend it to
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Vm+1 = {Vm,Vnew}, where Vnew is obtained by normalizing the residual as follows

Vnew =
P1

‖P1‖F
with P1 =A (X1)−G1.

We can then continue with A (X ) = Gk , for all k = 2, . . . in a similar manner. Thus, at each
iteration k, we generate the following new block Vnew,

Vnew =
Pk
‖Pk‖F

with Pk =A (Xk)−Gk , (6.21)

that has to be added to the generalized tensor Krylov subspace basis Vm+k−1.

On the other hand, finding the solution of the linear equation A (X ) = Gk is equiva-
lent to solving

min
X∈Xk+K(A ,Pk)

‖Gk −A (X )‖F ,

which can be written as
min

X∈K(A ,Pk)
‖Pk −A (X )‖F . (6.22)

As a consequence, the approximate solution of (6.22) is given by

Xk+1 = Vm+k×̄N+1y, (6.23)

since Vm+k is considered the basis of the generalized tensor Krylov subspace K(A ,Pk).
Working with this generalized Krylov subspace has the disadvantage that we lose the
well-known relation that links the operation with the calculated basis and makes cal-
culating y easier. Then, in order to simplify this minimization problem, we solve the
linear problem

A (X ) = Pk ,

which is equivalent to solving

vec(Pk) = [vec(A (V1)),vec(A (V2)), . . . ,vec(A (Vm+k)),vec(A (Vnew))]y. (6.24)

An optimized QR factorization can be used to solve this iterative equation. Following the
same concept, we will calculate the QR factorization of the matrix [vec(A (V1)), . . . ,vec(A (Vm))]
in the first iteration (equation (6.20)), and then we will complete it in the next iterations
as follows

[vec(A(V1)), . . . ,vec(A (Vm+k−1)),vec(A (Vnew))] = [Qm+k−1,qnew]︸           ︷︷           ︸
Qm+k

(
Rm+k−1 rnew

0 ρnew

)
︸                ︷︷                ︸

Rm+k

, (6.25)
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where the new elements qnew, rnew and ρnew are updated by the following relations
• rnew =QTm+k−1 vec(A (Vnew)),
• q̃new = vec(A (Vnew))−Qm+k−1rnew,
• ρnew = ‖q̃new‖2,
• qnew =

q̃new
ρnew

.

(6.26)

Algorithm 6.1 T T V2/L
1-GMRES algorithm

1: Given B, X0 = 0, R0, Y0, V0,W0, µ, β, ρ, tol.
2: Compute Y1 and R1 using the formula (6.8) and (6.11) respectively.
3: Generate an F-orthonormal basis Vm = {V1,V2, . . . ,Vm}, an upper Hessenberg

matrix Hm and a QR factorization using Arnoldi process.
4: Compute X1 the solution of A (X ) = G0.
5: Update V1 andW1 using (6.7).
6: while ‖Xk+1 −Xk‖F/‖Xk‖F 6 tol do
7: Compute Yk+1 and Rk+1 using the formula (6.8) and (6.11) respectively.
8: Update the F-orthonormal basis Vk+m by adding the new tensor block Vnew

using (6.21),
9: Update the QR using (6.26),

10: Determine yk as a solution of (6.24) and compute Xk+1 = Vk+m×̄N+1yk .
11: Update Vk+1 andWk+1 using (6.7).
12: end while
13: return X .

6.3.2 Gradient optimized algorithm with fixed stepsize param-
eter

We can also apply the gradient method generalized in the tensor format to solve (6.15),
this method consists in constructing a sequence (Xk)k defined by

Xk+1 = Xk +αDk , ∀k > 0,

where Dk is the direction of descent, and α is the fixed stepsize parameter. We pick the
direction of descent to be the one in the opposite direction of the gradient vector, which
means we can take Dk to be the residual Rk =A (Xk)−Gk in each step. We refer to this
algorithm as a fixed step size gradient algorithm, since it does not require a line search
at each step to determine α, in other words, the same step size α is used at each step
k. Clearly, the convergence of the algorithm depends on the choice of α, and we would
not expect the algorithm to work for arbitrary value of α. The theorem discussing a
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necessary and sufficient condition on α for convergence of the algorithm can be found
in [34]. We adopt the following choice of α

α =
‖D0‖2F

〈A (D0)|D0〉
.

The following algorithm summarizes the T T V2/L
1 approach using the conjugate gradi-

ent based on the tensor format.

Algorithm 6.2 T T V2/L
1-CG

1: Given G, X0, R0, Y0, V0,W0, µ, β, ρ, tol.
2: Compute Y1 and R1 using the formula (6.8) and (6.11) respectively.
3: Gradient step: D0 = G0 −A (X0)

4: α =
‖D0‖2

〈A (D0)|D0〉
.

5: Compute: X1 = X0 +αD0.
6: Update V1 andW1 using (6.7).
7: while ‖Xk+1 −Xk‖F/‖Xk‖F 6 tol do
8: Compute Yk+1 and Rk+1 using the formula (6.8) and (6.11) respectively
9: Gradient step: Dk+1 = Gk −A (Xk)

10: Compute: Xk+1 = Xk +αDk+1.
11: Update Vk+1 andWk+1 using (6.7).
12: end while
13: return X .

6.3.3 LSQR-BTF optimized algorithm

The LSQR method is an efficient numerical method for finding the solution of a linear
equation based on the bidiagonalization procedure of Golub and Kahan [58]. In [78],
the authors have constructed the LSQR method in the tensor form (LSQR-BTF) to solve
tensor linear equations for different tensor products. Therefore, we can use LSQR-BTF
to solve X subproblem in two different ways.

On the one hand, similarly to the optimized GMRES-BTF, we will adopt the same
procedure to reduce the computation of the bidiagonalization process. That means, the
bidiagonalization process applied to the the first tensor equation A(X ) = G0 generates
two basis Pm and Qm, that will extended in the next iteration by adding new blocks
Pnew and Qnew, respectively. Then, at the iteration k, the basis will be in the form

Pm+k =[Pm+k−1,Pnew],

Qm+k =[Qm+k−1,Qnew],
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where the new blocks Pnew and Qnew are defined in every step k by

Pnew =
A (Xk)−Gk
‖A (Xk)−Gk‖F

, (6.27)

Qnew =A T (Pnew).1 (6.28)

Once we get the new generalized basis, Givens rotations will be used to compute the
approximated solution as describe in the following algorithm.

Algorithm 6.3 T T V2/L
1-LSQR 01 algorithm

1: Given B, X0, R0, Y0, V0,W0, µ, β, ρ, tol.
2: while ‖Xk+1 −Xk‖F/‖Xk‖F 6 tol do
3: Compute Yk+1 and Rk+1 using the formula (6.8) and (6.11) respectively.
4: LSQR-BTF step :
5: αk = ‖A (Xk)−Gk‖F , Pk = (A (Xk)−Gk)/αk,
6: αk = ‖A T (Pk)‖F , Qk =A T (Pk)/αk,
7: φ̄k = λk , ρ̄k = αk,
8: λk = ‖A (Qk)−αkPk‖,

9: ρk =
√
ρ̄2
k +λ2

k ; ck =
ρ̄k
ρk

; and φk = ckφ̄k.

10: Compute: Xk+1 = Xk + φk
ρk
Qk .

11: Update Vk+1 andWk+1 using (6.7).
12: end while
13: return X .

On the other hand, by exploiting the possibility of solving unsymmetric problems
using LSQR, the X subproblem can be written as follow

X ∗ = argmin
X

β

2
‖H (X )−B −R+

1
β
Vk‖2F +

ρ

2
‖∇X −Y +

1
ρ
Wk‖2F , (6.29)

which is equivalent to
min
X
‖M (X )−Gk‖2F , (6.30)

using the definition of the operatorM as

M : IRI1×···×IN −→ IR(N+1)·I1×···×IN

X −→ M (X ) =


√
β
2H (X )√
ρ
2∇X

 ,
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and its transpose is defined as

M T : IR(N+1)·I1×···×IN −→ IRI1×···×IN

Y = (Y1, . . . ,YN+1) −→ M T (Y ) =

√
β

2
H T (Y1) +

√
ρ

2

N∑
n=1

∇TnYn+1

and the second member is given by Gk =


√
β
2 (B +R− 1

βVk)
ρ
2 (Y − 1

ρWk)

. Therefore, we can apply

the LSQR-BTF in each step k, to solve the tensor equationM (X ) = Gk .

Algorithm 6.4 T T V2/L
1-LSQR 02 algorithm

1: Given B, X0, R0, Y0, V0,W0, µ, β, ρ, tol.
2: while ‖Xk+1 −Xk‖F/‖Xk‖F 6 tol do
3: Compute Yk+1 and Rk+1 using the formula (6.8) and (6.11) respectively.
4: Apply the LSQR-BTF algorithm to solveM (X ) = Gk.
5: Update Vk+1 andWk+1 using (6.7).
6: end while
7: return X .

6.4 Tensorial total variation T T V1/L
2 problem

In this section, we consider solving the following TTV1/L
2 problem

min
X

(
µ‖X −B‖2F + TTV1(X )

)
. (6.31)

This minimization problem can be expressed according to Proposition 6.2.1 as

min
X

µ‖X −B‖2F +
N∑
n=1

‖|X ×n Cn‖|1

 . (6.32)

We first notice that the minimization problem (6.32) can be rewritten as the following
equivalent constrained problem min

X ,Y (1),...,Y (N )

µ‖X −B‖2F +
N∑
n=1

‖|Y (n)‖|1


subject to X ×n Cn = Y (n), ∀ 1 6 n 6N.

(6.33)
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where the linear constraint of this problem can be written using the column block tensor
form as ∇X = Y , which is defined by

Y =


Y (1)

:
Y (N )

 =


X ×1 C1

:
X ×N CN

 ∈ IRN ·I1×···×IN . (6.34)

The augmented Lagrangian function associate to (6.33) is defined as

Lβ(X ,Y ,W ) = µ‖X −B‖2F +
N∑
n=1

‖|Y (n)‖|1 + 〈W|∇X −Y〉+
β

2
‖∇X −Y‖2F ,

whereW ∈ IRN ·I1×···×IN is the Lagrange multipliers of the linear constraint, and β > 0 is
the penalty parameter for the violation of this linear constraint.

Since every norm is a convex function, by the triangle inequality and positive
homogeneity, the objective function of the minimization problem (6.33) is convex as a
sum of two convex functions. In addition, we minimize over linear constraints, which
guarantees the convexity of the constraints. Therefore, the constrained problem (6.33)
is convex because we minimize a convex function over convex constraints.

The classical alternating direction method of multipliers (ADMM) is used to solve
this problem. The (ADMM) algorithm generates an iterative sequence (Xk ,Yk ,Wk)k>0
defined as follows: For given initial guesses X0,Y0 andW0, we have

1. Xk+1 = argmin
X

Lβ(X ,Yk ,Wk),

2. Yk+1 = argmin
Y

Lβ(Xk+1,Y ,Wk),

3. Wk+1 =Wk + β(∇Xk+1 −Yk+1).

(6.35)

6.4.1 Solving X -subproblem using LSQR-BTF

The X -subproblem deduced from (6.35) is given by

min
X

(
µ‖X −B‖2F + 〈Wk |∇X −Yk〉+

β

2
‖∇X −Yk‖2F

)
. (6.36)

It is immediate to see that the minimization problem (6.36) is equivalent to:

Xk,µ = argmin
X

∥∥∥∥∥∥∥


√
µ(X −B)√

β
2 (∇X −Yk + 1

βWk)


∥∥∥∥∥∥∥

2

F

. (6.37)
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If we consider the variable changes Z = X − B and λ = 1√
µ , then the problem (6.37)

becomes as follows

Zk,λ = argmin
Z

∥∥∥∥∥∥∥
 λ−1Z√

β
2 (∇Z +∇B −Yk + 1

βWk)


∥∥∥∥∥∥∥

2

F

. (6.38)

In order to simplify this minimization problem, we consider the operatorM defined as

M : IRI1×···×IN −→ IRN ·I1×···×IN

Z −→ M (Z) =
√
β
2∇Z.

(6.39)

The transposeM T ofM is given by

MT : IRN ·I1×···×IN −→ IRI1×···×IN

Y = (Y1, . . . ,YN ) −→ M T (Y ) =

√
β

2

N∑
n=1

∇TnYn
.

Let Gk =
√
β
2 (Yk − 1

βWk −∇B) denote the second member. The minimization problem
(6.38) will be written in the following form

Zk,λ = min
Z

∥∥∥∥∥∥
[

λ−1Z
M (Z)−Gk

]∥∥∥∥∥∥2

F

. (6.40)

As a result, Zk,λ is the solution of the following normal equation associated with (6.40)

M T (M (Z)) +λ−2Z =M T (Gk). (6.41)

We will update LSQR-BTF method [78, 91] to our tensor equation to determine an
approximate solution Zk,λ. As an iterative method, TTV1/L2 problem requires solving Y
and X subproblems at each iteration. Therefore, we need to solve the problem (6.41) in
each step k. Instead of using full LSQR-BTF [78] method in every iteration, we propose to
combine it with the TTV algorithm. First, the bidiagonalization process of Golub-Kahan
[78, 58] applied to the operatorM generates, at the first step (k = 1), the orthonormal
tensor blocks {V1} and {U1,U2} satisfying{

M T (U1) = ρV1,
M (V1) = ρU1 + σU2,

(6.42)

and
ρ = ‖M T (U1)‖F , σ = ‖M (V1)− ρU1‖F . (6.43)

where the block U1 can be chosen as Gk/‖Gk‖. Then, by using only one step of LSQR-BTF,



6.4. Tensorial total variation T T V1/L
2 problem 77

the approximate solution Zk,λ can be written in the form

Zk,λ = yk,λV1, (6.44)

where yk,λ is a scalar. On the other hand, by using relations (6.42) and (6.44), the normal
equation (6.41) leads to:

(ρ2 + σ2)yk,λ +λ−2yk,λ = ‖Gk‖Fρ, (6.45)

which simplifies the expression of the required scalar yk,λ as following:

yk,λ =
ρ‖Gk‖F

ρ2 + σ2 +λ−2 . (6.46)

6.4.2 Regularization parameter selection

As we have seen in the previous subsection, the computation of an accurate approx-
imation Z requires that a suitable value of the regularization parameter λ should be
used. Let us first consider the sequence (λk)k of the regularization parameter λk , which
mean that in every iteration k, we have an associated regularization parameter λk to
our minimization problem. In fact, the idea behind using a sequence of parameters
instead of a fixed value is to improve the convergence in practice, as well as make
the performance less dependent on the initial choice of the parameter. To determine
the parameter regularization λk , we will use the discrepancy principle approach [36].
We recall that the discrepancy principle method consists of finding a parameter λk
satisfying the following equation

‖Gk −M (Zk,λk )‖F = ηδ,

where η > 1 is some predetermined real number and δ denotes an estimation of the
norm of the error (see [36]). Then, the iterate Zk,λk is the solution of the problem (6.40)
corresponding to λ = λk , namely

Zk,λk = argmin
Z

∥∥∥∥∥∥ λ−1
k Z

M (Z)−Gk

∥∥∥∥∥∥2

F

. (6.47)

To simplify the notation, we will denote Zk+1 = Zk,λk , and then, the solution of the
X -subproblem at the step k is Xk+1 = Zk+1 +B.

For a fixed k, we consider the function defined for all λ > 0 by

φ(λ) = ‖Gk −M (Zk,λ)‖2F . (6.48)

The following result simplifies the expression of φ.

Proposition 6.4.1. The expression φ(λ) of the function φ can be given in the following form,
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for all λ > 0:

φ(λ) = ‖Gk‖2Fe
T
1

(
λ2

(
ρ
σ

)(
ρ σ

)
+ I2

)−2

e1, (6.49)

where the scalars ρ and σ came from the relation (6.42), and e1 is the first unit vector of IR2.

Proof. Let U2 be the N + 1 order tensor of size I1 × · · · × IN × 2 such that

U2(:, . . . , :, i) = Ui , ∀i = 1,2.

