Noëlie Tout D'abord, Je Remercie 
  
Joshua Bechet 
  
Pierre Esteves 
  
Axelle Ferrer-Valls 
  
Yann Goulet 
  
Thomas Guegano 
  
Laeticia Lacroix 
  
Alicia Larguier 
  
Plaindoux 
  
Je Remercie 
  
Andréa Alamia 
  
Romain Bielawski 
  
Victor Boutin 
  
Bhavin Choksi 
  
Samson Chota 
  
Colin Decourt 
  
Ismail Khalfaoui 
  
Léopold Maytié 
  
Milad Mozafari 
  
Sabine Muzellec 
  
Anaïs Servais 
  

When learning about the world, inputs can come in various ways: images when we look around, text describing objects and their properties, audio during conversations, etc. Most of these inputs are not annotated and come together asynchronously to build a joint representation of the external world.

With the recent advent of contrastive learning, state-of-the-art multimodal models heavily rely on the natural occurrence of synchronous data online: social media, Wikipedia, discussion websites, art communities, news websites, etc., have users posting multimodal publications with, in particular, text and image content. This data is produced by humans, for humans, who are assumed to have prior knowledge to understand the publications (for example, slang vocabulary, references to history and current events, pop culture, or inside knowledge of specialized communities).

With recent breakthroughs in how computing chips are built and used, large

models have left the world astonished with their abilities. Besides, their full potential is not fully known, and many evaluations and analyses will be required to discover all their aptitudes. While these models solely rely on the availability of online annotation, unlabeled datasets are readily available in all shapes and forms (image, video, sound, text, etc.). They could be used as an additional source of information.

In parallel, neuroscientists have been studying the brain for several decades, and cognitive theories backed by experimental studies are a precious source of inspiration for artificial intelligence research. In particular, Baars' theory of the Global Workspace has recently gained popularity and provides hindsight on a multimodal integration framework.

In this thesis, we will first introduce the basis of multimodal learning; then, we will focus on already existing multimodal networks and see how they compare to unimodal networks in terms of generalization. In light of these results, we will take inspiration from the Global Workspace cognitive theory to design a semi-supervised multimodal learning framework, which requires fewer annotations than previous frameworks for equivalent performance. i 
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Morphology Word Analogy (such as "write", "writes", "work", "works") and word pair similarity results for the visually constrained Skip-Grams.

The Baseline is a vanilla Skip-Gram model (300 dimensions) where all 20,456 word embeddings are free to be learned. . . . . . . . . . . . . . En effet, chaque capteur peut fournir des informations complémentaires. Si un chat ronronne sur des genoux, la vision nous renseignera sur l'apparence du chat (sa taille, sa couleur, sa race) ; l'audition permet de s'assurer que le chat ronronne et ne grogne pas ; enfin, le toucher peut évaluer la température corporelle du chat. Chaque élément est rassemblé pour construire une meilleure représentation du monde.
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Imaginons maintenant ce que serait un monde unimodale. Si l'on ne disposait que de la vision, on ne pourrait jamais comprendre les aspects liés au touchercomme ce que signifie le froid ou le chaud -même si les caractéristiques visuelles de la glace (solide, bleuâtre) ou du feu (intangible, couleurs vives) pourraient être facilement reconnues. De même, si l'on ne disposait que de l'ouï, on pourrait peut-être apprendre dans des textes que le feu est chaud et que la glace est froide, mais ces adjectifs ne seraient jamais associés à des sensations de température réelles. En outre, une combinaison inhabituelle comme « la glace est chaude » ne pourrait jamais être comprise.

L'information peut également être présente à travers plusieurs sens en même temps.

Si le chat ronronne, on peut voir sa gorge bouger, entendre le son du ronronnement ou sentir les vibrations. Chaque sensation confirme l'expérience des autres sensations.

De même, lorsque nous associons le mot « froid » à la température, nous pouvons comprendre instantanément la phrase « le feu est froid », même si la combinaison des mots est surprenante.

Dans cette thèse, nous nous concentrons sur les capacités des réseaux de neurones artificiels à assimiler et à représenter des données provenant de sources d'information multiples. Ceci est communément appelé apprentissage multimodal, par opposition à unimodal, où le modèle n'a accès qu'à une seule source d'information.

Nous utiliserons la définition de la multimodalité donnée par [START_REF] Baltrušaitis | Multimodal Machine Learning: A Survey and Taxonomy[END_REF] : « une modalité (ou indistinctement, un domaine) fait référence à la manière dont quelque chose se passe ou est vécu ». Une modalité peut être pensée comme une notion plus générale des sens dans le corps humain. La principale différence est que plusieurs modalités peuvent agir sur le même type d'entrée ; une scène visuelle peut être vécue de plusieurs manières (par exemple, détecter des objets dans une scène, reconnaître les visages de personnes, estimer leur pose, reconnaître des phrases manuscrites), et une modalité différente est attribuée à chacune des différentes capacités (en utilisant les mêmes exemples, des scènes avec divers objets, visages de personnes, images de corps humains dans diverses positions, images de texte manuscrit).

Multimodalité dans le cerveau

Le cerveau est un système multimodal : environ 27% de sa capacité est réservée à la vision, 8% aux stimuli auditifs et plus de 51% à la cognition, aux émotions et au traitement du langage [START_REF] Van Essen | Organization of visual areas in macaque and human cerebral cortex[END_REF]. Lorsque nous interagissons avec le monde, tous nos sens sont continuellement stimulés par l'environnement, et nous devons sélectionner et nous concentrer sur les sens qui sont importants au moment même.

À partir de tous ces stimuli, nous utilisons ensuite le contenu que d'une poignée de modalités réellement utiles [START_REF] Spence | Crossmodal processing[END_REF].

La façon dont le cerveau combine les modalités pertinentes fait encore l'objet de recherches actives, mais nous concentrerons notre attention sur la théorie de l'espace de travail global (ETG) dans cette thèse [START_REF] Baars | A cognitive theory of consciousness[END_REF][START_REF] Baars | Global workspace theory of consciousness: toward a cognitive neuroscience of human experience[END_REF] (voir figure 2.1 pour une illustration).

Cette théorie cognitive explique comment un système complexe peut sélectivement fusionner des modalités afin de les utiliser pour des tâches en aval. Le système comprend plusieurs composants, tels que plusieurs modules « spécialisés » qui peuvent chacun traiter une modalité indépendamment, un module de mémoire, et un mécanisme d'attention qui relie les modules spécialisés entre eux via un espace commun appelé « espace de travail global ». Pour décrire sa théorie, Bernard Baars fait une analogie avec un théâtre, où les modules spécialisés sont à la fois les acteurs sur scène et le public. Ainsi, ils peuvent transmettre des informations à tous les autres modules lorsqu'ils sont « sur scène » (la scène représentant l'espace de travail partagé).

L'ETG a une capacité fixe, et toutes les informations de tous les modules (flux visuel, flux auditif, mémoire, module moteur, etc.) ne peuvent pas accéder simultanément à l'espace de travail. Par conséquent, les acteurs doivent continuellement rivaliser entre eux pour accéder à la scène. Cette compétition se déroule dans un contexte donné (comme une tâche en cours, ou des connaissances préalables) modélisé par un mécanisme attentionnel. Les modules gagnants transmettent ensuite leur contenu dans l'ETG, et son contenu est automatiquement transmis 1 à tous les modules.

1 de l'anglais broadcast.

Plus tard, [START_REF] Dehaene | A neuronal model of a global workspace in effortful cognitive tasks[END_REF] a étendu la théorie à un espace de travail neuronal global (ETNG), expliquant comment le processus de sélection se produit dans le cortex, et a montré la présence de neurones à longue portée qui relient l'ETNG aux parties du cerveau où les différents modules spécialisés sont localisés.

La théorie de l'ETG est également une théorie cognitive importante de la conscience, où le sentiment conscient se produit lorsque les informations contenues dans l'ETG sont transmis aux modules spécialisés. De plus, cette théorie a l'avantage de ne pas nécessiter d'observateur extra-conscient faisant fonctionner le système cognitif (sophisme de l'homoncule) (de [START_REF] De Gardelle | Cognitive Theories of Consciousness[END_REF].

Bien que les humains expérimentent le monde à travers une lentille multisensorielle, ce n'est que très récemment que nous commençons à exploiter différentes modalités dans les machines. Jusqu'à maintenant, les architectures de vision par ordinateur sont généralement formées sur des ensembles de données purement visuelles (ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], COCO (Lin et al., 2014), etc.), et les modèles de langage sur de grands ensembles de données textuelles (Wikipedia, Common Crawl, etc.).

C'est pourquoi [START_REF] Bisk | Experience Grounds Language[END_REF] a publié une « feuille de route pour une compréhension du langage contextualisée ». Ils détaillent 5 cadre d'application généraux : celui du « corpus », de l'« internet », de la « perception », de l'« incarnation », et « social », dans lesquels les modèles de langue peuvent opérer. Chaque cadre d'application représente les sources d'informations possibles qui sont utilisées pour entraîner le modèle à acquérir la compréhension de la langue. Dans le cadre du corpus, le modèle peut apprendre une langue à partir de corpus de texte prédéfinis avec des annotations explicites pour aider le modèle à apprendre. Dans ce cadre, les modèles dépendent entièrement des annotations fournies. Avec le cadre de l'internet, les modèles peuvent tirer parti de la grande quantité de texte disponible en ligne à partir de sites Web d'informations, de blogs ou de Wikipédia. Dans ce cadre, la compréhension de la langue provient de la lecture de nombreuses phrases et de la construction d'un modèle statistique à partir de celles-ci. Cette approche a l'avantage que la quantité des données n'est plus un facteur limitant, et les modèles de langue récents entraînés de cette manière sont capables, entre autres, d'écrire des textes avec style, de traduire entre plusieurs langues, de répondre à des questions de culture générale, de corriger les erreurs dans des textes [START_REF] Brown | Language Models are Few-Shot Learners[END_REF][START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF]. Cependant, ces modèles reposent uniquement sur les informations récupérées de données textuelles.

Dans le cadre de la perception, les informations provenant d'autres modalités sont également incorporées dans le modèle de langue. L'utilisation de différentes modalités pour donner un sens à une liste de symboles (texte) est le problème de fondement des symboles [START_REF] Harnad | The symbol grounding problem[END_REF] Concrètement, les auteurs expliquent qu'une langue ne s'apprend pas, en écoutant la radio (internet), en regardant la télévision (perception), ou par soi-même.

Multimodalité en IA

Du point de vue de la vision par ordinateur, l'entraînement des réseaux de neurones artificiels avec plusieurs modalités devient de plus en plus populaire. Par exemple, dans les applications d'apprentissage visuelles sans exemple (zero-shot learning en anglais), DeViSE et d'autres méthodes [START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF][START_REF] Jurie | Generating Visual Representations for Zero-Shot Classification[END_REF][START_REF] Xian | Feature Generating Networks for Zero-Shot Learning[END_REF] utilisent des vecteurs sémantiques pour servir de proxy à l'information de la catégorie des objets. Lors de l'encodage du couple vision-texte, les deux encodeurs sont optimisés à l'aide d'une fonction de coût contrastive afin que leurs représentations soient les mêmes.

Ce nouveau modèle est capable de généraliser à des ensembles de données jamais vus auparavant (zero-shot). De plus, il a été constaté que ce modèle présente des similitudes avec le cerveau humain. [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF] a découvert que CLIP contient des « neurones conceptuels ». Ce sont des neurones multimodaux qui s'activent pour une notion particulière quelle que soit la modalité, à l'instar des cellules conceptuelles de l'hippocampe dans le cerveau [START_REF] Quiroga | Invariant visual representation by single neurons in the human brain[END_REF][START_REF] Reddy | Concept cells through associative learning of high-level representations[END_REF].

