
HAL Id: tel-04156601
https://theses.hal.science/tel-04156601

Submitted on 9 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep representation learning for time series averaging
Tsegamlak Terefe Debella

To cite this version:
Tsegamlak Terefe Debella. Deep representation learning for time series averaging. Automatic Control
Engineering. Université de Haute Alsace - Mulhouse, 2022. English. �NNT : 2022MULH4988�. �tel-
04156601�

https://theses.hal.science/tel-04156601
https://hal.archives-ouvertes.fr

Deep Representation Learning
for Time Series Averaging

Tsegamlak Terefe Debella
A Dissertation

Submitted to Université de Haute Alsace
Institut de Recherche en Informatique, Mathématiques, Automatique et Signal.

In Partial Fulfillment of the Requirement for
a Doctor of Philosophy in Computer Science

Jury
Prof. Laetitia Jourdan Dr. Charlotte Pelletier
Université de Lille Université Bretagne Sud
Examinatrice Examinatrice

Prof. Nicolas Meger Prof. Engelbert Mephu Nguifo
Université Savoie Mont Blanc Université Clermont Auvergne
Rapporteur Rapporteur

Supervisors
Prof. Germain Forestier Dr. Jonathan Weber
Université de Haute Alsace Université de Haute Alsace
co-directeur co-directeur

Dr. Maxime Devanne Dr.-Ing. Dereje Hailemariam
Université de Haute Alsace Addis Ababa University
co-encadrant co-director

Date of Submission: May 6, 2022

0Acknowledgments

This Ph.D. dissertation is a result of a collaboration among different organizations and individuals.
With this in mind, I would like to first thank the Embassy of France for Ethiopia and African Union and
the former Ethiopian Ministry of Science and Higher Education (MOSHE) for funding the Ethio-France
Ph.D. program. Moreover, I would also like to thank Madam Ouloufa Dorani, Madam Sophia Nicée
Samba, and Dr. Esayas Gebreyouhannes for handling the administrative issues associated with the
program. Without their continuous support, this dissertation would have not come to a realization.
Besides the funding organizations, I would also like to thank Université de Haute Alsace, Université
de Strasbourg, and Addis Ababa University, Addis Ababa Institute of Technology for creating and
sustaining the collaboration through difficult times.

In addition, I would also like to thank my supervisors Prof. Germain Forestier, Dr. Jonathan Weber,
Dr. Maxime Devanne, and Dr.-Ing. Dereje Hailemariam for their patience, understanding, and guid-
ance. Moreover, I would also like to thank Miss Bethelehem Seifu Shawel and Prof. Sofie Pollin for
collaborating with us in a joint work that aims to show a practical aspect of one of our proposal.
Furthermore, I would also like to thank the creators of the UCR archive for openly providing the
datasets that were used for experimental evaluations, Moreover, I would also like to thank Université
de Strasbourg for providing the cluster of GPUs (Mésocentre) that we used to conduct extensive
experiments. Last but not least, I would like to thank my family for their wise counsel, sympathetic
ears, and for keeping everything running while I was traveling for my study. I am in debt to the
kindness and understanding they have shown me throughout my study.

i

0Abstract
The estimation of an optimal time series average has been studied for over four decades. In practice,
time series averages are often key inputs to most temporal data mining techniques. For instance, in
one nearest centroid classification, time series averages serve as a template for the identification of
class membership. Additionally, in most time series clustering techniques, averages define the center
of gravity for cluster formation. To this end, in practice, the constraints placed on time series averages
are not trivial. In this regard, time series averages are expected to preserve the most descriptive
features (shapes) that are observed in the averaged set. They are expected to preserve the shapes
while minimizing the discrepancy between themselves and members of the averaged set. However,
in reality, meeting the demands of such constraints is not trivial due to temporal distortion (shifts)
that could arise for various reasons. For instance, a difference in the behavior of observed entities,
difference in the sampling rate of sensors, and a difference in size (shape) of objects from which
temporal datasets are extracted are some examples of sources of temporal distortion. In practice, such
sources of temporal shifts often misalign most descriptive shapes observed in an averaged set. To
this end, in most cases, an arithmetic mean becomes a sub optimal estimate for practical considerations.

With this understanding, over the course of four decades, a range of time series averaging heuristics
have been proposed. In general, all the proposed averaging heuristics suggest aligning members of an
averaged set prior to estimating an average. However, even if the alignment minimizes the impact of
temporal distortion, it often introduces additional challenges. For instance, all pioneering averaging
heuristics that utilize Dynamic TimeWarping (DTW) as an alignment technique have a computational
complexity that is directly proportional to the number and dimension of the averaged series. With
such observations in mind, in this dissertation, we avoid approaching time series averaging as a
multiple alignment problem. On the contrary, we see time series averaging as a generative challenge.
To this end, we first proposed to augment time series averages from the latent space of neural net-
works. In this regard, we first proposed to augment the averages from the latent space of variational
and non-variational autoencoders. After accessing these proposals, we then modified the overall
architecture and placed constraints that further refined the quality of extracted latent space features.
In this aspect, we proposed multi-tasking autoencoders that performed multi-class classification
and reconstruction. We mainly utilized the classifier to force the latent space features dense and
separable which in turn mimicked the effects of multiple alignments. With this modification, we are
able to provide time domain estimates that are far better than the arithmetic mean. However, we
also noticed that the multi-tasking setup can further be refined by addressing limitations observed
in the objective function. After addressing this limitation, we are able to provide a state-of-the-art
latent space registration. Moreover, we are also able to provide time-domain estimates that are far
better than the estimates of a time domain arithmetic mean and some of the DTW based averaging
heuristics.

ii

0Contents
1 Introduction 1

1.1 Statement of the Problem . 4
1.2 Objectives . 7

1.2.1 General Objective . 7
1.2.2 Specific Objectives . 7

1.3 Scope . 7
1.4 Organization . 8

2 Background and Related Works 9
2.1 The Dynamic Time Warping . 9

2.1.1 Weighted Dynamic Time Warping . 14
2.1.2 Soft Dynamic Time Warping . 17
2.1.3 Fast Dynamic Time Warping . 20

2.2 Averaging Techniques Based on Dynamic Time Warping 21
2.2.1 Non Linear Averaging and Alignment Filter 22
2.2.2 Prioritized Shape Averaging . 23
2.2.3 Dynamic Time Warping Barycenter Averaging 25

2.3 Deep Neural Networks and Time series Averaging . 27
2.3.1 Neural Network Layers . 28

2.3.1.1 Dense Layers . 29
2.3.1.2 Convolutional Layers . 30
2.3.1.3 Layers in Recurrent and Long Short Term Memory Neural Networks 32

2.3.2 Back-propagation, Activation Functions and Layer Initialization 35
2.3.2.1 Activation Functions . 37
2.3.2.2 Impact of Layer Initialization on Deep Neural Networks 39

2.3.3 A Neural Network Based Time Series Averaging 43
2.3.3.1 Diffeomorphic Temporal Alignment Network 44

2.3.4 On Some Renown Convolutional Neural Network Architectures 48
2.3.4.1 The Visual Group Geometry Group 16 Architecture 48
2.3.4.2 The Residual Network . 50
2.3.4.3 The Inception Network . 53

3 Time Series Averages from the Latent Space of Basic and Variational Autoencoders 56
3.1 Evaluation Datasets from the UCR Archive . 58

3.1.1 Time Series Extracted from Devices Power Consumption Measurements . . . 59
3.1.2 Time Series Extracted from Bio-potential Measurements 61

iii

3.1.3 Time Series Extracted from Sensor Measurements 62
3.1.4 Time Series Extracted from Images, Motion and Gestures 64
3.1.5 Time Series Extracted from Simulations, Spectrography, Hemodynamics and

High Resolution Melting Point Measurements 66
3.2 Time series Averages from the Latent Space of a Basic Autoencoder 69

3.2.1 Time Series Average Estimation Using Basic Autoencoders 72
3.2.2 Architecture Description . 73
3.2.3 Experimental Setup, Average Estimation and Evaluation Technique 74
3.2.4 Experimental Results and Interpretation . 77

3.3 Extended Evaluation of Basic Autoencoders and their Variational Variants 83
3.3.1 Proposed Modified Reduced VGG16 Autoencoder 83
3.3.2 Proposed Reduced Residual Network Architecture 86
3.3.3 Proposed Reduced Inception Version Two Autoencoder 88
3.3.4 Variational Variant of the Basic Autoencoders 90
3.3.5 Experimental Setup . 92
3.3.6 Experimental Results and Interpretation . 92

3.3.6.1 Evaluations for the Basic Autoencoders 92
3.3.6.2 Evaluations for the Variational Versions of the Basic Autoencoders 100

4 Time Series Averages from the Latent Space of Multi-Tasking Neural Networks 109
4.1 Time Series Averaging Using a Multi-tasking Autoencoder 109

4.1.1 Experimental Setup . 110
4.1.2 Experimental Results and Interpretation . 110
4.1.3 Experimental Results and Interpretation . 111

4.2 Extended Evaluation of Multi-tasking autoencoders 115
4.2.1 Modified Reduced VGG16 Based Multi-tasking Autoencoder 115
4.2.2 Proposed Reduced ResNet Multi-tasking Autoencoder 116
4.2.3 Inception Version Two Based Multi-tasking Autoencoder 117
4.2.4 Experimental Setup . 118
4.2.5 Experimental Results and Interpretation . 118

4.2.5.1 Evaluation of Averages Estimated with Basic Multi-tasking Autoen-
coders . 118

4.2.5.2 Evaluation of Averages Estimated with Variational Multi-tasking
Autoencoders . 125

4.3 Time Series Averaging Using a Multi-tasking Quantile Regression Autoencoder . . . 133
4.3.1 Proposed Architectures . 136
4.3.2 Experimental Setups . 137
4.3.3 Experimental Results and Interpretation . 137

4.4 Extended Evaluation of the Multi-tasking Quantile Regression Network 147
4.4.1 Experimental Setup . 147

iv

4.4.2 Experimental Evaluations . 147
4.4.2.1 Extended Assessment of the Impact of Network Architectures in

Multi-tasking Quantile Regression Autoencoders 148
4.4.3 Assessing the Impact of Encouraging Over and Under Estimations on the

Quality of Time Domain Estimates . 156

5 Time Series Averages in Cluster Level Forecasting 164
5.1 A Cluster Level Data Traffic Forecasting . 166

5.1.1 Experimental Setup . 172
5.1.2 Experimental Results . 173

5.2 Assessing the Impact of Clustering Techniques and Quality of Clusters Centroids on
Cluster Level Forecasting . 176
5.2.1 Dynamic Time Warping Barycenter Averaging Based K-Means 176
5.2.2 Deep Embedding Clustering and Multi-tasking Autoencoer Based Cluster

Centroid Estimation . 177
5.2.2.1 Deep Embedding Clustering with Time Domain Centroids 179
5.2.2.2 Extended Experimental Setup . 180
5.2.2.3 Experimental Results . 181

6 Summary, Conclusions & Outlook 192

Bibliography 195

List of Publications 204
*

v

0List of Figures
1.1 Time series extracted from different application scenarios [3], [4] 1
1.2 Time series defined from segmented images of Beetles and Flies [2], [4] 2
1.3 Arithmetic means of the Beetles and Flies time series 3

2.1 Multiple similar cost warping paths for two exemplary DTW warped time series . . . 12
2.2 An example warping of two time series using DTW 13
2.3 Dynamic Time Warping of two time series defined from samples of two sinusoides . 14
2.4 A demonstration on the effects of a constant amplitude offset on DTW 15
2.5 Weighted DTW of two time series extracted from sinusoidal signals 16
2.6 The Fréchet function as a point-wise minimum of component functions 19
2.7 Two proposed window constraints for the global cost matrix of DTW [32], [49] . . . 21
2.8 The three key steps taken by fast DTW [44] . 21
2.9 A demonstration of the Non Linear Averaging and Alignment Filter (NLAAF) 22
2.10 An arithmetic and NLAAF estimated means for the Funnel class of the URC’s CBF

dataset . 23
2.11 Discrepancy among NLAAF estimates due to the difference in pair selection 24
2.12 A demonstration of PSA using the Funnel class of the UCR archive’s CBF dataset . . 25
2.13 A demonstration of DBA and SDBA using the Funnel class of the UCR archive’s CBF

dataset . 27
2.14 Similarities among a natural neuron and its model in neural networks 28
2.15 A demonstration of a fully connected Dense layer [29] 29
2.16 A Demonstration of a one and two dimensional Convolutional layers 31
2.17 The unrolling of a Recurrent Neural Network (RNN) layer 33
2.18 A Long Short Term Memory (LSTM) cell . 34
2.19 Some practically available neuron activation functions 38
2.20 Saturation of a Sigmoid activated Dense layers [66] . 41
2.21 Saturation of tanh and Softsign activated Dense layers [66] 41
2.22 Normalized histogram plots of back-propagated gradients and activation values of tanh

activated Dense layers . 43
2.23 A demonstration of CPA velocity field based diffeomorphic transformation [74] . . . 45
2.24 Temporal Transformation (TT) layer [20] . 46
2.25 A basic Residual Network (ResNet) block [58] . 51
2.26 Impact of residual links in network performance [58] 52
2.27 Basic Inception blocks [60] . 54

3.1 Example time series from the UCR Device Category 60

vi

3.2 Example time series from the 𝐴𝑆𝐶𝐹1, 𝐻𝑜𝑢𝑠𝑒𝑇𝑤𝑒𝑛𝑡𝑦 and 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠 60
3.3 Sample time series from the UCR archive that fall within the bio-potential category . 61
3.4 Sample UCR archive time series that are defined from sensor measurements 64
3.5 Different shapes of ancient stone arrow heads . 65
3.6 Angular-based time series extraction from the images of ancient stone arrow heads . 65
3.7 Sample UCR archive datasets extracted from a synthetic data, spectrograph, hermo-

dynamics, and HRM measurements . 68
3.8 Block diagram of a basic autoencoder . 69
3.9 Proposed reduced VGG16 autoencoder architecture 72
3.10 Box-whisker plot comparison of NCC accuracies that are obtained using the averages

estimated with the basic autoencoder and its counterparts 78
3.11 Hypotesis tests for averages estimated with the basic autoencoder and its counterparts 79
3.12 t-SNE projections for the UCR archive’s FacesUCR test datasets 80
3.13 The UCR archive’s ECG200 and ECGFiveDays test datasets 81
3.14 Estimated averages for the UCR’s ECG200 and ECGFiveDays datasets 81
3.15 Proposed modified reduced VGG16 autoencoder . 84
3.16 Proposed reduced ResNet autoencoder architecture 86
3.17 Proposed reduced Inception version two autoencoder architecture 88
3.18 Block diagram of a basic varational autoencoder . 91
3.19 Box-whisker plot analysis of the NCC accuracies obtained with the modified reduced

VGG16, reduced Inception, and reduced ResNet architectures 94
3.20 t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent space of

different autoencoder architectures . 95
3.21 Evaluation of the impact of L2 regularization on the quality of means estimated with

basic autoencoders . 96
3.22 Evaluation of latent space NCC accuracies that are obtained using themodified reduced

VGG16, reduced Inception, and reduced ResNet . 97
3.23 Evaluation of latent space and time domain NCC accuracies that are obtained using

the modified reduced VGG16, reduced Inception, and reduced ResNet 97
3.24 Evaluation of time domain NCC accuracies that are obtained using: the modified

reduced VGG16, reduced Inception, and reduced ResNet on 89 UCR archive datasets . 98
3.25 Averages estimated for the UCR archives ECG200 AND ECGFiveDays datasets using:

the modified reduced VGG16, reduced Inception, reduced ResNet, and alternative
averaging techniques . 99

3.26 Box-whisker plot analysis of the NCC accuracies obtained with the variational: modi-
fied reduced VGG16, reduced Inception, and reduced ResNet architectures 101

3.27 Comparison of the latent embedding obtained with the variational and non variational
autoencoders for the UCR archive’s FacesUCR test dataset 103

3.28 Evaluation of the impact of L2 regularization on the quality of means estimated with
variational autoencoder . 104

vii

3.29 Comparison of NCC accuracies that are obtained with the estimates of variational
autoencoders and their counter parts . 105

3.30 Comparison of NCC accuracies that are obtained with the estimates of variational
autoencoders, arithmetic mean, DBA, and SDBA . 106

3.31 Comparison of median latent space and time domain NCC accuracies that are obtained
with the estimates of variational and non variational autoencoders 106

3.32 Visual comparison of estimated averages for the UCR archive’s ECG200 and ECGFive-

Days datasets. 107

4.1 Proposed reduced VGG16 multi-tasking autoencoder 110
4.2 Box-whisker plot comparison of the NCC accracies that are obtained with the multi-

tasking autoencoder and its counterparts . 111
4.3 Hypothesis tests for averages estimated with the multi-tasking auotencoder and its

counterparts . 112
4.4 t-SNE projections for the UCR archive’s FacesUCR test datasets 113
4.5 Averages that are estimated for the UCR archive’s ECG200 and ECGFiveDays datasets 114
4.6 Proposed modified reduced VGG16 multi-tasking autoencoder 116
4.7 Proposed reduced ResNet multi-tasking autoencoder 117
4.8 Proposed reduced Inception version two multi-tasking autoencoder 117
4.9 Box-whiker plot comparison of the NCC accuracies obtained with the multi-tasking

autoencoders and their counterparts. 120
4.10 t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent space of

multi-tasking and basic autoencoder architectures . 121
4.11 Evaluation of the impact of L2 regularization on the quality of means estimated with

multi-tasking autoencoder . 122
4.12 CD diagram comparison of NCC accuracies obtained from the extended evaluation of

multi-tasking autoencoders . 123
4.13 CD diagram comparison of NCC accuracies obtained from the extended evaluation of

multi-tasking autoencoders conducted using 89 UCR archive datasets 124
4.14 Averages estimated for the UCR archive’s ECG200 and ECGFiveDays datasets using

multi-tasking: modified reduced VGG16, reduced Inception, reduced ResNet, and
alternative averaging techniques . 124

4.15 Box-whisker plot comparison of the NCC accuracies obtained with the variational
multi-tasking autoencoders and their counterparts. 126

4.16 t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent space of
variatonal and non variational multi-tasking autoencoder architectures 128

4.17 CD diagram comparison of NCC accuracies obtained from the evaluation of variational
multi-tasking autoencoders . 129

4.18 CD diagram comparisons of NCC accuracies obtained with the variational and non
variational multi-tasking autoencoders . 129

viii

4.19 CD diagram comparisons of NCC accuracies that are obtained using the time domain
estimates of the variational multi-tasking autoencoders and their counterparts 130

4.20 Averages estimated for the UCR archive’s ECG200 and ECGFiveDays datasets us-
ing variational multi-tasking: modified reduced VGG16, reduced Inception, reduced
ResNet, and alternative averaging techniques . 132

4.21 Visual demonstration of an estimated average and the median reconstruction line . . 135
4.22 Box-whisker plot comparison of the NCC accuracies obtained with quantile regression

multi-tasking autoencoders and their counterparts . 139
4.23 Hypothesis test based on the NCC accuracies that are obtained with the estimates of

multi-tasking quantile regression autoencoders and their counterparts 140
4.24 Performance evaluation of quantile regression _ values based on latent space NCC

accuracies . 140
4.25 Performance evaluation of quantile regression _ values based on time domain NCC

accuraices . 141
4.26 Hypothesis re-evaluation for the average estimates with multi-tasking quantile re-

gression autoencoders and their counterparts . 142
4.27 Hypothesis re-evaluation for the average estimates with multi-tasking quantile re-

gression autoencoders and their counterparts . 143
4.28 Hypothesis re-evaluation for the average estimates with multi-tasking quantile re-

gression autoencoders and their counterparts . 144
4.29 t-SNE projections for the UCR archive’s FacesUCR test datasets 145
4.30 Visual comparison of averages estimated with quantile regression multi-tasking au-

toencoders and their counterparts . 146
4.31 Box-whisker plot of NCC accuracies obtained with the extended evaluation of quantile

regression multi-tasking autoencoders. 149
4.32 t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent spaces of

multi-tasking and quantile regression multi-tasking autoencoders 150
4.33 CD diagram comparisons of NCC accuracies obtained with the extended evaluation

of quantile multi-tasking autoencoders . 151
4.34 CD diagram comparisons of NCC accuracies obtained with the extended evaluation

of quantile multi-tasking autoencoders . 152
4.35 Comparison of NCC accuracies obtained with multi-tasking and quantile multi-tasking

autoencoders . 152
4.36 Averages estimated for the UCR archive’s ECG200 and ECGFiveDays datasets using

quantile and basic multi-tasking: modified reduced VGG16, reduced Inception, reduced
ResNet, and alternative averaging techniques . 155

4.37 Box-whisker plot comparison of the NCC accuracies obtained with quantile regression
multi-tasking autoencoders while they encourage over and under estimations 158

4.38 CD diagram comparisons of NCC accuracies obtained with different _ values while
quantile multi tasking regression autoencoders encouraged over and under estimations 158

ix

4.39 CD diagram comparisons of NCC accuracies obtained with alternative averaging
techniques and quantile multi tasking regression autoencoders that encouraged over
and under estimations . 159

4.40 CD diagram comparisons of NCC accuracies obtained with DBA,SDBA, and quantile
multi tasking regression autoencoders that encouraged over and under estimations . 160

4.41 Averages estimated for the UCR archive’s ECG200 and ECGFiveDays datasets using
quantile multi-tasking autoencoders while they encouraged and discouraged over and
under estimations . 162

4.42 CD diagram comparisons of NCC accuracies obtained with quantile multi-tasking
autoencoders while encouraging and discouraging over and under estimations . . . 163

5.1 A basic UMTS based wireless communication network architecture [115] 164
5.2 Sample data traffic loads offered to four UMTS radio nodes locate within the areas of

Addis Ababa, Ethiopia . 167
5.3 Auto correlation and partial auto correlation for a sample data traffic that is offered to

a UMTS radio node . 167
5.4 Auto correlation and partial auto correlation for a sample UMTS data traffic load. In

order to plot the decomposition, we have only taken a segment of the dataset that
corresponds to four weeks of measurements for better visibility 168

5.5 Histogram and QQ plots on the traffic datasets collected from four UMTS radio nodes
located within Addis Ababa, Ethiopia . 170

5.6 Steps taken in the proposed hybrid cluster level UMTS data traffic forecasting 171
5.7 Inter cluster inertia for 729 time series corresponding to a data traffic load offered to

UMTS radio nodes . 173
5.8 Geographical location of the clustered radio nodes and their respective cluster cen-

troids [114] . 174
5.9 Heatmap corresponding to the correlation of the centroids of the five clusters identified

by K-Means [114] . 174
5.10 Comparison of a 48 hours forecasts that are performed at the based station and cluster

level [114] . 175
5.11 Layer arrangements for an elementary denoising autoencoder [125] 178
5.12 Proposed VGG16 Based Autoencoder for Deep Embedding Clustering (DEC) 179
5.13 Proposed multi-tasking VGG16 based autoencoder that is to be used to generate time

domain centroids for clusters identified with DEC . 180
5.14 Geographical mapping of UMTS radio nodes that are clustered based on their traffic

patterns. The clustering was performed using DEC and time domain centroides that
are estimated using the multi-tasking autoencoder with a pretrained encoder. 182

5.15 Intra cluster correlation among cluster centroides that are estimated with a multi-
tasking autoencoer where its encoder was pre-trained with a DEC setup 183

5.16 Visual demonstration of forecasts generated with DEC_MT_Enc_Fixed 184
5.17 UMTS radio nodes clustered based on their traffic patterns using DBA K-means . . . 185

x

5.18 Intra cluster correlation between cluster centroides that are estimated with DBA
K-Means . 185

5.19 Visual demonstration of best and worst forecasts for a D-SARIMA model fitted with
centroieds estimated using DBA . 187

5.20 UMTS radio nodes clustered based on their traffic patterns using the DEC_MT ar-
rangement . 188

5.21 Intra cluster correlation between cluster centroides that are estimated with multi-
tasking autoencoder that is trained from scratch . 188

5.22 Visual demonstration of best and worst forecasts for the DEC_MT setup 189
5.23 UMTS radio nodes clustered based on their traffic patterns using K-Means 190
5.24 Intra cluster correlation between cluster centroides that were estimated with basic

K-means . 190
5.25 Visual demonstration of best and worst forecasts for a D-SARIMA model fitted with

centroids estimated using a a basic K-Means . 191

xi

0List of Tables
2.1 Local cost matrix of two DTW warped series . 10
2.2 Global cost matrix of two DTW warped series . 11
2.3 Different Versions of the VGG16 architecture [57]. 49
2.4 Parameters that are used to train the different VGG16 architectures [57] 50
2.5 Different version of Residual Network (ResNet) architectures [58]. 52
2.6 The GoogleLeNet architecture [60] . 55

3.1 The 114 UCR datasets categorized based on their source 59
3.2 UCR archive datasets falling within the Device and Power consumption category . . 59
3.3 UCR archive datasets falling within the bio-potential measurements category 62
3.4 UCR archive datasets falling within sensor measurement category 63
3.5 UCR archive datasets that are defined from images, movements and gestures 66
3.6 UCR archive datasets corresponding to simulation, spectrograph, hermodynamics,

and HRM measurements . 67
3.7 Layer configurations of the proposed reduced VGG16 autoencoder 74
3.8 Wins/Ties/Losses analysis for the NCC accuracies the basic autoencoder 78
3.9 Statistical parameters for the box-whisker plot shown in Figure 3.10 79
3.10 NCC classification accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets 82
3.11 Layer configurations for the modified reduced VGG16 autoencoder 85
3.12 Layer configurations for the reduced ResNet autoencoder 87
3.13 Layer configurations for the reduced Inception version two autoencoder 89
3.14 Win/tie/losses analysis of NCC classification accuracies obtained from the extended

evaluation of basic autoencoders . 93
3.15 Statistics assessment of the NCC accuracies obtained with modified reduced VGG16,

reduced Inception, and reduced ResNet autoencoders 94
3.16 Average standard deviation across the NCC accuracies that are obtained with the

estimates of the proposed basic autoencoder . 96
3.17 NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets. 98
3.18 List of UCR archive datasets on which the variational autoencoders failed to converge 100
3.19 Win/tie/losses analysis of NCC classification accuracies obtained from the evaluation

of variational autoencoders . 101
3.20 Statistics assessment of the NCC accuracies obtainedwith variational modified reduced

VGG16, reduced Inception, and reduced ResNet autoencoders 102
3.21 Average standard deviation across the NCC accuracies that are obtained with the

estimates of the proposed variational autoencoder . 104
3.22 NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets. 106

xii

4.1 Wins/ties/losses analysis for the proposed multi-tasking autoencoder 111
4.2 Statistical parameters for the box-whisker plot shown in Figure 4.2 112
4.3 NCC classification accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets 115
4.4 Win/tie/losses analysis of NCC classification accuracies obtained from the extended

evaluation of basic multi-tasking autoencoders . 118
4.5 Statistics assessment of the NCC accuracies obtained with multi-tasking modified

reduced VGG16, reduced Inception, and reduced ResNet autoencoders 119
4.6 Average standard deviation across the NCC accuracies that are obtained with the

estimates of the proposed multi-tasking autoencoder 122
4.7 NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are

obtained with multi-tasking autoencoders . 125
4.8 Comparison of wins/ties/losses obtained with the estimates of variational multi-

tasking autoencoders and their counterparts . 125
4.9 Statistics assessment of the NCC accuracies obtained with variational multi-tasking

autoencoders . 127
4.10 Average standard deviation across the NCC accuracies that are obtained with the

estimates of the variational multi-tasking autoencoder 131
4.11 NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are

obtained with multi-tasking autoencoders . 131
4.12 Analysis of wins/ties/losses of the NCC accuracies that are obtained using quantile

regression multi-tasking autoencoder and its counterparts 138
4.13 Summary of the statistics for the box-whisker plot shown in Figure 4.22 139
4.14 The average standard deviations of the NCC accuracies obtained by different _ pair . 142
4.15 NCC accuracies for the UCR archive’s 𝐸𝐶𝐺200 and 𝐸𝐶𝐺𝐹𝑖𝑣𝑒𝐷𝑎𝑦𝑠 datasets. 145
4.16 Comparison of wins/ties/losses obtained with the extended evaluations of non varia-

tional quantile multi-tasking autoencoders and their counterparts 148
4.17 Statistical assessment of the NCC accuracies obtained with the extended evaluations

of the quantile multi-tasking autoencoders . 149
4.18 The average standard deviations of the NCC accuracies obtained by different _ pair . 153
4.19 NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are

obtained with multi-tasking autoencoders . 154
4.20 Statistics assessment of the NCC accuracies obtained with quantile multi-tasking

autoencoders encouraging over and under estimations 156
4.21 Statistical assessment of the NCC accuracies obtained with quantile multi-tasking

autoencoders that are encouraging over and under estimations 157
4.22 The average standard deviations of the NCC accuracies obtained by different _ pair

values that encourage over and under estimations . 160
4.23 NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are

obtained with different versions of multi-tasking autoencoders and their counterparts 161

5.1 Performance comparison of a hybrid forecasting model and its counterparts 174

xiii

5.2 Performance comparison of a hybrid cluster level forecasting and its counterparts . . 175
5.3 Aggregate average per-cluster forecasting errors using a D-SARIMA model that is

fitted on the clusters and centorides defined by DEC and multi-tasking autoencoder . 183
5.4 Aggregate average per-cluster forecasting errors with forecasting models fitted on

the centroids of clusters that are defined by DBA K-Means 186
5.5 ImprovedAggregate average per-cluster forecasting errors for theDEC_MT_Enc_Fixed

setup . 186
5.6 Aggregate average per-cluster forecasting errors with the forecasting model fitted on

the centroids of clusters defined by a multi-tasking autoencoder 189
5.7 Aggregate average per-cluster forecasting errors with the forecasting model fitted on

the centroids of clusters defined using a basic K-Means 191

xiv

1 Introduction

In today’s data driven world, time series are considered as one of the most intensively investigated
datasets [1]. The main driving force behind this reality is the possibility of defining the series from a
seemingly unrelated topic [2]. For instance, Figure 1.1 shows how time series can be defined from a
range of applications scenarios. In this regard, in Figure 1.1 (a), a time series is defined by taking pixel
values of stacked satellite images [3]. Moreover, Figure 1.1 (b) shows time series defined from sensor
that were taking the power consumption measurements of home appliances. Finally, in Figures 1.1 (c)
& 1.1 (d), time series were respectively defined by either studying the shapes made by a moving earth
worm or from distance measurements taken between a central reference point and points on the
contours of a segmented image of chicken [4]. In overall, the examples given in Figure 1.1 span the
application domains of: remote sensing (a), power consumption monitoring and classification (b),
behavioral genetics (c) and image classification (d). In general, despite the domain from which
the series gets extracted, a time series of the form 𝑋 = {𝑥1, 𝑥2, 𝑥3,, 𝑥𝑀 } is defined from a set of

(a) Time series from stacks of satellite images. (b) Power consumption of home appliances.

(c) Shapes made by the movement of an earth worm. (d) Time series from segmented image of a chicken.

Figure 1.1: Time series extracted from different application scenarios [3], [4]

ordered observations where the ordering can be based on any of the common independent variables,
i.e., space, time, frequency, etc [1], [5]. Moreover, depending on the dimensions of the individual
observations (𝑥𝑖), time series can also be further divided into two broad categories, i.e.,univariate

1

Introduction
Chapter
1

and multivariate. In this regard, in this dissertation, we consider a time series to be univariate if
the individual observations (coordinates) are defined from real numbers (𝑥𝑖 ∈ ℝ). On the contrary,
we consider a time series to be multivariate if 𝑥𝑖 ∈ ℝ𝑙 : 𝑙 > 1. With these definitions, on one
hand, we expect the ordering of the individual coordinates to define descriptive features (shapes).
On the other hand, most temporal data mining techniques often relay on such descriptive shapes to
meet their desired objectives [6]–[8]. To this end, temporal data mining techniques often emphasize
on devising techniques that could capture such unique features to their advantage. In this regard,
some rely on complicated non linear transformations [6], [7]. On the contrary, others rely on domain
transformation [9], [10], approximation [11], warping [12], etc. However, despite the difference in the
feature identification techniques, most of them often try to directly or indirectly address one common
challenge, i.e., the impact of temporal distortions (time shifts) [9], [11], [13]–[17]. In practice, temporal
shifts are evident in temporal datasets for various reasons. For instance, if we reconsider the example
in Figure 1.1 (b), we do not expect the owners of individual home appliances to have similar daily
routines. To this end, we do not expect power measurements of similar appliances to have peaks on
identical time stamps. With this understanding in mind, researchers often propose different mitigation
techniques. For instance, in distance based time series classification tasks, classifiers use time warping
to define elastic distance measurement functions [13]. On the contrary, other alternatives try to
overcome time shifts through approximation [11] and domain transformation [9]. In order to further
elaborate on the implication of temporal misalignment and the need for mitigation techniques, we
can consider univariate temporal datasets extracted from the segmented images of Beetles and Flies
as an example [2]. We have given a sample of the images and their respective time series formats in
Figure 1.2. In order to extract the time series, the colored images of Beetles and Flies were initially

(a) Segmented images of Beetles (b) Segmented image of Flies

0 100 200 300 400 500
Time

2

1

0

1

2

Am
pl

itu
de

Time series extracted from images of Beetles

(c) Time series defined from the images of Beetles

0 100 200 300 400 500
Time

2

1

0

1

2

Am
pl

itu
de

Time series extracted from images of Flies

(d) Time series defined from the images of Flies

Figure 1.2: Time series defined from segmented images of Beetles and Flies [2], [4]. Even though the extracted
time series representing each species show similar patterns, there is a significant temporal distortion due to
image rotation and shape and size variations.

taken. Following this, the colored images were converted into a black and white format by segmenting
the images through pixel value thresholding. Finally, the euclidean distance between a reference
point within the white area and sample points on the contours of the segmented images were taken

2

Introduction
Chapter
1

at a fixed angular steps. In reality, the euclidean distances defined the amplitudes of the extracted
temporal datasets. Moreover, the angular location of the sample contour points defined the order of
the amplitude values [4]. In general, according to Figures 1.2 (c) & 1.2 (d), the extracted time series
presented features that are unique to each species. In this aspect, the time series representing the Bee-
tles show a relatively sharper and higher peak values. On the contrary, the time series corresponding
to Flies have smaller and smoother peaks. Consequently, researchers proposed to utilize the extracted
temporal datasets for the classification of the images of Beetles and Flies. However, despite the
per-species (per-class) unique features, there are significant misalignments among descriptive shapes
of the extracted time series. The misalignments are mainly caused by image rotations and intra species
shape and size differences. In practice, such misalignments often become a major impairment to most
common distance based classification techniques. For instance, if we consider nearest neighbors and
nearest centroid classification techniques [18], [19] as an example, the misalignments could either
increases the euclidean distance between members of the same class or the distance between members
of a class and their respective per-class templates (centroids). Consequently, such temporal shift
mainly contributes to most of the misclassification (classification errors) [12], [13]. In this aspect, if
we consider Nearest Centroid Classification (NCC), per-class templates (centroids) are often defined
by taking per-class averages. When this is the case, temporal misalignment often make an arithmetic
mean to often be a sub optimal representative [13], [18]. This is better demonstrated in Figures 1.3 (a)
& 1.3 (b) where we have plotted the per-class arithmetic averages of the Beetles and Flies time series.
In the figure, we have marked segments of the arithmetic means that are significantly distorted with
red boxes. These shape distortions are introduced due to the alignment of peaks and troughs through
time shift. Consequently, for the given time series, a NCC based on arithmetic means results a 30%
classification error [20].

0 100 200 300 400 500
Time

2

1

0

1

2

Am
pl

itu
de

Arithimetic mean of the Beetles data sets
Arth. Mean

Examples of sub optimal estimations due to temporal shifts

(a) Arithmetic mean of time series corresponding to Beetles

0 100 200 300 400 500
Time

2

1

0

1

2

Am
pl

itu
de

Arithimetic mean of the Flies data set
Arth. Mean

Examples of sub optimal estimates due to temporal shifts

(b) Arithmetic mean of time series corresponding to Flies

Figure 1.3: The arithmetic means of time series extracted from the segmented images of Beetles and Flies. The
segments marked with red boxes indicate significant shape distortion evident due to misalignment of peaks
and troughs caused by temporal distortion.

Practically, the use of such time series averages is not limited to the summarization of classes. In
this aspect, time series averages are useful in formulating clusters or assess patterns in a sets of time
series [18], [21]. For instance, in most time series clustering, cluster centroids (averages) are at the
center of gravity for cluster formation [6], [21]. For instance, K-Means clustering and its variants
utilize cluster centorids (averages) to identify cluster membership [22], [23]. Moreover, in a supervised
setup, class averages have been utilized to identify class membership [13], [20]. In addition to this, in
a more practical example, [24] showed the importance of time series averages in climatology. In this

3

Introduction
Chapter
1

aspect, the authors showed how the average of time series that are defined from the width of tree rings
are important to the study of climate changes in dendroclimatology. Moreover, they also showed the
importance of time series averages on estimating the coverage area of meteorological measurements,
i.e., temperature, humidity, precipitation, etc. In another domain, [14] showed the importance of
time series averages on the study of Evoked Potential (EP) that are taken from a human scalp. In
practice, EP measurements that correspond to a human brain response to external stimuli were found
to be noisy and weak. To this end, [14] propose to average EP measurements that corresponded to
similar stimuli. In general, we can go on and present additional examples which could further show
the importance of time series averages in temporal data mining tasks [15], [16], [25], [26]. However,
if we pause at this point and look for a common ground, we can observe that proposal relying on
time series averages collectively agree on the need for a quality estimates [14]–[16], [22], [23], [25].
Moreover, they also collectively agree on the negative impact of temporal shifts on the quality of
estimated averages [13]–[16], [25], [27], [28].

With these observations, in this dissertation, we aim to address the impact of temporal distortion on
quality of univariate time series averages. To meet this objective, we initially assess the limitations
observed in previously proposed averaging heuristics. Following this assessment, we present a novel
neural network based time series average estimation technique. We base our proposals on neural
networks for two main reasons. First, neural networks provide optimization platforms that are capable
of generalizing over a range of unseen data sets. Thus, they provide the possibility of avoiding costly
re-runs through transfer learning [25]. Furthermore, neural networks provide a range of tunable
hyper parameters that provide additional control on the way the averaging objective functions is
optimized [29]. With this said, we will next formally introduce the univariate time series averaging
problem.

1.1 Statement of the Problem

The computation of an optimal univariate time series average has intensively been studied for over
four decades [14]–[16], [25], [28], [30]. The main driving factor behind these studies is the importance
of the averages in cluster (class) based temporal data mining techniques [6], [13], [21], [23]. In such
algorithms, time series averages are expected to preserve the most descriptive shapes that are observed
within an averaged set. Moreover, they also expect the averages to preserve shapes while minimizing
the discrepancy between themselves and members of an averaged set [13], [23]. Consequently, given
an averaged set that has K members and a distance function 𝑑 , time series averaging heuristics are
expected to minimize the discrepancy between an estimated average ` ∈ ℝ𝑁 and members of the
averaged set 𝑋 𝑗 ∈ ℝ𝑀 (1.1), where𝑀 ≤ 𝑁 . In other words, they are expected to minimize (1.1).

𝐹 (`) = 1
𝐾

𝐾∑︁
𝑗=1

𝑑 (𝑋 𝑗 , `) (1.1)

In practice, it is often challenging to minimize (1.1) in time domain due to the presence of temporal
distortion. To this end, averaging heuristics are often expected to perform some sort of temporal align-

4

Introduction
Chapter
1

ment as a pre-processing step. In this regard, pioneering techniques often relied on either Dynamic
Time Warping (DTW) or diffeomorphism to meet this demand [14]–[16], [25], [28], [30]. However,
despite the difference in the utilized alignment techniques, we can generalize the steps they take
using two or three basic procedures. In this regard, first they consider an averaged set as a group of 𝐾
univariate time series (vectors) such that 𝑋𝑖 ∈ ℝ𝑀 . Following this, the techniques try to minimize
the discrepancy among members of averaged sets that could be evident due to temporal distortion
either through time warping or diffeomorphism. In reality, the warping or morphing will transform
the averaged series into a 𝜏 dimensional space where 𝜏 ≥ 𝑀 . Moreover, since the alignment or
morphing is expected to minimize temporal distortion, it is expected to increase the density (D) of the
transformed set. In other words, given a set of 𝐾 warped (morphed) version of the original series that
are in ℝ𝜏 (𝑌𝑖 ∈ ℝ𝜏), then the alignment (morphing) is expected to minimizes (1.2) [16], [23], [25].

𝐷 =
1
𝜏

𝜏∑︁
𝑙=1

(
1
𝐾2

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1, 𝑗≠ 𝑖

(𝑌𝑖 − 𝑌𝑗)2
)

(1.2)

In theory, (1.2) can be minimized by simultaneously warping or morphing all members of the averaged
set. However, in reality, this is difficult to realize for two main reasons. First, with the currently
available warping or morphing techniques, multiple warping is computationally intractable [14]–
[16], [25], [31]. Moreover, even if such techniques become available, there is no clear pre known
ground truth for the multiple alignment. To this end, currently available averaging techniques rely
on an indirect approach and often propose to minimize (1.2) by registering the averaged series to a
template (land mark) which is often their 𝜏 space arithmetic mean. For this reason, the next common
step taken in time series averaging is refining the registration of the averaged set to the selected
land mark trough iterative warping (morphing). Thus, after the iterations, an average is estimated by
taking the arithmetic mean of the warped or morphed series. To this end, in some cases, averaging
techniques have to propose a way that will re-project the estimates to the time domain as a final
step, i.e., if 𝜏 > 𝑀 [16]. However, in all cases, the optimality of the estimated averages are only
guaranteed in the registered space (ℝ𝜏). To this end, with currently available averaging techniques,
there is an inherent assumption that estimated averages will be transformed to the space they were
estimated from (their registered space) prior to any utilization [14]–[16], [25]. With this in mind, some
pioneering averaging heuristics associate the temporal alignment step to a distance function (𝑑) [32],
[33]. In practice, techniques that mainly fall in this category are DTW based. Consequently, in
such averaging techniques, the distance function 𝑑 given in (1.1) gets modified to (1.3), i.e., the DTW
distance (metric). In (1.3), 𝛿𝑝 is the squared 𝐿2 norm of the distance between a warped series (𝑌𝑖 ∈ ℝ𝜏)
and its warped space arithmetic mean (` ∈ ℝ𝜏), where the warping is along a DTW warping path 𝑝 .
In practice, when this is the case, (1.1) is commonly called the Fréchet function [16], [31].

𝑑 (𝑌𝑖 , `) = 𝛿𝑝 (𝑌𝑖 , `) = | |𝑌𝑖 − ` | |𝑙2 (1.3)

However, in reality, integrating an alignment techniques into the averaging objective function (1.1)
often leads to major complications [14]–[16]. This is because, in most cases, alignment techniques
have undesired mathematical properties that make the optimization of (1.1) relatively challenging. For

5

Introduction
Chapter
1

instance, (1.1) becomes non-smooth, non-convex, and a computationally intensive objective function
when it is integrated with DTW distance [16], [31], [34]. To this end, in recent years, proposals have
started to separate the distance function (𝑑) from the underlying alignment technique. In such cases,
the distance function 𝑑 is often taken as the squared 𝐿2 norm of the difference between the estimated
mean and transformed members of the averaged set, i.e., (1.4). In (1.4, 𝑌𝑖 = {𝑦1, 𝑦2 , . . . , 𝑦𝑀 } and
` = {[1, [2, . . . , [𝑀 } are a transformed series and the arithmetic mean of the transformed averaged
set. When this is the case, equation (1.1) is commonly called the Within Group Squared Sum (WGSS).

𝑑 (𝑌𝑖 , `) = | |𝑌𝑖 − ` | |𝑙2 =
𝑀∑︁
𝑗=1

(𝑦 𝑗 − [𝑗)2 (1.4)

Generally, in all cases, optimizing (1.1) is often not trivial and the level of the difficulty is often
highly correlated with the underlying temporal alignment technique. In this regard, DTW based
averaging techniques are often considered to be relatively challenging [34], [35]. This is mainly
because, in time series averaging, we desire to minimize (1.2) through multiple alignment. However,
the customization of DTW in such a manner is practically known to be Non-deterministic Polynomial
(NP) hard [16], [34], [36]. Consequently, in practice, most DTW based averaging techniques rely on
heuristic rather than exact solutions. However, in reality, proposed heuristics by themselves often
induce additional complication. For instance, if one proposes to tackle the averaging problem using
pair-wise DTW warping, each pair-wise warping will significantly increases the dimension of the
final estimate [14], [15]. Furthermore, to make matters worse, the dimension of the final estimation is
dependent on two external factors, i.e., the size of the averaged set and the dimension of the individual
members [14], [15]. This could in turn further intensifies the computational and storage requirement
of such averaging approaches. Additionally, even if we some how overcome this challenge, DTW
based averaging heuristics are expected to optimize a non smooth and non convex objective function
that are practically challenging to optimize [34], [37]. However, this by no means imply that their
counterparts are problem free. In this regard, diffeomorphic approaches are often implementation
wise complex as compared to their DTW counterparts. Moreover, due to their complexity they often
place additional expectations from the underlying optimization setup. In some cases, the additional
expectations could have a negative implication on the convergence of the optimization process [20].
With these observations in mind, in this dissertation, we aim to address the following key questions:

• Can we see the averaging problem from a different perspective and reformulate it as an aug-
mentation or generative challenge?

• If the answer to the former question is yes, then we ask ourselves can we approach it using
neural networks?

We find these two questions to be logical rather than random. This is because, if we carefully
observe previous averaging proposals, we can correlate the overall averaging steps to steps taken in
augmentation or generative problems [38]–[40]. In practice, generative models such as the Variational
AutoEncoder (VAE) and Generative Adversarial Network (GAN) have shown that it is possible to
generate synthetic datasets by modeling inputs using probabilistic models. In other words, they

6

Introduction
Chapter
1

aim to generate synthetic datasets that significantly resembles their inputs by taking samples from
variables following a certain distribution. This is well in line with the first thing we expect from a time
series average, i.e., an average should preserve shapes observed within an averaged set. Moreover,
in time series averaging, we can assume the aligning step as the process of formulating a suitable
augmentation space which correlates to the modeling of input series with probabilistic distributions
in generative models. Furthermore, we can assume the arithmetic averaging of aligned series to be an
augmentation or generative step which could be correlated to selecting a sample from a probabilistic
model in generative models. However, unlike the generative or augmentation problem, in time series
averaging we expect the augmentation space to be dense such that it aligns with the requirement
of (1.2). Thus, the question now becomes, how can we learn such augmentation spaces? Moreover,
what kind of neural architecture can meet this requirement? We ask the latter question since its
answer will help us to introduce transfer learning into the averaging problem. This is because, neural
network based optimization setups are known to generalize over a range of unseen datasets which
in turn will help us to avoid costly re-runs. With these questions in mind, we will next present the
general and specific objectives of this dissertation.

1.2 Objectives

1.2.1 General Objective

In this PhD dissertation, we mainly focus on computing an optimal univariate time series average
using a flexible and novel neural network optimization setup. We consider an estimate to be optimal if
it minimizes the aggregated distance between itself and members of the averaged set while preserving
shapes observed in the averaged set.

1.2.2 Specific Objectives

To meet our general objective, we set the following specific objectives;

• Deeply understand, assess previous proposals and address associated limitations.

• Identify and propose an easily deployable neural network architecture that is suitable for time
series average augmentation.

• Investigate and evaluate the implications of parameters affecting the average estimation, i.e.,
objective functions, the augmentation processes, hyper parameters.

• Identify an application scenario that demonstrates the implication of proposed approaches.

1.3 Scope

In this dissertation, we focus on the estimation of optimal univariate time series averages. Moreover,
we constrain our study to a set of univariate time series that have fixed length. To the best of
our knowledge, in practice, the averaging of multivariate and variable length time series are often

7

Introduction
Chapter
1

approached indirectly. For instance, [36] proposed to estimate averages in unconstrained manner
by compressing estimates generated by a technique that is built for univariate and fixed length
temporal datasets. In general, we believe the guideline for generating averages for the two categories
is debatable and requires a separate investigation.

1.4 Organization

We have organized the dissertation into five additional chapters. In chapter two, we present a detailed
review of previously proposed heuristics and concepts that are crucial to our proposals. Following this,
in chapters three and four, we present the steps and the reasoning behind our proposed approaches.
We will also use these chapters to present the experimental setups and evaluations of our proposals. In
chapter five, we present a practical scenario that demonstrate the practical implication of our proposed
approaches. Finally, we conclude our study and give a direction for possible future researches in
chapter six.

8

2 Background and Related Works

In this chapter, we start our discussions by reviewing some literature associated with the Dynamic
Time Warping (DTW) algorithm and its variants. In reality, the DTW is integrated into more than
half of the pioneering averaging heuristics. Thus, we believe the reviews will assist the reader with
understanding the steps taken in such averaging techniques and associated challenges. Following
the discussions associated with DTW, we will present averaging heuristics based on DTW according
to their order of appearance. Following this, we present concepts related to neural networks, layers
of neural networks, key hyper-parameter setup techniques, and some well-known neural network
architectures. The discussions in this subsection serve as a basis for our proposed approaches presented
in chapter three. Moreover, they will also aid the reader in easily understanding terms in a pioneering
neural network-based time series averaging heuristics presented at the end of this chapter.

2.1 The Dynamic Time Warping

The Dynamic Time Warping (DTW) was introduced as a temporal alignment technique for voice
recognition systems [32]. In practice, such systems are often expected to recognize voice commands
that are spoken by: people with a different accent, people that give different emphasis to similar words,
and people that take different duration to utter similar words. With these difficulties in mind, [32]
proposes to treat discrete samples of the voice commands as univariate time series. Moreover, the
authors also aimed to time warp (stretch) the time series representations such that the discrepancies
introduced by the way voice commands get spoken are minimized. To achieve this objective, DTW
introduced two kinds of distance matrices, i.e., the local and global cost matrices. In overall, given
a template time series 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } and an uttered voice command 𝑌 = {𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑀 }, a
DTW local cost evaluates the distance between each and every coordinate values of 𝑋 and 𝑌 , i.e.,
𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 . To perform this computation, DTW first places any two aligned series along
the columns and rows of an𝑀 × 𝑁 (𝑁 ×𝑀) matrix. It then fills each cell of the𝑀 × 𝑁 matrix with
the distance between the coordinate values of the aligned series. However, in practice, it was found
that the type of the selected distance function could easily become a source of non-smoothness in
DTW [32], [34], [35]. To this end, the authors proposed to use the squared euclidean distance due to
its convex nature [34].

To further elaborate the overall computation process, we can consider the DTW warping of two
misaligned univariate time series 𝑋 = {1, 1, 5, 5, 5, 1, 1} and 𝑌 = {1, 5, 5, 5, 5, 1, 1, 1} as an example. The
local cost values of the series are shown in Table (2.1), where we computed the values of each cell
using a pair-wise squared euclidean distance. However, in reality, the local cost matrix by itself does
not reveal an optimal warping path. To this end, DTW introduces the concept of the global cost matrix
which is mainly used to identify group of cells that connect (0, 0) to (𝑀, 𝑁) ((𝑁, 𝑀)). In practice,

9

Background and Related Works
Chapter
2

Table 2.1: Local cost matrix of two DTW warped series

Time Series Y
1 5 5 5 5 1 1 1

Ti
m
e
Se
rie

sX

1 0 16 16 16 16 0 0 0
1 0 16 16 16 16 0 0 0
5 16 0 0 0 0 16 16 16
5 16 0 0 0 0 16 16 16
5 16 0 0 0 0 16 16 16
1 0 16 16 16 16 0 0 0
1 0 16 16 16 16 0 0 0

such a group of cells is called a warping path. Moreover, each entry of a warping path is known as
DTW associated coordinates. Practically, given a global cost matrix, one could randomly identify a
range of possible paths connecting (0, 0) to (𝑀, 𝑁) ((𝑁, 𝑀)). However, the random grouping of
global cost matrix cells often does not guarantee an optimal warping of the aligned series. To this end,
the computation of a DTW global cost matrix entries and the identification of optimal warping paths
are guided by constraints. For instance, after a DTW warping, we aim to preserve the precedence of
coordinate values observed in the original series. In other words, we do not desire a DTW warping
path that entangles coordinate values. With such consideration in mind, DTW places the following
two key constraints that govern the allowable warping paths and the way the cells of a global cost
matrix get computed:

• Given an𝑀 ×𝑁 DTW global cost matrix, a warping path must start at (0, 0) and end at (𝑀, 𝑁).
This constraint preserves the start and end values of the original time series.

• If cell (𝑖, 𝑗) is identified as an entry of a warping path, then the next entry of a warping path
can only be one of the following three possible entries: (𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), or (𝑖 + 1, 𝑗 + 1). In
other words, if the entry of a warping path is (𝑖, 𝑗), then it could only have traversed trough:
(𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1) , or (𝑖 − 1, 𝑗 − 1) for 0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑗 ≤ 𝑀 . These constraints
avoid the entanglement of DTWwarped series and also preserve the precedence of the original
coordinate values in the warped series.

Generally, among the two constraints, the second constraint has a strong tie with how the global cost
values get computed. In reality, based on this constraint, we can segment a DTW global cost matrix
into three regions from which the entries of a warping path get obtained. In this regard, the first
region from which a warping path entry gets obtained are cells located on the first column of a global
cost matrix. In this case, to include cell (𝑖, 𝑗) as an entry of a warping, a warping path must traverse
through a cell located at (𝑖, 𝑗 − 1). Thus, the cost of including (𝑖, 𝑗) must also include the cost of its
only predecessor (𝑖, 𝑗 − 1). In the second scenario, the entry of a warping path can originate from
the first row of a global cost matrix. In this case, the cost of including a cell (𝑖, 𝑗) must account for
the cost of its only allowable predecessor (𝑖 − 1, 𝑗). Finally, an entry of a warping path could be
extracted from a location different from the first row or column of a global cost matrix. When this is
the case, in order to include cell (𝑖, 𝑗) within a warping path, it must through one of the following
cells: (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), or (𝑖 − 1, 𝑗 − 1). Thus, for this case, the cost of (𝑖, 𝑗) must include the cost

10

Background and Related Works
Chapter
2

of one of its three predecessors. In DTW, these observations are formalized using the mathematical
expression given in (2.1) where 𝐺𝐶𝑖, 𝑗 , 𝐿𝐶𝑖, 𝑗 are respectively the global and local costs of cell (𝑖, 𝑗).

𝐺𝐶𝑖, 𝑗 =

𝐿𝐶𝑖, 𝑗 +𝑀𝑖𝑛{𝐺𝐶𝑖−1, 𝑗 ,𝐺𝐶𝑖, 𝑗−1,𝐺𝐶𝑖−1, 𝑗−1}, if {i,j} ≠ 0,

𝐿𝐶𝑖, 𝑗 +𝑀𝑖𝑛{𝐺𝐶𝑖, 𝑗−1}, if i=0,

𝐿𝐶𝑖, 𝑗 +𝑀𝑖𝑛{𝐺𝐶𝑖−1, 𝑗 }, if j=0

(2.1)

With this equation in mind, we can now revisit our previous example and compute their corresponding
global cost values as shown in Table (2.2). However, in practice, DTW does not compute the local
and global cost matrices separately. On the contrary, DTW computes the local and global cost values
on the fly. This is because, in reality, the second line of equation 2.1 is in line with the concepts of
Dynamic Programming (DP) [32], [37]. To this end, in practice, DTW uses DP to recursively compute
the global cost matrix and identify the optimal warping path without any visual aid. In this regard,
given a global cost matrix △(𝑋, 𝑌) ∈ ℝ𝑀, 𝑁 , DTW can start the search for an optimal warping path
from (0, 0) which only has a local cost value. Following this, DTW can takes a step into one of the
three allowed directions, i.e., {(𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 + 1)}. However, since a step corresponds to
an additional cost, in DTW’s search for an optimal warping path, a step in a given allowable direction
is taken if it incurs a minimal additional cost. Thus, by consecutively stepping on such cells, DTW
can identify a warping path with a minimal alignment cost. In overall, the concepts discussed so far
are better demonstrated using Table 2.2, i.e., using the global cost matrix associated with the two
example series: 𝑋 = {1, 1, 5, 5, 5, 1, 1} and 𝑌 = {1, 5, 5, 5, 5, 1, 1, 1}.

Table 2.2: Global cost matrix of two DTW warped series

Time Series Y
1 5 5 5 5 1 1 1

Ti
m
e
Se
rie

sX

1 0 16 32 48 54 54 54 54
1 0 16 32 48 54 54 54 54
5 16 0 0 0 0 16 32 48
5 32 0 0 0 0 16 32 48
5 48 0 0 0 0 16 32 48
1 48 16 16 16 16 0 0 0
1 48 32 32 32 32 0 0 0

In addition to demonstrating how global cost matrices get computed, Table 2.2 also shows the pos-
sibility that a DTW global cost matrix could have a group of cells with equal global cost values.
Consequently, in practice, DTW’s optimal warping path is often not unique. This fact is further
demonstrated in Figure 2.1 where we have plotted the possible warping paths associated with the
global cost values computed in Table 2.2. In Figure 2.1, we have shown the different warping paths
using different sets of colors. These possible warping paths give different warping of the aligned
series. However, all of them warp the two series at zero alignment costs (DTW distance). In practice,
this cost can quickly be referred from cell (𝑀, 𝑁) of the global cost matrix. Even though DTW proved
to be useful in different algorithms [14], [15], [21], [23], it also presented some undesired behaviors.
For instance, in practice, DTW warping paths that are far from the "diagonal" of a global cost matrix

11

Background and Related Works
Chapter
2

16

Back Ground and Related Works
Chapter
2

Table 2.2: An example DTW global cost matrix

1 5 5 5 5 1 1 1
1 0 16 32 48 54 54 54 54
1 0 16 32 48 54 54 54
5 16 0 0 0 0 16 32 48
5 32 0 0 0 0 32 48
5 48 0 0 0 0 16 32 48
1 48 16 16 16 16 0 0 0
1 48 32 32 32 32 0 0 0

directions, i.e.,{(8, 9 +1), (8 +1, 9), (8 +1, 9 +1)}. Where, for an optimal warping path, DTW takes a step
towards a cell if it minimizes the aggregate cost. To this end, in DTW, an optimal warping path is not
unique. This is better demonstrated in Figure 2.1, where we have plotted the possible warping paths
for Table 2.2. Where, each possible warping paths present di�erent warping (stretching) of the aligned
series at a similar cost. The possibility of multiple similar cost warping paths is one source of challenge

Back Ground and Related Works
Chapter
2

• If a cell (8, 9) is identi�ed as an entry of a warping path, then there are only three possible
cells that would contribute to the next entry, i.e, (8 + 1, 9), (8, 9 + 1) or (8 + 1, 9 + 1).
This constraint insures the ordering of the coordinate values in the original series are
preserved.

The second constraint has a strong relation with how the cost of a global cost matrix cell
is computed. In this aspect, we can identify three regions on the global cost matrix from
which the entries of a warping path can be obtained. First, an entry of a warping path can be
obtained from the �rst column. In this case, to include a cell (8, 9), a warping path we must
traverse through a cell located at (8, 9 − 1). Thus, the cost of including (8, 9) must also include
the cost of its only predecessor (8, 9 − 1). Similarly, for a cell located in the �rst row of the
global cost matrix, the cost of a including a cell (8, 9) must account for the cost of its only
predecessor (8 − 1, 9). On the contrary, if an entry is located di�erent from the �rst or second
row, then we could have traversed through three predecessor cells, i.e., (8 − 1, 9), (8, 9 − 1) or
(8 − 1, 9 − 1). Thus, an optimal warping path must traverse through a cell that accumulated
the minimum possible global cost. With these understandings, DTW computes the entries of
the global cost matrix using (2.4).

��8, 9 ==

!�8, 9 +"8={��8−1, 9 ,��8, 9−1,��8−1, 9−1}, if {i,j} ≠ 0
!�8, 9 +"8={��8, 9−1}, if i==0.
!�8, 9 +"8={��8−1, 9 }, if j==0

(2.4)

Where, ��8, 9 , !�8, 9 are the global and local costs of a cell. Thus, with this equation we can
compute the global cost matrix for Table 2.1 as shown in Table (2.2). The �nal step in DTW

Table 2.2: An example DTW global cost matrix

5 5 5 5 1 1 1 1
1 16 32 48 54 54 54 54 54
1 32 32 48 48 48 48 48 48
5 32 32 32 48 54 54 54 54
5 32 32 32 48 54 54 54 54
5 32 32 32 48 54 54 54 54
1 48 48 48 32 32 32 32 32
1 54 54 54 54 32 32 32 32

warping involves the identi�cation of the optimal warping paths. In this regard, DTW utilizes
dynamic programming to search for possible warping paths. Hence, after computing the
local cost matrix, DTW computes the global costs of cells and warping paths on the �y. In
this aspect, DTW starts its search at entry (0, 0). It then takes a step in one of the the possible
directions, i.e.,{(8, 9 + 1), (8 + 1, 9), (8 + 1, 9 + 1)}. Where, for an optimal warping path, DTW
takes a step towards a cell that minimizes the aggregate cost. In reality, an optimal warping

8
8

Figure 2.1: Possible warping paths

in DTW based averaging heuristics. We can see the challenge in this regard using two scenarios.
First, warping paths that are far from the "diagonal" will increase the dimensions of the warped series
signi�cantly; i.e., in a worst case scenario up to " + # . Moreover, such warping paths are a major
source of "�at" and "pinched" shapes in warped series. In this regard, a horizontal line along a warping
path introduces a constant "�at" shape in the warped series. On the contrary, a vertical line introduces
a "pinching" e�ect in warped series. This is commonly called "Phatological association" in DTW based
averaging heuristics. To this end, most DTW based averaging techniques prefer to identify warping
paths near to the "diagonal" of the global cost matrix. However, this by itself requires an additional
tuning in the algorithm [9]. Hence, to plot the warped versions of our example series in Figure ??,
we have manually selected the warping path near to the "diagonal" of the global cost matrix given
in Figure 2.2. This warping path is depicted by the "light blue" and "light brown" colours. The path
stretches our original series- = {1, 1, 5, 5, 5, 1, 1}, . = {1, 5, 5, 5, 5, 1, 1, 1} to- = {1, 1, 5, 5, 5, 1, 1, 1, 1, 1}
and . = {5, 5, 5, 5, 5, 5, 1, 1, 1, 1}. In other words, it transform the dimensions of the series from ℝ7 and
ℝ8 spaces to an ℝ10 space.

10

54

Time Series Y

T
im

e
S

er
ie

s
X

Figure 2.1: Multiple similar cost DTW warping paths for the time series 𝑋 = {1, 1, 5, 5, 5, 1, 1} and 𝑌 =
{1, 5, 5, 5, 5, 1, 1, 1}. The warping paths identified by different colors align the two series at a similar alignment
cost. However, warping paths closer to the diagonal of the cost matrix, such as paths indicated by light blue
color, often minimize possible shape distortions caused by DTW warping.

results in a significant increase in the dimension of the warped series. This dimensional increase
in the worst case can raise to 𝑀 + 𝑁 , i.e., for an (𝑀 × 𝑁) global cost matrix. Furthermore, such
warping paths can also introduce significant shape distortions in at least two possible scenarios. In the
first case, a warping path can sequentially includes global cost matrix cells that are located at either
(𝑖, 𝑗 +𝑘) or (𝑖 +𝑘, 𝑗) for 𝑘 = {0, 1, 2, . . . , 𝑀 (𝑁)}. When this is the case, due to the repeated inclusion
of a single coordinate value of one of the two warped series, at least one of them will have a segment
that has a constant ("flat") shape. In another scenario, a DTW warping path could have such constant
entries followed by a sudden change in direction that is immediately followed by consecutive constant
entries of the form {(𝑖 + 𝑘, 𝑗)} or {(𝑖, 𝑗 + 𝑘)}, i.e., for 𝑘 = {0, 1, 2, . . . 𝑀 (𝑁)}. When this is the
case, there will be a sudden vertical line with a "pinching" effect on at least one of the warped series.
In DTW based averaging heuristics, such kinds of shape distortions are known as shape distortion
due to Pathological associations. In this regard, some DTW based averaging techniques propose to
customize the original version. In this aspect, the most common proposal is to devise a mechanism
that encourages the selection of warping paths that are relatively close to the "diagonal" of the global
cost matrix [41], [42]. Thus, they harvest the advantages of DTW while maintaining shape distortions
introduced due to DTW warping to an acceptable level.

With this technicality in mind, for our example series, we have manually selected a warping path that is
close to the "diagonal" of the global cost matrix, i.e., along the light blue color shown in Figure 2.1. With
this selection, the two time series gets warped from { 𝑋 = {1, 1, 5, 5, 5, 1, 1}, 𝑌 = {1, 5, 5, 5, 5, 1, 1, 1} }
to { 𝑋 = {1, 1, 5, 5, 5, 5, 1, 1, 1}, 𝑌 = {1, 1, 5, 5, 5, 5, 1, 1, 1} }. In other words, DTW transformed the two
series from a ℝ7 and ℝ8 spaces to a ℝ9 space. The original and the corresponding transformed series
are shown in Figure 2.2. According to Figure 2.2 (b), DTW has identified the two series to be a shifted
versions of each and it has aligned them a zero DTW distance. However, even though such alignments
could portray DTW as a flawless algorithm, a deeper investigation reveals the contrary. In this aspect,
the first limitation that immediately becomes evident is its computational complexity. In this regard,
the computation of a (𝑀 × 𝑁) global cost matrix requires𝑀 × 𝑁 calculations. Thus, if we consider
the time needed to search for a warping path to be insignificant, we can safely assume DTW has a
computational complexity of O(𝑀 × 𝑁). Moreover, this computational complexity could significantly

12

Background and Related Works
Chapter
2

0 1 2 3 4 5 6 7Time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Am

pl
itu

de
Time Series X and Y Before DTW Warping

X
Y

(a) Time series 𝑋 and 𝑌 before DTW warping

0 1 2 3 4 5 6 7 8

Amplitude

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Am
pl

itu
de

Time Series X and Y After DTW Warping
X
Y

(b) Time series 𝑋 and 𝑌 after DTW warping

Figure 2.2: Dynamic time warping of 𝑋 = {1, 1, 5, 5, 5, 1, 1} (red) and 𝑌 = {1, 5, 5, 5, 5, 1, 1, 1} (blue). The
algorithm has identified the two series to be a shifted version of each other. Thus, it has aligned them so that
they have a zero euclidean distance.

grow when DTW gets utilized under different setups. For instance, if we aim to utilize DTW while
estimating the average of a set that has 𝐾 members in ℝ𝑀 , we are often at least required to make 𝐾
DTW warping. Thus, in this case, the computational complexity of DTW grows to O(𝐾 × 𝑀 × 𝑀).
Moreover, for a single increment in the dimensions of the individual series, DTW’s computational
complexity increases by a factor of 𝐾 × (2 × 𝑀 + 1).

Practically, the computational complexity of DTW is not the only limitation associated with it.
Another additional challenge is the presence of a hard min operation in (2.1). This operation makes
DTW to be a non-differentiable distance function. Moreover, when DTW gets embedded into objective
functions, such as (1.1), it often makes them non-smooth and non-convex [34], [37]. In practice,
non-convex objective functions are prone to local minimas that can easily become a major source of
non-optimal solutions. Furthermore, the non-smoothness of an objective function prohibits the direct
utilization of optimization techniques based on partial derivatives, for instance, the gradient decent.
Finally, to make matters further challenging, DTW distance is also known to be a non-metric distance
function. In practice, given the time series {𝑋, 𝑌, 𝑍 } 𝜖 ℝ𝑀 , we call a given distance function metric
if it satisfies the following properties [43]:

• 𝑑 (𝑋, 𝑌) ≥ 0 (Property of positiveness)

• 𝑑 (𝑋, 𝑌) = 0 if X=Y (Property of identity of indiscernibles)

• 𝑑 (𝑋, 𝑌) = 𝑑 (𝑌,𝑋) (Property of symmetry)

• 𝑑 (𝑋, 𝑍) ≤ 𝑑 (𝑋, 𝑌) + 𝑑 (𝑌 , 𝑍) (Property of triangular inequality)

In this aspect, DTW does not meet the properties of triangular inequality and identity of indiscernibles.
Thus, this makes DTW warping variant which at times is a problem in some temporal data mining
techniques [43]. With such limitations in mind, currently, different variants of DTW are aimed at
addressing specific limitations [42], [44]. In the following three sub-sections, we will present three
variants of DTW as an example. In reality, the variants presented in the coming subsections focus on
addressing the problems associated with pathological associations, non-smoothness, and quadratic
computational complexity. Practically, we emphasized on DTW variants focusing on these limitations
since they are often mentioned as major limitations in DTW based on averaging heuristics [15], [16].

13

Background and Related Works
Chapter
2

2.1.1 Weighted Dynamic Time Warping

Practically, the basic Dynamic Time Warping (DTW) algorithm does not consider the phase (distance)
difference between associated coordinates. To this end, at times, it introduces shape distortions that
are mainly related to pathological associations [16], [42]. To visually demonstrate this point, we
can consider the warping of two sinusoidal signals that are defined as 𝑋 = sin(2 × 𝜋 × 50 × 𝑡) and
𝑌 = sin(2 × 𝜋 × 50 × 𝑡 + 𝜋/6). To extract a discreet time series from these continuous sinusoidal
signals, we will use the Nyquist criterion and take samples at 𝑓𝑠 ≥ 2 × 𝑓𝑚 . In Nyquist criterion,
𝑓𝑠 and 𝑓𝑚 are respectively the sampling frequency and the maximum frequency component within
a sampled signal [45]. With this understanding, we set our sampling frequency to 10,000 Hz, i.e.,
we take samples every 0.0001 seconds. In reality, this sampling frequency is far greater than the
maximum frequency component within the two sinusoids, i.e., 50 Hz. Thus, it will provide a smooth
time series representation of the continuous sinusoids which could easily be reconstructed to their
continuous form using basic low pass filters [45]. Finally, for our demonstration, we only consider the
samples within the single cycle of the sinusoids, i.e., within 0.02 seconds. Overall, Figure 2.3 (a) depicts
the time series representations of the sinusoids which have lengths of 200 time stamps. Moreover,

0 25 50 75 100 125 150 175 200

Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

X=sin(2*pi*50*t) and Y=sin(2*pi*50*t+pi/6)
XY

(a) Before DTW warping

0 50 100 150 200

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 YX
X=sin(2*pi*50*t) and Y=sin(2*pi*50*t+pi/6)DTW Warping of

Am
pl

itu
de

Time

(b) After DTW warping

0 25 50 75 100 125 150 175 200

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

X=sin(2*pi*50*t) and Y=sin(2*pi*50*t+pi/6)

Am
pl

itu
de

Time

YX

(c) DTW association plot

Figure 2.3: Dynamic Time Warping of two time series defined by taking samples from two sinusoids, i.e.,
𝑋 = 𝑠𝑖𝑛(2 × 𝜋 × 50 × 𝑡) (red) and 𝑌 = 𝑠𝑖𝑛(2 × 𝜋 × 50 × 𝑡 + 𝜋/6) (blue). The red boxes shown in the DTW
coordinate association (c) demonstrate the pathological association of one coordinate to multiple coordinates of
its counterpart. These textit pathological associations are the underlying reason behind the shape distortions
introduced by DTW as shown with the red boxes in (b).

Figure 2.3 (b) demonstrates the DTW warping of the two sinusoids. However, in Figure 2.3 (b), the
warping has introduced constant horizontal ("flat") lines that were not evident in the original series.
These constant horizontal shapes correspond to the pathological associations and they are marked
with red boxes in Figure 2.3 (c). In the figure, the pathological association to the left happens when
𝑌 ′𝑠 first coordinate value pairs with multiple coordinate values of 𝑋 . Similarly, such associations are
also evident when the last coordinate value of 𝑋 gets paired with multiple coordinate values of 𝑌 .

14

Background and Related Works
Chapter
2

In reality, the shape distortion presented in Figure 2.3 (b) might appear insignificant as compared to
the use of DTW. However, in practice, such pathological associations could introduce major shape
distortion for minor reasons. For instance, if we introduce a minor constant offset to one of the two
sinusoids say 𝑌 = 2 + 𝑠𝑖𝑛(2 × 𝜋 × 50 × 𝑡 + 𝜋/6), i.e., as shown in Figure 2.4 (a); the shape distortions
that were previously evident at the edges of the two warped sinusoids now gets shifted and magnified
as shown in Figure 2.4 (b). This happens due to the constant offset that pushes the negative amplitude
values of 𝑌 above the zero axis. Thus, the basic DTW could not now find a proper match for the
non-shifted and shifted negative amplitude values of 𝑋 and 𝑌 . For instance, the shape distortion
in 𝑋 gets introduced since DTW identifies the first positive peak of 𝑋 as the only optimal match
for the shifted negative values of 𝑌 . On the contrary, the shifted first negative peak of 𝑌 becomes
the only suitable match for the negative values of 𝑋 . Thus, causing the distortion observed in the
warped 𝑌 . With such observations in mind, the authors in [42] proposed a variant of DTW namely
the Weighted Dynamic Time Warping (WDTW). In contrary to the basic DTW, WDTW penalizes
DTW associations based on their phase difference. In practice, WDTW defines this penalty using the
Sigmoid function given in (2.2) where 𝑔 and𝑊𝑚𝑎𝑥 are hyper-parameters that respectively determine
the slope and maximum weight penalty. Moreover, |𝑖 − 𝑗 | is the absolute value of the phase difference
between two DTW associated coordinates [42].

0 25 50 75 100 125 150 175 200

Time

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Am
pl

itu
de

X=sin(2*pi*50*t) and Y=2 + sin(2*pi*50*t+pi/6)
XY

(a) Before DTW warping

0 50 100 150 200 250 300
Sample Number

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

At
tri

bu
te

 V
al

ue

Alignement plot of streached sequences
vector1
vecotr2

(b) After DTW warping

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

X=sin(2*pi*50*t) and Y=2 + sin(2*pi*50*t+pi/6)

Am
pl

itu
de

Time

(c) DTW association Plot

Figure 2.4:A demonstration on the effects of a constant amplitude offset on DTW, i.e.,𝑋 = 𝑠𝑖𝑛(2×𝜋×50×𝑡) (red)
and 𝑌 = 2 + 𝑠𝑖𝑛(2 × 𝜋 × 50 × 𝑡 + 𝜋/6) (blue). The constant offset on 𝑌 forces DTW to pathologically associate
positive peak of 𝑋 to offseted negative values of Y and offseted negative peak of Y to negative values of X, i.e„
as shown in (c). These pathological associations generates the shape distortions observed in the warped series
as shown in (a).

𝑊{𝑖, 𝑗 } =
𝑊𝑚𝑎𝑥

1 + 𝑒𝑥𝑝−(𝑔 × |𝑖− 𝑗 |) (2.2)

In practice, WDTW uses these weight penalties while computing the local cost values, i.e., 𝑑 (𝑥𝑖 , 𝑦 𝑗) =
(𝑤 {𝑖, 𝑗 } × (𝑥𝑖 − 𝑦 𝑗)2). Thus, this way, it discourages the association of coordinates that have a higher

15

Background and Related Works
Chapter
2

phase difference. In other words, WDTW starts encouraging warping paths that are closer to the
"diagonal" of the global cost matrix. However, in reality, such pushes often result in an alignment that
could have a higher alignment cost. Thus, in WDTW, balancing between cost and shape preservation
is a hyper-parameter tuning process. In this regard, we can manipulate the slope of the weight
penalties by varying 𝑔, where a manipulation could result in one of the three possible tuning scenarios.
In the first case, we can set 𝑔 to zero which reduces (2.2) to𝑊𝑚𝑎𝑥 . Thus, in this case, WDTW penalizes
each associated coordinate equally irrespective of their phase difference. In other words, it behaves
as the basic DTW. However, if we let 0 ≤ 𝑔 ≤ 1, WDTW will start to penalizes associations that
have higher phase differences. In other words, WDTW starts to encourage warping paths closer
to the diagonal of the global cost matrix. Finally, if we set 𝑔 > 1, WDTW will start discouraging
the slightest phase difference. Thus, in this case, it behaves as an euclidean distance. With this said,
we will finalize our discussion of WDTW by revisiting the shifted sinusoids shown in Figure 2.4 (a).
According to Figure 2.5 (b), WDTW preserved the shapes of the two warped sinusoids. Consequently,

0 25 50 75 100 125 150 175 200

Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

X=sin(2*pi*50*t) and Y=sin(2*pi*50*t+pi/6)
XY

(a) Before WDTW warping

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
vector1
vecotr2

X=sin(2*pi*50*t) and Y=2 + sin(2*pi*50*t+pi/6)

Am
pl

itu
de

Time

(b) After WDTW warping

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Am
pl

itu
de

Time

X=sin(2*pi*50*t) and Y=2 + sin(2*pi*50*t+pi/6)

(c) WDTW association Plot

Figure 2.5: Weighted Dynamic Time Warping (WDTW) of two time series defined from sinusoides 𝑋 =
𝑠𝑖𝑛(2 × 𝜋 × 50 × 𝑡) (red) and 𝑌 = 2 + 𝑠𝑖𝑛(2 × 𝜋 × 50 × 𝑡 + 𝜋/6) (blue). We have set the maximum and slope of
the Sigmoid weight penalties as𝑊𝑚𝑎𝑥 = 4 and 𝑔 = 0.25. By penalizing DTW associated coordinates based on
their phase difference, WDTW was able to identify the two time series to be an offseted and shifted version of
each other.

in practice, WDTW was often put to use in shape-based classification tasks [42]. However, in most
cases, WDTW was found to increase the alignment cost. In the context of our sinusoidal examples,
due to the introduction of the constant offset, the WDTW distance has only increased from zero to
two, i.e., the offset value. However, in practice, such ideal alignment is not always evident. To this
end, different works have proposed alternatives that could preserve shapes of warped series at a
lower alignment cost [27], [41]. However, despite such improvements, the overall warping process
remained quadratic and non-smooth. With this in mind, the authors in [37] proposed to address the
non-smoothness issue with Soft Dynamic Time Warping (SDTW).

16

Background and Related Works
Chapter
2

2.1.2 Soft Dynamic Time Warping

Following the trends observed in WDTW, Soft Dynamic Time Warping (SDTW) targeted a specific
problem associated with DTW, i.e., DTW’s non differentiability using Soft Dynamic Time Warping
(SDTW). However, unlikeWDTW, SDTW aimed at addressing this issue in the context of a predecessor
work, i.e., Global Alignment Kernel (GAK) [32], [46]. Practically, kernels get intensively used in some
time series classification algorithms, such as the Support Vector Machine (SVM) [46]–[48]. In practice,
given two vectors {𝑋, 𝑌 } ∈ {ℝ𝑁 , ℝ𝑀 }, SVM often aim to maximize their inner product (⟨𝑋, 𝑌 ⟩) [47].
However, direct inner products of temporal datasets often give sub-optimal results due to the presence
of temporal distortion. In some cases, researchers propose to overcome this problem by warping
vectors (series) before inner products. However, in most cases, researchers often propose to minimize
kernels (functions) to maximize inner products. They propose this approach since it often produces
the same outcome with less computational overhead [46]. For instance, if we choose to minimize
the kernel 𝑘 (𝑋,𝑌) = exp− { 1

𝑀 | |𝑋 − 𝑌 | |𝑙2}, we would indirectly be maximizing the inner product
of (⟨𝑋, 𝑌 ⟩). This is because if we want to maximize the kernel, we have to minimize the L2 norm of the
two vectors. This, in turn, implies a higher correlation or inner product of the two vectors. In general,
in practice, kernels are often chosen since they often have desirable mathematical behavior such as
smoothness and convexity. Consequently, they are easy to integrate into optimization setups. With
these understanding in mind, the authors of SDTW had previously proposed the Global Alignment
Kernel (GAK) that is based on DTW, i.e., 𝐾𝛾𝐺𝐴 given in (2.3). In (2.3), 𝐴 and △(𝑋, 𝑌) are an (𝑀 × 𝑁)
alignment and DTW local cost matrices. Moreover, ⟨𝐴, △(𝑋, 𝑌)⟩ is the inner product between the
two matrices.

𝑘
𝛾
𝐺𝐴 (𝑋,𝑌) :=

∑︁
𝐴 𝜖 𝐴𝑀,𝑁

𝑒𝑥𝑝−
⟨𝐴, △(𝑋,𝑌)⟩

𝛾
𝑤ℎ𝑒𝑟𝑒,

𝐷𝑇𝑊 (𝑋,𝑌) := min
𝐴 ∈ 𝐴𝑀,𝑁

⟨𝐴, △(𝑋,𝑌)⟩
(2.3)

In reality, GAK can be minimized under different contexts, for instance, either while evaluating the
inner products of two vectors or when aligning two series. In this regard, if we see GAK from the
context of temporal alignment, it enables SDTW to see the overall DTW alignment process from a
different perspective. In this aspect, in SDTW, a warping path is defined with a (𝑀 × 𝑁) alignment
matrix, where 𝐴 ∈ {0, 1}𝑀 × 𝑁 . Consequently, given an alignment matrix 𝐴𝑀,𝑁 ⊂ {0, 1}𝑀 × 𝑁 , a
cell (i, j) is set to one if a warping path includes cell (i, j) of DTW’s global cost matrix (△(𝑋, 𝑌)). With
this definition at hand, [37] argued that the basic DTW is differentiable if the alignment matrix 𝐴𝑀, 𝑁
is unique. This is because, given a unique warping path, a small perturbance in one of the aligned
series will have a smaller chance of breaking DTW associations. This mainly arises from the fact
that neighboring global cost matrix cells will have higher warping costs [37]. However, in practice, a
unique warping path is not often evident in DTW. To this end, in order to make DTW differentiable,
i.e., irrespective of its warping path uniqueness, [37] proposed to smoothen △(𝑋, 𝑌) using soft
minimums (2.4); where {𝑎1, 𝑎2, . . . , 𝑎𝑛} ∈ ℝ.

𝑆𝑜 𝑓 𝑡
𝛾
𝑀𝑖𝑛{𝑎1, 𝑎2, . . . , 𝑎𝑛} ==

min𝑛𝑖=1{𝑎𝑖}, if 𝛾 = 0

−𝛾 ln∑𝑛
𝑖=1 𝑒𝑥𝑝−𝑎𝑖𝛾 , if 𝛾 > 0.