By the definition of n-mode (vector) product, and using the relation (6.42), we have

φ(λ) =

∥∥∥∥∥∥U2×̄N+1(‖Gk‖Fe1)−U2×̄N+1

(
ρ
σ

)
yk,λ

∥∥∥∥∥∥2

F

(6.50)

where yk,λ is given by (6.46). As a consequence, we have

φ(λ) =

∥∥∥∥∥∥‖Gk‖Fe1 −
(
ρ
σ

)
yk,λ

∥∥∥∥∥∥2

2

=

∥∥∥∥∥∥‖Gk‖Fe1 −
ρ‖Gk‖F

ρ2 + σ2 +λ−2

(
ρ
σ

)∥∥∥∥∥∥2

2

=‖Gk‖2F

∥∥∥∥∥∥ 1
λ2(ρ2 + σ2) + 1

(
λ2σ2 + 1
−λ2σρ

)∥∥∥∥∥∥2

2

=‖Gk‖2F

wwwwwwwwww
(
λ2

(
ρ
σ

)(
ρ σ

)
+ I2

)−1

e1

wwwwwwwwww
2

2

=‖Gk‖2Fe
T
1

(
λ2

(
ρ
σ

)(
ρ σ

)
+ I2

)−2

e1.

Finally, to solve the nonlinear equation

φ(λ) = η2δ2, for all λ > 0, (6.51)

a zero-finding method, such as Newton’s method [41, 151], is used to find a suitable
regularization parameter.

Remark 6.4.1. Note that the function µ −→ φ(µ), which corresponds to the term µ‖X −B‖2F
in (6.36), is not guaranteed to be convex. Therefore, Newton method has to be safeguarded
when applied to the solution of φ(1/

√
µ) = ηδ. It is the reason for considering λ = 1√

µ [12].
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6.4.3 Solving Y -subproblem
According to (6.35), the Y-subproblem represents as the following unconstrained mini-
mization problem

min
Y

 N∑
n=1

‖|Y (n)‖|1 +
β

2
‖∇Xk+1 −Y‖2F + 〈Wk |∇Xk+1 −Y〉

 , (6.52)

that will be solved by applying the shrinkage formula [106] as proved in the following
result.

Proposition 6.4.2. Given Xk+1, computing the iterate Yk+1 from the problem (6.52) is
equivalent to compute

Y (n) = max
{
K(n) − 1

β
,0

}
sign(K(n)), ∀ 1 6 n 6N (6.53)

where K(n) = ∇(n)Xk+1 + 1
βW

(n)
k .

Proof. Note that, the solution Yk+1 can be obtained by solving the problem

Yk+1 = argmin
Y

 N∑
n=1

‖|Y (n)‖|1 +
β

2
‖∇Xk+1 −Y‖2F + 〈Wk |∇Xk+1 −Y〉

 ,
= argmin
Y (1),...,Y (N )

 ∑
i1,...,iN

N∑
n=1

|Y (n)
i1,...,iN

|+
β

2

∥∥∥∥∥Y −∇Xk+1 −
1
β
Wk

∥∥∥∥∥2

F

 ,
= argmin
Y (1),...,Y (N )

 ∑
i1,...,iN

N∑
n=1

|Y (n)
i1,...,iN

|+
β

2

N∑
n=1

∥∥∥∥∥Y (n) −∇(n)Xk+1 −
1
β
W (n)
k

∥∥∥∥∥2

F

 ,
= argmin
Y (1),...,Y (N )

 ∑
i1,...,iN

 N∑
n=1

|Y (n)
i1,...,iN

|+
β

2

N∑
n=1

(Y (n)
i1,...,iN

−K(n)
i1,...,iN

)2


 , (6.54)

where K(n) = ∇(n)Xk+1 + 1
βW

(n)
k . We remark that the minimization subproblem (6.54) is

separable, then it is equivalent to

min
Yi1 ,...,iN

N∑
n=1

|Y (n)
i1,...,iN

|+
β

2

N∑
n=1

(Y (n)
i1,...,iN

−K(n)
i1,...,iN

)2, ∀i1, . . . , iN

for which the unique minimizer is given by the following well-known one dimensional
shrinkage formula [106]:

Y (n)
i1,...,iN

= max
{
K(n)
i1,...,iN

− 1
β
,0

}
sign(K(n)

i1,...,iN
) ∀n, ∀i1, . . . , iN , (6.55)
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which establishes the formula.

6.4.4 Penalty parameter selection

An optimal choice of the penalty parameter plays a crucial role in obtaining good
convergence. A standard extension is to use different penalty parameters βk for each
iteration. To define the value of βk at each iteration k, we need to define the ADMM
residuals of the problem (6.33). Let Rk and Sk denote the primal residual and the dual
residual associate to the primal problem (6.33) and its dual problem, respectively,

Rk+1 = ∇Xk+1 −Yk+1,

Sk+1 = βk(Yk+1 −Yk).

These two residuals converge to zero as ADMM proceeds [22]. In addition, the norm of
the primal residual decreases with increasing βk. On the other hand, the definition of
the dual residual suggests that it increases with increasing βk . For that reason, in [22,
147], they proposed the following simple scheme to choose βk

βk+1 =


τβk if ‖Rk‖F > ν‖Sk‖F ,
τ−1βk if ‖Sk‖F > ν‖Rk‖F ,
βk otherwise,

(6.56)

where τ > 1 and ν > 1 are constants. The usual values are τ = 2 and ν = 10 in [75, 22,
147]. The idea behind this penalty parameter update is trying to keep the primal and
dual residual norms within a factor of ν of one another as they both converge to zero.

The following algorithm summarizes the main steps to compute a regularization
parameter, the penalty parameter, and the corresponding regularized solution of (6.31).

6.5 Existence of the solution and convergence of the
T T V algorithm

Theorem 6.5.1. If (X ∗,R∗,Y ∗,V ∗,W ∗) is a saddle point ofLβ,ρ, then X ∗ is a solution of (6.6).

Proof. Let (X ∗,R∗,Y ∗,V ∗,W ∗) be a saddle point ofLβ,ρ. By the definition of a saddle
point, we have, for all (X ,R,Y ,V ,W ),

Lβ,ρ(X ∗,R∗,Y ∗,V ,W ) ≤Lβ,ρ(X ∗,R∗,Y ∗,V ∗,W ∗) ≤Lβ,ρ(X ,R,Y ,V ∗,W ∗). (6.57)

Using the first part of (6.57), we got

〈V −V ∗|H (X ∗)−B −R∗〉+ 〈W −W ∗|∇X ∗ −Y ∗〉 6 0,
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Algorithm 6.5 T T V1/L
2-LSQR algorithm

1: Given B, X0 = 0, Y0,W0, β0, δ, tol.
2: while ‖Xk+1 −Xk‖F/‖Xk‖F 6 tol do
3: LSQR-BTF step : αk = ‖Gk‖F , Uk = Gk/αk,
4: σk = ‖M T (Uk)‖F , Vk =M T (Uk)/σk,
5: ρk = ‖M (Vk)− σkUk‖F .
6: Determine the regularization parameter µk by using Newton’s method to

solve (6.51).

7: Compute Zk,λk = yk,λkVk where yk,λk =
‖Gk‖Fρk

ρ2
k + σ2

k +λ−2
k

.

8: Compute Xk+1 = Zk,λk +B.
9: Determine the penalty parameter βk+1 using the formula (6.56).

10: Compute Yk+1 using the formula (6.53).
11: Update the Lagrange multiplierWk+1 using (6.35).
12: end while
13: return X .

since this holds for every (V ,W ), we obtain H (X ∗)−B −R∗ = 0 and ∇X ∗ −Y ∗ = 0. In the
other hand, choosing R =H (X )−B and Y = ∇X in the second part of (6.57) leads to

∀X , F (H (X ∗)−B) +G (∇X ∗) 6 F (H (X )−B) +G (∇X ),

which is clearly equivalent to the following inequality:

‖|H (X ∗)−B‖|1 +µT T V2(X ∗) 6 ‖|H (X )−B‖|1 +µT T V2(X ), ∀X .

As a result, we deduce that X ∗ is a solution of (6.6).
For the inverse implication, we refer the reader to [141, 148].

Theorem 6.5.2. A point (X ∗,R∗,Y ∗,V ∗,W ∗) is a saddle point of L0,0 if and only if it is a
saddle point ofLβ,ρ, for all β,ρ > 0. Note thatL0,0 is exactly the Lagrangian functionalL
associated to (6.6).

Proof. For the proof we refer the reader to [22].

Theorem 6.5.3. Assume that (X ∗,R∗,Y ∗,V ∗,W ∗) is a saddle point of Lβ,ρ. The sequence
(Xk ,Rk ,Yk ,Vk ,Wk) generated by T T V2 Algorithms (6.1, 6.2, 6.4) satisfies :

1. lim
k→+∞

(F (Rk) +G (Yk)) = F (R∗) +G (Y ∗),

2. lim
k→+∞

‖H (Xk)−B −Rk‖2F = 0,

3. lim
k→+∞

‖∇Xk −Yk‖2F = 0.
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Proof. We begin by replacing the couple (V ,W ) by (H (X ∗)−B −R∗,W ∗) in the first
inequality of (6.57), we obtain

H (X ∗)−B −R∗ = 0. (6.58)

In the other hand, if we take the couple (V ,W ) to be (V ∗,∇X ∗ −Y ∗), we get

∇X ∗ −Y ∗ = 0. (6.59)

The main idea of the proof is to increase the three terms by quantities that converge to
zero which will guaranty the convergence of the three expressions. According to the
theorem 6.5.2, (X ∗,R∗,Y ∗,V ∗,W ∗) is a saddle point ofL0,0, which means

∀(X ,R,Y ), L0,0(X ∗,R∗,Y ∗,V ∗,W ∗) ≤L0,0(X ,R,Y ,V ∗,W ∗).

If we take (X ,R,Y ) to be (Xk ,Rk ,Yk), we get

F (R∗) +G (Y ∗)−F (Rk)−G (Yk) ≤ 〈V ∗|H (X̂k)− R̂k〉+ 〈W ∗|∇X̂k − Ŷk〉, (6.60)

where X̂k = Xk −X ∗, Ŷk = Yk −Y ∗, R̂k =Rk −R∗, V̂k = Vk −V ∗, and Ŵk =Wk −W ∗. Also
(Xk ,Rk ,Yk ,Vk ,Wk) is a saddle point of Lβ,ρ, as a consequence, it is a saddle point of
L2β,2ρ, which give us the following inequality using (6.58) and (6.59).

F (R∗) +G (Y ∗)−F (Rk)−G (Yk) > 〈Vk |H (X̂k)− R̂k〉+ 〈Wk |∇X̂k − Ŷk〉
+ β‖H (Xk)−B −Rk‖2F + ρ‖∇Xk −Yk‖2F . (6.61)

From (6.60) and (6.61), we deduce that

β‖H (Xk)−B −Rk‖2F + ρ‖∇Xk −Yk‖2F ≤ −〈V̂k |H (X̂k)− R̂k〉 − 〈Ŵk |∇X̂k − Ŷk〉. (6.62)

Considering now the sequence (uk)k>0 defined as

uk = ρ‖V̂k‖+ β‖Ŵk‖,

this sequence decreases according to (6.62) since

uk −uk+1 =− β2ρ‖H (Xk)−B −Rk‖2F − ρ
2β‖∇Xk −Yk‖2F − 2ρβ〈V̂k |H (X̂k)− R̂k〉

− 2ρβ〈Ŵk |∇X̂k − Ŷk〉.

As a result, we have

β2ρ‖H (Xk)−B −Rk‖2F + βρ2‖∇Xk −Yk‖2F 6 uk −uk+1. (6.63)

By regrouping terms, we obtain
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∞∑
k=0

β2ρ‖H (Xk)−B −Rk‖2F + ρ2β‖∇Xk −Yk‖2F 6 u0. (6.64)

So that lim
k→+∞

‖H (Xk)−B −Rk‖2F = 0, and lim
k→+∞

‖∇Xk −Yk‖2F = 0.

From (6.60) and (6.61), we obtain

F (R∗) +G (Y ∗)−F (Rk)−G (Yk) 6 ‖V ∗‖F‖H (X̂k)− R̂k‖F + ‖W ∗‖F‖∇X̂k − Ŷk‖F .

and

F (Rk) +G (Yk)−F (R∗)−G (Y ∗) ≤ ‖Vk‖F‖H (X̂k)− R̂k‖F + ‖Wk‖F‖∇X̂k − Ŷk‖F
− β‖H (Xk)−B −Rk‖2F − ρ‖∇Xk −Yk‖

2
F .

Passing to the limit in both equations as k −→∞, we obtain desired convergence of our
algorithms.

Remark 6.5.1. Note that the existence of the solution and convergence of the T T V1/L
2

algorithm, can be proved using the same process.

6.6 Subproblem Reduction using truncated SVD

The normal equation associate to the X subproblem (6.13) provides a linear Sylvester
structure that will allow a possible reduction using Truncated Singular Value Decompo-
sition (TSVD) [72] of the matrices H1 and H2. Let us denote the TSVD decomposition of
the matrices H1 and H2 by {

H1 =U1Σ1V
T
1 ,

H2 =U2Σ2V
T
2 ,

(6.65)

where U1,V1 ∈ IRI1×r1 , Σ1 ∈ IRr1×r1 and U2,V2 ∈ IRI2×r2 , Σ2 ∈ IRr2×r2 , with r1 � I1 and
r2� I2. The normal equation associated to (6.12) can be written also as:

ρ(X ×1H
T
1 H1 ×2H

T
2 H2) + β

N∑
n=1

X ×n CTn Cn = Gk . (6.66)

On the other hand, by setting Y = X ×1 V
T
1 ×2 V

T
2 , the equation (6.66) will be expressed

in the following form

ρ(Y ×1 Σ
2
1 ×2 Σ

2
2) + β(Y ×1 V

T
1 C̃1V1 +Y ×2 V

T
2 C̃2V2 +

N∑
n=3

Y ×n C̃n) = Sk , (6.67)

where Sk = Gk ×1 V
T
1 ×2 V

T
2 ∈ IRr1×r2×I3×···×IN and C̃i = CTi Ci , for i = 1,2,3. As a result, we

reduce the size of the tensor equation from I1 × I2 × I3 × · · · × IN into r1 × r2 × I3 × · · · × IN .
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In the literature, there is a class of methods developed to compute an optimal
parameters of truncation r1 and r2 for matrix ill-posed problems. Among the well-
known, we refer the reader to [17, 149]. In our case, the tensorial form of the linear
problem (6.13) makes the computation of an appropriate truncation parameter more
complex, therefore, in the numerical test, the parameters r1 and r2 are chosen empirically
to yield the best reconstruction.

6.7 Conclusion

In this chapter, we have introduced the regularization term of the discrete tensor total
variation. Two particular models have been studied using convex optimization. The
main idea is based on dividing our minimization problems into feasible optimization
subproblems. Projection techniques are developed in an optimized way to solve this
subproblems and accelerate the convergence. On the other hand, the discrepancy princi-
ple is updated to compute an optimal regularization parameter which is complicated to
compute in general in case of total variation regularization.



CHAPTER7
Constrained tensorial total

variation problem via like-gradient

methods

7.1 Introduction

We consider solving a class of constrained tensor regularization problem of the form

min
X∈Ω

(1
2
‖H (X )−B‖2F +µ‖|∇X‖|1

)
, (7.1)

where the solution X and the observation B are N th-order tensors, H is a given linear
tensor operator and the set Ω is assumed to be a convex constraint over X . The regu-
larization term consists of the tensorial total variation regularization operator ‖|∇X‖|1
and the positive regularization parameter µ. The proposed problem (7.1) represents a
constrained multidimensional total variation regularization problem that will cover a
wide range of application fields, such as color image and video processing.

7.2 An alternating tensorial conditional gradient
method

Let us start by the particular case where the tensor operation H consider as the identity
operator. In the current section, we describes a new iterative method to solve a convex
multidimensional minimization problem of the form

min
X∈Ω

(µ
2
‖X −G‖2 + ‖|∇X‖|1

)
. (7.2)

85
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The continuous model and the structure of the regularization total variation term lead
to a new developed approach that attempts to solve the convex optimization problem
by breaking it into feasible subproblems. A key step of this method is the splitting
of variables guaranteed by introducing the idea of the pseudo-Lagrangian operator
followed by an alternating approach. The latter generates a sequence that converge to
the solution of our optimization problem.