Compte tenu de ses performances, CLIP est utilisé comme base dans les architectures multimodales récentes dans diverses tâches : comme la génération d'images conditionnées [START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF][START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF][START_REF] Rombach | High-Resolution Image Synthesis with Latent Diffusion Models[END_REF], la description d'images [START_REF] Mokady | ClipCap: CLIP Prefix for Image Captioning[END_REF] ou la recherche visuelle [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF].

Suite à l'effort d'avoir des modèles multisensoriels qui peuvent agir sur le monde, [START_REF] Vanrullen | Deep Learning and the Global Workspace Theory[END_REF] 

Modèles fondations

S'appuyant sur « the bitter lesson » de Richard Sutton [START_REF] Sutton | The bitter lesson[END_REF], le remplacement d'architectures et des fonctions de perte spécialisées par des modèles avec de plus en plus de poids à optimiser, a conduit à des performances impressionnantes ces dernières années [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF][START_REF] Yu | CoCa: Contrastive Captioners are Image-Text Foundation Models[END_REF][START_REF] Brown | Language Models are Few-Shot Learners[END_REF][START_REF] Alayrac | Flamingo: a Visual Language Model for Few-Shot Learning[END_REF][START_REF] Zhang | OPT: Open Pre-trained Transformer Language Models[END_REF].

Ces modèles bénéficient de plus en plus de données d'entraînement et d'une puissance de calcul toujours croissante. Les modèles comptent maintenant plus de 500 milliards de paramètres et peuvent utiliser des milliers de puces informatiques spécialisées dans l'optimisation de modèles d'IA (GPU, TPU) accumulant des milliers de zettaflops en capacité de calcul [START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF].

L'augmentation du besoin en puissance de calcul de ces modèles peut s'expliquer par les performances qu'ils obtiennent en augmentant à la fois le nombre de paramètres du modèle et la taille des bases de données. Certaines études ont en effet montré que la relation entre l'erreur du modèle f en fonction du nombre de paramètres ou de la taille du jeu de données d'apprentissage, suit une loi de puissance f (x) = βx c où β > 0 et c < 0 [START_REF] Hestness | Deep Learning Scaling is Predictable, Empirically[END_REF][START_REF] Bahri | Explaining Neural Scaling Laws[END_REF][START_REF] Sharma | Scaling Laws from the Data Manifold Dimension[END_REF][START_REF] Alabdulmohsin | Revisiting Neural Scaling Laws in Language and Vision[END_REF], et est donc strictement croissante.

D'ailleurs, les auteurs de ces modèles, comme BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], GPT-3 [START_REF] Brown | Language Models are Few-Shot Learners[END_REF], PaLM [START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF], ou CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] et al., 2022), Imagen [START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF], Stable Diffusion [START_REF] Rombach | High-Resolution Image Synthesis with Latent Diffusion Models[END_REF]). Ils peuvent également être utilisés pour étudier le cerveau humain. Certains benchmarks, comme Brain-Score [START_REF] Schrimpf | Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? bioRxiv preprint[END_REF][START_REF] Schrimpf | Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence[END_REF], comparant les réseaux de neurones au cerveau ont déjà été proposés. De même, l'étude de ces modèles fondations peut nous aider à mieux comprendre le cerveau. Dans [START_REF] Dupoux | Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the infant language-learner[END_REF], les auteurs expliquent que les modèles de langue actuels peuvent être utilisés pour aider à la compréhension des questions non résolues de l'apprentissage du langage chez les nourrissons.

En raison des performances des modèles et de leurs capacités émergentes, les benchmarks typiques normalement utilisés pour l'évaluation de ces modèles ne suffisent pas, car ils ne permettent pas de tester toutes les capacités d'adaptation et de généralisation.

De nouveaux benchmarks sont créés, tels que BIG-bench (Srivastava et al., 2022) essayant de représenter tout le potentiel des modèles fondations.

Cependant, les modèles fondations actuels sont encore pour la plupart unimodaux (BiT-M [START_REF] Kolesnikov | Big transfer (bit): General visual representation learning[END_REF] entraîné uniquement sur ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF], PaLM sur des textes extraits du Web), et apprennent différemment des humains. Les nourrissons humains apprennent le langage en conjonction avec d'autres modalités et interagissent avec leur environnement [START_REF] Bisk | Experience Grounds Language[END_REF] Les réseaux multimodaux peuvent être utiles à cet égard, car les informations provenant de divers domaines peuvent être utilisées comme informations de base. Par exemple, il a été montré que CLIP contient des neurones conceptuels [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF].

Les neurones conceptuels sont analogues aux cellules conceptuelles de l'hippocampe [START_REF] Quiroga | Invariant visual representation by single neurons in the human brain[END_REF][START_REF] Reddy | Concept cells through associative learning of high-level representations[END_REF] Avoir une représentation interne de l'environnement a une longue histoire dans l'apprentissage automatique [START_REF] Friston | A free energy principle for the brain[END_REF][START_REF] Jordan | Forward models: Supervised learning with a distal teacher[END_REF][START_REF] Ha | World Models[END_REF]. Une manière d'utiliser un tel système est pour « l'apprentissage en avant » (forward learning en anglais), où la prédiction de l'état futur du monde est faite, compte tenu de l'état actuel. Faire une représentation du monde est la base de l'apprentissage par renforcement basé sur un modèle (model-based reinforcement learning en anglais) [START_REF] Janner | When to trust your model: Model-based policy optimization[END_REF], où un modèle prédictif de l'environnement est utilisé pour définir un contrôleur.

Objectifs

Intuitivement, le cerveau humain semble également utiliser ce principe. Pour préparer un voyage, on peut imaginer toutes les étapes, la route à emprunter, ou les repères que l'on va franchir. En outre, certaines études [START_REF] Kawato | A computational model of four regions of the cerebellum based on feedback-error learning[END_REF][START_REF] Wolpert | An Internal Model for Sensorimotor Integration[END_REF][START_REF] Miall | Forward models for physiological motor control[END_REF] ont montré que ce principe est cohérent avec des observations expérimentales.

Pour intégrer cette idée dans notre cadre, nous ajoutons un modèle du monde à l'espace de travail global, qui peut être utilisé comme environnement virtuel. Chapter 2

Conclusion

Introduction

Information can come in many ways: visual stimuli via electromagnetic waves activating photoreceptor cells in the eye, sound from mechanical waves that vibrate eardrums, and odors with molecules stimulating olfactory receptors. To interact with the world, we use a wide range of sensors to gather information from the diverse sources of knowledge the environment provides.

Indeed, each sensor can provide complementary information. If a cat is purring on one's lap, vision will inform about the cat's appearance (its size, color, breed). In addition, the sound ensures that the cat is purring and not growling; finally, touch can gauge the cat's body temperature. Each piece of knowledge is gathered to build a better representation of the world.

Let us now imagine the world through a unimodal lens. If only vision was available, one could never understand touch-related aspects -like what cold or hot meanseven though the visual features of ice (solid, blueish) or fire (intangible, vibrant colors) could be easily recognized. Similarly, if sound was the only sense experienced, one could learn from stories that fire is hot and ice is cold. However, these adjectives would never be associated with actual temperature sensations. Besides, an unusual combination like "the ice is hot" could not be understood.

Information can also be present through several sensors at the same time. If the cat is purring, one might see its throat moving, hear the purring sound, or feel the vibrations. Each sensation confirms the experience. Similarly, when we associate the word "cold" with temperature, we can instantly understand the phrase "fire is cold", even if the combination of words is surprising.

In this thesis, we focus on the abilities of recent artificial neural networks to assimilate and represent data coming from multiple sources of information. This is commonly called multimodal learning, as opposed to unimodal, where the model only processes a unique source of information. Indeed, current deep learning architectures often focus on one type of data, which requires large annotated datasets to obtain state-of-the-art results and generalize to unseen examples.

The central hypothesis explored in this thesis is that learning with multiple modalities can help solve those issues. This chapter provides some background knowledge on multimodality and how to train models with sparse annotations. In chapter 3, we explore the generalization capabilities of multimodal networks in visual tasks compared to their unimodal counterparts. We observe that the current state-ofthe-art in multimodal representation learning is not better than unimodal networks in terms of generalization and robustness to adversarial attacks. In chapter 4, we take inspiration from the cognitive science literature to implement a Global Workspace model. We use cycle-consistency losses to train this model and show that multimodality can help divide by up to 10 the need for annotation. In chapter 5, we augment the Global Workspace architecture with a world model to enable planning. Finally, in chapter 6, we discuss our results and give more insight into how multimodality could evolve in the future.

Multimodal Brain, Unimodal Machines

The brain is a multimodal system: vision uses about 27% of its capacity, auditory stimuli 8%, and cognition, emotions, and language processing more than 51% [START_REF] Van Essen | Organization of visual areas in macaque and human cerebral cortex[END_REF]. When we interact with the world, the environment stimulates all our Information is selected either because it is relevant to the current task (red processes) or because its content is salient (gray processes). The content in the global workspace can be broadcast to the other modules thanks to long-distance interconnectivity.

Image credit: (VanRullen and Kanai, 2021).

senses, and we must select and focus on what currently matters. From all these stimuli, we then combine contents from a handful of modalities that are useful [START_REF] Spence | Crossmodal processing[END_REF].

The way the brain combines the relevant modalities is still under active research, but we will focus our attention on the theory of the Global Workspace (GW) in this thesis [START_REF] Baars | A cognitive theory of consciousness[END_REF][START_REF] Baars | Global workspace theory of consciousness: toward a cognitive neuroscience of human experience[END_REF] (see figure 2.2 for an illustration). At a high level, this cognitive theory explains how a complex system can selectively merge modalities to use them for downstream tasks. The system comprises several components, such as several "specialist" modules that can each process a modality independently (visual stream, auditory stream, memory, motor) and an attention mechanism that connects the specialist modules through a shared space called "Global Workspace". To describe his theory, Baars makes an analogy with a theater, where specialist modules are simultaneously the actors on a stage and the audience. Thus, they can transmit information to all other modules while they are "on stage" (the stage representing the shared workspace).

The GW has a fixed capacity, and all modules' information cannot all access the workspace simultaneously. Therefore, actors have to compete continuously with one another to access the stage. This competition occurs under a given context (like the current task or prior knowledge) modeled by an attentional stoplight. The winning modules can then encode their information into the GW. Finally, the workspace representation is automatically broadcast to all modules. Later, [START_REF] Dehaene | A neuronal model of a global workspace in effortful cognitive tasks[END_REF] extended the theory to a Global Neuronal Workspace (GNW), explaining how the selection process happens in the cortex, and showed the presence of long-reach neurons that connect the GNW with the other part of the brain containing the different specialist modules.

The GW framework is also a prominent cognitive theory of consciousness, where the conscious feeling happens when the information in the GW is broadcast. Moreover, this theory does not require an extra conscious observer operating the cognitive system (homunculus fallacy) (de Gardelle and Kouider, 2009).