(2.4)

17

Background and Related Works
Chapter
2

Practically, such differentiable functions are desired in most optimization techniques based on partial
derivatives [34]. In this aspect, the authors further showed that it is possible to compute the partial
derivative of DTW using two approaches. In the first case, [37] showed that it is possible to analytically
compute ∇𝑋𝐷𝑇𝑊 (𝑋,𝑌) using (2.5), where

(𝜕△(𝑋,𝑌)
𝜕𝑋

)𝑇 corresponds to the Jacobian of the global cost
matrix [37]. Moreover, 𝔼𝛾 [𝐴] is the average alignment matrix under Gibbs distribution 𝑝𝛾 ∝
𝑒𝑥𝑝−⟨𝐴,

△(𝑋,𝑌)
𝛾

⟩ which is defined for all alignment matrices (𝐴𝑀,𝑁). However, [37] also acknowledged
that the computational complexity of 𝔼𝛾 [𝐴] is O(𝑚2𝑛2). Thus, they proposed Algorithm 1 as an
alternative solution, where 𝛿𝑖, 𝑗 , 𝑟𝑖, 𝑗 , 𝑒𝑖, 𝑗 correspond to the entries of local cost, global cost and 𝔼

matrices.
∇𝑋𝐷𝑇𝑊𝛾 (𝑋,𝑌) =

(𝜕△(𝑋,𝑌)
𝜕𝑋

)𝑇
𝔼𝛾 [𝐴] 𝑤ℎ𝑒𝑟𝑒,

𝔼𝛾 [𝐴] := 1
𝐾
𝛾
𝐺𝐴 (𝑋,𝑌)

∑︁
𝐴 ∈ 𝐴𝑀,𝑁

𝑒𝑥𝑝−⟨𝐴,
△(𝑋,𝑌)
𝛾

⟩𝐴
(2.5)

Algorithm 1: Backward recursion to compute ∇𝑋𝐷𝑇𝑊 (𝑋,𝑌) [37].
1: Inputs: (𝑋 , 𝑌,) 𝜖 (ℝ𝑁 , ℝ𝑀), 𝛾 > 0 and distance function 𝛿 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑛(𝑥𝑖 , 𝑦 𝑗) 𝜖 (𝑋,𝑌)
2: (., 𝑅) = 𝐷𝑇𝑊𝛾 (𝑋,𝑌), △ = [𝛿 (𝑥𝑖 , 𝑦 𝑗)]𝑖, 𝑗
3: 𝛿𝑖,𝑚+1 = 𝛿𝑛+1, 𝑗 = 0, 𝑖 𝜖 [𝑛], 𝑗 𝜖 [𝑚]
4: 𝑒𝑖,𝑚+1 = 𝑒𝑛+1, 𝑗 = 0, 𝑖 𝜖 [𝑛], 𝑗 𝜖 [𝑚]
5: 𝑟𝑖,𝑚+1 = 𝑟𝑛+1, 𝑗 = −∞, 𝑖 𝜖 [𝑛], 𝑗 𝜖 [𝑚]
6: 𝛿𝑛+1,𝑚+1 = 0, 𝑒𝑛+1,𝑚+1 = 1, 𝑟𝑛+1,𝑚+1 = 𝑟𝑛,𝑚
7: for j=1. . .m do
8: for i=1. . . n do
9: 𝑎 = 𝑒𝑥𝑝

1
𝛾
(𝑟𝑖+1, 𝑗−𝑟𝑖,𝑗−𝛿𝑖+1, 𝑗)

10: 𝑏 = 𝑒𝑥𝑝
1
𝛾
(𝑟1, 𝑗+1−𝑟𝑖,𝑗−𝛿𝑖,𝑗+1)

11: 𝑐 = 𝑒𝑥𝑝
1
𝛾
(𝑟𝑖+1, 𝑗+1−𝑟𝑖,𝑗−𝛿𝑖+1, 𝑗+1)

12: 𝑒𝑖, 𝑗 = 𝑒𝑖+1, 𝑗 × 𝑎 + 𝑒𝑖, 𝑗+1 × 𝑏 + 𝑒𝑖+1, 𝑗+1 × 𝑐
13: end for
14: end for
15: Output: ∇𝑋𝐷𝑇𝑊 (𝑋,𝑌) =

(𝜕△(𝑋,𝑌)
𝜕𝑋

)𝑇
𝔼𝛾 [𝐴]

In practice, the advantage of SDTW is not only limited to a differentiable distance function. In this
aspect, [37] argued that a proper selection of a 𝛾 value could smooth out the DTW version of (1.1).
To better demonstrate this concept, we can rewrite the DTW version of (1.1) as (2.6) [31], where
𝑃 = {𝑝1, 𝑝2, . . . 𝑝𝑘 } is a set of warping paths such that 𝑝𝑖 𝜖 ℝ𝜏 . Moreover, 𝑋 𝑗 𝜖 ℝ𝑀 and ` 𝜖 ℝ𝑁 are
members of the averaged set and an estimated mean, where𝑀 ≤ 𝑁 .

𝐹 (`) = 1
𝐾

𝐾∑︁
𝑗=1, 𝑃

𝛿𝑃 (𝑋 𝑗 , `) (2.6)

With this definition, the Fréchet function becomes a function of two variables, i.e., ` and 𝑃 , which
leaves us with three possible ways of minimizing (2.6). In the first case, we could fix ` and search
for a warping path configuration that minimizes (2.6). Alternatively, we could fix the set of warping

18

Background and Related Works
Chapter
2

paths and search for an optimal `. Finally, we could simultaneously search for optimal warping path
configurations and `. However, in all cases, (2.6) is considered as non-convex. To better demonstrate
why this is the case, we could adopt the approach utilized in [31] and define component functions
as (2.7) [31], where 𝑅 is a warping path configuration in 𝑃 .

𝐹𝑅 (`) = {𝑝1, 𝑝2, . . . 𝑝𝑘 }
1
𝐾

𝐾∑︁
𝑗=1

𝑑 (𝑋 𝑗 , `) (2.7)

In addition to this, if we assume that after DTW warping we use 𝐿2 norm or (1.4) as a distance
function, we can safely assume 𝐹𝑅 (𝑋, `) resembles a set of quadratic functions that has a generic form
of 𝐹 (𝑥) = (𝑋 ± 𝑘)2 ±𝐶 . With this assumption, if we take three component functions {𝐹𝑟1, 𝐹𝑟2 & 𝐹𝑟3}
as an example, we can plot each component functions against different values of ` as shown in
Figure 2.6. In the figure, the component functions are plotted as parabolic curves. However, in reality,
these parabolic curves are higher dimensional bowls. Moreover, in the Fréchet function, we desire to
identify a ` that minimizes the overall component functions rather than individual configurations. To
this end, we can assume it to be the point-wise minimum of the individual configuration functions
shown in Figure 2.6, i.e., using the solid black line. From Figure 2.6, we can see that the Fréchet

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

120

140

F_r1
F_r2
F_r3
Minimum

, `

'�
-
,`
)

(

'� -, `)(decomposed into component functions

Figure 2.6: The Fréchet function as a point-wise minimum of component functions. In the figure, the Fréchet
function, i.e., shown with the solid black curve, is constructed by taking the point-wise minimum of the three
component functions 𝐹𝑟1,𝐹𝑟2,𝐹𝑟3. Due to the point-wise minimum operation, the Fréchet function has three
minimas and two discontinuities marked by red boxes.

function has two local minimas and discontinuities marked with the red boxes. However, in SDTW,
we can control the individual quadratic curves through the 𝛾 parameter of the soft minimums. To
this end, given an appropriate 𝛾 value, one can angle a component function such that the points
of discontinuities get smoothed out. For instance, in Figure 2.6, if we adjust 𝛾 and manipulate the
component function 𝐹𝑟3 such that it approaches 𝐹𝑟2 from the right, then we can reduce the possibility
of getting stuck at discontinuity and local minima located to the right. However, in practice, high 𝛾
values could flatten the parabolic curve of the overall component function. Thus, they could sometimes
lead to the identification of sub-optimal estimates. To this end, in practice, averaging heuristics that
rely on SDTW often treat 𝛾 as a hyper-parameter that needs careful tuning [20].

19

Background and Related Works
Chapter
2

2.1.3 Fast Dynamic Time Warping

Another major limitation which immediately came evident after DTW’s introduction was its compu-
tational complexity. In earlier times, the computational capabilities of most computing devices were
relatively lower than today’s computing devices. To this end, earlier alternatives of DTW mainly
focused on reducing the computation complexity to at least a linear scale. The first proposal in this
regard was the remarks made in the original paper [32]. In [32], the authors proposed to compute
global cost values within a constraining window later called the Sakoe-Chuba band [32]. Moreover, the
mathematical constraint of the Sakoe-Chuba band was stated as |𝑖 − 𝑗 | ≤ 𝑟 , where 𝑖, 𝑗 corresponded
to the rows and columns of the global cost matrix and 𝑟 a window size. Thus, since the number of
computations is limited to the number of cells, i.e., cells within the constraining window, constrained
DTW has a relatively lower computational complexity. However, due to the constraining, a warping
path is searched only within the constrained window that could produce sub-optimal warping [41].
Furthermore, mathematically speaking, the sakoe-chuba band gives a relatively loose constraint since
r is a hyper-parameter expected to be manually tuned. To address this issue, a later work proposed a
relatively well-constrained window known as the Ikatura parallelogram [49]. In reality, the Ikatura
parallelogram was mainly proposed to match a reference pattern (R(K)), which is a mathematical
model of word sound utterances, to a correlation vector of an input sound. Unlike the sakoe-chuba
window, the Ikatura parallelogram placed a tighter constraint on how the 𝑛𝑡ℎ coordinate values of an
input signal get mapped to the𝑚𝑡ℎ coordinate value of its reference pattern. In reality, (2.8) formulates
a parallelogram in the global cost matrix. Thus, giving raise to the name the Ikatura parallelogram. In
general, to give a better visual aid of the two window constraints, we have extracted their graphical
representation from their respective original papers, i.e., as shown in Figure 2.8.

𝑚 =𝑊 (𝑛), m, n 𝜖 ℝ𝑘 , ℝ𝑁

𝑊 (0) = 0, 𝑊 (𝑁) = 𝑅(𝐾) Boundary condition

𝑊 (𝑛) −𝑊 (𝑛 − 1) = 0, 1, 2 if𝑊 (𝑛) ≠ 𝑊 (𝑛 − 1) .
𝑊 (𝑛) −𝑊 (𝑛 − 1) = 1, 2 if𝑊 (𝑛) == 𝑊 (𝑛 − 1) .

(2.8)

However, even though the window constraints significantly reduced the computational requirements,
we are still expected to compute the values of the cells within the constrainted window. Thus, in
a sense, we are still computing a smaller global cost matrix that has a relatively lower quadratic
computational complexity. With this in mind, a relatively recent proposal suggested fast DTW [44].
Fast DTW aimed to linearize the computational complexity of DTW by taking the following three
key steps:

• Coarsening: This process reduces the dimensions of the warped series by taking the averages
of two consecutive time stamps. In fast DTW, this process gets repeated for several iterations
where an iteration reduces the dimensions of the warped series by a factor of two.

• Projection: At this step, fast DTW first tries to identify a warping path using the coarsened
time series. It then projects the estimated warping path to its higher dimensional equivalent.

20

Background and Related Works
Chapter
2

44 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-26, NO. 1 , FEBRUARY 1978

A
Fig. 1. Warping function and adjustment window definition.

patterns, the warping function coincides with the diagonal
line j = i. It deviates further from the diagonal line as the tim-
ing difference grows.

As a measure of the difference between two feature vectors
ai and bi, a distance

d(c) = d(i , j) = (I ai - bi I I (3)

is employed between them. Then, the weighted summation of
distances on warping function F becomes

E (F) = 2 d(c(k)) . ~ (k)
k = l

(where w(k) is a nonnegative weighting coefficient, which is
intentionally introduced to allow the E(F) measure flexible
characteristic) and is a reasonable measure for the goodness of
warping function F. It attains its minimum value when
warping function F is determined so as to optimally adjust
the timing difference. This minimum residual distance value
can be considered to be a distance between patternsA and B,
remaining still after eliminating the timing differences between
them, and is naturally expected to be stable against time-axis
fluctuation. Based on these considerations, the time-normalized
distance between two speech patterns A and B is defined as
follows:

D(A , B) = Min (5)
I;.

where denominator C w(k) is employed to compensate for the
effect of K (number of points on the warping function F).

Equation (5) is no more than a fundamental definition of
time-normalized distance. Effective characteristics of this
measure greatly depend on the warping function specification
and the weighting 'coefficient definition. Desirable characteris-
tics of the time-normalized distance measure will vary, accord-
ing to speech pattern properties (especially time axis expression
of speech pattern) to be dealt with. Therefore, the present
problem is restricted to the most general case where the fol-
lowing two conditions hold:

Condition 1: Speech patterns are time-sampled with a com-
mon and constant sampling period.

Condition 2 : We have no a priori knowledge about which
parts of speech pattern contain linguistically important
information.
In this case, it is reasonable to consider each part of a speech
pattern to contain an equal amount of linguistic information.

B. Restrictions on Warping Function
Warping function F , defined by (2), is a model of time-axis

fluctuation in a speech pattern. Accordingly, it should ap-
proximate the properties of actual time-axis fluctuation. In
other words, function F , when viewed as a mapping from the
time axis of pattern A onto that of pattern B, must preserve
linguistically essential structures in pattern A time axis and
vice versa. Essential speech pattern time-axis structures are
continuity, monotonicity (or restriction of relative timing
in a speech), limitation on the acoustic parameter transition
speed in a speech, and so on. These conditions can be realized
as the following restrictions on warping function F (or points

= (i (k M k)) .
1) Monotonic conditions:

i(k - 1) 5 i (k) and j(k - 1) s j (k) .

2) Continuity conditions:

i (k) - i(k - 1) 5 1 and j (k) - j (k - 1) 5 1.

As a result of these two restrictions, the following relation
holds between two consecutive points.

{
w , i(k) - 11,

c(k - 1) = (i(k) - 1, j (k) - l), (6)
or (i(k) - 1, j(k)).

3) Boundary conditions:

i (1) = 1, j (l) = 1,and

i(K) = I, j (K) = J . (7)

4) Adjustment window condition (see Fig. 1):

I i (k) - j (k) I l r (8)

where r is an appropriate positive integer called window length.
This condition corresponds to the fact that time-axis fluctua-
tion in usual cases never causes a too excessive timing difference.

5) Slope constraint condition:
Neither too steep nor too gentle a gradient should be allowed

for warping function F because such deviations may cause un-
desirable time-axis warping. Too steep a gradient, for example,
causes an unrealistic correspondence between a very short
pattern A segment and a relatively long pattern B segment.
Then, such a case occurs where a short segment in consonant
or phoneme transition part happens to be in good coincidence
with an entire steady vowel part. Therefore, a restriction called
a slope constraint condition, was set upon the warping function
F , so that its first derivative is of discrete form. The slope con-
straint condition is realized as a restriction on the possible rela-
tion among (or the possible configuration of) several consecu-
tive points on the warping function, as is shown in Fig. 2(a)
and (b). To put it concretely, if point c(k) moves forward in
the direction of i (orj)-axis consecutive rn times, then point

(a) Sakoe-Chuba band [32]

ITAKURA: MINIhlUM PREDICTION RESIDUAL PRINCIPLk

parameters b and c are more convenient to compute
d(X/a) than the a themselves.

111. ISOLATED WORD RECOGNITION

Each isolated word to be recognized can be expressed
as a time pattern of LPC, yhich is called the reference
pattern. The process in recognition is t o find a reference
pattern which produces the minimum distance to an input
utterance.

Reference Pattern: The reference pattern R(k) for each
word is stored as a matrix of the form

R(k) = [c (m;k) ,b(~~;k)]

(m = 1,. . . ,M(k) , l c = 1 , s . * , K) (12)

where c(m;k) and b(m;k) are the modified parameters
of LPC at the mth segment of the kth reference pattern,
M (k) is the number of segments in the reference pattern
R(k) , and K is the number of words to be recognized.
Elements of the matrix R (k) are computed from a training
utterance using (3) , (6) , and (11).

Recognition: An input utterrance is expressed as a time
pattern of autocorrelation coefficients at the first p delays

r (n) , n = l,... ,1v (13)

where N is the number of segments in the input utterance.
The distance between the nth segment of the input and
the mth segment of a reference pattern R (k) i s

d(n,m;Ic) = c (m ; k)

+ log C (b (~ ; ~ c) r (n)) / (~ (n) r (n)) l . (14)

The value of (i (n.)r (n)) is obtained in the process of
solving the linear equation (6).

If we assume statistical independence of d(n,m.;k) for
n = 1, - - - , A T , it is reasonable to sum up d(n,m ;k) over the
entire input utterance to give the total distance between
the input and the reference pattern. Of course, m must be
determined as a funct'ion of n

772 = t U (72) . (15)

This function 'LO (n) , which maps the input time axis onto
the reference time axis, is called the time-warping func-
tion. This function should satisfy some boundary condi-
tions as well as some continuity conditions.' For brevity
in the following discussion, it is assumed that ~ (n) is
subject t,o the following conditions.

Boundary Conditions ;

w(l) = 1, u : (N) = M (k) . (16)

Continuity Conditions :

w (n + 1) - t.(n) = 0, 1, 2 (w (n) # w (n - 1))

= 1, 2 (1.(n) = w(n - 1)).

(17)
l.'ig. 1 shows the domain of possible (n,m) coordinates
and an example of w (n) . The continuity conditions imply

BOUNDARY CONDITIONS

w (f) = l , w l N) = M (k)

CONTINUITY CONDITIONS

w (n t 1) - w a n) = 0 ,1 ,2 (w (n l + w (n - 1)
= 1,2 (w (n) = w (n-1)

m

IO

5

1
0 n

'1 5 10 15 t4

Fig. 1. An example o f time-warping function. The paralielogram
shows the possible domain of (n,,rn) coordinates.

that the ratio of instantaneous speed of the input ut-
terance to that of the reference is bounded between 1/2
and 2 at every point. Let us denote the minimum value
of the sum of d(n,m;k) for all possible choices of the t h e -
warping function by

N

D (k) = min 2 d(n , tu(n) ;k) . (18)

D (k) is a distance between the input utterance and a
hypothesized word k . A decision can be made on the basis
of the minimum distance among D (k) ,k = 19, - ,K .

Iw(n)) n=l

IV. DYNAMIC PROGRAMMING AND
SEQUENTIAL DECISION

The distance D (k) in. (18) can be efficiently computed
using the algorithm of dynamic programming (DP) [S>
[lo]. Let us introduce the partial distance measure, in
which theboundary conditions are w(1) = 1 and w(n) = m,
and the continuity conditions are the same as the above,
denoted by

n

D(n,m ; k) = min d(j ,2u(j) ;k)m (191
(w (j) l i=1

Then there follows the recurrence relation;

D (n + ljn2;k) = d(n + 1,m;k) + min (D(n,m;k)

* 9 (n,yn) ,
D(n,?n - 1;k) ,D(n,m - 2 ; k)) (20)

where

g(n,m) = l (w(n) # w (n - I)) ,
= CD, (to(??\ = (n 1)). (21)

In the recurrence relation (20), it is assumed that
d(n,nz;Ic) outside the allowable domain in the (n,.m) co-
ordinates, shown in Fig. 1, is infinitely large. D(lc) is

m

n
N1 5 10 15

0
1

5

10

m=W(n)
M

Beginning

End

(b) Ikatura parallelogram [49]

Figure 2.7: Two proposed window constraints for the global cost matrix of DTW which are used to reduced its
computational complexity [32], [49].

For instance, for a global cost matrix that gets reduced by half, a warping path traversing
through a cell of the reduced matrix will traverse through two cells of the original cost matrix.
In general, similar to the coarsening step, the projection step gets performed iteratively.

• Refinement: At this stage, fast DTW refines the warping path that was projected from the lower
resolution. To meet this objective, fast DTW runs a constrained DTW only in the neighborhood
of the re-projected warping path.

In general, the authors depicted these three key steps through Figure 2.8. Moreover, they also showed
that in the worst case, the time complexity of fast DTW is 𝑁 × (8 ×𝑟 + 14); where 𝑁 is the dimensions
of the warped series. On the other hand, 𝑟 is the window size utilized for the constrained DTW. In
addition to this, they also showed that, the worst case space complexity of fast DTW is 𝑁 × (4× 𝑟 + 7).
Thus, for a very small window size (𝑟) the time and space complexity of fast DTW can be assumed to
be linear (O(𝑁)) [44].

1/51/1 1/1

Figure 5. Speeding up DTW by data abstraction.

The result is that DTW is sped up by a large constant factor, but
the algorithm still runs in O(N2) time and space. Obviously, the
warp distance that is calculated between the two time series
becomes increasingly inaccurate as the level of abstraction
increases. Projecting the lower resolution warp path to the full
resolution usually creates a warp path that is far from optimal
because even IF the optimal warp path actually passes through the
low-resolution cell, projecting the warp path to the higher
resolution ignores local variations in the warp path that can be
very significant.

Indexing uses lower-bounding functions to prune out the number
of times DTW needs to be run for certain tasks such as clustering
a set of time series or finding the time series that is most similar to
a given time series [6][10]. Indexing significantly speeds up
many DTW applications by reducing the number of times DTW is
run, but does not speed up the actual DTW algorithm.

Our FastDTW algorithm uses ideas from both the constraints and
data abstraction categories. Using a combination of both
overcomes many limitations of using either method individually,
and yields an algorithm that is O(N) in both time and space.

3. APPROACH
The multilevel approach that FastDTW uses is inspired by the
multilevel approach used for graph bisection [5]. Graph bisection
is the task of splitting a graph into roughly equal portions, such
that the sum of the edges that would be broken is as small as
possible. Efficient and accurate algorithms exist for small graphs,
but for large graphs, the solutions found are typically far from
optimal. A multilevel approach can be used to find the optimal
solution for a small graph, and then repeatedly expand the graph
and “fix” the pre-existing solution for the slightly larger problem.
A multilevel approach works well if a large problem is difficult to
solve all at once, but partial solutions can effectively be refined at
different levels of resolution. The dynamic time warping problem
can also be solved with a multilevel approach. Our FastDTW
algorithm uses the multilevel approach and is able to find an
accurate warp path in linear time and space.

3.1 FastDTW Algorithm
The FastDTW algorithm uses a multilevel approach with three
key operations:

1) Coarsening – Shrink a time series into a smaller time
series that represents the same curve as accurately as
possible with fewer data points.

2) Projection – Find a minimum-distance warp path at a
lower resolution, and use that warp path as an initial

guess for a higher resolution’s minimum-distance warp
path.

3) Refinement – Refine the warp path projected from a
lower resolution through local adjustments of the warp
path.

Coarsening reduces the size (or resolution) of a time series by
averaging adjacent pairs of points. The resulting time series is a
factor of two smaller than the original time series. Coarsening is
run several times to produce many different resolutions of the
time series. Projection takes a warp path calculated at a lower
resolution and determines what cells in the next higher resolution
time series the warp path passes through. Since the resolution is
increasing by a factor of two, a single point in the low-resolution
warp path will map to at least four points at the higher resolution
(possibly >4 if |X|≠|Y|). This projected path is then used as a
heuristic during solution refinement to find a warp path at the
higher resolution. Refinement finds the optimal warp path in the
neighborhood of the projected path, where the size of the
neighborhood is controlled by the radius parameter.

Standard dynamic time warping (DTW) is an O(N2) algorithm
because every cell in the cost matrix must be filled to ensure an
optimal answer is found, and the size of the matrix grows
quadratically with the size of the time series. In the multilevel
approach, the cost matrix is only filled in the neighborhood of the
path projected from the previous resolution. Since the length of
the warp path grows linearly with the size of the input time series,
the multilevel approach is an O(N) algorithm.

The FastDTW algorithm first uses coarsening to create all of the
resolutions that will be evaluated. Figure 6 shows four
resolutions that are created when running the FastDTW algorithm
on the time series that were previously used in Figures 1 and 2.
The standard DTW algorithm is run to find the optimal warp path
for the lowest resolution time series. This lowest resolution warp
path is shown in the left of Figure 6. After the warp path is found
for the lowest resolution, it is projected to the next higher
resolution. In Figure 6, the projection of the warp path from a
resolution of 1/8 is shown as the heavily shaded cells at 1/4
resolution.

1/8 1/4 1/2 1/1

Figure 6. The four different resolutions evaluated during a

complete run of the FastDTW algorithm.

To refine the projected path, a constrained DTW algorithm is run
with the very specific constraint that only cells in the projected
warp path are evaluated. This will find the optimal warp path
through the area of the warp path that was projected from the
lower resolution. However, the entire optimal warp path may not
be contained within projected path. To increase the chances of
finding the optimal solution, there is a radius parameter that
controls the additional number of cells on each side of the
projected path that will also be evaluated when refining the warp
path. In Figure 6, the radius parameter is set to 1. The cells
included during warp path refinement due to the radius are lightly

Figure 2.8: The three key steps taken by fast DTW, i.e., coarsening, warping path projection and refinement.
These steps has helped fast DTW to linearize the computational complexity of DTW [44]

2.2 Averaging Techniques Based on Dynamic Time Warping

Over the past four decades, a range of well-defined time series averaging techniques has been
proposed [14]–[16], [25], [31], [33], [50]. In practice, out of these proposals, more than half of them
rely on DTW to align members of the averaged set. For instance, Non Linear Averaging and Alignment

21

Background and Related Works
Chapter
2

Filter (NLAAF), Prioritized Shape Averaging (PSA),Dynamic Time Warping Barycenter Averaging
(DBA),and Stochastic SubGradient (SSG) are some examples. In reality, we can group such DTW
based averaging heuristics into two broad categories, i.e., sequential and template based, depending
on how members of the averaged series get warped. In this regard, we can categorize NLAAF and
PSA as sequential averaging approaches since they propose to warp members of the averaged set
sequentially. On the contrary, averaging techniques such as DBA proposed to warp members of the
averaged set to a pre-selected template, i.e., making it a template-based approach. With this said, we
will next present some of DTW based averaging heuristics which we believe have laid the foundation
for time series averaging in DTW space.

2.2.1 Non Linear Averaging and Alignment Filter

The NLAAF was the first temporal averaging heuristic that acknowledged the impact of temporal
distortion on the quality of estimated time series averages [14], [16]. To minimize this effect, NLAAF
proposed estimating averages by warping members of the averaged set pairwise. Consequently,
given an averaged set that has 𝐾 members in ℝ𝑀 , NLAAF first randomly divide the averaged set
into 𝐾

2 pairs. Following this, NLAAF proposes to align the paired series using DTW and take the
arithmetic mean of the warped series as intermediate estimates. These estimates are next grouped
into 𝐾

4 pairs which are also aligned and averaged as in the previous step. In general, NLAAF continues
with this iteration until a single estimate remains. To visually demonstrate this process, we consider
the Cylinder-Bell-Funnel (CBF) dataset from the University of California Univariate Time Series
Repository (UCR)) as an example [2]. This dataset contains time series representing three geometric
shapes (classes), i.e., cylinders, bells, and funnels. Figure 2.9 shows the steps followed by NLAAF while
estimating an average for the Funnels class. The class contains 8 temporal datasets that have 128 time
stamps. In addition to demonstrating the estimation process, we have also compared the estimations
of NLAAF with its arithmetic counterpart, i.e., as shown in Figure 2.10. According to Figure 2.10, the

0 20 40 60 80 100 120
Time

2

0

2

Am
pl

itu
de

Pair One

TS_1
TS_2

0 20 40 60 80 100 120
Time

2

0

2

Am
pl

itu
de

Pair Two

TS_1
TS_2

0 20 40 60 80 100 120
Time

2

0

2

Am
pl

itu
de

Pair Three

TS_1
TS_2

0 20 40 60 80 100 120
Time

2

0

2

Am
pl

itu
de

Pair Four

TS_1
TS_2

0 25 50 75 100 125 150 175
Time

1
0
1
2
3

Am
pl

itu
de

Intermidate Estimate One

Estimate_1

0 25 50 75 100 125 150 175
Time

2

1

0

1

2

Am
pl

itu
de

Intermidate Estimate Two

Estimate_2

0 25 50 75 100 125 150
Time

1

0

1

2

Am
pl

itu
de

Intermidate Estimate Three

Estimate_3

0 25 50 75 100 125 150 175
Time

1

0

1

2

3

Am
pl

itu
de

Intermidate Estimate Three

Estimate_4

0 50 100 150 200 250
Time

2

1

0

1

2

Am
pl

itu
de

Average of the Intermidate Estimates

ES1+ES2

0 50 100 150 200
Time

1

0

1

2

Am
pl

itu
de

Average of the Intermidate Estimates

ES3+ES4

0 100 200 300
Time

1

0

1

2

Am
pl

itu
de

Estimated NLAAF Average

Estimated Average

-

Figure 2.9: A demonstration of NLAAF using the Funnel class of the UCR archive’s CBF dataset

22

Background and Related Works
Chapter
2

NLAAF estimate has preserved the sharp edge observed in the Funnel class. However, if we access
the quality of the arithmetic and NLAAF estimates in terms of their WGSS or (1.2), they respectively
obtained an average WGSS of 3.2901 and 3.7404. In reality, there are different contributing factors
behind this better performance of arithmetic mean that displays a significant shape distortion. In this
aspect, the first reason that quickly become evident is the dimension (length) of the estimated averages.
In this regard, the dimension of the NLAAF estimate has grown from 128 to 351. This dimensional
growth is almost twice the dimension of the arithmetic mean. Consequently, it is logical that the
NLAAF estimate shows a slight increase in terms of WGSS. In reality, such dimensional growth of
NLAAF estimated averages could quickly become out of hand [15], [16]. This is because NLAAF

0 20 40 60 80 100 120

Time

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

Arthimetic Mean
Arithimetic Mean

0 50 100 150 200 250 300 350

Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

NLAAF Estimated Average
NLAAF Average

(a)

(a) NLAAF mean

0 20 40 60 80 100 120

Time

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

Arthimetic Mean
Arithimetic Mean

0 50 100 150 200 250 300 350

Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

NLAAF Estimated Average
NLAAF Average

(b)

(b) Arithmetic mean

Figure 2.10: Visual comparison for NLAAF estimated (a) and an arithmetic mean (b) for the Funnel class of the
UCR archive’s CBF datasets. The arithmetic mean has failed to preserve the per-class features due to temporal
distortion.

takes the average of each DTW associated coordinates while estimating the averages. To this end, in
the worst case, the dimension of NLAAF estimate could grow up to 2 × 𝐾 × 𝑀 . In addition to this
limitation, NLAAF also assumes an averaged set has an even number of time series. Consequently, it
could either leave out one of the averaged series or warp it to an intermediate estimate. However, both
approaches could significantly impact the quality of the estimated average [15]. Finally, in NLAAF,
the quality of an estimated average depends on the way pairs are selected. This is better demonstrated
in Figures 2.11 (a) & 2.11 (b), where the estimates respectively correspond to time series parings of
{(0, 2) , (1, 4) , (5, 6) , (3, 7)} and {(0, 6), (1, 7), (5, 4), (3, 2)}. In reality, the two estimations
respectively have a WGSS of 3.7407 and 3.7717. To address this particular issue, the authors in [15]
proposed the Prioritized Shape Averaging (PSA).

2.2.2 Prioritized Shape Averaging

The Prioritized Shape Averaging (PSA) proposed to utilize agglomerative clustering in order to
minimize the effects of pair selection on the quality of the estimated averages. In this regard, PSA
initially identifies the two most similar series to generate the first intermediate estimate. Furthermore,
PSA also assigns weights to the clustered series and their respective estimates. In this regard, any
series joining a cluster is assigned a weight of one. On the contrary, intermediate estimates that are
generated from a cluster containing 𝐾 members are assigned a weight factor of 𝐾 [51]. In addition to

23

Background and Related Works
Chapter
2

0 50 100 150 200 250 300 350

Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

NLAAF Estimated Average One

(a) Averages estimated from {(0, 2), (1, 4), (5, 6), (3, 7)}.
0 50 100 150 200 250 300 350

Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

NLAAF Estimated Average Two

(b) Averages estimated from {(0, 6), (1, 7), (5, 4), (3, 2)}

0 50 100 150 200 250 300 350

Time

1

0

1

2

Am
pl

itu
de

Comparison of NLAAF Estimated Averages

(c) Visual comparison NLAAF estimates based on the parings given in (b) & (b)

Figure 2.11: Discrepancy among NLAAF estimates due to the difference in pair selection. In addition to the
visual difference, the estimate shown in (a) and (b) respectively have an alignment costs of 3.7407 and 3.7717.

this, in order to reflect on these weight factors, PSA also proposed to utilize a variant of DTW that
could incorporate the weighting factors into the warping process [15], i.e., the Scaled Dynamic Time
Warping (Scaled DTW). In PSA, given two time series {𝑋, 𝑌 } ∈ {ℝ𝑁 , ℝ𝑀 }, their respective weights
{_1, _2} and a warping path 𝑝 ∈ ℝ𝜏 : the coordinate values of an intermediate (final) average are
computed using (2.9).

𝑧𝑖 =
𝜏∑︁

𝑖=1,𝑝

_1𝑥𝑖 + _2𝑦𝑖
_1 + _2

(2.9)

In general, after computing an initial intermediate estimate, PSA next tries to identify the two most
similar series to series or series to intermediate estimate pairs. These pairs are then warped with
their appropriate weight factors to generate a new intermediate estimated average and possibly a
new cluster. PSA iteratively continues with such hierarchical (agglomerative) cluster formations until
a final estimated average remains. With this technicality in mind, we have revisited the Funnel class
of the CBF dataset that was introduced in Figure 2.9 and computed the class average using PSA as
shown in Figure 2.12.

According to Figure 2.12, the Funnel time series located at the indices of {0, 1, 2, 3, 4} formulate
the first three clusters, i.e., {(0, 3), (2, 4), (1, 6)}. Moreover, from these clusters, the first three
intermediate estimations got generated. Following this, the intermediate estimates got assigned a
weight factor of two. With these at hand, the series located at the 5𝑡ℎ index of the original Funnel
datasets and the intermediate estimate generated from the pair (0, 3) were identified as the two most
similar series. To this end, the two series were aligned with Scaled DTW and formulated a new cluster
and an intermediate estimate with a weight factor of three. Furthermore, this intermediate estimate
was close to the intermediate estimate obtained from (1, 6). Consequently, it was later aligned to
its new match to generate another intermediate estimate with a weight factor of five. Similar to its

24

Background and Related Works
Chapter
2

λ=5

λ=
5

λ=

3

λ=2

λ=1

λ=2

λ=1

λ=1

λ=1

λ=1

λ=1

λ=1

λ=1

3

0

0

0

0

0

0

1

2

3

4

5

6

7

Figure 2.12: A demonstration of PSA using the Funnel class of the UCR archive’s CBF dataset

predecessor, this estimate also got matched with the intermediate estimate obtained from the cluster
containing time series (2, 4). Thus, raising the weighting factor of the large cluster to seven. Finally,
the time series located at the 7𝑡ℎ index of the Funnel class joins the bigger cluster to generate the final
estimate. With this final estimate, PSA was able to obtain a WGSS of 4.1363. This is a bit higher as
compared to NLAAF’s 3.7407 WGSS score. However, in practice, such superior performance of NLAAF
was not often evident [15], [16]. Moreover, it should also be noted that, the PSA’s final estimated
has a dimension of 353 that is significantly larger than the dimension of the NLAAF’s estimate, i.e.,
251. Thus, it logical that the PSA’s estimate has a slightly higher WGSS cost. In conclusion, PSA has
not also accounted for the increase in the dimension of its estimates. To this end, the authors in [16]
proposed Dynamic Time Warping Barycenter Averaging (DBA) as a way out.

2.2.3 Dynamic Time Warping Barycenter Averaging

Dynamic Time Warping Barycenter Averaging (DBA) for the first time avoided approaching time
series averaging through sequential warping. On the contrary, it proposed to approach time series
averaging as a multiple alignment problem [16]. In this aspect, DBA for the first time associated time

25

Background and Related Works
Chapter
2

series averaging to the multiple alignment problem well known in the Steiner theory of biological
computation [16]. Through this association, [16] acknowledges that time series (sequences) are best
summarized (averaged) through simultaneous (multiple) alignment or by minimizing (1.2) [16], [23].
However, in the context of DTW, this is practically intractable for at least three reasons. First, if
we desire to align the 𝐾 series simultaneously, we will be required to define and store a global cost
matrix different from a two dimensional array. In reality, the memory requirement of such a matrix
could easily come out of hand as the dimension of the warped series increase. Moreover, even if we
somehow construct and manage such a matrix, it is not clear how to search for a warping path. Finally,
even if we can find a way, the computational complexity of a single iteration would be significantly
large. To this end, time series averaging through multiple DTW warping gets identified as one of the
NP hard problems [16], [50].

With these understandings, the authors in [16] proposed to mimic multiple alignments by regis-
tering the averaged set to their warped space arithmetic mean. However, in the time domain, the
warped arithmetic mean average gets represented by a template with the same dimension as members
of the averaged set. Furthermore, the authors proposed either to randomly initialize the template or
to use one of the averaged series. In the context of the estimation qualities, the authors identified
the latter initialization provided better results [16], [19]. In general, in DBA, a template is first
initialized using one of the initialization techniques. Following this, all the averaged series are aligned
to the template using DTW. Moreover, in the alignment process, DBA keeps the records of DTW
associated coordinates. This is because DBA aims to take the barycenter of the associated coordinates
while generating intermediate estimations. In other words, given a set of DTW associated coordi-
nates 𝑆 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑛}, the barycenter of associated coordinates (𝑧𝑖) is computed using (2.10).

𝑧𝑖 =
𝑧𝑖 + 𝑥𝑖1 + 𝑥𝑖2 + 𝑥𝑖3 + . . . + 𝑥𝑖𝑛

𝑛 + 1 (2.10)

The barycenter averaging ensures that the dimension of the final estimate is equivalent to the di-
mension of the averaged series. Thus, we can alternatively assume the barycenter averaging as a
re-transformation technique, i.e., re-transforming the estimated average to its time domain represen-
tation. In general, DBA is often iterated over the warping and barycenter averaging steps until (1.1)
falls below a pre-selected tolerance value or a final iteration count is reached.

Even though the barycenter averaging approach enabled DBA to avoid an ever-increasing dimension
of estimates, it also constrained the estimates to be in ℝ𝑀 where𝑀 is the dimension of the averaged
series. In this context, a latter work showed that an estimate in ℝ𝜏 has an equivalent in ℝ𝑀 where
𝑀 < 𝜏 [52]. In other words, they demonstrated how an estimate in ℝ𝜏 cloud get reduced to an
estimate in ℝ𝑀 , i.e., without a significant loss of quality. However, there were still some limitations
that became evident through time. For instance, DBA still inherited the non-smooth and non-convex
objective function (the Fréchet function). Thus, it was relatively difficult for DBA to utilize classical
optimization techniques such as gradient descent. In this regard, a relatively recent work proposed a
sub-gradient optimization approach that aimed to utilize gradient descent on the individual curves of
the component functions shown in Figure 2.6 [31]. On the other hand, the introduction of soft DTW

26

Background and Related Works
Chapter
2

has helped with the introduction of a better performing differentiable DBA variant, i.e.,SDBA [20],
[53]. In general, even under the mentioned limitations, DBA and its variant proved to be the best
performing DTW based time series averaging techniques. However, their computational complexity
and non-smoothness inhibit them from utilizing the powers of modern-day optimization setups such
as neural networks. To this end, in recent years, researchers have started to shift their focus toward
warping techniques that can easily get integrated into neural networks. However, before we proceed
to this discussion, we would like to finalize the discussion of DBA by presenting DBA’s estimate for
the CBF Funnel class. In this regard, we have computed the DBA and SDBA estimates of the dataset
as in Figure 2.13. To generate the estimates, we have executed both algorithms for 100 iterations
while SDBA’s SDTW 𝛾 value was set to 0.01. With these estimations, DBA and SDBA respectively
scored a WGSS of 3.5484 and 3.4530 which are better than NLAAF’s 3.7407 and PSA’s 4.1363. In
conclusion, we would like to point out that averaging techniques based on DTW are not limited
to the three algorithms presented so far. On the contrary, in recent years, different types of DTW
based averaging heuristics have been proposed. For instance, in [31], a subgradient version of DBA
was proposed in order to overcome the non smoothness of the Fréchet function. On the other hand,
in [50], a compression algorithm for constrained averages was proposed. Overall, we find the three
algorithms presented in this section to convey the general concepts behind DTW based averaging
techniques.

0 20 40 60 80 100 120
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

DBA estimate for the CBF funnel class

(a) DBA estimate

0 20 40 60 80 100 120
Time

1

0

1

2

Am
pl

itu
de

SDBA estimate for the CBF funnel class

(b) SDBA estimate

Figure 2.13: A demonstration of DBA and SDBA using the Funnel class of the UCR archive’s CBF dataset

2.3 Deep Neural Networks and Time series Averaging

In earlier days, neural networks were often associated with the realization of basic logical operations.
However, as time progressed, researchers realized that neural networks were capable of optimizing
various objective functions with a proper modeling [29], [54]. The first neural network component
proposed in this regard was the neuron. The neuron initially assumed to take an input of the form
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑀 } and generates an output using (2.11), where 𝑤,𝑏 and 𝑓 are the weights, bias
and the activation function of a neuron.

𝑦 =
𝑀∑︁
𝑖=1

𝑓 (𝑤𝑖𝑥𝑖) + 𝑏 (2.11)

Implementation-wise, various neuron models were initially proposed with different objectives in mind.
In this regard, the McCulloch Pits, the Perceptron and the ADAptive LINear (ADALIN) were some of the

27

Background and Related Works
Chapter
2

well known early neuron models [54]. In practice, such neuron models were often represented with the
block diagram shown in Figure 2.14 (b). Moreover, in most literature, Figure 2.14 (a) is often presented
to show the resemblance of the neuron model to its natural counterpart. In this aspect, we can take the
dendrite and axon terminal of a natural neuron to correspond to the input and output of the neuron
model. However, despite this generalized representation, different neuron models followed different

(a) A natural neuron

wM

w2

w1

xM

x2

x1

y
.

.

.

f (.)

.

.

.

(b)Model of a neuron.

Figure 2.14: Similarities among a natural neuron and its model in neural networks

approaches to meet underlying objectives. For instance, the McCulloch Pits model was proposed to
realize the functionalities of digital logic gates, i.e., AND, OR, NOT. In order to meet this objective,
the McCulloch Pits proposed to utilize Binary (B), Ramp (R) and Sigmoid (S) activation functions that
are mathematically modeled using (2.12) [54]. However, even though the McCulloch Pits was able
to model the functionalities of digital logic gates, the neurons were not trainable. Consequently,
the weights of McCulloch Pits get set manually. With this in mind, Frank Rosenblatt proposed the
Perceptron neuron model which updates its weights using [(𝑦 − 𝑦𝑝) 𝑤𝑖 , where [, 𝑦 and 𝑦𝑝 were the
learning rate, a true value and predicted output. Following the same trend, the ADALIN also proposed
to update the weights of a neuron similarly. However, unlike McCulloch Pits, it was mainly activated
using a linear activation function (𝑓 (𝑥) = 𝑥). Nevertheless, researchers quickly realized a single
neuron is not sufficient to model complex objective functions. To this end, they proposed to organize
neurons using layers to meet the demands of inputs and target objective functions.

𝐵(𝑥) =

0, if 𝑥 < 0

1, if 𝑚 ≥ 0
𝑅(𝑥) =

0, if 𝑥 ≤ 0

𝑥, if 0 ≤ 𝑥 ≤ 𝛽

1, if 𝑥 > 𝛽

𝑆 (𝑥) = 1
1 + 𝑒𝑥𝑝−𝑥 (2.12)

2.3.1 Neural Network Layers

Today, there are different types of neural network layers that vary depending on how they extract
features and analyze inputs. In practice, researchers often rely on this aspect and organize layers
under a suitable architecture to manage underlying objective functions. In this subsection, we will
give a brief review on three types of layers, i.e., the Dense, Convolutional and Long Short TermMemory
(LSTM) cells. Practically speaking, each layer has its advantages and disadvantages. For instance, a
Dense layer is known to be capable of learning global features [7], [29]. However, if we expect to

28

Background and Related Works
Chapter
2

identify features irrespective of their location, a Convolutional layer is often preferred [7]. With this
in mind, we will further our discussion with the Dense layer since it is historically the first to be
proposed [29], [54].

2.3.1.1 Dense Layers

In neural networks, a Dense layer often assume its inputs are univariate𝑀 dimensional vectors. Thus,
given an input of the form 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑀 }, a Dense layer is built from 𝑁 neurons that are either
connected to each and every values of the inputs (𝑥𝑖) or to some of them [29], [54]. In practice, if
the former approach gets used, a Dense layer is said to be in a fully connected configuration (fully
connected Dense layer). Figure 2.15 demonstrates this configuration of a Dense layer where each
outputs (𝑦𝑖) are computed using (2.11). In practice, a fully connected Dense layer is considered good

N
eu

ra
l N

et
w

or
ks

Ch
ap

te
r 2

[4
0

]

In
 th

e
fo

llo
w

in
g

di
ag

ra
m

, y
ou

 c
an

 s
ee

 th
e

1-
la

ye
r f

ee
df

or
w

ar
d

ne
tw

or
k.

 In
 th

is
 c

as
e,

 w
e

ex
pl

ic
itl

y
sh

ow
 th

e
w

ei
gh

ts
 w

 fo
r e

ac
h

co
nn

ec
tio

n
be

tw
ee

n
th

e
ne

ur
on

s,
 b

ut
 u

su
al

ly
, t

he
ed

ge
s

co
nn

ec
tin

g
ne

ur
on

s
re

pr
es

en
t t

he
 w

ei
gh

ts
 im

pl
ic

itl
y.

 W
ei

gh
t w

ij c
on

ne
ct

s
th

e
i-t

h
in

pu
t n

eu
ro

n
w

ith
 th

e
j-t

h
ou

tp
ut

 n
eu

ro
n.

 T
he

 fi
rs

t i
np

ut
, 1

, i
s

th
e

bi
as

 u
ni

t,
an

d
th

e
w

ei
gh

t,
b 1

, i
s

th
e

bi
as

 w
ei

gh
t:

1-
la

ye
r f

ee
df

or
w

ar
d

ne
tw

or
k

In
 th

e
pr

ec
ed

in
g

di
ag

ra
m

, w
e

se
e

th
e

1-
la

ye
r n

eu
ra

l n
et

w
or

k
w

he
re

in
 th

e
ne

ur
on

s
on

 th
e

le
ft

re
pr

es
en

t t
he

 in
pu

t w
ith

 b
ia

s
b,

 th
e

m
id

dl
e

co
lu

m
n

re
pr

es
en

ts
 th

e
w

ei
gh

ts
 fo

r e
ac

h
co

nn
ec

tio
n,

 a
nd

 th
e

ne
ur

on
s

on
 th

e
ri

gh
t r

ep
re

se
nt

 th
e

ou
tp

ut
 g

iv
en

 th
e

w
ei

gh
ts

 w
.

weights

.........

Inputs

....

b1 w11 w12 w1M b2 w21 w22 w2M

y1 y2 y3

wN1 wN2 wN3 wNM

1 x1 x2 xM

Figure 2.15: A demonstration of a fully connected Dense layer [29]

at learning global features [29]. In reality, in Dense layers, a neuron is aware of all the possible
input values. However, in practice, such full connections often become computationally demanding.
In this aspect, for a Dense layer with 𝑁 neurons that has input in ℝ𝑀 , we have 𝑀 + 1 trainable
weights associated with each neuron. This requirement becomes more demanding as the number of
nodes (neurons) and Dense layers increase. Besides this intensive computational requirement, fully
connected Dense layers are often prone to over-fitting. In neural networks, we say an over-fitting
has occurred when its performance is better on training inputs rather than on validation (unseen)
datasets. One underlying reason behind such behaviors of neural networks is the possibility of
learning complex functions for simple input and objective functions. In this aspect, a large number of
trainable weights, i.e., as in the case of fully connected Dense layers, are known to be one contributing
factor. For instance, if we assume 𝑙 stack of neurons modeled with (2.11) have linear activation
functions (𝑓 (∑𝑀

𝑖 𝑤𝑖 𝑥𝑖) =
∑𝑀
𝑖 𝑤𝑖 𝑥𝑖), we can think of them as a trainable polynomial function of

degree > 𝑙 . Moreover, in this perspective, 𝑥𝑖 𝜖 𝑋 becomes the coefficient of the trainable parameter
𝑤𝑖 ∈ 𝑊 . At this point, if we also assume we are trying to learn an optimal regression line for input in
ℝ2, a stack of neurons that have 3 connections are capable of learning at least a quadratic polynomial
that could be a perfect fit for a training input in ℝ2. However, if we add more neurons and stack them
as a fully connected Dense layer, the network will learn a complex function for a simple objective.
Hence, when this is the case, it will often be difficult for a neural network to generalize well for most
unseen datasets. On the contrary, the network will likely train to perfectly fit the most abundant and

29

Background and Related Works
Chapter
2

relatively easy training inputs. To this end, in some practical cases, it is often proposed to randomly
drop out some of the Dense layer connections to keep the computational requirement and over-fitting
problem at an acceptable level [29].

However, despite such modifications, there are times when a Dense layer is not an optimal choice
for processing some inputs. In this regard, a simple example would be when the inputs are two
dimensional images. In such cases, a Dense layer expects the inputs to get flattened into a one dimen-
sional column vector. However, such flattening operations often lead to the destruction of spatial
information that could, in turn, affect the performance of a neural network. With this understanding,
researchers have proposed a range of layers with different types of inputs in mind. For instance,
researchers have proposed Convolutional layers that are known to perform better on image and shape
analysis.

2.3.1.2 Convolutional Layers

In neural network based optimization setups, sometimes we desire to identify descriptive features
irrespective of their location [7], [55], [56]. For instance, if we propose to use a neural network in
a face recognition system, then we often desire the network to have the ability to identify basic
features on a human face, i.e., eyes, eyebrows, nose, mouth, etc. Furthermore, we expect the network
to identify such descriptive features irrespective of the location of a human face in a given image.
However, if we design this network using a set of Dense layers, we should at least expect to face the
two difficulties. First, a Dense layer expects one-dimensional inputs. Thus, it requires input images
to get flattened. However, the flattening of input images will deform the spatial information of the
features we aim to extract. Secondly, since a Dense layer’s neuron gets connected to every input value,
it will often mix and process irrelevant information, for instance, a blank space within an image. With
such observations in mind, researchers proposed to process such kinds of inputs with Convolutional

layers.

Unlike its predecessor, a Convolutional layer does not process its input all at once. Instead, a Convolu-
tional layer introduced two parameters that are sufficient for its basic operation, i.e., a Convolutional
kernel and stride [7], [29], [56]. On one hand, the kernel of a Convolutional layer defines the number
of trainable weights a Convolutional neuron is expected to have. On the other hand, a Convolution
layer uses the stride to define the steps taken by a kernel while sliding along the axes of the input.
These functionalities are better demonstrated in Figures 2.16 (a) & (b) which correspond to the one
and two dimensional Convolution operation. For instance, in Figure 2.16 (a), given an input 𝑋 ∈ ℝ𝑀 ,
each output values (𝑦𝑖) are computed using (2.13) where 𝐾 is the size of the Convolutional kernel,
0 ≤ 𝑗 ≤ 𝐾 and 1 ≤ 𝑖 ≤ 𝑀 − 𝐾 .

𝑦𝑖 = 𝑓 (
𝐾∑︁

𝑖, 𝑗=0
𝑤𝑖𝑥𝑖+𝑗 + 𝑏) (2.13)

30

Background and Related Works
Chapter
2

On the contrary, the two dimensional Convolutional kernel of 𝑀 × 𝑁 shown in Figure 2.16 (b)
slides along the horizontal and vertical axes while an output is computed using (2.14). In general,
despite these differences, in both cases, an area that excites a neuron at a given time is known as
the receptive field of a Convolutional layer. In Figure 2.16, the receptive fields of the Convolutional
kernels are marked using red boxes. In practice, receptive fields play a significant role in the features
a givenConvolutional layer extracts. To this end, in most practical cases, the receptive fields of layers

𝑦𝑖 = 𝑓 (
𝑀∑︁
𝑖

𝑁∑︁
𝑗

𝑥𝑖, 𝑗 𝑤𝑖, 𝑗) (2.14)

x1 x2 x3 x4 x5 x6 x7 x8 x9

w1 w2 w3

 w1 w2 w3

 w1 w2 w3

 w1 w2 w3

 w1 w2 w3

 w1 w2 w3

 w1 w2 w3

.

y1 y2 y3 y4 y5 y6 y7

Receptive field

(a) One dimensional Convolution with single stride.

Computer Vision with Convolutional Networks Chapter 4

[96]

In a convolutional layer, the neuron activation value is defined in the
same way as the activation value of the neuron, we defined in Chapter 2,
Neural Networks. But here, the neuron takes input only from a limited
number of input neurons in its immediate surroundings. This is opposed
to a fully-connected layer, where the input comes from all neurons.

So far, we've calculated the activation of a single neuron. What about the others? It's simple!
For each new neuron, we'll slide the filter across the input image and we'll compute its
output (the weighted sum) with each new set of input neurons. In the following diagram,
you can see how to compute the activations of the next two positions (one pixel to the
right):

As the filter moves across the image, we compute the new activation values for the neurons in the output slice

Receptive field

(b) Two dimensional Convolution with single stride [29].

Figure 2.16: A Demonstration of a one and two dimensional Convolutional layers

are systematically tuned for better performance. For instance, instead of directly increasing the kernel
size, the effective receptive field is often increased by stacking Convolutional layers [57], [58]. In
reality, this has at least two advantages. First, when Convolutional layers are stacked, consecutive
layers get the chance to work on a more refined input. Secondly, due to the stacking, it would be
possible to deploy larger kernels with smaller ones with relatively lower computational demand.
Moreover, with smaller kernels we are in sense enabling a larger receptive field to focus on smaller
details.

Generally, we can safely correlate the operations of a Convolutional layer to concepts in discrete
linear time invariant (LTI) systems. In practice, input/output relationship for such systems gets
governed by the convolution of their impulse response ℎ and an input signal. In other words, given
an input 𝑋 ∈ ℝ𝑀 and an impulse response ℎ ∈ ℝ𝐾 , the output of a discrete LTI system is computed
using (2.15) [45].

𝑦𝑖 =
𝐾∑︁

𝑖, 𝑗=0
ℎ 𝑗𝑥𝑖− 𝑗 (2.15)

However, unlike the convolution in discrete LTI systems, a neural network’s Convolutional layers
have a trainable impulse response. Moreover, neural network’s Convolutional layers could utilize a
non linear activation function, i.e., after the convolution operation. In addition to this, a Convolutional
layers have dynamic capabilities that can either be introduced through additional parameters or by

31

Background and Related Works
Chapter
2

manipulating existing ones. For instance, if we set the stride (𝑆) to be greater than one, a Convolutional
layer can reduce the dimension of its input by at most a factor of 𝑆 . In practice, such capabilities are
useful when we desire to reduce the dimension of an input in a more intelligent manner [59]. On the
contrary, we can also use Convolutional layers in their transposed form to perform an intelligent up-
sampling. However, in this case, we are expected to slide each input value (𝑥𝑖) along a Convolutional
kernel that has a size of K. Thus, this way, it up-samples the input by a factor of 𝐾 . Furthermore, if
we do not desire to either upscale or reduce an input’s dimension, we can also introduce a Padding
parameter. In addition to these possibilities, a Convolutional layer is also capable of learning multiple
kernels at once, where a collection of multiple kernels are often called filters [29]. In practice, the
outputs of each kernels gets organized into channels where a channel often identifies a certain unique
feature of an input. In general, a Convolutional layer is capable of learning multiple kernels whose
output dimensions are governed by (2.16), where 𝐷𝑥 , 𝐷𝑦 are the dimensions of the input and the
output. Moreover, 𝑃, 𝐾, 𝑆 are the padding, kernel, and stride size of the Convolutional layer.

𝐷𝑦 = ⌊𝐷𝑥 + 2 × 𝑃 − 𝐾
𝑆

⌋ + 1 (2.16)

With these dynamic capabilities, Convolutional layers have intensively get utilized in most renowned
neural network architectures. Typical examples in this regard are, the Visual Geometric Group 16
(VGG16), the Residual Network (ResNet)), the Inception, InceptionTime, etc [57], [58], [60], [61].
However, in reality, there are additional reasons behind the large deployment of Convolutional layers.
First, Convolutional layers have a smaller number of trainable weights (𝑁 × (𝐾 + 1)) where 𝑁 and 𝐾
are the number and size of a Convolutional kernel. To this end, they often require fewer computational
resources compared to their counterparts. Moreover, in Convolutional layers, it is possible to target
specific features of an input by varying their receptive field (kernel) size. With these observations in
mind, we construct the main blocks of our proposals using Convolutional layers and utilize Dense
layers to terminate network modules. However, when we discuss the practical aspect of our proposals,
i.e., in chapter four, one of our works utilizes LSTM cells. Thus, to further aid this discussion, we will
finalize this subsection by presenting the Recurrent Neural Network (RNN) and Long Short Term
Memory (LSTM) cells.

2.3.1.3 Layers in Recurrent and Long Short Term Memory Neural Networks

In machine learning, different types of inputs place different sets of requirements on neural networks.
For instance, if we aim to utilize neural networks to process inputs that follow a Markovian chain
behavior, then we expect the deployed network to have a memory [29], [62]. For instance, if we
consider word predictors commonly found in renowned search engines such as Google: we expect
users to enter a part of a sentence and to get presented with options that could fill their sentence in
a meaningful manner. Thus, in such cases, we expect an underlying neural network to be aware of
contexts which in turn requires remembering a range of predecessor words. To practically address
such requirements, researchers initially proposed Recurrent Neural Network (RNN) which were later
upgraded to the Long Short Term Memory (LSTM) networks [29]. In RNN, layers sequentially process
their inputs by introducing the concept of states [29]. In this regard, given an input that has a form

32

Background and Related Works
Chapter
2

𝑋 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑀 }, a RNN layer computes the output at timestamp 𝑖 using two steps. In the
first step, it takes the input at 𝑥𝑖 and scales it with𝑊𝑖𝑛𝑝𝑢𝑡 . Following this scaling, it combines the
scaled input with the weighted version of a previous state (𝑠𝑖−1) using (2.17), where 𝑓𝑠𝑡𝑎𝑡𝑒 corresponds
to the activation function of a state. Finally, as a final and second step, a RNN layer computes the
output of the current time stamp 𝑖 using (2.18).

𝑠𝑖 = 𝑓𝑠𝑡𝑎𝑡𝑒 (𝑊𝑖𝑛𝑝𝑢𝑡 × 𝑥𝑖 + 𝑊𝑠𝑡𝑎𝑡𝑒 × 𝑠𝑖−1) (2.17)

𝑦𝑖 = 𝑓𝑜𝑢𝑡 (𝑊𝑜𝑢𝑡𝑝𝑢𝑡 × 𝑠𝑖) (2.18)

In most literature, this time recursion of an RNN layer is visually interpreted as shown in Fig-
ure 2.17 [29], [62]. According to Figure 2.17 [29], [62], the weights𝑊𝑖𝑛𝑝𝑢𝑡 , 𝑊𝑠𝑡𝑎𝑡𝑒 and𝑊𝑜𝑢𝑡𝑝𝑢𝑡 of
a RNN layer are shared across the time stamps. To this end, in RNN, we could face two extreme
cases as the layer propagates through time. In the first case, the magnitude of the weights could
significantly increase. Thus, when the partial derivative of errors with respective layer weights gets
taken, they could easily give an exploding gradient. On the contrary, if the magnitude of the weights
is much smaller, they could easily give vanishing gradients [29]. However, in practice, we rely on
gradients to update layer weights through back-propagation. With this problem in mind, Hochreiter
and Schmidhuber proposed the LSTM [63].

W
o

u
tp

u
t

W
o

u
tp

u
t

W
o

u
tp

u
t

W
in

p
u

t

W
in

p
u

t

x t x t-1

s t s t-1

Wstate Wstate

xt-1 s t-2 x t-2

f state (.) Unrolled f state (.) f state (.)

f output (.)

f (.)

y t-2
y t-1 y t

X

Y

f output (.) f output (.)

Figure 2.17: The unrolling of a Recurrent Neural Network (RNN) layer

In LSTM network, layers (cells) introduced a third parameter called cell memory state (𝑐𝑡) that controls
how much of the state information propagates to the current output. In this regard, Figure 2.18 depicts
how this memory control is achieved in a LSTM cell. In this aspect, internally LSTM cells utilize
two sets of activation functions, i.e., Sigmoid (𝜎) and hyperbolic tangent (tanh). In reality, each 𝜎
or tanh activation function gets deployed using fully connected Dense layers, where the number of
neurons depends on the embedding utilized for each coordinate (𝑥𝑖) of an input. In general, a LSTM
cell distribute the tanh and Sigmoid activation functions among three gates, i.e., the input, output, and
forget gates[29]. In Figure 2.18, the left-most Sigmoid activation defines the forget gate. In reality, a
Sigmoid activation is within the range of [0, 1]. Consequently, it can define how much of the previous
cell memory gets passed to the current cell.

33

Background and Related Works
Chapter
2

xt

σ σ

tanh

σ

tanh

x

+

x

x

st-1

ct-1

st

ct

yt

𝑤𝑖𝑛𝑝𝑢𝑡
𝑖 𝑤𝑠𝑡𝑎𝑡𝑒

𝑖

𝑤𝑖𝑛𝑝𝑢𝑡
𝑐

𝑤𝑠𝑡𝑎𝑡𝑒
𝑐 𝑤𝑠𝑡𝑎𝑡𝑒

𝑓

𝑤𝑖𝑛𝑝𝑢𝑡
𝑓

𝑤𝑖𝑛𝑝𝑢𝑡

𝑜

𝑤𝑠𝑡𝑎𝑡𝑒
𝑜

Forget gate
Input gate output gate

Figure 2.18: A Long Short Term Memory (LSTM) cell

Overall, the selection process at the forget gate gets mathematically expressed as:

𝑓𝐺 = 𝜎 (𝑤 𝑓𝑠𝑡𝑎𝑡𝑒 × 𝑠𝑡−1 + 𝑤
𝑓
𝑖𝑛𝑝𝑢𝑡 × 𝑥𝑡) (2.19)

Next to the forget gate, we have two activation functions serving as the input gate. The activation
functions determine which of the input features gets selected and how much of them gets combined
with the memory of a current cell. In this regard, the tanh activation determines the type of input and
selected previous state features. On the other hand, the Sigmoid activation determines how many of
these features get selected. Mathematically, these selection processes are defined using (2.20), where
𝑖𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑡 represents the selected input features and 𝑖𝑤𝑒𝑖𝑔ℎ𝑡𝑡 determines how much of the selected input
features get combined with a cell’s memory.

𝑖𝐺 =

𝑖𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑡 = 𝑡𝑎𝑛ℎ (𝑤𝑐𝑠𝑡𝑎𝑡𝑒 × 𝑠𝑡−1 + 𝑤𝑐𝑖𝑛𝑝𝑢𝑡 × 𝑥𝑡), Selected input features

𝑖
𝑤𝑒𝑖𝑔ℎ𝑡
𝑡 = 𝜎 (𝑤𝑖𝑠𝑡𝑎𝑡𝑒 × 𝑠𝑡−1 + 𝑤𝑖𝑖𝑛𝑝𝑢𝑡 × 𝑥𝑡), Input weighting factor

(2.20)

Following the same trend, the output gate controls how much of a LSTM cell forget and input gate
outputs get passed as the current hidden state. This selection process is summarized using (2.21).

𝑜𝐺 = 𝜎 (𝑤𝑜𝑠𝑡𝑎𝑡𝑒 × 𝑠𝑡−1 + 𝑤𝑜𝑖𝑛𝑝𝑢𝑡 × 𝑥𝑡) (2.21)

Thus, in LSTM, a cell first scales the output of the tanh activated input and previous state features
with their respective weighting factor, i.e., using 2.22.

𝑖
𝑔𝑎𝑡𝑒𝑑
𝑡 = 𝑖𝑤𝑒𝑖𝑔ℎ𝑡𝑡 × 𝑖𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (2.22)

34

Background and Related Works
Chapter
2

Following this, LSTM scales the previous cell memory with the output of the forget gate using 2.23.

𝑐𝑡 = 𝑓𝐺 × 𝑐𝑡−1 (2.23)

The output of the input gate and the current cell’s memory later get combined and passed through a
tanh activation as a candidate output using 2.24.

𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝑡𝑎𝑛ℎ(𝑐𝑡 + 𝑖
𝑔𝑎𝑡𝑒𝑑
𝑡) (2.24)

Finally, LSTM cell computes its current hidden state (output) by weighting the candidate output with
the activation value of the output gate, i.e., using 2.25.

𝑂𝐿𝑆𝑇𝑀 = 𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 × 𝑜𝐺 (2.25)

In general, through the three gating operations, LSTM cells can choose to either completely forget
or retain their memory states. To this end, LSTM can retain its memory in a controlled manner,
i.e., without rapidly exploding or vanishing gradients. However, even if LSTM is better capable of
capturing Markovian chain behaviors, they are resource intensive compared to convolutional layers.
In this aspect, in LSTMm the three gates are constructed from fully connected Dense layers. Thus,
as the dimension of the input embedding and layer stacking increases, the number of trainable
weights significantly grow [29]. With this said, we will finalize the discussion of layers in Recurrent
Neural Network (RNN). Moreover, we will leave concepts related to other versions of recurrent neural
networks, such as the Gated Gated Recurrent Unit (GRU) to the interested reader.

2.3.2 Back-propagation, Activation Functions and Layer Initialization

In neural networks, we aim at tuning the weights of neurons or layers in general to meet the demands
of a given cost (objective) function. In earlier days, the weights of neurons were either updated
manually or through simple difference operations [54]. However, with such approaches, it is often
difficult to construct deep neural networks that handle complicated tasks. To address this issue, the
authors in [64] proposed the concept of back-propagation designed to update weights using gradients.
To further elaborate on this matter, let us assume that we have a neural network built from three
stacked Dense layers, i.e., 𝐿1, 𝐿2, 𝐿3. Moreover, let us also further assume the layers respectively
have a fully connected 𝑁1, 𝑁2, 𝑁3 number neurons, where 𝑁𝑖 ≥ 1. In addition to this, to make the
network more generic, let us also assume the neurons have a generic activation (𝑓 (.)) and use (2.11)
to generate outputs. In practice, in such setups, 𝐿1, 𝐿2, 𝐿3 are respectively called input, hidden, and
output layers. In practice, we often utilize such setups to minimize an objective function that has the
form given in (2.26), where 𝑆 is a function of the neural network weights and activation functions,
and Y is a true value. In practice, if the exact values of Y are known, i.e., at least at the time of training,
then the network is said to be trained under a supervised setup. However, when this is not the case,
the network is said to be trained under an unsupervised setup [29]. Overall, in both cases, we only
have control over 𝑆 which is a composition of weights and inputs. Thus, in practice, neural networks

35

Background and Related Works
Chapter
2

utilize two passes to update 𝑆 to minimize 𝐶 , i.e., forward and backward pass.

𝐶 = 𝑓 (𝑆,𝑌) (2.26)

In reality, a forward pass updates the magnitude of 𝑆 , whereas a backward pass (back-propagation)
updates the components that make up 𝑆 or specifically weights. In this aspect, in our example
network, a forward pass will compute the output of each layer using the format given in (2.27), where
𝑍𝑖 = {𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝑁𝑖 } is the outputs of a layer 𝑖 that has 𝑁𝑖 neurons. Moreover, 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑀𝑖 }
corresponds the input of layer 𝑖 . Additionally, in reality, layers in deep neural networks have two sets
of weights, i.e., weights that connect neurons to their inputs and weights that connect neuron outputs
to the next layer. In order to represent this concept in (2.27), we have written the individual weights
of individual neurons as 𝑤𝑙,𝑘𝑖, 𝑗 for 1 ≤ 𝑙 ≤ 𝑁𝑖 and 1 ≤ 𝑘 ≤ 𝑀𝑖 . In the given representation, if 𝑖 = 𝑗 ,
we are talking about weights connecting neurons at layer 𝑖 to their inputs. Moreover, the specific
neuron under discussion gets indicated by the value of 𝑙 . On the contrary, if 𝑖 ≠ 𝑗 , they represent
weights connecting the outputs of given layer neurons to its successive layer. In reality, the output of
a given layer is an input for its successor. To this end, we can express the later representation of the
weights with the former one. For instance, 𝑤1,1

1,2 represents the weight connecting the output of the
first layer’s first neuron to the first neuron of layer two. This could also be written as 𝑤1,1

2,2.

𝑍𝑖 =

𝑧1𝑖
𝑧2𝑖
...

𝑧𝑁𝑖𝑖

= 𝑓

©«

𝑏1𝑖, 𝑗
𝑏2𝑖, 𝑗
...

𝑏𝑁𝑖𝑖, 𝑗

+

𝑤1,1
𝑖, 𝑗 𝑤1,2

𝑖, 𝑗 . . . 𝑤1,𝑀𝑖
𝑖, 𝑗

𝑤2,1
𝑖, 𝑗 𝑤2,2

𝑖, 𝑗 . . . 𝑤2,𝑀𝑖
𝑖, 𝑗

.

𝑤𝑁𝑖 ,1𝑖, 𝑗 𝑤𝑁𝑖 ,2𝑖, 𝑗 . . . 𝑤𝑁𝑖 ,𝑀𝑖𝑖, 𝑗

𝑥1𝑖
𝑥2𝑖
...

𝑥𝑀𝑖𝑖

ª®®®®®®¬
= 𝑓 (𝑊𝑖, 𝑗 𝑋𝑖 + 𝐵𝑖, 𝑗) (2.27)

With these understandings, we can now write the input output relationship of the three Dense layers
for a forward pass as (2.28).

𝑍1 = 𝑓 (𝑊1,1 𝑋1 + 𝐵1,1)
𝑍2 = 𝑓 (𝑊2,2 𝑍1 + 𝐵2,2)
𝑍3 = 𝑆 = 𝑓 (𝑊3,3 𝑍2 + 𝐵3,3)

(2.28)

In a neural network, backward pass (back-propagation), is designed to intelligently update 𝑆 such that
the cost function C (2.26) is minimized. Based on the derivation presented so far, we can achieve this
objective by observing the rate of change of 𝐶 with respect to each weight. Mathematically speaking,
this can be achieved by taking the partial derivative of the cost function with respect to the weights,
i.e., gradients of the cost function. However, in reality, there are weight matrices that are not directly
related to the cost function say for instance𝑊1,1 in (2.28). In this aspect, [64] proposed to utilize the
chain rule of partial derivatives. For instance, for (2.28), we can compute the rate of change of𝐶 (𝑆,𝑌)
with respect to𝑊1,1 using (2.29).

𝜕𝐶 (𝑆, 𝑌)
𝜕𝑊1,1

=
𝜕𝐶 (𝑆,𝑌)
𝜕𝑍2

𝜕𝑍2
𝜕𝑍1

𝜕𝑍1
𝜕𝑊1,1

(2.29)

36

Background and Related Works
Chapter
2

In addition to this computation, [64] also proposed to update the weights (𝑊𝑖, 𝑗) and biases (𝐵𝑖, 𝑗)
using (2.30), where [is a weighting factor of the gradients which is often called learning rate.
Moreover, in practice, (2.30) is commonly called the gradient decent or back-propagation.

𝑊𝑖, 𝑗 :=𝑊𝑖, 𝑗 − [𝜕𝐶 (𝑆,𝑌)
𝜕𝑊𝑖, 𝑗

𝐵𝑖, 𝑗 := 𝐵𝑖, 𝑗 − [𝜕𝐶 (𝑆,𝑌)
𝜕𝐵𝑖, 𝑗

(2.30)

Practically, different factors affect the performance of gradient descent. In this regard, one major
factor would be how often we update the weights of the network layers. In this regard, we have
three possibilities that could lead to three different performance outcomes. In the first case, we
can choose to update the weights of a network after every forward pass of an input. When this
is the case, we often will have slow convergence of the network since every backpropagation will
pull the gradients in a different direction. In other words, we will zigzag towards a global opti-
mum that could get missed due to short interval updates. On the contrary, instead of updating a
network per input sample, we can also wait to see every training input and update the weights
by taking aggregated gradients. However, in this case, we also have a slow convergence due to a
slow rate of update that could easily worsen as the number of training samples increases. To this
end, in most practical cases, neural networks are often updated using batches of the training input [29].

In reality, the rate of weight updates is not the only factor affecting the operation of gradient descent.
In this context, different variants of the gradient descent have got proposed to address different gaps
observed in the algorithm [65]. If we pause at this point and leave the details of such works to the
interested reader, we can speculate additional influencing factors by just looking at (2.28) and (2.29).
In (2.28), we can see that the activation values get well embedded into the input and output of each
layer as the input progresses through the network. Thus, even if it is not explicitly shown in (2.29),
it will have a say in the outcomes of (2.29) and 2.30. This, in turn, could have either a negative or
positive effect on the overall performance of a neural network. Additionally, in neural networks, layer
weights are often initialized with random values. This initialization often dictates from where the
gradients start to decent while looking for global minima. Thus, in practice, an improper weight
initialization could force gradient descent to get stuck in local minimums. Moreover, it could also
produce weights that could vanish or explode while computing the gradient descent. To this end,
in the next two subsections, we emphasize these two key factors and present challenges and trends
associated with them. Moreover, such assessments have helped us to make proper neural network
parameters selection in our search for a time series average augmentation (generative) neural network
setup. Additionally, it will also help the reader understand the underlying reason behind the selection
of parameters in our proposed approaches.

2.3.2.1 Activation Functions

In neural networks, activation functions and layer initialization are key parameters that play a role in
the performance of proposed architectures. In this context, on one hand, proper activation functions

37

Background and Related Works
Chapter
2

enable layers to perform complex transformations fitting to the task at hand. On the other hand, layer
initialization significantly influences where gradient vectors start to decent along the curves of an
objective function [29], [54], [66]. In other words, they play a key role in whether we settle for a local or
global optimum. In terms of activation functions, in earlier days, neural networks mainly utilized linear
activation functions. However, even though a linear activation function is easy to deploy, it has at least
two basic limitations [29], [54]. First, in deep neural networks (networks that have multiple layers),
the magnitudes of linear activation could quickly grow after small training iterations (epochs). Thus,
a deep neural network that fully utilizes linear activation is often susceptible to an exploding gradient
problem, i.e., (2.30) could significantly increase. Moreover, neural networks based on linear activation
functions assume that the optimized objective function can get modeled using linear functions or
the composition of linear functions. However, in practice, this is not always possible [23], [54]. To
this end, researchers have proposed a range of non-linear activation functions to meet the demands
of relatively challenging objective functions. In this aspect, Figure 2.19 shows some of the most
common non-linear activation function, i.e., the Sigmoid (2.19 (b)), hyperbolic tangent (tanh) 2.19 (b)
and Rectified Linear Unit (ReLu) 2.19 (d). Furthermore, the governing mathematical equation of these
activation are also shown in (2.12) and (2.31).

𝑅(𝑥) =

𝑥, if 𝑥 ≥ 0

0, if 𝑥 < 0
𝑆𝑚𝑎𝑥 (𝑥𝑖) = exp𝑥𝑖∑𝐶

𝑖=1 exp𝑥𝑖
𝑡𝑎𝑛ℎ(𝑥) = 1 − exp−2𝑥

1 + exp−2𝑥 (2.31)

In practice, contrary to the others, theSoftmax activation is commonly deployed at the end of classifier
networks that are trying to identify class labels from𝐶 categories. This is because the output values of
𝑁 Softmax activated neurons sum up to one. Consequently, Softmax activation values often serve as
indicators of the probability of a given input belonging to a certain class. However, despite this unique

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

f(x
)

Linear Activation Function

f(x)=x

(a) A linear activation function.

6 4 2 0 2 4 6x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

Sigmoid Activation Function

f(x)=1/(1+exp(-x))

(b) A Sigmoid activation function

6 4 2 0 2 4 6
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
)

tanh Activation Function

f(x) = tanh(x)

(c) A hyperbolic tangent activation function

6 4 2 0 2 4 6
x

0

1

2

3

4

5

6

f(x
)

ReLU Activation Function

f(x)=Max(0,x)

(d) A ReLU activation function

Figure 2.19: Some practically available neuron activation functions

38

Background and Related Works
Chapter
2

nature of Softmax, the activation values of tanh, Sigmoid and Softmax are bounded in magnitude,
i.e., within the rages of [−1, 1], [0, 1] and [0, 1] [29]. In practice, such output bounding could be
useful in mitigating the exploding gradients problem which is evident in linear activation functions.
However, in reality, the output bounding also squashes a large portion of input values into smaller
regions. To this end, if care is not taken, such bounded activation values could also be a major source
of vanishing gradients in deep neural networks [66]. Consequently, in some cases, networks based
on these functions could experience a slow rate of convergence due to small gradients. With these
observations in mind, most recent neural network architectures often propose to dominantly utilize
the Rectified Linear Unit (ReLU) activation function [57], [58], [60], [61]. This is because the zeroing
of negative values enables ReLU to often provides sparse and nonlinear transformations. To this
end, unlike Linear activation, ReLU is often able to avoid the exploding gradient problem. Moreover,
this capability of ReLU helps it to intelligently drop out neurons and their respective weights which
at times helps to avoid overfitting. However, in some cases, sparse transformations could result in
neural networks that have a smaller number of active neurons. This in turn could affect the learning
capability of a network [29]. In practice, to overcome this limitation, researchers also proposed variant
of ReLU, i.e., (Leaky Rectified Linear Unit (LReLU)), where 𝐿𝑅𝑒𝐿𝑈 (𝑥) = 𝑎 × 𝑥 when 𝑥 < 0 and
0 < 𝑎 < 1 [67]. In general, the type of selected activation function determines the overall learning
process. Thus, it is up to the user to carefully select activation values that suit the underlying data.
Moreover, in this paper, we only gave a brief review of activation functions that are pioneering.
Interested readers can refer to Keras’s documentation for the extended list of practically available
activation functions[68].

2.3.2.2 Impact of Layer Initialization on Deep Neural Networks

In practice, activation functions are not the only hyper-parameters that play a role in how objective
functions get optimized. In this aspect, layer weight initialization also plays a critical role in how
activation values and gradient vectors behave. For instance, if we propose to initialize layer weights
with zero initial values, then we are practically setting all𝑊𝑖, 𝑗 of (2.28) to zero. This, in turn, will
cause the gradients in (2.30) to vanish, thus making a network untrainable. On the contrary, if we
choose to initialize𝑊𝑖, 𝑗 with large constant values, the gradients would explode and oscillate over
global minima. Such high-level analysis reveals that we should not set out to initialize layers with
fixed constant values. On the contrary, the initialization should be randomized. However, the critical
question becomes, what are the proper statistical parameters? Moreover, what is the implication of
the parameters on the overall performance of a given network? In this regard, we find the research
conducted in [66], [67] to be the most relevant to the question at hand.

In [66], the authors investigated the impact of weight initialization on the gradient and activa-
tion values of Sigmoid, tanh and Softsign (𝑓 (𝑥) = 𝑥

1+|𝑥 |) activation functions. To conduct these
assessments, the authors built networks that have one up to five fully connected Dense layers. These
networks got set to have 1000 neurons in their hidden layers stacked to formulate a deep neural
network performing multi-class classification. For the classification task, the authors proposed to
utilize two broad categories of input datasets, i.e., Finite and Infinite datasets. In the finite input

39

Background and Related Works
Chapter
2

datasets, the authors utilized images obtained from MNIST digits, CIFAR-10 and Small-ImageNet [66].
In terms of size and dimension, theMNIST digits respectively constituted of 70,000 gray scaled 28× 28
images of handwritten digits (0 − 9). On the contrary, CIFAR-10 datasets contained 50,000 gray scaled
32 × 32 images of an airplane, automobile, bird, cat, deer, dog, frog, horse, ship, or truck. Finally, the
Small-ImageNet contained 110,000 37 × 37 grayscale images of animal or objects (reptiles, vehicles,
birds, mammals, fish, furniture, instruments, tools, flowers, and fruits) [66]. In general, the contents
of these datasets got divided among 10 different balanced classes. Moreover, while performing the
classification, the authors proposed to reserve 20,000 datasets that got equally split to formulate
validation and test datasets. On the contrary, for the infinite datasets, the authors used synthetically
generated images of geometric shapes (squares, parallelograms, and ellipses). In reality, since these
images got generated synthetically, an infinite number of these datasets were available. Furthermore,
to make the classification task more complex, the authors also proposed to generate images that could
contain multiple geometric shapes which could be scaled, rotated, or shifted versions of the original
shapes. In general, for all input categories (𝐶), the authors set the cost function of the networks to the
average negative log likelihood (− 1

𝐶

∑𝐶
𝑖=1 log𝑝 (𝑥𝑖 |𝑦𝑖)), were 𝑥𝑖 and 𝑦𝑖 are the true label of an image

and its corresponding Softmax activation value [66].

With these setups at hand, the authors first proposed to access the implication of random weight
initialization on activation values. In this aspect, they first proposed to initialize the weight of each
layer using (2.32), where we have adopted the notations given in (2.27) and set 𝑖 = 𝑗 to indicate the
weights of a layer. Moreover, 1 ≤ 𝑖, 𝑗 ≤ 5, n is the number of neurons in a preceding layer, and U is
the uniform distribution.

𝑊𝑖, 𝑗 = 𝑈
[−1√
𝑛
,
1√
𝑛

]
(2.32)

However, the bias (𝐵{𝑖, 𝑗 }) of each neuron were set to zero since their implications were assumed to be
insignificant. After training the network, the authors observed the activation values of each layer at
different iterations (epochs). To aid our discussion, we have extracted the graphical depiction of the
activation values from [66] and presented them in Figures 2.20 & 2.21. These activation values got
obtained when the network was trained using samples obtained from the infinite datasets category.
In Figure 2.20, the solid horizontal lines correspond to the mean of the activation values, whereas the
oscillating vertical lines represent the variance. According to the Figure 2.20, for a Sigmoid activation,
inner hidden layers quickly saturated. Moreover, the last hidden softmax layer (Layer4) immediately
saturated and tried to recover after 100 epochs. The authors mainly associated this behavior of the ac-
tivation values with the initialization technique. In this regard, the authors argue that neural networks
initialized using the weights of pre-trained networks did not exhibit such behavior. In this context,
the authors speculated that, with random initialization, inner hidden layers do not immediately learn
meaningful features related to the task. Thus, at the output of the classifier network, the Softmax

activation of𝑊 𝑍 + 𝐵 will initially rely on the bias 𝐵 and will often be zero [66]. Moreover, since
the gradient has to keep discriminating unrelated predictions, it will inform upper layers to set their
activation values (𝑍) to zero. However, since upper layers are also trying to learn and have asymmetric
activation function (Sigmoid), they will settle at a mid-way and start to oscillate. In reality, for a

40

Background and Related Works
Chapter
2

 251

Xavier Glorot, Yoshua Bengio

training pairs (x, y) and used to update parameters θ in that
direction, with θ ← θ − εg. The learning rate ε is a hyper-
parameter that is optimized based on validation set error
after a large number of updates (5 million).

We varied the type of non-linear activation function in the
hidden layers: the sigmoid 1/(1 + e−x), the hyperbolic
tangent tanh(x), and a newly proposed activation func-
tion (Bergstra et al., 2009) called the softsign, x/(1 + |x|).
The softsign is similar to the hyperbolic tangent (its range
is -1 to 1) but its tails are quadratic polynomials rather
than exponentials, i.e., it approaches its asymptotes much
slower.

In the comparisons, we search for the best hyper-
parameters (learning rate and depth) separately for each
model. Note that the best depth was always five for
Shapeset-3 × 2, except for the sigmoid, for which it was
four.

We initialized the biases to be 0 and the weights Wij at
each layer with the following commonly used heuristic:

Wij ∼ U
[
− 1√

n
,

1√
n

]
, (1)

where U [−a, a] is the uniform distribution in the interval
(−a, a) and n is the size of the previous layer (the number
of columns of W).

3 Effect of Activation Functions and
Saturation During Training

Two things we want to avoid and that can be revealed from
the evolution of activations is excessive saturation of acti-
vation functions on one hand (then gradients will not prop-
agate well), and overly linear units (they will not compute
something interesting).

3.1 Experiments with the Sigmoid

The sigmoid non-linearity has been already shown to slow
down learning because of its none-zero mean that induces
important singular values in the Hessian (LeCun et al.,
1998b). In this section we will see another symptomatic
behavior due to this activation function in deep feedforward
networks.

We want to study possible saturation, by looking at the evo-
lution of activations during training, and the figures in this
section show results on the Shapeset-3 × 2 data, but sim-
ilar behavior is observed with the other datasets. Figure 2
shows the evolution of the activation values (after the non-
linearity) at each hidden layer during training of a deep ar-
chitecture with sigmoid activation functions. Layer 1 refers
to the output of first hidden layer, and there are four hidden
layers. The graph shows the means and standard deviations
of these activations. These statistics along with histograms
are computed at different times during learning, by looking
at activation values for a fixed set of 300 test examples.

Figure 2: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid) during supervised
learning, for the different hidden layers of a deep archi-
tecture. The top hidden layer quickly saturates at 0 (slow-
ing down all learning), but then slowly desaturates around
epoch 100.

We see that very quickly at the beginning, all the sigmoid
activation values of the last hidden layer are pushed to their
lower saturation value of 0. Inversely, the others layers
have a mean activation value that is above 0.5, and decreas-
ing as we go from the output layer to the input layer. We
have found that this kind of saturation can last very long in
deeper networks with sigmoid activations, e.g., the depth-
five model never escaped this regime during training. The
big surprise is that for intermediate number of hidden lay-
ers (here four), the saturation regime may be escaped. At
the same time that the top hidden layer moves out of satura-
tion, the first hidden layer begins to saturate and therefore
to stabilize.