7.2.1 From the continuous to discrete model

In order to understand the definition of the discrete total variation in the tensorial case,
let first examine the continuous form of the model (7.2) given as follows

min
f ∈C

(
T V (f ) +

µ

2
‖f − g‖22

)
, (7.3)

where f , g : E ⊂ R
N → R denote the desired original data and the contaminated data

respectively, and the set C denotes a convex functional set in BV (E). The space BV (E) is
defined as the space of functions of bounded variation (for more details about the space
BV (E) and its properties, we refer the readers to [2] and the references therein) and is
given as follows:

BV (E) =
{
f ∈ L1(E), T V (f ) <∞

}
,

where L1(E) stands for the classical Lebesgue space defined on the domain E. Let us
consider the convex set K defined by

K =
{
φ ∈ C1

c (E,RN ),‖φ‖∞ 6 1
}
, (7.4)

where C1
c (E,RN ) denotes the space of functions from E to R

N of class C1 compactly
supported on E, the function φ : E −→ R

N is the dual function and f is the primal
function. The norm ‖ · ‖∞ is given by

‖ω‖∞ = sup
x∈E
|ω(x)|, ∀ω ∈ C1

c (E,RN ),

with |ω(x)| stands for the Euclidean norm of ω(x) in R
N . Then, the total variation

semi-norm, denotes also TV term, is given by

T V (f ) = sup
φ∈K
〈∇f ,φ〉, (7.5)

where the dual product 〈., .〉 is given by

〈∇f ,φ〉 =
∫
E
∇f (x) ·φ(x)dx,
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where the notation x · y stands for the standard scalar product of two vectors x and y in
R
N , and the gradient of f is denoted by ∇f . In a particular case when f is smooth, by

using Cauchy-Schwartz inequality [25], the TV term will be given as:

T V (f ) =
∫
E
|∇f (x)|dx. (7.6)

Recall that the main advantage of considering the total variation as a regularization
operator instead of other operators like Tikonov’s [19, 26, 59], is the ability of preserving
edges. The TV term discourages the solution of the problem from having oscillations.
Moreover, it allows the solution to have discontinuities, which is the case of real modeled
problems. According to [67], if g ∈ L2(E), the minimizer of (7.3) exists, and it is unique
and stable in L2(E) with respect the perturbations of f . The drawback of this method is
in the choice of the regularization parameter which will be complicated because of the
TV term structure. The generalized cross-validation (GCV) [60], Morozov discrepancy
principle [36], and the L-curve method [69] are among the most efficient methods to
compute an optimal regularization parameter. However, it is difficult to adapt such
techniques in the case of total variation because of the nonlinearity of the model.

Now, let us back to the discrete formulation of our main problem, when all results are
developed in the finite-multidimensional setting. Let the tensors X ,W and G represent
the discrete form corresponding to the functions f ,φ and g, respectively. Let Ω and K
denote the convex sets in the discrete tensor version of C and K , respectively. For the
simplicity of the notation, the space of N th-order tensor RI1×I2×···×IN will be denoted by
TN and the set TNN := TN × · · · ×TN will be denoted by SN .

Definition 7.2.1. The discrete divergence operator div : SN −→ TN is defined such that, for
any Y ∈ SN and X ∈ TN , we have

〈−div(Y ) | X 〉 = 〈Y | ∇X〉 . (7.7)

Let us consider the N th-order tensor operator ∂(n) : SN −→ TN defined as

(∂(n)(Y ))i1,...,in,...,iN =


(Y (n))i1,...,in,...,iN − (Y (n))i1,...,in−1,...,iN , if 1 < in < In,
(Y (n))i1,...,iN , if in = 1,
−(Y (n))i1,...,in−1,...,iN , if in = In,

(7.8)

Then, the discrete divergence div(Y ) of an element Y = (Y (1), . . . ,Y (N )) in SN is an
element of TN defined by

div(Y ) =
N∑
n=1

∂(n)(Y ). (7.9)

Lemma 7.2.1. For all Y ∈ SN , we have the following inequality

‖div(Y )‖2F 6 2N+1‖Y‖2F . (7.10)
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Proof. Based on the fact that (a1 + a2)2 6 2(a2
1 + a2

2), for all a1 and a2 in R, we may
show, by induction on N , that for all ai ∈R, N∑

i=1

ai


2

6 2N−1
N∑
i=1

a2
i . (7.11)

By the definition (7.9) of the divergence, for all Y ∈ SN , we have

‖div(Y )‖2F =
∑
i1,...,iN

 N∑
n=1

(∂(n)(Y ))i1,...,in,...,iN


2

. (7.12)

According to the equation (7.11), we obtain

‖div(Y )‖2F 6 2N−1
∑
i1,...,iN

N∑
n=1

(
∂(n)(Y )

)2
. (7.13)

On account of the definition (7.8) and by splitting the expression of ∂(n)(Y ), we get

‖div(Y )‖2F 62N−1
∑
i1,...,iN


N∑
n=1

1<in<In

(
(Y (n))i1,...,in,...,iN − (Y (n))i1,...,in−1,...,iN

)2

+
N∑
n=1
in=1

(
(Y (n))i1,...,in,...,iN

)2
+

N∑
n=1
in=In

(
(Y (n))i1,...,in−1,...,iN

)2

 .
Now, using the inequality (a1 − a2)2 6 2(a2

1 + a2
2), we have

‖div(Y )‖2F 62N−1
∑
i1,...,iN

2
N∑
n=1

1<in<In

(
(Y (n))i1,...,in,...,iN

)2
+ 2

N∑
n=1

1<in<In

(
(Y (n))i1,...,in−1,...,iN

)2

+
N∑
n=1
in=1

(
(Y (n))i1,...,in,...,iN

)2
+

N∑
n=1
in=In

(
(Y (n))i1,...,in−1,...,iN

)2

 .
Thus, by regrouping the adequate terms, we get

‖div(Y )‖2F 6 2N−1
∑
i1,...,iN

2
N∑
n=1

16in<In

(
(Y (n))i1,...,in,...,iN

)2
+ 2

N∑
n=1

1<in6In

(
(Y (n))i1,...,in−1,...,iN

)2

 .
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Now, it is obvious to see that

‖div(Y )‖2F 6 2N−1
(
2‖Y‖2F + 2‖Y‖2F

)
, (7.14)

which leads to the main result.

Remark 7.2.1. The particular case of this result was proved by Chambolle in [28] in the
matrix case which N = 2. Namely, we get

‖div(Y )‖2F 6 8‖Y ‖2F , ∀Y ∈R
I1×I2 . (7.15)

All the products defined in the tensor space [23, 96, 97] can be very useful to
generalize some discrete operations as the discrete gradient and the divergence operation
of high-order tensors. Using the n-mode product and its properties (see, [35, 97, 103]),
we proved that the partial derivatives (∇(n)X )n of X can be expressed as follows, for all
n = 1, . . . ,N ,

∇(n)X = X ×n Cn, (7.16)

where Cn =


−1 1

. . .
. . .
−1 1

0

 ∈RIn×In . The transpose ∇T(n) of ∇(n) is given by

∇T(n)X = X ×n CTn .

According to the relation (7.9), the divergence operator of Y can be expressed using the
n-mode product as follows

div(Y ) = −
N∑
n=1

Y (n) ×n CTn . (7.17)

The discrete version of the closed convex subset K is given by

K =

W ∈ SN :

√√√
N∑
k=1

|(W (k))i1,...,iN |2 ≤ 1, ∀i1, ..., iN

 . (7.18)

The convex set K has βK =
√
I1 · I2 · · · IN as the upper bound. While, the discretization of

the set Ω will be specified later depending on the chosen model.
Based on Chan, Golub and Mulet [30] and the properties cited in [56], the discrete

tensorial total variation of X can be generalized as follows:

T V (X ) = max
W∈K
〈∇X | W〉, (7.19)

which is also the Legendre-Fenchel conjugate of the characteristic function iK of the
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convex set K [28, 30]. By considering this definition, another formulation of the total
variation regularization problem (7.2) is given by

min
X∈Ω

max
W∈K

(µ
2
‖X −G‖2F + 〈∇X | W〉

)
. (7.20)

Proposition 7.2.1. The minimization problem (7.20) is equivalent to the following con-
strained minimax problem max

W∈K

min
X∈Ω
H

(∥∥∥∥∥X − (G +
1
µ
H)

∥∥∥∥∥2

F
+ ‖G‖2F −

∥∥∥∥∥G +
1
µ

div(W )
∥∥∥∥∥2

F

) .
subject to H = div(W ).

(7.21)

Proof. The function (X , W ) 7→
µ

2
‖X −G‖2F − 〈X | div(W )〉 is convex in X and concave

in W , in addition K is bounded. Then, according to the min-max theorem [131], the
above equation can be seen as the dual problem of the ROF model (7.2) introduced for
the first time in image restoration by Chan, Golub and Mulet [30], and is given by

max
W∈K

min
X∈Ω

(µ
2
‖X −G‖2F − 〈X | div(W )〉

)
. (7.22)

On the other hand, the cost function of this optimization problem can be expressed as

µ

2
‖X −G‖2F − 〈X | div(W )〉 =

µ

2

(∥∥∥∥∥X − (G +
1
µ

div(W ))
∥∥∥∥∥2

F
+ ‖G‖2F −

∥∥∥∥∥G +
1
µ

div(W )
∥∥∥∥∥2

F

)
.

As a consequence, the problem (7.22) can be written as

max
W∈K

(
min
X∈Ω

(∥∥∥∥∥X − (G +
1
µ

div(W ))
∥∥∥∥∥2

F
+ ‖G‖2F −

∥∥∥∥∥G +
1
µ

div(W )
∥∥∥∥∥2

F

))
. (7.23)

By considering the constraintH = div(W ) in our problem, it is immediate to see that the
optimization problem (7.23) is equivalent to the constrained problem (7.21).

7.2.2 Alternating tensorial conditional gradient method

We propose a new approach based on the definition of a pseudo Lagrangian operator
associated to the minimization problem (7.21) and the alternating technique that serves
in splitting our main problem into feasible subproblems. We consider the functional
energy (X ,H,W ,R,Q) 7−→ L(X ,H,W ,R,Q) as a pseudo Lagrangian functional associated
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to the constrained optimization problem (7.21) defined as follows

L(X ,H,W ,R,Q) =
∥∥∥∥∥X − (G +

1
µ
H)

∥∥∥∥∥2

F
+ ‖G‖2F −

∥∥∥∥∥G +
1
µ

div(W )
∥∥∥∥∥2

F
(7.24)

+ 〈R | H〉− 〈Q | div(W )〉.

We are going to use an alternating approach that consists in minimizing L over X and
H, then maximizing L overW , with respect the linear constraint H = div(W ). It follows
that our optimization problem can be solved approximately by two successive processes:
Starting from an initial guess (X0,H0,W0,R0,Q0), we have first to solve, for all k > 0, the
minimization process

1. Hk+1 = argmin
H

L (Xk ,H,Wk ,Rk ,Qk) ,

2. Xk+1 = argmin
X∈Ω

L (X ,Hk+1,Wk ,Rk ,Qk) ,

3. Qk+1 =
2
µ

(
Xk+1 −G −

1
µ
Hk+1

)
.

(7.25)

Using the results of the first process (7.25), then, we solve the second maximization
process 

4. Wk+1 = argmax
W∈K

L (Xk+1,Hk+1,W ,Rk ,Qk+1) .

5. Rk+1 =
2
µ

(
Xk+1 −G −

1
µ

div(Wk+1)
)
.

(7.26)

The first problem in (7.25) is equivalent to the following minimization problem

Hk+1 = argmin
H

(∥∥∥∥∥Xk − (G +
1
µ
H)

∥∥∥∥∥2

F
+ 〈Rk | H〉

)
, (7.27)

which is clearly given by some algebraic manipulation as

Hk+1 = argmin
H

∥∥∥∥∥Xk − (G +
1
µ
H)−

µ

2
Rk

∥∥∥∥∥2

F
. (7.28)

Then the iterate Hk+1, at each step k, is obtained as

Hk+1 = µ
(
Xk −G −

µ

2
Rk

)
. (7.29)

The second problem in (7.25) can be reformulated as

Xk+1 = argmin
X∈Ω

∥∥∥∥∥X − (G +
1
µ
Hk+1)

∥∥∥∥∥2

F
, (7.30)
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which is nothing but the projection of G +
1
µ
Hk+1 in the convex set Ω. Thus, the iterate

Xk+1, at each step k, is given by

Xk+1 = PΩ(G +
1
µ
Hk+1), (7.31)

where PΩ stands for the projection operator on the convex set Ω. Finally, the maximiza-
tion problem in (7.26) can be reformulated as the following minimization problem

Wk+1 = argmin
W∈K

∥∥∥∥∥G +
1
µ

div(W ) +
µ

2
Qk+1

∥∥∥∥∥2

F
. (7.32)

The constraint minimization subproblem (7.32) is associated to a linear differentiable
cost function, which make the resolution more easier. One of the most efficient method
that can handle this problem is the conditional gradient method that we will discuss in
detail in Algorithm 7.2.2. Finally, we choose the sequences (Rk)k and (Qk)k such that
the constraint H = div(W ) is satisfied in every step k, which lead to the expressions
of Rk and Qk given in (7.25) and (7.26). Thus, the problems (7.25) and (7.26) can be
summarized as follows. Having an initial guess (X0,R0), we have

∀k ∈ IN∗,



Hk+1 = µ
(
Xk −G −

µ

2
Rk

)
,

Xk+1 = PΩ

(
G +

1
µ
Hk+1

)
,

Qk+1 =
2
µ

(
Xk+1 −G −

1
µ
Hk+1

)
,

Wk+1 = argmin
W∈K

∥∥∥∥∥G +
1
µ

div(W ) +
µ

2
Qk+1

∥∥∥∥∥2

F
,

Rk+1 =
2
µ

(
Xk+1 −G −

1
µ

div(Wk+1)
)
.

(7.33)

7.2.3 Tensorial conditional gradient method

In this section, we deal with the problem (7.32). To solve the constrained minimization
W-subproblem in every step k, we are going to use the conditional gradient method [9,
11]. The conditional gradient method, also known as the Frank-Wolfe method [49], is
an iterative gradient descent method subject to the convex constraint conditions. This
approach depends on an appropriate choice of both the step size and the direction of
the descent. First, let us consider, for a fixed k, the following function Fµ,k given by

Fµ,k(W ) =
∥∥∥∥∥G +

1
µ

div(W ) +
µ

2
Qk+1

∥∥∥∥∥2

F
. (7.34)
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The minimizationW-subproblem is nothing but the minimization of Fµ,k over the convex
set K, namely,

min
W∈K

Fµ,k(W ). (7.35)

Solving the minimization problem (7.35) by a descent gradient approach requires to
generate a convergent sequence (Wl(k))l to the solutionW ∗(k) of (7.35). The definition
of this sequence based on two essential elements: The direction and the step size of the
descent. Thus, the expression of (Wl(k))l at each step l is given by

Wl+1(k) =Wl(k) +αlDl , ∀l > 0. (7.36)

The tensor sequence (Dl)l represents the direction of the descent that must be orthogonal
to the residue of the solution, and the positive parameter αl denotes the step size of the
descent. For the sake of notation simplicity, we denote in the rest of this sectionWl(k)
byWl .

The choice of the direction of the descent as a minimization direction stems of the
first order approximation of the cost function Fµ,k . The objective function Fµ,k is Gateau
differentiable and its gradient is given by

∇Fµ,k(W ) = −2
µ
∇
(
G +

1
µ

div(W ) +
µ

2
Qk+1

)
.

Then, for a givenWl at the step l, the first order in the Taylor formula is given by

Fµ,k(W ) = Fµ,k(Wl) +
〈
∇Fµ,k(Wl) | W −Wl

〉
+ o(‖W −Wl‖F).

According to Lemma 7.2.1, we have

o(‖H‖F) = ‖1
µ

div(H)‖2F ≤
2N+1

µ2 ‖H‖
2
F . (7.37)

Thus, the minimization problem (7.35) can be approached, at each step l, by the follow-
ing linear constrained optimization problem

min
W∈K

〈
∇Fµ,k(Wl) | W −Wl

〉
. (7.38)

Let Ŵl be the solution of (7.38). It is then clear that the line connecting Ŵl andWl lies
entirely inside the convex set K, which make a feasible direction of the descent Dl to be
considered, as

Dl = Ŵl −Wl .

In accordance with the overall result of the projection calculation provided in [11], it is
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immediate to see that the solution of (7.38) is given by

Ŵl = PK

(−βK∇Fµ,k(Wl)

‖∇Fµ,k(Wl)‖F

)
, (7.39)

where PK is the projection on the closed convex set K and βK =
√
I1 · · · IN is an upper

bound of K. Let us notice that in our context, the projection PK on the convex set K is
given for all column block tensor Y = (Y (1), . . . ,Y (N )) ∈ SN by

PK(Y ) = Z := (Z(1), . . . ,Z(N )) where (Z(n))i1,i2,...,iN =
(Y (n))i1,i2,...,iN

max{1, |Yi1,i2,...,iN |}
, ∀n. (7.40)

By definition of the gradient algorithm, the step size sequence (αl)l is defined, at
each step l, as the minimizer of ξ(α) = Fµ,k(Wl +αDl), namely,

α∗l = argmin
06α61

Fµ,k(Wl +αDl). (7.41)

It is a quadratic unidimensional problem in which the solution is given by

α∗l =
{
αl if 0 6 αl 6 1,
1 if αl > 1,

(7.42)

where the positive scalar αl is given by αl = −
µ2

2

〈
∇Fµ,k(Wl) | Dl

〉
‖div(Dl)‖F

.