Although we experience the world through a multisensory lens, it is very recent that we have started leveraging different domains in machines: computer vision architectures are usually trained on visual datasets (ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], COCO (Lin et al., 2014)), and language models on large text datasets (Wikipedia, Common Crawl). This is why [START_REF] Bisk | Experience Grounds Language[END_REF] published a "roadmap to truly contextualized language understanding". They detail 5 world scopes: "corpus", "internet", "perception", "embodiment", and "social", where language models can operate in. Each scope represents the range of information sources used to train the model to acquire language understanding. In the corpus scope, the model can learn a language from predefined text corpora with handcrafted annotations to help the model learn a language. In this scope, the models are entirely dependent on the provided annotations. With the internet scope, the models can leverage the large amount of text available online from news websites, blogs, or Wikipedia. Language understanding comes from reading many sentences and building a statistical model. This approach has the benefit that the size of the dataset is no longer a limiting factor. Recent language models trained in this way can write text with style, translate between languages, answer general questions, correct mistakes in prompted sentences, and even more [START_REF] Brown | Language Models are Few-Shot Learners[END_REF][START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF]. However, these models rely only on information provided by text data. In the perception scope, language models also incorporate information coming from other modalities. Using different modalities to give meaning to a list of symbols (text) is called grounding [START_REF] Harnad | The symbol grounding problem[END_REF] and is fundamental for a system to grasp the meaning behind human language fully. The embodiment scope requires the system to itself interact with the world; it needs sensors and ways to act upon its environment. The authors argue that doing actions allows the system to learn abstractions that are impossible to provide otherwise without supervision (such as physics or the model's impact on the world). Finally, in the social scope, the system is acting with other systems (humans, robots) and hence can learn about argumentation, empathy, or emotions.

Concretely, they argue that language cannot be learned from the radio (internet), television (perception), or alone.

From the computer vision perspective, training artificial neural networks on multiple modalities is becoming increasingly popular. For example, in visual zero-shot applications, DeViSE and other methods [START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF][START_REF] Jurie | Generating Visual Representations for Zero-Shot Classification[END_REF][START_REF] Xian | Feature Generating Networks for Zero-Shot Learning[END_REF] are using semantic vectors to serve as a proxy to ground-truth labels.

These vectors contain structured visual information and provide more details than a one-hot category. Instead of predicting categorical logits, we train a linear function to do a regression of the semantic vectors from the visual feature vectors. Then, we can select the category with the closest vector in the semantic space to the predicted semantic vector to classify the visual features. This method allows the models to generalize to new categories without being retrained or fine-tuned on the new unseen examples. Indeed, by collecting a new semantic vector representing the new class, the model can predict this class if the regression model can generalize to this example.

For this purpose, the main factors that allow the model to generalize are the semantic space quality and the projection quality. The latter depends heavily on the number of semantic vectors, the regression being more realistic when learned on a more varied set of examples.

More recently, the CLIP model [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] has pushed this idea further by using a large dataset of synchronized pairs of images and text descriptions from the web. Here, the paradigm is slightly changed, and they use both a visual and a text encoder to project the two domains in a common multimodal space. As a result, the semantic space does not need to be hand-engineered and is learned with the data. When encoding the vision and text pair, the two modality encoders are optimized using a contrastive loss to make their representations the same. This new model can generalize to previously unseen datasets (zero-shot). Moreover, this model has similarities with the human brain. [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF] found that CLIP holds "concept neurons". They are multimodal neurons that activate to a particular notion regardless of the modality, similar to concept cells in the hippocampus in the brain [START_REF] Quiroga | Invariant visual representation by single neurons in the human brain[END_REF][START_REF] Reddy | Concept cells through associative learning of high-level representations[END_REF].

Given its performance, CLIP is being used as a backbone in recent multimodal architectures in various tasks: like conditioned image generation [START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF][START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF][START_REF] Rombach | High-Resolution Image Synthesis with Latent Diffusion Models[END_REF], image captioning [START_REF] Mokady | ClipCap: CLIP Prefix for Image Captioning[END_REF], visual search [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF], etc.

Following the effort of having multisensory models that can act upon the world, [START_REF] Vanrullen | Deep Learning and the Global Workspace Theory[END_REF] claim that the current knowledge in machine learning allows for the first implementations of an artificial global workspace. They call it the Global Latent Workspace (GLW) (see figure 2.2). In the GLW, the specialist modules are pretrained models on specific tasks that can be directly taken online (object recognition, language model, speech recognition, memory, etc.). Each specialist module has its own latent space, which acts as an interface with the GLW. They are then connected through a shared workspace (the global workspace), which can encode the information of the different modules through its own latent representation. This representation can then be decoded and used by all specialist modules (broadcast).

An attention mechanism is used to select the relevant information to enter the workspace. It can be implemented using a key-query-value attention mechanism, similar to what transformers use [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF][START_REF] Vaswani | Attention Is All You Need[END_REF] where the query depends on the context (performed task, prior knowledge, ...). If the latent representation of a specialist module is selected, it is automatically translated into the shared latent space and becomes available to all other modules. Furthermore, they suggest training the translation layers with an unsupervised setting, and they advocate for the cycle-consistency loss. More details about this loss will be given later in the thesis. As a simple explanation, this loss is based on backtranslations,

where we translate input into the representation of another domain and translate it back to reconstruct the original input.

To sum up, the machine learning community is starting to pay more attention to multimodal learning. From using it to use fewer annotations and allowing systems to access more diverse information, multimodal networks are becoming more and more studied. Multimodal learning settings bring many challenges, such as efficiently combining modalities or using multimodal representations for downstream tasks.

The following sections will detail some background knowledge and related work on multimodal learning.

Multimodal Learning

In this thesis, we will use the definition of multimodality given by [START_REF] Baltrušaitis | Multimodal Machine Learning: A Survey and Taxonomy[END_REF]: "a modality (or indistinctly, a domain) refers to how something happens or is experienced". We can think of modality as a more general notion of the senses in the human body. The main difference is that several modalities can act upon the same type of input; we can utilize a visual scene in several ways (for example, detect objects, recognize faces of people, estimate their pose, and recognize handwritten sentences). A different modality is attributed to each of the different capabilities (using the same examples, scenes with various objects, faces of people, images with human bodies in various positions, and pictures of handwritten text).

Because each modality provides complementary and supplementary information, one can wonder how to capture and use the relevant information provided by all the modalities. If we want a system capable of taking the information from all modalities into account, processing the modalities independently is impossible.

The first way is to learn a unique multimodal representation that captures the information of all the modalities. This process is commonly called multimodal fusion because we obtain a unique representation by merging the information of the modality.

Panels A and B of figure 2.3 illustrate two variants of this method. The inputs (in red) are first encoded separately, then merged with a specific fusion function (black arrows).

Finally, we can apply some additional processing on the multimodal representation.

The second way is to train unimodal representations from different modalities to be identical using a similarity objective. It is commonly called alignment, and panel C of figure 2.3 pictures this method. Here, the representations are not merged into a unique vector, but the projections are optimized such that the unimodal representations are similar when using modalities that correspond to similar content.

In the following, we will denote by x m ∈ I m an input from modality m. In addition, x v will be used for visual domains and x t for text domains.

Multimodal fusion

In multimodal fusion, the modalities are projected into a joint multimodal space and merged into a unique multimodal representation. Panels A) and B) of figure 2.3 depict this fusion method. This process produces a vector that gathers the information provided by the input modalities. More formally, we define unimodal encoders as a function that transforms a raw domain into a unimodal feature vector: where K m represents the unimodal feature space. The encoders are represented in purple in figure 2.3. In the following, we assume that there exist a dimension d m such that K m ⊂ R dm . In all the domains we will explore, we can represent inputs by a vector of dimension d m (for instance, the output of a convolutional network for an image, or the representation of the <CLS> token of a transformer for natural language1 ). As we focus on multimodality in artificial neural networks, e m is assumed to be a neural network (for instance, a convolutional network for an image or a transformer for natural language).

e m : I m → K m (2.1) C D B A = =
Then, we define the fusion function f that merges the unimodal feature vectors of multiple modalities into a unique representation (black arrows in figure 2.3):

f : K m 1 × K m 2 → K (2.2)
where K represents the multimodal space. One possible fusion function is concatenation, where the vectors are joined into a unique vector of dimension m d m . If all dimensions are equal, another fusion function is the sum of all vectors. Although the sum requires all representations to have the same dimension, it has the advantage of More complex strategies can also be used, such as using an attention mechanism. We will further explain this kind of fusion in the following section.

After the fusion mechanism, additional computations can be done on the multimodal representation. This additional processing is represented by the green layers in figure 2.3. Depending on the amount of processing of the unimodal inputs, or the multimodal representation, we define early fusion (panel A) when the unimodal encoders are shallow and more importance is given to the processing of the multimodal representations; similarly, we define late fusion (panel B) when most of the processing is done on the unimodal encoders, which means that specialized layers are essential to extract relevant information for fusion.

Now that we have defined the general framework of multimodal fusion, we will focus on a fusion method that uses an "attention" mechanism.

Attention, please!

Attention mechanisms have become popular with an extension of the sequence-tosequence model by [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF]. This model is a recurrent encoder-decoder architecture that works on sequences. It was originally used in machine translation,

where the encoder can process the text of one language, and the decoder generates text translated into another language. In the original sequence-to-sequence model, the encoder outputs only one vector to the decoder. [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] showed that this could not transmit enough information in the case of machine translation.

For example, if we want to translate the phrase "the cat is walking on the roof" into french, we require knowing the subject of the sentence when translating "walking" into "marche" to conjugate the verb correctly. As a result, they added an attention mechanism that is learned end-to-end and selects relevant information in the input sequence for the generation. With the previous example, when translating "walking", the model might select the words "the", "cat", and "is".

Later, [START_REF] Vaswani | Attention Is All You Need[END_REF] argued that the recurrent layers are not required and that a model that only uses an attention mechanism to pass information between layers performs even better on machine translation. They call this model the transformer.

This method and architecture have now become a fundamental way of processing sequences, and is used in all modern language models (BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], GPT-3 (Brown et al., 2020), PaLM [START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF], OPT [START_REF] Zhang | OPT: Open Pre-trained Transformer Language Models[END_REF] among others). They can also process images with Vision transformers (ViTs) [START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF].

The Attention Mechanism

First, as a general description, the attention mechanism can be seen as a selection process. It processes a sequence of N elements (context) and an additional reference input currently being worked on. Depending on the content, one element in the context is selected (hard attention) or a mix of information from several elements (soft attention). For example, with the sentence: "The cat is jumping high. It will land on the roof", the whole sentence can be used as context, and we will focus on "It". Here the word refers to "the cat", so we might want the attention mechanism to select these words.

First, a query vector q ∈ R d q is computed for the current word. Similarly to a search engine, the query corresponds to the features we are searching for.

The query is then compared to key vectors k i ∈ R dq . Each element in the sequence has an associated key corresponding to the features that the query can act upon (keeping with the search engine analogy, it could be the title of a webpage, some metadata, or the content of the page). The query and the key can be compared using a simple dot product to check that the query does match the key: the similarity with the i th word in the context is q • k i . Finally, if the query and key match (or if the similarity is high, we will see soon according to which criteria), a certain value vector v i ∈ R dv is returned (with our search engine analogy, it would correspond to the URL of the webpage for instance).

Hard attention

In the case of hard attention, the query, keys, and values are combined such that only one value vector is the output of the mechanism. The output z ∈ R dv is the selected value of the word with the highest similarity in the context.

z = v j ; where j = arg max i q • k i (2.3)

Soft attention

In soft attention, all values are summed, with a coefficient that depends on the similarity. The higher the similarity, the more weight the value will have.

z = i w i v i (2.4)
where w i is the softmax coefficient of the similarity:

w i = e (q•k i )/T j e (q•k j )/T (2.5)
and T is a temperature.

Soft attention is most commonly used in machine learning because it is a differentiable function, as opposed to the arg max function in the hard attention case.

Moreover, it can capture information from several elements of the context.

Finally, we repeat the process with every word in the sequence. We use each word as a reference, with its own query q. The contextualized output sequence can then be calculated using:

z = softmax QK T T V (2.6)
where Q ∈ R N ×dq , K ∈ R N ×dq and V ∈ R N ×dv are the matrices containing all the queries, keys and values.

In practice, Q, K, and V depend upon the inputs, and we can train the model to extract the best queries, keys, and values.