We hypothesize that this behavior is due to the combina-
tion of random initialization and the fact that an hidden unit
output of 0 corresponds to a saturated sigmoid. Note that
deep networks with sigmoids but initialized from unsuper-
vised pre-training (e.g. from RBMs) do not suffer from
this saturation behavior. Our proposed explanation rests on
the hypothesis that the transformation that the lower layers
of the randomly initialized network computes initially is
not useful to the classification task, unlike the transforma-
tion obtained from unsupervised pre-training. The logistic
layer output softmax(b+Wh) might initially rely more on
its biases b (which are learned very quickly) than on the top
hidden activations h derived from the input image (because
h would vary in ways that are not predictive of y, maybe
correlated mostly with other and possibly more dominant
variations of x). Thus the error gradient would tend to
push Wh towards 0, which can be achieved by pushing
h towards 0. In the case of symmetric activation functions
like the hyperbolic tangent and the softsign, sitting around
0 is good because it allows gradients to flow backwards.
However, pushing the sigmoid outputs to 0 would bring
them into a saturation regime which would prevent gradi-
ents to flow backward and prevent the lower layers from
learning useful features. Eventually but slowly, the lower
layers move toward more useful features and the top hidden
layer then moves out of the saturation regime. Note how-
ever that, even after this, the network moves into a solution
that is of poorer quality (also in terms of generalization)

A
ct

iv
at

io
n

V
al

ue
s

Epoch of 20k mini-batch updates

Layer 1
Layer 2

Layer 3

Layer 4

0

0.5

1

20 40 60 80 100 120 140

Figure 2.20: Saturation of a Sigmoid activated Dense layers [66]. The authors in [66] used this plot to
demonstrate the impact of improper layer initialization on the overall outcome of neural networks. In this
regard, an improper layer initialization has led to a non harmonious back-propagation of gradients across
layers which forced the Dense layers to operate in a non harmonious manner

Sigmoid activation, each oscillation corresponds to the saturation of the activation function. However,
according to (2.29), a saturated activation does not contribute to a learning process (gradients). This,
in turn, will slow down the learning process of the Sigmoid activated network, i.e., as shown in
Figure 2.20. Practically, this is in line with our previous intuition of bounded activation functions
requiring more time to converge. In addition to these observations, the saturation of the Sigmoid acti-
vation reveals how networks based on this activation could suffer from the vanishing gradient problem.

With these observations in mind, the authors then utilized Figure 2.21 to demonstrate how the
tanh and Softsign activation functions behave with the proposed random weight initialization. Ac-
cording to Figure 2.21 (a), both activation functions oscillated between [−1, 1]. In the figure, the
markers represent the top 98 percentile, whereas markers with solid lines correspond to the standard
deviation. In general, as the number of epochs progresses, the saturation starts to oscillate closer

 252

Understanding the difficulty of training deep feedforward neural networks

then those found with symmetric activation functions, as
can be seen in figure 11.

3.2 Experiments with the Hyperbolic tangent

As discussed above, the hyperbolic tangent networks do not
suffer from the kind of saturation behavior of the top hid-
den layer observed with sigmoid networks, because of its
symmetry around 0. However, with our standard weight
initialization U

[
− 1√

n
, 1√

n

]
, we observe a sequentially oc-

curring saturation phenomenon starting with layer 1 and
propagating up in the network, as illustrated in Figure 3.
Why this is happening remains to be understood.

Figure 3: Top:98 percentiles (markers alone) and standard
deviation (solid lines with markers) of the distribution of
the activation values for the hyperbolic tangent networks in
the course of learning. We see the first hidden layer satu-
rating first, then the second, etc. Bottom: 98 percentiles
(markers alone) and standard deviation (solid lines with
markers) of the distribution of activation values for the soft-
sign during learning. Here the different layers saturate less
and do so together.

3.3 Experiments with the Softsign

The softsign x/(1+|x|) is similar to the hyperbolic tangent
but might behave differently in terms of saturation because
of its smoother asymptotes (polynomial instead of expo-
nential). We see on Figure 3 that the saturation does not
occur one layer after the other like for the hyperbolic tan-
gent. It is faster at the beginning and then slow, and all
layers move together towards larger weights.

We can also see at the end of training that the histogram
of activation values is very different from that seen with
the hyperbolic tangent (Figure 4). Whereas the latter yields
modes of the activations distribution mostly at the extremes
(asymptotes -1 and 1) or around 0, the softsign network has
modes of activations around its knees (between the linear
regime around 0 and the flat regime around -1 and 1). These
are the areas where there is substantial non-linearity but

where the gradients would flow well.

Figure 4: Activation values normalized histogram at the
end of learning, averaged across units of the same layer and
across 300 test examples. Top: activation function is hyper-
bolic tangent, we see important saturation of the lower lay-
ers. Bottom: activation function is softsign, we see many
activation values around (-0.6,-0.8) and (0.6,0.8) where the
units do not saturate but are non-linear.

4 Studying Gradients and their Propagation

4.1 Effect of the Cost Function

We have found that the logistic regression or conditional
log-likelihood cost function (− logP (y|x) coupled with
softmax outputs) worked much better (for classification
problems) than the quadratic cost which was tradition-
ally used to train feedforward neural networks (Rumelhart
et al., 1986). This is not a new observation (Solla et al.,
1988) but we find it important to stress here. We found that
the plateaus in the training criterion (as a function of the pa-
rameters) are less present with the log-likelihood cost func-
tion. We can see this on Figure 5, which plots the training
criterion as a function of two weights for a two-layer net-
work (one hidden layer) with hyperbolic tangent units, and
a random input and target signal. There are clearly more
severe plateaus with the quadratic cost.

4.2 Gradients at initialization

4.2.1 Theoretical Considerations and a New
Normalized Initialization

We study the back-propagated gradients, or equivalently
the gradient of the cost function on the inputs biases at each
layer. Bradley (2009) found that back-propagated gradients
were smaller as one moves from the output layer towards
the input layer, just after initialization. He studied networks
with linear activation at each layer, finding that the variance
of the back-propagated gradients decreases as we go back-
wards in the network. We will also start by studying the
linear regime.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1
Layer 2

Layer 4

Layer 3

Layer 5

0 10 20 30 40 50 60 70 80 90

-0.5

0.5

0

-1

1

9080706050403020100
-1

0.5-

0

0.5

1

A
ct

iv
at

io
n

V
al

ue
s

A
ct

iv
at

io
n

V
al

ue
s

Epoch of 20k mini-batch updates

Epoch of 20k mini-batch updates

(a) Saturation of tanh (top) and Softsign (bottom)

 252

Understanding the difficulty of training deep feedforward neural networks

then those found with symmetric activation functions, as
can be seen in figure 11.

3.2 Experiments with the Hyperbolic tangent

As discussed above, the hyperbolic tangent networks do not
suffer from the kind of saturation behavior of the top hid-
den layer observed with sigmoid networks, because of its
symmetry around 0. However, with our standard weight
initialization U

[
− 1√

n
, 1√

n

]
, we observe a sequentially oc-

curring saturation phenomenon starting with layer 1 and
propagating up in the network, as illustrated in Figure 3.
Why this is happening remains to be understood.

Figure 3: Top:98 percentiles (markers alone) and standard
deviation (solid lines with markers) of the distribution of
the activation values for the hyperbolic tangent networks in
the course of learning. We see the first hidden layer satu-
rating first, then the second, etc. Bottom: 98 percentiles
(markers alone) and standard deviation (solid lines with
markers) of the distribution of activation values for the soft-
sign during learning. Here the different layers saturate less
and do so together.

3.3 Experiments with the Softsign

The softsign x/(1+|x|) is similar to the hyperbolic tangent
but might behave differently in terms of saturation because
of its smoother asymptotes (polynomial instead of expo-
nential). We see on Figure 3 that the saturation does not
occur one layer after the other like for the hyperbolic tan-
gent. It is faster at the beginning and then slow, and all
layers move together towards larger weights.

We can also see at the end of training that the histogram
of activation values is very different from that seen with
the hyperbolic tangent (Figure 4). Whereas the latter yields
modes of the activations distribution mostly at the extremes
(asymptotes -1 and 1) or around 0, the softsign network has
modes of activations around its knees (between the linear
regime around 0 and the flat regime around -1 and 1). These
are the areas where there is substantial non-linearity but

where the gradients would flow well.

Figure 4: Activation values normalized histogram at the
end of learning, averaged across units of the same layer and
across 300 test examples. Top: activation function is hyper-
bolic tangent, we see important saturation of the lower lay-
ers. Bottom: activation function is softsign, we see many
activation values around (-0.6,-0.8) and (0.6,0.8) where the
units do not saturate but are non-linear.

4 Studying Gradients and their Propagation

4.1 Effect of the Cost Function

We have found that the logistic regression or conditional
log-likelihood cost function (− logP (y|x) coupled with
softmax outputs) worked much better (for classification
problems) than the quadratic cost which was tradition-
ally used to train feedforward neural networks (Rumelhart
et al., 1986). This is not a new observation (Solla et al.,
1988) but we find it important to stress here. We found that
the plateaus in the training criterion (as a function of the pa-
rameters) are less present with the log-likelihood cost func-
tion. We can see this on Figure 5, which plots the training
criterion as a function of two weights for a two-layer net-
work (one hidden layer) with hyperbolic tangent units, and
a random input and target signal. There are clearly more
severe plateaus with the quadratic cost.

4.2 Gradients at initialization

4.2.1 Theoretical Considerations and a New
Normalized Initialization

We study the back-propagated gradients, or equivalently
the gradient of the cost function on the inputs biases at each
layer. Bradley (2009) found that back-propagated gradients
were smaller as one moves from the output layer towards
the input layer, just after initialization. He studied networks
with linear activation at each layer, finding that the variance
of the back-propagated gradients decreases as we go back-
wards in the network. We will also start by studying the
linear regime.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1
0

1

2

3

0

1

2

3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Layer1
Layer2
Layer3
Layer4
Layer5

Layer1
Layer2
Layer3
Layer4
Layer5

Activation Values

Activation Values

(b) Normalized histogram plot of the tanh (top) and Soft-
sign (bottom) activation values

Figure 2.21: Saturation of tanh and Softsign activated Dense layers [66]. In (b), it is clear to observe that there
is discord among the activation values of layers due to improper weight initialization. In reality, such a huge
difference among the variance of activation values corresponds to unbalanced back-propagated gradients. In
practice, such unbalances often get associated with bad performances of neural networks.

41

Background and Related Works
Chapter
2

to zero. This behavior gets worst at the deep hidden layers. This was better demonstrated using
the normalized activation plot shown in Figure 2.21 (b). The figure demonstrates that deep hidden
layers have a relatively higher variance of activation values. This is because, generally speaking,
deep hidden layers are closer to the output and gets relatively higher gradient updates since there
are relatively small in-between saturated layers. On the contrary, layers closer to the input will have
lower variance in their activation values due to a higher number of in-between saturated layers and
consequently smaller gradient values. Practically, we expect neural networks to perform better when
there is a coherent flow of activation values and gradients. However, this is not achievable if there
is discord among layer saturation. In this aspect, [66] argued that coherence is achievable if layer
initialization techniques encourage a uniform standard deviation of activation and gradient values. In
this context, if we assume layers are operating at their linear regions of the Sigmoid and tanh activation
functions, then we can use (2.28) and write the output of the 𝑙𝑡ℎ Sigmoid and tanh activated layer as
𝑂 =𝑊1,1 × 𝑊2,2 . . .𝑊𝑙,𝑙 × 𝑋 + 𝐶 . Moreover, we can safely assume the inputs to be independent
and have a variance of 𝑉𝐴𝑅 [𝑋]. Under this consideration, the main contributor to the variance
observed in gradients would be the variances of the layer’s weight and the weight of a predecessor
layer. Moreover, due to the relation between activation values and gradients or (2.29), the variance of
the gradient values will have a multiplicative correlation with layer weights. In this context, for the
initialization given in (2.32), each layer’s gradient values will have a variance of 1

3 𝑛 and decrease at a
rate of 1

𝑛 as we progress backward. Consequently, layers closer to the input will have a low variance
in their activation due to getting updated with a slowly changing gradient. With this argument, [66]
proposed that layers should get initialized with (2.33) which is expected to guaranty uniform variance
across gradient values [66]. In (2.33), 𝑛𝑖 , 𝑛𝑖−1 correspond to the number of neurons at layer 𝑖 and its
immediate predecessor. The authors called this initialization the normalized initialization. However,
in practice, it is commonly known as the Xavier/Glorot uniform layer initialization technique (He
uniform) [68]. In [66], the authors demonstrated that (2.33) was able to meet its main objective using
the plots shown in Figure 2.22 [66]. In the plots, layers that were initialized with (2.33) showed a
uniform variance across the activation and gradient values of layers, i.e., according to the two bottom
plot in Figure 2.22 (a) & 2.22 (b).

𝑊𝑗,𝑖 = 𝑈 [−√6√
𝑛𝑖 + 𝑛𝑖−1

,

√
6√

𝑛𝑖 + 𝑛𝑖−1
] (2.33)

However, even though [66] provided an exceptional insight on layer initialization, a latter work argued
that (2.33) often works well with 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑡𝑎𝑛ℎ activation functions [67]. In this regard, [67]
presented the ReLu as an example and argued that in this case we should aim for a variance of
𝜎2 = 2

𝑛𝑖−1 rater than 𝜎
2 = 2

𝑛𝑖+𝑛𝑖−1 . Furthermore, the authors showed that ReLu activated layers should
be initialized using (2.34) rather than (2.33). This proposal later came to be known as the He uniform
initialization [68].

𝑊𝑗,𝑖 = 𝑈 [−
√︁
(6)√
𝑛𝑖

,

√︁
(6)√
𝑛𝑖

] (2.34)

In [67], the effects of (2.34) were assessed using a 30 layered neural network which was composed
of Convolutional and dense layers [67]. However, in reality, due to the complexity of the proposed

42

Background and Related Works
Chapter
2

network architecture, the authors found it difficult to attribute all of the observed performance
improvements to the initialization [69]. Nevertheless, most practical neural networks utilized the
initialization techniques presented in this subsection. Moreover, in practice, their normal distribution
forms are also defined and widely deployed. However, when this is the case, the variance associated
with layers weights become 𝜎2 = 2

𝑛𝑖
, i.e., for he normal, and 𝜎2 = 2

𝑛𝑖+𝑛𝑖−1 for Xavier/Glorot normal
initialization.

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

15

10

5

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Activation Values

Layer1
Layer2

Layer3

Layer4

Layer5

Layer1
Layer2

Layer3

Layer4

Layer5

2

1.5

1

0.5

0
1- -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Activation Values

(a) tanh activation values initialized with (2.33) , i.e., bottom,
and (2.32) top

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

Layer1
Layer2

Layer3
Layer4
Layer5

Layer1
Layer2

Layer3
Layer4
Layer5

-0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.20
0

50

100

0

5

10

-0.3 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3-0.25

Backpropagated gradient

Backpropagated gradient

(b) tanh backpropagated gradients initialized with (2.33), i.e.,
bottom, and (2.32) top.

Figure 2.22: Normalized histogram plots of back-propagated gradients and activation values of tanh activated
Dense layers. The plots demonstrate the impact of layer initialization on activation values and gradient
propagation [66]

With these basic technicalities of neural networks in mind, we will next present a recent neural
network-based time series averaging technique, i.e., the Diffeomorphic Temporal Alignment Net-
work (DTAN) [25]. In reality, this approach introduced neural networks into the domains of time
series averaging for the first time. Moreover, it obtained a state-of-the-art morphed (warped) space
registration.

2.3.3 A Neural Network Based Time Series Averaging

Practically, we can safely assume that the time warping performed in averaging heuristics based
on DTW as a registration process. In this context, if we assume members of the averaged sets are
vectors in ℝ𝑀 , then DTW based averaging techniques first utilize DTW to transform the vectors
into a ℝ𝜏 space where 𝜏 ≥ 𝑀 . In practice, in dominant DTW based averaging techniques such
as DBA, the warping is performed to minimize the discrepancy of the warped series to a warped
template (landmark). In other words, in such cases, averaging techniques aim at registering the
warped series in ℝ𝜏 to the warped version of the template. If we see such averaging techniques from
this perspective, we can see that there are approaches following similar transformations in image
processing and functional data analysis [33], [70]–[72]. Generally, the alternatives assume sequential
data sets such as time series as samples of underlying continuous functions. Thus, in such techniques,
there is an assumption that a given averaged set gets generated by taking samples of a continuous

43

Background and Related Works
Chapter
2

function. Moreover, if members of the averaged set are expected to represent similar entities, then
temporal distortions (phase variations) are mainly assumed to occur due to a difference in sampling
rates. Consequently, most of the alternative warping (registration) techniques propose to take the
following three key steps to minimize such phase distortions [70]. First, they try to identify and
propose a technique that governs the trajectories of the original series’s time stamps. In reality, given
a time series 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑀 }, the alternative registration techniques assume each 𝑥𝑖 ∈ 𝑋 are
obtained by taking samples from a continuous function f(t), i.e., 𝑥𝑖 = 𝑓 (𝑡𝑖). Thus, given a time series
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑀 } and its time stamps 𝑡 = {𝑡1, 𝑡2, . . . , 𝑡𝑀 }, we can assume the estimation of new
trajectories as defining new sampling times 𝛽 = {𝛽1, 𝛽2, . . . , 𝛽𝑀 }. In reality, these new trajectories get
defined with the intention of re-sampling 𝑓 (𝑡) such that the re-sampling 𝑋 minimizes its discrepancy
compared to a landmark. To this end, the next step taken by the alternative warping techniques is
to define a re-sampler. Moreover, they get expected to evaluate the quality of the registration. In
this aspect, as a final and third step, they define a landmark that the morphed series gets compared
with. In this regard, they can choose to follow two possible approaches. In the first scenario, they
could select a given time stamp 𝛽𝑖 and expect all warped (morphed) series to have similar values at 𝛽𝑖 .
This approach is commonly called landmark-based registration. However, in this case, the landmark
is often selected based on prior knowledge about the location of the most descriptive shapes of the
underlying continuous functions, for instance, peaks, troughs, etc. Thus, this approach requires some
degree of knowledge about the underlying continuous function [70]. Contrary to this, an alternative
solution is to generate a full landmark from the transformed series, for instance, the arithmetic means
of the transformed series [25], [73]. When this is the case, we often call the warping (morphing)
process registration. In general, despite such differences, the advantage of alternative registration
techniques is the possibility of a warping technique that could easily get integrated with neural
networks.

Despite this potential, investigations aiming to utilize this alternative form of registration for time
series averaging are limited in number. To the best of our knowledge, we can identify two proposals
in this regard, i.e., Diffeomorphic Temporal Alignment Network (DTAN) [25] and the Square Root
Velocity Field Registration Network (SrvfRegNet) [73]. However, as compared to DTAN, the perfor-
mance of SrvfRegNet was evaluated on a limited number of data sets. Moreover, SrvfRegNet mainly
emphasized on the quality of the warping rather than the average. To this end, in this subsection, we
give more emphasis to DTAN.

2.3.3.1 Diffeomorphic Temporal Alignment Network

The foundation for the concepts of DTAN were laid in [74]. The main contribution of [74] was to
establish the concept behind a velocity field based diffeomorphic transformation. In this aspect, [74]
proposed to utilize continuous piecewise functions that define the trajectories of time stamps. In [74],
these piecewise functions were called Continuous Piecewise Affine velocity fields (CPA fields). Based
on classical physics, a velocity field is known to have both magnitude and direction, where the
magnitude shows the rate of change of distance (a (𝑥 ; 𝑡) = 𝑑𝑥

𝑑𝑡). With this understanding in mind, [74]
argued that a given time stamp can be moved from point 𝐴 to point 𝐵 by integrating a velocity field

44

Background and Related Works
Chapter
2

directed from 𝐴 to 𝐵. This concept was mathematically formulated as (2.35), where 𝜙\ (𝑥, 𝑡) is the
parametric trajectory of a time stamp 𝑥 by the parametric velocity fields a\ (𝑥, 𝑡).

𝜙\ (𝑥 ; 𝑡) = 𝑥 +
∫ 𝑡

0
a\ (𝜙\ (𝑥 ;𝜏)) 𝑑𝜏 (2.35)

To demonstrate the concepts discussed so far, we have extra Figure 2.23 from [74]. For instance, in
Figure 2.23 (a), the closed interval [0, 10] was divided among a set of tessellations (vertical girds).
Moreover, within these tessellations, a one dimensional parametric CPA velocity field a\ (𝑥) was
defined. Finally, a\ (𝑥) was integrated for different durations of 𝑡 to define different parametric
trajectories of 𝑥 (𝜙\ (𝑥 ; 𝑡)). On the contrary, in Figure 2.23 (b), two dimensional CPA velocity fields
were utilized for a diffeomorphic transformation of an image.

CDFs/histograms with negative values. The problems
above do not exist in our representation.

Image Warping and Shape Manipulation. Related to ours are
works on image warping ([58], [59], [60], [61], [62]) and
shape manipulation (e.g., [63]). Unlike most methods, ours
is fast, invertible and handles constraints effortlessly.

Benefits of the Proposed Representation. To summarize,
existing spaces of diffeomorphisms offer only subsets of the
following list: 1) high expressiveness; 2) ease of implemen-
tation; 3) modest mathematical preliminaries (basic linear
algebra and ODE); 4) ease of handling optional constraints
(e.g., volume preservation); 5) convenient modeling choices
(coarse to fine, easy-to-use smoothness priors); 6) finite
dimensionality; 7) fast and highly-accurate computations.
These benefits, especially the last three, render more tracta-
ble the use of inference tools that are usually too expensive
in the context of rich diffeomorphisms.

3 HIGH-LEVEL SUMMARY

The section provides a summary of the proposed representa-
tion, laying the ground for the formal treatment (Section 4).
Let V be either Rn or a certain type, to be defined later, of a
proper subset of Rn (i.e., VzRn). A popular way to obtain a
diffeomorphism, T : V! V, is via the integration of velocity
fields; see Fig. 1a. The choice of velocity-field family affects
the dimensionality, structure, and expressiveness of the
space of the resulting diffeomorphisms, as well as the accu-
racy and computational complexity of the integration. Thus,
this choice crucially affects which probabilistic models can
be used and the tractability of the statistical inference.

CPA Velocity Fields.We base our representation on spaces
of V! Rn CPA velocity fields (Fig. 1). The term ‘piecewise’
is w.r.t. a certain tessellation (Section 4.1), denoted by P. Let

VV;P be such a space. While VV;P depends on V and P, we
will usually notationally suppress these dependencies, and
will just write V. One appeal of these spaces is that they are
finite-dimensional and linear (although their elements, i.e., the
velocity fields, are usually nonlinear). Let d ¼ dimðVÞ. The
spaces Rd and V are identified with each other (as we will
explain in Section 4.2, Eq. (11)), where every u 2 Rd is identi-
fied with exactly one element of V, denoted by vu, and vise
versa. Symbolically, we write

u$ vu where vu 2 V ; u 2 Rd : (1)

Likewise, u þ u0 $ vu þ vu
0
, vuþu

0
and au$ avu , vau where

u; u0 2 Rd and a 2 R. Note that d depends on P (and typi-
cally grows with n). A finer P implies a higher d and richer
velocity fields and vice versa (Figs. 4, 2, and 3).

Remark 1. There are many finite-dimensional linear spaces
of continuous velocity fields (e.g., [27] or other spaces
based on splines). We will show that CPA spaces, how-
ever, have additional useful properties in our context.

From CPA Velocity Fields to Trajectories. Modulo a detail
(to be explained in Section 4.4) related to the case VzRn,
any continuous V! Rn velocity field, whether Piecewise-
Affine (PA) or not, defines differentiable R! V trajectories.
If x 2 V then vu 2 V defines a trajectory, t 7! fuðx; tÞ, such
that fuðx; 0Þ ¼ x and fuðx; tÞ solves the integral equation

fuðx; tÞ ¼ xþ
Z t

0

vuðfuðx; tÞÞ dt where vu 2 V : (2)

The equivalent ODE (with an initial condition x) is

dfuðx; tÞ=dt ¼ vuðfuðx; tÞÞ : (3)

Remark 2. Eq. (2), whose unknown fuðx; �Þ is both inside
and outside the integral, should not be confused with the

piecewise-quadratic V! Rn map, y 7! R y0n�1 vuðxÞ dx. The
latter, a popular tool in computer-vision [24] and numeri-

cal analysis, is unrelated to our work. Particularly, both

x 7! fuðx; tÞ and t 7! fuðx; tÞ are not piecewise quadratic.

CPA-Based (CPAB) Transformations. Modulo that detail,
any continuous V! Rn velocity field, whether PA or not,
defines a transformation; i.e., a map whose input and output
are viewed as points, not vectors. Letting x vary and fixing
t, x 7! fuðx; tÞ is an V! V transformation. Without loss of
generality (Section 4), we may set t ¼ 1 and define

T uð�Þ , fuð�; 1Þ; u 2 Rd : (4)

Fig. 1. (a) Integration of sufficiently-nice velocity fields is widely used to
generate well-behaved nonlinear transformations. The choice of using
CPA velocity fields, among other benefits, reduces computational costs,
increases integration accuracy, and simplifies modeling and inference. A
CPAB transformation, x7!fuðx; tÞ, is one that is based (via integration) on a
CPA velocity field, vu. (b) A 1D example. (c-d) Two 2D examples, where in
(d) there are also additional constraints. Top row: a continuously-defined vu

in select locations. Middle: Visualizing the horizontal (vuh, left) and vertical
(vuv, right) components as heat maps highlights theCPAproperty; blue=��,
green=0, and red=� where �=maxx2VmaxðjvuhðxÞj; jvuvðxÞjÞ. Bottom:
Isrc � fuð�; 1Þ.

Fig. 2. Several type-I tessellations of a 2D region.

Fig. 3. Several type-II tessellations of a 2D region.

2498 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

(b) (c)

(a) 1D diffeomorphism

CDFs/histograms with negative values. The problems
above do not exist in our representation.

Image Warping and Shape Manipulation. Related to ours are
works on image warping ([58], [59], [60], [61], [62]) and
shape manipulation (e.g., [63]). Unlike most methods, ours
is fast, invertible and handles constraints effortlessly.

Benefits of the Proposed Representation. To summarize,
existing spaces of diffeomorphisms offer only subsets of the
following list: 1) high expressiveness; 2) ease of implemen-
tation; 3) modest mathematical preliminaries (basic linear
algebra and ODE); 4) ease of handling optional constraints
(e.g., volume preservation); 5) convenient modeling choices
(coarse to fine, easy-to-use smoothness priors); 6) finite
dimensionality; 7) fast and highly-accurate computations.
These benefits, especially the last three, render more tracta-
ble the use of inference tools that are usually too expensive
in the context of rich diffeomorphisms.

3 HIGH-LEVEL SUMMARY

The section provides a summary of the proposed representa-
tion, laying the ground for the formal treatment (Section 4).
Let V be either Rn or a certain type, to be defined later, of a
proper subset of Rn (i.e., VzRn). A popular way to obtain a
diffeomorphism, T : V! V, is via the integration of velocity
fields; see Fig. 1a. The choice of velocity-field family affects
the dimensionality, structure, and expressiveness of the
space of the resulting diffeomorphisms, as well as the accu-
racy and computational complexity of the integration. Thus,
this choice crucially affects which probabilistic models can
be used and the tractability of the statistical inference.

CPA Velocity Fields.We base our representation on spaces
of V! Rn CPA velocity fields (Fig. 1). The term ‘piecewise’
is w.r.t. a certain tessellation (Section 4.1), denoted by P. Let

VV;P be such a space. While VV;P depends on V and P, we
will usually notationally suppress these dependencies, and
will just write V. One appeal of these spaces is that they are
finite-dimensional and linear (although their elements, i.e., the
velocity fields, are usually nonlinear). Let d ¼ dimðVÞ. The
spaces Rd and V are identified with each other (as we will
explain in Section 4.2, Eq. (11)), where every u 2 Rd is identi-
fied with exactly one element of V, denoted by vu, and vise
versa. Symbolically, we write

u$ vu where vu 2 V ; u 2 Rd : (1)

Likewise, u þ u0 $ vu þ vu
0
, vuþu

0
and au$ avu , vau where

u; u0 2 Rd and a 2 R. Note that d depends on P (and typi-
cally grows with n). A finer P implies a higher d and richer
velocity fields and vice versa (Figs. 4, 2, and 3).

Remark 1. There are many finite-dimensional linear spaces
of continuous velocity fields (e.g., [27] or other spaces
based on splines). We will show that CPA spaces, how-
ever, have additional useful properties in our context.

From CPA Velocity Fields to Trajectories. Modulo a detail
(to be explained in Section 4.4) related to the case VzRn,
any continuous V! Rn velocity field, whether Piecewise-
Affine (PA) or not, defines differentiable R! V trajectories.
If x 2 V then vu 2 V defines a trajectory, t 7! fuðx; tÞ, such
that fuðx; 0Þ ¼ x and fuðx; tÞ solves the integral equation

fuðx; tÞ ¼ xþ
Z t

0

vuðfuðx; tÞÞ dt where vu 2 V : (2)

The equivalent ODE (with an initial condition x) is

dfuðx; tÞ=dt ¼ vuðfuðx; tÞÞ : (3)

Remark 2. Eq. (2), whose unknown fuðx; �Þ is both inside
and outside the integral, should not be confused with the

piecewise-quadratic V! Rn map, y 7! R y0n�1 vuðxÞ dx. The
latter, a popular tool in computer-vision [24] and numeri-

cal analysis, is unrelated to our work. Particularly, both

x 7! fuðx; tÞ and t 7! fuðx; tÞ are not piecewise quadratic.

CPA-Based (CPAB) Transformations. Modulo that detail,
any continuous V! Rn velocity field, whether PA or not,
defines a transformation; i.e., a map whose input and output
are viewed as points, not vectors. Letting x vary and fixing
t, x 7! fuðx; tÞ is an V! V transformation. Without loss of
generality (Section 4), we may set t ¼ 1 and define

T uð�Þ , fuð�; 1Þ; u 2 Rd : (4)

Fig. 1. (a) Integration of sufficiently-nice velocity fields is widely used to
generate well-behaved nonlinear transformations. The choice of using
CPA velocity fields, among other benefits, reduces computational costs,
increases integration accuracy, and simplifies modeling and inference. A
CPAB transformation, x7!fuðx; tÞ, is one that is based (via integration) on a
CPA velocity field, vu. (b) A 1D example. (c-d) Two 2D examples, where in
(d) there are also additional constraints. Top row: a continuously-defined vu

in select locations. Middle: Visualizing the horizontal (vuh, left) and vertical
(vuv, right) components as heat maps highlights theCPAproperty; blue=��,
green=0, and red=� where �=maxx2VmaxðjvuhðxÞj; jvuvðxÞjÞ. Bottom:
Isrc � fuð�; 1Þ.

Fig. 2. Several type-I tessellations of a 2D region.

Fig. 3. Several type-II tessellations of a 2D region.

2498 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

(a)
(b) 2D diffeomorphism

Figure 2.23: A demonstration of CPA velocity field based diffeomorphic transformation [74]

However, practically, projecting time stamps by itself does not guarantee meaningful and useful
warping of temporal datasets. To this end, in practice, additional constraints are placed that preserve
some desirable mathematical properties. For instance, in practice, we often desire transformation
techniques to be affine that has the form 𝑌 = 𝐴 𝑋 + 𝐵, where 𝐴 ∈ ℝ(𝑁, 𝑀) and {𝑋, 𝑌, 𝐵} ∈ ℝ𝑀 .
Thus, this way, a transformation can preserve lines and parallelism. Overall, under affine transforma-
tion, the inevitable matrix 𝐴 is often expected to scale, rotate, etc. On the contrary, the vector 𝐵 gets
used for translation. With this understanding, [74] went further and showed that the CPA fields meet
the affine requirements. In general, [74] proposed to divide the time axis of the morphed series into
tessellations. It then defined the CPA fields using piecewise linear functions bounded within each
tessellation. Thus, they were able to meet the mathematical behaviors of an affine transformation [74].
From the perspective of time series averaging, the affine nature of the CPA velocity field diffeomor-
phism enables the morphing not to entangle coordinate values of the morphed series. Moreover, it
helps to establish an affineℝ𝑀 toℝ𝑀 warping not evident in previous time series averaging techniques.

45

Background and Related Works
Chapter
2

However, before deploying such a transformation technique, two additional questions should get
answered, i.e., in addition to the affine requirement. In this regard, the first question that comes to
light is, how do we estimate the appropriate velocity field for a given data? Moreover, given a velocity
field, how do we guide a time warping in a manner that it achieves registration of a transformed set
to a landmark? The first proposal that addressed these questions in the context of images was the
Spatial Transformer Network (STN) [71]. The STN aimed to learn spacial invariant feature maps in
Convolutional networks. To meet this objective, [71] proposed to estimate the velocity fields using
Convolutional networks. It then used the estimated velocity fields to mitigate the effects of translations
on extracted feature maps of input images. To extend this concept to temporal data sets, [25] proposed
the Temporal Transformer (TT) layers shown in Figure 2.24. Generally, the proposed transformer

1 Temproal Transformer Nets

1.1 Model Architecture

As mentioned in our paper, a Temporal Transformer (TT) layer (Figure 1) is a variant of the Spatial
Transformer layer [2], and is consisted of 3 modules:

1. A localization network. For an input signal, U , the localization network, floc, regresses the
warp’s parameters such that floc(U) = θ.

2. A parameterized grid generator. This generator creates a discrete 1D grid of length M (where
M is the length of U), G = (pm)

M
m=1 ⊂ [−1, 1], of evenly-spaced points.

3. A differentiable time-series resampler. The output signal, V , is computed by interpolating the
values of V at T θ(G) from U , as explained below.

Let pwarped
i,m = T θi(pm). The discrete-time i-th aligned signal is:

Vi = (Vi,m)Mm=1 = (Vi,1, . . . ,Vi,M) . (1)

Note that due to the need to resample the signal, rather than having Vi = Ui ◦ T θi , we must also
account for the resampling kernel. For the popular linear kernel, we obtain (based on [2]),

Vi,m =

M∑

m′=1

Ui,m′ max(0, 1− |pwarped
i,m −m′|) . (2)

To propagate the loss to the localization network, the resampling kernel must be differentiable, which
is the case for the linear kernel used in this paper.

1.2 Derivatives

We provide the derivatives for the 1D Temporal Alignment Network (based on [2]). The derivative
w.r.t. the parameterization of the warp family (i.e. the CPAB gradient) is discussed in the main paper.

∂Vi,m

∂Ui,m′
= max(0, 1− |pwarped

i,m −m′|) (3)

∂Vi,m

∂(pwarped
i,m)

=
M∑

m′=1

Ui,m′

0 if |m′ − pwarped
i,m | ≥ 1

1 if m′ ≥ pwarped
i,m

−1 if m′ < pwarped
i,m

. (4)

Where Vi,m is the ith warped signal at time point m, Ui,m′ is the input signal at time point m′ and
pwarped
i,m is the mth point of the sampling grid. The generalization of these results to multichannel

time series is straightforward and thus omitted.

Localization net

� � � (�)

Grid
generator

⋯
OutputInput

VU
Sampler

Diffeomorphic Temporal
Transformer

Figure 1: The Diffeomorphic Temporal Transformer module. Figure adapted with permission
from [4].

2

Figure 2.24: Temporal Transformation (TT) layer [20]

layer has three components, i.e., the localization net, the grid generator and a sampler. In a TT
layer, the localization network is fed with a time series (U 𝜖 ℝ𝑀). Given the series, a localization
network outputs the parameters \ of a\ . Following this, a parametric grid generator outputs 𝑀
evenly space one dimension grid points 𝐺 = (𝑝𝑛)𝑀𝑛=1 ⊂ [−1, 1]. In reality, the grid generator is
expected to estimates the parametric trajectories that were supposed to be computed using (2.35).
However, (2.35) does not clearly state how to compute the values (amplitudes) of the new trajectories.
In this regard, [20] proposes a differentiable re-sampler. The re-sampler outputs the transformed
versions 𝑉𝑖 = {𝑉𝑖, 1, 𝑉𝑖, 2, . . . , 𝑉𝑖, 𝑁 } : 𝑉𝑖,𝑘 𝜖 ℝ𝑀 of the original time series𝑈𝑖 𝜖 ℝ𝑀 using (2.36), where
𝑣𝑖, 𝑛 and 𝑢𝑖,𝑚 are the values of the transformed and original time series at time stamps 𝑛 and 𝑚.
Moreover, 𝑝𝑤𝑎𝑟𝑝𝑒𝑑𝑖,𝑚 is the𝑚𝑡ℎ entry of the sampling grid.

𝑣𝑖, 𝑛 =
𝑁∑︁

𝑖, 𝑚=1
𝑢𝑖, 𝑚 max(0, 1 − |𝑝𝑤𝑎𝑟𝑝𝑒𝑑𝑖,𝑚 −𝑚 |) (2.36)

In addition to the re-sampler, [20] also defined the partial derivatives of 𝑉𝑖, 𝑛 with respective to 𝑈𝑖, 𝑚
and 𝑝𝑤𝑎𝑟𝑝𝑒𝑑𝑖, 𝑚 as shown in (2.37) & (2.38). These partial derivatives become handy in the computations
of gradients.

𝜕𝑉𝑖, 𝑛
𝜕𝑈𝑖, 𝑚

= max(0, 1 − |𝑝𝑤𝑎𝑟𝑝𝑒𝑑𝑖,𝑚 −𝑚 |) (2.37)

46

Background and Related Works
Chapter
2

𝜕𝑉𝑖, 𝑛

𝜕𝑝
𝑤𝑎𝑟𝑝𝑒𝑑
𝑖,𝑚

=

0, if |𝑚 − 𝑝𝑤𝑎𝑟𝑝𝑒𝑑𝑖,𝑚 | ≥ 1

1, if 𝑚 ≥ 𝑝
𝑤𝑎𝑟𝑝𝑒𝑑
𝑖,𝑚

−1, if 𝑚 < 𝑝
𝑤𝑎𝑟𝑝𝑒𝑑
𝑖,𝑚

(2.38)

The TT layer answered how to perform the warping of input time series. However, the transformation
would be meaningless in the context of time series averaging without an appropriate guidance (ob-
jective function). In this context, [25] proposed to minimize the objective function shown in (2.39),
where 𝑤, 𝐾, 𝑙2 are respectively the weight of the localization network, number of averaged time
series and L2 norm given in (1.4).

𝐹𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛
((𝑈𝑖)𝐾𝑖=1; 𝑤)

=
1
𝐾

𝐾∑︁
𝑖=1

a\𝑖 (𝑈𝑖 ; 𝑤) − 1
𝐾

𝐾∑︁
𝑗=1

a\𝑗 (𝑈 𝑗 ; 𝑤)
2
𝑙2 (2.39)

In reality, in (2.39), we assumed the averaged set is composed of a single class. However, in practice,
such as in the case of the CBF dataset, there could be numerous classes within a single averaged set.
If this is the case, (2.39) gets computed for each class label. To this end, DTAN gets considered as a
supervised averaging technique, i.e., it requires class labels at training. However, practically, all of
the DTW based averaging techniques can also be considered supervised in the context of multi-class
time series averaging. This is because, in such cases, we had to manually separate the classes before
deploying the DTW averaging techniques. However, unlike DTW based techniques, DTAN is capable
of transfer learning. In this regard, we can train DTAN using a training split and later utilize the
trained network to morph unseen datasets. Thus, this way, it is possible to combine the previously
morphed series with the new one to update a previously estimated average. To this end, DTAN is
capable of updating its estimate without the need for costly re-runs.

However, similar to DTW based averaging techniques, DTAN also accessed the quality of the estimated
mean in the transformed (morphed) space. In this context, in [25], the quality of the estimated averages
gets accessed using a one nearest centroid classification on the morphed series and their respective
arithmetic mean [18]. To conduct the classification, DTAN utilized 83 data sets obtained from the
UCR [2]. The repository contains 128 univariate time series collected from different application
domains. Moreover, the datasets are organized using train and test splits containing two or more
classes. In the evaluation process, DTAN initially morphs the test splits using a trained TT layer. It
then conducted one nearest centroid classification using euclidean distance, an average estimated
from a training split, and the morphed test split. In the context of estimation quality, DTAN achieved
a state-of-the-art registration of morphed series to their morphed space arithmetic means. Practically,
DTAN did not access the implication of this outcome in the time domain or in a space that was not
utilized for the morphing. However, in reality, this is also evident in DTW based averaging techniques
which measure the quality of their estimates in DTW space [14]–[16]. In general, in this regard, we
are not able to identify an averaging technique that evaluates its estimate in a neutral space, i.e., a
space that is not utilized in the estimation process.

47

Background and Related Works
Chapter
2

2.3.4 On Some Renown Convolutional Neural Network Architectures

In Neural networks, layer organization (architecture) has a significant role in the performance of the
networks. In this dissertation, we mainly base our proposals on Convolutional layers and Convolutional
networks in general. We make this choice since Convolutional layers were found to perform better on
shapes and feature analysis which is in line with our main objective [7], [29], [55], [57], [58], [60],
[61]. Moreover, due to their definition, networks constructed from Convolutional layers often have
less computational requirement as compared to Dense and LSTM based networks. To this end, we
find it convenient to review some of the renowned Convolutional network architectures we customize
in our proposals. In this regard, we will give a review of the Visual Geometric Group 16 (VGG16), the
Residual Network (ResNet) and the Inception architectures [57], [58], [60].

2.3.4.1 The Visual Group Geometry Group 16 Architecture

The VGG16 architecture was proposed in [57] with the 2014 ImageNet Large Scale Visual Recognition
Challenge (ILSVR) in mind. In the competition, the VGG16 achieved a 92.7% top 5 classification accu-
racy which helped it to secure second place in the domain. Practically, the VGG16 architecture achieved
this classification accuracy by systematically stacking Convloutional layers. In this regard, [57] pro-
posed six different layer configurations which were named as𝐴, 𝐴−𝐿𝑁𝑅, 𝐵, 𝐶, 𝐷, 𝐸. However, from
these configurations, only 𝐴 − 𝐿𝑅𝑁 utilized the Local Response Normalization (LRN) layer. A LRN is
a non-trainable layer proposed in a predecessor network architecture named AlexNet [75]. In [75], a
LRN layer performed a square normalization of its input [75]. However, in [57], a LRN layer had little
impact in the context of network performance. To this end, the authors only utilized this layer in one
of the six investigated configurations. Besides this uniqueness of 𝐴 − 𝐿𝑁𝑅, all configurations were
composed of five stacks of Convolutional layers terminated by three fully connected Dense layers. In
general, the number of layers in the configurations ranged from 11 to 19, i.e., while excluding the
MaxPooling layers. Moreover, the channel size of the Convolutional stacks sequentially increased from
64 to 512 channels of features. Additionally, in most configurations, the Convolutional kernel size was
fixed to 3. However, for the VGG16-C setup, [57] introduced a 1 × 1 Convolutional layers to increase
the non linearity of the network without affecting its receptive fields. In the context of activation
functions, all except the last Dense layer used the ReLu activation function. On the contrary, the last
Dense layer used the Softmax activation function since the task at hand was a multi-class classification.
Finally, all configurations got trained using 224 × 224 colored images that have 1000 categories. In
general, in [57], the overall layer arrangements of the six VGG16 architectures were summarized as
shown in Table 2.3. In the table, the Convolutional layers are identified as 𝑐𝑜𝑛𝑣⟨ 𝑥 ⟩ − ⟨ 𝑦 ⟩; where
𝑥, 𝑦 correspond to the kernel and filter size. Moreover, for the Dense layers (Dense-x), x corresponds
to the number of neurons.

As compared to its predecessor, i.e., AlexNet, the VGG16 avoided the utilization of large Convo-

lutioal kernel sizes such as a (5 × 5), (7 × 7) and (11 × 11) kernels. Practically, the main argument
behind kernel reduction is twofold. First, large Convolutional kernels (receptive fields) implied more
number of trainable parameters. For instance, if we assume 𝐾 stacked Convolutional layers that

48

Background and Related Works
Chapter
2

Table 2.3: Different Versions of the VGG16 architecture [57].

A A-LNR B C D E
Total number of layers excluding MaxPooling layers

11 layers 11 layers 13 layers 16 layers 16 layers 19 layers
Input 224 × 224 RGB image

conv3-64 conv3-64
LNR

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

MaxPooling

conv3-128 conv3-128 conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

MaxPooling

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

MaxPooling

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

MaxPooling

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

MaxPooling
Dense-4096
Dense-4096
Dense-1000
Softmax

Number of parameters in millions
133 133 133 134 138 144

have (7 × 7) Convolutional kernels and 𝐶 channels, then the stack will have 𝐾 × (49 𝑡𝑖𝑚𝑒𝑠 𝐶2)
trainable parameters. This is huge as compared to the 𝐾 × (9 × 𝐶2) trainable parameters of a stack
built from a layers that have (3 × 3) Convolutional kernel. Secondly, in practice, large number of
trainable parameters are known to have a high correlation to over-fitting. In this regard, [57], [75]
acknowledged that overfitting is a problem in AlexNet which utilized large Convolutional kernels. On
the contrary, the VGG16 architecture performed better in this aspect. Moreover, [57] also argued that
the VGG16 can mimic an effective receptive field of (5 × 5) and (7 × 7) by stacking two or three
(3 × 3) Convolutional layers [57]. With these technicalities in mind, the six versions of the VGG16
got trained using the parameters shown in Table 2.4 [57]. In Table 2.4, 𝐿2 regularization was used as a
weight (kernel) penalty that controls layer weights from increasing significantly. In practice, large

49

Background and Related Works
Chapter
2

Table 2.4: Parameters that are used to train the different VGG16 architectures [57]

Parameters Values
Weight initialization N(0, 10−2)
Batch 256
Momentum 0.9
Dropout rate 0.5
L2 regularization 5 × 10−4
Learning Rate (LR) 10−2
LR decreasing rate 10
No. of LR decreases 3
Training Split 1.3 Million
Validation split 50K
Test Split 100K

weight values correspond to overfitting. To this end, in reality, 𝐿2 regularization often gets used to
discourage such weight values in neural networks [29]. However, as discussed in a previous subsection,
weight initialization also have a significant role in network performance. In this aspect, [57] proposed
to utilize a normal distribution with a variance of 𝜎2 = 10−2. However, the authors later acknowledged
that they became aware of the Glorot initialization [66] after they submitted their original work.
After training the networks with these configurations, they got evaluated using a top 1 and top 5
classification accuracy. The former evaluation assumes an input is correctly classified if the highest
Softmax activation corresponds to the label. On the contrary, the latter assumes correct classification
if one of the top five Softmax activation values corresponds to the true class label. With this evaluation
setup, the VGG16-𝐷 and VGG16-𝐸 versions of the VGG16 architectures equally achieved the highest
classification accuracy. In this regard, they respectively obtained the top 1 and 5 best validation errors
of 24.4% and 7.1% [57]. Generally speaking, the authors associated this superior performance of the
networks with their depth. However, in practice, building deep neural networks is challenging due
to vanishing and exploding gradients, convergence, etc [29]. To this end, the maximum number of
layers in VGG16 gets limited to 19, i.e., VGG16-E. However, a later work showed the possibility of
building deeper Convolutional networks with the help of skip connections in [58].

2.3.4.2 The Residual Network

The ResNet architecture is proposed to address the problems of constructing deep neural networks.
In practice, deep neural networks are believed to be capable of learning complex transformations that
contribute to better performance [58]. In this regard, the authors in [58] asked the question of "Is
constructing better networks as easy as stacking more layers?" In practice, the main expected challenge
in this regard would be the vanishing and exploding gradient problem. However, [58] acknowledged
that this challenge could significantly be solved with proper weight initialization and was shown so
in different works [66], [67]. On the contrary, [58] identified that the main problem with deep neural
networks was performance degradation. In this aspect, deep neural networks often were observed
to first saturate at a given performance and suddenly start to degrade. The authors argued that this
phenomenon should not be associated with overfitting. On the contrary, the authors argued that

50

Background and Related Works
Chapter
2

the degradation is mainly caused by the location of layers which determines the complexity of thier
optimization. In reality, in deep neural networks, layers do not often get optimized harmoniously. In
other words, in former plain stacked Convolutional architectures, inner layers get more refined input
than their predecessors. Moreover, the refinement further intensifies as the network goes deep. Thus,
as the network’s training progresses, there is a higher chance of discord among stacks of layers due
to the large difference in their inputs. To address this challenge, [58] proposed to introduce a skip
connection (residual links) between subsequent stacks of Convolutional layers using the ResNet block
shown in Figure 2.25.

…
…
….

Layer 1

Layer 2

Layer N

X

F(X)
+

F(X)+X

Figure 2.25: A basic Residual Network (ResNet) block [58]

In ResNet, the residual links are used to introduce harmony among the inputs of consecutive Convo-
lutional stacks. Moreover, they also serve as a memory link for layers located far within the networks.
With this definition at hand, [58] accessed the performance difference between feed-forward Convolu-
tional networks (i.e., including some of the VGG16) and their residual counterparts. For networks
based on the residue concept, [58] proposed to build networks that had up to 152 layers. Compar-
atively, this is significantly deep compared to the 19 layers of the VGG16. Overall, the summary
of these architectures is shown in Table 2.5. Unlike the setups used in the VGG16 architectures,
the authors set the stride of the top most Convolutional layer in a stack to two. This has helped
Convolutional stacks to reduce the dimension of their input by a factor of two without the need for
MaxPooling layers. With these setups, the authors first compared the validation errors of the 18 and
34 layered ResNet architectures, i.e., with themselves and their counterparts. These comparisons
are respectively shown in Figures 2.26 (a) & (b) [58]. In Figure 2.26, the relatively thinner lines
correspond to training error, whereas the bold lines correspond to validation error. According to
Figure 2.26 (a), the plain feed-forward Convolutional architectures saturated at a 30% validation
and training errors, i.e., irrespective of their depth. This was in line with the initial argument of
learning saturation as networks the network depth increases. On the contrary, the ResNet’s 34 layered
architecture obtained better validation error as shown in Figure 2.26 (b). In general, the ResNet-152
respectively obtained a top 1 and top 5 accuracies of 21.43% and 5.71%. With this performance, the
ResNet was able to win the 2015 ICLSVRC competition. This was an improvement compared to its
predecessor VGG16 that obtained a top 1 and 5 validation errors of 24.4% and 7.2% [57], [58]. Finally,

51

Background and Related Works
Chapter
2

Table 2.5: Different version of Residual Network (ResNet) architectures [58].

18 Layers 34 Layers 50 Layers 101 Layers 152 Layers
𝑘𝑒𝑟𝑛𝑒𝑙 = 7 × 7, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 64, 𝑆𝑡𝑟𝑖𝑑𝑒 = 2

3 × 3, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔[3 × 3, 64
3 × 3, 64

]
×2

[3 × 3, 64
3 × 3, 64

]
×3

[1 × 1, 64
3 × 3, 64
1 × 1, 256

]
×3

[1 × 1, 64
3 × 3, 64
1 × 1, 256

]
×3

[1 × 1, 64
3 × 3, 64
1 × 1, 256

]
×3

[3 × 3, 128
3 × 3, 128

]
×2

[3 × 3, 128
3 × 3, 128

]
×4

[1 × 1, 128
3 × 3, 128
1 × 1, 512

]
×4

[1 × 1, 128
3 × 3, 128
1 × 1, 512

]
×4

[1 × 1, 128
3 × 3, 128
1 × 1, 512

]
×8

[3 × 3,256
3 × 3, 256

]
×2

[3 × 3, 256
3 × 3, 256

]
×6

[1 × 1, 256
3 × 3, 256
1 × 1, 1024

]
×6

[1 × 1, 256
3 × 3, 256
1 × 1, 1024

]
×23

[1 × 1, 256
3 × 3, 256
1 × 1, 1024

]
×36

[3 × 3 ,512
3 × 3, 512

]
×2

[3 × 3, 512
3 × 3, 512

]
×3

[1 × 1, 512
3 × 3, 512
1 × 1, 2048

]
×3

[1 × 1, 512
3 × 3, 512
1 × 1, 2048

]
×3

[1 × 1, 512
3 × 3, 512
1 × 1, 2048

]
×3

AveragePooling
Dense-1000
Softmax

it should be noted the authors also tested various parameter tweaking such as, dimensional padding in
the skip connections and bottlenecking of ResNet blocks with a (1 × 1) Convolutional layers (i.e., as in
the cases of ResNet-50, 101, 152). However, in practice, such parameter tweaking did not significantly
improve the performance of ResNet setup [58].

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

1×1, 64
3×3, 64

1×1, 256

×3

1×1, 64
3×3, 64

1×1, 256

×3

1×1, 64
3×3, 64

1×1, 256

×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

1×1, 256
3×3, 256
1×1, 1024

×6

1×1, 256
3×3, 256
1×1, 1024

×23

1×1, 256
3×3, 256

1×1, 1024

×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1, 512
3×3, 512

1×1, 2048

×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18
plain-34

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

ResNet-18
ResNet-34

18-layer

34-layer
18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

(a) validation and training errors of 18 & 34 layered plain
Convolutional feed forward networks.

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

1×1, 64
3×3, 64

1×1, 256

×3

1×1, 64
3×3, 64

1×1, 256

×3

1×1, 64
3×3, 64

1×1, 256

×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

1×1, 256
3×3, 256
1×1, 1024

×6

1×1, 256
3×3, 256
1×1, 1024

×23

1×1, 256
3×3, 256

1×1, 1024

×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1, 512
3×3, 512

1×1, 2048

×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18
plain-34

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

ResNet-18
ResNet-34

18-layer

34-layer
18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

(b) validation and training errors of 18 & 34 layered ResNet
Convolutional feed forward networks

Figure 2.26: Impact of residual links in network performance [58]. In (b), the skip connections in a ResNet
architecture has enabled the 34 layered neural network to achieve better performance as compared to its plain
feed forward implantation and an 18 layered feed forward and ResNet neural networks.

In conclusion, the ResNet approach has significantly improved the depth and performances of Convo-
lutional feed-forward neural networks. However, in practice, increasing the depth of neural networks
increased their computational requirements due to a large number of training parameters. In this re-

52

Background and Related Works
Chapter
2

gard, the ResNet architectures shown in Table 2.5 respectively have a Floating Point Operations (FlOPs)
of 1.8 × 109, 3.6 × 109, 3.8 × 109, 7.6 × 109, 11.3 × 109. Furthermore, even though layer stacking
increases the effective visual fields of Convolutional layers, it obtained the increment at an increased
computational cost. Moreover, in layer stacking, different kernels are not mixed. Consequently, there
is no diversity among the features learned by a given stack. With these technicalities in mind, [60]
proposed the Inception neural network architecture.

2.3.4.3 The Inception Network

The basic Inception architecture was proposed by researchers fromGoogle and won the 2014 ILSVRC14
image classification challenge [60]. The Inception architecture aimed to address two core problems
associated with deep neural networks. First, deep neural networks often have a large number of
trainable parameters. Thus, if the number of training data is limited, they are very susceptible to
overfitting. Moreover, the authors argued that using networks with a large number of trainable
parameters would be unfeasible in some practical cases. In this regard, [60] argued that neural
network architectures should not solely focus on shear numbers (higher accuracies). On the contrary,
designs must also consider the increasing utilization trend of smaller computational devices such as
smartphones and embedded systems that have limited computational resources [60]. In general, [60]
argued that both problems could get solved by finding an optimal local architecture that is sparse in
terms of trainable weights. Thus, this way, the local architecture can be spatially repeated to benefit
from the advantages of deep neural networks. In this aspect, continuously stacking Convolutional

layers would capture a certain aspect of an input feature. However, continuous stacking would
significantly increase the number of multiplication and addition operations as the filter size and the
number of layers increase. Thus, in such architectures, the overall computation would become high.
Consequently, such networks will be expected to optimize for a large number of parameters which
significantly contribute to overfitting. Moreover, if Convolutional layers get continuously stacked, it
would in aggregate increase the receptive field of the networks, i.e., as the depth increases. Thus, in a
sense, in a stacking approach, we would first focus on a segment of the input and then zoom on the
segments as the network depth progresses. However, under such an approach, there is a possibility of
missing certain aspects of an input.

On the contrary, if a given input feature gets analyzed by a set of parallel Convolutional layers,
we could simultaneously capture and efficiently analyze a different aspect of the input. For instance,
if certain input features are highly correlated and span a specific region of an input, a (2 × 2)
Convolutional kernel would be effective enough for the analysis. Consequently, for inputs that are less
correlated and dispersed over a wider region could be captured by a relatively higher receptive fields
such as a (3 × 3) and (5 × 5) Convolutional kernels [29], [60]. In reality, such a parallel approach is
not only efficient for feature extraction. It also reduces the number of computations (it has a sparse
computational requirement). For instance, if we stack two (3 × 3, 64 channel) Convolutional layers,
then the first Convolutional layer would perform 3 × 64 Convolutional computations. On the contrary,
the second layer will have 3 × 64 × 64 Convolutional computations. However, if we perform the
two convolutions in parallel, we would only require 6 × 64 Convolutional computations. With these

53

Background and Related Works
Chapter
2

understandings in mind, [60] proposed two types of Inception modules shown in Figure 2.27 which
considered parallel concatenation of Convolutional layers.

Previous Layer

5 x 5, w 3 x 3, x 3x3 MaxPooling 1x1, y

Filter Concatenation <w;x;y>

(a) Novice Inception

Previous Layer

1 x 1, w1 x 1, x3 x 3, y5 x 5, z

3 x 3 MaxPooling1 x 11 x 1

Filter Concatenation <w;x;y;z>

(b) Inception for dimension reduction

Figure 2.27: Basic Inception blocks [60]

In Figure 2.27 (a), [60] proposed to concatenate the outputs of a 5 × 5, 3 × 3, 1 × 1 Convolutional
and Maxpooling kernels. In this concatenation, we can think of the layer that only has the 1 × 1
Convolutional kernels as the residue links in ResNet. Moreover, the authors also suggested that the
cost of the 3 × 3 and 5 × 5 Convolutional kernels would quickly become expensive as more get
concatenated and as the network goes deep. To this end, the author also proposed the Inception
model shown in Figure 2.27 (b) that has dimensional reduction capability. In this aspect, the the
1 × 1 Convolutional kernels that preceded the 3 × 3 and 5 × 5 kernels served as as bottlenecks that
reduced incoming dimension. Moreover, the 1 × 1 kernels also introduce additional nonlinearity
often seen as an advantage [60]. With this modules at hand, [60] proposed the GoogleLeNet shown
in Table 2.6. In the table, #3 × 3 and #5 × 5 reduce imply the dimension reduction performed at
the 1 × 1 bottleneck Convolutional layers. Similar to its VGG16 counterpart, the GoogleLeNet was
trained on datasets from the ImageNet competition. As a quick reminder, the datasets constituted 1.2
Million, 50,000, and 10,000 labeled images respectively used for training, validation, and testing. On
these datasets, the GoogleLeNet obtained a top 5 validation error of 6.67%. This was better than the
7.2% top 5 error of VGG16 that obtained second place. This gets later surpassed by the ResNet (5.71%)
in the 2015 ImageNet competition. However, parameter-wise, the ResNet is significantly larger than
the GoogleLeNet to only achieve a 0.96% performance improvement.

In conclusion, in this chapter, we have presented concepts related to time series averaging. In
this regard, we provided a summary of the pioneering averaging heuristics. Moreover, we have pro-
vided insights into the limitations and gaps we have observed with previous proposals. Additionally,
since we aim to approach time series averaging as a generative problem, we proposed to base our
approach on neural networks. To this end, in this chapter, we summarized concepts concerning
neural networks with the main aim of clarifying the underlying reasons behind the choices made
in the following two chapters. In this aspect, we have presented the underlying concepts behind
the operation of neural network layers and their respective unique advantages. In this regard, we
propose to mainly base our proposals on Convolutional layers due to their success in shape and
feature analysis highly correlated to the shape preservation requirement of the time series averaging

54

Background and Related Works
Chapter
2

Table 2.6: The GoogleLeNet architecture [60]

Type Path size
stride #1 × 1 #3 × 3

reduce #3 × 3 #5 × 5
reduce #5 × 5 Pool

proj. Params Ops

Covn. 7 × 7/2 2.7K 34M
MaxPooling 3 × 3/2 0 0
Conv. 3 × 3/1 64 192 112K 360M
MaxPooling 3 × 3/2 0 0
Inception 64 96 128 16 32 32 159K 128M
Inception 128 128 192 32 96 64 380K 304M
MaxPooling 3 × 3/2 0 0
Inception 192 96 208 16 48 64 364K 73M
Inception 160 112 224 24 64 64 437K 88M
Inception 128 128 256 24 64 64 463K 100M
Inception 112 144 288 32 64 64 580K 119M
Inception 256 160 320 32 128 128 840K 170M
MaxPooling 3 × 3/2 0 0
Inception 256 160 320 32 128 128 1072K 54M
Inception 384 192 384 48 128 128 1388K 71M
Avg. Pooling 7 × 7/1 0 0
Dropout (40%) 7 × 7/1 0 0
Dense 1000K 1M
Softmax 0 0

problem [6], [41], [56]–[58], [60]. Following the summaries of the available layers, we have presented
concepts related to activation values and layer weight initialization techniques. We focused on these
parameters of neural networks since they highly affect the type of features a network extracts. In
this aspect, activation functions play a significant role in determining the type of transformations a
neural network achieves. Additionally, layer weight initialization techniques impact how activation
values propagate through the network [66], [67]. To this end, we expect these parameters to affect
the performances of our proposals which mainly rely on latent features of neural networks. Thus, the
parameters we selected in this regard gets influenced by the works we reviewed in this chapter, i.e.,
[57], [58], [60], [66], [67]. Finally, we also note that neural network architectural design is often a
challenging and computationally demanding process that is by itself a broad research area [57], [58],
[60]. With this understanding, in this chapter, we have presented some renowned neural network
architectures which we have used as a basis for our proposals. However, since they get constructed
to perform multi-class classification, we are expected to perform proper modifications to meet the
demands of the task at hand. Moreover, while modifying the previous proposals, we have also kept
the computational resource requirements in mind. With this said, we will conclude this chapter and
proceed to present our proposed approaches.

55

3 Time Series Averages from the Latent Space

of Basic and Variational Autoencoders

In all pioneering time series averaging techniques, time series averaging gets often approached as
a multiple alignment problem. To this end, all proposed heuristics rely on different time-warping
techniques. Moreover, the quality of the estimated averages highly correlates with the performance
of the warping technique. This is because, in time series averaging, we desire estimated averages
to minimize their discrepancy to the individual members of an averaged set. To meet this objective,
all proposed heuristics transform (warp) the original series into an alternative space [14]–[16], [25].
However, mathematically, we expect the transformed (warped) series to be significantly different
from the original series. In this aspect, if we assume the original series follows some multivariate
distribution, for instance, a Gaussian distribution N(`, 𝛴). Where in this case, ` ∈ ℝ𝑀 and 𝛴
are the mean and covariance matrix of the distribution: then, the transformed (warped) series can
also get expressed using a Gaussian distribution of the form N(`𝜏 , 𝛴𝜏) : `𝜏 ∈ ℝ𝜏 𝑓 𝑜𝑟 𝜏 ≥ 𝑀 .
However, we expect the transformation (warping) to have at least two major effects. The first and
obvious difference would be the dimension difference between the two distributions. In addition
to this, if we, for simplicity, assume the two Gaussian distributions are in a two-dimensional space,
then their two-dimensional plots will have an elliptical shape. However, in the context of time series
averaging, the transformation (warping) will stretch the major and minor axis of N(`𝜏 , 𝛴𝜏) since it
maximizes the correlation among warped series. In other words, we expect the transformed series
to be dense (compact) compared to their original counterparts. In reality, this fact gets implicitly
expressed in the objective function (1.1) presented in chapter two, where it tries to minimize the
discrepancy between the transformed series by aligning them to a common landmark or their 𝜏 space
arithmetic mean. In terms of Gaussian distribution, this would mean a narrow distribution curve.
Besides this observation, we can also go ahead and further correlate the arithmetic averaging of the
transformed series to a maximum likelihood estimation. This is because, given a set of 𝐾 Gaussian
multivariate variables, Y = {𝑋1, 𝑋2, . . . , 𝑋𝐾 } : 𝑌𝑖 𝜖 ℝ𝜏 , the parameters of a multivariate Gaussian
distribution that maximizes their likelihood is computed as (3.1):

`𝜏 =
1
𝐾

𝐾∑︁
𝑖=1

𝑥𝑖

𝛴𝜏 =
1
𝐾

𝐾∑︁
𝑖=1

(𝑌𝑖 − `𝜏)𝑇 (𝑌𝑖 − `𝜏)
(3.1)

Thus, while estimating a mean inℝ𝜏 , we can safely assume that we are making a maximum likelihood
estimation using a narrow Gaussian distribution curve. If we pause at this point and see the overall
process from a different perspective, we can assume we are performing a very constrained augmenta-
tion process. We say constrained augmentation for two main reasons. First, the augmentation gets
conducted in a domain different from the original series. Moreover, unlike most common augmen-

56

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

tation techniques [40], we direct the augmentation space in a way that encourages `𝜏 to meet the
requirements of (1.1). However, in reality, meeting the requirements of (1.1) is vague in the context of
most previously proposed averaging techniques. This is because, in all the proposed techniques, (1.1)
gets minimized in ℝ𝜏 rather than ℝ𝑀 . Thus, proposed averaging techniques guarantee the quality
of the estimated average in ℝ𝜏 rather than ℝ𝑀 . To this end, in most cases, the estimates are often
paired with the underlying warping techniques either when their quality gets assessed or practically
utilized [16], [25]. In this regard, DTW based estimated averages get often paired with DTW distance.
On the contrary, DTAN requires the affine transformation of unseen datasets while evaluating the
quality of its estimated means.

With these observations in mind, we asked ourselves, can we approach time series averaging as an
augmentation problem? If so, we then ask, how can we identify or define a proper augmentation
space? We answer the former question empirically. On the contrary, to answer the latter questions,
we place the following constraints on the augmentation space:

• First, we desire to mimic the effects of multiple alignment (warping) in the augmentation space.
This way, the augmentation space representation of the input time series gets confined to smaller
regions of the augmentation space. This in turn is expected to increase the interpretability and
representativeness of augmented means in the context of a re-transformer.

• Second, we also desire the augmentation space to be invertible, i.e., we want a mean estimated
in the augmentation space to have a time domain representation. This way, we can generate a
time domain equivalent that is meaningful for data mining techniques relying on time domain
estimates.

In reality, the first constraint can either be advantageous or disadvantageous. On the good side, by
defining compact (dense) transformed representations, we minimize the impact of phase distortion
evident in the time domain. Moreover, a compact representation will constrain the averaged set into a
small region that minimizes the search space of an augmented mean. However, from a re-transformer
point of view, given representations from very dense augmentation space, it could be challenging
to uniquely identify individual members of an averaged set. To this end, since a mean by itself is
inherently a member of the averaged set, an interpreter could map the augmentation space estimated
averages to one of the averaged series.

With these technicalities in mind, we propose to augment time series averages from the latent
space of neural networks. We aim to base our approach on neural networks since they have a better
generalization capability. To this end, it is possible to utilize transfer learning while updating esti-
mates as more datasets become available. Additionally, in recent years, neural networks got shown
to be effective at generating synthetic datasets that preserve basic features (shapes) observed in the
inputs [38], [39]. This is in line with the objectives of time series averaging that aims to preserve
shapes observed in an averaged set, i.e., (1.1). With this said, the next feasible question would be, what
should the organization of the augmentation network be? In the context of the second constraint,
i.e., invertibility of the augmentation space, one logical choice is an autoencoder. In practice, a basic

57

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

autoencoder is a neural network architecture with two sub-architectures, i.e., the encoder and decoder.
On one hand, an encoder gets used to extract a lower dimensional representation of inputs, where
the lower dimensional representations are often called embedding or latent space representations.
On the other hand, the decoder tries to reconstruct the latent space representations to their time
domain format, i.e., with the minimum possible reconstruction error [76]. However, in practice, an
autoencoder can be designed to perform complicated tasks besides simple encoding and decoding.
In this regard, [38] showed that autoencoders can learn a prior distribution that gets later sampled
to generate meaningful variants of the input datasets. Moreover, in [39], a structure resembling an
autoencoder is used to generate synthetic datasets that highly resemble its inputs. These abilities of
autoencoders are in line with our primary objective, i.e., times series average augmentation. Thus, we
will first empirically assess the possibility of augmenting optimal time series averages from the latent
space of basic autoencoders. We then present the different modifications made to improve the quality
of the estimates. However, before diving into the details of our proposals, we first give a description
of the datasets used in all of our experimental evaluations.

3.1 Evaluation Datasets from the UCR Archive

In this dissertation, we mainly emphasize the estimation of an optimal average for univariate temporal
datasets with equal length. Given these circumstances, we identified the University of California
Univariate Time Series Repository (UCR) [2] as one possible candidate for our experimental evaluations.
In practice, the datasets from the UCR got intensively utilized in the evaluation of neural network
and distance-based time series classification, clustering, and augmentation tasks [7], [13], [40], [56],
[61]. The UCR is composed of 128 univariate temporal datasets that span a range of application
domains. However, among the 128 datasets, only 114 of them meet our requirement of fixed-length
univariate temporal datasets. In this regard, we identified 11 datasets of the UCR to have variable
in lengths, i.e., AllGestureWiimote{𝑋, 𝑌, 𝑍 }, GestureMidAir{𝐷1, 𝐷2, 𝐷3}, GesturePebble{𝑍1, 𝑍2},
PickupGestureWiimoteZ, PLAID and ShakeGestureWiimoteZ. Additionally, we also identified three
datasets to have missing values: DodgerLoopDay, DodgerLoopGame, DodgerLoopWeekend. Besides
these irregularities, the UCR datasets gets organized as a train and test split. Moreover, each dataset
contains samples belonging to multiple classes (C) that could range from 2 ≤ 𝐶 ≤ 60. In general,
Table 3.1 demonstrates the diversity of the UCR datasets. However, even if the UCR is diverse in the
context of application domains, in most cases, the number of training per class sample is limited. For
instance, the DiatomSizeReduction dataset has a single example in one of its classes. In practice, such
limited per-class examples could be a major challenge in the context of neural network generalization
capability. For instance, if we do not carefully control the size of network parameters, they could
easily overfit the training samples. With this said, we will present some demonstrative examples
from the categories given in Table 3.1. We believe this will assist the reader to better understand and
appreciate the datasets.

58

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.1: The 114 UCR datasets categorized based on their source

No. Data source Total datasets Dimension ranges Class ranges
1 Device power consumption measurements 9 90-2000 2-10
2 Bio-potential measurements 10 96-1250 2-42
3 Hemodynamics measurements 3 2000 52
4 HRM-PCR measurements 1 201 18
5 Images 32 46-2709 2-60
6 Motions 17 150-1882 2-12
7 Sensor measurements 20 24-1639 2-39
8 Synthetic (simulated) 8 60-1024 2-8
9 spectrographs or chemical analysis 8 235-1751 2-5
10 SEMG measurements 4 1500-2844 2-6
11 Pedestrian Traffic count 2 24 2-10

3.1.1 Time Series Extracted from Devices Power Consumption Measurements

The UCR archive has nine datasets that could be categorized as "Household devices power consumption

measurements" as shown in Table 3.2. Most of the Datasets fallingwithin this categorywere contributed
from a study sponsored by the government of the United Kingdom (UK). The theme of the study was
titled Powering the Nation [2], [4], [77]. In reality, six out of the nine datasets within this category
correspond to the study. Generally, the study focused on understanding how consumers utilize
electricity within their homes. Moreover, it also aimed to create awareness of reducing the carbon
footprint of the UK by 80% in 2050. To meet this objective, the government of the UK installed a
power consumption meter in residential areas at the cost of 11.1 billion euros [4], [77]. The installed

Table 3.2: UCR archive datasets falling within the Device and Power consumption category [2], [77]–[79]

Datasets Classes Length Categories (Classes)

ACSF1 10 1460

Mobile phones (via chargers), Coffee machines,
Computer stations (including monitor), Fridges
and freezers, Hi-Fi systems (CD players), Lamp
(CFL), Laptops (via chargers), Microwave ovens,
Printers, and Televisions (LCD or LED)

Computers 2 720 Desktop and Laptop

ElectricDevices 7 96 Computer, Oven/Cooker, Washing Machine, Imme
rsion Heater, Dishwasher, Fridge/Freezer, Kettle

HouseTwenty 2 2000
Aggregate household power consumption, Aggr
gate Tumble Dryer and Washing Machine power
consumption.

LargeKitchenAppliances 3 720 Dishwasher, Tumble Dryer and Washing Machine

PowerCons 2 144 Power consumption in warm weather, Power con-
sumption in cold weather

RefrigerationDevices 3 720 Fridge/Freezer, Refrigerator and Upright Freezer
ScreenType 3 720 CRT TV, LCD TV and Computer Monitor
SmallKitchenAppliances 3 720 Kettle, Microwave and Toaster

59

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

meters had the ability to show real-time power measurements of home appliances. However, in the
UCR, most of the datasets get defined by taking readings from 251 households every 2 minutes for 24
hours, i.e., each series is 720 timestamps long [2]. Figure 3.1 depicts some of the time series extracted
from the study.

0 100 200 300 400 500 600 700
Time

0

1

2

3

4

Po
we

r C
on

su
m

pt
io

n

Computers Class 1

0 100 200 300 400 500 600 700
Time

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Po
we

r C
on

su
m

pt
io

n

Computers Class 2

(a) Samples from 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠 classes 1 𝑎𝑛𝑑 2

0 100 200 300 400 500 600 700
Time

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Po
we

r C
on

su
m

pt
io

n

ScreenType Class 1

0 100 200 300 400 500 600 700
Time

1.5

1.0

0.5

0.0

0.5

Po
we

r C
on

su
m

pt
io

n

ScreenType Class 2

(b) Samples from 𝑆𝑐𝑟𝑒𝑒𝑛𝑇𝑦𝑝𝑒 classes 1 𝑎𝑛𝑑 2

0 100 200 300 400 500 600 700
Time

0.5

0.0

0.5

1.0

1.5

Po
we

r C
on

su
m

pt
io

n

RefrigerationDevices Class 1

0 100 200 300 400 500 600 700
Time

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Po
we

r C
on

su
m

pt
io

n

RefrigerationDevices Class 2

(c) Samples from 𝑅𝑒 𝑓 𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 classes 1 𝑎𝑛𝑑 2

0 250 500 750 1000 1250 1500 1750 2000
Time

500

1000

1500

2000

2500

3000

3500

Po
we

r C
on

su
m

pt
io

n

HouseTwenty Class 1

0 250 500 750 1000 1250 1500 1750 2000
Time

0

500

1000

1500

2000

2500

Po
we

r C
on

su
m

pt
io

n

HouseTwenty Class 2

0 20 40 60 80
Time

0

1

2

3

4

5

6

Po
we

r C
on

su
m

pt
io

n

ElectricDevices Class 1

0 20 40 60 80
Time

1.0

0.5

0.0

0.5

1.0

1.5

Po
we

r C
on

su
m

pt
io

n

ElectricDevices Class 2

(d) Samples from 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐷𝑒𝑣𝑖𝑐𝑒𝑠 classes 1 𝑎𝑛𝑑 2

Figure 3.1: Example time series from the UCR Device Category: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠 (a), 𝑆𝑐𝑟𝑒𝑒𝑛𝑇𝑦𝑝𝑒 (b),
𝑅𝑒 𝑓 𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (c) and 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐷𝑒𝑣𝑖𝑐𝑒𝑠 (d). These Datasets were defined from a study sponsored by the
UK government namely Powering the Nation which assessed the power consumption of home appliances [77]

In addition to the datasets extracted from the Powering the Nation study, the UCR archive also has
datasets that are extracted from two different but similar studies. In this context, the HouseTwenty
dataset was extracted from the project Personalised Retrofit Decision Support Tools for UK Homes using

Smart Home Technology (REFIT) [78]. The project intended to assess the aggregate power consumption
of home appliances in the UK residential area of Loughborough. The first class of the HouseTwenty
dataset corresponds to the aggregate power consumption of 20 houses located within the study area.
However, the second class corresponds to the aggregate electrical load of tumble dryers and washing
machines [78]. On the contrary, another study intended to identify home appliances using their

0 200 400 600 800 1000 1200 1400
Time

1

0

1

2

3

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 1

0 200 400 600 800 1000 1200 1400
Time

1.0

0.5

0.0

0.5

1.0

1.5

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 2

0 200 400 600 800 1000 1200 1400
Time

0

2

4

6

8

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 4

0 200 400 600 800 1000 1200 1400
Time

0

2

4

6

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 8

(a) Samples from 𝐴𝐶𝑆𝐹1 classes 1 𝑎𝑛𝑑 2

0 250 500 750 1000 1250 1500 1750 2000
Time

500

1000

1500

2000

2500

3000

3500

Po
we

r C
on

su
m

pt
io

n

HouseTwenty Class 1

0 250 500 750 1000 1250 1500 1750 2000
Time

0

500

1000

1500

2000

2500

Po
we

r C
on

su
m

pt
io

n

HouseTwenty Class 2

0 20 40 60 80
Time

0

1

2

3

4

5

6

Po
we

r C
on

su
m

pt
io

n

ElectricDevices Class 1

0 20 40 60 80
Time

1.0

0.5

0.0

0.5

1.0

1.5

Po
we

r C
on

su
m

pt
io

n

ElectricDevices Class 2

(b) Samples from 𝐻𝑜𝑢𝑠𝑒𝑇𝑤𝑒𝑛𝑡𝑦 classes 1 𝑎𝑛𝑑 2
0 200 400 600 800 1000 1200 1400

Time

1

0

1

2

3

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 1

0 200 400 600 800 1000 1200 1400
Time

1.0

0.5

0.0

0.5

1.0

1.5

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 2

0 200 400 600 800 1000 1200 1400
Time

0

2

4

6

8

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 4

0 200 400 600 800 1000 1200 1400
Time

0

2

4

6

Po
we

r C
on

su
m

pt
io

n

ACSF1 Class 8

(c) Samples from 𝐴𝐶𝑆𝐹1 classes 4 𝑎𝑛𝑑 8

0 20 40 60 80 100 120 140
Time

0.5

1.0

1.5

2.0

2.5

3.0

Po
we

r C
on

su
m

pt
io

n

PowerCons Class 1

0 20 40 60 80 100 120 140
Time

0

1

2

3

4

5

6

Po
we

r C
on

su
m

pt
io

n

PowerCons Class 2

(d) Samples from 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠 classes 1 𝑎𝑛𝑑 2

Figure 3.2: Example time series from the 𝐴𝑆𝐶𝐹1 (a) & (c), 𝐻𝑜𝑢𝑠𝑒𝑇𝑤𝑒𝑛𝑡𝑦 (b) and 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠 (d)

power consumption signature rather than studying aggregate power demands [79]. The datasets
defined in this study contain the power consumption signature of typical home appliances such as
coffee makers, CD players, microwave ovens, etc. Finally, we also found the PowerCons dataset to
correspond to the device category. The dataset contained the power consumption measurements of

60

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

individual households for two different seasons that were generalized as warm and cold. In conclusion,
Figure 3.2 demonstrates samples from the ACSF1, HouseTwenty and PowerCons datasets.

3.1.2 Time Series Extracted from Bio-potential Measurements

Besides power consumption measurements, the UCR repository includes time series defined from
measurements taken by medical equipment. In this regard, the UCR has ten datasets correspond-
ing to this category. Furthermore, six of the ten datasets correspond to ElectroCardioGram (ECG)
measurements. Most of the datasets in this category correspond to studies emphasizing either the
autonomous detection of normal and abnormal heartbeats in a fetus (adults) adults [2], [80]–[83]
or signal processing on heartbeat bio-potentials [83]. In addition to this, the UCR archive also has
two ElectroOculoGram (EOG) measurements that correspond to the potential difference between the
retina and the cornea of a human eye [2], [84]. These measurements get taken to assist patients with
locked-in syndrome in Eye-writing systems. In practice, an Eye-writing system displays a character
corresponding to a line of strokes traced by the eye movement of its user. To identify the various
types of stokes, four electrodes got placed at the left, right, top, and bottom of a test subject’s left
eye. Following this, a two-channel vertical/Horizontal signal was registered by taking the potential
difference between the two up/bottom and left/right electrodes [84]. Finally, from different Japanese
Katakana strokes, 12 classes were introduced that corresponded to a stroke ID [2]. The final dataset
corresponding to UCR’s human bio-potential includes measurements made with Surface ElectroMyo-
Graphy (sEMG). A sEMG signal represents the electrical activity of a group of muscles at rest or
in movement [2]. The UCR extracted the datasets corresponding to such measurements from [85].
In [85], sEMG measurements from five healthy subjects conducting six movements of hand grasps
got taken using elsys’ 2-channel EMG system.

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays Class 2

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

Am
pl

itu
de

ECGFiveDays Class 1

0 100 200 300 400 500 600
Time

2.52

2.54

2.56

2.58

2.60

2.62

Am
pl

itu
de

InsectEPGRegularTrain Class 1

0 100 200 300 400 500 600
Time

0.35

0.30

0.25

0.20

0.15

Am
pl

itu
de

InsectEPGRegularTrain Class 2

(a) Samples from 𝐸𝐶𝐺𝐹𝑖𝑣𝑒𝐷𝑎𝑦𝑠 classes 1 𝑎𝑛𝑑 2

0 200 400 600 800 1000 1200
Time

100

75

50

25

0

25

50

Am
pl

itu
de

EOGHorizontalSignal Class 2

0 200 400 600 800 1000 1200
Time

200

100

0

100

200

Am
pl

itu
de

EOGHorizontalSignal Class 1

0 200 400 600 800 1000 1200
Time

40

30

20

10

0

10

20

Am
pl

itu
de

EOGVerticalSignal Class 1

0 200 400 600 800 1000 1200
Time

50

0

50

100

150

200

Am
pl

itu
de

EOGVerticalSignal Class 2

(b) Samples from 𝐸𝑂𝐺𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑙 classes 1 𝑎𝑛𝑑 20 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays Class 2

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

Am
pl

itu
de

ECGFiveDays Class 1

0 100 200 300 400 500 600
Time

2.52

2.54

2.56

2.58

2.60

2.62

Am
pl

itu
de

InsectEPGRegularTrain Class 1

0 100 200 300 400 500 600
Time

0.35

0.30

0.25

0.20

0.15

Am
pl

itu
de

InsectEPGRegularTrain Class 2

(c) Samples from 𝐼𝑛𝑠𝑒𝑐𝑡𝐸𝑃𝐺𝑅𝑒𝑔𝑢𝑟𝑎𝑙𝑇𝑟𝑎𝑖𝑛 classes 1 𝑎𝑛𝑑 2

0 200 400 600 800 1000 1200
Time

100

75

50

25

0

25

50

Am
pl

itu
de

EOGHorizontalSignal Class 2

0 200 400 600 800 1000 1200
Time

200

100

0

100

200

Am
pl

itu
de

EOGHorizontalSignal Class 1

0 200 400 600 800 1000 1200
Time

40

30

20

10

0

10

20

Am
pl

itu
de

EOGVerticalSignal Class 1

0 200 400 600 800 1000 1200
Time

50

0

50

100

150

200

Am
pl

itu
de

EOGVerticalSignal Class 2

(d) Samples from 𝐸𝑂𝐺𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑙 classes 1 𝑎𝑛𝑑 2

Figure 3.3: Sample time series from the UCR archive that fall within the bio-potential category

Besides human Bio-potential measurements, the UCR archive also contains two datasets used to study
the feeding behavior of insects. For instance, the UCR has an Electrical Penetration Graph (EPG)
measurements that monitor the voltage changes in an electrical circuit that connects Asian citrus
psyllid and its food source [2], [86]. In practice, the Asian citrus psyllid is known to be a source of
pathogens causing the citrus greening disease. To this end, researchers study the sequence of their
feeding behaviors to understand how the insects acquire and transmit the pathogens. In the study,
the researchers first tethered the insects to a gold wire attached to an electrode. To complete the

61

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

electrical circuit, they placed another electrode in moist soil at the base of a plant. Finally, they record
the voltage difference generated when the insect starts ingesting the plant [86]. In the study, the
researchers identified the psyllid has six different feeding states; i.e., C (stylet passage through plant
cell), D (contact with phloem tissue), E1 and E2 (phloem salvation and ingestion), G (Xylem ingestion),
NP (non-probing). However, in the UCR archive, the six feeding states were aggregated into three
classes for unclear reasons. In conclusion, we have summarized the datasets belonging to the different
bio-potential measurements in Table 3.3. Moreover, we have also given sample plots corresponding to
the various bio-potential measurements in Figure 3.3.