The tensorial version of the conditional gradient method to solve the minimization
problem (7.35), at each step k, can be summarized in Algorithm 7.1.

Algorithm 7.1 Tensorial conditional gradient algorithm.

1: Input: G, Qk+1, µ, βK, ε.
2: Initialization: chooseW0 =Wk.
3: while ‖Wl+1 −Wl‖F/‖Wl‖F > ε do
4: Compute: Vl = ∇Fµ,k(Wl).

5: Compute: Ŵl = PK

(
−βK

Vl
‖Vl‖F

)
using the definition (7.40).

6: Update: The direction of descent Dl = Ŵl −Wl .
7: Compute: The step size α∗l verifies (7.42).
8: Compute: Wl+1 =Wl +α∗lDl .
9: end while

10: return Wk+1

To boost the accuracy of our algorithm and decrease the cost of the computation,
two remarks can be very useful. First, we notice that the proposed approach to solve our
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problem (7.21) is an iterative algorithm that contains another iterative algorithm which
is the conditional gradient algorithm 7.1. This process can be very expensive in the term
of the execution time. Second, we observe that the structure of our algorithm enables a
restarted version to be used. Recall that the restarted process consists in repeating the
algorithm by initializing the input X0 with the resulting estimation computed in the
previous one [136]. This technique can be very efficient in some applications to increase
the precision of our algorithm. Therefore, we propose to combine the two iterative
methods into one which is described as an alternating tensorial conditional gradient
algorithm (ATCG-TV) given in Algorithm 7.2.

Algorithm 7.2 Alternating tensorial conditional gradient algorithm (ATCG-TV)

1: Input: G, X0 = G, R0 = 0, µ, ε.
2: while ‖Wk+1 −Wk‖F/‖Wk‖F > ε do

3: Compute: Hk+1 = µ
(
Xk −G −

µ

2
Rk

)
.

4: Compute: Xk+1 = PΩ

(
G +

1
µ
Hk+1

)
.

5: Compute: Qk+1 =
2
µ

(
Xk+1 −G −

1
µ
Hk+1

)
.

6: Compute: Ŵk = PK

(
−βK

∇Fµ,k(Wk)

‖∇Fµ,k(Wk)‖

)
using the definition (7.40).

7: Update: The direction of descent Dk = Ŵk −Wk.
8: Compute: The step size α∗k computed in (7.42).
9: Compute: Wk+1 =Wk +α∗kDk.

10: Update: Rk+1 =
2
µ

(
Xk+1 −G −

1
µ

div(Wk+1)
)
.

11: end while
12: return Xk+1.

7.2.4 Convergence results

In this section, we establish some results on the convergence of the sequence generated
by the proposed algorithms.

Theorem 7.2.1. At a fixed step k, the sequence (Wl)l generated by Algorithm 7.1 is a
minimizing sequence, i.e.,

lim
l→∞

Fµ,k (Wl) = min
W∈K

Fµ,k(W ) = Fµ,k(W ∗(k)).
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Proof. From the convexity of the function Fµ,k , we have

Fµ,k (W ∗(k))−Fµ,k (W ) >
〈
∇Fµ,k (W ) | W ∗(k)−W

〉
, ∀W ∈ K.

whereW ∗(k) ∈ K is a solution of the problem (7.35). It follows that

0 6 Fµ,k (Wl)−Fµ,k (W ∗(k)) 6 −
〈
∇Fµ,k (Wl) | W ∗(k)−Wl

〉
. (7.43)

Since Ŵl is a solution of the problem (7.38), then, we have

0 6 Fµ,k (Wl)−Fµ,k (W ∗(k)) 6 −
〈
∇Fµ,k (Wl) | Ŵl −Wl

〉
. (7.44)

Therefore, 〈∇Fµ,k (Wl) | Ŵl −Wl〉 ≤ 0. As a consequence, we have

0 6 Fµ,k (Wl)−Fµ,k (W ∗(k)) 6
∣∣∣〈∇Fµ,k (Wl) | Ŵl −Wl〉

∣∣∣ . (7.45)

Thus, the proof is completed by showing that lim
l→∞
〈∇Fµ,k (Wl) | Ŵl −Wl〉 = 0.

Let us set ηl = 〈∇Fµ,k (Wl) | Ŵl −Wl〉 and γl(α) =Wl +α
(
Ŵl −Wl

)
, for any α ∈ [0,1].

The Taylor expansion of Fµ,k atWl is given by

Fµ,k (γl(α))−Fµ,k (Wl) = αηl + o
(
α
∥∥∥Ŵl −Wl

∥∥∥
F

)
.

According to (7.37), we have∣∣∣∣o (α ∥∥∥Ŵl −Wl

∥∥∥
F

)∣∣∣∣ 6 2N+1α2

µ2

∥∥∥Ŵl −Wl

∥∥∥2

F
.

Now, using the triangular inequality together with the inequality (a1 + a2)2 6 2(a2
1 + a2

2),
we may write the following inequalities

‖Ŵl −Wl‖2F 6
(
‖Ŵl‖F + ‖Wl‖F

)2
(7.46)

6 2
(
‖Ŵl‖2F + ‖Wl‖2F

)
6 4β2

K.

We recall that βK denotes the upper bound of the convex set K. Then, for all α ∈ [0, 1]
and for all positive integers l,

Fµ,k (γl(α))−Fµ,k (Wl) 6 αηl +
2N+3α2β2

K
µ2 . (7.47)

From Algorithm 7.1, we have

Wl+1 =Wl +α∗l
(
Ŵl −Wl

)
= γl

(
α∗l

)
,
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where α∗l is a solution of the problem (7.41). It is clear that

∀α ∈ [0, 1], ∀l, Fµ,k (Wl+1) 6 Fµ,k (γl(α)) . (7.48)

In particular, for α = 0, we obtain

Fµ,k (Wl+1) 6 Fµ,k (γl(0)) = Fµ,k (Wl) .

In addition, we have
Fµ,k (Wl) >min

W∈K
Fµ,k(W ).

It follows that the sequence
(
Fµ,k (Wl)

)
l

is monotonically decreasing and bounded, which

means that the sequence
(
Fµ,k (Wl)

)
l

is convergent. Consequently,

lim
l→∞

(
Fµ,k (Wl)−Fµ,k (Wl+1)

)
= 0. (7.49)

From (7.47)-(7.48) and the fact that ηl 6 0, we have, for all α ∈ [0,1] and for all positive
integers l,

Fµ,k (Wl)−Fµ,k (Wl+1) > α
∣∣∣ηl ∣∣∣− 2N+3α2β2

K
µ2 .

For all α ∈ (0,1] and for all positive integers l this gives

0 <
∣∣∣ηl ∣∣∣ 6 2N+3α2β2

K
µ2 +

Fµ,k (Wl)−Fµ,k (Wl+1)

α
.

According to (7.49), letting l→∞, we obtain

0 6 liminf
l→∞

∣∣∣ηl ∣∣∣ 6 limsup
l→∞

∣∣∣ηl ∣∣∣ 6 2N+3α2β2
K

µ2 , ∀α ∈ (0,1].

Finally, we take, in the last inequality, α→ 0, we obtain the desired result.

Theorem 7.2.2. We assume that the sequence (Wk)k converge at least linearly to a limit
W ∗ ∈ K. Then, the sequence (Hk ,Xk ,Wk ,Rk ,Qk)k generated by Algorithm 7.2 is convergent.

Proof. We assume that the sequence (Wk)k converge linearly to a limitW ∗, then there
exist a scalar 0 < r < 1, such that

‖Wk+1 −Wk‖F 6 r‖Wk −Wk−1‖F , ∀k > k0. (7.50)

where k0 > 0 is some positive integer. On account of to Algorithm 7.2 and Lemma 7.2.1,
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we have

‖Hk+1 −Hk‖F = ‖div(Wk+1)−div(Wk)‖F ,
6 2N+1‖Wk+1 −Wk‖F .

Then, it follows that
‖Hk+1 −Hk‖F 6 rk2N+1‖W1 −W0‖F . (7.51)

As a consequence, for two integer n >m, we have

‖Hn −Hm‖F 6
n−1∑
k=m

‖Hk+1 −Hk‖F ,

6 2N+1‖W1 −W0‖F
n−1∑
k=m

rk ,

Then, we have

‖Hn −Hm‖F 6 2N+1‖W1 −W0‖F
rm − rn

1− r
, (7.52)

by making m tend to +∞, we deduce that (Hk)k is a Cauchy sequence on TN . Thus, by a
consequence, the sequence (Hk)k converge to a limit H∗ ∈ TN .

Likewise and according to the equation defining the iterate Xk in Algorithm 7.2, it
is immediate to prove the convergence of the sequence (Xk)k to a limitX ∗. Thereafter, it is

clear that the sequences (Rk)k and (Qk)k converge to the same limit
2
µ

(
X ∗ −G − 1

µ
div(W ∗)

)
.

7.3 An accelerated tensorial double proximal gradi-
ent method

The main goal of this section is the resolution of the constrained tensorial total variation
minimization problem (7.1). Our contribution is threefold. Firstly, a gradient descent-
like algorithm is developed to minimize the non-differentiable and non-linear total
variation problem over a convex set by computing first the proximal mapping of the
total variation term and projecting after the problem using Tseng’s Splitting Algorithm
[4]. Secondly, since the gradient algorithms have a slow convergence rate, we will
accelerate our proposed algorithm using some extrapolation techniques. Finally, such
methods are represented in the tensorial representation which may extend the range of
application of our model and developed algorithm.
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Let first consider the following closed proper convex functions

F : RI1×···×IN −→ R+

X −→ F (X ) =
1
2
‖H (X )−B‖2F ,

G : RI1×···×IN −→ R+
X −→ G (X ) = µ‖|∇X‖|1.

The gradient operator of an N th-order tensor X ∈RI1×···×IN is given in Proposition 6.2.1.
As in the classical vectorial case, the function F is differentiable, and its gradient on X
is given by

∇F (X ) =H ∗(H (X )−B), (7.53)

and the function G is not differentiable due to the non differentiability of the l1 norm,
which make the resolution of this minimization problem more complex.

Let f : RI1×···×IN −→R∪ {∞} be a closed proper convex function [127]. We recall the
proximal operator of f in the following definition.

Definition 7.3.1. [127] The proximal operator (also called the proximal mapping) of f is
the operator given by

proxf (U ) = argmin
X

(
f (X ) +

1
2
‖X −U‖2

)
for any U in R

I1×···×IN . (7.54)

Since the cost function of the minimization problem defined above is strongly convex
and not everywhere infinite, then, there exist a unique minimizer for every U in R

I1×···×IN ,
see [4, 127] for more details. We will often encounter the proximal operator of the scaled
function λf with λ > 0, which can be expressed as

proxλf (U ) = argmin
X

(
f (X ) +

1
2λ
‖X −U‖2

)
. (7.55)

The operator proxλf is also called the proximal operator of f with the parameter λ.

Definition 7.3.2. The convex conjugate of f is given by

f ∗(Y ) = sup
X

(〈X |Y〉 − f (X )) , ∀Y ∈RI1×···×IN . (7.56)

The convex constrained minimization problem (7.1) can be written as:

min
X∈Ω

(F (X ) +G (X )) , (7.57)

where Ω is a convex nonempty bounded set. As F and G are proper lower semicontin-
uous convex functions, F is Gateau differentiable and uniformly convex on R

I1×···×IN

and if it is further assumed that Ω is closed, then, there exists a unique solution of the
minimization problem (7.57), see [4, 132, 38, 67, 43] for a deeper discussion.
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7.3.1 Accelerated tensorial double proximal gradient algorithm
Now, we will introduce an interesting extension of gradient descent method to handle
this tensorial convex minimization problem. In the literature, the gradient descent
technique is developed in a variety of ways to handle different minimization problems,
such as nonlinear minimization problems [38], fractional optimization problems [18]
and others. The proximal gradient method represents a generalized form of the gradient
descent method in the presence of non differentiability in the cost function [3, 4, 127,
132]. First, we consider the unconstrained minimization problem

min
X∈RI1×···×IN

(F (X ) +G (X )) . (7.58)

Suppose that, at the step k, we have constructed an iterate tensor Xk that approximate the
solution of the constrained minimization problem (7.57). The quadratic approximation
of F based at the iterate tensor Xk , for λk > 0, is given by

Φk(X ) = F (Xk) + 〈X −Xk |∇F (Xk)〉+
1

2λk
‖X −Xk‖2F . (7.59)

Then, it is immediate to see that the problem (7.58) is approached, at each step k, by the
following minimization problem

min
X

(
G (X ) +

1
2λk
‖X −Xk +λk∇F (Xk)‖2F

)
. (7.60)

According to Definition 7.3.1, the minimization problem (7.60) admits a unique mini-
mizer Zk given by

Zk = proxλkG (Xk −λk∇F (Xk)) , ∀k ∈ IN, (7.61)

where the operator proxλkG denotes the proximal mapping of G with the parameter λk .
In general, the algorithm proposed for computing Zk by (7.61) required two essential

elements. The first one is an optimal selection of the step size sequence (λk)k that
depend on the Lipschitz constant of ∇F (to be discussed later), and the second one
is the computation of the proximal operator of λkG which is given in the following
proposition.

Proposition 7.3.1. For all Y ∈RI1×···×IN and λ > 0, the proximal operator(mapping) of λG
is given by

Z = proxλG (Y ) = Y +λ∇T (P ∗), (7.62)

where P ∗ is an optimal solution of

min
P

(
G ∗1 (−P ) + 〈λ

2
∇(∇T P ) +∇Y|P 〉

)
, (7.63)

with the function G ∗1 is the conjugate function of G1 := µ‖| . ‖|1.

Proof. By Definition 7.3.1, for all Y and λ > 0, proxλG (Y ) is the the unique optimal
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solution of following unconstrained minimization problem

min
U

(
G (U ) +

1
2λ
‖U −Y‖2F

)
. (7.64)

If we assume that G (U ) = G1(∇U ), with G1(Y ) = µ‖|Y‖|1, the minimization problem can
be transformed to a constrained minimization problem as follow min

U ,V

(
G1(V ) +

1
2λ
‖U −Y‖2F

)
s.t V = ∇U .

(7.65)

The Lagrangian function associated with this problem is defined as

L (U ,V ,P ) = G1(V ) +
1

2λ
‖U −Y‖2F + 〈P |V −∇U〉. (7.66)

As a consequence, the solution of (7.65) is exactly the saddle point ofL (see [57]), which
is the solution of the Lagrangian primal problem

min
U ,V

max
P
L (U ,V ,P ). (7.67)

Since the Lagrangian is separable with respect to U and V , then we may switch the min-
max order based on the min-max theorem [43, 132]. As a consequence, the Lagrangian
dual problem can be written as

max
P

[
min
U

( 1
2λ
‖U −Y‖2F − 〈P |∇U〉

)
+ min
V

(G1(V ) + 〈P |V〉)
]
. (7.68)

On the one hand, it is clear that the minimizer of the problem in U is given by U ∗ =
Y +λ∇T P with a corresponding optimal value equal to:

min
U

( 1
2λ
‖U −Y‖2F − 〈P |∇U〉

)
=

1
2λ
‖U ∗ −Y‖2F − 〈P |∇U

∗〉

= −〈λ
2
∇(∇T P ) +∇Y|P 〉. (7.69)

On the other hand, the second minimization problem verifies

min
V

(G1(V ) + 〈P |V〉) = −max
V

(〈−P |V〉 −G1(V )) = −G ∗1 (−P ), (7.70)

where we recall that G ∗1 is the convex conjugate function of G1. As a result, we obtain
the following dual problem

max
P

[
−G ∗1 (−P )− 〈λ

2
∇(∇T P ) +∇Y|P 〉

]
, (7.71)
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that can be rewritten as the minimization problem (7.63).

So far, we have shown that proxλG (Y ) = Y +λ∇T P ∗, where P ∗ is an optimal solution
of the minimization problem (7.63). In other words, the calculation of the proximal
mapping of the function G required, at each iteration k, the resolution of the minimiza-
tion problem (7.63). For Y = Yk := Xk −λk∇F (Xk), and λ = λk , at the step k, we have to
solve the problem

min
P

(
G ∗1 (−P ) + 〈λk

2
∇(∇T P ) +∇Yk |P 〉

)
. (7.72)

For all k ∈ IN, let us consider the operatorsK and (Dk)k defined as

K : SN −→ R+
P −→ K (P ) = G ∗1 (−P ),

Dk : SN −→ R

P −→ Dk(P ) = 〈λk
2
∇(∇T P ) +∇Yk |P 〉.