Representation of Natural Language

The attention mechanism is a function of an input sequence. A common way of defining Q, K and V is the product of a trainable weight matrix with an input vector:

Q = x q W q , K = xW k and V = xW v (
the inputs of the keys and values are usually the same). We will then describe how to obtain a sequence of vectors from natural language.

Tokenization First, the raw text needs to be transformed into a sequence of n tokens through a "tokenization" process. Indeed, natural language is made from the composition of tokens. These tokens can be in the form of an alphabet where the characters represent a phoneme, like in English or French; an abjad which is a more phonetic writing system where only consonants are written, like in Arabic; or a logogram, where the characters represent a word or morpheme, like in Chinese.

The tokenization process aims to transform written language into a standard sequence of tokens. Note that although we might consider the individual letter a token in English, we do not need to be restricted to this for the tokenization process.

Originally, the tokens were encoded using recurrent neural networks, which lack long-range dependencies, and having fewer tokens is easier to encode. Transformer models removed the recurrent nature of the encoder, but they have a quadratic memory complexity with the length of the sequence. As a result, the letters are usually not used as the basis for the tokens, but rather sub-words2 . At the expense of increasing the number of possible tokens, this has the benefit of reducing the number of tokens used to encode a text.

The tokenizer is the algorithm that takes raw text data and transforms it into a sequence of tokens. They have a predetermined amount of different tokens, called the vocabulary, that can represent the sub-words. The main tokenizer algorithm used nowadays is called Byte Pair Encoding (BPE) [START_REF] Gage | A new algorithm for data compression[END_REF][START_REF] Sennrich | Neural Machine Translation of Rare Words with Subword Units[END_REF]; the tokens are automatically selected given a corpus so that they correspond to frequent sequences of letters.

Word embeddings First, we transformed pure text into a sequence of tokens.

Then, we need to transform the sequence of tokens into a vector, which is a friendlier representation for neural networks. Continuous word embeddings are a better way to represent words instead of categorical tokens. They can be learned using a Skip-Gram method or the Word2Vec model [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]Mikolov et al., 2013a;[START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF]. A word embedding is a vector representation of a token.

It encodes the properties of the word through the optimization of the model. It means that every token is associated with a word embedding vector. Originally, the Skip-Gram model learned the word embedding using the Skip-Gram task, which is to predict a hidden word in a sentence from its context; for example, from the context "The cat [?] jumping high." probable predictions would be "is", or "was".

This method takes inspiration from John Rupert Firth's famous quote: "You shall know a word from the company it keeps." [START_REF] Firth | A synopsis of linguistic theory[END_REF].

We can now obtain a sequence of word vectors from natural language called word embeddings. This representation is suitable for the attention mechanism described above.

Transformers

The transformer model [START_REF] Vaswani | Attention Is All You Need[END_REF] uses the previously described attention mechanism as its basis. It is an encoder-decoder architecture where the encoder is composed of several attention layers and normalization layers. The attention layer uses the same input sequence for the queries, keys, and values (self-attention). Then, the decoder is connected to the encoder using cross-attention. The output of the encoder provides the query, and the input sequence of the decoder provides the keys and values.

The decoder output is a categorical distribution over the vocabulary and can generate text in an autoregressive fashion. The decoder is applied recursively, adding each predicted word to the generated sentence. The newly generated sentence is fed to the decoder to predict the next word.

This general framework has been unanimously accepted for language models. To remove recursivity altogether, BERT only keeps the encoder and removes the decoder [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]. The encoder is trained using a masked modeling task, and some tokens in the input sequence are replaced with a <MASK> token. The goal of the encoder is to predict the correct tokens of the masks. It also introduced a new paradigm, where the model is trained on a huge and varied dataset that can be utilized for any purpose by fine-tuning the model on a particular dataset. Similarly, this method can be used in vision models with the Vision Transformer (ViT) [START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF]. Here, the sequence is obtained by splitting the image into several patches of size 16 × 16 pixels and preprocessed by a linear layer.

The general design of this architecture, and the fact that it can handle any sequential data, has made it a premium choice for multimodal models these past years. The paradigm that has been adopted is first to train the model on a large corpus, called "pretraining", then fine-tune it on downstream tasks. We will now describe several of these multimodal architectures.

Multimodal Transformers

Visual domains There are two main ways of obtaining sequences from multimodal data in vision. The first is to use the sequential nature of videos, and the second is to use visual scenes that contain several interacting objects. For example, the common object in context (CoCo) dataset (Lin et al., 2014) contains 330k annotated visual scenes containing physical objects among 80 categories (such as a car, a dog, or a carrot). This dataset is usually used to train object detection models, such as Faster-RCNN [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF], which, given an image, predicts a list of objects in the image with a bounding box around the object. Similarly, we can extract several regions of interest (RoI) in the visual scene and use them as the visual sequence for the transformer. The RoI are subparts of the image and can be extracted using a

Region Proposal Network (RPN). Originally, the Faster-RCNN detection model used an RPN to predict a list of regions of interest with potential objects inside them.

Objectives

In the architectures, different objectives are used to optimize the models.

Here we define the different losses.

The masked language modeling is directly inspired by BERT, where a ⟨MASK⟩ token replaces some tokens in the text domain, and the model has to predict the original token.

In the multimodal masked modeling task, some input tokens (text or image) are hidden and replaced by a ⟨MASK⟩ token, and the model has to reconstruct the The idea is that the context is useful for predicting missing words, and if the model can fill in missing words, it has managed to extract the sentence's meaning. Similarly, the context for a missing part of the image can be found in the text description in a cross-modal fashion.

In the alignment task, the model has to predict if the visual and text sequences match or if they come from different videos. This loss teaches the model to align the visual and text inputs and forces it to use the information from both streams to solve its task.

In the visual question answering (VQA) task, the input is composed of an image and a question about this image, and the goal is to predict the answer from a list of possible outcomes. For example, there could be a portrait of a person, a

question "what color are their eyes", and a possible answer "black".

In the sentence-image prediction task, the model is provided with an image and two sentences, and it has to classify between two options: an image paired with two captions that match the image and an image paired with one correct and one incorrect caption.

VideoBERT [START_REF] Sun | VideoBERT: A Joint Model for Video and Language Representation Learning[END_REF] (see fig. 2.4) is based on BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] and takes frames of a video as the visual input sequence, and a text transcript as the For the text stream, the encoder predicts the vocabulary distribution for the words in the sequence. For the visual stream, the model predicts the distribution over the set of all possible object categories in the dataset and not the whole visual semantic vector. It is because the information in the text is predictive of the category but not necessarily of the visual aspect of the object.

ViLBERT is trained using the multimodal masked modeling task and the alignment task. The VC-GPT model uses a cross-attention mechanism to merge the information This method obtains state-of-the-art results on both unimodal and multimodal datasets.

In Perceiver IO, they transform the Perceiver into a sequence-to-sequence architecture by adding a decoder that can generate outputs conditioned on the latent Perceiver inspired architecture In Flamingo [START_REF] Alayrac | Flamingo: a Visual Language Model for Few-Shot Learning[END_REF], the inputs can be images and text, and the output is text. The authors used a pretrained and frozen large language model and a vision encoder trained using the CLIP objective in this work. They added trainable modules called "Perceiver resampler" that change the visual encoder inputs, which could contain a variable number of visual tokens, into a fixed number of tokens. These visual tokens are then passed to the language model using cross-attention modules that the authors add to the frozen language model. This architecture obtained state-of-the-art results on at least 16 zero-shot and few-shot tasks.

Similarly to the Perceiver, Gato [START_REF] Reed | A Generalist Agent[END_REF] encodes data from various sources into a unique data sequence fed to a regular transformer. What the authors observed is that Gato can perform well on all tasks. Moreover, they evaluate the generalization abilities of their model by fine-tuning it on a few examples of some new tasks. The results are not entirely explicit, as the model perform well in a few-shot setting on some task (cartpole), but not on others. They also test how fast Gato can learn a new task, and they found that with only ten episodes, they can recover the same performance as an expert model and excel after approximately 100 episodes.

Conclusion

Multimodal fusion consists in merging several modalities into a unique representation vector. We have presented recent architectures that perform multimodal fusion. It helps extract information coming from several domains simultaneously.

However, it can happen that all domains are not available simultaneously, but we still want both domains to influence the unimodal features. Indeed, the information contained in other domains can influence how we see one domain. For example, seeing fire might lead us to represent it according to its visual features, such as the colors and the smoke; it is usually located next to wood, campfires, or barbecues. However, training a model with language might add information such as general knowledge about the temperature of a fire, how wildfires are dangerous, or that touching fire may burn us. This process is called multimodal grounding and is more likely to happen with multimodal alignment. We will now focus on the alignment task where we do not merge modalities into one vector.

Alignment

Given multimodal inputs x m 1 ∈ I 1 and x m 2 ∈ I 2 , they can be projected into a space K m using two separate learnable encoders f 1 :

I 1 → K m 1 and f 2 : I 2 → K m 2 .
K m is constrained to represent the same space for all m. However, unless the content in the domains contains equal information, we can never have perfect equality between the spaces. In practice, the goal is to optimize f 1 and f 2 such that

f 1 (x m 1 ) ≈ f 2 (x m 2 )
This framework is also helpful in reducing the number of annotations required to train the models. Indeed, the synchronicity of information coming from different modalities provides a natural source of supervision. For instance, this is the working principle of zero-shot learning; in [START_REF] Xian | Zero-Shot Learning -A Comprehensive Evaluation of the Good, the Bad and the Ugly[END_REF], the authors handcrafted vectors of visual characteristics of animals from 50 categories. The attributes contain visual information among color or texture, which can be related to the visual domain. The model needs to learn a good mapping of the visual domain to the attribute domain.

Even though it requires good handcrafted attributes that can well represent the different categories, the model can then be used to classify new animals by adding a new attribute vector.

Another way of taking advantage of natural annotation is to use online data.

Webpages, social media, and online newspapers are natural sources of paired text and image data; besides, YouTube can provide aligned image and audio data.

DeViSE

DeViSE [START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF]) is a zero-shot learning model with two domains: a visual domain and a semantic domain. The semantic domain contains visual information such that the semantic vector describes the image, and the image can predict the correct semantic vector. In zero-shot learning, semantic vectors correspond to visual categories, each with a unique vector. In the following, I t denotes the set of semantic vectors.

To train the model, they use the pairwise ranking objective, which aligns the visual domain with the semantic domain:

x∈It max (0, 1 xt̸ =x + F (x v , x; W ) -F (x v , x t ; W )) (2.7)
where F is a compatibility function with trainable parameter W ,

1 xt̸ =x = 1 if x t ̸ = x
and 0 otherwise, x v and x t are the representations of the same example in the two domains.

CLIP

CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF]) is a more recent method trained using the alignment task.

CLIP uses the contrastive loss to align the representations to be similar. The authors gathered 400 million image and text description pairs in this work to train the model.

Figure 2.14 shows the general method of the approach. With earlier notations, f v corresponds to the visual encoder, and f t the text encoder. The contrastive loss is computed between mini-batches and enforces that the similarity between the image and text representations is 1. Also, the loss forces that all other matchings (images with the text of another pair) have a similarity of 0.
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Fusion and Alignment

Recently, CoCa [START_REF] Yu | CoCa: Contrastive Captioners are Image-Text Foundation Models[END_REF] combined the advantages of both worlds and used fusion with an alignment objective to train their model. This architecture allowed them to set state-of-art results with the same model in a plethora of tasks from three categories: visual recognition, cross-modal alignment, image captioning, and multimodal understanding. This model also outperforms single-task specialist models on their tasks. They also observe that the model is robust to corruption compared to specialist models.

Conclusion

Multimodal learning has become a trendy topic. Many architectures are published, and the pace at which the models' performance improves is staggering. Here, we have presented architectures that we believe to be fundamental because they are the first models to tackle large-scale multimodal tasks or are commonly used today.