Table 3.3: UCR archive datasets falling within the bio-potential measurements category: ECG [80]–[83],
EOG [84], sEMG [85] and EPG [86]

Datasets Category Classes Length Class Interpretation

ECG200

ECG

2 96 Normal heartbeat, Myocardial
Infarction

ECG5000 5 140

Normal, R-on-T Premature Ventr-
icular Contraction, Ectopic beat,
Premature Ventricular Contract-
ion, Unclassifiable beat

ECGFiveDays 2 136 ECG date: 12/11/1990,
ECG date: 17/11/1990

NonInvasiveFetalECGThorax1 42 750 Class information not known
NonInvasiveFetalECGThorax2 42 750 Class information not known

TwoLeadECG 2 82 Signal 0 (unfiltered ECG),
Signal 1 (filtered ECG)

EOGHorizontalSignal EOG 12 1250
12 Japanese Katakana eye strokes
measured with horizontal EOG
electrodes

EOGVerticalSignal 12 1250
12 Japanese Katakana eye strokes
measured with horizontal EOG
electrodes

SemgHandGenderCh2
sEMG

2 1500 sEMG of Male/Female
SemgHandMovementCh2 6 1500 sEMG of 6 hand grip movements
SemgHandSubjectCh2 5 1500 sEMG of 5 Males/Females
InsectEPGRegularTrain EPG 3 601 Psyllid feeding pattern
InsectEPGSmallTrain 3 601 Psyllid feeding pattern

3.1.3 Time Series Extracted from Sensor Measurements

Most practical applications utilize sensors to take measurements for monitoring, recording and
analyzing natural and artificial phenomena. In this aspect, the UCR archive has 20 univariate temporal
datasets corresponding to sensor measurements in various contexts. For instance, the UCR archive
has two datasets used in [87] to analyze the power spectral density of various forms of lightning. The
study took the potential measurement of lightning using FORTE satellites that can detect transient
electromagnetic events associated with lightning using a suite of optical and radio-frequency (RF)
instruments. In practice, lightning is a sensitive indicator of storm evolution. Moreover, it gets

62

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.4: UCR archive datasets falling within sensor measurement category [2], [87]–[89]

Datasets Classes Length
Car Four classes: no class information 577
ChlorineConcentration Three classes: no class information 166
CinCECGtorso ECG data for multiple torso-surface sites of 4 people 1639
DodgerLoopDay,
DodgerLoopGame,
DodgerLoopWeekend

Freeway traffic count from Monday to Sunday
Freeway traffic count on Normal & Game Days
Freeway traffic count on Weekdays & Weekend 288

Chinatown
MelbournePedestrian

Pedestrian traffic count in Melbourne
Pedestrian traffic count in Chinatown

24
20

Earthquakes Earthquake or no earthquake 512
Ford {A, B} Two classes: no class information 500
FreezerRegularTrain,
FreezerSmallTrain Power demand of fridges //placed in a Kitchen or in a garage 301

InsectWingbeatSound
Insect wing-beat sounds of male/female mosquitoes: Ae-
gypti, Cx. tarsalis, Cx. quinquefasciants, Cx. stigmatosoma,
flies: Musca domestica and Drosophila simulans

256

ItalyPowerDemand power consumption: Oct to March & April to September 24
Lightning2
Lightning7

Two classes: no class information
CG, IR, SR, I, I2, KM, O

637
319

MoteStrain Measurments from humidity & temperature sensors 84
Phoneme 39 different phonemes 1024

Planes Outlines of Mirage, EuroFighter, F-14 wings closed, F-14
Wings open,Harrier, F-22, F-15 144

SonyAIBORobotSurface1
SonyAIBORobotSurface2

Robot moving on a surface: Cement & carpet
Robot moving on a surface: Cement & carpet/field

70
65

StarLightCurves Three classes: Celestial object brightness Vs time. 1024

Traces Four classes: simulated instrumentation failures in
a nuclear power plant 275

Wafer Normal/abnormal process control measurements during
the processing of silicon wafers 152

associated with severe weather such as tornadoes [87]. To this end, FORTE utilizes 2 broadband Very
High Frequency (VHF) receivers that can have a 22 MHz sub-band within the 30-300 MHz frequency
ranges. Moreover, a given sub-band could get configured to have eight 1 MHz channels. In reality, a
measurement gets recorded if five of the eight sub-channels measure a voltage level above a predefined
threshold. In such scenarios, data gets recorded for 800 `𝑠 at a sampling rate of 1 MHz. Following these
measurements, the received signals were Fourier transformed to generate frequency spectrograms
later collapsed in frequency to generate a power spectral density. In [87], the spectral densities
initially had a dimension of 3181, but they got smoothed out to 631 [2]. Moreover, [87] categorized
the measurement into sever different lightning types: Positive Initial Return Stroke (CG), Negative
Initial Return Stroke (IR), Subsequent Negative Return Stroke (SR), Impulsive Event (I), Impulsive
Event Pair (I2), Gradual Intra-Cloud Stroke (KM), and Off-record (O). In reality, UCR archive datasets

63

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

falling within the sensor category are not limited to lightning measurements. For instance, the UCR
archive also has datasets corresponding to sensor measurement of insect wing-beat sound. In this
regard, the UCR archive has one dataset that contains the measurements of insect wing-beat sounds
for four species of male/female mosquitoes and two species of flies [2], [88]. In reality, most of these
measurements gets taken to monitor the movements of mosquitoes [88]. In addition to insect wing-
beat sounds, the URC archive has datasets corresponding to pedestrian and vehicle traffic counts. The
datasets get defined by taking the count of pedestrians or vehicles on highways in different parts of the
world and on different days of the week [2]. In another domain, there are also datasets corresponding
to segmented audio recordings collected from Google Translate, "oxforddictionaries.com" and the
Merriam-Webster online dictionary [89]. These segmented sounds contain male and female speakers
later categorized into 39 different phonemes for further studies. Generally speaking, the UCR archive
has more than 22 such sensor measurements. To this end, it would consume too much space to
individually discuss how each dataset gets extracted. We encourage interested readers to refer to
the time series classification web page for further information [2]. However, to make our discussion
complete we have summarized the datasets falling in the sensor category in Table 3.4. Moreover, we
have plotted samples from the 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔, 𝐼𝑛𝑠𝑒𝑐𝑡𝑊 𝑖𝑛𝑔𝑏𝑒𝑎𝑡𝑆𝑜𝑢𝑛𝑑 and 𝑃ℎ𝑜𝑛𝑒𝑚𝑒 datasets in Figure 3.4
as demonstrative examples.

0 200 400 600 800 1000
Time

2

1

0

1

2

Am
pl

itu
de

Phoneme Class 1

0 200 400 600 800 1000
Time

4

3

2

1

0

1

2

3

Am
pl

itu
de

Phoneme Class 2

0 200 400 600 800 1000
Time

3

2

1

0

1

2

3

Am
pl

itu
de

Phoneme Class 8

0 200 400 600 800 1000
Time

3

2

1

0

1

2

Am
pl

itu
de

Phoneme Class 12

(a) Samples from 𝑃ℎ𝑜𝑛𝑒𝑚𝑒 classes 1 𝑎𝑛𝑑 2

0 50 100 150 200 250
Time

0

1

2

3

4

5

6

Am
pl

itu
de

InsectWingbeatSound Class 1

0 50 100 150 200 250
Time

0

1

2

3

4

Am
pl

itu
de

InsectWingbeatSound Class 2

0 100 200 300 400 500 600
Time

0

2

4

6

Am
pl

itu
de

Lightning2 Class 1

0 100 200 300 400 500 600
Time

1

0

1

2

3

4

Am
pl

itu
de

Lightning2 Class 2

(b) Samples from 𝐼𝑛𝑠𝑒𝑐𝑡𝑊 𝑖𝑛𝑔𝑏𝑒𝑎𝑡𝑆𝑜𝑢𝑛𝑑 classes 1 𝑎𝑛𝑑 20 200 400 600 800 1000
Time

2

1

0

1

2

Am
pl

itu
de

Phoneme Class 1

0 200 400 600 800 1000
Time

4

3

2

1

0

1

2

3

Am
pl

itu
de

Phoneme Class 2

0 200 400 600 800 1000
Time

3

2

1

0

1

2

3

Am
pl

itu
de

Phoneme Class 8

0 200 400 600 800 1000
Time

3

2

1

0

1

2

Am
pl

itu
de

Phoneme Class 12

(c) Samples from 𝑃ℎ𝑜𝑛𝑒𝑚𝑒 classes 8 𝑎𝑛𝑑 12

0 50 100 150 200 250
Time

0

1

2

3

4

5

6

Am
pl

itu
de

InsectWingbeatSound Class 1

0 50 100 150 200 250
Time

0

1

2

3

4

Am
pl

itu
de

InsectWingbeatSound Class 2

0 100 200 300 400 500 600
Time

0

2

4

6

Am
pl

itu
de

Lightning2 Class 1

0 100 200 300 400 500 600
Time

1

0

1

2

3

4

Am
pl

itu
de

Lightning2 Class 2

(d) Samples from 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔2 classes 1 𝑎𝑛𝑑 2

Figure 3.4: Sample UCR archive time series that are defined from sensor measurements

3.1.4 Time Series Extracted from Images, Motion and Gestures

Time series are not only defined from the sensor measurements of biological or non-biological signals.
On the contrary, temporal datasets could be defined from a range of application domains if the right
conversion technique gets utilized. For instance, in the UCR archive, there are time series extracted
from images. This group of temporal datasets gets often defined by taking a distance measurement
between a reference point and points on the boundaries that enclose a biological or non-biological
object’s image [4]. In most cases, the reference gets taken as the central point within the boundaries
of the analyzed object’s image. Moreover, the amplitude of the extracted temporal datasets gets taken
to be the measured distance difference. On the contrary, the timestamps gets defined by taking the
order of distance measurement into account. In practice, this conversion process is performed on
segmented images to simplify the boundary (edge) detection process. In the UCR archive, some of the
demonstrative examples in this regard are the 𝐵𝑒𝑒𝑡𝑒𝑙𝑒𝐹𝑙𝑦, 𝐶ℎ𝑖𝑐𝑘𝑒𝑛𝐵𝑖𝑟𝑑 , 𝐴𝐷𝐼𝐴𝐶 , 𝐴𝑟𝑟𝑜𝑤𝐻𝑒𝑎𝑑 , etc [4],

64

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

[90], [91]. If we, for instance, consider the 𝐴𝑟𝑟𝑜𝑤𝐻𝑒𝑎𝑑 dataset as a demonstrative case, it gets defined

Table 9: Predicting the class label of a testing object

Predict (shapelet decision tree classifier C, testing time series T)
1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
Return label of C

Else
S shapelet on the root node of C
split_point split point on the root of C
If SubsequenceDistanceEarlyAbandon (T, S) < split_point

Predict (left substree of C, T)
Else

Predict (right substree of C, T)
EndIf

EndIf

5. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. We have
designed and conducted all experiments such that they are easily
reproducible. With this in mind, we have built a webpage [15]
which contains all of the datasets and code used in this work,
together with spreadsheets which contain the raw numbers
displayed in all of the figures, and larger annotated figures
showing the decision trees, etc. In addition, this webpage contains
many additional experiments which we could not fit into this
work; however, we note that this paper is completely self-
contained.

5.1 Performance Comparison
We test the scalability of our shapelet finding algorithm on the
Synthetic Lightning EMP Classification [6], which, with a
2,000/18,000 train/test split, is the largest class-labeled time series
dataset we are aware of. It also has the highest dimensionality,
with each time series object being 2,000 data points long. Using
four different search algorithms, we started by finding the shapelet
in a subset of just ten time series, and then iteratively doubled the
size of the data subset until the time for brute force made the
experiments untenable. Figure 11 shows the results.

Figure 11: The time required to find the best shapelet (left) and
the hold-out accuracy (right), for increasing large databases sizes

The results show that brute force search quickly becomes
untenable, requiring about five days for just 160 objects. Early
abandoning helps reduce this by a factor of two, and entropy
based pruning helps reduce this by over two orders of magnitude.
Both ideas combined almost linearly to produce three orders of
magnitude speedup.
For each size data subset we considered, we also built a decision
tree (which can be seen at [15]) and tested the accuracy on the
18,000 holdout data. When only 10 or 20 objects (out of the
original 2,000) are examined, the decision tree is slightly worse
than the best known result on this dataset (the one-nearest
neighbor Euclidean distance), but after examining just 2% of the
training data, it is significantly more accurate.

5.2 Projectile Points (Arrowheads)
Projectile point (arrowhead) classification is an important topic in
anthropology (see [15] where we have an extensive review of the

literature). Projectile points can be divided into different classes
based on the location they are found, the group that created them,
and the date they were in use, etc. In Figure 12, we show some
samples of the projectile points used in our experiments.

Figure 12: Examples of the three classes of projectile points in
our dataset. The testing dataset includes some broken points, and
some drawings taken from anthropologist’s field notes

We convert the shapes of the projectile points to a time series
using the angle-based method [8]. We then randomly created a
36/175 training/test split. The result is shown in Figure 13.

Figure 13: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the 3-class projectile
points problem

As shown in Figure 13 and confirmed by physical anthropologists
Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis
projectile points can be distinguished from the others by an un-
notched hafting area near the bottom connected by a deep concave
bottom end. After distinguishing the Clovis projectile points, the
Avonlea points are differentiated from the mixed class by a small
notched hafting area connected by a shallow concave bottom end.

The shapelet decision tree classifier achieves an accuracy of
80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater
accuracy, the shapelet decision tree classifier produces the
classification result 3×103 times faster than the rotation invariant
one-nearest-neighbor classifier and it is more robust in dealing
with the pervasive broken projectile points in most collections.

5.3 Mining Historical Documents
In this section we consider the utility of shapelets for an ongoing
project in mining and annotating historical documents. Coats of
arms or heraldic shields were originally symbols used to identify

Avonlea Clovis Mix

11.24

85.47

Shapelet Dictionary

(Clovis)

(Avonlea)

I

II

0 100 200 300 400

0
0.5
1.0
1.5

Arrowhead Decision
Tree

I

21

II

0

Clovis Avonlea

0

1 *10
5

2 *10
5

3 *10
5

4 *10
5

5 *10
5

Brute Force

16010 20 40 80

Early Abandon Pruning

Entropy Pruning
Combined Pruning

About 5 days

10 20 40 80 320

0.80

0.85

0.90

0.95

1.00

se
co

n
d

s

a
cc

u
ra

cy

Currently best
published
accuracy 91.1%

|D|, the number of objects in the database |D|, the number of objects in the database
160

(a) 𝐴𝑣𝑜𝑛𝑙𝑒𝑎 arrow head images

Table 9: Predicting the class label of a testing object

Predict (shapelet decision tree classifier C, testing time series T)
1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
Return label of C

Else
S shapelet on the root node of C
split_point split point on the root of C
If SubsequenceDistanceEarlyAbandon (T, S) < split_point

Predict (left substree of C, T)
Else

Predict (right substree of C, T)
EndIf

EndIf

5. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. We have
designed and conducted all experiments such that they are easily
reproducible. With this in mind, we have built a webpage [15]
which contains all of the datasets and code used in this work,
together with spreadsheets which contain the raw numbers
displayed in all of the figures, and larger annotated figures
showing the decision trees, etc. In addition, this webpage contains
many additional experiments which we could not fit into this
work; however, we note that this paper is completely self-
contained.

5.1 Performance Comparison
We test the scalability of our shapelet finding algorithm on the
Synthetic Lightning EMP Classification [6], which, with a
2,000/18,000 train/test split, is the largest class-labeled time series
dataset we are aware of. It also has the highest dimensionality,
with each time series object being 2,000 data points long. Using
four different search algorithms, we started by finding the shapelet
in a subset of just ten time series, and then iteratively doubled the
size of the data subset until the time for brute force made the
experiments untenable. Figure 11 shows the results.

Figure 11: The time required to find the best shapelet (left) and
the hold-out accuracy (right), for increasing large databases sizes

The results show that brute force search quickly becomes
untenable, requiring about five days for just 160 objects. Early
abandoning helps reduce this by a factor of two, and entropy
based pruning helps reduce this by over two orders of magnitude.
Both ideas combined almost linearly to produce three orders of
magnitude speedup.
For each size data subset we considered, we also built a decision
tree (which can be seen at [15]) and tested the accuracy on the
18,000 holdout data. When only 10 or 20 objects (out of the
original 2,000) are examined, the decision tree is slightly worse
than the best known result on this dataset (the one-nearest
neighbor Euclidean distance), but after examining just 2% of the
training data, it is significantly more accurate.

5.2 Projectile Points (Arrowheads)
Projectile point (arrowhead) classification is an important topic in
anthropology (see [15] where we have an extensive review of the

literature). Projectile points can be divided into different classes
based on the location they are found, the group that created them,
and the date they were in use, etc. In Figure 12, we show some
samples of the projectile points used in our experiments.

Figure 12: Examples of the three classes of projectile points in
our dataset. The testing dataset includes some broken points, and
some drawings taken from anthropologist’s field notes

We convert the shapes of the projectile points to a time series
using the angle-based method [8]. We then randomly created a
36/175 training/test split. The result is shown in Figure 13.

Figure 13: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the 3-class projectile
points problem

As shown in Figure 13 and confirmed by physical anthropologists
Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis
projectile points can be distinguished from the others by an un-
notched hafting area near the bottom connected by a deep concave
bottom end. After distinguishing the Clovis projectile points, the
Avonlea points are differentiated from the mixed class by a small
notched hafting area connected by a shallow concave bottom end.

The shapelet decision tree classifier achieves an accuracy of
80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater
accuracy, the shapelet decision tree classifier produces the
classification result 3×103 times faster than the rotation invariant
one-nearest-neighbor classifier and it is more robust in dealing
with the pervasive broken projectile points in most collections.

5.3 Mining Historical Documents
In this section we consider the utility of shapelets for an ongoing
project in mining and annotating historical documents. Coats of
arms or heraldic shields were originally symbols used to identify

Avonlea Clovis Mix

11.24

85.47

Shapelet Dictionary

(Clovis)

(Avonlea)

I

II

0 100 200 300 400

0
0.5
1.0
1.5

Arrowhead Decision
Tree

I

21

II

0

Clovis Avonlea

0

1 *10
5

2 *10
5

3 *10
5

4 *10
5

5 *10
5

Brute Force

16010 20 40 80

Early Abandon Pruning

Entropy Pruning
Combined Pruning

About 5 days

10 20 40 80 320

0.80

0.85

0.90

0.95

1.00

se
co

n
d

s

a
cc

u
ra

cy

Currently best
published
accuracy 91.1%

|D|, the number of objects in the database |D|, the number of objects in the database
160

(b) 𝐶𝑙𝑜𝑣𝑖𝑠 arrow head images

Table 9: Predicting the class label of a testing object

Predict (shapelet decision tree classifier C, testing time series T)
1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
Return label of C

Else
S shapelet on the root node of C
split_point split point on the root of C
If SubsequenceDistanceEarlyAbandon (T, S) < split_point

Predict (left substree of C, T)
Else

Predict (right substree of C, T)
EndIf

EndIf

5. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. We have
designed and conducted all experiments such that they are easily
reproducible. With this in mind, we have built a webpage [15]
which contains all of the datasets and code used in this work,
together with spreadsheets which contain the raw numbers
displayed in all of the figures, and larger annotated figures
showing the decision trees, etc. In addition, this webpage contains
many additional experiments which we could not fit into this
work; however, we note that this paper is completely self-
contained.

5.1 Performance Comparison
We test the scalability of our shapelet finding algorithm on the
Synthetic Lightning EMP Classification [6], which, with a
2,000/18,000 train/test split, is the largest class-labeled time series
dataset we are aware of. It also has the highest dimensionality,
with each time series object being 2,000 data points long. Using
four different search algorithms, we started by finding the shapelet
in a subset of just ten time series, and then iteratively doubled the
size of the data subset until the time for brute force made the
experiments untenable. Figure 11 shows the results.

Figure 11: The time required to find the best shapelet (left) and
the hold-out accuracy (right), for increasing large databases sizes

The results show that brute force search quickly becomes
untenable, requiring about five days for just 160 objects. Early
abandoning helps reduce this by a factor of two, and entropy
based pruning helps reduce this by over two orders of magnitude.
Both ideas combined almost linearly to produce three orders of
magnitude speedup.
For each size data subset we considered, we also built a decision
tree (which can be seen at [15]) and tested the accuracy on the
18,000 holdout data. When only 10 or 20 objects (out of the
original 2,000) are examined, the decision tree is slightly worse
than the best known result on this dataset (the one-nearest
neighbor Euclidean distance), but after examining just 2% of the
training data, it is significantly more accurate.

5.2 Projectile Points (Arrowheads)
Projectile point (arrowhead) classification is an important topic in
anthropology (see [15] where we have an extensive review of the

literature). Projectile points can be divided into different classes
based on the location they are found, the group that created them,
and the date they were in use, etc. In Figure 12, we show some
samples of the projectile points used in our experiments.

Figure 12: Examples of the three classes of projectile points in
our dataset. The testing dataset includes some broken points, and
some drawings taken from anthropologist’s field notes

We convert the shapes of the projectile points to a time series
using the angle-based method [8]. We then randomly created a
36/175 training/test split. The result is shown in Figure 13.

Figure 13: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the 3-class projectile
points problem

As shown in Figure 13 and confirmed by physical anthropologists
Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis
projectile points can be distinguished from the others by an un-
notched hafting area near the bottom connected by a deep concave
bottom end. After distinguishing the Clovis projectile points, the
Avonlea points are differentiated from the mixed class by a small
notched hafting area connected by a shallow concave bottom end.

The shapelet decision tree classifier achieves an accuracy of
80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater
accuracy, the shapelet decision tree classifier produces the
classification result 3×103 times faster than the rotation invariant
one-nearest-neighbor classifier and it is more robust in dealing
with the pervasive broken projectile points in most collections.

5.3 Mining Historical Documents
In this section we consider the utility of shapelets for an ongoing
project in mining and annotating historical documents. Coats of
arms or heraldic shields were originally symbols used to identify

Avonlea Clovis Mix

11.24

85.47

Shapelet Dictionary

(Clovis)

(Avonlea)

I

II

0 100 200 300 400

0
0.5
1.0
1.5

Arrowhead Decision
Tree

I

21

II

0

Clovis Avonlea

0

1 *10
5

2 *10
5

3 *10
5

4 *10
5

5 *10
5

Brute Force

16010 20 40 80

Early Abandon Pruning

Entropy Pruning
Combined Pruning

About 5 days

10 20 40 80 320

0.80

0.85

0.90

0.95

1.00

se
co

n
d

s

a
cc

u
ra

cy

Currently best
published
accuracy 91.1%

|D|, the number of objects in the database |D|, the number of objects in the database
160

(c) Arrow heads with𝑀𝑖𝑥𝑒𝑑 shapes

Figure 3.5: Different shapes of ancient stone arrow heads [91]

using a set of stone arrowhead images corresponding to different ancient civilizations. In anthropology,
such arrowheads are categorized depending on their shape, discovery site, etc. For instance, in [91],
arrowheads were grouped based on their shapes as 𝐴𝑣𝑜𝑛𝑒𝑙𝑎,𝐶𝑙𝑜𝑣𝑖𝑠 and𝑀𝑖𝑥𝑒𝑑 as shown in Figure 3.5.
In [91], the authors aimed to classify the images using a rotational invariant one-dimensional time
series shapelet (most descriptive shape) extracted from the images of arrowheads. However, before
the classification task, the authors had to convert the images into a one-dimensional temporal series.
In this regard, the authors proposed to utilize the angle-based time series extraction technique. InAdjust the images to

approximately same size

Convert to time series using the
angle-based method

Concatenate a copy of the time
series to itself. In this way, we
make it rotation invariant

Projectile Points Experiment Image processProjectile Points Experiment Image process

fixed angle

size θ

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

Why not normalize the
length?
Normalized to the same length
makes the similar part of outline
of different length very different
� unmatched

(a) Angle based time series extraction from an image of an arrowhead

0 50 100 150 200 250
Time

2

0

Di
st

an
ce

ArrowHead Class 1

0 50 100 150 200 250
Time

1

0

1

Di
st

an
ce

ArrowHead Class 2

0 50 100 150 200 250
Time

1

0

1

Di
st

an
ce

ArrowHead Class 3

(b) A sample time series extracted
from an image of an 𝐴𝑣𝑜𝑛𝑙𝑒𝑎 arrow
head

0 50 100 150 200 250
Time

2

0

Di
st

an
ce

ArrowHead Class 1

0 50 100 150 200 250
Time

1

0

1

Di
st

an
ce

ArrowHead Class 2

0 50 100 150 200 250
Time

1

0

1

Di
st

an
ce

ArrowHead Class 3
(c) A sample time series extracted
from an image of a𝐶𝑙𝑜𝑣𝑖𝑠 arrow head

0 50 100 150 200 250
Time

2

0

Di
st

an
ce

ArrowHead Class 1

0 50 100 150 200 250
Time

1

0

1

Di
st

an
ce

ArrowHead Class 2

0 50 100 150 200 250
Time

1

0

1

Di
st

an
ce

ArrowHead Class 3

(d) A sample time series extracted
from an image of an arrow head that
has mixed shape

Figure 3.6: Angular-based time series extraction from the images of ancient stone arrow heads [91]

the extraction process, the processed images get first scaled to have similar dimensions. Following
this, a central reference point within the boundaries of the arrowheads gets selected. Finally, a set
of distance measurements gets taken between the reference point and the edges of the arrowheads.
In reality, the measurement is taken at a fixed angular step value either in a clockwise or counter-
clockwise manner. Thus, in the end, the distance values define the amplitude of the extracted time
series, whereas the angle of rotation defines the timestamps of the one-dimensional temporal series.
Figure 3.5 summarizes the angular-based time series extraction process. However, one additional

65

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

point to mention here is that angular-based conversions are sensitive to rotation, i.e., a rotation of
an image will shift the extracted series along the time axis. In this aspect, the authors proposed to
concatenate an extracted shapelet with its copy so that it becomes rotation invariant [91].

Besides the temporal datasets extracted from images, the UCR archive also contains datasets rep-
resenting the movement and gestures made by human beings and earthworms while performing
different tasks. For instance, the UCR’s𝐶𝑟𝑖𝑐𝑘𝑒𝑡{𝑋, 𝑌, 𝑍 } archive gets defined from three-dimensional
accelerometer measurements taken from test subjects playing cricket [92]. The three-dimensional
accelerometer measurements get used to identifying one of the 12 gestures in cricket: Cancel Call,
Dead Ball, Four, Last Hour Leg Bye, No Ball, One Short, Out, Penalty Runs, Six, TV Replay, and
Wide [2], [92]. In reality, the UCR archive contains a range of datasets extracted from movements and
gestures that might differ in how they get extracted. For instance, the 𝐻𝑎𝑝𝑡𝑖𝑐 dataset gets extracted
by recording the X-axis movements of people entering a passgraph, i.e., a code to assess a system
protected by a graphical authentication system [2]. In summary, we have given the list of the UCR
archive datasets extracted from images, movements, and gestures in Table 3.5.

Table 3.5: UCR archive datasets that are defined from images, movements and gestures [2], [91]

Datasets Extracted from
Adiac, ArrowHead, BeetleFly, BirdChicken , DiatomSizeReduction, Dis-
talPhalanxOutlineAgeGroup, DistalPhalanxOutlineCorrect, DistalPhal-
anxTW, FaceAll, FaceFour, FacesUCR, FiftyWords, Fish, HandOutlines,
Herring, MedicalImages, MiddlePhalanxOutlineAgeGroup, MiddlePhal-
anxOutlineCorrect, MiddlePhalanxTW, OSULeaf, PhalangesOutlinesCo-
rrect, ProximalPhalanxOutlineAgeGroup, ProximalPhalanxOutlineCorr-
ect, ProximalPhalanxTW, ShapesAll, SwedishLeaf, Symbols, WordSyno-
nyms, Yoga, Crop, MixedShapesRegularTrain, MixedShapesSmallTrain

Images

CricketX, CricketY, CricketZ, GunPoint, Haptics, InlineSkate, ToeSegm-
entation1, ToeSegmentation2, UWaveGestureLibraryAll, UWaveGesture-
LibraryX, UWaveGestureLibraryY, UWaveGestureLibraryZ, Worms, Wo-
rmsTwoClass, GunPointAgeSpan, GunPointMaleVersusFemale, GunPoint-
OldVersusYoung

Motion and gestures
of humans and earth
worm

3.1.5 Time Series Extracted from Simulations, Spectrography, Hemodynamics and
High Resolution Melting Point Measurements

The final subgroup of datasets we found in the UCR archive is obtained from simulations (synthetic
data), food quality spectrograph measurements, biological or non-biological object’s melting point
radiation spectrum, fluid pressure measurements, and from luminescence measurements of stones [2],
[93]–[97]. To give a general picture of these datasets, we will present a brief description of some of
the datasets from each category. For instance, we can consider the 𝑆𝑚𝑜𝑜𝑡ℎ𝑆𝑢𝑏𝑆𝑝𝑎𝑐𝑒 dataset from
the simulated category [98]. This dataset was used in [98] to evaluate if a clustering algorithm can
identify smooth subspaces while clustering time series. In this context, the 𝑆𝑚𝑜𝑜𝑡ℎ𝑆𝑢𝑏𝑆𝑝𝑎𝑐𝑒 dataset
contains three different classes that correspond to a continuous subspace spanning five timestamp

66

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.6: UCR archive datasets corresponding to simulation, spectrograph, hermodynamics and HRM mea-
surements [2], [94]–[96]

Datasets category classes Length Class Information
BME

Simulated

3 150 Bell Shape: Begin, Middle, End
CBF 3 128 Cylinder, Bell, Funnel
Mallat 8 1024 No class information
ShapeletSim 2 500 Shapes corrupted by noise
SmoothSubspace 3 15 Segments of 3 continuous sub space

SyntheticControl 6 60
Control charts:Normal, Cyclic,
Increasing trend Decreasing trend,
Upward shift, Downward shift

TwoPatterns 4 128 Patterns from decision tree:
down-down, down-up, up-up

UMD 3 150 Bell Shape: Begin, Middle, End

Beef

Spectrograph

5 470 Beef: Pure, adulterated with;
heart, tripe, kidney and liver

Coffee 2 286 Coffe beans:Arabica, Robusta
EthanolLevel 4 1751 Ethanol: E35, E38, E40, E45
Ham 2 431 Spanish & French dry-cured hams
Meat 3 448 Chicken, P and Turkey
OliveOil 4 570 Olive oil from alternative countries

Strawberry 2 235 strawberries and adulterated
strawberries and other fruits

Rock 4 2844 Marfic , quartzite, marble, schist
Wine 2 234 No class information
Fungi HRM 18 201 18 species of Fungi
PigAirwayPressure

Hermodynamics
52 2000 52 pigs airway pressure

PigArtPressure 52 2000 52 pigs arteries pressure
PigCVP 52 2000 52 pigs CV pressure

values. In reality, class one corresponds to a subspace spanning the timestamps 1-5, whereas clusters
2 and 3 correspond to the timestamp ranges of 6-10 and 11-15. Moreover, in all classes, the segment
that did not correspond to a smooth subspace was filled by randomly generated values, where the
𝑆𝑚𝑜𝑜𝑡ℎ𝑆𝑢𝑏𝑆𝑝𝑎𝑐𝑒 dataset is 15 timestamps long.

In another category, i.e., in the spectrograph category, time series were extracted from real-world
measurements. For instance, the UCR archive’s 𝐵𝑒𝑒 𝑓 dataset was defined from the spectrograph of
different kinds of beef [94]. In practice, most foods are composed of various minerals and water.
Thus, when they get bombarded with light rays, such as a Mid-infrared frequency light ray, the
reflected light differs in wavelength and magnitude (intensity) depending on the contents of the
food [94]. In [94], this concept was used to assess the quality of different types of beef. To make
the assessment, the authors measured the reflected mid-frequency infrared light on five different
variants of beef: pure beef and beef adulterated with heart, tripe, kidney, and liver. In reality, in the
UCR archive, there are five additional datasets corresponding to similar measurements for different
kinds of meats, strawberries, and coffee beans. In addition to these food spectrographs, we have

67

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

datasets corresponding to high-resolution melting measurements. In this aspect, we can consider
the UCR’s 𝐹𝑢𝑛𝑔𝑖 dataset as an example. The 𝐹𝑢𝑛𝑔𝑖 dataset was introduced in [95] by measuring
the intensity of the light spectrum emitted by melting fungi. The measurements get later used to
classify 18 different fungal species [95]. In practice, different species emit different sets of lights when
exposed to high-temperature values, i.e., depending on their genome sequences. In molecular biology,
such analysis of species is known as High Resolution Melting (HRM) point analysis. Finally, in the
UCR archive, we have datasets corresponding to blood flow (Hemodynamics) measurements. In this
regard, the UCR archive contains datasets extracted from [96] aimed to improve the detection time
of internal bleeding. To devise a mechanism that improves the detection rate, the authors of [96]
studied pressure changes in the airway, arteries, and Central Venous (CV) of 52 pigs before and after
deliberately introducing internal bleeding. In the study, the 52 pigs got initially sedated while the
measurement equipment was left to rest for 20 minutes. Following this, the pigs were slowly bled at a
rate of 20 ml/min while vital sign measurements got taken using a bed-side hemodynamic monitoring
system. Finally, two 30-second vital sign samples got taken, i.e., one before internal bleeding and
another within 2 minutes after the internal bleeding had started. These samples got later used in
studies that aimed to improve the detection time of internal bleeding to be between 10 to 15minute [96].

In general, we have summarized these practical and simulated UCR archive datasets in Table 3.6.
Moreover, as their counterparts, we have also given sample time series from each subcategory in
Figure 3.7. However, the reader must note that our overall discussion of the UCR archive datasets is a
higher-level overview. An interested reader can further refer to the sources of each dataset from the
2018 UCR Time Series Archive web page (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/)
or from the time series classification web page (https://timeseriesclassification.com/dataset.php). With
this said, we will conclude this section and present our approaches whose evaluations are based on
the datasets presented in this section.

0 20 40 60 80 100 120
Time

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

BME Class 1

0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

BME Class 2

0 50 100 150 200 250
Time

2

1

0

1

2

Am
pl

itu
de

Coffee Class 1

0 50 100 150 200 250
Time

1

0

1

2

Am
pl

itu
de

Coffee Class 2

(a) Sample time series form 𝐵𝑀𝐸 classes 1 𝑎𝑛𝑑 2

0 20 40 60 80 100 120
Time

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

BME Class 1

0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

BME Class 2

0 50 100 150 200 250
Time

2

1

0

1

2

Am
pl

itu
de

Coffee Class 1

0 50 100 150 200 250
Time

1

0

1

2

Am
pl

itu
de

Coffee Class 2

(b) Sample time series from 𝐶𝑜𝑓 𝑓 𝑒𝑒 classes 1 𝑎𝑛𝑑 2

0 25 50 75 100 125 150 175 200
Time

0

10

20

30

40

Am
pl

itu
de

Fungi Class 1

0 25 50 75 100 125 150 175 200
Time

0

5

10

15

20

25

30

Am
pl

itu
de

Fungi Class 2

0 250 500 750 1000 1250 1500 1750 2000
Time

60

65

70

75

80

85

90

95

Pr
es

su
re

PigArtPressure Class 1

0 250 500 750 1000 1250 1500 1750 2000
Time

46

48

50

52

54

56

Pr
es

su
re

PigArtPressure Class 2

(c) Sample time series from 𝐹𝑢𝑛𝑔𝑖 classes 1 𝑎𝑛𝑑 2

0 25 50 75 100 125 150 175 200
Time

0

10

20

30

40

Am
pl

itu
de

Fungi Class 1

0 25 50 75 100 125 150 175 200
Time

0

5

10

15

20

25

30

Am
pl

itu
de

Fungi Class 2

0 250 500 750 1000 1250 1500 1750 2000
Time

60

65

70

75

80

85

90

95

Pr
es

su
re

PigArtPressure Class 1

0 250 500 750 1000 1250 1500 1750 2000
Time

46

48

50

52

54

56

Pr
es

su
re

PigArtPressure Class 2

(d) Sample time series from 𝑃𝑖𝑔𝐴𝑟𝑡𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 classes 1 & 2

Figure 3.7: Sample UCR archive datasets that are extracted from simulation [2], spectrograph [2], [13],
hermodynamics [2], [96] and HRM measurements datasets [2], [95]

68

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://timeseriesclassification.com/dataset.php

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

3.2 Time series Averages from the Latent Space of a Basic
Autoencoder

In practice, machine learning algorithms and neural networks obtain superior performances by relying
on a lower dimensional abstraction of their inputs [7], [29]. For instance, if we take neural networks,
the overall decision process is often based on the outputs of hidden units (layers) processing inputs in
a manner that favors positive or negative outcomes. To this end, for a neural network to be intelligent,
hidden units are expected to abstract a range of inputs by identifying common regularities that make
up the negative and positive outcomes [99]. With this understanding, researchers often emphasized
devising data abstraction techniques that could assist machine learning algorithms to focus on relevant
information [99], [100]. However, until the introduction of autoencoders, there was no intelligent way
of learning such lower dimensional data abstractions that could serve as an input to various learning
algorithms [99]. In practice, the basic autoencoder is often built from two symmetrical neural networks,
i.e., an encoder and decoder, which coherently work in an unsupervisedmanner to reconstruct an input
from its lower dimensional representation. In practice, the lower dimensional representations (input
data abstractions) are often known as the latent space representations (embedding) of an input [59].
In the context of an autoencoder, the encoder gets tasked with extracting the most descriptive lower
dimensional representation of inputs. To meet this objective, an encoder gets constructed from at
least two layers that consecutively decrease the dimension of an input [59], [76], [101]. The decoder
often utilizes the same set of layers in a reversed direction to reconstruct an input from its latent space
representation with the minimum possible reconstruction error. Thus, this way, a basic autoencoder
is able to learn the dominant features that make up an input which can later be reconstructed to
re-generate an input with a minimum loss of information. In general, the basic autoencoder is often
generalized using the block diagram shown in Figure 3.8, where 𝑋𝑖 can either be a series in ℝ𝑀 , an
image, or in general, an 𝑁 dimensional matrix.

.

Encoder

Latent Space encoding

Xi Xi

Zi

g (.) f (.)

Decoder

Figure 3.8: Block diagram of a basic autoencoder

Practically, an autoencoder is not the only data abstraction technique. On the contrary, there are linear
transformation techniques that proceed with autoencoders which often model inputs using their
dominant statistical features [100], [101]. For instance, in Principal Component Analysis (PCA), given
𝑁 column vectors (series) in ℝ𝑀 , inputs get expressed in terms of the most dominant eigenvalues

69

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

and eigenvectors of their covariance matrix. In reality, the eigenvalues and vectors define Principal
Components (PC) (𝑃𝐶 ≤ 𝑀) that captures the maximum variance within the dataset. In another
perspective, we can think of PCA performing a singular value decomposition of inputs (3.2), where
𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑁 } : 𝑋𝑖 ∈ ℝ𝑀,1 are the input vectors, `𝑖 is the mean of 𝑋𝑖 , and {𝛴, {U 𝑎𝑛𝑑 V}}
are the eigenvalues and orthonormal eigenvectors of the inputs covariance matrix C ⊂ ℝ𝑁 × 𝑁 .
After decomposition, PCA express the input as the linear combination of 𝐾 dominant eigenvectors
withinU (V) and the covariance matrix C.

C𝑖, 𝑗 = 𝐶𝑜𝑣 (𝑋𝑖 , 𝑋 𝑗) = 1
𝑀

(𝑋𝑖 − `𝑖) (𝑋 𝑗 − ` 𝑗)𝑇

C = U 𝛴 V
(3.2)

In reality, we can think of PCA’s eigenvalue and eigenvector selection as its attempt to identify a
line, a plane, or such higher dimensional geometric shape from which the transformed series have
a higher variance along their first dimension and the minimum residue along their 𝐾𝑡ℎ axis. With
this transformation, PCA is useful as a higher dimensional data visualization and a dimensionality
reduction tool in different machine learning algorithms [102], [103]. However, despite its use, PCA
inherently assumes a correlation among transformed series. However, in practice, this is not always
evident. Thus, in the worst case or when the analyzed dataset has a nearly diagonal covariance
matrix, PCA often becomes less useful. However, in this context, an autoencoder makes no such rigid
assumptions. Moreover, an autoencoder does not rely on linear recombination to define the lower
dimensional representation of the transformed series. On the contrary, it relies on the encoder’s and
decoder’s ability to learn optimal transformation functions (g(.), f(.)). In this aspect, in autoencoders,
the most common decoder function f(.) is the reconstruction loss given in (3.3). In this case, a decoder
is expected to tune its weights in a manner that minimizes reconstruction error given the inputs
latent representations 𝑍 = {𝑍1, 𝑍2, 𝑍3, . . . , 𝑍𝑁 } : 𝑍𝑖 ∈ ℝ𝜏 where 𝜏 < 𝑀 . On the contrary, an
encoder’s transformation function g(.) gets expected to identify latent space features that are the
basis for reconstruction.

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝑋,𝑋) = 1
𝑁

𝑁∑︁
𝑖=1

| | 𝑋𝑖 − 𝑋𝑖 | |𝑙2 (3.3)

Even though latent space representations obtained through a reconstruction loss might seem trivial
at first glance, they are often useful while initializing neural networks performing different data
mining tasks. For instance, in [6], an autoencoder with a reconstruction loss gets utilized to initialize
a neural network performing latent space-time series. In the paper, the authors first trained a basic
autoencoder to learn reconstructable latent features. Following this training, the authors discarded the
decoder and further trained the encoder using latent space K-mean clustering and Kullback–Leibler
(KL) divergence. Additionally, in [56], different architectural setups of autoencoders get assessed
in the context of latent space time series clustering. In these studies, an autoencoder’s latent space
representation gets assumed to be crucial on assisting clustering algorithms. In this regard, it get
assumed that it helps them focus on the most relevant features of clustered datasets. In reality,
autoencoders have also found a use besides clustering. For instance, in [104], autoencoders have
been utilized in a semi-supervised setup to improve classification accuracies. In practice, there are

70

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

scenarios where we could have a mixture of labeled and unlabeled datasets. In [104], the authors
proposed to utilize the encoder portion of a pre-trained autoencoder as a building block of a classifier.
The underlying argument behind the proposal was that an autoencoder learns relatively close latent
space representations for similarly labeled input datasets. Thus, even if the labels of some datasets are
missing, the encoder portion of a pre-trained autoencoder get expected to guide a classifier network
in the right direction. Thus, it serves as a regularizer for a classifier network. In reality, this use
of autoencoders also got further investigated in [105]. However, in this investigation, the authors
proposed to corrupt input datasets with noise to force the autoencoder to give attention to the most
dominant features that enable it to filter out and reconstruct a corrupted input.

In addition to their use in initializing neural networks, in practice, autoencoders by themselves
get utilized as the main optimization setup in different data mining tasks. For instance in [106]–[108],
autoencoders have been utilized to detect anomalies in input datasets. The underlying concept behind
such proposals is the assumption that anomalies often have higher reconstruction loss. In another
perspective, [109] showed the better performance of autoencoders in dimensionality reduction. The
proposal showed that the autoencoders performed better compared to their linear counterparts. In
general, given an appropriate design and guiding objective function, an autoencoder can learn latent
features useful under different setups. In this aspect, there is a range of variables contributing to
the better performance of an autoencoder, i.e., compared to its predecessors. For instance, if the
inputs of an autoencoder have very similar shapes, then we expect their latent representation to
get confined within a small region of the latent space. However, when this is the case, the decoder
might have difficulties distinguishing between the latent space representation of the input datasets.
On the contrary, if the reverse is true, the autoencoder could have difficulties generalizing since the
decoder is expected to be able to interpret a wide area of the latent space. Additionally, even in a
relatively normal case, the type of 𝑓 (.) and 𝑔(.) learned by an autoencoder are directly or indirectly
controlled by different parameters and sub-parameters of the network. For instance, layer organiza-
tion (architecture), activation function, initialization, regularization, etc. To this end, if we propose to
augment time series averages from the latent space of the autoencoder, we have to carefully control
and guide such parameters such that the latent space representations meet our requirements. For
instance, in the context of time series average augmentation, we desire the autoencoders to extract
dense (compact) latent space features given input datasets are highly correlated. Thus, this way,
we expect the autoencoders to be able to filter out time-domain perturbance such as phase shift.
Moreover, by focusing on such dense principal components, we significantly reduce the search area
of the mean to a small confined region of the latent space. This, in turn, will help the decoder portion
of the autoencoder to reconstruct a sample, such as the arithmetic mean of latent embedding, in a
manner that resembles the time domain inputs. However, it should also be noted that very dense
latent space representations could also become a challenge to the decoder in terms of resolvability.
Thus, to ensure optimal re-projection of a latent mean, we are expected to establish a balance between
dense representations and their resolvability in some manner.

71

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

In addition to the compactness of the latent features, another factor to take into account would
be the dimension of the latent features. This is because if we significantly reduce the dimension of
the latent space features, then we would be losing too much information. In other words, if we see
it in the context of PCA, a smaller dimension means we will be focusing on the first 𝑁 Principal
Components (PC) while neglecting the rest. However, in some cases, the lower PC could carry critical
information if the encoded series have similar shapes or if they are highly correlated. In general,
an average augmentation process should take these extreme cases in mind and must find a balance
through different means. With these technicalities in mind, we present our proposals which aim to
augment the times series averages from a basic autoencoder mainly constructed from Convolutional

layers.

3.2.1 Time Series Average Estimation Using Basic Autoencoders

In this subsection, we first propose to augment the time domain average from the latent space of
an autoencoder that resembles the Visual Geometric Group 16 (VGG16) C/D presented in chapter
two [57]. In reality, we adopt the VGG16 architectural setup for two main reasons. First, we believe
the successive stacking of the Convolutional layers will significantly refine time domain phase shifts.
Secondly, in time series averaging, we aim to preserve shapes observed in the averaged set. In
this regard, the Convolutional layer stacking in VGG16 helps abstract shapes using a consecutively
increasing receptive field. For instance, if we assume we have three Convolutional layers within a
VGG16 stack, the first Convolutional layer kernel will analyze and transform overlapping segments of
an input. However, due to the stacking, the internal two layers can zoom into a specific segment since
the inner Convolutional kernels slide along the output of a preceding layer. From another perspective,

Depth

Time

Channel

Flattening

Layer

Figure 3.9: Proposed reduced VGG16 autoencoder architecture

72

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

we can think of Convolutional layer stacking as the zooming touches performed on the screens of
smartphones. In this aspect, we expect a first touch to zoom on to a particular point (segment) of
interest up to a certain extent. However, since consecutive touches work on the outputs of predecessor
touches, we will end up with a significant focus on the point of interest after consecutive zooming
touches. In the context of shape abstraction, this capability will aid a VGG16 based autoencoder to
focus on unique shapes while filtering out common features. For instance, if an input dataset has peaks
and through that are unique to it, then it would be wise to zoom in and analyze the sharpness and the
smoothness of the peaks and troughs rather than emphasizing on common shapes. However, it should
also be noted that an improper objective function, network architecture, and parameter configuration
could also lead us to focus on features that do not align with our interests. With this intuition in mind,
we refrained from adopting the full VGG16 C/D architecture. This is because the datasets we work on,
i.e., UCR, often have a limited number of training samples. To this end, training a network with large
numbers of parameters such as VGG16 has a higher likelihood of overfitting. In other words, given
a limited number of training inputs, a larger network could memorize the shapes observed in the
training set. This could significantly reduce its generalization capability. Additionally, we desire to
base the augmentation process on a setup with an optimal computational requirement. To this end, we
believe our proposed network should be relatively shallower (smaller) compared to the architectures
presented in Table 2.3. However, with a smaller network, the memory links evident in the ResNet and
Inception could significantly introduce the distortion present in the time domain. This is contrary
to our initial desire of extracting compact (dense) latent space representations, which is also the
underlying argument behind our selection of the VGG16 architecture rather than its counterparts.
With these technicalities in mind, we propose the reduced version of the VGG16 architecture shown
in Figure 3.9 which we afterward call the reduced VGG16.

3.2.2 Architecture Description

In the proposed autoencoder, we use Convolutional stacks that are composed of three one dimensional
Convolutional layers. At the encoder and decoder, we have used three such Convolutional stacks.
Moreover, we have also used three MaxPooling layers at the end of each Convolutional stack of the
encoder. In neural networks, given a kernel size of 𝐾 , a MaxPooling layer takes the maximum of the
values under the receptive field of the kernel. In our architecture, we have set the kernel size to 3.
Thus, each encoder Convolutional stack successively reduces the dimension of an input time series
by a factor of 3. Thus, the total dimension reduction aggregates to a factor of 27. However, at times,
some of the input dimensions are relatively small to be scaled by an aggregate reduction factor of 27.
When this is the case, we set the MaxPooling kernel to 2. On the contrary, at the decoder, we have
used two UpSampling layers to perform a dummy interpolation while performing the reconstruction.
In neural networks, given the coordinate values of a feature map and an Upsampling layer kernel size
of 𝐾 , an UpSampling layer repeats each coordinate value 𝐾 times. In our case, each UpSampling layers
have a kernel size of 3. In addition to these layers, at the end of the encoder and decoder modules, we
have used a Flattening and a fully connected Dense layers. The Flattening layers gets used to convert
the two-dimensional feature maps of the Convolutional layers into a one-dimensional representation.
This gets achieved by stacking the columns of the feature maps along their first axis. On the contrary,

73

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

the encoder’s and decoder’s Dense layers are respectively used to learn the one-dimensional latent
space embedding and to generate the reconstructed series. Finally, we have used the ReLU activation
function with the exception of the encoder’s first Convolutional layer and the decoder’s output Dense
layer. On the two layers, we have used a Linear activation function to support negative and positive
values at the decoder output and to keep the encoder symmetrical to the decoder. In conclusion, given
a time series in ℝ𝑀 , the parameters of each layer are summarized in Table 3.7.

Table 3.7: Layer configurations of the proposed reduced VGG16 autoencoder

Module Layer (s) Input dim. Output dim. # parameters

Encoder

Reshape (Batch, M) (Batch, M,1) 0[𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, 1, M) (Batch, M, 32) 3232

MaxPooling (Batch, M, 32) (Batch, ⌊𝑀3 ⌋, 32) 0[𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64

]
(Batch, ⌊𝑀3 ⌋, 64) (Batch, ⌊𝑀3 ⌋, 64) 30,912

MaxPooling (Batch, ⌊𝑀3 ⌋, 64) (Batch, ⌊𝑀9 ⌋, 64) 0[𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128

]
(Batch, ⌊𝑀9 ⌋, 64) (Batch, ⌊𝑀9 ⌋, 128) 123,264

MaxPooling (Batch, ⌊𝑀9 ⌋, 128) (Batch, ⌊𝑀27⌋, 128) 0
Flattening (Batch, ⌊𝑀27⌋, 128) (Batch, ⌊𝑀27⌋ × 128) 0

Latent Dense (Batch, ⌊𝑀27⌋ × 128) (Batch, ⌊𝑀4 ⌋)
(⌊𝑀27⌋ × 128)×
⌊𝑀4 ⌋ + ⌊𝑀4 ⌋

Decoder

Reshape (Batch, ⌊𝑀4 ⌋) (Batch, ⌊𝑀4 ⌋, 1) 0[𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128

]
(Batch, ⌊𝑀4 ⌋, 1) (Batch, ⌊𝑀4 ⌋, 128) 99,072

UpSampling (Batch, ⌊𝑀4 ⌋, 128) (Batch, ⌊ 3×𝑀4 ⌋, 128) 0[𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64

]
(Batch, ⌊ 3×𝑀4 ⌋, 64) (Batch, ⌊ 3×𝑀4 ⌋, 64) 49,344

UpSampling (Batch, ⌊ 3×𝑀4 ⌋, 64) (Batch,⌊ 9×𝑀4 ⌋, 64) 0[𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, ⌊ 9×𝑀4 ⌋, 64) (Batch, ⌊ 9×𝑀4 ⌋, 32) 12,384

Flattening (Batch, ⌊ 9×𝑀4 ⌋, 32) (Batch, ⌊ 9×𝑀4 ⌋ × 32) 0

Time Domain Dense (Batch, ⌊ 9×𝑀4 ⌋ × 32) (Batch, M) (⌊ 9×𝑀4 ⌋ × 32)×
𝑀 +𝑀

3.2.3 Experimental Setup, Average Estimation and Evaluation Technique

Experimental Setups: We have trained the proposed reduced VGG16 architecture using an 80/20
split, i.e., 80% of the training data gets used for training and 20% for validation. Moreover, we train the
network for 600 epochs: with no weight regularization, default weight initialization (Glorot Uniform),

74

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

a 10−4 learning rate, and batch size that is equal to ⌊ 14 × 𝑁 ⌋, where 𝑁 is the number of the input series.
Finally, we have used the Adaptive Moment Estimation (Adam) optimizer for gradient calculation [65].

Average Estimations: After training the network, we take the per class arithmetic mean of the
latent space representations of the training datasets to estimate the latent averages. In other words,
in the context of the latent means, we are making a maximum likelihood parameter estimation under
the assumption of Gaussian distribution. In addition to generating latent space estimations, we use
the decoder to project the latent space estimation to the time domain.

Evaluation Techniques: After generating the latent space and time domain estimations from the
training set, we used the trained network to project the test datasets into the latent space. We then
performed a Nearest Centroid Classification (NCC) using the estimated averages and the latent and
time domain representations of the test datasets. For the NCC, we have respectively used Euclidean
and DTW distances for the latent and time domain representations of the test datasets. We finally
report the outcomes that obtained the best latent space classification accuracy and their corresponding
time domain classification outcome. In reality, we base our selection criteria on the latent space
classification accuracy since we propose to mimic multiple alignments in the latent space rather than
the time domain.

In practice, the quality of a time series average is measured using Within Group Squared Sum
(WGSS), i.e., (1.1) [16]. However, we have avoided evaluating the estimates using WGSS since it only
gives information about a single cluster. In other words, it does not provide clear information on the
quality (representativeness) of the estimated means (centroid) in the context of multi-class (cluster)
averages. For instance, an estimated latent mean could show a small WGSS while the underlying
multi-class latent space representations are overlapping and indistinguishable for the decoder. In
this aspect, a NCC classification is relatively self-explanatory. Moreover, we also expect a NCC to
maximize its classification accuracy by minimizing its WGSS. Additionally, NCC could become handy
while interpreting different scenarios. For instance, a high latent and time domain NCC accuracy
could imply the per-class embedding of the multi-class input time series are separable and compact.
Alternatively, a NCC could achieve a high classification accuracy if the per-class embedding or time
domain representations of input dataset are a very close neighborhood of each other. In this case, the
high NCC accuracy implies the quality of the estimated means and the compactness of the time or
latent space embedding. In reality, we can also pair NCC with dimensional visualization tools such as
t-Distributed Stochastic Neighbor Embedding (t-SNE) [110] or PCA [100] in order to make conclusive
remarks about the different scenarios.

Besides conducting NCC classifications, i.e., using our proposed approach, we have also compared
the performance of our proposal to its counterparts. To make the comparison, we have utilized the
outcomes reported in [20]. In [20], a NCC evaluation was performed using the estimates of DBA,
SDBA and DTAN on 84 UCR datasets. In the evaluation, DTAN got first trained for 2500 epochs and
four regularization setups. Next, the authors took the arithmetic mean of the morphed train datasets

75

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

as an estimate. Following this, the test datasets got morphed using the trained network. Finally, a NCC
classification got conducted using the morphed series, estimated means, and Euclidean distance. The
authors then reported the outcomes that obtained the best classification accuracy. On the contrary,
for the DTW based averaging techniques, the authors used Tslearner’s [111] implementation of DTW,
DBA, and SDBA to conduct similar NCC classifications on 84 UCR datasets [20]. In general, the
authors executed DBA and SDBA for 100 iterations. Moreover, they evaluated SDBA using five 𝛾
values, i.e., for 𝛾 = [0.001, 0.01, 0.1, 1 𝑎𝑛𝑑 10]. Finally, for all of the DTW based techniques, they
reported the outcomes that obtained the best NCC accuracy. In reality, we have also validated the
reported outcomes of DBA and SDBA using the same NCC setups utilized in [20]. Our assessment
shows that the reported results are not biased. Thus we adopted the reported results as they are.
However, since we could not find a standardized implementation of DTAN, we accepted the outcomes
reported in [20] to be valid.

Hypothesis Tests for NCC Classification Accuracies: The next logical question that needs to
get asked is, how do we compare the outcomes of different averaging techniques? In this regard,
some papers utilized win/tile/loss tables and plots to compare classification accuracies of competing
algorithms [16], [25]. However, in reality, such comparisons might be misleading for various rea-
sons. For instance, a given averaging technique might lose with a small margin to have a significant
practical implication. To account for such ambiguities of wins/ties/losses analysis, we also compare
classification outcomes in a statistical sense, i.e., to use the overall maximum, minimum, mean, median
accuracies, and box-whisker plots. However, in practice, some statistical parameters, such as median
accuracies, tend to get biased by outlier accuracies. Moreover, even though a box-whisker plot is
more revealing compared to wins/ties/loss analysis, it still does not take the individual accuracy
difference into account. To address these issues, we propose to further evaluate the performances
of the averaging techniques using hypothesis evaluation techniques [112]. However, in practice, we
have a range of hypothesis evaluation techniques. Thus, careful consideration must be taken while
selecting the evaluation techniques. In this aspect, we noted that our experimental evaluations can be
taken to be dependent and paired, i.e., different sets of averaging techniques get applied to the same
datasets. Moreover, we also noted that we do not expect the outcome of our experimental evaluations
to follow a specific distribution curve, i.e., they are non-parametric. With these key factors in mind,
we have selected the Friedman signed rank test and Wilcoxon hypothesis tests as our pre and post
hypotheses evaluation techniques [112], [113].

In reality, the Wilcoxon hypothesis test initially assumes that classification accuracies get obtained
by performing a pair of experiments on a set of test subjects. For instance, while performing NCC
classification using the estimates of two averaging techniques and the UCR dataset. Given this condi-
tion is met, the Wilcoxon hypothesis test initially assumes a certain observation is true, commonly
known as a null hypothesis. In this context, we initially assume the classification accuracies of two
averaging techniques on a set of UCR datasets are equal or statistically indistinguishable, i.e., the
difference between their classification accuracies has zero median [113]. Given such null hypothesis,
the Wilcoxon hypothesis test first computes the difference between the outcomes of the compared

76

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

techniques. It then momentarily takes the absolute values of the differences while keeping the track
of the negative and positive differences. Following this, the differences get assigned a rank based on
their magnitudes, i.e., the smallest difference gets assigned the smallest rank. Finally, the Wilcoxon
hypothesis test separately aggregates the ranks of the positive and negative ranks to compute the
likelihood of the minimum of the two aggregated ranks under an F distribution [113]. In reality, the
likelihood informs us how rare or likely a given null hypothesis is. Thus, the smaller the likelihood,
the higher the chance that our initial assumption (null hypothesis) is invalid. However, to reject a null
hypothesis, one is expected to define a threshold over which a null hypothesis gets rejected. In this
regard, Wilcoxon defines the threshold often called p- value over which an underlying null hypothesis
gets rejected. In practice, the most common p-value is 5 % (0.05), thus we have adopted this p-value
in our evaluations. Practically, the Wilcoxon hypothesis test statistically evaluates two competing
techniques at a time. However, in our case, we have multiple averaging techniques that we desire to
compare their performances. To this end, in addition to the Wilcoxon test, we utilize the Friedman
test as a pre-hypothesis evaluation technique. Unlike the Wilcoxon test, the Friedman hypothesis
test assigns a rank by comparing the outcomes of the compared techniques. It then evaluates the
likelihood of the aggregate ranks of each technique under a Chi-Square distribution which gets then
compared to a p-value over which the null hypothesis is rejected [112]. With this understanding, we
first evaluate the different averaging heuristics using a Friedman hypothesis test and then assess them
pairwisely using a Wilcoxon hypothesis test. In practice, the outcomes of such statistical evaluations
get often shown using a Critical Difference (CD) diagram. In our case, a CD diagram will have a
scaled horizontal line for the average ranks of the averaging techniques. Based on this scaled line,
a set of vertical lines gets drawn to show the average Friedman rank of each averaging technique.
Finally, the outcomes of the Wilcoxon tests are shown by connecting two Friedman rank lines if the
two averaging techniques are considered statistically indifferent [112]. In conclusion, to plot the CD
diagrams, we used a Python implementation developed in [7]. With this said, we will proceed with
the discussion of the experimental results.

3.2.4 Experimental Results and Interpretation

In this subsection, we will start our assessment of the averaging techniques using a win/tie/loss eval-
uation. In Table 3.8, an averaging technique is presumed to be winning if its classification accuracy is
better than all of its counterparts. Moreover, a tie gets recorded if two or more averaging techniques
have the same classification accuracy. On the contrary, if an averaging technique is neither tied nor
winning, it will be considered losing. According to Table 3.8, DTAN is winning on most of the dataset,
i.e., on 43 of the 84 UCR datasets to be exact. This performance gets seconded by SDBA followed
by the latent space classification of the proposed autoencoder (Enc_Lat). We marked these three
top-performing techniques using bold letters in Table 3.8. Additionally, Table 3.8 also reveals that the
time domain estimation of the autoencoder (Enc_Time) behaves as an Arithmetic mean.

To further validate these observations, we also assess the classification results using the box-whisker
plot shown in Figure 3.10, where the statistical parameters of the plots are summarized in Table 3.9.
According to Table 3.9, DTAN has a worst-case classification accuracy (lower whisker) of 25.97%,

77

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.8: Analysis of wins/ties/losses of the NCC accuracies that are obtained using estimates of the basic
autoencoder and its counterparts.

Technique Wins Ties Losses
Arithmetic 1 0 83
DBA 4 4 76
DTAN 43 5 36
Enc_Lat 6 1 77
Enc_Time 1 0 83
SDBA 21 6 56

whereas 50% of its classification accuracies lie between 58.55% and 85.45%. With these statistics, it
obtained a median NCC classification accuracy of 72.94%. On the contrary, in the autoencoder’s latent
space (Enc_Lat), the worst-case classification accuracy is 19.66%. Moreover, 50% of the autoencoder’s
latent space classification accuracies are within the ranges of 51.16% and 74.48%, where the median
accuracy is 58.66%. Thus, statistically speaking, the registration obtained in the latent space of the
proposed autoencoder is worst than the state-of-the-art (DTAN). If we also compare the autoencoder’s
latent space registration to that of the DTW based techniques, i.e., DBA and SDBA; the two techniques
respectively have median accuracies of 65.04% and 69.02%. Moreover, 50% of their NCC accuracies
are within the ranges of 54.05 𝑡𝑜 79.84% and 57.41 𝑡𝑜 81.22%. These statistics are also better than the

Arth
im

eti
c

DBA
DTA

N

En
c_L

at

En
c_T

im
e

SD
BA

Averaging techniques

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 3.10: Box-whisker plot comparison of NCC accuracies that are obtained using the averages estimated
with the basic autoencoder and its counterparts.

autoencoder’s latent space accuracies. However, to make matters worse, the time domain projections
performed poorly compared to an arithmetic mean. In this regard, the autoencoder projected estimates
obtain a median accuracy of 50%. Moreover, 50% of its time domain NCC accuracies are in between
34.07% and 62.55%. However, the arithmetic means obtained a 51.72% median accuracy. Moreover,
50% of its NCC accuracies are within the ranges of 33.87% and 67.14%. To further validate these
statistical observations, we will analyze the NCC accuracies using the hypothesis tests discussed in
the previous section. In the evaluation, we separated the hypothesis tests into two broad categories.
First, we compare the NCC classification accuracies that we presume are obtained in the registered

78

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.9: Statistical parameters for the box-whisker plot shown in Figure 3.10

Technique Top Whisker Bottom Whisker 25% percentile 75% percentile Median
Arithmetic 96.43 3.27 33.87 67.14 51.72
DBA 100 18.25 54.05 79.84 65.04
DTAN 100 25.97 58.55 85.45 72.94
Enc_Lat 96.29 19.66 51.16 74.48 58.66
Enc_Time 99.05 1.05 34.07 62.55 50.00
SDBA 99.05 25.27 57.41 81.22 69.02

space. In this regard, we take the classification accuracies of DTAN, DBA, SDBA and Enc_Lat as a
registered space classification accuracies. This is because, in the NCC, DBA and SDBA estimates
are paired with DTW which warps the classified series and the estimates into DTW space. On the
contrary, DTAN transforms a test set into the morphed space before performing the classification. In
this aspect, we considered the latent space of the autoencoder as registered space of our approach
since we augment the time domains from this space. Following the evaluation of the registered space
classification accuracies, we include the NCC accuracies of the arithmetic mean and Enc_Time to
make our second assessment. In general, Figure 3.11 (a) demonstrates the statistical comparison of
DTAN, DBA, SDBA and Enc_Lat using their registered space classification accuracies.

(a) Evaluation of NCC accuracies that are obtained by using
averages in their registered spaces

(b) Evaluation of NCC accuracies obtained by using aver-
ages in their registered and un-registered spaces

Figure 3.11: Hypotesis tests for averages estimated with the basic autoencoder and its counterparts

The Friedman and Wilcoxon hypothesis tests also reveal that DTAN outperforms all averaging tech-
niques. However, unlike the box-whisker analysis, the Wilcoxon signed rank test identified that the
performances of the arithmetic mean and Enc_Time to be statistically indifferent, i.e., as shown in
Figure 3.11 (b). In Figure 3.11 (b), this equality is shown with the bold horizontal line connecting
the lines indicating the average Friedman rank of Enc_Time and Arithmetic. In this context, the
Wilcoxon signed rank test identified that the p-value for the two averaging techniques is 0.76. This is
way above the critical p-value of 0.05 over which we reject the null hypothesis. In other words, at a
dataset level, most of the classification accuracies of the arithmetic mean and Enc_Time got found to
be not significantly different.

Practically, one possible technical reason behind this outcome could be the latent space representa-
tions are not compact enough for augmenting a time domain estimate. For instance, in Figure 3.12,
we have given the t-SNE projection of: the time domain, DTAN morphed space and autoencoder
latent space representation of the UCR’s FacesUCR test datasets. In reality, we have extracted DTAN’s
morphed space t-SNE projection from [25]. In general, even though the autoencoder’s latent space

79

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

representations are relatively denser than the time domain, they are not comparable to DTAN’s
morphed space representation. This will have a major implication on the autoencoder’s projected
time-domain estimates. This is because, in a less dense latent space, we expect to have a lot of open

40 20 0 20 40 60

60

40

20

0

20

40

60

(a) FacesUCR in time domain
40 20 0 20 40 60

0

20

40

-20

-40

-60

(b) FacesUCR in the latent space of the reduced VGG16

signal. Thus, we perform NCC on the UCR archive, comparing DTAN to: (1) the sample mean of the
misaligned sets (Euclidean); (2) DBA; (3) SoftDTW.

Experiment outline. For each of the UCR datasets, we trained DTAN in a similar fashion to 5.1,
where λvar ∈ [10−3, 10−2], λsmooth ∈ [0.5, 1]. We used R-DTANx, where x ∈ {1, 2, 4} is the
number of TT layers. We then computed the centroid (w.r.t. to a Euclidean distance) of each class
in the aligned train set. NCC was conducted by aligning each test sample through the trained net
and measuring a Euclidean distance to each of the centroids. DBA and SoftDTW were measured by
DTW distance (which is the distance associated with these methods). We used Python’s tslearn’s
implementation of DTW, DBA and SoftDTW [51], limiting each to 100 iterations. The SoftDTW
barycenter loss was minimized via L-BFGS [34] and the best γ was chosen among the following
values: 10−3, 10−2, 10−1,1, and 10.

40 20 0 20 40

60

40

20

0

20

40

60

Original data

40 20 0 20 40 60

40

20

0

20

40

60
Aligned dataFacesUCR Dataset

Figure 6: t-SNE visualization of the original and aligned
test data of the 11-class FacesUCR dataset. The class labels
are used here for visualization, but were not used during the
test-data alignment. This highlights how DTAN decreases
within-class variance while increasing inter-class variance.

Results. Figure 5 shows the NCC
experiment’s results. Each point
above the diagonal stands for an en-
tire dataset where DTAN correct clas-
sification rate was better than (or
equal to) the competing method. This
was the case for 93% of the datasets
when compared to Euclidean, 77%
for DBA, and 62% for SoftDTW.
These results (1) illustrate the impor-
tance of unwarping the misaligned
data (as shown by the Euclidean case)
and (2) indicate that averaging via
DTAN under Euclidean geometry is
usually superior to DTW-based aver-
aging. These findings are also sup-
ported by the average signals displayed in Figure 3. The Euclidean mean is strongly affected by the
misalignment, while DBA falls to a bad local minimum. SoftDTW and DTAN show comparable
qualitative results on this set, but note two major differences: (1) DTAN jointly aligns several classes
within the same model (while SoftDTW had to be computed for each class separately) and (2) DTAN
generalizes the learned alignment to new test samples (rightmost panel), while it is inapplicable for
SoftDTW (as it must be computed again for new signals). For more results, please see our Sup. Mat.

CNN classification experiment. We also tested whether DTAN can increase CNN classification
accuracy. We first trained DTAN to minimize Eq. (6) using the same regularization and recurrence
parameters used in the NCC experiment. After training, we froze the weights of floc and fed DTAN’s
outputs to another CNN, and trained it for classification (identical to floc in terms of architecture
and optimization). We call this model DTAN-CNN. Note other time-series averaging methods
cannot be used in a similar way. We compared the average test accuracy of DTAN-CNN to the
same CNN without DTAN, using 5 runs per dataset. DTAN-CNN achieved higher, or equal to,
correct classification rates on 87% of the datasets (see Figure 5, red). Figure 6, which provides a
t-SNE visualization of the original and aligned data [36], illustrates how DTAN decreases intra-class
variance while increasing inter-class one, thus improving the performance of classification net.

6 Conclusion

Building on both recent ideas such as STN [28, 49], efficient highly-expressive diffeomorphisms [19,
20], and older ones such as congealing [31, 10], we proposed DTAN, a deep net for learning time-
series joint alignment. The alignment learning is done in an unsupervised way. If, however, class
labels are known in train time, we use them within a semi-supervised framework that reduces the
variance within each class separately. In addition, we proposed a regularization term for the warps,
which is critical in an unsupervised framework. We also proposed R-DTAN, a recurrent variant of
DTAN, which improves the expressiveness and performance of DTAN without increasing the number
of parameters. Our experiments showed that the proposed method works well on both training and
test data sets.

Acknowledgement: NSD was supported by research grant #15334 from the VILLUM FONDEN.

9

(c) FacesUCR in the morphed space of DTAN [25]

Figure 3.12: t-SNE projections for the UCR archive’s FacesUCR test datasets: (a) in time domain, (b) in
autoencoder’s latent space and (c) in DTAN’s morphed space

space between the latent space representations of the input dataset the decoder has no knowledge of.
To this end, when we take an arithmetic mean of the latent space features, there is a higher chance
that the latent mean will fall in one of these open spaces. Thus, the decoder will likely have difficulty
re-projecting them into a more optimal time domain series, i.e., using the weights it has learned from
training datasets. Conseqently, we expect the projected time-domain estimates to behave as a time
domain arithmetic mean. This is because a sparse latent space representation implies the effect of
temporal distortion is not minimized significantly.

In order to visually demonstrate this observation, in Figure 3.13 we have plotted the test split of the
UCR’s ECG200 and ECGFiveDays datasets as an example. Moreover, in Figure 3.14, we have plotted
the averages that were estimated using arithmetic, autoencoder, DBA and SDBA. From Figures 3.14 (a)
and 3.14 (b), we can see that there is a high degree of resemblance between a time domain arithmetic
mean and its autoencoder estimated counterpart. This is in line with our initial argument of the
autoencoder’s latent space not being compact enough to overcome time domain temporal distortions.
This fact is also evident in Table 3.10, where we have given the NCC accuracies for the ECG200

and ECGFiveDays datasests. According to Table 3.10, DTAN obtained the best NCC classification
accuracies, i.e., 79% on ECG200 and 97.79% on ECGFiveDays. On the contrary, Enc_Time obtained a
65% and 52.15% NCC accuracies. This is very close to the NCC accuracies that are obtained using

80

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

0 20 40 60 80

Time

3

2

1

0

1

2

3

4
Am

pl
itu

de
ECG200 class one

(a) Test dataset from ECG200 class 1

0 20 40 60 80

Time

2

1

0

1

2

3

4

Am
pl

itu
de

ECG200 class two

(b) Test dataset from ECG200 class 2

0 20 40 60 80 100 120 140

Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays class one

(c) Test dataset from ECGFiveDays class 1

0 20 40 60 80 100 120 140

Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays class two

(d) Test dataset from ECGFiveDays class 2

Figure 3.13: The UCR archive’s ECG200 and ECGFiveDays test datasets

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Arthimetic average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic averages

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class 1 with autoender average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class 2 with autoender average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 1 with autoender average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 2 with autoender average
Average

(b) Autoencoder augmented averages

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(c) DBA estimated averages

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(d) SDBA estimated averages

Figure 3.14: Averages estimated for the UCR archive’s ECG200 and ECGFiveDays datasets. The averages were
estimated by using their training datasets and different averaging techniques: arithmetic (a), autoencoder (b),
DBA (c) and SDBA (d)

an arithmetic mean, i.e., 67% and 52.96%. Thus, further validating the high resemblance between an
arithmetic mean and those estimated by the basic autoencoder. With these observations in mind, in
the next subsection, we aim to investigate factors affecting the quality of the autoencoder latent space
features. In this regard, we first aim to investigate the impact of the autoencoder network architecture
on the projected means. To this end, we propose to investigate autoencoders based on alternative
architecture such as Inception and ResNet. Additionally, we noted some gaps in the proposed reduced

81

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.10: NCC classification accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets

Averaging Technique Accuracy on ECG200 in % Accuracy on ECGFiveDays in %
Arithmetic 67 52.96
DBA 65 52.15
DTAN 79 97.79
Enc_Time 65 52.15
SDBA 73 67.02

VGG16 architecture and the overall experimental setup. To this end, in addition to evaluating alter-
native setups, we aim to address these gas and re-assess the VGG16 architecture. In this regard, we
noted that the filter arrangement at the encoder is sequentially increasing as we go down the network.
This in turn significantly increases the dimension of the flattened features. To this end, the number of
parameters at the encoder’s fully connected Dense layer becomes significantly large compared to its
Convolutional counterparts. Practically, the two Dense layers at the encoder and decoder are relatively
susceptible to overfitting. Thus, in reality, having a large number of network parameters at these
layers is not wise. Moreover, in autoencoders, we often desire to introduce a bottleneck at the encoder
to force it to extract the most useful features. To this end, we strongly believe that reduced VGG16’s
encoder filter arrangement should also be modified to align with the observationsConvolutional layers.
In addition to this, at the reduced VGG16 decoder, we have used an unintelligent UpSampling layer
to sequentially increase the dimension of the latent space representation by repeating coordinate
values. However, in practice, we can possibly perform this task more intelligently using a transposed
convolution that uses trainable weights to up-sample its inputs. Thus, we also propose to modify
the decoder portion of the reduced VGG16 architecture by replacing the UpSampling layers with
transposed convolution. Additionally, in the reduced VGG16, we have initialized layers using their
default layer weight initialization technique, i.e., Glorot Uniform. However, in the network, we have
two different activation functions, i.e., Linear and ReLU. In practice, these activations are known to
give better overall network performance under different layer weight initialization techniques, i.e.,
Glorout uniform/normal and He uniform/normal [66], [67]. With these observations in mind, we
also propose to use the proposed initialization layer weight techniques while assessing the modified
reduced VGG16 based autoencoder and the ResNet and Inception architectures. Finally, in addition to
the gaps we observed in the reduced VGG16, we have also observed some gaps in our training setup.
In this regard, we only trained our proposed network for five regularization setups and later reported
the best-performing outcome. However, due to the randomness of weights initialization, it is difficult
to capture outlier performance, such as maximum accuracies, with a limited number of trials. To
address this issue, in our extended evaluations we propose to run 25 repeated trials for each dataset,
regularization setup, and network architectures; i.e., 100 training evaluations per a single dataset.

Even though we expect the minor and major architectural modifications to improve the quality
of the estimates, in reality, we can not fully rely on minor modifications and architectural changes for
significant improvements. This is because, in addition to network architecture, other factors, such as
objective function, also play a role in the type of extracted latent features. In this regard, we asked

82

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

ourselves, can we only depend on reconstructable features to get compact latent space representations?
The answer to this question is mostly no. This is because, in the UCR archive and most practical cases,
shapes differentiating one class from another are mostly minor. For instance, from Figure 3.13 (c)
and 3.13 (c), we can see that the shape difference between the two classes ECGFiveDays datasets is
minor. Thus, if we extract the reconstructable feature of these datasets, the features will most likely
have similar patterns. This is because an autoencoder has no prior information about the difference
in their class labels. To this end, the multiclass latent space features will end up sharing similar
regions of the latent space, i.e., as shown in Figure 3.12 (b). This, in turn, will confuse the decoder and
prevents it from optimally projecting the estimated per-class averages. In addition to the mixing of
the per-class latent features, the basic autoencoder performs a one-to-one mapping between input
datasets and latent space representations. Thus, in reality, the latent space of the basic autoencoder is
in a sense discrete. To this end, when we re-project the latent space estimated means, the decoder
is asked to interpret something it has not seen before. In this regard, we have two possibilities for
assisting the decoder. First, we could make the latent space representations dense and separable so
that the latent mean lies in the near neighborhood of the input dataset’s latent representations. This,
in turn, will help the decoder to re-project the estimated means in a manner that has minimized shape
distortion. Another alternative solution would be, utilizing an autoencoder setup with a relatively
continuous latent space. One possibility in this regard would be utilizing Variational AutoEncoder
(VAE) [38]. In reality, each choice has its own set of requirements and limitations. In this regard, the
former approach requires a thorough analysis, the customization of the objective function, and the
overall architectural setup. In reality, changing the previously proposed autoencoders into a VAE is
relatively easy. However, a basic VAE tries to fit every per class latent feature into a normal Gaussian
distribution which could make the latent representation to be indistinguishable. With these pros and
cons in mind, we will first present our extended evaluation of the basic autoencoders by first making
minor and major architectural modifications. Following these evaluations, we assess the possibility of
utilizing the latent space of the variational variant of the evaluated basic autoencoders.

3.3 Extended Evaluation of Basic Autoencoders and their Variational
Variants

In this subsection, we start our discussion with the minor architectural adjustments of the reduced
VGG16 architecture, which we will further call the modified reduced VGG16. After presenting
the configurations of the reduced VGG16, we then present the architectural configuration of the
autoencoders that resemble the ResNet and Inception version two [58], [60]. In these architectures,
we also aim to keep the number of trainable parameters under watch to minimize the chances of
overfitting. With this said, we will proceed with the discussion of the basic autoencoders.

3.3.1 Proposed Modified Reduced VGG16 Autoencoder

In this setup, we modify the reduced VGG16 autoencoder shown in Figure 3.9 to address some limita-
tions we have observed. In this aspect, in the reduced VGG16, the three Convolutional stacks have

83

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

a filter size of {32, 64, 128}. However, when the output of the last Convolutional gets flattened, we
will end up with a (𝐵𝑎𝑡𝑐ℎ, ⟨𝑀4 × 128⟩) features as the inputs of a fully connected Dense layers. This,

Depth

Time

Channel

Flattening

Layer

Figure 3.15: Proposed modified reduced VGG16 autoencoder

in turn, will prohibit us from introducing a bottleneck for the Convolutional layer features that are
often desired in autoencoders [59]. Moreover, due to the 128 Convolutional channels, the flattened
features will incur a significant amount of trainable weights at the encoder’s Dense layer. To this end,
we propose to reconfigure the encoder’s filter size to {128, 64, 32} to reduce the dimension of the
flattened latent features and to introduce a bottleneck for the outputs of the Convolutional stacks.
Moreover, we propose to reconfigure the stride and padding of the third encoder MaxPooling layer to
1 and same. We propose this modification to remove the requirement of changing the Convolutional
kernels for datasets with smaller dimensions (length). In addition to these improvements, we also
changed the first two UpSampling layers of the decoder to two transposed Convolutional layers that
have a stride of 2. Furthermore, we also append an additional transposed Convolutional layer at the
last Convolutional stack of the decoder. We append this layer to make the operations at the encoder
and decoder opposite but symmetrical. Thus, we set the stride of the last Convolutinoal layer to 1
to match the stride of the encoder’s last MaxPooling layer. However, for all the Convolutional and
MaxPooling layers, we set their kernel size to 3. In general, the overall layer configuration for this
modification is shown in Table 3.11.

According to Table 3.11, we now have more trainable parameters at the top Convolutional stacks rather
than than the Dense layers. With this reconfiguration, we expect to gain two main advantages. First,
in Convolutional layers, we have kernels rather than connection weights. Thus, more Convolutional
parameters imply more channels than weighted connections, i.e., as in the case of Dense layers.

84

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Additionally, by using more filters, i.e., at the input layers of the encoder, we will be able to analyze
more input features. In another aspect, as we decrease the filter size down the encoder, we create a
feature bottleneck expected to force the encoder to be more selective. Additionally, the two decoder’s
transposed Convolutional layers now scale the dimension of the latent features by a factor of 2 rather
than 3. This helps to reduce the number of connections at the decoder’s Dense layer. Finally, we
respectively used the Glorot uniform and He normal weight initialization for the Linear and ReLU
activated layers. On the contrary, all of the remaining Convolutional layers that are ReLU activated
get initialized with He normal.

