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Résumé

Dans cette thèse on étudie la stabilité de la boule pour certains problèmes d’optimisation de forme. On
se concentre en particulier sur des problèmes isopérimétriques et de type Faber-Krahn, et l’objectif est
donc de montrer que la boule est toujours un minimum d’une certaine perturbation du problème de
minimisation du périmètre d’une part, et de la 1ère valeur propre du Laplacien Dirichlet d’autre part, à
volume fixé. Pour démontrer la stabilité de la boule, on met en place la procédure classique suivante : on
montre d’abord la stabilité de la boule pour des perturbations régulières pour montrer ensuite la stabilité
en général. Dans cette perspective, on est amené à s’intéresser en particulier aux questions de (i) régularité
des formes optimales et (ii) minimisation sous contrainte de convexité.

Le Chapitre 1 est consacré à une presentation des problèmes spécifiques de la thèse. Nous détaillons
les résultats obtenus et les méthodes utilisées.

Le Chapitre 2 constitue nos résultats de régularité sous contrainte de convexité. Après avoir défini une
notion appropriée de quasi-minimiseur du périmètre sous contrainte de convexité, nous montrons qu’un
tel quasi-minimiseur a son bord qui est C1,1. Nous prouvons également qu’une large classe de problèmes
de minimisation de la somme du périmètre et d’un terme perturbatif sous contraintes de convexité et de
volume rentrent dans ce cadre. Enfin, nous montrons que de nombreux exemples pour lesquels le terme
perturbatif est issu de la théorie des EDP ont leurs minimiseurs qui sont des quasi-minimiseurs en le sens
introduit, obtenant ainsi la régularité C1,1 dans ces cas.

Le Chapitre 3 est dédié à nos résultats de stabilité pour des problèmes isopérimétriques. Nous étudions
la minimisation de fonctionnelles de la forme P (Ω) + εR(Ω) pour un ε > 0 fixé, où Ω 7→ P (Ω) est le
périmètre et Ω 7→ R(Ω) est un terme perturbatif, dans l’objectif de montrer que la boule est un minimiseur
(éventuellement local) parmi les ensembles convexes et sous contrainte de volume, lorsque ε est assez petit.
On s’intéresse plus particulièrement à deux problèmes indépendants où R est une énergie de type EDP, le
cas de la capacité et de la 1ère valeur propre Dirichlet, en prouvant une forme faible ou forte de stabilité
dans chacun des cas.

Le Chapitre 4 contient les résultats que nous avons obtenus sur la stabilité du spectre de Dirichlet de
la boule. Nous étudions la possibilité de contrôler le spectre de Dirichlet d’un ouvert Ω par la distance
de sa fréquence fondamentale λ1(Ω) à celle d’une boule de volume correspondant λ1(B). On prouve des
inégalités quantitatives de la forme |λk(Ω)−λk(B)| ≤ (λ1(Ω)−λ1(B))α avec un exposant α différent selon
que λk(B) est simple ou non, et montrons qu’il est optimal dans les deux cas.

Mots clés : optimisation de forme, problème isopérimétrique, optimisation spectrale, problème à fron-
tière libre, convexité, dérivée de forme, régularité des formes optimales, stabilité de la boule.
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Abstract

This thesis studies the stability of the ball for certain shape optimization problems. We focus in partic-
ular on isoperimetric and Faber-Krahn type problems, and thus aim at showing that the ball remains a
minimizer of a given perturbation of the minimization of the perimeter on the one hand, and of the 1st

eigenvalue of the Dirichlet Laplacian on the other hand, at fixed volume. In order to show the stability of
the ball we use the following classical strategy: we prove first the stability of the ball for smooth pertur-
bations, and we then build on this first result to prove stability for all shapes. In this perspective, we are
led to study in particular the questions of (i) regularity of optimal shapes and (ii) minimization under a
convexity constraint.

Chapter 1 is dedicated to a general introduction of the specific problems we tackle in this thesis. We
also detail extensively the results we obtained and the methods we used.

Chapter 2 is constitued by our regularity results under convexity constraint. After defining a suitable
notion of quasi-minimizer of the perimeter under convexity constraint, we show that any such quasi-
minimizer is C1,1. We also show that an important class of minimization problems of the sum of the
perimeter and a perturbative term under convexity and volume constraints enters in this framework. We
finally prove that numerous examples where the perturbative term stems from PDE-theory fall into this
category, thus getting C1,1-regularity in these cases.

Chapter 3 consists of our stability results for isoperimetric problems. We thus study minimization
problems of the form P (Ω) + εR(Ω) for some ε > 0 where Ω 7→ P (Ω) is the perimeter and Ω 7→ R(Ω)
is a perturbative term, and aim at showing that the ball is a (local or global) minimizer among convex
sets of fixed volume, for small enough ε. We investigate independently two cases where R is an energy of
PDE-type, namely the capacity and the 1st Dirichlet eigenvalue, and prove either a weak or a strong form
of stability in both cases.

Chapter 4 contains the results we obtained about the stability of the Dirichlet spectrum of the ball.
We study the possibility of controlling the whole Dirichlet spectrum of an open set Ω by the distance
of its fundamental frequency λ1(Ω) to the one of a ball of corresponding volume λ1(B). We thus prove
quantitative inequalities of the form |λk(Ω) − λk(B)| ≤ (λ1(Ω) − λ1(B))α with a different exponent α
depending on whether λk(B) is simple, and show that it is sharp in both cases.

Keywords: shape optimization, isoperimetric problem, spectral optimization, free boundary problem,
convexity, shape derivative, regularity of optimal shapes, stability of the ball.
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Structure of the thesis

This thesis relies on the three following works, which all deal with the issues of regularity and stability in
shape optimization. They correspond to three distinct papers.

Published paper

1. Regularity in shape optimization under convexity constraint, written in collaboration with J. Lam-
boley, published in "Calc. Var. Partial Differential Equations", 62(3):Paper No. 101, 44, 2023.

Submitted papers

2. Fuglede-type arguments for isoperimetric problems and applications to stability among convex shapes,
written as a single author.

3. Sharp quantitative stability of the Dirichlet spectrum near the ball, written in collaboration with D.
Bucur, J. Lamboley, and M. Nahon.

The manuscript is organized around these three papers in the following way:

• Chapter 1 is dedicated to a general introduction. After having set the context, we present the specific
problems of the thesis and detail our main contributions. We finally give a possible extension of
some of our results in the form of an open problem.

• Chapter 2 constitutes our regularity results under convexity contraint. It corresponds to the paper
Regularity in shape optimization under convexity constraint.

• Chapter 3 consists of our stability results for isoperimetric problems. It corresponds to the paper
Fuglede-type arguments for isoperimetric problems and applications to stability among convex shapes.

• Chapter 4 contains the results we obtained concerning the stability of the Dirichlet spectrum of the
ball. It corresponds to the paper Sharp quantitative stability of the Dirichlet spectrum near the ball.

Let us give a few comments about the relations between the different chapters. The four chapters are
independent from one another. In particular the Introduction from Chapter 1 can be read independently
of the other chapters, and we have tried to write it with a sufficient amount of details so that it provides
some insights of the questions, motivations, results and methods from the three other chapters. On the
other hand, as Chapters 2, 3 and 4 correspond to separate papers, they are self-contained. This also means
that they carry their own internal notations, which can sometimes be different from the ones adopted in
the Introduction. The bibliography is however common for the four chapters.
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Chapter 1

Introduction

1.1 Context and preliminaries

In this first short section we give a presentation of the general context of shape optimization, describing the
usual questions associated and introducing the model problems to have in mind (such as the isoperimetric,
Faber-Krahn, Saint-Venant problems).

1.1.1 General context of shape optimization. Isoperimetric problem.

This thesis takes place in the general framework of shape optimization, which consists in the study of
minimization problems of the form

inf {J(Ω), Ω ∈ Sad}
where Sad is a given class of measurable subsets of RN (for some integer N ≥ 2) and J : Sad → R∪{+∞}
is a functional. The class Sad can consist of all measurable subsets of RN , but in many relevant shape
optimization problems, it can also be defined through a volume constraint, or some more specific geometric
constraint such as convexity (as will be most important in this thesis), simple connectedness and so on.
The functional J often involves geometric quantities (volume, perimeter, diameter...) or PDE-type energies
(see below Section 1.1.2). The questions which are related to this minimization problem are the usual
questions in calculus of variations, among which the most important ones are:

• Existence of an optimal shape,

• Uniqueness of the optimal shape,

• Properties of an optimal shape: symmetries, regularity of its boundary, explicit identification...

For classical introductions to shape optimization we refer the reader to [HP18], [BB05] and the references
therein. The most famous example of shape optimization problem is probably the isoperimetric problem,
which consists in the minimization of the perimeter among measurable sets of fixed volume, that is

inf
{
P (Ω), Ω ⊂ RN measurable, |Ω| = v0

}
(1.1)

where 0 < v0 <∞, |Ω| =
´
RN 1Ω is the volume of Ω and

P (Ω) := sup

{ˆ
RN

div(θ), θ ∈ C∞c (RN ,RN ), ∥θ∥L∞(RN ) ≤ 1

}
(1.2)

is the classical De Giorgi perimeter. In this model shape optimization problem one can identify the class
of minimizers: Euclidean balls of volume v0 are the only minimizers (up to modification on a zero-measure
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set). The homogeneity of the volume and of the perimeter leads to the scale-invariant isoperimetric
inequality :

P (Ω)

|Ω|N−1
N

≥ P (B)

|B|N−1
N

(1.3)

for any measurable Ω ⊂ RN with 0 < |Ω| < ∞ and where B ⊂ RN is any ball, with equality occuring
only for sets Ω

a.e.
= B up to a translation. For references around the isoperimetric inequality we refer for

instance to the works quoted in [HP18], among which we can cite the survey [Oss78].

1.1.2 Spectrum of an open set. Faber-Krahn and Saint-Venant problems.

It happens very frequently in shape optimization that one has to deal with functionals involving the
spectrum of a shape Ω. One classically defines the spectrum of the Dirichlet Laplacian of an open set
Ω ⊂ RN with finite measure as follows. We let RΩ : H−1(Ω) → H1

0 (Ω) be the resolvent operator over Ω,
which associates to any f ∈ H−1(Ω) the unique distributional solution u ∈ H1

0 (Ω) to the Laplace equation
−∆u = f in Ω, by which we mean that

∀ϕ ∈ C∞c (Ω),

ˆ
Ω
∇u · ∇ϕ = ⟨f, ϕ⟩H−1(Ω),H1

0 (Ω).

We refer for instance to [HP18, Proposition 4.5.1] for existence and uniqueness of such a solution for any
f ∈ H−1(Ω), but let us mention that this classically relies on a Poincaré-type inequality over Ω: there
exists a dimensional constant CN > 0 such that

∀u ∈ H1
0 (Ω), ∥u∥L2(Ω) ≤ CN |Ω|2/N∥∇u∥L2(Ω)

(see [HP18, Lemma 4.5.3]), ensuring that the semi-norm u ∈ H1
0 (Ω) 7→ ∥∇u∥L2(Ω) is in fact a norm. In

the general case where Ω is unbounded with finite measure, this inequality is itself usually derived from
rearrangement arguments relying on the Polya-Szegö inequality (see [HP18, Theorem 6.1.4]).

Since |Ω| < ∞, we further have that RΩ is compact when seen as an operator L2(Ω) → L2(Ω). As a
consequence, it is a classical fact stemming from the theory of positive self-adjoint compact operators that
the spectrum of the Dirichlet Laplacian over Ω is discrete and only accummulates at +∞, so that one can
sort in nondecreasing order its eigenvalues to get

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ · · · ↗ +∞

Of particular importance is the first eigenvalue λ1(Ω), which is simple, associated to an eigenfunction
u > 0 in Ω verifying the variational principle

λ1(Ω) =

´
Ω |∇u|2´
Ω |u|2

= inf

{´
Ω |∇v|2´
Ω |v|2

, v ∈ H1
0 (Ω) \ {0}

}
. (1.4)

Higher eigenvalues also enjoy a variational characterization: in general, for k ∈ N∗ one has the min-max
principle or Courant-Fischer formulae (see for instance [Hen06])

λk(Ω) = min
Vk⊂H1

0 (Ω)
Vk has dimension k

max

{´
Ω |∇v|2´
Ω |v|2

, v ∈ Vk \ {0}
}
.

Instead of being open, there is a milder standard condition under which one can define the spectrum of
the Laplacian over a subset Ω ⊂ RN of finite measure, namely the hypothesis that Ω is quasi-open, which
means that Ω = {ũ > 0} for some u ∈ H1(RN ), where ũ is the quasi-continuous representative of u defined
by

ũ(x) = lim
r→0

 
Br(x)

u, a.e.
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The same arguments allow to define the spectrum in this more general setting (see again [HP18, Section
4.5]). The class of quasi-open sets is more suited for obtaining general existence theorems related to shape
optimization problems involving the eigenvalues λk, among which we can quote the result by Buttazzo
and Dal Maso from [BDM93a] regarding functionals nonincreasing for the inclusion.

One of the most famous inequalities in spectral geometry is the so-called Faber-Krahn inequality, which
asserts that the only minimizers (up to modification on sets of zero capacity) of λ1 in the class of open
(or quasi-open) sets with finite fixed measure are balls. In its scale-invariant formulation it states that

λ1(Ω)|Ω|
2
N ≥ λ1(B)|B| 2N (1.5)

where Ω ⊂ RN is an open set with 0 < |Ω| < ∞ and B ⊂ RN is any ball, with equality occuring only if
(up to translation) Ω = B up to a set of zero capacity. It can be seen as an immediate consequence of
the Polya-Szegö inequality. There is a second related inequality which is of central importance in shape
optimization for spectral functionals: the so-called Saint-Venant inequality. It concerns the Dirichlet
energy E(Ω) with right-hand side f = 1, which is defined for open (or quasi-open) sets Ω ⊂ RN of finite
measure using the same tools as for the spectrum. It is defined through the variational principle

E(Ω) := inf

{ˆ
Ω

|∇u|2
2
−
ˆ
Ω
u, u ∈ H1

0 (Ω)

}
. (1.6)

It can therefore be written E(Ω) = −1
2

´
Ω |∇wΩ|2 = −1

2

´
ΩwΩ where wΩ ∈ H1

0 (Ω) is the torsion function
associated to Ω, meaning that it is the unique solution to

{
−∆wΩ = 1 in Ω

wΩ ∈ H1
0 (Ω)

in the distributional sense. The Saint-Venant inequality states that the ball is the unique minimizer (up
to translation and modification on zero-capacity sets) of the Dirichlet energy above among open sets Ω of
fixed positive measure, i.e.

E(Ω)|Ω|−N+2
N ≥ E(B)|B|−N+2

N

in its scale-invariant formulation. An equivalent point of view on this inequality comes from considering
instead the torsion energy defined by

T (Ω) := −2E(Ω) =

ˆ
Ω
|∇wΩ|2 =

ˆ
Ω
wΩ.

Hence, the Saint-Venant inequality ensures that the ball is the unique maximizer (up to translation and
modification on zero-capacity sets) of the torsion energy among open sets Ω of fixed positive measure:

T (Ω)|Ω|−N+2
N ≤ T (B)|B|−N+2

N .

For references on the Faber-Krahn and Saint-Venant inequalities and more general shape optimization
problems related to the spectrum of sets we refer to [Hen06] and the references therein.

1.2 Problems of the thesis

This section is dedicated to a presentation of the problems concerned by this thesis. It is split in three
parts. We present the main goals of this thesis and give a presentation of the associated problems in Section
1.2.1. We then give an overview of the issues of regularity among shapes and the convexity constraint (in
respectively Sections 1.2.2 and 1.2.3), which are the two main tools of this thesis.
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1.2.1 Main goal of the thesis: stability of the ball in certain classes of shapes

Main goals of the thesis. One of the main goals of this thesis is to identify relevant classes Sad ⊂ P(RN )
of subsets of RN such that the usual first and second optimality conditions at the ball for a functional
F : Sad → R ensure local minimality of the ball in Sad. Roughly speaking, we want to study whether
assuming that

for all ξ : RN → RN sufficiently smooth,
d

dt

∣∣∣∣
t=0

F ((Id+ tξ)(B)) = 0,
d2

dt2

∣∣∣∣
t=0

F ((Id+ tξ)(B)) > 0 if ξ ̸= 0

(1.7)
ensures that

∀Ω ∈ Sad, |Ω∆B| ≪ 1, F (Ω) ≥ F (B). (1.8)

A closely related question is whether minimality for smooth perturbations (Id+ξ)(B) of the ball is enough
for obtaining local (in a L1 sense) minimality of F inside Sad. It was observed in [DL19, Proposition 6.1]
that this is not true in general if Sad consists of all shapes, so that the question of finding reasonable
classes Sad and relevant examples of F for which the implication

local minimality of the ball for smooth shapes =⇒ local minimality of the ball in Sad (1.9)

holds, is interesting. Apart from the choice of class Sad, the degree of "smoothness" of the shapes for
which one is able to prove minimality of the ball in the first place is of major importance in this matter,
as will become clearer further in this section. As a consequence, we can summarize the main questions
and goals of this thesis as follows:

1. Deriving local minimality of the ball for a functional F among classes of "smooth" perturbations
Ssmooth ⊂ Sad.

2. Does (1.7) imply (1.8) for a functional F and a class Sad?

3. Does the implication (1.9) hold for a functional F and a class Sad?

They are closely related to the question of stability of the ball, which we introduce below.
Let us sketch the plan of Section 1.2.1. We start by defining and discussing a general notion of stability

and its link with quantitative inequalities. We then describe in details a central strategy for proving
stability inequalities, which relies on the principle (1.9). We finally motivate the issues of regularity and
convexity, which can be considered as the two mains tools of this thesis for proving stability among certain
classes of shapes.

Stability in shape optimization. Given a class Sad of measurable subsets of RN of volume |A| = 1,
and functionals J,R : Sad → R, we consider the minimization problem

inf {J(Ω) + εR(Ω), Ω ∈ Sad}

where ε > 0 is a small parameter. Let us further assume that J and R are translation invariant (but the
following discussion easily adapts without this assumption). We make the hypothesis that balls of volume
1 are the unique minimizers of J in Sad, meaning that we have a rigid inequality J(Ω) ≥ J(B) for any
Ω ∈ Sad where B is any ball of volume 1 (which is verified for instance for J = P or J = λ1). We say that
the ball is (globally or locally) weakly stable for the problem J +R provided for sufficiently small ε

B is a (global or local) minimizer of J + εR in Sad. (1.10)

By locality we mean here that minimality holds for sets Ω which are close to B in a rough sense. This is
often given by the fact that the L1 distance with the ball |Ω∆B| is small, which is always what we will
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mean in the sequel. Let us refer to (1.16) below where we introduce a different (and somehow stronger)
notion of stability of the ball. In the sense (1.10), stability of the ball means that the ball is still (locally
or globally) minimal for perturbations of the minimization of J by R. There is an equivalent point of view
on stability which is also interesting. It consists in writing

∀Ω ∈ Sad, J(Ω)− J(B) ≥ ε(R(B)−R(Ω)) (1.11)

(holding locally if stability is asummed to be local). When the ball is maximal for R inside Sad (which is
often verified for relevant examples) the right-hand-side is non-negative, thus implying that the deficit of
J quantifies the deficit of R. This is the point of view of quantitative inequalities. There is an extensive
literature on such inequalities, which concerns in particular functionals R(Ω) = A(Ω) where A(Ω) is some
asymmetry translating the fact that Ω is more or less far from being a ball. A famous example goes back
to Bonnesen in [Bon24] which proves that if Ω ⊂ R2 is convex and such that Br1 ⊂ Ω ⊂ Br2 where Bri

are concentric and have radius ri
P (Ω)− P (B)

P (B)
≥ (r2 − r1)2 (1.12)

(see [Fus15] for more details on this inequality). Note that the asymmetry r2 − r1 gives information
about the Hausdorff distance between Ω and B, and is made possible by the convexity assumption. In
order to obtain quantitative inequalities for all sets, one has to weaken the asymmetry. The most famous
example in this direction is given by the sharp quantitative isoperimetric inequality, which was first proven
in [FMP08]. Setting

AF (Ω) := inf
{
|Ω∆(B + x)|, x ∈ RN

}
(1.13)

the Fraenkel asymmetry of Ω, it states that the ball is globally stable for P −A2
F , or in other words that

for all Ω ⊂ RN with |Ω| = 1 it holds

P (Ω)− P (B) ≥ cNAF (Ω)
2 (1.14)

for some dimensional cN > 0. Sharpness refers to the exponent 2 on the asymmetry, as it can be shown
that both sides of the inequality are of the same order for particular sequences of ellipsoids converging to
the ball. Prior to this sharp inequality, non-sharp results were available (see for instance to [Hal92] in which
the author proves an inequality with exponent 4). Inequality (1.14) was obtained in [FMP08] by symmetry
arguments, and it was later applied by the same authors in [FMP09] to obtain quantitative versions of
other shape inequalities, such as the Faber-Krahn inequality (1.5) and the isocapacitary inequality (see
below (1.41)). The idea behind their approach was to follow the classical proofs of the same inequalities
but to use the quantitative inequality (1.14) in place of (1.3), so that by refining the analysis one could
obtain quantitative versions of the inequalities. However their method was expected not to be optimal, as
it provided in both cases the exponent 4 (the expected sharp exponent being again 2).

In [CL12] the authors provided a new proof of (1.14) by introducing a general method - the so-called
selection principle - which turns out to be sufficiently flexible to be applied to other functionals. In fact,
it has been successfully applied since for proving local or global stability (1.10) for many other shape
inequalities, among which we can quote [AFM13], [FFM+15] for J = P , [BDPV15], [AKN21, AKN22] for
J = λ1, [DPMM21] for J = Cap (see (1.39) below for a definition). Let us highlight in particular the
sharp quantitative Faber-Krahn inequality, which is the analogue of (1.14) with λ1 in place of P , i.e.

∀Ω ⊂ RN open with |Ω| = 1, λ1(Ω)− λ1(B) ≥ cNAF (Ω)
2. (1.15)

Stability for smooth shapes =⇒ stability for all shapes. The selection principle. Relying on
the idea expressed by (1.9), there are numerous examples of works where the authors prove stability in two
steps: (i) prove first local minimality of the ball among smooth perturbations and (ii) then prove stability
for general shapes Ω ∈ Sad. Before going into the details of this method, let us just say that step (i) relies
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on differential calculus on the functionals involved, while step (ii) uses a regularity theory associated to
the functional.

In order to prove minimality of the ball for Jε := J + εR one proves the following two independent
steps.

• (i) Stability for smooth shapes: proving minimality of the ball for Jε inside a subclass SX ⊂ Sad
of smooth perturbations of the ball, by which we mean that any Ω ∈ SX can be written Ω =
Bξ := (Id + ξ)(B) where ξ : RN → RN is a vector field lying in a space of smoothness X, with in
addition ∥ξ∥X ≪ 1. This is achieved by performing differential calculus over Jε(Bξ), meaning that
by differentiating jε(ξ) := Jε(Bξ) in ξ ∈ X at ξ = 0 one proves that j′ε(0) = 0 and j′′ε (0) is coercive
(in some sense taking into account the volume constraint and invariance by translation). In the
literature this is refered to as Fuglede-type computations, in reference to the seminal work [Fug89]
where the author made such computations for the perimeter. This can be achieved for geometric
functionals F where F (Bξ) can be explicitly written in terms of ξ (such as F = P or F = | · |) as well
as for less explicit energies involving PDE theory (see for instance [Dam02], [AFM13], [BDPV15],
[DL19]). Note that this first step of the strategy is not so specific to the functional under study, and
it is by now very well understood. We refer to [DL19] for a detailed study; in particular the authors
prove a general stability result inside SX under first and second order optimality conditions.

• (ii) Stability for all shapes: recovering minimality of the ball for general perturbations Ω ∈ Sad by
relying on the first step and on a regularity theory for the functional under study. In the classical
setting where Sad consists of all shapes of given volume, this step relies on fine arguments related
to regularity theories associated to the functionals. In the case J = P , it is the theory of quasi-
minimizers of the perimeter (see (1.23)), while for J = λ1 or J = Cap it is the free boundary
regularity theory (see (1.27)). The idea is then to prove that minimizers Ωε ∈ Sad of J + εR in Sad
are smooth in the sense of X, meaning that they can be written Ωε = Bξε for some ξε ∈ X with
∥ξε∥X ≪ 1. Note that stability is then obtained by letting ε → 0, as ε → 0 usually enforces that
minimizers Ωε → B in the L1 sense, so that regularity of Ωε then enables to write Ωε = Bξε with a
strengthening of convergence ∥ξε∥X → 0, thus allowing to apply the first step of the method to get
stability in Sad. This second step of the strategy highlights the importance of the space X found in
step (i), and the aim of proving stability for the "lowest degree of smoothness possible".

Let us mention several works relying on this regularity strategy: [KM13, KM14] for J = P and R = Vα
the Riesz energy, [GNR18] for J = P and R = I the logarithmic capacity, and [MR21] for J = λ1 and
R = Vα. The authors prove that minimizers of the associated problems have in fact the appropriate
degree of smoothness required in order to apply step (i). However, as in [BDPV15], there are cases where
minimizers are not expected to have too much regularity, so that one needs to regularize them in some
sense in order to improve regularity and apply step (i). This is the selection principle procedure introduced
in [CL12], which is a tool for proving step (ii). Although it can be employed to prove weak stability (1.10),
it also adapts well to a different notion of stability which we introduce now, closer to the question (1.7)
=⇒ (1.8). We say that the ball is strongly stable for the problem J +R if there exists c∗ > 0 such that:

B is a local minimizer of J + cR in Sad for c ∈ (0, c∗) while (1.16)
B is not a local minimizer of J + cR in Sad for c > c∗

where locality is again meant in a L1 sense. The value c∗ is an optimal threshold fully describing the
situation of local minimality of the ball. For this strong notion of stability we always have in mind that
c∗ is given by (1.7), meaning that F = J + cR ceases to verify the second-order optimality condition from
(1.7) exactly at c∗. In this strong stability setup the selection principle goes as follows: proceeding by
contradiction for some 0 < c < c∗, one assumes the existence of a sequence Ωi such that

{
Jc(Ωi) < Jc(B), ∀i ∈ N
ai := |Ωi∆B| → 0

(1.17)

19



One then introduces for each i ∈ N a minimizer Ω̃i of

inf {Jc(Ω) + C ||Ω∆B| − ai| , Ω ∈ Sad} (1.18)

for some penalizing constant C > 0. If Ω̃i exists it satisfies for free Jc(Ω̃i) < Jc(B), while the condition
|Ω̃i∆B| → 0 is expected to hold thanks to the penalization by ai, so that overall the sequence Ω̃i still
verifies the contradiction hypothesis (1.17). In order to obtain a contradiction the goal is then to show that
Ω̃i = Bξi for a sequence ξi ∈ X with ∥ξi∥X → 0. The idea is to interpret minimizers of (1.18) as minimizers
of a perturbation (by a volume term) of the problem of minimizing Jc, which enters in the frameworks we
describe in details in Section 1.2.2 when either J = P or J = λ1 (see the first two paragraphs in Section
1.2.2).

Regularity and convexity. We have understood in the two steps strategy described above that regu-
larity of minimizers for the problem

inf{J(Ω) + cR(Ω), Ω ∈ Sad}

can be of main importance for proving (local or global) minimality of the ball. Note that an underlying
regularity theory is a regularity theory inside Sad, which is therefore very specific to the chosen set of
admissible shapes.

As mentionned above, the study of classes Sad where the principle (first and second-order optimality
conditions =⇒ L1 local minimality) (i.e. (1.7) =⇒ (1.8)) can hold is of interest, and we thus study in this
thesis the particular case of convex shapes:

Sad = Sconv := {Ω ⊂ RN convex}

As a consequence, we see convex shapes as an interesting class to examine in itself, but also as a useful tool
for illustrating the robustness of the strategy. We are thus led to investigate the possibility of regularity
theories inside Sconv.

This motivates the studies of (i) regularity and (ii) the convexity contraint, in shape optimization. The
remaining of Section 1.2 is thus organized as follows: we introduce and discuss in details regularity among
all shapes in Section 1.2.2, and we decribe the convexity constraint in Section 1.2.3.

1.2.2 Regularity in shape optimization

In this section we give a general presentation of the problem of proving regularity for solutions of shape
optimization problems. By regularity of an open set Ω ⊂ RN we will always mean that it can be locally
parametrized as the hypergraph of a function bearing some regularity. Precisely, we say that Ω is Ck,α for
some k ∈ N∗ and α ∈ (0, 1] if for any x0 ∈ ∂Ω there exists a (N − 1)-dimensional open ball Bx0 , a > 0
and a function g := gx0 ∈ Ck,α(Bx0) such that up to a rotation

Ω ∩ (Bx0 × (−a, a)) =
{
x = (x′, xN ) ∈ RN , xN > g(x′)

}
,

∂Ω ∩ (Bx0 × (−a, a)) =
{
x = (x′, xN ) ∈ RN , xN = g(x′)

}
. (1.19)

We say that Ω is Lipschitz when the functions g are Lipschitz continuous.

Regularity for perturbed isoperimetric problems. Quasi-minimizers of the perimeter. In
reference to the standard isoperimetric problem (1.1), we call perturbed isoperimetric problem a shape
optimization problem of the form

inf {P (Ω) +R(Ω), Ω ∈ Sad} (1.20)

where Sad is a given class of measurable subsets of RN , P is the De Giorgi perimeter (as defined in (1.2))
and R : Sad → R is a perturbative functional. We see this problem as a perturbation of the isoperimetric
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problem when the functional R is of lower order than the perimeter, in the sense that it does not change
its regularizing effect. Before giving a more precise idea of what we mean by perturbed, let us give some
informal considerations about the fact that the perimeter tends to regularize optimal shapes.

There are several ways of giving sense to the differentation of P and R at an optimal shape Ω∗ ∈ Sad for
(1.20). Provided Ω∗ has some regularity (say it is at least Lipschitz) a simple idea is to perturb locally Ω∗

around a point x0 ∈ ∂Ω∗, meaning that we differentiate in t the quantity (P +R)(Ω∗
t ) where ∂Ω∗

t is given
around x0 by the graph of some function g + tϕ where g parametrizes ∂Ω∗ as in (1.19) and ϕ ∈ C∞c (Bx0).
Since the portion of P (Ω∗

t ) changing around x0 is given by the (N − 1)-dimensional area of the Lipschitz
graph of g + tϕ (see for instance [AFP00, Remark 2.72]), one classically obtains

d

dt

∣∣∣∣
t=0

P (Ω∗
t ) = −

ˆ
Bx0

div

(
∇g√

1 + |∇g|2

)
ϕ (1.21)

where the divergence is taken in the sense of distributions. As a consequence, provided one can differentiate
R(Ω∗

t ) and if (say) the class Sad consists of open sets with fixed volume, one obtains an optimality condition
which is a (non-linear) elliptic equation in g. If the derivative of R in this sense has some low regularity,
classical theory of elliptic PDE’s allows to improve the regularity of g. For a rigorous presentation of this
type of argument for the isoperimetric problem we refer to [BB05, Section 1.2].

A typical example of R which we think of as being of lower order than the perimeter is given by
R(Ω) =

´
Ω f where f ∈ L∞

loc(RN ) (the resulting problem is the so-called prescribed mean curvature
problem, see for instance [FM11]). More generally we have in mind any R which is of volume type,
meaning that R verifies a (local) Lipschitz-type property with respect to the volume distance: for any
bounded D ⊂ RN there exists CD > 0 such that

∀Ω, Ω̃ ⊂ D, |R(Ω)−R(Ω̃)| ≤ CD|Ω∆Ω̃|. (1.22)

These examples fall into the general category of quasi-minimizers of the perimeter, which is the rigorous
notion formalizing the fact that minimizers of perturbed isoperimetric problems (1.20) share some regular-
ity. Given a bounded open set D ⊂ RN and Λ > 0, r0 > 0, a measurable set with finite perimeter Ω ⊂ RN

is called a (Λ, r0)-minimizer of the perimeter in D if for any 0 < r < r0, x ∈ RN and Ω̃∆Ω ⋐ Br(x) ∩D
it holds

P (Ω, Br(x)) ≤ P (Ω̃, Br(x)) + ΛrN (1.23)

where P (E,Br(x)) is the perimeter of E inside Br(x), that is

P (E,Br(x)) := sup

{ˆ
E

div(θ), θ ∈ C∞c (Br(x),RN ), ∥θ∥L∞(Br(x)) ≤ 1

}
.

Note that ΛrN is to be thought of as an error term (which in this case is a volume term), since |Ω∆Ω̃| is
smaller (up to a constant) than rN in the minimality property (1.23). A deep result of geometric measure
theory states that quasi-minimizers in D are C1, 12 regular inside D up to some residual set of dimension
less than N − 8 (see [Mag12, Theorem 21.8] or [Tam84, Theorem 1.9]). There are numerous references
studying this type of perturbed isoperimetric problem by relying on this quasi-minimality property to infer
regularity, and we can quote among many others [AFM13], [KM13, KM14], [CL12] or [FFM+15] for some
non-local perimeter.

Regularity for perturbed Faber-Krahn problems. Free boundary problems. In reference to
the standard Faber-Krahn inequality (1.5) we call perturbed Faber-Krahn problem a shape optimization
problem of the form

inf {λ1(Ω) +R(Ω), Ω ∈ Sad} (1.24)

where Sad ⊂ P(RN ) is a given class of open subsets of Rn and R : Sad → R is a perturbative term.
Analogously to the case of the perimeter in the previous paragraph, before getting more precise about
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the functionals R and the associated problems we have in mind, we start by examining the first order
optimality condition associated to the usual Faber-Krahn problem.

If Ω∗ is a bounded open minimizer of λ1 among all open sets of unit volume, then for any ξ ∈
C∞c (RN ,RN ), setting Ω∗

t := (Id + tξ)(Ω∗) one has the optimality condition

d

dt

∣∣∣∣
t=0

(λ1 + Λ| · |) (Ω∗
t ) = 0

for some Lagrange multiplier Λ ∈ R∗
+ associated to the volume constraint. Assuming enough regularity

on Ω∗ (C2 is enough, see for instance [HP18]) this reads

∂νΩ∗u =
√
Λ over ∂Ω∗ (1.25)

where νΩ∗ : ∂Ω∗ → RN is the outward unit normal of Ω∗ and u is the first eigenfunction of Ω∗ (chosen pos-
itive and normalized as ∥u∥L2(Ω) = 1). Together with the equations verified by u as being an eigenfunction
with constant sign we obtain a typical example of an overdetermined problem:





−∆u = λ1(Ω
∗)u in Ω∗,

u > 0 in Ω∗,

u = 0 over ∂Ω∗,

∂νΩ∗u =
√
Λ over ∂Ω∗.

(1.26)

Serrin studied this type of problems in his seminal work [Ser71] and proved, by relying on the so-called
moving plane method, that under smoothness assumptions over Ω∗ the system (1.26) implies that Ω∗ is
a ball. This enters the class of free boundaries problems, in reference to the condition (1.25) which holds
on the unknown boundary ∂Ω∗. For references on overdetermined problem we refer to [FG08] and the
references therein.

Going back to (1.24), an important class of functionals R which can be considered as perturbations
of λ1 are functionals of volume-type, meaning that the variation |R(Ω) − R(Ω̃)| is comparable to the
volume difference |Ω∆Ω̃| (as in (1.23)). In this case, there is an extensive literature stemming from the
pioneering work [AC81] which ensures that one might expect regularity. In [AC81] the authors study the
free boundary problem

inf

{ˆ
D
|∇u|2 + Λ|{u > 0} ∩D|, u ∈ H1(D), u = g on ∂D

}
(1.27)

where D is a Lipschitz bounded open set, and g ∈ H1(D) is nonnegative. They proved C1,α regularity
of minimizers u ≥ 0 around flat points of the free boundary ∂{u > 0} ∩ D. More precisely, setting
Ω := {u > 0}, they decompose ∂Ω into a relatively open C1,α part (characterized by some flatness property
of the associated points x ∈ ∂Ω), and a singular part having less than (N − 1) Hausdorff dimension (the
existence of a critical exponent N∗ ∈ N with a classification of the possible behaviours of the singular
set depending on whether N ≥ N∗ was proven by [Wei99], and it was later obtained by several authors
that N∗ ∈ [5, 7], see [Vel19] for references). Relying on hodograph transform techniques from [KN77],
they proved higher regularity of the regular part of the free boundary. For an introduction to the problem
(1.27) and to the so-called one-phase Bernoulli problem we refer to the very nice lecture notes [Vel19].

Relying on the definition of λ1 as a minimum (see (1.4)), one can intepret the minimization of λ1(Ω)+
Λ|Ω| as a problem of type (1.27). This observation enabled many authors to apply the techniques from
[AC81] in order to prove C1,α (or even higher) regularity of minimizers for problems of type (1.24) where
R is of volume type. In [BDPV15], regularity was successfully obtained as a crucial step for proving the
sharp quantitative Faber-Krahn inequality (see (1.15)) for minimizers of E+R, with E the Dirichlet energy
and R = Λ|Ω|+ αF some regularized Fraenkel asymmetry αF (see further (1.13) for the definition of the
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usual Fraenkel asymmetry AF ). In this work the Kohler-Jobin inequality (1.52) enabled to reduce the
study of minimizers of λ1 +R to the study of minimizers of E +R, thus bringing a simpler free boundary
problem. Along the same lines, we can quote [MR21] where the authors followed the same strategy for
the functional λ1 + Λ| · | + Vα with Vα(Ω) :=

˜
Ω |x − y|α−Ndxdy the Riesz energy, and [DPMM21] for

Cap+Λ| · |+αF . We also refer to [Buc12] where non-degeneracy properties of some one-sided minimizers
of E + Λ| · | were used as a means to prove existence of minimizers of λk among quasi-open sets of fixed
measure.

Let us mention a second approach for proving regularity of the free boundary around flat points for
problem (1.27), which was introduced in [DS11]. The author studies continuous nonnegative solutions of

{
∆u = f in Ω,

|∇u| = g over ∂Ω,

where the equations are verified in the viscosity sense (roughly meaning that one can write conditions like
∆ϕ(x0) ≤ f and |∇ϕ(x0)| ≤ g for smooth ϕ, provided ϕ ≤ u around x0 ∈ Ω and ϕ(x0) = u(x0), see for
instance [Vel19, Definition 7.6] for a rigorous definition). It was proven in [DS11] that if

∥f∥L∞(Bx0 )
, ∥g∥C0,β(Bx0 )

≪ 1

for a fixed ball centered at x0 ∈ ∂{u > 0}, then provided {u > 0} ∩ Bx0 is close enough to a hyperplane
near x0 it is in fact C1,α in a smaller ball centered at x0. The idea is based on a partial Harnack inequality,
used to prove an improvement of flatness for flat solutions u of the above problem. It turned out to be
quite flexible, especially regarding adaptations to multi-phase free boundary problems (see for instance
[MTV21], [KL18]).

In this thesis (see Chapter 4) we have specifically considered problems (1.24) where the functional R
is of same order as λ1, by which we mean that it is also given by some energy term of the same type as λ1.
In this direction we can mention the works [KL18, KL19], [MTV17] and [CSY18], which prove regularity
results for functionals of the form F (λ1(Ω), . . . , λn(Ω)) + Λ|Ω|, where F is nondegenerate in some sense,
by which we mean that it leads to a vectorial free boundary problem associated to the boundary condition

a1(∂νΩu1)
2 + · · ·+ an(∂νΩun)

2 = cst over ∂Ω∗

for some ai ≥ 0, for a minimizer Ω∗. In a different direction, in [OK13] and [OK14] the authors study
numerically and theoretically convex combinations of respectively two and three successive Dirichlet
eigenvalues. Their results apply in particular to the minimizations λ1 + t(λ2 − λ1) for t ∈ [0, 1] and
λ1 + t1(λ2 − λ1) + t2(λ3 − λ1) for t1, t2 ≥ 0 with t1 + t2 ≤ 1.

1.2.3 The convexity constraint

Interest of the convexity constraint. We speak of shape optimization problems (or more generally
calculus of variations problems) under convexity constraint when the admissible sets (or functions) are
assumed to be convex. One of the motivations for studying such problems is that it can be physically
relevant in some situations, the most famous example being perhaps Newton’s problem of the body of
minimal resistance, which consists in the minimization

inf

{ˆ
D

1

1 + |∇u|2 , u : D → [−M, 0], u is convex
}

(1.28)

for D ⊂ R2 a smooth open convex set and M > 0. The energy one wants to minimize represents the
resistance of a convex body (given by the graph of u, imposed to have M as a maximal height) as it moves
in a fluid with constant velocity. We refer for instance to [BFK95], [LRP01b], [BB05] for an introduction
to this problem and details about the physical relevance of its modelling.
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On the other hand, the set of convex shapes (or of convex functions) can also appear as a natural
class to investigate when (i) either there is no existence for the considered problem without constraint,
or (ii) when one knows that the optima are not convex (thus giving rise to interesting new problems).
Concerning the first issue, on the contrary enforcing a convexity constraint is expected to give good
compactness properties so as to ensure existence in many situations where existence fails in general (see
Chapter 2 in [BB05]). Apart from Newton’s problem (1.28) above for which this is the case (see [BB05]),
let us quote the famous Gamow’s liquid drop model, which consists in the minimization

inf

{
P (E) +

¨
E×E

dxdy

|x− y| , E ⊂ R3, |E| = v0

}
(1.29)

While it is known that existence holds for small volumes v0 > 0 (and in fact that balls are the unique
minimizers, see [KM14]), there is no existence for large volumes and it is expected that the behaviour of
minimizing sequences is to spread mass into small pieces (see [LO14]). On the other hand the convexity
constrained version of (1.29) has a solution for all volumes (see further Proposition 2.3.1), thus motivating
the convexity constraint.

As an example of the second issue (ii), let us note that there is numerical evidence that for k = 2, 5, 6, 7
the minimization of P+cλk (for c > 0) brings non-convex shapes as optima in three dimensions (see [BO16,
Figure 2]), so that the study of the minimization of this functional inside the class of convex shapes is
meaningful to examine.

Regularity under convexity constraint. Let us now describe in more details the methods and specific
issues related to proving regularity for shape optimization problems with a convexity constraint. The
situation is very different from the situation without convexity, as any convex optimizer Ω∗ has its boundary
which can be locally parametrized by convex (hence Lipschitz) functions. Therefore minimizers have a
bit of regularity, and the hard part is to move from this first regularity property to higher regularity,
as we shall explain now. When the shape functional J(Ω) can be (locally) represented by the integral
over a convex set D ⊂ RN−1 of some Lagrangian L(x, u(x),∇u(x)) (which often happens for geometric
functionals, such as P or | · |), we are naturally led to study the minimization problem

inf

{ˆ
D
L(x, u(x),∇u(x))dx, u : D → R is convex, u = u0 over ∂D

}
(1.30)

for some fixed u0 : D → R enforcing boundary conditions on u. Such problems have been studied by
several authors for Lagrangians L(x, u, p) verifying some strict convexity assumptions in p (see [Car02]
and [CLR01] for C1 regularity results, and [CCL13] for C1,α regularity results). There are at least two
specific difficulties linked to the convexity constraint for proving regularity of optimal shapes.

• The first difficulty is shared with problems in calculus of variations such as (1.30), and concerns
the derivation of optimality conditions. In fact, although the initial Lipschitz regularity of convex
minimizers is often enough to give meaning to differentiations of the type (1.21), due to the convexity
constraint one cannot write that expressions like (1.21) vanish for all ϕ. It is still possible to write
optimality conditions (see [Car02] for first order conditions in any dimensions, and [LN10] for first and
second order conditions in two dimensions) but it is in general very difficult to exploit, especially
for N = 3 or higher dimensions. Let us mention however the works [Car02] and [LNP12] where
the authors respectively obtain C1 and C1,1 regularity for N = 2 by relying on such optimality
conditions, the first for problems of type (1.30), the second for more general functionals which can
also include terms R(Ω) not (locally) written as integrals of Lagrangians (including for instance
perturbed isoperimetric problems of type (1.20)).

• The second difficulty is specific to convexity constrained shape optimization problems, as it concerns
the possibility of interpreting such problems inside the calculus of variations framework. In fact,
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the convexity constraint being fairly rigid and somehow global, this prevents to localize so easily the
arguments by perturbing the boundary of an open convex set Ω near each x0 ∈ ∂Ω. One of the main
contributions of this thesis consists in proposing a setup enabling to do so (see further the methods
employed for proving Theorem 1.3.3).

These two difficulties are closely linked to the fact that we do not know whether minimizers are strictly
convex, and in fact in general there is no reason why this should happen. Newton’s problem of body of
minimal resistance (1.28) is a striking example in this direction, as it is proven in [LRP01a] that there
does not exist any open set over which a minimizer is strictly convex. This is due to the intrinsic non-
convex nature of the problem, which forces the minimizers to saturate the convexity constraint in some
sense. Let us also refer to [LNP12] and [LNP22] where the authors prove respectively that minimizers of
functionals of the type R(Ω) − P (Ω) and R(Ω) − λ1(Ω) in the class of convex sets are polygons. There
are less "extreme" examples of minimization among convex shapes for which one can expect minimizers
to have flat parts in their boundary, even for functionals including some strictly convex energy such as the
perimeter. It is proven for instance in [AFN11] (see also [BCH17, Theorem 1.2]) that the best constant
among convex shapes in the quantitative isoperimetric inequality (1.14) is achieved by a stadium shape
(the convex hull of two disjoint disks of same radius). Also, it is proven in [HO03] that a minimizer of λ2
with volume and convexity constraint must have at least two segments in its boundary.

In view of these two difficulties, a general strategy for proving regularity of minimal convex shapes is
the so-called cutting procedure. Given a minimizer Ω, it consists in building competitors in the form Ω∩H
where H is some well-chosen hyperplane (which are thus straightforwardly convex). More specifically, if
x0 ∈ ∂Ω, one builds a family of appropriate hyperplanes (Hr)r>0 such that Ω ∩Hr is obtained by cutting
a piece of Ω around x0 (which may not be localized around x0) with furthermore |Ω ∩ Hr| → |Ω|. The
goal is then to translate conditions J(Ω) ≤ J(Ω∩Hr) into regularity of Ω around x0. For instance, due to
convexity, proving that Ω is C1 amounts to proving that it has no corner. Let us quote two works relying
on this cutting procedure to obtain regularity for minimization among convex shapes of fixed volume:
in [Buc03] the author proves C1 regularity of minimizers of λk, and in [GNR18] the authors prove C1,1
regularity of minimizers of P (Ω) + I(Ω) in two dimensions with I the logarithmic capacity.

Stability under convexity constraint. One of the main goals of this thesis was to apply the two steps
strategy relying on the idea that stability for smooth shapes implies stability in the class of convex shapes
(see the corresponding paragraph in Section 1.2.1), and in particular to perform the selection principle in
a convexity constrained situation. It turns out that this regularization procedure adapts well to convexity
constrained problems, and we refer further to Section 1.3.1 for the regularity results and to Section 1.3.2 for
stability results. Let us give hereafter a couple of more specific comments about stability under convexity
constraint.

• By enforcing a strong geometric constraint such as convexity of the admissible sets, a lot more is
possible concerning quantitative inequalities. In fact, while the exponents in general quantitative
inequalities like (1.14) are still sharp (since they are usually achieved by sequences of ellipsoids),
there is room for proving inequalities with stronger notions of asymmetry. In the spirit of the
Bonnesen inequality in two dimensions (1.12), in [Fug89] the author proved quantitative isoperimetric
inequalities (with sharp exponents) with a Hausdorff-type asymmetry AH(Ω) := inf{dH(Ω, (B +
x)), x ∈ RN} (where dH is the Hausdorff distance).

• Since a convex set already has some regularity (in particular it is Lipschitz), it can also happen that
one can prove stability directly without having to prove higher regularity (or increase it through
the selection principle). For instance, as Lipschitz continuity is enough to perform the Fuglede-type
computations over P (Bξ) from [Fug89], the quantitative isoperimetric inequality (1.14) restricted to
the class of convex sets can be obtained in this way (see [Fug89]). We have used the same idea for
proving a stability result for the isoperimetric problem with capacity (see further Theorem 1.3.6).
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1.3 Main contributions of the thesis

This section is dedicated to introducing the main contributions and results of the thesis, while describing
the originality of the methods we used. It is split into three parts: we first present the regularity results
under convexity constraint (corresponding to Chapter 2), then we present the stability results for isoperi-
metric problems (corresponding to Chapter 3), and we finally present the stability results for the Dirichlet
spectrum (corresponding to Chapter 4).

1.3.1 Contributions of Chapter 2: regularity under convexity constraint

Main questions and main results. The regularity results we obtained in Chapter 2 deal with perturbed
isoperimetric problems set with a convexity constraint, that is problems of the form (1.20) where Sad only
contains convex shapes and R is seen as a perturbative term. More precisely, if D ⊂ RN is measurable
(not necessarily having finite measure) and KN denotes the class of convex bodies of RN (compact convex
sets with non-empty interior), we are interested in the problem

inf
{
P (K) +R(K), K ∈ KN ,K ⊂ D

}
(1.31)

and its volume-constrained version

inf
{
P (K) +R(K), K ∈ KN ,K ⊂ D, |K| = v0

}
(1.32)

for some 0 < v0 < |D|. Here the perimeter of a convex body P (K) is still the classical De Giorgi perimeter
from (1.2), or equivalently P (K) = HN−1(∂K) (since K is Lipschitz). As in the case of unconstrained
perturbations of the isoperimetric problem (see the corresponding paragraph in Section 1.2.2), we have
in mind functionals R satisfying a Lipschitz-type property for the volume distance (as in (1.22)). Put
in a slightly different way, we want to define an appropriate notion of quasi-minimizer (analogous to
the unconstrained notion (1.23)) ensuring regularity. The first two questions in this direction which we
addressed can thus be formulated as follows.

(i) Can one identify reasonable hypotheses on R ensuring regularity of problems (1.31) and (1.32) ?

(ii) Equivalently, can one define a suitable notion of quasi-minimizer of the perimeter under convexity
constraint ensuring regularity of quasi-minimizers ?

One of the main contributions of Chapter 2 consists in bringing answers to these questions. As described
in Section 1.2.1, an important motivation for both questions comes from applying the (local minimality
for smooth perturbations =⇒ local minimality for all shapes) strategy from (1.9), and in particular the
selection principle procedure (see Theorem 1.3.9 below, corresponding to Theorem 3.1.2 from Chapter 3).
Let us then define the sufficient hypotheses we have found. For D′ ⊂ D ∈ KN we let

KN
D′,D := {K ∈ KN , D′ ⊂ K ⊂ D}.

Definition 1.3.1 (Perturbed isoperimetric problem). Let R : KN → R. We define the two following
notions of Lipschitz continuity for R with respect to the volume distance: a ‘weak” notion:

∀K ∈ KN , ∃(CK , εK) ∈ (0,∞)2, ∀K̃ ∈ KN s.t. K̃ ⊂ K and |K\K̃| ≤ εK , R(K̃)−R(K) ≤ CK |K\K̃|
(1.33)

and a "strong" notion:

∀D′ ⊂ D ∈ KN , ∃CD′,D > 0, ∀
(
K1,K2 ∈ KN

D′,D, K1 ⊂ K2

)
, |R(K2)−R(K1)| ≤ CD′,D|K2\K1|. (1.34)

A short argument about distances for convex sets (see further Proposition 2.2.9) enables to see that the
strong Lipschitz property implies in fact the weak one. We now define quasi-minimizers of the perimeter
under convexity constraint.
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Definition 1.3.2 ((Λ, ε)-quasi-minimizer). Let Λ, ε > 0. We say that K ∈ KN is a (Λ, ε)-quasi-minimizer
of the perimeter under convexity constraint (q.m.p.c.c. for short) if

∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ ε, P (K) ≤ P (K̃) + Λ|K \ K̃|. (1.35)

Let us comment on this notion of quasi-minimizer in comparison with the usual notion of quasi-
minimizers (1.23).

• First, the local minimality of a q.m.p.c.c. is meant in the sense that the volume difference |K∆K̃|
is small, which is milder than requiring that K∆K̃ is located in a ball of small radius Br(x). This
is due to the fact that this latter condition is much too restrictive for convex sets, as one sees by
noticing that if K is a square there are no convex sets K̃ other than K which perturb K around a
point of its boundary located inside a segment. The possibility of perturbating a convex set around
a point x0 ∈ ∂K is in fact directly related to some kind of strict convexity of K around x0.

• Here we merely require the minimality condition for perturbations K̃ from the inside, as the cutting
procedure we will use only relies on competitors K̃ ⊂ K. Note that enforcing minimality also for
outward perturbations would not increase in general the regularity ofK, as shows the counterexample
in Proposition 2.3.18.

The first main regularity result is then the following (it corresponds to Theorem 2.2.3 and Corollary
2.2.4 from Chapter 2).

Theorem 1.3.3. Let N ≥ 2. Any q.m.p.c.c. K is C1,1. As a consequence, if R : KN → R satisfies (1.33),
any minimizer of (1.31) is C1,1.

In this general form problem (1.31) does not always have minimizers (taking for instance R = 0), and
we refer further to Theorem 2.3.4 for an existence result under various hypotheses over D and R. We also
prove (in Proposition 2.3.18) that Theorem 1.3.3 is optimal in general. Precisely, we show that we can
find a q.m.p.c.c. in two dimensions which is C1,1 and not C2.

Let us also mention a similar regularity result obtained in two dimensions in [LNP12] under different
conditions upon R. If K∗ is a given minimizer of (1.31), the authors rather assume that R admits a shape
derivative at K∗ which is in L∞(∂K∗) (see Remark 2.2.6). They obtain C1,1 regularity of K∗ in this case.
Their proof is based on a radically different approach from the one we use (which we detail further in
the methods), as it is based on the analysis of an Euler-Lagrange equation under convexity constraint
associated to the minimization. Our result is more general and more flexible than this result (compare
to Theorem 2.1.1), as it provides regularity in any dimension N ≥ 2 and moreover does not assume the
existence of a shape derivative of R at K∗ (which is not verified in general for Dirichlet and Neumann
eigenvalues for instance).

The second main result of Chapter 2 (corresponding to Theorem 2.2.10) deals with the second family
of problems, that is volume-constrained problems (1.32).

Theorem 1.3.4. Let N ≥ 2. Let D ∈ KN , 0 < v0 < |D| and suppose R satisfies (1.34). Then any
solution K∗ to (1.32) is a q.m.p.c.c. and is therefore C1,1.

These two general regularity theorems at hand, an important question is to find explicit and interesting
examples which enter in this framework. This is the third question we addressed.

(iii) Finding relevant examples of convexity constrained perturbed isoperimetric problems, i.e. proving
(1.33) and (1.34) for standard shape functionals R.

In the third result of Chapter 2 (Theorem 2.3.2) we prove that Dirichlet and Neumann eigenvalues
(rigorously defined for Lipschitz sets further in Section 2.3.2) as well as the Dirichlet energy verify these
two hypotheses.
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Theorem 1.3.5. Let k ∈ N∗, N ≥ 2. Then any R ∈ {λk, µk, E} satisfies (1.33) and (1.34).

Note that this strongly uses the fact that we are working with convex sets, and it no longer holds
among general shapes as one sees by making a crack in a shape, which does not change the volume while it
increases λk and E. This third result enables to build many examples of functionals R verifying (1.33) and
(1.34). As a Corollary we thus obtain regularity for minimizers of a large class of perturbed isoperimetric
problems (see further Theorem 2.1.1). Let us pick up on some specific examples.

First, we obtain C1,1 regularity for minimizers of the problems

inf
{
P (K) + cλk(K), K ∈ KN

}

for some c > 0, k ∈ N∗ (see further Proposition 2.3.5). This is the convexity-constrained version of a
problem for which one expects non-convex minimizers (for k = 2, 5, 6, 7 and N = 3, see [BO16, Figure 2]
for numerical evidence). We also obtain C1,1 regularity of minimizers of the problems

inf
{
P (K)± µk(K), K ∈ KN , |K| = v0

}

inf
{
P (K) + λk(K), K ∈ KN , |K| = v0

}

for any k ∈ N∗ (see Proposition 2.3.6).

Methods. We now decribe separately the methods we employed for proving the results.

Methods for Theorem 1.3.3. This result is inspired from regularity results of [CCL13], where the
authors prove C1,1−

N
p regularity for solutions of the convex minimization

inf

{ˆ
D

|∇u|2
2

+ fu, u ∈ H1(D), u is convex
}

(1.36)

where D ⊂ RN is a bounded convex open set and f+ ∈ Lp(D) for some p > N . Our idea is to see locally
∂K as the graph of a function g which can be interpreted as the solution of a calculus of variations problem
of the type (1.36). However, due to difficulties linked to the localization of the convexity constraint, there
are additional issues arising in the shape optimization context. Let us be a bit more specific: writing for
any convex g : Bx0 → R with g ≥ g0 and (g − g0)|∂Bx0

= 0 (where g0 parametrizes K near x0, see (1.19))

Kg =
(
K ∩ (Bx0

c × R)
)
∪
(
K ∩ Epi(g)

)

where Epi(g) := {(x, t) ∈ Bx0 × R, t ≥ g(x)} stands for the epigraph of g, it is not difficult to see that
any such Kg is convex with Kg ⊂ K. On the other hand, there are not necessarily many such Kg if one is
not careful enough regarding the choice of the neighborhood Bx0 , and one can easily construct convex sets
K such that g = g0 and Kg = K for any such g, so that one cannot build any competitors to minimality
in this way. This happens for instance in three dimensions for a prism with triangular base, by looking
at a point on any edge linking the two triangular faces. This issue concerns "flat" parts of ∂K, by which
we mean points around which K is not strictly convex. In order to illustrate this latter fact, see that if
the function g0 parametrizing K near x0 is strongly convex then for any ϕ ∈ C∞c (Bx0), provided t ∈ R is
taken sufficiently small the function g+ tϕ is still convex; Kg+tϕ is therefore also convex in this case, thus
providing many relevant competitors.

We therefore have to build an appropriate framework in order to be able to use ideas similar to [CCL13].
Letting K be a q.m.p.c.c., the method we employ is a cutting-type procedure, which consists in building
competitors in the form Kr := K ∩ Hr = K ∩ Epi(σr) (for a parameter r > 0) where σr is an affine
function defined on some hyperplane. Apart from showing how to adapt the regularity results obtained
by [CCL13] for a general Lagrangian L(x, u(x),∇u(x)) strongly convex in ∇u (in our case, the underlying
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Lagrangian is L(x, u, p) =
√
1 + |p|2), we believe that our method enables to get a clearer perspective on

how one might expect to insert shape optimization problems under convexity constraint in a calculus of
variations framework. More precisely, we have understood that localizing the arguments by parametrizing
∂K around some x0 ∈ ∂K by {(x, g(x)), x ∈ D} (for some (N − 1)-dimensional open set D) is only
possible when taking D maximal in some sense, and that this forces to perform global estimates on the
functionals which are difficult in general. In our case we do it for the perimeter functional, and it is one
of the most involved step in the proof of Theorem 1.3.3. Precisely, if K is a q.m.p.c.c. an important part
of the proof consists in estimating from below

P (K)− P (Kr) ≥
ˆ
Dr

(√
1 + |∇g|2 −

√
1 + |∇σr|2

)
dHN−1,

where HN−1 is the (N − 1)-dimensional Hausdorff measure and Dr ⊂ D is an open set depending on
r > 0 (see (2.29)). While the right-hand-side is a difference of convex energies closer to calculus of
variations, we have to deal with the additional difficulty that the domain of integration Dr depends on
r, which is tightly linked to the fact that we have taken D maximal in some sense. Apart from this
estimate from below, we estimate from above |K \ Kr| (in (2.20) and (2.43)) and have to handle the
fact that the condition g ≤ σr does not exactly encode K \ Kr, meaning that in general the inclusion
K \Kr ⊂ {(x, t) ∈ D × R, g(x) ≤ t ≤ σr(x)} is strict.

Methods for Theorem 1.3.4. The strategy consists in applying Theorem 1.3.3 by showing that any
minimizer of (1.32) is a q.m.p.c.c. The main idea is to penalize the volume constraint (this is done in
Lemma 2.2.11), meaning that we show that if K∗ minimizes (1.32) then there exists ε = εK∗ > 0 and
Λ = ΛK∗ > 0 such that it also minimizes

inf
{
P (K) +R(K) + Λ||K| − v0|,K ∈ KN , K ⊂ K∗, |K∗ \K| ≤ ε

}
.

The penalization idea is classical (see for instance [DPLPV18, Lemma 4.5]) and consists in building, for
each K ⊂ K∗ with |K∗ \K| ≪ 1, some K ⊂ K̃ ⊂ D satisfying the volume constraint |K̃| = v0 and such
that the increase in energy is comparable to the increase in volume, i.e. G(K̃) ≤ G(K)+Λ||K|−v0| where
G := P + R. The novelty of our method lies in the fact that K̃ has to be convex, which prevents from
localizing the argument by building K̃ as a perturbation of K around a point (as is done in [DPLPV18,
Lemma 4.5]). Instead we construct K̃ as a Minkowski sum (1 − t)K + tD between K and D for some
apropriate t ∈ [0, 1], and use then Minkowski’s theory of mixed-volumes to estimate the perimeter and
volume of K̃.

Methods for Theorem 1.3.5. The result is inspired from a strategy laid out in [BL07, BL08]. The
idea is to rely on the variational characterizations of λk, µk, E in order to estimate the variation of energy
between two nested convex sets K1 ⊂ K2. In the case of the Dirichlet energy E (in 2.3.8), letting wK2 be
the torsion function of K2 we write

0 ≤ E(K1)− E(K2) ≤
1

2

ˆ
K2

(
|∇(wK2 ◦ ϕ)|2 − |∇wK2 |2

)
−
ˆ
K2

(wK2 ◦ ϕ− wK2)

where ϕ := ϕK1,K2 : K1 → K2 is a Lipschitz change of variables which is built in order to be the identity
on a "large" part of K1, meaning that it is the identity on some K3 ⊂ K1 where |K1 \K3| ≤ C|K2 \K1|
for some constant C > 0 independent of K1,K2 ∈ KN

D′,D. The result then follows from a uniform control
of the Lipschitz norm of ϕK1,K2 for K1,K2 ∈ KN

D′,D (in Lemma 2.3.9), and a Lipschitz estimate of wK2

uniform in KN
D′,D (in Lemma 2.3.10). Our main input in this matter concerns a natural and simple idea

for building the change of variables ϕK1,K2 , based on the representation of the boundary of a convex set
K as a graph over the sphere of an interior ball.
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In the case of the Dirichlet eigenvalues λk we rely on an idea from [Buc03, Theorem 3.4] which enables
to compare the variation in λk of two nested bounded open sets Ω′ ⊂ Ω with the variation in Dirichlet
energy: ∣∣λk(Ω)− λk(Ω′)

∣∣ ≤ Ckλk(Ω)
N/2+1λk(Ω

′)|E(Ω)− E(Ω′)|
for some contant Ck > 0, thus enabling to apply the Dirichlet energy case.

For Neumann eigenvalues (in Proposition 2.3.13) we again use the variational characterization of µk,
this time building rather an extension operator ΠK : W 1,∞(K) → W 1,∞(RN ) with uniformly controlled
norm and proving uniform Lipschitz estimates for Neumann eigenfunctions for K ∈ KN

D′,D.

1.3.2 Contributions of Chapter 3: Fuglede-type arguments for isoperimetric prob-
lems and applications to stability among convex shapes

Main questions. In Chapter 3 we are interested in stability issues for perturbed isoperimetric problems.
We study and prove stability for different classes of sets written as "smooth" perturbations of the ball,
which constitutes the so-called Fuglede-type computations, and obtain as applications of these results
stability inside the class of convex sets. Let us then set the problems in their convexity constrained form,
i.e. problems (1.31) and (1.32):

inf
{
P (K) +R(K), K ∈ KN ,K ⊂ D

}
,

inf
{
P (K) +R(K), K ∈ KN ,K ⊂ D, |K| = v0

}
.

We aim at showing stability in the weak form (1.10) as well as in the strong form (1.16) for problems where
R is an energy associated to a PDE linked to K, meaning a PDE set either on K or on RN \K. We are
mostly concerned with problems for which stability fails among all shapes, so that convex sets becomes a
relevant class to consider. In the remaining of this paragraph and before going into more details, we very
briefly introduce the two independent problems for which we obtain stability results, in order to highlight
the common features of the methods we employ in both cases.

We are interested in the minimizations

inf
{
P (K) + εCap(K)−1, K ∈ KN , |K| = 1

}
(1.37)

for N ≥ 3 and a parameter ε > 0 (Cap(K) is defined below (1.39)), and

inf
{
P (K)− cλ1(K), K ∈ KN , |K| = 1

}
(1.38)

for N ≥ 2 and a parameter c > 0.
The results of Chapter 3 about convex shapes are the following: global minimality of the ball for

ε ≪ 1 for (1.37) (i.e. weak stability (1.10), see Theorem 1.3.6) and local minimality of the ball for an
optimal range of c for (1.38) (i.e. strong stability (1.16), see Theorem 1.3.9). Although the two results
are independent, the strategy we employ for proving them constitutes a general scheme going beyond
convexity. We rely on the following steps

1. (IT) property for the functional (Lemma 1.3.8 and Theorem 1.3.10).

2. Minimality of the ball for the functional among "smooth" perturbations of the ball (Theorem 1.3.7
and Theorem 1.3.11).

3. Minimality of the ball for convex sets (Theorems 1.3.6 and 1.3.9).

The smoothness for which we prove local minimality in Step 2 is in direct link with the (IT) property of
Step 1. Roughly speaking, what we call (IT) property denotes a Taylor expansion at a certain order of the
functional, so that it allows to prove coercivity of the second derivative of the functional for perturbations
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of the ball with enough regularity, and hence local minimality for such perturbations in Step 2. On the
other hand, Steps 1 and 3 for problems (1.37) and (1.38) are handled very differently.

Let us also emphasize the fact that only Step 3 uses convexity of the considered sets, so that the
results from both Step 1 and 2 for (1.37) and (1.38) are relevant for the minimization of the corresponding
functionals among general shapes. In fact, they constitute Fuglede-type computations for the corresponding
isoperimetric functionals, and could thus be used as a first step for proving stability in different or more
general classes than the class of convex sets. On the other hand, apart from bearing interest in its own,
we believe that obtaining a full stability result for the class of convex sets illustrates the robustness of the
strategy.

We now describe separately and in details the motivations for the two problems, as well as the results
we have obtained and the methods we have used.

Weak stability for inf
{
P (K) + εCap(K)−1, K ∈ KN , |K| = 1

}
.

Motivations and results. For N ≥ 3 we define the capacity functional Cap : KN → R as the usual
electrostatic capacity :

Cap(K) := inf

{ˆ
RN

|∇u|2, u ∈ C∞c (RN ), u ≥ 1 over K
}
. (1.39)

Provided K is sufficiently smooth (see [CS03, Theorem 2 and 3]) this minimization is uniquely solved by
the so-called capacitary function uK which verifies the following PDE set over RN \K:





−∆uK = 0 in RN \K
uK = 1 over K, uK ∈ C0(RN )

uK(x)→ 0 as |x| → +∞
(1.40)

The isocapacitary inequality (see for instance [DPMM21]) which states that

∀Ω ⊂ RN open, |Ω| = 1, Cap(Ω) ≥ Cap(B) (1.41)

together with the isoperimetric inequality are in competition in the minimization (1.37), thus making the
problem non trivial. It is shown in [GNR15, Theorem 3.2 and Theorem 6.2] that existence among all
shapes of volume 1 fails for all ε > 0 and in all dimensions N ≥ 2, while (1.37) always admits minimizers
(see [GNR18, Theorem 1.1]), thus motivating the convexity constraint. Note that (1.37) with the definition
of capacity (1.39) is ill-posed for N = 2, since (1.39) is always equal to 0, as one sees by looking at the
energy of the (truncated) fundamental solution of the Laplacian. Therefore one has to proceed differently
to define capacity in two dimensions, and we mention that stability for convex sets for the equivalent
version of (1.37) for N = 2 was obtained in [GNR18].

The first question of Chapter 3 is the following.