Since the objective functional of the minimization problem (7.72) is a sum of closed
proper convex functionK , and closed proper convex differentiable functionDk , then,
we can use again the proximal gradient approach to solve (7.72). Hence, the solution
can be approximated by the sequence (Pl)l defined as

∀l ∈ IN, Pl+1 = proxαlK (Pl −αl∇Dk(Pl)), (7.73)

with αl > 0 is a step size parameter. Notice that the expression of the proximal gradient
(7.73) required two important ingredients, the gradient of the differentiable function
Dk and the proximal mapping of the non differentiable functionK . It is immediate to
see that the gradient ofDk is given by

∀k, ∇Dk(P ) = λk∇(∇T P ) +∇Yk . (7.74)

On the other hand, the proximal mapping of proxαlK is discussed in the following
proposition.

Proposition 7.3.2. For all P ∈ SN , the proximal mapping of αlK is given by

proxαlK (P ) = P + proxαlG1
(−P ), ∀l ∈ IN, (7.75)

where G1 := µ‖| . ‖|1.
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Proof. For any P ∈ SN , we have

proxαlK (P ) = argmin
W

(
K (W ) +

1
2αl
‖W −P‖2F

)
,

= argmin
W

(
G ∗1 (−W ) +

1
2αl
‖W −P‖2F

)
,

= −argmin
V

(
G ∗1 (V ) +

1
2αl
‖V +P‖2F

)
,

= −proxαlG ∗1 (−P ).

According to Moreau decomposition [118], we have the following property that relate
the prox operator of any proper closed convex function f by their conjugates

proxf (x) + proxf ∗(x) = x, ∀x. (7.76)

Using the relation (7.76), we obtain the desired conclusion

proxαlK (P ) = P + proxαlG1
(−P ). (7.77)

Furthermore, the tensorial proximal mapping proxαlG1
:= proxαlµ‖| . ‖|1 of the function

G1 is a direct result of the proximal operator of the ‖| . ‖|1 norm, also known as the soft
thresholding operator in the vector case [127]. Then, by using the Moreau’s formula
(7.76) and the fact that the ‖| . ‖|∞ norm is the dual norm of the ‖| . ‖|1 norm, thus, the
proximal operator proxη‖| . ‖|1 , with any η > 0, can be computed based on the orthogonal
projection on the ‖| . ‖|∞-unit ball [127], which is the unit box. This leads to

(
proxη‖| . ‖|1(P )

)
i1,...,iN

=


Pi1,...,iN − η, Pi1,...,iN > η,

0, |Pi1,...,iN | < η,
Pi1,...,iN + η, Pi1,...,iN 6 −η,

(7.78)

which establishes the formula and ends the proof.

Finally, the algorithm (7.61) computing the sequence (Xk)k can be summarized as
the following double iterative algorithm

∀k ∈ IN,


∀l = 1, · · · , lk ,

{
Ql = Pl −αl∇Dk(Pl),
Pl+1 =Ql + proxαlG1

(−Ql),
Yk = Xk −λk∇F (Xk),
Zk = Yk +λk∇T (Plk+1),

(7.79)

where the step size scalar sequences (λk)k and (αl)l depend on the Lipschitz constants
L(∇F ) and L(∇Dk), respectively, if they are exist.

In the following subsection, we will compute the approximated solution Xk+1 of the
constrained minimization problem (7.57) at the step k + 1 by projecting the iterate Zk in
the convex set Ω using the Tseng’s splitting approach.



104 CHAPTER 7. Constrained tensorial total variation problem

7.3.2 Tseng’s Splitting Algorithm
Tseng’s splitting algorithm proposed in [4] considers as a modified version of the proxi-
mal gradient algorithm (7.61) used to handle the constrained convex nonsmooth opti-
mization problem. Under a nonempty closed and convex constraint Ω, the algorithm
may given as follows:

∀k ∈ IN,


Yk = Xk −λk∇F (Xk),
Zk = proxλkG (Yk),
Rk = Zk −λk∇F (Zk),
Xk+1 = ΠΩ(Xk −Yk +Rk).

(7.80)

where ΠΩ denotes the orthogonal projection on the convex set Ω.

Theorem 7.3.1. Let X ∗ denotes the unique solution of the problem (7.57). Suppose that Ω is
furthermore a closed set in R

I1×···×IN . Then, the sequence (Xk)k generated by Algorithm 7.80
satisfies ‖Xk −X ∗‖F −→ 0 as k −→∞.

Proof. As the functionalF and G are proper lower semicontinuous convex functions,
F is Gateau differentiable and uniformly convex on R

I1×···×IN and the set Ω is a closed
convex nonempty subset of RI1×···×IN , then, the strong convergence of the sequence (Xk)k
is an immediate consequence of the general result in [4] (see Pr.27.13 pg. 407).

7.3.3 The step size parameters selection
The choice of the step size parameters is considered as a typical condition that ensures
the convergence of the sequence (Xk)k to the minimizer of the problem (7.57). It is re-
quired that the values of the step size parameters λk and αl be in the intervals (0, 1

L(∇F ) )

and (0, 1
L(∇Dk)

), respectively, where L(∇F ) and L(∇Dk) denote the Lipschitz constants
of the operators ∇F and ∇Dk , respectively (see [4, 38] for further details).

For all couple (X ,Y ) in R
I1×···×IN ×RI1×···×IN , we have

‖∇F (X )−∇F (Y )‖F = 2‖H T (H (X ))−H T (H (Y ))‖F ,
= 2‖H T (H (X −Y ))‖F ,
6 2‖|H T ◦H ‖|.‖X −Y‖F ,

where ◦ stands for the composition operation. Then, we may choose as a Lipschitz
constant of the operator ∇F the constant

L(∇F ) = 2‖|H T ◦H ‖|. (7.81)

As consequence, the step size (λk)k can be chosen as a fixed step size value λk := λ ∈
(0, 1

L(∇F ) ).
In the case of the operator ∇Dk , for a fixed step k, a Lipschitz constant L(∇Dk) is not

known, then, the step sizes (αl) can be found by a line search method [127], which mean
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that we apply the proximal gradient method with an easy backtracking stepsize rule as
fallows

∀l ∈ IN, αl = ταl−1, (7.82)

where the scalar τ > 0 is a line search parameter.

7.3.4 Accelerated tensorial double proximal gradient algorithm

It is well known that the proximal gradient algorithm suffers from a slow convergence
rate. We will present in this section an accelerated version of the proximal gradient
algorithm consists in adding an extrapolation step in the algorithm, in order to compute
the solution in less steps than the basic proximal gradient. A large amount of research
has been conducted to different extrapolation algorithms applied to a variety of general
problems [24, 85, 138, 32, 112], and others developed of the proximal gradient method
[5, 122].

Definition 7.3.3. Let (Xk)k and (Tk)k two convergent sequences to the same limit X ∗, we say
that (Tk) converges faster than the sequence (Xk) if

lim
k−→∞

‖Tk −X∗‖
‖Xk −X∗‖

= 0. (7.83)

The goal of the extrapolation is to find a sequence (Tk)k from the sequence (Xk)k
so that (Tk)k converges faster to the same limit as (Xk)k. There are many extrapolation
methods in the literature, but we will only be interested to apply the Nesterov’s algo-
rithm approach and the polynomial extrapolation methods to our tensorial nonlinear
minimization problem.

Tensorial Nesterov acceleration techniques

One simple and widely studied strategy is to perform extrapolation in the spirit of
Nesterov’s extrapolation techniques [107, 122]. The basic idea of this technique is to
make use of historical information at each iteration in order to reduce the convergence
rate from O(1/k) to O(1/k2). Thus, using the position of the current iteration tensor
and the previous iteration tensor, the tensorial double proximal gradient method is
accelerated by adding an extrapolation step given by

Tk+1 = Xk +
(
tk − 1
tk+1

)
(Xk −Xk−1), (7.84)

where the scalars (tk) is given, at each step k, by tk+1 =

√
4t2k + 1 + 1

2
.

The convergence of the sequence (Tk)k∈IN may be investigated by following the ap-
proaches given in several papers, e.g [38, 37]. The complete algorithm that summarizes
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Accelerated tensorial double proximal gradient (ATDPG) with Nesterov’s extrapolation
is given in Algorithm 7.3.

Algorithm 7.3 ATDPG-Nesterov algorithm

1: Inputs: Initial guess X1 = O, P1 = O, T1 = X0, ∇F , t1 = 1, τ , µ, λ, α0, tol.
2: for k = 1, . . . until convegence, do
3: Yk = Tk −λ∇F (Tk),
4: Compute the operator ∇Dk using the formula (7.74),
5: for l = 1, . . . , lk do
6: Update the line search parameter αl using (7.82).
7: Ql = Pl −αl∇Dk(Pl),
8: Pl+1 =Ql + proxαlµ‖|.‖|1(−Ql), with proxαlµ‖|.‖|1 is given in (7.78).
9: end for

10: Zk = Yk +λ∇T (Plk+1),
11: Rk = Zk −λ∇F (Zk),
12: Xk = ΠΩ(Tk −Yk +Rk).

13: tk+1 =

√
4t2k + 1 + 1

2
,

14: Compute Tk+1 = Xk +
(
tk − 1
tk+1

)
(Xk −Xk−1).

15: End the iteration if ‖Tk+1 −Tk‖F/‖Tk‖F < tol.
16: end for
17: return Tk+1.

The global tensorial polynomial extrapolation methods

The polynomial extrapolation methods are among the best known extrapolation methods
thanks to their theoretical clarity and numerical efficiency, especially when applied to
solving nonlinear problems such as the case of our main problem (7.1). The polynomial
extrapolation methods was introduced in [138] for the vectorial extrapolation case that
developed after in [17, 87, 85] using efficient implementation techniques. Those methods
was also developed in a matrix global form in [84], and recently was generalized for
the tensor sequences in [44] using tensor product. In the spirit of [85], we define the
transformation in the following form

Tk,q =
q∑
j=0

γjXk+j , (7.85)

where k defines the first term of the sequence, the integer q stands for the number of
terms of the sequence, and the scalars (γj ) verify the following two conditions
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q∑
j=0

γj = 1 ,

q∑
j=0

γj〈Vi |∆Xk+j〉 = 0, i = 0,1, . . . , q − 1,

(7.86)

where ∆Xj = Xj+1 −Xj and Vi are given tensors. As a consequence, the conditions (7.86)
lead to the following linear system

γ0 + γ1 + · · · + γq = 1
γ0〈V0|∆Xk〉 + γ1〈V0|∆Xk+1〉 + · · · + γq〈V0|∆Xk+q〉 = 0
γ0〈V1|∆Xk〉 + γ1〈V1|∆Xk+1〉 + · · · + γq〈V1|∆Xk+q〉 = 0

...
...

...
...

γ0〈Vq−1|∆Xk〉 + γ1〈Vq−1,∆Xk+1〉 + · · · + γq〈Vq−1|∆Xk+q〉 = 0

(7.87)

where the vector γ = [γ0,γ1, . . . ,γq]T is the solution of the matrix equation

1 1 · · · 1
〈V0|∆Xk〉 〈V0|∆Xk+1〉 · · · 〈V0|∆Xk+q〉
〈V1|∆Xk〉 〈V1|∆Xk+1〉 · · · 〈V1|∆Xk+q〉

...
...

...
...

〈Vq−1|∆Xk〉 〈Vq−1|∆Xk+1〉 · · · 〈Vq−1|∆Xk+q〉

︸                                                         ︷︷                                                         ︸
M



γ0
γ1
γ2
...
γq


=


1
0
0
...
0


. (7.88)

It is clear that Tk,q exists and is unique if and only if the square matrix M is nonsingular,
which depends on the choice of (Vi) tensors.

Remark 7.3.1. In the polynomial vector extrapolation case, the author in [138, 85] proposed
a numerically stable and computationally economical algorithm for computing the (γi)i via
the QR factorization. The same concept was developed for the tensor case in [44] by defining a
new QR factorization of the tensor Uk contents the sequence (∆Xi) as frontal slices. However,
in our situation, we have only used a direct method for solving the matrix equation (7.88).

In this work, we consider two polynomial extrapolation methods, Global tensor
minimal polynomial extrapolation (GT-MPE), where the sequence Vi is defined as

Vi = ∆Xi+k , (7.89)

and Global tensor Reduced Rank Extrapolation (GT-RRE) with

Vi = ∆2Xi+k = ∆Xi+k+1 −∆Xi+k . (7.90)

Both methods generate a sequence Tk,q which approximates the solution under the
condition that q is smaller than an integer q0. Where q0 is an integer such that
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{
∆X0,∆X1, . . . ,∆Xq0−1

}
is a linearly independent set, but

{
∆X0,∆X1, . . . ,∆Xq0−1,∆Xq0

}
is

not. For more details, we refer the reader to [138, 85]. The process of polynomial
extrapolation using GT-MPE or GT-RRE is summarized in Algorithm 7.4.

Algorithm 7.4 The GT-MPE/GT-RRE algorithm

1: Inputs: The sequence
{
Xk , · · · ,Xk+q+1

}
.

2: Compute M:
3: For GT-MPE: Vi = ∆Xi+k.
4: For GT-RRE: Vi = ∆2Xi+k.
5: Solve the matrix equation Mγ = e1.
6: Compute the approximation Tk,q using the expression (7.85).
7: Output: Tk,q.

Note that for the GT-MPE and GT-RRE methods, the number of calculations required
increases quadratically with the number of iterations q and the storage cost increases
linearly. A good method to keep the cost of storage and the cost of the lowest possible
calculations is to restart these algorithms periodically. The following algorithm describes
the restarted version of those methods called also a cycling mode.

Algorithm 7.5 Cycling mode.

1: Fix the integer q.
2: Form the sequence

{
X1, · · · ,Xq+1

}
.

3: Calculate the approximation Tk,q using the algorithm 7.4.
4: If Tk,q is satisfactory, stop. Otherwise, set Xk = Tk,q as a new initialization

and k = k + 1, and go to the second step.

The accelerated version of the tensorial double proximal gradient algorithm using
the polynomial method is summarized in Algorithm 7.6.

7.4 Conclusion

In the presence of a convex constraint, projected gradient methods are considered the
most widely used for solving differentiable problems. In this chapter, we have developed
two extensions of these techniques to deal with the non-differentiable total variation
regularization problem in a tensorial context. The alternating conditional gradient
method designed for a particular case of the problem, while the accelerated double
proximal gradient algorithm is designed for a more general case.
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Algorithm 7.6 ATDPG-Polynomial extrapolation algorithm

1: Initial guess X0 = O, P0 = O T1 = X0, ∇F , µ, λ, τ , α0, q, tol.
2: for k = 1, . . . until convegence, do
3: Yk = Tk −λk∇F (Tk),
4: Compute the operator ∇Dk using the formula (7.74),
5: for l = 1, . . . , lk do
6: Update the line search parameter αl using (7.82).
7: Ql = Pl −αl∇Dk(Pl),
8: Pl+1 =Ql + proxαlµ‖|.‖|1(−Ql), with proxαlµ‖|.‖|1 is given in (7.78).
9: end for

10: Zk = Yk +λ∇T (Plk+1),
11: Rk = Zk −λ∇F (Zk),
12: Xk = ΠΩ(Tk −Yk +Rk).
13: Compute the iterate Tk+1 using Algorithm 7.5.
14: End the iteration if ‖Tk+1 −Tk‖F/‖Tk‖F < tol
15: end for
16: return Tk+1.



110 CHAPTER 7. Constrained tensorial total variation problem



CHAPTER8
Applications to color image and

video processing

8.1 Introduction

In the current chapter, our goal is to illustrate the efficiency of all the developed algo-
rithms by applying them to the regularization of the inverse tensor problem related to
color images and video processing. From a simple observation based on the definition of
the frontal slices of a third order tensor (see Figure 4.1), we can represent a color image
by a third-order tensor X of size height ×width× 3, as illustrate in Figure 8.1.

Figure 8.1: “peppers.png”color image in tensor format.

Similarly, the “traffic.avi”color video can be represented by a fourth-order tensor Y
of size height ×width× 3× f rames.

111
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Figure 8.2: “traffic.avi”color video in tensor format.