Table 3.11: Layer configurations for the modified reduced VGG16 autoencoder

Module Layer (s) Input dim. Output dim. # parameters

Encoder

Reshape (Batch, M) (Batch, M,1) 0[𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128

]
(Batch, 1, M) (Batch, M, 128) 99,072

MaxPooling (Batch, M, 128) (Batch, ⌊𝑀3 ⌋, 128) 0[𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64

]
(Batch, ⌊𝑀3 ⌋, 64) (Batch, ⌊𝑀3 ⌋, 64) 49,344

MaxPooling (Batch, ⌊𝑀3 ⌋, 64) (Batch, ⌊𝑀9 ⌋, 64) 0[𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, ⌊𝑀9 ⌋, 64) (Batch, ⌊𝑀9 ⌋, 32) 12,384

MaxPooling (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋, 32) 0
Flattening (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋ × 32) 0

Latent Dense (Batch, ⌊𝑀9 ⌋ × 32) (Batch, ⌊𝑀4 ⌋)
(⌊𝑀9 ⌋ × 32)×
⌊𝑀4 ⌋ + ⌊𝑀4 ⌋

Decoder

Reshape (Batch, ⌊𝑀4 ⌋) (Batch, ⌊𝑀4 ⌋, 1) 0[𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128

]
(Batch, ⌊𝑀4 ⌋, 1) (Batch, ⌊𝑀4 ⌋, 128) 99,072

Transp. Cnv. (Batch, ⌊𝑀4 ⌋, 128) (Batch, ⌊𝑀2 ⌋, 128) 49,280[𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64

]
(Batch, ⌊𝑀2 ⌋, 64) (Batch, ⌊𝑀2 ⌋, 64) 49,344

Transp. Conv. (Batch, ⌊𝑀2 ⌋, 64) (Batch, M, 64) 12,352[𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, M, 64) (Batch, M, 32) 12,384

Transp. Conv. (Batch, M, 32) (Batch, M, 32) 6,208
Flattening (Batch, M, 32) (Batch,𝑀 × 32) 0

Time Domain Dense (Batch,𝑀 × 32) (Batch, M) (𝑀2 × 32) +𝑀

85

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

3.3.2 Proposed Reduced Residual Network Architecture

Even though the modified reduced VGG16 is relatively shallow, i.e., compared to its original counter-
part, we found it not wise not to investigate the possibility of mixing the features at different stages
of the neural network. To this end, in this extended evaluation, we also propose to evaluate a reduced
ResNet version of the basic autoencoder. In this regard, Figure 3.16 shows how we propose to modify
the reduced VGG16 in order to accommodate the reduced ResNet setup. Moreover, Table 3.12 summa-

Depth

Time

Channel

1x3 1D convolution with 128 filters

1x3 1D convolution with 64 filters

1x3 1D convolution with 32 filters

1D MaxPooling

Addition layer

1x3 1D Transposed convolution

Dense layer node

1D Transposed Covolution

Strides=1

1D MaxPooling

Strides=1

Figure 3.16: Proposed reduced ResNet autoencoder architecture

rizes the overall layer configuration of the proposed reduced ResNet architecture. As compared to its
modified reduced VGG16 counterpart, the proposed reduced ResNet has two key differences. First, we
have six skip connections (memory links) that are interconnecting Convolutional stacks. Moreover, at
the encoder and decoder, we added a fourth Convolutional layer on the first two Convolutional stacks.
This additional layer gets used to match the dimensions outputted by the Convolutional stacks to
the dimensions of the memory links. In practice, ResNet needs such dimension matching since it
utilizes an Addition layer to combine features [58]. Thus, since we have 32 channels as the outputs
of the encoder’s and decoder’s last Convolutional stacks, we have set the channels of the additional
Convolutional layers to 32. Despite this additional Convolutional layer and the skip connections, we
have kept the configurations of the remaining layers similar to the configurations used in the modified
reduced VGG16. In this aspect, we have set the kernel size of the MaxPooling layers to 3 and their
strides to 2, i.e., except for the last pooling layer. For this layer, we have respectively set the padding
and the stride to same and 1. Furthermore, as in the case of the modified VGG16, we have also set the
stride and kernel size of the decoder’s first two transposed Convolutional layers to 2 and 3. However,
we have set the stride of the last transposed Convolutional layer to 1 in order to keep the operations

86

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

performed at the encoder and decoder opposite but symmetrical. Finally, we have initialized layers

Table 3.12: Layer configurations for the reduced ResNet autoencoder

Module Layer (s) Input dim. Output dim. # parameters

Encoder

Reshape (Batch, M) (Batch, M,1) 0[𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, 1, M) (Batch, M, 32) 111,392

MaxPooling (Batch, M, 32) (Batch, ⌊𝑀3 ⌋, 32) 0
ADD (Batch, M, 32 & 1) (Batch, M, 32) 0

MaxPooling (Batch, M, 32) (Batch, ⌊𝑀3 ⌋, 32) 0[𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64,
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, ⌊𝑀3 ⌋, 64) (Batch, ⌊𝑀3 ⌋, 64) 37,160

ADD
(Batch, ⌊𝑀3 ⌋, 32)
(Batch, ⌊𝑀3 ⌋, 32)

(Batch, ⌊𝑀3 ⌋, 32) 0

MaxPooling (Batch, ⌊𝑀3 ⌋, 32) (Batch, ⌊𝑀9 ⌋, 32) 0[𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋, 32) 9,312

ADD (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋, 32) 0
MaxPooling (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋, 32) 0
Flattening (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋ × 32) 0

Latent Dense (Batch, ⌊𝑀9 ⌋ × 32) (Batch, ⌊𝑀4 ⌋)
(⌊𝑀9 ⌋ × 32)×
⌊𝑀4 ⌋ + ⌊𝑀4 ⌋

Decoder

Reshape (Batch, ⌊𝑀4 ⌋) (Batch, ⌊𝑀4 ⌋, 1) 0[𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128
𝐶𝑜𝑛𝑣. 1 × 3, 128,
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, ⌊𝑀4 ⌋, 1) (Batch, ⌊𝑀4 ⌋, 32) 111,392

ADD (Batch, ⌊𝑀4 ⌋, 1) (Batch, ⌊𝑀4 ⌋, 32) 0
Transp. Conv. (Batch, ⌊𝑀4 ⌋, 32) (Batch, ⌊𝑀2 ⌋, 32) 3,104[𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 64
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, ⌊𝑀2 ⌋, 32) (Batch, ⌊𝑀2 ⌋, 32) 37,088

ADD (Batch, ⌊𝑀2 ⌋, 32) (Batch, ⌊𝑀2 ⌋, 32) 0
Transp. Conv. (Batch, ⌊𝑀2 ⌋, 32) (Batch, M, 32) 3,104[𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32
𝐶𝑜𝑛𝑣. 1 × 3, 32

]
(Batch, M, 32) (Batch, M, 32) 9,312

Transp. Conv. (Batch, M, 32) (Batch, M, 32) 3,104
ADD (Batch, M, 32) (Batch, M, 32) 0

Flattening (Batch, M, 32) (Batch,𝑀 × 32) 0
Time Domain Dense (Batch,𝑀 × 32) (Batch, M) (𝑀2 × 32) +𝑀

87

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

with ReLU activation functions with a He normal initialization [67]. On the contrary, we initialized
the encoder’s first Convolutional layer and the decoder’s Dense layers with Glorot uniform [66]. In
conclusion, we have summarized the overall parameters of the proposed reduced ResNet architecture
as shown in Table 3.12.

3.3.3 Proposed Reduced Inception Version Two Autoencoder

We base our final basic autoencoder architecture on the Inception version two [60]. In this proposal,
instead of concatenating stacked Convolutional layers, we used Inception modules as shown in
Figure 3.17. In Figure 3.17, the basic Inception module is composed of a {1 ×1, 1 ×2, 1 × 3 𝑎𝑛𝑑1 × 5}
Convolutional layers. Moreover, these layers get fed with similar inputs or concatenated in parallel.
In addition to this, each Convolutional layer with a kernel size of {1 × 2 1 × 3 , 𝑎𝑛𝑑 1 × 5} get
their input via Convolutional layers that have a {1 × 1} kernel size. We have used this {1 × 1}

1D Transp. Conv.

Stride= 1

1D conv. Kernel=2

Reconstructed Series

1D conv. Kernel=1
Concat. layer

Max pooling
1D conv. Kernel=3 1d conv. Kernel=5

Max Pooling

stride=1

1D Transp. Conv.

Dense node

Figure 3.17: Proposed reduced Inception version two autoencoder architecture

Convolutional layers to reshape input features. For instance, the {1 × 1} Convolutional kernel at the
second inception module of the encoder reshapes a 128 channel input feature map into a 16 channel
feature map. This feature reshaping is useful when we concatenate the channels of each Convolutional

layer within an Inception module. In this aspect, we have arranged each Inception module to output
channel sizes equivalent to the reduced VGG16 and ResNet architectures. For instance, at the encoder,
we have set each Convolutional building block of the first Inception module to output a channel size
of 32. Thus, when concatenated, they give a total channel size of 4 × 32 = 128. By following this
trend, we have set the encoder and decoder Inception modules to output a concatenated channels of

88

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

{128, 64, 32}, i.e., as in the case of the modified reduced VGG16 and ResNet architectures as shown
in Table 3.13. In reality, we expect this channel matching to help us evaluate the impact of the neural

Table 3.13: Layer configurations for the reduced Inception version two autoencoder

Module Layer (s) Input dim. Output dim. # parameters

Encoder

Reshape (Batch, M) (Batch, M,1) 0
Inception
Module (Batch, M,1) - 10,592

Concatenate 4 × (𝐵𝑎𝑡𝑐ℎ,𝑀, 32) (Batch, M, 128) 0
MaxPooling (Batch, M, 128) (Batch, ⌊𝑀3 ⌋, 128) 0
Inception
Module (Batch,⌊𝑀3 ⌋, 128) - 10,864

Concatenate 4 × (𝐵𝑎𝑡𝑐ℎ,𝑀, 16) (Batch, M, 64) 0
MaxPooling (Batch, ⌊𝑀3 ⌋, 64) (Batch, ⌊𝑀9 ⌋, 64) 0
Inception
Module (Batch, ⌊𝑀9 ⌋, 64) - 2,744

Concatenate 4 × (𝐵𝑎𝑡𝑐ℎ,𝑀, 8) (Batch, M, 32) 0
MaxPooling (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋, 32) 0
Flattening (Batch, ⌊𝑀9 ⌋, 32) (Batch, ⌊𝑀9 ⌋ × 32) 0

Latent Dense (Batch, ⌊𝑀9 ⌋ × 32) (Batch, ⌊𝑀4 ⌋)
(⌊𝑀9 ⌋ × 32)×
⌊𝑀4 ⌋ + ⌊𝑀4 ⌋

Decoder

Reshape (Batch, ⌊𝑀4 ⌋) (Batch, ⌊𝑀4 ⌋, 1) 0
Inception
Module (Batch, ⌊𝑀4 ⌋, 1) - 8,288

Concatenate 4 × (𝐵𝑎𝑡𝑐ℎ, ⌊𝑀4 ⌋, 32) (Batch,⌊𝑀4 ⌋, 128) 0
Transp. Conv. (Batch, ⌊𝑀4 ⌋, 128) (Batch, ⌊𝑀2 ⌋, 128) 49,280
Inception
Module (Batch, ⌊𝑀2 ⌋, 128) - 10,864

Concatenate 4 × (𝐵𝑎𝑡𝑐ℎ, ⌊𝑀2 ⌋, 16) (Batch,⌊𝑀2 ⌋, 64) 0
Transp. Conv. (Batch, ⌊𝑀2 ⌋, 64) (Batch, M, 64) 12,352
Inception
Module (Batch, ⌊𝑀2 ⌋, 64) - 10,864

Concatenate 4 × (𝐵𝑎𝑡𝑐ℎ,𝑀, 8) (Batch, M, 32) 0
Transp. Conv. (Batch, M, 32) (Batch, M, 32) 3,104
Flattening (Batch, M, 32) (Batch,𝑀 × 32) 0

Time Domain Dense (Batch,𝑀 × 32) (Batch, M) (𝑀2 × 32) +𝑀

architecture on the estimated mean in a more balanced manner. With this understanding, we have
also kept the remaining common configurations similar to the VGG16 and ResNet. In this regard, we
have set the kernel and stride of theMaxPooling layers to 3 and 2. However, similar to the cases of the
VGG16 and ResNet, the last MaxPooling layer has a stride of 1. Furthermore, the first two and the last
transposed Convolutional have a stride of two and one respectively. Finally, in the proposed Inception
architecture, we have a Linear activation functions at the encoder’s first {(1 × 1, 1 × 5)} Inception
building block and the decoder’s Dense layers. For these layers, we have used a Glorot uniform layer
weight initialization technique [66]. On the other hand, a He normal initialization was used for the
remaining ReLU activated layers [67].

89

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

3.3.4 Variational Variant of the Basic Autoencoders

In reality, before settling for the final latent representation of an input series, we expect the decoder
portion of an autoencoder to see different sets of latent representations for a given input series.
Moreover, as the training progresses, on one hand, we expect the encoder to start learning latent
representations of an input that are near neighborhoods of its finally allocated latent space represen-
tation. On the other hand, for a properly trained autoencoder, we expect the decoder’s reconstruction
loss to be relatively low for such neighborhood latent representations. In reality, we are relying on
this neighborhood interpretation capability of the decoder while projecting the latent space averages
to the time domain. This is because the decoder has no prior knowledge of the averaged set’s latent
space arithmetic mean. However, in the basic autoencoder, we do not either have a way of keeping
track of neighborhood latent space representations or a means of influencing neighborhood and
finally allocated latent space representations. To this end, we presume the latent space of the basic
autoencoder to be discrete, i.e., one-to-one mapping. In practice, there are different versions of the
basic autoencoder which could address this limitation, i.e., the Variational AutoEncoder (VAE).

To evaluate this variant of the basic autoencoder, we propose to make minor modifications to the
architectures presented in the previous section. In this regard, unlike their basic counterparts, varia-
tional autoencoders aim to model the latent space using multivariate Gaussian distribution. To realize
this practically, we get expected to reconfigure the encoders to output the mean and the logarithmic
variances of a multivariate Gaussian distribution [38]. In reality, the outputted mean and variances
are then to be used to generate a sample from the estimated distribution using (3.4), where `𝑥 , 𝜎2𝑥
are the estimated mean and the variance of an input time series 𝑋 . Moreover, 𝑍N(0, 1) is a random
sample taken from a multivariate normal Gaussian distribution (N(0, 1)). In practice, this sampling
process is commonly called the reparameterization trick since the normal Gaussian distribution
is reparametrized by a trainable mean and logarithmic variance. In practice, implementing a VAE
without the reparameterization trick would have been infeasible. This is because, we expect the
encoder of a VAE to generate outputs that correspond to `𝑥 and 𝜎𝑥 as shown in Figure 3.18. However,
in practice, the decoder is capable of interpreting samples rather than distribution parameters. Thus,
with the help of the reparametrization trick, we can introduce a custom sampling layer that takes `𝑥
and 𝜎2𝑥 as an input and generates a sample from a Gaussian distribution using (3.4). Thus, this way,
the autoencoder can tune the distribution parameters through backpropagation.

𝑍 = `𝑥 + exp(0.5 × 𝜎2
𝑥) × 𝑍N(0, 1) (3.4)

In reality, the introduction of the normal Gaussian distribution in (3.4) is not there by accident. In this
regard, a VAE is intended to be used as a generative autoencoder by modeling the underlying latent
space distribution of its inputs. In other words, after a proper training of a VAE autoencoder, its decoder
is expected to interpret samples from an underlying latent space distribution in a meaningful way [38].
However, before this point, we are expected to guide the estimated distribution parameters (`𝑥 and
𝜎2𝑥) into a well-formulated one. This is because we can not expect an autoencoder to generalize for
distribution parameters estimated from individual datasets. To address this issue, a VAE proposes

90

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

 𝑵(,)

)

)

�̂�

X Z

g (Z | X) f (�̂�| Z)

𝝁𝒙

𝝈𝒙
𝟐

......

......

......

......
Z =𝑵 𝝁𝒙, 𝝈𝒙)(

0 1

DecoderEncoder

Figure 3.18: Block diagram of a basic varational autoencoder

to utilize Kullback–Leibler (KL) divergence that aims to guide estimated distribution parameters to
collectively follow the parameters of a prior distribution often set to the normal Gaussian distribu-
tion (N(0, 1)). In practice, to compute the KL divergence, a VAE assumes the individual coordinates
of latent space embedding are independent. Furthermore, it also assumes the latent space embedding
is mutually independent (they have a diagonal covariance matrix). In other words, a VAE treats a
multivariate latent space embedding as a set of mutually independent univariate Gaussian variables.
In reality, this assumption gets taken since a VAE encoder can not guarantee the generation of a
nonsingular covariance matrix which is useful in the computation of the KL divergence between two
multivariate distributions. With this understanding, a VAE propose to computes the KL divergence
using (3.5), where 𝑃 (𝑍 |𝑋) is the distribution learned by a VAE given an input datasets 𝑋 and its latent
space representations 𝑍 . To this end, given a set of N time series, the objective functions of a basic
VAE becomes (3.6), where 𝑋𝑖 𝜖 ℝ𝑀 and 𝑍𝑖 𝜖 ℝ𝜏 : 𝜏 < 𝑀 .

𝐾𝐿(𝑃 (𝑍 |𝑋) | |N (0, 1)) = −0.5 × (1 + log(𝜎2
𝑥) −`2𝑥 − explog(𝜎2

𝑥)) (3.5)

𝐿(𝑋,𝑋) = 1
𝑁

𝑁∑︁
𝑖=1

| |𝑋 − 𝑋 | |𝑙2 +
1
𝑁

𝑁∑︁
𝑖=1

𝐾𝐿(𝑃 (𝑍𝑖 |𝑋𝑖) | |N (0, 1)) (3.6)

Architecture wise, we have modified the three architectures given in Figures 3.15, 3.17 and 3.16 in
order to account for `𝑥 and 𝜎2𝑥 . In this aspect, for the variational variant of these architectures, the
output of the encoder’s Flattening layer is fed to two Dense layers representing `𝑥 and 𝜎𝑥 . Since we
now have two Dense layers at the encoder, the variational version of the basic autoencoders will have
an additional (⌊𝑀9 ⌋ × 32) × ⌊𝑀4 ⌋ + ⌊𝑀4 ⌋ trainable parameters. In addition to this change, we have also
set the activation function of the two Dense layers to Linear which was ReLu in the non-variational
form. We introduce this change since `𝑥 and 𝜎2𝑥 are continuous distribution parameters. Despite these
changes, we keep the other layer configurations similar to the one shown in Tables 3.11, 3.12, and 3.13.
Overall, with VAE, we are modeling the latent space with a continuous normal Gaussian distribution.
Thus, we expect the latent space of VAE to be continuous. To this end, we expect a minor shape change
on a reconstructed series due to a minor perturbance in its latent space representation. Hence, we
expect the VAE projection of a latent space mean to be better than its basic autoencoder counterpart.

91

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

However, in reality, VAE’s latent space is cramped into the space of a single multivariate normal
Gaussian distribution. To this end, we believe this rigid constraint will have a negative implication on
the resolvability of the latent space features, latent averages, and their re-projected estimates. With
this concern in mind, we train the variation and non-variational autoencoders with the experimental
setups discussed in the next subsection.

3.3.5 Experimental Setup

We have trained the proposed variational and non-variational autoencoders using four 𝐿2 regulariza-
tion setups, i.e., 𝐿2 = [0.0, 0.0001, 0.001, 0.01] that are uniformly distributed over each autoencoder
layer. Moreover, we trained the networks for 600 epochs when they have zero 𝐿2 regularization. On
the contrary, we have used 1500 training epochs when the network gets initialized with the remaining
𝐿2 regularization setups. However, for each regularization setup, we have used a similar learning rate
of 10−4. Furthermore, we have used 80 % of the training datasets for training and the remaining 20% for
validation. Moreover, while training, we allow the networks to update their weights after a mini-batch
size of 𝐾4 , where 𝐾 is the size of a training split. Finally, in the context of repeated trials, we have
trained the proposed autoencoders for 25 repeated trials. Thus, overall, a given autoencoder is trained
100 times for each evaluated UCR archive dataset. We then report our experimental evaluations using
median, mean, maximum, and minimum NCC accuracies of the 25 repeated trials.

3.3.6 Experimental Results and Interpretation

3.3.6.1 Evaluations for the Basic Autoencoders

We have divided our extended evaluation of the basic autoencoders into two subsections. In this
section, we present the experimental outcomes corresponding to the non-variational autoencoders. In
this aspect, Table 3.14 presents the wins/ties/losses associated with the proposed VGG16, ResNet and
Inception architectures. To evaluate the wins/ties/losses, we have taken the maximum NCC accuracies
associated with each averaging technique. However, since we have utilized four 𝐿2 regularization
setups while training the proposed autoencoders, we assess the maximum classification accuracies
associated with each regularization separately. To this end, in Table 3.14, VGG_Regx_Lat (TD)_Max,
Inc_Regx_Lat (TD)_Max, and ResNet_Regx_Lat (TD)_Max corresponds to thewins/ties/losses obtained
using the respective autoencoder’s latent space (Lat) and time domain (TD) maximum NCC accuracies.
Moreover, we indicate the utilized 𝐿2 regularization using the labels Regx, where 𝑥 = {0, 1, 2, 3}
corresponding to 𝐿2 = {0, 0.0001, 0.001, 0.01}. Additionally, the labels VGG, Inc, and ResNet corre-
sponds to the autoencoders based on the modified reduced VGG16, reduced Inception, and reduced
ResNet architectures. Table 3.14 further confirms that latent embedding obtained from reconstructable
features is not sufficient to obtain good time-domain projections. In this regard, in the latent space, the
proposed architectures that were based on VGG16, Inception, and ResNet architectures aggregately
won on 12 datasets. However, in the time domain, none of the autoencoders were able to generate
estimates that could win a NCC. However, if we compare the latent space NCC outcomes of modified
reduced VGG16 that is shown in Figure 3.15 and its counterpart shown in Figure 3.9, the former
was able to win on 6 out of the 74 UCR archive dataset while the latter won on 5. On the contrary,

92

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.14:Win/tie/losses analysis of NCC classification accuracies obtained from the extended evaluation
of basic autoencoders.The analysis was performed using 74 UCR archive datasets, averages estimated via
autoencoder and different averaging techniques, and NCC accuracies. Moreover, the outcomes reported for
the autoencoders are generated using maximum NCC accuracies obtained from 25 repeated trials and four L2
regularization setups.

Techniques 𝐿2 Reg. (𝑥) Wins Ties Losses
Arithmetic 0 0 74
DBA - 3 4 67
DTAN 35 3 36
SDBA 17 4 53
VGG_Regx_Lat_Max

{0, 1, 2, 3}

{2, 1, 3, 0} {2, 2, 0, 0} {70, 71, 71, 74}
VGG_Regx_TD_Max {0, 0, 0, 0} {0, 0, 0, 0} {74, 74, 74, 74}
Inc_Regx_Lat_Max {2, 0, 0, 0} {1, 1, 0, 0} {71, 73, 74, 74}
Inc_Regx_TD_Max {0, 0, 0, 0} {0, 1, 0, 0} {74, 73, 74, 74}
ResNet_Regx_Lat_Max {1, 0, 1, 2} {2, 2, 1, 0} {71, 72, 72, 72}
ResNet_Regx_TD_Max {0, 0, 0, 0} {0, 0, 0, 0} {74, 74, 74, 74}

the latter won on 1 of the 74 UCR datasets. However, the former could not win on any of them.
This, in turn, implies the significance the minor architectural changes have on the quality of the
latent space embedding and re-projected latent estimates. To further validate this remark, we will
consecutively evaluate the statistics of the NCC using box-whisker plots and hypothesis tests. In this
aspect, Table 3.15 summarizes the statistics for the NCC accuracies obtained with the estimates of
proposed autoencoders and alternative averaging techniques.

According to Table 3.15, DTAN achieved the best overall statistics, i.e., in terms of bottom whisker,
Top Whisker, 25% and 75% quantiles, and median accuracies. In the context of the autoencoders, the
reduced ResNet autoencoder achieved better latent space statistics compared to its counterparts. In
this regard, in the worst case, the best NCC accuracy the reduced ResNet obtained is 21.79%. On the
contrary, in the best case, it obtained a 100% NCC accuracy. In reality, this performance of the reduced
ResNet gets seconded by the modified reduced VGG16. In general, when we compare the time domain
performance of this architecture with the one shown in Figure 3.9, the modified reduced VGG16
obtained a 12.78% worst case classification accuracy. On the contrary, on the 74 UCR archive datasets,
the unmodified version of the architecture obtained a 10.50% worst-case NCC accuracy. Moreover,
on the remaining statistical parameters, the modified reduced VGG16 obtained the following best
NCC accuracies: top whisker 96.72%, median 54.70%, and finally 50% of its classification accuracies
are within 44.11% and 64.58%. On the contrary, in the time domain, the unmodified version obtained
the following best NCC classification accuracies: top whisker 95%, median 50%, and finally 50% of its
classification accuracies are within 40.01% and 62.58%. Contrary to the wins/ties/losses analysis, the
underlying statistics for the NCC accuracies reveals that the architectural improvement has a positive
implication on the projected latent means. In general, we have graphically summarized the statistical
parameters shown in Table 3.15 in Figure 3.19. The plot also shows that architectures based on the
modified reduced VGG16 and ResNet for the autoencoder-based estimations are better suited for the
task at hand. In this context, the Convolutional layer stacking in the modified reduced VGG16 and

93

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.15: Statistics assessment of the NCC accuracies that are obtained with the modified VGG16, reduced
Inception, and reduced ResNet architectures. These assessments were conducted using the maximum NCC
accuracies associated with each averaging technique.

Techniques Bot. whisker Top whisker 25% Quant. 75% Quant. Median
Arithmetic 7.47 96.43 40.08 68.09 53.09
DBA 28.94 100 55.13 79.09 65.49
DTAN 33.31 100 59.31 85.62 74.30
SDBA 32.83 99.05 58.72 81.07 69.79
VGG_Regx_Lat_Max
x={0, 1, 2, 3}

{20.86, 14.58
16.30, 8.29 }

{100, 100
99.05, 95.24}

{50.87, 50.04
46.86, 38.94}

{74.64, 75.99
74.82, 66.85 }

{62.29, 62.58
58.42, 51.63}

VGG_Regx_TD_Max
x={0, 1, 2, 3}

{17.99, 17.78
10.24, 8.08}

{90.07, 83.96
96.72, 90.36 }

{43.63, 44.11
39.90, 31.65 }

{63.99, 64.58
63.61, 56.95}

{54.70, 52.04
50.19, 47.79}

Inc_Regx_Lat_Max
x={0, 1, 2, 3}

{16.30, 17.87
16.61, 8.29 }

{100, 99.05
99.04, 92.38 }

{50.16, 50.27
48.95, 37.93}

{75.13, 74.64
71.28, 65.03}

{62.02, 60.06
59.05, 51.47}

Inc_Regx_TD_Max
x={0, 1, 2, 3}

{16.87, 18.33
9.55, 7.55}

{98.74, 83.45
96.14, 87.50}

{44.44, 43.18
41.07, 31.85}

{66.45, 64.05
63.57, 56.05}

{52.61, 52.44
50.63, 47.04}

ResNet_Regx_Lat_Max
x={0, 1, 2, 3}

{21.79, 18.97
16.93, 18.13}

{100, 100
100, 94.29}

{51.19, 50.46
49.52, 43.50}

{74.61, 73.83
73.11, 65.75}

{62.51, 61.81
59.93, 57.24}

ResNet_Regx_TD_Max
x={0, 1, 2, 3}

{12.78, 18.15
10.39, 7.34}

{96.14, 88.20
96.43, 91.20}

{42.50, 43.99
41.77, 36.27}

{63.97, 63.84
64.61, 60.39}

{51.42, 50.71
50.99, 49.39}

Ar
th

im
et

ic

D
BA

D
TA

N

In
c_

R
eg

0_
La

t_
M

ax

In
c_

R
eg

0_
TD

_M
ax

In
c_

R
eg

1_
La

t_
M

ax

In
c_

R
eg

1_
TD

_M
ax

In
c_

R
eg

2_
La

t_
M

ax

In
c_

R
eg

2_
TD

_M
ax

In
c_

R
eg

3_
La

t_
M

ax

In
c_

R
eg

3_
TD

_M
ax

R
es

N
et

_R
eg

0_
La

t_
M

ax

R
es

N
et

_R
eg

0_
TD

_M
ax

R
es

N
et

_R
eg

1_
La

t_
M

ax

R
es

N
et

_R
eg

1_
TD

_M
ax

R
es

N
et

_R
eg

2_
La

t_
M

ax

R
es

N
et

_R
eg

2_
TD

_M
ax

R
es

N
et

_R
eg

3_
La

t_
M

ax

R
es

N
et

_R
eg

3_
TD

_M
ax

SD
BA

VG
G

_R
eg

0_
La

t_
M

ax

VG
G

_R
eg

0_
TD

_M
ax

VG
G

_R
eg

1_
La

t_
M

ax

VG
G

_R
eg

1_
TD

_M
ax

VG
G

_R
eg

2_
La

t_
M

ax

VG
G

_R
eg

2_
TD

_M
ax

VG
G

_R
eg

3_
La

t_
M

ax

VG
G

_R
eg

3_
TD

_M
ax

Averaging techniques

20

40

60

80

100

Ac
cu

ra
cy

Figure 3.19: Box-whisker plot analysis of the NCC accuracies obtained with the modified reduced VGG16,
reduced Inception, and reduced ResNet architectures

ResNet has a positive impact on the separability and the compactness of the latent embedding as shown
in Figure 3.20. This,in turn, helps the decoder to better re-project latent means which in such cases are
most likely in the neighborhood of the latent embedding of the training datasets. In order to plot the
t-SNE projections shown in Figure 3.20, we identified and selected the case where the autoencoders
performed better in the latent space NCC classification. In general, when we compare Figure 3.20 (a)

94

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

and 3.20 (b), we can see that the modified reduced VGG16 has better density as compared to its
predecessor. The density of the latent features further increases in the reduced ResNet and Inception
architectures. However, in the case of the reduced Inception autoencoder, the latent embeddings are
overlapping. This, in turn, has a negative implication on the distinguishability of the projected latent
mean. We associate this behavior of the reduced Inception architecture with the limited number
of Convolutional layers that input gets passed through before generating the latent embedding. In
this aspect, the reduced Inception passes input through 6 Convolutional layers before generating its
latent embedding. On the contrary, the reduced and modified reduced VGG16 architectures passes
input through 9 and 11 Convolutional layers. The addition Convolutional layers are in turn expected
to help the two architectures further refine the latent features. However, despite this advantage, it

40 20 0 20 40 60

0

20

40

-20

-40

-60

(a) FacesUCR in the latent space of the reduced VGG16
autoencoder

40 20 0 20 40

0

20

40

60

-20

-40

-60

(b) FacesUCR in the latent space of the modified reduced
VGG16 autoencoder

40 20 0 20 40 60

0

20

40

-20

-40

-60

-80

(c) FacesUCR in the latent space of the reduced ResNet
autoencoder

60 40 20 0 20 40 60

0

20

40

-20

-40

-60

(d) FacesUCR in the latent space of the reduced Inception
autoencoder

Figure 3.20: t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent spaces of: (a) reduced
VGG16, (b) modified reduced VGG16, (c) reduced ResNet, and (d) reduced Inception

should also get noted that the reduced Inception obtains the presented performance with a smaller
number of training parameters. To this end, we aim to reuse this architecture in our subsequent
investigations. With this said, we next evaluate the stability of the proposed architectures. In this
regard, we assess the average standard deviation (𝜎) of the NCC accuracies obtained from 25 repeated
training trials conducted on 89 UCR archive datasets. The summary for the standard deviation is
shown in Table 3.16. According to Table 3.16, the modified reduced VGG16’s time domain minimum
average standard deviation (VGG_TD) is 3.44%. In this regard, the reduced Inception (Inc_TD) and
ResNet (ResNet_TD) obtained 3.67% and 3.43%. Overall, the average standard deviation for the time
domain and latent space NCC accuracies are well below 7% and 6%. These results tells us that we
could have trained the network for a limited number of trials and could have observed relatively
similar outcomes. In other words, variations arising due to the randomness of the optimization setup
are relatively low. This, in turn, indicates the reproducibility of our experimental evaluations.

95

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Table 3.16: Standard deviation across the NCC accuracies that are obtained using: modified reduced VGG16,
reduced Inception, and reduced ResNet autoencoders.

Techniques ±𝜎 in %
L2 Reg0

±𝜎 in %
L2 Reg1

±𝜎 in %
L2 Reg2

±𝜎 in %
L2 Reg3

VGG_Lat 3.86 4.00 3.44 4.52
Inc_Lat 3.50 3.75 3.67 4.74
ResNet_Lat 5.17 4.26 4.35 3.43
VGG_TD 5.39 5.75 5.19 4.91
Inc_TD 5.49 5.47 4.97 5.09
ResNet_TD 6.36 6.00 5.78 5.58

With this said, we will assess which of the 𝐿2 regularization is better. To make the assessment,
we conduct a hypothesis test on the mean latent space and time domain NCC accuracies. In this
regard, Figures 3.21 (a) and 3.21 (b) shows that for the modified reduced VGG16 autoencoder, the
first three 𝐿2 regularization setups (𝐿2 = [0, 0.001, 0.001]) resulted with estimates that generated a
statistically indifferent NCC accuracies. In reality, this is also valid for the reduced Inception and

(a) Evaluation using NCC mean accuracies obtained in the
latent space of the modified reduced VGG16 autoencoder

(b) Evaluation using NCC mean accuracies obtained with
time domain estimates of the modified reduced VGG16 au-
toencoder

(c) Evaluation using NCC mean accuracies obtained in the
latent space of the reduced Inception autoencoder

(d) Evaluation using NCC mean accuracies obtained with
time domain estimates of the reduced Inception autoen-
coder

(e) Evaluation using NCC mean accuracies obtained in the
latent space of the reduced ResNet autoencoder

(f) Evaluation using NCC mean accuracies obtained with
time domain estimates of the reduced ResNet autoencoder

Figure 3.21: Evaluation of the impact of L2 regularization on the quality of means estimated with basic
autoencoders

ResNet autoencoders. In general, we can safely assume that for all proposed autoencoders, the first
three regularization setups are statistically indifferent. However, if the slightest improvement gets
desired, we suggest the utilization of the second 𝐿2 regularization (L2=0.001). We will conclude our
extended analysis of the autoencoders with their hypothesis tests divided into two categories. First,
we compare the performance of the proposals among themselves and their counterparts using 74 UCR
archive datasets. In this comparison, we include the experimental outcomes of DTAN. However, in the
second comparison, we exclude DTAN and compare the remaining techniques using 89 UCR archive
datasets. In this context, Figure 3.22 shows the hypothesis test for the NCC accuracies obtained in the
latent spaces of the autoencoders. Overall, in the latent space, the Inception architecture obtains a
better Friedman average rank compared to the alternative autoencoder proposals. Moreover, if we
observe the evaluations based on mean and median NCC accuracies, i.e., Figures 3.22 (a) and 3.22 (b),
we can see that the estimates of the modified reduced VGG16 and reduced ResNet autoencoders are at

96

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

time behaving as an arithmetic mean. Even though the spaces from which the arithmetic and latent
means get estimated are different, this observation further supports our previous argument that the
latent space of a basic autoencoder can not overcome the effects of temporal distortion. Moreover, this
further presents evidence as to why the time domain projections of the reduced VGG16 autoencoder
behaves as arithmetic mean.

(a) Evaluation of latent space maximum NCC as compared
to alternatives

(b) Evaluation of latent space mean NCC as compared to
alternatives

(c) Evaluation of latent space median NCC as compared to
alternatives

(d) Evaluation of latent space minimum NCC as compared
to alternatives.

Figure 3.22: Evaluation of latent space NCC accuracies that are obtained using the modified reduced VGG16,
reduced Inception, and reduced ResNet. These evaluations were conducted using 74 UCR archive datasets.

In reality, the performance similarity between the arithmetic means and their autoencoder coun-
terparts is also evident in the time domain. In this aspect, Figure 3.23 (b) shows that an arithmetic
mean is in average better than the autoencoder’s estimate on some training configurations. Moreover,
Figure 3.23 (c) shows that the Inception autoencoder’s estimates are behaving as an arithmetic mean
when the network is regularized with 𝐿2 = [0.01]. Furthermore, in the worst case, the estimates of the
autoencoders are worst than an arithmetic mean, i.e., Figure 3.23 (d). However, one interesting point

(a) Evaluation of latent space and time domain maximum
NCC as compared to alternatives

(b) Evaluation of latent space and time domain mean NCC
as compared to alternatives

(c) Evaluation of latent space and time domain median
NCC as compared to alternatives

(d) Evaluation of latent space and time domain minimum
NCC as compared to alternatives.

Figure 3.23: Evaluation of latent space and time domain NCC accuracies that are obtained using the modified
reduced VGG16, reduced Inception, and reduced ResNet. These evaluations were conducted using 74 UCR
archive datasets.

to note here is that, in Figure 3.23 (a), the reduced ResNet architecture is performing in a statistically
indifferent manner as compared to DBA. This happens when the architecture is regularized with
𝐿2 = [0.001]. Given the fact that the figure compares maximum NCC accuracies of the different
averaging techniques, we find it to be quite impressive for two main reasons. First, the time domain
classification is performed in DTW space where DBA is relatively favored as compared to the estimates
of the autoencoders. This is because the estimates of DBA are generated through DTWwarping. Thus,
while performing the NCC classification using DTW, we are basically transforming the estimates

97

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

of DBA into their registered space. On the contrary, for the estimates of the autoencoders, this is
not valid. In addition to this, the reduced ResNet is able to achieve this performance by only using
reconstruction loss. This further motivates us to dig deeper into ways which could improve the time
domain projections. However, before proceeding to those discussions, we will present the evaluation
of the time domain classifications which includes additional 25 UCR archive datasets. According to
Figure 3.24 (a), the time domain NCC accuracies obtained with the estimates of the modified reduced
VGG16 shows a statistical indifference to DBA’s outcomes in the post hypothesis test. This happens
when the architecture is trained with zero 𝐿2 regularization. In general, the extended evaluation
reveals that minor modification on the arrangement of network layers and the architecture of the
network have a positive implication on the time domain estimates. In this aspect, the VGG16 based
autoencoder appears to be providing the best outcome.

(a) Evaluation of time domain maximum NCC as compared
to alternatives

(b) Evaluation of time domain mean NCC as compared to
alternatives

(c) Evaluation of time domain median NCC as compared
to alternatives

(d) Evaluation of time domain minimum NCC as compared
to alternatives.

Figure 3.24: Evaluation of time domain NCC accuracies that are obtained using: the modified reduced VGG16,
reduced Inception, and reduced ResNet. These evaluations were conducted using 89 UCR archive datasets.

With these observations in mind, we will finalize discussion in this section by presenting the time
domain estimates of the UCR archive’s ECG200 and ECGFiveDays datasets as a visual demonstration.
Figure 3.25 demonstrates the estimates generated by the various averaging techniques and the pro-
posed autoencoders. Moreover, Table 3.17 shows the NCC accuracies obtained with the estimated

Table 3.17: NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets.

Techniques NCC for ECG200 in % NCC for ECGFiveDays in%
Arithmetic 67 52.96
DBA 65 52.15
SDBA 73 67.02
DTAN 79 97.79
Enc_Time 65 52.15
VGG_TD 76 75.61
Inc_TD 76 71.54
ResNet_TD 76 72.24

averages. In the table, we have marked the top three NCC classification accuracies. In this regard,
DTAN, the modified reduced VGG16 and reduced ResNet provided estimates that achieved higher
NCC accuracies. This in turn implies these estimates were able to capture the dominant descriptive

98

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4
At

tri
bu

te
ECGFiveDays class one with Arthimetic average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class 1 with autoender average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class 2 with autoender average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 1 with autoender average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 2 with autoender average
Average

(b) Reduced VGG16 estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 1 with Modified Reduced VGG16

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 2 with Modified Reduced VGG16

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Averages Estimated for ECG200 class 1 with Modified Reduced VGG16

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Averages Estimated for ECG200 class 2 with Modified Reduced VGG16

(c)Modified reduced VGG16 estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 1 with Modified Reduced VGG16

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 2 with Modified Reduced VGG16

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Averages Estimated for ECG200 class 1 with Modified Reduced VGG16

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Averages Estimated for ECG200 class 2 with Modified Reduced VGG16

(d) Reduced Inception estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 1 with Modified Reduced VGG16

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 2 with Modified Reduced VGG16

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Averages Estimated for ECG200 class 1 with Modified Reduced VGG16

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Averages Estimated for ECG200 class 2 with Modified Reduced VGG16

(e) Reduced ResNet estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(f) DBA estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(g) SDBA estimates

Figure 3.25: Averages estimated for the UCR archives ECG200 AND ECGFiveDays datasets using: the modified
reduced VGG16, reduced Inception, reduced ResNet, and alternative averaging techniques

shapes observed in the averaged set. In general, the minor and major modifications we introduced on
the architecture of the reduced VGG16 has contributed positively to the overall estimation process.
However, we believe there are still some remaining issues that needed to be addressed. For instance,
for the ECGFiveDays dataset, we can observe that the estimates of the modified reduced VGG16
and reduced Inception has introduced two negative peaks on class 2. In reality, this has helped the
estimates to obtain better NCC accuracies as compared to their DTW based counterparts. This is
because, DTW can now pair one of the two peaks to different shifted versions in the test datasets
while conducting the NCC classification. In reality, for the class 2 of the ECGFiveDays, DBA’s estimate

99

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

is also affected in a similar manner. However, in this case, one of the peaks is clipped and the other
one is relatively large. In general, despite the positive implication of the two peaks on the NCC
accuracy of the autoencoder’s estimates, we consider this to be a significant shape distortion. With
this observation in mind, we will next proceed to observe if the variational version of the autoencoders
address this issue.

3.3.6.2 Evaluations for the Variational Versions of the Basic Autoencoders

Following the same trend, we start our evaluation of the variational autoencoders using wins, ties,
and losses analysis. However, before proceeding to the analysis, we would like to mention that out of
the 88 UCR archive datasets used for the evaluation of the variational versions of the autoencoders,
the overall training process failed to converge on 5 of them. We have summarized these datasets in
Table 3.18. The main reason behind the convergence problem lies in the nature of the datasets. In this
aspect, unlike most of the UCR datasets, the amplitude values of the datasets are often well above 500.
However, this is contrary to the underlying assumption of variational autoencoders that try to model
a dataset using a normal Gaussian distribution. Under such an assumption, we expect amplitude
values to be between zero and one. However, when this is not the case, the KL divergence loss of the
variational autoencoders explodes and fails to converge. This is because the variance of the input
datasets becomes significantly large. In reality, we could deploy batch normalization layers that could
significantly reduce the data variance. However, we avoided this approach for two main reasons. First,
introducing batch normalization layers will further constrain the latent space we could explore. In
other words, it will crunch everything into a smaller region. Secondly, we have not utilized batch
normalization layers in the proposed basic autoencoders. Thus, the utilization of batch normalization
will make the comparison unfair.

Table 3.18: List of UCR archive datasets on which the variational autoencoders failed to converge

Datasets Classes # of training sets # of test sets Length
ChinaTown 2 20 343 24
GunPointAgeSpan 2 135 316 150
GunPointMaleVersusFemale 2 135 316 150
GunPointOldVersusYoung 2 136 315 150
MealbournPedesterian 10 1194 2439 24

With this in mind, we put aside the comparison for the mentioned datasets and proceed to present
the evaluations for the variational autoencoders using the remaining 82 UCR archive datasets. In
this regard, Table 3.19 summarizes the wins/ties/losses associated with the variational modified
reduced VGG16, reduced Inception and reduced ResNet autoencoders. In general, we observe minor
improvements in the performances of the reduced Inception and ResNet architectures compared
to the performances of their non-variational counterparts. In this context, in the latent space, the
variational versions of both architectures can win on one additional dataset. On the contrary, the
performance of the modified reduced VGG16 significantly dropped from winning on six datasets to
one in its variational form. However, since an estimate might lose or win by a smaller margin, we

100

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

further analyzed the statistics of the NCC accuracies if the performance improvement or degradation
has a significant statistical meaning.

Table 3.19:Win/tie/losses analysis of NCC classification accuracies obtained from the extended evaluation
of basic autoencoders.The analysis was performed using 73 UCR archive datasets, averages estimated via
autoencoder and different averaging techniques, and NCC accuracies. Moreover, the outcomes reported for
the autoencoders are generated using maximum NCC accuracies obtained from 25 repeated trials and four L2
regularization setups.

Techniques 𝐿2 Reg. (𝑥) Wins Ties Losses
Arithmetic 0 0 73
DBA - 2 5 66
DTAN 33 3 37
SDBA 16 4 53
Var_VGG_Regx_Lat_Max

{0, 1, 2, 3}

{1, 0, 0, 0} {3, 1, 2, 0} {69, 72, 71, 73}
Var_VGG_Regx_TD_Max {0, 0, 0, 0} {0, 0, 0, 0} {73, 73, 73, 73}
Var_Inc_Regx_Lat_Max {1, 1, 0, 2} {3, 1, 1, 1} {69, 71, 72, 70}
Var_Inc_Regx_TD_Max {0, 0, 0, 0} {0, 0, 0, 0} {73, 73, 73, 73}
Var_ResNet_Regx_Lat_Max {3, 3, 0, 0} {3, 4, 2, 0} {67, 66, 71, 73}
Var_ResNet_Regx_TD_Max {0, 0, 0, 0} {0, 0, 0, 0} {73, 73, 73, 73}

We first base our statistical analysis on a box-whisker plot. In this regard, Figure 3.26 shows the
box-whisker plot, whereas Table 3.20 shows the statistics of the plot. Based on the results reported
on Tables 3.15 and 3.20, we observe slight improvements on the NCC accuracies of the variational
autoencoders. For instance, in the latent space of the variational modified reduced VGG16 autoencoder,
we obtained a best case worst NCC classification accuracy (best case bottom whisker) of 21.16%.
Moreover, in the best cases, 50% of the NCC classification accuracies are between 51.15% and 73.33%.
In this regard, the non-variational autoencoder’s NCC accuracies are between 50.87% and 74.64%.
Moreover, its best case worst NCC classification accuracy is 20.86%. Thus, in this case, modeling the

Ar
th

im
et

ic

D
BA

D
TA

N

SD
BA

Va
r_

In
c_

R
eg

0_
La

t_
M

ax

Va
r_

In
c_

R
eg

0_
TD

_M
ax

Va
r_

In
c_

R
eg

1_
La

t_
M

ax

Va
r_

In
c_

R
eg

1_
TD

_M
ax

Va
r_

In
c_

R
eg

2_
La

t_
M

ax

Va
r_

In
c_

R
eg

2_
TD

_M
ax

Va
r_

In
c_

R
eg

3_
La

t_
M

ax

Va
r_

In
c_

R
eg

3_
TD

_M
ax

Va
r_

R
es

N
et

_R
eg

0_
La

t_
M

ax

Va
r_

R
es

N
et

_R
eg

0_
TD

_M
ax

Va
r_

R
es

N
et

_R
eg

1_
La

t_
M

ax

Va
r_

R
es

N
et

_R
eg

1_
TD

_M
ax

Va
r_

R
es

N
et

_R
eg

2_
La

t_
M

ax

Va
r_

R
es

N
et

_R
eg

2_
TD

_M
ax

Va
r_

R
es

N
et

_R
eg

3_
La

t_
M

ax

Va
r_

R
es

N
et

_R
eg

3_
TD

_M
ax

Va
r_

VG
G

_R
eg

0_
La

t_
M

ax

Va
r_

VG
G

_R
eg

0_
TD

_M
ax

Va
r_

VG
G

_R
eg

1_
La

t_
M

ax

Va
r_

VG
G

_R
eg

1_
TD

_M
ax

Va
r_

VG
G

_R
eg

2_
La

t_
M

ax

Va
r_

VG
G

_R
eg

2_
TD

_M
ax

Va
r_

VG
G

_R
eg

3_
La

t_
M

ax

Va
r_

VG
G

_R
eg

3_
TD

_M
ax

Averaging techniques

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 3.26: Box-whisker plot analysis of the NCC accuracies obtained with the variational: modified reduced
VGG16, reduced Inception, and reduced ResNet architectures

101

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

latent space via a continuous distribution introduced minor improvements. In reality, such slight
performance improvements are also evident in the time domain. Specifically, for the worst case
scenario (bottom whiskers), the variational autoencoder is better than its basic counterpart.

Table 3.20: Statistics assessment of the NCC accuracies that are obtained with the modified VGG16, reduced
Inception, and reduced ResNet architectures. These assessments were conducted using the maximum NCC
accuracies associated with each averaging techniques.

Techniques Bot. whisker Top whisker 25% Quant. 75% Quant. Median
Arithmetic 7.47 96.43 40.00 67.00 52.96
DBA 28.94 100 54.96 79.65 65.14
DTAN 33.31 100 59.20 85.37 73.75
SDBA 32.83 99.05 58.67 81.27 69.79
VGG_Regx_Lat_Max
x={0, 1, 2, 3}

{21.16, 13.17
14.11, 2.56 }

{100, 100
99.05, 94.29}

{51.15, 48.05
46.67, 30.86}

{73.33, 74.19
68.67, 67.33 }

{61.17, 59.46
57.41, 47.66}

VGG_Regx_TD_Max
x={0, 1, 2, 3}

{19.55, 19.55
1.76, 1.76}

{87.87, 82.76
80.87, 78.91 }

{44.47, 41.93
31.22, 22.59 }

{64.32, 59.53
55.82, 53.12}

{52.45, 51.47
47.66, 41.09}

Inc_Regx_Lat_Max
x={0, 1, 2, 3}

{16.14, 11.91
14.42, 9.87 }

{100, 100
99.05, 95.23 }

{50.00, 49.61
48.00, 42.29}

{73.33, 74.82
74.10, 69.32}

{61.20, 59.73
60.00, 56.57}

Inc_Regx_TD_Max
x={0, 1, 2, 3}

{17.50, 19.29
17.96, 8.22}

{89.93, 89.40
88.19, 91.20}

{44.82, 44.00
42.67, 33.98}

{64.01, 63.07
61.82, 56.89}

{53.23, 54.52
50.62, 49.43}

ResNet_Regx_Lat_Max
x={0, 1, 2, 3}

{17.43, 22.02
20.51, 20.26}

{100, 100
100, 99.05}

{48.33, 49.07
47.83, 45.90}

{72.38, 74.82
74.10, 74.82}

{62.98, 61.17
60.00, 59.38}

ResNet_Regx_TD_Max
x={0, 1, 2, 3}

{19.55, 19.55
1.76, 1.76}

{87.86, 82.79
80.87, 78.91}

{44.47, 41.93
31.22, 22.59}

{64.32, 59.53
55.81, 53.12}

{50.30, 50.54
50.32, 49.90}

Even though the improvements are not significantly large, it is in line with our initial expectation
of variational autoencoders. With this in mind, we next compare the t-SNE projections of the UCR
archive’s FacesUCR dataset. In Figure 3.27, the three subfigures in the left column correspond to
the t-SNE projections of the latent embedding obtained with the non variational autoencoders. In
reality, we do not observe a significant difference in the separability and compactness of the latent
embedding. However, when we compare the latent space NCC accuracies that correspond to the
presented embedding, the non-variational versions of the autoencoder performed better. In this
regard, in the latent space, the non variational VGG16, Inception and ResNet based autoencoders
respectively obtained 65.02%, 71.12% , and 67.90% NCC accuracies. On the contrary, their variational
version obtained 61.22%, 68.43%, and 68.68% NCC accuracies. On the contrary, in the time domain,
estimates generated by the variational versions of the basic autoencoders performed better than those
generated by their basic counterparts. In this regard, the variational VGG16, Inception, and ResNet
respectively obtained 60.98%, 59.07%, and 67.90% NCC accuracies. However, their non variational
counterparts obtained 48.53%, 49.56%, and 50.49% NCC accuracies. We can correlate the significant
improvement in the time domain accuracies to two design factors. First, in the variational setup, the
latent space is confined to a relatively smaller region that meets the requirements of a normal Gaussian
distribution. This, in turn, reduces the burden on the decoder since it is now expected to interpret a
relatively smaller region of the latent space. In addition to this, in each training epoch, the decoder

102

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

40 20 0 20 40

0

20

40

60

-20

-40

-60

(a) FacesUCR in the latent space of the reduced VGG16
autoencoder

60 40 20 0 20 40 60

0

20

40

-20

-40

-60

(b) FacesUCR in the latent space of the variational modified
reduced VGG16 autoencoder

60 40 20 0 20 40 60

0

20

40

-20

-40

-60

(c) FacesUCR in the latent space of the reduced Inception
autoencoder

60 40 20 0 20 40 60

0

20

40

-20

-40

-60

(d) FacesUCR in the latent space of the variational reduced
Inception autoencoder

40 20 0 20 40 60

0

20

40

-20

-40

-60

-80

(e) FacesUCR in the latent space of the reduced ResNet
autoencoder

60 40 20 0 20 40

0

20

40

60

-20

-40

-60

(f) FacesUCR in the latent space of the variational reduced
ResNet autoencoder

Figure 3.27: Comparison of the latent embedding obtained with the variational and non variational autoen-
coders for the UCR archive’s FacesUCR test dataset

gets the chance to see a different interpretation of the input dataset due to the reparametrization
trick. Moreover, at the end of the overall training process, we expect the latent space to converge to a
normal Gaussian distribution. Thus, in the final few epochs, the decoder will start to see different
representations of the input dataset that are samples taken from a normal Gaussian distribution. Thus,
the decoder of the variational autoencoders is expected to better reconstruct the latent means that
are by themselves samples taken from a normal Gaussian distribution. In reality, while training, the
decoders of the basic autoencoder also see different latent space representations of input datasets.
However, the overall scenario is different from the variational versions. In this aspect, there is a higher
chance that the different representations are from different regions of the latent space. Moreover,
at the end of the training, a latent space region that once was occupied by a certain group of input
datasets could finally represent different groups of the input. To this end, the decoder could end up
with blind spots due to the continuously shifting location of the latent embedding that is by no means
constrained to a certain region. This in turn is expected to harm the quality of the re-projected means.

103

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

However, in the latent space, the relatively relaxed constraints of the non-variational autoencoder
have helped them to obtain better performance. In general, since we can not make conclusive remarks
based on the outcomes of a single experiment, we next place our focus on the hypothesis test to
further assess this claim. In this aspect, we first evaluate the impact of 𝐿2 regularization on the latent
space and time domain performance, i.e., 𝐿2 = [0, 0.0001, 0.001, 0.01]. In this regard, Figure 3.28 shows
the first two 𝐿2 regularizations often gave better time domain results when used with the variational
modified reduced VGG16 and Inception autoencoders. However, for the ResNet architecture, the two
middle 𝐿2 regularizations performed better. These outcomes suggest that the variational autoencoders
give better time domain re-projections while regularized with 𝐿2 = [0.0001]. Moreover, since there is
often no clear statistical demarcation among the first three 𝐿2 regularizations, i.e., in the latent space,
we propose the utilization of 𝐿2 = [0.0001].

(a) Evaluation using NCC mean accuracies obtained in
the latent space of the variational modified reduced VGG16
autoencoder

(b) Evaluation using NCC mean accuracies obtained with
time domain estimates of the variational modified reduced
VGG16 autoencoder

(c) Evaluation using NCC mean accuracies obtained in the
latent space of the variational reduced Inception autoen-
coder

(d) Evaluation using NCC mean accuracies obtained with
time domain estimates of the reduced Inception autoen-
coder

(e) Evaluation using NCC mean accuracies obtained in the
latent space of the reduced ResNet autoencoder

(f) Evaluation using NCC mean accuracies obtained with
time domain estimates of the reduced ResNet autoencoder

Figure 3.28: Evaluation of the impact of L2 regularization on the quality of means estimated with variational
autoencoder

With this at hand, we will next assess the NCC accuracies in the context of reproducibility. To make
this assessment, we evaluate the average standard deviation (𝜎) of the NCC accuracies corresponding
to the outcomes of the 25 training iterations conducted on 89 UCR archive datasets. If we compare the
results reported on Tables 3.16 and 3.21, we can observe that the standard deviation for the variational
autoencoders is relatively large. We found this to be logical since we introduced an additional source
of randomness in the latent space of the autoencoder, i.e., we take random samples from normal

Table 3.21: Standard deviation of NCC accuracies that are obtained using: modified reduced VGG16, reduced
Inception, and reduced ResNet autoencoders.

Techniques ±𝜎 in %
L2 Reg0

±𝜎 in %
L2 Reg1

±𝜎 in %
L2 Reg2

±𝜎 in %
L2 Reg3

Var_VGG_Lat 3.54 7.21 5.61 10.32
Var_Inc_Lat 4.39 4.61 3.49 4.29
Var_ResNet_Lat 9.78 7.28 7.49 7.31
Var_VGG_TD 5.75 9.20 8.19 9.26
Var_Inc_TD 5.24 6.26 6.45 7.89
Var_ResNet_TD 12.13 9.90 9.89 9.25

104

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

Gaussian distribution to define the latent embedding. However, even with this additional source
of randomness, the latent space standard deviation is below 5% for most of the L2 regularization
and architectural configurations. Moreover, in the time domain, it is below 8%. However, for the
variational reduced ResNet architecture, the overall standard deviation is grater than its counterparts.
We speculate that this slightly higher standard deviation is associated with the Addition layer within
the ResNet architecture. In the architecture, we add the outputs of Convolutional layers with the
outputs of predecessor layers. In the context of the variational autoencoders, the addition operation
continuously introduces a constant offset on the means of the latent features. However, since the
overall architecture is trying to pull down the mean to zero, it is forced to look for different alternatives
on different initialization. This in turn contributes to the slightly larger variance across estimates.

(a) Evaluation of latent space maximum NCC accuracies
as compared to alternatives

(b) Evaluation of latent space and time domain maximum
NCC accuracies as compared to alternatives

(c) Evaluation of latent mean NCC accuracies as compared
to alternatives

(d) Evaluation of latent space and time domain mean NCC
accuracies as compared to alternative

(e) Evaluation of latent space median NCC accuracies as
compared to alternative

(f) Evaluation of latent space and time domain median
NCC accuracies as compared to alternative

(g) Evaluation of latent space minimum NCC accuracies
as compared to alternative

(h) Evaluation of latent space and time domain minimum
NCC accuracies as compared to alternative

Figure 3.29: Comparison of NCC accuracies that are obtained with the estimates of variational autoencoders
and their counter parts. These comparison are based on the NCC accuracies that are obtained from 73 UCR
archive datasets.

In general, like their basic counterparts, architectures based on the VGG16 and Inception appears
to be relatively stable. With this in mind, we next compare the NCC accuracies across averaging
techniques to assess which of the proposed variational architectures performs better. In this aspect,
Figure 3.30 show the comparison of latent space and time domain NCC accuracies across averaging
techniques. Overall, we found the basic autoencoders to generate better separable and dense latent
space representation. However, due to the relatively lower latent space constraint, their embedding
could span over a wider area of the latent space. To this end, their decoder is expected to generalize
to a wider area of the latent space. This in turn has a negative implication on the re-projection of the
latent means. In this aspect, we found the variational autoencoders to be better. We have summarized
this observation in Figure 3.31 (b). In the figure, we have compared the median latent space and
time domain NCC accuracies associated with the variational and non-variational autoencoders. To
make the comparison, we took the outcomes corresponding to 83 UCR archive datasets and zero 𝐿2

105

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

(a) Evaluation of time domain maximum NCC accuracies
as compared to alternatives

(b) Evaluation of time domain mean NCC accuracies as
compared to alternatives

(c) Evaluation of time domain median NCC accuracies as
compared to alternatives

(d) Evaluation of time domain minimum NCC accuracies
as compared to alternatives

Figure 3.30: Comparison of NCC accuracies that are obtained with the estimates of variational autoencoders
and their counter parts. These comparison are based on the NCC accuracies that are obtained from 83 UCR
archive datasets and the time domain estimates of arithmetic mean, DBA, SDBA, and variational auotencoders.

regularization. According to Figure 3.31, in the latent space, the variational and the non-variational
Inception autoencoders behaved similarly. However, the variational version performed lower than
the non-variational VGG16 based autoencoder. We can also observe the same performance among the
time domain accuracies of the Inception architectures. However, in this case, the variational Inception
performed better than its non-variational VGG16. In general, if the non-variational autoencoders get
used, we suggest the architecture gets based on VGG16. On the contrary, if the variational versions
gets used, we suggest the utilization of the Inception architecture.

(a) Comparison of latent space median NCC accuracies (b) Comparison of time domain median NCC accuracies

Figure 3.31: Comparison of median latent space and time domain NCC accuracies that are obtained with the
estimates of variational and non variational autoencoders. These comparisons are based on the outcomes of
NCC accuracies conducted on 83 UCR archive datasets

We will conclude this chapter by presenting the estimates generated by the variational autoencoders
for the UCR archive’s ECG200 and ECGFiveDays datasets, i.e., as shown in Figure 3.32. In Figure 3.32,

Table 3.22: NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets.

Techniques NCC for ECG200 in % NCC for ECGFiveDays in%
Arithmetic 67 52.96
DBA 65 52.15
SDBA 73 67.02
DTAN 79 97.79
Enc_Time 65 52.15
VGG_TD 76 75.61
Inc_TD 76 71.54
ResNet_TD 76 72.24
Var_VGG_TD 72 67.25
Var_Inc_TD 74 68.41
Var_ResNet_TD 76 70.84

106

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

it is clear that the estimates minimized the shape distortion previously evident in the estimates of the

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Arthimetic average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class 1 with autoender average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class 2 with autoender average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 1 with autoender average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 2 with autoender average
Average

(b) Reduced VGG16 estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 1 with Modified Reduced VGG16

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 2 with Modified Reduced VGG16

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Averages Estimated for ECG200 class 1 with Modified Reduced VGG16

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Averages Estimated for ECG200 class 2 with Modified Reduced VGG16

(c)Modified reduced VGG16 estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Average for ECGFiveDays Class 1, Estimated with Variational Modified Reduced VGG Average for ECGFiveDays Class 2, Estimated with Variational Modified Reduced VGG

Average for ECG200 Class 1, Estimated with Variational Modified Reduced VGG Average for ECG200 Class 2, Estimated with Variational Modified Reduced VGG

(d) Variational modified reduced VGG16 estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 1 with Modified Reduced VGG16

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 2 with Modified Reduced VGG16

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Averages Estimated for ECG200 class 1 with Modified Reduced VGG16

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Averages Estimated for ECG200 class 2 with Modified Reduced VGG16

(e) Reduced Inception estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Average for ECGFiveDays Class 1, Estimated with Variational Reduced Inception Average for ECGFiveDays Class 2, Estimated with Variational Reduced Inception

Average for ECG200 Class 1, Estimated with Variational Reduced Inception Average for ECG200 Class 2, Estimated with Variational Reduced Inception

(f) Variational reduced Inception estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 1 with Modified Reduced VGG16

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Averages Estimated for ECGFiveDays class 2 with Modified Reduced VGG16

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Averages Estimated for ECG200 class 1 with Modified Reduced VGG16

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Averages Estimated for ECG200 class 2 with Modified Reduced VGG16

(g) Reduced ResNet estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Average for ECGFiveDays Class 1, Estimated with Variational Reduced ResNet Average for ECGFiveDays Class 2, Estimated with Variational Reduced ResNet

Average for ECG200 Class 1, Estimated with Variational Reduced ResNet Average for ECG200 Class 2, Estimated with Variational Reduced ResNet

(h) Variational reduced ResNet estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(i) DBA estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(j) SDBA estimates

Figure 3.32: Visual comparison of estimated averages for the UCR archive’s ECG200 and ECGFiveDays datasets.

107

Time Series Averages from the Latent Space of Basic and Variational Autoencoders
Chapter
3

ECGFiveDays dataset. Moreover, the variational ResNet autoencoder’s estimates resembled the
estimates of DBA. However, the autoencoder’s estimates contained ripples in response to minor
spikes in the dataset. In summary, we have given the NCC accuracies associated with the different
estimates in Table 3.22. Even though the variational autoencoder’s estimates visually appear to
be better than their basic counterparts, the NCC accuracies state the contrary. One contributing
factor could be the higher ripply nature of the variational autoencoder estimates. In reality, since
the variational autoencoder’s latent space is relatively confined to a smaller region, we expect the
decoder to be sensitive to slight changes in the latent space. This, in turn, makes it sensitive to spikes
that are outliers at a time stamp level. This in turn could have a negative implication on the DTW
warping process utilized in NCC. With this said, we conclude this chapter and proceed to address the
limitations observed with the autoencoder-based average estimation process.

108

4 Time Series Averages from the Latent

Space of Multi-Tasking Neural Networks

The main limitation of the variational and non-variational autoencoders is that they only guarantee
the extraction of reconstructable latent embedding. However, given the multi-class nature of the UCR
datasets, we desire the extracted latent features to be separable and compact. In reality, previous
proposals guarantee dense transformation either through DTW or CPA fields. Moreover, if there are
multiple classes (clusters), they directly or indirectly utilize class label information in the estimation
process [16], [25]. In this regard, in [20], [25], DBA’s and SDBA’s averages were estimated on a
per-class basis. Additionally, from (2.39), we can see that DTAN utilizes class labels while minimizing
the WGSS loss between the morphed series and their respective centroids. Thus, given the availability
of class (cluster) labels, a logical step to take would be to utilize the label information in the feature
extraction and augmentation process. With this underlying assumption, we propose to estimate the
time domain per-class averages from the latent space of a multi-tasking autoencoder. In this regard,
we propose our multi-tasking network to perform multi-class classification and reconstruction. In
other words, we propose the multi-tasking autoencoder to optimize the objective function given
in (4.1), where 𝐶𝑎𝑡𝑖, 𝑗 is the label given for an input dataset out of the 𝐶 categories and 𝑝𝑖, 𝑗 is the
Softmax activation value assigned to it by a classifier. Moreover, 𝑋𝑖 , 𝑋𝑖 𝜖 ℝ𝑀 are an input time series
and its reconstruction. With this said, we preset how we modified the autoencoder shown in Figure 3.9
into its multi-tasking version and the corresponding experimental evaluation.

𝐿𝑀𝑢𝑙𝑡𝑖 (𝑋𝑖 , 𝑋𝑖 ,𝐶𝑎𝑡, 𝑝𝑐𝑎𝑡) =
1
𝑁

𝑁∑︁
𝑖=1

| |𝑋𝑖 − 𝑋𝑖 | |𝑙2 −
1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1
𝐶𝑎𝑡𝑖, 𝑗 ln𝑝𝑖,𝑗 (4.1)

4.1 Time Series Averaging Using a Multi-tasking Autoencoder

Architecture-wise, the proposed multi-tasking autoencoder has a classifier attached to the encoder
portion of the autoencoder. We construct this classifier from three fully connected Dense layers.
Moreover, for the first two Dense layers, we use ReLU activation function. However, we set the last
classifier’s Dense layer activation function to Softmax. Hence, the outputs of the classifier can be
interpreted as the probability of occurrence of the categories. To accommodate this concept, we set
the number of neurons at the last Dense layer to be equal to the number of categories. On the contrary,
the first two classifier’s Dense layers are configured with 𝑀

8 and 𝑀
16 neurons. Thus, the change in the

number of trainable parameters is insignificant compared to the parameters given in 3.7. In this regard,
the additional three classifier’s Dense layers incur: (⌊𝑀4 ⌋ × ⌊𝑀8)⌋ + ⌊𝑀8 ⌋, (⌊𝑀8 ⌋ × ⌊𝑀16)⌋ + ⌊𝑀16⌋, and
⌊𝑀16⌋ × 𝐶𝑎𝑡 + 𝐶𝑎𝑡 additional trainable parameters as compared to the parameters given in Table 3.7.
However, despite these changes, we reused the configuration for the encoder and decoder shown in
Figure 3.9 and Table 3.7. Overall, the architectural configuration of the multi-tasking autoencoder is
shown in Figure 4.1. With this said, we will proceed with the experimental setups.

109

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Depth

Time

Channel

2 convolutional

layer

3

convolutio

nal layer

5

convolutio

nal layer

Figure 4.1: Proposed reduced VGG16 multi-tasking autoencoder

4.1.1 Experimental Setup

We have also trained the multi-tasking autoencoder using 80% of the training set for training and
20% for validation. However, unlike the setups utilized for the basic autoencoder, we have used two
sets of 𝐿2 regularization. In this aspect, for the encoder and decoders we utilized 𝐿2𝑒𝑛𝑐𝑜𝑑𝑒𝑟/𝑑𝑒𝑐𝑜𝑑𝑒𝑟 =
[0, 0.0001, 0.001, 0.001, 0.01,]. On the contrary, for the classifier we used 𝐿2𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 = [0, 0.001, 0.001,
0.01, 0.01]. To this end, at a given training, the encoder and decoder used similar 𝐿2 regularization
factors. In the country, in most cases, the classifier is regularized by a factor that is 10 times higher. For
instance, {𝐿2𝐸𝑛𝑐𝑜𝑑𝑒𝑟 , 𝐿2𝐷𝑒𝑐𝑐𝑜𝑑𝑒𝑟 , 𝐿2𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 } = (0.0001, 0.0001, 0.001). We chose this regularization
approach since the classifier is more susceptible to overfitting due to its fully connected Dense layers.
Moreover, since we proposed the classifier to aid the overall arrangement of the extraction of separable
and dense latent features, we desire the classifier to generalize well. To this end, we place a relatively
higher 𝐿2 regularization penalty on the weights of the classifier. Despite this major difference, we have
kept the remaining training configuration relatively similar to the one used on the basic autoencoder.
In this aspect, we set the learning rate and the number of training epochs in the case of zero 𝐿2
regularization to 10−4 and 𝑒𝑝𝑜𝑐ℎ𝑠 = 600. However, for non-zero 𝐿2 regularization, we used 2500
training epochs to ensure the convergence of the network. Finally, we have utilized the trained
network and the train split to estimate the latent and time domain average. In this regard, the per-
class latent averages get estimated by taking the arithmetic mean of the latent space representation
of the training set. Moreover, we used the decoder to project the latent space estimates into the time
domain. In addition to this, we also used the trained network to project the test datasets into the
latent space. We then performed a latent space and time domain NCC using 84 UCR datasets.

4.1.2 Experimental Results and Interpretation

To evaluate the performance of the multi-tasking autoencoder, we re-utilized the assessment tech-
niques used for the basic autoencoder. To this end, we will make the first assessment using the Win

110

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Ties loss analysis shown in Table 4.1, where Enc_Lat (Time) and MT_ Enc_ Lat (Time) correspond to
the latent space (time domain) NCC accuracies of the basic and multi-tasking autoencoders.

4.1.3 Experimental Results and Interpretation

In order to evaluate the performance of the multi-tasking autoencoder, we re-utilized the assessment
techniques that we used for the basic autoencoder. To this end, we will make the first assessment
using the Win Ties loss analysis shown in Table 4.1, where Enc_Lat (Time) and MT_ Enc_ Lat (Time)
correspond to the latent space (time domain) NCC accuracies of the basic and multi-tasking autoen-
coders.

Table 4.1: Analysis of wins/ties/losses of the NCC accuracies that are obtained using the estimates of the
multi-tasking autoencoder and alternative averaging techniques.

Technique Wins Ties Losses
Arithmetic 1 0 83
DBA 1 1 82
DTAN 30 4 50
Enc_Lat 2 0 82
Enc_Time 0 0 83
MT_Enc_Lat 27 1 56
MT_Enc_Time 1 1 82
SDBA 16 2 66

In Table 4.1, we have marked the top three performing average estimation techniques using bold-faced
letters. According to these results, the multi-tasking autoencoder is performing better than DBA
and SDBA in the latent space. This fact gets further validated by the box-whisker plot shown in
Figure 4.2. According to the statics of the plot, i.e., Table 4.2, the multi-tasking autoencoder achieved
a latent space median NCC accuracy of 75.03%. This is a 16.37% improvement compared to its basic
autoencoder counterpart (Enc_Lat). Furthermore, the worst and best latent space NCC accuracies now

Arth
im

eti
c

DBA
DTA

N

En
c_L

at

En
c_T

im
e

MT_E
nc_

Lat

MT_E
nc_

Tim
e

SD
BA

Averaging techniques

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 4.2: Box-whisker plot comparisons of the NCC accuracies that are obtained using averages estimated
with the multi-tasking auroencoder and its counterparts.

111

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Table 4.2: Statistical parameters for the box-whisker plot shown in Figure 4.2

Technique Top Whisker Bottom Whisker 25% percentile 75% percentile Median
Arithmetic 96.43 3.27 33.87 67.14 51.72
DBA 100 18.25 54.05 79.84 65.04
DTAN 100 25.97 58.55 85.45 72.94
Enc_Lat 96.29 19.66 51.16 74.48 58.66
Enc_Time 99.05 1.05 34.07 62.55 50.00
MT_Enc_Lat 100 22.91 59.44 88.95 75.03
MT_Enc_Time 100 2.43 42.85 71.92 53.40
SDBA 99.05 25.27 57.41 81.22 69.02

became 100% and 22.91%. This is also better than its basic autoencoder part standing at 99.29% and
19.66%. Additionally, 50% of the multi-tasking latent space classification accuracies are between 59.44%
and 88.95%. This is also significantly better than the 51.16%-74.40% range of the basic autoencoder. In
practice, we expect the multi-tasking autoencoder to perform better in the latent space. In reality, for
the multi-tasking autoencoder, we have a classifier that forces the encoder to extract reconstructable
and class-specific latent features. Thus, the latent space representation of the multi-tasking setup gets
expected to be relatively dense and separable. The question now becomes, how do the separability and
compactness of the latent space features manifest themselves in the time domain? In this aspect, in the
time domain (MT_Enc_Time), the multi-tasking autoencoder showed a 3.40% increase in its median
accuracy, i.e., from 50% accuracy in the basic autoencoder (Enc_Time) to 53.40%. Moreover, the worst
and best case scenarios now improved from 1.05% and 99.05% to 2.43% and 100%. In addition to this,
50% of its classification accuracies are now in between 42.85% to 71.92%, i.e., as compared to the 34.07%
to 62.55% of the basic autoencoder. We find these short 1ncc statistics as a significant improvements
compared to their basic autoencoder counterpart. This conclusive remark is also validated using the
hypothesis tests shown in Figure 4.3.

In the hypothesis evaluation, we have followed the same approach we used for the basic autoencoders
and we separated the hypothesis test into two categories. First, we compare the NCC accuracies that
are obtained in the registered space of the averaging techniques. We then include the time domain
classification results obtained using an arithmetic mean, multi-tasking and basic autoencoders. In real-
ity, these NCC results are the only ones evaluated in a neutral space. In this aspect, the arithmetic and
time domain re-projection of the autoencoders gets warped into a DTW space to which they have no

(a) Evaluation based on NCC accuracies obtained in the
registered space of the averaging techniques

(b) Evaluation including time domain and latent space NCC
accuracies

Figure 4.3: Hypothesis test based on the NCC accuracies obtained with the estimates of the multi-tasking
autoencoder and its counterparts.

112

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

prior knowledge. According to Figures 4.3 (a) & (b), the multi-tasking autoencoder outperforms DBA
and SDBA using its latent space estimates. Moreover, in the latent space, it is statistically indifferent to
the state of the art (DTAN). Additionally, in the time domain, the multi-tasking autoencoder estimates
perform far better than the arithmetic mean. In this aspect, statistically, 50% of the arithmetic mean
classification results are between 33.86% to 67.14%. This is relatively lower than the multi-tasking
autoencoder range of 42.85% to 71.92%.

In addition to the numerical improvements, a t-SNE projection of the multi-tasking’s latent space fea-
tures reveals their capability of mimicking the effects of multiple alignments observed in predecessor
techniques such as DTAN. In this regard, in Figure 4.4, we have revisited the FacesUCR test dataset
and plotted their t-SNE projections when seen from: the time domain, latent spaces (multi-tasking
and basic autoencoders) and DTAN’s morphed space. According to Figures 4.4 (b) and (d), the
multi-tasking autoencoder’s latent space representation of the test dataset is separable and dense as
compared to the basic autoencoder. Additionally, the latent space of the multi-tasking autoencoder is
mimicking the effects of multiple alignments which is evident in DTAN’s morphed space as shown in
Figure 4.4 (c).

40 20 0 20 40 60

60

40

20

0

20

40

60

(a) FacesUCR in the time domain
40 20 0 20 40 60

0

20

40

-20

-40

-60

(b) FacesUCR in the latent space of the basic autoencoder

signal. Thus, we perform NCC on the UCR archive, comparing DTAN to: (1) the sample mean of the
misaligned sets (Euclidean); (2) DBA; (3) SoftDTW.

Experiment outline. For each of the UCR datasets, we trained DTAN in a similar fashion to 5.1,
where λvar ∈ [10−3, 10−2], λsmooth ∈ [0.5, 1]. We used R-DTANx, where x ∈ {1, 2, 4} is the
number of TT layers. We then computed the centroid (w.r.t. to a Euclidean distance) of each class
in the aligned train set. NCC was conducted by aligning each test sample through the trained net
and measuring a Euclidean distance to each of the centroids. DBA and SoftDTW were measured by
DTW distance (which is the distance associated with these methods). We used Python’s tslearn’s
implementation of DTW, DBA and SoftDTW [51], limiting each to 100 iterations. The SoftDTW
barycenter loss was minimized via L-BFGS [34] and the best γ was chosen among the following
values: 10−3, 10−2, 10−1,1, and 10.

40 20 0 20 40

60

40

20

0

20

40

60

Original data

40 20 0 20 40 60

40

20

0

20

40

60
Aligned dataFacesUCR Dataset

Figure 6: t-SNE visualization of the original and aligned
test data of the 11-class FacesUCR dataset. The class labels
are used here for visualization, but were not used during the
test-data alignment. This highlights how DTAN decreases
within-class variance while increasing inter-class variance.

Results. Figure 5 shows the NCC
experiment’s results. Each point
above the diagonal stands for an en-
tire dataset where DTAN correct clas-
sification rate was better than (or
equal to) the competing method. This
was the case for 93% of the datasets
when compared to Euclidean, 77%
for DBA, and 62% for SoftDTW.
These results (1) illustrate the impor-
tance of unwarping the misaligned
data (as shown by the Euclidean case)
and (2) indicate that averaging via
DTAN under Euclidean geometry is
usually superior to DTW-based aver-
aging. These findings are also sup-
ported by the average signals displayed in Figure 3. The Euclidean mean is strongly affected by the
misalignment, while DBA falls to a bad local minimum. SoftDTW and DTAN show comparable
qualitative results on this set, but note two major differences: (1) DTAN jointly aligns several classes
within the same model (while SoftDTW had to be computed for each class separately) and (2) DTAN
generalizes the learned alignment to new test samples (rightmost panel), while it is inapplicable for
SoftDTW (as it must be computed again for new signals). For more results, please see our Sup. Mat.

CNN classification experiment. We also tested whether DTAN can increase CNN classification
accuracy. We first trained DTAN to minimize Eq. (6) using the same regularization and recurrence
parameters used in the NCC experiment. After training, we froze the weights of floc and fed DTAN’s
outputs to another CNN, and trained it for classification (identical to floc in terms of architecture
and optimization). We call this model DTAN-CNN. Note other time-series averaging methods
cannot be used in a similar way. We compared the average test accuracy of DTAN-CNN to the
same CNN without DTAN, using 5 runs per dataset. DTAN-CNN achieved higher, or equal to,
correct classification rates on 87% of the datasets (see Figure 5, red). Figure 6, which provides a
t-SNE visualization of the original and aligned data [36], illustrates how DTAN decreases intra-class
variance while increasing inter-class one, thus improving the performance of classification net.

6 Conclusion

Building on both recent ideas such as STN [28, 49], efficient highly-expressive diffeomorphisms [19,
20], and older ones such as congealing [31, 10], we proposed DTAN, a deep net for learning time-
series joint alignment. The alignment learning is done in an unsupervised way. If, however, class
labels are known in train time, we use them within a semi-supervised framework that reduces the
variance within each class separately. In addition, we proposed a regularization term for the warps,
which is critical in an unsupervised framework. We also proposed R-DTAN, a recurrent variant of
DTAN, which improves the expressiveness and performance of DTAN without increasing the number
of parameters. Our experiments showed that the proposed method works well on both training and
test data sets.

Acknowledgement: NSD was supported by research grant #15334 from the VILLUM FONDEN.

9

(c) FacesUCR in the morphed space of DTAN [25]

40 20 0 20 40 60

60

40

20

0

20

40

60

(d) FacesUCR in the latent space of the multi-tasking autoen-
coder

Figure 4.4: t-SNE projections for the UCR archive’s FacesUCR test datasets: in time domain (a), autoencoder’s
latent space (b), DTAN’s morphed space (c) and multi-tasking autoencoder’s latent space (c)

In addition to the improvements observed in the compactness of the latent features, the improvement
is also evident in the shapes of the time domain re-projected averages. In order to demonstrate
this fact, we revisit the UCR’s ECG200 and ECGFiveDays datasets and we show the time domain
estimate of the different averaging techniques in Figure 4.5. In this regard, if we carefully compare
the estimates shown in Figure 4.5 (b) and (e), we can observe that the multi-tasking autoencoder
estimates have better captured the negative peaks of the 𝐸𝐶𝐺𝐹𝑖𝑣𝑒𝐷𝑎𝑦𝑠 datasets. Moreover, compared

113

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

to the estimates of the basic autoencoder, the multi-tasking autoencoder generated a better estimate
for the first class of the ECG200. However, despite such improvements, the time-domain estimates of
the multi-tasking autoencoder are still performing well below the performances of the alternative
averaging techniques. This fact is reflected on the NCC accuracies of the multi-tasking autoencoder
shown in Table 4.3. In this regard, we have also identified three contributing factors that can be
improved. First, the filter arrangements of the encoder and the UpSampling layers at the decoder are
similar to the basic autoencoder. Thus,we propose to first take corrective measures in this regard.
Moreover, we have also not assessed different architectural setups of the multi-tasking autoencoder.

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Arthimetic average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class 1 with autoender average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class 2 with autoender average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 1 with autoender average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 2 with autoender average
Average

(b) Autoencoder’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(c) DBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(d) SDBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one MT_ENC_TIME
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with MT_ENC_TIME
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with MT_ENC_TIME
Average

ECG200 class two with MT_ENC_TIMEone

(e)Multi-tasking autoencoder’s estimates

Figure 4.5: Averages that are estimated for the UCR archive’s ECG200 and ECGFiveDays datasets

Finally, we strongly believe that we can not solely rely on minor modifications to obtain a significant
improvement. To this end, in addition to these modifications, we propose to further analyze additional
parameters, such as the objective functions of the network. In general, we observe two key points
that could be improved. First, if we further zoom in and look at the estimations for the ECGFiveDays’s
second class, the positive going peaks of the estimates got significantly distorted (clipped). One reason
behind this distortion could be that we fully relied on the classifier to identify separable and compact
latent features. However, in reality, the classifier can not fully guarantee dense latent features. For
instance, a classifier could identify similar per class features that occupy a specific region of the latent

114

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Table 4.3: NCC classification accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets

Averaging Technique accuracy on ECG200 in % accuracy on ECGFiveDays in %
Arithmetic 67 52.96
DBA 65 52.15
DTAN 79 97.79
Enc_Time 65 52.15
MT_Enc_Time 72 58.65
SDBA 73 67.02

space. However, the features could have different magnitude levels. Under such situations, latent
space representation of the multiple classes could become separable but not dense. Additionally, the
non-variational multi-tasking autoencoder setup still has a discontinuous latent space. To this end,
we can safely assume that the decoder highly relies on the latent space mappings of the training
datasets to estimate the projections of neighborhood points, such as a latent mean. Thus, if the latent
space features are not dense enough, the decoder will still have difficulties identifying exemplary
neighborhood latent space representations for the projection of the latent means. Thus, if we desire
to mitigate this challenge, the objective function should have a part that explicitly accounts for this
factor. Finally, we should also ask ourselves, does having a rigid reconstruction criterion favors a
better latent mean re-projection? In reality, we are using the decoder as a generative unit while
re-projecting latent estimates. On the contrary, when we utilize a reconstruction loss (mean squared
error), we wish that the decoder learns a perfect fit for the reconstruction of the training datasets.
However, we later expect it to project a latent mean that it has never seen before (has no prior ground
truth). To this end, we believe the decoder’s objective function must further get relaxed if better time
domain estimations get desired. With these observations in mind, in the next section, we will first
re-evaluate the change in the quality of the time domain estimates by only changing the architectural
setup. On the contrary, in the following section, we will address the limitations observed in the
objective functions of the multi-tasking autoencoder.

4.2 Extended Evaluation of Multi-tasking autoencoders

In this section, we propose to follow the same approach as the extended re-evaluations of the basic
autoencoder. To this end, we modify the autoencoder portion of the multi-tasking autencoder using
layer arrangements that resemble the modified: reduced VGG16, ResNet and Inception version two.
We propose to evaluate the multi-tasking version of these architectures using their variational and non-
variational form. With this said, we will start our further discussion on the layer arrangements of the
multi-tasking autoencoder that are based on the non-variational form of the mentioned autoencoders.

4.2.1 Modified Reduced VGG16 Based Multi-tasking Autoencoder

In this setup, we have re-used the autoencoder architecture shown in Figure 3.15. To this end, the
UpSampling layers in the previous basic multi-tasking autoencoder gets substituted with transposed

115

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Convolutional layers. Moreover, we have also set the stride of the last transposed Convolutional layer
to one. On the contrary, we set the stride of the remaining two transposed Convolutional layers to two.
At the encoder, we have also set the stride of the last MaxPooling layer to one, i.e., to accommodate
datasets with a smaller dimension. Finally, we have kept the classifier layer arrangement similar to
the basic multi-tasking autoencoder, i.e, three Dense layers. However, unlike the basic multi-tasking
autoencoder, we have set the neuron size of the first two classifier’s Dense layers to ⌊𝑀4 − 0.1 × 𝑀

4 ⌋ and
⌊𝑀4 − 0.2 × 𝑀

4 ⌋, where𝑀 is the length of the averaged series. To this end, parameter wise, the modified
reduced VGG16 multi-tasking autoencoder has an additional ⌊𝑀4 ⌋ × ⌊𝑀4 − 0.1 × 𝑀

4 ⌋ + ⌊𝑀4 − 0.1 × 𝑀
4 ⌋,

⌊𝑀4 − 0.1 × 𝑀
4 ⌋ × ⌊𝑀4 − 0.2 × 𝑀

4 ⌋ + ⌊𝑀4 − 0.2 × 𝑀
4 ⌋ and 𝐶 × ⌊𝑀4 − 0.2 × 𝑀

4 ⌋ + 𝐶 trainable parameters
as compared to the once shown in Table 3.11. However, when we deploy the variational version
of this multi-tasking setup, there is an additional (⌊𝑀4 ⌋ × 32) × ⌊𝑀4 ⌋ + ⌊𝑀4 ⌋ trainable parameter
accounting for the additional Dense layer at the encoder.