(i) Proving stability for P +Cap−1 for convex shapes, i.e. proving that balls are the only minimizers of
(1.37) for small ε > 0.

The following result addresses this first question (it corresponds to Theorem 3.1.1 from Chapter 3).

Theorem 1.3.6 (Weak stability of the ball for the capacity). Let N ≥ 3. There exists ε0 = ε0(N) > 0
such that for any ε ∈ (0, ε0) balls of unit volume are the unique minimizers of (1.37). Equivalently, if B
is a ball of unit volume

∀K ∈ KN , P (K)− P (B) ≥ ε0
Cap(B)

(
Cap(K)− Cap(B)

Cap(K)

)
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This Theorem is thus the N ≥ 3 version of the two dimensional result obtained in [GNR18]. It is
called weak as the value ε0 is non-optimal (it is not even explicit), meaning that contrarily to Theorem
1.3.9 below our method does not enable to show that the ball is no longer a minimizer for ε > ε0 (even in
a local volume sense, i.e. for K ∈ KN such that |K∆B| ≪ 1).

As mentionned above and will be described in details further in the methods, the proof of Theorem
1.3.6 relies on a Fuglede-type argument which seems relevant independently of convexity issues. The result
is as follows (see Theorem 3.2.1 in Chapter 3).

If h ∈W 1,∞(∂B) we will denote Bh the Lipschitz perturbation of the ball by h given by

Bh := {tx(1 + h(x)), t ∈ [0, 1), x ∈ ∂B}. (1.42)

Theorem 1.3.7 (Fuglede-type computations for P + εCap−1: minimality for Lipschitz perturbations).
Let N ≥ 3. There exists η > 0 and ε0 > 0 such that for all h ∈W 1,∞(∂B) verifying ∥h∥W 1,∞(∂B) ≤ η with
|Bh| = |B| and such that Bh has barycenter at the origin, and for all ε ∈ (0, ε0), then

P (Bh) + εCap(Bh)
−1 ≥ P (B) + εCap(B)−1

with equality only if Bh = B.

This stability result for Lipschitz perturbations is an improvement of previous results from [GNR15,
Corollary 5.6], where the authors show the same result inside a class of C1,1 sets with curvature uniformly
bounded from above.

Methods.

1. Methods for Theorem 1.3.7. The idea is to prove some weak (IT)H1,W 1,∞ property for the
capacity, which consists in a second-order estimate of the increase in energy Cap(Bh)− Cap(B) for
some h ∈W 1,∞(∂B) with |Bh| = |B|. The main step for proving Theorem 1.3.7 thus consists in the
following Lemma.

Lemma 1.3.8 (Weak (IT)H1,W 1,∞ for the capacity). Let N ≥ 3. There exists CN > 0 such that if
h ∈W 1,∞(∂B) with Bh of volume |Bh| = |B| and ∥h∥L∞(∂B) ≤ 1/2 then

Cap(Bh)− Cap(B) ≤ CN∥h∥2H1(∂B).

This second-order estimate is a weak form (adaptated to the capacity) of the (IT) property from
Theorem 1.3.10. In fact, while Theorem 1.3.10 consists in estimating the third-order derivative, in
this Lemma we rather control from above the second derivative. Moreover it is non-optimal in terms
of the norm employed (the H1 norm), since as in the case of λ1 the second derivative of the capacity
is continuous for the H1/2 norm (for this fact see the proof of Theorem 2.8 in [DPMM21]). However
it allows every Lipschitz perturbation, which is a much bigger class than in other similar results, and
will drastically simplify the other steps of the proof of Theorem 1.3.7 (compare to [GNR18] where
the authors have to prove C1,1 regularity of optimal shapes). This H1 norm is indeed sufficient
to conclude in our case thanks to the presence of the perimeter functional in the minimization.
We believe that this result is quite interesting as it holds for low regularity assumptions on the
perturbation h.

Let us quickly describe how this lemma is obtained. Relying on the formulation of the capacity
(1.39) as an infimum, we build a good competitor in the form uB ◦ ϕh where uB is the solution of
(1.40) for the ball and ϕh(x) = x

1+h(x/|x|) is a natural Lipschitz change of variables sending Bh onto
B. Getting

Cap(Bh) ≤
ˆ
RN

|∇(uB ◦ ϕh)|2
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we then carefully estimate the energy of uB ◦ϕh to control it from above by Cap(B)+CN∥h∥2H1(∂B),
where we importantly use the fact that uB is radially symmetric while ϕh has the special structure
f(x)x with f : RN → RN being tangential. The construction of this competitor is a rather simple
idea, and we believe that it can be of use in various contexts for estimating energies defined as infima,
thus getting such (IT) properties for low regularity of the perturbation h. As a matter of fact, it
turns out that one can use the very same competitor in order to obtain a similar weak (IT)H1,W 1,∞

property for λ1 (see Proposition 3.2.5 (i)).

Theorem 1.3.7 then follows from combining the lemma with Fuglede’s computations in [Fug89], where
he proved that if Bh has unit volume and barycenter at the origin, and if ∥h∥W 1,∞(∂B) ≪ 1, then

P (Bh)− P (B) ≥ cN∥h∥2H1(∂B) (1.43)

for some explicit constant cN > 0.

2. Methods for Theorem 1.3.6. Theorem 1.3.6 is directly obtained from Theorem 1.3.7 by relying on
regularity properties of convex shapes, as the condition ∥h∥W 1,∞(∂B) ≪ 1 for a convex minimizer K∗

of (1.37) is obtained by letting ε→ 0. In fact, if Kε minimizes (1.37), the condition ε→ 0 enforces
P (Kε)− P (B) → 0. This classically ensures that the convex sets Kε (which are already Lipschitz)
converge to the ball in a Lipschitz sense, meaning that Kε = (Id+hενB)(B) with ∥hε∥W 1,∞(∂B) → 0.
Contrarily to the method we employ for proving Theorem 1.3.9, as convex shapes are already smooth
enough we do not need here to apply a regularization procedure in order to use the corresponding
Fuglede-type computations. This idea is similar to some results from [Fug89] (see also the associated
paragraph in Section 1.2.3).

Strong stability for inf
{
P (K)− cλ1(K), K ∈ KN , |K| = 1

}
.

Motivations. Due to the isoperimetric inequality (1.3) and the Faber-Krahn inequality (1.5), there is
a competition in (1.38). As such the minimization of P − cλ1 at fixed volume is ill-posed, even when
considered in a convexity constrained form as in (1.38) (the infimum is −∞, as one sees by looking at a
sequence of long thin rectangles of unit volume). On the other hand, even in a volume local sense, a ball
of unit volume is never a minimizer among all shapes, since one asymptotically decreases the energy by
perforating the ball by a small hole (see for instance [DL19, Proposition 6.1]). As a consequence, one has
to restrict to smaller classes in order to study stability issues related to P −λ1. This has been investigated
by many authors in various contexts, also as a means to prove quantitative inequalities in the form (1.11)
(which is equivalent to stability). Let us quote the main works in this direction.

• As a consequence of the Payne-Weinberger inequality proven in [PW61], one has weak stability (1.10)
of the ball for simply connected sets with bounded perimeter:

∀Ω ⊂ R2 open and simply connected with |Ω| = 1, P (Ω)− P (B) ≥ ε (λ1(Ω)− λ1(B)) (1.44)

provided P (Ω) ≤ C, for some ε = ε(C) > 0.

• In dimensions N ≥ 3 an analogous form of weak stability has been proven in [BNT10] using the
Brunn-Minkowski theory. Indeed, the result [BNT10, Theorem 1.1] implies the quantitative inequal-
ity

∀Ω ⊂ RN open and convex with |Ω| = 1, P (Ω)− P (B) ≥ ε (λ1(Ω)− λ1(B))

provided λ1(Ω), P (Ω) ≤ C, for some ε = ε(C) > 0.

• In [Nit14, Theorem 1.2] (see also [DL19, Proposition 5.5 (ii)]) the author performed Fuglede-type
computations and provided the optimal value c∗ such that stability holds for smooth perturbations
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of the ball, i.e. for the sets Bξ := (Id+ξ)(B) with ξ ∈ C∞c (RN ,RN ) and ∥ξ∥C∞ ≪ 1. The underlying
idea is to compute the interval of values c such that the second derivative of the functional P − cλ1
at the ball is coercive (we refer to the selection principle paragraph in Section 1.2.1 for more details
regarding the general idea).

Main results. As a consequence, a natural problem arising is then

(ii) Proving (local) minimality of the ball for P − cλ1 for c ∈ (0, c∗) for a suitable class of sets.

One of the main results of Chapter 3 is strong stability (1.16) of the ball for P − λ1 in the class of
convex sets (corresponding to Theorem 3.1.2).

Theorem 1.3.9 (Strong stability of the ball for λ1). Let N ≥ 2. Let ωN be the volume of a ball of radius
1, and pN := NωN , lN := j2N/2−1 be respectively the perimeter and first eigenvalue of a ball of radius 1

(jN/2−1 is the first zero of the Bessel function of the first kind of order N/2− 1). Set

c∗ :=
N(N + 1)pN

4lN (lN −N)ω
N+1
N

N

. (1.45)

Let B be a ball of unit volume.

• Let 0 < c < c∗. Then there exists δc > 0 such that

∀K ∈ KN , |K| = 1 with |K∆B| ≤ δc, (P − cλ1)(K) ≥ (P − cλ1)(B).

• Let c > c∗. There exists a sequence of smooth convex bodies (Kj,c)j∈N of unit volume for which
|Kj,c∆B| → 0 and

(P − cλ1)(Kj,c) < (P − cλ1)(B) for each j ∈ N.

This Theorem is sharp in the sense that it provides the optimal range of values of c for which B is a
L1-local minimizer of P − cλ1 among convex shapes of fixed volume. As will be detailed further in the
methods (see also the selection principle paragraph above in Section 1.2.1), we prove this Theorem using
the selection principle technique. As a consequence we prove as a first step Fuglede-type computations,
which we think are of independent interest. More precisely, we start by proving a second-order expansion of
λ1 for which we estimate the third-order term as the product of the H1/2 norm squared of the perturbation
by a modulus of continuity of the C1,α norm (in Theorem 1.3.10 below, corresponding to Theorem 3.3.5
in Chapter 3).

For any h ∈W 1,∞(∂B) and t ∈ [0, 1], we set λ1(t) := λ1(Bth) (Bth is defined by (1.42)).

Theorem 1.3.10 ((IT)H1/2,C1,α for λ1). Let N ≥ 2. There exists α ∈ (0, 1) such that the functional λ1
satisfies an (IT)H1/2,C1,α condition at the ball B, i.e. there exists δ > 0 and a modulus of continuity ωλ1

such that for any h ∈ C1,α(∂B) with ∥h∥C1,α(∂B) ≤ δ we have

∀t ∈ [0, 1], λ1(Bth) = λ1(B) + λ′1(0)t+
λ′′1(0)
2

t2 + ωλ1(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

Note that this result does not assume convexity of the set Bh, so that it holds for general perturbations
h ∈ C1,α(∂B). We will explain its meaning in more details further in the methods, but let us just highlight
the important features: λ′′1(0) (which depends on h) is a quadratic form in h which is naturally continuous
and coercive in H1/2 norm. As a consequence, this type of result gives an account of the smoothness
of h needed to control the remainder of this Taylor expansion by the second derivative (here C1,α). In
comparison with [Nit14, Theorem 1.2], and in general with results of third-order expansions for similar
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energies, our result is original in the sense that it goes below second derivatives spaces as C2,α or W 2,p

spaces, which are the usual spaces for which this kind of property is obtained (see for instance [Dam02]
or [AFM13]). Concerning specifically λ1, this result is an improvement of [DL19, Theorem 1.4], which
was itself an improvement of [Dam02] and [DP00], in which the authors prove a similar expansion with
respectively ∥h∥W 2,p(∂B) (for any p > N) and ∥h∥C2,α(∂B) instead. This refinement is motivated by the fact
that our regularity theory from Chapter 2 does not provide enough convergence for applying the latter
W 2,p result (see instead our convergence result, Theorem 1.3.12 below).

Relying on Theorem 1.3.10 we are able to reach local minimality in a C1,α neighborhood of the ball, thus
completing the first step of the selection principle strategy (see the corresponding paragraph in Section
1.2.1). The result is as follows (see Theorem 3.3.1).

Theorem 1.3.11 (Fuglede-type computations for P − cλ1: minimality in a C1,α neighborhood). Let
N ≥ 2. For c > 0 set Jc := P − cλ1 and let c∗ be given by (1.45). There exists α ∈ (0, 1) such that for
any 0 < c < c∗ there exists δc > 0 such that for each h ∈ C1,α(∂B) with |Bh| = |B| then

Jc(Bh) ≥ Jc(B)

with equality only if (up to translating) Bh = B.

Note again that this result holds for general C1,α perturbations h with no convexity assumption, so
that it is of interest independently of being an important step for proving Theorem 1.3.9.

With C1,α local minimality at hand we are now led to perform the second step of the selection principle,
which is the contradiction argument in itself. As described in details in Section 1.2.1, this is done by relying
on a regularity theory, which in our case is the regularity theory under convexity constraint for perturbed
isoperimetric problem laid out in Chapter 2. The following result thus importantly relies on Theorem
1.3.4 (see Theorem 3.4.2 and Corollary 3.4.3 for the corresponding results in Chapter 3).

Theorem 1.3.12 (Uniform regularity and convergence of q.m.p.c.c). Let N ≥ 2 and Λ > 0, ε > 0. Set
νB(x) := x for x ∈ RN .

(i) (Regularity) Let 0 < m < M . If K is a (Λ, ε)-q.m.p.c.c. verifying Bm(z) ⊂ K ⊂ BM (z) for some
z ∈ RN , then there exists h ∈ C1,1(∂B) such that (up to translation) K can be written

K = (Id + hνB)(B), with ∥h∥C1,1(∂B) ≤ C

with C = C(N,Λ, ε,m,M) > 0 only depending on the indicated parameters.

(ii) (Convergence) If (Kj) is a sequence of (Λ, ε)-q.m.p.c.c. such that |Kj∆B| → 0, then there exists a
sequence hj ∈ C1,1(∂B) such that

∀j ∈ N, Kj = (Id + hjνB)(B),

and for all α ∈ (0, 1) it holds (up to subsequence) hj → 0 in C1,α.

The second item is a useful convergence version of the regularity result. It is an analogue of a similar re-
sult for classical quasi-minimizers (1.23) in the usual setting: if a sequence (Ej) of (Λ, r0)-quasi-minimizers
converges to the ball in a L1 sense, then Ej is C1,1/2 for large j and it converges (up to subsequence) to
the ball in C1,α for each α ∈ (0, 1/2) (see for instance [AFM13, Theorem 4.2] for a rigorous statement).

Methods

1. Methods for Theorems 1.3.10 and 1.3.11. These two results constitute the first step of the
selection principle strategy described in details in Section 1.2.1. In the notations and vocabulary
of Section 1.2.1, Theorem 1.3.11 precisely corresponds to the Fuglede-type computations for the
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functional Jc (for the appropriate values of c) with the space X = C1,α, while Theorem 1.3.10 is the
main ingredient we use for achieving the computations. In fact, once Theorem 1.3.10 is proven, we
apply a general stability result from [DL19, Theorem 1.3] ensuring that local minimality is deduced
from the optimality conditions

∀h ∈ C1,α(∂B),
d

dt

∣∣∣∣
t=0

(Jc − µ| · |) (Bth) = 0,

∀h ∈ C1,α(∂B) with
ˆ
∂B
h = 0 and

ˆ
∂B
hx⃗ = 0⃗,

d2

dt2

∣∣∣∣
t=0

(Jc − µ| · |) (Bth) ≥ cN∥h∥2H1/2(∂B)
(1.46)

where µ is some appropriate Lagrange multiplier associated to the volume constraint, cN > 0 is
dimensional, and the conditions ˆ

∂B
h = 0,

ˆ
∂B
hx⃗ = 0⃗

take into account the volume constraint of the problem and the invariance by translation of the
functional Jc. The second-order optimality condition (1.46) comes from the computations of [Nit14]
(the more explicit expression (1.45) of the threshold c∗ was obtained in [DL19]).

To prove Theorem 1.3.10 we rely on an idea from [DL19]: we prove the stronger (IC)H1/2,C1,α

property
∀t ∈ [0, 1], |λ′′1(t)− λ′′1(0)| ≤ ωλ1(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

(1.47)

for some modulus of continuity ω : R+ → R independent of h ∈ C1,α(∂B), from which Theorem
1.3.10 follows by usual Taylor expansion with integral remainder. The authors [DL19] prove this
property with a W 2,p norm instead (see [DL19, Theorem 1.4]). We improve their result by refining
the analysis of certain estimates (see Lemma 3.3.7) and introducing new methods for others (see
Lemma 3.3.6).

2. Methods for Theorem 1.3.12. To prove the regularity statement (i) of Theorem 1.3.12, we rely
on the regularity results from Chapter 2. More specifically, we use the ideas from Theorem 1.3.4
where C1,1 regularity of (Λ, ε)-q.m.p.c.c. is obtained, but have to follow the constants in the proof in
order to show that this regularity only depends on Λ, ε and relevant geometric constants such as the
inradius and outradius of the convex set. Precisely, this step consists in estimating the C1,1 norm of
some g : Bx0 → R parametrizing a (Λ, ε)-q.m.p.c.c. K near a point x0 ∈ ∂K (see (1.19)), and to
show

∥g∥C1,1(Bx0 )
≤ C(N,Λ, ε,m,M).

From this quantified local cartesian C1,1 regularity we obtain the announced global spherical estimate
by standard arguments. Although this passage often comes as classical in the literature, it does not
seem to be so well referenced and we believe that a careful examination of all the arguments can be
of use. The convergence assertion (ii) in any C1,α norm then comes from a standard application of
the Arzela-Ascoli Theorem.

3. Methods for Theorem 1.3.9. Theorem 1.3.9 comes as a combination of Theorems 1.3.11 and
1.3.12 together with the selection principle technique from [CL12] (see Section 1.2.1). Supposing
that Theorem 1.3.9 does not hold first provides a sequence (Kj) such that

{
∀j ≥ 0, Jc(Kj) < Jc(B),

|Kj∆B| → 0.
(1.48)

We find a convex body D ∈ KN such that Kj ⊂ D, and then regularize each Kj into K̃j defined as
a minimizer of

inf
{
Jc(K) + µ ||K∆B| − |Kj∆B|| , |K| = |B|, K ⊂ D, K ∈ KN

}
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for some µ ≫ 1. We show that K̃j → B in the Hausdorff sense and still verifies the contradiction
hypothesis (1.48), while by relying on a refined version of Theorem 1.3.5 we prove that K̃j are (Λ, ε)-
quasi-minimizers under convexity constraint for some uniform Λ, ε. We therefore apply Theorem
1.3.12 to deduce that K̃j converges in any C1,α sense to the ball. Theorem 1.3.11 finally provides
the desired contradiction.

1.3.3 Contributions of Chapter 4: sharp quantitative stability for the Dirichlet spec-
trum near the ball

Main questions. In Chapter 4 we study stability of the ball for the Dirichlet spectrum. If Ω ⊂ RN is
an open set of finite measure, B is a ball of same measure and k ∈ N∗, the general question is the following

If λ1(Ω) is close to λ1(B), does it imply that λk(Ω) is close to λk(B)?

More precisely, the issue is to quantify the distance of the whole spectrum of a shape Ω to the spectrum
of the ball by the closeness of the fundamental frequency to the one of the ball. This raises the questions
of quantitative inequalities of the type

∀Ω ⊂ RN open with |Ω| = ωN , |λk(Ω)− λk(B)| ≤ CN,k (λ1(Ω)− λ1(B))γ (1.49)

for some exponent γ > 0 and constant CN,k > 0, for open sets Ω with λ1(Ω) ≤ M for a fixed constant
M > 0, where ωN > 0 is the measure of a ball of unit radius. Quantitative inequalities of this form
have been studied by several authors: it was proven respectively in [BC06] and [MP19] that for all open
Ω ⊂ RN with |Ω| = ωN

|λk(Ω)− λk(B)| ≤ CN,k (λ1(Ω)− λ1(B))1/80N , if λ1(Ω) is close to λ1(B)

−CN,k (λ1(Ω)− λ1(B))
1
6
−κ ≤ λk(Ω)− λk(B) ≤ CN,k (λ1(Ω)− λ1(B))

1
12

−κ , if λ1(Ω) is bounded

for each N ≥ 2, for some constant CN,k > 0, and each κ > 0 (for the second series of inequalities, the
authors have better but still non sharp exponents in the case N = 2). Our initial goal was to find the best
possible exponent γ > 0 in (1.49).

Examining the first order optimality condition, two distinct behaviours occur depending on the mul-
tiplicity of λk(B): either (i) λk(B) is simple, so that λk is differentiable in the sense of shape derivatives
at B (meaning that t 7→ λk

(
(Id + tξ)(B)

)
is differentiable for smooth vector fields ξ), the associated

eigenfunction is radial and the ball B is a critical point (under volume constraint) of λk, or (ii) λk(B)
is multiple and this is no longer the case. Since on the other hand B is a critical point for λ1 and the
second derivative of λ1 is coercive at the ball, one can expect that the optimal exponents in (1.49) are
1/2 for multiple eigenvalues and 1 for simple eigenvalues. Refining this analysis, when looking at a whole
cluster of eigenvalues (λk(B), . . . , λl(B)) (i.e. such that λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B)) the
ball is again a critical point of the sum

∑l
i=k λi (see for instance [LLdC06, Proposition 2.30]), and one

can therefore make the hypothesis that we recover γ = 1 as optimal exponent for quantitative inequalities
(1.49) with

∑l
i=k λi in place of λk. This latter general case would also account for the simple eigenvalue

case. Said differently, we expect that the ball is a minimizer of

{Ω ⊂ RN open, |Ω| = ωN} 7→ λ1(Ω) + δ

l∑

i=k

λi(Ω) (1.50)

provided δ ∈ R is sufficiently close to 0, both for δ > 0 and δ < 0.
Partly due to technical reasons explained further in the methods (but this will also imply new interesting

inequalities, see Corollary 1.3.16) we replace λ1 by T−1 in this minimization, where T (Ω) = −2E(Ω) is
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the torsional energy given by T (Ω) =
´
ΩwΩ with wΩ ∈ H1

0 (Ω) the torsion function verifying −∆wΩ = 1
in Ω. We thus rather study minimality of the ball for

{Ω ⊂ RN open, |Ω| = ωN} 7→ T (Ω)−1 + δ

l∑

i=k

λi(Ω). (1.51)

Minimality of the ball for this functional will imply minimality in (1.50), as the classical Kohler-Jobin
inequality states minimality of the ball for T (Ω)λ1(Ω)

N+2
2 among all open sets of measure ωN , thus

yielding for some CN > 0

T (Ω)−1 − T (B)−1 ≤ CNλ1(Ω)
N
2 (λ1(Ω)− λ1(B)) (1.52)

for the same Ω.
Let us conclude this paragraph by giving a slightly different perspective upon quantitative inequalities

(1.49). In the equivalent form (1.51), this enters the general framework of perturbed Faber-Krahn problems
of the form

inf
{
λ1(Ω) + εF

(
λ2(Ω), . . . , λk(Ω)

)
, Ω ⊂ RN open , |Ω| = ωN

}
(1.53)

where k ∈ N with k ≥ 2, for some F : RN−1 → R and ε > 0, and the question is whether the ball B is a
minimizer for ε ≪ 1 (i.e. whether it is weakly stable, see the corresponding paragraph in Section 1.2.1).
Note that this problem consists in minimizing λ1 + R for some energy R of same order than λ1 (on the
contrary to situations where R is a volume term).

Main results. We now present the main results of Chapter 4, together providing a complete picture
of sharp quantitative inequalities (1.49) (see Proposition 4.6.1 for sharpness of the exponents). The first
result holds for all eigenvalues λk, independently of λk(B) being simple or multiple. It is sharp in general
when λk(B) is multiple. From now on we consider an integer N ≥ 2 and set

A :=
{
Ω ⊂ RN open, |Ω| = ωN

}
.

The result is as follows (see Theorem 4.1.1).

Theorem 1.3.13. For every k ∈ N∗ there exists CN,k > 0 such that for Ω ∈ A,

|λk(Ω)− λk(B)| ≤ CN,kλ1(Ω)
1
2 |Ω| 12

(
T (Ω)−1 − T (B)−1

) 1
2 .

The inequality is written in a scaling-free form, thus holding for all open sets Ω with B = BΩ any ball
of same measure as Ω. The second main result is as follows (it corresponds to Theorem 4.1.2). It applies
to simple eigenvalues of the ball, the first occurences in two dimensions being given by k = 1, 6, 15, 30.

Theorem 1.3.14. For every k ∈ N∗ with λk(B) simple there exists CN,k > 0 such that for any open set
Ω ∈ A,

|λk(Ω)− λk(B)| ≤ CN,k|Ω|
(
T (Ω)−1 − T (B)−1

)

The last result treats the general case of the cluster of eigenvalues and generalizes Theorem 1.3.14 (see
Theorem 4.1.3).

Theorem 1.3.15. For every k, l ∈ N∗ with k ≤ l satisfying

λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B),

there exists CN,k > 0 such that for any open set Ω ∈ A,
∣∣∣∣∣

l∑

i=k

[
λi(Ω)− λi(B)

]∣∣∣∣∣ ≤ CN,k|Ω|
(
T (Ω)−1 − T (B)−1

)
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As a consequence of Theorem 1.3.14, we are able to answer a conjecture raised in [vdBBP21]. Indeed,
taking k = 1, our result specializes into a reverse form of the Kohler-Jobin inequality (1.52), giving

T (Ω)−1 − T (B)−1 ≥ cN (λ1(Ω)− λ1(B))

for all Ω ∈ A and some cN > 0. It gives as a corollary a full reverse Kohler-Jobin inequality, stated in
next result (see Corollary 4.1.5 in Chapter 4).

Corollary 1.3.16. There exists pN > 1 such that for any p > pN , Ω ∈ A 7→ T (Ω)λ1(Ω)
1
p is maximal on

the ball.

This result was obtained for C2,α perturbations of the ball by a Fuglede-type argument in [BBGLB22,
Theorem 6.2], and we prove it here in the class A.

Finally, we obtain as an application of Theorem 1.3.15 a result about general functionals of eigenvalues
F (λ1, . . . , λk) where F is symmetric in its arguments when λi(B) = λj(B). The precise result is as follows
(see Theorem 4.1.4).

Theorem 1.3.17. Let k ∈ N∗ such that λk(B) < λk+1(B). Let F ∈ C2((R∗
+)

k,R) be verifying

|F (λ)| ≤ C(1 + |λ|) for some C > 0

∀i, j ∈ {1, . . . , k} with λi(B) = λj(B),
∂F

∂λi
=
∂F

∂λj
at (λ1(B), . . . , λk(B))

Then there exists δF > 0 such that the functional

Ω ∈ A 7→ T (Ω)−1 + δF (λ1(Ω), . . . , λk(Ω))

is minimal on the ball for any δ ∈ R such that |δ| < δF .

Methods. Let us now decribe separately the methods we employed to prove the results.

Methods for Theorem 1.3.13. To prove Theorem 1.3.13 we rely on several distinct ideas. First, using
a result of [Buc03, Theorem 3.4] one can always control the increase in eigenvalues of two nested open sets
ω ⊂ Ω by the increase in torsional energy, thus giving for some CN,k > 0

1

λk(Ω)
− 1

λk(Ω ∩B)
≤ CN,kλ1(Ω)

N
2 [T (Ω)− T (Ω ∩B)] .

By using wΩ ∧wB as a test function for the energy T (Ω∩B), we then prove the estimate (which we think
is of interest in itself)

T (Ω)− T (Ω ∩B) ≤ CN |Ω \B|
for some other constant CN > 0, valid for any Ω ∈ A (in Lemma 4.3.2). Combining these two estimates
with the sharp quantitative Saint-Venant inequality we arrive at the inequality from Theorem 1.3.13.

Methods for Theorem 1.3.14. Let us remind that showing the quantitative inequalities from Theorem
1.3.14 amounts to proving that B minimizes

Ω ∈ A 7→ T−1(Ω) + δλk(Ω) (1.54)

for sufficiently small δ ∈ R. The proof of this result is the first involved and technical part of Chapter 4,
as it goes through regularity theory for vectorial-type free boundary problems. This comes from the fact
that the expected optimality condition for this minimization is

(∂νw)
2 + T (Ω∗)2δ(∂νuk)

2 = Q over ∂Ω∗ (1.55)
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for some Q = Q(δ) > 0 (with Q(δ)→ 1
n2 as δ → 0), where w and uk are respectively the torsion function

and the kth eigenfunction of a minimizer Ω∗. This is seen as a vectorial version of the free boundary
condition (∂νu)

2 = 1 associated to the usual one-phase Bernoulli problem pioneered in [AC81]. When
δ > 0, this type of free boundary condition was studied by [KL18], [MTV17] and [CSY18] in the form

n∑

i=1

ai(∂νui)
2 = 1 over ∂Ω∗

for some ai ≥ 0. On the other hand, for δ < 0 the condition (1.55) does not seem to have been studied in
the literature. Instead, we interpret (1.57) in the framework of [MTV21], where the authors investigate
the boundary condition

(∂νv1)(∂νv2) = Q over ∂Ω∗ (1.56)

for positive functions v1, v2. Setting the phases v1 := w− T (Ω)|δ|1/2uk and v2 := w+ T (Ω)|δ|1/2uk in the
regime |δ| → 0, we expect the condition (∂νv1)(∂νv2) = Q on the free boundary ∂Ω∗.

Let us give a final general comment before going into the steps of the proof: we take advantage of the
fact that the torsion T−1 dominates λk in the minimization (1.54) in the regime δ → 0, relying on the fact
that the functions w and uk verify that uk/w is uniformly controlled from above (see Lemma 4.2.2). This
technical aspect explains the replacing of λ1 by T−1, thus passing from the minimization of λ1 + δλk to
the minimization of T−1 + δλk.

The general strategy goes in the four following successive steps, which we first state as such before
describing them in details below. We proceed as follows.

1. We start by proving existence of a minimizer Ω of (1.54) for |δ| ≪ 1 inside the class of quasi-open
sets of measure ωN (in Proposition 4.4.5).

2. We then prove first regularity properties of minimizers: any minimizer Ω of (1.54) is open, bounded
with controlled diameter, the associated torsion function wΩ and kth eigenfunction uk,Ω are Lipschitz
continuous with uniform Lipschitz norm. Moreover wΩ is non-degenerate, meaning that is has at
least linear growth near the free boundary ∂Ω = ∂{wΩ > 0} (see Lemma 4.4.6 for these properties).
Furthermore minimizers Ω verify (up to translation) that Ω → B in a volume sense when |δ| → 0
(in Lemma 4.4.3).

3. We first infer uniform C1,α regularity of minimizers (in Lemma 4.4.14), and uniform C2,α regularity
(in Lemma 4.4.15).

4. We perform a Fuglede-type argument, by proving that the ball is a local minimum of (1.54) among
C2,α perturbations (in Proposition 4.4.17).

The conclusion of Theorem 1.3.14 then comes as a combination of Steps 3 and 4.
Let us detail how each step is obtained and highlight the difficulties associated. Once existence for

(1.54) is ensured by Step 1, we will call Ω a minimizer.

1. The difficulties for deriving existence are mostly linked to the case δ < 0, since the case δ > 0 enjoys
the useful structural condition that the studied functional (1.54) is nonincreasing for inclusion. In
this latter case, a combination of the classical existence result from [BDM93b] and concentration-
compactness arguments from [Buc00] would enable to proceed more directly. In the case δ < 0
on the other hand, we also rely on concentration-compactness methods from [Buc00], but have to
exclude some homogenization behaviour of the minimizing sequences (prevented for |δ| ≪ 1) by
using capacitary measures.
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2. Lipschitz regularity is proven for wΩ, from which Lipschitz regularity of the kth eigenfunction uk,Ω
directly follows from the fact that wΩ dominates uk,Ω. This is obtained by techniques derived from
[AC81] (see [BHP05]): one proves that Ω is a minimizer of T−1 up to a volume term for outward
perturbation Ω̃ ⊃ Ω (with |Ω̃ \ Ω| ≤ 2)

T (Ω)−1 ≤ T (Ω̃)−1 + ΛN |Ω̃ \ Ω|.

For non-degeneracy, we employ again methods introduced in [AC81]: in the fashion of [Buc12,
Lemma 1], one proves that Ω is a minimizer of T−1 up to a volume term for inward perturbation
Ω̃ ⊂ Ω (with |Ω̃| ≥ 1

2 |Ω|):
T (Ω)−1 + ΛN |Ω \ Ω̃| ≤ T (Ω̃)−1.

3. This is the most technical part of the proof of Theorem 1.3.14. The general idea is to prove that
(w, uk) := (wΩ, uk,Ω) is a viscosity solution of





−∆w = 1, −∆uk = λkuk in Ω

w = uk = 0 over ∂Ω
(∂νw)

2 + T (Ω)2δ(∂νuk)
2 = Q

(1.57)

for some Q > 0, where the free boundary condition translates the fact that Ω minimizes (1.54).
Suppose for a moment that this is achieved. We then obtain C1,α regularity around flat points of
the free boundary ∂Ω = ∂{w > 0} using [KL18] in the case δ > 0, and [MTV21] in the case δ < 0,
where in the latter case we interpret the free boundary condition from (1.57) as (1.56).

The proof of (1.57) is rather technical. The boundary condition in the viscosity sense is obtained
by using a blow-up argument which we can describe as follows: one proves the existence of blow-ups
α(x · ν)+ and β(x · ν)+ (α > 0 and β ∈ R) of respectively w and uk at any contact point of the free
boundary z ∈ ∂Ω, by which we mean that there exists an interior ball Bz+Rν,R ⊂ Ω or an exterior
ball Bz−Rν,R ⊂ RN \ Ω with (

w(z + rx)

r
,
uk(z + rx)

r

)

converging locally uniformly (up to subsequence) towards α(x · ν)+ and β(x · ν)+ as r → 0. Fur-
thermore, the gradients (α, β) verify the desired boundary condition, i.e. α2 + T (Ω)2δβ2 = Q. The
existence of such blow-ups is obtained following techniques from [CS05], by relying on harmonic
functions arguments and Harnack inequality. In the case δ < 0 (and only in this case) we use the
optimality of Ω in order to exclude the possibility of a blow-up w = α+(x · ν)+ on {x · ν > 0} and
w = α−(x · ν)− on {x · ν < 0}, for some α± > 0. The optimality condition over (α, β) is then
obtained by performing a blow-up argument inside the shape derivative of T−1+δλk at Ω, for which
we rely on low regularity expressions of shape derivatives of T and λk.

The passage from C1,α to C2,α of Ω is obtained by partial hodograph transform techniques, first
introduced in [KN77].

4. The last step relies on the following coercivity property for the torsion: for each Ω = Bh where

Bh := {tx(1 + h(x)), t ∈ [0, 1), x ∈ ∂B} (1.58)

for some h ∈ C2,α(∂B) with ∥h∥C2,α(∂B) ≪ 1, |Bh| = |B| and Bh having barycenter at the origin, it
holds

T (B)− T (Bh) ≥ cN∥h∥2H1/2(∂B)

(proven in [BDPV15], see also [Dam02]). The main step for proving minimality of B for (1.54)
among C2,α perturbations thus consists in estimating

|λk(Bh)− λk(B)| ≤ CN,k∥h∥2H1/2(∂B)
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for some CN,k > 0 whenever h ∈ C2,α(∂B) with ∥h∥C2,α(∂B) ≪ 1 and |Bh| = |B| (in Proposition
4.4.19). This can be seen as some kind of weak (IT)H1/2,C2,α property (compare with the weak (IT)
property from Lemma 1.3.8), consisting in a second-order estimate of λk(Bh)− λk(B). The idea is
to bound from above the second derivative of λk at a set Bth (t ∈ [0, 1]) by the H1/2 norm of the
perturbation h.

Methods for Theorem 1.3.15. We follow the same four steps strategy as for proving Theorem 1.3.14,
the underlying idea being again that the ball is a critical point of

∑l
i=k λi. We only detail steps 3 and 4

as the two first are completely analogous. This time we call Ω a minimizer of (1.51).

3. Going from C1,α to higher regularity is obtained likewise. As for obtaining C1,α estimates, instead of
(1.55) this time we are rather led to study the free boundary condition

(∂νw)
2 + T (Ω)2δ

l∑

i=k

(∂νui)
2 = Q over ∂Ω∗

for δ ∈ R, |δ| ≪ 1, which w and the successive eigenfunctions uk, . . . , ul are expected to verify. While
in the case δ > 0 we can still apply the results from [KL18] about viscosity solutions (u1, . . . , um) to





−∆ui = fi, in Ω, for i ∈ {1, . . . ,m},
ui = 0 over ∂Ω, for i ∈ {1, . . . ,m},∑m

i=1 ai(∂νui)
2 = Q

(1.59)

for positive numbers ai, on the other hand, in the case δ < 0 we do not have at hand a result of the
type [MTV21] for nonnegative flat solution (u1, u1, . . . , um, um) of





−∆ui = fi, −∆ui = fi in Ω, for i ∈ {1, . . . ,m},
ui = ui = 0 over ∂Ω, for i ∈ {1, . . . ,m},∑m

i=1(∂νui)(∂νui) = Q

for Ω = {ui > 0} = {ui > 0} when m ≥ 2. We thus build a framework containing both the cases
δ > 0 and δ < 0: we introduce a space linked to the viscosity solutions (v, v1, v1, . . . , vm, vm) of





−∆v = f, −∆vi = fi, −∆vi = fi in Ω, for i ∈ {1, . . . ,m},
vi = vi = 0 over ∂Ω, for i ∈ {1, . . . ,m},
α2 +

∑m
i=1

αi
2+αi

2

2 = 1 if δ > 0, α2 +
∑m

i=1 αiαi = 1 if δ < 0,

(1.60)

where the free boundary condition is again supposed to hold at any contact point z ∈ ∂Ω, for some
blow-ups (α(x · ν)+, α1(x · ν)+, α1(x · ν)+, . . . , αm(x · ν)+, αm(x · ν)+) (in Definition 4.5.7). We then
prove in the same spirit as in Theorem 1.3.14 that some phases (w, v1, v1, . . . , vm, vm) with the vi
involving a combination of w and the ui verify (1.60) in all cases δ > 0 and δ < 0.

We therefore work on viscosity solution to (1.60), and aim at proving C1,α regularity of Ω for flat
solutions. We follow the general improvement of flatness argument strategy introduced in [DS11].
We thus prove first a partial Harnack inequality at fixed scale for flat solutions (v, v1, v1, . . . , vm, vm)
of (1.60) (in Proposition 4.5.12). Let us give a rough idea of the argument in the case where there is
only one phase u: one proves that if u is ε-flat in the direction e ∈ SN−1 around a point z ∈ ∂{u > 0}
(set to be z = 0 here), meaning that there exists |a|, |b| ≤ ε with

0 ≤b− a ≤ ε
(x · e+ a)+ ≤u(x) ≤ (x · e+ b)+ in B1,

|∆u| < ε2 in B1 ∩ {v > 0}
(∂νu)

2 = 1 in ∂{u > 0}
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then u is κε-flat (for some universal κ ∈ (0, 1)) in the same direction e, in a smaller ball BrN with
universal radius rN > 0. This partial Harnack inequality is obtained by harmonic functions argu-
ments, where in our case an additional difficulty stems from the fact that the problem is multiphase.
For δ > 0 we derive it by following the arguments of [KL18] while paying attention to the constants,
and for δ < 0 we use as in [MTV21] the observation that (v,

√
v1v1, . . . ,

√
vmvm) is a supersolution

of a problem of the type (1.59).

A second step consists in obtaining the so-called improvement of flatness for sufficiently flat solutions
(in Proposition 4.5.15): there exists universal τ ∈ (0, 1), ε > 0 such that if u is ε-flat in the direction
e ∈ SN−1 around z := 0 ∈ ∂{u > 0} with ε < ε, then uτ := u(τx)/τ is ε/2-flat in a direction
e′ ∈ SN−1 with |e′−e| ≤ CNε. This is obtained by a contradiction argument, thus letting ε→ 0 and
examining the equations verified at the limit by the functions uε := u−x·e

ε . Relying on the partial
Harnack inequality, one proves convergence (up to subsequence) of uε in a Hölder sense towards a
function U , first proven to be harmonic in the upper ball B1 ∩ {x · e > 0} and then extended to a
harmonic function inside the whole ballB1 thanks to a boundary condition ∂eU = 0 onB1∩{x·e = 0}.
Standard growth properties of harmonic functions then provide a contradiction. Unlike in [DS11]
and as in [MTV21] and [KL18], we face here the additional difficulty of having to handle several
phases. In comparison with these three works, one of the novelties of our improvement of flatness
result concerns uniform estimates in terms of the multiplicity m. In fact, we also examine the case
m → ∞ in the contradiction argument, and treat it by finding a way of reordering the functions
(ui)ε :=

ui−x·e
ε , (ui)ε :=

ui−x·e
ε in order to ensure uniform convergence of the graphs {(x, (ui)ε(x))}.

4. The strategy is similar to the simple eigenvalue case. Here instead we prove the second-order estimate
(in Proposition 4.5.20) ∣∣∣∣∣

l∑

i=k

(λi(Bh)− λi(B))

∣∣∣∣∣ ≤ CN,k∥h∥2H1/2(∂B)

for some CN,k > 0, whenever h ∈ C2,α(∂B) with ∥h∥C2,α(∂B) ≪ 1 and |Bh| = |B|. The sum
∑l

i=k λi
being smooth as a symmetric function of the eigenvalues (see [LLdC06, Theorem 2.6]), this is obtained
again by bounding from above the second derivative of

∑l
i=k λi at a set Bth (t ∈ [0, 1]). However,

we face here a difficulty specific to the fact that the eigenvalues are mutliple, which prevents from
differentiating them individually. This is dealt with by making use of the idea that eigenvalues can
be followed analytically in one variable, meaning that one can reorder (λk(Bt), . . . , λl(Bt)) around
t = 0 (with the notation Bt := Bth for t ∈ [0, 1]) so that each reordered eigenvalue λ(Bt) is analytic
in t (see Lemma 4.4.18). We thus differentiate individually the eigenvalues λ(Bt) twice and estimate
the second-order derivative of the sum (which is left unchanged by the reordering). Here again we
cannot estimate individually the λ′′(Bt), due to the fact that some of the terms appearing in λ′′(Bt)
are implicitly defined because of the reordering (this is the case for instance for the derivatives of
the eigenfunctions). We prove on the contrary that these implicit terms vanish in the sum.

1.4 Open problem: strong stability of the ball in more general classes

In Theorem 1.3.9 we prove strong stability of the ball for P − cλ1 among convex shapes in any dimension
N ≥ 2, that is we find a threshold c∗ > 0 such that (i) the ball is a L1-local minimum among convex sets
for c ∈ (0, c∗) and (ii) the ball is not a L1-local minimum among convex sets for c ∈ (c∗,∞). One can
wonder about the optimal (or at least more general) classes for which this strong stability result could
hold. This question is supported by the following weak stability results: for N = 2, the ball is L1-locally
minimal among simply connected sets for P − ελ1 and ε≪ 1 (thanks to the Payne-Weinberger inequality,
see (1.44)); for N ≥ 3, the ball is L1-locally minimal among Lipschitz perturbations of the ball P − ελ1
and ε≪ 1 (see further Proposition 3.2.4). On the other hand the ball is never locally minimal for simply
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connected sets in dimensions N ≥ 3 (see [DL19, Proposition 6.1]). Hence, to sum up the available results
concerning the local minimality of the ball for P − cλ1 are the following

1. For N = 2: weak stability among simply connected sets, strong stability among convex sets.

2. For N ≥ 3: weak stability among Lipschitz sets, strong stability among convex sets.

This raises the two following interesting questions:

1. For N = 2: is the ball a L1-local minimizer among simply connected sets of P − cλ1 for c ∈ (0, c∗)?

2. For N ≥ 3: is the ball a L1-local minimizer among Lipschitz sets of P − cλ1 for c ∈ (0, c∗)?

A possible strategy to tackle these two problems would be to try to apply the same principle as the
one we followed for proving strong stability among convex sets, that is by relying on (i) minimality of the
ball for P − cλ1 among sufficiently smooth perturbations and (ii) a regularity theory for quasi-minimizers
enabling to prove sufficient regularity of minimizers of P − cλ1. Let us mention that we prove step (i)
for C1,α perturbations of the ball in Theorem 1.3.11. On the other hand, proving step (ii) would require
substantial input, as it would demand to build a regularity theory of quasi-minimizers of the perimeter
among simply connected sets for N = 2, and among Lipschitz sets for N ≥ 3. The possiblity of such
regularity theories seems to us to have interest in itself.
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Chapter 2

Regularity in shape optimization under
convexity constraint

This Chapter is a reprint of the paper Regularity in shape optimization under convexity constraint [LP23],
written by the author of this thesis in collaboration with J. Lamboley, published in "Calc. Var. Partial
Differential Equations".

Abstract

This paper is concerned with the regularity of shape optimizers of a class of isoperimetric problems under
convexity constraint. We prove that minimizers of the sum of the perimeter and a perturbative term,
among convex shapes, are C1,1-regular. To that end, we define a notion of quasi-minimizer fitted to the
convexity context and show that any such quasi-minimizer is C1,1-regular. The proof relies on a cutting
procedure which was introduced to prove similar regularity results in the calculus of variations context.
Using a penalization method we are able to treat a volume constraint, showing the same regularity in this
case. We go through some examples taken from PDE theory, that is when the perturbative term is of PDE
type, and prove that a large class of such examples fit into our C1,1-regularity result. Finally we provide
a counter-example showing that we cannot expect higher regularity in general.

2.1 Introduction

In this paper, we study the regularity properties of minimizers in shape optimization under convexity
constraint for a large class of problems of isoperimetric type.

In the classical framework of shape optimization (classical in the sense that there is no convexity
constraint), the question of regularity has a long-standing history, with strong interactions with the fields
of geometric measure theory and free boundary problems. More specifically, the study of various problems
involving the classical De-Giorgi perimeter P leads to the notion of quasi-minimizer of the perimeter (see
(2.9)) which is very useful to prove regularity for many problems of the form

min
{
P (Ω) +R(Ω), Ω ∈ A

}
(2.1)

Here R is considered to be a perturbative term, and A is a given class of measurable sets, for example the
class of sets of given volume V0, or the class of sets included in a fixed box D, or a mix of both:

A1 = {Ω ⊂ RN , |Ω| = V0}, A2 = {Ω ⊂ RN ,Ω ⊂ D}, A3 = {Ω ⊂ RN , Ω ⊂ D, |Ω| = V0}

though many other examples are possible (note that |Ω| denotes the volume of Ω). It would be impossible
to refer to every work in this direction, but we refer to [Mag12] for a nice introduction to the concept of
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quasi-minimizer of the perimeter and for several examples, and to [SZ97, ACKS01, Lan07, KM14, DPV14,
DPLPV18, Peg21] for a short sample of applications.

In this paper, we are interested in a similar class of problems, where we add a convexity assumption
to the admissible shapes. More precisely, we replace (2.1) by

min
{
P (K) +R(K), K ∈ A ∩ KN

}
(2.2)

where KN denotes the class of convex bodies of RN (convex compact sets with nonempty interior). As
before, P (K) denotes the perimeter of K, and as K is a convex body (and therefore is a Lipschitz set) we
have P (K) = HN−1(∂K) where HN−1 denotes the (N − 1)-dimensional Hausdorff measure in RN . Again
R is a shape functional that is considered as a perturbative term, and we will make assumptions on R so
that the term driving the regularity of optimal shapes is the perimeter term.

Before going into more details about our motivations and our strategy, let us start by giving a conse-
quence of the three main results of the paper that are Theorems 2.2.3, 2.2.10 and 2.3.2:

Theorem 2.1.1. Let n ∈ N∗, N ≥ 2, F : (0,+∞)× (0,+∞)× (0,+∞)n × Rn
+ → R be locally Lipschitz.

Let R : KN → R be defined by the formula

R(K) := F
(
|K|, τ(K), λ1(K), . . . , λn(K), µ1(K), . . . , µn(K)

)
(2.3)

where τ(K) is the torsional rigidity of K, λ1(K), . . . , λn(K) are the n first Dirichlet eigenvalues of K,
and µ1(K), . . . , µn(K) the n first Neumann eigenvalues of K (see Section 2.3 for precise definitions).

(i) Let D ⊂ RN be measurable (non-necessarily with |D| <∞). Then any solution to the minimization

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D

}

is of class C1,1.

(ii) Let D ∈ KN and 0 < V0 < |D|. Then any solution to the minimization

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D, |K| = V0

}

is of class C1,1.

In other words, we have identified a large class of functions R so that solutions to (2.2) are smooth up
to the C1,1-regularity. We refer to Section 2.3.3 for an example of a shape optimization problem of the
kind (2.2) leading to an optimal shape that is a stadium, and is therefore not C2, thus showing that our
result is sharp in general. Note that existence is not always ensured for the two problems above (taking
for instance R = 0), and we thus prove in Theorem 2.3.4 the existence of solutions under various general
hypotheses on R and D.

Motivations: Let us give a few motivations for such a result: shape optimization under convexity
constraint goes back to the study of Newton’s problem of the body of minimal resistance, that can be
formulated as

min

{
J(u) =

ˆ
D

dx

1 + |∇u|2 , u : D → [−M, 0] convex
}

(2.4)

where D is a smooth convex set in R2, and M > 0 is given. In this formulation, the graph of u represents
the form of a 3-dimensional convex body, and the energy J models the resistance experienced by the body
as it moves through a homogeneous fluid with constant velocity in the direction orthogonal to D (in the
negative direction in this formulation). The constant M gives a maximal height for the body under study.
We refer to [BB05, LRP01a] for more details about this problem, but it is worth noticing that while one
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can prove that this problem admits a solution (despite the energy not having a convexity property in |∇u|),
even when D is a disk the solutions are not explicitly known (see [LWZ22]) and even their regularity is
not known. It is nevertheless understood that the problem contains a non-convexity structure and that
solutions cannot be locally smooth, see for example [LRP01a]. Other models with various backgrounds
may also involve a convexity constraint, see for example [RC98] with a model in economics.

In the framework of shape optimization, it is interesting to notice that (2.1) might have optimizers that
are convex (for example the euclidean ball), and in this case the study of (2.2) is not relevant. Nevertheless,
in many situations, (2.1) may lead to non-convex solutions or even absence of an optimal shape. Let us
give two examples of these situations:

• in [DPV14] (see also [DPLPV18]), the authors study (as in Theorem 2.1.1, λk denotes the kth-
Dirichlet eigenvalue of the Laplace operator in Ω):

min
{
P (Ω) + cλk(Ω), Ω ⊂ RN

}

for k ∈ N∗ and c > 0, and show that optimal shapes are smooth up to a residual set of co-
dimension less than 8 (see [DPV14, Remark 3.6] where it is shown that this problem is equivalent to
a constrained formulation). When N = 2 we have (P + cλk)(Conv(Ω)) ≤ (P + cλk)(Ω) so optimal
shapes are necessarily convex, but when N ≥ 3 this argument is not valid anymore. In [BO16, Figure
2] some numerical computations of optimal shapes are done when N = 3, and one can observe that
for some values of k the optimal shapes are not convex, so that the same problem with a convexity
constraint is of interest (see Section 2.3.2 for more details about this problem).

• the famous Gamow’s liquid drop model leads to the shape optimization problem

inf

{
P (Ω) +

ˆ
Ω

ˆ
Ω

dxdy

|x− y| , Ω ⊂ R3, |Ω| = V0

}
(2.5)

where V0 ∈ (0,+∞). It is conjectured that there is a threshold V ∗ > 0 such that the ball is a
solution if V0 < V ∗, and that there is no solution if V0 > V ∗, see [KM14, Jul14, LO14] for partial
results in this direction. Let us note that the non-existence phenomenon (which is proven for V0
large enough, see [LO14]) is expected to be due to the splitting of the mass into pieces, and the
convexity constraint is thus violated for such minimizing sequences. It is therefore interesting to
wonder about a version of (2.5) within the class of convex bodies. In general, as it is easier to get
existence within the class of convex bodies (see for example Theorem 2.3.4) hence many problems
of the type (2.2) will be of interest if (2.1) has no solution.

Let us also quote two areas of applications to motivate our regularity results:

• in the study of Blaschke-Santaló diagrams for (P, λ1, | · |) in the class of convex planar sets (see
[FL21]), that is to say describing the set

{
(x, y) ∈ R2, ∃K ∈ K2, P (K) = x, λ1(K) = y, |K| = 1

}

The authors of [FL21] use some regularity theory in shape optimization under convexity constraint
in the proof of their main result [FL21, Theorem 1.2]. Similar results in higher dimension (replacing
K2 with KN for N ≥ 3) are still open problems, and we believe that the tools we develop in this
paper can be of help for further investigation in this direction.

• since the work of Cicalese and Leonardi [CL12], it is known that regularity theory can help to prove
a quantitative version of classical isoperimetric inequalities, see also [BDPV15] where this strategy
is the only one (we know of) giving the optimal exponent. It will be worth investigating if one could
get new quantitative isoperimetric inequalities in the class of convex sets thanks to our regularity
results.
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State of the art about regularity theory with convexity constraint: In the framework of Calculus
of variations, one can wonder about the regularity properties of solutions to the following generalization
of (2.4):

min

{ˆ
Ω
L(x, u(x),∇u(x))dx, u ∈ X, u convex

}
(2.6)

where Ω is a convex set in RN , L : Ω×R×RN → R is a Lagrangian and X is a suitable functional space,
possibly including boundary constraints. In [Car02] the author obtains in particular a C1-regularity result
when L is locally uniformly convex in the third variable, and when N = 1. In [CLR01], the authors
study the same case (L locally uniformly convex), but this time when N ≥ 1, and X includes a Dirichlet
boundary condition: they identify conditions on Ω, L and X so that solutions are C1.

These results were not sharp in general, therefore Caffarelli, Carlier and Lions studied in [CCL13]1 the
model case

min

{
J(u) :=

1

2

ˆ
Ω
|∇u|2dx+

ˆ
Ω
fudx, u ∈ H1(Ω), u convex

}
, (2.7)

and proved that a minimizer u∗ is locally C1,1−N/p in Ω if f+ ∈ Lp(Ω) with p > N , and that this regularity
is optimal.

In the framework of shape optimization, D. Bucur proved in [Buc03] a C1-regularity result for shape
optimization problems with convexity constraint, for functionals involving λk and the volume; this result
can be applied for example to

min
{
λk(K), |K| = V0, K ∈ KN

}
.

A sharp regularity result for this problem is still an open problem, though it is expected that optimal
shapes are C1,1/2 (and that this result is sharp when k = 2), see [Lam11].

For problems of the kind (2.2), [LNP12] shows that under some assumption on R (see Remark 2.2.6)
and assuming N = 2, solutions must be C1,1. Comparing it to Theorem 2.1.1 above, this result applies to
R(K) = F (|K|, λ1(K), τ(K)). Therefore, the results we show in the current paper are a generalization of
[LNP12, Theorem 1] to the higher-dimensional case, and to a wider class of functional as well.

Finally, in [GNR18] we can find another C1,1-regularity result for solutions to the following 2-dimensional
version of a model for charged liquid drop at an equilibrium state:

min
{
P (K) + I(K), K ∈ K2, |K| = V0

}

where I(K) = inf

{ˆ
K×K

log

(
1

|x− y|

)
dµ(x)dµ(y), µ ∈ P(K)

}
(2.8)

where P(K) denotes the set of probabily measures supported on K. Here I(K) can be seen as a capacity
term, and it is not so far from the functionals involved in (2.3), though it is related to a PDE in the
exterior of K. Our result does not apply directly to (2.8) or to its higher-dimensional generalizations, but
it will be the subject of future work to adapt our tools to this context.

Strategy of proof and plan of the paper: When dealing with regularity theory for (2.2) or (2.6), we
already have a mild regularity property, namely that solutions are necessarily locally Lipschitz. This is a
big difference with (2.1) where the most difficult part is to prove that solutions are a bit regular, further
regularity being obtained usually through an Euler-Lagrange optimality condition.

In [Car02] as well as in [LNP12], the proofs of the regularity results also rely on the writing and the use
of an Euler-Lagrange equation, taking into account the convexity constraint, which involves a Lagrange

1At the time we are writing this paper, the work [CCL13] is not published. Let us say here that we will use several ideas
from this paper, though we will reproduce them for the convenience of the reader. We try to make it as clear as possible
when these ideas are used in our proofs. We warmly thank G. Carlier for providing us a version of [CCL13].
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multiplier (infinitely dimensional). It does not seem easy to adapt this method to higher dimensional
cases.

In [Buc03, CLR01, CCL13, GNR18], the method is rather different, and consists in building test
functions or shapes using a cutting procedure.

In this paper, we obtain three main results, which together lead to the proof of Theorem 2.1.1:

1. in the spirit of what is done without convexity constraint, we introduce a new notion of quasi-
minimizer of the perimeter under convexity constraint (see Definition 2.2.1). We show in Theorem
2.2.3 that these sets are C1,1 adapting the ideas of [CCL13]. A first important observation is that
when writing the perimeter term as a function on the graph, we obtain a Lagrangian of the form´
D L(∇u)dx with a uniform convexity property, which explains that the ideas for (2.7) can be adapted

to this case. However, the main difficulty here is to be careful on how a convex body can be seen
as the graph of a convex function: it is not possible to have a local point of view, because this
would lead to constraints that are too restrictive (see Remark 2.2.2). As an application, we show
in Corollary 2.2.4 that if R satisfies a suitable Lipschitz property with respect to the volume metric
(see (2.13)), then solutions to (2.2) (a priori with no other constraints) are quasi-minimizer of the
perimeter under convexity constraint, and are therefore C1,1. These results are described in Section
2.2.1.

2. then in Section 2.2.2, and in the same spirit with what is done in the classical case (without convexity
constraint, see [Tam88] and [DPLPV18] for example), we show how one can handle volume constraint
(see Theorem 2.2.10). To that end we show that the volume constraint can be penalized using
Minkowski sums (see Lemma 2.2.11).

3. finally in Section 2.3 we focus on examples, and in particular we show that the functional (2.3)
satisfies a Lipschitz property with respect to the volume metric, so that Theorem 2.2.3 can be
applied (see Theorem 2.3.2).

2.2 Regularity in shape optimization

In the classical context of sets minimizing perimeter (without convexity constraint), the concept of quasi-
minimizer of the perimeter has proved to be very convenient: denoting P the classical De-Giorgi perimeter,
we say that Ω ⊂ RN is a local quasi-minimizer of the perimeter if there exists α ∈ (0, 1], C > 0 and r0 > 0
such that for every r ∈ (0, r0) and x ∈ RN we have:

P (Ω) ≤ P (Ω̃) + CrN−1+α, for every measurable Ω̃ ⊂ RN such that Ω∆Ω̃ ⋐ Br(x). (2.9)

The regularity theory then shows that quasi-minimizers of the perimeter are C1,α/2, up to a possi-
bly singular set of dimension less than N − 8 (see for instance [Tam88]). This regularity can even be
strengthened to C1,α for every α ∈ (0, 1) if there exists Λ > 0 such that

P (Ω) ≤ P (Ω̃) + Λ|Ω∆Ω̃|, for every measurable Ω̃ ⊂ RN (2.10)

(see [Amb97, Theorem 4.7.4]). In order to take advantage of these results, when studying a shape opti-
mization problem involving the perimeter in the energy functional, one tries to show that a minimizer of
our problem must be a quasi-minimizer of the perimeter. To that end, one needs to handle the different
terms in the energy, as well as the various constraints.

In this section we therefore introduce a new notion of quasi-minimizer of the perimeter, under a
convexity constraint. We study the regularity property it leads to, and then show how one can deal with
various constraints and energy terms.

Throughout this section we denote by KN the class of convex bodies of RN (convex compact sets with
nonempty interior). Note that (as convex bodies are Lipschitz set), we have P (K) = HN−1(∂K) for any
K ∈ KN , i.e. the perimeter of a convex body is the N −1-dimensional Hausdorff measure of its boundary.
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2.2.1 Regularity for quasi-minimizers of the perimeter under convexity constraint

Definition 2.2.1. We say that K ∈ KN is a quasi-minimizer of the perimeter under convexity constraint
if there exist εK > 0,ΛK ≥ 0 such that

∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ εK , P (K) ≤ P (K̃) + ΛK |K \ K̃| (2.11)

Remark 2.2.2. This notion of quasi-minimizer is not the mere restriction to convex perturbations of the
standard notion of quasi-minimizer recalled in (2.9) and (2.10):

• first, here we ask that K be minimal in a volume-neighborhood instead of asking it only for sets K̃
verifying K̃∆K ⊂ Br(x) for some x ∈ RN and for small enough r > 0. This is due to the fact that
the latter condition is much too restrictive for convex sets, as it is not always possible to perturbate
a convex set K into K̃ ∈ KN only over some ball Br(x). For instance, if K ∈ K2 is a square with
x ∈ ∂K located inside a segment of ∂K, then we can see that if r is small enough any K̃ ∈ K2

such that K̃∆K ⊂ Br(x) must be K itself. In fact, the possibility of perturbating a convex set K
locally around x ∈ ∂K is somehow directly connected to some kind of strict convexity of K around
x. As a consequence, the error term is replaced by the volume of K∆K̃, similarly to what is done
in [Mag12].

• on the other hand we merely require optimality for the sets K̃ which perturbate K from the inside,
as this will be sufficient to obtain regularity properties (see the proof of Theorem 2.2.3, where the
competitors Kr ⊂ K are obtained by cutting K by a well-chosen hyperplane). Note that improving
the quasi-minimality property by allowing also outward perturbations of K does not lead to better
regularity properties in general (as shows the counter-example in Section 2.3.3).

The regularity result for quasi-minimizers proved in this section is the following.

Theorem 2.2.3. Let K be a quasi-minimizer of the perimeter under convexity constraint. Then K is
C1,1.

As mentioned in the introduction, this leads to a regularity result for minimizer of certain energy
having a perimeter term: letting D ⊂ RN , we consider the following shape optimization problem

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D

}
(2.12)

where R is a shape functional satisfying

∀K ∈ KN , ∃CK > 0, ∃εK > 0, ∀K̃ ∈ KN s.t. K̃ ⊂ K and |K \ K̃| ≤ εK , R(K̃)−R(K) ≤ CK |K \ K̃|
(2.13)

Then we have the following easy consequence of Theorem 2.2.3:

Corollary 2.2.4. Assume that R : KN → R satisfies (2.13). Then any solution K∗ of (2.12) is C1,1.

Remark 2.2.5. Note that it may happen that (2.12) has no solution even if D is bounded: it is the case
for example if R ≡ 0. See Theorem 2.3.4 (i) for an existence result when D is a convex body and there is
an additional volume constraint on K.

Remark 2.2.6. In [LNP12] is proved a result similar to Corollary 2.2.4 in the case N = 2: more precisely,
it is proved (see [LNP12, Corollary 1]) that if K∗ is a solution of (2.12) and if R admits a shape derivative
at K∗ (see [HP18, Section 5.9.1]) which can be represented in Lp(∂K∗) with p ∈ [1,∞], which means that
for every ξ ∈W 1,∞(R2,R2),

R′(K∗)(ξ) = lim
t→0

(
R((Id + tξ)(K∗))−R(K∗)

)

t
=

ˆ
∂K∗

g ξ · ν∂K∗dσ (2.14)
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for some function g ∈ Lp(∂K∗), then ∂K∗ ∩ D is W 2,p. In particular when p = ∞, this leads to the
C1,1-regularity as in Corollary 2.2.4.

The authors also prove (see [LNP12, Section 3.2]) that the function R : K 7→ F (|K|, λ1(K), τ(K))
(where F : R3 → R is smooth, and the PDE functionals λ1 and τ are defined at the beginning of Section
2.3.2) satisfies (2.14) for some g ∈ L∞(∂K∗), leading to a C1,1-optimal shape in that case. Let us conclude
with two comments:

1. The proof of [LNP12, Theorem 1,Corollary 1] is completly different from the one of Theorem 2.2.3
and Corollary 2.2.4, as it relies on an Euler-Lagrange equation for (2.12) (see [LNP12, Proposition
1]), and we believe that these ideas are restricted to the 2-dimensional case.

2. As we will see in Section 2.3, assumption (2.13) is much more flexible than (2.14) and applies to
much more examples, in particular it does not require the existence of a shape derivative.

Ideas of the proof of Theorem 2.2.3: As mentioned in the Introduction, the proof consists in building a
framework enabling to use the ideas of [CCL13], where the authors prove C1,1-regularity of the minimizers
to the calculus of variation problem (2.7). For any K ∈ KN we locally write ∂K near some point x̂0 ∈ ∂K
as the graph of a convex function u : Ω → R, so that the perimeter of K "near this point" is seen as a
Lagrangian

´
Ω L(∇u) where L is locally strongly convex, meaning that L : RN → R is smooth and verifies

∀M > 0, ∃α > 0, ∀
(
|p| ≤M, |p′| ≤M

)
, L(p′)− L(p) ≥ ⟨∇L(p), p′ − p⟩+ α

2
|p′ − p|2

This gives hope that we can use the procedure from [CCL13], as it is natural to expect that such an energy
behaves like (2.7). A main difficulty however is to show that the geometrical context actually allows to
build competitors in a similar fashion to [CCL13]. If K is a quasi-minimizer in the sense of Definition
2.2.1, such competitors will be obtained by setting

Kv := K ∩ Epi(v)

for well-chosen convex functions v : Ω → R with v ≥ u, using the notation Epi(v) for the epigraph of v.
It is important to notice that it is not possible to work locally (i.e. picking Ω as a small neighborhood)
but we rather have to choose Ω maximal, and this leads to new difficulties in comparison with [CCL13]
(mostly linked to the case N ≥ 3, see also Remark 2.2.7). An important part of Step (ii) of the proof is
concerned with addressing this issue.

Proof of Theorem 2.2.3: Let K be a quasi-minimizer of the perimeter under convexity constraint in
the sense of Definition 2.2.1.
Representation of K as a graph: Let x̂0 ∈ ∂K ; applying Proposition 2.4.3, we get that there exists
a hyperplane H ⊂ RN and a unit vector ξ ∈ RN normal to H such that, denoting by (x, t) a point in
H × Rξ coordinates (and hence denoting x̂0 := (x0, 0)):

• The set Ω := {x ∈ H, (x+ Rξ) ∩ Int(K) ̸= ∅} is open, bounded and convex, and the function

u : Ω→ R
x 7→ min{t ∈ R, (x, t) ∈ K}

is well-defined and convex.

• It holds

{(x, u(x)), x ∈ Ω} ⊂ ∂K
K ∩ (Ω× Rξ) ⊂ {(x, t) ∈ Ω× Rξ, u(x) ≤ t}
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• There exists a β > 0 and c := c(β) > 0 such that Bβ := Bβ(x0) ⋐ Ω verifies

{(x, t) ∈ Bβ × Rξ, u(x) ≤ t ≤ u(x) + c} ⊂ K. (2.15)

Throughout the proof the coordinates (x, t) are thought in the orthogonal decompositionH×Rξ. Moreover
the notation Br(x) for some x ∈ H and r > 0 will denote a ball lying in H.

Since Bβ ⋐ Ω we have that u is globally Lipschitz in Bβ . Setting some y ∈ Bβ/2(x0) and p ∈ ∂u(y)
(where ∂u(y) denotes the subdifferential of the convex function u at y) we let l(x) := u(y) + ⟨p, x− y⟩ for
x ∈ H and Mr := supBr(y)(u− l). We aim to prove that there exists C > 0 and r0 > 0 (both independent
on y) such that Mr ≤ Cr2 for any y ∈ Bβ/2(x0) and 0 < r < r0. This classically ensures that u is C1,1

over Bβ/2(x0) (see for instance Lemma 3.2 in [DPF15]). As the case Mr = 0 is trivial, from now on we fix
y ∈ Bβ/2(x0), 0 < r < β/2 and assume Mr > 0. Note that p, l, Mr (and other objects we will introduce
along the proof) depend on y, although for simplicity it does not appear in the notations. We will also
set y = 0 for simplicity, while paying attention to the fact that the estimates we make in the proof do not
depend on y.