Image Processing is a technique to enhance digital images from unwanted degrada-
tions. Image processing is used in various applications such as remote sensing, medical
imaging, the film industry, document processing, printing industry, etc. The common
process used in image processing is image compressing, storing, enhancing, and complet-
ing. The models that come from the analysis of these problems are generally ill-posed
problems. In this chapter, we will apply our regularization algorithms in two subfields
which are restoration and completion of color images and videos.

To evaluate the effectiveness of our algorithm, we will use some tools that measure
the quality of recovered tensors, such as, Signal to Noise Ratio (SNR), Peak Signal to
Noise Ratio (PSNR) and the relative error (RE). By definition, the SNR function gives an
objective evaluation between the original image Xtrue and the resulting image X ∗, and it
is defined as follows:

SNR = 10log10

(
‖Xtrue −E(Xtrue)‖2F
‖Xtrue −X ∗‖2F

)
,

where E(Xtrue) denotes the mean of the original image Xtrue. For the same purpose, the
PSNR is given by

P SNR = 10log10

(
d2I1 · · · IN
‖Xtrue −X ∗‖2F

)
, (8.1)

where I1 × · · · × IN is the size of Xtrue and d is the maximal variation in the input data.
The only difference between the SNR and the PSNR is that the SNR is defined in relation
to the signal while the PSNR is defined in relation to the maximum dynamic range. The
relative error (RE) is given by

RE =
‖Xtrue −X ∗‖F
‖Xtrue‖F

.

On the other hand, we adopt the stopping criterion of the algorithm by

ek =
‖Xk+1 −Xk‖F
‖Xk‖F

6 tol,
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where the tolerance tol is chosen in {10−3,10−2}.
In image applications, many operations require algebraic manipulation of pixel

values, where it may be necessary to allow non-integer values. Then, before performing
arithmetic operations, we will convert images and videos to double precision and
normalize the intensity to fall in the range of [0, 1]. All computations were carried out
using the MATLAB R2020a environment on an Intel(R) Core(TM) i5-4670 CPU @ 3.40
GHz computer with 16 GB of RAM.

8.2 Color image and video restoration

Image restoration refers to removal or minimization of known degradations in an image.
Figure 8.3 shows a typical situation consisting of two blocks: The degradation process
that is modeled as a degradation function H that together with an additive noise term
n, operates on an input image f to produce a degraded image g. The second block
represents the restoration process : Given degraded image g with some knowledge about
the degradation function H , and the additive noise term n, the objective of restoration is
to obtain an estimate f̂ of the original image.

Figure 8.3: Degradation and restoration processes.

In the literature, the function that describes the blurring is called the point spread
function (PSF) [74, 21]. The properties of this function give us a clear vision about the
degradation model. For example, if the point spread function (PSF) is spatially invariant,
which means that the image is blurred in exactly the same way at every spatial location,
then, the degradation process is described as a matrix-vector equation:

g =Hf + η, (8.2)

where g is n ·m vector representing the observed image of size m × n, f is a vector
representing the true image, and η is a vector representing the noise. H is n ·m×n ·m
blurring square matrix. In addition, if the PSF is separable, then the blurring matrix can
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be decomposed as a Kronecker product of two blurring matrices of appropriate sizes[74,
88]. In the case of nonseparable PSF, one can use a Kronecker product approximation
(KPA) to decompose the matrix H as a sum of Kronecker product [82, 144]. Suppose
that the matrix H is given as a sum of Kronecker product as follow

H =
r∑
i=1

H
(i)
2 ⊗H

(i)
1 ,

where r is the rank of the PSF array. As a consequence of the following vec operator
property

vec(AXB) = (BT ⊗A)vec(X), (8.3)

our degradation process will be written as

r∑
i=1

H
(i)
1 XH

(i)T
2 +N = G, (8.4)

where f = vec(X), g = vec(G), and η = vec(N ). Unfortunately, the form (8.4) is not
adapted for color image or video. In order, to obtain a unified and adapted version for
color image and video, we have to transform our restoration model into the tensorial
format. For that purpose, it is first necessary to develop a new degradation process. The
main idea is based on the tensor frontal slices notion and the matrix equation (8.4). Our
proposed deblurring tensorial model is given in the following proposition.

Proposition 8.2.1. Let X ∈ IRm1×···×mN be a tensor representing a color image or a video.

1. Assume that the blurring matrix H is spatially invariant and separable, then the
degradation operator will be expressed as follows:

H (X ) = X ×1H1 ×2H2. (8.5)

2. In particular, for third order tensor, if we suppose that the blur is different for each
channel/frame and separable, then the degradation operator will be written as:

H (X ) =
N∑
n=1

X ×1H
n
1 ×2H

n
2 ×3 En, (8.6)

where (Hn
i )i,n represent the blurring matrices, and (En)n is a sequence of matrices

where each En denotes an m3×m3 sparse matrix contains zero except the (n,n) position
contains 1.

Proof.

1. In the first point, we assume that the blur is spatially invariant which means that
the blurring matrix H is the same for all pixels. In addition, we also suppose that
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we have the same point spread function (PSF). Hence, by using the frontal slices
(X i)i and (Gi)i of tensors X and G respectively, the blur is modeled by


Hvec(X1) = vec(G1)
Hvec(X2) = vec(G2)

: :
Hvec(XM ) = vec(GM )

(8.7)

where M =m3 · · ·mN . Since the blur is separable, the matrix H can be written as
H =H2⊗H1 the Kronecker product of the matricesH2 ∈ IRm2×m2 andH1 ∈ IRm1×m1 .
Then, the equation (8.7) is equivalent to

H1X1H
T
2 = G1

H1X2H
T
2 = G2

: :
H1XMH

T
2 = GM

which is exactly

H1 [X1,X2, . . . ,XM ] (IM ⊗H2)T = [G1,G2, . . . ,GM ] . (8.8)

As a consequence, the equation (8.8) can be expressed as

H1X(1)(IM ⊗HT
2 ) = G(1),

where X(1),G(1) ∈ IRm1×m2·M denote the 1-mode matricization of tensors X and G,
respectively. Using the tensor proprieties [97], the degradation process can be
written as the following equation:

X ×1H1 ×2H2 ×3 IM = G (8.9)

which is exactly the equation (8.5).

2. In the second case, we suppose that the blurring function is different for each
frontal slice. By assuming that the blur in each slice is spatially invariant and
separable, our degradation process will be written as:

H1
1X1(H1

2 )T = G1,
H2

1X2(H2
2 )T = G2,

: :
Hm3

1 Xm3
(Hm3

2 )T = Gm3
.

(8.10)

Let (En)n be a sequence of matrices in IRm3×m3 , where each matrix En contains zero
except the (n,n) position contains 1. Then, the equation (8.10) will be equivalent
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to:
m3∑
n=1

Hn
1

[
X1,X2, . . . ,Xm3

]
(En ⊗ (Hn

2 )T ) =
[
G1,G2, . . . ,Gm3

]
. (8.11)

Passing by the definition of the 1-mode matricization, the equation (8.11) can be
expressed as

m3∑
n=1

Hn
1X(1)(En ⊗Hn

2 )T = G(1),

which leads to the tensorial degradation process:

m3∑
n=1

X ×1H
n
1 ×2H

n
2 ×3 En = G.

The developed approaches are based on the prior knowledge of some tools such as
blurring matrices and noise error, which are unknown in practice. Thus, having some
knowledge about the degradation process is essential for a more optimal restoration.
Without knowing at least approximate parameters of the blur, the restoration processes
show poor results and then the image will be rather distorted much more than restored.

As already illustrated in Figure 8.3, the procedure is divided into two parts: the
degradation where we study the properties of our model, such as the blur approximation,
etc. Then, the restoration where we exploit all this information. Starting from no
information other than the observed image, blind restoration approaches can be used
to approximate the degradation model and restore the image at the same time [31,
47, 20]. Among the most interesting methods in this context, we find the Richardson-
Lucy algorithm based on the Fourier domain techniques [47]. The Richardson-Lucy
algorithm is known for its implementation of the maximum likelihood and its ability
to approximate the PSF in the presence of high noise levels. However, numerical tests
show that this algorithm provides an optimal approximation of the PSF but returns a
poor restored image. For that purpose, after an identification of the degradation model
proprities, the proposed techniques can be applied.

In general, degradation can be described by two elements: blur and noise. Blur can be
defined as a transition in the original image caused by various factors such as movement
between the camera and an object, atmospheric turbulence, camera defocusing, etc.
Which gives rise to different types of noise (Gaussian, motion, out-of-focus,...)[21].
On the other hand, noise in images can be seen as a variation of brightness or color
information. There exist various noise sources, for example, it can be produced at the
time of capturing an image through a camera or during transmission.

Color image and video restoration problems provide an application where a tensorial
linear equation of the form

X ×1H1 ×2H2 = B̃ +N , (8.12)

is to be solved, where the coefficient matrices H1,H2 represent the blurring operation,
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the tensor X is the color image or video to be reconstructed, and the added error to the
right-hand side tensor B̃, also called additive noise, is represented by tensorN .

For instance, the blurring matrices can be generated by the Toeplitz matrix Hσ,d that
models a uniform blur, with a variance σ , and a band d, and it is given by

(Hσ,d)ij =


1

σ
√

2π
exp

(
−

(i − j)2

2σ2

)
, |i − j | 6 d,

0 otherwise.

In addition, other blurring operation can be found in [74]. On the other hand, the noise
can be in general additive or multiplicative [83]. Gaussian white noise is known to be
an additive noise with normally distributed random entries with zero mean and with
variance σ that usually is chosen to correspond to a specific noise level ν := ‖N ‖F/‖B̂‖F .
Salt and pepper noise or impulsive noise appears in the images as dark pixels in bright
regions and bright pixels in dark regions [83].

8.2.1 Tensorial Tikhonov regularization algorithm

Tensorial Tikhonov regularization Algorithm 5.2 will be used to restore color images
and videos. We set the regularization operatorR using the regularization matrices R1
and R2 defined as a bidiagonal matrix R1 = diag(−1,1) , and the matrix R2 as the identity
matrix. Since our tensorial Tikhonov regularization problem (5.3), is a minimization
problem under a constraint Ω, then, we worked with two examples of the set Ω, either
the box Ω1 = B(L,U ) with lower tensor bound L and the upper tensor bound U , or the
closed ball Ω2 = B̄r of radius r =

√
n1 ·n2 · · ·nN and of center 0. In order to define local

smoothing constraint, we determine the bound tensors L and U from the parameters
that describe the local properties of our data [76, 19]. For a pixel of the degraded data B,
the local mean and variance at {i1, . . . , iN } over a 3N = 3×3× . . .×3 window are defined as

MB(i1, . . . , iN ) =
1

3N

i1+1∑
k1=i1−1

· · ·
iN+1∑

kN=iN−1

B(k1, . . . , kN ),

VB(i1, . . . , iN ) =
1

3N

i1+1∑
k1=i1−1

· · ·
iN+1∑

kN=iN−1

(B(k1, . . . , kN )−MB(k1, . . . , kN ))2 .

Then, the tensors L and U defining the box Ω2 are given by

L = max
{
MB −

β

max(VB)
VB ,0

}
, and U = min

{
MB +

β

max(VB)
VB ,1

}
,

where β is a positive constant which controls the tightness of the bounds, we set β = 15.
Example 01 : In the first example, we show the effectiveness of the proposed

approach to restore “hibiscus.bmp”original color image of size 512× 512× 3 that have
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Figure 8.4: Original image (left), blurred and noisy image with SNR = 2.06
(right).

been contaminated by a Gaussian uniform blur with σ1 = 6, σ2 = 5 and d1 = d2 = 6. An
additive Gaussian noise of level ν = 10−1, was added to produce the blurred and noisy
image B with SNR = 2.06 as shown in Figure 8.4. We set the tolerance tol = 10−3 and
the maximum number of iterations equal to 50.
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Figure 8.5: The t-GCV curve with the optimal regularization parameter value
λ∗ = 3.425× 10−1.

Using the t-GCV method, the computed optimal regularization parameter is λ∗ =
3.425 × 10−1 as illustrated in the curve of Figure 8.5. The restored images shown in
Figure 8.6 are determined by solving the optimization problem (5.3) under two different
constraint Ω1 = B(L,U ) and Ω2 = B̄r using Algorithm 5.2. The curves corresponding
to the relative error (RE) and the SNR improvement, are illustrated in Figure 8.7. The
curves corresponding to the SNR improvement and the relative error in Figure 8.7, and
the results in Table 8.1, show that our algorithm using the constraint Ω1 achieves the
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Figure 8.6: Restored image using the constraint B̄r with SNR = 17.23 (left),
restored image using the constraint B(L,U ) with SNR = 15.53 (right).

best SNR with fast convergence.
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Figure 8.7: Relative error and SNR improvement curves.

Table 8.1: t-CGT approach using different constraints to recover “hibis-
cus.bmp”for different noise level.

ν Ω λ SNR(B) SNR(X ∗) RE Step Time(s)

10−3 B(L,U )
7.5e−3 6.49

18.6 8.12e−2 65 18.15
B̄r 19.10 7.67e−2 8 2.02

10−2 B(L,U )
5.57e−2 4.56

17.13 9.61e−2 21 11.01
B̄r 18.11 8.59e−2 4 1.41

10−1 B(L,U )
3.425e−1 2.06

15.53 1.15e−1 26 11.98
B̄r 17.23 9.51e−2 6 1.64
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Example 2 : In the second example, we compare the proposed method (t-CGT) using
Ω1, with the classical method based on repeating the grayscale process for each channel
under the same conditions, in order to recover the “peppers.png ”color image of size
384× 512× 3 from a Gaussian blur and Gaussian noise. For this example, we let σ1 = 4,
σ2 = 6, d1 = d2 = 6 for the blurring operation, and we added a Gaussian noise with level
ν = 2× 10−1. The original and the contaminated images are shown in Figure 8.8. The
criterion for stopping the two algorithms consists of the tolerance tol = 10−2 and the
maximum number of iterations equal to 50.

Figure 8.8: Original image (left), blurred and noisy image with SNR = 1.64
(right).
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Figure 8.9: The t-GCV curve associated with the proposed method with the
optimal value λ∗ = 5.29 × 10−1 (left). The GCV curves associated to the three
channels with the optimal values equal to λ∗1 = 7.12× 10−2,λ∗2 = 8.26× 10−2 and
λ∗3 = 8.83× 10−2, respectively (right).

Using the classical method, we compute the regularization parameter associated
with each channel, as illustrated in Figure 8.9 (right). On the other hand, the proposed
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method is based on the generalize version of GCV using tensor algebra leads to one
regularization parameter as illustrate if Figure 8.9 (left). The fact of treating this problem
of restoration by using tensor algebra, allows us to generalize the model of restoration
in tensor format, and thus the function t-GCV for the regularization parameter selection
associated with this model. The first line of Table 8.2 illustrates the comparison results
obtained for the classical and the t-CGT methods to recover “peppers.png ”color image
of size 384× 512× 3.

Figure 8.10: Restored image using the proposed algorithm with SNR = 14.60
(left), restored image using the classical approach with SNR = 10.1 (right).

In addition, Table 8.2 shows the comparison results for “car.avi”grayscale video of
size 360× 640× 100, and for “xylophone.mpg”grayscale video of size 240× 320× 140.
We report the SNR value, the relative error and the CPU time. It can be seen that
for different tensor data the proposed method is more efficient and faster than the
classical method, it achieves the best result in term of SNR, relative error, and CPU
time. Furthermore, in the case of video restoration, the t-GCV developed required the
computation of one regularization parameter instead of computing all the regularization
parameters associated to all the frames of the video.

Table 8.2: Comparison results of t-CGT proposed algorithm and the classical
approach.

Data Method SNR(B) SNR(X ∗) RE iter Time(s)

“peppers.png ”
t-CGT 1.64 14.6 1.11e−1 8 1.53

Classical 1.64 10.1 2.99e−1 12 2.08

“car.avi ”
t-CGT 3.07 10.33 1.21e−1 8 34.20

Classical 3.07 9.73 1.30e−1 10 71.96

“xylophone.mpg ”
t-CGT 2.29 12.26 9.89e−2 8 15.71

Classical 2.29 11.78 1.04e−1 12 21.40
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Example 3 : In the present example, we are interested to restore grayscale video
using Algorithm 5.2 with the constrained Ω1. We consider “Chaplin.avi”video of size
360× 480× 200. We set σ1 = 5 and σ2 = 3 for H1 and H2 respectively, and d1 = d2 = 6
and adding a white Gaussian noise of level ν = 10−2. In the top of Figure 8.11, we
displayed the 11st , 76th and 143th exacts (original) frames and the contaminated version,
respectively. The t-GCV produce an optimal regularization parameter equal to λ =
4.01 × 10−2. The frames in the bottom of Figure 8.11 represent a sample from the
recovered video.

frame 11                                                                        frame 76                                                                              frame 143

Figure 8.11: Original frames (top), blurred and noisy frames with SNR = 4.85
(center) and restored frames with SNR = 15.73 in 92 s (bottom).