Depth

Time

Channel

2 convolutional

layer

3

convolutio

nal layer

5

convolutio

nal layer

Figure 4.6: Proposed modified reduced VGG16 multi-tasking autoencoder

4.2.2 Proposed Reduced ResNet Multi-tasking Autoencoder

In this setup, we replace the modified reduced VGG16 autoencoder with the Inception-based autoen-
coder shown in Figure 3.17. However, we have kept the classifier architecture similar to the previous
multi-tasking proposals, i.e., three Dense layers. Moreover, we have also set the number of neurons at
the classifier’s Dense layers to ⌊𝑀4 − 0.1 × 𝑀

4 ⌋, ⌊𝑀4 − 0.2 × 𝑀
4 ⌋ and 𝐶 , where𝑀, 𝐶 are the length of the

averaged series and the number of classes (categories). To this end, as compared to the parameters
shown in Table 2.5, this multi-tasking setup has an additional ⌊𝑀4 ⌋ × ⌊𝑀4 − 0.1 × 𝑀

4 ⌋ + ⌊𝑀4 − 0.1 × 𝑀
4 ⌋,

⌊𝑀4 − 0.1 × 𝑀
4 ⌋ × ⌊𝑀4 − 0.2 × 𝑀

4 ⌋ + ⌊𝑀4 − 0.2 × 𝑀
4 ⌋ and 𝐶 × ⌊𝑀4 − 0.2 × 𝑀

4 ⌋ + 𝐶 trainable weights.
Moreover, when the variational version of this multi-tasking autoencoder is implemented, there will
be an additional (⌊𝑀4 ⌋ × 32) × ⌊𝑀4 ⌋ + ⌊𝑀4 ⌋ trainable parameters in order to account for the additional
Dense layer at the encoder. In general, we have shown the overall architecture of the reduced ResNet
based multi-tasking autoencoder in Figure 4.7.

116

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Depth

Time

Channel

convolution with 128

filters

1x3 1D convolution with 64 filters

1x3 1D convolution with 32 filters

1D MaxPooling

Addition layer

1x3 1D Transposed convolution

Dense layer node

1x3 1D

Transposed Convolution

Stride= 1

MaxPooling

Stride= 1

Figure 4.7: Proposed reduced ResNet multi-tasking autoencoder

4.2.3 Inception Version Two Based Multi-tasking Autoencoder

Following the same trend, for this setup, we have also changed the encoder-decoder portion of the
multi-tasking configuration with the Inception-based autoencoder shown in Figure 3.17. To this
end, the major parameter difference between the Inception multi-tasking setup and the one shown
in Table 3.13 would also be ⌊𝑀4 ⌋ × ⌊𝑀4 − 0.1 × 𝑀

4 ⌋ + ⌊𝑀4 − 0.1 × 𝑀
4 ⌋, ⌊𝑀4 − 0.1 × 𝑀

4 ⌋ × ⌊𝑀4 − 0.2 × 𝑀
4 ⌋ +

⌊𝑀4 − 0.2 × 𝑀
4 ⌋ and𝐶 × ⌊𝑀4 − 0.2 × 𝑀

4 ⌋ + 𝐶 . Similarly, when the variational version of this multi-tasking
autoencoder is implemented, there will also be an additional (⌊𝑀4 ⌋ × 32) × ⌊𝑀4 ⌋ + ⌊𝑀4 ⌋ trainable
parameters in order to account for the additional Dense layer at the encoder In conclusion, the layer
arrangement for this architecture is shown in Figure 4.8.

1d conv. Kernel=1
Concat. layer

Max pooling

1d conv. Kernel=2

1d conv. Kernel=3 1d conv. Kernel=5

MaxPooling

stride=1

1d Transp. Conv.

Transposed Conv.

stride=1

Figure 4.8: Proposed reduced Inception version two multi-tasking autoencoder

117

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

4.2.4 Experimental Setup

In our extended evaluation of the basic multi-tasking autoencoder, we have also used 80% of the
training dataset for training and 20% for validation. However, in this evaluation, we have trained
the variational and non-variational proposals using only four different 𝐿2 regularization setups, i.e.,
𝐿2 = [0, 0.0001, 0.001, 0.01]. Moreover, unlike the training setups used for the reduced VGG16 multi-
tasking autoencoder, we propose to regularize the encoder, decoder and classifier with the same set of
𝐿2 regularization values say for instance, [𝐿2𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , 𝐿2𝑑𝑒𝑐𝑜𝑑𝑒𝑟 , 𝐿2𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟] = [0.001, 0.001, 0.001]. In
addition to this training setup modification, we propose to change the number of training epochs
for non-zero 𝐿2 regularization from 2500 to 1500. Additionally, in this case, we aim to train the
multi-tasking networks for 25 repeated trials on each regularization setup. We update the gradients of
each training trial after passing through ⌊𝐾4 ⌋ mini-batches, where 𝐾 is the number of training datasets.
Finally, we access the performances of the proposals using minimum, maximum, median, and mean
NCC accuracies. With this said, we will next proceed to present our experimental evaluations.

4.2.5 Experimental Results and Interpretation

4.2.5.1 Evaluation of Averages Estimated with Basic Multi-tasking Autoencoders

We start the extended evaluation of the non-variational multi tasking autoencoders with a wins ties
losses analysis. In this aspect, Table 4.8 shows the wins/ties/losses associated with the NCC accuracies
that are obtained using the estimates of the multi-tasking autoencoders and their counterparts. In
the table, MMT_ VGG_ Regx_ Lat (TD)_ Max, MT_ Inc_Regx_ Lat(TD)_ Max, and MT_ ResNet_
Regx_ Lat(TD)_Max corresponds to the latent space (time domain) outcomes of the multi-tasking
autoencoders based on: the modified reduced VGG16, Inception, and ResNet architectures. Moreover,

Table 4.4: Win/tie/losses analysis of NCC classification accuracies obtained from the extended evaluation
of basic multi-tasking autoencoders.The analysis was performed using 74 UCR archive datasets, averages
estimated via autoencoder and different averaging techniques, and NCC accuracies. Moreover, the outcomes
reported for the autoencoders are generated using maximum NCC accuracies obtained from 25 repeated trials
and four L2 regularization setups.

Techniques 𝐿2 Reg. (𝑥) Wins Ties Losses
Arithmetic 0 0 74
DBA - 1 1 72
DTAN 10 4 60
SDBA 10 1 63
MMT_VGG_Regx_Lat

{0, 1, 2, 3}

{5, 9, 1, 2} {5, 5, 5, 2} {64, 60, 68, 70}
MMT_VGG_Regx_TD {0, 0, 0, 1} {2, 0, 1, 1} {72, 74, 73, 72}
MT_Inc_Regx_Lat {2, 4, 1, 4} {2, 4, 5, 5} {70, 66, 68, 65}
MT_Inc_Regx_TD {1, 0, 0, 0} {1, 3, 0, 1} {72, 71, 74, 73}
MT_ResNet_Regx_Lat {2, 4, 1, 4} {2, 4, 5, 5} {70, 66, 68, 65}
MT_ResNet_Regx_TD {0, 0, 0, 0} {2, 1, 2, 2} {72, 73, 72, 72}

the 𝑥 = 0, 1 2, 3 in Regx stands for the type of regularization used to train the network, where
{0, 1, 2, 3} corresponds to 𝐿2 = {0, 0.0001, 0.001, 0.01}. Based on the results reported in Table 4.8, the
latent space of the multi-tasking autoencoders is performing better than the ones obtained with the

118

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

plain autoencoder. In reality, we expect this to be evident since we are now targeting reconstructable
per class latent features that are better separable. However, an interesting point here is that we now
observe ties with the time domain estimates of the multi-tasking autoencoders. This is not evident
with the estimates generated from the variational and non-variational autoencoders. However, as
stated earlier, wins/ties/losses analysis does not provide concise information about the performances
of the estimates. This is because an averaging technique can either be winning or losing with a small
margin that has no significant practical implication. To this end, we next palace our focus on the
box-whisker plot analysis of the NCC accuracies. In this aspect, Table 4.5 summarizes the statistics of
the box-whisker plot shown in Figure 4.9.

Table 4.5: Statistics assessment of the NCC accuracies that are obtained with the multi-tasking modified VGG16,
reduced Inception, and reduced ResNet architectures. These assessments were conducted using the maximum
NCC accuracies associated with each averaging techniques.

Techniques Bot. whisker Top whisker 25% Quant. 75% Quant. Median
Arithmetic 7.47 96.43 40.08 68.09 53.09
DBA 28.94 100 55.13 79.09 65.49
DTAN 33.31 100 59.31 85.62 74.30
SDBA 32.83 99.05 58.72 81.07 69.79
MMT_VGG_Regx_Lat
x={0, 1, 2, 3}

{42.32, 42.63
41.07, 35.42 }

{100, 100
100, 100}

{50.87, 50.04
46.86, 38.94}

{90.63, 90.26
90.46, 89.52 }

{79.61, 79.54
77.23, 75.83}

MMT_VGG_Regx_TD
x={0, 1, 2, 3}

{17.72, 19.43
16.77, 16.92}

{100, 99.05
100, 100 }

{51.83, 52.15
49.79, 46.82 }

{76.73, 76.63
75.40, 70.75}

{63.17, 61.64
60.82, 58.89}

MT_Inc_Regx_Lat
x={0, 1, 2, 3}

{43.26, 45.04
42.48, 35.89}

{100, 100
100, 100}

{65.26, 62.54
63.59, 61.29}

{89.98, 89.85
89.04, 88.24}

{78.44, 78.48
78.13, 75.00}

MT_Inc_Regx_TD
x={0, 1, 2, 3}

{20.53, 19.44
17.71, 13.79}

{99.05, 100
99.05, 96.19}

{52.44, 51.58
49.58, 46.33}

{76.99, 76.38
75.68, 71.26}

{63.38, 61.83
61.68, 58.22}

MT_ResNet_Regx_Lat
x={0, 1, 2, 3}

{44.87, 40.91
42.79, 36.21}

{100, 100
100, 100}

{65.26, 62.54
63.59, 61.29}

{90.42, 90.81
90.45, 87.70}

{80.00, 79.56
79.52, 74.22}

MT_ResNet_Regx_TD
x={0, 1, 2, 3}

{20.15, 17.08
20.06, 16.30}

{100, 100
100, 100}

{50.81, 51.99
50.00, 46.71}

{74.82, 76.83
75.70, 73.33}

{62.05, 63.74
60.43, 60.52}

In overall, Figure 4.9 shows that the performance of the time domain estimates of the multi-tasking
autoencoders is far better than the arithmetic mean. This was not evident in the estimates of the
basic and variational autoencoders. This observation supports our initial argument that dense and
separable latent features have a positive implication on the time domain projection. In this regard,
comparatively, the time domain median NCC accuracies of the multi-tasking autoencoders are better
than their counterparts. For instance, the modified reduced VGG16 autoencoder obtained a best case
time domain median accuracy of 54.70%. Moreover, its variational version obtained 52.45%. On the
contrary, in the best case, the multi-tasking setup obtained a 63.17% median accuracy. In addition to
this, the time domain lower whiskers of the multi-tasking setup are now relatively closer to DBA’s
lower whisker. In this aspect, the difference between the best case multi-tasking lower whisker and
that of DBA is 8.41%. This gets achieved with the outcomes of the multi-tasking autoencoder that is
based on the Inception architecture. In this regard, the variational and non-variational autoencoder

119

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Ar
th

im
et

ic

D
BA

D
TA

N

M
M

T_
VG

G
_R

eg
0_

La
t_

M
ax

M
M

T_
VG

G
_R

eg
0_

TD
_M

ax

M
M

T_
VG

G
_R

eg
1_

La
t_

M
ax

M
M

T_
VG

G
_R

eg
1_

TD
_M

ax

M
M

T_
VG

G
_R

eg
2_

La
t_

M
ax

M
M

T_
VG

G
_R

eg
2_

TD
_M

ax

M
M

T_
VG

G
_R

eg
3_

La
t_

M
ax

M
M

T_
VG

G
_R

eg
3_

TD
_M

ax

M
T_

In
c_

R
eg

0_
La

t_
M

ax

M
T_

In
c_

R
eg

0_
TD

_M
ax

M
T_

In
c_

R
eg

1_
La

t_
M

ax

M
T_

In
c_

R
eg

1_
TD

_M
ax

M
T_

In
c_

R
eg

2_
La

t_
M

ax

M
T_

In
c_

R
eg

2_
TD

_M
ax

M
T_

In
c_

R
eg

3_
La

t_
M

ax

M
T_

In
c_

R
eg

3_
TD

_M
ax

M
T_

R
es

N
et

_R
eg

0_
La

t_
M

ax

M
T_

R
es

N
et

_R
eg

0_
TD

_M
ax

M
T_

R
es

N
et

_R
eg

1_
La

t_
M

ax

M
T_

R
es

N
et

_R
eg

1_
TD

_M
ax

M
T_

R
es

N
et

_R
eg

2_
La

t_
M

ax

M
T_

R
es

N
et

_R
eg

2_
TD

_M
ax

M
T_

R
es

N
et

_R
eg

3_
La

t_
M

ax

M
T_

R
es

N
et

_R
eg

3_
TD

_M
ax

SD
BA

Averaging techniques

20

40

60

80

100
Ac

cu
ra

cy

Figure 4.9: Box-whiker plot comparison of the NCC accuracies obtained with the multi-tasking autoencoders
and their counterparts.

versions of the multi-tasking setups obtained a lower whisker difference of 9.39% and 10.95%. In
general, we attribute this significant difference to the separability and compactness of the extracted
latent embedding. To visually demonstrate this argument, we revisit the UCR archive’s FacesUCR
dataset and present their latent embedding in Figure 4.10. In the figure, we have included the latent
embedding obtained by the autoencoders and their multi-tasking version for a better comparison.
Among the embedding of the two approaches, we can see that the embedding of the multi-tasking
setups (shown on the right column) is relatively dense. Moreover, if we see the embedding obtained
with the multi-tasking Inception network, it is relatively separable compared to its counterpart. In
reality, we expect this to have a positive implication on the re-projection since the multi-tasking
setup reduces the chances of overlapping latent embedding that could lead to a relatively close latent
means which the decoder often finds difficult to differentiate. In this aspect, the VGG16, Inception,
and ResNet multi-tasking setups respectively obtained a 61.25%, 60.82%, 60.34% time domain NCC
accuracies. On the contrary, their autoencoder counterparts respectively obtained a 48.54%, 49.56%,
44.39% NCC accuracy over the 14 classes of the FacesUCR dataset.

In reality, we obtained almost a 20% improvement in the performances of the time domain esti-
mates by introducing class information. However, the next question now becomes, how well are
such improvements distributed along the evaluation datasets? Even though the box-whisker plot
gives a relatively better insight, i.e., as compared to wins/ties/losses analysis, it still does not tell
us if there is a statistically significant difference among the averaging techniques. To this end, we
next place our focus on hypothesis tests. In this regard, we first first compare the outcomes of the
multi-tasking setups with their counterparts, i.e., arithmetic, DBA,SDBA, and DTAN using 74 UCR
archive datasets. We then compare: arithmetic, DBA,SDBA, and the multi-tasking setups on 89 UCR
archive datasets since the outcomes of DTAN was not reported for the 25 additional datasets. We
then conclude, this subsection by presetting the estimates for ECG200 and ECGFiveDays as a visual

120

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

demonstration. However, before proceeding to these evaluations, first, we analyze which of the 𝐿2
regularization gives better performance. Moreover, we also assess the standard deviation (𝜎) of the
NCC accuracies to check for the reproducibility of the experimental outcomes.

40 20 0 20 40

0

20

40

60

-20

-40

-60

(a) FacesUCR in the latent space of the modified reduced
VGG16 autoencoder

60 40 20 0 20 40 60 80

40

20

0

20

40

60

80

(b) FacesUCR in the latent space of the modified reduced
multi-tasking VGG16 autoencoder

60 40 20 0 20 40 60

0

20

40

-20

-40

-60

(c) FacesUCR in the latent space of the reduced Inception
autoencoder

80 60 40 20 0 20 40 60 80

40

20

0

20

40

(d) FacesUCR in the latent space of the reduced multi-
tasking Inception autoencoder

40 20 0 20 40 60

0

20

40

-20

-40

-60

-80

(e) FacesUCR in the latent space of the reduced ResNet
autoencoder

60 40 20 0 20 40

0

20

40

60

-20

-40

-60

(f) FacesUCR in the latent space of the reduced multi-
tasking ResNet autoencoder

Figure 4.10: acrshorttsne projections for the UCR archive’s FacesUCR test datasets in the latent space of
multi-tasking and basic autoencoder architectures

In Figure 4.11, we have presented the performance difference among the four 𝐿2 regularization
setups, i.e., 𝐿2 = [0, 0.0001, 0.001, 0.01]. In the figure, the left column corresponds to the performance
comparison based on latent space classification. In this context, the first three 𝐿2 regularization
setups provided better performance. Even though the post hypothesis identified the second and
the third 𝐿2 regularization to be statistically indifferent, the first 𝐿2 regularization setup obtained
a better Friedman average rank. In reality, this is also evident in the time domain NCC accuracies.
Thus, if the need for 𝐿2 regularization arises, we propose the utilization of 𝐿2 = 0.0001. With this
in mind, in Table 4.6, we compare the standard deviation among the NCC accuracies obtained with
the estimates of the different multi-tasking autoencoders. Overall, the average standard deviation of
the latent space accuracies is below 5%. Moreover, in the time domain, the standard deviation of the
NCC accuracies is below 7%. In addition to this, we also observe that the first 𝐿2 regularization has

121

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

(a) Evaluation using NCC mean accuracies obtained in the
latent space of the multi-tasing modified reduced VGG16
autoencoder

(b) Evaluation using NCC mean accuracies obtained with
time domain estimates of the multi-tasking modified re-
duced VGG16 autoencoder

(c) Evaluation using NCC mean accuracies obtained in the
latent space of the multi-tasking reduced Inception autoen-
coder

(d) Evaluation using NCC mean accuracies obtained with
time domain estimates of the multi-tasking Inception au-
toencoder

(e) Evaluation using NCC mean accuracies obtained in the
latent space of the multi-tasking reduced ResNet autoen-
coder

(f) Evaluation using NCC mean accuracies obtained with
time domain estimates of the multi-tasking reduced ResNet
autoencoder

Figure 4.11: Evaluation of the impact of L2 regularization on the quality of means estimated with multi-tasking
autoencoder

the lowest standard deviation on both latent space and time domain NCC accuracies. This further
justifies our proposal of training the multi-tasking with this 𝐿2 regularization. In general, we take
the standard deviations to be acceptable since the overall network is optimizing for two kinds of
losses. With this said, we next place our focus on the hypotheses tests. In this regard, Figure 4.12

Table 4.6: Standard deviation of NCC accuracies that are obtained using the multi-tasking: modified reduced
VGG16, reduced Inception, and reduced ResNet autoencoders.

Techniques ±𝜎 in %
L2 Reg0

±𝜎 in %
L2 Reg1

±𝜎 in %
L2 Reg2

±𝜎 in %
L2 Reg3

MMT_VGG_Lat 4.39 3.67 4.36 5.13
MT_Inc_Lat 4.21 3.73 4.04 4.71
MT_ResNet_Lat 4.79 4.35 4.49 4.27
MMT_VGG_TD 5.87 5.46 5.69 6.77
MT_Inc_TD 5.77 5.36 5.47 6.32
MT_ResNet_TD 6.85 6.16 5.83 5.70

demonstrates the hypothesis evaluation conducted using the Nearest Centroid Classification (NCC)
accuracies obtained on 74 UCR archive datasets. In the context of the multi-tasking autoencoders, the
left column of the figure corresponds to outcomes obtained in the latent space of the autoencoders.
On the contrary, the right column corresponds to outcomes obtained using the time domain estimates.
We start our analysis of the hypotheses test from the comparison of the maximum NCC accuracies.
In reality, for the alternatives, we used reported maximum NCC accuracies. In general, with the
estimates of the variational and non-variational autoencoders, we could not beat the performances of
most of the alternatives. However, in Figure 4.12 (b), the time domain estimates obtained with the
multi-tasking modified reduced VGG16 and reduced Inception architectures were able to beat DBA.
The architectures obtained this performance when trained with zero 𝐿2 regularization. As we stated
previously, we find this to be quite impressive since the estimates of the multi-tasking autoencoders
are evaluated in DTW space which favors DBA. In addition to this, according to Figure 4.12 (a), we are

122

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

now able to obtain latent space registrations that are either better than or comparative to the state of
the art, i.e., DTAN. In other words, we are in a sense mimicking the effects of multiple alignments in
the latent space of the multi-tasking autoencoders. In this regard, the multi-tasking modified reduced
VGG16 and reduced ResNet architectures are doing a good job.

(a) Evaluation of maximum NCC accuracies obtained in
the latent space of the multi-tasking autoencoders

(b) Evaluation of maximum NCC accuracies obtained with
time domain estimates of the multi-tasking autoencoders

(c) Evaluation of mean NCC mean accuracies obtained in
the latent space of the multi-tasking autoencoders

(d) Evaluation of mean NCC accuracies obtained with time
domain estimates of the multi-tasking autoencoder

(e) Evaluation of median NCC accuracies obtained in the
latent space of the multi-tasking autoencoders

(f) Evaluation of median NCC accuracies obtained with
time domain estimates of the multi-tasking autoencoders

(g) Evaluation of minimum NCC accuracies obtained in
the latent space of the multi-tasking autoencoders

(h) Evaluation of minimum NCC accuracies obtained with
time domain estimates of the multi-tasking autoencoders

Figure 4.12: CD diagram comparison of NCC accuracies obtained from the extended evaluation of multi-tasking
autoencoders. These comparison is performed using NCC conducted on 74 UCR datasets using 25 repeated
training trials.

If we now focus on the mean and median accuracies, the multi-tasking estimates performed better
than the arithmetic mean. However, in the worst case or in cases where the network is not general-
izing well for various reasons, the time domain estimates are performing lower than an arithmetic
mean. With these observations in mind, we next assess if the outcomes obtained with the maximum
time domain NCC accuracies hold with the introduction of additional datasets. In order to make
this assessment, we conducted 25 additional NCC tasks using 25 additional UCR archive datasets.
In this regard, Figure 4.13 shows the comparison based on the multi-tasking autoencoder’s time
domain estimates and its counterparts. With the introduction of the additional 25 datasets, most
of the performance of the multi-tasking autoencoder time-domain estimates are lower than DBA.
However, some of the multi-tasking modified reduced VGG16 estimates performed similarly to DBA,
i.e., when the network gets trained with the third 𝐿2 regularization. Besides these changes, the rest of
the comparisons more or less remained the same. In general, the extended evaluation reveals that the
multi-tasking setup could generate estimates close to DBA. Moreover, it also showed that by making
proper adjustments to the layer arrangements of the architecture, the latent space could generate
embedding that significantly mimics multiple alignments. With this said, we conclude this subsection
by presenting the time domain estimates for the UCR archive’s ECG200 and ECGFiveDays datasets.
Finally, in Figure 4.14, we have presented the estimates generated by the multi-tasking autoencoders,
DBA, SDBA. Comparatively, the estimates generated by the multi-tasking VGG16 architectures are

123

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

(a) Evaluation of maximum NCC accuracies obtained with
time domain estimates of the multi-tasking autoencoders

(b) Evaluation of mean NCC accuracies obtained with time
domain estimates of the multi-tasking autoencoders

(c) Evaluation of median NCC accuracies obtained with
time domain estimates of the multi-tasking autoencoders

(d) Evaluation of minimum NCC accuracies obtained with
time domain estimates of the multi-tasking autoencoders

Figure 4.13: CD diagram comparison of NCC accuracies obtained from the extended evaluation of multi-tasking
autoencoders. These comparison is performed using NCC conducted on 89 UCR datasets using 25 repeated
training trials.

relatively better than its counterpart. Moreover, in some of its estimates, it gave shapes that resemble
the estimates of DBA. For instance, the estimates of the multi-tasking autoencoder and DBA are
relatively similar for the second class of the ECGFiveDays. In general, the NCC accuracies for the
estimates are summarized in Table 4.7. The NCC accuracies presented in Table 4.7 shows that, the

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Arthimetic average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECGFiveDays class 1 Estimated With Multi-tasking Modified Reduced VGG Estimate for ECGFiveDays class 2 Estimated With Multi-tasking Modified Reduced VGG

Estimate for ECG200 class 1 Estimated With Multi-tasking Modified Reduced VGG Estimate for ECG200 class 2 Estimated With Multi-tasking Modified Reduced VGG

(b) Multi-tasking Modified Reduced VGG16 estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Multi-tasking reduced Inception

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Multi-tasking reduced Inception

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Multi-tasking reduced Inception

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Multi-tasking reduced Inception

(c)Multi-tasking reduced Inception estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Multi-tasking reduced ResNet

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Multi-tasking reduced ResNet

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Multi-tasking reduced ResNet

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Multi-tasking reduced ResNet

(d) Multi-tasking reduced ResNet estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(e) DBA estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(f) SDBA estimates

Figure 4.14: Averages estimated for the UCR archives ECG200 and ECGFiveDays datasets using multi-tasking:
modified reduced VGG16, reduced Inception, reduced ResNet, and alternative averaging techniques

124

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

estimates generated by the multi-tasking autoencoder have better representatives than their counter-
parts. With this said, we conclude the discussion in this subsection and proceed with the evaluation
of the variational versions of the multi-tasking setups.

Table 4.7: NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are obtained with
multi-tasking autoencoders

Techniques NCC for ECG200 in % NCC for ECGFiveDays in%
Arithmetic 67 52.96
DBA 65 52.15
SDBA 73 67.02
DTAN 79 97.79
MMT_VGG_TD 77 70.27
MT_Inception_TD 78 72.36
MT_ResNet_TD 78 72.71

4.2.5.2 Evaluation of Averages Estimated with Variational Multi-tasking Autoencoders

We start our assessment of the variational multi-tasking autoencoder with the wins/ties/losses analysis.
However, the variational multi-tasking autoencoders also failed to converge on the datasets presented
in Table 3.18 due to the high amplitude values of the datasets. Even though there is a chance we could
mitigate this by introducing batch normalization layers, we refrained from doing so since we want
to have a fair comparison among the multi-tasking setups, i.e., the variational and non-variational
versions. However, we also found the multi-tasking setup based on the ResNet architecture also
failed to converge for the Fungi dataset. In reality, the maximum amplitude value within the dataset
ranges up to 80. Even though this is comparatively lower than the amplitude values observed for the
datasets mentioned in Table 3.18, the ResNet was unable to converge. In this regard, as we stated
earlier, the ResNet utilizes an Addition layer to combine skip connection features with the outputs of
the Convolutional stacks. To this end, the ResNet continuously adds a constant offset to the means

Table 4.8: Comparison of wins/ties/losses obtained with the estimates of variational multi-tasking autoencoders
and their counterparts. These comparisons are obtained using the best outcomes of NCC experiments that
were conducted on 66 UCR archive datasets using 25 repeated training trials and four 𝐿2 regularization (𝐿2 =
[0, 0.0001, 0.001, 0.01]).

Techniques 𝐿2 Reg. (𝑥) Wins Ties Losses
Arithmetic 0 0 66
DBA - 0 1 65
DTAN 11 3 52
SDBA 8 1 57
Var_MMT_VGG_Regx_Lat

{0, 1, 2, 3}

{7, 7, 5, 3} {5, 2, 4, 2} {54, 57, 57, 61}
Var_MMT_VGG_Regx_TD {2, 0, 0, 0} {2, 0, 1, 1} {62, 66, 65, 65}
Var_MT_Inc_Regx_Lat {2, 0, 0, 3} {3, 2, 3, 2} {61, 64, 63, 61}
Var_MT_Inc_Regx_TD {0, 0, 0, 0} {1, 2, 0, 1} {65, 64, 66, 65}
Var_MT_ResNet_Regx_Lat {1, 1, 2, 3} {2, 4, 5, 3} {63, 61, 59, 60}
Var_MT_ResNet_Regx_TD {0, 1, 0, 0} {2, 3, 0, 1} {64, 62, 66, 65}

125

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

of the latent features. This is contrary to the objective of variational autoencoders which aims to
bring down the mean to zero. In addition to this, since we have now added a classification objective,
it will further add to the difficulty of training the multi-tasking ResNet autoencoder. In general, given
the circumstances, we find it not to be surprising that the multi-tasking ResNet failed to converge
for the Fungi dataset. With this in mind, in Table 4.8, we have summarized the wins/ties/losses
obtained with the variational multi-tasking autoencoders. Given the performances shown in Ta-
ble 4.16 and the challenge associated with the network convergence, we found the estimates of the
variational multi-tasking autoencoder to be relatively not encouraging. However, since we can not
make conclusive remarks based on speculations, we next perform the statistical evaluations we have
performed on previous setups. In this regard, we first analyze the overall NCC using a box-whisker plot.

Table 4.9 shows the statistics of the NCC accuracies corresponding to the box-whisker plot given
in Figure 4.15. In reality, we observed no significant statistical improvement in the NCC accuracies
obtained with the estimates of the variational and non-variational multi-tasking autoencoders. For
instance, over the same 66 UCR archive datasets, the VGG16 based non-variational and variational
autoencoders obtained a best case median accuracy of 79.21% and 79.31%. Moreover, for the Inception
architecture, the accuracies were 78.21% and 77.92%. Finally, for the ResNet it is 79.26% and 76.82%. In
general, we can associate the slight decrements in the performances of the variational autoencoder.

Ar
th

im
et

ic

DB
A

DT
AN

SD
BA

Va
r_

M
M

T_
VG

G_
Re

g0
_L

at
_M

ax

Va
r_

M
M

T_
VG

G_
Re

g0
_T

D_
M

ax

Va
r_

M
M

T_
VG

G_
Re

g1
_L

at
_M

ax

Va
r_

M
M

T_
VG

G_
Re

g1
_T

D_
M

ax

Va
r_

M
M

T_
VG

G_
Re

g2
_L

at
_M

ax

Va
r_

M
M

T_
VG

G_
Re

g2
_T

D_
M

ax

Va
r_

M
M

T_
VG

G_
Re

g3
_L

at
_M

ax

Va
r_

M
M

T_
VG

G_
Re

g3
_T

D_
M

ax

Va
r_

M
T_

In
c_

Re
g0

_L
at

_M
ax

Va
r_

M
T_

In
c_

Re
g0

_T
D_

M
ax

Va
r_

M
T_

In
c_

Re
g1

_L
at

_M
ax

Va
r_

M
T_

In
c_

Re
g1

_T
D_

M
ax

Va
r_

M
T_

In
c_

Re
g2

_L
at

_M
ax

Va
r_

M
T_

In
c_

Re
g2

_T
D_

M
ax

Va
r_

M
T_

In
c_

Re
g3

_L
at

_M
ax

Va
r_

M
T_

In
c_

Re
g3

_T
D_

M
ax

Va
r_

M
T_

Re
sN

et
_R

eg
0_

La
t_

M
ax

Va
r_

M
T_

Re
sN

et
_R

eg
0_

TD
_M

ax

Va
r_

M
T_

Re
sN

et
_R

eg
1_

La
t_

M
ax

Va
r_

M
T_

Re
sN

et
_R

eg
1_

TD
_M

ax

Va
r_

M
T_

Re
sN

et
_R

eg
2_

La
t_

M
ax

Va
r_

M
T_

Re
sN

et
_R

eg
2_

TD
_M

ax

Va
r_

M
T_

Re
sN

et
_R

eg
3_

La
t_

M
ax

Va
r_

M
T_

Re
sN

et
_R

eg
3_

TD
_M

ax

Averaging techniques

20

40

60

80

100

Ac
cu

ra
cy

Figure 4.15: Box-whisker plot comparison of the NCC accuracies obtained with the variational multi-tasking
autoencoders and their counterparts.

with the difficulty of their underlying objective function. In reality, we are now asking the autoencoders
to extract features that are: normally distributed, separable, and reconstructible. This is relatively
difficult compared to the requirement placed on non-variational multi-tasking autoencoders, i.e.,
extracting features that are separable and reconstructible. However, even under this difficulty, the vari-
ational multi-tasking autoencoders are performing relatively close to DBA and SDBA. In this aspect, if
we see the median accuracies, we can observe that DBA and SDBA respectively obtained a 65.54% and
69.02% performance. In this aspect, the best median NCC accuracies of the variational multi-tasking

126

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Table 4.9: Statistics assessment of the NCC accuracies that are obtained with the multi-tasking: modified
VGG16, reduced Inception, and reduced ResNet architectures. These assessments were conducted using the
maximum NCC accuracies on 65 UCR archive datasets using the different averaging techniques

Techniques Bot. whisker Top whisker 25% Quant. 75% Quant. Median
Arithmetic 8.31 96.43 40.56 69.23 52.41
DBA 28.94 100 54.39 80.75 64.54
DTAN 33.31 100 59.31 85.72 74.30
SDBA 32.83 99.05 58.33 82.04 69.02
Var_VGG_Regx_Lat
x={0, 1, 2, 3}

{42.97, 45.61
42.56, 33.98 }

{100,99.33,
100, 100 }

{62.25, 65.14
62.25, 59.84}

{91.11, 89.89
90.55, 90.06 }

{79.31, 76.73
76.05, 71.57}

Var_VGG_Regx_TD
x={0, 1, 2, 3}

{18.65, 20.86
15.99, 14.42}

{100, 99.05
99.05, 100}

{51.95, 51.69
50.39, 47.14 }

{77.32, 73.37
77.51, 75.39}

{63.96, 62.73
60.88, 56.99 }

Var_Inc_Regx_Lat
x={0, 1, 2, 3}

{45.64, 44.21
40.59, 40.59 }

{100, 100
100, 100 }

{64.76, 61.08
61.89, 61.08}

{90.53, 89.05
89.44, 89.89}

{77.92, 79.03
77.28, 74.59}

Var_Inc_Regx_TD
x={0, 1, 2, 3}

{23.19, 16.77
14.89, 14.89}

{100, 100
99.05, 99.05}

{52.19, 51.23
51.06, 46.72}

{68.54, 65.65
64.33, 60.56}

{62.34, 63.14
61.26, 59.51}

Var_ResNet_Regx_Lat
x={0, 1, 2, 3}

{25.89, 38.13
29.23, 39.23}

{100, 100
100, 100}

{56.97, 60.16
58.43, 59.60}

{89.28, 90.67
90.11, 90.23}

{75.40, 76.82
76.06, 76.41 }

Var_ResNet_Regx_TD
x={0, 1, 2, 3}

{17.69, 22.31
20.71, 20.30}

{100, 100
97.05, 100}

{45.95, 51.82
51.89, 50.42}

{74.52, 74.94
74.78, 74.82}

{59.89, 62.87
62.31, 60.31}

autoencoders are within the ranges of 62.87% and 63.96%. This makes them to still a significantly better
performing averaging technique compared to the arithmetic mean, i.e., as shown in Figure 4.15. This
in turn implies that, in the latent space, the variational multi-tasking autoencoders can extract features
that mimic the effects of multiple alignments. In order to demonstrate this visually, we revisit the UCR
archive’s FacesUCR dataset and present its latent space t-SNE projections. In this regard, Figure 4.16
demonstrates the acrshorttsne projection of the dataset in the latent spaces of the non variational and
variational versions of the multi-tasking autoencoders. In Figure 4.16, the projections on the left and
right column corresponds to the latent embedding obtained with the non variational and variational
multi-tasking autoencoders. The figures show that both versions of the multi-tasking autoencoders
have the capability of extracting dense and separable latent features. However, the question now
becomes, how good are the latent embedding of the variational autoencoders in the context of the time
domain estimates. In order to address this question, we assess the NCC accuracies using a hypothe-
sis tests. In this aspect, we follow the same procedure and first compare the accuracies associated
with: DTAN, DBA, SDBA, arithmetic, and the estimates of the variational multi-tasking autoencoders.

In Figure 4.17, we compare the latent space (left column) and time domain (right column) NCC
accuracies of the variational multi-tasking autoencoders. Similar to their non-variational counterpart,
the variational multi-tasking autoencoders obtained a better latent space registration compared to
the state of the art (DTAN). This is evident in Figure 4.17 (a) where the variational multi-tasking
autoencoder based on the VGG16 architecture is performing better than its counterparts, i.e., while it
is trained using the first three 𝐿2 regularization configurations. Moreover, the variational Inception

127

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

60 40 20 0 20 40 60 80

40

20

0

20

40

60

80

(a) FacesUCR in the latent space of the multi-tasking modi-
fied reduced VGG16 autoencoder

60 40 20 0 20 40 60

0

20

40

60

-20

-40

-60

(b) FacesUCR in the latent space of the variational multi-
tasking modified reduced VGG16 autoencoder

80 60 40 20 0 20 40 60 80

40

20

0

20

40

(c) FacesUCR in the latent space of the reduced multi-
tasking Inception autoencoder

60 40 20 0 20 40 60 80

0

20

40

60

-20

-40

(d) FacesUCR in the latent space of the variational reduced
multi-tasking Inception autoencoder

60 40 20 0 20 40

0

20

40

60

-20

-40

-60

(e) FacesUCR in the latent space of the reduced multi-
tasking ResNet autoencoder

40 20 0 20 40

0

20

40

60

-20

-40

-60

-80

(f) FacesUCR in the latent space of the variational reduced
multi-tasking ResNet autoencoder

Figure 4.16: t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent space of variational
and non variational multi-tasking autoencoder architectures

architecture is performing better than DTAN when trained with the first two 𝐿2 regularization.
However, the ResNet based architecture barely outperforms DTAN when it is trained with the second
𝐿2 regularization. If we now place our focus on the time domain NCC accuracies, the estimates
obtained with some of the variational multi-tasking autoencoders outperform DBA, i.e., as shown
in in Figure 4.17 (b). In this regard, the architecture based on the VGG16 performs better than DBA
when it is trained with zero 𝐿2 regularization. In general, we found the time domain and latent
space performances of the variational versions to be more or less similar to their basic counterparts.
However, to assess this claim statistically, we compared the NCC accuracies obtained with both setups
on 75 UCR archive datasets. In this regard, Figure 4.18 shows the comparisons of latent space and time
domain maximum and median NCC accuracies. However, for better clarity, we only took the NCC
accuracies that are associated with zero 𝐿2 regularization. In general, Figure 4.18 (a) shows that in the
latent space the non variation VGG16 based multi-tasking autoencoder is performing better. In reality,
the post-hypothesis test identified that its performance is statistically indifferent to its variational

128

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

form. However, despite this equivalence, the variational version of the VGG16 is performing lower
than its non variational ResNet counterpart.

(a) Evaluation of maximumNCC accuracies obtained in the
latent space of the variational multi-tasking autoencoders

(b) Evaluation of maximum time domain NCC accuracies
obtained with variational multi-tasking autoencoders

(c) Evaluation of mean NCC accuracies obtained in the
latent space of the variational multi-tasking autoencoders

(d) Evaluation of mean time domai NCC accuracies ob-
tained with variational multi-tasking autoencoder

(e) Evaluation of median NCC accuracies obtained in the
latent space of the variational multi-tasking autoencoders

(f) Evaluation of median time domain NCC accuracies
obtained with variational multi-tasking autoencoders

(g) Evaluation of minimum NCC accuracies obtained in the
latent space of the variational multi-tasking autoencoders

(h) Evaluation of time domain minimum NCC accuracies
obtained with variational multi-tasking autoencoders

Figure 4.17: CD diagram comparison of NCC accuracies obtained from the evaluation of variational multi-
tasking autoencoders. These comparison is performed using NCC conducted on 66 UCR datasets using 25
repeated training trials.

In general, we find the non variational version of the multi-tasking autoencoders are better in latent
space registration. We associate this better performance to the relatively lower constraint placed
on their allowable latent embedding. However, in the time domain, the variational versions of the

(a) Evaluation of maximum NCC accuracies obtained in
the latent space of the variational and non variational multi-
tasking autoencoders

(b) Evaluation of maximum NCC accuracies obtained with
the time domain estimates of variational and non variational
multi-tasking autoencoders

(c) Evaluation of median NCC accuracies obtained in the
latent space of variational and non variational multi-tasking
autoencoders

(d) Evaluation of median NCC accuracies obtained with
time domain estimates of the variational and non variational
multi-tasking autoencoder

Figure 4.18: CD diagram comparisons of NCC accuracies obtained with the variational and non variational
multi-tasking autoencoders. The comparison is performed using the NCC accuracies obtained from 75 UCR
archive datasets.

multi-tasking autoencoders are slightly performing better than their non-variational counterparts,
i.e., Figures 4.18 (b) and 4.18 (d). In this regard, the variational VGG16 and Inception are slightly
performing better. In reality, the decoders of the variational multi-tasking autoencoders are expected
to reconstruct latent embedding confined to a smaller region which gives them a better chance of
generalizing. However, even with this advantage, we find the difference among the two versions
of the autoencoders to be relatively small. In general, based on the experimental evaluations, we

129

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

found no significant difference among the two multi-tasking setups. However, in terms of training,
the variational version of the multi-tasking setups are relatively difficult to train since the overall
optimization setup is expected to meet relatively more constraints. In addition to this, they also
require data pre-processing if the amplitude of the averaged set is large. On the contrary, we have
not seen such requirement with the non variational versions. In general, if the multi-tasking setup
is to be used, we suggest the non-variational versions to be deployed. With this said, we conclude
the statistical comparison of the NCC accuracies by presenting the comparison of the variational
multi-tasking autoencdoer’s estimate with: SDBA,DBA and arithmetic mean. In this comparison, we
have included the NCC accuracies of additional 19 UCR archive datasets. We expect the additional
experiment to help us validate if the performance observed with the time domain maximum NCC
accuracies holds, i.e., the one shown in Figure 4.18 (b). In this context, Figure 4.19 (a) shows that some
of the multi-tasking variational autoencoders are still performing better than DBA. This is evident

(a) Evaluation of maximum NCC accuracies obtained with
the time domain estimates of variational multi-tasking au-
toencoders

(b) Evaluation of mean NCC accuracies obtained with the
time domain estimates of variational multi-tasking autoen-
coders

(c) Evaluation of median NCC accuracies obtained with
the time domain estimates of variational multi-tasking au-
toencoders

(d) Evaluation of minimum NCC accuracies obtained with
the time domain estimates of variational multi-tasking au-
toencoders

Figure 4.19: CD diagram comparisons of NCC accuracies that are obtained using the time domain estimates of
the variational multi-tasking autoencoders and their counterpart. The comparison is performed using the NCC
obtained on 75 UCR archive datasets.

when architectures that are based on VGG16 and Inception gets trained with zero 𝐿2 regularization.
However, it should also be noted that as compared to the comparison made in Figure 4.13, we are
assessing performance on a relatively lower number of datasets since we now have datasets that the
network failed to converge for. Moreover, on a comparable number of datasets, the non variational
version of the autoencoders were also performing better than DBA, i.e., Figure 4.12. Based on these
assessments, we can safely conclude that there is no major difference among the two setups, i.e.,
despite the convergence problem associated with the variational versions.

With these observations in mind, we will conclude this subsection by presenting the time domain
estimates corresponding to the UCR archive’s ECG200 and ECGFiveDays as a visual demonstration.
However, before proceeding to the visual demonstration, we first assess the variance among the
NCC accuracies obtained with the different setups. In this context, Table 4.10 shows the standard
deviation (𝜎) among the NCC accuracies. Conforming to our previous argument, i.e., the ResNet
continuously adds a constant offset that makes its training difficult , its standard deviation is higher
than its counterparts. In general, in most cases the zero regularization gave a relatively reproducible
results, i.e., it has narrow variance. Moreover, comparatively, the outcomes of the Inception architec-

130

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

ture is relatively stable. With this said, in Figure 4.20 we have presented the estimates generate using
the variational and non variational autoencoders for a better comparion.

Table 4.10: Standard deviation of NCC accuracies that are obtained using the variational multi-tasking: modified
reduced VGG16, reduced Inception, and reduced ResNet autoencoders.

Techniques ±𝜎 in %
L2 Reg0

±𝜎 in %
L2 Reg1

±𝜎 in %
L2 Reg2

±𝜎 in %
L2 Reg3

Var_MMT_VGG_Lat 3.85 4.48 5.05 4.21
Var_MT_Inc_Lat 4.49 3.73 4.68 3.99
Var_MT_ResNet_Lat 12.68 9.09 9.28 8.30
Var_MMT_VGG_TD 5.92 5.92 6.70 5.95
Var_MT_Inc_TD 5.50 5.32 7.35 5.44
Var_MT_ResNet_TD 9.59 8.55 8.560 8.0

In general, the variational and non variational setups were able to obtain the NCC accuracies summa-
rized in Table 4.19. In overall, for the two datasets, the estimates of the non variational autoencoders
performed better. With these observations in mind, we proceed with the further investigation of the
multi-tasking setup in the following two consecutive sub sections. In the further investigation, we
try to fill gaps on the objective function of the multi-tasking setup which we believe could further
improve the quality of the time domain estimates.

Table 4.11: NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are obtained with
multi-tasking autoencoders

Techniques NCC for ECG200 in % NCC for ECGFiveDays in%
Arithmetic 67 52.96
DBA 65 52.15
SDBA 73 67.02
DTAN 79 97.79
MMT_VGG_TD 77 70.27
MT_Inception_TD 78 72.36
MT_ResNet_TD 78 72.71
Var_MMT_VGG_TD 73 70.15
Var_MT_Inception_TD 77 70.49
Var_MT_ResNet_TD 77 74.33

131

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4
At

tri
bu

te
ECGFiveDays class one with Arthimetic average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECGFiveDays class 1 Estimated With Multi-tasking Modified Reduced VGG Estimate for ECGFiveDays class 2 Estimated With Multi-tasking Modified Reduced VGG

Estimate for ECG200 class 1 Estimated With Multi-tasking Modified Reduced VGG Estimate for ECG200 class 2 Estimated With Multi-tasking Modified Reduced VGG

(b) Multi-tasking modified reduced VGG16’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Var_MMT_VGG

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Var_MMT_VGG

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Var_MMT_VGG

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Var_MMT_VGG

(c) Variational multi-tasking modified reduced VGG16’s
estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Multi-tasking reduced Inception

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Multi-tasking reduced Inception

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Multi-tasking reduced Inception

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Multi-tasking reduced Inception

(d)Multi-tasking reduced Inception’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Var_MT_Inception

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Var_MT_Inception

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Var_MT_Inception

0 20 40 60 80

2

1

0

1

2

3

Estimate for ECG200 class 2 with Var_MT_Inception

(e) Variational multi-tasking reduced Inception’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Multi-tasking reduced ResNet

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Multi-tasking reduced ResNet

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Multi-tasking reduced ResNet

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Multi-tasking reduced ResNet

(f)Multi-tasking reduced ResNet’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Var_MT_ResNet

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Var_MT_ResNet

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Var_MT_Inception

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Var_MT_Inception

(g) Variatinoal multi-tasking reduced ResNet’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(h) DBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(i) SDBA’s estimates

Figure 4.20:Averages estimated for the UCR archives ECG200 and ECGFiveDays datasets using variational multi-
tasking: modified reduced VGG16, reduced Inception, reduced ResNet, and alternative averaging techniques

132

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

4.3 Time Series Averaging Using a Multi-taskingQuantile Regression
Autoencoder

In this section, we address the limitations observed in the objective function of the multi-tasking
networks. In this regard, we first focus on improving the compactness of the extracted latent space
reforestation. In this aspect, we first propose to introduce the latent space WGSS loss function given
in (4.2), where𝐶 and 𝐾𝑖 are the number of categories (classes) and the number of training samples per
a given class. Moreover, `𝑖 is the arithmetic mean of the latent space representations of input series
that belong to a given class 𝐶𝑖 . We expect this loss to encourage and force the encoder to extract
latent features centered around the latent means. Moreover, since (4.2) forces the per class latent
feature to minimize their discrepancy with the latent means, i.e., the common landmark, the features
are expected to be within the neighborhood of each other. In reality, we make (4.2) only visible to
the encoder portion of the network for two reasons. First, extracting a dense latent feature is mainly
the responsibility of the encoder. Secondly, we desire that the encoder takes the compactness of the
extracted latent space representations into account while adjusting its weights to meet the demands
of the classifier and decoder.

𝑊𝐺𝑆𝑆𝐿𝑎𝑡𝑒𝑛𝑡 (𝑍, `) = 1
𝐶

𝐶∑︁
𝑖=1

1
𝐾𝑖

𝐾𝑖∑︁
𝑗=1

| |𝑍 𝑗 − `𝑖 | |𝑙2 (4.2)

In practice, the extraction of dense latent features could either improve or degrade the quality of the
projected estimates. In the worst case, if the latent features are very dense and overlapping, the decoder
will have difficulties distinguishing among the latent space representations of the input datasets.
However, since the encoder is informed about the demands of reconstructability and distingushibility
through the losses of the decoder and classifier, there is a low probability of extracting overlapping
latent space representations. On the contrary, under such constraints, we expect a latent means to
be within the neighborhood of the latent embedding of multiple input series. To this end, we expect
the decoder to have a higher likelihood of projecting a latent means into a time domain projection
that highly resembles a range of input series. In other words, by increasing the compactness of the
latent features, we are indirectly trying to increase the decoder’s ability to interpret latent space
neighborhood points. In reality, there are also alternative mechanisms that could further assist
this objective. For instance, in autoencoders, we utilize reconstruction loss to re-project latent
features. However, in practice, we do not expect a reconstructed series to be an exact copy of its input
counterpart. On the contrary, in the time domain, we expect the reconstructed series to be a near
neighborhood of its input counterpart. Thus, if we see this from a different perspective, we can think
of the reconstructed series as additional input examples. With this in mind, we propose to utilize the
latent space embedding of the reconstructed output of the decoder. With this in mind, we propose
to introduce a mean squared error between the latent representation of the reconstructed series (𝑍)
and their input counterparts (𝑍) using (4.3). Moreover, we intend to make this loss only visible to
the decoder portion of the multi-tasking networks. In reality, the advantages of incorporating (4.3)
into the objective function of the decoder are twofold. First, we help the decoder further assess
its reconstruction capability in the latent space, i.e., in addition to the time domain. Additionally,

133

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

by introducing (4.3), we are making the latent space of the multi-tasking autoencoders relatively
continuous from the perspective of the decoder. This is because, as the training progresses, the
decoder slowly learns to reconstruct the input datasets more optimally. Thus, when this happens,
the latent space projection of the reconstructed series will be in the near neighborhood of the input
series’s latent embedding. To this end, we are now indirectly providing the decoder with a piece
of additional information on how to interpret (map) neighborhood points. This, in turn, helps the
decoder to be less sensitive to small latent space perturbances. In reality, this is a positive effect in
the context of projecting the latent space means. This is because, in this case, we will have relatively
lower blind spots that the decoder fails to interpret optimally.

𝑀𝑆𝐸𝐿𝑎𝑡𝑒𝑛𝑡 (𝑍, 𝑍) = 1
𝐶

𝐶∑︁
𝑖=1

1
𝐾𝑖

𝐾𝑖∑︁
𝑗=1

| |𝑍 𝑗 − 𝑍 𝑗 | |𝑙2 (4.3)

With these improvements in mind, we next place our focus on relaxing the reconstruction loss of the
decoder. In this aspect, the first concern we address is the susceptibility of the Mean Squared Error
(MSE) to outliers. This is because, due to the squaring operation in MSE, the reconstruction error
of outliers gets significantly magnified. Thus, in such cases, the gradients of the decoder are often
pulled in an undesired direction. One possible way of overcoming this challenge would be to change
MSE with Mean Absolute Error (MAE) (5.10), where 𝑋, 𝑋 𝜖 ℝ𝑀 are the input and re-constructed
series. Moreover, N is the number of series within the averaged set.

𝐿(𝑋, 𝑋) = 1
𝑁

𝑁∑︁
𝑖=1

1
𝑀

𝑀∑︁
𝑗=1

|𝑥 𝑗, 𝑖 − 𝑥 𝑗, 𝑖 | (4.4)

In practice, due to the removal of the squaring operation, the MAE is less sensitive to the effects
of outliers pulling the decoder in an undesired direction. However, like its MSE counterpart, the
MAE encourages a median reconstruction (regression). This is better demonstrated in Figure 4.21 (a)
where we have indicated possible reconstruction cases using the UCR archive’s ECEGFiveDays dataset.
Based on Figure 4.21 (a), we can identify three possible reconstruction cases: over, under or perfect
reconstruction. However, in practice, MSE or MAE error functions equally penalize over and under
estimations (reconstructions). To this end, since a perfect reconstruction is often not guaranteed, we
expect the final reconstruction for a given dataset to be along a median line that is in between the two
extremes. In addition to this, since the decoder is optimizing for an average reconstruction loss (4.1),
we can not expect the decoder to learn a perfect reconstruction for the individual datasets. To this
end, when we re-project the latent arithmetic averages, we expect the individual reconstruction
errors to aggregate and pull down the projected means close to the average (median) of the median
reconstruction lines. This is better demonstrated in Figure 4.21 (d) where we plotted the reduced
VGG16 multi-tasking autoencoder’s estimation for the first class of the UCR archive’s ECGFiveDays
dataset. In the figure, we can observe that amplitudes of major descriptive features are often close to the
median reconstruction line. This, in turn, makes a latent mean re-projection based on reconstruction
losses to be relatively close and at times similar to an arithmetic mean, i.e., as shown in Figure 4.3 (b).
To this end, we aim to change the decoder’s objective function in a way that we have better control of

134

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

0 20 40 60 80 100 120 140Time

4

2

0

2

Am
pl

itu
de

ECGFiveDays sample class one dataset

Under estimation
Under estimation Under estimation

Over estimation

Over estimation

Over estimation

(a) Possible cases of reconstruction

0 20 40 60 80 100 120 140Time

4

2

0

2

Am
pl

itu
de

ECGFiveDays class one and MT_Enc_Time estimated mean
Average

Under estimation

Under estimation

Under estimation

(b) An estimated average and a member of the averaged set

0 20 40 60 80 100 120 140Time

6

4

2

0

2

Am
pl

itu
de

ECGFiveDays class one and MT_Enc_Time estimated mean
Average

Under estimation

Under estimation

(c) Comparison of an estimated average and a member of
the averaged set

0 20 40 60 80 100 120 140Time

6

4

2

0

2

4

Am
pl

itu
de

ECGFiveDays class one and MT_Enc_Time estimated mean
Average

Median Reconstruction Line
Median Reconstruction Line

Median Reconstruction Line

(d) An estimated average as compared to the median recon-
struction line

Figure 4.21: Visual demonstration of an estimated average and the median reconstruction line

the location of the median reconstruction lines. Thus, this way, we have better control over the quality
of the projected estimations. With these in mind, we identified the quantile regression loss given
in (4.5) to align with the current objective, where 0 ≤ _ ≤ 1 and 𝑋, 𝑥 𝜖 ℝ𝑀 . Quantile regression
sees the reconstruction problem from three angles: overestimation, underestimation, and perfect
estimation. In quantile regression, we say an overestimation has occurred if (𝑋 − 𝑋) < 0. On the
contrary, an underestimation occurs when (𝑋 − 𝑋) > 0.

𝐿𝑄 (_, 𝑋, 𝑋) = max{_ (𝑋 − 𝑋), (1 − _) (𝑋 − 𝑋)} (4.5)

With this understanding, we can safely assume _ (𝑋 −𝑋) relates to underestimation since 0 ≤ _ ≤ 1.
On the contrary, (1 − _) (𝑋 − 𝑋) corresponds to overestimation. Moreover, in (4.5), _ determines
how much of the under or overestimations the network penalizes. To this end, we can identify three
scenarios which can favour under, over or median reconstruction (estimation): _ < 0.5, _ > 0.5
and _ = 0.5. In the first case, i.e., _ < 0.5, (4.5) encourages underestimation and discourages
overestimation. This is because, the error for the under estimation ((𝑋 − 𝑋) > 0) has a weighting
factor of _ < 0.5. On the contrary, a _ > 0.5 discourages underestimation since now (𝑋 − 𝑋) > 0 a
weighting factor of _ > 0.5. Finally, at _ = 0.5, quantile regression behaves asMAE. This is because
it penalizes both over and under estimations equally. However, for our case, we have reconfigured the
quantile regression loss so that it penalizes over (under) estimation equally by a factor that is different
from 0.5. In order to make this possible, we compute the quantile regression for a pair of _ values
rather than a single _ value, i.e., _ (_ = [_1, _2]). Moreover, after computing the quantile regression
loss based on the two _ values, we propose to take the maximum of the two quantile regression losses
as shown in (4.6). We make this modification with the intention of defining additional reconstruction

135

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

scenarios while keeping the already available ones intact. For instance, if we set both _ values equal
to each other but not necessarily to 0.5, then (4.6) will be an improved version of the basic quantile
regression given in (4.5). This is because we can now discourage both over and under estimations by
a factor different from 0.5.

𝐿𝐶𝑄 ([_1, _2], 𝑋, 𝑋) = max{𝐿𝑄 (_1, 𝑋, 𝑋), 𝐿𝑄 (_2, 𝑋, 𝑋)} (4.6)

However, if we set them to be different say _ = [0.75, 0.25], then we will be penalizing over or
underestimation equally by a factor of 75% (0.75). This is because, if we assume underestimation has
occurred ((𝑋 − 𝑋) > 0), then the first _ penalizes it by 75%. On the contrary, the second penalizes it
by 25%. However, since we are taking the maximum of the two computations, we will end up with a
75% penalization. With the same analysis, if underestimation occurs ((𝑋 − 𝑋) < 0), then the first _
penalizes it by 25% and the second _ by 75%. However, when we take the maximum of the two, we
penalize overestimation by 75%. Additionally, we can also favor over and under estimations by setting
both _ values to be equal. In this aspect, if we set both _ values to be less than 0.5, we will encourage
over-estimation and vice versa. One additional point to note here is that the quantile regression loss
analyzes the time series at a timestamp level. This is because we have not utilized any sort of norming
operation on the errors. To this end, the over or under estimation gets performed on each timestamp
as if we are performing regression. In reality, this provides a more refined control on the median
reconstruction line compared to MSE and MAE. This, in turn, is expected to help us avoid latent space
mean re-projections that resemble arithmetic mean.

In practice, the advantage of using quantile regression is not limited to shifting the median recon-
struction line. On the contrary, since we now using a reduced weighting factor for the reconstruction
loss, i.e., loss (0 < _ < 1), we are encouraging the classifier to have more say on the latent space
features it extracts. Thus, we also indirectly increase the probability of obtaining highly separable
latent features. With these technicalities in mind, we propose to customize the objective functions of
the three modules of our multi-tasking setup as follows. We propose the encoder to optimize for the
losses given in (4.7). However, we propose the classifier and the decoder to respectively optimize for
(4.8) and (4.9). With this said, we will first present the preliminary experimental evaluations and later
and continue with the extended evaluation.

𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ([_1, _2], 𝑋, 𝑋, 𝑍,𝐶𝑎𝑡, 𝑃𝑐𝑎𝑡) = 𝐿𝐶𝑄 ([_1, _2], 𝑋, 𝑋) − 𝐿𝑐𝑎𝑡 (𝐶𝑎𝑡, 𝑝𝑐𝑎𝑡) + 𝑊𝐺𝑆𝑆𝐿𝑎𝑡𝑒𝑛𝑡 (𝑍, `)
(4.7)

𝐿𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝐶𝑎𝑡, 𝑝𝑐𝑎𝑡) = −𝐿𝑐𝑎𝑡 (𝐶𝑎𝑡, 𝑝𝑐𝑎𝑡) (4.8)

𝐿𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ([_1, _2], 𝑋, 𝑋, 𝑍, 𝑍) = 𝐿𝐶𝑄 ([_1, _2], 𝑋, 𝑋) + 𝑀𝑆𝐸𝐿𝑎𝑡𝑒𝑛𝑡 (𝑍, 𝑍) (4.9)

4.3.1 Proposed Architectures

We evaluated the proposed modifications on the objective function using the modified reduced VGG16,
ResNet and Inception version two architectures shown in Figure 4.6, 4.7 and 4.8. However, in this
evaluation, we have removed the last transposed Convolutional layer of the decoder. Additionally, we

136

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

have not evaluated the variational variants of the multi-tasking autoencoders since we have not so
far seen a significant change while utilizing them.

4.3.2 Experimental Setups

We have proposed to train the non-variational versions of the multi-tasking autoencoders using an
80/20 train and validation splits. Moreover, we aim to use two sets of _ configurations, i.e, _𝑐𝑜𝑛𝑓 1
= [(0.85, 0.15), (0.75, 0.25), (0.65, 0.35), (0.5, 0.5)] and _𝑐𝑜𝑛𝑓 2 = [(0.85, 0.85), (0.75, 0.75), (0.65, 0.65),
(0.15, 0.15), (0.25, 0.25), (0.35, 0.35)]. In reality, the first set of _ pair discourages either over or under
estimations by a factor 0.5 ≤ _ ≤ 0.85. However, unlike MSE and MAE, the configuration leaves
a little room for under and overestimations. On the contrary, in the second _ pair configuration, if
{_1 , _2} < 0.5, then we will be encouraging underestimations whenever they occur. However,
if {_1 , _2} > 0.5, then we will encourage over estimations whenever they occurs. With this
understanding, afterward, we will call _ pair that discourage over (under) estimation as _𝑐𝑜𝑛𝑓 1. On
the contrary, we will call the configurations that encourage over (under) estimation as _𝑐𝑜𝑛𝑓 2. With
these terminologies in mind, we first propose to train each multi-tasking autoencoders using the
_ configurations given in _𝑐𝑜𝑛𝑓 𝑖𝑔1 for 1500 epochs on 84 UCR datasets. Following this training, for
each neural network configuration and training dataset, out of the estimations based on different _
pair vales, we take the one that obtained the maximumNCC accuracies. We then aim to compare
these outcomes to the outcomes of the alternatives, i.e., DBA, SDBA, DTAN and the basic multi-
tasking autoencoder. After performing this comparison, we aim to select the best performing quantile
multi-tasking regression network. We then aim to train the network using: _𝑐𝑜𝑛𝑓 𝑖𝑔1 configuration, the
114 UCR datasets, 1500 epochs, and 25 repeated trials. We then compare the maximum, minimum,
median, and mean NCC accuracies of the network to its counterparts. Additionally, we also aim to
train the best performing architecture using _𝑐𝑜𝑛𝑓 𝑖𝑔2 to assess the implication of encouraging over
and underestimation. However, we will train this setup for 1500 epochs and single trials over the
114 UCR datasets. We will present the repeated trial evaluations of this and the remaining network
configurations in the extended evaluation. With this said, we will proceed with the discussion of our
experimental evaluations.

4.3.3 Experimental Results and Interpretation

Similar to the steps taken in the previous evaluations, we start our assessment of the multi-tasking
quantile regression networks with a wins/ties/losses analysis. However, we divide our non-extended
evaluation into two segments, i.e., evaluations based on 84 and 114 datasets. The evaluations based on
84 datasets include the NCC accuracies reported for DTAN. However, since the evaluation of DTAN
on the additional 30 datasets is not available, we have excluded it from the 114 datasets comparison.
With this said, in Table 4.12, VGG_Quant_Lat (Time) and VGG_Quant_OU_Lat (Time) corresponds to
the latent space (time domain) wins/ties/losses evaluations of the quantile regression setup that is
based on the VGG16 architecture. Similarly, the outcomes of the architectures based on the ResNet
and Inception architectures gets reported as Res_Quant_Lat (Time) and Inc_Quant_Lat (Time). Up on
evaluating the statics of this NCC accuracies, we found the architecture based on VGG16 performing

137

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

better than its counterparts. This is evident when the networks discourage over and under estimations
or while they use _𝑐𝑜𝑛𝑓 𝑖𝑔1. In Table 4.12, we have marked the latent space NCC outcomes of these
configurations using boldfaced letters. To this end, we conducted the evaluation of encouraging
over or under estimations, i.e., using _𝑐𝑜𝑛𝑓 𝑖𝑔2, with the VGG16 based architecture. In Table 4.12 and
subsequent analyses, we report the outcomes of this evaluation as VGG_Quant_OU_Lat (Time).

Table 4.12: Analysis of wins/ties/losses of the NCC accuracies that are obtained using quantile regression
multi-tasking autoencoder and its counterparts

Averaging techniques Wins losses ties
Arithmetic 1 83 0
DBA 0 82 2
DTAN 8 74 2
Inc_ Quant_ Lat 5 74 5
Inc_ Quant_ Time 0 83 1
MT_ ENC_ Lat 4 78 2
MT_ ENC_ Time 1 82 1
Res_ Quant_ Lat 15 66 3
Res_ Qunat_ Time 0 82 2
SDBA 8 76 0
VGG_ OU_ Qunat_ Lat 19 61 4
VGG_ OU_ Qunat_ Time 2 80 2
VGG_ Quant_ Lat 13 65 6
VGG_ Quant_ Time 0 82 2

According to Table 4.12, in the latent space, the VGG16 and ResNet based multi-tasking regression au-
toencoders performed better than their counterparts: DTAN, DBA, SDBA and the basic multi-tasking
autoencoder. To further validate this observation, we next evaluate the statistics of the NCC accuracies
using the box-whiskers plot shown in Figure 4.22. Moreover, the statistical parameters of the plot are
shown in Table 4.13. According to Table 4.13, when we discourage over or under estimations, the
reduced VGG16 obtained a latent space median accuracy of 78.54%, whereas 50% of its NCC accuracy
were within the ranges of 66.82% to 91.31%. In this aspect, the ResNet and Inception setups obtained
median accuracy of 75% & 71.10%. Moreover, their 50% of the NCC accuracies were respectively
in between 62.18% - 90.80% and 64.45% - 92.05%. These results are in line with our observations of
Table 4.12. In addition to this, in the latent space, the reduced VGG16 outperformed the state of the
art (DTAN) significantly. In this regard, DTAN obtained a median accuracy of 72.94%, whereas 50% of
its classification accuracy was between 58.55% and 85.45%.

One interesting observation from Table 4.13 is that the VGG16 architecture obtained a time domain
statistics that is very close to DBAwhile it discourages over and under estimations (VGG_Quant_Time).
In reality, this is very encouraging given estimates generated with the multi-tasking VGG16 archi-
tecture have no prior knowledge of DTW space. This is because we are using DTW distance to
perform the time domain classification, we are transforming the estimates of DBA and SDBA to their

138

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Arth
im

eti
c

DBA
SDBA

DTAN

Inc
_Q

ua
nt_

La
t

Inc
_Q

ua
nt_

Tim
e

MT_E
NC_L

AT

MT_E
NC_T

IM
E

Res
_Q

ua
nt_

La
t

Res
_Q

ua
nt_

Tim
e

VGG_O
U_Q

ua
nt_

La
t

VGG_O
U_Q

ua
nt_

Tim
e

VGG_Q
ua

nt_
La

t

VGG_Q
ua

nt_
Tim

e

Averaging techniques

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 4.22: Box-whisker plot comparison of the NCC accuracies obtained with the estimates of quantile
regression multi-tasking autoencoders and their counterparts. These comparison are based on 84 UCR archive
datasets.

Table 4.13: Summary of the statistics for the box-whisker plot shown in Figure 4.22

Technique L_Q (25%) U_Q (75%) Lower Whisker Upper Whisker Median
Arithmetic 33.87 67.14 3.27 96.43 51.72
DBA 54.05 79.84 18.25 100 65.04
SDBA 57.41 81.22 25.27 99.05 69.02
DTAN 58.55 85.45 25.97 100 72.94
Inc_ Quant_ Lat 62.18 90.80 28.73 100 71.10
𝐼𝑛𝑐_𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 43.17 72.39 2.64 100 58.86
𝑀𝑇_𝐸𝑁𝐶_𝐿𝐴𝑇 59.44 88.95 22.91 100 75.03
𝑀𝑇_𝐸𝑁𝐶_𝑇 𝐼𝑀𝐸 42.85 71.92 2.43 100 53.40
Res_ Quant_ Lat 64.45 92.05 32.54 100 75.00
𝑅𝑒𝑠_𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 44.75 71.28 5.96 99.05 58.17
VGG_ OU _ Quant_ Lat 68.18 89.27 40.00 100 78.67
𝑉𝐺𝐺_𝑂𝑈 _𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 46.80 73.40 7.23 100 58.86
VGG _ Quant_ Lat 66.82 91.31 40.53 100 78.54
𝑉𝐺𝐺_𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 45.43 73.03 18.18 100 58.86

registered space before the NCC. To further validate this observation, we analyze the NCC statistics
using hypothesis tests. In this regard, Figures 4.23 (a) shows that the quantile regression setups
that were based on the ResNet and VGG16 architectures were found to be statistically indifferent,
i.e., when trained using _𝑐𝑜𝑛𝑓 𝑖𝑔1. However, despite their equivalence in the post-hypothesis test,
the VGG16 obtained a better Friedman average rank. On the contrary, while encouraging over and
under estimations, the VGG16 obtained better performance compared to the reduced ResNet and
Inception architectures in a statistically different manner. Moreover, according to Figure 4.23 (b),
encouraging over and under estimations with the VGG16 (VGG_Quant_OU_Time) appears to be
giving a better time domain estimates. This performance is closely followed by the VGG16 architecture
while discoraging over and under estimations (VGG_Quant_Time). Moreover, in the post-hypothesis

139

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

test, VGG_Quant_OU_Time is equivalent to the ResNet’s time domain estimates (Res_Quant_Time).
However, even though the quantile regression multi-tasking autoencoder is performing significantly
better than its basic counterpart, it is still performing well below DBA, SDBA and DTAN in its time
domain estimations. However, in this case, moving the median reconstruction line with quantile

(a) Evaluation based on NCC accuracies obtained in the
registered spaces of the averaging techniques

(b) Evaluation based on NCC accuracies obtained in regis-
tered and unregistered spaces of the averaging techniques

Figure 4.23: Hypothesis test based on the NCC accuracies that are obtained with the estimates of multi-tasking
quantile regression autoencoders and their counterparts

regression has helped us to significantly narrow down the performance gap between the time do-
main estimates of the multi-tasking autoencoder and DBA. Furthermore, it should also get noted
that unlike the experiments conducted for DBA, SDBA and DTAN: we only evaluated our quantile
regression multi-tasking network using the outcomes of single trials. In reality, due to random
weight initialization, we cannot expect single trials to capture outlier performances such as maxi-
mum NCC accuracy. On the contrary, single trials will most likely capture the median or average
performance (accuracy). With this understanding, we re-trained the quantile regression multi-tasking
autoencoder based on the VGG16 architecture for an additional 24 repeated trials. These repeated
trials get conducted using the _ pair values given in _𝑐𝑜𝑛𝑓 𝑖𝑔1. We use this training, to further ac-
cess the network using the mean, median, minimum and maximum accuracies of the 25 repeated trials.

However, before directly proceeding with the hypothesis evaluation, we will first assess which
of the _ pair gives better performance. In this regard, we first group the classification results of the 25
trials according to their _ values, i.e„ _𝑐𝑜𝑛𝑓 𝑖𝑔1 = [(0.15, 0.85) , (0.25, 0.75), (0.35, 0.65), (0.5, 0.5)]. We
then perform two sets of hypothesis evaluations. First, we evaluate the latent space NCC accuracies
of the different _ values. Following this evaluation, we conduct the same performance comparison
of each _ value using the NCC accuracies of the time domain estimates. Figure 4.24 demonstrates
the performance evaluation of the _ values using the latent space NCC accuracies. In the figure, we
have numbered each _ pair values in _𝑐𝑜𝑛𝑓 𝑖𝑔1 according to their order of appearance. For instance,
Lat_Reg_One_xxx corresponds to the _ pair {0.15, 0.85}. According to Figure 4.24 (a), the third _ pair

(a) Evaluation based on maximum NCC accuracies (b) Evaluation based on minimum NCC accuracies

(c) Evaluation based on median NCC accuracies (d) Evaluation based on mean NCC accuracies

Figure 4.24: Performance evaluation of quantile regression _ values based on latent space NCC accuracies

140

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

setup ((0.35, 0.65)) obtained most of the highest latent space classification accuracies. However, in the
post-hypothesis test, it is considered to be statistically indifferent to the fourth _ pair value ((0.5,0.5)).
On the other hand, the fourth _ pair setups obtained the best mean, median and minimum accuracies.
However, in these cases, it is statistically indifferent to the first _ pairs in the minimum and mean
accuracies. However, on median accuracies, it is statistically indistinguishable from the third _ pair
values. Before we make the final conclusive remarks, we first assess which of the _ pair values give
better performance using the time domain NCC accuracies. In this regard, in Figure 4.25 (a) & (d), the

(a) Evaluation based on maximum NCC accuracies (b) Evaluation based on minimum NCC accuracies

(c) Evaluation based on median NCC accuracies (d) Evaluation based on mean NCC accuracies

Figure 4.25: Performance evaluation of quantile regression _ values based on time domain NCC accuraices

first _ pairs ((0.15, 0.85)) obtained the best maximum and mean NCC accuracies. Moreover, in both
cases, the post-hypothesis test reveals that they are statistically indifferent to the fourth _ pair setup.
On the contrary, in the context of the minimum and median accuracies, the third and fourth _ pairs
obtained the best performance. However, they are respectively statistically indifferent to the fourth
and first _ pair.

In general, when we summarize the latent and time domain classification accuracies, we observed
that the third _ pair ((0.35, 0.65)) obtained better performance on both time domain and latent space
NCC accuracies. This is in line with our initial argument that relaxing the time domain reconstruction
criteria will have a positive implication on the separability of the latent space features. This is because,
in such cases, the classifier will have more influence on the encoder. In addition to this latent space
implication, the third _ pair penalizes over and under estimation by only 65%. Thus, it pulls the
median reconstruction line up or downwards depending on either over or under estimations are the
dominant reconstructions. This, in turn, helps the decoder to compensate for reconstruction errors
and the remaining effects of temporal distortion. This is expected to highly affect the peaks and
troughs of the projected latent means. In addition to this observation, we also noted that the fourth _
pair ((0.5, 0.5)) has the highest minimum latent space classification accuracies, i.e., in the worst-case
scenario. In reality, this _ pair configuration leaves the highest room for the categorical cross entropy
and WGSS losses in (4.7). This further validated our previous argument that quantile regression can
leave room for the classifier to have more say on the overall multi-tasking setup. However, in the
time domain, the fourth _ pair value has the lowest worst-case classification accuracy. This is because
this _ configuration behaves as a MSE or MAE reconstruction error since it penalizes both over and
under estimation equally. This, in turn, supports our argument that a median reconstruction line is
not suitable for optimal re-projection of the latent means. In conclusion, we suggest the utilization
of _ = [(0.25, 0.75), (0.35, 0.65)] for a better time and latent space performances. This is because

141

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

they leave room for the classifier to influence the encoder while avoiding a median reconstruction line.

With these observations in mind, we will evaluate the stability of our proposed approach. One
indicating factor in this regard could be the standard deviation of the NCC accuracies. In reality, given
the random nature of neural networks, we can assume the NCC accuracies to be random variables.
Thus, by observing the standard deviation of the classification accuracies, we can make conclusive
remarks about the reproducibility of our experimental evaluations. With this in mind, we have
computed the average standard deviation of the 25 repeated trials for each _ pair value. According to
Table 4.14, we can observe that the maximum latent space standard deviation is 3.246% (0.0326). On
the other hand, the maximum time domain standard deviation is 4.673% (0.04673). In other words,
if we, for instance, assume our mean classification accuracy is 60%, then in the worst case, latent
space and time domain classification accuracies within one standard deviation would be between
58.04%-61.96% and 57.19%-62.80%. In reality, given the random nature of neural networks, we can
consider this to be relatively stable.

Table 4.14: The average standard deviations of the NCC accuracies obtained by different _ pair

_ pairs Latent Space ±𝜎 in % Time Domain ±𝜎 in %
(0.15, 0.85) 2.757 3.903
(0.25, 0.75) 3.246 4.257
(0.35, 0.65) 2.946 4.234
(0.5, 0.5) 3.220 4.673

However, given the presence of random initialization in the optimization setup, the probability of a
single trial capturing the maximum accuracy is relatively small. To this end, the following analysis will
focus on the re-evaluation of the hypothesis tests using the outcomes of the 25 repeated trials and their
mean, median, minimum, and maximum classification accuracies. In this aspect, we first re-evaluated
the latent space classification accuracies on 84 datasets. We will then continue our re-evaluate of the
hypothesis tests using 114 datasets. According to Figures 4.26 (a), 4.26 (c) and 4.26 (d), the quantile
regression network outperformed all predecessor techniques at least by one of its _ pair setups. On
the contrary, in the worst case (with its minimum classification accuracies), the performances of all

(a) Evaluation based on maximum NCC accuracies (b) Evaluation based on minimum NCC accuracies

(c) Evaluation based on median NCC accuracies (d) Evaluation based on mean NCC accuracies

Figure 4.26: Hypothesis re-evaluation for the average estimates with multi-tasking quantile regression autoen-
coders and their counterparts. The re-evaluation is performed using 84 UCR archive datasets and latent space
NCC accuracies.

142

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

_ pair setups are bellow DBA and DTAN in their Friedman rank. However, in the post hypothesis
test, the performance of the first _ pair setup (_ = (0.15, 0.85)) is statistically indifferent to DTAN.
Generally speaking, from our previous evaluations, we expect the latent space classification to be
better than the registered space performance of the alternative averaging techniques. With this in
mind, when we proceed to the time domain NCC accuracies, we can see that the repeated trials have
better captured the outlier performances of the quantile regression multi-tasking autoencoder. To this
end, we are now able to show that the time domain estimates of the multi-tasking quantile regression
network could outperform DBA’s estimates, i.e., as shown in Figure 4.27 (a).

(a) Evaluation based on maximum NCC accuracies (b) Evaluation based on minimum NCC accuracies

(c) Evaluation based on median NCC accuracies (d) Evaluation based on mean NCC accuracies

Figure 4.27: Hypothesis re-evaluation for the average estimates with multi-tasking quantile regression autoen-
coders and their counterparts. The re-evaluation is performed using 84 UCR archive datasets and time domain
NCC accuracies.

In reality, we find this to be quite encouraging. This is because, the NCC conducted with DBA’s
estimates is performed in DTW space which favors the estimates of DBA. In practice, the comparisons
performed in a neutral space are the comparisons of the multi-tasking autoencoder (MT_ENC_TIME),
quantile regression (Lat_Reg_xxx_Time) and Arithmetic estimates. This is because the NCC conducted
using these techniques is in a DTW space in which they have no prior knowledge. Additionally,
even if the time domain mean and median classification accuracies of VGG_Quant_Time are well
below DBA, it is still interesting to see that it is still performing equivalent to the best performances
of the multi-tasking autoencoder (MT_ENC_TIME). This shows that the multi-tasking quantile re-
gression setup is a generalization of the basic-multi tasking autoencoder. In other words, as the
_ gets close to one, for instance, _ = [0.15, 0.85], the multi-tasking quantile regression becomes a
relatively less outlier-sensitive basic multi-tasking autoencoder. This observation is further validated
in Figure 4.27 (c) and 4.27 (d), where 𝑀𝑇_𝐸𝑁𝐶_𝑇 𝐼𝑀𝐸 is found to be statistically indifferent to the
multi-tasking quantile regression network that is configured with _ = [(0.15, 0.85)]. With this said, we
will finalize the hypothesis re-evaluations by making a final remark on the hypothesis tests performed
using 114 UCR datasets. As we stated earlier, this comparison excludes the performances of DTAN
since we could not find either a standardized implementation or the evaluations for the additional 30
datasets. In general, Figure 4.28 shows that in the latent space, the performance of the multi-tasking
regression network is more or less similar to the performance shown in Figure 4.26. Moreover, we
still are able to outperform DBA in the maximum time domain classification accuracies. This further
strengthens the observation made on the 84 UCR archive datasets where we also outperformed DBA.

143

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

(a) Evaluation based on latent space maximum NCC accu-
racies

(b) Evaluation based on latent space minimum NCC accu-
racies

(c) Evaluation based on latent space median NCC accura-
cies (d) Evaluation based on latent space mean NCC accuracies

(e) Evaluation based on time domain maximum NCC accu-
racies

(f) Evaluation based on time domain minimum NCC accu-
racies

(g) Evaluation based on time domain median NCC accura-
cies (h) Evaluation based on time domain mean NCC accuracies

Figure 4.28: Hypothesis re-evaluation for the average estimates with multi-tasking quantile regression autoen-
coders and their counterparts. The re-evaluation is performed using 114 UCR archive datasets, latent space and
time domain NCC accuracies.

We finally place our focus on why the VGG16 based architecture is performing better than its ResNet
and Inception counterpart. This is because, in practice, we expect the Inception and ResNet to perform
better than a VGG16 setup [58], [60]. As a first step to this analysis, we re-consider the t-SNE projection
of the FaceUCR datasets shown in Figure 4.29. In the figure, we projected the FaceUCR test datasets in
to the latent space using the VGG16, ResNet and Inception multi-tasking quantile regression networks.
From the projections, we can observe that the projections of the VGG16 architectures are relatively
dense. We identified two possible reasons behind this variation. First, we have not adopted the
full layer arrangements of the Inception and ResNet architectures. In other words, our proposed
Inception and ResNet networks are relatively shallower than the original proposals. To this end, the
skip connections (memory links) evident in the Inception and ResNet architectures will inject the
effects of temporal distortion into the latent space rather than serving as a way of sustaining uniform
information propagation. Additionally, our reduced Inception and ResNet architectures are not purely
a classification of neural networks, i.e., contrary to their original counterparts. To this end, we have
no logical ground to expect the Inception and ResNet multi-tasking architectures to perform better
than their VGG16 counterparts.

With these understandings in mind, we will conclude this section’s discussion by giving the plots
for the time domain estimations of the ECG200 and ECGFiveDays datasets. In this aspect, in Fig-

144

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

40 20 0 20 40
Dimension 1 (x)

80

60

40

20

0

20

40

60

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced VGG16 multitasking quantile regressor

(a) FacesUCR in the latent space of VGG_Quant_Lat

60 40 20 0 20 40
Dimension 1 (x)

40

20

0

20

40

60

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced VGG16 over/under multitasking quantile regressor

(b) FacesUCR in the latent space of VGG_OU_Quant_Lat

40 20 0 20 40
Dimension 1 (x)

60

40

20

0

20

40

60

80

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced Inception multitasking quantile regressor

(c) FacesUCR in the latent space of Inc_Quant_Lat

40 20 0 20 40
Dimension 1 (x)

40

20

0

20

40

Di
m

en
sio

n
2

(y
)

Two dimensional tSNE plot of FacesUCR test latent space using reduced Resnet multitasking quantile regressor

(d) FacesUCR in the latent space of Res_Quant_Lat

Figure 4.29: t-SNE projections for the UCR archive’s FacesUCR test datasets. These projections are based on
the latent spaces embedding obtained with the proposed quantile regression multi-tasking autoencoders

ure 4.30 (g), we can see that shifting the median reconstruction line has significantly improved the
time domain re-projection. In the figure, the positive and negative peaks of the ECGFiveDays datasets
gets estimated in a manner that is similar to the estimates of DBA and SDBA. However, unlike DBA,
the multi-tasking quantile regression network is free of shape distortion that arise due to pathological
association. This, in turn, has helped most of the quantile regression setups to outperform DBA in the
time domain NCC. In this regard, the quantile regression multi-tasking autoencoder obtained a 76.66%
classification accuracy for the ECEGFiveDays. On the contrary, DBA and SDBA obtained a 65.85% and
67.02% NCC classification accuracies. In conclusion, we have summarized the classification accuracies
for the ECG200 and ECGFiveDyas datasets in Table 4.15.

Table 4.15: NCC accuracies for the UCR archive’s 𝐸𝐶𝐺200 and 𝐸𝐶𝐺𝐹𝑖𝑣𝑒𝐷𝑎𝑦𝑠 datasets.