Construction of a competitor: Let qr be some unit vector such that Mr = (u− l)(rqr). We set

∀x ∈ H, σr(x) := l(x) +
Mr

2r
(⟨qr, x⟩+ r), σ̂r(x) := (x, σr(x)),

Hr := σ̂r(H), H+
r := {(x, t) ∈ RN−1 × R, t ≥ σr(x)},

and finally we define:
Kr := K ∩H+

r

Notice that Kr ⊂ K is convex and compact. As we will show in section (i) of the proof, the construction
of Kr ensures that Int(Kr) ̸= ∅ and |K \Kr| ≤ εK for r ≤ r(diam(Ω), εK , ∥∇u∥L∞(Bβ)) (see (2.20) and
the end of section (i)). Therefore from (2.11) we will get

P (K)− P (Kr) ≤ ΛK |K \Kr| (2.16)

for such r. With (2.16) we are left to estimate (i) the volume variation from above and (ii) the perimeter
variation from below. We first provide some central estimates on the size of the set {u ≤ σr} which
were proven in [CCL13]. Note that these estimates only use convexity of u and do not depend on the
particular kind of energy introduced in the problem (2.7). We reproduce the proof of [CCL13] below for
the convenience of the reader.

Estimate of {u ≤ σr}: Let us prove

B+
r/2(0) ⊂ {u ≤ σr} ⊂ {|⟨qr, ·⟩| ≤ r} (2.17)

where we set B+
r/2(0) = Br/2(0) ∩ {⟨qr, ·⟩ ≥ 0}.

• {u ≤ σr} ⊂ {⟨qr, ·⟩ ≥ −r}: if ⟨qr, x⟩ < −r, then

u(x) ≥ l(x) > l(x) +
Mr

2r
(⟨qr, x⟩+ r) = σr(x)

whence we deduce x /∈ {u ≤ σr}.
• {u ≤ σr} ⊂ {⟨qr, ·⟩ ≤ r}: over the interval I := Ω ∩ {tqr, t > r} we know that u > l +Mr thanks

to the convexity of u. Therefore one can separate the convex sets I and {u ≤ l +Mr} by some
hyperplane Π. Since by definition Br(0) ⊂ {u ≤ l + Mr}, Π must also seperate Br(0) and I,
implying that Π = {x ∈ RN , ⟨qr, x⟩ = r}. This yields in particular (u− l) ≥Mr over Π ∩Ω. Given
now x ∈ Ω such that ⟨qr, x⟩ > r set z ∈ Π ∩ [0, x]: from the two informations (u− σr)(0) = −Mr/2
and (u− σr)(z) = (u− l)(z)−Mr ≥ 0 we deduce (u− σr)(x) > 0 using convexity of u− σr, so that
x /∈ {u ≤ σr}.
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• B+
r/2(0) ⊂ {u ≤ σr}: given x ∈ Br/2(0), we have 2x ∈ Br(0) hence

(u− l)(x) ≤ 1

2
(u− l)(2x) + 1

2
(u− l)(0)︸ ︷︷ ︸

=0

≤ Mr

2

using convexity. If in addition ⟨qr, x⟩ ≥ 0 then

(u− σr)(x) = (u− l)(x)− Mr

2r
(⟨qr, x⟩+ r) ≤ Mr

2
− Mr

2
≤ 0

so that x ∈ {u ≤ σr}.

(i) Estimate from above

We have

|K \Kr| = |K ∩ (RN \H+
r )|

= |{(x, t) ∈ K, t < σr(x)}|
≤ |{(x, t) ∈ Ω× R+, u(x) ≤ t ≤ σr(x)}|

=

ˆ
{u≤σr}

(σr − u)dHN−1 (2.18)

using Fubini’s Theorem.
If x ∈ {u ≤ σr} we have thanks to the right-hand-side inclusion of (2.17)

0 ≤ (σr − u)(x) = (l − u)(x)︸ ︷︷ ︸
≤0

+
Mr

2r
(⟨qr, x⟩+ r) ≤Mr

i.e.
0 ≤ σr − u ≤Mr over {u ≤ σr} (2.19)

Injecting (2.19) into (2.18) yields

|K \Kr| ≤MrHN−1({u ≤ σr}) (2.20)

We will refine further (2.20) (into (2.43)), but this estimate is sufficient for now. It gives in particular that
there exists r0(diam(Ω), εK , ∥∇u∥L∞(Bβ)) > 0 such that |K\Kr| ≤ εK for any r < r0(diam(Ω), εK , ∥∇u∥L∞(Bβ))
hence also that Int(Kr) ̸= ∅ for such r. Indeed, as |p| ≤ ∥∇u∥L∞(Bβ) it holds for 0 < r < β/2:

Mr ≤ sup
x∈Br(0)

|u(x)− u(0)|+ sup
x∈Br(0)

|⟨p, x⟩| ≤ 2r∥∇u∥L∞(Bβ) (2.21)

so that from (2.20) we get

|K \Kr| ≤ 2r∥∇u∥L∞(Bβ)HN−1({u ≤ σr}) ≤ 2r∥∇u∥L∞(Bβ)HN−1(Ω)

which yields |K \Kr| ≤ εK for r < εK/(2HN−1(Ω)∥∇u∥L∞(Bβ)).

(ii) Estimate from below
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We now deal with estimating from below the perimeter variation. In the view of (2.20), provided that
r ≤ r0(diam(Ω), εK , ∥∇u∥L∞(Bβ)) then Kr has non-empty interior, which we will suppose from now on.
Let us start by showing that

P (K)− P (Kr) ≥ HN−1(û(Ω))−HN−1(v̂r(Ω) ∩ ∂Kr) (2.22)

where we set
∀x ∈ Ω, û(x) := (x, u(x)), vr(x) = max{u, σr}(x), v̂r(x) := (x, vr(x)).

We have

P (K)− P (Kr) = HN−1(∂K)−HN−1(∂Kr)

= HN−1(∂K ∩ û(Ω)) +HN−1(∂K ∩ û(Ω)c)−HN−1(∂Kr ∩ v̂r(Ω))
−HN−1(∂Kr ∩ v̂r(Ω)c)

= HN−1(û(Ω))−HN−1(∂Kr ∩ v̂r(Ω)) +HN−1(∂K ∩ û(Ω)c)
−HN−1(∂Kr ∩ v̂r(Ω)c)

using in the third line that û(Ω) ⊂ ∂K. If we show

∂Kr ∩ v̂r(Ω)c ⊂ ∂K ∩ û(Ω)c (2.23)

then we obtain (2.22). Therefore, let x̂ ∈ ∂Kr ∩ v̂r(Ω)c. As ∂Kr ⊂ K, we first want to show that
x̂ /∈ Int(K). Assume by contradiction that x̂ ∈ Int(K), then as

∂Kr = ∂(K ∩H+
r ) = (K ∩ ∂H+

r ) ∪ (∂K ∩H+
r ) = (K ∩Hr) ∪

(
∂K ∩H+

r \Hr

)
(2.24)

(the second equality comes from the fact that Kr and H+
r are closed) we must have x̂ ∈ Hr. But then

x̂ ∈ Hr ∩ Int(K) and we deduce that there exists x ∈ Ω such that x̂ = (x, σr(x)) with σr(x) > u(x), thus
getting vr(x) = σr(x) and x̂ = v̂r(x), which is a contradiction. Now, as x̂ ∈ ∂Kr ⊂ H+

r , assuming by
contradiction that there exists x ∈ Ω such that x̂ = (x, u(x)) leads to u(x) ≥ σr(x), implying again the
contradiction x̂ = v̂r(x). This concludes the proof of (2.23) and (2.22).

Let us rewrite

v̂r(Ω) ∩ ∂Kr = v̂r(Ω) ∩K = v̂r(Ωr) (2.25)

by setting Ωr := v̂r
−1(K) ⊂ Ω (see Figure 2.1). The first equality of (2.25) is justified in the following way:

first, as ∂Kr ⊂ K, then v̂r(Ω) ∩ ∂Kr ⊂ v̂r(Ω) ∩K. Second, if x̂ ∈ v̂r(Ω) ∩K, let us write x̂ = (x, vr(x))
for some x ∈ Ω. Then either σr(x) ≥ u(x), giving x̂ = v̂r(x) = σ̂r(x) ∈ Hr ; as x̂ ∈ K, we get that
x̂ ∈ K ∩Hr ⊂ ∂Kr thanks to (2.24). Else, u(x) > σr(x) so that x̂ = û(x) ∈ ∂K ∩H+

r \H ⊂ ∂Kr using
again (2.24).
We then get from (2.22)

P (K)− P (Kr) ≥ HN−1(û(Ω))−HN−1(v̂r(Ωr)) ≥ HN−1(û(Ωr))−HN−1(v̂r(Ωr)) (2.26)

We will rewrite the right hand side of (2.26) using the classical formula for the perimeter of a Lipschitz
graph, but we start by showing two importants features of Ωr. Let us note here that the introduction of
Ωr is not necessary if N = 2, while it is meaningful for N ≥ 3 (see Remark 2.2.7).
Ωr is convex: Let us show that Ωr = πH(Kr), where πH(Kr) is the orthogonal projection over H of
the convex set Kr, which will give right away that Ωr is convex. First, if x ∈ Ωr then x ∈ Ω with
(x, vr(x)) ∈ K, and t = vr(x) ≥ σr(x) satisfies that (x, t) ∈ K with t ≥ σr(x), providing (x, t) ∈ Kr

hence x ∈ πH(Kr). Conversely, let x ∈ H be such that there exists t ∈ R with (x, t) ∈ Kr, implying that
(x, t) ∈ K with t ≥ σr(x). Note that x ∈ Ω by definition of Ω and using that Kr ⊂ K. If u(x) ≥ σr(x)
then v̂r(x) = û(x) ∈ K which means that x ∈ Ωr. Else, t is such that t ≥ σr(x) ≥ u(x), which gives that
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Figure 2.1: Cutting procedure

v̂r(x) = σ̂r(x) ∈ K by convexity of K, since (x, t) ∈ K and (x, u(x)) ∈ K. Thus Ωr = πH(Kr) and Ωr is
convex.
Ωr has non-empty interior: We now prove that Ωr has non-empty interior with a ball which has size
uniform in y (which we set to be y = 0), i.e. that there exists β̃ ∈ (0, β2 ) such that

∀r ∈ (0, β̃), B
β̃
(0) ⊂ Ωr (2.27)

Given β̃ ∈ (0, β/2) that will be chosen later, using (2.21) and |p| ≤ ∥∇u∥L∞(Bβ) we get for any x ∈ B
β̃
(0)

and r ∈ (0, β̃),

σr(x) = u(0) + ⟨p, x⟩+ Mr

2r
(⟨qr, x⟩+ r)

≤ u(0) + ∥∇u∥L∞(Bβ)

(
2β̃ + r

)
≤ u(x) + 4β̃∥∇u∥L∞(Bβ)

If we choose β̃ such that 4β̃∥∇u∥L∞(Bβ) ≤ c(β) where c(β) satifies (2.15), we deduce

∀r ∈ (0, β̃), σr ≤ u+ c in B
β̃
(0) (2.28)

We are now in a position to prove (2.27). Let x ∈ B
β̃
(0): if u(x) ≥ σr(x), then v̂r(x) = û(x) ∈ K hence

x ∈ Ωr. Otherwise u(x) ≤ σr(x), and then u(x) ≤ σr(x) ≤ u(x) + c thanks to (2.28); using (2.15) we get
in fact v̂r(x) = (x, σr(x)) ∈ K, meaning that x ∈ Ωr.

Rewriting (2.26) with Lipschitz graphs: We claim now that (2.26) rewrites

P (K)− P (Kr) ≥
ˆ
Ωr

[√
1 + |∇u|2 −

√
1 + |∇vr|2

]
dHN−1 (2.29)

=

ˆ
Int(Ωr)

[√
1 + |∇u|2 −

√
1 + |∇vr|2

]
dHN−1

If (2.29) holds true, the second line comes from the fact that |Ωr| = |Int(Ωr)|, since Ωr is convex. Now,
from [AFP00, Remark 2.72] one has

HN−1(û(ω)) =

ˆ
ω

√
1 + |∇u|2dHN−1

if ω ⊂ Ωr with u|ω Lipschitz. As u is not necessarily Lipschitz over the whole of Ωr, let us take an
increasing sequence (Ωn) of open subsets of Ω with Ωn ⋐ Ω for each n and ∪nΩn = Ω. Then setting
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Ωn
r := Ωn ∩ Ωr, the sequence (Ωn

r ) is still increasing with ∪nΩn
r = Ωr. As u|Ωn

r
is now Lipschitz we can

write
HN−1(û(Ωn

r )) =

ˆ
Ωn

r

√
1 + |∇u|2dHN−1

The monotonous convergence theorem applies on each side of the equation, yielding at the limit

HN−1(û(Ωr)) =

ˆ
Ωr

√
1 + |∇u|2dHN−1 (2.30)

The same goes for HN−1(v̂r(Ωr)), thus getting (2.29).

Estimate from below of (2.29): Let

ωr := {x ∈ Int(Ωr), u(x) ≤ σr(x)} ⊂ {u ≤ σr}

and ω̃r be the projection of ωr onto Γr := {⟨qr, ·⟩ = 0}.
Thanks to (2.17) we have

ωr ⊂ {|⟨qr, ·⟩| ≤ r} (2.31)

On the other hand, if 0 < r < β̃ we have Br(0) ⊂ Ωr using (2.27), so that (2.17) again gives

B+
r/2(0) ⊂ ωr (2.32)

for such r.
The local strong convexity of the function ξ ∈ RN 7→

√
1 + ξ2 combined with the fact that for any

r ∈ (0, β/2)

|∇σr| =
∣∣∣∣p+

Mr

2r
qr

∣∣∣∣ ≤ 2∥∇u∥L∞(Bβ)

(where we used (2.21)) enable to find α = α(∥∇u∥L∞(Bβ)) > 0 such that for any r ∈ (0, β/2),

√
1 + |∇u|2 −

√
1 + |∇vr|2 ≥

∇vr · (∇u−∇vr)√
1 + |∇vr|2

+
α

2
|∇u−∇vr|2 over Bβ

Note also the weaker (but global) estimate

√
1 + |∇u|2 −

√
1 + |∇vr|2 ≥

∇vr · (∇u−∇vr)√
1 + |∇vr|2

over Ωr

Since HN−1(û(Ωr)) ≤ HN−1(∂K) < +∞, (2.30) implies in particular that
√

1 + |∇u|2 ∈ L1(Ωr), hence
also that |∇u| ∈ L1(Ωr). This ensures u ∈ W 1,1(Ωr) as we also have u ∈ L∞(Ωr). Let us integrate the
two previous estimates and use (2.29) to get

P (K)− P (Kr) ≥
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 +
α

2

ˆ
ωr∩Bβ

|∇u−∇σr|2dHN−1 (2.33)

Recalling (2.19) we have,
0 ≤ σr − u ≤Mr over ωr. (2.34)

As ∇σr is a fixed vector we get by integrating by parts

−
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 = −
ˆ
∂ωr

∇σr · n√
1 + |∇σr|2

(u− σr)dHN−2 ≤
ˆ
∂ωr

(σr − u)dHN−2
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Figure 2.2: Localization of ωr

where n denotes the outer unit normal to @!r. Observing that (34) must also hold on @!r, and since u = �r

on @!r \ Int(⌦r) we deduce

�
!r

r�r · (ru�r�r)p
1 + |r�r|2

dHN�1 MrHN�2
⇥
@!r \ @⌦r

⇤

Moreover, let us show that,

HN�2
⇥
@!r \ @⌦r

⇤
 (N � 1)HN�1(!r)

d(y, @⌦r)
(35)

so that for r 2 (0, e�) we get

�
!r

r�r · (ru�r�r)p
1 + |r�r|2

dHN�1 Mr
(N � 1)HN�1(!r)

d(y, @⌦r)
Mr

(N � 1)

e�
HN�1(!r)  CMrrHN�2(f!r)

(36)
with C = 2(N�1)

e� > 0 , where we used (27) and (31).

Estimate (35) was proven in [14]; we reproduce the argument for the convenience of the reader: from
Stokes formula,

HN�1(!r) =
1

N � 1 !r

div(x� y)dHN�1(x) =
1

N � 1 @!r

hx� y, n(x)i| {z }
�0

dHN�2(x)

� 1

N � 1 @!r\@⌦r

hx� y, n(x)idHN�2(x)

and notice that for any x 2 @!r \ @⌦r such that n(x) is well-defined we have hx � y, n(x)i = d(y, Hx)
where Hx is the tangent hyperplane at x to @!r, which is also the tangent hyperplane at x to @⌦r. This
gives hx� y, n(x)i � d(y, @⌦r) using the convexity of ⌦r, implying (35).

⇥

⇥ ⇥⇥ ⇥

f!r

0 !r

{hqr, ·i = r}
�r ' RN�2

a(x0)
b(x0)

↵(x0) �(x0)

Figure 2: Localization of !r

L2 Estimate from below ofr(u� �r): We now estimate from below the term

!r\B�

|ru�r�r|2dHN�1 �
!r\Be�(y)

|ru�r�r|2dHN�1

12

where n denotes the outer unit normal to ∂ωr. Observing that (2.34) must also hold on ∂ωr, and since
u = σr on ∂ωr ∩ Int(Ωr) we deduce

−
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 ≤MrHN−2
[
∂ωr ∩ ∂Ωr

]

Moreover, let us show that,

HN−2
[
∂ωr ∩ ∂Ωr

]
≤ (N − 1)HN−1(ωr)

d(y, ∂Ωr)
(2.35)

so that for r ∈ (0, β̃) we get

−
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 ≤Mr
(N − 1)HN−1(ωr)

d(y, ∂Ωr)
≤Mr

(N − 1)

β̃
HN−1(ωr) ≤ CMrrHN−2(ω̃r)

(2.36)
with C = 2(N−1)

β̃
> 0 , where we used (2.27) and (2.31).

Estimate (2.35) was proven in [CCL13]; we reproduce the argument for the convenience of the reader:
from Stokes formula,

HN−1(ωr) =
1

N − 1

ˆ
ωr

div(x)dHN−1(x) =
1

N − 1

ˆ
∂ωr

⟨x, n(x)⟩︸ ︷︷ ︸
≥0

dHN−2(x)

≥ 1

N − 1

ˆ
∂ωr∩∂Ωr

⟨x, n(x)⟩dHN−2(x)

and notice that for any x ∈ ∂ωr ∩ ∂Ωr such that n(x) is well-defined we have ⟨x, n(x)⟩ = d(0, Hx) where
Hx is the tangent hyperplane at x to ∂ωr, which is also the tangent hyperplane at x to ∂Ωr. This gives
⟨x, n(x)⟩ ≥ d(0, ∂Ωr) using the convexity of Ωr, implying (2.35).
L2 Estimate from below of ∇(u− σr): We now estimate from below the termˆ

ωr∩Bβ

|∇u−∇σr|2dHN−1 ≥
ˆ
ωr∩Bβ̃

(0)
|∇u−∇σr|2dHN−1
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We shall prove

∀r ∈ (0, β̃/2),

ˆ
ωr∩Bβ̃

(0)
|∇u−∇σr|2 ≥ δ

M2
r

r
HN−2(ω̃r) (2.37)

for some δ = δ(β̃, diam(Ω)). This estimate was proved in [CCL13] but we reproduce the proof for the
convenience of the reader.

Let γ = β̃
2diam(Ω) > 0 be such that if r ∈ (0, β̃/2) we have thanks to (2.27)

[−r, r]qr × γω̃r ⋐ B
β̃
(0) ⊂ Int(Ωr). (2.38)

where [−r, r]qr × γω̃r := {tqr + γx′, t ∈ [−r, r], x′ ∈ ω̃r}. Setting

Aγ/2 :=
γ

2
ω̃r,

then for any x′ ∈ Aγ/2 we can write
{
(x′ + Rqr) ∩ ωr = [(a(x′), x′), (b(x′), x′)]

(x′ + Rqr) ∩ 1
2ωr = [(α(x′), x′), (β(x′), x′)]

for some functions a, b and α, β defined over Aγ/2, with (a(x′), x′) and (b(x′), x′) ∈ ∂ωr ∩ Bβ̃
(0) thanks

to (2.38) and the right inclusion of (2.17) (see Figure 2.2). In particular it holds (u − σr)(a(·), ·) =
(u− σr)(b(·), ·) = 0.

Since u ≤ σr over ωr and since u− σr is convex we get for every h ∈ ωr

(u− σr)(
h

2
) ≤ 1

2
(u− σr)(0) +

1

2
(u− σr)(h) ≤

1

2
(u− σr)(0) = −

Mr

4
,

that is
u− σr ≤ −Mr/4 over

1

2
ωr (2.39)

Set 0 < r < β̃/2 and x′ ∈ Aγ/2. We apply the inequality

For t0 ≤ t1 and f ∈ H1([t0, t1]),

ˆ t1

t0

f ′2(t)dt ≥ (f(t1)− f(t0))2
t1 − t0

,

to (u− σr)(·, x′) over the segments [a(x′), α(x′)] and [β(x′), b(x′)], each of which has length smaller than
2r (see (2.17)), obtaining

ˆ b(x′)

a(x′)
(∂qr(u− σr))2dt ≥

ˆ α(x′)

a(x′)
(∂qr(u− σr))2dt+

ˆ b(x′)

β(x′)
(∂qr(u− σr))2dt

≥ [u(α(x′), x′)− σr(α(x′), x′)]2
α(x′)− a(x′) +

[u(β(x′), x′)− σr(β(x′), x′)]2
b(x′)− β(x′) ≥ M2

r

16r

since (u− σr)(a(x′), x′) = (u− σr)(b(x′), x′) = 0, and where we also used (2.39) in the last inequality.
We write |∇(u− σr)| ≥ |∂qr(u− σr)| and integrate the above estimate over x′ ∈ Aγ/2; this yields

ˆ
ωr∩Bβ̃

(0)
|∇(u− σr)|2dHN−1 ≥

ˆ
Aγ/2

(ˆ b(x′)

a(x′)
(∂qr(u− σr))2dt

)
dHN−2(x′)

≥
M2

rHN−2(Aγ/2)

16r

≥ δM
2
rHN−2(ω̃r)

r
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for some constant δ = δ(β̃, diam(Ω)) > 0, getting (2.37).

Conclusion of the estimate from below: Plugging (2.37) and (2.36) into (2.33) gives

∀r ∈ (0, β̃/2),
M2

r

r
HN−2(ω̃r) ≤ C

(
P (K)− P (Kr) +MrrHN−2(ω̃r)

)
(2.40)

where C = C(N, d(x0, ∂Ω), c(β), ∥∇u∥L∞(Bβ), diam(Ω)), which completes the proof of the estimate from
below.

Conclusion

We claim that for all r ∈ (0, β̃) it holds

HN−1({u ≤ σr}) = HN−1(ωr) +HN−1({u ≤ σr} \ ωr)

≤ (1 + C)HN−1(ωr) (2.41)

with C = γ1−N , where γ = β̃
2diam(Ω) was introduced to obtain (2.38). Indeed, denoting by κr := {u ≤

σr} \ ωr, it suffices to show
∀r ∈ (0, β̃), γκr ⊂ ωr (2.42)

Let x ∈ κr; we have (u−σr)(γx) ≤ 0 using the convexity of u−σr, and furthermore γx ∈ B
β̃
(0) ⊂ Int(Ωr)

(see (2.27)). This provides γx ∈ ωr, allowing to conclude that (2.42) holds.

Injecting (2.41) into (2.20) and using (2.31) we get that there is a constant C = C(β̃,diam(Ω)) such
that

∀r ∈ (0, β̃), |K \Kr| ≤ CMrrHN−2(ω̃r) (2.43)

Gathering (2.40) and (2.43) and recalling (2.16), this finally provides the existence of some positive r0 =
r0(β̃, diam(Ω), εK , ∥∇u∥L∞(Bβ)) such that

∀r ∈ (0, r0),
M2

r

r
HN−2(ω̃r) ≤ CMrrHN−2(ω̃r) (2.44)

where C = C(N,ΛK , d(x0, ∂Ω), c(β), ∥∇u∥L∞(Bβ), diam(Ω)). Thanks to (2.32) we can simplify byHN−2(ω̃r)

in (2.44), to get that Mr ≤ Cr2. This completes the proof.

Remark 2.2.7. • If N = 2, the proof can be simplified, as one can show that there exists some r0
such that Ωr = Ω for r < r0. Indeed, since H is one-dimensional, the right inclusion of (2.17) reads
{x ∈ Ω, u(x) ≤ σr(x)} ⊂ [y − r, y + r], which shows that Ωr = Ω for small r using (2.15).

On the other hand, for N ≥ 3 it is not hard to find convex bodies K such that Ωr ⊊ Ω for each
(small) r. For instance, let us consider K := C ∩ B the intersection of the unit ball B ⊂ RN with
the cylinder C := [−1, 1] × BRN−1((0, . . . , 0, 1), 1). Although it is possible to compute explicitly Ω
let us just notice that Ω ⊃ (−1, 1) × {0}N−2 =: S. We consider the situation where x0 = y = 0
with p = 0 ∈ ∂u(x0), so that l ≡ 0 in this case. Then we see that qr = (0, 1, 0, . . . , 0) satisfies
Mr = supBr(0) u = u(rqr). Note that u ≡ 0 along S, while on the other hand σr = Mr/2 > 0
over S. As a consequence, since K ∩ P = B ∩ P where P denotes the (x1, xN ) plan, we find
x = (x1, 0, . . . , 0) ∈ S close enough from (−1, 0, . . . , 0) such that v̂r(x) = σ̂r(x) /∈ K, thus getting
that Ωr ⊊ Ω in this case.

• Using the same ideas as in [CCL13] where they study the regularity of u solution of (2.7) when
f ∈ Lp(Ω) (for some p > N), one can prove the C1,α regularity of a convex body K satisfying

∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ ε, P (K) ≤ P (K̃) + Λ|K \ K̃|γ (2.45)
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for some ε > 0,Λ ≥ 0 and γ ∈ (1− 1/N, 1]. In this case, instead of (2.44), we derive with the same
arguments

M2
r

r
HN−2(ω̃r) ≤ C

(
|K∆Kr|γ +MrrHN−2(ω̃r)

)
≤ CMγ

r r
γHN−2(ω̃r)

γ

Using (2.32) we get
M2−γ

r ≤ Cr(N−2)(γ−1)+γ+1 (2.46)

Direct computation gives that (N − 2)(γ− 1)+ γ+1 > 2− γ whenever γ ∈ (1− 1/N, 1], so that the
classical result [DPF15, Lemma 3.1] gives that K is C1,α with α = (N(γ − 1) + 1)/(2− γ).

2.2.2 Regularity with volume constraint

We now focus on problems having a volume constraint, as they often appear in applications. We thus
consider the problem

inf
{
P (K) +R(K), K ∈ KN ,K ⊂ D, |K| = V0

}
(2.47)

for some convex body D ∈ KN and 0 < V0 < |D|. Existence for this problem can be shown under the
assumption (2.51) below made upon R (see Theorem 2.3.4 (i)). In this section we prove that under suitable
assumptions on R, minimizers of this problem are C1,1. We use a penalization method to prove that these
solutions are quasi-minimizer of the perimeter under convexity constraint.

Preliminaries

Before introducing the hypothesis which we will make upon R, let us recall the notion of Hausdorff distance
between sets. If A and B are non-empty compact subsets of RN , the Hausdorff distance dH(A,B) between
A and B is defined as the quantity

dH(A,B) := max

{
sup
x∈A

d(x,B), sup
x∈B

d(A, x)

}

where d(·, ·) denotes the euclidean distance. The Hausdorff distance dH is a distance over the class of
non-empty compact sets of RN .

Let us recall two classical facts about dH , whose proof is given in the Appendix:

Proposition 2.2.8. Let D ∈ KN , (Kn) be a sequence of convex bodies verifying Kn ⊂ D for any n ≥ 0,
and let K ⊂ D be a non-empty compact convex set. Then

1. We have the equivalence:
dH(Kn,K)→ 0⇐⇒ |Kn∆K| → 0 (2.48)

2. If dH(Kn,K)→ 0, and C ∈ KN is such that C ⊂ Int(K) then

C ⊂ Kn for large n. (2.49)

We now introduce a new assumption on R which is slightly stronger than (2.13), as seen in Proposition
2.2.9 below: for any D′ ∈ KN with D′ ⊂ D we set

KN
D′,D := {K ∈ KN , D′ ⊂ K ⊂ D} (2.50)

and we assume

∀D′ ⊂ D ∈ KN , ∃CD′,D > 0, ∀
(
K1,K2 ∈ KN

D′,D, K1 ⊂ K2

)
, |R(K2)−R(K1)| ≤ CD′,D|K2 \K1| (2.51)
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Proposition 2.2.9. If R satifies (2.51) then R satisfies (2.13).

Proof. Letting K ∈ KN be fixed, there exists D′ ∈ KN such that D′ ⊂ Int(K). Thanks to (2.49) we know
that there exists δ > 0 such that if K̃ ∈ KN verifies dH(K, K̃) ≤ δ then K̃ ⊃ D′. Thanks to (2.48) we can
find εK > 0 such that if |K \ K̃| ≤ εK , dH(K, K̃) ≤ δ. Putting these together and applying hypothesis
(2.51) with the class KN

D′,K gives that R satisfies (2.13).

Note that on the other hand condition (2.51) is genuinely stronger than (2.13). In fact, (2.51) is
double-sided while it is not the case for (2.13), but there is a deeper difference which boils down to the
fact that in (2.13) the constants (εK , CK) depend on K, while in (2.51) the constant CD′,D is locally
uniform. In this sense, (2.13) somehow says that R is "differentiable" everywhere while (2.51) means that
R is locally Lipschitz; one can build an example of R verifying a double-sided (2.13) and not (2.51) by
setting R(K) := f(|K|) for some f : R+ → R differentiable everywhere but not locally Lipschitz.

Main result

The main result of this section is the following.

Theorem 2.2.10. Let K∗ be a solution of problem (2.47), with R satisfying (2.51) and 0 < V0 < |D|.
Then K∗ is a quasi-minimizer of the perimeter in the sense of Definition 2.2.1, and is therefore C1,1.

The proof of Theorem 2.2.10 relies on the following important lemma, which allows the use of the
results of section 2.2.1 over an auxiliary problem for which K∗ is still optimal. For any K ∈ KN and ε > 0
we set the class Oε(K) of convex bodies which are ε−close perturbations of K from the inside:

Oε(K) := {K̃ ∈ KN , K̃ ⊂ K, |K \ K̃| ≤ ε}.

Lemma 2.2.11. Let K∗ be a solution of problem (2.47), with R satisfying (2.51) and 0 < V0 < |D|. Then
there exists Λ > 0 and ε > 0 such that K∗ is a solution of

min
{
P (K) +R(K) + Λ

∣∣|K| − V0
∣∣, K ∈ Oε(K

∗)
}

(2.52)

We will use in the proof of this lemma the following classical result concerning Minkowski sums and
mixed volume (see for instance [Sch14, Theorem 5.1.7]).

Theorem 2.2.12 (Mixed volume). For any m ∈ N∗ and K1, ...,Km ∈ KN , the map (t1, ..., tm) ∈ (R+)m 7→
|t1K1 + ... + tmKm| is a homogeneous polynomial of degree N , i.e. there exists a symmetric function
V : (KN )N → R (called mixed volume) such that for any t1, t2, ..., tm ≥ 0

|t1K1 + ...+ tmKm| =
m∑

i1,...,iN=1

ti1 ...tiNV (Ki1 , ...KiN )

Furthermore V is nondecreasing in each coordinate for the inclusion of sets, and continuous for the Haus-
dorff distance.

Proof of Lemma 2.2.11: Set G(K) := P (K) +R(K) for any K ∈ KN . We use a classical strategy (see
for example [DPLPV18, Lemma 4.5], though our construction will be adapted to the convexity constraint):
for any K ⊂ K∗ with |K∗ \ K| ≤ ε (for sufficiently small ε) we build a convex body K̃ ⊂ D such that
|K̃| = V0 and G(K̃) ≤ G(K) + Λ

∣∣|K| − V0
∣∣ (for sufficiently large Λ). Writing then

G(K∗) ≤ G(K̃) ≤ G(K) + Λ
∣∣|K| − V0

∣∣

yields the conclusion.
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For K ⊂ D a convex body and t ∈ [0, 1] we set the Minkowski sum

Kt := (1− t)K + tD

and note that Kt is a convex body and Kt ⊂ D. We first claim that there exist ε0 > 0, c > 0, t0 > 0 such
that

∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], |Kt| − |K| ≥ ct (2.53)

Let fK(t) := |Kt|. By Theorem 2.2.12, fK is polynomial with degree N and more precisely

fK(t) =
N∑

k=0

(
N

k

)
(1− t)ktN−kV (K[k], D[N − k])

where K[p] stands for (K,K, · · · ,K) with p repetitions.
Now, as the class {L ⊂ RN compact convex, L ⊂ D} is compact for dH and since V is continuous

for dH , we deduce that the coefficients of fK are uniformly bounded for K ∈ KN ,K ⊂ D. To conclude
that the claim holds it therefore suffices to show that f ′K(0) is bounded from below by a positive constant
uniform in K ∈ Oε(K

∗) for some small ε.
One has

f ′K(0) = N
(
V (K[N − 1], D)− V (K[N ])

)

= N
(
V (K, ...,K,D)− |K|

)

which is nonnegative by monotonicity of the mixed volume. Moreover, as soon as we have K ⊊ D,
we can apply [Sch14, Theorem 7.6.17] to get V (K[N − 1], D)− |K| > 0; equality would in fact imply
that D is a 0-tangential body of K, hence that K = D. This gives in particular f ′K∗(0) > 0 (since
V0 < |D|). Since K 7→ f ′K(0) is continuous for dH , we therefore have f ′K(0) ≥ f ′K∗(0)/2 for any convex
body K ⊂ D with dH(K,K∗) small enough. Thanks to (2.48), we deduce the existence of ε0 > 0 such
that f ′K(0) ≥ f ′K∗(0)/2 > 0 for any K ∈ Oε0(K

∗). This yields (2.53) for c := f ′K∗(0)/4 and for some small
t0 = t0(D,K

∗).
We now show that a reverse inequality holds for the perimeter: there exists C = C(D) > 0 such that

∀t ∈ [0, 1], ∀K ∈ KN such that K ⊂ D, P (Kt)− P (K) ≤ Ct (2.54)

Since for any L ∈ KN ,
P (L) = NV (L[N − 1], B) (2.55)

where B is the ball of unit radius (see for instance [Sch14, p.294, (5.43) to (5.45)]) the mapping t 7→
P (Kt) = NV (Kt[N − 1], B) is a polynomial function whose coefficients are continuous quantities of
(V (K[i], D[N − 1− i], B))0≤i≤N−1. Hence the continuity of V for dH and the compactness of the class
{L ⊂ RN compact convex, L ⊂ D} for dH give (2.54).

Putting together (2.54) with (2.53) and setting C ′ := C/c provides

∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], P (Kt)− P (K) ≤ C ′∣∣|Kt| − |K|

∣∣ (2.56)

On the other hand, there exists D′ ∈ KN such that D′ ⊂ Int(K). Then arguing as in the proof of
Proposition 2.2.9 ensures that for ε1 small enough, any K ∈ Oε1(K

∗) verifies K ⊃ D′. Therefore by (2.51)
there exists CD′,D > 0 such that

∀t ∈ [0, 1], ∀K ∈ Oε1(K
∗), R(Kt)−R(K) ≤ CD′,D|Kt \K| = CD′,D

∣∣|Kt| − |K|
∣∣. (2.57)

Let ε = min{ε0, ε1, ct0} and K ∈ Oε(K
∗).
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We deduce from (2.53) that

|Kt0 | − |K∗|= |Kt0 | − |K|+ |K| − |K∗| ≥ ct0 − ε ≥ 0

By continuity of t 7→ |Kt|, this ensures that
there exists t ∈ [0, t0] such that |Kt| = |K∗|. With (2.56) and (2.57) we get that the set K̃ := Kt

satisfies all the requirements laid out at the beginning of the proof with Λ := C ′ + CD′,D.
Proof of Theorem 2.2.10: Thanks to Lemma 2.2.11, an optimal shape K∗ for (2.47) is solution of
(2.52) for some ε > 0 and Λ > 0. Therefore we have

∀K ∈ Oε(K
∗), P (K∗) ≤ P (K) +R(K)−R(K∗) + Λ|K∗ \K|,

By Proposition 2.2.9, R verifies hypothesis (2.13), and as a consequence there exists CK∗ > 0 such that

∀K ∈ Oε(K
∗), P (K∗) ≤ P (K) + (CK∗ + Λ)|K∗ \K|

Hence K∗ is a quasi-minimizer of the perimeter under convexity constraint in the sense of Definition 2.2.1.
We can therefore apply Theorem 2.2.3 to get that K∗ is C1,1.

Remark 2.2.13. As in Remark 2.2.7, there is an analogous result to Theorem 2.2.10 if R is merely
γ-Hölder for some γ ∈ (1− 1/N, 1], meaning that (2.51) is replaced with

∀D′ ⊂ D ∈ KN , ∃CD′,D > 0, ∀
(
K1,K2 ∈ KN

D′,D, K1 ⊂ K2

)
, |R(K2)−R(K1)| ≤ CD′,D|K2\K1|γ (2.58)

In this case, keeping the same notations as in the proof of Lemma 2.2.11, the same arguments show

G(K̃) ≤ G(K) + Λ
∣∣|K| − V0

∣∣γ ,

and with the additionnal remark that

P (Kt)− P (K) ≤ Λ
∣∣|Kt| − |K|

∣∣ ≤ Λ′∣∣|Kt| − |K|
∣∣γ

with Λ′ := Λ×|D|1−γ , we conclude in this case that the optimal shape is C1,α for the same α as in Remark
2.2.7.

2.3 Examples and applications

This section is dedicated to applications of the results of Section 2.2.2. We therefore provide examples
of functionals R satisfying hypothesis (2.51) (and therefore (2.13) as well), Theorem 2.2.10 then implying
that the minimizers of the corresponding problem are C1,1-regular.

2.3.1 First examples

Let us start by giving two examples taken from the literature of minimization of P +R for which proving
that the functional R satisfies hypotheses (2.13) and (2.51) is quite easy.

A first example of relevant R is given through the following model of a liquid drop subject to the action
of a potential: it consists in minimizing the energy

P (E) +

ˆ
E
g

among bounded subsets E of RN with given volume, where g : RN → R is a fixed function in L1
loc(RN ),

see for example [FM11]. An optimal shape may not be convex, and in this case it is interesting to study
the counterpart of this problem with an additional convex constraint: under reasonable hypotheses on g
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we can prove existence and regularity for a minimizer of this problem in the class of convex shapes (see
Proposition 2.3.1 below).

We can also consider the following generalization of the Gamow model (2.5), which consists in the
minimization

inf

{
P (E) +

ˆ
E

ˆ
E

dxdy

|x− y|N−α
, E ⊂ RN , |E| = V0

}

for a given mass V0 ∈ (0,+∞) and parameter α ∈ (0, N). The interaction term Vα(E) :=
´
E

´
E |x −

y|α−Ndxdy, called Riesz potential, is maximized by any ball of volume m by virtue of the Riesz inequality,
so that there is a competition in the above minimization. As in the case of (2.5) it is known that for small
masses m the ball of corresponding volume is the unique (up to translation) solution to the minimization
problem (see the Introduction of [FFM+15] for a review of these results), while it is proven in [KM13,
Theorem 2.5] and [KM14, Theorem 3.3] for α ∈ (N − 2, N) that beyond a certain threshold of mass m
there is no existence for this problem (and for α = N − 2 in [Fra21, Theorem 3]). On the contrary, the
convexity constraint will enforce existence for all masses ; furthermore, applying Theorem 2.2.10 we are
able to show regularity for the problem when considered under a convexity constraint, see Proposition
2.3.1 below.

We thus have the following proposition.

Proposition 2.3.1. Let N ≥ 2 and V0 ∈ (0,+∞).
Let g ∈ L∞

loc(RN ) be coercive, that is to say lim|x|→∞ g(x) = +∞. Then there exists a solution to the
problem

inf

{
P (K) +

ˆ
K
g, K ∈ KN , |K| = V0

}

and any such solution K∗is C1,1.
Let α ∈ (0, N). Then there exists a solution to the problem

inf
{
P (K) + Vα(K), K ∈ KN , |K| = V0

}

and any such solution K∗ is C1,1.

Proof. Existence:

1. Let (Kn) be a minimizing sequence for the first problem. As g is coercive, there exists a bounded
set A such that g ≥ 0 outside A. Therefore, as there exists C > 0 such that P (Kn) +

´
Kn

g ≤ C by
definition of (Kn), we can write

P (Kn) ≤ C −
ˆ
Kn

g ≤ C −
ˆ
Kn∩A

g ≤ C + ∥g∥L1(A)

so the perimeters P (Kn) are uniformly bounded. We thus use the inequality

diam(K) ≤ C(N)
P (K)N−1

|K|N−2
(2.59)

valid for any convex body K (see [EFT05, Lemma 4.1]) to get that the diam(Kn) are also uniformly
bounded, recalling also that |Kn| = V0. As a consequence, using the coercivity of g we now show
that there is no loss of generality in assuming that the Kn are uniformly bounded: let r > 0 be
such that Br the ball centered at 0 of radius r verifies diam(Kn) ≤ diam(Br) for every n, and set
m := ess supBr

g. Thanks to the fact that g is coercive we can find r′ > r such that g ≥ m outside
Br′ . For any fixed n ∈ N, either Kn ⊂ B2r′ and we set K̃n := Kn, or else there exists x ∈ Kn∩(B2r′)

c

so that Kn ⊂ (Br′)
c thanks to the bound on the diameters. In this latter case, we thus have g ≥ m

over Kn while Kn − x ⊂ Br′ gives that g ≤ m over Kn − x , so that

P (Kn − x) +
ˆ
Kn−x

g ≤ P (Kn) +m|Kn| ≤ P (Kn) +

ˆ
Kn

g
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using also the translation invariance of the perimeter. We then rather set K̃n := Kn − x. This
argument ensures that the sequence (K̃n) is still minimizing with the additionnal property that
K̃n ⊂ B2r′ for each n. We will keep denoting it Kn.

Now, K 7→
´
K g satisfies (2.51): if D ∈ KN and K ′ ⊂ K ⊂ D are convex bodies, then

∣∣∣∣
ˆ
K
g −

ˆ
K′
g

∣∣∣∣ ≤ ∥g∥L∞(D)|K \K ′|. (2.60)

Using the Blaschke selection theorem and (2.48) we can extract a subsequence (still denoted (Kn))
and a compact convexK∗ such thatKn → K∗ for the Hausdorff distance and in volume. In particular
|K∗| = V0. Thanks to (2.60) we have that

´
Kn

g →
´
K∗ g and P (Kn) → P (K∗) by continuity of

the perimeter for convex domains (see for instance [BB05, Proposition 2.4.3, (ii)]). We thus get
existence.

2. Let (Kn) be a minimizing sequence for the second problem. Since Vα is nonnegative we immediately
get that (P (Kn)) is bounded, getting thus from (2.59) that the sequence diam(Kn) is bounded as
well. By translation invariance of the perimeter and of Vα there is not loss of generality in assuming
that there exists a compact set D such that Kn ⊂ D for each n.

Let us now show that Vα verifies (2.51). This was done in [KM14, Equation (2.11)], but we reproduce
hereafter the short argument for the convenience of the reader. Let D ∈ KN and K ′ ⊂ K ⊂ D be
convex bodies. We set vE(x) :=

´
E |x − y|α−Ndy for any compact set E and write f(x, y) :=

|x− y|α−N . We have

0 ≤ Vα(K)− Vα(K ′) =
ˆ
K

ˆ
K
f −

ˆ
K

ˆ
K′
f +

ˆ
K\K′

ˆ
K′
f

=

ˆ
K\K′

vK + vK′

≤ 2|K \K ′|
(ˆ

BD

dy

|y|N−α

)
(2.61)

with BD a ball of volume |D|, where we used that

vK′(x) ≤ vK(x) =

ˆ
K

dy

|x− y|N−α
=

ˆ
x−K

dy

|y|N−α
≤
ˆ
BD

dy

|y|N−α

thanks to the Hardy-Littlewood inequality and since |K| ≤ |D|.
Since Vα verifies (2.51) and Kn ⊂ D for all n ∈ N we conclude to existence as before using the
Blaschke selection theorem.

Regularity: We proved respectively in (2.60) and (2.61) that K 7→
´
K g and Vα satisfy (2.51). We can

therefore apply Theorem 2.2.10 to get that any minimizer is C1,1.

2.3.2 PDE and Spectral examples

We now focus on more difficult examples, which will lead to the proof of Theorem 2.1.1 given in the
introduction. Let us first set some notations and definitions.

If Ω ⊂ RN is a bounded Lipschitz open set we denote respectively by

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λn(Ω) ≤ · · · ↗ +∞
0 = µ1(Ω) ≤ µ2(Ω) ≤ · · · ≤ µn(Ω) ≤ · · · ↗ +∞
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the nondecreasing sequence of the Dirichlet and Neumann Laplacian eigenvalues associated to Ω (see for
example [Hen20] for more details). We also define τ(Ω) the torsional rigidity of Ω as

τ(Ω) =

ˆ
Ω
uΩdx = −2min

{ˆ
Ω

|∇u|2
2
−
ˆ
Ω
fu, u ∈ H1

0 (Ω)

}

where uΩ is the unique solution of {
−∆u = 1 in Ω

u ∈ H1
0 (Ω)

(2.62)

For any convex body K ∈ KN we will frequently use the notation ΩK := Int(K), and then define
λn(K) := λn(ΩK), µn(K) := µn(ΩK) for n ∈ N∗, and τ(K) := τ(ΩK).

We are now ready to state the main result of this section, which will be proved later on in Sections
2.3.2 and 2.3.2.

Theorem 2.3.2. Let n ∈ N∗, N ≥ 2. Then any R ∈ {λn, µn, τ} satisfy (2.13) and (2.51), namely for
every D′ ⊂ D ⊂ RN convex bodies there exists C = C(D′, D,R) such that for any K ′ ⊂ K lying in KN

D′,D
(defined in (2.50)) ∣∣R(K)−R(K ′)

∣∣ ≤ C|K \K ′|.

Remark 2.3.3. The fact that K ′ ⊂ K is not essential to ensure that Lipschitz estimates hold. In fact,
one has that

∃C > 0, ∀(K,K ′) ∈ KN
D′,D, |R(K)−R(K ′)| ≤ C|K∆K ′|

by applying Theorem 2.3.2 with K and K ∪K ′ on the one hand, K ′ and K ∪K ′ on the other hand.

As a consequence, combined with Corollary 2.2.4 and Theorem 2.2.10, we are able to prove Theorem
2.1.1.
Proof of Theorem 2.1.1: Recall that R(K) := F (|K|, τ(K), λ1(K), . . . , λn(K), µ1(K), . . . , µn(K)) for
some F : (0,+∞)× (0,+∞)× (0,+∞)n × Rn

+ → R locally Lipschitz. Let us show that R satifies (2.51),
so that it also satisifes (2.13) (thanks to Proposition 2.2.9) and Corollary 2.2.4 and Theorem 2.2.10 give
the results.

Let D1 ⊂ D2 ∈ RN be convex bodies and let K,K ′ ∈ KN
D1,D2

with K ′ ⊂ K. Set L = K or L = K ′.
Then from monotonicity of Dirichlet eigenvalues and torsion, for any k ∈ N∗ it holds

λk(D2) ≤ λk(L) ≤ λk(D1)

τ(D1) ≤ τ(L) ≤ τ(D2)

Moreover, since µk(L) ≤ λk(L) ≤ λk(D1) we have for any k ∈ N∗

µk(L) ≤ λk(D1)

Also,
|D1| ≤ |L| ≤ |D2|

Putting these four estimates together and using that F is locally Lipschitz we find C(F,D1, D2) such that

|R(K)−R(K ′)| ≤ C(F,D′, D)
( n∑

k=1

|λk(K)− λk(K ′)|

+
n∑

k=1

|µk(K)− µk(K ′)|+ |τ(K)− τ(K ′)|+
∣∣|K| − |K ′|

∣∣ )

Applying Theorem 2.3.2 for λk, µk and τ and noticing that ||K| − |K ′|| = |K \K ′| ensures that R satisfies
(2.51). The result follows.
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A general existence result

In this short section we show a general existence result for the minimization among convex sets of a
functional of the type P + R, where R is mostly thought of as a PDE-type functional. Using mild
continuity of R, we show existence of a minimizer under additional box and volume constraints, and we
also show existence in the unconstrained case with coercivity assumptions of R. The statement is as
follows.

Theorem 2.3.4. (i) Let R : KN → R be lower-semi-continuous for the Hausdorff convergence of convex
bodies. Let D ∈ KN and 0 < V0 < |D|. Then there exists a minimizer to the problem

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D, |K| = V0

}

(ii) Let V0 > 0. Let n ∈ N∗ and F : (R+)2n+2 → R be coercive (meaning lim|x|→∞ F (x) = +∞) and
lower-semi-continuous, and set

R(K) := F (|K|, τ(K), λ1(K), . . . , λn(K), µ1(K), . . . , µn(K))

Then there exists minimizers to the problems

inf
{
P (K) +R(K), K ∈ KN

}

inf
{
P (K) +R(K), K ∈ KN , |K| = V0

}

Proof. In both cases existence is proved using the direct method: let (Ki) be a minimizing sequence.
(i) Since Ki ⊂ D for each n, then thanks to the Blaschke selection theorem and (2.48) we can extract

a subsequence (still denoted (Ki)) and a compact convex K∗ such that Ki → K∗ for the Hausdorff
distance and in volume. We can pass to the limit in |Ki| = V0 to get |K∗| = V0 > 0, so that K∗ has
non-empty interior. We deduce that limR(Ki) ≥ R(K∗) thanks to the hypothesis made on R and that
P (Ki) → P (K∗) by continuity of the perimeter for convex domains (see for instance [BB05, Proposition
2.4.3, (ii)]), thus getting existence.

(ii) We start with existence for the first of the two problems. Thanks to John’s ellipsoid Lemma, there
exists ci ∈ RN and ellipsoids Ei such that

Ei ⊂ Ki ⊂ ci +N(Ei − ci)
We have by monotonicity of the perimeter for convex bodies P (Ki) ≥ P (Ei), while we also have diam(Ki) ≤
Ndiam(Ei). As a consequence, if we assume by contradiction that (up to subsequence) diam(Ki)→ +∞,
then we first deduce diam(Ei) → +∞ so that P (Ei) → +∞, whence P (Ki) → +∞. The function F
being coercice and lower-semi-continuous it is therefore bounded from below, and we get the contradiction
P (Ki)+R(Ki)→ +∞. Therefore diam(Ki) is bounded and we can assume by translation invariance of P
and R that there exists a compact set D ⊂ RN such that Ki ⊂ D for each i. Thanks to the Blaschke selec-
tion theorem and (2.48) we can extract a subsequence (still denoted (Ki)) and a compact convex K∗ such
that Ki → K∗ for the Hausdorff distance and in volume. The case |K∗| = 0 is excluded, since it would lead
to |Ei| → 0 and then +∞ ← λ1(Ei) ≤ N2λ1(Ki) by monotonicity of λ1, which yields R(Ki) → +∞ by
coercivity of F hence the contradiction P (Ki) +R(Ki)→ +∞. As a consequence |K∗| > 0, which means
that K∗ has non-empty interior, and in particular there exists D′ ∈ KN such that D′ ⊂ Int(K∗). Since
dH(Ki,K

∗)→ 0 we know thanks to (2.49) that Ki ∈ KN
D′,D for large enough i. As a consequence, the Ki

are uniformly Lipschitz in the sense that they verify the ε-cone condition for some ε independent of i (see
Definition 2.4.1 and Remark 2.4.2). We thus have continuity λk(Ki) → λk(K

∗) and τ(Ki) → τ(K∗) (see
[Hen06, Theorem 2.3.18]) and µk(Ki)→ µk(K

∗) (see [Hen06, Theorem 2.3.25]). Recalling the lower-semi-
continuity of F we deduce limR(Ki) ≥ R(K∗), and by continuity of the perimeter for convex domains we
also have P (Ki)→ P (K∗). This finishes the proof of existence for the first problem.

Existence for the second problem is shown with the same argument, by noticing that the volume
constraint passes to the limit.
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Selected examples

Before moving on to the proof of Theorem 2.3.2 (which is the object of sections 2.3.2 and 2.3.2), we discuss
here some specific examples where R involves spectral functionals and for which we can prove existence
without a box constraint (in the spirit of Theorem 2.3.4 (ii)). We will make use of Theorem 2.3.2 in this
section.

We start by considering spectral problems with a perimeter constraint, which have been studied in
the literature without the additionnal convexity constraint (see for instance [BBH09], [DPV14], [Bog19],
[BO16]). Namely, given p0 > 0, we are interested in the minimization problems

inf{λn(K), K ∈ KN , P (K) = p0} (2.63)

In [BBH09], the authors use convexity for proving existence as well as C∞ regularity and some qualitative
properties of minimizers of λ2 under perimeter constraint in two dimensions. In fact, although their
problem is set without a convexity constraint, they are able to show that solutions are in fact convex, thus
yielding a bit of regularity to start with. On the other hand, in dimension N = 3 there are eigenvalues
for which the expected solutions are not convex (see [BO16, Figure 2]), so that the convexity constraint
would thus be meaningful in the minimization.

In our case we can prove existence together with C1,1 regularity of minimizers. This is the object of
next result.

Proposition 2.3.5. Let n ∈ N∗, N ≥ 2 and p0 > 0. Then there exists a solution to problem (2.63) and
any such solution is C1,1.

Proof. The proof is divided into proof of existence and proof of regularity.
Existence: We use the direct method. Let (Ki) be a minimizing sequence for (2.63). By definition there
exists C > 0 such that λn(Ki) ≤ C for each i. Since λ1(Ki) ≤ λn(Ki) ≤ C, we deduce using Faber-Krahn
inequality

C|Ki|2/N ≥ λ1(Ki)|Ki|2/N ≥ λ1(B)|B|2/N =: CN

with B the unit ball, giving

|Ki| ≥
(
CN

C

)N/2

(2.64)

On the other hand the perimeters P (Ki) are bounded from above (in fact P (Ki) = p0), yielding that the
Ki are uniformly bounded (up to translation), using (2.59). We therefore get existence by proceeding as
in the proof of Theorem 2.3.4 (i): thanks to the Blaschke selection theorem and (2.48) we thus find a
subsequence (still denoted (Ki)) converging to some compact convex set K∗ in the Hausdorff sense and
in volume. The lower bound on volumes (2.64) thus ensures that |K∗| > 0, so that the convex K∗ has
nonempty interior. Hence there exists D′ ∈ KN such that D′ ⊂ Int(K∗). Since dH(Ki,K

∗)→ 0 we know
thanks to (2.49) that Ki ∈ KN

D′,D for large enough i. We deduce that λn(Ki) → λn(K
∗) using that λn

satisfies (2.51) thanks to Theorem 2.3.2, and that P (Ki) → P (K∗) by continuity of the perimeter for
convex domains. This finishes the proof of the existence part.
Regularity: Let K∗ be any minimizer for (2.63). Following [DPV14, Remark 3.6] we can show that there
exists µ > 0 such that K∗ minimizes

inf{λn(K) + µP (K), K ∈ KN} (2.65)

As a consequence we can apply Corollary 2.2.4 to get that K∗ is C1,1.

We now move on to problems of the kind (2.47) with a volume constraint and with R of spectral
type. These type of problems are related to the study of Blaschke-Santalo diagrams, see [FL21] and the
numerical results in [Fto21]. Again, we can drop the box constraint and still get existence:
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Proposition 2.3.6. Let N ≥ 2, V0 > 0 and n ∈ N∗. There exist minimizers to the problems

inf{P (K) + λn(K), K ∈ KN , |K| = V0} (2.66)

inf{P (K)± µn(K), K ∈ KN , |K| = V0} (2.67)

and any minimizer is C1,1.

Proof. The regularity assertion is a consequence of Theorem 2.1.1. Let us prove existence of a solution for
the two family of problems:

1. Existence is obtained by applying Theorem 2.3.4 (ii).

2. For the minimization of P + µn we can directly apply Theorem 2.3.4 (ii) to get existence. For the
minimization of P − µn, first note the inequalities

diam(K) ≤ C(N)
P (K)N−1

|K|N−2
µn(K) ≤ Cn(N)

diam(K)2
(2.68)

for any convex body K, for some constants C(N) and Cn(N) only depending on the indicated
parameters (for the first, recall (2.59) and see for instance [Ros04, Proposition 2.1 (b)] for the
second). Let (Ki) be some minimizing sequence for problem (2.67). The sequence (P (Ki)−µn(Ki))
being bounded from above by definition, we find C > 0 such that

P (Ki) ≤ C + µn(Ki) ≤ C ′(N)(1 + diam(Ki)
−2)

for some dimensional constant C ′(N), using the second inequality of (2.68). Now, for fixed i we
either have diam(Ki) ≥ 1, in which case we deduce P (Ki) ≤ 2C ′(N), or diam(Ki) ≤ 1. Thanks to
the first inequality of (2.68) this yields

diam(Ki) ≤ max

{
1,
C(N)(2C ′(N))N−1

V N−2
0

}

Therefore, using the translation invariance of P and µn we can find a compact set D such that
Ki ⊂ D for each i. Recalling that R(K) := µn(K) verifies (2.51) thanks to Theorem 2.3.2, the rest
of the proof of existence is as in Theorem 2.3.4 (i).

Remark 2.3.7. • One can also wonder about the minimization

inf{P (K)− λn(K), K ∈ KN , |K| = V0}
In this case the problem is ill-posed, as the box constraint is needed to ensure existence. In fact,
one can see that the infimum is −∞, choosing the sequence of long thin rectangle Rε := [0, V0ε

−1]×
[0, ε] × [0, 1]N−2 for which P (Rε) ≤ CNε

−1 for some dimensional constant CN > 0 while λn(Rε) ∼
V −2
0 π2ε−2.

• Thanks to the isoperimetric inequality and the Faber-Krahn inequality (respectively the Szego-
Weinberger inequality), it is known that the unique solution up to translation to the minimization of
P +λ1 (respectively of P −µ2) is any ball B of volume V0. On the other hand, if n ≥ 2 (respectively
n ≥ 3) the problem (2.66) (respectively (2.67)) has C1,1 solutions which are not analytically known.

• Inspired by [FL21], one could wonder about the regularity properties of solutions to

min{P (K), K ∈ KN , |K| = V0, λn(K) = ℓ0}, max{λn(K), K ∈ KN , |K| = V0, P (K) = p0},
where p0 > 0, ℓ0 > 0. In [FL21, Corollary 3.13] it is proven when N = 2 and n = 1 that these
problems are equivalent (for suitable choices of p0 and ℓ0) and that solutions are C1,1. Nevertheless,
we were not able to apply our regularity result to these cases, so the regularity of solutions of these
problems remains open in other cases (N ≥ 3 or n ≥ 2), up to our knowledge.
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Torsional rigidity and Dirichlet eigenvalues

If D′ ⊂ D ⊂ RN are convex bodies, we still denote by KN
D′,D the set

KN
D′,D := {K ∈ KN , D′ ⊂ K ⊂ D}

Let us state now the main result of this section, which basically restates Theorem 2.3.2 for τ . Indeed as
we will see below, the proof of Theorem 2.3.2 for λn will be a consequence of the same result for τ .

Proposition 2.3.8. Let N ≥ 2 and D′ ⊂ D ⊂ RN be convex bodies. Then there exists C = C(D′, D)
such that for any K ′ ⊂ K lying in KN

D′,D

0 ≤ τ(K)− τ(K ′) ≤ C|K \K ′| (2.69)

The proof of Proposition 2.3.8 is based on two preliminary lemmas: for convex bodies K ′ ⊂ K,

1. we construct a “change of variable” operator TK,K′ : W 1,∞(ΩK) → W 1,∞(ΩK′) whose norm is
uniformly bounded in KN

D′,D, and which is the identity on a large part of K ′, see Lemma 2.3.9 (recall
that ΩK denotes the interior of K).

2. we show uniform W 1,∞-estimates of the torsion function of ΩK , see Lemma 2.3.10.

Lemma 2.3.9 (Change of variables). There exists C = C(D′, D) > 0 such that for any K,K ′ ∈ KN
D′,D

with K ′ ⊂ K, there exists a bi-Lipschitz homeomorphism ϕ := ϕK′,K : RN → RN such that the operator
T := TK,K′ defined by

TK,K′ : L1(ΩK)→ L1(ΩK′)

f 7→ f ◦ ϕ

satisfies the requirements:

• There exists K ′′ ⊂ K ′ such that |K ′ \K ′′| ≤ C|K \K ′| and

Tf(x) = f(x) a.e. in K ′′, for any f ∈ L1(ΩK)

• For all f1 and f2 respectively in H1
0 (ΩK) and W 1,∞(ΩK), Tf1 and Tf2 belongs to H1

0 (ΩK′) and
W 1,∞(ΩK′) respectively, with furthermore

∥Tf1∥H1
0 (ΩK′ ) ≤ C∥f1∥H1

0 (ΩK)

∥Tf2∥W 1,∞(ΩK′ ) ≤ C∥f2∥W 1,∞(ΩK)

Note that this result is similar to [BL08, Theorem 4.23] but for a different class of sets, namely KN
D′,D:

it is unclear whether [BL08, Theorem 4.23] implies Lemma 2.3.9, so we prefered to make our own proof
of this result.

Let us recall that any K ∈ KN has its boundary ∂K naturally parametrized as a graph over the sphere.
More precisely, we can assume up to translating that 0 is contained in ΩK , and then set ρ(x) := sup{λ ≥
0, λx ∈ K} for any x ∈ ∂B, called the radial function of K. Then the set K is globally parametrized by ρ:

K = {λxρ(x), x ∈ ∂B, λ ∈ [0, 1]} (2.70)

It is classical that ρ ∈W 1,∞(∂B) and moreover one can estimate ∇τρ in terms of ρ

∥∇τρ∥L∞(∂B) ≤
(sup ρ)2

inf ρ
(2.71)
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(see for instance the computations leading to (3.13) in [Fus15]).
Proof of Lemma 2.3.9: We will assume up to translating that 0 ∈ Int(D). Let K,K ′ ∈ KN

D′,D with
K ′ ⊂ K. The proof consists in building a bi-Lipschitz change of variables ϕ : K ′ → K which is the identity
on a large part of K ′, and such that

∥ϕ∥W 1,∞(ΩK′ ), ∥ϕ−1∥W 1,∞(ΩK) ≤ C (2.72)

for some constant C = C(D′, D) > 0 independent of K and K ′.
Let ρ and ρ′ denote respectively the radial functions of K and K ′. Let α be defined over ∂B by the

relation
ρ′ − α = c(ρ− ρ′) (2.73)

for some c > 0 that will be chosen later. Then α ≤ ρ′ and we get the estimate

α = ((c+ 1)ρ′ − cρ) ≥ (c+ 1)inr(D′)− c diam(D)

where inr(D′) is the inradius of D′. For c = c(D′, D) = inr(D′)
2[diam(D)−inr(D′)] we get

α ≥ inr(D′)
2

(2.74)

which is a lower bound independent of K,K ′ ∈ KN
D′,D.

If u ∈ RN \ {0} we denote by xu = u/|u|. Let ϕ be defined over RN by the formulae

∀u ∈ RN \ {0}, ϕ(u) :=
{
ϕ1(u) := xu

(
c+1
c |u| −

α(xu)
c

)
, if |u| ≥ α(xu)

ϕ2(u) := u, if |u| < α(xu)

and ϕ(0) := 0. Observe that the function ϕ is continuous and increasing along any normal direction
x ∈ ∂B, and it verifies by construction that

ϕ(0) = 0, ϕ(u) = ρ(xu)xu if |u| = ρ′(xu)

This ensures that ϕ is a bijection from K ′ to K.
Define K ′′ as the (non necessarily convex) set on which ϕ is the identity, i.e.

K ′′ := {λxα(x), x ∈ ∂B, 0 ≤ λ ≤ 1}

The mapping u ∈ RN \K ′′ 7→ xu having Lipschitz constant 2(minRN\K′′ |u|)−1 = 2(minα)−1, then

u ∈ RN \K ′′ 7→ xuα(xu)

has Lipschitz constant only depending on minα and ∥∇τα∥L∞(∂B). From the definition (2.73) of α and
recalling (2.71), we deduce that ϕ1 has Lipschitz constant L only depending on c, inr(D′) and diam(D),
hence only on inr(D′) and diam(D). Now, ϕ2 is Lipschitz over RN (with Lipschitz constant 1), so that we
deduce that ϕ is globally Lipschitz over RN . Indeed: let u0 ∈ K ′′, u1 ∈ RN \K ′′ and pick t ∈ [0, 1] such
that the point ut := (1−t)u0+tu1 verifies ut ∈ ∂K ′′ with [ut, u1] ⊂ RN \K ′′. Since ϕ(ut) = ϕ1(ut) = ϕ2(ut)
we can write

|ϕ(u0)− ϕ(u1)| = |ϕ2(u0)− ϕ2(ut) + ϕ1(ut)− ϕ1(u1)|
≤ 1× |u0 − ut|+ L|ut − u1|
≤ max(1, L)|u0 − u1|
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Hence ϕ is globally Lipschitz and its Lipschitz constant only depends on D′ and D. The same arguments
can be applied to ϕ−1, thus getting (2.72). Let us now show that the operator defined by

∀f ∈ L1
loc(ΩK), T f := f ◦ ϕ (2.75)

satisfies the expected requirements. For p ∈ {2,∞}, any f ∈W 1,p(ΩK) satifies f ◦ϕ ∈W 1,p(ΩK′) and the
weak derivatives of f ◦ ϕ can be expressed with the classical formula for the derivative of a composition
(see for instance [Maz85, Theorem 1.1.7]); furthermore, if f ∈ H1

0 (ΩK) then f ◦ ϕ verifies f ◦ ϕ = 0 a.e.
outside ΩK′ , giving that Tf ∈ H1

0 (ΩK′) since ΩK′ is Lipschitz (see [HP18, 3.2.16]). Together with (2.72)
we deduce that T satisfies the second requirement.

By construction ϕ(u) = u if u ∈ K ′′, so that it only remains to show

|K ′ \K ′′| ≤ C|K \K ′| (2.76)

with C uniform in the class KN
D′,D.

It is classical that |K| = 1
N

´
∂B ρ

NdHN−1 (see for instance [Sch14, (1.53)]) and similarly for K ′ and
K ′′ with ρ′ and α in place of ρ, respectively. Therefore

|K ′ \K ′′| = 1

N

ˆ
∂B

(
ρ′N − αN

)
dHN−1, |K \K ′| = 1

N

ˆ
∂B

(
ρN − ρ′N

)
dHN−1 (2.77)

Using the identity

xN − yN = (x− y)
N−1∑

k=0

xkyN−1−k

we obtain:

|K ′ \K ′′| ≤ N(diam(D))N−1

ˆ
∂B

(
ρ′ − α

)
dHN−1 = cN(diam(D))N−1

ˆ
∂B

(
ρ− ρ′

)
dHN−1

recalling (2.73). Likewise we get

|K \K ′| ≥
(
N

inr(D′)N−1

2N−1

)ˆ
∂B

(
ρ− ρ′

)
dHN−1

recalling (2.74). This proves (2.76) for some C = C(N,D,D′) and completes the proof.
Next lemma is a control of the torsion function ∥uΩK

∥W 1,∞(ΩK) uniformly in the class KN
D′,D:

Lemma 2.3.10. Let D ∈ KN . There exists C = C(D) > 0 such that for all K ∈ KN with K ⊂ D, then

∥uK∥W 1,∞(ΩK) ≤ C
where uK = uΩK

is the torsion function defined in (2.62).