However, learning a multimodal network is costly regarding computational power (video inputs, image and text inputs, huge models) and data required.

Hungry Machines

Traditionally, in statistical learning theory, over-parameterizing networks is believed to worsen the performance of the model [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]. This phenomenon is commonly called overfitting. The bias-variance trade-off explains this. The possible distance to the real model at point x, or error, is often decomposed as:

Error(x) = Irreducible Error + Bias 2 (x) + Variance(x)
The Irreducible Error, which cannot be eliminated, comes from the fact that the training set might not exactly represent the real world; the bias is the difference between the expected value of the model and the real value x; the variance term is

Model bias

Estimation variance

Model space
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Figure 2.15: Schematics of the Bias-Variance decomposition. The objective is to best approximate the real function f with functions from a particular model space (here, neural networks). y 0 is the realization of x 0 used in the dataset (y 0 = f (x 0 ) + ε), and f is an approximation of f contained in the model space. The Irreducible error is the variance of the realization of f (x 0 ), the model bias is the difference between f and f , and the estimation variance is the variance of f . The figure is inspired from [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF], figure 7.2. the variance of the model at that point. Figure 2.15 the different components of the loss.

When training neural networks, overfitting happens when there is a low bias, but the variance is significant. Besides, if the number of optimized parameters is high, the set of possible models is extensive, and so is the complexity of the model and its variance. It usually leads models to fit spurious patterns in the data.

However, current neural networks are over-parameterized and use a parameter count that should lead to overfitting but does not in practice. This paradox is known as the double descent phenomenon [START_REF] Belkin | Reconciling modern machinelearning practice and the classical bias-variance trade-off[END_REF], where the models' loss starts decreasing again after a specific number of parameters. Recently, [START_REF] Yang | Rethinking Bias-Variance Trade-off for Generalization of Neural Networks[END_REF] have studied in more detail the effect that the bias and the variance have on the performance and realized that double descent is a particular case of a more general phenomenon. They found that although bias decreases monotonically with model size, the variance has a bell-shaped curve, first increasing, then decreasing with model size. The sum of the two errors leads to 3 possible outcomes, seen in figure 2.16.

The new findings suggest that deeper models tend to have lower bias but higher variance; since the bias is larger, having deeper networks is more advantageous.

Moreover, increasing model width over a certain threshold leads to a decrease in the variance. This behavior is also consistent with tangent research, which empirically

shows that wide networks lead to better performance [START_REF] Tan | EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[END_REF][START_REF] Jacot | Neural Tangent Kernel: Convergence and Generalization in Neural Networks[END_REF].

In parallel, this had also been observed experimentally in vision [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], and natural language understanding [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Brown | Language Models are Few-Shot Learners[END_REF], among others. Building on Richard Sutton's "Bitter Lesson" [START_REF] Sutton | The bitter lesson[END_REF], replacing engineered architecture choices and specialized loss functions by bigger and bigger models, has lead to stunning performances this past years [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF][START_REF] Yu | CoCa: Contrastive Captioners are Image-Text Foundation Models[END_REF][START_REF] Brown | Language Models are Few-Shot Learners[END_REF][START_REF] Alayrac | Flamingo: a Visual Language Model for Few-Shot Learning[END_REF][START_REF] Zhang | OPT: Open Pre-trained Transformer Language Models[END_REF].

These models benefit from more training data and ever-increasing computational power. Architectures now have more than 500 billion parameters and can use thousands of specialized computing chips (GPUs, TPUs), accumulating thousands of zettaflops of computation [START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF].

The results obtained by increasing the number of model parameters and dataset size explain this increased compute usage to train models. Some studies have indeed shown that the relationship between the loss f as a function of the number of parameters or training dataset size, follows a power law f (x) = βx c where β > 0 and c < 0 [START_REF] Hestness | Deep Learning Scaling is Predictable, Empirically[END_REF][START_REF] Bahri | Explaining Neural Scaling Laws[END_REF][START_REF] Sharma | Scaling Laws from the Data Manifold Dimension[END_REF][START_REF] Alabdulmohsin | Revisiting Neural Scaling Laws in Language and Vision[END_REF], and is therefore strictly increasing. Moreover, recent findings have shown that large-scale language models gain new zero-shot abilities (arithmetic or inferences) [START_REF] Wei | Emergent Abilities of Large Language Models[END_REF]. To emphasize this, new benchmarks like BIG-bench (Srivastava et al., 2022) have been made to test the large models on very complex tasks requiring varied skills.

Additionally, the models are becoming more efficient with time. [START_REF] Hernandez | Measuring the Algorithmic Efficiency of Neural Networks[END_REF] have studied the evolution of the efficiency of the neural networks trained on ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] and have observed that the required compute in flop/s-day is exponentially decreasing over the years. The hardware quality is also improving, allowing faster and faster throughput.

A downside to this scale is that it requires a lot of data to feed the models in return.

Annotation is what costs the most when building a new model. Some workarounds have to be implemented to decrease the requirement for annotations. In language models, the annotation is directly available online (text corpora). CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF]) also uses the same technique where the authors gathered online image and text pairs by associating images with descriptions that people give when posting their pictures on the web.

We will now focus on training methods that are not fully supervised.

Sparse Supervision

As seen previously, having multiple coordinated modalities allows for a good form of supervision. In nature, multimodal supervision can come in a very sparse setting.

For instance, when coming in the form of language, humans will point to objects and describe them to children "this is a red car", "here is a blue bike", "this ball is red!". By doing so, infants get information from very few examples. However, they can still generalize to completely new examples and separate the attributes from the objects (red and blue are color attributes and can qualify other objects without having supervision for them).

In the following, we will discuss different learning settings that alleviate the need for annotation. In particular, we will focus on zero-shot, few-shot, unsupervised, and semi-supervised learning. We will now define and highlight a few methods for completeness.

Few-shot Learning

In its optimization algorithm by providing good initialization of the parameters.

Data The first option is to change the data to increase the dataset size artificially.

A commonly used technique is data-augmentation [START_REF] Shorten | A survey on image data augmentation for deep learning[END_REF], which consists in applying visual transformations to the images (see figure 2.17 for examples) to slightly change its visual content: such as a translation of the image, flipping, shearing, scaling, cropping, or rotations.

Another option is to increase the size of the dataset by including the data from other existing labeled datasets.

Model A common few-shot learning method is to endow the image space with a distance that captures how semantically close two images are [START_REF] Fink | Object Classification from a Single Example Utilizing Class Relevance Metrics[END_REF][START_REF] Koch | Siamese neural networks for one-shot image recognition[END_REF]. The pixel space is not well suited to compare similar images; two images that differ by a simple transformation should be semantically similar. However, comparing the pixels of two similar images in content is not judicious. For example, compare two images in figure 2.17. They are semantically similar, but the pixel difference is large.

A standard method to solve this is to train an encoder that can transform images into feature vectors, and endow the feature space with a distance instead of the pixel space. Pretrained models on another similar dataset or an unsupervised method (like an auto-encoder) have such feature space. Then, we can classify new images by comparing their feature vector to the feature vectors of the N training examples and select the class of the nearest neighbor as the prediction. There also exist variants of this method using a k-nearest-neighbors approach, comparing the new image with an average of the features of the N training examples, among others [START_REF] Vinyals | Matching networks for one shot learning[END_REF][START_REF] Altae-Tran | Low Data Drug Discovery with One-Shot Learning[END_REF][START_REF] Snell | Prototypical networks for few-shot learning[END_REF].

Algorithm When evaluating a model on few-shot learning, the task's specificity rarely prevents using already trained models online. Initializing the new model with one trained on another dataset is common and is called transfer learning. It has become more and more popular with learning settings where a first pretraining phase is done, on a very large general dataset, and then the model is fine-tuned on the specific set [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Alayrac | Flamingo: a Visual Language Model for Few-Shot Learning[END_REF]. In this setting, all the weights need not be optimized, and some can be frozen.

Zero-shot Learning

The For this purpose, a semantic space acts as a bridge to transfer learned knowledge from the seen classes to the unseen ones. Annotations are available for both seen and unseen classes in the semantic space. We learn a regression that links the semantic and visual spaces. To classify an image, we predict the semantic vector associated with the image with the regression model and use the nearest semantic vector as the prediction.

Visual Attributes [START_REF] Xian | Zero-Shot Learning -A Comprehensive Evaluation of the Good, the Bad and the Ugly[END_REF] introduce a list of 85 visual attributes on a dataset of animals. These attributes describe parts, shapes, and materials. They annotated all images taken from Flicker with binary attributes (for example, the class giant panda has the attributes "patches", "big" and "paws", but not "orange"

or "arctic"). Using visual attributes as a semantic space is convenient because it describes the images.

Word embeddings

The visual attributes are satisfying because the relation between the semantic and image spaces is easily learned. However, it requires more annotations. Each class requires a visual attribute vector.

To remove this need for annotations, [START_REF] Hwang | Learning the relative importance of objects from tagged images for retrieval and cross-modal search[END_REF] and [START_REF] Socher | Zero-shot learning through cross-modal transfer[END_REF] use the word embeddings of the objects' class names. A self-supervised learning task optimizes the word embeddings on a text corpus, and the embedding space is used as the semantic space. For instance, the word2vec (Mikolov et al., 2013a) embeddings are optimized by predicting surrounding words (context) given a central word on a news articles dataset. The semantic space contains the embedding of the word representing the class. For instance, the word2vec vector of "bird" denotes the bird class. As a result, obtaining the semantic vector in this space requires no annotation.

Unsupervised Learning

As the name suggests, these methods do not require any annotation. For neural networks, the primary method is to learn latent representations that can be used by another classic algorithm, such as k-means (MacQueen, 1967) for clustering.

Therefore, the goal is to find a surrogate task that does not need annotations and that will produce good vector representations. The first approach is to use an auto-encoder architecture: the input x is encoded into a vector representation using a network called the encoder e, then decoded back into its original form using another model called the decoder d. The objective can be the reconstruction of the original input:

d(e(x)) ≈ x.
A variant of this method is to add a known transformation function T before applying the encoder:

d(e(T (x))) ≈ x
The transformation can add noise to the image (denoising), remove some patches (inpainting), remove the color of the image, and reduce its resolution (super-resolution).

In all these scenarios, correctly solving the task requires an understanding of the visual features of the image. The decoder can then be discarded because only the encoder is necessary during inference (or it can be used as a generator, for example).

Another way is to encode either two transformations of the same input, or two transformations of different inputs, with the same encoder and to predict whether the representations come from the same input (for instance, two augmentations of the same image or two patches extracted from the same image).

In the case of multimodal learning, we can additionally leverage regularity in the modalities to synchronize them without necessarily having access to paired examples.

Cycle-consistency is a loss that can do exactly that. At a high level, the goal is to try to dream of how one domain is represented in another domain. To do so, let us denote by x m 1 ∈ I 1 and x m 2 ∈ I 2 two domain inputs, and let's define

φ m 1 ,m 2 : I 1 → I 2
an encoder that can translate from modality m 1 to m 2 . If the goal is to learn good representations of m 1 and m 2 , we can then use the encoder functions as feature extractors (by using the representation of an internal layer, for instance).

The encoder models are used to "dream" how one modality can be represented in another. However, as we do not necessarily have access to paired examples, there is no ground truth for this translation. The trick is to back-translate the dreamt representation into the original domain and to compare the reconstruction with the original input:

φ m 2 ,m 1 • φ m 1 ,m 2 (x) = x
Different domains can be paired in a fully unsupervised fashion using this objective on a large dataset [START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF]. Having this objective alone is usually insufficient to coordinate both domains; in some cases, unpaired examples do not contain enough information to allow a correct and consistent synchronization, and there could be infinite possible pairings. For instance, if we want to map the letters {a, b, c} to the numbers {1, 2, 3}. Although we might want a linked to 1, b to 2, and c to 3, any one-to-one mapping is correct in this case, as there is not enough information on the desired mapping.