Averaging Techniques 𝐸𝐶𝐺200 accuracy in % 𝐸𝐶𝐺𝐹𝑖𝑣𝑒𝐷𝑎𝑦𝑠 accuracy in %
Arithmetic 67 52.96
SDBA 73 67.02
DBA 72 65.85
𝑀𝑇_𝐸𝑁𝐶_𝑇 𝐼𝑀𝐸 72 58.65
𝑉𝐺𝐺_𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 73 59.69
𝑉𝐺𝐺_𝑂𝑈 _𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 70 76.66
𝑅𝑒𝑠_𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 70 68.06
𝐼𝑛𝑐_𝑄𝑢𝑎𝑛𝑡_𝑇𝑖𝑚𝑒 68 64.58

145

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4
At

tri
bu

te
ECGFiveDays class one with Arthimetic average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class 1 with autoender average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class 2 with autoender average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 1 with autoender average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class 2 with autoender average
Average

(b) Aautoencoder’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one MT_ENC_TIME
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with MT_ENC_TIME
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with MT_ENC_TIME
Average

(c)Multi-tasking autoencoder’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Inc_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Inc_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Inc_Quant_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Inc_Quant_Time average
Average

(d) Inc_Quant_Time’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with Res_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Res_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Res_Quant_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Res_Quant_Time average
Average

(e) Res_Quant_Time’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with VGG_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with VGG_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with VGG_Quant_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with VGG_Quant_Time average
Average

(f) VGG_Quant_Time’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with VGG_OU_Quant_Time average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with VGG_OU_Quant_Time average
Average

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with VGG_Quant_OU_Time average
Average

0 20 40 60 80
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with VGG_Quant_OU_Time average
Average

(g) VGG_OU_Quant_Time’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(h) DBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(i) SDBA’s estimates

Figure 4.30: Averages that are estimated for the UCR archive’s ECG200 and ECGFiveDays datasets

146

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

4.4 Extended Evaluation of the Multi-taskingQuantile Regression
Network

In the evaluation of the quantile regression network, we intensively assessed the network based on
the VGG16 architecture. To make our assessment complete, in this section, we perform a similar
assessment of the remaining architectures. Moreover, we also assess the implication of encouraging
over and under estimations across different architectural setups. Finally, we also use these evaluations
to compare performances of the basic multi-tasking and quantile regression multi-tasking autoen-
coders. In reality, in the previous assessment, we used the architecture shown in Figure 4.1 for the
basic multitasking setup. However, for the quantile regression networks, we have made minor and
major modifications that give it a better edge. Thus, in this section, we remove this bias by basing the
two multi-tasking setups on similar network architectures. To meet this objective, we conduct the 25
repeated trial experiments for the remaining network configurations, i.e., Resnet_Quant_Lat (Time),
Inc_Quant_Lat (Time), using the multi-tasking setups given in Figures 4.7 and 4.8. However, unlike
the previous evaluation, we Incorporated the last transposed Convolutioal layer at the decoder. To this
end, in this extended evaluation, we also reassess the performance of the VGG16 based multi-tasking
quantile regression network with the new minor adjustment.

4.4.1 Experimental Setup

In the extended evaluations, we train the non-variational multi-tasking quantile regression net-
works using the previously proposed two _ pair setups: _𝑐𝑜𝑛𝑓 𝑖𝑔1 = [(0.15, 0.85), (0.25, 0.75),
(0.35, 0.65), (0.5, 0.5)] and _𝑐𝑜𝑛𝑓 𝑖𝑔2 = [(0.85, 0.85), (0.75, 0.75), (0.65, 0.65), (0.15, 0.15), (0.25, 0.25),
(0.35, 0.35)]. However, unlike our previous evaluation of the quantile multi-tasking regression
networks, we fully base our evaluation using the architectural configurations proposed for the
multi-tasking: modified reduced VGG16, reduced Inception and reduced ResNet networks shown in
Figures 4.6, 4.7 and 4.8. Despite these changes, we will force all versions of the multi-tasking quantile
regression networks to optimize for the losses given in (4.7), (4.9) and (4.8). We train the proposed
architectures for 1500 epochs with zero L2 regularization. Furthermore, in all training tasks, we have
used a 10−4 learning rate and an 80/20 train and validation split. Moreover, to update the gradients,
we have used the Adam optimizer configured to update the network after 𝑁4 mini-batches, where 𝑁
is the number of samples in the training set.

4.4.2 Experimental Evaluations

We have divided the experimental evaluation into two categories. First, we present the assess-
ments that are correspond to discouraging over and under estimations by a factor less than one, i.e.,
when the networks get trained with _𝑐𝑜𝑛𝑓 𝑖𝑔1 = [(0.15, 0.85), (0.25, 0.75), (0.35, 0.65), (0.5, 0.5)].
On the contrary, in the following subsection, we assess the performances of the networks while
they encourage over and under estimations or when the networks are trained with _𝑐𝑜𝑛𝑓 𝑖𝑔2 =

[(0.85, 0.85), (0.75, 0.75), (0.65, 0.65), (0.15, 0.15), (0.25, 0.25), (0.35, 0.35)]. In our assessment, we

147

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

identify these different _ pair configurations using a keyword Regx, where 𝑥 = {0, 1, 2, 3, . . . , 4(6)}.
With this said, we next proceed to present the first evaluation.

4.4.2.1 Extended Assessment of the Impact of Network Architectures in Multi-tasking
Quantile Regression Autoencoders

We start our extended assessment of the multi-tasking quantile regression network by observing
its performance in the context of NCC wins, ties, and losses. In this regard, Table 4.16 summa-
rizes wins/ties/losses associated with each proposed architecture. In the table, we identified the
outcomes of the VGG16, Inception, and ResNet based quantile regression multi-tasking autoencoders
as QMMT_VGG_Regx_Lat (TD), QMMT_Inc_Regx_Lat (TD), and QMMT_ResNet_Regx_Lat (TD)
where Lat (TD) corresponds to latent space and time domain. Moreover, as stated earlier, the keyword
Regx is utilized to indicate the different _ configurations. With these in mind, Table 4.16 further
validates our previous assessment the the VGG16 based architecture obtaining better registration in
the latent space. In this regard, the VGG16 based architecture won on a total of 29 datasets. This
is followed by ResNet based architecture winning on 9 datasets. However, we acknowledge that a
wins/ties/losses analysis could easily get biased by the slightest difference in NCC accuracies. To this
end, we assess the NCC accuracies using a box-whisker plot. In this regard, Table 4.17 shows the
statistics of the box-whisker plot given in Figure 4.31.

Table 4.16: Comparison of wins/ties/losses obtained with the extended evaluations of non variational quantile
multi-tasking autoencoders and their counterparts. These comparisons are obtained using the best outcomes of
NCC experiments that were conducted on 75 UCR archive datasets using 25 repeated training trials and four _
pair (_ = [(0.15, 0.85), (0.25, 0.75), (0.35, 0.65), (0.5, 0.5)]) that discourage over and under estimations by a
factor less than one.

Techniques 𝐿2 Reg. (𝑥) Wins Ties Losses
Arithmetic 0 0 75
DBA - 0 74 1
DTAN 2 2 71
SDBA 6 0 69
QMMT_VGG_Regx_Lat

{0, 1, 2, 3}

{8, 7, 7, 7} {10, 11, 11, 9} {57, 57, 57, 59}
QMMT_VGG_Regx_TD {1, 0, 0, 0} {2, 2, 2, 2} {72, 73, 73, 73}
QMT_Inc_Regx_Lat {2, 2, 1, 0} {8, 4, 8, 4} {65, 69, 66, 71}
QMT_Inc_Regx_TD {0, 0, 0, 0} {2, 2, 2, 1} {73, 73, 73, 74}
QMT_ResNet_Regx_Lat {3, 2, 2, 2} {7, 9, 7, 9} {65, 64, 66, 64}
QMMT_ResNet_Reg_TD {1, 0, 0, 0} {2, 2, 2, 2} {72, 73, 73, 73}

In comparison, the latent space median accuracies of the quantile multi-tasking autoencoders are
slightly better than their basic multi-tasking counterparts. In this aspect, unlike their basic counter-
parts, the median of the quantile multi-tasking autoencoders is above the 80% mark. Moreover, if we,
for instance, consider and compare the basic and quantile multi-tasking VGG16 autoencoders, their
best case time domain lower 25% quantiles are 52.15% and 53.14%. Additionally, their best case 75%
quantities are 76.73% and 79.23%. In reality, this improvement is also evident in the remaining two
architectures. For instance, for ResNet based basic and quantile multi-tasking autoencoders, their best
time domain upper 75% quantile NCC accuracies are 76.83% and 80.00%. Moreover, their lower 25%

148

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

quantiles are 51.99% and 53.33%. Overall, we find the modifications have significantly improved the
latent space registration. This, in turn, introduced improvements in the time domain projections. As
a demonstration of this argument, we have presented t-SNE projections of the FacesUCR dataset as a
visual demonstration. In this regard, Figure 4.32 shows the t-SNE projections of the latent embedding
corresponding to the two versions of the multi-tasking setup.

Table 4.17: Statistical assessment of the NCC accuracies obtained with the extended evaluations of the quantile
multi-tasking autoencoders. These assessments were conducted using the maximum NCC accuracies on 75
UCR archive datasets using the different averaging techniques

Techniques Bot. whisker Top whisker 25% Quant. 75% Quant. Median
Arithmetic 7.46 96.43 37.206 67.73 52.96
DBA 28.94 100 54.82 78.55 65.14
DTAN 28.97 100 58.97 85.54 73.75
SDBA 32.83 99.05 58.41 80.87 69.71
QMMT_VGG_Regx_Lat
x={0, 1, 2, 3}

{47.47, 48.27
46.93, 47.73}

{100,100,
100, 100 }

{71.38, 72.18
72.03, 71.88}

{92.73, 92.76
93.29, 93.24}

{81.97, 81.19,
82.13, 80.77}

QMMT_VGG_Regx_TD
x={0, 1, 2, 3}

{17.55, 20.06,
18.49, 18.18 }

{100, 100,
100, 100}

{52.23, 53.34,
52.17, 52.24}

{78.73, 77.89
79.27, 77.99 }

{63.93, 64.06,
64.06, 64.81}

QMT_Inc_Regx_Lat
x={0, 1, 2, 3}

{48.53, 47.63,
48.00, 48.27 }

{100, 100
100, 100 }

{69.28, 69.03,
68.89, 67.85}

{91.53, 91.47,
91.53, 91.03}

{80.00, 80.00,
80.00, 80.43}

QMMT_Inc_Regx_TD
x={0, 1, 2, 3}

{20.56, 16.14,
17.55, 18.34}

{100, 100,
100, 100}

{50.68, 51.57,
51.17, 51.92}

{75.00, 75.27,
78.18, 76.78}

{63.04, 64.32,
64.75, 64.00}

QMT_ResNet_Regx_Lat
x={0, 1, 2, 3}

{47.73, 46.93,
46.67, 48.27 }

{100, 100
100, 100}

{69.57, 68.77,
68.55, 69.55}

{92.94, 92.47,
92.02, 92.49}

{81.09, 80.50,
80.00, 80.77 }

QMT_ResNet_Regx_TD
x={0, 1, 2, 3}

{20.81, 21.01,
21.26, 22.88}

{100, 100
100, 100}

{52.65, 53.23,
51.42, 52.89}

{78.56, 76.83,
80.00,79.00}

{65.27, 64.95,
64.22, 64.34}

Ar
th

im
et

ic

D
BA

D
TA

N

Q
M

M
T_

VG
G

_R
eg

0_
La

t_
M

ax

Q
M

M
T_

VG
G

_R
eg

0_
TD

_M
ax

Q
M

M
T_

VG
G

_R
eg

1_
La

t_
M

ax

Q
M

M
T_

VG
G

_R
eg

1_
TD

_M
ax

Q
M

M
T_

VG
G

_R
eg

2_
La

t_
M

ax

Q
M

M
T_

VG
G

_R
eg

2_
TD

_M
ax

Q
M

M
T_

VG
G

_R
eg

3_
La

t_
M

ax

Q
M

M
T_

VG
G

_R
eg

3_
TD

_M
ax

Q
M

T_
In

c_
R

eg
0_

La
t_

M
ax

Q
M

T_
In

c_
R

eg
0_

TD
_M

ax

Q
M

T_
In

c_
R

eg
1_

La
t_

M
ax

Q
M

T_
In

c_
R

eg
1_

TD
_M

ax

Q
M

T_
In

c_
R

eg
2_

La
t_

M
ax

Q
M

T_
In

c_
R

eg
2_

TD
_M

ax

Q
M

T_
In

c_
R

eg
3_

La
t_

M
ax

Q
M

T_
In

c_
R

eg
3_

TD
_M

ax

Q
M

T_
R

es
N

et
_R

eg
0_

La
t_

M
ax

Q
M

T_
R

es
N

et
_R

eg
0_

TD
_M

ax

Q
M

T_
R

es
N

et
_R

eg
1_

La
t_

M
ax

Q
M

T_
R

es
N

et
_R

eg
1_

TD
_M

ax

Q
M

T_
R

es
N

et
_R

eg
2_

La
t_

M
ax

Q
M

T_
R

es
N

et
_R

eg
2_

TD
_M

ax

Q
M

T_
R

es
N

et
_R

eg
3_

La
t_

M
ax

Q
M

T_
R

es
N

et
_R

eg
3_

TD
_M

ax

SD
BA

Averaging techniques

20

40

60

80

100

Ac
cu

ra
cy

Figure 4.31: Box-whisker plot of NCC accuracies obtained with the extended evaluation of quantile regression
multi-tasking autoencoders.

149

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Comparatively, the embedding of the basic multi-tasking setups, i.e., shown in the left column of
Figure 4.32, are less separable from their quantile multi-tasking counterparts. This further supports the
argument behind the modifications made to the objective functions of the multi-tasking setups. With
these observations in mind, we next assess if there are any significant changes in the performances of
the multi-tasking quantile regression autoencoders, i.e., among themselves and as compared to their
counterparts. In this aspect, Figure 4.33 shows the hypothesis tests based on the latent space (left
column) and time domain (right column) NCC accuracies.

60 40 20 0 20 40 60 80

40

20

0

20

40

60

80

(a) FacesUCR in the latent space of multi-tasking modified
reduced VGG16 autoencoder

40 20 0 20 40

0

20

40

60

-20

-40

(b) FacesUCR in the latent space of multi-tasking
QMMT_VGG_Regx_Lat

80 60 40 20 0 20 40 60 80

40

20

0

20

40

(c) FacesUCR in the latent space of multi-tasking reduced
Inception autoencoder

60 40 20 0 20 40 60

0

25

50

75

-20

-50

-75

(d) FacesUCR in the latent space of QMT_Inc_Regx_Lat

60 40 20 0 20 40

0

20

40

60

-20

-40

-60

(e) FacesUCR in the latent space of multi-tasking reduced
ResNet autoencoder

40 20 0 20 40

0

20

40

60

-20

-40

-60

(f) FacesUCR in the latent space of QMT_ResNet_Regx_Lat

Figure 4.32: t-SNE projections for the UCR archive’s FacesUCR test datasets in the latent spaces of multi-tasking
and quantile regression multi-tasking autoencoders

According to Figure 4.33 (b), the quantile multi-tasking autoencoder that is based on the ResNet
architecture is better than DBA when it is trained using the fourth _ configuration (_ = [(0.5, 0.5)]).
In other words, the quantile multi-tasking autoencoder performs better when penalizing over and
under estimations in a manner that significantly shifts the median reconstruction line. Moreover,
since the given _ pair penalizes over and under estimations equally, we can safely assume the quantile
regression as a relatively relaxed reconstruction loss. However, in the latent space, encouraging over
and under estimations by smaller amount gave better performances, i.e., Figure Figure 4.33 (a). In

150

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

reality, since the latent space has to meet the requirements of the classifier, we can not expect the
latent space to give better performances with the _ values that discourage over and under estimations.
This is because with such _ values we are encouraging the network to over or under estimate an
input dataset. This is contrary to the need of a classifier that needs to identify a descriptive feature
that is based on input rather than its over or underestimation.

(a) Evaluation of maximum NCC accuracies obtained in
the latent space of quantile regression multi-tasking autoen-
coders

(b) Evaluation of maximum NCC accuracies obtained with
the time domain estimates of quantile regression multi-
tasking autoencoders

(c) Evaluation of median NCC accuracies obtained in the
latent space of quantile regression multi-tasking autoen-
coders

(d) Evaluation of median NCC accuracies obtained with
time domain estimates of quantile regression multi-tasking
autoencoders

(e) Evaluation of mean NCC accuracies obtained in the
latent space of quantile regression multi-tasking autoen-
coders

(f) Evaluation of mean NCC accuracies obtained with time
domain estimates of quantile regression multi-tasking au-
toencoders

(g) Evaluation of minimum NCC accuracies obtained in
the latent space of quantile regression multi-tasking autoen-
coders

(h) Evaluation of minimum NCC accuracies obtained with
time domain estimates of quantile regression multi-tasking
autoencoders

Figure 4.33: CD diagram comparisons of NCC accuracies obtained with the extended evaluation of quantile
multi-tasking autoencoders. The comparison is performed using the NCC accuracies obtained from 75 UCR
archive datasets.

To further asses the reported results, we have also compared the NCC accuracies corresponding to
DBA, SDBA, and the quantile regression multi-tasking setups using additional 24 datasets. In this
regard, Figure 4.34 shows the comparisons based on 89 UCR archive datasets. Unlike their multi-
tasking counterparts, the quantile regression multi-tasking autoencoders can sustain the time domain
performance. In this aspect, Figure 4.34 (b) shows that the time domain estimates generated by the
quantile multi-tasking autoencoder that is based on the ResNet is still beating DBA’s performance.
This performance is also evident when the network gets trained with the fourth _ pair value. This
further validates that the quantile-regression-based approach generates better time domain estimates
than its basic multi-tasking counterpart. In this aspect, the direct comparison shown in Figure 4.35
also validates this remark. In the figure, we have compared the best time domain and latent space
NCC accuracies obtained with both versions of the multi-tasking setups across the different _ con-
figurations. In general, in the latent space, the quantile regression multi-tasking setup outperforms
its basic counterparts with clear statistical demarcations. On the contrary, in the time domain, some
of the estimations obtained with the basic multi-tasking autoencoders performs similarly to their

151

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

quantile regression counterparts. However, overall, we find the quantile regression multi-tasking
autoencoders perform better.

(a) Evaluation of maximum NCC accuracies obtained in
the latent space of quantile regression multi-tasking autoen-
coders

(b) Evaluation of maximum NCC accuracies obtained with
the time domain estimates of quantile regression multi-
tasking autoencoders

(c) Evaluation of median NCC accuracies obtained in the
latent space of quantile regression multi-tasking autoen-
coders

(d) Evaluation of median NCC accuracies obtained with
time domain estimates of quantile regression multi-tasking
autoencoders

Figure 4.34: CD diagram comparisons of NCC accuracies obtained with the extended evaluation of quantile
multi-tasking autoencoders. The comparison is performed using the NCC accuracies obtained from 89 UCR
archive datasets.

With these observations in mind, we will next analyze the variance observed across the NCC accura-
cies obtained with the different network configurations. We perform this evaluation to assess the
stability of the proposed architectures. Following this, we will finalize our discussion by presenting
the estimates generated for UCR archive’s FacesUCR and ECGFiveDyas datasets. We present the
estimations to show that the introduction of the last transposed Convolutional layer has no significant

(a) Comparison of maximum NCC accuracies obtained in
the latent space of basic multi-tasking and quantile regres-
sion multi-tasking autoencoders when trained with first _
pair

(b) Evaluation of maximum NCC accuracies obtained with
the time domain estimates of basic multi-tasking and quan-
tile regression multi-tasking autoencoders when trained
with the first _ pair.

(c) Comparison of maximum NCC accuracies obtained in
the latent space of basic multi-tasking and quantile regres-
sion multi-tasking autoencoders when trained with second
_ pair

(d) Comparison of maximum NCC accuracies obtained
with time domain estimates of multi-tasking and quantile
regression multi-tasking autoencoders when trained with
second _ pair

(e) Comparison of maximum NCC accuracies obtained in
the latent space of multi-tasking and quantile regression
multi-tasking autoencoders when trained with third _ pair
values

(f) Evaluation of mean NCC accuracies obtained with time
domain estimates of quantile regression multi-tasking au-
toencoders when trained with third _ pair values

(g) Comparison of maximum NCC accuracies obtained in
the latent space of multi-tasking and quantile regression
multi-tasking autoencoders when trained with _ pair values

(h) Comparison of maximum NCC accuracies obtained
with time domain estimates of multi-tasking and quantile
regression multi-tasking autoencoders when trained with
_ pair values

Figure 4.35: Comparison of NCC accuracies obtained with multi-tasking and quantile multi-tasking autoen-
coders. These comparisons are performed using NCC outcomes obtained on 89 UCR archive datasets

152

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

negative implication on the quality of the time domain estimates. With this said, Table 4.18 shows
that the latent space standard deviation is below the 7% mark. Moreover, the time domain standard
deviation is overall below the 9% mark. In general, given the multi-tasking quantile regression net-
works are optimizing for a range of loss functions with different sets of requirements, we find the
standard deviation is relatively close to its basic multi-tasking counterpart. To this end, we believe
that the reproducibility of the experimental outcomes has a higher likelihood.

Table 4.18: The average standard deviations of the NCC accuracies obtained by different _ pair.
In the table, we indicate the different _ pair configuration as _𝑥 : 𝑥 = {0, 1, 2, 3} =
{(0.15, 0.85), (0.25, 0.75), (0.35, 0.65), (0.5, 0.5)}, where QMMT_VGG, QMT_Inc, QMT_ResNet correspond
to the quantile multi-tasking autoencoders based on the VGG16, Inception, and ResNet architectures.

Techniques x in _𝑥 Latent Space ±𝜎 in % Time Domain ±𝜎 in %
QMMT_VGG

0
5.29 6.85

QMT_Inc 5.66 8.35
QMT_ResNet 6.14 7.74
QMMT_VGG

1
5.50 7.26

QMT_Inc 5.72 8.62
QMT_ResNet 5.80 7.44
QMMT_VGG

2
5.50 6.69

QMT_Inc 5.78 8.55
QMT_ResNet 5.99 7.49
QMMT_VGG

3
5.39 6.83

QMT_Inc 5.94 8.86
QMT_ResNet 6.21 7.50

With these in mind, in Table 4.19 we have summarized the NCC accuracies that are obtained for the
UCR archive’s ECG200 and ECGFiveDays datasets. The time domain estimates corresponding to the
NCC accuracies that are summarized in the table are shown in Figures 4.36and ??. In comparison, for
the ECG200 dataset, the estimates of the quantile regression networks can obtain a NCC accuracy
that is equivalent to the state-of-the-art, i.e., DTAN. Moreover, for the ECGFiveDays dataset, the
NCC obtained with the estimates of the quantile regression autoencoder are better than alternative
techniques only with the exception of DTAN.

With such observations in mind, we found the quantile multi-tasking arrangement to be the best of
our proposals. However, to make this conclusive remark more complete, we next aim to assess the
impact of encouraging over and under estimations. In this regard, we argued that by using over and
under estimations, we could either pull up or down the median reconstruction line. In this aspect, the
extended experimental evaluations of the quantile regression multi-tasking autoencoders asserted
that pulling the median reconstruction line up or down has a positive implication on the quality of
the time domain estimation. However, in the experiments, we have not significantly allowed over and
under estimations. The maximum amount by which we encouraged over and under estimation is
as high as 35%. This is because we do not consider the 50% _ pair in _𝑐𝑜𝑛𝑓 𝑖𝑔1 as a configuration that
encourages over and under estimation since it penalizes both equally.

153

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

With this in mind, in the next sub section we assess two questions. First, we assess which of the two,
i.e., over or under, estimations give better time domain estimates. In addition to this, we also asses
by to what extent encouraging over and under estimations would give meaningful reconstructions
in the context of shapes observed in the averaged set. With this said, we conclude this section by
presenting the plots for the time domain estimates of the UCR archive’s ECG200 and ECGFiveDays

datasets whose NCC accuracies are summarized in Table 4.19.

Table 4.19: NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are obtained with
multi-tasking autoencoders

Techniques NCC for ECG200 in % NCC for ECGFiveDays in%
Arithmetic 67 52.96
DBA 65 52.15
SDBA 73 67.02
DTAN 79 97.79
MMT_VGG_TD 77 70.27
MT_Inception_TD 78 72.36
MT_ResNet_TD 78 72.71
Var_MMT_VGG_TD 73 70.15
Var_MT_Inception_TD 77 70.49
Var_MT_ResNet_TD 77 74.33
QMMT_VGG_TD 76 78.39
QMT_Inception_TD 79 76.54
QMT_ResNet_TD 79 76.89

154

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4
At

tri
bu

te
ECGFiveDays class one with Arthimetic average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECGFiveDays class 1 Estimated With Multi-tasking Modified Reduced VGG Estimate for ECGFiveDays class 2 Estimated With Multi-tasking Modified Reduced VGG

Estimate for ECG200 class 1 Estimated With Multi-tasking Modified Reduced VGG Estimate for ECG200 class 2 Estimated With Multi-tasking Modified Reduced VGG

(b)MMT_VGG’s estiamtes

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMMT_VGG

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMMT_VGG

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_VGG

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMMT_VGG

(c) QMMT_VGG’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Multi-tasking reduced Inception

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Multi-tasking reduced Inception

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Multi-tasking reduced Inception

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Multi-tasking reduced Inception

(d) MMT_Inc’s estiamtes

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMT_Inc

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMT_Inc

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_Inc

0 20 40 60 80
Time

2

1

0

1

2

3

Estimate for ECG200 class 2 with QMMT_Inc

(e) QMMT_Inc’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with Multi-tasking reduced ResNet

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with Multi-tasking reduced ResNet

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with Multi-tasking reduced ResNet

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with Multi-tasking reduced ResNet

(f)MMT_ResNet’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMT_ResNet

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMT_ResNet

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMT_ResNet

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMT_ResNet

(g) QMMT_ResNet’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(h) DBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(i) SDBA’s estimates

Figure 4.36: Averages estimated for the UCR archives ECG200 and ECGFiveDays datasets using quantile and
basic multi-tasking: modified reduced VGG16, reduced Inception, reduced ResNet, and alternative averaging
techniques

155

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

4.4.3 Assessing the Impact of Encouraging Over and Under Estimations on the
Quality of Time Domain Estimates

In this subsection, we have trained the quantile regression multi-tasking autoencoders using _𝑐𝑜𝑛𝑓 𝑖𝑔2 =
[(0.85, 0.85), (0.75, 0.75), (0.65, 0.65), (0.15, 0.15), (0.25, 0.25), (0.35, 0.35)]. As a quick reminder,
the first three _ pair values encourage underestimation by more penalizing over estimation. For
instance, the configuration (0.85, 0.85) penalizes overestimation by 85% while penalizing underestima-
tion by only 15%. Consequently, the last three _ pair values encourage overestimation. However, since
we are now expected to train the quantile multi-tasking autoencoders on more _ pair values, with
the available computational resources, we were able to perform the experiments on 72 UCR archive
datasets. With these said, we will first perform wins/ties/losses using NCC accuracies obtained on 56
UCR archive datasets, i.e., including the results reported for DTAN. In this regard, based on the results
shown in Table 4.20, we can safely conclude that by encouraging over or underestimations we have en-
couraged the classifier to have a relatively higher say on the latent embedding. This is because, in the
latent space, the quantile regression multi-tasking autoencoders performed significantly better than
the alternative techniques. To this end, we can assume the latent space embeddings are comparatively
compact and separable. Additionally, we found the time domain estimates of the quantile regression
multi-tasking autoencoders to have more ties compared to the case where they were discouraging
over and under estimations. However, as we repeatedly argued, wins/ties/losses do not show how
much a given technique is winning. To this end, we will next assess the statistics of the accuracies,
i.e., using a box-whisker plot, for further analysis. In this aspect, Table 4.21 summarizes the statistics

Table 4.20: Statistics assessment of the NCC accuracies that are obtained with quantile multi-tasking: modified
VGG16, reduced Inception, and reduced ResNet architectures that encouraged over and under estimation. These
assessments were conducted using the maximum NCC accuracies that are obtained on 56 UCR archive datasets
while using the different averaging techniques

Techniques 𝐿2 Reg. (𝑥) Wins Ties Losses
Arithmetic 0 0 56
DBA - 0 1 55
DTAN 1 2 53
SDBA 3 0 53
QMMT_VGG_OU_Regx_Lat

{0-5}

{2, 4, 1, 4, 8, 3} {6, 5, 9, 9, 10, 10} {48, 47, 46, 43, 38, 43}
QMMT_VGG_OU_Regx_TD {0, 0, 0, 0, 0, 0} {1, 1, 2, 2, 2, 2} {55, 55, 54, 54, 54, 54}
QMT_Inc_OU_Regx_Lat {0, 0, 1, 1, 1, 1} {5, 5, 4, 3, 4, 5} {51, 51, 51, 52, 51, 50}
QMT_Inc_OU_Regx_TD {0, 0, 0, 0, 0, 0} {1, 0, 2, 1, 2, 2} {55, 56, 54, 55, 54, 54}
QMT_ResNet_OU_Regx_Lat {0, 2, 1, 2, 0, 2} {6, 5, 6, 5, 5, 3} {50, 49, 49, 49, 51, 51}
QMT_ResNet_OU_Regx_TD {0, 1, 1, 0, 1, 0} {1, 2, 2, 1, 2, 2} {55, 53, 53, 55, 53, 54}

for the box-whisker plot shown in Figure 4.37. Comparatively, we found a slight improvement in
the statistics of the quantile regression that encouraged over and underestimations compared to its
counterpart. For instance, in the latent space, the architecture based on the VGG16 got an 84.37%
best case median accuracy on the 56 UCR archive datasets and while it was discouraged over and
underestimation. On the contrary, while encouraging over and under estimations, it got 86.65% best
median accuracy. Moreover, while discouraging over and under estimations, its best case lower

156

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

whisker, 25% quantile, and 75% quantile were: 55.26%, 72.56%, and 94.08%. On the contrary, while
encouraging over and under estimation, its statistics were: 53.89%, 74.34%, and 96.48%. In addition to
these improvements, in the time domain, the architecture obtained a best case median accuracy of
66.48%, i.e., while encouraging over and underestimation. On the contrary, over the same datasets,
the architecture obtained a best case median NCC accuracy of 65.71%, i.e., when discouraging over
and under estimations. Moreover, the time domain best case lower whisker, 25%, and 75% quantiles
are 20.06%, 54.09%, and 84.47%, i.e., while it discouraged over and under estimations. On the contrary,
while it encouraged over and under estimations, it obtained 23.19%, 54.92%, and 84.79% over the three
statistical terms. Overall, encouraging over and under estimations across all architectures introduced
slight improvements. As we argued earlier, encouraging over and under estimations leaves more room
for the classifier so that it influences the type of extracted latent features. This, in turn, encourages
the extraction of comparatively better separable and dense latent embeddings. With this in mind, we
next assess which of the _ pairs gives better performances. In this aspect, Figure 4.38 shows the CD
diagrams associated with the NCC accuracies obtained on 72 UCR archive datasets.

Table 4.21: Statistical assessment of the NCC accuracies obtained with the extended evaluations of the quantile
multi-tasking autoencoders that encourage over and under estimation. These assessments were conducted
using the maximum NCC accuracies that are obtained on 56 UCR archive datasets

Techniques Bot. whisker Top whisker 25% Quant. 75% Quant. Median
Arithmetic 8.31 96.43 41.04 71.09 55.59
DBA 28.94 100 54.05 83.48 67.90
DTAN 33.31 100 60.79 88.29 76.69
SDBA 32.83 99.05 57.41 85.06 71.50

QMMT_VGG_OU_Regx_Lat
x={0, 1, 2, 3, 4, 5}

{53.42, 49.74,
48.68, 46.18,
53.89, 46.58 }

{100,100,
100, 100,
100, 100}

{71.70, 74.34,
72.44, 74.04,
74.03, 72.64 }

{92.28, 96.45,
94.59, 94.22,
94.98, 94.89 }

{84.35, 84.54,
85.77, 86.14,
86.65,86.85 }

QMMT_VGG_OU_Regx_TD
x={0, 1, 2, 3, 4, 5}

{5.02, 19.12,
20.06, 19.49,
23.13, 23.19}

{100, 100,
100, 100,
100, 100}

{44.52, 51.36
54.26, 51.83,
53.02, 54.92}

{75.06, 79.30,
82.42, 81.25,
84.48, 84.79}

{62.49, 63.70,
66.48, 64.04,
65.28, 65.50}

QMT_Inc_OU_Regx_Lat
x={0, 1, 2, 3, 4, 5}

{52.24, 51.45,
53.25, 55.84,
51.29, 51.29 }

{100, 100,
100, 100,
100, 100 }

{69.70, 71.08,
70.24, 70.54,
70.11, 70.39}

{94.54, 93.62,
94.05, 94.49,
95.51, 94.38}

{80.59, 81.62,
81.25, 83.33,
82.56, 83.33}

QMMT_Inc_OU_Regx_TD
x={0, 1, 2, 3, 4, 5}

{10.33, 19.29,
16.46, 22.82,
23.19, 18.34}

{100, 99.05,
100, 100,
100, 100}

{37.47, 49.34,
53.14, 48.86,
52.01, 52.38 }

{78.82, 79.66,
79.33, 80.99,
83.95, 82.98}

{61.59, 64.16,
64.69, 64.45,
64.57, 64.35}

QMT_ResNet_OU_Regx_Lat
x={0, 1, 2, 3, 4, 5}

{53.25, 55.84,
53.42, 53.03,
51.97, 52.59}

{100, 100,
100, 100,
100, 100}

{70.61, 71.53,
70.93, 69.09,
70.38, 70.13}

{94.34, 93.59,
94.16, 96.04,
94.18, 94.06}

{82.72, 83.45,
83.75, 80.41,
81.30, 83.04}

QMT_ResNet_OU_Regx_TD
x={0, 1, 2, 3, 4, 5}

{16.92, 20.06,
22.22, 17.60,
22.31, 22.31}

{100, 100,
100, 100,
100, 100}

{49.72, 51.69,
53.08, 44.72,
48.54, 52.04}

{80.42, 83.86,
84.46, 76.15,
81.35, 84.13}

{64.78, 63.25,
65.21, 64.18,
64.30, 65.04}

157

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

Ar
th

im
et

ic

D
BA

D
TA

N

Q
M

M
T_

O
U

_V
G

G
_R

eg
0_

La
t_

M
ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
0_

TD
_M

ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
1_

La
t_

M
ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
1_

TD
_M

ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
2_

La
t_

M
ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
2_

TD
_M

ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
3_

La
t_

M
ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
3_

TD
_M

ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
4_

La
t_

M
ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
4_

TD
_M

ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
5_

La
t_

M
ax

Q
M

M
T_

O
U

_V
G

G
_R

eg
5_

TD
_M

ax

Q
M

T_
O

U
_I

nc
_R

eg
0_

La
t_

M
ax

Q
M

T_
O

U
_I

nc
_R

eg
0_

TD
_M

ax

Q
M

T_
O

U
_I

nc
_R

eg
1_

La
t_

M
ax

Q
M

T_
O

U
_I

nc
_R

eg
1_

TD
_M

ax

Q
M

T_
O

U
_I

nc
_R

eg
2_

La
t_

M
ax

Q
M

T_
O

U
_I

nc
_R

eg
2_

TD
_M

ax

Q
M

T_
O

U
_I

nc
_R

eg
3_

La
t_

M
ax

Q
M

T_
O

U
_I

nc
_R

eg
3_

TD
_M

ax

Q
M

T_
O

U
_I

nc
_R

eg
4_

La
t_

M
ax

Q
M

T_
O

U
_I

nc
_R

eg
4_

TD
_M

ax

Q
M

T_
O

U
_I

nc
_R

eg
5_

La
t_

M
ax

Q
M

T_
O

U
_I

nc
_R

eg
5_

TD
_M

ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
0_

La
t_

M
ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
0_

TD
_M

ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
1_

La
t_

M
ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
1_

TD
_M

ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
2_

La
t_

M
ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
2_

TD
_M

ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
3_

La
t_

M
ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
3_

TD
_M

ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
4_

La
t_

M
ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
4_

TD
_M

ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
5_

La
t_

M
ax

Q
M

T_
O

U
_R

es
N

et
_R

eg
5_

TD
_M

ax

SD
BA

Averaging techniques

20

40

60

80

100
Ac

cu
ra

cy

Figure 4.37: Box-whisker plot comparison of the NCC accuracies that are obtainedwith the estimates of quantile
regression multi-tasking autoencoders while encouraging over and under estimations. These comparison are
based on NCC accuracies obtained on 56 UCR archive datasets and using different averaging techniques.

(a) Comparison of maximum latent space NCC accuracies
across different _ pair values for QMMT_OU_VGG that are
obtained while encouraging over and under estimations

(b) Comparison of maximum time domain NCC accuracies
across different _ pair values for QMMT_OU_VGG that are
obtained while encouraging over and under estimations

(c) Comparison of maximum latent space NCC accuracies
across different _ pair values for QMT_OU_Inc that are
obtained while encouraging over and under estimations

(d) Comparison of maximum time domain NCC accuracies
across different _ pair values for QMT_OU_Inc that are
obtained while encouraging over and under estimations

(e) Comparison of maximum latent space NCC accuracies
across different _ pair values for QMT_OU_ResNet that are
obtained while encouraging over and under estimations

(f) Comparison of maximum latent space NCC accuracies
across different _ pair values for QMT_OU_ResNet that are
obtained while encouraging over and under estimations

Figure 4.38: CD diagram comparisons of NCC accuracies obtained with different _ values while quantile multi
tasking regression autoencoders encouraged over and under estimations. The comparison is performed using
the NCC accuracies obtained on 72 UCR archive datasets.

According to Figures 4.38 (a) and 4.38 (b), the VGG16 architecture obtained better latent space
and time domain NCC accuracies with the fifth (0.25, 0.25) and sixth (0.35, 0.35) _ pair values. In
reality, these _ values comparatively encourage overestimations. However, the fugues also show
that these _ values are respectively statistically indifferent to second and fourth _ pair values. This
shows that, in the latent space, for this architecture encouraging over and underestimations have the
same implication. However, in the time domain, encouraging overestimation appears to be obtaining
better performances. In reality, in the latent space, the fifth _ pair value also appears to be providing
better performances for the Inception architecture. However, in this case, it is statistically indifferent

158

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

to the first _ pair value. On the contrary, in the time domain, the fifth and sixth _ values appeared
statistically indifferent. This further adds to the fact that encouraging overestimation is giving better
time domain performances. In general, the same fact can also be stated for the ResNet architecture.
Thus, overall, we found the fifth _ (0.25, 0.25) value to give better latent and time domain estimations.
If we pause at this point and think of it, our initial argument for proposing the quantile regression was
the fact that the decoder of the basic multi-tasking autoencoders was bound to a median reconstruc-
tion line which we found to be behaving as arithmetic mean. Thus, it would be no surprise that an
overestimation pulls up the median reconstruction line, i.e., for each time stamp, which in turn gives
better performance. With this in mind, we next observe how over and under estimations perform
compared to the estimates of the alternative averaging techniques. In this aspect, we first assess the
performances of the estimates with the inclusion of DTAN using 56 UCR archive datasets. We then
exclude DTAN and further the assessment using NCC accuracies obtained on 72 UCR archive datasets
for some of which the evaluations for DTAN are missing. With these in mind, Figure 4.39 shows the
performance comparisons based on the 56 UCR archive datasets, where the left and right columns
correspond to the comparison made using the latent space and time domain estimates of the quantile
regression multi-tasking autoencoders.

(a) Comparison of maximum latent space NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(b) Comparison of maximum time domain NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(c) Comparison of mean latent space NCC accuracies with
maximum accuracies obtained with the estimates of alter-
native averaging techniques

(d) Comparison of mean time domain NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(e) Comparison of median latent space NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(f) Comparison of median time domain NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(g) Comparison of minimum latent space NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(h) Comparison of minimum time domain NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

Figure 4.39: CD diagram comparisons of NCC accuracies obtained with alternative averaging techniques and
quantile multi tasking regression autoencoders that encouraged over and under estimations. The comparison is
performed using the NCC accuracies obtained on 56 UCR archive datasets.

According to Figures 4.39 (h) (a), the latent space performances of the quantile regression multi-
tasking autoencoders are better than the state of the art (DTAN) while comparing the maximum NCC
accuracies across the different averaging techniques. Moreover, according to Figure 4.39 (b), the time
domain accuracies that are obtained with the VGG16 architecture obtained better performances as

159

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

compared to DBA. These performances of the VGG16 get closely followed by the Inception archi-
tecture. In general, if we compare the performances of the estimates in the registered space of the
averaging techniques, the estimates of the multi-tasking autoencoders are far better than any of the
alternatives. We make these conclusive remarks since their worst-case performance is comparable
to the state-of-the-art as shown in Figure4.39 (g). In this aspect, in the time domain, the worst we
can perform is up to arithmetic mean. Moreover, while comparing maximum performances, the
multi-tasking quantile regression is performing better than DBA in DTW space. In reality, we found
this assessment to also be evident while performing the comparison on 72 UCR archive datasets as
shown in Figure 4.40 (b). In this aspect, we found the VGG16 architecture to perform better than the
alternatives. With this said we finalize this chapter by first presenting the standard deviations (𝜎)

(a) Comparison of maximum latent space NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

(b) Comparison of maximum time domain NCC accuracies
with maximum accuracies obtained with the estimates of
alternative averaging techniques

Figure 4.40: CD diagram comparisons of NCC accuracies obtained with alternative averaging techniques and
quantile multi tasking regression autoencoders that encouraged over and under estimations. The comparison is
performed using the NCC accuracies obtained on 72 UCR archive datasets.

associated with NCC. Following this, to make the discussion made so far complete, we present the

Table 4.22: The average standard deviations of the NCC accuracies obtained by different _ pair. In
the table, we indicate the different _ pair configuration as _𝑥 : 𝑥 = {0, 1, 2, 3, 4, 5} =
{(0.85, 0.85), (0.75, 0.75), (0.65, 0.65), (0.15, 0.15), (0.15, 0.15), (0.15, 0.15)}, where QMMT_VGG, QMT_Inc,
QMT_ResNet correspond to the quantile multi-tasking autoencoders based on the VGG16, Inception, and
ResNet architectures.

Techniques x in _𝑥 Latent Space ±𝜎 in % Time Domain ±𝜎 in %
QMMT_VGG

0
10.16 11.23

QMT_Inc 7.34 9.73
QMT_ResNet 6.61 7.68
QMMT_VGG

1
8.32 10.21

QMT_Inc 6.23 8.82
QMT_ResNet 6.31 7.34
QMMT_VGG

2
6.99 8.52

QMT_Inc 6.00 8.48
QMT_ResNet 8.14 10.30
QMMT_VGG

3
5.39 6.83

QMT_Inc 8.41 6.33
QMT_ResNet 6.21 7.50
QMMT_VGG

4
6.33 7.57

QMT_Inc 5.70 8.46
QMT_ResNet 6.86 9.69
QMMT_VGG

5
5.39 6.83

QMT_Inc 5.37 8.39
QMT_ResNet 6.81 8.77

160

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

time domain estimates corresponding to the UCR archive datasets. With these in mind, in Table 4.22,
we have summarized the standard deviations among the NCC accuracies obtained with 25 iterations
of training. In general, for the _ pair values that encouraged overestimations, the VGG16 architec-
ture obtained the lowest standard deviations. Additionally, we found this architecture to provide
better time domain estimates compared to the alternatives. Practically, this is evident due to its layer
arrangement that consecutively filters out latent features. However, overall, the NCC accuracies
obtained with the Inception architecture are relatively stable across all _ pair values.

With this said, in Figure 4.41, we have presented the time domain estimates that correspond to
the ECG200 and ECGFiveDays. These estimates are generated by the multi-tasking quantile regression
autoencoders while they are encouraging and discouraging over or underestimates. Moreover, in
Table 4.23, we have summarized the NCC accuracies that are obtained with the estimates. Based on
the visual demonstrations of the estimates, encouraging over and under estimations comparatively
pulled peak values to be above the median reconstruction line. For instance, if we compare the
estimates in Figures 4.41 (c) and 4.41 (e), we can see that for the class 2 of the ECGFiveDays dataset the
negative peak estimation is better while the autoencoder encouraged overestimation. Moreover, the

Table 4.23: NCC accuracies for the UCR archive’s ECG200 and ECGFiveDays datasets that are obtained with
different versions of multi-tasking autoencoders and their counterparts

Techniques NCC for ECG200 in % NCC for ECGFiveDays in%
Arithmetic 67 52.96
DBA 65 52.15
SDBA 73 67.02
DTAN 79 97.79
MMT_VGG_TD 77 70.27
MT_Inception_TD 78 72.36
MT_ResNet_TD 78 72.71
Var_MMT_VGG_TD 73 70.15
Var_MT_Inception_TD 77 70.49
Var_MT_ResNet_TD 77 74.33
QMMT_VGG_TD 76 78.39
QMT_Inception_TD 79 76.54
QMT_ResNet_TD 79 76.89
QMMT_OU_VGG_TD 79 78.16
QMT_OU_Inception_TD 76 79.21
QMT_OU_ResNet_TD 82 76.54

same observation is made for the first class of ECG200 where the middle sharp rising edge gets better
captured. Overall, we found encouraging over and under estimations to often give slightly better
performances compared to the discouraging ones. To demonstrate this statistically, in Figure 4.42, we
identified and selected the best performing _ values for both arrangements and compared them using
a hypothesis test. From Figure 4.42 (a), we can see that the VGG16 architecture obtained better latent

161

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4
At

tri
bu

te
ECGFiveDays class one with Arthimetic average

Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with Arthimetic average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with Arthimetic average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with Arthimetic average
Average

(a) Arithmetic means

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMMT_VGG

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMMT_VGG

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_VGG

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMMT_VGG

(b) QMMT_VGG’s estiamtes

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMMT_VGG_OU

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMMT_VGG_OU

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_VGG_OU

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMMT_VGG_OU

(c) QMMT_OU_VGG’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMT_Inc

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMT_Inc

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_Inc

0 20 40 60 80
Time

2

1

0

1

2

3

Estimate for ECG200 class 2 with QMMT_Inc

(d) QMT_Inc’s estiamtes 5

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMMT_VGG_OU

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMMT_VGG_OU

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_VGG_OU

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMMT_VGG_OU

(e) QMMT_OU_Inc’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMT_ResNet

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMT_ResNet

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMT_ResNet

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMT_ResNet

(f) QMT_ResNet’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 1 with QMMT_VGG_OU

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

Am
pl

itu
de

Estimate for ECGFiveDays class 2 with QMMT_VGG_OU

0 20 40 60 80
Time

3

2

1

0

1

2

3

4

Am
pl

itu
de

Estimate for ECG200 class 1 with QMMT_VGG_OU

0 20 40 60 80
Time

2

1

0

1

2

3

Am
pl

itu
de

Estimate for ECG200 class 2 with QMMT_VGG_OU

(g) QMT_OU_ResNet’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with DBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with DBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with DBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with DBA average
Average

(h) DBA’s estimates

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class one with SDBA average
Average

0 20 40 60 80 100 120 140
Time

6

4

2

0

2

4

At
tri

bu
te

ECGFiveDays class two with SDBA average
Average

0 20 40 60 80 100
Time

3

2

1

0

1

2

3

4

At
tri

bu
te

ECG200 class one with SDBA average
Average

0 20 40 60 80 100
Time

2

1

0

1

2

3

At
tri

bu
te

ECG200 class two with SDBA average
Average

(i) SDBA’s estimates

Figure 4.41: Averages estimated for the UCR archive’s ECG200 and ECGFiveDays datasets using quantile
multi-tasking autoencoders while they encouraged and discouraged over and under estimations

162

Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
Chapter
4

space Friedman rank when encouraging overestimations. However, in the Wilcoxon post hypothesis
test, we found it statistically equivalent to a VGG16 and ResNet configurations that discouraged over
and under estimations. Nevertheless, even under this equivalence, we also can see another VGG16
configuration that encouraged over and under estimation performing better than the alternatives in a
statistically indifferent manner. Similarly, we can also observe that in the time domain the VGG16

(a) Comparison of maximum latent space NCC accuracies (b) Comparison of maximum time domain NCC accuracies

Figure 4.42: CD diagram comparisons of NCC accuracies obtained with quantile multi-tasking autoencoders
while encouraging and discouraging over and under estimations. The comparison is performed using the NCC
accuracies obtained on 72 UCR archive datasets.

architecture obtained a better Friedman average rank when it encourages over and under estimations.
However, the post hypothesis test shows that it is statistically indifferent to a ResNet and Inception
configurations that discouraged over and under estimations. However, overall, we find the cases that
encouraged over and under estimations to dominate the right side of the Friedman average rank. In
conclusion, of all the multi-tasking configurations, we found the quantile regression arrangement to
give better time domain estimates. However, in the context of encouraging or discouraging under and
overestimations, we have made the following observations. First, if the data under observation has
amplitude values that are more or less similar, we found the arrangements that discouraged over and
under estimation to give better time domain estimates. This is because, for such datasets, the median
reconstruction line is often optimal and there is no need to shift it significantly. On the contrary, if
the amplitude variation among members of the averaged set is significant, we suggest that under and
overestimations get encouraged. However, care should be taken so that it does not shift the median
line in a manner that distorts the time domain projections.

163

5 Time Series Averages in

Cluster Level Forecasting

We like to finalize this dissertation by presenting the implication of our studies in the context of a
real-world application. In this regard, we present one of our work as a demonstrative example and
later show how our averaging proposals can get put to use [114]. In [114], we proposed a hybrid
cluster level forecasting technique to predict for the traffic load offered to Universal Mobile Telecom-
munication System (UMTS) radio nods (Node B) located within Addis Ababa, Ethiopia.

to each other over the access network internal interface Iur. This structure and its
advantages are explained in more detail in Chapter 5.

The other access network shown in Figure 1.3, GERAN, is not handled in detail in
this book. Readers interested in GERAN should consult, e.g., Halonen et al. (2002).

The term ‘‘Core Network’’ (CN) covers all the network elements needed for switch-
ing and subscriber control. In early phases of UMTS, part of these elements were
directly inherited from GSM and modified for UMTS purposes. Later on, when trans-
port technology changes, the core network internal structure will also change in a
remarkable way. CN covers the CS and PS domains defined in Figure 1.3. Configura-
tion alternatives and elements of the UMTS core network are discussed in Chapter 6.

10 UMTS Networks

Figure 1.3 UMTS network architecture—network elements and their connections for user data

transferFigure 5.1: A basic UMTS based wireless communication network architecture [115]

In practice, a UMTS network is composed of three basic building blocks: the Core Network (CN), the
UMTS Terrestrial Radio Access Network (UTRAN) and the User Equipment (UE) [115], [116]. In UMTS,
the UTRAN contains the Base Transceiver Station (BTS) or Node B that provides a direct interface
to the network user via either an omni directional or directional dipole radio antennas. In practice,
a Node B has a services coverage area dependent on data rate and desired quality of service [117].
However, due to its operating frequency that could range up to 2.1 GHz, the coverage area of a UMTS
Node B is significantly lower than the BTS utilized in predecessor networks such as the Global System
for Mobile Communication (GSM). In practice, a GSM BTS operates on either 900 MHz or 1800 MHz
ranges with slightly longer wavelengths. To this end, the electromagnetic waves generated by GSM
radio nodes comparatively travel long distances without significant attenuation. In this aspect, a

164

Time Series Averages in Cluster Level Forecasting
Chapter
5

UMTS get expected to have a relatively higher number of radio nods to increase its coverage area.
This, in turn, requires the deployment of controlling mechanisms that ensure radio nodes provide
coverage without significant interference among themselves. In this aspect, UMTS utilizes Radio
Network Controller (RNC) units that are incorporated within the UTRAN [115], [116]. In general, a
RNC is expected to perform: admission control, radio resource control, radio barrier setup (release),
handover, etc [116]. For instance, if a user moves away from one radio node to another controlled by
the same RNC, then the RNC is expected to ensure the smooth transfer of radio links without service
interruption. On the contrary, if a user is moving outside the domain of the RNC and if the user is
utilizing a voice service, then the RNC will pass the link management to a Mobile Switching Center
(MSC) located within the core network. In general, by utilizing such a modularized approach, UMTS
became one of the most successful wireless cellular communication networks starting in early 2000.

In practice, maintaining a high quality of service in such big wireless cellular networks is not a
trivial task. To make matters worse, a UMTS network get expected to provide both packet and
switched network services. In reality, these services place different sets of requirements to guarantee
an acceptable quality of services. In this regard, network operators such as Ethio Telecom establish a
range of Key Performance Indicators (KPI). For instance, for a UMTS switched voice service, operators
continuously assess: call drop rates, call denial rates, successful handover rates, etc. In practice,
there are a range of factors contributing to the degradation of such KPIs. For instance, a UMTS
network could face a lot of unsuccessful handovers due to blind spots due to the obstruction of radio
signals associated with natural or artificial landmarks. In such cases, corrective measures get taken
by identifying a better location for the radio units. In another aspect, the network could be affected
by an increase in call drop rates, call denial rates, and unsuccessful handovers. In practice, such cases
could happen due to spikes in the offered traffic load. In this regard, operators often asses traffic loads
using measurement units such as the Erlang. For instance, (5.1) demonstrates how Erlang A gets
computed, where c is the average number of arriving calls within a duration T. Moreover, h is the
average call duration.

𝐸𝐴 =
𝑐 × ℎ

𝑇
(5.1)

In the context of an offered load, different wireless communication systems often utilize different
techniques to increase their traffic capacity. In this regard, wireless radio nodes could multiplex their
users through time and frequency. In other words, a radio unit can operate on multiple frequen-
cies (channels) that are divided in time. Moreover, in some cases such as the UMTS, the time and
frequency multiplexed channels can further increase their sharing capacity using codded transmis-
sions. However, in reality, such systematic designs often could increase sharing capacity up to a
certain limit. To this end, in practice, operators are expected to often resort to network optimization.
This in turn could include the deployment of additional transceiver modules or an entire radio unit.
Moreover, in extreme cases, operators are expected to upgrade the utilized technology, say for instance
from 3𝑟𝑑 generation (UMTS) to 4𝑡ℎ or 5𝑡ℎ generation systems. In reality, the cost of making such minor
or major network optimization is often high. To this end, operators are expected to carefully assess

165

Time Series Averages in Cluster Level Forecasting
Chapter
5

the "when to" and "how to" upgrade (optimize) questions. In reality, the when to upgrade (optimize)
question is highly correlated to the investment return time of the deployed infrastructures. On the
contrary, the answer to the "how to" upgrade question is often dependent on financial feasibility. In
general, in either case, the decision has to be made in an intelligent manner.

With these in mind, in [114], we focused on one major factor that impact the KPI of UMTS’s data
service, i.e., offered data traffic load. In this aspect, we set out to develop an efficient forecasting
technique for the offered data traffic loads to 739 UMTS radio units that were located within the areas
of Addis Ababa, Ethiopia. The radio units were a part of Ethio Telecom’s 3𝑟𝑑 generation wireless net-
work. In our work, we strongly believed that by deploying efficient forecasting models, the operators
could utilize short or long-term forecasts to predict minor and major optimization requirements. With
this understanding, we approached the problem using two key steps. First, we needed to identify a
proper forecasting model that better captures the patterns observed in the traffic loads. In addition to
this, we were also expected to address the limitations observed in the identified forecasting models
and propose possible mitigation techniques. With this said, we will next present the steps we took
while identifying the proper forecasting model.

5.1 A Cluster Level Data Traffic Forecasting

We have started our search for a suitable forecasting model from the analysis of the traffic load
datasets. In this aspect, we had 739 time series that were defined by taking an hourly measurement of
the total data traffic in Giga Bytes (GB). Moreover, the measurements were taken: for four consecutive
months (i.e., from September 2019 to March 2019), seven days of a week, and 24 hours of a day. In other
word, the dimension (length) of the time series were 24 × 7 × 16 = 2688. As demonstrative examples,
in Figure 5.2, we have plotted datasets extracted from four radio nodes that correspond to data traffic
loads offered within two weeks period. In reality, plots based on longer duration also presented similar
repeating patterns (seasonality). In practice, such seasonalities get expected to arise from people
performing their daily routines. For instance, we expect a radio node near city centers to have a
peak traffic demand during working hours. Moreover, the traffic demand on such radio nodes is also
expected to decrease as people return to their homes and on weekends. On the contrary, a radio node
serving residential areas get expected to have a higher data traffic load when: people return to their
homes, in the early mornings, early evenings, mid-night (related to cost reduction), and on weekends.
Additionally, as more people join the network, the traffic load in both areas is expected to show a steady
increase. In practice, this often accounts for trends evident in the datasets. Practically, the presence of
such seasonalities and trends are mathematically analyzed by decomposing a dataset into its three
basis components, i.e., seasonality, trend, and residue. To perform the decomposition, we can either
assume a dataset is either a linear or a multiplicative combination of the three components [1]. In this
regard, we chose the former approach since the datasets contained values that are zero. However, in
practice, such decomposition often requires prior knowledge about the periods of seasonalities. In
this aspect, since we had no prior knowledge about the exact duration of the seasons, we first had
to observe the autocorrelation and partial autocorrelation plots of the datasets. In this aspect, we

166

Time Series Averages in Cluster Level Forecasting
Chapter
5

0 50 100 150 200 250 300 350
Time

0

1

2

3

4

5
Da

ta
 Tr

af
fic

 L
oa

d
in

 T
B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

2

4

6

8

10

12

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

10

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

(a)

0 50 100 150 200 250 300 350
Time

0

1

2

3

4

5

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

2

4

6

8

10

12

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

10

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

(b)
0 50 100 150 200 250 300 350

Time

0

1

2

3

4

5

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

2

4

6

8

10

12

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

10

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B
(c)

0 50 100 150 200 250 300 350
Time

0

1

2

3

4

5

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

2

4

6

8

10

12

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

0 50 100 150 200 250 300 350
Time

0

2

4

6

8

10

Da
ta

 Tr
af

fic
 L

oa
d

in
 T

B

(d)

Figure 5.2: Sample data traffic loads offered to four UMTS radio nodes locate within the areas of Addis Ababa,
Ethiopia

first plotted the auto and partial correlations using plots similar to Figure 5.3. From the figure, we
noted that the autocorrelations obtained a significant correlation at lags of 24 hours. Moreover, they
showed a slight increase of correlation every 168 hours (1 week). The same correlation patterns were
also observed for the partial autocorrelation plots. To this end, we concluded that the datasets have
dual seasonality, i.e., daily (24 hours) and weekly (168 hours). To further assess the validity of the

0 25 50 75 100 125 150 175 200
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Autocorrelation

24 hours / 1
 day

48 hours / 2
 days

72 hours / 3
 days

96 hours / 4
 days

110 hours / 5
 days

134 hours / 6
 days

168 hours / 7
 days

(a) Auto correlation

0 25 50 75 100 125 150 175 200
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rti

al
 C

or
re

la
tio

n

Partial Autocorrelation

Daily (24 hours) periodicity

Daily (24 hours) and weekly periodicity

(b) Partial auto correlation

Figure 5.3: Auto correlation and partial auto correlation for a sample data traffic that is offered to a UMTS
radio node

dual seasonality assumption, we decomposed the datasets into their three basic components. In this
regard, Figure 5.4 shows the daily and weekly decomposition of the time series whose autocorrelation
plot is shown in Figure 5.3. According to Figures 5.4 (a) and 5.4 (b), the weekly and daily seasonality
patterns are different. Thus, this further asserted the presence of dual seasonality. Based on these
observations, we firmly concluded that our forecasting model should be able to account for dual
seasonality and trend. In this aspect, we identified two possible forecasting approaches, i.e., LSTMs
or classical linear and nonlinear seasonal forecasting models. However, rather than relying on one

167

Time Series Averages in Cluster Level Forecasting
Chapter
5

of the approaches, we proposed to benefit from the advantages offered by both categories. To this
end, we proposed a hybrid forecasting model based on a Seasonal Autoregressive Integrated Moving
Average (SARIMA) [118] and LSTM neural network [119].

0 100 200 300 400 500
0

5000

10000

Observed

0 100 200 300 400 500
5500

6000

6500

Tr
en

d

0 100 200 300 400 500

2500

0

2500

Se
as

on
al

0 100 200 300 400 500
2000

0

2000

4000

Re
sid

ua
l

(a) Decomposition based on a Daily seasonality

0 100 200 300 400 500
0

5000

10000
Observed

0 100 200 300 400 500

6000

6100

Tr
en

d

0 100 200 300 400 500
5000

0

5000

Se
as

on
al

0 100 200 300 400 500

2000

0

2000

Re
sid

ua
l

(b) Decomposition based on a weekly seasonality

Figure 5.4: Auto correlation and partial auto correlation for a sample UMTS data traffic load. In order to plot
the decomposition, we have only taken a segment of the dataset that corresponds to four weeks of

measurements for better visibility

In practice, a SARIMA forecasting (regression) model is derived from its non seasonal version, i.e.,
an Auto Regressive Integrated Moving Average (ARIMA). Moreover, an ARIMA is in turn built from
two major building blocks, i.e., Auto Regressive (AR) and Moving Average (MA). In general, given a
time series of the form 𝑌 = {𝑦1, 𝑦2, , . . . , 𝑦𝑡−1}, a 𝑝𝑡ℎ order AR model tries to predict 𝑦𝑡 using the
linear combination of its 𝑝 predecessor values and a constant 𝐶 . This is mathematically summarized
as AR(p) (5.2), where 𝑒𝑡 is the AR forecasting error for a sample at t.

𝑦𝑡 = 𝐶 + 𝛼1 × 𝑦𝑡−1 + 𝛼2 × 𝑦𝑡−2 + 𝛼3 × 𝑦𝑡−3 + . . . + 𝛼𝑝 × 𝑦𝑡−𝑝 + 𝑒𝑡 (5.2)

On the contrary, a 𝑞𝑡ℎ order MA model tries to forecast a future value using q predecessor forecasting
error values generated from an AR ({𝑒𝑡−1, 𝑒𝑡−2, . . . , 𝑒𝑡−𝑞}), i.e., MA(q) shown in (5.3). Thus, an Auto
Regressive Moving Average (ARMA) forecasting model combines the two estimation techniques.
However, in practice, most temporal datasets often contain a continuously increasing/decreasing
constant offset corresponding to trends. In reality, such offsets were found to affect the performances
of linear models that assume the modeled data is stationary [1]. Thus, researchers often propose to
take the difference (D) of a dataset prior to fitting the forecasting models, i.e.,𝑦′𝑡 = 𝐷 (𝑦𝑡) = 𝑦𝑡 − 𝑦𝑡−1.
Thus, this way, one can take the integration of the predicted values as the reverse operation, i.e.,
𝐼 (𝑦𝑡) = 𝑦𝑡 + 𝑦𝑡+1. With this in mind, researchers often propose to utilize the updated version of
ARMA, i.e., the ARIMA.

𝑦𝑡 = 𝐶 + Z1 × 𝑒𝑡−1 + Z2 × 𝑒𝑡−2 + Z3 × 𝑒𝑡−3 + . . . + Z𝑞 × 𝑒𝑡−𝑞 (5.3)

With these understandings, we can summarize an ARMA(p, q, D) model using (5.4). However, in
most practical cases, the difference operation (D) is performed 𝑑 a number of times. To incorporate
this concept, most literature expresses the degree of the difference operation as 𝐷𝑑 . Moreover, to
express (5.4) in a more compact manner, they also define the lag operator 𝐵, where 𝐵𝑛𝑦𝑡 = 𝑦𝑡−𝑛 .
Thus we can write 𝐷 (𝑦𝑡) = 𝑦′𝑡 = 𝑦𝑡 − 𝑦𝑡−1 as 𝑦′𝑡 = (1 − 𝐵)𝑦𝑡 . Furthermore, we can write

168

Time Series Averages in Cluster Level Forecasting
Chapter
5

𝑦′′(𝑡) = 𝑦′𝑡 − 𝑦′𝑡−1 = 𝑦𝑡 − 𝑦𝑡−1 − (𝑦𝑡−1 − 𝑦𝑡−2) = 𝑦𝑡 − 2 × 𝑦𝑡−1 − 𝑦𝑡−2 = (1 − 𝐵)2𝑦𝑡 . Following
this path, the 𝑑𝑡ℎ difference of 𝑦𝑡 can be written as 𝑦𝑑𝑡 = (1 − 𝐵)𝑑𝑦𝑡 . To this end, an ARIMA(p, q, d)
linear forecasting model can now compactly be written as (5.5).

𝑦′𝑡 = 𝐶 + (
Z1 𝑒𝑡−1 + Z2 𝑒𝑡−2 + . . . + Z𝑞𝑒𝑡−𝑞

) + (
𝛼1 𝑦′𝑡−1 + 𝛼2 𝑦′𝑡−2 + . . . + 𝛼𝑝 𝑦′𝑡−𝑝 + 𝜖𝑡

)
(5.4)

𝐶 + (
1 + Z1𝐵 + Z2𝐵

2 + . . . + Z𝑞 𝐵
𝑞) 𝑒𝑡 = (

1 + 𝛼1𝐵 + 𝛼2 𝐵
2 + . . . + 𝛼𝑝 𝐵

𝑝) (1 − 𝐵)𝑑 𝑦𝑡 (5.5)

In general, by combining the AR and MA terms, the ARIMA proved to be efficient in most practical
cases [1], [119], [120]. However, when datasets presented some form of seasonality, it performed
poorly [118]. This is because, for the basic ARIMA, seasonal values will aggregate and behave as a
trend that influences the selection of optimal model coefficients (𝛼 and Z). To this end, in such cases,
the seasonal version of the ARIMA or Seasonal Autoregressive Integrated Moving Average (SARIMA)
is often proposed. In this regard, in order to better capture seasonality, a SARIMA combines 𝑁 ARIMA
models in a multiplicative manner as shown in (5.6), where, 𝑆𝑖 is the 𝑖𝑡ℎ seasonality component of
a datasets. In our context, since the data traffics presented two forms of seasonality, we proposed
to utilize Double Seasonal Auto Regressive Integrated Moving Average (D-SARIMA) model, where,
𝑆1 = 24 hours and 𝑆2 = 168 hours.

𝑁 − 𝑆𝐴𝑅𝐼𝑀𝐴 = 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑞, 𝑑) ×𝐴𝑅𝐼𝑀𝐴(𝑃1, 𝑄1, 𝐷1)𝑆1 × . . . × 𝐴𝑅𝐼𝑀𝐴(𝑃𝑁 , 𝑄𝑁 , 𝐷𝑁)𝑆𝑁 (5.6)

With these in mind, we next placed our focus on the residues of the Double Seasonal Auto Regressive
Integrated Moving Average (D-SARIMA) model. In reality, the residues could either correspond to a
portion of the dataset that can not be represented by a composition of linear models or they could
be some random noise. In either case, statistical modeling of the datasets get expected to give us
a better understanding of the underlying situation. In this regard, we analyzed the resemblance of
our datasets to a Gaussian distribution. In reality, we chose to compare the datasets to the Gaussian
distribution with the neural networks in mind. In this context, on one hand, if the datasets closely
resemble some sort of Gaussian distribution, we can expect the residues to follow the same pattern
due to the linear nature of the forecasting model. On the other hand, in practice, we have neural
networks that successfully utilized Gaussian distributions to model temporal datasets [38]. Thus,
we can safely expect LSTM network to extract some additional meaningful information from the
residues. With this in mind, to visually assess the distribution of the datasets, we utilized histogram
and Quantile Quantile (QQ) plots. To plot the histogram, we first divided the traffic demand into 25
Tera Bytes histogram bins. Following this, we fitted the best possible Gaussian distribution on the
hourly traffic measurements. We then plotted the histograms and the fitted Gaussian distribution
curve on the same figure. Finally, we observed if the histograms preserve the symmetry of a Gaussian
distribution curve. On the contrary, for the QQ plots, we divided the hourly traffic measurements into
different quantiles, i.e., based on their values. Following this, samples falling within a given quantile
get compared to similar valued samples of a theoretical Gaussian distribution. The quantile values
of the compared samples are then recorded as a two dimension point. Finally, the comparisons are
plotted using a scatter plot. Thus, if the quantiles of the traffic data match the quantiles of a Gaussian

169

Time Series Averages in Cluster Level Forecasting
Chapter
5

distribution, then the two dimensional points of a QQ comparison will be along the diagonal line of
the scatter plot. In general, for both plots, the UMTS traffic datasets more or less followed a Gaussian
distribution. For instance, in Figure 5.5, we presented the histogram and QQ plots of datasets obtained
from four different UMTS radio nodes.

0 2 4 6 8
Y

0.00

0.05

0.10

0.15

0.20

0.25

Lik
el

ih
oo

d
of

 Y

Gausian Curve Parameters: (mean, std)=(3.87, 1.82)

3 2 1 0 1 2 3
Theoretical Quantiles

2

0

2

4

6

8

10

Sa
m

pl
e

Qu
an

til
es

(a)

0 2 4 6 8 10 12
Y

0.00

0.05

0.10

0.15

0.20

0.25

Lik
el

ih
oo

d
of

 Y

Gausian Curve Parameters: (mean, std)=(5.44, 2.07)

3 2 1 0 1 2 3
Theoretical Quantiles

2

0

2

4

6

8

10

12

Sa
m

pl
e

Qu
an

til
es

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lik
el

ih
oo

d
of

 Y

Gausian Curve Parameters: (mean, std)=(8.71, 2.28)

3 2 1 0 1 2 3
Theoretical Quantiles

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sa
m

pl
e

Qu
an

til
es

(c)

0 1 2 3 4 5 6 7
Y

0.0

0.1

0.2

0.3

0.4

0.5

Lik
el

ih
oo

d
of

 Y

Gausian Curve Parameters: (mean, std)=(2.62, 1.42)

3 2 1 0 1 2 3
Theoretical Quantiles

2

0

2

4

6

Sa
m

pl
e

Qu
an

til
es

(d)

Figure 5.5: Histogram and QQ plots on the traffic datasets collected from four UMTS radio nodes located
within Addis Ababa, Ethiopia

With these observations at hand, we assumed that the residues are a combination of nonlinear traffic
behaviors and random noises that get distributed in a Gaussian manner. We then proposed to extract
additional information from residues which are expected to be distributed in a Gaussian manner using
an LSTM network. In other words, we expect the LSTM to properly model the nonlinear portion
of the residues and filter out the noise. In general, with the proposed hybrid forecasting model, we
generated forecasts using two steps. First, we identified the best D-SARIMA model. We then took
the residue of the fitted model and used them to train an LSTM network. Finally, we estimated 𝑦𝑡
by taking the linear combinations of the D-SARIMA and LSTM forecasts. Mathematically speaking,
given 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑡−1} and a residue r(t), the proposed hybrid model generates forecasts
using (5.7), where �̂�𝑡 = 𝐷 − 𝑆𝐴𝑅𝐼𝑀𝐴(𝑌) and 𝑟𝑡 is a random noise term.

𝑦𝑡 = 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑞, 𝑑) (𝑃1, 𝑄2, 𝐷1)𝑆1 (𝑃2, 𝑄2, 𝐷2)𝑆2 (𝑌) + 𝐿𝑆𝑇𝑀 (𝑟 (𝑡))
𝑟𝑡 = 𝑦𝑡 − �̂�𝑡 + 𝑟𝑡

(5.7)

In addition to these considerations, for the proposed approach, we have kept the size of the LSTM
model to be relatively small to minimize the additional computational requirement. With this in mind,
we construct the network from two layers of LSTM units. Moreover, at the output we have utilized a
time distributed Dense layer in order to deploy Dense layer on each time slices [29]. In general, the
first two LSTM layers respectively had 128 and 64 hidden nodes that are ReLu activated. However, we
set the output dense layers to utilize a Sigmoid activation function. We chose the Sigmoid activation
since we planned to normalize the datasets prior to LSTM training and D-SARIMA fitting.

170

Time Series Averages in Cluster Level Forecasting
Chapter
5

Even though we expected the hybrid approach to address most of the issues, in the end, we got
left with two major challenges. The first challenge is that the D-SARIMA model is mainly designed
to handle a single dataset at a time. However, at our disposal, we had 739 radio stations which we
later reduced to 729 due to missing values. To this end, if we follow a direct approach, we will end up
with 729 forecasting models. In practice, this would be inefficient for two main reasons. First, we will
only be observing a minor subset of the operator’s radio stations. In reality, the network operator has
thousands of such stations distributed throughout the country. Thus, deploying forecasting models
on each radio node will quickly become unscalable due to the sheer number. Secondly, if we see the
forecasting problem from an operator’s perspective, we expect the operator to base its higher-level
decisions on observing aggregate or average traffic demands. However, base station level forecasting
models often treat radio nodes as isolated entities. In reality,this is far from the dynamics of mobile
communication systems [121]. In this apspect, an isolated D-SARIMA model is incapable of capturing
the spatial information evident within the datasets due to user mobility. Thus, in addition to failing to
provide generic picture of traffic demnads, base station based forecasting models are expeced to give
poor performance. With these understandings in mind, in [114], we proposed to cluster the radio
units based on their traffic patterns. We then aimed to utilize the centroid of the clusters to fit the
forecasting models. To meet this objective, we utilized K-Means as our main clustering algorithm [22].
In general, we have summarized the steps taken to generate forecasts in Figure 5.6.

𝒚�̂�

𝒓�̂� 𝑳�̂�

r

Standard Normalization

UMTS Node B Data Traffic

Cluster Correlation analysis

SARIMA (p, q, d) (P1, Q1, D1) S1 (P2, Q2 , D2)S2

LSTM

+

(t)

Figure 5.6: Steps taken in the proposed hybrid cluster level UMTS data traffic forecasting

In reality, given an optimal number of clusters and cluster centroids, we expected the clusters to
represent a specific group of radio network users over a specific coverage area. For instance, resi-
dential areas, commercial areas, mixed-use areas, etc. However, in practice, mobile network traffic is
not expected to be confined to a given geographical area due to the presence of user mobility. For
example, we expect the data traffic demand to decrease in commercial areas, for instance, when shops

171

Time Series Averages in Cluster Level Forecasting
Chapter
5

close at night. When this is the case, we expect a rise in the traffic demand of residential areas since
users most probably have gone to their homes. To this end, we argued that the clusters can not
be taken as independent of each other. On contrary, we can safely assume a given cluster embeds
explicit information about the others to some degree. In this aspect, the centroids (averages) of the
clusters summarize this information in a relatively unbiased manner, i.e., without explicitly favoring
a given cluster member. With this understanding, in our proposed hybrid forecasting approach, we
first identified the correlation between the centroids of the clusters. Following this computation, we
selected a given centroid and identified its most correlated neighboring cluster centroids. We then
used these centroids as exogenous variables in the D-SARIMA model fitted on the centroid of a cluster.
With this said, we will next present the experimental setup and the experimental evaluations reported
in [114].

5.1.1 Experimental Setup

In [114], before any model training (fitting), we first normalized the traffic datasets using the Sklearn
implementation of the StandardScaler [122]. This Python package utilizes (5.8) to normalize the
datasets, where 𝑌 ∈ ℝ𝑀 , `, and 𝜎 are respectively the normalized series, its mean and standard
deviation.

𝑌𝑁 =
𝑌 − `
𝜎

(5.8)

In reality, we only performed the normalization for datasets that had no missing values. In this regard,
we identified 10 datasets (corresponding to 10 radio nodes) that had missing values for various reasons,
for instance, due to power outage. Thus, in reality, we ended up only utilizing datasets obtained
from 729 radio nodes, i.e., out of the 739 radio nodes. We then used these datasets for two types of
forecasting, i.e., Base Station (BS) level and Cluster Level (CS). At the CS level forecasting, we first
performed the normalization and then conducted an inter-cluster inertia analysis. This analysis was
performed to identify the optimal cluster number. In practice, inter-cluster inertia is another term
for the average per-cluster Within Group Squared Sum (WGSS). After performing this analysis, we
grouped the datasets (radio nodes) into N clusters, where N is an integer that minimized the aggregate
average inter-cluster inertia. Finally, we took the centroid (averages) of the clusters and segment them
for training, validation, and test. In this regard, given 𝑌 𝜖 ℝ𝑀 : ⌊0.8 ×𝑀⌋, ⌊0.1 × 𝑀⌋ and ⌊0.1 × 𝑀⌋
time stamps values of 𝑌 were taken for training, validation and testing. In addition to this segmenta-
tion, we also computed an intra-cluster correlationmatrix using the correlation of the cluster centroids.

After performing these pre-processing steps, we fitted a range of 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑞, 𝑑) (𝑃𝑆1, 𝑄𝑆1, 𝐷𝑆1)𝑆1
(𝑃𝑆2, 𝑄𝑆2, 𝐷𝑆2)𝑆2 models for different values of (𝑝, 𝑞, 𝑑), (𝑃𝑆1, 𝑄𝑆1, 𝐷𝑆1) and (𝑃𝑆2, 𝑄𝑆2, 𝐷𝑆2). We
performed these iterative model fitting to identify the best D-SARIMA model parameters. We have
conducted these repeated trials using a function within the Smooth R package, i.e., the Automatic
Multiple SARIMA (auto.msarima) [123]. After identifying the best performing D-SARIMA model, we
took its residues to train the proposed LSTM network. We have trained the LSTM network using:
a batch size of 24, for 100 epochs and a sequence of two days (48 hours) of past observations. On
the contrary, the D-SARIMA was fitted using 3 14 months of past observations. We have finally used

172

Time Series Averages in Cluster Level Forecasting
Chapter
5

the trained D-SARIMA and LSTM network to predict for future 48 hours using (5.7). In addition to
this training, we also generated similar forecasts using only a D-SARIMA and LSTM models that are
fitted or trained on the cluster centroids. However, for the non-hybrid D-SARIMA model, we have not
included any type of exogenous variables. In other words, we have not considered the intra-cluster
correlation. Finally, in order to evaluate the performances of the predictions, we utilized average
RMSE and Mean Absolute Error (MAE) that are given in (5.9) and (5.10), where N is the number future
time stamps the models predicted for. Overall, we made these predictions on segments of the cluster
centroids. On the contrary, while assessing the prediction quality at a Base Station (BS) level, we
randomly selected one of the radio nodes and we generated forecasts using: the hybrid forecasting
approach, the standalone D-SARIMA and LSTM models. However, for the BS level forecasting, we
have excluded incorporating exogenous variables identified using intra-cluster centroid correlation
while performing cluster level predictions. Practically, the exclusion of the exogenous variables got
employed in all types of proposed forecasting approaches.

𝑅𝑀𝑆𝐸𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 =

√√√
1
𝑁

𝑁−1∑︁
𝑖=0

(𝑦𝑡𝑖 − 𝑦𝑡𝑖)2 (5.9)

𝑀𝐴𝐸𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 =
1
𝑁

𝑁−1∑︁
𝑖=0

|𝑦𝑡𝑖 − 𝑦𝑡𝑖 | (5.10)

5.1.2 Experimental Results

We started our experimental evaluations by assessing the inter-cluster inertia. In this regard, we
performed 21 K-Means clustering with cluster sizes that ranged from 1 to 21. Moreover, we performed
each K-Means clustering for 1000 iterations. We have summarized the inter-cluster inertia of these
K-mean trials as shown in Figure 5.7. According to Figure 5.7, the cluster inertia shows a sudden
fall starting from a cluster size of two. Furthermore, it appears to be converging as the number of
clusters increases. However, we noted that if we selected a higher number of clusters, it would mean
more forecasting models. In other words, by defining more clusters, we would end up with a BS level
forecasting. With this in mind, we decided to group the radio nodes using five clusters.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Cluster Size

0.2

0.4

0.6

0.8

1.0

1.2

In
te

r C
lu

st
er

 In
er

tia

1e7
Inter cluster Inertias

Figure 5.7: Inter cluster inertia for 729 time series corresponding to a data traffic load offered to UMTS radio
nodes

In Figure 5.8, we have shown the geographical location of the radio nodes belonging to the five
173

Time Series Averages in Cluster Level Forecasting
Chapter
5

clusters. Moreover, it also shows a portion of the cluster’s centroids, i.e., from January 09, 2019, at
15:00 hr to January 15, 2019, at 15:00 hr. Roughly, clusters four and five corresponded to radio nodes
within city centers. On the contrary, the remaining clusters were relatively located on the outskirts of
the city. With this in mind, we next computed the intra-cluster correlation and plotted its heat map as
shown in Figure 5.9. The correlation heat map further validates our initial argument that we can not

Fig. 2. Clustered base stations with their corresponding centroids.

as well as error terms. When there exist seasonal
components in the data, it is possible to treat the
seasonal and non-seasonal parts with a general
multiplicative SARIMA model [19].

To capture the double (daily and weekly) sea-

Fig. 3. Correlation matrix for the five clusters.

sonalities explained in Section II of the mobile data
traffic, the SARIMA model can be expressed as
SARIMA(p, d, q)× (P1, D1, Q1)s1 × (P2, D2, Q2)s2
where the order of regressional(φ) and moving
average (Θ) coefficients for the non-seasonal and
seasonal parts of the model are represented by
(p, P(.)) and (q,Q(.)), respectively. The parameters
d and D are also used to represent the differencing
that can be applied one or more times to eliminate
the trend and s(.) seasonalities, and make the time
series data stationary.

Assuming a polynomial that has a factor (1−L)
of multiplicity, the Double SARIMA (D-SARIMA)
model is formulated as [19]:

(1−
p∑

i=1

φiL
i)(1−

P1∑

j=1

φjL
js1)(1−

P2∑

k=1

φkL
ks2)

((1− L)d(1− Ls1)D1(1− Ls2)D2(Xt − µ))

= (1+

q∑

i=1

θiL
i)(1−

Q1∑

j=1

ΘjL
js1)(1−

Q2∑

k=1

ΘkL
ks2)εt

(1)
where Xt is the aggregated traffic consumption
representing the non-stationary time-series and εt
is the error term at time t.

In order to incorporate the impact of spatial
dependency with SARIMA models, we can consider
the aggregated traffic from different cluster as ex-
ogenous variables (independent variables). Evaluat-
ing the cross-correlation among clusters will help
to identify which cluster data to be considered as
external variable.

B. LSTM

Another predictor that is widely considered to
learn and estimate complex multi-dimensional char-
acteristics of the mobile data traffic is a Recurrent
Neural Network (RNN). As one variant of RNN,
LSTM is suitable for time series prediction and
is capable of capturing the long-range temporal
information by using memory cells [20]. Which

Figure 5.8: Geographical location of the clustered radio nodes and their respective cluster centroids [114]

C
lu

st
er

 1

C
lu

st
er

 2

C
lu

st
er

 3

C
lu

st
er

 4

C
lu

st
er

 5

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

1 -0.12 0.27 -0.6 0.36

-0.12 1 0.12 0.56 0.54

0.27 0.12 1 0.48 0.59

-0.06 0.56 0.48 1 0.59

0.36 0.54 0.59 0.59 1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9: Heat map corresponding to the correlation of the centroids of the five clusters identified by K-
Means [114]

consider each cluster to be independent. With this in mind, we first performed the three proposed
forecasting approaches at the BS level. Moreover, for all the forecasting models that incorporated
D-SARIMA, we used D-SARIMA {(1, 0, 2), (2, 1, 0)24, (0, 1, 1)168} which gave a better forecasting
errors on a validation sets. In general, we obtained the average RMSE and MAE BS level forecasting
errors shown in Table 5.1 [114].

Table 5.1: Performance comparison of a hybrid forecasting model and its counterparts

Models RMSE MAE
BS-DSARIMA 1.229 1.385
BS-Hybrid 1.517 1.667
BS-LSTM 1.237 1.408

174

Time Series Averages in Cluster Level Forecasting
Chapter
5

The results in Table 5.1 show that the hybrid forecasting approach performed poorly when spatial
information is not incorporated. Moreover, we also found the LSTM contributing negatively to
the overall hybrid approach. We make this conclusive remark since, at the base station level, the
D-SARIMA was modeling the datasets relatively well. In other words, for the focus radio node, the
LSTM was unable to extract meaningful information from the residues. To this end, while adding
forecasts generated from the residues, it introduced unnecessary offsets that shifted the aggregate
forecasts in an undesired direction. We then conducted cluster-level forecasting using the centroids
identified at earlier stages. We have utilized the same parameter configurations for the D-SARIMA
model identified at the BS level forecasting. However, in this case, we included the centroids of the
highly correlated neighboring clusters as an exogenous variable for the D-SARIMAmodel belonging to
the hybrid forecasting model. On the contrary, for the stand-alone LSTM and D-SARIMA forecasting
models, we trained (fitted) the models on the cluster centroid to which the previously analyzed BS
belonged. In general, Table 5.2 summarizes the average two days of forecasting errors corresponding
to the three proposed approaches.