Proof. • L∞ estimate of uK : We apply a standard maximum principle argument. We note first that
uK ∈ C0(Ω) (see [GT01, Theorem 6.13]). We choose x0 ∈ ΩK and let

w(x) :=
1

2N

(
diam(ΩK)2 − |x− x0|2

)

The construction of w ensures {
−∆w = −∆uK in ΩK

w ≥ uK over ∂ΩK

The maximum principle then writes

0 ≤ uK ≤ w ≤
diam(ΩK)2

2N
in Ω

so that

∥uK∥L∞(ΩK) ≤
diam(ΩK)2

2N
(2.78)
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• L∞ estimate of ∇uK : This is obtained in [CF10, Lemma 1] ; we reproduce the proof for sake of
completeness.

Since ΩK is convex the corresponding torsion function uK is 1/2-concave (see [Ken85, Theorem
4.1]), yielding also that the level sets {uK > c} are convex for any c ∈ R. Let x0 ∈ ΩK and take
a supporting hyperplane H to the convex set A := {uK > uK(x0)}, which we can assume to be
H = {xN = 0} without loss of generality. The convexity of A ensures that A is located on one side
of H, say that A ⊂ {xN ≥ 0}. As x0 ∈ H we must also have A ⊂ {xN ≤ d} where d := diam(ΩK).
Hence

A ⊂ {0 ≤ xN ≤ d}. (2.79)

This construction provides a natural barrier to uK at x0. In fact, denoting by F := {0 < xN < d},
we let w : F → R be defined for x ∈ F by,

w(x) =
1

2
xN (d− xN ) + uK(x0). (2.80)

Then see that w verifies {
−∆w = 1 in F,

w = uK(x0) over ∂F.

Furthermore it holds

∀x ∈ F, |∇w(x)| = |∂Nw(x)| ≤
d

2
. (2.81)

We can now estimate the gradient of uK at x0. Noting that uK ∈ C0(Ω) (see [GT01, Theorem
6.13]), we have thanks to (2.79) and (2.80) that w ≥ c ≥ uK over ∂A ⊂ {uK ≥ uK(x0)}. We can
therefore apply the maximum principle in the open set A to get

sup
x∈Ω

uK(x)− uK(x0)

|x− x0|
≤ sup

x∈A

uK(x)− uK(x0)

|x− x0|

≤ sup
x∈A

w(x)− w(x0)
|x− x0|

≤ sup
x∈F

w(x)− w(x0)
|x− x0|

.

Using (2.81) we finally obtain

sup
x∈Ω

uK(x)− uK(x0)

|x− x0|
≤ d

2
,

that is
∥∇uK∥L∞(Ω) = sup

x,y∈Ω

|uK(x)− uK(y)|
|x− y| ≤ 1

2
diam(Ω).

Remark 2.3.11. We did not use the convexity of ΩK for estimating ∥uK∥L∞(ΩK) in terms of diam(ΩK),
so that estimate (2.78) holds for any bounded open set Ω. Moreover, one can also obtain a finer estimate
relying on a symmetrization argument due to G. Talenti: if v is the solution to

{
−∆v = 1 in Ω♯

K

v ∈ H1
0 (Ω

♯
K)

where Ω♯
K is the ball centered at the origin having the same volume than ΩK , then [Tal76, Theorem 1

(iv)] implies
u♯K ≤ v in Ω♯

K
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with u♯K denoting the symmetric decreasing rearrangement of uK . This provides a Volume-type control
of ∥uK∥L∞(ΩK):

∥uK∥L∞(ΩK) = ∥u♯K∥L∞(Ω♯
K)
≤ ∥v∥

L∞(Ω♯
K)
≤ C(N)|ΩK |2/N

with C(N) a dimensional constant2. This estimate implies (2.78) up to a dimensional multiplicative
constant, as ΩK can always be included in some cube of size diam(ΩK). It can reveal to be very convenient
for controlling ∥uK∥L∞(ΩK) when we can bound |ΩK | while having diam(ΩK) −→ +∞.

We are now in a position to prove Proposition 2.3.8:
Proof of Proposition 2.3.8: Let K ′ ⊂ K be convex bodies. Recall that ΩK and ΩK′ denote the
interiors of K and K ′ respectively. Let T : ΩK → ΩK′ the change of variables given by Lemma 2.3.9.
Let uK := uΩK

the torsion function, solution of (2.62). Using TuK ∈ H1
0 (ΩK′) as a test function in the

variational formulation of τ(K ′) we can write

0 ≤ τ(K)− τ(K ′) ≤
ˆ
K

(
|∇(TuK)|2 − |∇uK |2

)
− 2

ˆ
K
(TuK − uK)

Using the properties of T given by Lemma 2.3.9 we get

0 ≤ τ(K)− τ(K ′) ≤
ˆ
K\K′′

(|∇(TuK)|2 − |∇uK |2)− 2

ˆ
K\K′′

(TuK − uK)

≤ |K \K ′′|
(
∥∇(TuK)∥2L∞(ΩK′ ) + 2∥TuK∥L∞(ΩK′ ) + 2∥uK∥L∞(ΩK)

)

≤ Cmax
(
∥uK∥L∞(ΩK), ∥∇uK∥2L∞(ΩK)

)
|K \K ′|

for some C = C(D′, D). Lemma 2.3.10 then yields the result.
We will now show Theorem 2.3.2 for λn. To that end we will use the following result that was proved

in [Buc03, Theorem 3.4]:

Theorem 2.3.12. Let Ω′ ⊂ Ω be bounded open sets. For any n ∈ N∗ it holds
∣∣λn(Ω)− λn(Ω′)

∣∣ ≤ C(n)λn(Ω)N/2+1λn(Ω
′)|τ(Ω)− τ(Ω′)|

where C(n) = 2n2e1/4π.

Proof of Theorem 2.3.2 for λn: Theorem 2.3.12 gives that for any K ∈ KN
D′,D

∣∣λn(K)− λn(K ′)
∣∣ ≤ C(n)λn(K)N/2+1λn(K

′)|τ(K)− τ(K ′)|

From monotonicity of the Dirichlet eigenvalues we have λn(K)N/2+1λn(K
′) ≤ λn(D′)2+N/2, and therefore

the estimate from Proposition 2.3.8 gives the result.

Neumann eigenvalues

The purpose of this section is to prove Theorem 2.3.2 in the case of Neumann eigenvalues. We actually
get a slightly better result (with no assumption of inclusion between K and K ′, see also Remark 2.3.3),
more precisely:

Proposition 2.3.13. Let N ≥ 2. Let D′ ⊂ D ⊂ RN be convex bodies. For any n ∈ N∗ there exists
Cn = Cn(D

′, D) > 0 such that for each K,K ′ ∈ KN
D′,D

|µn(K)− µn(K ′)| ≤ Cn|K∆K ′| (2.82)
2This was pointed out to us by D. Bucur.
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Remark 2.3.14. This result is stronger than [Ros04, Theorem 4.2], proven in the same class but for a
different distance between sets (namely, the L∞ distance between the radial functions). More precisely,
it is proven in [Ros04] that there exists Cn = Cn(D

′, D) such that for all K ′,K ∈ KN
D′,D with respective

radial functions ρK and ρK′

|µn(K)− µn(K ′)| ≤ Cn∥ρK − ρK′∥∞.
This latter result is not enough to provide (2.82), as one sees for example by taking K = [0, 1]3 and
Ki = K ∩ {x ∈ R3, x3 > 1/i− x1} (Ki is built by cutting the neighborhood of an edge). It is not hard to
see that |K \Ki| ≤ C∥ρK − ρKi∥2∞ (we fixed an origin inside K, for example (12 ,

1
2 ,

1
2)), thus contradicting

the possibility of controlling ∥ρK − ρK′∥∞ by |K∆K ′|. On the other hand this result is implied by (2.82),
recalling the expression of volume in terms of radial functions (see for instance [Sch14, (1.53)])

|K∆K ′| = 1

N

ˆ
∂B
|ρNK − ρNK′ | ≤ C∥ρK − ρK′∥∞

with C a constant only depending on D′ and D.

As in the Dirichlet case we follow the general strategy of [BL07, BL08], as we were not able to apply
their result, namely [BL07, Theorem 6.11]. The proof of Proposition 2.3.13 relies on the two independent
steps:

1. we construct an extension operator ΠK : W 1,∞(ΩK)→ W 1,∞(RN ) whose norm uniformly bounded
in KN

D′,D.

2. we provide W 1,∞-estimates of Neumann eigenfunctions.

Note that unlike in the Dirichlet case, we cannot rely on a statement like Theorem 2.3.12 and we have to
directly work with the variational formulation of eigenvalues (we could actually apply the same strategy
for proving Theorem 2.3.2 for λn, though we thought it was more elegant to use Theorem 2.3.12).

The following lemma deals with the first item of this strategy:

Lemma 2.3.15 (Extension operator). Let N ≥ 2 and D′ ⊂ D ⊂ RN be convex bodies. There exists
C = C(D′, D) > 0 such that for any K ∈ KN

D′,D there exists a bounded operator

ΠK : L1(ΩK)→ L1(RN )

satisfying the requirements:

• for any f ∈ L1(ΩK), ΠKf(x) = f(x) for a.e. x in ΩK ,

• if f ∈W 1,∞(ΩK) then ΠKf ∈W 1,∞(RN ) with

∥ΠKf∥W 1,∞(RN ) ≤ C∥f∥W 1,∞(ΩK)

Remark 2.3.16. This result could be seen as a consequence of [Che77, Theorem II.1] which asserts the
same result in the wider class of sets satisfying the ε−cone condition (see Definition 2.4.1). Nevertheless,
using that the domains we consider are convex, we are able to give a shorter proof of this result.

Proof. The ideas are similar from the ones in the proof of Lemma 2.3.9. We again assume up to translating
that 0 ∈ Int(D′), and let ρ be the radial function associated to K.

If u ∈ RN \ {0} we set xu := u/|u|. We let

K̃ := {λx(ρ(x) + 1), x ∈ B, λ ∈ [0, 1]}

∀u ∈ RN , ϕ1(u) :=

{
u if u ∈ K
ρ(xu)xu if u /∈ K
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and

∀u ∈ RN , ϕ2(u) :=





1 if u ∈ K
ρ(xu)− |u|+ 1 if |u| ∈ [ρ(xu), ρ(xu) + 1]

0 if |u| > ρ(xu) + 1

Functions ϕ1 and ϕ2 are built by gluing continuously Lipschitz functions; as in the proof of Lemma 2.3.9
we thus deduce that ϕ1 and ϕ2 are Lipschitz with Lipschitz constant only depending on ∥∇τρ∥L∞(B) and
min ρ, hence only on D′ and D. Therefore there exists C(D′, D) such that

{
∥ϕ2∥L∞(RN ) ≤ 1, ∥∇ϕ2∥L∞(RN ) ≤ C(D′, D)

∥Dϕ1∥L∞(RN ) ≤ C(D′, D)
(2.83)

We finally let, for any f ∈ L1(ΩK) and u ∈ RN

ΠKf(u) :=

{
f(ϕ1(u))ϕ2(u) if u ∈ K̃
0 if u /∈ K̃

By construction ΠKf(u) = f(u) for u ∈ ΩK , and ∥ΠKf∥L∞(RN ) ≤ ∥f∥L∞(ΩK). Since ϕ1 and ϕ2 are
Lipschitz we have that ΠKf ∈W 1,∞(RN ) if f ∈W 1,∞(ΩK) and further∇ΠKf = (f ◦ϕ1)∇ϕ2+∇(f ◦ϕ1)ϕ2
a.e.. Using (2.83) we deduce

∥∇ΠKf∥L∞(RN ) = ∥∇ΠKf∥L∞(K̃)
≤ ∥ϕ2∇(f ◦ ϕ1)∥L∞(K̃)

+ ∥(f ◦ ϕ1)∇ϕ2∥L∞(K̃)

≤ ∥ϕ2∥W 1,∞(RN )

(
∥∇(f ◦ ϕ1)∥L∞(K̃)

+ ∥f ◦ ϕ1∥L∞(K̃)

)

≤ (1 + C(D′, D))2∥f∥W 1,∞(ΩK)

This completes the proof of the lemma.

We now state a W 1,∞-estimate for Neumann eigenfunctions:

Lemma 2.3.17. Let N ≥ 2, D′ ⊂ D ⊂ RN be convex bodies, and n ∈ N∗. There exists Cn =
Cn(N,D

′, D) > 0 such that for all K ∈ KN
D′,D,

∥vK,n∥W 1,∞(ΩK) ≤ Cn

where vK,n is any Neumann eigenfunction associated to µn(K) and such that ∥vK,n∥L2(ΩK) = 1.

Proof. We fix n ∈ N and denote more simply vn := vK,n.

• L∞ estimate of vn: By [Ros04, Proposition 3.1] (and the remark following), it holds

∥vn∥L∞(ΩK) ≤ C1

(
(1 +

√
µk(K))C2

)r

where 



C1 = C1(N)

C2 = C2(D
′, D)

r = r(N)

Since µn(K) ≤ λn(K) ≤ λn(D′), we get the estimate

∥vn∥L∞(ΩK) ≤ Cn(N,D
′, D) (2.84)
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• L∞ estimate of ∇vn: It is proved in [Maz09] in any dimension N ≥ 2 that

∥∇vn∥L∞(ΩK) ≤ C(N)|K|1/Nµn(K)C−1
ΩK
∥vn∥L∞(ΩK)

where CΩK
is the isoperimetric constant relative to ΩK , i.e. if Ω ⊂ RN is a bounded open set

CΩ := inf
E⊂Ω

0<|E|≤|Ω|/2

P (E,Ω)

|E|1−1/N
= inf

E⊂Ω
0<|E|<|Ω|

P (E,Ω)

min{|E|, |Ω \ E|}N−1
N

with P (·,Ω) denoting the relative perimeter in Ω. Together with (2.84) this provides

∥∇vn∥L∞(ΩK) ≤ Cn(N,D
′, D)C−1

ΩK
(2.85)

Now it is shown in [Tho15, Corollary 2] that CΩ ≥ δ(ε, b,N) > 0 for any Lipschitz domain Ω with
diameter ≤ b and satisfying the ε-cone condition (2.94). As there exists ε = ε(D′, D) such that
(2.94) is satisfied for any K ∈ KN

D′,D (see Remark 2.4.2) we can conclude from (2.85) that

∥∇vn∥L∞(ΩK) ≤ Cn(N,D
′, D)

We are now in a position to prove Proposition 2.3.13. The following is a combination of the proofs of
Theorems 3.2 and 4.20 of [BL07] adapted to the particular case of the Neumann Laplace operator, which
we reproduce for the convenience of the reader.

Proof of Proposition 2.3.13: We denote by v1, ..., vn n first eigenfunctions of the Neumann Laplace
operator on ΩK normalized for the L2 norm (i.e. ∥vk∥L2(ΩK) = 1). Recall that functions vk are orthogonal
for the L2 scalar product. Let f :=

∑n
k=1 αkvk with ∥f∥L2(ΩK) = 1, which means

∑n
k=1 α

2
k = 1. Set

T := RK′ ◦ΠK : L1(ΩK)→ L1(ΩK′)

where ΠK is the extension operator given by Lemma 2.3.15 and RK′ is the restriction onto ΩK′ . Note
first that it suffices to prove estimate (2.82) under the additionnal condition |K∆K ′| ≤ εn for some small
εn(D

′, D) > 0 depending on n, D′, D; indeed, using µn(K) ≤ λn(K) ≤ λn(D
′) for any K ∈ KN

D′,D, we
have

|µn(K)− µn(K ′)| ≤ 2λn(D
′) ≤ 2λn(D

′)
εn

|K∆K ′|

if |K∆K ′| ≥ εn.

Estimate from below of ∥Tf∥L2(ΩK′ ): We will first prove

∥Tf∥2L2(ΩK′ ) ≥ 1− Cn|ΩK \ ΩK′ | (2.86)

for some Cn = Cn(N,D
′, D) > 0, which immediately provides

∥Tf∥−2
L2(ΩK′ )

≤ 1 + 2Cn|ΩK \ ΩK′ | (2.87)

whenever |ΩK \ ΩK′ | ≤ 1/2Cn, using the inequality (1− x)−1 ≤ 1 + 2x if 0 ≤ x ≤ 1/2.
We have, as RK′ ◦ΠK(f) = f on ΩK ∩ ΩK′ ,

∥Tf∥2L2(ΩK′ ) ≥ ∥Tf∥2L2(ΩK∩ΩK′ ) = ∥f∥2L2(ΩK∩ΩK′ ) = ∥f∥2L2(ΩK) − ∥f∥2L2(ΩK\ΩK′ ) (2.88)
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But thanks to Lemma 2.3.17 and recalling that
∑n

k=1 α
2
k = 1

∥f∥2L2(ΩK\ΩK′ ) ≤
( n∑

k=1

αk∥vk∥L2(ΩK\ΩK′ )

)2
≤

n∑

k=1

∥vk∥2L2(ΩK\ΩK′ )

≤
( n∑

k=1

∥vk∥2L∞(ΩK)

)
|ΩK \ ΩK′ | ≤ Cn(N,D

′, D)|ΩK \ ΩK′ |

Pluging this into (2.88) yields (2.86).

Estimate from above of ∥∇Tf∥L2(ΩK′ ): We now prove

∥∇Tf∥2L2(ΩK′ ) ≤ µn(K) + Cn|ΩK′ \ ΩK | (2.89)

for some Cn = Cn(N,D
′, D).

Note that

∥∇Tf∥2L2(ΩK′ ) = ∥∇Tf∥2L2(ΩK′∩ΩK) + ∥∇Tf∥2L2(ΩK′\ΩK)

= ∥∇f∥2L2(ΩK′∩ΩK) + ∥∇Tf∥2L2(ΩK′\ΩK)

≤ ∥∇f∥2L2(ΩK) + ∥∇Tf∥2L2(ΩK′\ΩK) (2.90)

The Neumann eigenfunctions being orthogonal for the L2 scalar product, we also have
´
ΩK
∇vk · ∇vk′ =

µk(K)
´
ΩK

vkvk′ = 0 for k ̸= k′. Furthemore ∥∇vk∥2L2(ΩK) = µk(K) ≤ µn(K) and we thus get

∥∇f∥2L2(ΩK) =
n∑

k=1

α2
k∥∇vk∥2L2(ΩK) ≤ µn(K) (2.91)

On the other hand, denoting by C1 = C1(D
′, D) and C2 = C2(N,D

′, D) the constants respectively given
by Lemmas 2.3.15 and 2.3.17, we obtain

∥∇Tf∥2L2(ΩK′\ΩK) ≤ ∥∇Tf∥2L∞(ΩK′ )|ΩK′ \ ΩK |
≤ C1∥f∥2W 1,∞(ΩK)|ΩK′ \ ΩK |

≤ C1

( n∑

k=1

∥vk∥2W 1,∞(ΩK)

)
|ΩK′ \ ΩK |

≤ C1nC
2
2 |ΩK′ \ ΩK | (2.92)

With estimates (2.91) and (2.92), (2.90) gives (2.89) for Cn(N,D
′, D) = C1nC

2
2 .

Min-max principle and conclusion: Let us remind the following min-max principle:

µn(K
′) = min

dim(V )=n
max
g∈V
g ̸=0

∥∇g∥2L2(ΩK′ )

∥g∥2
L2(ΩK′ )

(2.93)

where the minimum is taken over all n-dimensional subspaces V ⊂ H1(ΩK′).
In the view of (2.86), if |ΩK \ ΩK′ | ≤ εn for some εn = εn(N,D

′, D), we deduce ∥Tf∥L2(ΩK′ ) > 0
for any f =

∑n
k=1 αkvk with ∥f∥L2(ΩK) = 1, thus getting that Tv1, . . . , T vn are linearly independent as

(v1, . . . , vn) also are. Setting Ln := Vect(v1, ..., vn), formula (2.93) therefore implies

µn(K
′) ≤ max

g∈TLn
g ̸=0

∥∇g∥2L2(ΩK′ )

∥g∥2
L2(ΩK′ )

= max
f∈Ln

∥f∥L2(ΩK )=1

∥∇Tf∥2L2(ΩK′ )

∥Tf∥2
L2(ΩK′ )
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Putting estimates (2.87) and (2.89) provides

µn(K
′) ≤

(
µn(K) + Cn|ΩK′ \ ΩK |

)(
1 + 2Cn|ΩK \ ΩK′ |

)

≤ µn(K) + C̃n|ΩK∆ΩK′ |

for some constant C̃n(N,D
′, D), if |ΩK \ ΩK′ | ≤ εn, where we used µn(K) ≤ λn(K) ≤ λn(D′). Switching

the roles played by K and K ′ we get (2.82).

2.3.3 Optimality of the C1,1 regularity

We show in this short section that the Hölder regularity obtained in Theorem 2.2.3 is optimal. Precisely
we prove:

Proposition 2.3.18. In R2, there exists a quasi-minimizer of the perimeter under convexity constraint
which is C1,1 but not C2.

Let us first introduce some notations. If Ω is a measurable set we define its (scaling invariant) Fraenkel
asymmetry α(Ω), which is scaling invariant:

α(Ω) := inf

{ |Ω∆B|
|Ω| , B ⊂ R2 a ball , |B| = |Ω|

}
.

We also denote D(Ω) := (P (Ω) − P (B))/P (B) the normalized isoperimetric deficit, where B is any ball
with same volume than Ω. We call stadium a set Ω ⊂ R2 which is obtained as the convex envelope of two
disjoint disks of same radius.

The following result is proved in [AFN11] (see also [BCH17, Theorem 1.2], and the introduction of
[CL13]).

Theorem 2.3.19. It holds
inf

K∈K2

D(K)

α(K)2
≃ 0.405585 > 0

and equality is achieved at a particular stadium K∗.

Proof of Proposition 2.3.18: Let us note that any stadium is C1,1 but not C2, as the curvature jumps
from value 0 on a flat part to a positive value on a semi-circle. Call c∗ the value of the infimum above,
and set V0 := |K∗| and BV0 a ball of volume V0. Then Theorem 2.3.19 implies

P (K)− P (BV0)− c∗P (BV0)α(K)2 ≥ 0

for any planar convex body K of volume V0, with equality at K∗. In other words, K∗ minimizes the
functional P − P (BV0) − cα2 among planar convex sets of volume V0, with c := P (B)c∗. If one proves
that α2 satisfies hypothesis (2.51), then we deduce that K∗ is a quasi-minimizer of the perimeter under
convexity constraint, which concludes the proof. Let (K,K ′) ∈ K2, and with no loss of generality (as α is
invariant with scaling) let us assume that |K| = |K ′| = 1. We denote B an optimal ball in the definition
of α(K): we have

α2(K ′)− α2(K) ≤ 2(α(K ′)− α(K)) ≤ 2
(
|K ′∆B| − |K∆B|

)
≤ 2|K∆K ′|

where the last inequality is obtained by easily checking that K ′∆B ⊂ (K∆K ′) ∪ (K∆B). Inverting the
roles played by K and K ′ we deduce that α verifies (2.51), thus completing the proof.
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2.4 Appendix

Parametrization of convex bodies in cartesian graphs Let us start by covering a few preliminaries
about Lipschitz sets. The following definition, first given by D. Chenais in [Che75], is a very convenient
way of considering "uniformly" Lipschitz sets.

Definition 2.4.1. Let ε > 0. We say that an open set Ω ⊂ RN satisfies the ε-cone condition if for any
x ∈ ∂Ω there exists a unit vector ξx such that

∀y ∈ Bε(x) ∩ Ω, C(y, ξx, ε) ⊂ Ω (2.94)

where we set
C(y, ξx, ε) := {z ∈ RN , ⟨z − y, ξx⟩ > cos(ε)|z − y|, 0 < |z − y| < ε}.

Remark 2.4.2. For any fixed M ≥ m > 0, it can be shown that any open convex set Ω such that there
exists x ∈ RN with

Bm(x) ⊂ Ω ⊂ BM (x)

verifies the ε-cone condition for some ε = ε(m,M) (see for instance [HP18, Proposition 2.4.4]).

The following proposition shows that one can see a convex set as the graph of a Lipschitz function
with specific additional properties that will be used in the proof of Theorem 2.2.3 (see Figure 2.3 for an
illustration).

Proposition 2.4.3. Let K ∈ KN . For any x̂0 ∈ ∂K, there exists

• A hyperplane H ⊂ RN containing x̂0,

• A unit vector ξ ∈ RN normal to H,

such that, denoting by (x, t) a point in H × Rξ coordinates (and hence denoting x̂0 := (x0, 0)), it holds

1. The set Ω := {x ∈ H, (x+ Rξ) ∩ Int(K) ̸= ∅} is open, bounded and convex, and the function

u : Ω→ R
x 7→ min{t ∈ R, (x, t) ∈ K}

is well-defined and convex. Furthermore, if ε is such that Int(K) satifies the 2ε-cone condition (see
Definition 2.4.1), then Bε := Bε tan(ε)(x0) ⊂ Ω and u|Bε is tan(ε)−1-Lipschitz.

2. It holds

{(x, u(x)), x ∈ Ω} ⊂ ∂K
K ∩ (Ω× Rξ) ⊂ {(x, t) ∈ Ω× Rξ, u(x) ≤ t}

3. For any open set ω ⋐ Bε, there exists c > 0 such that

{(x, t) ∈ ω × Rξ, u(x) ≤ t ≤ u(x) + c} ⊂ K

Furthermore we can choose c only depending on d(ω, ∂Bε) and ε.
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Figure 2.3: Convex body in cartesian graph

Proof. The proof is inspired from [HP18, Theorem 2.4.7], with a few adaptations due to convexity. Since
K ∈ KN , then Int(K) satisfies the cone condition (see Definition 2.4.1 and Remark 2.4.2). We can assume
without loss of generality that it satisfies the 2ε-cone condition for some ε > 0 with tan(ε) ≤ 1. Let then
ξ := ξx̂0

be a unit vector associated to x̂0 and the 2ε-cone condition, that is

∀x̂ ∈ K ∩B2ε(x̂0), C(x̂, ξ, 2ε) ⊂ Int(K)

We set H := {x̂ ∈ RN , ⟨x̂− x̂0, ξ⟩ = 0}.
The function u is well-defined by construction of Ω. The convexity of K gives immediately that u is

convex: if λ ∈ [0, 1] and x, y ∈ Ω, the point (1 − λ)(x, u(x)) + λ(y, u(y)) ∈ K since K is convex, giving
that u((1− λ)x+ λy) ≤ (1− λ)u(x) + λu(y) by definition of u.

For the rest of the proof we will write (y, yξ) for the H ×Rξ coordinates of a point ŷ ∈ RN . Any cone
C(x̂, ξ, 2ε) can be written

C(x̂, ξ, 2ε) =

{
ŷ ∈ B2ε(x̂), yξ − xξ >

1

tan(ε)
|y − x|

}
(2.95)

Indeed, if ŷ ∈ RN and x̂ ∈ RN are such that yξ − xξ ≥ 0, then

yξ − xξ > cos(ε)|ŷ − x̂| ⇐⇒ (yξ − xξ)2 > cos2(ε)
(
|y − x|2 + (yξ − xξ)2

)

⇐⇒ yξ − xξ >
1

tan(ε)
|y − x|

Recalling that Bε = {x ∈ H, |x− x0| < ε tan(ε)} we claim that

∀x ∈ Bε,

{
(x, ε) ∈ Int(K)

(x,−ε) /∈ Int(K)
(2.96)

Indeed, let x ∈ Bε. Let us first show that (x, ε) ∈ Int(K). Since C(x̂0, ξ, 2ε) ⊂ Int(K) by the 2ε-cone
condition, then it suffices to prove that (x, ε) ∈ C(x̂0, ξ, 2ε). But as |x− x0| < ε it holds (x, ε) ∈ B2ε(x̂0),
and furthermore tan(ε)−1|x− x0| < ε, so that we deduce (x, ε) ∈ C(x̂0, ξ, 2ε) thanks to (2.95) and hence
(x, ε) ∈ Int(K). For the second assertion it is sufficient to prove that C(x̂0,−ξ, 2ε) ⊂ RN \ Int(K), since
in any case (x,−ε) ∈ C(x̂0,−ξ, 2ε) using again (2.95), as (x,−ε) ∈ B2ε(x̂0) with tan(ε)−1|x − x0| < ε =
(−ε)×(−1). Suppose then by contradiction that there exists x̂ ∈ C(x̂0,−ξ, 2ε)∩Int(K); since x̂ ∈ B2ε(x̂0),
it holds that C(x̂, ξ, 2ε) ⊂ Int(K) by the 2ε-cone property. But then x̂0 ∈ C(x̂, ξ, 2ε), yielding x̂0 ∈ Int(K),
which is a contradiction. This finishes the proof of (2.96).

Thanks to (2.96), it holdsBε ⋐ Ω. Let us show that u|Bε is Lipschitz continuous with Lipschitz constant
tan(ε)−1. If x ∈ Bε then (x, ε) ∈ Int(K) thanks to (2.96) and (x, u(x)) ∈ ∂K so that [(x, u(x)), (x, ε)] ⊂ K.
This ensures−ε < u(x) < ε using again (2.96), so that in particular (x, u(x)) ∈ B2ε(x̂0). Let now x, y ∈ Bε.
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As (x, u(x)) ∈ B2ε(x̂0) we must have C((x, u(x)), ξ, 2ε) ⊂ Int(K) by the 2ε-cone property; but then, as
(y, u(y)) ∈ ∂K we get (y, u(y)) /∈ C((x, u(x)), ξ, 2ε), giving

u(y)− u(x) ≤ 1

tan(ε)
|y − x|

Reversing the roles played by x and y, we deduce in fact that u|Bε is tan(ε)−1-Lipschitz. This finishes the
proof of the first requirement.

The construction of u ensures that the second requirement is verified. As for the third let δ be such
that d(ω, ∂Bε) ≥ δ > 0. Set c := δ tan(ε)−1 and let x ∈ Bε and u(x) ≤ t ≤ u(x) + c. As x ∈ Bε, we have
(x, ε) ∈ Int(K) and (x, u(x)) ∈ ∂K so that [(x, u(x)), (x, ε)] ⊂ K, hence it suffices to show that t < ε to
get the claim. As it holds that |x − x0| < ε tan(ε) − δ, then recalling that u|Bε is tan(ε)−1-Lipschitz we
get

t ≤ u(x) + c < tan(ε)−1 × (ε tan(ε)− δ) + c = ε

This finishes the proof of the third point and hence the proof of the Proposition.

Proof of Proposition 2.2.8

Proof. Let (Kn) be a sequence of convex bodies verifying Kn ⊂ D where D ∈ KN .

• Let us first focus on
dH(Kn,K)→ 0⇐⇒ |Kn∆K| → 0

The direct sense is proved in [BB05, Proposition 2.4.3, (ii)]. As for the converse, suppose |Kn∆K| →
0, and assume by contradiction that (Kn) does not converge to K for dH . Up to extracting we can
therefore suppose that there exists ε > 0 such that

∀n ∈ N, dH(Kn,K) ≥ ε (2.97)

Thanks to the Blaschke selection theorem which states that {L compact convex of RN , L ⊂ D} is
compact for the Hausdorff distance, up to further extraction there exists K∞ compact convex such
that Kn → K∞ for dH . Using again [BB05, Proposition 2.4.3, (ii)] and since |Kn∆K| → 0 we must
have K∞ = K, contradicting (2.97).

• We now assume that dH(Kn,K)→ 0, and let C ∈ KN be such that C ⊂ Int(K). We want to prove

C ⊂ Kn for large n.

There exists ε > 0 such that d(C, ∂K) ≥ ε. Since Kn → K for dH , we also have ∂Kn → ∂K for
dH (see [Sch14, Lemma 1.8.1]). This gives d(C, ∂Kn) ≥ ε/2 for large n. Let us assume to get a
contradiction that we do not have C ⊂ Kn for n large enough. Up to extraction we can therefore
suppose that C ∩ (RN \ Kn) ̸= ∅ for each n. But then C ⊂ RN \ Kn thanks to the convexity of
C, since otherwise there would exist x ∈ C ∩ ∂Kn which is in contradiction with d(C, ∂Kn) ≥ ε/2.
This rewrites Kn ⊂ RN \ C for each n, yielding K ⊂

(
RN \ C

)
at the limit. This contradicts the

hypothesis Int(C) ⊂ K.
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Chapter 3

Fuglede-type arguments for isoperimetric
problems and applications to stability
among convex shapes

This Chapter is a reprint of the submitted paper Fuglede-type arguments for isoperimetric problems and
applications to stability among convex shapes written by the author of this thesis.

Abstract

This paper is concerned with stability of the ball for a class of isoperimetric problems under convexity
constraint. Considering the problem of minimizing P + εR among convex subsets of RN of fixed volume,
where P is the perimeter functional, R is a perturbative term and ε > 0 is a small parameter, stability of
the ball for this perturbed isoperimetric problem means that the ball is the unique (local, up to translation)
minimizer for any ε sufficiently small. We investigate independently two specific cases where Ω 7→ R(Ω)
is an energy arising from PDE theory, namely the capacity and the first Dirichlet eigenvalue of a domain
Ω ⊂ RN . While in both cases stability fails among all shapes, in the first case we prove (non-sharp)
stability of the ball among convex shapes, by building an appropriate competitor for the capacity of a
perturbation of the ball. In the second case we prove sharp stability of the ball among convex shapes by
providing the optimal range of ε such that stability holds, relying on the selection principle technique and
a regularity theory under convexity constraint.

3.1 Introduction

3.1.1 Stability in shape optimization

In this article we are interested in the question of stability of the ball for isoperimetric-type problems
under a convexity constraint. It takes place in the framework of shape optimization problems involving
the perimeter functional P , which consists in the minimization problems

inf {P (A) +R(A), A ∈ A}

where A is a class of measurable subsets A ⊂ RN of volume |A| = 1, P (A) is the perimeter of A in the
usual De Giorgi sense, and R : A → R is a functional thought of as a perturbative term. Due to the
well-known isoperimetric inequality, any ball B ⊂ RN of unit volume is minimal for the minimization of
P+R among all sets in A when R = 0: for all measurable sets A ⊂ RN with volume |A| = 1, P (A) ≥ P (B)
with equality if and only if A is a ball of unit volume. By stability of the ball for the problem P + R we
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mean that, considering Rε := εR for a small parameter ε > 0, then provided ε is close enough to 0:

The ball B is a local minimizer of P + εR in A

where by locality we mean that the L1 distance of Ω ∈ A with B is small (i.e. |Ω∆B| ≪ 1). In other
words, this notion of stability states that the ball is still a minimizer of the perimeter functional when it
is perturbed by another functional R. Another way of putting it comes from rewriting the minimality of
B as

P (A)− P (B) ≥ ε (R(B)−R(A))
so that, assuming moreover that R(B) ≥ R(A) for each A ∈ A (which is always verified for the cases
we have in mind), then the deficit of perimeter quantifies the deficit of the functional R. Let us mention
that this point of view on stability encompasses what is usually refered to in the literature as quantitative
inequalities, the most famous one being the sharp quantitative isoperimetric inequality, proven in [FMP08].
It claims that by setting

δF (A) := inf{|A∆(B + x)|, x ∈ RN}
the Fraenkel asymmetry of a set A ⊂ RN of unit volume, then there exists cN > 0 such that

P (A)− P (B) ≥ cNδF (A)2

In our stability setting this can be rephrased into stability of P − δ2F among all sets of unit volume. The
literature on quantitative inequalities in shape optimization is very prolific, and we refer for instance among
many others to [FMP08], [BDPV15], [FFM+15], [AFM13], [CL12], [BNT10], [FMP10] and to [Fus15] for
a nice review of stability results linked to the isoperimetric inequality.

3.1.2 Stability of the ball under convexity constraint

We are more specifically interested in shape optimization problems where A only contains convex shapes,
that is

inf
{
P (K) + εR(K), K ∈ KN , |K| = 1

}

where KN denotes the class of convex bodies of RN (that is, compact convex sets with non-empty inte-
rior). The addition of the convexity constraint is interesting since stability among all shapes fails for the
functionals we will consider. This happens for some problems where R is of PDE-type, by which we mean
that R(K) is an energy associated to a PDE which is set on K or RN \K. In this paper we investigate
independently two specific problems falling into this category. Let us now introduce them and state the
stability results associated.

Weak stability for P + Cap−1

We are interested in a first problem which involves a PDE set on the exterior of the domain. For N ≥ 3
we introduce the capacity functional Cap : KN → R which we define as the usual electrostatic capacity :

Cap(K) := inf

{ˆ
RN

|∇u|2, u ∈ C∞
c (RN ), u ≥ 1 over K

}
(3.1)

When N = 2, one can see by looking at the energy of the fundamental solution of the Laplacian that
the infimum in (3.1) is always 0. Therefore one must proceed differently to define the capacity for N = 2
(see Section 3.2).

We now set the problem: letting ε > 0 be a small parameter, we are interested in the minimization

inf
{
P (K) + εCap(K)−1, K ∈ KN , |K| = 1

}
(3.2)

for N ≥ 3. Before giving motivations and context for this problem let us state the stability result which
we obtained.
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Theorem 3.1.1 (Weak stability of the ball for the capacity). Let N ≥ 3. There exists ε0 = ε0(N) > 0
such that for any ε ∈ (0, ε0) the centered ball of unit volume B is the unique (up to translation) minimizer
of (3.2).

We call this result weak stability in the sense that the ε0 found is not optimal (contrarily to Theorem
3.1.2 below), and is in fact not even explicit. Note that it is the N ≥ 3 version of the two dimensional
result [GNR18, Corollary 1.3], where the authors prove weak stability of the ball with the logarithmic
capacity instead. Our approach is however very different, see Section 3.1.3.

Due to the isocapacitary inequality (see for instance [DPMM21]) which states that

∀Ω ⊂ RN open, |Ω| = 1, Cap(Ω) ≥ Cap(B)

and the isoperimetric inequality, there is a competition in the minimization (3.2) which makes the problem
non trivial. The introduction of the convexity constraint in the problem comes from the fact that existence
does not hold without any additional geometric assumption (for non-existence for any ε > 0 and in
all dimensions N ≥ 2 see [GNR15, Theorem 3.2 and Theorem 6.2]). On the other hand (3.2) admits
minimizers for any ε > 0 (see [GNR18, Theorem 1.1]).

Strong stability for P − λ1
If Ω ⊂ RN is an open set with finite volume we let λ1(Ω) be its first Dirichlet eigenvalue, defined as the
smallest number λ ∈ R such that there exists a non trivial function u verifying

{
−∆u = λu, in Ω

u ∈ H1
0 (Ω)

where the first equation holds in the distributional sense in Ω. It has a variational characterization:

λ1(Ω) := inf

{´
Ω |∇u|2´
Ω |u|2

, u ∈ H1
0 (Ω)

}
.

For K ∈ KN we set λ1(K) := λ1(Int(K)). Consider then the minimization problems

inf
{
P (Ω)− cλ1(Ω), Ω ⊂ RN open, |Ω| = 1

}
, inf

{
P (K)− cλ1(K), K ∈ KN , |K| = 1

}

for any fixed parameter c > 0. There is a competition between the perimeter and λ1, as it is known from
the isoperimetric and Faber-Krahn inequalities that a ball B of volume 1 minimizes them both among
shapes of unit volume. Intuitively, we expect that the perimeter is the dominant term for small values
of c while we expect that this is no longer the case in the regime c → +∞, so that B might be a local
minimizer for small values of c and not for large values of c. As such there is no global minimizer to any of
the two problems, taking for instance a sequence of long thin rectangles of unit volume. However, even in
a loose local sense there is no stability of the ball for the first problem, meaning that for any c > 0 there
exists a sequence (Ωj,c)j∈N of open sets with

|Ωj,c| = 1, |Ωj,c∆B| → 0 and (P − cλ1)(Ωj,c) < (P − cλ1)(B) for each j ∈ N

as one sees by comparing the energy of the ball to the energy of the ball perforated by a small hole at
its center (see for instance [DL19, Proposition 6.1]). A strong geometric constraint such as convexity of
the admissible sets forbids this kind of behaviour, so that one might expect stability in this case. This is
the object of the second main result of this article, which can be seen as sharp stability of the ball under
convexity constraint for the functional P − λ1. The result is as follows.
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Theorem 3.1.2 (Sharp stability of the ball for λ1). Let N ≥ 2. Let ωN be the volume of a ball of radius
1, and pN := NωN , lN := j2N/2−1 be respectively the perimeter and first eigenvalue of a ball of radius 1

(jN/2−1 is the first zero of the Bessel function of the first kind of order N/2− 1). Set

c∗ :=
N(N + 1)pN

4lN (lN −N)ω
N+1
N

N

(3.3)

Let B be a ball of unit volume.

• Let 0 < c < c∗. Then there exists δc > 0 such that

∀K ∈ KN , |K| = 1 with |K∆B| ≤ δc, (P − cλ1)(K) ≥ (P − cλ1)(B). (3.4)

• Let c > c∗. There exists a sequence of smooth convex bodies (Kj,c)j∈N of unit volume for which
|Kj,c∆B| → 0 and

(P − cλ1)(Kj,c) < (P − cλ1)(B) for each j ∈ N. (3.5)

Note that the novelty of this result comes from the first item (inequality (3.4)), as (3.5) was already
obtained by [Nit14] (see the second point below). We thus give an answer to the question of local minimality
of the ball for the problem P − cλ1 under convexity constraint for any value c > 0 (except c = c∗). Let us
place it among existing results in the literature.

• First, in a weak form the stability of the ball for P − λ1 (in the sense of (3.4)) was already known.
It was first obtained in two dimensions by Payne and Weinberger in [PW61] for the larger class
of simply connected domains. More precisely, the Payne-Weinberger inequality states that for any
Ω ⊂ R2 open, simply connected with unit volume it holds

λ1(Ω)− λ1(B) ≤ λ1(B)
(
J1(j01)

−2 − 1
)(P (Ω)2

4π|Ω| − 1

)
(3.6)

where J1 is the Bessel function of the first kind of order one, and j01 is the first zero of the Bessel
function of the first kind and of order zero. While this inequality is much more general since it
gives a control of the Faber-Krahn deficit by the isoperimetric deficit for any simple connected set, it
implies in particular stability of the ball among simply connected sets Ω for which P (Ω) is bounded
from above. One can in fact derive the inequality

∀Ω ⊂ R2 open and simply connected with |Ω| = 1, (P (Ω)− P (B)) ≥ ε2
P (B) + C

(λ1(Ω)− λ1(B))

where ε2 := 4πλ1(B)−1(J1(j01)
−2 − 1)−1, provided P (Ω) ≤ C. Note that the constant ε2/(P (B) +

C) becomes ε2(2P (B))−1 =
(√
πj201(J1(j01)

−2 − 1)
)−1 ≈ 0.036 as C → P (B), while the optimal

constant given by (3.3) equals c∗ = 3√
πj201(j

2
01−2)

≈ 0.077.

On the other hand, a Payne-Weinberger type inequality for convex sets was proven in any dimensions
N ≥ 2 by Brandolini, Nitsch and Trombetti [BNT10, Theorem 1.1] using the Brunn-Minkowski
theory. They prove that for any open convex set of unit volume Ω ⊂ RN it holds

λ1(Ω)− λ1(B∗)
λ1(Ω)

≤ CN

(
P (Ω)

N
N−1 − P (B)

N
N−1

P (Ω)
N

N−1

)

for some explicit constant CN > 0, where B∗ is a ball with same perimeter as Ω. This again implies
a non-optimal local stability of the ball for convex sets in the sense given by (3.4).
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• Second, in [Nit14, Theorem 1.2] (see also [DL19, Proposition 5.5 (ii)]) Nitsch conjectured the optimal
value c∗ > 0 by proving that (i) if c < c∗, the ball B is a minimizer of P − cλ1 among unit volume
perturbations of the ball by a smooth vector field ξ i.e. for Bξ := (Id + ξ)(B) with ∥ξ∥C∞ ≪ 1 and
(ii) if c > c∗, there exists ∥ξj∥C∞ → 0 with (P − cλ1)(Bξj ) < (P − cλ1)(B).

• Finally, one can interpret this result in the context of Blaschke-Santalo diagrams. In fact, it provides
the exact value of the tangent at (x0, y0) := (P (B), λ1(B)) of the upper boundary of the diagram
for (P, λ1, | · |) in the class of planar convex sets, that is of the set

D :=
{
(x, y) ∈ R2, ∃K ∈ K2, P (K) = x, λ1(K) = y, |K| = 1

}
(3.7)

It was proven in [FL21] that this diagram lies between two continuous increasing functions, meaning
that

D =
{
(x, y) ∈ [x0,+∞[×R+, f(x) ≤ y ≤ g(x)

}

for some continuous increasing f, g : [x0,+∞) → R+. Relying on non minimality of the ball for
c > c∗, the authors proved that lim supx→x0

g(x)−g(x0)
x−x0

≥ 1
c∗ (see [FL21, Corollary 3.17]). On the

other hand, minimality for any c < c∗ from Theorem 3.1.2 ensures that the reverse inequality holds,
so that the function g admits a tangent at (x0, y0) with coefficient (c∗)−1. The precise result is thus
the following.

Corollary 3.1.3. Let B ⊂ R2 be a ball of unit volume and set (x0, y0) := (P (B), λ1(B)). Let c∗

be given by (3.3). Then the upper boundary of the diagram (3.7) admits a tangent at (x0, y0) with
coefficient (c∗)−1, i.e. g′(x0) = (c∗)−1.

Although the convexity constraint is a natural class for proving this strong form of stability of the ball,
our result opens up the question as to finding the more general class for which this could hold. Since a
weak form of stability holds in two dimensions for perturbations of the ball which are simply connected
(by the Payne-Weinberger inequality), we believe that it would be interesting to investigate whether the
sharp stability we obtained could be extended to this class. As shown in [DL19, Remark 6.2], one cannot
hope for such a general class when N ≥ 3, but one can however make the same conjecture for the class of
Lipschitz perturbations of the ball (see also further (ii) from Proposition 3.2.5).

3.1.3 Strategy of proof

Although the two results are independent, the strategy we employ for proving them follows a general
scheme, which is recurrent in the literature and not specific to convexity (see [DL19] for a detailed de-
scription). We rely on the following steps:

1. Fuglede-type computations: minimality of the ball for the functional among “smooth" perturbations
of the ball (Theorems 3.2.1 and 3.3.1).

2. Local minimality of the ball for convex sets (Theorems 3.1.1 and 3.1.2).

The first step of this strategy refers to the seminal work [Fug89] of B. Fuglede, where the author
obtained it for the perimeter functional. By “smooth" perturbations of the ball B in the first step we mean
that minimality holds for domains Ω = (Id + ξ)(B) with ξ lying in some normed space of smoothness X
and ∥ξ∥X is small enough. Since they are independent of convexity, the respective results Theorems 3.2.1
and 3.3.1 constituting the first step bear interest in themselves. On the other hand, in the second step
one studies the regularity of minimizers of the associated problem, aiming to prove that each minimizer Ω
can be written Ω = (Id + ξ)(B) with ξ ∈ X and X is the space obtained in the first step. The two parts
of the strategy are thus closely linked to each other through the choice of the space X.

Let us now explain separately how we proceed for proving Theorems 3.1.2 and 3.1.1.

87



Weak stability with Lipschitz regularity

For proving Theorem 3.1.1 we first perform Fuglede-type computations for Lipschitz perturbations of the
ball. This is done in Theorem 3.2.1. It is an improvement of previous results from [GNR15, Corollary 5.6],
where the authors perform Fuglede-type computations for a class of C1,1 sets with curvature uniformly
bounded from above. The proof of Theorem 3.2.1 relies on a second-order estimate of the variation of the
capacity for Lipschitz perturbations of the ball, shown in Lemma 3.2.2. To obtain this latter bound we
take advantage of the fact that the capacity is defined as a minimum, thus enabling us to estimate it from
above by providing a natural competitor, for which only low regularity is needed.

Theorem 3.1.1 is then obtained from Theorem 3.2.1 by using Lipschitz regularity of convex sets as in
[Fug89]. In reference to the two steps strategy described above, note that in this case the passage from
the Fuglede-type computations to local minimality of the ball in the class of convex sets is quite direct,
due to the fact that we are able to perform these computations for a space X with low regularity.

Strong stability with a C1,α regularity theory

Since it was proven in [Nit14, Theorem 1.2] that minimality in (3.4) holds among smooth perturbations
of the ball for any c ∈ (0, c∗), the idea of Theorem 3.1.2 is to pass from smooth to non-smooth convex
perturbations of the ball in the minimality. The strategy we will use is the so-called selection principle,
which was first introduced by Cicalese and Leonardi in [CL12] as a means to give a new proof to the
sharp quantitative isoperimetric inequality. The robustness of their method allowed it to be employed
in many other contexts for proving various inequalities for shapes, among which we can quote the sharp
quantitative Faber-Krahn inequality proven in [BDPV15]. The strategy consists in a refinement of the two
steps method described above. Roughly speaking, if one wants to prove local minimality of the ball of unit
volume B for a functional J among a class A of shapes, the idea is to reduce the proof of the inequality
in A to the inequality in a class of smooth shapes through a regularizing procedure. This is usually based
on a regularity theory related to the functional J under study.

In order to apply this selection principle method we first need to prove Fuglede-type computations for
the functional P − cλ1 for C1,α perturbations of the ball (in Theorem 3.3.1), which are finer than all the
available results in the literature (in [Nit14, DL19, Dam02, DP00]; see Section 3.3 for a justification of
these refinements). On the other hand, to perform the second step of the strategy we prove a convergence
result for quasi-minimizers of the perimeter under convexity constraint (Corollary 3.4.3), which uses the
regularity theory from [LP23].

Note that the proof of Theorem 3.1.2 is much more involved than the proof of Theorem 3.1.1. This is
related to the fact that it relies on a regularity theory among convex shapes, but is also because in order
to prove the Fuglede-type computations we are led to perform very technical computations (see the proof
of Theorem 3.3.5).

3.1.4 Plan of the paper

Section 3.2 is dedicated to the proof of Theorem 3.1.1. Sections 3.3 and 3.4 are independent of this first
section, and deal with proving Theorem 3.1.2: in Section 3.3 we show the first step of the selection prin-
ciple method by proving minimality of the ball for P − cλ1 in a C1,α neighborhood; then, in Section 3.4
we perform the regularizing procedure in itself. We provide a small appendix in Section 3.5.

Acknowledgements: The author is deeply grateful to J. Lamboley for very helpful discussions and
careful readings of previous versions of this document. The author also thanks M. Goldman, M. Novaga
and B. Ruffini for valuable discussions about this work. The author warmly thanks R. Petit for interesting
discussions about convergence of smooth sets. This work was partially supported by the project ANR-18-
CE40-0013 SHAPO financed by the French Agence Nationale de la Recherche (ANR).
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3.2 Stability of the ball for an isoperimetric problem with convexity
constraint involving capacity. Proof of Theorem 3.1.1

In this section we prove Theorem 3.1.1, which is the stability result associated to (3.2). We defined in
(3.1) the capacity functional in dimensions N ≥ 3. One also has

Cap(K) = min

{ˆ
RN

|∇u|2, u ∈ C∞
c (RN )

|·|H1
, u ≥ 1 over K

}
(3.8)

where C∞
c (RN ))

|·|H1 denotes the closure of C∞
c (RN ) inside H1(RN ) for the H1 semi-norm |u|H1 :=

∥∇u∥2
L2(RN )

. It is proven in [CS03, Theorem 2 and 3] that provided K is sufficiently smooth, this mini-
mization is uniquely solved by the so-called capacitary function uK which verifies





−∆uK = 0 in RN \K
uK = 1 over K, uK ∈ C0(RN )

uK(x)→ 0 as |x| → +∞
(3.9)

The number Cap(K) also appears in the asymptotic expansion of uK :

uK(x) ∼ |x|2−N
(
Cap(K)σN (N − 2)−(N−1)/(N−2)

)
as |x| → +∞

with σN denoting the (N −1)-dimensional measure of the unit sphere in RN . Finally, let us also note that
Cap(K) = (IN−2(K))−1 where IN−2 is the Riesz potential energy which is given by

IN−2(K) := inf

{¨
RN×RN

|x− y|2−Ndµ(x)dµ(y), µ ∈ P(K)

}

with P(K) denoting the set of probabilities supported on K (see [GNR15, Remark 2.5]).
When N = 2, one can see by looking at the energy of the fundamental solution of the Laplacian that

the infimum in (3.1) is always 0. Therefore one must proceed differently to define the capacity for N = 2.
We first set the Robin constant VK of some K ∈ K2, which can be defined in three equivalent ways (see
[Bag67, Theorem 4] and section 3 in [GNR18]): first, letting

CapR(K) := inf

{ˆ
R2

|∇u|2, u ∈ H1
0 (BR(0)), u ≥ 1 over K

}
(3.10)

then we set VK := lim
(
2πCapR(K)−1 − log(R)

)
as R → ∞. Equivalently if K ∈ K2 there is a unique

function uK such that




−∆uK = 0 in R2 \K
uK = 0 over ∂K
z 7→ (uK(z)− log |z|) admits a finite limit α as |z| → +∞

and α = VK . Finally, one also has

VK := inf

{
−
¨

K×K
log(|x− y|)dµ(x)dµ(y), µ ∈ P(K)

}
.

Then the logarithmic capacity is given by

Cap(K) := e−VK
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In two dimensions, instead of (3.2) we set the minimization problem

inf
{
P (K)− ε log (Cap(K)) , K ∈ KN , |K| = 1

}
(3.11)

where ε > 0 is a small parameter. Stability of the ball among convex sets in two dimensions was obtained
in [GNR18, Corollary 1.3] using the two steps strategy we described in the Introduction, by proving (i)
Fugldede-type computations in a certain class of "smooth" perturbations and (ii) regularity of minimizers
of (3.11). Theorem 3.1.1 is the N ≥ 3 version of this result. Instead, here we prove (i) for Lipschitz
perturbations (in Theorem 3.2.1 below), which will be enough in order to obtain local minimality of the
ball for convex sets without having to prove regularity of the minimizers. The result is as follows.

Theorem 3.2.1 (Fuglede-type computations for P + εCap−1: minimality for Lipschitz perturbations).
Let N ≥ 3, and let B denote the centered unit ball. For h ∈W 1,∞(∂B) we denote Bh := {tx(1+h(x)), t ∈
[0, 1), x ∈ ∂B}. There exists η > 0 and ε0 > 0 such that for all h ∈W 1,∞(∂B) verifying ∥h∥W 1,∞(∂B) ≤ η
with |Bh| = |B| and such that Bh has barycenter at the origin, and for all ε ∈ (0, ε0), then

P (Bh) + εCap(Bh)
−1 ≥ P (B) + εCap(B)−1

with equality only if Bh = B.

The proof of Theorem 3.2.1 importantly relies on Lemma 3.2.2 below, which consists in a weak (IT)
property (see the statement of Theorem 3.3.4 for a strong (IT) property).

3.2.1 Weak (IT) property

For h ∈W 1,∞(∂B) with ∥h∥L∞(∂B) ≤ 1/2 the notation Bh denotes the Lipschitz open set

Bh := {tx(1 + h(x)), t ∈ [0, 1), x ∈ ∂B}

In the following Lemma we estimate from above the variation of Cap for a Lipschitz perturbation Bh

of B in terms of the H1 norm of h. Since the Lemma does not use the convexity of the sets Bh it is stated
for general h ∈W 1,∞(∂B).

Lemma 3.2.2 (Weak (IT)H1,W 1,∞). Let N ≥ 3. There exists CN > 0 such that if h ∈ W 1,∞(∂B) with
Bh of volume |Bh| = |B| and ∥h∥L∞(∂B) ≤ 1/2 then

Cap(Bh)− Cap(B) ≤ CN∥h∥2H1(∂B)

Proof of Lemma 3.2.2. Fix h ∈ W 1,∞(∂B) with ∥h∥L∞(∂B) ≤ 1/2 and |Bh| = |B|. We extend h over
RN \ {0} by setting h(x) := h(x/|x|), thus getting a 0-homogenous function h : RN → RN . Let then ϕh
be the Lipschitz homeomorphism

ϕh : RN −→ RN

x 7−→ x

(1 + h(x))
(3.12)

Let us denote more simply h̃ := (1+h)−1, so that ϕh(x) = h̃(x)x. We have Dϕh(x) = h̃(x)Id+x⊗∇h̃(x),
so that using the formula det(Id + a ⊗ b) = 1 + a · b for vectors a, b and since ∇h̃(x) · x = 0 it holds
det(Dϕh) = h̃N . As a consequence, thanks to the change of variable y = ϕh(x) and using polar coordinates,
the hypothesis |Bh| = |B| reads ˆ

∂B
(1 + h)N =

ˆ
∂B

1 (3.13)
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Expanding (1 + h)N − 1 = Nh+
∑N

i=2

(
N
i

)
hi we thus get that there exists CN > 0 such that

if ∥h∥L∞(∂B) ≤ 1/2,

ˆ
∂B
h ≤ CN∥h∥2L2(∂B) (3.14)

We set uB(x) := min{1, |x|2−N} the capacitary function for B, which is the unique solution to (3.9)
for K = B.

Step 11: Cap(Bh) ≤
´
RN |∇(uB ◦ ϕh)|2. For R ≥ 1 let θR : RN → R be some cut-off function such

that {
θR ≡ 1 on BR(0), θR ≡ 0 on RN \B2R(0)

∥θR∥L∞(RN ) ≤ 1, ∥∇θR∥L∞(RN ) ≤ 1
R

Then vR(x) := θR(x)(uB ◦ϕh)(x) ∈W 1,∞(RN ) and has compact support, so that by standard mollification

we have vR ∈ C∞
c (RN )

|·|H1 . As a consequence by (3.8) we get

Cap(Bh) ≤
ˆ
RN

|∇vR|2 (3.15)

We now verify that ∇vR → ∇(uB ◦ ϕh) in L2(RN ) as R→ +∞.
We have

∥∇vR −∇(uB ◦ ϕh)∥L2(RN ) = ∥∇vR −∇(uB ◦ ϕh)∥L2(RN\BR)

≤ ∥∇(uB ◦ ϕh)∥L2(RN\BR) + ∥θR · ∇(uB ◦ ϕh)∥L2(RN\BR)

+ ∥∇θR · (uB ◦ ϕh)∥L2(RN\BR) (3.16)

≤ 2∥∇(uB ◦ ϕh)∥L2(RN\BR) + ∥∇θR · (uB ◦ ϕh)∥L2(RN\BR) (3.17)

Since ∇(uB ◦ ϕh) = (Dϕh)
T∇uB ◦ ϕh with ϕh ∈W 1,∞(RN ) and ∇uB ∈ L2(RN ), it holds

ˆ
RN

|∇(uB ◦ ϕh)|2 ≤ ∥Dϕh∥2L∞(RN )∥det(Dϕh)∥−1
L∞(RN )

ˆ
RN

|∇uB|2 <∞

Hence ∥∇(uB ◦ ϕh)∥L2(RN\BR) → 0. On the other hand, as ∥1 + h∥L∞(RN ) ≤ 3/2 we have for |x| ≥ 3/2,

|uB ◦ ϕh(x)| = |ϕh(x)| ≤
(
3

2

)N−2

|x|2−N

Since |∇θR| ≤ R−1, using polar coordinates this gives for R ≥ 3/2

ˆ
B2R\BR

|∇θR · (uB ◦ ϕh)|2 ≤ P (B)

(
3

2

)N−2

R−2

ˆ 2R

R
r2(2−N)rN−1dr

= P (B)

(
3

2

)N−2
{
(4−N)−1R−2((2R)4−N −R4−N ) if N ̸= 4

R−2 log(2) if N = 4

In any case we thus get
ˆ
B2R\BR

|∇θR · (uB ◦ ϕh)|2 → 0 as R→ +∞.

Pluging this into (3.17) we deduce in fact

∥∇vR −∇(uB ◦ ϕh)∥L2(RN ) → 0, as R→ +∞
1This argument for admissibility of uB ◦ ϕh was suggested to us by M. Goldman, M. Novaga and B. Ruffini.
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so that
Cap(Bh) ≤

ˆ
RN

|∇(uB ◦ ϕh)|2

thanks to (3.15).
Step 2: Estimate of the energy of uB ◦ ϕh. Recall that

∀x ∈ RN , Dϕh(x) = h̃(x)Id + x⊗∇h̃(x) (3.18)

so that

|∇(uB ◦ ϕh)|2 =
∣∣t(Dϕh) · ∇uB ◦ ϕh

∣∣2

=
∣∣∣h̃ · (∇uB ◦ ϕh) +∇h̃ ((∇uB ◦ ϕh) · x))

∣∣∣
2

Since uB is radial, the vector ∇uB(ϕh(x)) is thus proportionnal to ϕh(x) and hence to x, which yields
∇uB(ϕh(x)) · ∇h̃(x) = 0 (because h̃ is constant in the direction x). We deduce

|∇(uB ◦ ϕh)|2 = h̃2|∇uB ◦ ϕh|2 + ((∇uB ◦ ϕh) · x)2|∇h̃|2

We can therefore write the energy of uB ◦ ϕh as followsˆ
RN

|∇(uB ◦ ϕh)|2 =
ˆ
RN

h̃2|∇uB ◦ ϕh|2 +
ˆ
RN

((∇uB ◦ ϕh) · x)2|∇h̃|2 (3.19)

Let us first deal with the term
´
RN h̃

2|∇uB(ϕh)|2. Recalling that det(Dϕh) = h̃N we get by the change
of variable y = ϕh(x)ˆ

RN

h̃2|∇uB ◦ ϕh|2 =
ˆ
RN

(1 + h)−2|∇uB ◦ ϕh|2

=

ˆ
RN

(1 + h)N−2|∇uB|2

=

ˆ
RN

|∇uB|2 +
N−2∑

i=1

(
N − 2

i

)ˆ
RN

hi|∇uB|2

= Cap(B) +

N−2∑

i=1

(
N − 2

i

) ˆ
RN

hi|∇uB|2

Now using polar coordinates we have for i ≥ 1
ˆ
RN

hi|∇uB|2 =
ˆ ∞

0
dr

ˆ
|θ|=r

hi(θ)v′(r)2dθ

=

(ˆ ∞

0
v′(r)2rN−1dr

)(ˆ
∂B
hi(θ)dθ

)

= aN

ˆ
∂B
hi

where we set aN :=
´∞
0 v′(r)2rN−1dr = P (B)−1

´
RN |∇uB|2. For i ≥ 2, since ∥h∥L∞(∂B) ≤ 1/2 we thus

get ˆ
RN

hi|∇uB|2 ≤ CN∥h∥2L2(∂B),

while if i = 1 thanks to (3.14) we have
´
∂B h ≤ CN∥h∥2L2(∂B) so that

ˆ
RN

hi|∇uB|2 ≤ C ′
N∥h∥2L2(∂B).
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These two give ˆ
RN

h̃2|∇uB(ϕh)|2 ≤ Cap(B) + CN∥h∥2L2(∂B) (3.20)

for some dimensional constant CN > 0.
We now turn to the estimate of

´
RN ((∇uB ◦ ϕh) · x)2|∇h̃|2. Denoting by a(x) := x/|x|, then for x ̸= 0

∇h̃(x) = −h̃2Da(x)T∇τh(a(x))

where∇τ is the tangential gradient. As each coefficient ofDa(x) is controlled by 2|x|−1, since ∥h̃∥L∞(∂B) ≤
2 this yields

((∇uB ◦ ϕh) · x)2|∇h̃(x)|2 ≤ 8|∇uB ◦ ϕh|2|∇τh(a(x))|2

Changing variables and using polar coordinates in the same fashion as before, this ensures that
ˆ
RN

((∇uB ◦ ϕh) · x)2|∇h̃|2 ≤ CN∥∇τh∥2L2(∂B) (3.21)

for some CN > 0. Injecting this estimate together with (3.20) into (3.19) finally yields
ˆ
RN

|∇(uB ◦ ϕh)|2 ≤ Cap(B) + CN∥h∥2H1(∂B)

for some CN > 0.
Conclusion: Thanks to Step 1 it holds

Cap(Bh) ≤
ˆ
RN

|∇(uB ◦ ϕh)|2

from which we get using Step 2

Cap(Bh) ≤ Cap(B) + CN∥h∥2H1(∂B)

This finishes the proof of the Lemma.

Remark 3.2.3. We tried to apply the same strategy in the case N = 2 in order to retrieve the result
from [GNR18]. However, due to the specificity of the definition of capacity in the two dimensional case,
this brings additional difficulties and we do not know whether the argument could work.

3.2.2 Proof of Theorems 3.2.1 and 3.1.1

Relying on Lemma 3.2.2, we first prove the Fuglede-type computations for Lipschitz perturbations from
Theorem 3.2.1.

Proof of Theorem 3.2.1. Let h ∈ W 1,∞(∂B) with ∥h∥L∞(∂B) ≤ 1/2, such that |Bh| = |B| and Bh has
barycenter at the origin. It is proven in [Fus15, Theorem 3.1] that there exists η > 0 such that

if ∥h∥W 1,∞(∂B) ≤ η, P (Bh)− P (B) ≥ 1

4
∥∇τh∥2L2(∂B)

Thanks to (3.13) one has the Poincaré type inequality (see also [Fus15, Proof of Theorem 3.1])

∃δ > 0, if ∥h∥L∞(∂B) ≤ δ, ∥h∥2L2(∂B) ≤ 2∥∇τh∥2L2(∂B)
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Setting η̃ := min{η, δ}, we thus deduce thanks to Lemma 3.2.2 that if ∥h∥W 1,∞(∂B) ≤ η̃ then

Cap(B)−1 − Cap(Bh)
−1 =

Cap(Bh)− Cap(B)

Cap(B)Cap(Bh)
≤ CN

Cap(B)2
∥h∥2H1(∂B)

≤ 3CN

Cap(B)2
∥∇τh∥2L2(∂B)

≤ 12CN

Cap(B)2
(P (Bh)− P (B))

where we also used the isocapacitary inequality in the first line. Taking ε0 :=
Cap(B)2

12CN
we get the conclusion

of the Theorem (note also that by following the chain of inequalities one must have a strict inequality
whenever h ̸= 0).

We are now ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let us first note that (3.2) admits a solution for any ε > 0 (it was proven in
[GNR18, Theorem 1.1]).

Due to convexity, any K ∈ KN with barycenter at the origin can always be written

K = {tx(1 + hK(x)), t ∈ [0, 1], x ∈ ∂B}

where hK : ∂B → R is the distance function to the origin.
Let K ∈ KN be minimizing (3.2), and suppose that K has barycenter at the origin. Let η > 0 and

ε0 > 0 be given by Theorem 3.2.1. Now, by minimality

P (K)− P (B) ≤ εCap(K)− Cap(B)

Cap(K)Cap(B)

≤ ε

Cap(B)

Thanks to [Fus15, Lemma 3.3] there exists δη > 0 such that provided P (K)−P (B) ≤ δη then ∥h∥W 1,∞(∂B) ≤
η. We therefore deduce that if ε ∈ (0,Cap(B)δη), we have in fact ∥h∥W 1,∞(∂B) ≤ η, so that taking
ε ∈ (0,min{ε0, δηCap(B)}) we can apply Theorem 3.2.1 to get that K is a ball. This finishes the proof.

3.2.3 Further stability results

The strategy we employed for proving Theorem 3.1.1 can be adapted to the case of λ1. In fact, one can
proceed likewise to get a result analogous to the Lemma 3.2.2 below in the case of λ1 (see (i) in Proposition
3.2.5), leading to a result of the same type as Theorem 3.1.1. Let us state the stability result for the sake
of clarity.

Proposition 3.2.4 (Weak stability of the ball for λ1). Let N ≥ 2. There exists ε0 > 0 and δ > 0 such
that for any ε ∈ (0, ε0),

∀K ∈ KN , |K| = 1 with |K∆B| ≤ δ, (P − ελ1)(K) ≥ (P − ελ1)(B).

Although this gives a simple proof of the stability of the ball in the case of λ1, this Proposition is
strictly weaker than the stronger result we prove in Theorem 3.1.2, since the range of ε > 0 for which
the ball is locally minimal is not optimal (and was already known, see Section 3.1.2). On the other hand,
since the analogues of Lemma 3.2.2 and Theorem 3.2.1 in the case of λ1 do not explicitly appear in the
literature (up to our knowledge), we think it might be of interest to state them rigorously. This is the
object of the next result.