In this case, some supervision is required. We will now describe semi-supervised learning, which combines the supervised and unsupervised worlds.

Semi-supervised Learning

In a semi-supervised learning setting, only a subset of the training set has annotations.

This framework sits in between the supervised and unsupervised approaches. Of course, an straightforward way of dealing with missing annotations would be to restrict ourselves to the supervised subset. Nevertheless, the unlabeled examples could provide some extra information. For the unsupervised set to be beneficial, it should carry helpful information for inference [START_REF] Chapelle | Semi-supervised learning[END_REF]. If not, it can worsen the performance compared to a supervised learning approach. Three assumptions can summarize this condition:

• the smoothness assumption. If two points x 1 , x 2 in a high-density region are close, then so should be the corresponding outputs y 1 , y 2 .

• The cluster assumption. If points are in the same cluster, they are likely to be of the same class.

• And the manifold assumption. The (high-dimensional) data lie (roughly) on a low-dimensional manifold. This assumption is useful for the curse of dimensionality3 

Self-learning

Self-learning methods consist in continuously using supervised learning to label missing annotations. We start by using the available annotations to train a first approximation of the desired function. We recursively use this function to predict noisy labels of the unlabeled data and add them to the supervised set for the next iteration. We can refine the noisy predictions at each iteration with a hopefully better-annotated set.

The outcome depends on the learning method used and can lead to no improvement (in the case of empirical risk minimization), or it might be unclear what self-learning is doing [START_REF] Chapelle | Semi-supervised learning[END_REF].

This method is also called pseudo-labelling, and some newer methods [START_REF] Cascante-Bonilla | Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning[END_REF][START_REF] Chen | Debiased Self-Training for Semi-Supervised Learning[END_REF] have been proposed with results in par with state-of-the-art semi-supervised methods.

Regularization

Another way of using the unsupervised set is through regularization [START_REF] Zhou | Learning with local and global consistency[END_REF]. In addition to the supervision, an unsupervised loss is added to the total objective function. This method is based on the cluster assumption and posits that a little transformation of an unlabeled example should not change its prediction (Ouali et al., 2020a).

In a multimodal context, when training translation models using this approach, the cycle-consistency loss introduced in the previous section is a good fit [START_REF] Ouali | Semi-Supervised Semantic Segmentation With Cross-Consistency Training[END_REF]. The back-translation procedure allows following both the smoothness and the cluster assumptions. Indeed, the cycle-consistency translation functions are continuous and naturally respect the smoothness assumption.

Foundation models and Deep Learning Implementations of the Global Workspace

As we have seen in section 2.3, two fundamental ways of improving models' performances on a particular task are to increase the size of the dataset used for training or the number of trainable parameters. With this observation, research labs have started taking advantage of better and better hardware and compute clusters to train massive models. Because the amount of data required to achieve this feat would be too expansive to annotate, these models mainly rely on a self-supervised learning approach.

Besides, the authors of these large-scale models, like BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], GPT-3 (Brown et al., 2020), PaLM [START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF], or CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF], all describe emergent abilities of their models. Emergence means that the model is not trained on a specific evaluation task but can still perform above chance level.

Recently, the new paradigm of "foundation models" has been introduced to qualify large-scale models trained on extensive data that can adapt to many downstream tasks [START_REF] Wei | Emergent Abilities of Large Language Models[END_REF]. To be defined as a foundation model, the model should have two behaviors: emergence and homogenization. We have already defined emergence; homogenization is the "consolidation of methodologies for building machine learning systems across a wide range of applications". In other words, there is a standardization of architectures used for many different tasks. Typical examples are: BERT which is now used as a base for many tasks (VideoBERT [START_REF] Sun | VideoBERT: A Joint Model for Video and Language Representation Learning[END_REF], VILBERT [START_REF] Lu | ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks[END_REF], VLBERT [START_REF] Su | VL-BERT: Pre-training of Generic Visual-Linguistic Representations[END_REF]), or CLIP now used in many text-to-image generators (DALL-E 2 [START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF], Imagen [START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF], Stable Diffusion [START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF]). They can be additionally used to study the human brain. Some benchmarks, such as Brain-Score [START_REF] Schrimpf | Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? bioRxiv preprint[END_REF][START_REF] Schrimpf | Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence[END_REF], have been suggested to compare neural networks to the brain. Similarly, studying these large models can help us better understand the brain. In [START_REF] Dupoux | Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the infant language-learner[END_REF], the authors explain that large language models can be used to reverse-engineer unsolved questions of infant language learning.

Because of the models' performance and emergent capabilities, typical benchmarks generally used for evaluation are insufficient, as they do not represent the full capacities of adaptation and generalization. New benchmarks such as BIG-bench (Srivastava et al., 2022) try to capture the full potential of the foundation models.

However, current foundation models are still predominantly unimodal (BiT-M [START_REF] Kolesnikov | Big transfer (bit): General visual representation learning[END_REF] only trained on ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF], PaLM on language extracted from the web) and are trained differently than humans are.

Human infants learn language in conjunction with other modalities and interact with their environment [START_REF] Bisk | Experience Grounds Language[END_REF]. As a result, they can ground4 language with experience and other senses.

Indeed, current language models learn word representations based on the statistical distribution of words in a corpus, which does not bring meaning to the word tokens.

Predicting that the missing word in "the cat is _ its food" is "eating" does not mean that the model associates the word with what it entails. It might capture the function of the word in the sentence (past participle of the verb "to eat") but not the practical and cultural aspects of the word (animals need to eat to stay alive, it requires putting food into the stomach, ...). Some works have tried to add grounding to visual models explicitly [START_REF] Hudelot | Symbol Grounding for Semantic Image Interpretation: From Image Data to Semantics[END_REF] by trying to predict concepts from regions of interest in an image. However, this requires the addition of explicit prior knowledge as a form of supervision, which is tricky at the scale of dataset size required to train foundation models.

Multimodal networks can help, as information from diverse domains can be grounded together. For instance, CLIP contains concept neurons [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF].

Concept neurons are analogous to concept cells in the hippocampus of the human brain [START_REF] Quiroga | Invariant visual representation by single neurons in the human brain[END_REF][START_REF] Reddy | Concept cells through associative learning of high-level representations[END_REF]. A concept cell is activated when presented with different inputs representing the same concept. For example, the Halle Berry neuron activated when participants were presented with a photo of the actress, her name written in full text, a drawing of the actress, or a photo of herself playing the Catwoman character. However, the text descriptions gathered to train CLIP are initially written for humans and mostly contain visual information (how things look or the relations between objects in a scene). Hence, it does not contain the full richness of large language models like PaLM.

Suppose we want to generalize the concept of the foundation model. In that case, we might consider looking for a general large-scale architecture that can simultaneously capture all the subtleties of one domain and ground the knowledge with several other modalities and experiences. Again, we can refer to the classification made by [START_REF] Bisk | Experience Grounds Language[END_REF] of the different world scopes. Current foundation models are at the internet scope or start being at the perception scope. However, we must also start incorporating self-experiences and social aspects into the model.

To that extent, the cognitive theory of the Global Workspace (GW) can be used as a template to design a deep learning model able to combine modalities, memory, and other expert modules (like a controller) through a shared space.

We can refer to Baars's theory of the GW and to figure 2.1 for the requirements of a global workspace.

Some already implemented architectures have been labeled as global workspace implementations, and we will now describe them. In section 2.2, we have introduced the Perceiver IO architecture [START_REF] Jaegle | Perceiver IO: A General Architecture for Structured Inputs & Outputs[END_REF]. [START_REF] Juliani | The Perceiver Architecture is a Functional Global Workspace[END_REF] have highlighted that the Perceiver architecture meets the requirements of a GW architecture. The Perceiver is a transformer model based on a key-query-value attention mechanism, which can encode data from any modality using the byte array (representing the different specialized modules).

The latent array has a smaller sequence length and dimension than the byte array. It allows combining the information of the different modules into a single representation, which can represent the GW. Moreover, it also serves as a bottleneck

to force a selection of information.

Once the modalities are encoded in the latent array, the representation is broadcast with the cross-attention mechanism. Indeed, the attention function contextualizes each element in the sequence with all the other elements (eq. 2.6). The authors do not use any form of pretraining and explicitly train the models on the evaluation tasks. [START_REF] Lu | Unified-IO: A Unified Model for Vision, Language, and Multi-Modal Tasks[END_REF] used the Perceiver IO architecture to merge information from multiple modalities and more than 80 multimodal datasets. Besides, they decide first to train the model on a mask modeling task. They then use other specific tasks to train the model. They obtain a state-of-the-art model on the GRIT benchmark [START_REF] Gupta | GRIT: General Robust Image Task Benchmark[END_REF], which evaluates the models on performance and robustness of visual models on tasks such as object categorization, object detection, segmentation, or visual question answering.

In [START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF], the authors take explicit inspiration from the GW architecture to explore routing between multiple expert modules. For the architecture, N specialized modules encode an input into a latent space. Then, they use an attention layer from a transformer for the modules' competition. The contextualized vectors are then encoded into a shared workspace (a fixed length and fixed dimension sequence) reminiscent of the latent array in the Perceiver.

The model is recurrent, and they use the previous workspace state as the query for the attention mechanism and the outputs of the specialists for the keys and values.

A memory slot stores the output for the next computation step. Finally, the content is broadcast to all modules using another attention mechanism, where the specialist modules provide queries, and the workspace representation delivers the keys and values.

Their architecture is similar to the Perceiver, where the global workspace corresponds to the latent array and differs from the fact that the model is recurrent.

The authors tested the model on simple toy datasets, and the model is directly trained on the evaluation tasks without optimizing the global workspace on a translation task. They also provide experiments with Sort-of-CLEVR, a relational reasoning task where the model is tasked to answer questions about certain aspects of objects in an image. This task is bimodal, showing that convergence speed is faster for their model compared to an equivalent transformer. Their approach leads to minimal improvement compared to a standard transformer.

Conclusion

Foundation models are the first step towards general architectures that can generalize to many tasks in a zero-shot manner. These foundation models lack grounding from experience, and the Global Workspace architecture is an excellent match to fill this gap. Some implementations have already been done, and can lead to promising results [START_REF] Jaegle | Perceiver: General Perception with Iterative Attention[END_REF][START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF].

Goals

Research on multimodal networks has taken a data-and compute-heavy turn with the explosion of foundation models. It has allowed the discovery of new possibilities in large models and their use for many downstream tasks.

Moreover, we have seen that training with a diverse source of information (or domain) has multiple advantages. Each domain brings a natural source of supervision but also adds information. These models raise many questions: can bimodal representations generalize to completely new tasks? Is the data used for training providing a good grounding, and does it provide an advantage compared to unimodal networks? In what settings does multimodal learning perform better than unimodal?

Is it always better, or does it depend on the type of task? Moreover, one can wonder how the representations themselves differ from unimodal ones and how close they are to representations in the brain.

In the following chapter, we will tackle these questions by reviewing the generalization capabilities of bimodal networks on visual tasks. We will observe that, contrary to popular belief, current models do not generalize better than purely visual models in all cases, particularly in tasks that do not involve high-level multimodal concepts.

Another aspect that we want to focus on is the Global Workspace architecture.

We believe it can do multimodal grounding when paired with a judicious training approach. Moreover, we will also explore how to deal with a growing need for paired annotation, taking inspiration from semi-supervised learning approaches.

Finally, the next logical step, after perceptual grounding, is grounding through experiences. Thereby, a control system can extend the GW. We will see how a world model lets the model interact with its environment or even simulate outcomes following actions or events.