Table 5.2: Performance comparison of a hybrid cluster level forecasting and its counterparts

Models RMSE MAE
CS-DSARIMA 0.548 0.872
CS-Hybrid 0.363 0.416
CS-LSTM 0.548 0.617

According to Table 5.2, the hybrid prediction model outperforms all the other approaches. Moreover,
the additional spatial information provided by the clustering has improved the forecasting by a factor
as high as 60%. In this regard, Figure 5.10 depicts the main reason behind this significant improvement.
According to Figure 5.10, the forecasts made at the base station level were often under estimations.
On the contrary, the additional spatial information has enabled the cluster level approaches to better
model peak time and lower traffic demands.

and MAE) of the hybrid, D-SARIMA, and LSTM-
based models. Key observations from the base sta-
tion level results are:
• The proposed hybrid model performs poorly,

whereas D-SARIMA provides relatively better
short-time prediction. The results also indicate
the double seasonality and trend components
are the dominant patterns in mobile data traffic
that were better captured by the linear model.

• The LSTM model was not able to sufficiently
learn the patterns (i.e., trend, seasonalities, and
non-linearities) inherent both in the data or
the D-SARIMA residuals to the extent that it
contributes negatively in the hybrid model. This
shows that linear models are good at capturing
short-term dependency in the data. Possible
remedies to improve the LSTM model include:
increasing the data size (from the current four
months), hyper-parameter optimization, or ex-
tracting additional features from other base
stations are; the latter approach is used in the
cluster-level prediction explained next.

As argued repeatedly, the cluster-level approach has
the potential to exploit the temporal and spatial
dimensions of the mobile data. The addition of
the spatial dimension will, undoubtedly, add to the
nonlinearity of the data but also provides more
information for the LSTM to learn more. Key ob-
servations from the clusters-level results in Table 1
are:
• All three models perform better than their

counterparts in base station level investigation
as they exploit cluster correlation and extract
multiple temporal patterns. The improvement
is as high as 60%, which is significant.

TABLE I
COMPARING THE PREDICTION PERFORMANCE ON BASE

STATION-LEVEL AND CLUSTER-LEVEL APPROACH IN TERMS OF
RMSE AND MAE

Approaches Models Evaluation Metrics
MAE RMSE

Base station level D-SARIMA 1.385 1.229
Hybrid 1.667 1.517
LSTM 1.408 1.237

Cluster-level D-SARIMA 0.872 0.548
Hybrid 0.416 0.363
LSTM 0.617 0.548

Fig. 6. Double Seasonal ARIMA model fitting and 120 hours ahead
prediction considering single base station in (a) and multiple cross-
correlated clusters in (b).

Fig. 7. 48 hours of mobile data traffic prediction performance
considering base station and cluster-level approaches

• By comparison, the proposed hybrid model
performs better while the D-SARIMA’s perfor-
mance is inferior to the two models. The LSTM
captures the dynamics (the non-linearity) in
the mobile data which is manifested on the
improved prediction performance of the hybrid
and LSTM model.

The cluster-level approach benefited the linear
model like D-SARIMA as the other clusters’ data
traffic is taken as exogenous variables. See Fig. 6
to further learn the improvements in these models.

The mobile data traffic prediction for next 48
hours with the models considering both approaches
is illustrated in Fig. 7. Results show that for both
base station and cluster-level approaches, the pre-
diction during low traffic load (in early morning)

Figure 5.10: Comparison of a 48 hours forecasts that are performed at the based station and cluster level [114]

175

Time Series Averages in Cluster Level Forecasting
Chapter
5

However, even though the cluster level approach showed significant improvements, we observed two
major gaps that were not addressed in [114]. First, the approach got evaluated on a single base station
traffic data. To this end, it was not clear whether the clustering or the hybrid approach delivered the
performance boost. Moreover, in [114], the authors also acknowledged that the quality of the cluster
centroid and the cluster formation process could significantly impact the performance of cluster level
forecasting. In this regard, the authors suggested that alternative clustering and centroid estimation
techniques should also get assessed. To answer these questions, we propose to assess the impact of
the clustering and cluster centroid (average) estimation process on the performance of cluster-level
forecasting. In this regard, we re-evaluate the representativeness of the cluster level forecasting
compared to the traffic demands of the individual base stations. We aim to conduct the comparison
using three clustering techniques: K-Means, DBA k-Means, and deep embedding clustering with time
domain centroid estimated using a multi-tasking autoencoder. However, to make the comparison
unbiased, we base the model on D-SARIMA.

5.2 Assessing the Impact of Clustering Techniques andQuality of
Clusters Centroids on Cluster Level Forecasting

In reality, two key parameters significantly influence the performance of the cluster-level forecasting
approaches, i.e., the way clusters get formulated and the representativeness of the cluster centroids (av-
erage). In the former case, time series clustering gets expected to be affected by at least the presence of
outliers and temporal distortion [21]. This is because most renowned time series clustering techniques
rely on distance metrics to identify cluster membership. To this end, in the presence of outliers, cluster
centroids could be forced to get shifted closer to the outliers [124]. This, in turn, is expected to increase
the inter-cluster inertia and decrease the representativeness of the centroids. Moreover, if the clustered
sets are highly affected by temporal distortions, then estimating the cluster centroids via arithmetic
mean is often not efficient [19]. With these understandings, in this section, we propose to utilize
additional two clustering approaches; i.e., DBA based K-Means and deep embedding clustering [6],
[19]. Moreover, since the deep embedding clustering gets performed in the latent space of a neural
network, we propose to utilize our proposed multi-tasking autoencoder arrangement to estimate the
time domain cluster centroids. With this said, we next present a review of the DBA based K-means
and deep embedding clustering approaches.

5.2.1 Dynamic Time Warping Barycenter Averaging Based K-Means

In order to account for the impact of temporal distortions, [19] proposed to integrate DBA and
DTW into K-means. In this regard, the authors suggested utilizing DBA while estimating the cluster
centroids. Moreover, they proposed to utilize DTW while identifying cluster membership. However,
in practice, SDBA and SDTW were also utilized for this variant of K-Means. With these modifications
at hand, the overall K-mean clustering gets generalized as shown in Algorithm 2. Even though the

176

Time Series Averages in Cluster Level Forecasting
Chapter
5

integration of DBA into K-Means get expected to increase its overall computational complexity, in
most cases, it often gets counteracted by reduced inter-cluster inertia.

Algorithm 2: DTW and DBA based K-means.
1: Inputs: 𝑌 = {𝑌1, 𝑌2, . . . , 𝑌𝑁 } : 𝑌𝑖 𝜖 ℝ𝑀 , 𝛾 > 0, Number of iterations (N), Number of

Clusters (K), DBA or SDBA iteration (I), DBA or SDBA Tolerance (Tol) and DTW distance 𝛿 .
2: Initial centroids = {`1, `2, . . . , `𝐾 }
3: Initial Clusters= {𝐶1, 𝐶2, . . . , 𝐶𝐾 }
4: while K-Means iteration < N do
5: for j ≤ K do
6: while DBA (SDBA) Tolerance ≤ Tol or DBA (SDBA) iteration ≤ I do
7: ` 𝑗 = 𝐷𝐵𝐴(𝐶 𝑗)
8: end while
9: end for
10: D = {𝑑1, 𝑑2, . . . , 𝑑𝑘 }
11: for i ≤ N do
12: for j ≤ K do
13: 𝑑 𝑗 = 𝛿 (` 𝑗 , 𝑌𝑖)
14: end for
15: Index=min{𝑑1, 𝑑2, . . . , 𝑑𝑘 }
16: 𝐶𝐼𝑛𝑑𝑒𝑥 < - 𝑌𝑖
17: end for
18: end while
19: Output: {`1, `2, . . . , `𝐾 }, {𝐶1, 𝐶2, . . . , 𝐶𝐾 }

5.2.2 Deep Embedding Clustering and Multi-tasking Autoencoer Based Cluster
Centroid Estimation

An alternative way of improving the cluster quality would be to cluster temporal datasets based on
their dominant latent features (shapes) [6], [55], [56]. In this regard, [6] proposed to cluster time
series in the latent space of a denoising autoencoder which the authors named as Deep Embedding
Clustering (DEC). The authors proposed to base DEC on denoising autoencoder considered as capable
of generating latent features that captured the dominant features of input datasets. With this intu-
ition, [6] proposed to first train a SDAE that were introduced in [125]. In reality, the SDAE introduced
in [125] were composed of three Dense layers as sown in Figure 5.11. On the other hand, a more
complex SDAE can get built by training a stack of such denoising autoencoders. However, when
this is the case, the training process of SDAE is relatively complex compared to the training of basic
autoencoders. In this aspect, to train a bigger SDAE autoencoder, an elementary SDAE is first trained
to reconstruct its input. Following this, the decoder gets removed and the first two layers get used
to generate the input for the next stack. This stack gets trained and used as an input generator for
the following stack. With this understanding, the authors in [6] defined the encoder portion of their
denoising autoencoder using a d-500-500-2000-10 arrangement, where d was the dimension of an
input dataset. However, unlike [125], DEC introduced a drop out layers which are inserted in between
each Dense layer of the elementary denoising autoencoder [6]. With this architectural setup at hand,

177

Time Series Averages in Cluster Level Forecasting
Chapter
5

X

Y=f(WX+b) Z =f(WY+b)

.................

.................

.................

X'

Figure 5.11: Layer arrangements for an elementary denoising autoencoder [125]

the authors first trained the stacked denoising autoencoder using a reconstruction loss (3.3). Following
this training, the encoder part of the trained autoencoder got utilized to define a latent space clustering
neural network. To upgrade the trained encoder into a clustering network, the authors first performed
a standard K-means clustering on the latent features of the autoencoder. Following this, the latent
centroids (averages) of the clusters got utilized to compute a soft cluster label assignment for the
latent feature. The soft assignments got computed using the student t-distribution as a similarity
measurement kernel, i.e., as shown in (5.11). In (5.11), 𝑞𝑖, 𝑗 is the soft assignment (likelihood) of a
latent space feature 𝑍𝑖 belonging to cluster j given a cluster’s latent centroid ` 𝑗 . Moreover, 𝛼 is the
degree of freedom for the t- distribution dependent on the number of series belonging to a cluster.
However, since this is not evident before the clustering, [6] proposed to set it to one.

𝑞𝑖, 𝑗 =
(1+| |𝑍𝑖−` 𝑗) | |𝑙2𝛼) −𝛼+1

2∑𝐾
𝑗=1(1+| |𝑍𝑖−` 𝑗) | |𝑙2𝛼) −𝛼+1

2
(5.11)

In general, in the end, DEC aimed to learn latent features and centroids that guarantee latent space
cluster assignment with a higher degree of confidence. To realize this requirement, the authors
proposed to compute the KL divergence between the soft assignment and an auxiliary distribution.
In this regard, the authors argued that since 𝑞𝑖, 𝑗 is a soft assignment (probability), they desired an
auxiliary distribution that [6];

• Strengthen prediction.

• Put more emphasis on data points assigned higher confidence.

• Normalize loss contribution of each centroid to prevent large clusters from distorting the hidden
feature space.

178

Time Series Averages in Cluster Level Forecasting
Chapter
5

To this end, [6] defined the the auxiliary distribution to be (5.12).

𝑝𝑖, 𝑗 =

𝑞2
𝑖,𝑗∑𝐾

𝑗=1 𝑞𝑖,𝑗∑𝐾
𝑗=1

𝑞2
𝑖 𝑗∑𝐾

𝑗=1 𝑞𝑖,𝑗

(5.12)

Finally, with these two distributions at hand, [6] finally proposed to retrain the encoder (which is
now the clustering network) using the KL divergence between the soft probabilities (𝑝𝑖, 𝑗) and its soft
assignment values (𝑞𝑖, 𝑗); i.e., (5.13).

𝐾𝐿(𝑃 | |𝑄) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖, 𝑗 log
𝑝𝑖, 𝑗

𝑞𝑖, 𝑗
(5.13)

With this approach, the authors showed that DEC could generate the highest accurate class labels for
the MNSIT, STL-HOG, REUTERS-10K, and REUTERS datasets [6]. However, even though DEC was
shown to be effective, due to its architectural setup, it can not generate a time domain centroid. To
this end, we can not directly utilize DEC in our context. With this in mind, we propose to pair DEC
with the multi-tasking setup with our proposed multi-tasking setups. With this said, we present the
customization we have made on the DEC arrangement.

5.2.2.1 Deep Embedding Clustering with Time Domain Centroids

In order to enable DEC to generate time domain cluster centroids, we customized it starting from the
autoencoder architecture. In this regard, we change the SDAE autoencoder which the DEC was based
on with the Convolutional autoencoder shown in Figure 5.12.

Depth

Time

Channel

Flattening

Layer

Figure 5.12: Proposed VGG16 Based Autoencoder for Deep Embedding Clustering (DEC)

We have used the VGG16 based autoencoder while augmenting time series averages from the latent
179

Time Series Averages in Cluster Level Forecasting
Chapter
5

space of autoencoders. We present the archteture here for the sake of clarity. Table 3.11. In practice,
in recent years, Convolutional layers were shown to be capable of extracting useful latent features
without the need of introducing noises [57], [58], [60]. To this end, we believe that by changing
the SDAE within the one shown in Figure 5.12, we would not lose significant informatoin [56]. On
the contrary, we will be able to reduce the complexity associated with training a SDAE. With this
in mind, we first propose to train the proposed autoencoder architecture using the reconstruction
loss given in (3.3). After training, we propose to take the encoder portion of the autoencoder for the
DEC arrangement. We then re-train the encoder for the KL divergence given in (5.13). In reality,
after training the clustering network, we have two possibilities that could enable us to generate time
domain centroids. In the first scenario, we can use the trained cluster network to generate the labels
for the input datasets. We then can use the labeled datasets to train the multi-tasking autoencoder
shown in Figure 5.13.

Depth

Time

Channel

2 convolutional

layer

3

convolutio

nal layer

5

convolutio

nal layer

Figure 5.13: Proposed multi-tasking VGG16 based autoencoder that is to be used to generate time domain
centroids for clusters identified with DEC

Alternatively, we could also use the DEC trained encoder as the encoder portion of the multi-tasking
autoencoder. However, for this configuration, we could freeze the weights of the trained encoder
so that the multi-tasking setup could not re-train it. Thus, in this case, we re-train the decoder
and classifier on the latent features that the clustering network has previously learned. With these
possibilities in mind, we will present the arrangements for the experimental evaluations and the
corresponding outcomes.

5.2.2.2 Extended Experimental Setup

In our evaluations, we have kept the cluster numbers to be the same as before, i.e., five clusters.
Moreover, for the DBA and basic k-means clustering, we utilize the Tslearn implementation of the
algorithms [111]. In general, for both clusterings, we train the basic K-means algorithm for 1000
iterations. However, in DBA K-means, we use an additional 100 iterations that correspond to DBA.
On the contrary, for the DEC clustering, we train the basic autoencoder for 1500 epochs and with zero
regularization. After this training, we re-trained the encoder under DEC setup using the Python imple-
mentation of DEC given in [56]. In practice, we train the DEC setup until its KL divergence falls below

180

Time Series Averages in Cluster Level Forecasting
Chapter
5

a tolerance value of 10−3. However, we train the multi-tasking setup for 1500 epochs and zero L2 regu-
larization. Finally, we estimate the per cluster time domain centroids by taking the arithmetic mean of
the per-cluster latent features re-projected using the decoder portion of the multi-tasking autoencoder.

In contrary to the clustering, we only utilize a 𝐷 − 𝑆𝐴𝑅𝐼𝑀𝐴{(2, 1, 2), (2, 0, 0)24, (2, 0, 0)168}
which is fitted using segments of the cluster centroids as a forecasting model. We limit the number of
forecasting models to one because our current focus is on the impact of the clustering rather than
the type of the forecasting model. Moreover, we found the D-SARIMAto be less computationally
involving than the hybrid and LSTM based approaches used in [114]. In addition to this change, we
have also modified the way we aim to utilize the fitted D-SARIMA model. In this regard, after fitting
the model, we aim to take the AR coefficients of the fitted model and replace the centroid segment
used for fitting with the corresponding segment of the dataset under observation. Consequently, the
MA part of the D-SARIMA model will use the errors of the AR for its computations. Thus, this way,
we further intensify our focus on the representativeness of the fitted model. We also perform the
same segment substitution for centroids estimated with K-means and DBA K-Means.

As a data pre-processing step, we convert the unit of the traffic data from Tera Byte (GB) to Giga
Byte (GB) by dividing them by 1024. We mainly utilize this constant scaling to make the magnitudes
of the amplitude values manageable for the neural network setups. Moreover, we also use constant
scaling to avoid introducing any sort of amplitude distortion by using readily available normalization
techniques. For instance, if we assume the clustered datasets to be vectors in an𝑀 dimensional space,
normalization techniques such as standard scaling (5.8) are known to confine non-outlier datasets
into a very small region [29]. In practice, such distortions could easily become a source of difficulty
for clustering algorithms which mainly aim to separate datasets into groups (clusters). Finally, as a
benchmark, instead of fitting the D-SARIMA models on cluster centroids, we fitted the D-SARIMA
models on the individual cluster members identified by the different clustering algorithms.

5.2.2.3 Experimental Results

We divided our experimental evaluations into four categories. In this aspect, we first evaluate a
DEC clustering that gets paired with a multi-tasking network for time domain centroid estimation.
However, we set the encoder’s weight to be determined by the DEC arrangement. Onwards, we
identify this arrangement using the name DEC_MT_Enc_Fixed. For the second evaluation of the
DEC arrangement, we utilize the same clustering and time domain centroid estimation approaches.
However, in this case, we refrain from freezing the encoder’s weights in the multi-tasking setup.
Afterward, We identify this setup as DEC_MT. For the remaining two categories, we use DTW based
K-means (DBA K-Means), i.e., with DBA centroid estimation, and basic K-means with arithmetic mean
as centroids (K-means). With these nomenclatures in mind, we will first present our findings starting
from the DEC_MT_Enc_Fixed configuration. In this regard, we first observe the spatial location of the
clustered radio nodes. In this aspect, Figure 5.14 demonstrates the geographical location of the radio
nodes compared to the map of Addis Ababa. From the figure, we noted that clusters 0 and 1 mostly
correspond to residential and mixed-use areas. To be more specific, according to the latitude and

181

Time Series Averages in Cluster Level Forecasting
Chapter
5

longitude information, we identified cluster zero belongs to relatively sparsely populated sub-cities
such as "Gullele", "Kechene", etc. On the contrary, cluster one belonged to the highly populated
mixed-use areas which are near the center of the city, for instance, "Cherkos","Addis Ketema", etc.
However, in both cases, the traffic patterns of the cluster centroids force us to speculate that most of
the radio nodes for the mentioned clusters to be near residential areas rather than business centers.
Contrary to this fact, clusters 2 and 3 correspond to radio nodes near "Megenagna" and "Bole". In
reality, these locations are mainly business areas. Moreover, the general population within these
areas is famous for its higher data traffic demand due to the presence of large entertainment facilities.
Finally, cluster 4 corresponded to radio nodes located within the vicinity of Sidst killo. In reality, these
areas are known to accommodate most of the private and government-owned universities and densely
populated residential areas. Moreover, the area also accommodates most of the foreign embassies and
key governmental organizations.

Figure 5.14: Geographical mapping of UMTS radio nodes that are clustered based on their traffic patterns. The
clustering was performed using DEC and time domain centroides that are estimated using the multi-tasking
autoencoder with a pretrained encoder.

In general, the cluster centroids also showed traffic demand patterns fitting the profile of the geograph-
ical locations. Moreover, despite a constant amplitude offset, overall, they showed similar seasonal
patterns as shown in Figure 5.14. In Figure 5.14, we plotted the estimated time domain centroids for
one week. In practice, such similarities among the cluster centroids are mainly evident due to the
demography of the city. In reality, in Addis Ababa, there is no clear demarcation between business
and residential areas. To this end, we expect the clusters to share similar traffic patterns as users
move in between areas demarcated with the different clusters. With this in mind, we compute the
intra-cluster correlation, i.e., as shown in Figure 5.15.

As per our expectation, the first two clusters (0 and 1) showed a higher correlation. Similarly,
clusters 2 & 4 and 1 & 4 also show such high correlations. In general, we found the correlation
results in line with our initial geographical remarks. Moreover, as stated earlier, we utilize the most
correlated cluster centroids as exogenous variables on another as we fit the D-SARIMA model. With

182

Time Series Averages in Cluster Level Forecasting
Chapter
5

C
lu

st
er

0

C
lu

st
er

1

C
lu

st
er

2

C
lu

st
er

3

C
lu

st
er

4

Cluster0

Cluster1

Cluster2

Cluster3

Cluster4

1 0.96 0.86 0.92 0.65

0.96 1 0.91 0.96 0.71

0.86 0.91 1 0.97 0.65

0.92 0.96 0.97 1 0.68

0.65 0.71 0.65 0.68 1
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 5.15: Intra cluster correlation among cluster centroides that are estimated with a multi-tasking autoen-
coer where its encoder was pre-trained with a DEC setup

this in mind, we next take a 14 weeks segment of the centroids to fit the D-SARIMA models. We
utilize the fitted D-SARIMA models to generate a forecast for the individual cluster members for a
duration of 1 12 weeks. However, as stated in the experimental setup subsection, we substituted the 14
weeks centroid segment with segments extracted from the individual datasets. On the contrary, we
have also fitted the D-SARIMA models on the individual cluster members as a benchmark, where we
have not captured the spatial correlation with exogenous variables. In general, Table 5.3 summarizes
the aggregate per cluster RMSE and MAE. In the table, the cluster level and the base station level
forecasts get differentiated using the keywords CS and BS, i.e., CS-RMSE and BS-RMSE. According
to Table 5.3, the cluster-level forecasting model has better captured the overall traffic pattern and
generated relatively optimal forecasts. This is mainly due to the inclusion of spatial information
through the cluster correlation matrix.

Table 5.3: Aggregate average per-cluster forecasting errors using a D-SARIMA model that is fitted on clusters
and centorides defined by DEC and a multi-tasking autoencoder. For this arrangement, we have trained the
multi-tasking’s encoder using the DEC setup. Thus, wile training the multi-tasking autoencoder we freezed the
weights of the encoder.

Cluster CS-RMSE CS-MAE BS-RMSE BS-MAE # Radio units
Cluster0 0.657 0.502 0.736 0.558 376
Cluster1 1.113 0.824 1.332 1.017 229
Cluster2 1.919 1.419 2.085 1.602 15
Cluster3 1.488 1.161 1.754 1.363 82
Cluster4 2.032 1.694 1.965 1.604 27
Mean 1.442 1.120 1.574 1.229 729

In general, we found this to be quite encouraging since we have significantly reduced the number of
required forecasting models while obtaining better forecasting errors, i.e., the benchmark. Finally,
to visually demonstrate the performance of the cluster level approach, we have plotted cluster level
forecasts for datasets selected from clusters 0 and 4. To generate the plots shown in Figure 5.16,

183

Time Series Averages in Cluster Level Forecasting
Chapter
5

we identified and used the forecasts of the cluster members that gave the minimum and maximum
MAE errors. Overall, the figures demonstrate the shape preservation capability of the cluster level
forecasting even under worst cases. With these said, we assess the DBA K-Means based approach.

0 50 100 150 200 250
Time

0.5

0.0

0.5

1.0

1.5

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 111735.0
Actual Data
Forecasted Data

(a) Cluster0 best CS forecast MAE = 0.198

0 50 100 150 200 250
Time

1

0

1

2

3

4

5

6

7

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 111841.0
Actual Data
Forecasted Data

(b) Cluster0 worst CS forecast MAE = 1.734

0 50 100 150 200 250
Time

2

4

6

8

10

12

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 111885.0
Actual Data
Forecasted Data

(c) Cluster4 best CS forecast MAE = 1.049

0 50 100 150 200 250
Time

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 111123.0
Actual Data
Forecasted Data

(d) Cluster4 worst CS forecast MAE = 3.778

Figure 5.16: Visual demonstration of best and worst case forecasts that are based on DEC_MT_Enc_Fixed

Following the same experimental setups we used for the DEC_MT_Enc_Fixed, we first visually
analyzed the geographical location of the clusters identified by DBA K-Means. In this regard, Fig-
ure 5.17 shows the spatial locations of the clusters as compared to the map of Addis Ababa. Over-
all, the DBA based K-Means also identified similar geographical areas we mentioned earlier. In
general, we noted the following DEC_MT_Enc_Fixed to DBA K-Means cluster correspondences:
(𝐷𝐸𝐶_𝑀𝑇_𝐸𝑛𝑐_𝐹𝑖𝑥𝑒𝑑, 𝐷𝐵𝐴 𝐾 −𝑀𝑒𝑎𝑛𝑠) = {(𝐶𝑙𝑢𝑠𝑡𝑒𝑟0, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟3), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟2), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟2,
𝐶𝑙𝑢𝑠𝑡𝑒𝑟1), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟3, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟0) and (𝐶𝑙𝑢𝑠𝑡𝑒𝑟4,𝐶𝑙𝑢𝑠𝑡𝑒𝑟4)}. However, in terms of the centroids, the
estimates generated using the DEC_MT_Enc_Fixed setups are relatively smooth. In this aspect, the
centroids generated with DBA K-Mans get highly impacted by pathological association. In Figure 5.17,
the association is evident with the pointy peaks and constant horizontal slops in the estimated cen-
troids. In practice, the presence of constant offsets among cluster centroids is the main contributor to
DBA’s pathological associations. In this aspect, in chapter two, Figure 2.4 (b) demonstrated how such
constant offsets could influence DTW to identify warping paths that are far from the diagonals of the
global cost matrix. In reality, we expect the shape distortion on the centroids to have an impact on the
intra-cluster correlation. In this aspect, Figure 5.18 shows that the intra-cluster correlation is relatively
low. However, strictly speaking, there can be two reasons why this is so. In this regar, as a first reason,
we can point to the shape distortion for the degradation of the intra-cluster correlation. However, the
lower intra-cluster correlation could also be associated with the fact that DBA K-Means has identified
clusters far from each other. We speculate the second reason is not true since we see no significant
spatial difference between the clusters identified with DEC_MT_ Enc_Fixed and DBA K-means besides
cluster numbering (order). In general, in theory, we expected the forecasting models based on DBA
K-Means to perform poorly since now a centroid used as an exogenous variable is less correlated to

184

Time Series Averages in Cluster Level Forecasting
Chapter
5

Figure 5.17: UMTS radio nodes clustered based on their traffic patterns using DBA K-means

the input of the D-SARIMA models. However, contrary to our expectation, Table 5.4 the DBA based
K-Mean obtained better forecasting errors, i.e., compared to the DEC_MT_Enc_Fixed. Moreover, the
DBA K-Means approach also obtained better performances, i.e., compared to the BS level forecasts. In
reality, there are different reasons behind the better performance of the DBA K-Means the cluster
level forecasts. For instance, the number of cluster members in Table 5.3 is relatively unbalanced as
compared to the clusters formed by DBA K-Means. In practice, since we are clustering the same

C
lu

st
er

0

C
lu

st
er

1

C
lu

st
er

2

C
lu

st
er

3

C
lu

st
er

4

Cluster0

Cluster1

Cluster2

Cluster3

Cluster4

1 0.29 0.39 0.11 0.74

0.29 1 0.63 0.45 0.52

0.39 0.63 1 0.45 0.63

0.11 0.45 0.45 1 0.25

0.74 0.52 0.63 0.25 1 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.18: Intra cluster correlation between cluster centroides that are estimated with DBA K-Means

datasets, we expect the clusters obtained by both clustering techniques to be relatively comparable.
However, since this is not the case, there is a higher likelihood that the DEC setup has grouped a set
of extreme cases (outliers) in one of its clusters, for instance, Cluster4. In practice, the centroid of
such clusters is often not a good representative of their members. For instance, in the context of the
multi-tasking setup, we can not expect the latent space representation of such a cluster to be compact.
This is contrary to the underlying assumption behind the multi-tasking setup, i.e., per-class (cluster)

185

Time Series Averages in Cluster Level Forecasting
Chapter
5

Table 5.4: Aggregate average per-cluster forecasting errors with forecasting models fitted on the centroids of
clusters that are defined by DBA K-Means

Cluster CS-RMSE CS-MAE BS-RMSE BS-MAE # Radio units
Cluster0 0.714 0.524 0.868 0.664 186
Cluster1 2.129 1.715 2.012 1.565 59
Cluster2 1.079 0.789 1.205 0.919 237
Cluster3 0.416 0.318 0.330 0.239 124
Cluster4 1.468 1.156 1.652 1.288 123
Mean 1.161 0.901 1.214 0.935 729

latent features have a compact latent representation due to their inherent similarity. To this end, we
can not expect the multi-tasking setup to optimally re-project the latent estimates. Consequently, we
can not also expect the forecasting model fitted on such centroids to perform better.

Strictly speaking, we have to note that for the DEC_MT_Enc_Fixed we have constrained the encoder
of the multi-tasking network from training itself. However, in reality, the objective functions of the
DEC and the multi-tasking autoencoder are different. To this end, we are limiting the multi-tasking
network from using its full penitential since one of its key units is now untrainable. To further support
our argument, in Table 5.5 we have presented the cluster level forecasting errors obtained when the
multi-tasking autoencoder is trained from scratch, i.e., using the same clusters identified with the
DEC_MT_Enc_Fixed setup.

Table 5.5: Aggregate average per-cluster forecasting errors obtained while using a D-SARIMA model that is
fitted on the centroids of clusters defined by the DEC_MT_ENC_Fixed setup. However, for this evaluation, we
estimate the centroides by training a multi-tasking autoenoder from scratch

Cluster CS-RMSE CS-MAE # Radio units
Cluster0 0.682 0.528 376
Cluster1 1.232 0.940 229
Cluster2 1.932 1.468 15
Cluster3 1.471 1.158 82
Cluster4 1.346 1.057 27
Mean 1.333 1.030 729

Even though the aggregate forecasting errors are slightly higher than the DBA k-Mean, we have to
also note that the DBA K-Means has comparatively lower randomness in terms of outcomes. In this
regard, a key contribution to the outcome randomness in DBA K-Means is the random initialization of
the centroids. However, in practice, the repeated iterations of DBA often smooth out this randomness.
For instance, we have executed the DBA K-Means using two separate repeated trials. Even though the
trials took us two days to complete, we found the variation in the outcomes to be insignificant. Thus,
we finally took the centroids that obtained an 80.933% and 100% Euclidean and DTW distance based
NCC accuracy. In this context, the DEC-based approach has a slightly higher source of randomness.
For instance, the weight idealizations in the autoencoder, the multi-tasking average estimation process,

186

Time Series Averages in Cluster Level Forecasting
Chapter
5

and the intermediate latent space K-Means clustering. To this end, for the DEC approach, we expect
a slightly higher variation in the outcomes of repeated trials. With this in mind, we executed the
DEC approach for an additional six repeated trials which took two days to complete. Contrary to our
previous approach, in these trials, we have refrained from constraining the encoder portion of the
multi-tasking autoencoder and trained it from scratch. However, before going into the details of the
best performing outcome, we will conclude the discussion of DBA K-Means forecasting by presenting
the visual demonstration of the worst and best case forecasts.

0 50 100 150 200 250
Time

0.2

0.1

0.0

0.1

0.2

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 111436.0
Actual Data
Forecasted Data

(a) Cluster3 best BS forecast MAE = 0.096

0 50 100 150 200 250
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 117109.0
Actual Data
Forecasted Data

(b) Cluster3 worst BS forecast MAE = 0.767

0 50 100 150 200 250
Time

2

4

6

8

10

12

14

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 112186.0
Actual Data
Forecasted Data

(c) Cluster1 best BS forecast MAE = 0.744

0 50 100 150 200 250
Time

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 111123.0
Actual Data
Forecasted Data

(d) Cluster4 worst BS forecast MAE = 5.237

Figure 5.19: Visual demonstration of best and worst forecasts for a D-SARIMA model fitted with centroieds
estimated using DBA

In the DEC_MT_ENC_Fixed experiment, we have selected the time domain centroids that scored
85.33% and 93.83% NCC accuracies while using DTW and euclidean distances. Moreover, in the latent
space, they obtained a 97.26% NCC accuracy while using euclidean distance. In this aspect, for the
second evaluation of the DEC arrangement (DEC_MT setups), we have selected the cluster formation
that obtained a time domain DTW and euclidean distance NCC accuracies of 75% and 92.45%. On the
other hand, the selected setup obtained a latent space euclidean distance NCC accuracy of 93.55%.
One interesting point we note here is that, due to the presence of trend (an increasing DC offset),
DTW distance appears to be performing poorly. With this in mind, we then observed the geographical
location of the newly formed clusters using Figure 5.20.

In general, the new DEC clusters mostly overlap with the clusters identified by DBA K-Means.
In this context, we can form the following cluster correspondences: (𝐷𝐵𝐴𝐾 −𝑀𝑒𝑎𝑛𝑠, 𝐷𝐸𝐶_𝑀𝑇) =
{(𝐶𝑙𝑢𝑠𝑡𝑒𝑟0, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟0), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟2, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟3), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟3,𝐶𝑙𝑢𝑠𝑡𝑒𝑟4), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟4,
𝐶𝑙𝑢𝑠𝑡𝑒𝑟2)}. However, in the context of the cluster centroids, the multi-tasking autoencoder setup
approach generated relatively smoother estimates. Moreover, as in the case of DEC_MT_Enc_Fixed,
the estimated centroids mostly differ by a constant offset. To this end, we expect the intra-cluster
correlation to be relatively high. This expectation gets validated with the heat map of the intra-cluster
correlation shown in Figure 5.21. However, contrary to DEC_MT_ENC_Fixed, we now have balanced

187

Time Series Averages in Cluster Level Forecasting
Chapter
5

Figure 5.20: UMTS radio nodes clustered based on their traffic patterns using the DEC_MT arrangement.The
clustering was performed using DEC and the time domain centroides are estimated by training a multi-tasking
neural network from scratch

clusters. This, in turn, is reflected in the performance of the forecasting models which are better than
the DBA K-mean arrangement as shown in Table 5.6. In general, the improved cluster formation has
validated our argument that DEC_MT_ENC_Fixed clustered outliers. Moreover, the performance
improvement also shows the ability of the DEC to capture and group similar patterns more efficiently.
Moreover, it also further shows the ability of the multi-tasking setup to extract representative cen-
troids without the need of constraining its encoder. With this said, we will conclude the discussion
for DEC_MT by presenting the visual demonstrations of the worst and best case forecasts. For the
demonstration, we have selected samples from Cluster3 and Cluster2. Generally, the lower traffic
demand forecasts based on DEC_MT setup are better than forecasts based on DBA K-means forecasts.
One possible contributor in this regard is the ability of the multi-tasking autoencoder to generate
relatively smoother cluster centroids.

C
lu

st
er

0

C
lu

st
er

1

C
lu

st
er

2

C
lu

st
er

3

C
lu

st
er

4

Cluster0

Cluster1

Cluster2

Cluster3

Cluster4

1 0.68 0.88 0.95 0.95

0.68 1 0.76 0.7 0.64

0.88 0.76 1 0.84 0.92

0.95 0.7 0.84 1 0.89

0.95 0.64 0.92 0.89 1
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 5.21: Intra cluster correlation between cluster centroides that are estimated with multi-tasking autoen-
coder that is trained from scratch

188

Time Series Averages in Cluster Level Forecasting
Chapter
5

0 50 100 150 200 250
Time

0.1

0.0

0.1

0.2

0.3
Da

ta
 tr

af
fic

 d
em

an
d

in
 T

B
Best case forecast on BS 112221.0

Actual Data
Forecasted Data

(a) Cluster3 best CS forecast MAE = 0.062

0 50 100 150 200 250
Time

0

1

2

3

4

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 112254.0
Actual Data
Forecasted Data

(b) Cluster3 worst CS forecast MAE = 1.309

0 50 100 150 200 250
Time

2

4

6

8

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 112077.0
Actual Data
Forecasted Data

(c) Cluster4 best CS forecast MAE = 0.595

0 50 100 150 200 250
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 112084.0
Actual Data
Forecasted Data

(d) Cluster4 worst CS forecast MAE = 2.314

Figure 5.22: Visual demonstration of best and worst forecasts for a D-SARIMA model fitted with centroieds
estimated using a multi-tasking autoencoder trained from scratch

Table 5.6: Aggregate average per-cluster forecasting errors with the forecasting model fitted on the centroids
of clusters defined by a multi-tasking autoencoder

Cluster CS-RMSE CS-MAE BS-RMSE BS-MAE # Radio units
Cluster0 1.104 0.816 1.417 1.092 164
Cluster1 1.050 0.778 1.205 0.932 88
Cluster2 0.409 0.305 0.426 0.308 165
Cluster3 1.524 1.145 1.867 1.458 105
Cluster4 0.863 0.671 0.992 0.758 207
Mean 0.990 0.743 1.181 0.909 729

Finally, we will conclude this chapter by presenting the experimental outcomes of the K-Means
approach. In this regard, we also start our assessment of the basic K-Means by observing the geo-
graphical location of the clusters. In this aspect, Figure 5.23 demonstrates the location of the clusters
compared to the map of Addis Ababa. In terms of their spatial location, we find the clusters identified
by DBA k-Means and K-Means to be highly similar. Thus, the cluster correspondence for this case
becomes: (𝐷𝐵𝐴𝐾 −𝑀𝑒𝑎𝑛𝑠, 𝐾 −𝑀𝑒𝑎𝑛𝑠) = {(𝐶𝑙𝑢𝑠𝑡𝑒𝑟0, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟0), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟4), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟2,
𝐶𝑙𝑢𝑠𝑡𝑒𝑟1), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟3, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟3), (𝐶𝑙𝑢𝑠𝑡𝑒𝑟4, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟3)}. However, comparatively, the centroids iden-
tified by the basic K-means are relatively smoother than those identified with DBA K-Means. In this
regard, we identified two key contributing factors. First, as we stated earlier, the data traffic has an
increasing trend. To this end, the trend introduces constant offsets that are problematic in the context
of DTW warping. Additionally, we observed that euclidean distance was obtaining better accuracies
on the NCC we conducted while selecting better performing centroids and cluster formations. Thus,
this implies that for the datasets, the impact of temporal distortion is minimal to cause significant dis-
tortion on arithmetic means. Thus, in the context of the smoothness, the situation favored arithmetic
means rather than their DBA counterparts. With these observations in mind, we next conduct the

189

Time Series Averages in Cluster Level Forecasting
Chapter
5

Figure 5.23: UMTS radio nodes clustered based on their traffic patterns using K-Means

intra-cluster correlation analysis to identify the exogenous variables of the D-SARIMA models. In
this aspect, the correlation heat map of the K-Mean highly resembles the maps shown in Figures 5.15
and 5.21. We find this to be logical given the circumstances and nature of the datasets. In general,
based on the results shown in Table 5.7, the forecasting errors for the K-Means approach stand third,
i.e., the forecasting errors are lower than DEC_MT_Enc_Fixed but higher than DEC_MT. However, in
this case, there is almost no difference between CS and BS level forecasting. This further validates our
initial concern about the inability of arithmetic mean to capture descriptive per-cluster features even
under favorable conditions.

C
lu

st
er

0

C
lu

st
er

1

C
lu

st
er

2

C
lu

st
er

3

C
lu

st
er

4

Cluster0

Cluster1

Cluster2

Cluster3

Cluster4

1 0.99 0.97 0.96 0.94

0.99 1 0.98 0.95 0.92

0.97 0.98 1 0.9 0.88

0.96 0.95 0.9 1 0.97

0.94 0.92 0.88 0.97 1

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 5.24: Intra cluster correlation between cluster centroides that were estimated with basic K-means

With these said we will finalize the analysis of experimental outcomes by presenting the plots of the
best and worst case forecasts as shown in Figure 5.25. For the plots, we followed the same approach
used so far and selected samples from clusters that have worst and best aggregate average per-cluster
forecasting errors; i.e., in this case, Cluster2 and Cluster4.In conclusion, in this chapter, we argued that
in wireless communication networks radio nodes are expected to exhibit spatial correlation. Thus, to
capture the spatial correlation between the nodes through clustering. In reality, we proposed to cluster

190

Time Series Averages in Cluster Level Forecasting
Chapter
5

Table 5.7: Aggregate average per-cluster forecasting errors with the forecasting model fitted on the centroids
of clusters defined using a basic K-Means

Cluster CS-RMSE CS-MAE BS-RMSE BS-MAE # Radio units
Cluster0 1.131 0.859 1.263 0.968 171
Cluster1 0.938 0.739 0.961 0.735 236
Cluster2 0.389 0.293 0.388 0.282 146
Cluster3 1.774 1.452 1.664 1.289 122
Cluster4 1.906 1.522 1.993 1.562 54
Mean 1.228 0.973 1.254 0.967 729

the radio nodes for two main reasons. First, we expect the clusters to identify radio nodes offering
similar traffic patterns to be grouped. This grouping, in turn, helped us to summarize the overall traffic
patterns through their centroids which in turn significantly reduced the number of forecasting models.
Additionally, by identifying the most correlated cluster centroids, we are able to incorporate the spatial

0 50 100 150 200 250
Time

0.1

0.0

0.1

0.2

0.3

0.4

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 112009.0
Actual Data
Forecasted Data

(a) Cluster2 best CS forecast MAE = 0.068

0 50 100 150 200 250
Time

0

1

2

3

4

5

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 112254.0
Actual Data
Forecasted Data

(b) Cluster2 worst CS forecast MAE = 1.626

0 50 100 150 200 250
Time

2

4

6

8

10

12

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Best case forecast on BS 112062.0
Actual Data
Forecasted Data

(c) Cluster4 best CS forecast MAE = 0.907

0 50 100 150 200 250
Time

0

5

10

15

20

Da
ta

 tr
af

fic
 d

em
an

d
in

 T
B

Worst case forecast on BS 112209.0
Actual Data
Forecasted Data

(d) Cluster4 worst CS forecast MAE = 4.140

Figure 5.25: Visual demonstration of best and worst forecasts for a D-SARIMA model fitted with centroids
estimated using a a basic K-Means

correlation among the radio nodes. An alternative solution in this regard would have been to divide
the geographical location associated with the radio nodes into grids. We then could have associated
the traffic pattern of a grid with the traffic pattern of a radio node belonging to the grid. However,
the outcome of this approach could get clouded by many challenges. For instance, determining the
appropriate size of a grid would have been one problem. This is because the coverage area of radio
nodes is often dependent on network parameters. Thus, there is a possibility that multiple radio nodes
could fall within a grid. Moreover, even if we manage to define an appropriate grid size, defining
a propagation model that governs the spatial correlation would have been relatively challenging.
In this aspect, the cluster-level approach provided a relatively easy way of capturing the spatial
correlation among radio nodes evident due to land use. In this regard, we find the approach based on
representation learning comparatively efficient and useful compared to evaluated alternatives.

191

6 Summary, Conclusions & Outlook

In this dissertation, we showed the challenges associated with the estimation of time series averages.
To elaborate on the challenges, we first identified the requirements associated with estimating an
"optimal" time series average. In reality, even though we found the concept of "optimality" to be
rather ambiguous, we noted that researchers often agree on at least two key terms. First, an average
time series get expected to preserve descriptive shapes observed in the averaged set. Moreover, an
average get expected to minimize its discrepancy with members of the averaged set. To meet these
requirements, currently available averaging heuristics mainly relied on utilizing different kinds of
alignment techniques, for instance, DTW, correlation, and velocity fields. Overall, the techniques
mainly emphasized utilizing the alignment algorithms to register averaged series to their arithmetic
means in a space that is possibly different from the time domain. For instance, DTW based techniques
warp the averaged series into DTW space. On the contrary, velocity field-based approaches morphed
the averaged series through controlled re-sampling. In general, despite the difference in the alignment
techniques, pioneering techniques tried to address time series averaging as an alignment problem.
Consequently, the averaging problem often gets clouded with the challenges associated with the
difficulty of simultaneously performing multiple alignments.

With these understandings, in this dissertation, we proposed to approach time series averaging
as a generative problem through deep representation learning. Overall, we aimed to estimate time
series averages from their latent space representations. With this objective in mind, we performed
rigorous assessments of the latent space embedding of neural network architectures presumed to be
either semi or fully generative. In general, we argued that given appropriate neural network archi-
tectures and accompanying objective functions, we could mimic the effects of multiple alignments
through their latent embedding. To validate this argument, we first proposed to assess the latent
space of autoencoders performing a basic encoding and decoding operation. In reality, we choose
autoencoders as our optimization setup for two reasons. First, autoencoders can reconstruct latent
embedding through their decoders. Thus, it provided a way to generate time domain equivalents for
means estimated in the latent space. Additionally, in practice, we found autoencoders deployed as one
of the building blocks of most generative neural network architectures. This, in turn, aligned with our
objective of approaching time series averaging as a generative problem. Generally, our assessments
of the basic and variational versions of the autoencoders revealed their latent embedding is sufficient
to generate time domain estimates better than a time domain arithmetic mean. Overall, we attribute
this performance improvement to the filtering action of the proposed network architecture. In reality,
we built the autoencoder arrangements from Convolutional layers. In practice, Convolutional layers
are known to be good at analyzing shapes irrespective of their locations. To better understand the
advantage of this concept, we can consider concepts in the signal analysis as illustrative examples.

192

Summary, Conclusions & Outlook
Chapter
6

In practice, we can at least observe signals in two different domains, i.e., time and frequency domains.
Moreover, in most cases, certain behavior of signals presumed relatively complex in the time domain
can be relatively simple to interpret in the frequency domain. For instance, if we consider a group of
band-limited signals, for instance, smooth signals that are free of sharp edges but shifted versions of
each other as an example. In the frequency domain, the signals will get mapped to similar spectral
components. Consequently, in the frequency domain, it would be easier to identify the signals that
share a common ground. Using this analogy, we can assume the filters of Convolutional layers within
the proposed autoencoders as processing components focusing on identifying shapes despite their
time shift. In reality, this remark is in line with our observation of the latent space projection of the
input series and the associated latent space NCC accuracies. In this regard, the comparatively denser
latent space t-SNE projections implied that the Convolutional filters were able to identify descriptive
features that are common among input series that share common ground, for instance, similar classes.
In another analogy, we can also think of the learned latent representations as if they were the most
dominant 𝑁 principal components, where in this case, the components get learned through a complex
nonlinear transformation. Consequently, we expect the latent embedding of the input series to appear
to have dense lower dimensional representations when transformed with t-SNE or other dimensional
reduction techniques.

Overall, we found the estimates of the autoencoders to be encouraging given we have assessed
their quality in DTW space. This is because, while performing the NCC, we have used DTW distance
to measure the discrepancy between class members and their respective class averages. However, at
this point, we have to note two critical questions. First, given we are using DTW distance, will a time
domain estimate that gets generated from a latent space be comparable to an estimated generated
with DTW based techniques such as DBA? If the answer to this question is no, the second question
would be, what alternative metric would have been better to assess the quality of the time domain
estimates generated by the different approaches? In reality, we found the answers to both questions
relatively challenging. This is because, in the context ofDTW distance, averages generated using DTW
will get favored. This is because, while generating DTW based estimates, we register the training set
to the estimates in DTW space. To this end, when we perform a NCC on a test set, i.e., using DTW
distance, we transform the class averages and members of the test set to a space that is favorable to
the estimates. However, this is not true for estimates generated using the autoencoders that have
no information about DTW space, i.e., neither at estimation nor at test time. If this is the case, the
next logical question would be, why did we choose to utilize NCC as an evaluation technique? In this
regard, we have noted the possibility of utilizing WGSS as an alternative. However, we also noted that
the WGSS loss function could get dependent on an underlying registration technique through the
distance function (d). This is at least true for the cases of estimates generated with DBA and SDBA.
To this end, for such an evaluation technique, the overall comparison would still favor the averaging
techniques based on DTW. However, even under such biased comparison, we consider the estimates
of the autoencoders to be encouraging for two reasons. First, if we account for the bias and consider
only the NCC accuracies obtained in the registered space of the different averaging techniques; NCC
accuracies obtained in the latent space of the autoencoders were better than the state-of-the-art.

193

Additionally, we also have to note that in the learning process, the autoencoders were not given any
additional information, unlike their counterparts. For instance, DTAN utilizes class information while
performing the diffeomorphic transformation. Moreover, to generate per-class averages, the estimates
of DBA and SDBA got generated on a per-class basis that indirectly introduced class information into
the averaging process. In this regard, for the autoencoders, there are no such supervisions at the time
of training. On the contrary, we only used the class label information when generating the per-class
averages after completing the training process. Due to these observations, we strongly believe the
potential of the autoencoder based approaches can not get ignored. Moreover, their unsupervised
nature could also get used if the need arises. However, if there are ways that class information could
get incorporated into the estimation process, i.e., as in the case of the forecasting problem presented
in chapter five, we propose the multi-tasking approaches. Specifically, we suggest the deployment
of a quantile regression-based multi-tasking autoencoder since they better mimicked the effect of
multiple alignments in the latent space.

In conclusion, we have made the basic and the multi-tasking autoencoder approaches as generic
as possible. In this regard, we have not utilized any input pre-processing, domain knowledge, and
input or task-specific layer organization. However, we also note that recently task-specific neural
network architectures are being proposed for temporal datasets. For instance, recently, an archi-
tecture named the Inception Time was proposed. In reality, it was able to outperform an ensemble
of classifiers that were mainly using DTW distance. In this context, in this dissertation, we have
shown the implication of layer arrangement by making successive improvements to the proposed
network architectures. Thus, motivated by these observations, we believe the customization of such
task-specific architectures to the proposed averaging techniques could further improve the quality of
the latent embeddings and time domain estimates generated from them. In addition to this, due to
time and computational resource limitations, we only assessed a limited number of objective functions
in their original format. In this regard, we believe there is a range of additional objective functions
that could contribute positively to the overall learning process. For instance, for the variational and
nonvariational autoencoders, we could have forced the architectures to reconstruct a noisy version
of their inputs. We believe that such requirements could help the networks to further focus on the
most descriptive features that guarantee lower reconstruction error. This, in turn, could assist the
separability and compactness of the latent embeddings. This is because for inputs that share common
backgrounds, for instance, similar classes, we expect the most descriptive latent features (principal
components) to be relatively similar. In general, we believe that the possibility of further upgrades is
not limited to this scope. On the contrary, there is a range of better feature extraction techniques
either under study or known to the general public. To this end, we next focus on customizing such
proposals to better suit the demands of time series averaging.

194

6Bibliography
[1] W. William W.S., Time Series Analysis: Univariate and Multivariate Methods. Pearson Addison

Wesley, 2006 (see pages 1, 166, 168, 169).

[2] C. Yanping, E. Keogh, H. Bing, B. Nurjahan, B. Anthony, M. Abdullah, and B. Gustavo, The ucr time
series classification archive, www.cs.ucr.edu/~eamonn/time_series_data/, Jul. 2015 (see pages 1, 2, 22, 47,
58–61, 63, 64, 66–68).

[3] R. Simoes, G. Camara, G. Queiroz, F. Souza, P. R. Andrade, L. Santos, A. Carvalho, and K. Ferreira,
Satellite image time series analysis for big earth observation data, Remote Sensing, vol. 13:no. 13,
2021 (see page 1).

[4] L. Jason, Time series classification through transformation and ensembles, PhD dissertation,
University of East Anglia, 2015 (see pages 1–3, 59, 64).

[5] L. Parmentier, O. Nicol, L. Jourdan, and M.-E. Kessaci, Autotsc: Optimization algorithm to auto-
matically solve the time series classification problem, in 2021 IEEE 33rd International Conference
on Tools with Artificial Intelligence (ICTAI), Nov. 1-3, 2021, 412–419 (see page 1).

[6] J. Xie, R. Girshick, and A. Farhadi, Unsupervised deep embedding for clustering analysis, in
Proceedings of the 33rd International Conference on International Conference on Machine Learning, New
York, NY, USA, Jun. 19-24, 2016, 478–487 (see pages 2–4, 55, 70, 176–179).

[7] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, Deep learning for time series
classification: A review, Data Mining and Knowledge Discovery, vol. 33:no. 4, 2019, 917–963 (see
pages 2, 28–30, 48, 58, 69, 77).

[8] V. S. Siyou Fotso, E. MephuNguifo, and P. Vaslin, Frobenius correlation based u-shapelets discovery
for time series clustering, Pattern Recognition, vol. 103, 2020, 263–301 (see page 2).

[9] J. Lin and Y. Li, Finding structural similarity in time series data using bag-of-patterns represen-
tation, in International conference on scientific and statistical database management, New Orleans,LA,
USA, Jun. 2-4, 2009, 461–477 (see page 2).

[10] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, TS-CHIEF: A scalable and accurate forest
algorithm for time series classification, Data Mining and Knowledge Discovery, vol. 34, 2020, 742–
775 (see page 2).

[11] J. Lin, E. Keogh, L. Wei, and S. Lonardi, Experiencing sax: A novel symbolic representation of
time series, Data Mining and knowledge discovery, vol. 15:no. 2, 2007, 107–144 (see page 2).

[12] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, The great time series classification bake
off: A review and experimental evaluation of recent algorithmic advances, Data Mining and
Knowledge Discovery, vol. 31:no. 3, 2017, 606–660 (see pages 2, 3).

[13] A. Bagnall, L. Davis, J. Hills, and J. Lines, Transformation based ensembles for time series
classification, in Proceedings of the 2012 SIAM international conference on data mining, California, USA,
Apr. 26-28, 2012, 307–318 (see pages 2–4, 58, 68).

195

www.cs.ucr.edu/~eamonn/time_series_data/

[14] G. Lalit, M. Dennis L, T. Ravi, and S. Panagiotis G, Nonlinear alignment and averaging for estimat-
ing the evoked potential, IEEE transactions on biomedical engineering, vol. 43:no. 4, 1996, 348–356
(see pages 2, 4–6, 11, 21, 22, 47, 56).

[15] N. Vit and R. Chotirat Ann, Shape averaging under timewarping, in 2009 6th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Pattaya,
Chonburi, Thailand, May 6-9, 2009, 626–629 (see pages 2, 4–6, 11, 13, 21, 23–25, 47, 56).

[16] F. Petitjean and P. Gançarski, Summarizing a set of time series by averaging: From steiner
sequence to compact multiple alignment, Theoretical Computer Science, vol. 414:no. 1, 2012, 76–91
(see pages 2, 4–6, 13, 14, 21–23, 25, 26, 47, 56, 57, 75, 76, 109).

[17] T. Nguyen, N. Meger, C. Rigotti, C. Pothier, N. Gourmelen, and E. Trouve, A pattern-based mining
system for exploring displacement field time series, in 2019 International Conference on Data
Mining Workshops (ICDMW), Beijing, China, Nov. 8-9, 2019, 1110–1113 (see page 2).

[18] A. Bagnall and J. Lines, An experimental evaluation of nearest neighbour time series classifica-
tion, arXiv preprint arXiv:1406.4757, 2014 (see pages 3, 47).

[19] P. François, G. Forestier, G. Webb, A. Nicholson E, Y. Chen, and E. Keogh, Faster and more accurate
classification of time series by exploiting a novel dynamic time warping averaging algorithm,
Knowledge and Information Systems, vol. 47:no. 1, 2016, 1–26 (see pages 3, 26, 176).

[20] R. A. Shapira Weber, M. Eyal, N. Skafte, O. Shriki, and O. Freifeld, “Diffeomorphic temporal alignment
nets: Supplementary material,” in Advances in Neural Information Processing Systems 32, Vancouver, BC,
Canada, Dec. 8-14, 2019, 6574–6585 (see pages 3, 6, 19, 27, 46, 75, 76, 109).

[21] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, Time-series clustering–a decade review, Infor-
mation Systems, vol. 53, 2015, 16–38 (see pages 3, 4, 11, 176).

[22] B. Hans-Hermann, Origins and extensions of the k-means algorithm in cluster analysis. Journal
Électronique d’Histoire des Probabilités et de la Statistique [electronic only], vol. 4, 2008 (see pages 3, 4,
171).

[23] P. François, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping,
with applications to clustering, Pattern Recognition, vol. 44:no. 3, 2011, 678–693 (see pages 3–5, 11,
26, 38).

[24] T. M. L. Wigley, K. R. Briffa, and P. D. Jones, On the average value of correlated time series, with
applications in dendroclimatology and hydrometeorology, Journal of Applied Meteorology and
Climatology, vol. 23:no. 2, 1984, 201–213 (see page 3).

[25] R. Shapira Weber, M. Eyal, N. Skafte, O. Shriki, and O. Freifeld, “Diffeomorphic temporal alignment
nets,” in Advances in Neural Information Processing Systems 32, Vancouver, BC, Canada, Dec. 8-14, 2019,
6574–6585 (see pages 4, 5, 21, 43, 44, 46, 47, 56, 57, 76, 79, 80, 109, 113).

[26] M. Tadayon and Y. Iwashita, A clustering approach to time series forecasting using neural
networks: A comparative study on distance-based vs. feature-based clustering methods, CoRR,
vol. abs/2001.09547, 2020. [Online]. Available: https://arxiv.org/abs/2001.09547 (see page 4).

[27] E. J. Keogh and M. J. Pazzani, Derivative dynamic time warping, in Proceedings of the 1st SIAM
International Conference on Data Mining (SDM), Chicago, IL, USA, Apr. 5-7, 2001, 1–11 (see pages 4, 16).

[28] S. Soheily-Khah, A. Douzal-Chouakria, and E. Gaussier, Progressive and iterative approaches for
time series averaging, in Proceedings of the 1st International Conference on Advanced Analytics and
Learning on Temporal Data, Valencia, Spain, Jul. 6-7, 2015, 111–117 (see pages 4, 5).

196

https://arxiv.org/abs/2001.09547

[29] I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python Deep Learning: Exploring deep
learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow,
2nd. 2019 (see pages 4, 27–33, 35, 37–39, 48, 50, 53, 69, 170, 181).

[30] M.Morel, C. Achard, R. Kulpa, and S. Dubuisson,Time-series averaging using constrained dynamic
time warping with tolerance, Pattern Recognition, vol. 74, 2018, 77–89 (see pages 4, 5).

[31] D. Schultz and B. Jain, Nonsmooth analysis and subgradient methods for averaging in dynamic
time warping spaces, Pattern Recognition, vol. 74, 2018, 340–358 (see pages 5, 6, 18, 19, 21, 26, 27).

[32] S. Hiroaki and C. Seibi, Dynamic programming algorithm optimization for spoken word recog-
nition, IEEE transactions on acoustics, speech, and signal processing, vol. 26:no. 1, 1978, 43–49 (see
pages 5, 9, 11, 17, 20, 21).

[33] P. John and G. Luis, K-shape: Efficient and accurate clustering of time series, in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia,
31 May–4 June ,2015, 1855–1870 (see pages 5, 21, 43).

[34] D. Schultz and B. Jain, Nonsmooth analysis and subgradient methods for averaging in dynamic
time warping spaces, Pattern Recognition, vol. 74, 2018, 340–358 (see pages 6, 9, 13, 18).

[35] M. Brill, T. Fluschnik, V. Froese, B. Jain, R. Niedermeier, and D. Schultz, Exact mean computation in
dynamic time warping spaces, Data Mining and Knowledge Discovery, vol. 33:no. 1, 2019, 252–291
(see pages 6, 9).

[36] B. J. Jain, V. Froese, and D. Schultz,An average-compress algorithm for the samplemean problem
under dynamic time warping, CoRR, vol. abs/1909.13541, 2019. [Online]. Available: http://arxiv.org/
abs/1909.13541 (see pages 6, 8).

[37] M. Cuturi and M. Blondel, Soft-dtw: A differentiable loss function for time-series, in Proceedings
of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, Aug. 6-11, 2017,
894–903 (see pages 6, 11, 13, 16–18).

[38] D. P. Kingma and M. Welling, Auto-encoding variational bayes, in 2nd International Conference on
Learning Representations, ICLR, Banff, AB, Canada, Apr. 14-16, 2014 (see pages 6, 57, 58, 83, 90, 169).

[39] G. Ian J., P.-A. Jean, M. Mehdi, X. Bing, W.-F. David, O. Sherjil, C. Aaron, and B. Yoshua, Generative
adversarial nets, in Proceedings of the 27th International Conference on Neural Information Processing
Systems, Montreal, Canada, Dec. 8-13, 2014, 2672–2680 (see pages 6, 57, 58).

[40] B. K. Iwana and S. Uchida,Anempirical survey of data augmentation for time series classification
with neural networks, PLOS ONE, vol. 16:no. 7, 2021, 1–32 (see pages 6, 57, 58).

[41] J. Zhao and L. Itti, Shapedtw: Shape dynamic time warping, Pattern Recognition, vol. 74, 2018,
171–184 (see pages 12, 16, 20, 55).

[42] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu,Weighted dynamic time warping for time series
classification, Pattern Recognition, vol. 44:no. 9, Computer Analysis of Images and Patterns, 2231–2240
(see pages 12–16).

[43] E. Vidal Ruiz, F. Casacuberta Nolla, and H. Rulot Segovia, Is the dtw “distance” really a metric?
an algorithm reducing the number of dtw comparisons in isolated word recognition, Speech
Communication, vol. 4:no. 4, 1985, 333–344 (see page 13).

[44] S. Salvador and P. Chan, Toward accurate dynamic time warping in linear time and space,
Intelligent Data Analysis, vol. 11:no. 5, 2007, 561–580 (see pages 13, 20, 21).

[45] B. Lathi, Signal Processing and Linear Systems, 2nd. pearson, 2014 (see pages 14, 31).
197

http://arxiv.org/abs/1909.13541
http://arxiv.org/abs/1909.13541

[46] M. Cuturi, J.-P. Vert, O. Birkenes, and T.Matsui,Akernel for time series based on global alignments,
in IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, HI, USA, May
15-20, 2007, II-413-II–416 (see page 17).

[47] C. Nello and R. Elisa, 928–932, in, Encyclopedia of Algorithms, Boston, MA: Springer US, 2008 (see
page 17).

[48] H. Shimodaira, K.-i. Noma, M. Nakai, and S. Sagayama,Dynamic time-alignment kernel in support
vector machine, in Advances in Neural Information Processing Systems, vol. 14, Vancouver, British
Columbia, Canada, Dec. 3-8, 2001 (see page 17).

[49] F. Itakura, Minimum prediction residual principle applied to speech recognition, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 23:no. 1, 1975, 67–72 (see pages 20, 21).

[50] B. J. Jain, V. Froese, and D. Schultz,An average-compress algorithm for the samplemean problem
under dynamic time warping, CoRR, vol. abs/1909.13541, 2019. [Online]. Available: http://arxiv.org/
abs/1909.13541 (see pages 21, 26, 27).

[51] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley, 1990 (see page 23).

[52] B. J. Jain and D. Schultz, A reduction theorem for the sample mean in dynamic time warping
spaces, ArXiv, vol. abs/1610.04460, 2016 (see page 26).

[53] T. Tsegamlak, M. Devanne, J. Weber, H. Dereje, and G. Forestier, Time series averaging using multi-
tasking autoencoder, in 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), Baltimore, MD, USA, Nov. 9-11, 2020, 1065–1072 (see page 27).

[54] B. Yegnanarayana, Artificial Neural Networks. Prentice-Hall of India Private Limited, 2005 (see
pages 27–29, 35, 38).

[55] J. Xie, R. Girshick, and A. Farhadi, Unsupervised deep embedding for clustering analysis, in
Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48,
NY, USA, Jun. 20-22, 2016, 478–487 (see pages 30, 48, 177).

[56] B. Lafabregue, J. Weber, P. Gançarski, and G. Forestier, End-to-end deep representation learning
for time series clustering: A comparative study, Data Mining and Knowledge Discovery, 2021, 1–53
(see pages 30, 55, 58, 70, 177, 180).

[57] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recog-
nition, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015 (see pages 31, 32, 39, 48–51, 55, 72, 180).

[58] H. Kaim, Z. Xiangyu, R. Shaoqing, and S. Jian, Deep residual learning for image recognition, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, Jun. 27-30, 2016 (see pages 31, 32, 39, 48, 50–52, 55, 83, 86, 144, 180).

[59] P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in Proceedings of ICML
workshop on unsupervised and transfer learning, Edinburgh, Scotland, 26 June–1 July ,2012, 37–49 (see
pages 32, 69, 84).

[60] C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, Jun. 7-12, 2015, 1–9 (see pages 32, 39, 48, 53–55, 83, 88,
144, 180).

198

http://arxiv.org/abs/1909.13541
http://arxiv.org/abs/1909.13541

[61] H. I. Fawaz, L. Benjamin, G. Forestier, P. Charlotte, D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar,
P. A. Muller, and P. François, Inceptiontime: Finding alexnet for time series classification, Data
Mining and Knowledge Discovery, vol. 34, 2020, 1936–1962 (see pages 32, 39, 48, 58).

[62] P. Goyal, S. Pandey, and K. Jain, Deep Learning for Natural Language Processing: Creating
Neural Networks with Python. Apress, 2018 (see pages 32, 33).

[63] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, vol. 9:no. 8, 1997,
1735–1780 (see page 33).

[64] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating
errors, Nature, vol. 323:no. 9, 1986, 533–536 (see pages 35–37).

[65] D. P. Kingma and J. Ba,Adam: Amethod for stochastic optimization, in 3rd International Conference
on Learning Representations (ICLR), San Diego, CA, USA, May 7-9, 2015 (see pages 37, 75).

[66] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural
networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
Sardinia, Italy, May 13-15, 2010, 249–256 (see pages 38–43, 50, 55, 82, 88, 89).

[67] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, in 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, Dec. 7-13, 2015, 1026–1034 (see pages 39, 42, 50, 55, 82, 88, 89).

[68] C. François et al., Keras, https://keras.io, 2015 (see pages 39, 42).

[69] S. K. Kumar, On weight initialization in deep neural networks, arXiv, vol. abs/1704.08863, 2017.
[Online]. Available: http://arxiv.org/abs/1704.08863 (see page 43).

[70] A. Srivastava and E. P. Klassen, Functional and Shape Data Analysis. Springer, 2016, vol. 1 (see
pages 43, 44).

[71] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu koray, Spatial transformer networks,
in Advances in Neural Information Processing Systems, vol. 28, Montreal, Quebec, Canada, Dec. 7-12,
2015, 2017–2025 (see pages 43, 46).

[72] Y. Kowsar, M. Moshtaghi, E. Velloso, J. C. Bezdek, L. Kulik, and C. Leckie, Shape-sphere: A metric
space for analysing time series by their shape, Information Sciences, vol. 582, 2022, 198–214 (see
page 43).

[73] C. Chen and A. Srivastava, Srvfregnet: Elastic function registration using deep neural networks,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
Jun. 19-25, 2021, 4462–4471 (see page 44).

[74] N. S. Detlefsen, O. Freifeld, and S. Hauberg, Deep diffeomorphic transformer networks, in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
Jun. 18-23, 2018, 4403–4412 (see pages 44, 45).

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional
neural networks, Communications of the ACM, vol. 60:no. 6, 2017, 84–90 (see pages 48, 49).

[76] G. Dong, G. Liao, H. Liu, and G. Kuang, A review of the autoencoder and its variants: A compara-
tive perspective from target recognition in synthetic-aperture radar images, IEEE Geoscience
and Remote Sensing Magazine, vol. 6:no. 3, 2018, 44–68 (see pages 58, 69).

[77] E. S. Trust, Powering the nation, Department for Environment, Food and Rural Affairs (DEFRA), 2012
(see pages 59, 60).

199

https://keras.io
http://arxiv.org/abs/1704.08863

[78] C. Michael, K. Tom, D. Vanda, F. Steven, H. Tarek, H.-B. Richard, H. Tom, L. Charlie, S. Wilson, S.
Vladimir, M. David, and L. Jing, Utilising smart home data to support the reduction of energy
demand from space heating insights from a uk field study, in Proceedings of the 8th International
Conference on Energy Efficiency in Domestic Appliances and Lighting, Sydney, NSW, Australia, Aug.
26-28, 2015, 1049–1063 (see pages 59, 60).

[79] C. Gisler, A. Ridi, and J. Hennebert, Appliance consumption signature database and recognition
test protocols, in WOSSPA2013 The 9th International Workshop on Systems, Signal Processing and their
Applications, Algiers, Algeria, May 12-15, 2013, 336–341 (see pages 59, 60).

[80] R. T. Olszewski,Generalized feature extraction for structural pattern recognition in time-series
data, PhD dissertation, USA, 2001 (see pages 61, 62).

[81] Y. Chen, Y. Hao, T. Rakthanmanon, J. Zakaria, B. Hu, and E. Keogh, A general framework for never-
ending learning from time series streams, Data Mining and Knowledge Discovery, vol. 29, 2014,
1622–1664 (see pages 61, 62).

[82] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark, J. Mietus, G. Moody, C. Peng,
and H. Stanley, Physiobank, physiotoolkit, and physionet: Components of a new research
resource for complex physiologic signals, in Circulation. 2000 Jun 13;101(23):E215-20, USA, 2000
(see pages 61, 62).

[83] T. Lugovaya, Biometric human identification based on electrocardiogram, Msc Thesis, Faculty
of Computing Technologies and Informatics, Electrotechnical University, Saint Petersburg, Russian
Federation, 2005 (see pages 61, 62).

[84] F. Fang and T. Shinozaki, Electrooculography-based continuous eye-writing recognition system
for efficient assistive communication systems, PLOS ONE, vol. 13:no. 2, 2018, 1–20 (see pages 61,
62).

[85] C. Sapsanis, G. Georgoulas, A. Tzes, and D. Lymberopoulos, Improving emg based classification of
basic hand movements using emd, in Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Osaka, Japan, Jul. 3-7, 2013, 5754–5757 (see pages 61, 62).

[86] D. S. Willett, J. George, N. S. Willett, L. L. Stelinski, and S. L. Lapointe, Machine learning for
characterization of insect vector feeding, PLOS Computational Biology, vol. 12:no. 11, 2016, 1–14
(see pages 61, 62).

[87] D. Eads, D. Hill, S. Davis, S. J. Perkins, J. Ma, R. Porter, and J. Theiler,Genetic algorithms and support
vector machines for time series classification, in Applications and Science of Neural Networks,
Fuzzy Systems, and Evolutionary Computation V, Seattle, Washington, USA, Jul. 9-10, 2002, 74–85 (see
pages 62, 63).

[88] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, Flying insect detection and classification
with inexpensive sensors, Journal of visualized experiments : JoVE, vol. 92, 2014 (see pages 63, 64).

[89] H. Hamooni and A. Mueen, Dual-domain hierarchical classification of phonetic time series, in
2014 IEEE International Conference on Data Mining, Shenzhen, China, Dec. 14-17, 2014, 160–169 (see
pages 63, 64).

[90] A. C. Jalba, H. W. Michael, and R. Jos,Automatic segmentation of diatom images for classification,
Microscopy Research and Technique, vol. 95, 2004, 72–85 (see page 64).

[91] L. Ye and E. Keogh, Time series shapelets: A new primitive for data mining, in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France,
28 June–1 July ,2009, 947–956 (see pages 65, 66).

200

[92] A. Mueen, E. Keogh, and N. Young, Logical-shapelets: An expressive primitive for time series
classification, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Diego, California, USA, Aug. 21-24, 2011, 1154–1162 (see page 66).

[93] N. Saito, Local feature extraction and its applications using a library of bases. Yale University,
1994, 269–451 (see page 66).

[94] A.-J. Osama, E. K. Kemsley, andW. Reginald H.,Detection of adulteration in cookedmeat products
by mid-infrared spectroscopy, Journal of Agricultural and Food Chemistry, vol. 50:no. 6, 2002, 1325–
1329 (see pages 66, 67).

[95] S. Lu, G. Mirchevska, S. S. Phatak, D. Li, J. Luka, R. A. Calderone, and W. A. Fonzi, Dynamic time
warping assessment of high-resolution melt curves provides a robust metric for fungal
identification, PLOS ONE, vol. 12:no. 3, 2017, 1–21 (see pages 66–68).

[96] M. Guillame-Bert and A. Dubrawski, Classification of time sequences using graphs of temporal
constraints, The Journal of Machine Learning Research, vol. 18:no. 1, 2017, 4370–4403 (see pages 66–68).

[97] A. Baldridge, S. Hook, C. Grove, and G. Rivera, The aster spectral library version 2.0, Remote Sensing
of Environment, vol. 113:no. 4, 2009, 711–715 (see page 66).

[98] X. Huang, Y. Ye, L. Xiong, R. Y.K. Lau, N. Jiang, and S. Wang, Time series k-means: A new k-means
type smooth subspace clustering for time series data, Information Sciences, vol. 367-368, 2016,
1–13 (see page 66).

[99] B. Dana H., Modular learning in neural networks, in Proceedings of the Sixth National Conference
on Artificial Intelligence, vol. 1, Seattle, Washington, Jul. 13-17, 1987, 279–284 (see page 69).

[100] L. Karl Pearson, On lines and planes of closest fit to systems of points in space, Philosophical
Magazine, 6th ser., vol. 2, 1901, 559–572 (see pages 69, 75).

[101] D. Charte, F. Charte, M. J. del Jesus, and F. Herrera, An analysis on the use of autoencoders
for representation learning: Fundamentals, learning task case studies, explainability and
challenges, Neurocomputing, vol. 404:no. 3, 2020, 93–107 (see page 69).

[102] T. Howley, M. G. Madden, M.-L. O’Connell, and A. G. Ryder, The effect of principal component
analysis on machine learning accuracy with high dimensional spectral data, in Applications
and Innovations in Intelligent Systems XIII, Mar. 2006, 209–222 (see page 70).

[103] J. Lever, M. Krzywinski, and N. Altman, Principal component analysis, Nature Methods, vol. 14,
2017 (see page 70).

[104] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,Why does unsupervised
pre-training help deep learning? Journal of Machine Learning Researches, vol. 11, 2010, 625–660 (see
pages 70, 71).

[105] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, Extracting and composing robust features
with denoising autoencoders, in Proceedings of the 25th International Conference on Machine Learning,
Helsinki, Finland, Jul. 5-9, 2008, 1096–1103 (see page 71).

[106] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, Learning temporal regularity
in video sequences, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, Jun. 27-30, 2016 (see page 71).

[107] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. den Hengel,Memorizing normal-
ity to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly de-
tection, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–
2-November ,2019, 1705–1714 (see page 71).

201

[108] B. Zong, Q. Song, M. RenqiangMin, W. Cheng, C. Lumezanu, D. Cho, and H. Chen,Deep autoencoding
gaussian mixture model for unsupervised anomaly detection, in 6th International Conference on
Learning Representations, ICLR, Vancouver, BC, Canada, 30 April–3 May ,2018 (see page 71).

[109] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks,
Science, vol. 313:no. 5786, 2006, 504–507 (see page 71).

[110] L. van der Maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research,
vol. 9, 2008, 2579–2605 (see page 75).

[111] omain Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne, R. Yurchak, M.
Rußwurm, K. Kolar, and E. Woods, Tslearn, a machine learning toolkit for time series data,
Journal of Machine Learning Research, vol. 21:no. 118, 2020, 1–6 (see pages 76, 180).

[112] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine
learning research, vol. 7:no. Jan, 2006, 1–30 (see pages 76, 77).

[113] A. Barua, P. Kishore Deb, R. Maheshwari, and R. K. Tekade, “Chapter 10 -statistical techniques in phar-
maceutical product development,” in Dosage Form Design Parameters, ser. Advances in Pharmaceutical
Product Development and Research, Academic Press, 2018, 339–362 (see pages 76, 77).

[114] S. Bethelhem S., D. Tsegamlak T., T. Getinet, T. Yonas Y., and W. Dereje H., Hybrid prediction model
for mobile data traffic: A cluster-level approach, in 2020 International Joint Conference on Neural
Networks (IJCNN), Glasgow, United Kingdom, Jul. 19-24, 2020, 1–8 (see pages 164, 166, 171, 172, 174–176,
181).

[115] H. Kaaranen, A. Ahtiainen, L. Laitinen, S. Naghian, and V. Niemi, UMTS Networks: Architecture,
Mobility and Service, 2nd. John Wiley and Sons, 2005 (see pages 164, 165).

[116] B. Walke, P. Seidneberg, and A. M. P, UMTS The Fundamentals, 1st. Wiley, 2003 (see pages 164, 165).

[117] A. M. Fazlu, M. M. Abu Kyum, and M. F. Hossain, Performance analysis of umts cellular network
using sectorization based on capacity and coverage, International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 2, 2011, 98–104 (see page 164).

[118] S. Yantai, M. Yu, J. Liu, and O. Yang, Wireless traffic modeling and prediction using seasonal
arima models, in IEEE International Conference on Communications, 2003. ICC ’03. Vol. 3, 2003, 1675–
1679 (see pages 168, 169).

[119] A. Azari, P. Papapetrou, S. Denic, and G. Peters, Cellular traffic prediction and classification: A
comparative evaluation of lstm and arima, in Discovery Science, Cham: Springer International
Publishing, 2019, 129–144 (see pages 168, 169).

[120] D. Zeng, J. Xu, J. Gu, L. Liu, and G. Xu, Short term traffic flow prediction using hybrid arima and
ann models, in 2008 Workshop on Power Electronics and Intelligent Transportation System, Guangzhou,
China, Aug. 4-5, 2008, 621–625 (see page 169).

[121] J. G. Proakis and M. Salehi, Fundamentals of Communication Systems. Prentice Hall, 2002 (see
page 171).

[122] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol. 12, 2011,
2825–2830 (see page 172).

[123] R. J. Hyndman and Y. Khandakar, Automatic time series forecasting: The forecast package for r,
Journal of Statistical Software, vol. 27:no. 3, 2008, 1–22 (see page 172).

202

[124] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii, Local search methods for k-means with
outliers, Proceedings of the VLDB Endowment, vol. 10:no. 7, 2017, 757–768 (see page 176).

[125] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion, Journal of
Machine Learning Research, vol. 11, 2010, 3371–3408 (see pages 177, 178).

203

6List of Publications
Articles in Refereed Journals

[1] Estimating time series averages from latent space ofmulti-tasking neural networks,
Knowldge and Information Systems (KAIS), Under Review. Joint work with T. T. Debella,
M. Devanne, J. Weber, D. H. Woldegebreal, and G. Forestier.

Articles in Refereed Conference Proceedings

[2] Hybrid prediction model for mobile data traffic: A cluster-level approach, in 2020

International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom, Jul.
19-24, 2020, 1–8. Joint work with S. Bethelhem S., D. Tsegamlak T., T. Getinet, T. Yonas Y.,
and W. Dereje H..

[3] Time series averaging usingmulti-tasking autoencoder, in 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), Baltimore, MD, USA, Nov. 9-11, 2020,
1065–1072. Joint work with T. Tsegamlak, M. Devanne, J. Weber, H. Dereje, and G. Forestier.

[4] Deep representation learning for cluster-level time series forecasting, in 8th Interna-

tional conference on Time Series and Forecasting (ITISE), Gran Canaria, Spain, Jun. 27-30, 2022,
1–11. Joint work with T. T. Debella, B. S. Shawel, M. Devanne, J. Weber, D. H. Woldegebreal,
S. Pollin, and G. Forestier.

204

	1 Introduction
	1.1 Statement of the Problem
	1.2 Objectives
	1.2.1 General Objective
	1.2.2 Specific Objectives

	1.3 Scope
	1.4 Organization

	2 Background and Related Works
	2.1 The Dynamic Time Warping
	2.1.1 Weighted Dynamic Time Warping
	2.1.2 Soft Dynamic Time Warping
	2.1.3 Fast Dynamic Time Warping

	2.2 Averaging Techniques Based on Dynamic Time Warping
	2.2.1 Non Linear Averaging and Alignment Filter
	2.2.2 Prioritized Shape Averaging
	2.2.3 Dynamic Time Warping Barycenter Averaging

	2.3 Deep Neural Networks and Time series Averaging
	2.3.1 Neural Network Layers
	2.3.1.1 Dense Layers
	2.3.1.2 Convolutional Layers
	2.3.1.3 Layers in Recurrent and Long Short Term Memory Neural Networks

	2.3.2 Back-propagation, Activation Functions and Layer Initialization
	2.3.2.1 Activation Functions
	2.3.2.2 Impact of Layer Initialization on Deep Neural Networks

	2.3.3 A Neural Network Based Time Series Averaging
	2.3.3.1 Diffeomorphic Temporal Alignment Network

	2.3.4 On Some Renown Convolutional Neural Network Architectures
	2.3.4.1 The Visual Group Geometry Group 16 Architecture
	2.3.4.2 The Residual Network
	2.3.4.3 The Inception Network

	3 Time Series Averages from the Latent Space of Basic and Variational Autoencoders
	3.1 Evaluation Datasets from the ucr Archive
	3.1.1 Time Series Extracted from Devices Power Consumption Measurements
	3.1.2 Time Series Extracted from Bio-potential Measurements
	3.1.3 Time Series Extracted from Sensor Measurements
	3.1.4 Time Series Extracted from Images, Motion and Gestures
	3.1.5 Time Series Extracted from Simulations, Spectrography, Hemodynamics and High Resolution Melting Point Measurements

	3.2 Time series Averages from the Latent Space of a Basic Autoencoder
	3.2.1 Time Series Average Estimation Using Basic Autoencoders
	3.2.2 Architecture Description
	3.2.3 Experimental Setup, Average Estimation and Evaluation Technique
	3.2.4 Experimental Results and Interpretation

	3.3 Extended Evaluation of Basic Autoencoders and their Variational Variants
	3.3.1 Proposed Modified Reduced VGG16 Autoencoder
	3.3.2 Proposed Reduced Residual Network Architecture
	3.3.3 Proposed Reduced Inception Version Two Autoencoder
	3.3.4 Variational Variant of the Basic Autoencoders
	3.3.5 Experimental Setup
	3.3.6 Experimental Results and Interpretation
	3.3.6.1 Evaluations for the Basic Autoencoders
	3.3.6.2 Evaluations for the Variational Versions of the Basic Autoencoders

	4 Time Series Averages from the Latent Space of Multi-Tasking Neural Networks
	4.1 Time Series Averaging Using a Multi-tasking Autoencoder
	4.1.1 Experimental Setup
	4.1.2 Experimental Results and Interpretation
	4.1.3 Experimental Results and Interpretation

	4.2 Extended Evaluation of Multi-tasking autoencoders
	4.2.1 Modified Reduced vgg Based Multi-tasking Autoencoder
	4.2.2 Proposed Reduced resnet Multi-tasking Autoencoder
	4.2.3 Inception Version Two Based Multi-tasking Autoencoder
	4.2.4 Experimental Setup
	4.2.5 Experimental Results and Interpretation
	4.2.5.1 Evaluation of Averages Estimated with Basic Multi-tasking Autoencoders
	4.2.5.2 Evaluation of Averages Estimated with Variational Multi-tasking Autoencoders

	4.3 Time Series Averaging Using a Multi-tasking Quantile Regression Autoencoder
	4.3.1 Proposed Architectures
	4.3.2 Experimental Setups
	4.3.3 Experimental Results and Interpretation

	4.4 Extended Evaluation of the Multi-tasking Quantile Regression Network
	4.4.1 Experimental Setup
	4.4.2 Experimental Evaluations
	4.4.2.1 Extended Assessment of the Impact of Network Architectures in Multi-tasking Quantile Regression Autoencoders

	4.4.3 Assessing the Impact of Encouraging Over and Under Estimations on the Quality of Time Domain Estimates

	5 Time Series Averages in Cluster Level Forecasting
	5.1 A Cluster Level Data Traffic Forecasting
	5.1.1 Experimental Setup
	5.1.2 Experimental Results

	5.2 Assessing the Impact of Clustering Techniques and Quality of Clusters Centroids on Cluster Level Forecasting
	5.2.1 Dynamic Time Warping Barycenter Averaging Based K-Means
	5.2.2 Deep Embedding Clustering and Multi-tasking Autoencoer Based Cluster Centroid Estimation
	5.2.2.1 Deep Embedding Clustering with Time Domain Centroids
	5.2.2.2 Extended Experimental Setup
	5.2.2.3 Experimental Results

	6 Summary, Conclusions & Outlook
	Bibliography
	List of Publications