Proposition 3.2.5. Let N ≥ 2.
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(i) (Weak (IT)H1,W 1,∞). There exists CN > 0 such that if h ∈W 1,∞(∂B) with Bh of volume |Bh| = |B|
and ∥h∥L∞(∂B) ≤ 1/2 then

λ1(Bh)− λ1(B) ≤ CN∥h∥2H1(∂B).

(ii) (Stability of the ball for Lipschitz perturbations). There exists η > 0 and ε0 > 0 such that for all
h ∈ W 1,∞(∂B) verifying ∥h∥W 1,∞(∂B) ≤ η with |Bh| = |B| and such that Bh has barycenter at the
origin, and for all ε ∈ (0, ε0), then

P (Bh)− ελ1(Bh) ≥ P (B)− ελ1(B)

with equality only if Bh = B.

Let us comment on the second item of this Proposition. While this non-optimal stability of the ball
for Lipschitz perturbations is implied by the Payne-Weinberger inequality (3.6) in two dimensions, it does
not seem to be known in the case N ≥ 3. It opens up the question regarding a natural class of sets for
which the optimal stability from Theorem 3.1.2 might hold: can one prove optimal stability of the ball for
Lipschitz perturbations?

3.3 Minimality of the ball in a C1,α neighborhood

The goal of this section consists in proving the first step of the selection principle strategy as we described
it in the Introduction, namely that the ball is a strict (up to translation) minimum in a C1,α neighborhood
of the functional P − cλ1 for c ∈ (0, c∗). This is stated in next result.

Let us set a few preliminary notations. The notation B refers to the open ball of unit volume centered
at 0. In this section, any function h : ∂B → R defined on the sphere is extended to the whole of RN by
setting h(x) := θ(x)h( x

|x|) (for some smooth θ with θ ≡ 1 near ∂B) into a compactly supported function
as smooth as h and which is constant near ∂B along directions normal to ∂B. Note that this extension is
different from the one we make in Section 3.2 (in Lemma 3.2.2). For any α ∈ (0, 1] and h ∈ C1,α(∂B) we
denote ξh(x) := h(x)x, so that ∥ξh∥C1,α(RN )N ≤ C∥h∥C1,α(∂B), for some C > 0. We set

Bh = {tx(1 + h(x)), t ∈ [0, 1), x ∈ ∂B} = (Id + ξh)(B),

which is a bounded Lipschitz open set provided ∥ξh∥W 1,∞(RN )N < 1, with boundary ∂Bh = {x(1 +
h(x)), x ∈ ∂B}.

Theorem 3.3.1 (Fuglede-type computations for P − cλ1: minimality for C1,α perturbations). Let N ≥ 2.
For c > 0 set Jc := P − cλ1 and let c∗ be given by (3.3). Then there exists α ∈ (0, 1) such that for any
0 < c < c∗ there exists δc > 0 such that for each h ∈ C1,α(∂B) with |Bh| = |B| and ∥h∥C1,α(∂B) ≤ δc then

Jc(Bh) ≥ Jc(B)

with equality only if (up to translating) Bh = B.

Note that this result is of interest in itself, in particular no convexity constraint of the sets Bh is
assumed. Let us emphasize on the importance of the space C1,α in which we obtain minimality of the
ball, regarding the general goal of proving minimality of Jc for all convex shapes (see Theorem 3.1.2).
In fact, Theorem 3.3.1 is an improvement of [DL19, Proposition 5.5], where the authors get minimality
of the ball for the same interval of c’s but in a W 2,p neighborhood (for any p > N), which was itself an
improvement of previous works for C2,α perturbations from [DP00, Dam02]. These latter results are not
enough to apply the selection principle strategy, as this procedure does not give more than convergence
in any C1,α sense of quasi-minimizers (see Corollary 3.4.3 and Remark 3.4.4).
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One of the main ingredients of the proof of Theorem 3.3.1 consists in proving a so-called (IT) property
for the functional

Jc := P − cλ1.
This is achieved in Theorem 3.3.4. This property was introduced in [DL19, p. 3012], and describes
a suitable second-order Taylor expansion at the ball B for the functional Jc, where one identifies the
remainder as the product of some “weak" Sobolev norm of the perturbation by something which goes to
0 as the perturbation goes to 0 in a much stronger sense (see Theorem 3.3.4 for a precise statement).

Let us first define the notion of shape differentiability for a shape functional. If Ω ⊂ RN is a bounded
open set and ξ ∈W 1,∞(RN ,RN ) we denote by Ωξ := (Id + ξ)(Ω) the open Lipschitz deformation of Ω by
ξ.

Definition 3.3.2. Let N ≥ 2. Let J : {Ω ⊂ RN , Ω open bounded} → R be a functional. Let Ω ⊂ RN

be open bounded and let X ⊂ W 1,∞(Rn,Rn) be a normed space. For k ∈ {1, 2} we say that J is k-times
shape differentiable around Ω (for the space X) in the direction ξ ∈ X if the function

JΩ : ξ ∈ X 7→ J (Ωξ)

is k-times differentiable in a neighborhood of 0. We denote by J ′
Ω(ξ) ∈ L1(X,R) (respectively J ′′

Ω(ξ) ∈
L2(X ×X,R)) the first (respectively second) derivative at ξ ∈ X.

Remark 3.3.3. Note that although J ′
Ω(ξ) and J ′′

Ω(ξ) are a priori linear and bilinear continuous forms
over X, provided the set Ω enjoys some regularity properties it happens very often that they can be
naturally extended to spaces of much lower regularity; for instance, the perimeter functional P has its first
derivative continuous for the L2 norm, while its second derivative can be continuously extended in H1. In
the case of λ1 it is respectively the L2 and H1/2 spaces over which the first and second derivatives can be
defined (see for instance [DL19, Lemma 2.8]).

We can now state the second main result of this section.

Theorem 3.3.4 ((IT) property for Jc). Let N ≥ 2. For c > 0 set Jc := P − cλ1. There exists α ∈ (0, 1)
such that for any c > 0 there exists δc > 0 and a modulus of continuity ωc such that for all h ∈ C1,α(∂B)
with ∥h∥C1,α(∂B) ≤ δc it holds

Jc(Bh) = Jc(B) + (Jc)′B(0) · (ξh) +
1

2
(Jc)′′B(0) · (ξh, ξh) + ωc(∥h∥C1,α(∂B))∥h∥2H1(∂B)

This condition was defined in [DL19] as the (IT)H1,C1,α condition, meaning that the functional Jc
verifies a second-order Taylor expansion with the remainder term behaving as the product of ∥h∥2H1 with
a modulus of continuity of ∥h∥C1,α . It was shown by Fuglede in [Fug89] that the perimeter satisfies a
stronger (IT)H1,W 1,∞ condition (see for instance [DL19, Proposition 4.5]: there exists ωP a modulus of
continuity and δP > 0 such that for all h ∈W 1,∞(∂B) with ∥h∥W 1,∞(∂B) ≤ δP it holds

P (Bh) = P (B) + P ′
B(0) · (ξh) +

1

2
P ′′
B(0) · (ξh, ξh) + ωP

(
∥h∥W 1,∞(∂B)

)
∥h∥2H1 (3.22)

As a consequence, proving Theorem 3.3.4 reduces to proving an (IT)H1,C1,α condition result for λ1 (see
the proof of Theorem 3.3.4 for this reduction), and in fact we will prove a stronger (IT)H1/2,C1,α condition
for λ1. In order to do so we follow the strategy laid out by [DL19]: it will be convenient to show that λ1
verifies the so-called condition (IC)H1/2,C1,α , as stated in next result, which constitutes the core result of
this section.

Theorem 3.3.5 ((IC) property for λ1). Let N ≥ 2. For any t ∈ [0, 1] and h ∈ C1,α(∂B) let λ1(t) :=
λ1(Bth). There exists α ∈ (0, 1) such that the functional λ1 satisfies an (IC)H1/2,C1,α condition at the
ball B, i.e. there exists δ > 0 and a modulus of continuity ωλ1 such that for any h ∈ C1,α(∂B) with
∥h∥C1,α(∂B) ≤ δ we have

∀t ∈ [0, 1], |λ′′1(t)− λ′′1(0)| ≤ ωλ1(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)
. (3.23)
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The proof of this result is inspired by the strategy of [DL19, Theorem 1.4] for proving that λ1 satisfies
an (IC)H1/2,W 2,p condition. Nevertheless, as the space C1,α is strictly weaker than the space W 2,p, some
estimates require a refined analysis (see Lemma 3.3.7) and new methods (see Lemma 3.3.6). We believe
that this result is of independent interest, since it goes strictly below spaces with second derivatives as
C2,α or W 2,p spaces, which are the usual spaces for which this kind of property is obtained (see for instance
[Dam02] or [AFM13]).

Let us mention that in order to prove Theorem 3.3.5 we will first prove it for functions h ∈ C1,1(∂B)
instead of h ∈ C1,α(∂B), as it will allow us to consider the second-order geometric quantities of Bh (such
as the mean curvature and second fundamental form) in the classical sense as functions of L∞(∂Bh), thus
easing the computations (in particular in Lemmas 3.3.7, 3.3.9 and 3.3.10). We then remove this additional
regularity assumption by a density argument.

The expression of λ′′1(t) (see Lemma 3.3.10) involves both PDE-type terms and geometric terms. We
start this section by proving three preparatory Lemmas in Section 3.3.1, which provide continuity-type
estimates in the domain Ω of the quantities involved in the expression of λ′′1(t).

3.3.1 Continuity in the domain Ω.

In this section we prove three preparatory Lemmas. Lemmas 3.3.6 and 3.3.8 will be useful for us to
estimate the PDE terms in the variation |λ′′1(t) − λ′′1(0)|, while Lemma 3.3.7 will enable us to estimate
the geometric terms. Note that we will also use them as a means to justify the expression of λ′′1(t) from
Lemma 3.3.10. Let us set some notations for this section.

Geometric notation. Let Ω be a C1,1 bounded open set. For any ξ ∈ C1,1(RN ,RN ) we set Ωξ the
C1,1 open set Ωξ := (Id + ξ)(Ω). The operator ∇τξ denotes the tangential gradient over ∂Ωξ, divτξ and
Dτξ respectively the tangential divergence and jacobian. Setting nξ ∈ C0,1(∂Ωξ) the outer unit normal of
Ωξ (in particular n0 denotes the outer unit normal of Ω), we set Hξ := divτξ(nξ) ∈ L∞(∂Ωξ) (respectively
bξ := Dτξnξ ∈ L∞(∂Ωξ × ∂Ωξ)) the mean curvature (respectively, second fundamental form) on ∂Ωξ.

Letting ϕξ be the Lipschitz homeomorphism Id + ξ, when a function fξ is defined on Ωξ (respectively
∂Ωξ) we denote f̂ξ the function fξ ◦ ϕξ defined over Ω (repectively ∂Ω). We also introduce J̃ξ the surface
Jacobian from ∂Ω to ∂Ωξ given by the expression J̃ξ = det(Dϕξ)|Dϕ−T

ξ n0|, meaning that for a C1(∂Ωξ)
function fξ we have ˆ

∂Ωξ

fξ =

ˆ
∂Ω
J̃ξ f̂ξ (3.24)

PDE notation. For ξ ∈ W 1,∞(RN ,RN ), we denote by vξ the first L2 normalized and nonnegative
Dirichlet eigenfunction over Ωξ, and set λξ := λ1(Ωξ).

We start by proving a continuity-type estimate of vξ and λξ in the spirit of [DL19, Lemma 4.8].

Lemma 3.3.6. Let Ω be a C1,1 bounded open set. Let 0 < α′ < α < 1. There exists a modulus of
continuity ω : R+ → R+ only depending on α, α′ and Ω such that for all ξ ∈ C1,α(RN ,RN ) it holds

∥v̂ξ − v0∥C1,α′ (Ω) ≤ ω(∥ξ∥C1,α(RN ,RN )). (3.25)

Moreover, it holds

λξ → λ0 as
(
∥ξ∥W 1,∞(RN ,RN ) is bounded and ∥ξ∥L∞(RN ,RN ) → 0

)
. (3.26)

To prove (3.25) we adapt the method used by [DP00, Proposition 4.1], which is based on a compactness
argument itself relying on a bound for an appropriate norm of v̂ξ.

Proof. Proof of (3.26). The condition on ξ ensures that the Ωξ are uniformly Lipschitz, and the result
therefore follows for instance from [Hen06, Theorem 2.3.18].
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Proof of estimate (3.25). The proof is divided in two steps.
Step 1: C1,α bound of v̂ξ. Let us first prove that provided ξ ∈ C1,α(RN ,RN ) verifies ∥ξ∥C1,α(RN ,RN ) ≤

C1 for some C1 > 0 then it holds

∥v̂ξ∥C1,α(Ω) ≤ C2 (3.27)

for some constant C2 independent of ξ.
This bound relies on standard elliptic estimates. In fact, the equation verified by vξ

{
−∆vξ = λξvξ in Ωξ,

vξ ∈ H1
0 (Ωξ).

(3.28)

translates into the following elliptic equation for v̂ξ
{
−div(Aξ∇v̂ξ) = λξJξ v̂ξ over Ω

v̂ξ ∈ H1
0 (Ω)

where

{
Jξ := det(Id +Dξ)

Aξ := Jξ(Id +Dξ)−1
(
(Id +Dξ)−1

)T (3.29)

We now apply first order Schauder estimates (see [Sch12, Theorems 3.3.11, 3.3.12]) to get

∥v̂ξ∥C1,α(Ω) ≤ C
(
∥v̂ξ∥L∞(Ω) + ∥λξJξ v̂ξ∥C0,α(Ω)

)
(3.30)

where C = CN (γξ, ∥Aξ∥C0,α(Ω)) with γξ the ellipticity constant of Aξ. Now, there exists C > 0 such that
for all ξ it holds

|Jξ|, ∥Aξ∥C0,α(Ω) ≤ C
(
1 + ∥ξ∥C1,α(Ω)

)
(3.31)

Note that Ω satisfies a uniform exterior sphere condition since it is C1,1. Equation (3.28) ensures
that vξ ∈ C∞(Ωξ) ∩ C0(Ωξ) (since Ωξ is Lipschitz). Suppose for a moment that ξ ∈ C2(RN ,RN ). Then
v̂ξ = vξ ◦ (Id + ξ) ∈ C2(Ω) ∩ C0(Ω) and we can therefore apply [GT01, Theorem 15.9] to deduce that

∥∇v̂ξ∥L∞(Ω) ≤ C (3.32)

for some C = C(N, γξ, ∥Aξ∥L∞(Ω), ∥Jξ∥L∞(Ω), |λξ|, ∥v̂ξ∥L∞(Ω)). By assuming that ∥ξ∥W 1,∞(RN ,RN ) ≤ δ for
some δ small enough we can suppose that γξ ≥ 1/2, and also that Ωξ contains a fixed ball for any ξ, thus
ensuring that λξ is bounded thanks to the monotonicity of λ1. Moreover, we have the L∞ bound (see
[Dav89, Example 2.1.8])

∥v̂ξ∥L∞(Ω) = ∥vξ∥L∞(Ωξ) ≤ e1/8πλ
N/4
ξ (3.33)

Inserting (3.31), (3.32), and (3.33) into (3.30) provides the desired estimate (3.27). This concludes the
proof of the Lemma in the case ξ ∈ C2(RN ,RN ). For a general ξ ∈ C1,α(RN ,RN ) we can argue by density:
thanks to a standard mollification we find ξj ∈ C2(RN ,RN ) a sequence converging to ξ in C1(Ω) norm
with ∥ξj∥C1,α(RN )N ≤ ∥ξ∥C1,α(RN )N . Then as ∥v̂ξj∥C1,α(Ω) ≤ C2 thanks to estimate (3.27) proved in the C2

case, we deduce thanks to the Arzela-Ascoli theorem that up to subsequence v̂ξj → v in C1(Ω) for some
v ∈ C1,α(Ω). On the other hand, Jξj and Aξj go respectively to Jξ and Aξ in C0(Ω), and furthermore
λξj → λξ (thanks to (3.26)). We can therefore pass to the limit in the sense of distribution in (3.29) to get

{
−div(Aξ∇v) = λξJξv, in Ω

v ∈ H1
0 (Ω)

Now, since we also have v ≥ 0 and ∥vJ1/2
ξ ∥L2(Ω) = 1 we deduce that v = v̂ξ. Thanks to the C1

convergence v̂ξj → v̂ξ we finally have

∥v̂ξ∥C1,α(Ω) ≤ lim ∥v̂ξj∥C1,α(Ω) ≤ C2
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thus concluding the proof of (3.27) in the general case.
Step 2. We proceed by contradiction, therefore assuming that there exists ε0 > 0 and a sequence

∥ξj∥C1,α(RN ,RN ) → 0 such that
∀j ≥ 0, ∥v̂ξj − v0∥C1,α′ (Ω) ≥ ε0 (3.34)

Thanks to the bound (3.27) we can use the Arzela-Ascoli theorem to infer the existence of v ∈ C1,α(Ω)
such that up to subsequence

v̂ξj → v in C1,α′
(Ω)

Now, since ∥ξj∥C1,α(RN ,RN ) → 0 we have that Aξj and Jξj go respectively to Id and 1 in C0,α(Ω). Proceeding
as in the previous step we identify v with v0, which enters in contradiction with (3.34). This concludes
the proof of estimate (3.25) and hence the proof of the Lemma.

In the following Lemma we prove continuity type-estimates of several geometric quantities associated
to a set Ω. We denote αξ := nξ · n0 and βξ := αξnξ − n0.
Lemma 3.3.7. Let Ω be a C1,1 bounded open set. For any α ∈ (0, 1) there exists C = C(α) > 0 and
δ = δ(α) > 0 independent of ξ ∈ C1,α(RN ,RN ) such that if ∥ξ∥C1,α(RN ,RN ) ≤ δ then

• ∥J̃ξ − 1∥C0,α(∂Ω) ≤ C∥ξ∥C1,α(RN )N .

• ∥n̂ξ−n0∥C0,α(∂Ω) ≤ C∥ξ∥C1,α(RN )N , ∥α̂ξ−1∥C0,α(∂Ω) ≤ C∥ξ∥C1,α(RN )N , ∥β̂ξ∥C0,α(∂Ω) ≤ C∥ξ∥C1,α(RN )N .

Let s ∈ (0, 1) and p ∈ (1,∞) and denote by p′ its conjugate exponent. For each α ∈ (max{s, 1 − s}, 1)
there exists δ > 0 such that if ξ ∈ C1,1(RN ,RN ) with ∥ξ∥C1,α(RN )N ≤ δ, we have the following expansions

Ĥξ −H0 = ωs,p(ξ), b̂ξ − b0 = ωs,p(ξ),

∇̂τξαξ = ωs,p(ξ)

where the notation ωs,p(ξ) means that there exists a1,ξ, a2,ξ, b1,ξ, b2,ξ (independent of s and p) such that
ωs,p(ξ) = a1,ξb1,ξ + a2,ξb2,ξ with

∥a1,ξ∥W−s,p′ (∂Ω) ≤ C∥ξ∥C1,α(RN )N , ∥b1,ξ∥W s,p(∂Ω) ≤ C,

∥a2,ξ∥W−s,p′ (∂Ω) ≤ C, ∥b2,ξ∥W s,p(∂Ω) ≤ C∥ξ∥C1,α(RN )N .

Proof. All of these estimates rely on an appropriate expression for nξ. Following [DL19, Lemma 4.3] we
write Ω = {w < 0} for some w ∈ C1,1(RN ) with ∇w not vanishing in a neighborhood of ∂Ω, so that
Ωξ = {w ◦ ϕ−1

ξ < 0} and

nξ =
∇(w ◦ ϕ−1

ξ )

|∇(w ◦ ϕ−1
ξ )|

=
Dϕ−T

ξ ∇w(ϕ−1
ξ )

|Dϕ−T
ξ ∇w(ϕ−1

ξ )|
.

Notice that nξ only involves ∇w ∈ C0,1(∂Ω) and Dξ ∈ C0,α(RN ,RN ). As a consequence, expanding
the maps A 7→ (A−1)T and A 7→ det(A) around Id and y 7→ |y| around n0 we get in fact ∥J̃ξ−1∥C0,α(∂Ω) ≤
C∥ξ∥C1,α(RN )N . As for n̂ξ, α̂ξ and β̂ξ, we expand x 7→ x

|x| around ∇w
|∇w| and get likewise the announced

estimates.
The case of Ĥξ, b̂ξ and ∇̂τξαξ is more involved as the second derivatives of ξ and w come into play.

As the argument is analogous in the three cases we only prove the estimate for Ĥξ. Write a(x) := x
|x| and

ψξ := Dϕ−T
ξ ∇w(ϕ−1

ξ ). Then

Ĥξ = div(a ◦ ψξ) ◦ ϕξ = Da(ψξ ◦ ϕξ) : DψT
ξ (ϕξ)
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where : is the matrix dot product. In particular, one has

H0 = div(a ◦ ∇w) = Da(∇w) : D2w.

Writing zξ = (Dϕ−T
ξ (ϕξ)− Id)∇w, we let c1 := DψT

ξ (ϕξ)−D2w and c2 := Da(∇w + zξ)−Da(∇w). We
therefore rewrite Ĥξ = (Da(∇w) + c2) : (D

2w + c1) and we thus want to estimate

Ĥξ −H0 = (Da(∇w) + c2) : (D
2w + c1)−Da(∇w) : D2w

= Da(∇w) : c1 + c2 : D
2w + c2 : c1. (3.35)

By expanding c1 at ξ = 0, we see that it is a sum of terms of the form dijk∂ijξk where dijk only involves
first derivatives of w and ξ, and of terms of the form d′ij∂ijw where d′ij only involves first derivatives of w
and ξ with ∥d′ij∥C0,α(∂Ω) ≤ C∥ξ∥C1,α(RN )N . Using (iii) and the embedding C0,α(∂Ω) ⊂ W 1−s,p′(∂Ω) from
(ii) of Proposition 3.5.2, for each α ∈ (1− s, 1) there exists C > 0 such that

∥∂ijξk∥W−s,p′ (∂Ω) ≤ C∥∇ξk∥W 1−s,p′ (∂Ω)

≤ C∥ξ∥C1,α(RN )N .

Using again the embedding C0,α(∂Ω) ⊂W s,p(∂Ω) provides ∥dijk∥W s,p(∂Ω) ≤ C∥dijk∥C0,α(∂Ω) ≤ C for each
α ∈ (s, 1). Proceeding likewise for the terms d′ij∂ijw we deduce that c1 has the form c1 = ωs,p(ξ).

We now expand c2 at ξ = 0: one has

c2 = Da(∇w + zξ)−Da(∇w) =
ˆ 1

0
D2a(∇w + tzξ) · zξdt

As ∥zξ∥C0,α(RN )N ≤ C|ξ∥C1,α(RN )N , using the same ideas we get

∥∥∥∥
ˆ 1

0
D2a(∇w + tzξ) · zξdt

∥∥∥∥
W s,p(∂Ω)

≤ C
∥∥∥∥
ˆ 1

0
D2a(∇w + tzξ)dt

∥∥∥∥
C0,α(∂Ω)

∥zξ∥C0,α(RN )N

≤ C
(
∥w∥C1,α(∂Ω) + ∥zξ∥C0,α(RN )N

)
∥zξ∥C0,α(RN )N

≤ C∥ξ∥C1,α(RN )N

for some C > 0, for each α ∈ (s, 1). As a consequence ∥c2∥W s,p(∂Ω) ≤ C∥ξ∥C1,α(RN )N .
Since c1 = ωs,p(ξ) and ∥c2∥W s,p(∂Ω) ≤ C∥ξ∥C1,α(RN )N , we deduce from (3.35) the announced expansion

for Ĥξ, thus finishing the proof of the Lemma.

We now prove a final preparatory Lemma, which consists in proving a continuity estimate in terms of
ξ and θ for the H1 norm of the derivative of t 7→ v(Id+tθ)(Ωξ)

Lemma 3.3.8. Let Ω be a C1,1 bounded open set. For any ξ ∈ C1,α
(
RN ,RN

)
and θ ∈ C1,α

(
RN ,RN

)
we

let v′ξ,θ be the derivative at 0 of t 7→ v(Id+tθ)(Ωξ). Then there exists α ∈ (0, 1) and ω a modulus of continuity
such that for all ξ and θ with ∥ξ∥C1,α(RN )N and ∥θ∥C1,α(RN )N sufficiently small it holds

∥v′0,θ∥H1(Ω) ≤ C∥θ∥H1/2(∂Ω)N (3.36)

and
∥v̂′ξ,θ − v′0,θ∥H1(Ω) = ωC1,α,H1/2 (ξ, θ) (3.37)

where
ωC1,α,H1/2 (ξ, θ) := ω(∥ξ∥C1,α(RN )N )∥θ∥H1/2(∂Ω)N + ω(∥θ∥C1,α(RN )N )∥ξ∥H1/2(∂Ω)N .
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Proof. We denote λ′ξ,θ := (λ1)
′
Ωξ
(0) · (θ). It is classical (see for instance [HP18, Theorem 5.3.1]) that the

functions v′ξ,θ satisfies the following equations





−∆v′ξ,θ = λξv
′
ξ,θ + λ′ξ,θvξ, in Ωξ

v′ξ,θ = −(∂nξ
vξ)θ · nξ, over ∂Ωξ´

Ωξ
v′ξ,θvξ = 0

.

Let Hξ,θ be the harmonic extension on Ωξ of (∂nξ
vξ)θ · nξ. Then recalling the expression of λ′ξ,θ (see for

instance [HP18, Section 5.9.3]) we can write

λ′ξ,θ = −
ˆ
∂Ωξ

(∂nξ
vξ)

2θ · nξ = −
ˆ
∂Ωξ

(∂nξ
vξ)Hξ,θ = λξ

ˆ
Ωξ

vξHξ,θ

where we used Green’s formula and
´
Ωξ
∇vξ∇Hξ,θ = 0. We decompose v′ξ,θ = −πξHξ,θ +wξ,θ where πξ is

the orthogonal projection onto {vξ}⊥ for the L2 scalar product on L2(Ωξ). Thanks to the above expression
for λ′ξ,θ we know that wξ,θ solves





(−∆− λξ)wξ,θ = −λξπξHξ,θ, in Ωξ

wξ,θ = 0, over ∂Ωξ´
Ωξ
vξwξ,θ = 0.

, (3.38)

We estimate separately Hξ,θ and wξ,θ.

• Estimate of Hξ,θ. Since Hξ,θ is harmonic inside Ωξ, Ĥξ,θ satisfies −div(Aξ∇Ĥξ,θ) = 0 in Ω, where
Aξ was defined in (3.29). As a consequence, we have that

∆(Ĥξ,θ −H0,θ) = ∆Ĥξ,θ = −div((Aξ − Id)∇Ĥξ,θ)

so that by using standard elliptic estimates (see for instance [GT01]) we get

∥Ĥξ,θ −H0,θ∥H1(Ω) ≤ CN

(
∥(Aξ − Id)∇Ĥξ,θ∥L2(Ω) + ∥Ĥξ,θ −H0,θ∥H1/2(∂Ω)

)
(3.39)

for some CN > 0. There exists C > 0 such that

∥(Aξ − Id)∇Ĥξ,θ∥L2(Ω) ≤ ∥Aξ − Id∥L∞(Ω)

(
∥∇Ĥξ,θ −∇H0,θ∥L2(Ω) + ∥∇H0,θ∥L2(Ω)

)

≤ C∥ξ∥W 1,∞(RN )N

(
∥Ĥξ,θ −H0,θ∥H1(Ω) + ∥θ · n0∥H1/2(∂Ω)

)

where we used that

∥∇H0,θ∥L2(Ω) ≤ ∥H0,θ∥H1/2(∂Ω) = ∥∂n0v0(θ · n0)∥H1/2(∂Ω) ≤ C∥θ · n0∥H1/2(∂Ω)

using v0 ∈ C1,α(Ω) for each α ∈ (0, 1) and the product law C0,α(∂Ω) · H1/2(∂Ω) ⊂ H1/2(∂Ω) for
some α ∈ (0, 1) close to 1 (see (iv) of Proposition 3.5.2). Assuming that ∥ξ∥W 1,∞(RN )N ≤ 1

2CNC we
thus get from (3.39) that there exists C > 0 such that

∥Ĥξ,θ −H0,θ∥H1(Ω) ≤ C
(
∥ξ∥W 1,∞(RN )N ∥θ∥H1/2(∂Ω)N + ∥Ĥξ,θ −H0,θ∥H1/2(∂Ω)

)
. (3.40)

Now, to estimate ∥Ĥξ,θ −H0,θ∥H1/2(∂Ω) = ∥∂̂nξ
vξ(θ̂ · nξ)− ∂n0v0(θ · n0)∥H1/2(∂Ω), we write

∂̂nξ
vξ(θ̂ · nξ)− ∂n0v0(θ · n0) = ∂̂nξ

vξ

(
(θ̂ · nξ)− (θ · n0)

)
+ (θ · n0)

(
∂̂nξ

vξ − ∂n0v0

)
(3.41)
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Let us decompose

∂̂nξ
vξ − ∂n0v0 = (∇̂vξ −∇v0) · n0 + ∇̂vξ · (n̂ξ − n0)

=
(
Dϕ−T

ξ ∇v̂ξ −∇v0
)
· n0 +Dϕ−T

ξ ∇v̂ξ · (n̂ξ − n0)

Using Lemmas 3.3.6 and 3.3.7 we thus get ∥∂̂nξ
vξ − ∂n0v0∥C0,α′ (∂Ω) ≤ ω

(
∥ξ∥C1,α(RN )N

)
for any

α′ < α. Using again the product law C0,α′
(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) for α′ < α close enough to

1 we deduce

∥
(
∂̂nξ

vξ − ∂n0v0

)
(θ · n0)∥H1/2(∂Ω) ≤ C∥∂̂nξ

vξ − ∂n0v0∥C0,α′ (∂Ω)∥θ · n0∥H1/2(∂Ω)

≤ ω(∥ξ∥C1,α(RN )N )∥θ∥H1/2(∂Ω)N (3.42)

for any α sufficiently close to 1. On the other hand, we have

θ̂ · nξ − θ · n0 = (θ̂ − θ) · n̂ξ + θ · (n̂ξ − n0)

With the same tools as before we get ∥θ · (n̂ξ − n0)∥H1/2(∂Ω) ≤ C∥θ∥H1/2(∂Ω)N ∥ξ∥C1,α(RN )N for the
same α ∈ (0, 1). For the other term we write

θ̂(x)− θ(x) =
ˆ 1

0
∇θ(x+ tξ(x)) · ξ(x)dt

so that the product law C0,α(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) again gives

∥θ̂ − θ∥H1/2(∂Ω) ≤ C
∥∥∥∥
ˆ 1

0
∇θ(x+ tξ(x))

∥∥∥∥
C0,α(RN )N

∥ξ∥H1/2(∂Ω)N

≤ C∥θ∥C1,α(RN )N

(
1 + ∥ξ∥C0,α(RN )N

)
∥ξ∥H1/2(∂Ω)N

≤ C∥θ∥C1,α(RN )N ∥ξ∥H1/2(∂Ω)N

yielding ∥(θ̂ − θ) · n̂ξ∥H1/2(∂Ω) ≤ C∥ξ∥H1/2(∂Ω)N ∥θ∥C1,α(RN )N . Combining the two estimates we thus
get

∥θ̂ · nξ − θ · n0∥H1/2(∂Ω) ≤ ωC1,α,H1/2 (ξ, θ)

This estimate together with (3.42) enable to estimate ∥Ĥξ,θ −H0,θ∥H1/2(∂Ω) thanks to the decom-
position (3.41), so that (3.40) becomes

∥Ĥξ,θ −H0,θ∥H1(Ω) ≤ ωC1,α,H1/2 (ξ, θ) . (3.43)

This finishes the proof of the estimate of Hξ,θ.

• Estimate of wξ,θ. To estimate ∥ŵξ,θ − w0,θ∥H1(Ω) let us write the equation verified by ŵξ,θ − w0,θ.
If one writes Lξ := div(Aξ∇·), then for a function fξ : Ωξ → R one has ∆̂fξ = Lξ f̂ξ. Recalling (3.38)
we therefore have

{
(−∆− λ0)(ŵξ,θ − w0,θ) =

[
(−∆− λ0)− (−Lξ − λξ)

]
ŵξ,θ − λξπ̂ξHξ,θ + λ0π0H0,θ in Ω

ŵξ,θ − w0,θ = 0 over ∂Ω

Using that (−∆ − λ0)−1 : H−1(Ω) → {v0}⊥ ∩H1(Ω) is an isomorphism, there exists CN > 0 such
that

∥ŵξ,θ − w0,θ − γξ,θv0∥H1(Ω) ≤ CN

(
∥(Aξ − Id)∇ŵξ,θ∥L2(Ω) + |λξ − λ0|∥ŵξ,θ∥L2(Ω)

+∥λξπ̂ξHξ,θ − λ0π0H0,θ∥L2(Ω)

)
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where γξ,θ ∈ R is chosen so that ŵξ,θ − w0,θ − γξ,θv0 ∈ {v0}⊥. Now, since ∥Aξ − Id∥L∞(Ω) ≤
C∥ξ∥W 1,∞(RN )N and |λξ − λ0| ≤ ω(∥ξ∥L∞(RN )N ) (thanks to Lemma 3.3.6) we get

∥ŵξ,θ − w0,θ − γξ,θv0∥H1(Ω) ≤ C∥ξ∥W 1,∞(RN )N

(
∥ŵξ,θ∥H1(Ω) + ∥λξπ̂ξHξ,θ − λ0π0H0,θ∥L2(Ω)

)
(3.44)

If we denote ⟨·, ·⟩ξ the scalar product in L2(Ωξ), we write

π̂ξHξ,θ − π0H0,θ = (Ĥξ,θ −H0,θ)− (⟨Hξ,θ, vξ⟩ξvξ − ⟨H0,θ, v0⟩0v0)

Using estimate (3.25) from Lemma 3.3.6 and the Harmonic estimate (3.43) we have

|⟨Hξ,θ, vξ⟩ξ − ⟨H0,θ, v0⟩0| =
∣∣∣∣
ˆ
Ω

Ĥξ,θv̂ξJξ −
ˆ
Ω

H0,θv0

∣∣∣∣ ≤ ωC1,α,H1/2 (ξ, θ)

(Jξ was defined in (3.29)) so that using again (3.25), (3.43) and (3.26) we deduce

∥λξπ̂ξHξ,θ − λ0π0H0,θ∥L2(Ω) ≤ ωC1,α,H1/2 (ξ, θ) (3.45)

Estimate (3.44) thus becomes

∥ŵξ,θ − w0,θ − γξ,θv0∥H1(Ω) ≤ C
(
∥ξ∥W 1,∞(RN )N ∥ŵξ,θ∥H1(Ω) + ωC1,α,H1/2 (ξ, θ)

)
(3.46)

Now, since
´
Ωξ
wξ,θvξ =

´
Ωw0,θv0 = 0 we have

|γξ,θ| =
∣∣∣∣
ˆ
Ω
(ŵξ,θ − w0,θ)v0

∣∣∣∣ =
∣∣∣∣
ˆ
Ω
ŵξ,θ(v̂ξJξ − v0)

∣∣∣∣ ≤ ω(∥ξ∥C1,α(RN )N )∥ŵξ,θ∥L2(Ω)

using again Lemma 3.3.6, which gives

∥ŵξ,θ − w0,θ∥H1(Ω) ≤ ω(∥ξ∥C1,α(RN )N )∥ŵξ,θ∥H1(Ω) + ωC1,α,H1/2 (ξ, θ)

≤ ω(∥ξ∥C1,α(RN )N )
(
∥ŵξ,θ − w0,θ∥H1(Ω) + ∥w0,θ∥H1(Ω)

)
+ ωC1,α,H1/2 (ξ, θ) (3.47)

Using ∥w0,θ∥H1(Ω) ≤ C∥H0,θ∥L2(Ω) ≤ C∥θ∥H1/2(∂Ω)N based on (3.38), and taking ωC1,α,H1/2 (ξ, θ) ≤ 1
2

finally yields
∥ŵξ,θ − w0,θ∥H1(Ω) = ωC1,α,H1/2 (ξ, θ) . (3.48)

Putting together (3.43) and (3.48) provides the desired estimate (3.37). As for (3.36), we have seen
that ∥w0,θ∥H1(Ω) ≤ C∥θ∥H1/2(∂Ω)N based on (3.38). On the other hand, ∥π0H0,θ∥L2(Ω) ≤ ∥H0,θ∥L2(Ω) by
definition and

∥∇π0H0,θ∥2L2(Ω) = ∥∇H0,θ∥2L2(Ω) − ⟨H0,θ, v0⟩2

since
´
Ω∇H0,θ∇v0 = 0, thus yielding also

∥∇π0H0,θ∥L2(Ω) ≤ ∥H0,θ∥H1(Ω) ≤ C∥H0,θ∥H1/2(∂Ω) ≤ C∥θ∥H1/2(∂Ω)N

Hence ∥π0H0,θ∥H1(Ω) ≤ C∥θ∥H1/2(∂Ω)N , so that we finally have ∥v′0,θ∥H1(Ω) ≤ ∥π0H0,θ∥H1(Ω)+∥w0,θ∥H1(Ω) ≤
C∥θ∥H1/2(∂Ω)N , thus giving (3.36).

103



3.3.2 Second derivative of λ1.

A final preparatory step to estimate λ′′1(t)−λ′′1(0) is to justify that the expression (3.49) below of the second
derivative (λ1)

′′
Ω(0) is valid when Ω = (Id + ξ)(B) for some vector field ξ which is only C1,1. Formula

(3.49) is indeed well-known for C3 domains (see for instance [HP18, Theorem 5.9.2 and Section 5.9.6]),
but for C1,1 domains it does not seem to have been justified in the literature. As a matter of fact, the
expression (3.49) has been implicitly used in [DL19] without further justification for domains (Id+ ξ)(B)
with ξ ∈ W 2,p(RN ,RN ). From (3.49) we will immediately deduce a corresponding expression for λ′′1(t),
see Lemma 3.3.10.

In this paragraph, if ξ is a Lipschitz vector field and fξ is defined on Ωξ or ∂Ωξ we still write f̂ξ the
function fξ ◦ ϕξ defined on Ω or ∂Ω.

Lemma 3.3.9. [Second derivative of λ1] Let Ω ⊂ RN be a bounded open set given by Ω = (Id+ ζ)(B) for
some ζ ∈ C1,1(RN ,RN ). Let n, H and b denote respectively its outer unit normal, curvature and second
fundamental form. We set λΩ := λ1(Ω). Then there exists α ∈ (0, 1) such that for θ ∈ C1,α(RN ,RN ) it
holds

λ′′Ω(0) · (θ, θ) = 2

(ˆ
Ω
|∇v′|2 − λΩ

ˆ
Ω
|v′|2

)
+

ˆ
∂Ω

(∂nv)
2
[
H(θ · n)2 − b(θτ , θτ ) + 2∇τ (θ · n) · θτ

]
(3.49)

where θτ denotes the tangential component of θ, v is the first L2 normalized and nonnegative eigenfunction
of Ω and v′ is uniquely determined by the equations





−∆v′ = λΩv
′ + (λ′Ω(0) · θ)v, in Ω

v′ = −∂nv(θ · n), over ∂Ω´
Ω v

′v = 0.

Note that when Ω is C3 the term
´
Ω |v′|2−λΩ

´
Ω |v′|2 is more commonly written as the boundary term´

∂Ω v
′∂nv′ (which we cannot justify if Ω is merely C1,1).

In our case one does not have enough regularity over Ω to perform the classical integration by parts
leading to expression (3.49). As a consequence, in order to prove (3.49) in the C1,1 case we rely on (3.49)
in the smooth case combined with a low-regularity formula of (λ1)′′Ω(0) ·(θ, θ) which holds true for bounded
Lipschitz open sets, proven in [BB22, Theorem 2.1] (see also [Lau20] for an expression for the Dirichlet
energy in the same spirit).

Proof of Lemma 3.3.9. One can apply the second derivative formula from [BB22, Theorem 2.1] which
holds true for any Lipschitz domain and θ ∈W 1,∞(RN ,RN ):

λ′′Ω(0) · (θ, θ) =
ˆ
Ω

(
−2|∇v̇θ|2 + 2λΩ|v̇θ|2 + 2(SΩ : Dθ)div(θ) + (λΩ|v|2 − |∇v|2)(div(θ)2 +DθT : Dθ)

)

+

ˆ
Ω

(
2(2Dθ2 +DθDθT )|∇v|2 − 2λ′Ω(0) · (θ)div(θ)|v|2

)

(3.50)

where : is the matrix dot product, SΩ := (|∇v|2 − λΩ|v|2)Id − 2∇v ⊗ ∇v, and v̇θ denotes the material
derivative of v in the direction θ, meaning the derivative at 0 in the direction θ of the function θ ∈W 1,∞ 7→
vθ ◦ (Id + θ) ∈ H1

0 (Ω) where vθ is the first L2 normalized eigenfunction of Ωθ. Note that v̇θ verifies the
elliptic equation





−∆v̇θ − λΩv̇θ = λΩvdiv(θ) + (λ′Ω(0) · (θ)) v + div(A′
θ∇v), in Ω

v̇θ = 0 over ∂Ω´
Ω v̇θv = −1

2

´
Ω |v|2div(θ)
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with A′
θ := div(θ)Id−Dθ −DθT .

Recall that Ω = Bζ = (Id+ ζ)(B). Since ζ ∈ C1,1(RN ,RN ), there exists ζj ∈ C∞(RN ,RN ) converging
locally to ζ in C1,β for each β ∈ (0, 1). Letting Ωj := Bζj = (Id + ζj)(B), we have Ωj = (Id + ζj) ◦ (Id +

ζ)−1(Bζ) so that Ωj = (Id+ ξj)(Ω) with ξj := (Id+ ζj) ◦ (Id+ ζ)−1− Id converging locally to 0 in C1,β for
each β ∈ (0, 1). As Ωj is smooth, λ′′Ωj

(0) · (θ, θ) both equals (3.49) (see [HP18, Theorem 5.9.2 and Section
5.9.6]) and (3.50) and we will pass to the limit in both expressions.

Through the proof we give an additionnal index j to the notations linked to Ωj : vj is the first eigen-
function of Ωj , λ′j := λ′Ωj

(0) · (θ), v̇j is the material derivative of vj in direction θ and v′j := v′ξj ,θ(the
notation was introduced in Lemma 3.3.8). As for the geometric quantites related to Ωj , nj denotes the
outer unit normal to Ωj , and so on. The proof of the Lemma is divided into two steps.

Step 1: continuity of λ′′Ω(0) · (θ, θ) in Ω. In this step one can assume that θ ∈W 1,∞(RN ,RN ). Let
us prove that λ′′Ωj

(0) · (θ, θ)→ λ′′Ω(0) · (θ, θ).
Since in particular Ωj → Ω in the Hausdorff sense, there exists D ⊂ RN open bounded such that

Ωj ,Ω ⊂ D for every j. Setting γj :=
´
D v̇jvj we have

∥v̇j − γjvj∥H1
0 (D) ≤ ∥λjvjdiv(θ)∥H−1(Ωj) + ∥λ′jvj∥H−1(Ωj) + ∥div(A′

θ∇vj)∥H−1(Ωj)

Now, since λ′j =
´
Ωj

Sj : Dθ thanks to [BB22, Theorem 2.1], and using that λj is bounded and vj is
bounded in H1 (thanks to Lemma 3.3.6) we deduce that v̇j − γjvj is bounded in H1

0 (D), yielding in
turn that v̇j is bounded in H1

0 (D) as γj = −1
2

´
Ωj
|vj |2div(θ). As a consequence, v̇j converges (up to

subsequence) towards some ṽ ∈ H1
0 (D) weakly in H1 and strongly in L2. Using again Lemma 3.3.6 we

have that λj → λΩ, λ′j → λ′Ω(0) · (θ) and vj → v in H1, so that relying also on the Hausdorff convergence
Ωj → Ω one can pass to the limit in the sense of distributions in





−∆v̇j − λj v̇j = λjvjdiv(θ) + λ′jvj + div(A′
θ∇vj), in Ωj

v̇j = 0 over ∂Ωj´
Ωj
v̇jvj = −1

2

´
Ωj
|vj |2div(θ)

to deduce that ṽ verifies
{
−∆ṽ − λΩṽ = λΩvdiv(ξ) + (λ′Ω(0) · (ξ)) v + div(A′

θ∇v), in Ω´
Ω ṽv = −1

2

´
Ω |v|2div(θ)

Since Ω is Lipschitz it suffices to prove that ṽ = 0 a.e. outside Ω to deduce that ṽ ∈ H1
0 (Ω) (see for instance

[HP18, Proposition 3.2.16]) and therefore that ṽ = v̇. But this is seen directly by passing to the limit a.e.
in the identity 1D\Ωj

v̇j = 0. Now, the convergence of v̇j towards v̇ is strong in H1, since by multiplying
the equation by v̇j and integrating by parts we get ∥∇v̇j∥L2(D) → ∥∇v̇∥L2(D). We can therefore pass to
the limit as j → +∞ in (3.50) to deduce that we have in fact λ′′Ωj

(0) · (θ, θ)→ λ′′Ω(0) · (θ, θ).
Step 2: continuity of (3.49) in Ω. In this step we rather assume θ ∈ C1,α(RN ,RN ) for some α

given by Lemma 3.3.8. We want to pass to the limit in the expression

2

(ˆ
Ωj

|∇v′j |2 − λj
ˆ
Ωj

|v′j |2
)

+

ˆ
∂Ωj

(∂njvj)
2
[
Hj(θ · nj)2 − bj(θτj , θτj ) + 2∇τj (θ · nj) · θτj

]
(3.51)

Thanks to a change of variable, the integral on Ωj can be written

2

ˆ
Ω

(
|∇̂v′j |2 − λj |v̂′j |2

)
Jj = 2

ˆ
Ω

(
⟨Aj∇v̂′j ,∇v̂′j⟩ − λjJj |v̂′j |2

)

where Jj := Jξj and Aj := Aξj are defined in (3.29). We have that Aj and Jj go respectively to Id and 1

in L∞Ω) as j → +∞, and also λj → λΩ, while on the other hand v̂′j converges to v′0,θ in H1(Ω) thanks to
Lemma 3.3.8. As a consequence the integral on Ωj converges to 2

(´
Ω |∇v′|2 − λΩ

´
Ω |v′|2

)
.
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For the convergence of the integral on ∂Ωj , we show that
´
∂Ωj

(∂njvj)
2Hj(θ ·nj)2 →

´
∂Ω(∂nv)

2H(θ ·n)2
and the other terms can be treated similarly. We can writeˆ

∂Ωj

(∂njvj)
2Hj(θ · nj)2 =

ˆ
∂Ω
J̃j ̂(∂njvj)

2Ĥj
̂(θ · nj)2

=

ˆ
∂Ωj

Ĥj ĝj

for ĝj := J̃j ̂(∂njvj)
2 ̂(θ · nj)2, where J̃j := J̃ξj is the surface jacobian defined in (3.24). We claim that

ĝj → (∂nv)
2(θ · n)2 =: g in C0,α. This comes from Lemmas 3.3.6 and 3.3.7, and moreover one estimates(

̂(θ · nj)− θ · n
)

as follows

∥̂(θ · nj)− θ · n∥C0,α(∂Ω) ≤ ∥θ · (n̂j − n)∥C0,α(∂Ω) + ∥(θ̂ − θ)n̂j∥C0,α(∂Ω)

≤ ∥θ∥C0,α(∂Ω)∥ξj∥C1,α(∂Ω) + C∥θ∥C1,α(∂Ω)∥ξj∥C0,α(∂Ω)

where the estimate of θ̂ − θ comes from writting θ̂ − θ =
´ 1
0 ∇θ((1 − t) · +tϕξj ) · ξjdt. As a consequence

ĝj → g in any W s,p for s ∈ [0, α) and p ∈ [1,∞), thanks to the embedding C0,α(∂Ω) ⊂W s,p(∂Ω) (see (ii)
from Proposition 3.5.2). On the other hand Ĥj → H in W−s,p for any s ∈ (0, 1) and p ∈ (1,∞) thanks to
Lemma 3.3.7. We therefore use a W−s,p′ ·W s,p duality estimate (see (i) from Proposition 3.5.2) to deduce
that ˆ

∂Ω
Ĥj ĝj →

ˆ
∂Ω
Hg

This proves the convergence of (3.51) towards the corresponding expression for Ω, and thus concludes Step
2.

Conclusion. Since each Ωj is smooth we have that λ′′Ωj
(0) · (θ, θ) both equals (3.51) and (3.50) for

each j. The two previous steps ensure that we can pass to the limit on both sides to deduce that (3.49)
holds for Ω.

3.3.3 Estimate of λ′′
1(t) and proof of the main results.

Relying on the expression of the second derivative given by Lemma 3.3.9 we can now tackle estimating the
variation of the second derivative of λ1(t) = λ1 ((Id + tξh)(B)). We first obtain an expression for λ′′1(t),
which we state in the next Lemma.

Let us first recall and set some notations for the remainder of this section. We use the notations
from Theorems 3.3.1, 3.3.4 and 3.3.5: any h : ∂B → R is extended to the whole of RN into some h
locally constant in normal directions around ∂B, and we then set ξh(x) := h(x)x so that ∥ξh∥C1,α(RN )N ≤
C∥h∥C1,α(∂B) for any α ∈ (0, 1] and h ∈ C1,α(∂B). We let Bh := (Id+ ξh)(B) and Bt := Bth for t ∈ [0, 1].
The notations nt, Ht and bt refer respectively to the outer unit normal, curvature and second fundamental
form of Bt.

Lemma 3.3.10. Let h ∈ C1,1(∂B). For all t ∈ [0, 1] it holds

λ′′1(t) = 2

(ˆ
Bt

|∇v′t|2 − λ1(t)
ˆ
Bt

|v′t|2
)
+

ˆ
∂Bt

(∂ntvt)
2
[
Ht(ξh · nt)2 − bt((ξh)τt , (ξh)τt) + 2∇τt(ξh · nt) · (ξh)τt

]

(3.52)
where (ξh)τt is the tangential (over ∂Bt) component of ∇ξh, vt is the first L2 normalized eigenfunction of
Bt and v′t is determined by the equations





−∆v′t = λ1(t)v
′
t + λ′1(t)vt, in Bt

v′t = −∂ntvt(ξh · nt), over ∂Bt´
Bt
v′tvt = 0.
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Proof of Lemma 3.3.10. By Definition 3.3.2 it holds

λ′′1(t) = λ′′B(tξh) · (ξh, ξh)

but since Bs+t = (Id + (s+ t)ξh)(B) = (Id + sξh)(Bt) when ∥h∥L∞(∂B) is small we immediately get

λ′′B(tξh) · (ξh, ξh) = λ′′Bt
(0) · (ξh, ξh)

The result then follows from applying Lemma 3.3.9 with Ω = Bt.

Relying on the expression of λ′′1(t) given by this Lemma we are now ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. Let us first suppose that h ∈ C1,1(∂B). We can therefore use the expression of
λ′′1(t) from Lemma 3.3.10 which we rewrite in the following way

λ′′1(t) = 2

ˆ
Bt

(
|∇v′t|2 − λ1(t)

ˆ
Bt

|v′t|2
)
+

ˆ
∂Bt

(∂ntvt)
2
[
Htα

2
t − bt(βt, βt)− 2∇τtαt · βt

]
h2

−2
ˆ
∂Bt

(∂ntvt)
2αt(βt · ∇τth)h (3.53)

:= T1(t) + T2(t) + T3(t)

where we put αt := nt · n and βt := αtnt − n. We thus prove for each 1 ≤ i ≤ 3

∀t ∈ [0, 1], |Ti(t)− Ti(0)| ≤ ω(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)
. (3.54)

Estimate of T1(t). See that v′t = v′tξh,ξh in the notations of Lemma 3.3.8. Writing
´
Bt
|∇v′t|2 =´

B⟨At∇v̂′t,∇v̂′t⟩ where At := Atξh is defined in (3.29), we get
∣∣∣∣
ˆ
Bt

|∇v′t|2 −
ˆ
B
|∇v′0|2

∣∣∣∣ =
∣∣∣∣
ˆ
B
⟨(At − Id)∇v̂′t,∇v̂′t⟩+ (∇v̂′t −∇v′0) · (∇v̂′t +∇v′0)

∣∣∣∣
≤ ω(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

thanks to Lemma 3.3.8. On the other hand,

∣∣∣∣λ1(t)
ˆ
Bt

|v′t|2 − λ1(0)
ˆ
B
|v′0|2

∣∣∣∣ =
∣∣∣∣(λ1(t)− λ1(0))

ˆ
Bt

|v′t|2 + λ1(0)

ˆ
B
(Jt − 1)|v̂′t|2 + (v̂′t − v0)(v̂t + v0)

∣∣∣∣
≤ ω(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

using Lemmas 3.3.8 and 3.3.6. Putting these two together finally yields

|T1(t)− T1(0)| ≤ ω(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

thus finishing the proof of the estimate of T1(t).
Estimate of T2(t). Thanks to a surface change of variables we have T2(t) =

´
∂B σ̂th where

σ̂t := (∂̂ntvt)
2
[
Ĥtα̂t

2 − b̂t(β̂t, β̂t)− 2∇̂τtαt · β̂t
]
J̃t

with J̃t the surface Jacobian. We have

|T2(t)− T2(0)| =
∣∣∣∣
ˆ
∂B

(σ̂t − σ0)h2
∣∣∣∣ (3.55)
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Notice that σ̂t is a sum of terms of the form ŷt × ẑt for some ŷt ∈ {Ĥt, (b̂t)ij , (∇̂τtαt)i} with ẑt which
is a product of terms in {α̂t, ∂̂ntvt, β̂t, J̃t}. By Lemma 3.3.7 we have that ŷt − y0 = ωs,p(ξh) (uniformly in
t), which we denote more simply ωs,p(h). On the other hand, thanks to Lemmas 3.3.6 and 3.3.7, for all
s ∈ (0, 1), p ∈ (1,∞) and α ∈ (s, 1) there exists ω such that ∥ẑt − z0∥W s,p(∂B) ≤ C∥ẑt − z0∥C0,α(∂B) ≤
ω(∥h∥C1,α(∂B)) (using also the embedding C0,α(∂Ω) ⊂ W s,p(∂Ω), see (ii) from Proposition 3.5.2). As a
consequence we also have that σ̂t − σ0 = ωs,p(h), which we write σ̂t − σ0 = a1,hb1,h + a2,hb2,h in the
notations of Lemma 3.3.7.

Let now s ∈ (0, 1) and p ∈ (1,∞) be such that the couple (s, p) satisfies (v) from Proposition 3.5.2.
This allows the product law H1/2(∂B) ·H1/2(∂B) ⊂W s,p(∂B), and we thus have

∥bi,hh2∥W s,p(∂B) ≤ C∥bi,hh∥H1/2(∂B)∥h∥H1/2(∂B).

Using the product law C0,α(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) from (iv) of Proposition 3.5.2 we get

∥b1,hh∥H1/2(∂B) ≤ C∥h∥H1/2(∂B),

∥b2,hh∥H1/2(∂B) = ω
(
∥h∥C1,α(∂B)

)
∥h∥H1/2(∂B).

Using a duality estimate W−s,p′ ·W s,p (see (i) from Proposition 3.5.2) we can therefore estimate (3.55)

|T2(t)− T2(0)| ≤ ∥a1,h∥W−s,p′ (∂B)∥b1,hh2∥W s,p(∂B) + ∥a2,h∥W−s,p′ (∂B)∥b2,hh2∥W s,p(∂B)

= ω(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)
.

Estimate of T3(t). Using a surface change of variables we have T3(t) =
´
∂B h(ρ̂t · ∇τ̂th) where

ρ̂t := (∂̂ntvt)
2α̂tβ̂tJ̃t, ∇τ̂th := ∇h− (∇h · n̂t)n̂t.

We write

|T3(t)− T3(0)| =
∣∣∣∣
ˆ
∂B
hρ̂t · (∇τh−∇τ̂th) +

ˆ
∂B
h(ρ̂t − ρ0) · ∇τh

∣∣∣∣ .

Now,∇τh−∇τ̂th = (∇h·n̂t)n̂t = ∇τh·(n̂t−n)n̂t since∇h·n = 0. On the other hand ∥ρ̂t−ρ0∥C0,α′ (∂B) ≤
ω(∥h∥C1,α(∂B)) for any 0 < α′ < α < 1 thanks to Lemmas 3.3.6 and 3.3.7. Using a duality estimate
H−1/2 ·H1/2, a product law C0,α′ ·H1/2 ⊂ H1/2 and the fact that ∥∇τh∥H−1/2(∂B) ≤ C∥h∥H1/2(∂B) (see
(i), (iii) and (iv) from Proposition 3.5.2) we thus get

|T3(t)− T3(0)| ≤ ∥hρ̂t(n̂t − n)n̂t∥H1/2(∂B)∥∇τh∥H−1/2(∂B) + ∥h(ρ̂t − ρ0)∥H1/2(∂B)∥∇τh∥H−1/2(∂B)

≤ ω(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

using Lemma 3.3.7. This finishes the proof of the T3(t) estimate.

We have thus proved (3.54) and hence Theorem 3.3.5 in the case where h ∈ C1,1(∂B). We then
reduce the regularity hypothesis made over h to h ∈ C1,α(∂B) with a density argument. Recall that
λ′′1(t) = λ′′Bth

(0) · (ξh, ξh) since Bs+t = (Id + (s+ t)ξh)(B) = (Id + sξh)(Bt) when ∥h∥L∞(∂B) is small. Let
then hj be smooth and converging to h in C1,β(∂B) for each 0 < β < α with ∥hj∥C1,α(∂B) ≤ ∥h∥C1,α(∂B).
With an argument similar to Step 1 of the proof of Lemma 3.3.9 we can pass to the limit in the expression
λ′′Bthj

(0) · (ξhj
, ξhj

) to get that λ′′Bthj
(0) · (ξhj

, ξhj
)→ λ′′1(t). We can thus let j → +∞ in

∣∣∣λ′′Bthj
(0) · (ξhj

, ξhj
)− λ′′B(0) · (ξhj

, ξhj
)
∣∣∣ ≤ ω(∥hj∥C1,α(∂B))∥hj∥2H1/2(∂B)

and get the desired estimate. This finishes the proof in the general case.
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Theorem 3.3.4 is now a consequence of Theorem 3.3.5. The way to pass from an (IC) to an (IT)
condition was shown in [DL19] (see [DL19, p.3014]), but we reproduce the short proof for the convenience
of the reader.

Proof of Theorem 3.3.4 . Fix c > 0. Thanks to Theorem 3.3.5 we find δ > 0, α ∈ (0, 1) and a modulus of
continuity ωλ1 such that for all h ∈ C1,α(∂B) with ∥h∥C1,α(∂B) ≤ δ it holds

∀t ∈ [0, 1], |λ′′1(t)− λ′′1(0)| ≤ ωλ1(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)
(3.56)

We can write

λ1(Bh) = λ1(B) + (λ1)
′
B(0) · (ξh) +

1

2
(λ1)

′′
B(0) · (ξh, ξh) +

ˆ 1

0
(λ′′1(t)− λ′′1(0))(1− t)dt

using a second-order Taylor expansion with integral remainder. Using (3.56) we thus get

λ1(Bh) = λ1(B) + (λ1)
′
B(0) · (ξh) +

1

2
(λ1)

′′
B(0) · (ξh, ξh) + ωλ1(∥h∥C1,α(∂B))∥h∥2H1/2(∂B)

hence that λ1 satisfies an (IT)H1/2,C1,α condition. Combining this together with the expansion for P (see
(3.22)) we get the expansion for Jc = P − cλ1:

Jc(Bh) = Jc(B) + (Jc)′B(0) · (ξh) +
1

2
(Jc)′′B(0) · (ξh, ξh) + ωc(∥h∥C1,α(∂B))∥h∥2H1(∂B)

with ωc := ωP − cωλ1 . This concludes the proof.

We are now able to prove Theorem 3.3.1, relying on the stability results proved in [DL19].

Proof of Theorem 3.3.1. We proved in Theorem 3.3.4 that the functional Jc satisfies an (IT)H1,C1,α con-
dition in the sense of [DL19, Theorem 1.3]. It also satisfies a (CH1) hypothesis (see [DL19, Lemma 2.8]).
On the other hand it was proven in [Nit14, Theorem 1.2] (see also [DL19, Proposition 5.5 (ii)]) that Jc is
a critical and strictly stable shape under volume constraint and up to translations whenever c ∈ (0, c∗).
For any such c we therefore apply [DL19, Theorem 1.3] and get that there exists δc > 0 such that for any
h ∈ C1,α(∂B) with ∥h∥C1,α(∂B) ≤ δc and |Bh| = |B| it holds

Jc(Bh) ≥ Jc(B)

with equality only if Bh is a ball. This gives strict minimality (up to translations) of B in a C1,α

neighborhood, thus concluding the proof of the Theorem.

3.4 Selection principle: minimality of the ball among convex sets. Proof
of Theorem 3.1.2.

This section is dedicated to the second part of the selection principle strategy which we described in the
Introduction, namely the regularizing procedure which enables to reduce the proof of the inequality from
Theorem 3.1.2

∀K ∈ KN with |K∆B| ≤ δc, (P − cλ1)(K) ≥ (P − cλ1)(B)

for general convex perturbations K of B to the same inequality for C1,α perturbations of B. As is usual
in this procedure (as was originally done by [CL12], see also among many others [AFM13], [BDPV15],
[AKN21]) the argument goes by contradiction: we assume that (3.4) does not hold, meaning that there
exists a sequence (Kj) converging to the ball in the L1 sense but for which Jc(Kj) < Jc(B). The strategy
is then to replace the sequence Kj by a sequence K̃j also converging to B, for which (3.4) is still not verified
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and in which each K̃j is meant to be much smoother than Kj . The sets K̃j are built as minimizers of an
auxiliary minimization problem which is constructed in a way that any minimizer satisfies the first two
properties. The regularity of K̃j then comes from the fact that it is a minimizer of an isoperimetric problem
under convexity constraint: it was shown in [LP23] that such minimizers are C1,1, and we will provide a
uniform version of this result (see Theorem 3.4.2). This will enable us to apply the result of minimality
in a smooth neighborhood proven in Section 3.3 (see Theorem 3.3.1) to finally get a contradiction.

In this section B ⊂ RN still denotes the open centered unit ball.

3.4.1 Regularity theory for the quasi-minimizer of the perimeter under convexity
constraint

This subsection is dedicated to the regularity theorem which is central to the selection principle we perform
in Section 3.4. When working in the framework of quasi-minimizer of the perimeter without convexity
constraint, a very useful type of results concerns the strengthening of convergence for a sequence of quasi-
minimizers converging to the ball: if a sequence (Ej) of (uniform) quasi-minimizers converges to the ball
in a L1 sense, then Ej is C1,1/2 for large j and it converges (up to subsequence) to the ball in C1,α for each
α ∈ (0, 1/2) (see for instance [AFM13, Theorem 4.2] for a rigorous statement). This is a compactness-type
result, which is a direct consequence of the C1,1/2 regularity of quasi-minimizers and an estimate of their
norm. We want here to prove an analogous result in our convexity constrained case. The regularity result
we state below (Theorem 3.4.2) importantly relies on the C1,1 regularity results from [LP23] (see [LP23,
Theorem 2.3]). Nevertheless, in comparison with [LP23, Theorem 2.3] we have to follow the constants
in the proof in order to show that a quasi-minimizer is locally parametrized in cartesian graphs by C1,1

functions with norm only depending on the relevant constants. We then pass from this quantified local
cartesian C1,1 regularity to a global spherical estimate. Although this passage often comes as classical in
the literature, it does not seem to be so well referenced and we believe that a careful examination of all
the arguments can be of use (see also [Pet22, Appendix B] for similar arguments).

Let us first define the notion of quasi-minimizer of the perimeter under convexity constraint which was
introduced in [LP23, Definition 2.1].

Definition 3.4.1 ((Λ, ε)-q.m.p.c.c.). Let N ≥ 2. Let Λ > 0, ε > 0. We say that K ∈ KN is a (Λ, ε)-
quasi-minimizer of the perimeter under convexity constraint (or (Λ, ε)-q.m.p.c.c. for short) if

∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ ε, P (K) ≤ P (K̃) + Λ|K \ K̃|. (3.57)

For x ∈ RN , let νB(x) := x. Any function h : ∂B → R is extended to RN as in Section 3.3 (see the
beginning of Section 3.3). For r > 0 and z ∈ RN , the notation Br(z) denotes the ball of radius r centered
at z. The q.m.p.c.c. regularity result is the following.

Theorem 3.4.2 (Regularity of q.m.p.c.c). Let N ≥ 2, Λ > 0, ε > 0 and 0 < m < M . Let K be a
(Λ, ε)-q.m.p.c.c. verifying Bm(z) ⊂ K ⊂ BM (z) for some z ∈ RN . Then there exists h ∈ C1,1(∂B) such
that (up to translation) K can be written

K = (Id + hνB)(B) = {tx(1 + h(x)), t ∈ [0, 1], x ∈ ∂B}, with ∥h∥C1,1(∂B) ≤ C

with C = C(N,Λ, ε,m,M) > 0 only depending on the indicated parameters.

Let us postpone the proof of this Theorem and show first how we deduce from this result a convergence
type result of quasi-minimizers (as in the classical setting).

Corollary 3.4.3 (Convergence of q.m.p.c.c). Let N ≥ 2, Λ > 0, ε > 0. If (Kj) is a sequence of (Λ, ε)-
q.m.p.c.c. such that |Kj∆B| → 0, then there exists a sequence hj ∈ C1,1(∂B) such that

∀j ∈ N, Kj = (Id + hjνB)(B),

and for all α ∈ (0, 1) it holds hj → 0 in C1,α.
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Remark 3.4.4. Let us note here that this C1,α convergence for all α ∈ (0, 1) is optimal in the sense
that one cannot hope for more than C1,1 regularity for a q.m.p.c.c. (see [LP23, Proposition 3.18] for a
counter-example to higher Hölder regularity in two dimensions).

Proof of Corollary 3.4.3. Since |Kj∆B| → 0, one also has that Kj → B in the Hausdorff sense thanks to
Proposition 3.5.4. As a consequence, there exists z ∈ RN and 0 < m < M such that

∀j ∈ N, Bm(z) ⊂ Kj ⊂ BM (z).

The existence of the upper ball follows directly from the definition of the Hausdorff convergence; we refer
for instance to [LP23, Proposition 2.8, 2.] for the existence of a lower ball. Therefore, thanks to Theorem
3.4.2 we deduce that there exists hj : ∂B → R such that

∀j ∈ N, Kj = (Id + hjνB)(B) and ∥hj∥C1,1(∂B) ≤ C

for some C > 0 independent of j. From this bound on the C1,1 norms we deduce for each α ∈ (0, 1)
the convergence (up to subsequence) of hj in C1,α norm to some h ∈ C1,1(∂B), using the Arzela-Ascoli
Theorem. Since Kj → B in the Hausdorff sense we must have h = 0, which ensures also that the whole
sequence (hj) converges to 0. This finishes the proof of Corollary 3.4.3.

We can now pass to the proof of Theorem 3.4.2.

Proof of Theorem 3.4.2. Step 1: cartesian estimates of K. Let x̂0 ∈ ∂K be fixed. We claim that
there exists

• a hyperplane H ⊂ RN containing x̂0 and a unit vector ξ ∈ RN normal to H,

• a (N − 1) dimensional ball Bβ centered at x̂0 and of radius β = β(m,M) > 0 with Bβ ⊂ H
such that, denoting by (x, t) a point in H × Rξ coordinates and defining u : Bβ → R by the formula
u(x) := min{t ∈ R, (x, t) ∈ K} we have

{(x, u(x)), x ∈ Bβ} ⊂ ∂K (3.58)
K ∩ (Bβ × Rξ) ⊂ {(x, t) ∈ Bβ × Rξ, u(x) ≤ t} (3.59)

and u ∈ C1,1(Bβ) with
∥u∥C1,1(Bβ)

≤ C, where C = C(N,Λ, ε,m,M) (3.60)

In this Step, for any z ∈ H and r > 0, we denote by Br(z) ⊂ H the (N − 1)-dimensional ball of radius r
centered at z.