Chapter 3

Generalization Capabilities of

Multimodal Models Forewords

As we have previously seen, the advantages of learning with several modalities are twofold. First, each modality can bring specific information from its domain. For instance, vision contains information about how things look, their shape, textures, colors, and relationships between objects; language is a structured form of information that humans use to share knowledge between themselves, and it contains knowledge from encyclopedias, newspapers, or scientific papers. Second, the information in all domains usually overlaps and can therefore be used as a natural source of supervision.

It is commonly called multimodal grounding when information from one modality provides meaning to another modality.

Recently, researchers from OpenAI introduced CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF], a large vision and language model trained to give aligned representations of paired inputs.

The model has been trained on 400 million image and text pairs, taking advantage of online data to build the dataset. This publication quickly hit the headlines and became a hot-button topic, as CLIP was the basis for DALL-E -first of its name -a model able to generate new images from a text prompt [START_REF] Ramesh | Zero-Shot Text-to-Image Generation[END_REF].

The publicized alignment capabilities of CLIP piqued our interest, and we started evaluating its generalization abilities, among other multimodal networks, in visual classification tasks. Our initial hypotheses were: first that multimodal networks could generalize better than purely visual ones; second, that the multimodal representation would be more robust to adversarial attacks because the visual models are aligned with a semantic one (language). These hypotheses proved wrong; unimodal models have better generalization performance on visual classification tasks than multimodal ones and are more robust to adversarial attacks. We conclude that work is still required for semantic grounding to help improve vision models.

Does Language Help Generalization in Vision

Introduction

Learning vision models using language supervision has gained popularity [START_REF] Quattoni | Learning visual representations using images with captions[END_REF][START_REF] Srivastava | Multimodal Learning with Deep Boltzmann Machines[END_REF][START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF][START_REF] Joulin | Learning visual features from large weakly supervised data[END_REF][START_REF] Pham | Found in Translation: Learning Robust Joint Representations by Cyclic Translations between Modalities[END_REF][START_REF] Desai | VirTex: Learning Visual Representations from Textual Annotations[END_REF][START_REF] Hu | Transformer is All You Need: Multimodal Multitask Learning with a Unified Transformer[END_REF][START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF][START_REF] Sariyildiz | Learning Visual Representations with Caption Annotations[END_REF] for two main reasons: firstly, vision-language training allows to build massive training datasets from readily available online data, without manual annotation; secondly, language provides additional semantic information that cannot be inferred from vision-only datasets, and this could help with semantic grounding of visual features.

Recently [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] introduced CLIP, a language and vision model that shows outstanding zero-shot learning capabilities on many tasks, and compelling transfer-learning abilities. A recent report [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF] showed that CLIP produces neural selectivity patterns comparable to "multimodal" concept cells observed in the human brain [START_REF] Quiroga | Invariant visual representation by single neurons in the human brain[END_REF][START_REF] Reddy | Concept cells through associative learning of high-level representations[END_REF]. From these results, it is tempting to assume that CLIP's generalization properties stem from semantic grounding provided by the joint vision-language training.

Here, we show that CLIP and other vision-language models do not perform better than vision-only, fully supervised models on a number of generalization settings and datasets. Representation similarity [START_REF] Kriegeskorte | Representational similarity analysis -connecting the branches of systems neuroscience[END_REF] analysis reveals that the multimodal representations that emerge through vision-language training are different from both linguistic and visual representations-and thus possibly unsuitable for transfer-learning to new visual tasks. In conclusion, additional work on linguistic grounding is still needed, if it is to improve generalization capabilities of vision models.

We provide our code for reproducibility1 .

Models

We use a number of publicly available vision, text or multimodal pretrained models, and compare their representations and generalization abilities. To facilitate interpretation and comparisons between the models, Figure 3.1 reports the training dataset size for each of the visual models (including the vision-language models). They are all based on the same backbone (a ResNet50 architecture).

In CLIP, the authors train the joint embedding space of a visual network (hereafter called simply CLIP) and a language network (hereafter called CLIP-T) using contrastive learning on 400M image-caption pairs. Note that in the present paper, the visual backbone of CLIP is a ResNet50, even though the visual-transformer-based CLIP model could reach higher performance; this choice allows for a fair comparison with the other visual models that are all based on the ResNet50 architecture. In addition, we also consider TSM [START_REF] Alayrac | Self-Supervised MultiModal Versatile Networks[END_REF], another multimodal network trained with a contrastive loss on video, audio and text inputs from the HowTo100M dataset [START_REF] Miech | HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips[END_REF] (containing more than 136M video clips with captions.

For training, the authors effectively used 120M video clips of 3.2s sampled at 10 fps).

The effects of CLIP's and TSM's contrastive training paradigm can be compared with VirTex and ICMLM-two other recent multimodal networks. In VirTex, the visual feature representations are optimized for an image captioning task [START_REF] Desai | VirTex: Learning Visual Representations from Textual Annotations[END_REF], and for a text-unmasking task in ICMLM [START_REF] Sariyildiz | Learning Visual Representations with Caption Annotations[END_REF]. Such text-based objectives aim to provide a form of linguistic grounding using significantly fewer images than CLIP (VirTex and ICMLM models are trained on the COCO dataset [START_REF] Cs. Lin | Microsoft COCO: Common Objects in Context[END_REF] with approximately 120K captioned images).

To transfer learning) in some settings [START_REF] Salman | Do Adversarially Robust ImageNet Models Transfer Better[END_REF]. Another such technique was used for StylizedImageNet (SIN) models [START_REF] Geirhos | ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[END_REF], where a variant of the ImageNet dataset (1.3M images) was designed via style-transfer to specifically reduce the network's reliance on texture information. The authors provide weights for models that are (i) only pretrained for SIN images (SIN), (ii) trained on SIN and ImageNet (SIN+IN) combined, or where (iii) a SIN+IN model is finetuned on ImageNet (SIN+IN-FIN).

For the vanilla ResNet50, SIN, AR and BiT-M models, we use activations after the final average pooling operation as feature representations. Although all these models share a ResNet50 backbone, there are minor differences in their implementations. We Figure 3.2: 1-shot, 5-shot and 10-shot accuracy over our evaluation datasets. Multimodal networks (ICMLM, VirTex, CLIP, TSM, in blue) have typically worse performance than the other models for all datasets.

assume that such small architectural differences would not dramatically affect the feature spaces learned by these models.

Finally, we also use two text-only language models, GPT-2 [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] and BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], in our feature-space comparisons. As these models are not designed to process visual inputs, they cannot be tested on visual generalization;

but we can use their representations of class labels (or sentence captions) as a basis for comparison with visual or multimodal network representations. In a similar way, the language stream of the CLIP model (CLIP-T) can be treated as a third language model for our comparisons.

Generalization tasks

In [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF], CLIP was systematically tested in a zero-shot setting.

However, this requires a language stream to describe the different possible targets, which is not available in standard vision models. [START_REF] Wah | The Caltech-UCSD Birds-200-2011 Dataset[END_REF] and SVHN [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF]. These datasets test generalization capabilities for natural images of various classes.

Datasets

We briefly describe all the datasets used in our experiments.

CIFAR10 and CIFAR 100 These datasets contain images of animals and objects comprising either 10 (CIFAR10) or 100 (CIFAR100) categories. All the 60,000 images -50,000 train and 10,000 test-are of 32 × 32 resolution with RGB color channels. Designed with an aim to act as a "direct drop-in replacement for the original MNIST", it contains the same number of training and testing images as that of MNIST.

CUB dataset

StreetView House Numbers

StreetView House Numbers, or SVHN dataset consists of images of digits from 0 to 9. Compared to MNIST, it is generally considered a more real-world dataset for optimizing neural networks since it contains images of digits in a more natural setting-600,000 colored images of digits provided by Google Street View images.

Few-shot learning

As a first generalization experiment, we compare few-shot learning accuracy. For this experiment, we directly pass N randomly selected samples for each class (N -shot learning) through the pretrained models to obtain a feature representation for each sample. Then, we define a class prototype by averaging the feature representations of all the samples in each class. We measure the performance of vision-only and text-vision models for N = 1, 5 and 10. Each time, the reported performance is averaged over 10 trials with different class prototypes (i.e., different random selection of samples). Figure 3.2 shows the performance of each model on each dataset. For CIFAR10, CIFAR100 and CUB (all the natural images datasets), BiT-M has the best accuracy. On the other hand, ICMLM, VirTex, CLIP and TSM do not perform better than the vision-only models.

Figure 3.5 shows the average performance of each model across datasets, in the leftmost 3 panels.

Unsupervised clustering

Our second generalization test is an unsupervised clustering task over the same datasets. For this, we apply an out-of-the-box spectral clustering algorithm (Pedregosa et al., 2011) using the cosine of two feature vectors as a metric. We provide the number of required clusters (number of classes) to the clustering algorithm: this ensures that all classes are represented by a cluster. The clusters are computed only on the test-sets.

To compute the accuracy on the prediction, we need to assign labels to each cluster. To do so, we use a greedy algorithm: we first choose the cluster containing the most elements in common with a given class and assign it the corresponding label.

We then continue with the second cluster that has the most elements in common with another class, and so on until all clusters have been labelled. 

Transfer learning

To further evaluate the models' generalization properties, we use a transfer learning setting as described in [START_REF] Salman | Do Adversarially Robust ImageNet Models Transfer Better[END_REF]. We use the same datasets as in the other tasks, each time training a linear probe using the Adam optimizer. We train each linear probe for 20 epochs with a learning rate of 1e-3 and a weight decay of 5e-4. 

Robustness to adversarial attacks

Another important test for generalization is the robustness to input perturbations (a form of out-of-distribution generalization). Here, we compare the adversarial robustness of different models against untargeted and targeted random projected gradient descent (RPGD) attacks [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF]. We use L 2 and L ∞ norms to distinguish any norm-specific effects. Figure 3.6 shows the success rate of the 100-step RPGD attacks on 1000 images taken from the ImageNet validation set. We use the foolbox API [START_REF] Rauber | Foolbox: A Python toolbox to benchmark the robustness of machine learning models[END_REF] to perform all the attacks with configurations provided by (Engstrom et al., 2019a). 

Summary

Overall, models trained with multimodal information (CLIP, VirTex, ICMLM, TSM)

do not achieve better performance than the visual-only ResNet-based models. This systematic observation across multiple image datasets and generalization tasks (including few-shot, transfer and unsupervised learning, as well as adversarial robustness)

goes against the assumption that linguistic grounding should help generalization in vision models.

Among the multimodal networks, CLIP does indeed appear to be more generalization-efficient than VirTex, ICMLM and TSM. As mentioned in [START_REF] Radford | Language models are unsupervised multitask learners[END_REF], directly predicting highly variable text captions (as done in VirTex or ICMLM) is a difficult task that does not scale well. CLIP (and TSM) avoid generating text, relying instead on a contrastive loss between visual and linguistic embeddings. However, even with the potential benefits provided by this contrastive loss, CLIP (and TSM) do not outperform the vision models.

Finally, BiT-M, a simple vision-only model trained on a very large labelled dataset, turns out to be the overall best performing model for few-shot learning, unsupervised clustering and transfer learning, and on par with the standard ResNet50 for adversarial robustness.

Although these results are fairly consistent across datasets, there are still some differences.

For the CUB dataset, BiT-M largely outperformed the other models. This result is to be expected as the bird species in CUB are also part of ImageNet-21K labels.

Then, among visio-linguistic models, CLIP is the only one competitive with the remaining visual models on this dataset.

MNIST and SVHN require classification of digits. According to [START_REF] Radford | Language models are unsupervised multitask learners[END_REF], CLIP should be able to generalize to this task, as its training set included numerous images with text and digits. Indeed we observe that CLIP can perform as well as some of the vision models for these datasets. However, SIN and AR models perform generally better than other models.