8.2.2 Tensorial total variation regularization algorithms

As mentioned before, in addition to recovering the signal, the total variation regulariza-
tion also recover the boundaries. Now, let us solve the tensorial ill-posed degradation
problem (8.12) using the tensorial total variation algorithms developed in Chapter 6.
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Denoising color image and video examples

We show the effectiveness of the T T V1/L
2-LSQRAlgorithm 6.5 to restore “Lena.bmp”color

image of size 256× 256× 3 and the grayscale video “car.avi”of size 360× 440× 20 that
have been contaminated by an additive Gaussian noise of different level. Figure 8.12
illustrates the performance of Algorithm 6.5 in recovering “Lena.bmp ”color image from
an additive Gaussian noise of level ν = 10−2. After 5 steps, the computed optimal value
for the regularization parameter was µ5 = 1.029e−1.

(a) Original image. (b) Noisy image (SNR =
7.44).

(c) Restored image(SNR =
13.52).

Figure 8.12: Denoising "Lena.bmp" color image from an additive Gaussian noise.

In Figure 8.13, we present the restoration obtained with the same Algorithm 6.5
to denoise “car.avi ”grayscale video from a Gaussian noise of level ν = 10−2. The
discrepancy principle produced a regularization parameter given by µ4 = 1.071e−1.
Table 8.3 compares the computing time (in seconds), the relative errors, the SNR of the

(a) Original 1st frame. (b) Noisy 1st frame (SNR =
9.04).

(c) Restored 1st frame(SNR =
17.40).

Figure 8.13: Denoise "car.avi" grayscale video from a Gaussian noise.

computed restorations and the number of steps for different type of data and different
noise level.
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Table 8.3: Comparison results of Algorithm 6.5 for different noise level.

Data noise level SNR RE Steps CPU time (s)

Lena.bmp
10−3 20.45 3.93e−2 5 0.59
10−2 13.52 8.72e−2 5 0.67

car.avi
10−3 23.96 2.75e−3 5 9.8
10−2 17.41 5.86e−2 5 9.9

Deblurring and denoising color image and video examples

First, let us compare the performance of Algorithms 6.1, 6.2, 6.3, and 6.4 to recover four
color images: the “butterfly.tif ”and “house.bmp ”color images of size 256× 256× 3, the
“flowers.jpg ”color image of size 340× 560× 3, and the “hibiscus.bmp ”color image of
size 512× 512× 3. All experimental color images are shown in Figure 8.14.

(a) butterfly.tif (b) house.bmp (c) hibiscus.bmp

(d) flowers.jpg

Figure 8.14: Experimental test color images.

A Gaussian blur and the salt and pepper noise of different density have been used
to corrupt those images. We choose the parameters µ = 12, β = 80, and ρ = 4. Also,
we take tol = 5× 10−3. The four approaches achieve a remarkable SNR improvement,
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as illustrate in Figure 8.15 and the curves of Figure 8.16 for “flowers.jpg ”color image.
Table 8.4 reports results of the performance of the proposed TTV model for different
projection methods, with different tensor data, which shows that the TTV using the
gradient method is faster in terms of execution time than any other algorithm.

(a) Original image. (b) Corrupted image.

(c) Restored image with
T T V2/L

1-GMRES Algorithm
6.1.

(d) Restored image with
T T V2/L

1-CG Algorithm 6.2.

(e) Restored image with
T T V2/L

1-LSQR 01 Algorithm
6.3.

(f) Restored image with
T T V2/L

1-LSQR 02 Algorithm
6.4.

Figure 8.15: Tensorial total variation results using optimized projection methods
to restore “flowers.jpg”color image.
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(a) The SNR improvement. (b) The relative error.

Figure 8.16: Convergence plots of the SNR improvement and the relative error
for the tensorial total variation algorithm to restore “flowers.jpg”color image.

Table 8.4: Comparison between the four algorithms to restore four color images.

Data/size Initial SNR Methods SNR ER Steps CPU time(s)

5.84

T T V2/L
1-GMRES Alg 6.1 22.04 4.20e−2 21 3.9

Butterfly.tif T T V2/L
1-CG Alg 6.2 21.76 4.27e−2 22 2.6

256× 256× 3 T T V2/L
1-LSQR Alg 6.3 21.79 4.25e−2 45 8.2

T T V2/L
1-LSQR Alg 6.4 20.31 5.05e−2 16 7.0

4.08

T T V2/L
1-GMRES Alg 6.1 21.40 3.03e−2 18 2.7

House.tif T T V2/L
1-CG Alg 6.2 20.16 3.42e−2 17 1.8

256× 256× 3 T T V2/L
1-LSQR Alg 6.3 20.61 3.24e−2 33 5.7

T T V2/L
1-LSQR Alg 6.4 19.07 3.88e−2 16 7.1

2.12

T T V2/L
1-GMRES Alg 6.1 26.57 2.70e−2 23 11.9

flowers.jpg T T V2/L
1-CG Alg 6.2 25.65 2.92e−2 23 8.1

340× 560× 3 T T V2/L
1-LSQR Alg 6.3 24.28 3.42e−2 27 12.9

T T V2/L
1-LSQR Alg 6.4 25.40 3.01e−2 25 36.1

1.61

T T V2/L
1-GMRES Alg 6.1 23.44 4.75e−2 29 15.3

hibiscus.bmp T T V2/L
1-CG Alg 6.2 22.19 5.37e−2 31 10.9

512× 512× 3 T T V2/L
1-LSQR Alg 6.3 24.20 4.26e−2 33 19.5

T T V2/L
1-LSQR Alg 6.4 16.31 1.05e−1 63 87.1

Table 8.5: Restoration of grayscale videos.

Grayscale Video Initial SNR Method SNR ER Steps CPU time(s)
car-phone.avi

2.60
Standard matrix TV[14] 16.78 8.17e−2 12 6.07

144× 176× 20 Reduced TTV algorithm 17.18 7.70e−2 13 4.17
news.avi

1.31
Standard matrix TV[14] 16.42 7.92e−2 27 41.60

144× 176× 60 Reduced TTV algorithm 17.18 7.30e−2 16 15.25
car.avi

1.45
Standard matrix TV[14] 18.18 5.69e−2 11 34.95

360× 360× 40 Reduced TTV algorithm 20.44 4.34e−2 11 25.44

On the other hand, Table 8.5 illustrates a comparison between TTV approach and
the standard form of TV using the matrix version [14] apply to restore blurred and
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noisy grayscale videos corrupted using Gaussian blur with σ1 = 2, σ2 = 1, and b = 4 and
different salt-and-pepper noise. The criterion for stopping the two algorithms consists
of the tolerance tol = 10−2 and the maximum number of iterations equal to 100.

(a) Original first frame (b) Blurred and noisy frame.

(c) Restored frame using ma-
trix version of TV.

(d) Restored frame using
TTV.

(e) Restored frame using re-
duced TTV.

Figure 8.17: Comparison of the tensorial TV algorithm and the matrix based
algorithm to recover “car.avi”grayscale video from blur an noise.

By adopting the truncation parameters r1 = f loor(2
3 I1) and r2 = f loor(2

3 I2), with
I1 × I2 × I3 is the size of the experimental data, the reduced TTV algorithm, discussed in
Section 6.6, achieves the best SNR improvement in less time than the matrix version.
The frame comparison is given in Figure 8.17 for the “car.avi”grayscale video of size
360×440×20. Finally, the reduced TTV applying on a color video of size 360×640×3×40
degraded by Gaussian blur and salt and pepper noise, give us Figure 8.18 in 4.89 min.

Comparisons with some state-of-art method

In this section, we compare numerically, under the same conditions, our algorithm
referred to as the TTV algorithm with four state-of-art algorithms developed for total
variation regularization based image restoration. The derivative alternating direction
method of multipliers (D-ADMM) algorithms, referred to as D-ADMM-C for conven-
tional D-ADMM algorithm and D-ADMM-H for hybrid D-ADMM algorithm [130], the
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Figure 8.18: Frames of the original video (top), frames of the blurred and noisy
video (center), frames of the restored video(bottom).

block-matching and 3D filtering, referred to as BM3D-DEB algorithm [39] that often
produce state-of-the-art image deblurring results, and the joint statistical modeling in
space-transform domain [152], referred to as JSM.

For comparing the accuracy obtained by our proposed algorithm with those of the
four algorithms, we have used the color image "peppers.bmp" size 256 × 256 × 3. We
generated a blurred and noisy image from a true image by using three blur kernels, a
uniform kernel, a unsharp kernel and a Gaussian blur kernel, and two different noise,
additive Gaussian noise and salt and pepper (see Table 8.6). In order to provide a fair
and unified framework for comparison, all these algorithms are endowed with the same
convergence criterion, i.e., the iterations for all algorithms were terminated when the
relative error between two successive iterates of approximated primal variable is less
than the tolerance tol = 10−3 or when a maximum of 500 iterations has been performed.

In Table 8.6, for each algorithm, we report the relative error, the SNR, as well as the
CPU-time in seconds. We can observe that the proposed TTV algorithm generally can
achieve better restoration quality than the other algorithms in terms of both SNR and
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Table 8.6: The computational results for the D-ADMM-H, D-ADMM-C, BM3D-
DEB, JSM, and TTV algorithms to recover “peppers.bmp ”color image of size
260× 240× 3 from different blur and noise choices.

Noise Level Blur Initial SNR Method SNR RE CPU time (s)

Gaussian noise

1e−3 Gaussian blur 14.31

D-ADMM-H 19.72 6.1e−2 0.81
D-ADMM-C 20.37 5.7e−2 1.45
BM3D-DEB 22.75 4.3e−2 11.86

JSM 23.15 4.1e−2 68.12
Proposed TTV 23.30 4.1e−2 17.03

1e−1 Unsharp blur -8.34

D-ADMM-H −7.27 1.37 0.19
D-ADMM-C −7.27 1.36 0.24
BM3D-DEB 20.85 5.4e−2 11.90

JSM 21.51 5e−2 68.19
Proposed TTV 21.50 5e−2 1.95

Salt and pepper noise

0.1 Gaussian blur 3.18

D-ADMM-H 5.23 3.25e−1 1.81
D-ADMM-C 6.35 2.85e−1 4.32
BM3D-DEB 12.06 1.48e−1 12.01

Proposed TTV 24.02 3.72e−2 11.41

0.2 Uniform blur 0.32

D-ADMM-H 1.39 5.05e−1 1.34
D-ADMM-C 1.23 5.14e−1 2.26
BM3D-DEB 4.76 3.43e−1 11.27

Proposed TTV 22.09 4.70e−2 18.28

RE values. When the noise level is low, the TTV algorithm is comparable with the BM3D
algorithm in terms of both SNR and RE values but, in this experiences, we observed that
the TTV converges much faster than BM3D. When the noise level is high, especially
using salt and pepper noise, our proposed algorithm performs better.

8.3 Color image and video completion

Completion is a technique of filling missing elements of incomplete data using the values
of available elements and the structural assumptions of data. Let us consider the N th-
order tensor G with observed entries indexed by the set C i.e. C = {(i1, i2, . . . , iN ) : Xi1,i2,...,iN
is observed }. Following the same definition of Candes and Tao in [27], we define, in the
tensor form, the projection PC(X ) to be the N th-order tensor with the observed elements
of X preserved and the missing entries replaced with 0, namely,

PC(X ) =
{
Xi1,i2,...,iN if (i1, i2, . . . , iN ) ∈ C,
0 otherwise.

(8.13)

One of the variants of the data completion problem is to find the lowest rank which
matches the observed data. This leads to an NP-hard rank minimization problem due to
the non-convexity of the rank function [143]. For that purpose, we need to replace the
rank function with a similar expression that provides the same results. Therefore, the
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nuclear norm minimization method [111, 52, 153] is widely used in this case to replace
the rank minimization problem by the following one min

X
‖X‖∗

subject to PC(X ) = PC(G).
(8.14)

where ‖ . ‖∗ stands for the tensor nuclear norm defined as sum of the singular values of
the n-mode matricization X(n) of the tensor X , i.e. ‖X‖∗ =

∑
n

‖X(n)‖∗. Tensor completion

via total variation minimization was proposed in [150, 108] as an efficient technique
to regularize the minimization problem (8.14). The tensor total variation completion
problem is given in the following form

min
X
‖PC(X )− PC(G)‖2F + ‖X‖∗ +µ‖|∇X‖|1. (8.15)

The problem (8.15) can be formulated to a constrained minimization problem as

min
X∈Ω
‖PC(X )− PC(G)‖2F +µ‖|∇X‖|1, (8.16)

where Ω = {X , ‖X‖∗ 6 ε}.
The completion problem can be seen from different points of view depending on the

algorithm that we will used. In the next section we will see different consideration to
treat this problem using the accelerated double tensorial proximal gradient algorithms
and the alternating tensorial conditional gradient algorithm.

8.3.1 Accelerated tensorial double proximal gradient algorithm

By setting H = PC and B = PC(G), the problem (8.16) leads to the main problem (7.1).
Then, to solve the minimization problem (8.16), we can use our proposed accelerated
tensorial double proximal gradient algorithm. Before applying the algorithm, let first
compute the proximal mapping of the tensor nuclear norm.

Definition 8.3.1. [97] The nuclear norm of X is defined using t-SVD decomposition X =
U ∗t S ∗t V ∗ as follow:

‖X‖∗ =
r∑
i=1

S(i, i,1), (8.17)

where r denotes the tubal rank of X .

Let ΠΩ denotes the projection on the convex set Ω. It is immediate to proof that the
expression of the projection ΠΩ on Ω reduces to the proximal mapping of the nuclear
norm. Namely, for all Z in the tensor space TN

ΠΩ(Z) = proxσ‖ . ‖∗(Z), (8.18)
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where the proximal mapping of the nuclear norm is given in Proposition 8.3.1.

Proposition 8.3.1. [114] Let U ∗t S ∗t V ∗ be the t-SVD decomposition of the tensor X . The
proximal mapping of the nuclear norm is given by

proxσ‖ . ‖∗(X ) = U ∗t Sσ ∗t V ∗, for any σ > 0, (8.19)

where Sσ is the result of the inverse discrete Fourier transform (IDFT) on max(S̄ −σ,0) along
the third dimension, which means performing the IDFT on all the tubes. S̄ is the result of
DFT on S along the third dimension.

In the following, we will be interested in two essential parts of tensor completion:
Color image and video inpainting (text removal) and grayscale video completion. We
first illustrate the performance of the proposed algorithms 7.3 and 7.6 by comparing
three acceleration methods in inpainting different color images and grayscale videos.
The completion of the grayscale video is reported after to show the efficiency of our
algorithm in case of uniformly random missing pixels. Finally, we end with some
comparisons with state-of-art algorithms.

Text removal

As an interesting application of completion problems, the text removal is a process of
data inpainting that based on the completion techniques to recover the missing region
in the tensor data or removing some objects added to it. The operation of inpainting
depends on the type damaging in the image, and the application that caused this
distortion. For example, in the text removal process, we talk about removing the text
that can be found in an image or a video [140]. In the literature, many techniques have
been developed to solve this problem [101, 55, 117]. The total variation was among the
most efficient method to solve such a problem. In this example, we took the original
Barbara color image of size 256× 256× 3 and we added a text to this image as shown in
Figure 8.19. The criterion for stopping the proposed algorithms consists of the tolerance

Figure 8.19: Original image (left), the observed image (P SNR = 15.5) (right).

tol = 10−2, the maximum number of iterations kmax = 200. We hand turned all the
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parameters λ, µ, α and σ by choosing each one in its appropriate interval. We hand
turned the value of λ in the interval (0, 1/L(∇PΩ)) = (0, 1/2) by choosing λ = 2.5× 10−1.
On the other hand the step size sequence(αk) computed using the line search iterative

Figure 8.20: Inpainted image without acceleration (P SNR = 21.71), inpainted
image with ATDPG-Nesterov (P SNR = 32.45), inpainted image with ATDPG-
MPE (P SNR = 32.5), inpainted image with ATDPG-RRE (P SNR = 32.47).

method starting by α0 = 1.1 with a line search parameter τ = 0.5. We set σ = 6.5× 10−2

and finally the regularization parameter was chosen to be µ = 1.2e−2. The corresponding
results are shown in Figure 8.20. Clearly, the accelerated version of the tensorial double
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Figure 8.21: The PSNR and relative error curves.

proximal gradient method provide clearer images by removing all the added text, either
using Algorithm 7.3 based on Nesterov acceleration approach or Algorithm 7.6 using the
polynomial extrapolation techniques. Moreover, the relative error and the PSNR curves
represented in Figure 8.21 show that the results produced by the ATDPG algorithm
accelerated by the polynomial extrapolation techniques RRE or MPE converge faster
than those produced by the ATDPG accelerated by Nesterov’s technique. The speed
of the convergence of the polynomial extrapolation method in comparison with the
Nesterov’s approach are clearly illustrated in the report of acceleration in Figure 8.22,
that show the fast convergence of ATDPG-MPE and ATDPG-RRE in less iterations than
ATDPG-Nesterov.
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Figure 8.22: The report of acceleration
‖Tk −X∗‖
‖Xk −X∗‖

.