The existence of H, ξ, β′, u such that
β′ = β′(m,M)

u ∈ C0,1(Bβ′(x̂0)), with ∥∇u∥L∞(Bβ′ (x̂0)) ≤ C(m,M)

and such that (3.58) and (3.59) are satisfied for Bβ′(x̂0) comes from the convexity of K (it is proven for
instance in [LP23, Proposition 4.3]). We now prove (3.60) for β := β′/2. Let y ∈ Bβ(x̂0), p ∈ ∂u(y) and
set for each r ∈ (0, β)

Mr(y) := sup
Br(y)

(u− (u(y) + ⟨p, · − y⟩)

Using quasi-minimality of K and the estimates of β′ and ∥∇u∥L∞(Bβ′ (x̂0)) above, we can use [LP23,
Theorem 2.3] (see last equation of the proof of Theorem 2.3) to deduce that there exists

C = C (N,Λ, ε,m,M)

r0 = r0 (ε,m,M)
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such that
∀y ∈ Bβ(x̂0), ∀r ∈ (0, r0), Mr(y) ≤ Cr2

We now apply Lemma 3.2 in [DPF15] which ensures that u ∈ C1,1(Bβ(x̂0)). More precisely, it is proven in
[DPF15, Lemma 3.2] that there exists ρ0 > 0 and η > 0 only depending on r0 and the Lipschitz character
of Bβ(x̂0) (hence only on β) such that

∀x ∈ Bβ(x0), ∀y ∈ Bβ(x̂0) ∩Bρ0(x), |∇u(x)−∇u(y)| ≤ C ′|x− y|

where C ′ = 6η−1. As we also have

∀x ∈ Bβ(x̂0), ∀y ∈ Bβ(x̂0) with |y − x| ≥ ρ0,
|∇u(x)−∇u(y)| ≤ 2∥∇u∥L∞(Bβ(x0))ρ

−1
0 |x− y|

then gathering the two we get that

∀x, y ∈ Bβ(x̂0), |∇u(x)−∇u(y)| ≤ C̃|x− y|

by setting C̃ := max
{
C ′, 2∥∇u∥L∞(Bβ(x0))ρ

−1
0

}
. This together with the bound on ∥∇u∥L∞(Bβ′ (x̂0)) above,

and
∥u∥L∞(Bβ(x̂0)) ≤ diam(K)

yield the desired estimate on ∥u∥C1,1(Bβ)
.

Step 2: local spherical estimates of ∂K. This step and the next one are similar to [Pet22,
Appendix B]. Fix x̂0 ∈ ∂K. We apply Step 1 at x̂0, and up to translating and rotating we assume without
loss of generality that z = 0 (so that Bm(0) ⊂ K ⊂ BM (0)) and ξ = eN is the N th canonical direction.
In this step we consider z as the origin, so that the coordinates (x, t) ∈ H × R will now take this into
account. As a consequence, x̂0 is now written x̂0 = (0, t0) for some t0 < 0, and if Ω := Bβ denotes the
(N − 1)-dimensional ball found in Step 1, we have

∀x ∈ Ω, û(x) := (x, u(x) + t0) ∈ ∂K

Since H is orthogonal to ξ = eN and contains x̂0 we have

H = x̂0 + {xN = 0}

We write more simply Bm := Bm(0). Let θ be the map

θ : Ω→ ∂Bm

x 7→ m
û(x)

|û(x)|

which associates to x ∈ Ω the spherical coordinates corresponding to û(x). Let now ρK : ∂Bm → (0,∞)
be the distance function of the convex set K, meaning that for any ϕ ∈ ∂Bm, ρK(ϕ) is the unique t > 0
such that tϕ ∈ ∂K. Then for each x ∈ Ω, it holds θ(x)ρK(θ(x)) = û(x), so that

ρK(θ(x)) =
|û(x)|
m

(3.61)

As a consequence, ρK ◦ θ ∈ C1,1(Ω) with norm only depending on the C1,1 norm of u. The rest of Step
2 consists in showing that ρK itself is C1,1 next to θ(x0) and to estimate its norm, by using a suitable
version of the inverse function Theorem.
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We let θ′ be the map

θ′ : Ω× R→ RN

(x, t) 7→ θ(x)(1 + t)

Note that θ′ ∈ C1,1(Ω× R) and θ′|Ω×{0} = θ. Then it holds

Dθ′(x̂0) = m




0

0

0 0 1

|t0|−1IN−1


 (3.62)

Using a quantitative version of the inverse function Theorem (see Theorem 3.5.1) we deduce the
existence of a radius r0 = r0

(
∥θ′∥C1,1(V0), |Dθ′(x0)−1|, β

)
, V0 and W0 respectively open neighborhoods of

x̂0 and θ′(x̂0) such that θ′ is a C1,1-diffeomorphism from V0 onto W0, with

Br0(x̂0) ⊂ V0, Br0(θ
′(x̂0)) ⊂W0 (3.63)

and
∥(θ′)−1∥C1,1(W0) ≤ C

(
∥θ′∥C1,1(V0), |Dθ′(x0)−1|

)
(3.64)

Now, by definition of θ′ and θ, and since |û(x)| ≥ m, it holds ∥θ′∥C1,1(V0) ≤ C
(
∥u∥C1,1(Ω),m

−1
)
. On the

other hand, by (3.62) we have |(Dθ′)(x0)−1| ≤ C(|t0|,m−1). As K ⊂ BM (0) we have |t0| ≤ M so that
(3.63) and (3.64) become respectively

Br0(x̂0) ⊂ V0, Br0(θ
′(x̂0)) ⊂W0, with r0 = r0

(
β,m,M, ∥u∥C1,1(Ω)

)
(3.65)

and
∥(θ)′−1∥C1,1(W0) ≤ C

(
m,M, ∥u∥C1,1(Ω)

)

Recalling that θ′|Ω×{0} = θ there exists a constant C > 0 such that ∥θ−1∥C1,1(W0∩∂Bm) ≤ ∥(θ′)−1∥C1,1(W0).
Hence, by (3.61) and the latter estimate of θ′ we get

∥ρKj∥C1,1(W0∩∂Bm) ≤ ∥ρKj ◦ θ∥C1,1(V0∩H)∥θ−1∥C1,1(W0∩∂Bm)

≤ C, with C = C
(
m,M, ∥u∥C1,1(Ω)

)
(3.66)

Using the estimates of β and ∥u∥C1,1(Ω) found in Step 1 we finally get that the radius r0 and constant
C respectively from (3.65) and (3.66) only depend on N,Λ, ε,m,M .

Step 3: global estimate of ρK : relying on the local estimate (3.66) of ρK proven in Step 2 we now
estimate ∥ρK∥C1,1(∂Bm).

According to Step 2, for any ϕ ∈ ∂Bm there exists Wϕ ⊂ RN an open neighborhood of ϕ such that

Br0(ϕ) ⊂Wϕ

∥ρK∥C1,1(Wϕ∩∂Bm) ≤ C
where r0 = r0(N,Λ, ε,m,M) and C = C(N,Λ, ε,m,M). Using a standard compactness argument over
∂Bm we find η > 0 only depending on r0 such that for any ϕ, ψ ∈ ∂Bm with |ϕ− ψ| ≤ η

|ρK(ϕ)− ρK(ψ)|
|ϕ− ψ| ≤ C, |∇ρK(ϕ)−∇ρK(ψ)|

|ϕ− ψ| ≤ C

Combining these with a global bound ∥ρK∥W 1,∞(∂Bm) ≤ C we deduce that the same estimates hold for
|ϕ− ψ| ≥ η so that we finally have

∥ρK∥C1,1(∂Bm) ≤ C (3.67)
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for some C = C(N,Λ, ε,m,M).
Conclusion. Let h(ϕ) := ρK(mϕ)− 1 for each ϕ ∈ ∂B. Then we have that K = (Id + hnB)(B) and

(3.67) ensures that
||h∥C1,1(∂B) ≤ C

for some C = C(N,Λ, ε,m,M) > 0. This concludes the proof.

3.4.2 Proof of Theorem 3.1.2

In this subsection we perform the selection principle, relying both on the convergence result for quasi-
minimizers (Corollary 3.4.3) and the strict minimality of the ball in a C1,α neighborhood shown in Theorem
3.3.1.

We will use the fact that λ1 satisfies some kind of Lipschitz hypothesis for the Volume distance. This
is stated in next Proposition.

Proposition 3.4.5. Let N ≥ 2. Let D ∈ KN and 0 < V0 < |D|. There exists C = C(V0, D) such that for
all convex bodies K1,K2 ⊂ D with |K1|, |K2| ≥ V0 it holds

|λ1(K1)− λ1(K2)| ≤ C|K1∆K2|. (3.68)

Note that this Lipschitz type property is an improvement of the result obtained for λ1 in [LP23,
Theorem 3.2 and Remark 3.3].

Proof of Proposition 3.4.5. It was proven in [LP23, Theorem 3.2 and Remark 3.3] that for any D′ ⊂ D ∈
KN there exists C = C(D′, D) such that for all D′ ⊂ K1 ⊂ D, D′ ⊂ K2 ⊂ D it holds

|λ1(K1)− λ1(K2)| ≤ C|K1∆K2| (3.69)

Let then K1,K2 ⊂ D with |K1|, |K2| ≥ V0. Assume first that |K1∆K2| ≥ V0/2. Thanks to (ii)
in Proposition 3.5.3 we can find ε = ε(V0, D) > 0 independent of K1,K2 such that the inradii satisfy
rK1 , rK2 ≥ ε. As a consequence, for i = 1, 2 there exists xi ∈ RN such that Bε(xi) ⊂ Ki. By monotonicity
of λ1 we deduce

|λ1(K1)− λ1(K2)| ≤ 2λ1(Bε(0)) ≤ 4V −1
0 λ1(Bε(0))|K1∆K2| (3.70)

Assume otherwise that |K1∆K2| ≤ V0/2. Then we have

|K1 ∩K2| = |K1| − |K1 \K2| ≥ V0/2

Using again (ii) from Proposition 3.5.3 we can therefore find ε′ = ε′(V0, D) > 0 such that the inradius
of the convex body K1 ∩ K2 ⊂ D satisfies rK1∩K2 ≥ ε′. Hence, there exists x ∈ D such that Bε′(x) ⊂
K1 ∩K2 ⊂ Ki, i = 1, 2. Letting R > 0 be such that BR(x) ⊃ D, we have Bε′(0) ⊂ Ki − x ⊂ BR(0) for
i = 1, 2 and we therefore use property (3.69) to deduce

|λ1(K1)− λ1(K2)| = |λ1(K1 − x)− λ1(K2 − x)|
≤ C|(K1 − x)∆(K2 − x)|
= C|K1∆K2|

This estimate together with (3.70) gives the conclusion.

We can now pass to the proof of Theorem 3.1.2.
For convex bodies K1 and K2 the notation dH(K1,K2) refers to the usual Hausdorff distance between

K1 and K2 (see Section 3.5.3 in the Appendix for some facts about the Hausdorff distance for convex
sets).
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Proof of Theorem 3.1.2. Step 1: penalization. As a preparation of the selection procedure from Step
2 below, we prove in this step that if we let D ∈ KN , 0 < V0 < |D|, a ∈ R, µ ≥ 0 and set R =
−λ1 + µ||K∆B| − a|, then a minimizer K∗ of

inf
{
P (K) +R(K),K ∈ KN , K ⊂ D, |K| = V0

}
(3.71)

is a (Λ, ε)-q.m.p.c.c. (see Definition 3.4.1) for some Λ = Λ (V0, d(K
∗, ∂D), µ,D) and ε = ε (V0, d(K

∗, ∂D), µ,D).
This result is an adaptation of [LP23, Lemma 2.11].

Let 0 < v0 < V0 and δ > 0. We introduce the class

Av0,δ := {K ∈ KN , K ⊂ D, |K| ≥ v0, d(K, ∂D) ≥ δ}

which is compact for dH , by Proposition 3.5.3 and continuity of the volume for the Hausdorff distance.
Note that the set K∗ belongs to the class for v0 = V0. Set

∀ε > 0, Oε(K
∗) := {K ∈ KN , K ⊂ K∗, |K∗ \K| ≤ ε}

and let for any convex body K ⊂ D and t ∈ [0, 1]

Kt := (1− t)K + tD

We first claim that there exists constants (ε0, c, t0) ∈ (0,∞)3 depending only on V0, δ and D (hence
independent of the minimizer K∗) such that

∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], |Kt| − |K| ≥ ct (3.72)

Setting fK(t) := |Kt|, it is shown in [LP23, Lemma 2.11] that fK is a polynomial in t with coefficients
continuous in K for dH , and that f ′K(0) is positive whenever K ⊊ D. Set ε0 := V0/2. By compactness of
Aε0,δ inside {K ∈ KN , K ⊊ D} and continuity of K 7→ f ′K(0) for dH , then one can find c = c(V0, δ,D) > 0
such that for any K ∈ Aε0,δ it holds f ′K(0) ≥ c. Any K ∈ Oε0(K

∗) verifies |K| ≥ V0/2, so that we deduce
f ′K(0) ≥ c for such K. Since the coefficients of the polynomial fK(t) are continuous in K for dH , they are
uniformly bounded for K ∈ Aε0,δ. This together with the lower bound on f ′K(0) yields the above estimate.

The existence of C = C(D) such that

∀t ∈ [0, 1], ∀K ∈ KN with K ⊂ D, P (Kt)− P (K) ≤ Ct

is proven in [LP23, equation (54)]. As a consequence, this together with (3.72) gives

∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], P (Kt)− P (K) ≤ C ′||Kt| − |K|] (3.73)

with C ′ := C/c.
Since any K ∈ Oε0(K

∗) verifies |K| ≥ V0/2 we can apply Proposition 3.4.5 to get the existence of
C = C(V0, D) such that for all t ∈ [0, 1] and K ∈ Oε0(K

∗)

R(Kt)−R(K) = λ1(K)− λ1(Kt) + µ (||Kt∆B| − a| − ||K∆B| − a|)
≤ C|Kt \K|+ µ||Kt∆B| − |K∆B||
≤ (C + µ)|Kt \K| (3.74)

Let us now show that for ε := min{ε0, ct0} there exists Λ = Λ(V0, δ,D, µ) such that a minimizer K∗

of (3.71) is a minimizer of
inf{P +R+ Λ||K| − V0|, K ∈ Oε(K

∗)} (3.75)

Since |Kt0 | − |K∗| = |Kt0 | − |K| + |K| − |K∗| ≥ ct0 − ε ≥ 0 then by continuity of t 7→ |Kt| there exists
t ∈ [0, t0] such that |Kt| = |K∗| = V0. Hence by minimality and using (3.73) and (3.74) we get

P (K∗) +R(K∗) ≤ P (Kt) +R(Kt) ≤ P (K) +R(K) + Λ||K| − V0||
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for some Λ = Λ(V0, δ,D, µ), which ensures the minimality of K∗ for (3.75).
Therefore, if K ∈ KN with K ⊂ K∗ and |K∗ \ K| ≤ ε then the computation leading to (3.74) with

(K∗,K) in place of (Kt,K) gives

P (K∗)− P (K) ≤ (C + µ+ Λ) |K∗ \K|

so that K∗ is a (Λ′, ε)-q.m.p.c.c where Λ′ := Λ+C +µ and ε only depend on V0, δ, µ and D. This finishes
the proof of the first step.

Step 2: selection procedure. Although the selection principle was first introduced in [CL12], the
way we display the argument in this step is more inspired of [AFM13]. Let 0 < c < c∗. Recall the notation
Jc := P − cλ1. Let us assume in order to obtain a contradiction that the conclusion of Theorem 3.1.2 is
false. Then there exists a sequence of convex bodies (Kj)j∈N such that

{
∀j ∈ N, Jc(Kj) < Jc(B)

|Kj∆B| → 0

Thanks to Proposition 3.5.4, Kj → B in the Hausdorff sense, so that there exists D ∈ KN such that
Kj ⊂ D for every j. We can assume without loss of generality that B ⋐ Int(D). Thanks to Proposition
3.4.5 the functional λ1 is lower-semi-continuous for the volume distance, and we can apply the existence
result [LP23, Theorem 3.4 (i)] to get that for any fixed µ > 0 there exists for each j a solution to the
problem

inf
{
Jc(K) + µ ||K∆B| − |Kj∆B|| , |K| = |B|, K ⊂ D, K ∈ KN

}
(3.76)

Assuming that the value of µ has been fixed (we choose µ later on), we let K̃j be a solution.
Thanks to (i) from Proposition 3.5.3 there exists a convex body K̃ ⊂ D with |K̃| = |B| such that

(up to subsequence) K̃j → K̃ in the Hausdorff sense and in measure. We have λ1(K̃j) → λ1(K̃) using
Proposition 3.4.5, and P (K̃j) → P (K̃) by [BB05, Proposition 2.4.3 (ii)]. Now, from optimality and
recalling Jc(Kj) < Jc(B) we can write

Jc(K̃j) + µ||K̃j∆B| − |Kj∆B|| ≤ Jc(Kj) < Jc(B) (3.77)

so that we get at the limit
Jc(K̃) + µ|K̃∆B| ≤ Jc(B) (3.78)

Thanks to Proposition 3.4.5 and using the isoperimetric inequality we get

Jc(K̃)− Jc(B) =
(
P (K̃)− P (B)

)
+ c

(
λ1(B)− λ1(K̃)

)

≥ c(λ1(B)− λ1(K̃))

≥ −C|K̃∆B|

where the constant C only depends on c and D. Injecting this into (3.78) provides

−C|K̃∆B|+ µ|K̃∆B| ≤ 0

so that we get K̃ = B if µ is chosen bigger than C in (3.76).
Therefore K̃j → B in measure and Hausdorff distance. Since we have chosen B ⋐ Int(D) we find a

convex body D̃ ⊂ D with d(D̃, ∂D) > 0 and such that for j sufficiently large

D′ ⊂ K̃j ⊂ D̃

By construction of the K̃j , we deduce from Step 1 that each K̃j is a (Λ, ε)-q.m.p.c.c. with parameters
independent of j. We can therefore apply Corollary 3.4.3 to get the existence of hj ∈ C1,1(∂B) such that
up to subsequence

K̃j = (Id + hjνB)(B) and ∥hj∥C1,α(∂B) → 0
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for α chosen to satisfy Theorem 3.3.1. We can therefore apply Theorem 3.3.1 to deduce that for sufficiently
large j,

Jc(K̃j) ≥ Jc(B)

But this enters in contradiction with (3.77), thus concluding the proof of the Theorem.

3.5 Appendix

3.5.1 Quantified Inverse Function Theorem

Theorem 3.5.1 (Quantified IFT). Let N ∈ N∗. Let V := Br(x̂0) ⊂ RN for some x̂0 ∈ V and
r > 0. Let f ∈ C1,1(V,RN ) with Df(x̂0) invertible. Then there exists V0 ⊂ V,W0 ⊂ RN and ρ =
ρ
(
∥f∥C1,1 , |Df(x0)−1|, r

)
only depending on the indicated parameters such that f is a C1,1 diffeomorphism

from V0 onto W0 and
Bρ(x̂0) ⊂ V0, Bρ(f(x̂0)) ⊂W0

∥f−1∥C1,1(W0,V0) ≤ C
(
∥f∥C1,1(V,RN ), |Df(x0)−1|, r

)

Proof. Step 1: By following the usual proof of the Inverse function Theorem we first show that f is a C1

diffeomorphism from V ′
0 ⊂ V to W ′

0 := Bδ(f(x̂0)) with

δ = δ
(
∥Df∥C0,1(V ), |Df(x̂0)−1|

)
.

Since the proof is classical we only emphasize on the details needed to quantify the size of the neighborhood
W ′

0.
We will keep the notation V for the set V := Br(x̂0). Let for any y ∈ RN the function ϕy : V → RN

be defined by
∀x ∈ V, ϕy(x) := x− (Df(x̂0))

−1 (f(x)− y).
Then ϕy is C1,1, for x ∈ V its differential Dϕy(x) = Id − (Df(x̂0))

−1Df(x) is independent of y, and we
have for x ∈ V ,

|Dϕy(x)| ≤ |Df(x̂0)−1||Df(x)−Df(x̂0)|
≤ |Df(x̂0)−1|∥Df∥C0,1(V )|x− x̂0|

As a consequence there exists

r′ = r′
(
|Df(x̂0)−1|, ∥Df∥C0,1(V ), r

)
> 0

such that for all x ∈ Br′(x̂0) it holds |Dϕy(x)| ≤ 1/2. We thus get that for all y ∈ RN , ϕy is 1/2-Lipschitz
over Br′(x̂0). Now, we have

|Df(x̂0)−1(f(x̂0)− y)| ≤ |Df(x̂0)−1||f(x̂0)− y| ≤ r′/2

when y ∈ Bδ(f(x̂0)) with δ := r′

2 |Df(x̂0)−1|. Hence,

∀y ∈ Bδ(f(x̂0)), ∀x ∈ Br′(x̂0), |ϕy(x)− x̂0| ≤ |ϕy(x)− ϕy(x̂0)|+ |ϕy(x̂0)− x̂0|
≤ |x− x̂0|/2 + r′/2

≤ r′

As a consequence, for all y ∈ Bδ(f(x̂0)), ϕy sends Br′(x̂0) into itself and is 1/2-Lipschitz. Therefore, for
such y the mapping ϕy has a unique fixed point in Br′(x̂0), meaning that f(x) = y for a unique x ∈ Br′(x̂0).
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This gives the existence of f−1 : W ′
0 → V ′

0 with W ′
0 := Bδ(f(x̂0)) and V ′

0 := f−1(W ′
0), and one classically

shows that f is C1 diffeomorphism from V ′
0 to W ′

0 with furthermore Df−1 = (Df(f−1))−1.
Step 2: Using an explicit expansion of the inverse mapping about Df(x̂0) we have that

|Df(x)−1| ≤ 2|Df(x̂0)−1| (3.79)

whenever |Df(x) −Df(x̂0)| ≤ 1/(2|Df(x̂0)−1|). But this latter condition is fulfilled if x ∈ V0 := Br̃(x̂0)
for some r̃ depending on r′, |Df(x̂0)−1| and ∥f∥C1,1(V ) only. Moreover, f is a C1 diffeomorphism from
V0 to W0 := f(V0), and one can find δ̃ = δ̃

(
r̃, ∥f−1∥C0,1(W0)

)
such that W0 ⊃ B

δ̃
(f(x̂0)). Now, thanks to

(3.79) and Df−1 = (Df(f−1))−1 we have

∥f−1∥L∞(W0) ≤ r, ∥Df−1∥L∞(W0) ≤ 2|Df(x̂0)−1| (3.80)

Letting y, y′ ∈W0, since f−1(y), f−1(y′) ∈ V0 we can use (3.79) and (3.80) to get

|Df−1(y)−Df−1(y′)| ≤ ∥(Df)−1∥2L∞(V0)
|Df(f−1(y))−Df(f−1(y′))|

≤ C|y − y′|

for some C = C
(
|Df(x̂0)−1|, ∥f∥C1,1(V ), r

′). Combined with (3.80), and recalling the estimate of r′ from
Step 1 we thus get

∥f−1∥C1,1(W0) ≤ C
(
|Df(x̂0)−1|, ∥f∥C1,1(V ), r

)

Setting ρ := min{δ̃, r̃} we have proved the Theorem.

3.5.2 Fractional Sobolev spaces

In this paragraph we state some standard facts about Sobolev spaces on the boundary of a C1,1 open set
Ω ⊂ RN .

Proposition 3.5.2. Let N ≥ 2 and Ω ⊂ RN be a C1,1 bounded open set.

(i) Let s ∈ (0, 1) and p ∈ (1,∞). There exists C > 0 such that for any a, b ∈ C1,1(∂Ω)

∣∣∣∣
ˆ
∂Ω
ab

∣∣∣∣ ≤ C∥a∥W−s,p′ (∂Ω)∥b∥W s,p(∂Ω).

(ii) Let s ∈ (0, 1). Then for all α ∈ (s, 1) and p ∈ [1,∞) it holds

C0,α(∂Ω) ⊂W s,p(∂Ω), C1,α(∂Ω) ⊂W 1+s,p(∂Ω),

with continuous injections.

(iii) Let s ∈ (0, 1) and p ∈ (1,∞). Then there exists C > 0 such that for any a ∈ C1,1(∂Ω) it holds

∥∇τa∥W−s,p(∂Ω) ≤ C∥a∥W 1−s,p(∂Ω).

(iv) There exists α ∈ (0, 1) such that the product law C0,α(∂Ω) ·H1/2(∂Ω) ⊂ H1/2(∂Ω) holds, meaning
that for any a, b ∈ C1,1(∂Ω)

∥ab∥H1/2(∂Ω) ≤ C∥a∥C0,α(∂Ω)∥b∥H1/2(∂Ω),

for some constant C > 0 independent of a and b.
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(v) There exists s ∈ (0, 1) and p ∈ (1,∞) for which the product law H1/2(∂Ω) ·H1/2(∂Ω) ⊂ W s,p(∂Ω)
holds, meaning that for any a, b ∈ C1,1(∂Ω)

∥ab∥W s,p(∂Ω) ≤ C∥a∥H1/2(∂Ω)∥b∥H1/2(∂Ω),

for some constant C > 0 independent of a and b.

Proof. All of the statements are deduced from the same statements over W s,p(RN−1) spaces by working
in local charts. We give hereafter brief indications or references for the RN−1 case.

(i) For the same statement over RN−1 see for instance [RS11, Proposition p.20].

(ii) If f ∈ C0,α
loc (R

N−1), then if A ⊂ RN−1 is bounded

∀x, y ∈ A, |f(x)− f(y)|
p

|x− y|N−1+sp
≤ |f |p

C0,α(A)
|x− y|−(N−1−p(α−s))

where | · |C0,α(A) is the C0,α semi-norm on A. The local integrability of

(x, y) ∈ RN−1 × RN−1 7→ |x− y|−(N−1−p(α−s))

then ensures that C0,α
loc (R

N−1) ⊂W s,p
loc (R

N−1).

(iii) For the same fact over RN−1, see for instance [Bha12, Remark 8.10.14].

(iv) For (N − 1)/p < s < 1 one has the product law W s,p(RN−1) · H1/2(RN−1) ⊂ H1/2(RN−1) (see
[BH21, Lemma 7.2]). Using (ii) we obtain the announced product law.

(v) Applying [RS11, Theorem 1 p.176] we first have the product law H1/2(RN−1) · H1/2(RN−1) ⊂
F

1/2
p̃,2 (RN−1) for any p̃ > 1 verifying 1

p̃ > 1− 1
2N , where F 1/2

p̃,2 (RN−1) denotes the usual Triebel-Lizorkin

space of corresponding indices. Applying then [RS11, Theorem p. 31] we have F
1/2
p̃,2 (RN−1) ⊂

W s,p(RN−1) where p > p̃ is close to p̃ and s = 1/2 +N(1/p− 1/p̃) ∈ (0, 1/2), so that we obtain in
fact H1/2(RN−1) ·H1/2(RN−1) ⊂W s,p(RN−1).

3.5.3 Compactness in classes of convex sets

In this paragraph we gather some classical facts about Hausdorff distance and compactness in some classes
of convex bodies.

If C1 and C2 are non-empty compact subsets of RN , the Hausdorff distance dH(C1, C2) between C1

and C2 is defined as the quantity

dH(C1, C2) := max

{
sup
x∈C1

d(x,C2), sup
x∈C2

d(x,C1)

}

where d(·, ·) denotes the euclidean distance. The Hausdorff distance dH is a distance over the class of
non-empty compact sets of RN . We say that a sequence Aj ⊂ RN of non-empty compact sets converges
in the Hausdorff sense when it converges for dH .

Proposition 3.5.3. Let D ∈ KN and 0 < V0 < |D| and set

C1 :=
{
K compact convex of RN ,K ⊂ D

}

C2 :=
{
K ∈ KN , |K| = V0, K ⊂ D

}
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(i) The classes C1 and C2 are compact for the Hausdorff distance.

(ii) There exists ε = ε(V0, D) > 0 such that for each K ∈ C2 the inradius rK of K satisfies rK ≥ ε.

Proof. (i) The Blaschke selection Theorem states that the class C1 is compact for the Hausdorff distance
(see for instance [Sch14, Theorem 1.8.7]). Compactness of C2 then follows from the fact that C2 is a
closed subset of C1, thanks to the continuity of the volume for dH .

(ii) Let us show that the inradius mapping K ∈ KN 7→ rK is l.s.c. for dH . Let K ∈ KN and Kj ∈ KN

with Kj → K in Haudorff distance, and let r > 0 and x ∈ RN be such that Br(x) ⋐ Int(K). Thanks
to [LP23, Proposition 2.8, 2.], we have that Kj ⊃ Br(x) for large enough j, so that lim inf rKj ≥ r.
This is valid for any r < rK , so that lim inf rKj ≥ rK , thus showing that K ∈ KN 7→ rK is l.s.c.
Since furthermore C2 is compact for dH , we deduce that K ∈ C 7→ rK has a minimum ε > 0, thus
finishing the proof.

Proposition 3.5.4. Let B ⊂ RN be the centered unit ball. Let Kj ∈ KN be a sequence of convex bodies
such that |Kj∆B| → 0. Then Kj → B in the Hausdorff sense.

Proof. It suffices to show that there exists a bounded set D ⊂ RN such that Kj ⊂ D for each j, since the
Blaschke selection Theorem then applies to provide compactness of the sequence Kj for dH and therefore
the convergence of the whole sequence Kj to B. Fix j ∈ N; since |Kj∆B| → 0 we can suppose j large
enough so that Kj ∩B ̸= ∅.

Suppose now that Kj ̸⊂ B2(0). Since Kj ∩ B ̸= ∅, by convexity of Kj we can find xj ∈ Kj with
|xj | = 2, which we will suppose (up to changing coordinates) to be written xj := x = (0, . . . , 0, 2). Let
x0 := (−1, 0 . . . , 0) and set x1 := (1, 0 . . . , 0), x2 = (0, 1, 0 . . . , 0) until xN−1 := (0, . . . , 0, 1, 0). Let finally
C := conv{x, x0, x1 . . . , xN−1} and some ball B′ ⋐ Int(C \B).

Let f : RN+1 → KN be defined by

f(y1, . . . , yN+1) = conv{y1, . . . , yN+1} =
{

N+1∑

i=1

λiyi,
N+1∑

i=1

λi = 1, λi ≥ 0

}

Then f is continuous for the Hausdorff distance, so that there exists ε > 0 such that if for all 0 ≤ i ≤ N−1,
|zi − xi| ≤ ε then conv{x, z1, . . . , zN} ⊃ B′ (see for instance [LP23, Proposition 2.8, 2.]). Now, let
δ := mini{|B ∩ Bε(xi)|} > 0. Taking j sufficiently large so that |Kj∆B| < δ, this implies that for such j
there exists for each i = 0, . . . , N − 1 some yji ∈ Kj ∩ Bε(xi). By convexity, Kj ⊃ conv{x, yj0 . . . , yjN−1},
which itself contains B′, thus giving |Kj \B| ≥ |B′|. This does not happen for sufficiently large j, and as
a consequence there exists j0 ≥ 0 such that Kj ⊂ B2(0) for j ≥ j0. This proves the claim.
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Chapter 4

Sharp quantitative stability of the Dirichlet
spectrum near the ball

This Chapter is a reprint of the submitted paper Sharp quantitative stability of the Dirichlet spectrum near
the ball, written by the author of this thesis in collaboration with D. Bucur, J. Lamboley, and M. Nahon.

Abstract

Let Ω ⊂ Rn be an open set with same volume as the unit ball B and let λk(Ω) be the k-th eigenvalue
of the Laplace operator of Ω with Dirichlet boundary conditions on ∂Ω. In this paper, we answer the
following question:

If λ1(Ω)− λ1(B) is small, how large can |λk(Ω)− λk(B)| be ?

We establish quantitative bounds of the form |λk(Ω)−λk(B)| ≤ C(λ1(Ω)−λ1(B))α with sharp exponents
α depending on the multiplicity of λk(B). We first show that such an inequality is valid with α = 1/2
for any k, improving previous known results; through the study of a vectorial free boundary problem, we
then show that one can achieve the better exponent α = 1 if λk(B) is simple. We prove sharpness of
the exponents in both cases. As a consequence of these results, we also obtain the persistence of the ball
as a minimizer for a large class of spectral functionals which are small perturbations of the fundamental
frequency on the one hand, and a full reverse Kohler-Jobin inequality on the other hand, solving an open
problem formulated by M. Van Den Berg, G. Buttazzo and A. Pratelli.

4.1 Introduction

4.1.1 Presentation of the problem

Let Rn be the Euclidean space for some n ≥ 2, and let ωn denote the measure of the unit ball in Rn. We
set

A = {Ω ⊂ Rn open set of measure ωn} ,
and B(= B1) the unit ball of Rn centered at the origin. For Ω an open set of finite volume, we write

λk(Ω) := inf

{
sup
v∈V

´
Ω |∇v|2´
Ω v

2
, V ⊂ H1

0 (Ω) of dimension k
}

the k-th eigenvalue of the Laplacian on Ω with Dirichlet boundary conditions on ∂Ω (counting multi-
plicities). The associated eigenfunctions, normalized in L2(Ω), are denoted (uk)k≥1 and verify for each
k ∈ N∗

uk ∈ H1
0 (Ω), −∆uk = λk(Ω)uk in Ω.
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For every Ω ∈ A, the Faber-Krahn inequality states that λ1(Ω) ≥ λ1(B), with equality if and only if Ω
coincides with a ball (up to a set of zero capacity). Several recent works point out that Ω must be close to
B in some sense when λ1(Ω) is close to λ1(B). We refer to [BDPV15, AKN21] and the references therein
for the most recent results and a history of the quantitative Faber-Krahn inequality. Roughly speaking,
the variation of the first eigenvalue λ1(Ω)− λ1(B) controls (the square of) the Fraenkel asymmetry of Ω
and of the L2 norm of the variation of the eigenfunction.

The main purpose of this paper is to get a sharp control of the variation of the whole spectrum in
terms of λ1(Ω)− λ1(B). Precisely, we seek inequalities of the form1

∣∣∣∣∣
l∑

i=k

(
λi(Ω)− λi(B)

)
∣∣∣∣∣ ≤ Cn,kλ1(Ω)

1−α(λ1(Ω)− λ1(B))α, (4.1)

for which the power α > 0 is sharp.
Heuristics about sharp power α. In some particular cases, inequality (4.1) has already been studied
in the literature. In a first paper [BC06], Bertrand and Colbois established the inequality

|λk(Ω)− λk(B)| ≤ Cn,k (λ1(Ω)− λ1(B))
1

80n ,

for sets Ω with λ1(Ω) bounded from above. Later, relying on the quantitative Faber-Krahn inequality
from [BDPV15], Mazzoleni and Pratelli improved the exponents into (see [MP19])

−cn,k (λ1(Ω)− λ1(B))
1
6
−ε ≤ λk(Ω)− λk(B) ≤ Cn,k (λ1(Ω)− λ1(B))

1
12

−ε , (4.2)

for any ε > 0 (with better exponents in dimension n = 2) when λ1(Ω) is bounded from above, but the
authors naturally expected these exponents not to be optimal.

Indeed, the following observation is in order. When looking at domains which are volume-preserving
smooth perturbations of the ball, one may see B as a non-degenerate stable critical point of λ1 under
volume constraint. On the other hand, for k ≥ 2 the condition for B to be a critical point of λk is that
the associated eigenfunction uk has constant gradient on the boundary. This is the case for eigenvalues
associated to radial eigenfunctions, which precisely correspond to the simple eigenvalues. In conclusion,
when λk(B) is simple one may expect a sharp bound of the type

|λk(Ω)− λk(B)| ≤ Cn,k(λ1(Ω)− λ1(B)). (4.3)

On the contrary, when λk(B) is degenerate (multiple), then λk has only directional derivatives at B which,
in general, are non-zero. Consequently, we cannot expect a better bound than

|λk(Ω)− λk(B)| ≤ Cn,k(λ1(Ω)− λ1(B))
1
2 . (4.4)

Nevertheless, as observed in [MP19], although λ2(B) is multiple one still has

λ2(Ω)− λ2(B) ≤ C(λ1(Ω)− λ1(B)) (4.5)

as a consequence of Ashbaugh-Benguria’s inequality which asserts that the ball maximizes the ratio λ2/λ1.
More generally, for a whole cluster associated to a multiple eigenvalue

λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B),

1Note that this formulation with λ1(Ω)
1−α is just a way to avoid assuming that λ1(Ω) is bounded from above as in the

previous references.
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while each individual λi is not differentiable at B (for k ≤ i ≤ l), any smooth symmetric function of
(λk, . . . , λl) is differentiable and has a critical point at B. Therefore, one can still hope for a result better
than (4.4), namely a linear bound on the sum

∣∣∣∣∣
l∑

i=k

[λi(Ω)− λi(B)]

∣∣∣∣∣ ≤ Cn,k(λ1(Ω)− λ1(B)) (4.6)

generalizing the estimate for simple eigenvalues.
The goal of this paper is to show that (4.3), (4.4) and (4.6) indeed hold, and that the above observations

turn out to provide the sharp exponents in (4.1).
Strategy. As a first result (see Theorem 4.1.1 below), we will show that one can obtain (4.1) for α =
1
2 (valid for simple and for multiple eigenvalues), by making use of suitable test functions and of the
quantitative Faber-Krahn inequality. This improves the previous results from [BC06, MP19].

To obtain a sharper result with exponent α = 1 (the case of a simple eigenvalue or of a whole cluster
of multiple eigenvalues) our proof appeals to a deep analysis of a new type of vectorial free boundary
problem which falls out from the situations already studied in the literature.

Indeed, let us consider λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B): inequality (4.1) with α = 1
becomes ∣∣∣∣∣

l∑

i=k

[λi(Ω)− λi(B)]

∣∣∣∣∣ ≤ Cn,k(λ1(Ω)− λ1(B)).

Its proof is equivalent to the fact that, for some ε > 0 small enough, the ball is the unique solution of both
shape optimization problems below (i.e. for both signs + and −)

min

{
λ1(Ω)− ε

l∑

i=k

λi(Ω) : Ω ∈ A
}
, min

{
λ1(Ω) + ε

l∑

i=k

λi(Ω) : Ω ∈ A
}
. (4.7)

The strategy to prove this assertion is based on regularity theory, and proceeds by a series of steps,
some of them being rather technical. We prove first the existence of an optimal domain and the Lipschitz
regularity of the associated eigenfunctions. In a second step, we prove the regularity of the boundary and
that, in some strong C2,γ sense, the optimal domain is close to the ball. Finally, we use a second order
shape derivative argument to conclude that the optimal domain is the ball, provided ε is small enough.
These steps have been followed for example in [KM13, KM14] for the study of Gamow’s model, which can
be seen as a perturbation of the classical isoperimetric problem. Similar ideas can be found in [CL12],
where the authors prove the quantitative isoperimetric inequality. On the other hand, we are dealing here
with a perturbation of λ1 instead of the perimeter functional, so that as in [BL09] and in the proof of
the quantitative Faber-Krahn inequality from [BDPV15] (see also [MR21]) one needs to use the regularity
tools developed in the field of free boundary problems.

Although the strategy to solve the shape optimization problems (4.7) follows the same main lines as
[BDPV15], the nature of our problem raises a series of new technical difficulties, mostly in the case of
the negative sign. First, in this case the shape functional is not decreasing for inclusion, so that the
existence of a solution is not guaranteed by the general result of Buttazzo-Dal Maso [BDM93b]. Second,
the optimality condition formally reads

(
∂u1
∂νΩ

)2

− ε
l∑

i=k

(
∂ui
∂νΩ

)2

= constant on ∂Ω,

where νΩ is the outward normal vector at the boundary ∂Ω. The presence of the negative sign falls out
from all the situations studied in the literature [KL18, MTV17, CSY18, MTV17], including the degenerate
case from [KL19]. The regularity analysis of this situation requires most of the technicalities. We will
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use some key ideas from [MTV21] for the analysis of our problem: more precisely, when k = l (i.e. for
simple eigenvalues), we will be able to apply the results from [MTV21] (see Section 4.4.3), but when k < l
(case of multiple eigenvalues), we will have to show the same type of results in more general situations
(see Sections 4.5.1 and 4.5.2).

As a global picture, our analysis will require to study a generalization of the vectorial Alt-Caffarelli
problems in the wider setting





−∆vi = fi in Ω, ∀i = 1, . . . ,m,

vi = 0 in ∂Ω, ∀i = 1, . . . ,m,

q
(

∂v1
∂νΩ

, . . . , ∂vm∂νΩ

)
= 1 in ∂Ω,

where Ω is the common domain of (vi)i=1,...,m, fi ∈ L∞
loc(Ω) and q is a quadratic form on Rm. The outward

normal derivatives ∂vi
∂νΩ

at the boundary are understood in some weak sense - variational or viscosity (this
will become clear later) - and the states (vi) are assumed to be “flat” (in a sense precised in Sections 4.4
and 4.5 and Corollary 4.5.17):

• The case m = 1, q(x) = x2 corresponds to the classical Alt-Caffarelli problem of [AC81].

• The case m ≥ 2, q(x1, . . . , xm) =
∑m

i=1 cix
2
i is the one treated in [KL18, KL19] with uniform

estimates in (ci) as long as ci ≥ 0,
∑m

i=1 ci = 1. Similar results (obtained through different methods)
may also be found in [CSY18, MTV17] in the case ci = 1.

• The case m = 2, q(x1, x2) = x1x2 under the additional hypothesis that u1, u2 are positive is treated
in [MTV21].

Our problem may be seen as

• m ≥ 2 with q(x1, . . . , xm) = x21 + b(x2, . . . , xm),

where b is a quadratic form on Rm−1 with no positivity assumption. However we shall make use of the

hypothesis that the function v1 “dominates” all the others, meaning that
∣∣∣∣
vi
v1

∣∣∣∣ is not too large for every

i ≥ 2 (for precise statements we refer to Definition 4.5.7). This hypothesis holds for free in some situations,
for instance when v1 is the torsion function and vi is a small multiple of the eigenfunction ui of Ω, where
we recall that the torsion function wΩ is the unique solution to

{
∆wΩ = −1 in Ω,

wΩ = 0 on ∂Ω.

Applications in spectral geometry and a reverse Kohler-Jobin inequality. It has been observed
numerically in [OK13, Fig 5.4] that the set minimizing λk(Ω) in A is also minimizing λk(Ω) + ελk−1(Ω),
provided ε > 0 is small (the computations were performed for 3 ≤ k ≤ 6).

This phenomenon of persistence of minimizers for perturbed functionals has also been conjectured in
[vdBBP21] for a functional involving the first Dirichlet eigenvalue and the torsional rigidity which are
interacting in a competing way. Recall that the torsional ridigidy is defined by

T (Ω) :=

ˆ
Ω
wΩ =

ˆ
Ω
2wΩ − |∇wΩ|2 = max

{ˆ
Ω
2v − |∇v|2, v ∈ H1

0 (Ω)

}
,

where wΩ is the torsion function. While the Saint-Venant inequality states that the set with maximal
torsional rigidity in A is the ball, the conjecture from [vdBBP21] reads

∃pn > 0,∀Ω ∈ A, T (Ω)λ1(Ω)
1
pn ≤ T (B)λ1(B)

1
pn . (4.8)
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As this inequality becomes Saint-Venant inequality when pn →∞, the challenge is to prove that the ball
B remains a maximizer of T (Ω)λ1(Ω)1/p for finite values of p.

If pn = 2
n+2 , the inequality above occurs in the opposite sense and is due to Kohler-Jobin [KJ78]. This

is why, for pn large, inequality (4.8) can be seen as a reverse Kohler-Jobin inequality. In [BBGLB22] it
has been proved to hold locally for some pn large, in the class of C2,γ nearly spherical domains.

The main consequence of our analysis is the occurence of the persistance phenomenon of the ball as
minimizer for spectral functionals which are either small perturbations of the first Dirichlet eigenvalue (for
instance as in (4.7)) or of the (reciprocal of the) torsional rigidity. In particular we will prove the validity
of the full reverse Kohler-Jobin inequality (4.8), see Corollary 4.1.5.

4.1.2 Main results

Inequality (4.1) for sharp exponents α will actually be proved in a stronger version, with the torsional
deviation T (Ω)−1 − T (B)−1 on the right-hand side in place of λ1(Ω)− λ1(B).

Indeed, as noted just above, Kohler-Jobin’s inequality from [KJ78] states that A ∋ Ω 7→ T (Ω)λ1(Ω)
n+2
2

is minimal on the ball, which directly implies the bound

T (Ω)−1 − T (B)−1 ≤ Cn

(
λ1(Ω)

n+2
2 − λ1(B)

n+2
2

)

≤ n+ 2

2
Cnλ1(Ω)

n
2 (λ1(Ω)− λ1(B)) (4.9)

for any Ω ∈ A, with Cn :=
(
T (B)λ1(B)

n+2
2

)−1
. Relying on this inequality and growth estimates of the

type λk(Ω) ≤ Cn,kλ1(Ω) (see below Proposition 4.2.1), in order to obtain inequalities of the type (4.1) it
is enough to prove them for the torsional deviation in the right hand side instead.

One of the reasons why we replace the first eigenvalue with the torsion energy is of technical nature. In
our problem, which involves simultaneously several eigenfunctions, we have a clear advantage to do this,
since some uniform regularity estimates on these eigenfunctions may be directly deduced from the same
estimates on the torsion function (see for instance Lemma 4.2.2). On the other hand, a second advantage
is that inequality (4.1) gets a nontrivial meaning even for k = 1.

For the sake of clarity, we split the proof of inequality (4.1) with sharp exponents α in the three results.
The first one applies to every eigenvalue, and is sharp when λk(B) is degenerate.

Theorem 4.1.1. There exists Cn > 0 such that for any Ω ∈ A,

|λk(Ω)− λk(B)| ≤ Cnk
2+ 4

nλ1(Ω)
1
2 |Ω| 12

(
T (Ω)−1 − T (B)−1

) 1
2 .

Thanks to (4.9), this result improves the inequalities (4.2) from [MP19]. Note that we wrote this
inequality in a scale invariant version, so that it holds for any open set Ω with a corresponding ball of
same measure.

Note also that in this inequality we estimate the dependence in k of the constants. In order to do the
same for the next results, we introduce for any k ≥ 1 the spectral gap

gn(k) = min
{
1, λk(B)− sup{λi(B), i : λi(B) < λk(B)},

inf{λi(B), i : λi(B) > λk(B)} − λk(B)
}
. (4.10)

It is a positive bounded function of k. We state first the case of a simple eigenvalue of the ball which
gives a sharper estimate than the one from Theorem 4.1.1.
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Theorem 4.1.2. There exists Cn > 0 such that for every k ∈ N∗ with λk(B) simple and for any open set
Ω ∈ A it holds

|λk(Ω)− λk(B)| ≤ Cn
k4+

8
n

gn(k)
|Ω|
(
T (Ω)−1 − T (B)−1

)
.

The constant Cn is not known explicitly since there are two implicit arguments in the proof (the
flatness improvement of proposition 4.5.15 which is obtained by contradiction, and the application of the
quantitative Faber-Krahn inequality from [BDPV15]).

In dimension 2 the valid choices of k are

k = 1, 6, 15, 30, 51, 74, 105, 140, 175, 222, 269, 326, 383, 446, 517, 588, ...

Let us mention again here that the crucial argument making the previous result works is that the ball is
a critical point of λk when λk(B) is simple.

Consider now k ≤ l such that

λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B).

The function Ω 7→∑l
i=k λi(Ω) has a critical point at the ball (see for instance [LLdC06, Proposition 2.30])

and a result analogous to Theorem 4.1.2 holds.

Theorem 4.1.3. There exists Cn > 0 such that for every k, l ∈ N∗ with k ≤ l satisfying

λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B),

and for any open set Ω ∈ A,
∣∣∣∣∣

l∑

i=k

[
λi(Ω)− λi(B)

]∣∣∣∣∣ ≤ Cn
k6+

10
n

gn(k)
|Ω|
(
T (Ω)−1 − T (B)−1

)

As a consequence of Theorems 4.1.1 and 4.1.3, we also obtain a general result on the stability of the
Saint-Venant (and Faber-Krahn) inequality under perturbation by a spectral functional having enough
symmetries.

Theorem 4.1.4. Let k ∈ N∗ be such that λk(B) < λk+1(B). Let F ∈ C2((R∗
+)

k,R) be verifying

|F (λ)| ≤ C(1 + |λ|) for some C > 0,

∀i, j ∈ {1, . . . , k} with λi(B) = λj(B),
∂F

∂λi
=
∂F

∂λj
at (λ1(B), . . . , λk(B))

Then there exists δF > 0 such that for any δ ∈ R with |δ| < δF , the functional

Ω ∈ A 7→ T (Ω)−1 + δF (λ1(Ω), . . . , λk(Ω)) (4.11)

is minimal only on balls.

In particular, the full reverse Kohler-Jobin inequality holds.

Corollary 4.1.5. There exists pn > 1 such that A ∋ Ω 7→ T (Ω)λ1(Ω)
1
pn is maximal on the ball.
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4.1.3 Outline of the paper

In Section 4.2, we give some classical estimates of Dirichlet eigenvalues and eigenfunctions. In Section 4.3,
we prove Theorem 4.1.1 as well as several useful lemmas on eigenfunctions and the torsion function. This
is established by combining estimates from [Buc03] on eigenvalues of nested domains, some estimates with
explicit test functions and the quantitative Faber-Krahn inequality of [BDPV15].

The next two sections are devoted to the proof of Theorems 4.1.2 and 4.1.3; while the second result is
strictly stronger than the first, for expository reasons we shall first give a full proof of Theorem 4.1.2 in
Section 4.4 and then adapt this proof to the vectorial case in Section 4.5, while pointing out the differences.

Precisely, in Section 4.4, we start by restating Theorem 4.1.2 as a shape optimization problem in the
spirit of (4.7). In a first step, we prove the existence of a relaxed minimizer among capacitary measures
and, in a second step that this measure corresponds to an open set which is a smooth perturbation of
the ball in an increasingly stronger sense. The key passage from an open set to a C1,γ set is obtained
by relating our problem to a vectorial Alt-Caffarelli problem as in [KL18] or as in the more recent result
[MTV21], depending on the sign of the perturbation. We finally conclude through second order shape
derivative arguments for small perturbations of the ball.

Section 4.5 follows the steps of Section 4.4 in the case of the vectorial problem, with in addition a
careful examination of the dependency of the constants in terms of the multiplicity of the eigenspace,
obtained by following the proof of [KL18] on the one hand and through a full proof of a vectorial version
of [MTV21] on the other hand.

The last section is devoted to the discussion of the consequences, namely the proof of Theorem 4.1.4
and of the reverse Kohler-Jobin inequality, Corollary 4.1.5.

4.2 Some preliminary estimates

We summarize here some results on eigenvalues and eigenfunctions which we will use throughout the
paper. Although these results are not original, for the readability of the paper we give short proofs when
possible, or at least give some comments about the proofs.
Eigenvalues of the ball. For any d ∈ N we define Hn,d the space of harmonic homogeneous polynomials
of degree d in n variables x1, . . . , xn. For any α > 0 we denote by Jα the α-th Bessel function

Jα(x) =
∑

p≥0

(−1)p
p!Γ(p+ α+ 1)

(x
2

)2p+α

where Γ is the standard Gamma function and we call jα,p the p-th positive zero of Jα, which is well-defined
for every p ∈ N∗. Then for every eigenvalue λk(B), there exists a unique (d, p) ∈ N× N∗, such that

λk(B) = j2
d+n−2

2
,p

and, conversely, for every (d, p) ∈ N× N∗, j2
d+n−2

2
,p

is an eigenvalue of B associated to the eigenspace



x 7→

Jd+n−2
2

(
jd+n−2

2
,p|x|

)

|x|d+n−2
2

P (x) , P ∈ Hn,d





which has dimension

dim(Hn,d) =





1 if d = 0,

2 if d > 0, n = 2,

(2d+ n− 2) (d+n−3)!
d!(n−2)! if d ≥ 0, n ≥ 3.

In particular an eigenvalue λk(B) is either simple with a radial eigenfunction, or multiple with only non-
radial eigenfunctions. This particular fact (and more generally the fact that any eigenvalue corresponds
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to a unique couple (d, p)) is a result due to Siegel [Sie14]. In the literature, it is also called “Bourget’s
hypothesis” since it has been mentionned in [Bou66], with an incomplete proof.

Eigenvalues and eigenfunctions estimates on general domains. We start by recalling the following
inequalities.

Proposition 4.2.1. Let Ω ∈ A, k ∈ N∗. Then
(

n

n+ 2

)
4π2

ω
4/n
n

k
2
n ≤ λk(Ω) ≤

(
1 +

4

n

)
λ1(Ω)k

2
n , (4.12)

λ1(Ω)T (Ω) ≤ ωn.

The lower bound in the first inequality is due to Li and Yau in [LY83, Corollary 1], while the upper
bound was obtained by Chen and Yang in [Che07, Theorem 3.1]. On the other hand, the inequality
λ1(Ω)T (Ω) ≤ ωn follows directly from using the torsion function as a competitor in the Rayleigh quotient
defining λ1.

Lemma 4.2.2. Let Ω ∈ A, k ∈ N∗, and let w be the torsion function of Ω and uk some L2-normalized
eigenfunction. Then

w ≤ 1

2n
, |uk| ≤ e

1
8πλk(Ω)

n
4 , |uk| ≤ e

1
8πλk(Ω)

1+n
4w in Ω,

sup
Ω
|∇uk|2 ≤

(
1

n
+ sup

Ω
|∇w|2

)
e

1
4πλk(Ω)

2+n
2 .

Proof. The first estimate w ≤ 1
2n is a consequence of Talenti’s inequality (see [Tal76, Theorem 1 (iv)]):

the supremum of the torsion function is maximal on the unit ball, on which the torsion function has the
explicit expression w(x) = 1−|x|2

2n . Then classical heat kernel estimates (see for instance [Dav89, Ex. 2.1.8])
give |uk| ≤ e

1
8πλk(Ω)

n
4 so

∆
(
±uk − e

1
8πλk(Ω)

1+n
4w
)
= −(±)λk(Ω)uk + e

1
8π λk(Ω)

1+n
4 ≥ 0,

therefore |uk| ≤ e
1
8π λk(Ω)

1+n
4w by maximum principle. For the gradient bound, we suppose that ∇w is

bounded. By direct computation we have that ∆(|∇a|2) ≥ 2∇a ·∇(∆a) for a smooth function a : Rn → R.
In the case where uk is smooth inside Ω the computation yields (using as well the bounds on w and uk)

∆(|∇uk|2 + λku
2
k) ≥ −2λk(Ω)2u2k ≥ −2e

1
4πλk(Ω)

2+n
2 in Ω,

thus giving
∆
(
|∇uk|2 + λk(Ω)u

2
k − 2e

1
4πλk(Ω)

2+n
2w
)
≥ 0 in Ω.

Suppose first that Ω is a C∞ domain, then ∇uk and ∇w extend continuously to the boundary and the
inequality |uk| ≤ e

1
8πλk(Ω)

1+n
4w ensures

∀x ∈ ∂Ω, |∇uk(x)| ≤ e
1
8π λk(Ω)

1+n
4 |∇w(x)|,

and so by maximum principle:

sup
Ω
|∇uk|2 ≤ 2e

1
4πλk(Ω)

2+n
2w + sup

∂Ω
|∇uk|2

≤ e
1
4π

n
λk(Ω)

2+n
2 + e

1
4πλk(Ω)

2+n
2 sup

Ω
|∇w|2.
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In the general case, by Sard’s Theorem and since w is smooth inside Ω we may find arbitrarily small
regular values ε > 0 such that {w = ε} = ∂{w > ε} is a smooth hypersurface. Denote Ωε = {w > ε}
and wε, (uεk)k∈N∗ the associated torsion function and eigenfunctions. Note that wε = (w − ε)+, so that
Ωε γ-converges to Ω, since ∥wΩ − wΩε∥L2(Rn) ≤ ωnε → 0 (see for example [BB05] for the definition and
properties of γ-convergence). In particular, for all k ≥ 1, λk(Ωε)→ λk(Ω) thanks to [DS88, Corollaries 3
and 4, pp. 1089-1090]. Now, because uεk is bounded in H1

0 (Ω) we can assume (up to extraction) that uεk
converges strongly in L2(Ω) and weakly in H1

0 (Ω) to some limit uk. Passing to the limit in the sense of
distributions in −∆uεk = λk(Ω

ε)uεk we obtain that (uk)k∈N is an orthonormal basis for Ω.
Now, since wε = (w − ε)+ we have

sup
Ωε
|∇uεk|2 ≤

e
1
4π

n
λk(Ω

ε)2+
n
2 + e

1
4π λk(Ω

ε)2+
n
2 sup

Ω
|∇w|2

Using the L∞ bound |uεk| ≤ e
1
8πλk(Ω

ε)
n
4 ≤ 2e

1
8πλk(Ω)

n
4 for small ε, we get that uεk is bounded in W 1,∞ as

ε→ 0, so that it converges locally uniformly to some Lipschitz function uk. The uniform gradient bound
on ∇uεk transfers to ∇uk, thus concluding the proof.

As the next result shows, one can control the difference of eigenvalues by the difference of torsions for
two nested domains ω ⊂ Ω.

Lemma 4.2.3. Let ω ⊂ Ω ⊂ Rn be two open sets of finite measure. Then

1

λk(Ω)
− 1

λk(ω)
≤ e 1

4π kλk(Ω)
n
2 [T (Ω)− T (ω)]

Proof. This result is proved in [Buc03, Theorem 3.4], where one has to follow the proof to keep track of
the constants (using for instance the L∞ bound |uk| ≤ e

1
8πλk(Ω)

n
4 ).

The quantitative Faber-Krahn inequality. The Fraenkel asymmetry F , defined for Ω ∈ A as

F(Ω) = inf
x∈Rn

|(B + x)∆Ω|,

plays a crucial role in the following quantitative Faber-Krahn inequality obtained in [BDPV15].

Theorem 4.2.4. There exists cn > 0 such that for any Ω ∈ A,

T (Ω)−1 ≥ T (B)−1 + cnF(Ω)2 (4.13)

λ1(Ω) ≥ λ1(B) + cnF(Ω)2 (4.14)

4.3 Proof of Theorem 4.1.1: the square root bound

Note that from Proposition 4.2.1 we have λ1(Ω) ≤ ωnT (Ω)
−1. If T (Ω)−1 is close to T (B)−1 one can

control λ1(Ω) and, as a consequence, Theorem 4.1.1 provides that λk(Ω) is close to λk(B) when T (Ω)−1 is
close to T (B)−1. Its proof is obtained as a consequence of the quantitative Faber-Krahn inequality (4.14),
growth estimates over λk(Ω) from (4.12) and next proposition, which we believe is of independent interest.

Proposition 4.3.1. Let Ω ∈ A. Then it holds
∣∣∣∣

1

λk(Ω)
− 1

λk(B)

∣∣∣∣ ≤
(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2

[
T (B)− T (Ω) +

(
1

n
+

1

n2

)
|Ω∆B|

]
.

We first prove the following lemma.
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Lemma 4.3.2. For any Ω ∈ A we have

T (Ω)− T (Ω ∩B) ≤
(
1

n
+

1

n2

)
|Ω \B|

Proof. We write w := wΩ and v = wB. Then letting w̃ = w ∧ v, we have w̃ ∈ H1
0 (Ω ∩B) so

T (Ω ∩B) ≥
ˆ
Ω∩B

(
2w̃ − |∇w̃|2

)
=

ˆ
Ω∩B

(
2(w ∧ v)− |∇(w ∧ v)|2

)

so

T (Ω)− T (Ω ∩B) +

ˆ
Ω\B
|∇w|2 ≤

ˆ
Ω\B

2w +

ˆ
B∩Ω

(
2(w − w̃) + |∇(w ∧ v)|2 − |∇w|2

)

≤
ˆ
Ω\B

2w +

ˆ
B∩Ω

(2(w − v)+ + 2∇(w ∧ v) · ∇(w ∧ v − w))

=

ˆ
Ω\B

2w +

ˆ
B∩Ω

(2(w − v)+ − 2∇(w ∧ v) · ∇(w − v)+)

Notice that ∇(w∧ v) ·∇(w− v)+ = ∇v ·∇(w− v)+ = ∇· ((w− v)+∇v)+ (w− v)+ in Ω∩B so by Stokes’
formula,

T (Ω)− T (Ω ∩B) +

ˆ
Ω\B
|∇w|2 ≤

ˆ
Ω\B

2w − 2v′(1)
ˆ
∂B
w

Since −v′(1) = 1
n we have

2(−v′(1))
ˆ
∂B
w ≤ 2

n

ˆ
Ω\B
|∇w| ≤ 1

n2
|Ω \B|+

ˆ
Ω\B
|∇w|2,

so
T (Ω)− T (Ω ∩B) ≤

ˆ
Ω\B

2w +
1

n2
|Ω \B| ≤

(
1

n
+

1

n2

)
|Ω \B|.

We may now prove Proposition 4.3.1.

Proof of Proposition 4.3.1. Applying the bound from Lemma 4.2.3 to (Ω ∩B,B) and (Ω ∩B,Ω) we have
the two inequalities

1

λk(Ω)
− 1

λk(Ω ∩B)
≤ e 1

4π kλk(Ω)
n
2 [T (Ω)− T (Ω ∩B)]

≤
(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2 [T (Ω)− T (Ω ∩B)] ,

1

λk(B)
− 1

λk(Ω ∩B)
≤ e 1

4π kλk(B)
n
2 [T (B)− T (Ω ∩B)]

≤
(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2 [T (B)− T (Ω ∩B)] .
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Combining them, we get
∣∣∣∣

1

λk(Ω)
− 1

λk(B)

∣∣∣∣ ≤
(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2 [T (Ω) + T (B)− 2T (Ω ∩B)]

=

(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2 [(T (B)− T (Ω)) + 2(T (Ω)− T (Ω ∩B))] .

Using Lemma 4.3.2 we thus obtain
∣∣∣∣

1

λk(Ω)
− 1

λk(B)

∣∣∣∣ ≤
(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2

[
(T (B)− T (Ω)) + 2

(
1

n
+

1

n2

)
|Ω \B|

]

which is the result, since |Ω \B| = 1
2 |Ω∆B|.

We can now prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Using Proposition 4.3.1 and applying, up to a translation of Ω, (4.14) as well as
(4.12) we get

|λk(Ω)− λk(B)|

≤
(
1 +

4

n

)n
2

e
1
4π k2λ1(Ω)

n
2 λk(B)λk(Ω)

[
(T (B)− T (Ω)) +

(
1

n
+

1

n2

)
|Ω \B|

]

≤ Cnk
2+ 4

nλ1(Ω)
1+n

2

[
(T (B)− T (Ω)) + Cn

√
T (Ω)−1 − T (B)−1

]
.

This concludes the proof when T (Ω) ≥ 1
2T (B) (notice that in this case, thanks to λ1(Ω) ≤ ωnT (Ω)

−1 from
Proposition 4.2.1, we bound λ1(Ω) ≤ C ′

n for some C ′
n > 0). When T (Ω) ≤ 1

2T (B) we write more direcly

|λk(Ω)− λk(B)| ≤
(
1 +

4

n

)
k

2
n (λ1(Ω) + λ1(B)) ≤ 2

(
1 +

4

n

)
k

2
nλ1(Ω)

≤ 2
√
2ωn

(
1 +

4

n

)
k

2
nλ1(Ω)

1
2
(
T (Ω)−1 − T (B)−1

) 1
2

where we used the estimates from Proposition 4.2.1, thus getting the result also in this case.

4.4 Proof of Theorem 4.1.2: the linear bound

Let us fix k ≥ 1 as in Theorem 4.1.2, such that λk(B) is simple (we also include k = 1, as it will give
non-trivial results). In order to prove Theorem 4.1.2, the goal is to prove that when δ ∈ R is close to 0
(depending on n and k) the ball is the only minimizer of the functional

Ω ∈ A 7→ T (Ω)−1 + δλk(Ω). (4.15)

Proposition 4.4.1. There exists cn > 0 such that for any δ ∈ R with |δ| ≤ cnk−(4+
8
n)gn(k) the ball is the

unique minimizer of (4.15).

Remark 4.4.2. Let us remind that gn(k) has been defined in (4.10). As far as we know, there is
no explicit lower bound of gn(k); it was proved by Siegel (see [Sie14] or [Wat44, 15.28], referred to as
“Bourget’s hypothesis”) that zeroes of different Bessel functions are distincts, but with no quantified
separation between successive zeroes. We conjecture that there exists an exponent κ > 1 such that for
any m, p, q ∈ N∗, µ ∈ N/2, it holds that

|jµ,p − jµ+m,q| ≥ j−κ
µ,p.

The validity of this conjecture would improve the quality of our bounds.
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In Proposition 4.4.1 we prove minimality of the ball for both positive and negative δ, thus obtaining
a bound of (λk(Ω)− λk(B)) on both sides and proving Theorem 4.1.2. Thanks to (4.9) this will directly
imply the inequality (4.1) with α = 1 as a consequence, by distinguishing the regimes λ1(Ω) ≃ λ1(B) and
λ1(Ω) ≫ λ1(B) (using also the growth estimate λk(Ω) ≤ Cn,kλ1(Ω) from Proposition 4.2.1 in this latter
case).

The plan of proof of Proposition 4.4.1 is the following.

• For δ close enough to 0 we prove the existence of a minimizer in (4.15) such that its torsion function
w moreover verifies some uniform bounds |∇w| ≤ Cn and a non-degeneracy condition: for all x ∈ Ω,
r ∈ (0, rn]  

∂Bx,r

w ≥ cnr.

The case δ < 0 raises extra difficulties. We obtain existence through careful concentration-compactness
methods, first as a capacity measure and second as a quasi-open set; the uniform estimates are ob-
tained by perturbing Ω and controlling the variation of λk by the variations of the torsion T . This
is done in Section 4.4.1.

• In Section 4.4.2, we prove that if Ω solves (4.15), then its torsion function w and L2-normalized k-th
eigenfunction uk verify, in some sense that will be made precise, the equations

{
−∆w = 1, −∆uk = λk(Ω)uk in Ω

|∇w|2 + T (Ω)2δ|∇uk|2 = Q on ∂Ω

where Q > 0 is a constant which is arbitrarily close to 1
n2 when δ → 0. This part of the proof uses

blow-up methods similar to [KL18] and [CS05].

• We show in Section 4.4.3 that, as δ → 0, ∂Ω is an arbitrarily small C2,γ graph on ∂B (up to
translation). The case δ > 0 relies on the results from [KL18] while the case δ < 0 is obtained by
applying the results from [MTV21].

• Finally, in Section 4.4.4 we prove a Fuglede-type result, namely that the ball is optimal for (4.15)
among smooth nearly spherical sets, that is to say arbitrarily small C2,γ perturbations of the ball,
through a second shape derivative estimate which follows the method of [DL19].

Throughout the proof we extensively use the two following notations:

• a ≲ b when a ≤ Cnb for some (possibly) large Cn > 0 which only depends on the dimension n.

• a≪ b when a ≤ cnb for some cn > 0 that can be made as small as we want, and which only depends
on the dimension n.

In both cases the notation does not involve a dependence on the order of the eigenvalue k.

4.4.1 Existence of a minimizer

To prove existence we first prove some a priori estimates for sets whose energy T−1 + δλk is bounded
from above by the one of the ball, which we may suppose to be verified without loss of generality for any
element of a minimizing sequence. This is the object of next Lemma.

Lemma 4.4.3. Let Ω ∈ A be such that

T (Ω)−1 + δλk(Ω) ≤ T (B)−1 + δλk(B),
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and suppose Ω is translated such that F(Ω) = |Ω∆B|. Then if |δ| ≪ k−
2
n the following inequalities hold

|Ω∆B| ≲ k
1
n |δ| 12 , T (Ω)−1 ≲ 1, λk(Ω) ≲ k

2
n ,

T (Ω)−1 − T (B)−1 ≲ k
2
n |δ| and for all i ∈ N∗, |λi(Ω)− λi(B)| ≲ i2+

4
nk

1
n |δ| 12 ,

∥wΩ − wB∥L1(Rn) ≲ k
1
n |δ| 12 .

Proof. Thanks to the upper bound from (4.12), we have

T (Ω)−1 − T (B)−1 ≤ δ (λk(B)− λk(Ω)) ≲ k
2
nλ1(Ω)|δ| ≲ k

2
nT (Ω)−1|δ|

so when |δ| ≪ k−
2
n we get that T (Ω)−1 ≲ 1, and using the same series of inequalities together with

T (Ω) ≤ T (B) we deduce
T (B)− T (Ω) ≲ k

2
n |δ|.

Applying the quantitative Saint-Venant inequality (4.13), we get

|Ω∆B| ≲ k
1
n |δ| 12 when |δ| ≪ k−

2
n ,

from which we also deduce, using Theorem 4.1.1, that for any i ∈ N∗ it holds

|λi(Ω)− λi(B)| ≲ i2+
4
nk

1
n |δ| 12 .

For the third item, we write

∥wΩ − wB∥L1(Rn) ≤ ∥wΩ − wΩ∩B∥L1(Rn) + ∥wB − wΩ∩B∥L1(Rn)

= T (B)− T (Ω) + 2(T (Ω)− T (Ω ∩B))

≤ T (B)− T (Ω) +
(
1

n
+

1

n2

)
|Ω∆B|,

where we used Lemma 4.3.2 and |Ω∆B| = 2|Ω \B| in the last line. We obtain the last result by recalling
that |Ω∆B| ≲ k

1
n |δ| 12 .

We may use the bound from Theorem 4.1.1 in order to improve the decay of the quantities from the
previous lemma, in terms of δ.

Lemma 4.4.4. Under the same hypotheses as in Lemma 4.4.3 it holds

T (Ω)−1 − T (B)−1 ≲ k4+
8
n |δ|2,

|Ω∆B| ≲ k2+
4
n |δ|,

∀i ∈ N∗, |λi(Ω)− λi(B)| ≲ i2+
4
nk2+

4
n |δ|.

As a consequence, if |δ| ≪ k−(4+ 8
n
)gn(k), λk(Ω) is simple.

Proof. Thanks to Theorem 4.1.1 and using minimality we can write

T (Ω)−1 − T (B)−1 ≤ δ (λk(B)− λk(Ω)) ≲ k2+
4
n |δ|

(
T (Ω)−1 − T (B)−1

) 1
2

from which the three announced estimates follow. We deduce that λk(Ω) is simple by applying separately
|λi(Ω)− λi(B)| ≲ i2+

4
nk2+

4
n |δ| for i = k − 1, k, k + 1.

Proposition 4.4.5. If |δ| ≪ k−(2+
4
n), then the functional (4.15) has a minimizer in the class of quasi-open

sets of measure ωn.
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Let us mention that most of our efforts will be concerned with dealing with the case δ < 0, as in the
case δ > 0 one can argue more directly. We chose here to treat both cases at the same time in order to
simplify the presentation.

To prove this proposition, we will use the setting of capacitary measures (see for instance [BDM93b]).
A capacitary measure is a nonnegative Borel measure µ, possibly infinite valued, such that µ(E) = 0 as
soon as E has zero capacity. We typically assign to any quasi-open set A the capacitary measure

∞Rn\A(E) :=

{
+∞ if Cap(E \A) > 0

0 else.

Given a capacitary measure µ, we define the regular set of µ, denoted Aµ as the union of all finely open
sets of finite µ-measure (the fine topology being the coarsest topology making all super-harmonic functions
continuous, see [BB05, p.77] and the references therein). If Aµ has finite Lebesgue measure, we define the
torsion T (µ) and the eigenvalues λk(µ) of a capacitary measure as follows (L n denotes the n-dimensional
Lebesgue measure):

T (µ) := sup
u∈H1(Rn)∩L2(µ)

ˆ
Rn

(
2u− |∇u|2

)
dL n −

ˆ
Rn

u2dµ

= sup
H1(Rn)∩L2(µ)

(´
Ω udL

n
)2

´
Rn |∇u|2dL n +

´
Rn u2dµ

=

ˆ
Rn

wµ,

λk(µ) := inf

{
sup
v∈V

´
Rn |∇v|2dL n +

´
Rn v

2dµ´
Rn v2dL n

, V ⊂ H1(Rn) ∩ L2(µ) of dimension k
}

=

ˆ
Rn

|∇uk,µ|2dL n +

ˆ
Rn

u2k,µdµ.

Above, wµ is the torsion function associated to µ and is a variational solution of
{
−∆wµ + µwµ = 1 in [H1(Rn) ∩ L2(Rn, µ)]′,

wµ ∈ H1(Rn) ∩ L2(Rn, µ),
(4.16)

and (uk,µ)k∈N∗ is a choice of a L2-orthonormal basis of eigenfunctions associated to µ, that verify
{
−∆uk,µ + µuk,µ = λk(µ)uk,µ in [H1(Rn) ∩ L2(Rn, µ)]′,

uk,µ ∈ H1(Rn) ∩ L2(Rn, µ).

Note that µ 7→ T (µ) and µ 7→ λk(µ) are continuous for the L1(Rn) distance between the associated torsion
functions wµ (which is called γ-distance, see [BDM93b]). Moreover Aµ = {wµ > 0}, up to a set of zero
capacity.

Proof. (of Proposition 4.4.5) A first remark is that when |δ| is small enough the measure constraint
|Ω| = ωn may be relaxed into |Ω| ≤ ωn, since any set Ω which does not saturate the constraint |Ω| ≤ ωn

may be dilated into a set with lower energy. Indeed let |Ω| =: (1− t)ωn for some t > 0, then (1− t)− 1
nΩ

is still admissible and using λk(Ω) ≲ k
2
nT (Ω)−1 (from Lemma 4.2.1) we get

T ((1− t)− 1
nΩ)−1 + δλk((1− t)−

1
nΩ) = (1− t)n+2

n T (Ω)−1 + (1− t) 2
n δλk(Ω)

≤ (1− t)T (Ω)−1 + δλk(Ω) + |δ|tλk(Ω)
≤ T (Ω)−1 + δλk(Ω)− t

(
T (Ω)−1 − Cnk

2
n |δ|T (Ω)−1

)

< T (Ω)−1 + δλk(Ω) when |δ| ≪ k−
2
n .

(4.17)
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Let (Ωp)p∈N be a minimizing sequence of T−1+δλk in A. By replacing Ωp by B if needed we can assume
without loss of generality that T−1(Ωp) + δλk(Ωp) ≤ T−1(B) + δλk(B) for each p, so that Ωp satisfies
the hypothesis of Lemma 4.4.3. Then by Lemma 4.4.3 we have a bound on the Fraenkel asymmetry
F(Ωp) ≲ k

1
n |δ| 12 so, up to translation, we suppose

|Ωp∆B| ≲ k
1
n |δ| 12 .

Let us first prove that this sequence γ-converges to a capacitary measure µ, meaning that the associated
torsion functions wΩp converges weakly in H1(Rn) to the function wµ given by (4.16) and Aµ = {wµ > 0}
verifies |Aµ| = ωn.

By concentration-compactness for sequences of open sets of bounded measure (see [Buc00, Th 2.2.]),
in order to prove that convergence occurs we must exclude the dichotomy behaviour. We thus assume
by contradiction that we are in the latter situation, meaning that one can find Ω̃p = Ω1

p ⊔ Ω2
p ⊂ Ωp

with dist(Ω1
p,Ω

2
p) → ∞, lim infp→∞ |Ωi

p| > 0, and verifying ∥wΩp − wΩ̃p
∥L2(Rn) → 0. As a consequence

|T (Ω̃p) − T (Ωp)| → 0 and |λk(Ω̃p) − λk(Ωp)| → 0, and Ω̃p is therefore still a minimizing sequence. By
Lemma 4.4.3 we have T (Ωp)

−1 − T (B)−1 ≲ k
2
n |δ|, hence we also have T (Ω̃p)

−1 − T (B)−1 ≲ k
2
n |δ| and

one can check that this ensures |Ωp \ Ω̃p| ≲ k
2
n |δ| using the Saint-Venant inequality. We therefore have

|Ω̃p∆B| ≤ |Ωp∆B|+ |Ωp \ Ω̃p| ≲ k
1
n |δ| 12 for |δ| ≪ k−

2
n . Furthermore, since d(Ω1

p,Ω
2
p)→ +∞ we have (say)

that |Ω1
p∆B| ≲ k

1
n |δ| 12 and |Ω2

p| ≲ k
1
n |δ| 12 .

We claim that λk(Ω̃p) = λk(Ω
1
p) when |δ| ≪ k−2− 2

n . Indeed on the one hand by Faber-Krahn inequality
we have

λ1(Ω
2
p) ≳ |Ω2

p|−
2
n ≳ k−

2
n2 |δ|− 1

n

and on the other hand thanks to Proposition 4.2.1

λk(Ω
1
p) ≲ k

2
nT (Ω1

p)
−1 ≲ k

2
n .

To justify the last inequality we note that by Saint-Venant it holds T (Ω2
p) ≲ k

n+2

n2 |δ|n+2
2n and thanks to the

a priori estimates from Lemma 4.4.3 we have

T (Ω1
p) = T (Ω̃p)− T (Ω2

p) ≥ T (B)− Cn

(
k

2
n |δ|+ k

(n+2)

n2 |δ|n+2
2n

)
≥ 1

2
T (B) for |δ| ≪ k−

2
n .

Hence λ1(Ω2
p) ≥ λk(Ω1

p) for |δ| ≪ k−2− 2
n and therefore λk(Ω̃p) = λk(Ω

1
p) for the same δ; as a consequence

T (Ω̃p)
−1 + δλk(Ω̃p) =

(
T (Ω1

p) + T (Ω2
p)
)−1

+ δλk(Ω
1
p).

Set tp ∈ (0, 1) such that |Ω2
p| = tpωn, so tp ≲ k

1
n |δ| 12 and lim infp→∞ tp > 0. We now argue that

(1 − tp)
− 1

nΩ1
p is a strictly better minimizing sequence. Indeed, since T (Ω2

p) ≲ t
n+2
n

p ≲ k
n+2

n2 |δ|n+2
2n and

T (Ω1
p) ≳ 1, one has 1

T (Ω1
p)
≤ 1

T(Ω1
p)+T (Ω2

p)
+ Cnt

n+2
n

p for some Cn > 0 so that

1

T
(
(1− tp)−

1
nΩ1

p

) + δλk

(
(1− tp)−

1
nΩ1

p

)
= (1− tp)

n+2
n

1

T
(
Ω1
p

) + (1− tp)
2
n δλk

(
Ω1
p

)

≤ 1

T
(
Ω1
p

) + δλk
(
Ω1
p

)
− tp

(
1

T (Ω1
p)
− |δ|λk(Ω1

p)

)

≤ 1

T
(
Ω1
p

)
+ T (Ω2

p)
+ δλk

(
Ω1
p

)
− tp

(
1

T (Ω1
p)
− Cnt

2
n
p − |δ|λk(Ω1

p)

)

≤ 1

T
(
Ω1
p

)
+ T (Ω2

p)
+ δλk

(
Ω1
p

)
− tp

(
1

T (B)
− Cnk

2
n2 |δ| 1n − Cnk

2
n |δ|

)
.
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Since lim infp→∞ tp > 0 this provides a strictly better minimizing sequence when |δ| ≪ k−
2
n , providing a

contradiction and thus proving that dichotomy does not occur.
Thanks to [Buc00, Th 2.2.] we deduce that there exists some capacitary measure µ such that after ex-

traction (and translation of the Ωp) the sequence (Ωp)p γ-converges to µ. In particular one has convergence
of the torsional rigidity and eigenvalues. We let wµ be the associated torsion function and Aµ = {wµ > 0}
the (quasi-open) associated domain. Notice that we can assume without loss of generality that the limiting
measure verifies µ(E) =∞ whenever Cap(E \Aµ) > 0, since this leaves wµ unchanged.

We have |Aµ| ≤ ωn by a.e. pointwise convergence of the torsion functions. We now prove that µ
corresponds to some quasi-open domain, precisely that µ = ∞Rn\Aµ

. The idea is to use optimality of µ
to prove that the torsions of µ and Aµ are equal. We denote by wAµ the torsion function of Aµ. We have
(see [BDM93b])

{
−∆wµ + µwµ ≤ 1 in D′(Rn)

wµ ∈ H1(Rn) ∩ L2(µ)
, while

{
−∆wAµ = 1 in Aµ,

wAµ ∈ H1
0 (Aµ).

By maximum principle, it holds that wAµ ≥ wµ, implying in particular T (Aµ) ≥ T (µ). Thanks to
[BBGLB22, Lemma 3.1], the sequence Ωp ∩ Aµ still γ-converges to µ. As a consequence, by applying
Lemma 4.2.3 to Aµ and Ωp ∩Aµ and passing to the limit one gets

0 ≤ 1

λk(Aµ)
− 1

λk(µ)
≤ e 1

4π kλk(Aµ)
n
2 [T (Aµ)− T (µ)] ,

which we rewrite, using that λk(Aµ) ≤ λk(µ) ≲ k
2
n (using monotonicity and Lemma 4.4.3), as

0 ≤ λk(µ)− λk(Aµ) ≲ k2+
4
n
[
T (µ)−1 − T (Aµ)

−1
]
.

Then by minimality of µ,

T (µ)−1 + δλk(µ) ≤ T (Aµ)
−1 + δλk(Aµ)

≤ T (µ)−1 + δλk(µ) +
(
1− Cnk

2+ 4
n |δ|

) (
T (Aµ)

−1 − T (µ)−1
)
.

When |δ| ≪ k−(2+
4
n) this gives T (Aµ) ≤ T (µ), hence T (Aµ) = T (µ). Now, since wµ ∈ H1

0 (Aµ) we deduce
ˆ
Rn

(
2wµ − |∇wµ|2

)
dL n ≤ T (Aµ) = T (µ) ≤

ˆ
Rn

(
2wµ − |∇wµ|2

)
dL n −

ˆ
Rn

w2
µdµ

thus implying
´
Rn w

2
µdµ = 0. As a consequence µ = 0 in Aµ, meaning µ = ∞Rn\Aµ

. Hence Aµ is a
minimizer of the functionnal (4.15) in the class of quasi-open sets of measure ωn, thus concluding the
proof.

We now prove some first regularity properties of minimizers of (4.15).

Lemma 4.4.6. Let Ω be a minimizer of (4.15) in the class of quasi-open sets of measure ωn, and suppose
that |δ| ≪ k−(2+

4
n). Then Ω is bounded and there exists cn, Cn, rn > 0 such that ∥∇wΩ∥L∞(Rn) ≤ Cn,

∥∇uk∥L∞(Rn) ≤ Cnk
2
n
+ 1

2 , diam(Ω) ≤ Cn and for all x ∈ Rn, r ∈ (0, rn),
 
∂Bx,r

wΩ < cnr implies wΩ|Bx,r/2
= 0. (4.18)

In particular, the open set {wΩ > 0}( =
q.e.

Ω) is an open minimizer of (4.15).

In the sequel, property (4.18) will be referred to as non-degeneracy, as it accounts in a weak sense for
the fact that |∇wΩ| stays away from 0 near ∂Ω.
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Proof. Lipschitz regularity. Let us first prove the Lipschitz regularity of wΩ, which will imply the
Lipschitz regularity of the eigenfunctions uk by the estimates of Lemma 4.2.2. To prove the Lipschitz
regularity it is enough to prove the following property on the torsional rigidity: for any open set Ω̃ that
contains Ω such that |Ω̃ \ Ω| is small enough, we have

T (Ω)−1 ≤ T (Ω̃)−1 + Λn|Ω̃ \ Ω| (4.19)

Indeed, consider then some ball Bx,r for any small enough r such that this inequality applies to Ω̃ =
Ω∪Bx,r; for any w̃ ∈ H1

0 (Ω∪Bx,r) coinciding with w outside of Bx,r, writing T (Ω∪Bx,r) ≥
´
Rn 2w̃−|∇w̃|2

we get by rearranging (4.19):
ˆ
Bx,r

(
|∇w|2 − 1

2
w

)
≤
ˆ
Bx,r

(
|∇w̃|2 − 1

2
w̃

)
+ Λ′

nr
n

for some Λ′
n > 0. This corresponds to the notion of quasi-minimizer of [BMPV15, Definition 3.1] for f = 1,

so we may apply [BMPV15, Th 3.3] to get a uniform Lipschitz bound. Let us therefore prove claim (4.19).
Let Ω̃ be an open set that contains Ω with |Ω̃| ≤ 2|Ω|. We separate the case δ > 0 and δ < 0 for clarity:

• Case δ > 0. By monotonicity of λk we have λk(Ω) ≥ λk(Ω̃), so using minimality of Ω against the

competitor
(
|Ω|
|Ω̃|

) 1
n
Ω̃ we have

T (Ω)−1 ≤
(
|Ω̃|
|Ω|

)n+2
n

T (Ω̃)−1 + δ



(
|Ω̃|
|Ω|

) 2
n

− 1


λk(Ω)

which implies
T (Ω)−1 ≤ T (Ω̃)−1 + Cn

(
1 + |δ|k 2

n

)
|Ω̃ \ Ω|

thanks to T (Ω̃)−1 ≤ T (Ω)−1 ≲ 1 and λk(Ω) ≲ k
2
n from Lemma 4.4.3. We thus get (4.19) as soon as

|δ|k 2
n ≲ 1.

• Case δ < 0. We deal with this case similarly as is the positive case, using also the estimate from

Lemma 4.2.3. Comparing the energy of Ω to the energy of
(
|Ω|
|Ω̃|

) 1
n
Ω̃ gives

T (Ω)−1 − T (Ω̃)−1 ≤ δ
(
λk(Ω̃)− λk(Ω)

)
+



(

˜|Ω|
|Ω|

)n+2
n

− 1


T (Ω̃)−1

≤ |δ|e 1
4π kλk(Ω)λk(Ω̃)

1+n
2

[
T (Ω̃)− T (Ω)

]
+ Cn|Ω̃ \ Ω|

≤ C ′
n|δ|k2+

4
n

[
T (Ω)−1 − T (Ω̃)−1

]
+ Cn|Ω̃ \ Ω|

for some Cn, C
′
n > 0. When |δ| ≪ k−(2+

4
n) we get (4.19).

Non-degeneracy property. The non-degeneracy is obtained by similar arguments, by choosing sets Ω̃
such that Ω̃ ⊂ Ω. Let us prove that for any Ω̃ ⊂ Ω with |Ω̃] ≥ 1

2 |Ω| it holds

T (Ω)−1 + Λn|Ω \ Ω̃| ≤ T (Ω̃)−1. (4.20)

This is enough to obtain the non-degeneracy property, thanks to [Buc12, Lemma 1]. This time, it is the
case δ > 0 which requires a more careful analysis.
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• Case δ < 0. Consider any open set Ω̃ contained in Ω with |Ω̃| ≥ 1
2 |Ω|. By monotonicity λk(Ω) ≤

λk(Ω̃), hence testing minimality of Ω against
(
|Ω|
|Ω̃|

) 1
n
Ω̃ we have

T (Ω)−1 − δ



(
|Ω̃|
|Ω|

) 2
n

− 1


λk(Ω) ≤

(
|Ω̃|
|Ω|

)n+2
n

T (Ω̃)−1 ≤ T (Ω̃)−1

which provides (4.20) for |δ| ≪ k−
2
n , using λk(Ω) ≲ k

2
n from Lemma 4.4.3.

• Case δ > 0. We proceed as before, using in addition the estimate of Proposition 4.2.3. Using

minimality of Ω against the competitor
(
|Ω|
|Ω̃|

) 1
n
Ω̃ we get

T (Ω)−1 − T (Ω̃)−1 ≤ δ
(
λk(Ω̃)− λk(Ω)

)
+



(

˜|Ω|
|Ω|

)n+2
n

− 1


T (Ω̃)−1

≤ δe 1
4π kλk(Ω)

1+n
2 λk(Ω̃)

[
T (Ω)− T (Ω̃)

]
− Cn|Ω̃ \ Ω|

≤ C ′
nδk

2+ 4
n

[
T (Ω̃)−1 − T (Ω)−1

]
− Cn|Ω̃ \ Ω|

for some Cn, C
′
n > 0, using T (Ω̃)−1 ≳ T (B)−1 and also λk(Ω) ≲ k

2
n from Lemma 4.4.3. We get

(4.20) for |δ| ≪ k−(2+
4
n).

Bound on diam(Ω). We have shown above that ∥∇wΩ∥L∞(Rn) ≲ 1. Hence by Gagliardo-Nirenberg
inequality,

∥wΩ − wB∥C0(Rn) ≲ ∥∇(wΩ − wB)∥
n

n+1

L∞(Rn)∥wΩ − wB∥
1

n+1

L1(Rn)
≲ ∥wΩ − wB∥

1
n+1

L1(Rn)
≲
(
k

1
n |δ| 12

) 1
n+1 (4.21)

where we also used that ∥wΩ − wB∥L1(Rn) ≲ k
1
n |δ| 12 from Lemma 4.4.3. Let now cn and rn denote the

non-degeneracy constants found above. Then for any x ∈ Rn \B0,1+rn we have
 
∂Bx,rn

wΩ =

 
∂Bx,rn

(wΩ − wB) ≲
(
k

1
n |δ| 12

) 1
n+1

and this is strictly less than cnrn for |δ| ≪ k−
2
n . Hence wΩ(x) = 0 for such x, so that we find Ω ⊂ B1+ 1

2
rn

.
This gives the desired upper bound on diam(Ω), thus concluding the proof.

4.4.2 Blow-ups and viscosity solutions

Let us first observe that if Ω is a minimizer of (4.15), then it is also a minimizer (among open sets of any
measure) of the associated scale-invariant functional. This is stated in next Lemma.

Lemma 4.4.7. Let Ω be a quasi-open minimizer of (4.15) in the class of quasi-open sets of measure ωn.
Then it is a minimizer of

A ∈ {quasi open sets} 7→ |A| 2n
( |A|
ωnT (A)

+ δλk(A)

)
.

Proof. This follows directly from the scale-invariance of A 7→ |A| 2n
(

|A|
ωnT (A) + δλk(A)

)
.
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Consider now a smooth vector field ξ ∈ C∞c (Rn,Rn). Assuming enough regularity on Ω, the shape
derivative

d

dt

∣∣∣∣
t=0

J((Id + tξ)(Ω))

of this functional at Ω in the direction ξ is given by

ˆ
∂Ω


ω

2
n
−1

n

(
n+ 2

nT (Ω)
+

2

n
δλk(Ω)

)
− ω

2
n
n

T (Ω)2
|∇w|2 − ω

2
n
n δ|∇uk|2


 (ξ · νΩ)dH n−1,

where νΩ is the outward unit normal vector of Ω (see for instance [HP18] for the expressions of the shape
derivatives of | · |, T and λk). So letting

Q :=
T (Ω)2

ωn

(
n+ 2

nT (Ω)
+

2

n
δλk(Ω)

)
(4.22)

(which depends not only on the parameter but also on the minimizer Ω), we expect an overdetermined
boundary condition |∇w|2 + T (Ω)2δ|∇uk|2 = Q. Note that when δ → 0, using that T (Ω)−1 − T (B)−1 ≲

|δ|k 2
n and λk(Ω) ≲ k

2
n (see Lemma 4.4.3) we find

Q→ 1

n2
,

which is expected because it corresponds to the value of |∇wB|2|∂B. We may estimate its rate of convergence
∣∣∣∣Q−

1

n2

∣∣∣∣ ≲ k
2
n |δ|. (4.23)

Let us now prove that these informal considerations hold true for blow-ups around points with contact
spheres. This is the object of Lemma 4.4.10 below. We first need the notion of contact point.

Definition 4.4.8. Let Ω ⊂ Rn be an open set and x ∈ ∂Ω. We say that x is a contact point of Ω if there
exists R > 0 and ν ∈ Sn−1 verifying

Bx+Rν,R ⊂ Ω or Bx−Rν,R ⊂ Rn \ Ω.

The vector ν is called inward “normal” vector of Ω at x.

For a function w : Rn → R and z ∈ Rn, r > 0 we will denote (w)z,r the rescaled function (w)z,r : Rn →
R defined by

(w)z,r(x) :=
w(z + rx)

r
.

Let us remind a classical lemma of the one-phase free boundary problem. We say that a function w
verifies property (4.24) if

|∇w| ≤ C and ∀r ∈ (0, 1), x ∈ Rn

 
∂Bx,r

w < cr implies w|B(x,r/2) = 0 (4.24)

for some constants c, C > 0.

Lemma 4.4.9. Let w ∈ C0(Rn,R+) be verifying w(0) = 0, property (4.24) for some constants c and C and
|∆w|1{w>0} ∈ L∞

loc(Rn). Then there exists a subsequence ri → 0 and a function w ∈ C0(Rn,R+) verifying
w(0) = 0, property (4.24) for the same constants, ∆w = 0 on {w > 0} such that

w0,ri −−−−→C0
loc(Rn)

w, w0,ri −−−−→C1
loc({w>0})

w,

{w0,ri > 0} −−−−→
loc.Hausd.

{w > 0}, {w0,ri = 0} −−−−→
loc.Hausd.

{w = 0}.
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Proof. Functions (w0,r) all verify the same Lipschitz bound so there exists a subsequence (w0,ri) that
converges locally uniformly to some w ∈ C0(Rn,R+). Property (4.24) directly transfers to w for the same
constants. Letting now U be some open set compactly included in {w > 0}, we have that U ⊂ {w0,ri > 0}
for any large enough i with |∆w0,ri | ≤ ∥∆w∥L∞(U)ri on U , giving both that ∆w = 0 in {w > 0} and the
local C1 convergence in the support using C1,α elliptic estimates. Finally, the local Hausdorff convergence
of the supports and their complements is obtained by non-degeneracy and (near-)harmonicity of w and
(w0,ri) (see for instance [Vel19, Section 6]).

Lemma 4.4.10. Let Ω ⊂ Rn be a minimizer of (4.15). Let z ∈ ∂Ω be a contact point of Ω with inward
vector ν. Then provided |δ| ≪ k−(4+

8
n)gn(k), there exists α > 0, β ∈ R and a positive sequence si → 0

such that

(w)z,si −→C0
loc(Rn)

α(x · ν)+,

(uk)z,si −→C0
loc(Rn)

β(x · ν)+,
(4.25)

as i→∞, and
α2 + T (Ω)2δβ2 = Q (4.26)

where Q is defined in (4.22).

Remark 4.4.11. One could prove that the blow-up is unique, meaning that this holds for every sequence
si → 0; however this will not be useful to us.

Proof. Up to a displacement we assume z = 0, ν = en. We also write Hn = {x ∈ Rn : xn > 0} and

wr(x) :=
w(rx)

r
, ur(x) :=

uk(rx)

r

We start by proving that (w, uk) admits (αx+n , βx
+
n ) as a blow-up (for the same subsequence) at 0 for

some α > 0, β ∈ R.
Blow-up for an exterior contact sphere. Supposing that there is an exterior contact sphere B :=
B−Ren,R, we prove that w(x) = αx+n +o(|x|) and uk(x) = βx+n +o(|x|) for some α > 0, β ∈ R, thus getting
(4.25). We follow the method of [CS05, Lemma 11.17], using the non-degeneracy and Lipschitz bounds on
w and uk from Lemma 4.4.6.
Let us first prove the expansion for w: set

G(x) =





(
R log

(
|x+Ren|

R

))
+

if n = 2

(R2−n−|x+Ren|2−n)
+

(n−2)R1−n if n ≥ 3
, ∀m ∈ N, αm := inf {α ≥ 0 : w ≤ αG in B2−m} .

Above, αm is well-defined and finite since w(x) ≲ d(x,B) whereas G(x) ≳ d(x,B) on B1. It is also bounded
from below by a positive constant due to the non-degeneracy property. The sequence (αm) decreases and
therefore we can set α = limm→∞ αm. We claim that w(x) = αG(x)+o(|x|), which is sufficient for proving
the expansion, considering that G(x) = x+n + o(|x|).

Suppose it is not the case, meaning there is some sequence of points (xp)p∈N in Rn \ B converging to
0 and some ε ∈ (0, 1] such that

∀p ∈ N, w(xp) < αG(xp)− ε|xp|.
We let L be a Lipschitz constant of w − αG, and we will suppose without loss of generality that ε ≪ L.
Letting yp = xp + ε

2L |xp|en, then 1
2 |xp| ≤ |yp| ≤ 2|xp| and by the Lipschitz bounds we have

∀p, w(yp)− αG(yp) < −ε
4
|yp|,
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as well as
ypn =

ε

2L
|xp|+ xn ≥

ε

4L
|yp| − 1

2R
|xp|2 ≥ ε

8L
|yp|,

where the last inequality holds for any large enough p and we have used that xpn ≥ −1
2R |xp|2 (since xp /∈ B).

We now let rp = |yp| and Bp the ball of center yp/rp and of radius ε
16L on which we have, still by the

Lipschitz bound,
(w − αG)rp ≤ −

ε

8

and for which dist(Bp, ∂(B2 \ B)) ≥ ε
16L . Let now φp be the continuous function defined by




φp = η in Bp

φp = 0 on ∂(B2 \ B)
∆φp = 2rp in (B2 \ B) \Bp

where η > 0 is fixed small ; if η ≤ ε
8 is small enough we have φp ≤ αGrp in B2 by maximum principle for

all p. Then for a large enough p we have φp ≥ 0 and φp ≥ cGrp in B1/2 for some c > 0 by Hopf’s lemma.
We claim that for a large enough p in this case

(
w −

(
α+

c

2

)
G
)
rp
≤ −φp

by maximum principle in the domain ωp := {wrp > 0}∩ (B2 \ (B∪Bp)). Indeed suppose p is large enough
such that wrp ≤

(
α+ c

2

)
Grp in B2, then

∆
(
w −

(
α+

c

2

)
G
)
rp

= −rp > −2rp = −∆φp on ωp

and the inequality is verified on ∂ωp:
(
w −

(
α+

c

2

)
G
)
rp

+ φp ≤ φp − αGrp ≤ 0 on {wrp = 0},
(
w −

(
α+

c

2

)
G
)
rp

+ φp = wrp −
(
α+

c

2

)
Grp ≤ 0 on ∂B2,

(
w −

(
α+

c

2

)
G
)
rp

+ φp ≤ −ε
8
+ φp ≤ 0 on Bp.

This implies w(x) ≤
(
α− c

2

)
G(x) in some neighbourhood of the origin, which contradicts the definition

of α = infm αm. This gives the announced expansion for w and hence (4.25) for w.
The exact same reasoning can then be done for w + cuk for any c chosen such that w + cuk is positive in
its support (which holds for c≪ k−(

1
2
+ 2

n) by Lemma 4.2.2), thus getting the existence of β ∈ R such that
(4.25) holds true for uk. This finishes the proof of (4.25) in the case of an exterior contact sphere.
Blow-up for an interior contact sphere. Assume now that there is an interior contact sphere
BRen,R ⊂ Ω; in particular for any blow-up (w, uk) of (w, uk) at 0 we have Hn ⊂ {w > 0}. We apply
[CS05, Lemma 11.17 and Remark 11.18] to w (and w + cuk for a small enough c ≪ k−(

1
2
+ 2

n)); this gives
w(x) = αx+n + o(|x|) and uk(x) = βx+n + o(|x|) in Hn for some α > 0, β ∈ R.

We remind that a blow-up (at 0) of a blow-up (at 0) of w is still a blow-up of w: indeed if w0,ri → w
and w0,si → w̃ then there is some extraction φ(i) such that w0,rφ(i)si → w̃.

As a a consequence, there is a blow-up of w, uk at 0 (that we still denote w, uk) such that w(x) = αx+n
and uk(x) = βx+n in Hn.

We now prove that w̃(x) = o(|x|) on Rn \ Hn, which is enough to conclude since (αx+n , βx
+
n ) is then

a blow-up of (w, uk) at 0. Arguing by contradiction we assume that w(x) = o(|x|) is not verified on
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Rn \Hn, so that in particular {w > 0} ∩ (Rn \Hn) is a non-empty open set which accumulates at 0 and
since w|∂Hn ≡ 0, then w1Rn\Hn is continuous and admits Ben,1 as an exterior contact sphere at 0. We
can therefore proceed as in the exterior sphere condition case to deduce that there exists γ ≥ 0 such that
w(x) = γx−n + o(|x|) on {w > 0} ∩ (Rn \Hn).

Thanks to the contradiction hypothesis we must have γ > 0. In particular the density of {w = 0} at
the origin is zero. We remind that w is a blow-up of w at 0 for some sequence ri → 0, so

lim
τ→0

lim
i→∞

|Bτri \ Ω|
(τri)n

= lim
τ→0

|Bτ \ {w > 0}|
|Bτ |

= 0. (4.27)

Let then si = τri for some τ > 0 to be fixed later. We arrive to a contradiction by proving that

the energy of Ω̃i :=
(

ωn
|Ω∪Bsi |

) 1
n
Ω ∪ Bsi is strictly lower. We use the following lemma to build a good

competitor for T (Ω ∪Bsi).

Lemma 4.4.12. There exists θn > 0 and εn > 0 such that the following property holds: for any u ∈
H1(B1,R+), such that ∥u− x+n ∥L∞(B1∩Hn) < εn, let Hu be the harmonic extension of u|∂B1

in B1, then
ˆ
B1

|∇u|2 ≥ θn +

ˆ
B1

|∇Hu|2.

Proof. Suppose that ∥u − x+n ∥L∞(B1∩Hn) ≤ ε for some ε > 0 and let us adjust ε so that the conclusion
holds. We have

ˆ
B
(|∇u|2 − |∇Hu|2) =

ˆ
B
|∇(u−Hu)|2 ≥ λ1(B)

ˆ
B
|u−Hu|2

≥ 2λ1(B)

ωn

(ˆ
B∩Hn

(Hu− u)+
)2

,

where we used Faber-Krahn and Cauchy-Schwarz inequalities. Sinceˆ
B∩Hn

(Hu− u)+ ≥
ˆ
B∩Hn

(Hx+n − x+n )− ωnε

then by taking ε = εn := 1
4

ffl
B∩Hn(Hx+n − x+n ) and θn := 1

2

´
B∩Hn(Hx+n − x+n ) the conclusion follows.

As a consequence, using the harmonic extension of w in Bsi as a test function for T (Ω ∪ Bsi), and
using the fact that 1

αwsi −→
C0(B∩Hn)

x+n , we find that from any large enough i,

T (Ω ∪Bsi)− T (Ω) ≥ sni
ˆ
B1

(
2(Husi − usi)− |∇Husi |2 + |∇usi |2

)
≥ θnαsni

so T (Ω ∪Bsi)
−1 − T (Ω)−1 ≳ sni . At the same time we have by Lemma 4.2.3

λk(Ω)− λk(Ω ∪Bsi) ≲ k2+
4
n (T (Ω ∪Bsi)− T (Ω)) ≲ k2+

4
n (T (Ω)−1 − T (Ω ∪Bsi)

−1)

where we also used Lemma 4.4.3 to write λk(Ω ∪ Bsi) ≤ λk(Ω) ≲ k
2
n . We now compare the energy of Ω

and Ω̃i :=
(

ωn
|Ω∪Bsi |

) 1
n
Ω ∪Bsi :

0 ≤
(
T−1 + δλk

) (
Ω̃i

)
−
(
T−1 + δλk

)
(Ω)

=

( |Ω ∪Bsi |
ωn

)n+2
n

T (Ω ∪Bsi)
−1 − T (Ω)−1 + δ

(( |Ω ∪Bsi |
ωn

) 2
n

λk(Ω ∪Bsi)− λk(Ω)
)

≤
(
1− Cn|δ|k2+

4
n

) (
T (Ω ∪Bsi)

−1 − T (Ω)−1
)
+ (C ′

n + k
2
nC ′′

n)|Bsi \ Ω|
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for some constants Cn, C
′
n, C

′′
n > 0: as a consequence, when |δ| ≪ k−2− 4

n we get

|Bsi \ Ω| ≳ T (Ω)−1 − T (Ω ∪Bsi)
−1 ≳ sni .

Finally, we get |Bsi \ Ω| ≥ cns
n
i for all i ∈ N, for some constant cn > 0, which is in contradiction with

(4.27) for large i ∈ N when τ is chosen small enough. As a consequence we have w(x) = o(|x|) on Hn,
thus finishing the proof of the interior sphere case.
Relation between α and β. Let ζ ∈ C∞c (Rn,Rn) and ζt = I + tζ, which is a diffeomorphism for any
small enough t ∈ R. Since for |δ| ≪ k−(4+

8
n)gn(k) we have that λk(Ω) is simple by Lemma 4.4.4, we

may compute the shape derivatives of T , λk and | · | at the bounded open set Ω (see respectively [Lau20,
Proposition 6] and [LLdC06, Theorem 2.6 (iii)] for the derivatives of T and λk). We have

d

dt

∣∣∣∣
t=0

∣∣ζt(Ω)
∣∣ =

ˆ
Ω
∇ · ζ,

d

dt

∣∣∣∣
t=0

T
(
ζt(Ω)

)
=

ˆ
Ω

[(
2w − |∇w|2

)
∇ · ζ + 2∇w ·Dζ · ∇w

]
,

d

dt

∣∣∣∣
t=0

λk
(
ζt(Ω)

)
=

ˆ
Ω

[(
|∇uk|2 − λk(Ω)u2k

)
∇ · ζ − 2∇uk ·Dζ · ∇uk

]
.

Thanks to Lemma 4.4.7, the optimality condition writes

d

dt

∣∣∣∣
t=0

[
∣∣ζt(Ω)

∣∣ 2n
( ∣∣ζt(Ω)

∣∣
ωnT (ζt(Ω))

+ δλk
(
ζt(Ω)

)
)]

= 0.

It gives, after simplification,ˆ
Ω

[(
|∇w|2 + T (Ω)2δ|∇uk|2 +Q

)
∇ · ζ − 2

(
∇w ·Dζ · ∇w + T (Ω)2δ∇uk ·Dζ · ∇uk

)]

=

ˆ
Ω

(
2w + T (Ω)2δλk(Ω)u

2
k

)
∇ · ζ.

We now replace ζ with ζi(x) := ζ(x/si), where si is a positive sequence for which (4.25) holds, and we
rescale the previous equality to obtainˆ

s−1
i Ω

( (
|∇wsi |2 + T (Ω)2δ|∇uk,si |2 +Q

)
∇ · ζ

−2
(
∇wsi ·Dζ · ∇wsi + T (Ω)2δ∇uk,si ·Dζ · ∇uk,si

) )

= si

ˆ
s−1
i Ω

(
2wsi + siT (Ω)

2δλk(Ω)(uk,si)
2
)
∇ · ζ.

Now, we have shown in the first part that wsi → αx+n and uk,si → βx+n in the C0loc(Rn) ∩ C1loc(Hn) sense.
Using also the L∞ and Lipschitz bounds on wsi and uk,si , and recalling that s−1

i Ω = {wsi > 0} converges
locally in Rn in the Hausdorff sense to Hn thanks to Lemma 4.4.9, every term above passes to the limit
and we get

ˆ
Hn

[(
α2 + T (Ω)2δβ2 +Q

)
∇ · ζ − 2

(
α2 + T (Ω)2δβ2)∂nζn

)]
= 0.

Applying Stoke’s theorem, this gives
´
∂Hn

(
α2 + T (Ω)2δβ2 −Q

)
(ζ · en) = 0. Since ζ ∈ C∞c (Rn,Rn) was

chosen arbitrarily, we conclude that α2 + T (Ω)2δβ2 = Q.

143



4.4.3 Minimizers are nearly spherical

In this section we prove that under sufficient smallness of δ, minimizers are nearly spherical sets. In this
context, “nearly spherical” means that

Ω = Bh := {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B} ,

where h ∈ C2,γ
(
∂B, [−1

2 ,
1
2 ]
)

for some γ > 0 with a bound ∥h∥C2,γ ≲ 1. This is achieved in Lemma 4.4.15.
It will be useful for us to consider centered sets, where we say Ω ∈ A is centered when bar(Ω) :=

ffl
Ω xdx is

well-defined and equals zero. Note that since the functional under study T−1+δλk is translation invariant,
there is no loss of generality in assuming that a given minimizer is centered.

Lemma 4.4.13. Let Ω be a centered minimizer of (4.15) for |δ| ≪ k−(2+
4
n). Then we have

∥wΩ − wB∥C0(Rn) ≲
(
k

1
n |δ| 12

) 1
n+1

,

|Ω∆B| ≲ F(Ω).

Proof. Suppose first that Ω is translated into Ω̃ so that F(Ω̃) = |Ω̃∆B| (we will keep denoting it Ω for

simplicity). If |δ| ≪ k−(2+
4
n) then we have shown in (4.21) that ∥wΩ − wB∥C0(Rn) ≲

(
k

1
n |δ| 12

) 1
n+1 . Now,

since Ω is bounded by a dimensional constant thanks to Lemma 4.4.6, we have |bar(Ω)| = |bar(Ω) −
bar(B)| ≲ |Ω∆B| ≲ k

1
n |δ| 12 using also Lemma 4.4.3. As a consequence, we deduce

∥wΩ−bar(Ω) − wB∥C0(Rn) ≤ ∥wΩ − wB∥C0(Rn) + ∥wB−bar(Ω) − wB∥C0(Rn) ≲
(
k

1
n |δ| 12

) 1
n+1

as well as
|(Ω− bar(Ω))∆B| ≤ |Ω∆B|+ |(B + bar(Ω))∆B| ≲ F(Ω).

Lemma 4.4.14. Let Ω be a centered minimizer of (4.15). If |δ| ≪ k−(4+
8
n)gn(k) then we have

∂Ω = {(1 + h(x))x, x ∈ ∂B} ,

where h ∈ C1,γ
(
∂B, [−1

2 ,
1
2 ]
)

for some γ = γn ∈ (0, 1) depending only on n, and ∥h∥C1,γ(∂B) ≲ 1.

Proof. We separate the cases δ < 0 and δ > 0.
Case δ < 0. Set

w = Q− 1
2

(
w + T (Ω)

√
−δuk

)
and w = Q− 1

2

(
w − T (Ω)

√
−δuk

)
.

For |δ| ≪ k−1− 4
n the functions w and w are positive on their support (due to the estimates from Lemma

4.2.2). Since |δ| ≪ k−4− 8
n gn(k), Lemma 4.4.10 applies to ensure that the couple (w,w) is a viscosity

solution in the sense of [MTV21, Definition 2.4] of the system




−∆w = Q− 1
2

(
1 + T (Ω)

√
−δλk(Ω)uk

)
(Ω),

−∆w = Q− 1
2

(
1− T (Ω)

√
−δλk(Ω)uk

)
(Ω),

w, w > 0 (Ω),

w = w = 0 (∂Ω),

∂νw · ∂νw = 1 (∂Ω).
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Note that w and w both converge uniformly to
(
1−|x|2

2

)
+

as k1+
4
n |δ| → 0. In fact, by respectively Lemma

4.4.13, inequality (4.23) and Lemma 4.2.2 we have

∥wΩ − wB∥C0(Rn) ≲
(
k

1
n |δ| 12

) 1
n+1

,

∣∣∣∣Q−
1

n2

∣∣∣∣ ≲ k
1
n |δ| 12 ,

√
−δ|uk| ≲ k

1
2 |δ| 12 ,

so that ∥∥∥∥w −
(
1− |x|2

2

)

+

∥∥∥∥
C0(Rn)

+

∥∥∥∥w −
(
1− |x|2

2

)

+

∥∥∥∥
C0(Rn)

≲
(
k

1
n |δ| 12

) 1
n+1

.

Our goal is now to apply the C1,γ regularity theorem [MTV21, Theorem 3.1] for balls Bx,r with x ∈ ∂B
and sufficiently small r > 0. To simplify notations we assume that x = −en and let r > 0 be a radius
which will be fixed later. Since ∥(wB)−en,r − xn∥C0(B1) ≲ r we deduce from the convergence of w and w

∥w−en,r − xn∥C0(B1) + ∥w−en,r − xn∥C0(B1) ≲ r + r−1
(
k

1
n |δ| 12

) 1
n+1

|∆w−en,r|+ |∆w−en,r| ≲ r in r−1Ω

where we also used that |∆w−en,r|, |∆w−en,r| ≲ 1 + |δ| 12k 1
2
+ 4

n ≲ 1 in r−1Ω thanks to λk(Ω) ≲ k
2
n (see

Lemma 4.4.3) and the choice of δ.
We let ε :=

√
r and choose r small enough so that the ε-regularity Theorem [MTV21, Theorem 3.1]

applies to ε (note that our inequalities are up to a dimensional constant, so the choice of ε may also

differ up to a constant). Then when
(
k

1
n |δ| 12

) 1
n+1 ≪ r2 the couple (w−en,r, w−en,r) is ε-flat so by [MTV21,

Theorem 3.1], ∂{w−en,r > 0}∩B 1
2

is a C1,γ graph with controlled C1,γ norm (for some dimensional constant
γ = γn ∈ (0, 1)), meaning that there exists g :

[
−1

2 ,
1
2

]
→ [−1, 1] such that

{w−en,r > 0} ∩B 1
2
=

{
(x′, xn) ∈ Rn−1 × R, |x′| ≤ 1

2
, xn ≥ g(x)

}
, ∥g∥C1,γ([− 1

2
, 1
2 ])

≲ 1.

This translates into the fact that ∂Ω∩B−en,r/2 is a C1,γ graph with graph function g̃ := r(−1+g). Covering
∂Ω with a finite number of such balls of radius r/2 we find h : ∂B → R such that ∂Ω = {(1 + h(x))x, x ∈
∂B} with ∥h∥C1,γ(∂B) ≲ 1.
Case δ > 0. We analogously set

w = Q− 1
2

(
w + T (Ω)

√
δuk

)
and w = Q− 1

2

(
w − T (Ω)

√
δuk

)
,

This time the couple (w,w) is a viscosity solution with boundary condition (∂νw)2+(∂νw)2

2 = 1 in the sense
given by [KL18, Definition 4.1]. By the exact same argument as in the previous case we may apply [KL18,
Theorem 7.2] to the couple (wx,r, wx,r) for x ∈ ∂B and some dimensional r, thus providing again the
existence of h : ∂B → R such that ∂Ω = {(1 + h(x))x, x ∈ ∂B} with ∥h∥C1,γ(∂B) ≲ 1 (with a possibly
different dimensional constant γ).

Lemma 4.4.15. Let Ω be a centered minimizer of (4.15). If |δ| ≪ k−(4+
8
n)gn(k) then

∂Ω = {(1 + h(x))x, x ∈ ∂B}

where h ∈ C2,γ
(
∂B, [−1

2 ,
1
2 ]
)

for some dimensional γ = γn ∈ (0, 1) and ∥h∥C2,γ(∂B) ≲ 1.

In this proof we denote by Cr the cylinder Cr := {x = (x′, xn) : |x′| ≤ r, |xn| ≤ r} = Bn−1
r × [−r, r].

For a function a(x′) of N − 1 variables we denote by ∇′ its gradient.
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Proof. We follow the general method of partial hodograph transform, as is detailed for instance in
[KL18, CSY18]. Since |δ| ≪ k−4− 8

n gn(k) we can apply Lemma 4.4.14 to Ω, thus giving that Ω is the graph
on the sphere of a C1,γ function h with ∥h∥C1,γ(∂B) ≲ 1. By classical C1,γ elliptic regularity (see for instance
[HL11, Theorem 3.13]) and the W 1,∞ bounds from Lemmas 4.2.2 and 4.4.6 we have ∥wΩ∥C1,γ(Ω) ≲ 1 and
∥uk∥C1,γ(Ω) ≲ k

1
2
+ 4

n . Let us also remind that ∂νwΩ lies between two dimensional positive constants thanks
to the non-degeneracy and Lipschitz bound of wΩ from Lemma 4.4.6.

Consider now any x ∈ ∂Ω. Up to translation and rotation of Ω we simply suppose that x = 0 with
inward normal vector ν(0) = en, and call α = ∂nwΩ(0). Letting r > 0 which we will fix later on (depending
only on n), then for any small enough r we have, according to Lemma 4.4.14,

(
r−1Ω

)
∩ C2 =

{
x = (x′, xn) ∈ C2 : xn ≥ g(x′)

}
,

where ∥g∥C1,γ(Bn−1
2 ) ≲ rγ (using that ∇′g(0) = 0 and the C1,γ bound) and ∥(wΩ)r−αxn∥C1,γ(r−1Ω∩C2) ≲ rγ .

Consider the function
ϕ : Ω

r ∩ C2 → Hn ∩ C3

x = (x′, xn) 7→
(
x′, w(rx)

αr

)
.

Since ∥Dϕ− In∥C0,γ(r−1Ω∩C2) ≲ rγ and ∥h∥C1,γ(∂B) ≲ 1, then for a small enough r (only depending on the
dimension) thanks to the inverse function theorem applied at x = 0 we have that ϕ is a C1,γ-diffeomorphism
on its image, and its image compactly contains C1 ∩Hn. We call its inverse ψ, which may also be written
as

ψ(x) =: (x′, v(x))

for some function v such that
∥v − xn∥C1,γ(C1∩Hn) ≲ rγ .

Noting that the graph of v|C1∩∂Hn parametrizes ∂Ω ∩ Cr, our goal is now to obtain a C2,γ bound on this
function. Let vk = (uk)r ◦ ψ, and

A(p) :=

[
In−1 − p′

pn

− (p′)∗

pn

1+|p′|2
p2n

]
.

Then, using the relations {
∂iv ◦ ϕ+ ∂iwr∂nv ◦ ϕ = 0, for all i < n,

∂nwr∂nv ◦ ϕ = 1,

obtained by differentiating v ◦ ϕ(x) = xn, we get that (v, vk) verifies the following elliptic systems:




Tr
[
A(∇v)∇2v

]
= ∂nv

α (C1 ∩Hn),
Q
α2 (∂nv)

2 −
(
1 + δ|∇vk|2

)
|∇′v|2 = 1 (C1 ∩ ∂Hn),

Tr
[
A(∇v)∇2vk

]
= ∂nvk

α − λkvk (C1 ∩Hn),

vk = 0 (C1 ∩ ∂Hn).

(4.28)

Note that ∥A(∇v)− In∥C0,γ(C1∩Hn) ≲ rγ . The Dirichlet condition over C1 ∩ ∂Hn enables us to extend
by odd reflection vk over C1 ∩ (Rn \Hn), so that by interior elliptic estimates in C1 we get

∥vk∥C2,γ(C9/10∩Hn) ≲ ∥vk∥C1,γ(C1∩Hn) + k
2
n ∥vk∥C0,γ(C1∩Hn)

≲ ∥(uk)r∥C1,γ(C2∩Ω/r) + k
2
n ∥(uk)r∥C0,γ(C2∩Ω/r)

≲ ∥uk∥C1,γ(Ω) + k
2
n ∥uk∥C0,γ(Ω) ≲ k

1
2
+ 4

n .
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We can then consider the first equation alone, as an elliptic equation with a nonlinear oblique Neumann
boundary condition. Defining q := α2(1+δ|∇vk|2)

Q and using the C2,γ estimate on vk we have

∥∇q∥C0,γ(∂Hn∩C9/10)
≲ k1+

6
n |δ| ≲ rγ ,

where the second inequality is true when |δ| ≪ k−1− 6
n rγ . We define χ : Hn → Rn the smooth vector field

given by

∀p = (p′, pn) ∈ Rn−1 × (0,∞), χ(p′, pn) =
(
p′,−1 + |p′|2

pn

)
.

Let z be the unique solution to {
∆z = ∂nv − 1 (C1 ∩Hn),

z = 0 ∂(C1 ∩Hn),

and set ζ = xnen +∇z. We have

∥∇z∥C1,γ(C1/2∩Hn) ≲ ∥∂nv − 1∥C0,γ(C1∩Hn) ≲ rγ .

Then since ∇ · (χ(∇v)) = Tr(A(∇v)∇2v) and ∇ · ζ = ∂nv we may rewrite the equations of v from (4.28)
as {

∇ · χ(∇v) = ∇·ζ
α (C1 ∩Hn),

(∂nv)
2 − q|∇′v|2 = α2

Q (C1 ∩ ∂Hn).
(4.29)

Let τ ∈ (0, 1/4) be small enough so that ψ(x+τei) is well-defined for x ∈ C1/4∩Hn and i ∈ {1, . . . , n−1}.
Let i ∈ {1, . . . , n− 1} and set

vτ,i(x) =
v(x+ τei)− v(x)

τ
,

Cτ,i(x) =

ˆ 1

0
Dχ ((1− t)∇v(x) + t∇v(x+ τei)) dt,

ζτ,i(x) =
ζ(x+ τei)− ζ(x)

τ
,

aτ,i(x) =
∇′v(x+ τei) +∇′v(x)
∂nv(x+ τei) + ∂nv(x)

q(x),

bτ,i(x) =
|∇′v(x+ τei)|2

∂nv(x+ τei) + ∂nv(x)

q(x+ τei)− q(x)
τ

.

Then the equations (4.29) translate into the following equations for vτ,i
{
∇ · (Cτ,i∇vτ,i) = ∇·ζτ,i

α (C1/4 ∩Hn),

∂nvτ,i = aτ,i · ∇′vτ,i + bτ,i (C1/4 ∩ ∂Hn).
(4.30)

We have

∥vτ,i∥C0,γ(C1/4∩Hn) + ∥Cτ,i − In∥C0,γ(C1/4∩Hn)

+∥ζτ,i∥C0,γ(C1/4∩Hn) + ∥aτ,i∥C0,γ(C1/4∩∂Hn) + ∥bτ,i∥C0,γ(C1/4∩∂Hn) ≲ rγ ,

where the upper bound is independent of τ . By Schauder estimates on elliptic equations with oblique
conditions (see for instance [GT01, Theorem 6.26]) we get that ∥vτ,i∥C1,γ(C1/8∩Hn) ≲ rγ independently of
τ , so that letting τ → 0 we obtain ∥∂iv∥C1,γ(C1/8∩Hn) ≲ rγ for any 1 ≤ i < n. On the other hand thanks
to equations (4.28), ∂nnv may be written as

∂nnv =
(∂nv)

2

1 + |∇′v|2
(
2
∇′v · ∇′∂nv

∂nv
−∆′v +

∂nv

α

)
,
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so that we also get ∥∂nnv∥C0,γ(C1/8∩Hn) ≲ rγ , yielding in turn ∥v∥C2,γ(C1/8∩Hn) ≲ rγ .
Therefore by covering ∂Ω with a finite number of such cylinders of radius r/64 we find h : ∂B → R

such that ∂Ω = {(1 + h(x))x, x ∈ ∂B} with ∥h∥C2,γ(∂B) ≲ 1. This concludes the proof.

4.4.4 Minimality of the ball among nearly spherical sets.

This section is dedicated to the proof of Proposition 4.4.1 in the case where Ω is nearly spherical. Letting
γ = γn ∈ (0, 1) be the exponent given by Lemma 4.4.15, throughout this section we fix for once some
α ∈ (0, γ).

Definition 4.4.16. An open set Ω ⊂ Rn is said to be nearly spherical if |Ω| = |B| and there is a function
h ∈ C2,α(∂B,

[
−1

2 ,
1
2

]
) with ∥h∥C2,α(∂B) ≤ 1 such that Ω = Bh, where

Bh := {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B}.

By convention, hνB is extended as a vector field from Rn to Rn by the expression

ζ(x) = φ(|x|)h
(
x

|x|

)
x

|x| , (4.31)

where φ ∈ C∞c (R∗
+, [0, 1]) is such that φ ≡ 1 on [1/2, 3/2], φ ≡ 0 on [0, 1/4] and φ is nondecreasing on

[0, 1/2]. Thus ζt(x) = x+ tζ(x) is a C2,α-diffeomorphism from B to Bth for all |t| ≤ 1.
Finally, we remind that Ω is said to be centered when its barycenter is at the origin.

To be consistent with the notation Br of the centered ball of radius r it would probably be more
natural to denote instead B1+h the nearly spherical set, but we will however carry on with the notation
Bh through the whole section for sake of simplicity.

The local minimality result is the following.

Proposition 4.4.17. Let Bh be a nearly spherical centered set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k). Then

when |δ| ≪ k−(1+
8
n)gn(k) we have

T (Bh)
−1 + δλk(Bh) ≥ T (B)−1 + δλk(B)

with equality if and only if h ≡ 0.

This will be obtained by performing a second-order Taylor expansion of the functional T−1+ δλk. The
rough idea is the following: on the one hand, the first shape derivative (taken among measure-preserving
variation) of T−1 and λk vanish, while on the other hand the second shape derivative of T−1 is coercive
in H1/2(∂B) (in some sense that takes into account the invariance by translation) and the second shape
derivative of λk is bounded in H1/2(∂B). This will be enough to get the local minimality of T−1 + δλk at
the ball.

We begin by a Lemma which states that the eigenvalues and eigenfunctions may be followed smoothly.
It includes the case of degenerate eigenvalues, which will also be useful in next section.

Lemma 4.4.18. Let h ∈ C2,α
(
∂B,

[
−1

2 ,
1
2

])
and ζ the corresponding vector field (in accordance with

(4.31)). Then there exists real analytic functions

t ∈ [−1, 1] 7→ µi(t) ∈ R, t ∈ [−1, 1] 7→ ûi(t) ∈ H1
0 (B)

verifying µi(0) = λi(B) for every i ∈ N∗ and such that, denoting ui(t) = ûi(t) ◦ (ζt)−1, the functions
(ui(t))i∈N∗ form an orthonormal basis of (non-ordered) eigenfunctions of Bth associated to (µi(t))i∈N∗ and

t ∈ [−1, 1] 7→ ui(t) ∈ L2(Rn)
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is differentiable with u′i(t) ∈ H1(Bth). Moreover, we have the expressions

µ′i(t) = −
ˆ
∂Bth

|∇ui(t)|2(ζ · νt),

µ′′i (t) =
ˆ
∂Bth

|∇ui(t)|2
(
Ht(ζ · νt)2 − bt(ζτt , ζτt) + 2ζτt · ∇|∂Bth

(ζ · νt)
)

+ 2

ˆ
Bth

(
|∇u′i(t)|2 − µi(t)|u′i(t)|2

)
,

where bt is the second fundamental form of ∂Bth, Ht its (outward) mean curvature, νt its (outward) normal
vector and ζτt := ζ − (ζ · νt)νt. Finally, u′i(t) verifies





−∆u′i(t)− µi(t)u′i(t) = µ′i(t)ui(t) (Bth),

u′i(t) = −(ζ · νt)∂νtui(t) (∂Bth),

∀j ∈ N∗,
´
Bth

(u′i(t)uj(t) + ui(t)u
′
j(t)) = 0.

(4.32)

Proof. For each i ∈ N∗ and |t| ≤ 1, ui is an eigenfunction on Bth associated to λi(Bth) if and only if
ûi := ui ◦ ζt verifies

∇ ·
[
Jt(Dζ

t)−1((Dζt)−1)∗∇ûi
]
= λi(Bth)Jtûi,

where Jt := det(Dζt). Letting ûi := v̂i√
Jt

, the family ((v̂i, λi(Bth)))i∈N∗ is consisting of the eigenelements
of the self-adjoint operator

Ttv := − 1√
Jt
∇ ·
[
Jt(Dζ

t)−1((Dζt)−1)∗∇ v√
Jt

]
.

We apply the result [Kat95, VII.3.5. Theorem 3.9] to the family of self-adjoint operators Tt as defined
above, over L2(B) with fixed domain D(Tt) = D0 := H2(B) ∩H1

0 (B). This provides the existence of real
analytic rearrangements t ∈ [−1, 1] 7→ µi(t) and t ∈ [−1, 1] 7→ ûi(t) ∈ L2(B) of respectively eigenvalues
and orthonormal eigenfunctions for the operator Tt such that µi(0) = λi(B) for all i. Writing

ûi(t) = Rt (µi(t)ûi(t)) ,

where Rt is the resolvent of Tt, and using that t ∈ [−1, 1] 7→ Rt ∈ L(H−1(B), H1
0 (B)) is real analytic (by

implicit function theorem), we improve the analyticity of the eigenfunctions into t ∈ [−1, 1] 7→ ûi(t) ∈
H1

0 (B).

Now, by construction we have that

(ui(t), µi(t)) :=

(
ûi(t) ◦ (ζt)−1

√
Jt ◦ (ζt)−1

, µi(t)

)

are eigenvalues and (orthonormal) eigenfunctions of the Dirichlet Laplacian over Bth. Since t 7→ ûi(t) ∈
H1

0 (B) is differentiable, one proves as in [HP18, Theorem 5.3.1] that the map t ∈ [−1, 1] 7→ ui(t) ∈ L2(Rn)
is differentiable. The expressions of the first and second derivative are then classical formulas which we
derive as in [HP18, Section 5.9.3]. Let us remind how these expressions are found.
First derivative. The map t ∈ [−1, 1] 7→ ui(t) ∈ L2(Rn) is differentiable with derivative u′i(t) verifying
u′i(t) +∇ui(t) · ζ ∈ H1

0 (Bth). One can therefore differentiate
{
−∆ui(t) = µi(t)ui(t), (Bth)´
Bth

ui(t)uj(t) = δij
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to deduce that u′i(t) verifies the equation and the boundary conditions of (4.32). Integrating by parts (see
[HP18, (5.87), (5.88)]) we get the expression

µ′i(t) = −
ˆ
∂Bth

(∂νtui(t))
2(ζ · νt)

Second derivative. We write the first derivative as an integral on the interior

µ′i(t) = −
ˆ
Bth

∇ ·
(
|∇ui(t)|2ζ

)

and apply the differentiation formula [HP18, Corollary 5.2.8]. The same computations as in [HP18, Section
5.9.6] lead to an analogous expression to the case of a simple eigenvalue (note that in this reference, the
authors assume the sets to be C3; nevertheless, it is classical by using approximations by smooth functions
that the result remains for C2,α sets, see for example [DP00, Section 5]):

µ′′i (t) = 2

ˆ
∂Bth

u′i(t)∂νtu
′
i(t) +

ˆ
∂Bth

(∂νtui(t))
2
[
Ht(ζ · νt)2 − bt((ζ)τt , (ζ)τt) + 2∇τt(ζ · νt) · (ζ)τt

]

= 2

ˆ
Bth

(
|∇u′i(t)|2 − µi(t)|u′i(t)|2

)

+

ˆ
∂Bth

(∂νtui(t))
2
[
Ht(ζ · νt)2 − bt((ζ)τt , (ζ)τt) + 2∇τt(ζ · νt) · (ζ)τt

]

where ζτt := ζ|∂Bth
and ∇τt is the gradient over ∂Bth.

Proposition 4.4.19. Let Bh be a nearly spherical set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k), then

|λk(Bh)− λk(B)| ≤ Cn
k1+

8
n

gn(k)
∥h∥2

H1/2(∂B)
.

Here the H1/2(∂B) norm is defined as

∥h∥2
H1/2(∂B)

= ∥h∥2L2(∂B) +

ˆ
B
|∇Hh|2

where Hh is the harmonic extension of h in B. This is equivalent to the usual Gagliardo-Nirenberg norm
∥h∥2L2(∂B) +

˜
∂B2

|h(x)−h(y)|2
|x−y|n .

Proof of Proposition 4.4.19. Recall that by definition of a nearly spherical set it holds ∥h∥C2,α(∂B) ≤ 1.
Let (ui(t), µi(t))i∈N∗ be the eigenelements of Bth as defined in Lemma 4.4.18. We claim that for any

|t| ≤ 1 and i ̸= k we have |µi(t) − µk(t)| ≥ 1
2gn(k) when ∥h∥L1(∂B) ≪ k−1− 4

n gn(k). Indeed we have
|ui(t)| ≲ µi(t)

n
4 by [Dav89, Example 2.1.8] and Proposition 4.2.1, hence using classical elliptic regularity

we deduce

∥ui(t)∥C1,α(Bth) ≲ ∥µi(t)ui(t)∥L∞(Bth) ≲ µi(t)
1+n

4 .

Using the expression of µ′i(t) from Lemma 4.4.18 we get

|µ′i(t)| ≲ ∥h∥L1(∂B)µi(t)
2+n

2 .

Integrating this expression we get that for any |t| ≤ 1 and i ∈ N,
∣∣∣µi(t)−1−n

2 − µi(0)−1−n
2

∣∣∣ ≲ ∥h∥L1(∂B)
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and for any i ̸= k we have ∣∣∣µi(0)−1−n
2 − µk(0)−1−n

2

∣∣∣ ≳ k−1− 4
n gn(k),

so when ∥h∥L1(∂B) ≪ k−1− 4
n gn(k) we get the claim. In particular this means that µk(t) = λk(Bth) for

such h, for any |t| ≤ 1.
By elliptic regularity we again have

∥uk(t)∥C1,α(Bth) ≲ k
1
2
+ 2

n , ∥uk(t)∥C2,α(Bth) ≲ k
1
2
+ 4

n . (4.33)

The eigenvalue λk(B) being simple, the associated eigenfunction uk(0) is radial, so that by setting
|∇uk(0)|2|∂B =: cn,k(≲ k1+

4
n ) we have d

ds

∣∣
s=0

(λk(Bsh) + cn,k|Bsh|) = 0. As a consequence, by Taylor
expansion and recalling that |Bh| = |B|, there exists some t ∈ [0, 1] such that

λk(Bh)− λk(B) =
1

2

(
d2

ds2

∣∣∣∣
s=t

λk(Bsh) + cn,k
d2

ds2

∣∣∣∣
s=t

|Bsh|
)
,

which we rewrite

µk(Bh)− µk(B) =
1

2

(
µ′′k(t) + cn,k

d2

ds2

∣∣∣∣
s=t

|Bsh|
)

To reduce notation we fix t and do not write the dependency in t in the rest of the proof, and set
instead Ω := Bth, ui := ui(t), v := u′k(t) and write µi, µ′i, µ

′′
i in place of µi(t), µ′i(t), µ

′′
i (t). The expression

of µ′′k thus reads

µ′′k =

ˆ
Ω
2
(
|∇v|2 − µkv2

)
+

ˆ
∂Ω
|∇uk|2

[
H(ζ · ν)2 − b(ζ|∂Ω, ζ|∂Ω) + 2ζ · ∇|∂Ω(ζ · ν)

]
,

where v verifies 



−∆v − µkv = µ′kuk (Ω),

v = −(ζ · ν)∂νuk (∂Ω),´
Ω vuk = 0.

(4.34)

On the other hand we have the following expression for the second derivative of the volume (see [DL19,
Theorem 2.1 and Lemma 2.8])

d2

ds2

∣∣∣∣
s=t

|Bsh| =
ˆ
∂Ω
H(ζ · ν)2 +

ˆ
∂Ω
b(ζ|∂Ω, ζ|∂Ω)− 2ζ|∂Ω · ∇|∂Ω(ζ · ν),

where we recall that ζ|∂B = hνB is extended thanks to (4.31). Let us now bound each term independently.
Estimate of v. We write v = z+w, where z is harmonic and w ∈ H1

0 (Ω). In particular z is the harmonic
extension of −(ζ · ν)∂νuk, hence

∥z∥H1(Ω) ≲ ∥(ζ · ν)∂νuk∥H1/2(∂Ω) ≲ k
1
2
+ 4

n ∥h∥H1/2(∂B),

∥z∥L2(Ω) ≲ ∥z∥L2(∂Ω) ≲ k
1
2
+ 2

n ∥h∥H1/2(∂B).

where we used ∥h∥C2,α ≤ 1. We also used the general property

∥fg∥H1/2(∂B) ≲ ∥f∥L∞(∂B)∥g∥H1/2(∂B) + ∥∇f∥L∞(∂B)∥g∥L2(∂B),

which is a consequence of the inequalityˆ
B
|∇H(fg)|2 ≤

ˆ
B
|∇(H(f)H(g))|2 ≤ 2

ˆ
B
|∇Hf |2|Hg|2 + |Hf |2|∇Hg|2

≤ 2∥∇f∥2L∞(∂B)∥g∥2L2(∂B) + ∥f∥2L∞(∂B)

ˆ
B
|∇Hg|2.
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Now w verifies −∆w − µkw = µkz + µ′kuk, with
´
Ωwuk =

µ′
k

µk
. Let now i ̸= k, this equation implies

(µi − µk)
ˆ
Ω
wui = µk

ˆ
Ω
zui,

whereas for i = k we simply have ˆ
Ω
wuk = −

ˆ
Ω
zuk.