Table 8.7: Comparison between the proposed acceleration techniques for tenso-
rial total variation proximal gradient method.

Data size Algorithm P SNR(X ∗) RE Step time (s)
ATDPG 21.71 1.72e−1 200 27.41

barbara.bmp ATDPG-Nesterov 32.45 5e−2 97 13.37
256× 256× 3 ATDPG-MPE (q = 5) 32.50 5e−2 20 19.72

ATDPG-RRE (q = 5) 32.47 5e−2 21 19.88
ATDPG 28.62 4.80e−2 18 6.71

xylophone.mpg ATDPG-Nesterov 29.65 3.98e−2 12 4.10
120× 160× 30 ATDPG-MPE (q = 5) 32.27 2.99e−2 3 5.38

ATDPG-RRE (q = 5) 29.53 4.03e−2 3 5.66

In Table 8.7, we have reported the PSNR of the completed tensor, the relative error,
as well as the number of iterations and the CPU-time results for “barbara.bmp ”color
image and “xylophone.mpg ”grayscale video of size 120×160×30. Based on the tests
reported in Table 8.7 and many more unreported tests, we remark that our proposed
algorithm works very effectively for image and video inpainting problems, in terms of
the PSNR as well as in terms of the relative error.

Grayscale video completion

In order to have more quantitative evaluations on the proposed approach, we used the
“news.mpg ”grayscale video of size 144 × 176 × 10 as original data and we randomly
mask off about 80% of entries that we regard them as missing values, as shown in the
second line of Figure 8.23.
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Figure 8.23: Original frames (top), incompleted frames with PSNR = 7.94 (cen-
ter), recovered frames with PSNR = 33.21 (bottom).

The completed frames in Figure 8.23 with PSNR = 33.21 are obtained by using
Algorithm 7.6 with the GT-RRE polynomial extrapolation technique. The criterion for
stopping the algorithm consists of the tolerance tol = 10−2 and the maximum number of
iterations kmax = 200. We set the step size parameters λ = 2×10−1, α0 = 1.1, σ = 6×10−1

and the regularization parameter µ = 2×10−2. We can see that the results are visually
pleasant using the accelerated version of the tensorial double proximal gradient method
that achieves a PSNR value equal to 33.21.

Comparison with some state-of-the-art algorithms

In this subsection, we compare the performance of our proposed method with the
following state-of-the-art tensor completion algorithms: LRTC, TNN, FBCP and RTC.
The LRTC algorithms are based on minimizing the sum of nuclear norms of the unfolded
matrices of a given tensor. The LRTC has two versions, HaLRTC and FaLRTC [111].
The first one stands for a fast low-rank tensor completion algorithm and the second
stands for a high accuracy low-rank tensor completion algorithm. We also found the
TNN method [154] which is a tensor nuclear norm-based method developed using the
tensor-Singular Value Decomposition (t-SVD) [96]. The concept of automatic tensor rank
determination was introduced in [155] which is based on a Bayesian CP Factorization
(FBCP) in order to recover incomplete tensor. For the same goal of completing tensors,
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recently, the RTC algorithm [33] was developed as an auto-weighted approach using
this time the well-known tensor trains decomposition [97].

Four benchmark color images, of size 256 × 256 × 3, are used in the comparisons,
Baboon, Lena, Flower, and Airplane (see Figure 8.24). To show the efficiency of the

Figure 8.24: Four benchmark color images: Baboon, Lena, Flower and Airplane,
respectively.

proposed algorithm for different types of tensor completion, we generate different
incomplete images either using uniformly random missing pixels or non-random missing
pixels. In the first case, 80% and 60% of missing pixels are uniformly distributed in
Flower and Airplane color images, respectively. Non-random missing pixels, such
as text and scrabble, are used to corrupt the color images of Lena and Baboon. The
corrupted images are shown in the first column of Figure 8.25. In order to provide a fair
and unified framework for comparison, all six algorithms are endowed with the same
convergence criterion, i.e. the iterations for all algorithms were terminated when the
relative error between two successive iterates of approximated primal variable is less
than the tolerance tol = 10−4 or when a maximum of 200 iterations has been performed.
In addition, the parameters of the six algorithms are refined in relation to the best PSNR,

Table 8.8: Comparison of the results of six methods applied to four different
images.

Data Methods FaLRTV HaLRTV TNN FBCP RTC ATDPG
PSNR 25.39 26.14 29.37 26.70 26.83 29.03

Airplane RE 6.69e−2 6.13e−2 4.23e−2 5.75e−2 5.66e−2 4.40e−2
Time (s) 89.44 58.76 26.30 38.43 15.64 36.44

PSNR 22.04 22.40 24.94 24.29 23.84 24.97
Flower RE 1.64e−1 1.58e−1 1.18e−1 1.27e−1 1.34e−1 1.17e−1

Time (s) 214.71 117.12 43.81 83.66 43.70 28.05
PSNR 28.13 28.94 28.91 26.39 28.57 30.29

Lena RE 7.07e−2 6.44e−2 6.46e−2 8.64e−2 6.73e−2 5.51e−2
Time (s) 226.40 148.06 42.67 27.19 8.81 44.91

PSNR 25.69 25.45 25.41 21.13 25.10 26.84
Baboon RE 9.63e−2 9.89e−2 9.94e−2 1.63e−1 1.03e−1 8.44e−2

Time (s) 133.15 72.92 28.91 23.38 8.30 25.54

RE, and CPU times scores on the images. Table 8.8 reports the PSNR, the relative error
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RE, as well as the CPU time in seconds for all the six algorithms. While the recovered
images are shown in Figure 8.25.

(a) (b) (c) (d) (e) (f) (g)

Figure 8.25: Image completion comparisons of Airplane, Flower, Lena and
Baboon by six algorithms. (a) the column of the observed (incomplete) images,
(b) the completed images with FaLRTV algorithm, (c) the completed images
with HaLRTV algorithm, (d) the completed images with TNN algorithm, (e) the
completed images with FBCP algorithm, (f) the completed images with RTC
algorithm and (g) the completed images with the proposed ATDPG algorithm.

For the uniformly random examples, the proposed TGPG algorithm is comparable
with the TNN algorithm. Both approaches reach the best results in terms of PSNR and
RE. However, by increasing the missing pixels in the Flower color image, the proposed
algorithm converges faster than TNN. On the other hand, in the non-random example,
the proposed algorithm achieves the best PSNR and RE among all other methods.
Meanwhile, in terms of computation time, algorithms RTC and FBCP are faster than
ours.
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8.3.2 Alternating tensorial conditional gradient algorithm

Another reformulation that can be adopted to represent the completion model is the
following  min

X
‖X −G‖2F ,

s.t Xi1,i2,...,iN = Gi1,i2,...,iN , ∀(i1, i2, . . . , iN ) ∈ J,
(8.20)

where the N th-order tensors X and G represent the approximate solution and the
incomplete data, respectively, and the set J contains the observed positions such that

J = {(i1, i2, . . . , iN ) : Xi1,i2,...,iN is observed }.

Thus, it is immediate to see that the problem (8.20) can be regularized using the tensorial
total variation. As a consequence, the regularized problem may be written in the form
of (7.2) by considering the convex C set as

C = {X ∈ TN : Xi1,i2,...,iN = Gi1,i2,...,iN , ∀(i1, i2, . . . , iN ) ∈ J}. (8.21)

It is clear that the set C is a closed convex set in TN . Then, the projection on C is given
by PC(Y ) = Z with

Zi1,i2,...,iN =
{
Gi1,i2,...,iN if (i1, i2, . . . , iN ) ∈ J,
Yi1,i2,...,iN otherwise.

(8.22)

Line removal

Figure 8.26: “Lena”original color image (left), the incomplete image with PSNR
= 7.159 (center) and the restored image (right) with PSNR= 30.264.
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In the example of benchmark “Lena”color image of size 256× 256× 3, the missing
entries are chosen as random black lines, see Figure 8.26. The observed missing color
image have an initial PSNR equal to 7.159. Algorithm 7.2 consists of the tolerance
tol = 10−3, the maximum number of iterations Itermax = 100 and a regularization
parameter µ = 10−3. The image completed by the proposed algorithm has an PSNR
equal to 30.26 as shown in Figure 8.26. The results illustrated by Figure 8.26 show that
the proposed algorithm not only completes the missing area in the color image, but also
makes it as close as possible to the original images.

Grayscale video completion

In this example, we are interested in the completion of a grayscale video. We consider
the “xylophone”video from MATLAB. The video clip is in .mp4 format, it is a grayscale
video of 40 frames of 240 × 320 pixels, which can be seen as third-order tensor of
size 240× 320× 40. We mask off 70% of entries in the video randomly. The criterion
for stopping the proposed algorithm consists of the tolerance was tol = 10−2 and the
maximum number of iterations kmax = 50. The regularization parameter was chosen
to be µ = 4 · 10−4. Figure 8.28 illustrates the efficiency of the proposed algorithm that
presents a remarkable improvement from the corrupted into the recovered frames.
Figure 8.27 shows the relative error and the PSNR plots for missing rates ranging from
10% to 90%, where the missing rate is defined to be the percentage of pixels which are
unknown.

Figure 8.27: The relative error and the PSNR plots against missing rate for
“xylophone”grayscale video.

From Figure 8.27, it seems that practically ATCG-TV is able to reach very remarkable
accuracies and PSNR improvement for different missing rate values. We can remark that
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even with 90% of missing data, the recovered video obtained by the proposed algorithm
achieve an PSNR value equal to 24.

Figure 8.28: “xylophone”frames no 1, 20, and 40 from left to right respectively.
Original frames (top), corrupted frames with 70% of the missing entries and
P SNR = 7.805 (center) and the completed frames with P SNR = 28.076 (bottom).

Comparison with some state-of-the-art algorithms

In the last example, we will compare our proposed approach with some state of art
methods for images and videos completion using tensor algebra such as TNN where
the algorithm based on tensor-SVD [154], LTRT based on the low tubal rank tensor
minimization [115] and TCTF algorithm [156]. For the comparison, we use the test color
image “barbara”of size 256×256×3, see Figure 8.29, we mask off between 50% to 99% to
compare the efficiency of the four algorithms. All the algorithms are endowed with the
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same convergence criterion, i.e., the tolerance was tol = 10−2 and a maximum number
of iterations equal to 300.

Figure 8.29: Original image (left), incomplete image with 90% missing rate
(right).

Figure 8.30: The PSNR plots against missing rate of the four algorithms for
“barbara”color image.

In Figure 8.31, we plotted the PSNR for the missing rates ranging from 50% to 99%.
When the missing rates are high, we can see that the proposed algorithm ATCG-TV
achieves the best results. The same remark can be seen in Figure 8.30 that shows the
performance of the four algorithms to complete 90% of “barbara”color image.
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(a) ATCG-TV recovery (b) TNN recovery

(c) LTRT recovery (d) TCTF recovery

Figure 8.31: Results of the algorithms ATCG-TV, TNN, LTRT and TCTF for
“barbara”color image.

8.4 Conclusion

The different numerical results provided in this chapter illustrate the efficiency of
the developed tensorial regularization algorithm in the field of the color image and
video processing. The examples we have reported are only part of a class of numerical
tests on different cases and different parameters that we have investigated. However,
the remaining point that is still under investigation is parameter selection. We only
developed some parameter selection methods in particular cases, when the structure of
the cost function is simple, such as in the case of Tikhonov regularization. But generally,
we apply our algorithm with a range of different parameters and only report the best
result for each regularizer in terms of PSNR/SNR and RE.
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CHAPTER9
General conclusions and future

directions

Starting from the representation of higher dimensional inverse problems to the adapta-
tion of some regularization techniques to solve these problems, this thesis has provided
a study of several approaches and algorithms by introducing tools from multilinear
algebra and convex optimization.

Tensor tools, such as the n-mode product and the t-product, have been used to model
some high-dimensional inverse problems. Such a representation ensures a more general
model that preserves the structure of the data as well as the accuracy of the solution.
After the representation step, an adaptation of two regularization methods, Tikhonov
and total variation, was provided in various settings to cover the largest number of
inverse problems. Projection methods, extrapolation methods and other notions have
played an essential role in the development of the proposed algorithms.

Performing a series of numerical tests confirmed the importance of selecting a
suitable regularization method and a suitable regularization parameter. The most
delicate points of the regularization techniques was the selection of parameters. Some
methods require the intervention of some parameters that improve the quality of the
resolution, however, the identification of these parameters is difficult and influences the
convergence of the method.

Following the work done in this dissertation, we will be interested in developing
new approaches for selecting the regularization parameter, especially in the case of
non-quadric cost function problems such as the total variation. Far from the resolu-
tion process, the algebraic structure of the tensor space as a space of matrices over a
commutative ring is a path that we still work on to generalize all the matrix notions.

143
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Regularization of tensorial inverse problems via convex optimization
Applications in image and video processing

Abstract

Solving inverse problems in a multidimensional setting has become an active topic on
which many researchers in linear algebra are working. On the one hand, the construc-
tion of a higher dimensional model can be achieved using tensor algebra by adopting
the mechanisms developed recently in this field. On the other hand, the solution
to such problems is usually based on the regularization techniques that remedy the
ill-conditioning that can be exhibited in almost all inverse problems.
The present thesis aims to bring together the modeling of inverse problems in a higher
dimension and the generalization of some variational regularization methods in tensorial
form. Recently, the variational regularization methods are known as well-established
methods for solving inverse problems. For example, Tikhonov and total variation
regularizers are among the well-known approaches that we will generalize and develop
in the tensor form. Convex optimization approaches will play an essential role in the
resolution of the constrained regularization problems that we have proposed. As well as
a set of mechanisms, such as projection methods and extrapolation techniques, which
have contributed to enhancing the performance of the developed algorithms. Numerical
applications in image and video processing are given to illustrate the effectiveness of the
proposed approaches compared with some state-of-art methods.

Keywords: tensorial algebra, convex optimization, regularization methods, Tickonov,
total variation, projection methods, extrapolation techniques, image and video
processing.
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Régularisation des problèmes inverses tensoriels par l’optimisation convexe
Applications au traitement des images et des vidéos

Résumé

La résolution des problèmes inverses dans un cadre multidimensionnel est devenue un
sujet actif sur lequel travaillent de nombreux chercheurs en algèbre linéaire. D’une part,
la construction d’un modèle en dimension supérieure peut être réalisée en utilisant
l’algèbre tensorielle en adoptant les mécanismes développés récemment dans ce domaine.
D’autre part, la résolution de tels problèmes est généralement basée sur l’utilisation de
techniques de régularisation qui remédient au mauvais conditionnement que l’on peut
trouver dans presque tous les problèmes inverses.
La présente thèse vise à réunir la modélisation des problèmes inverses en dimension
supérieure et la généralisation de certaines méthodes de régularisation variationnelle
sous forme tensorielle. Les méthodes de régularisation variationnelle sont connues
comme des méthodes bien établies pour résoudre les problèmes inverses. Par exemple,
les régularisateurs de Tikhonov et de la variation totale font partie des approches bien
connues que nous généraliserons et développerons sous forme tensorielle. Les approches
d’optimisation convexe joueront un rôle essentiel dans la résolution des problèmes
de régularisation sous contraintes que nous avons proposés. Ainsi qu’un ensemble de
mécanismes, tels que les méthodes de projection et les techniques d’extrapolation, qui
ont contribué à améliorer les performances des approches développées. Des applications
numériques dans le traitement des images et des vidéos sont données pour illustrer
l’efficacité des approches proposées par rapport à certaines méthodes de l’état de l’art.

Mots clés : algèbre tensorielle, optimisation convexe, méthodes de régularisation, Ti-
ckonov, variation totale, méthodes de projection, techniques d’extrapolation, trai-
tement des images et des vidéos.
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