Using the spectral decomposition, we have
ˆ
Ω

(
|∇v|2 − µkv2

)
=

ˆ
Ω

(
|∇z|2 + |∇w|2 − µkv2

)

=

ˆ
Ω
|∇z|2 +

∑

i∈N∗

(
µi

(ˆ
Ω
wui

)2

− µk
(ˆ

Ω
vui

)2
)

=

ˆ
Ω
|∇z|2 + µk

(ˆ
Ω
zuk

)2

+
∑

i ̸=k

(
µ2k

µk − µi
− µk

)(ˆ
Ω
zui

)2

so
∣∣∣∣
ˆ
Ω

(
|∇v|2 − µkv2

)∣∣∣∣ ≲ ∥∇z∥2L2(Ω) + k
2
n ∥z∥2L2(Ω) + gn(k)

−1k
4
n ∥z∥2L2(Ω)

≲ gn(k)
−1k1+

8
n ∥h∥2

H1/2(∂B)
.

Curvature terms. Using again ∥h∥C2,α ≤ 1 we directly have
∣∣∣∣
ˆ
∂Ω
|∇uk|2

[
H(ζ · ν)2 − b(ζ|∂Ω, ζ|∂Ω)

]∣∣∣∣ ≲ ∥∇uk∥2L∞(Ω)∥ζ∥2L2(∂Ω) ≲ k1+
4
n ∥h∥2

H1/2(∂B)
,

∣∣∣∣
ˆ
∂Ω

[
H(ζ · ν)2 + b(ζ|∂Ω, ζ|∂Ω)

]∣∣∣∣ ≲ ∥h∥2H1/2(∂B)
.

Last term. We have ∥∇|∂Ωζ∥H−1/2(∂Ω) ≲ ∥ζ∥H1/2(∂Ω) and

∥|∇uk|2ζ∥H1/2(∂Ω) ≲ ∥∇|∂Ω|∇uk|2∥L∞(∂Ω)∥ζ∥H1/2(∂Ω)

≲ ∥∇uk∥L∞(Ω)∥∇2uk∥L∞(Ω)∥ζ∥H1/2(∂Ω) ≲ k1+
6
n ∥h∥H1/2(∂B),

so
∣∣∣∣
ˆ
∂Ω
|∇uk|2ζ · ∇|∂Ω(ζ · ν)

∣∣∣∣ ≲ k1+
6
n ∥h∥2

H1/2(∂B)
.

We also have ∣∣∣∣
ˆ
∂Ω
ζ|∂Ω · ∇|∂Ω(ζ · ν)

∣∣∣∣ ≲ ∥h∥2H1/2(∂B)
.

Adding all the estimates we get

|µ′′k| ≲
k1+

8
n

gn(k)
∥h∥2

H1/2(∂B)
≲
k1+

8
n

gn(k)
∥h∥2

H1/2(∂B)
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and ∣∣∣∣cn,k
d2

ds2

∣∣∣∣
s=t

|Bsh|
∣∣∣∣ ≲ k1+

4
n ∥h∥2

H1/2(∂B)

so

|µk(Bh)− µk(B)| ≲ k1+
8
n

gn(k)
∥h∥2

H1/2(∂B)
.

This concludes the proof of the proposition.

We can now prove minimality of the ball for nearly spherical sets.

Proof of Proposition 4.4.17. It was proven in [BDPV15, Theorem 3.3] that if β ∈ (0, 1), then for any Bh

with |Bh| = 1 and bar(Bh) = 0 and ∥h∥C2,β(∂B) ≪ 1 it holds

T (Bh) ≤ T (B)− 1

32n2
∥h∥2

H1/2(∂B)
(4.35)

By interpolation, using for instance the general inequalities

∥h∥C2,β(∂B) ≤ Cn,β∥h∥
α−β
2+α

C0(∂B)
∥h∥

2+β
2+α

C2,α(∂B)
, for any β ∈ (0, α)

∥h∥C0(∂B) ≲ ∥h∥
1

n+1

L1(∂B)
∥h∥

n
n+1

C0,1(∂B)
,

then for any β ∈ (0, α) there exists κ = κn,β ∈ (0, 1) such that

∥h∥C2,β(∂B) ≲ ∥h∥κL1(∂B)∥h∥1−κ
C2,α(∂B)

so that ∥h∥C2,β(∂B) ≪ 1. We can therefore apply (4.35), which together with Proposition 4.4.19 yield

T (Bh)
−1 + δλk(Bh) ≥

(
T (B)− 1

32n2
∥h∥2

H1/2(∂B)

)−1

+ δλk(B)− |δ|k
1+ 8

n

gn(k)
∥h∥2

H1/2(∂B)

≥ T (B)−1 + δλk(B)

where the last line holds provided δ is sufficiently small (|δ| ≪ k−(1+
8
n)gn(k)), with equality if and only if

h = 0. This finishes the proof.

4.4.5 Conclusion.

Proof of Proposition 4.4.1. Recall that we have assumed |δ| ≪ k−4− 8
n gn(k). Proposition 4.4.5 applies and

there exists a minimizer Ω to the functional (4.15). By Lemma 4.4.15, up to translation Ω is a centered
minimizer of the form Bh with ∥h∥C2,γ(∂B) ≲ 1. By Lemma 4.4.13 and Lemma 4.4.4 we have

∥h∥L1(∂B) ≲ |Ω∆B| ≲ F(Ω) ≲ k2+
4
n |δ|.

Hence Ω is nearly spherical in the sense of Definition 4.4.16, since k2+
4
n |δ| ≪ 1 and by interpolation there

is some κ = κn ∈ (0, 1) such that

∥h∥C2,α(∂B) ≲ ∥h∥κL1(∂B)∥h∥1−κ
C2,γ(∂B)

≲
(
k2+

4
n |δ|

)κ
.

Now, since δ verifies k2+
4
n |δ| ≪ k−1− 4

n gn(k) (because |δ| ≪ k−3− 8
n gn(k)) we can apply Proposition 4.4.17

to Ω, so that we obtain that Ω is a ball. This finishes the proof.
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4.5 Proof of Theorem 4.1.3: linear bound on clusters of multiple eigen-
values

Consider 1 ≤ k ≤ l such that

λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B).

We denote the multiplicity of the eigenspace by m = l − k + 1 ≥ 1. Note that l and k are comparable
since (see Lemma 4.2.1)

l
2
n ≲ λl(B) = λk(B) ≲ k

2
n .

In dimension n = 2 it is known that the multiplicity of an eigenspace is at most 2. On the other hand,
in dimensions n ≥ 3 the multiplicity of the eigenspace may get arbitrarily large, since the dimension of
degree d homogeneous harmonic polynomials in three variables is 2d+ 1.

In order to prove Theorem 4.1.3, we prove that the ball is the unique minimizer of the functional

Ω ∈ A 7→ T (Ω)−1 + δ

l∑

i=k

λi(Ω), (4.36)

for any δ ∈ R sufficiently close to 0.
We prove the following.

Proposition 4.5.1. There exists cn > 0 such that for any δ ∈ R with |δ| ≤ cnk
−(6+ 10

n )gn(k), the ball is
the unique minimizer of (4.36).

Remark 4.5.2. This result admits the following natural generalization, following the same proof: let
k ≤ l such that λk−1(B) < λk(B) and λl(B) < λl+1(B) (note that we do not ask λl(B) = λk(B)). Then
for any Ω ∈ A: ∣∣∣∣∣

l∑

i=k

λi(Ω)− λi(B)

∣∣∣∣∣

≤ Cnl
6+ 10

n min {λl+1(B)− λl(B), λk(B)− λk−1(B)}−1 (T (Ω)−1 − T (B)−1
)
,

where Cn > 0 is some dimensional constant.

The proof follows the same plan as in the non-degenerate case. The main difference with the case
when λk(B) is simple concerns the C1,γ estimates of a minimizer Ω. When δ > 0 we again apply the
results from [KL18] - with the extra effort of obtaining estimates uniform in the multiplicity m. On the
other hand, when δ < 0 we cannot directly apply [MTV21]; instead we see (4.36) as a vectorial version of
the problem studied in [MTV21], and follow the strategy of [MTV21] (as in [DS11] for the one-phase free
boundary problem) by proving first some partial Harnack inequality (see Propositions 4.5.14) and then
get by contradiction an improvement of flatness (see Proposition 4.5.15) in order to get C1,γ regularity
of a minimizer Ω. In this second case we also follow carefully the dependency of the estimates in the
multiplicity.

The existence of a solution for (4.36), the first regularity estimates and the existence of blow-ups are
proved in the same way than in Section 4.4 (see Proposition 4.4.5, Proposition 4.4.6 and Proposition
4.4.10, respectively). The passage from C1,γ to C2,γ is also similar. We gather the results and emphasize
on the slight differences in the proofs.

Lemma 4.5.3. Let Ω be a domain such that

T (Ω)−1 + δ

l∑

i=k

λi(Ω) ≤ T (B)−1 + δ
l∑

i=k

λi(B).

Then if |δ| ≪ k−1− 2
n , we have the following properties (up to a translation of Ω):
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• |Ω∆B| ≲ k
1
2
+ 1

n |δ| 12 .

• It holds

T (Ω)−1 ≲ 1, and for k ≤ i ≤ l, λi(Ω) ≲ k
2
n ,

T (Ω)−1 − T (B)−1 ≲ k1+
2
n |δ|, and for all i ∈ N∗, |λi(Ω)− λi(B)| ≲ i2+

4
nk

1
2
+ 1

n |δ| 12

• ∥wΩ − wB∥L1(Rn) ≲ k
1
2
+ 1

n |δ| 12 .

Remark 4.5.4. This may be refined (using the bounds from Theorem 4.1.1) into

T (Ω)−1 − T (B)−1 ≲ k6+
8
n |δ|2,

∀i ∈ N∗, |λi(Ω)− λi(B)| ≲ i2+
4
nk3+

4
n |δ|.

Proof. We write

T (Ω)−1 − T (B)−1 ≤ δ
l∑

i=k

(λk(B)− λk(Ω)) ≲ T (Ω)−1k1+
2
n |δ|

where we used Proposition 4.2.1 and the fact that the multiplicity verifies m ≲ k. We then proceed exactly
as in Lemma 4.4.3.

Proposition 4.5.5. If |δ| ≪ k−(3+
4
n), then the functional (4.36) has a minimizer Ω ∈ A, and there exists

cn, Cn, rn > 0 such that ∥∇wΩ∥L∞(Rn) ≤ Cn, for all k ≤ i ≤ l, ∥∇ui∥L∞(Rn) ≤ Cnk
1
2
+ 2

n and for all
x ∈ Rn, r ∈ (0, rn),  

∂Bx,r

wΩ < cnr implies wΩ|Bx,r/2
= 0

Moreover, Ω is open and bounded with diam(Ω) ≲ 1, and up to translating Ω we have

∥wΩ − wB∥C0(Rn) ≲
(
k

1
2
+ 1

n |δ| 12
) 1

n+1
,

|Ω∆B| ≲ k3+
4
n |δ|.

Proof. This proof is completely similar to the proof of Propositions 4.4.5, 4.4.6 and 4.4.13. The condition
|δ| ≪ k−(3+

4
n) in place of |δ| ≪ k−(2+

4
n) in Proposition 4.4.5 again comes from the multiplicity estimate

m ≲ k, as well as some of the estimates above.

Analogously to the case of a simple eigenvalue, we set

Q :=
T (Ω)2

ωn

(
n+ 2

nT (Ω)
+

2

n
δ

l∑

i=k

λi(Ω)

)
(4.37)

and we have ∣∣∣∣Q−
1

n2

∣∣∣∣ ≲ k1+
2
n |δ|. (4.38)
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Lemma 4.5.6. Let Ω ∈ A be a minimizer of (4.36) and suppose |δ| ≪ k−(6+
8
n)gn(k). Suppose z ∈ ∂Ω

has a contact sphere on either side with inward vector ν. Then there exists β > 0, βi ∈ R, and a sequence
sj → 0 such that

(w)z,sj −→
C0
loc(Rn)

β(x · ν)+,

(ui)z,sj −→
C0
loc(Rn)

βi(x · ν)+ for any k ≤ i ≤ l
(4.39)

as j →∞, and

β2 + T (Ω)2δ

l∑

i=k

β2i = Q, (4.40)

where Q is defined in (4.37).

Proof. Since |δ| ≪ k−(6+
8
n)gn(k) we have λk−1(Ω) < λk(Ω) ≤ λl(Ω) < λl+1(Ω) thanks to Remark 4.5.4.

The proof is then completely analogous to the proof of Proposition 4.4.10, the only difference lying in the
computation of the shape derivative: while each λi is not necessarily differentiable, the sum

∑l
i=k λi it is,

thanks to [LLdC06, Theorem 2.6], and we have

d

dt

∣∣∣∣
t=0

(
l∑

i=k

λi

)
(
ζt(Ω)

)
=

l∑

i=k

ˆ
Ω

[(
|∇ui|2 − λk(Ω)u2i

)
∇ · ζ − 2∇ui ·Dζ · ∇ui

]
,

where (ui)k≤i≤l is an orthonormal basis of the eigenspaces associated to (λi(Ω))k≤i≤l.

4.5.1 Harnack inequality

Let us start by introducing the space of viscosity solutions relevant to us, which we will be denoted by
Sm,δ(L), m being the multiplicity of the eigenspace associated to λk(B).

Definition 4.5.7. Let L ≥ 1, δ ∈ R, m ∈ N∗. We define Sm,δ(L) to be the set of functions (v, v1, v1, . . . , vm, vm) ∈
H1(B1,R+)

2m+1 such that

|∇v| ≤ L,
|∇vi|, |∇vi| ≤ L|δ|

1
4 ,

0 <
vi
v
,
vi
v
≤ L|δ| 14 in {v > 0},

1

L
<
vi
vi
≤ L in {v > 0}

and for every z ∈ ∂{v > 0} with a contact sphere on either side with inward normal vector ν, there exists
numbers α > 0, αi > 0, αi > 0 such that x 7→ (α(x · ν)+, α1(x · ν)+, . . . , αm(x · ν)+) is a blow-up of
(v, v1, . . . , vm) at z in the sense of (4.39) and

α2 +

m∑

i=1

α2
i + α2

i

2
= 1 if δ > 0,

α2 +

m∑

i=1

αiαi = 1 if δ < 0.

Note that this last condition may be written as (∂νv)
2 +

∑m
i=1

(∂vi)
2+(∂νvi)

2

2 = 1 (resp (∂νv)
2 +∑m

i=1(∂vi)(∂νvi) = 1 when δ < 0) on ∂{v > 0} in the viscosity sense, although the traces of the gra-
dients are not actually well-defined here.
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Remark 4.5.8. According to this definition, αi and αi are bounded by L|δ| 14 , so that α2 ≥ 1−L2m|δ| 12 .
In particular α ≥ 1

2 when L2m|δ| 12 ≤ 1
8 , which is the hypothesis we will make in order to obtain Harnack

inequalities.

In next Lemma we link this definition of viscosity solutions to our free boundary problem. Let Ω be
a minimizer of (4.36) and let w, uk, . . . , ul be its torsion function and eigenfunctions associated to the
eigenvalues (λi(Ω))k≤i≤l. Set m = l − k + 1, and Bx,r a ball of Rn. We let

v(y) =
1

r
Q− 1

2

(
1−mT (Ω)2|δ| 12

) 1
2
w(x+ ry),

vi(y) =
1

r
Q− 1

2T (Ω)|δ| 14
(
w + |δ| 14uk+i−1

)
(x+ ry), i = 1, . . . ,m,

vi(y) =
1

r
Q− 1

2T (Ω)|δ| 14
(
w − |δ| 14uk+i−1

)
(x+ ry), i = 1, . . . ,m.

Lemma 4.5.9. There exists Cn, Ln > 0 such that if |δ| ≤ Cnk
−2− 8

n then for any r ≤ 1,

(v, v1, v1, . . . , vm, vm) ∈ Sm,δ (Ln) .

Proof. Since |ui| ≲ k
2
n
+ 1

2w for k ≤ i ≤ l (recall Lemma 4.2.2) then for |δ| ≪ k−2− 8
n we have 0 <

vi, vi ≲ |δ|
1
4 v and also 1 ≲ vi/vi ≲ 1. By Proposition 4.5.5 and (4.38) we have |∇w| ≲ 1 and |δ| 14 |∇ui| ≲

|δ| 14k 2
n
+ 1

2 ≲ 1 since |δ| ≪ k−2− 8
n , hence there exists L = Ln verifying the properties of Definition 4.5.7.

Finally, for any z ∈ ∂{v > 0} which has a contact sphere with inward vector ν, thanks to Lemma 4.5.6
there exists blow-ups (β(x · ν)+, βk(x · ν)+, . . . , βl(x · ν)+) of (w, uk, . . . , ul) at z such that

β2 + T (Ω)2δ
l∑

i=k

β2i = Q

which may be rearranged as

(
1−mT (Ω)2|δ| 12

)
β2 + T (Ω)2|δ| 12

l∑

i=k

(
β2 + sign(δ)|δ| 12β2i

)
= Q.

Letting

α = Q− 1
2

(
1−mT (Ω)2|δ| 12

) 1
2
β,

αi = Q− 1
2T (Ω)|δ| 14

(
β + |δ| 14βk+i−1

)
, i = 1, . . . ,m,

αi = Q− 1
2T (Ω)|δ| 14

(
β − |δ| 14βk+i−1

)
, i = 1, . . . ,m,

these correspond to the gradients of the blow-ups of (v, v1, . . . , vm) at z, thus concluding the proof.

As in [MTV21], the key observation consists in noting that if (v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L), then

(v,
√
v1v1, . . . ,

√
vmvm)

is a supersolution of a vectorial problem of the type of [KL18] because (see [MTV21, Lemma 2.9 and
Remark 4.1])

∆
√
vivi ≤

1

2

(√
vi
vi
∆vi +

√
vi
vi
∆vi

)
≤
√
L
(∆vi)+ + (∆vi)+

2

∂ν
√
vivi =

√
(∂νvi)(∂νvi) at blow-ups of contact points

(4.41)
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Similarly for any positive (ci)i=1,...,m with ci ∈ [1/(2L), 2L] we have that
(
v,

1

2
(c1v1 + c−1

1 v1), . . . ,
1

2
(cmvm + c−1

m vm)

)

is a subsolution in the sense that

∆
civi + c−1

i vi
2

≥ −ci + c−1
i

2
ε2,

∂ν

(
civi + c−1

i vi
2

)
≥
√

(∂νvi)(∂νvi) at blow-ups of contact points.
(4.42)

We prove an ε-regularity result, meaning we prove that if (v, v1, v1, . . . , vm, vm) is sufficiently flat in a
ball B1, then it is smooth in a smaller ball B1/2.

Definition 4.5.10. We say (v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) is ε-flat with parameters

a, b, (α, α1, α1, . . . , αm, αm)

when |a|, |b| ≤ ε and

0 ≤ b− a ≤ ε

α2 +

m∑

i=1

α2
i + α2

i

2
= 1 if δ > 0, α2 +

m∑

i=1

αiαi = 1 if δ < 0,

(xn + a)+ ≤
v(x)

α
,
vi(x)

αi
,
vi(x)

αi

≤ (xn + b)+ in B1,

|∆v|
α

,
|∆vi|
αi

,
|∆vi|
αi

< ε2 in B1 ∩ {v > 0}.

(4.43)

We remark that the second and third equations of (4.43) (evaluated at x → en) directly imply, for a
small enough ε,

αi

αi

∈
[
1

2L
, 2L

]
and αi, αi ≤ 2L|δ| 14 . (4.44)

In all the following we let η ∈ C∞c (R, [0, 1]) such that η ≡ 1 on [−3/5, 3/5] and η = 0 outside of
[−4/5, 4/5]. Then for any small enough t ∈ R we set

Ht := {(x′, xn) ∈ Rn : xn > −tη(|x′|)}.

We define three functions depending on t:




∆φt = 0 (B ∩Ht)

φt = xn (∂B ∩Ht)

φt = 0 (B ∩ ∂Ht)

,





∆ψt = 0 (B ∩Ht) \B
(
1
2en,

1
4

)

ψt = 1 B
(
1
2en,

1
4

)

ψt = 0 ∂(B ∩Ht)

,

{
∆ζt = 2 (B ∩Ht)

ζt = −χ ∂(B ∩Ht)

where χ ∈ C∞(B1, [0, 1]) is such that χ > 0 on B1 \ B 9
10

and χ ≡ 0 on B 9
10

. Note that ζt ≤ 0 and ψt ≥ 0

for each t.

Lemma 4.5.11. There exists tn ∈ (0, 1), cn, dn > 0 such that for any t ∈ (−tn, tn),

∂nψt ≥ cn, |∇φt − en| ≤ dnt, |ζt| ≤ dn, |∇ζt| ≤ dn, on ∂Ht ∩
{
|x′| ≤ 9

10

}
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and

If t > 0, φt ≥
(
xn +

1

32
t

)

+

on B 1
8
√
n
∩Ht,

If t < 0, φt ≤
(
xn +

1

32
t

)

+

on B 1
8
√
n
∩Ht.

Proof. For the three first estimates, we only explain how the estimate of ∂nψt is obtained, as the two
others are derived analogously. We have first that ∂nψ0 ≥ c > 0 for some c > 0 by Hopf Lemma, while
on the other hand by elliptic estimates ∥∂n(ψt ◦ Tt − ψ0)∥L∞(H0∩B 9

10
) ≲ t where Tt is a diffeomorphism

sending B ∩Ht over B ∩H0 = B ∩Hn, thus giving ∂nψt ≥ cn over ∂Ht ∩
{
|x′| ≤ 9

10

}
for any |t| ≤ tn for

some dimensional cn > 0 and tn > 0.
For the second point, we consider for 0 ≤ t ≤ 1

4
√
n

Pt(x) := xn + 4t

(
n

(
xn −

1

4
√
n

)2

− |x′|2
)
.

We check that Pt(x) ≤ x+n ≤ ϕt on ∂
(
Bn−1

1
2

×
[
−t, 1

4
√
n

])
, while ∆Pt = 8t, so by maximum principe we

have Pt ≤ φt on Bn−1
1
2

×
[
−t, 1

4
√
n

]
. Since we have Pt(x) ≥ xn + 1

32 t on B 1
8
√
n
∩Ht we deduce the claim in

this case. The case t < 0 is treated similarly.

Proposition 4.5.12. Let L ≥ 1, δ ∈ R and m ∈ N∗ be such that L2m|δ| 12 ≤ 1
8 . Then there exists cn > 0

such that for any ε≪ L− 1
2 and any (v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) that is ε-flat in the sense of Definition

4.5.10 with parameters
a, b, (α, α1, α1, . . . , αm, αm),

then there exists a′, b′ such that a ≤ a′ ≤ b′ ≤ b, b′ − a′ ≤ (1− cn)ε and

(xn + a′)+ ≤
v(x)

α
,
vi(x)

αi
,
vi(x)

αi

≤ (xn + b′)+ on B 1
8
√
n
.

Remark 4.5.13. The hypothesis L2m|δ| 12 ≤ 1
8 may be replaced by L2m|δ| 12 ≤ 1 − η for any η > 0, but

how small ε needs to be would depend on η.

Proof. First note that by the estimates (4.44) and the hypothesis L2m|δ| 12 ≤ 1
8 we get α2 ≥ 1

2 .

We suppose without loss of generality that b − a ≥ 1
2ε otherwise we are done. As a consequence we

have either v( 1
2
en)
α ≥ 1

2 + a+ ε
4 (Case A) or v( 1

2
en)
α ≤ 1

2 + b− ε
4 (Case B).

Case A. Without loss of generality, we can set a = 0, meaning v( 1
2
en)
α ≥ 1

2 + ε
4 .

Assume first δ < 0. Since |∆v| < αε2 in B1 ∩ {v > 0}, then for a small enough ε we get by the usual
Harnack inequality applied to the positive function v − αxn the existence of some σn ∈ (0, 1/4) such that

v(x)

α
≥ xn + 2σnε on B

(
1

2
en,

1

4

)
. (4.45)
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We now consider the set of t ≥ 0 such that the following m+ 1 inequalities are all verified on B ∩Ht:

v

α
≥ φt + εσnψt + ε2ζt,

√
vi
αi
· vi
αi

≥ φt + L
1
2 ε2ζt.

(4.46)

Note first that for each t ≥ 0,

∆v

α
< ε2 = ∆(φt + εσnψt + ε2ζt) in B ∩Ht \B(

1

2
en,

1

4
),

∆

√
vi
αi
· vi
αi

≤ L 1
2 ε2 < ∆

(
φt + L

1
2 ε2ζt

)
in B ∩Ht,

where we used (4.41) in the second series of inequalities.
By (4.45), it holds v(x)/α ≥ xn + σnεψ0(x). As a consequence the inequality for v is verified at t = 0

by maximum principle inside B ∩H0 \B(12en,
1
4), and for

√
vi
αi
· viαi

by maximum principle inside B ∩H0,
using also v(x)/α, vi/αi, vi/αi ≥ xn in B1 and noting that φ0 = xn and ζt ≤ 0. We can therefore consider
the largest t ≥ 0 such that the inequalities (4.46) are verified in B ∩Ht. We want to prove that t ≥ ϑnε
for some dimensional ϑn > 0. Note that we lose no generality in supposing that t is at most comparable
to ε (meaning t≪ ε), since the claim holds otherwise.

At the maximal t there is a equality in one of the inequalities (4.46) at some point x ∈ B ∩Ht. Let us
consider the possible cases.

• We cannot have x ∈ ∂(Ht ∩B) \B 9
10

, since ζt < 0, ψt = 0 and ϕt = xn over this set.

• Suppose that x ∈ B ∩Ht. Then let us show that in this case we must have v(x) > 0. Otherwise, we
would have v(x) = vi(x) = vi(x) = 0 so that necessarily xn ≤ 0. But ϕt + L

1
2 ε2ζt > 0 (and likewise

φt + εσnψt + ε2ζt > 0) over B ∩Ht ∩ {xn ≤ 0}, which comes from ϕt + L
1
2 ε2ζt = ϕt − L

1
2 ε2χ = 0

over B ∩ ∂Ht ∩ {xn ≤ 0} and |∇(ϕt +L
1
2 ε2ζt)− en| ≪ 1 thanks to Lemma 4.5.11. As a consequence

v(x) > 0 and we can apply the maximum principle inside B ∩Ht ∩ {v > 0} to get that the equality
cannot happen for vi. On the other hand, equality cannot happen for v by maximum principle inside
{v > 0} ∩B ∩Ht \B(12en,

1
4), and since in B(12en,

1
4) one has for t ≲ ε:

φt + εσnψt + ε2ζt ≤ φt + εσn ≤ xn + Cnt+ εσn < xn + 2σnε.

As a consequence, x ∈ ∂Ht ∩ B 9
10

. Therefore (φt + εσnψt + ε2ζt)(x) = (φt + L
1
2 ε2ζt)(x) = 0 so that

v(x) = vi(x) = vi(x) = 0 and there is equality in all of the inequalities (4.46). Since on the other hand one
has B ∩Ht ⊂ {v > 0} by the argument above, hence at any interior contact sphere for B ∩Ht at x there
exists a blow-up of (v, v1, . . . , vm) for the form z 7→ (β(z−x) ·ν, β1(z−x) ·ν, β1(z−x) ·ν, . . . , βm(z−x) ·ν)
as in Definition 4.5.7.As a consequence we have the viscosity condition:
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1 = β2 +
m∑

i=1

βiβi ≥ α
2|∇(φt + εσnψt + ε2ζt)(x)|2 +

m∑

i=1

αiαi|∇(φt + L
1
2 ε2ζt)(x)|2

≥ α2
[
(∂nφt)(x)

2 + 2∂nφt(x)∂nψt(x)σnε− Cnε
2
]
+

m∑

i=1

αiαi

[
(∂nφt(x))

2 − CnL
1
2 ε2
]

for some large enough dimensional constant Cn > 0

≥ ∂nφt(x)
2 + 2α2∂nφt(x)∂nψt(x)σnε− CnL

1
2 ε2

≥ 1− 2dnt+
1

2
cnσnε− CnL

1
2 ε2

where cn, dn > 0 come from Lemma 4.5.11. So when ε≪ L− 1
2 we get

t ≥ cnσn
8dn

ε =: ϑnε

so that using Lemma 4.5.11 we find for any y ∈ B 1
8
√
n
∩Ht

v(y)

α
,
vi(y)

αi
,
vi(y)

αi

≥ φt(y) +
√
Lε2ζt(y) ≥ yn +

1

32
ϑnε−

√
L∥ζt∥∞ε2 ≥ yn +

1

64
ϑnε

for ε≪ 1. For y ∈ B 1
8
√
n
\Ht the above inequalities always hold, since yn + 1

64ϑnε ≤ 0 and the functions
are non-negative. This finishes the proof when δ < 0.

The case δ > 0 follows the same strategy, and was proven in [KL18, Theorem 5.1] (here in addition we
keep track of the constants).

Case B. We suppose without loss of generality that b = 0, meaning v( 1
2
en)
α ≤ 1

2 − ε
4 . The proof here

follows the same outline for which we give rough details.
First, the Harnack inequality applied to αxn − v gives the existence of some σn > 0 such that v(x)

α ≤
xn − 2σnε on B

(
1
2en,

1
4

)
. We now consider the largest t > 0 such that all the following inequalities are

verified in B ∩H−t:
v

α
≤ φ−t − εσnψ−t − ε2ζ−t,

1

2

(√
αi

αi
vi +

√
αi

αi

vi

)
≤ φ−t − (2L)

1
2 ε2ζ−t.

It is verified at t = 0 by the previous remark and maximum principle. We then identify a contact point
x associated to the largest t that we suppose small compared to ε: it is not inside B ∩H−t by maximum
principle since

∆v

α
> ∆(φ−t − εσnψ−t + ε2ζ−t) in B ∩H−t \B(

1

2
en,

1

4
)

∆
1

2

(√
αi

αi
vi +

√
αi

αi

vi

)
> ∆

(
φ−t − (2L)

1
2 ε2ζ−t

)
in B ∩H−t.

where we use the estimates (4.44) on the last line. The contact point is not in ∂(B1 ∩H−t) \B 9
10

for the
same reason as earlier, and so finally it is in ∂H−t∩B 9

10
. We then use the boundary condition (understood

in the viscosity sense at the contact point)

1 ≤ (∂νv)
2 +

m∑

i=1

(
∂ν

1

2

(√
αi

αi
vi +

√
αi

αi

vi

))2

≤ 1 + ant− bnε
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for some an, bn > 0. This yields t ≥ ϑnε for some ϑn > 0 and we conclude by the last property of lemma
4.5.11. The case δ > 0 is similar.

Proposition 4.5.14. Let L ≥ 1, δ ∈ R and m ∈ N∗ be such that L2m|δ| 12 ≤ 1
8 . Then there exists Cn > 0

and κn ∈ (0, 1), such that the following holds: for any ε ≪ L− 1
2 , and for any (v, v1, v1, . . . , vm, vm) ∈

Sm,δ(L) that is ε-flat in the sense of definition 4.5.10 with parameters

a, b, (α, α1, α1, . . . , αm, αm),

then defining

V (x) =
v(x)− αxn

αε
, V i(x) =

vi(x)− αixn
αiε

, V i(x) =
vi(x)− αixn

αiε
,

Wi(x) =

√
vivi −

√
αiαixn√

αiαiε

we have that for any x, y ∈ B 1
2
∩ {v > 0} such that |x− y| > ε,

|V (x)− V (y)| ,
∣∣V i(x)− V i(y)

∣∣ ,
∣∣V i(x)− V i(y)

∣∣ , |Wi(x)−Wi(y)| ≤ Cn|x− y|κn . (4.47)

Proof. This is obtained by applying successively the previous Lemma, as in [DS11, Corollary 3.2] or [Vel19,
Lemma 7.14].

4.5.2 Flatness improvement

We let τ = τn ∈ (0, 1) be a fixed universal constant (depending only on n) such that for any harmonic
function h : B1 → [−5, 5] and for any x ∈ Bτ it holds

|h(x)− h(0)− x · ∇h(0)| ≤ 1

8
τ (4.48)

Proposition 4.5.15. Let L ≥ 1, δ ∈ R and m ∈ N∗ with L2m2|δ| 12 ≤ 1
8 . Then there exists εn(L) such

that we have the following flatness reduction property for any ε < εn(L). Suppose (v, v1, v1, . . . , vm, vm) ∈
Sm,δ(L) is ε-flat in the sense of Definition 4.5.10 with parameters

a, b, (α, α1, α1, . . . , αm, αm),

Then there exists a′ ≤ b′, e′ ∈ Sn−1, and α′, α′
i, α

′
i verifying

α′2 +
m∑

i=1

α′
i
2 + α′

i
2

2
= 1 if δ > 0, α′2 +

m∑

i=1

α′
iα

′
i = 1 if δ < 0

such that (
e′ · x+ a′

)
≤ v(τx)

τα′ ,
vi(τx)

τα′
i

,
vi(τx)

τα′
i

≤
(
e′ · x+ b′

)
on B1 ∩

{v > 0}
τ

.

and b′ − a′ ≤ 1
2ε, with moreover

|e′ − en|,
∣∣∣∣1−

α′

α

∣∣∣∣ ,
∣∣∣∣1−

α′
i

αi

∣∣∣∣ ,
∣∣∣∣1−

α′
i

αi

∣∣∣∣ ≲ ε

This follows the proof of [KL18, Th 6.1], with a difference when the multiplicity of the eigenspace goes
to infinity.
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Proof. We proceed by contradiction and compactness. Suppose there exists a sequence εp → 0 (we drop
the index p and just write ε→ 0 to lighten the notations) and some sequences

(vε, vε1, v
ε
1, . . . , v

ε
mε , vεmε) ∈ Smε,δε(L), a

ε, bε, (αε, αε
1, α

ε
1, . . . , α

ε
mε , αε

mε)

which verify the hypotheses but not the conclusion. This means that one of the functions vε, vε1, vε1, . . .,
vεmε , vεmε does not verify the flatness improvement on Bτ .

Consider the sequences

V ε(x) =
vε(x)− αεxn

αεε
, V

ε
i (x) =

vεi (x)− αε
ixn

αε
i ε

, V ε
i (x) =

vεi (x)− αε
ixn

αε
iε

,

W ε
i (x) =

√
vεiv

ε
i −

√
αε
iα

ε
ixn√

αε
iα

ε
iε

.

We also write Ωε = B1∩{vε > 0} their (common) domain of definition, which converges locally Hausdorff
to B1 ∩ Hn since {x ∈ B1, xn > ε} ⊂ Ωε ⊂ {x ∈ B1, xn > −ε}. Each function has values in [−1, 1],
with laplacian bounded by ε in Ωε. Moreover thanks to Proposition 4.5.12, they verify the Hölder-type
property (4.47) for some κn ∈ (0, 1) up to the boundary ∂Hn.

After extraction in ε we have a local Hausdorff convergence of the graphs of V ε, V ε
i , V

ε
i on Ωε to the

graphs of functions V, V i, V i : B ∩Hn → [−1, 1], which are in C0,κn

loc (B ∩Hn) and harmonic in B ∩Hn (see
for instance [Vel19, Lemma 7.15]). The functions (W ε

i )ε→0 verify the same ocillation reduction so after
extraction their graph converge in the local Hausdorff sense to a limit Wi, which we identify (by taking a
limit for any x ∈ B ∩ {xn > δ}) as

Wi =
V i + V i

2
.

We now distinguish four cases depending on whether mε is stationary at some finite value m ∈ N∗ or
not, and whether δ > 0 or δ < 0. We detail the cases δ < 0 and outline the cases δ > 0, which may be
found (without control of the constants in m) in [KL18].

Case mε → m, δ < 0. We lose no generality in assuming mε = m for all ε. Up to extraction there exists
α, αi, αi ≥ 0 such that

αε → α, αε
i → αi, α

ε
i → αi,

V −V i and V −V i verifies a Dirichlet boundary condition on B1∩{xn = 0} (since V ε−V ε
i = V ε−V ε

i = 0
on ∂Ωε). This makes 2m Dirichlet boundary conditions for 2m+1 harmonic functions, and we claim that
we have an additional boundary condition

∂nh = 0 in B1 ∩ {xn = 0}, where h =

(
α2V +

m∑

i=1

αiαi

V i + V i

2

)
, (4.49)

holding in the viscosity sense.

Inequality ∂nh ≤ 0. To prove this claim set x0 ∈ B1 ∩ {xn = 0}, and we suppose by contradiction that
there are constants p > 0, z ∈ Rn−1 × {0}, σ > 0 such that

h(x) ≥ h(x0) + pxn + z · (x− x0) + σ

(
x2n −

1

n+ 1

∣∣x− x0
∣∣2
)

=: φ(x), ∀x ∈ B(x0, ρ) ∩Hn (4.50)

Note that we can always change p into p/2, replace σ by some arbitrarily large σ′ ≥ σ and ρ by some
small enough ρ′ < ρ such that the equality holds only at x = x0. Since the functions V − h, V i − h and
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V i − h are harmonic and vanish on B1 ∩ {xn = 0}, they are smooth over B1 ∩Hn so that there exists q,
qi, qi ∈ R such that

(V − h)(x) = qxn +O
(
|x− x0|2

)
,

(V i − h)(x) = qixn +O
(
|x− x0|2

)
,

(V i − h)(x) = q
i
xn +O

(
|x− x0|2

)
,

(Wi − h)(x) =
qi + q

i

2
xn +O

(
|x− x0|2

)
=: qixn +O

(
|x− x0|2

)
,

which verify in addition α2q +
∑m

i=1 αiαiqi = 0. Up to reducing p and increasing σ, we have by uniform
interior C2 estimates on the harmonic functions:

V (x) ≥ qxn + φ(x), Wi(x) ≥ qixn + φ(x)

in a neighbourhood of x0 in B ∩ Hn, which we denote by Bx0,ρ ∩ B ∩ Hn. Then by the local uniform
Hausdorff convergence of the graphs there exists cε → 0 such that

V ε(x) ≥ qxn + φ(x)− cε, W ε
i ≥ qixn + φ(x)− cε,

for x ∈ Bx0,ρ ∩ Ωε. This may be rewritten as

vε(x) ≥ αε (xn + εqxn + εφ(x)− εcε) ,
√
vεiv

ε
i (x) ≥

√
αε
iα

ε
i (xn + εqixn + εφ(x)− εcε) .

Hence, up to changing cε into 2cε + Cε, for some large enough constant C (that does not depend on ε),
we have for any x ∈ Bx0,ρ ∩ Ωε:

vε(x) ≥ αε(1 + εq)ψ0(x),
√
vεiv

ε
i (x) ≥

√
αε
iα

ε
i (1 + εqi)ψ0(x),

where for any t ≥ 0 we have defined

ψt(x) = xn + εφ(x)− εcε + t.

We can therefore consider the maximal tε ≥ 0 such that the previous set of inequalities still holds for the
functions vε,

√
vεiv

ε
i . There must be a contact point xε ∈ Bx0,ρ ∩ Ωε for one of the functions, and we may

assume without loss of generality (up to changing p into p/2, increasing σ and reducing ρ accordingly)
that xε → x0.

Suppose xε ∈ Ωε and that it is a contact point for vε (the same argument holds for the other functions
W ε

i ), and we then have by maximum principle

(1 + εq)ε
2σn

n+ 1
= (1 + εq)ε∆φ(xε) ≤ 1

αε
∆vε(xε) ≤ ε2,

which is a contradiction for a small enough ε. As a consequence xε ∈ ∂Ωε, so that there is equality in all
of the above inequalities at xε. Hence there exists a blow-up of (v, v1, . . . , vm) at xε, and comparing the
derivatives at this blow-up (4.41) we get

1 ≥ |αε|2(1 + εq)2|∇ψtε(x
ε)|2 +

m∑

i=1

αε
iα

ε
i (1 + εqi)

2|∇ψtε(x
ε)|2
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which after simplification becomes
|∇ψt(x

ε)|2 ≤ 1 + oε→0(ε).

This is a contradiction since |∇ψt(x
ε)|2 = 1 + 2pε + oε→0(ε). As a consequence we get ∂nh ≤ 0 on

B ∩ {xn = 0} in the viscosity sense.

Inequality ∂nh ≥ 0. Suppose indeed that this time h(x) ≤ φ(x) with p < 0 and σ < 0. Following the
previous reasonning, for some sequence cε → 0 and in some neighbourhood B(x0, ρ) ∩ Hn we have this
time

vε(x) ≤ αε(1 + εq)ψ0(x), v
ε
i (x) ≤ αε

i (1 + εqi)ψ0(x), v
ε
i (x) ≤ αε

i (1 + εq
i
)ψ0(x),

where ψt is defined as previously. Consider the largest t such that the inequalities

vε(x) ≤ αε(1 + εq)ψt(x),
1

2

(√
αε
i

αε
i

vεi (x) +

√
αε
i

αε
i

vεi

)
≤
√
αε
iα

ε
i (1 + εqi)ψt(x)

are verified in B(x0, ρ) ∩ Hn: at the largest t there is some contact point xε, and either xε /∈ Ωε by
maximum principle as earlier (we use here the estimates 4.44) or xε ∈ ∂Ωε and we have the viscosity
condition

1 ≤ |αε|2(1 + εq)2|∇ψtε(x
ε)|2 +

m∑

i=1

αε
iα

ε
i (1 + εqi)

2|∇ψtε(x
ε)|2

which after simplification becomes

|∇ψt(x
ε)|2(= 1 + 2pε+ o(ε)) ≥ 1 + oε→0(ε).

Since p < 0 this is a contradiction for a small enough ε.

Now that the Neumann boundary condition (4.49) is verified in the viscosity sense, h may be extended
a a smooth harmonic function on B1 by an even reflexion through ∂Hn.

We may now conclude: V , V i, V i may be respectively extended as harmonic function V ′, V ′
i, V

′
i on

B1 (through reflections), with values in [−5, 5]. Indeed we first write

V =

(
α2V +

m∑

i=1

αiαi

V i + V i

2

)
+

m∑

i=1

αiαi

(V − V i) + (V − V i)

2
.

The first term extends by even reflection thanks to (4.49), and the second by odd reflection (since V −V i =
V − V i = 0 over B1 ∩ {xn = 0}), and as a consequence V extends harmonically with a bound |V | ≤ 3.
We then write for each i, V i = V − (V − V i) and V i = V − (V − V i), so that V i, V i extend harmonically
in B1 into functions bounded by 5. Recalling (4.48) we find c ∈ R, z ∈ Rn−1 × 0, q, qi, qi ∈ R such that
for any x ∈ Bτ ,

∣∣V (x)− c− z · x′ − qxn
∣∣ ≤ 1

8
τ,

∣∣V i(x)− c− z · x′ − qixn
∣∣ ≤ 1

8
τ,

∣∣∣V i(x)− c− z · x′ − qixn
∣∣∣ ≤ 1

8
τ.

Thus by Haudsdorff convergence of the graphs, for any small enough ε and any x ∈ Bτ we have
∣∣∣∣
vε(x)− αεxn

εαε
− c− z · x′ − qxn

∣∣∣∣ ≤
1

6
τ (4.51)
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and the same holds accordingly for vεi , v
ε
i . Set now

Sε = (1 + εq)2(αε)2 +
m∑

i=1

αε
iα

ε
i (1 + εqi)(1 + εq

i
).

Since qα2 +
∑m

i=1 α
ε
iα

ε
i

qi+q
i

2 = 0, then |Sε − 1| = o(ε). Let now

αε′ =
(1 + εq)αε

√
Sε

, αε
i
′ =

(1 + εqi)α
ε
i√

Sε
, αε

i
′ =

(1 + εqi)α
ε
i√

Sε
,

and let
e′ =

en + εz√
1 + ε2|z′|2

, a′ =
c

τ
− 1

4
ε, b′ =

c

τ
+

1

4
ε.

Then (4.51) may be rewritten as

[
(1 + εq)en + εz′

]
· x+ εc− 1

6
τ ≤v

ε(x)

αε
≤
[
(1 + εq)en + εz′

]
· x+ εc+

1

6
τ,

[
(1 + εqi)en + εz′

]
· x+ εc− 1

6
τ ≤v

ε
i (x)

αε
i

≤
[
(1 + εqi)en + εz′

]
· x+ εc+

1

6
τ,

[
(1 + εq

i
)en + εz′

]
· x+ εc− 1

6
τ ≤v

ε
i (x)

αε
i

≤
[
(1 + εq

i
)en + εz′

]
· x+ εc+

1

6
τ,

for any x ∈ Bτ ∩ Ωε, which simplifies as ε→ 0 to

e′ · x+ a′ ≤ vε(x)

α′ε ,
vεi (x)

α′
i
ε ,

vεi (x)

α′
i
ε ≤ e′ · x+ b′, ∀x ∈ Ωε ∩Bτ

so that all functions verify the flatness improvement, which is a contradiction for small enough ε. This
concludes the proof in this case.
Case mε → m, δ > 0. This case follows more closely [KL18]; the only difference here is that the Neumann
boundary condition verified at the limit is

∂n

(
α2V +

m∑

i=1

α2
iV i + α2

iV i

2

)
= 0 in B1 ∩ {xn = 0}.

Case mε → ∞. In this case we treat δ > 0 and δ < 0 at once. Define V ε, V
ε
i and V ε

i as previously and
thanks to Lemma 4.5.16 below, we may change their order (in i) and assume a convergence to some limits
V, V i and V i as ε → 0 (in the sense of local Hausdorff convergence of the graphs) which is uniform in
i. We still have the Dirichlet boundary condition V − V i = V − V i = 0 on B1 ∩ {xn = 0}. Due to the
estimates (4.44) we have ∣∣1− (αε)2

∣∣ ≤ 4L2|δε| 12mε ≤ 2L2(mε)−1 → 0.

We now prove the Neumann boundary condition (in the viscosity sense)

∂nV = 0 on B ∩ {xn = 0}. (4.52)

We proceed as previously: letting x0 ∈ B1 ∩ {xn = 0}, we pick a polynomial function defined as in (4.50)
with p > 0 touching V from below at a point x0. Writing V i(x) = V (x) + qixn + O(|x − x0|2) (where
the remainder term only depends on 1 − |x0| and n, by uniform regularity of harmonic functions) and
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similarly for V i, using the uniform convergence of the graphs we get that in a neighborhood Bx0,ρ ∩Ωε of
x0 it holds for every i:

vε(x) ≥ αψ0(x), v
ε
i (x) ≥ αi(1 + εqi)ψ0(x), v

ε
i (x) ≥ αi(1 + εq

i
)ψ0(x) if δ > 0,

vε(x) ≥ αψ0(x),
√
vεi (x)v

ε
i (x) ≥

√
αiαε

i

(
1 + ε

qi + q
i

2

)
ψ0(x) if δ < 0,

where for any t ≥ 0 we have defined

ψt(x) = xn + εφ(x)− εcε + t

and cε → 0+. Note that the (qi, qi) are uniformly bounded by a constant M only depending on n and
1− |x0|.

Taking then the largest tε ≥ 0 such that these inequalities are verified over Bx0,ρ ∩Ωε for every i, then
there is a contact point xε either for the function vε or one of the vεi , v

ε
i , with xε → x0. Then as previously

by maximum principle the contact point xε lies in ∂Ωε when ε is small enough, and there is equality at
xε in all of the inequalities. Comparing the derivatives at xε we get (with the viscosity condition)

1 ≥ |αε|2|∇ψtε(x
ε)|2 +

mε∑

i=1

1

2

(
|αε

i |2(1 + εqi)
2 + |αε

i |2(1 + εq
i
)2
)
|∇ψtε(x

ε)|2

≥
(
1− 2L2mε|δε| 12 (Mε+M2ε2)

)
|∇ψtε(x

ε)|2

≥
(
1− M

mε
ε+ oε→0(ε)

)
(1 + ε∂nφ(x

ε)) ,

which is a contradiction for small enough ε since ∂nφ(xε)→ p > 0. This ensures ∂nV ≤ 0 over B1∩{xn =
0} in the viscosity sense.

Likewise we get ∂nV ≥ 0 on {xn = 0} in the viscosity sense. As a consequence V verifies the Neumann
boundary condition (4.52). We may extend V by an even reflexion and the V − V i, V − V i by odd
reflexions, so that V , V i, V i extend as harmonic function on B1 with values in [−3, 3], and relying on
(4.48) we obtain as previously a contradiction, finishing the proof in the case mε →∞.

To deal with the case mε →∞ we made use of the following Lemma, which is a general statement on
sequences in compact metric spaces.

Lemma 4.5.16. Let (X, d) be a metric compact space. Let mk be a sequence of integers such that mk →∞
and (xkj )k∈N∗,1≤j≤mk

be a sequence in X. Then there exists a sequence of permutations σk ∈ S(1,mk) and
a sequence (xj)j∈N∗ such that

lim inf
k→∞

sup
1≤j≤mk

d
(
xkσk(j), xj

)
= 0.

We do not claim that this lemma is original, but since we have not found any reference in the litterature
we provide hereafter a short proof.

Proof. Note first that it is enough to prove the Lemma for the Cantor set X = {0, 1}N∗ endowed with the
dyadic metric d(x, y) = 2− inf{i≥1:x(i)̸=y(i)}, as it surjects continuously onto any compact metric space. We
write XN = {0, 1}N and πN : X → XN the projection onto the first N coordinates. Let φ1 : N∗ → N∗ be
an extraction such that the number of 0’s and 1’s among

(
π1x

φ1(k)
1 , . . . , π1x

φ1(k)
mφ1(k)

)
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is nondecreasing in k. Starting from φ1 we define recursively φN in the following way: if φN−1 is given
we build φN as an extraction of φN−1 verifying that the number of occurrences of each b ∈ XN in

(
πNx

φN (k)
1 , . . . , πNx

φN (k)
mφN (k)

)

is nondecreasing in k. We finally set φ(k) := φk(k). We now define a sequence of permutations σk ∈ Smφ(k)

as follows: let σ1 be the identity, and provided σk is given we define σk+1 such that for each
(
πkx

φ(k+1)
1 , . . . , πkx

φ(k+1)
mφ(k+1)

)

there are at least as many occurrences of each element of Xk as in
(
πkx

φ(k)
1 , . . . , πkx

φ(k)
mφ(k)

)

This is ensured by finding σk+1 ∈ Smφ(k+1)
such that for each j ∈ {1, . . . ,mφ(k)}, we have

πkx
φ(k+1)

σk+1(j)
= πkx

φ(k)

σk(j)
.

We now define xj as the unique element of X such that for every k ∈ N∗, as soon as mφ(k) ≥ j we have

πkxj = πkx
φ(k)

σk(j)
.

By construction this gives for every k ∈ N∗, j ∈ {1, . . . ,mφ(k)}:

d
(
x
φ(k)

σk(j)
, xj

)
≤ 1

2k+1
.

Hence (x
φ(k)

σk(j)
) −→
k→∞

(xj) thus concluding the proof.

Corollary 4.5.17. Let L ≥ 1 and δ ∈ R. Then there exists εn(L) > 0, γn ∈ (0, 1) verifying the following
property. For any m ∈ N∗, δ ∈ R verifying L2m2|δ| 12 ≤ 1

8 , and for any ε < εn(L), (v, v1, v1, . . . , vm, vm) ∈
Sm,δ(L) that is ε-flat in the sense of Definition 4.5.10, then there exists g ∈ C1,γn

(
Bn−1

1/2 , [−ε, ε]
)

such that
∥g∥C1,γn

(
Bn−1

1/2

) ≲ ε and

{v > 0} ∩
(
Bn−1

1/2 × [−1/2, 1/2]
)
=
{
(x′, xn) ∈ Bn−1

1/2 × [−1/2, 1/2] : xn ≥ g(x′)
}
.

Proof. This step is classical, and comes from iterating the flatness improvement Proposition 4.5.15 as is
done in [Vel19, Theorem 8.1].

This implies that for small enough δ any minimizer Ω has its boundary which can be written as a C2,γ
on the sphere. This is the object of next Lemma.

Lemma 4.5.18. Suppose that |δ| ≪ k−(6+
8
n)gn(k) and let Ω be a centered minimizer of (4.36). Then

there exists γ = γn ∈ (0, 1) and g ∈ C2,γ
(
∂B,

[
−1

2 ,
1
2

])
with ∥h∥C2,γ(∂B) ≲ 1 such that

∂Ω = {(1 + h(x))x, x ∈ ∂B}
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Proof. For the C1,γ estimate on h we proceed exactly as in the proof of Lemma 4.4.14. We again use
partial hodograph transform as in the proof of Lemma 4.4.15. This time instead of (4.28) we obtain the
system 




Tr
[
A(∇v)∇2v

]
= ∂nv

α (B ∩Hn),
Q
α2 (∂nv)

2 −
(
1 + δ

∑l
i=k |∇vi|2

)
|∇′v|2 = 1 (B ∩ ∂Hn),

Tr
[
A(∇v)∇2vi

]
= ∂nvi

α − λkvi (B ∩Hn),

vi = 0 (B ∩ ∂Hn).

We then proceed similarly as in 4.4.15 to get the announced C2,γ estimate: first the vis are locally C2,γ up
to the boundary ∂Hn by elliptic regularity up to the boundary with Dirichlet condition. Then v verifies
a nonlinear oblique boundary condition, and by considering the discrete derivative vτ,i =

v(x+τei)−v(x)
τ we

get a C2,γ estimate on v as well.

4.5.3 Minimality of the ball among nearly spherical sets.

The purpose of this subsection is to show the minimality of the ball for the functional T−1 + δ
∑l

i=k λi
among nearly spherical sets in the sense of Definition 4.4.16. The strategy is the same as in Subsection
4.4.4, with some differences due to the fact that we are considering multiple eigenvalues. We will make
use of Lemma 4.4.18 which still applies to multiple eigenvalues. The minimality result is the following.

This time in the definition of a nearly spherical (see Definition 4.4.16) we rather fix α ∈ (0, γ) where
γ = γn is given by Lemma 4.5.18 instead of Lemma 4.4.15, although for simplicity we do not introduce
additional definition and notations.

Proposition 4.5.19. Let Bh be a nearly spherical set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k) and suppose

that |δ| ≪ k−(2+
8
n)gn(k). Then we have

T (Bh)
−1 + δ

l∑

i=k

λi(Bh) ≥ T (B)−1 + δ

l∑

i=k

λi(B)

with equality if and only if Bh = B.

As in the case of Proposition 4.4.17 this is achieved by performing a second order Taylor expansion
of the functional T−1 +

∑l
i=k λi, the main difference being that the eigenvalues λk(B) = . . . = λl(B) are

multiple, so that each individual eigenvalue is not differentiable at ζ = 0. The key idea is that on the
other hand, the sum

∑l
i=k λi((Id+ ζ)(B)) is smooth in ζ (and even analytic, see [LLdC06, Theorem 2.6]),

and has a critical point at the ball.

Proposition 4.5.20. Let Bh be a nearly spherical set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k). Then it holds

∣∣∣∣∣
l∑

i=k

(λi(Bh)− λi(B))

∣∣∣∣∣ ≤ Cn
k2+

8
n

gn(k)
∥h∥2

H1/2(∂B)
.

Proof. Recall that by definition of a nearly spherical set it holds ∥h∥C2,α(∂B) ≤ 1.
We proceed as in the proof of Proposition 4.4.19: letting (µi(t), ui(t)) be given by Lemma 4.4.18, since

∥h∥L1(∂B) ≪ k−1− 4
n gn(k) we have by the same argument that |µi(t) − µj(t)| ≥ 1

2gn(k) for any |t| ≤ 1
and i, j such that i ∈ {k, . . . , l}, j /∈ {k, . . . , l}. As a consequence, uk(t), . . . , ul(t) is an orthonormal
basis of eigenfunctions of the sum of eigenspaces corresponding to (λi(Bth))i=k,...,l, and (µi(t))i=k,...,l is a
permutation of (λi(Bth))i=k,...,l.
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We have
d

dt

∣∣∣∣
t=0

l∑

i=k

λi(Bth) =
l∑

i=k

µ′i(0) = −
ˆ
∂B

(
l∑

i=k

|∇ui(0)|2
)
ζ · ν.

Because of the structure of the eigenfunctions of the ball, we know that
∑l

i=k |∇ui(0)|2 is a constant,
which we denote by cn,k, and we thus have

d

dt

∣∣∣∣
t=0

(
l∑

i=k

λi(Bth) + cn,k|Bth|
)

= 0.

Also by elliptic regularity we have cn,k ≲ k1+
6
n . Using a Taylor formula and since |B| = |Bh|, there exists

some t ∈ [0, 1] such that

l∑

i=k

(λi(Bh)− λi(B)) =
1

2

(
l∑

i=k

µ′′i (t) + cn,k
d2

ds2

∣∣∣∣
s=t

|Bsh|
)
.

To reduce notation we fix t and we do not write the dependency in t in the rest of the proof. We thus
set Ω = Bth, ui = ui(t), vi := u′i(t) and write µi,µ′i,µ

′′
i in place of µi(t),µ′i(t),µ

′′
i (t). The expression of µ′′i

takes the form

µ′′i =

ˆ
Ω
2
(
|∇vi|2 − µiv2i

)
+

ˆ
∂Ω
|∇ui|2

[
H(ζ · ν)2 − b(ζτ , ζτ ) + 2ζτ · ∇|∂Ω(ζ · ν)

]
(4.53)

and each vi verifies 



−∆vi − µivi = µ′iui (Ω),

vi = −(ζ · ν)∂νui (∂Ω),´
Ω(viuj + vjui) = 0, ∀j ∈ N∗,

(4.54)

where the last line is a consequence of
´
Bth

ui(t)uj(t) = δij for all t.

The “geometric” terms in (4.53) are estimated exactly as in the proof of Proposition 4.4.19. We thus
have ∣∣∣∣

ˆ
∂Ω
|∇ui|2

[
H(ζ · ν)2 − b(ζ|∂Ω, ζ|∂Ω) + 2ζ · ∇|∂Ω(ζ · ν)

]∣∣∣∣ ≲ k1+
6
n ∥h∥2

H1/2(∂B)
.

For estimating the first term of (4.53), there is a difference with the case of a simple eigenvalue lying
in the fact that we do not have a good control of

´
Ω viuj when i, j ∈ {k, . . . , l}. Refining the analysis we

will see that these terms in fact cancel in the sum
∑

i∈I µ
′′
i .

Set I = {k, . . . , l} and for each i ∈ I write vi = zi +wi with zi the harmonic extension of −(∂νui)ζ · ν
and wi ∈ H1

0 (Ω). The functions zi verify the same estimates as in the proof of Proposition 4.4.19:

∥zi∥H1(Ω) ≲ k
1
2
+ 4

n ∥h∥H1/2(∂B), ∥zi∥L2(Ω) ≲ k
1
2
+ 2

n ∥h∥H1/2(∂B).

The function wi verifies −(∆ + µi)wi = µizi + µ′iui which ensures

∀j ̸= i, (µj − µi)
ˆ
Ω
wiuj = µi

ˆ
Ω
ziuj (4.55)

or, written differently,

∀j ̸= i, (µj − µi)
ˆ
Ω
viuj = µj

ˆ
Ω
ziuj . (4.56)
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We have
∑

i∈I

ˆ
Ω

(
|∇vi|2 − µi|vi|2

)
=
∑

i∈I

ˆ
Ω

(
|∇zi|2 + |∇wi|2 − µiv2i

)

=
∑

i∈I

ˆ
Ω
|∇zi|2 +

∑

i∈I,j∈N∗

µj

(ˆ
Ω
wiuj

)2

− µi
(ˆ

Ω
viuj

)2

=
∑

i∈I

ˆ
Ω
|∇zi|2 +

∑

i∈I,j /∈I

(
µ2i

µj − µi
− µi

)(ˆ
Ω
ziuj

)2

+
∑

i∈I,j∈I
µj

(ˆ
Ω
ziuj

)2

− (µj − µi)
(ˆ

Ω
viuj

)2

,

where we used (4.56) in the last line. Thanks to the orthogonality conditions from (4.54), we have∑
i,j∈I(µi − µj)

(´
Ω viuj

)2
= 0, hence we conclude

∣∣∣∣∣
∑

i∈I

ˆ
Ω

(
|∇vi|2 − µi|vi|2

)
∣∣∣∣∣ ≲

∑

i∈I
∥∇zi∥2L2(Ω) + gn(k)

−1k
4
n

∑

i∈I
∥zi∥2L2(Ω)

≲ gn(k)
−1k1+

8
n |I|∥h∥2

H1/2(∂B)

≲ gn(k)
−1k2+

8
n ∥h∥2

H1/2(∂B)
.

As a consequence
∣∣∣
∑l

i=k µ
′′
i (t)

∣∣∣ ≲ k2+
8
n gn(k)

−1∥h∥2
H1/2(∂B)

, thus finishing the proof.

Proof of Proposition 4.5.19. This is done exactly as in the proof of Proposition 4.4.17.

4.5.4 Conclusion

Proof of Proposition 4.5.1. We proceed exactly as in the proof of Proposition 4.4.1. Since |δ| ≪ k−(3+
4
n)

then by application of Proposition 4.5.5 there exists a minimizer Ω (which we can suppose to be centered)
with |Ω∆B| ≲ k3+

4
n |δ|. By Lemma 4.5.18, since |δ| ≪ k−6− 8

n gn(k) then Ω = Bh where ∥h∥C2,γ(∂B) ≲ 1
and

∥h∥L1(∂B) ≲ |Ω∆B| ≲ k3+
4
n |δ|.

From this we get by interpolation between L1 and C2,γ norms that when k3+
4
n |δ| ≪ 1, then Ω is nearly

spherical in the sense of Definition 4.4.16. When k3+
4
n |δ| ≪ k−2− 8

n gn(k) (which is verified for |δ| ≪
k−6− 10

n gn(k)) we can therefore apply Proposition 4.5.19 to conclude that Ω is a ball.

4.6 Discussion and consequences

4.6.1 About the sharpness of the results

We prove in the proposition below that the exponents 1/2 and 1 on the right-hand side of (4.1) given by
Theorems 4.1.1, 4.1.2 and 4.1.3 are sharp for every k in dimension n = 2. Proving it for any dimension
would require a full second order analysis of the spectrum of smooth deformations of the ball in every
dimension, in the spirit of the two dimensional work of [Ber15].
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Proposition 4.6.1. Let n = 2 and k ≥ 2. There exists a constant ck > 0 and Ωε = ϕε(B) a sequence of
domains (in A) with ∥ϕε − Id∥C1 ≤ ε such that

if λk(B) is simple |λk(Ωε)− λk(B)| ≥ ck(λ1(Ω)− λ1(B)), (4.57)

if λk(B) is double |λk(Ωε)− λk(B)| ≥ ck (λ1(Ω)− λ1(B))
1
2 , (4.58)

with each side going to 0 as ε→ 0.

Proof. Suppose first λk(B) is simple. Then, following [Ber15, Lemmas 1 and 3] we get an explicit pertur-
bation ϕε of the identity, expressed as a Fourier series, which is preserving the area at the second order
and for which the second order term in the asymptotic developments of both λ1(ϕ

ε(B)) and λk(ϕ
ε(B))

are non vanishing, proving (4.57).
If λk(B) is double, (for instance λk(B) = λk+1(B)), then for any vector field ζ ∈ C∞c (R2,R2) such that´

∂B ζ · x = 0 the directional derivative of λk, λk+1 in the direction ζ are respectively the first and second
eigenvalues of the symmetric matrix

(
−
´
∂B |∇uk|2ζ · x −

´
∂B∇uk · ∇uk+1ζ · x

−
´
∂B∇uk · ∇uk+1ζ · x −

´
∂B |∇uk+1|2ζ · x

)
.

Moreover, since the functions (uk, uk+1) are not radial, we may choose a field ζ such that
´
∂B |∇uk|2ζ ·x ̸= 0,

which gives a non-zero matrix with two nonzero (opposite) eigenvalues. Letting Ωε = (I+εζ)(Ω)

|(I+εζ)(Ω)|1/2 we have
|λk(Ωε)− λk(B)| > cε for some c > 0 and small enough ε, whereas λ1(Ωε)− λ1(B) < Cε2.

Remark 4.6.2. In the same spirit an application of [Ber15, Lemmas 5] proves that for any double
eigenvalue λk(B) = λk−1(B) for k ̸= 3, there exists a sequence of domains (Ωε) as in Proposition 4.6.1
such that

|λk−1(Ω
ε) + λk(Ω

ε)− 2λk(B)| ≥ ck (λ1(Ω)− λ1(B))

About the linear control of a multiple eigenvalue. A consequence of Theorem 4.1.3 is the following
one side linear control: for any k ≥ 2 with λk(B) multiple and Ω ∈ A such that λ1(Ω) ≤ 2λ1(B), we have

if λk(B) < λk+1(B), then λk(Ω)− λk(B) ≥ −Cn,k(λ1(Ω)− λ1(B)),

if λk−1(B) < λk(B), then λk(Ω)− λk(B) ≤ Cn,k(λ1(Ω)− λ1(B)).

The second one generalizes (4.5) which was observed for k = 2.

4.6.2 Proof of the reverse Kohler-Jobin inequality: Corollary 4.1.5

The linear bound from Theorem 4.1.2 (or equivalently Proposition 4.4.1) gives us a reverse form of the
Kohler-Jobin inequality. This answers, in full generality, the question raised in [vdBBP21].

Proof of Corollary 4.1.5. By Proposition 4.4.1 there exists some δn > 0 such that A ∋ Ω 7→ T−1(Ω) −
δnλ1(Ω) is minimal on the ball. Let p ≥ 1 and Ω ∈ A be such that T (Ω)λ1(Ω)

1
p > T (B)λ1(B)

1
p , then

λ1(Ω)

λ1(B)
>

(
T (B)

T (Ω)

)p

≥ 1 + p

(
T (B)

T (Ω)
− 1

)
≥ 1 + δnpT (B) (λ1(Ω)− λ1(B))

which implies p < pn := (δnT (B)λ1(B))−1.

Note that we do not have explicit information on the value of pn even in low dimension, as the proof
of Proposition 4.4.1 relies on a contradiction and compactness argument at several points.
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4.6.3 Proof of Theorem 4.1.4

Proof of Theorem 4.1.4. It will be useful to us to partition {1, . . . , k} by intervals (Il)l=1,...,p consisting of
the clusters of eigenvalues. Let cl be the common value of ∂F

∂λi
(λ1(B), . . . , λk(B)) for i ∈ Il. Then there

exists some C > 0 such that for any λ ∈ Rk∗
+ :

∣∣∣∣∣F (λ1, . . . , λk)− F (λ1(B), . . . , λk(B))−
p∑

s=1

cs
∑

i∈Is
[λi − λi(B)]

∣∣∣∣∣ ≤ C
l∑

i=k

(λi − λi(B))2.

Applying Theorem 4.1.3 to each
∑

i∈Is [λi(Ω)− λi(B)] and Theorem 4.1.1 to each (λi(Ω) − λi(B))2, we
thus get the existence of some D > 0 such that

|F (λ1(Ω), . . . , λk(Ω))− F (λ1(B), . . . , λk(B))| ≤ D
(
T (Ω)−1 − T (B)−1

)
T (Ω)−1. (4.59)

Consider Ω ∈ A a domain such that

T−1(Ω) + δF (λ1(Ω), . . . , λk(Ω)) ≤ T−1(B) + δF (λ1(B), . . . , λk(B))

for some δ ∈ R. Due to Proposition (4.2.1), this gives

T−1(Ω) ≤ T−1(B) + δF ((λi(B))i=1,...,k) + C|δ|(1 + |(λi(Ω))i=1,...,k|)
≤ T−1(B) + δF ((λi(B))i=1,...,k) + CCn,k|δ|(1 + T−1(Ω)).

for some Cn,k > 0. As a consequence, if |δ| is small enough then T−1(Ω) ≤ 2T−1(B). Equation (4.59)
then provides

|F (λ1(Ω), . . . , λk(Ω))− F (λ1(B), . . . , λk(B))| ≤ 2DT (B)−1
(
T (Ω)−1 − T (B)−1

)

which gives the result when |δ| ≤ (2D)−1T (B).
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