For datasets with more natural images (CIFAR, FashionMNIST, CUB), vision models are generally better than their visio-linguistic counterparts.

Model comparison

To better understand the similarities and differences between the feature spaces learned by the various models, we now compare them using Representational Similarity Analysis (RSA) [START_REF] Kriegeskorte | Representational similarity analysis -connecting the branches of systems neuroscience[END_REF]. class c, its average fc and its standard deviation σ c . The RDM matrix is then defined as [RDM i,j ] where

Method

RDM i,j = fi -fj σ 2 i |F i | + σ 2 j |F j | 2 (3.1)
for each pair of class (i, j).

We use the norm of the unequal variance t-test [START_REF] Welch | The generalization ofstudent's' problem when several different population variances are involved[END_REF] as our distance metric between the latent representations, because it allows to normalize the distances between class centroids with respect to their variances. Indeed, each class is represented by a cluster of latent vectors of different sizes.

In the case of language models (all transformer-based), we use as latent representations, the encoding of the sentence "a photo of x." where we replace "x" by the corresponding label. We then use the contextualization of the label as the text feature vector. Compared to the vision models, there is only one representation per class (only one sentence per class) hence a lack of variance associated with the feature vector of each class. As a result, the distance used in the RDM matrix becomes an

L 2 norm.
The RDM matrix obtained with this method contains the respective distances between pre-defined concepts (in our case the 1000 classes of ImageNet). RDMs can therefore be considered as a standardized representation of latent spaces. This VirTex and ICMLM models (respectively). Yet these multimodal models are not truly linguistic either, as they are very distant also from the standard language models. This conclusion is also supported by the t-SNE plot, showing a cluster of BiT-M, RN50 and SIN vision models, a second cluster with the AR models, and further along the same direction, the multimodal networks (CLIP, VirTex, ICMLM, TSM). Note that, although this arrangement might suggest that multimodal networks possess adversarial robustness properties in common with AR models, this suggestion was not supported by our tests using actual adversarial attacks (Fig 3.6). Finally, the language models (BERT, GPT2 and CLIP-T) are separated from the rest, along a distinct direction. Overall, the analysis suggests that multimodal representations are
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1.00 0.28 0.24 0.16 0.08 0.12 0.13 0.13 0.15 0.15 0.15 0.15 0.13 0.13 0.12 0.28 1.00 0.40 0.12 0.02 0.09 0.05 0.24 0.22 0.23 0.25 0.27 0.18 0.21 0.17 neither visual nor linguistic, but surprisingly, not really in-between either2 . This is surprising as we should expect that representations trained with access to both vision and language would derive information from both modalities, and consequently end up somewhere in-between purely visual and purely textual representations. 

Performance on linguistic tasks

This suggestion might be further supported by evaluating the usefulness of the learned visual representations on linguistic tasks. According to the above findings, visual representations obtained via multimodal training may fare no better than vision-only representations. To test this, for each vision model, we collect the ImageNet features for each image class, and train a standard word embedding (Skip-Gram method) while constraining the class label words to these visual feature vectors. The resulting linguistic space will thus capture some of the structure of the vision model's latent space.

Method

Architecture We train Skip-Gram models (Mikolov et al., 2013a) on Wikipedia using the Gensim library [START_REF] Řehůřek | Software Framework for Topic Modelling with Large Corpora[END_REF]. Before training, some of the embedding vectors (corresponding to the ImageNet class labels) are set to the latent representations of a vision model, and frozen during training. This training procedure forces the word embedding space to adopt a similar structure to the vision model's latent space (at least for the frozen words, i.e. the class labels).

Visual words

We denote 'visual word embeddings' (resp. visual words) as the word embeddings (equivalent to the visual feature vectors) obtained from the vision models (resp. the associated word token) on ImageNet classes. Some of the classes are composed of multiple words (e.g. "great white shark"). We leverage the WordNet [START_REF] Miller | WordNet: An electronic lexical database[END_REF] structure of ImageNet classes to only keep the hypernym of the class that contains only one word (e.g. "great white shark" becomes "shark"). All of the ImageNet categories that have the same one-word hypernym are grouped together into one unique hyperclass. For instance, the "shark" hyperclass contains the classes "great white shark" and "tiger shark". Finally, to obtain the visual word embeddings, we average the visual representation of all the images of each hyperclass from the ImageNet validation set. This gives a total of 824 visual words.

Besides, we choose a vocabulary of 20,000 words (taken from the most frequent tokens in Wikipedia). Only 368 visual words are among the 20,000 most frequent words, so we extend our vocabulary to also contain the 456 other visual words, resulting in a total vocabulary of 20,456 words.

Embedding dimension Since the vision models do not all share the same feature dimensions, in order to compare all Skip-Gram models, we reduce the dimensionality of the feature spaces of all vision models to 300 dimensions using a PCA. The PCA is computed using the visual features of all images in the ImageNet validation set.

Consequently, the Skip-Gram word embeddings are trained with 300 dimensions.

Training We train the Skip-Gram models for 5 epochs, using the standard negative sampling strategy. We use window sizes of 5 words and a learning rate of 1e-3. We use the "vectors_lockf" feature of the Gensim library to freeze certain word embeddings during training.

Figure 3.10: Semantic Word Analogy (such as "son", "daughter", "boy", "girl"), Morphology Word Analogy (such as "write", "writes", "work", "works") and word pair similarity results for the visually constrained Skip-Grams. The Baseline is a vanilla Skip-Gram model (300 dimensions) where all 20,456 word embeddings are free to be learned.

For the dataset, we use a recent dump of Wikipedia and we split it into two sets containing 80% and 20% of the articles for the training and validation sets.

Evaluation

We evaluate our Skip-Gram embeddings on two tasks: word analogies and word pair similarities.

Word Analogy This standard task [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] for evaluating the quality of word embeddings consists of quadruplets {A, B, C, D} (e.g. "man", "king", "woman","queen") supporting the relation "A is to B as C is to D". The task consists in finding the 4th one given the first three, by solving the equation in the latent space:

D = B -A + C.
The more accurate the model, the better its representation. We evaluate the word embeddings on the full dataset provided by [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] that we split in two different sets: morphology analogies (such as "write", "writes", "work", "works"), and semantic analogies (such as "son", "daughter", "boy", "girl").

If vision-language training helps "ground" the visually-derived word embeddings, we expect this grounding to be more helpful in the resolution of semantic, rather than morphology analogies.

Word Pair similarity Another task for evaluating the quality of word embeddings is to ask humans to rate the semantic similarity of pairs of words (e.g. on a scale of 0 to 10, how close is "queen" to "king"? How close is "queen" to "woman"? etc.) [START_REF] Finkelstein | Placing search in context: The concept revisited[END_REF] and then compute the same similarity evaluations in the latent spaces of the models. The higher the (Pearson) correlation between the pairwise similarities of a model and human pairwise similarity judgments, the better the representation of the model.

Results

The baseline Skip-Gram produces the best word embeddings overall (black bars in shows that the frozen vectors do not necessarily impede the performance when the analogies are defined semantically (and might thus be presumed to contain some visual component). However, even for these semantic analogies, vision or vision-language word embeddings never significantly surpassed the baseline performance.

In the word pair similarity task, networks show variable performance levels, but without a clear distinction between vision-only and vision-language models. Among BiT, and the three AR models) correspond to those models that were trained on the largest datasets.

For the analogy tasks (semantic and morphology), there is no particular trend.

However in both cases, the best performing model (excluding the baseline) is a visual one: SIN+IN in the semantic case, and AR-L2 in the morphology case.

In summary, we find that multimodal training of visual features does not improve their usefulness for language tasks either, and we suggest that the amount of training data may be a more important factor for generalization.

Legitimacy of the visual word embeddings

In The significant high correlation of visual classification with word-pair similarity performance might be caused by the visual component of the word similarity judgments performed by human subjects. Indeed, many "similar words" also entail similar visual features (tiger, jaguar, cat, feline), and so the word-pair similarity task may not be a pure language task.

Discussion and Conclusion

It is a highly appealing notion that semantic grounding could improve vision models, by introducing meaningful linguistic structure into their latent space, and thereby increasing their robustness and generalization properties. Unfortunately, our experiments reveal that current vision-language training methods do not achieve this objective: the resulting multimodal networks are not better than vision-only models, neither for few-shot learning, transfer learning or unsupervised clustering, nor for adversarial robustness. In addition, compared to vision-only models, the multimodal networks' visual representations do not appear to provide additional semantic information that could serve as a useful constraint for a word-embedding linguistic space.

The present inability of linguistic grounding methods to deliver their full promise does not imply that this cannot happen in the future. In fact, we believe that exploring the current models' performance and representations, as we do here, can help us understand their limitations and adjust our methods accordingly. Specifically, we found that multimodal representations are neither visual nor linguistic, but are not really in-between either (Fig 3.9). In CLIP and TSM, for instance, the contrastive learning objective encourages the visual and language streams to agree on a joint embedding of images and corresponding captions. However, such agreement, by itself, does not constrain either latent space to remain faithful to its initial domain. As a result, CLIP's (and TSM's) visual representations may discard information that could prove critical for transfer-learning to other visual tasks. If this is true, we predict that adding domain-specific terms to the multimodal loss function (e.g. self-supervision) could be a way to improve visual generalization, while retaining the advantages of multimodal training-possibly including semantic grounding.

In follow-up work, in collaboration with Romain Bielawski and Rufin VanRullen [START_REF] Bielawski | When does CLIP generalize better than unimodal models? When judging human-centric concepts[END_REF], we tested CLIP on "human-centric" multimodal generalization tasks and observed that in this instance, CLIP generalized better than unimodal networks. This work is more thoroughly discussed in chapter 6, section 6.1.

Chapter 4 Low Supervision Multimodal

Representation Learning

Introduction

In chapter 2, and in particular in sections 2.3 and 2.5, we highlighted that deep learning models are trained with increasing amount of data and compute. This trend has led to an impressive boost in performance and the emergence of new abilities in recent large AI models. They take advantage of already existing supervision from online sources. This data made by humans, for humans, is filled with helpful information to train neural networks.

The typical example is to use text descriptions as supervision for images; online websites (social media, Wikipedia, discussion websites, art communities, news websites) allow users to post multimodal publications with, in particular, text and image content. This data is produced for other humans who are assumed to have prior knowledge to understand the publications (for example, slang vocabulary, references to history and current events, pop culture, and inside knowledge of specialized communities). The hope is that the amount of data makes up for the noisy nature of the annotation.

Without surprise, CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF], an image and text model trained to align latent representations of both modalities, on 400 million image and text pairs from the web, has achieved staggering performance on classification tasks, in image generation [START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF], and in image captioning [START_REF] Mokady | ClipCap: CLIP Prefix for Image Captioning[END_REF]. However, in the previous chapter, we have seen that CLIP is not better in visual generalization classification tasks than visual unimodal networks. Although this seems surprising initially, the information provided by handcrafted annotations tailored for visual tasks leads to powerful vision models that are difficult to beat.

However, annotating a large dataset is very expensive.

This work studies a semi-supervised learning setting to train a bimodal vision and language translation model. We aim to analyze the effect of unpaired examples in the dataset on performance and if such models can better generalize to new tasks.

Inspired by the cognitive science theory of the Global Workspace (GW) [START_REF] Baars | A cognitive theory of consciousness[END_REF][START_REF] Dehaene | A neuronal model of a global workspace in effortful cognitive tasks[END_REF], we follow the guiding principles listed by [START_REF] Vanrullen | Deep Learning and the Global Workspace Theory[END_REF] to design the model architecture, and the learning setting. The architecture combines several unimodal and pretrained specialist modules into a common latent space called the "global workspace". To train the model, we use a semi-supervised setting, using cycle-consistency as an unsupervised loss. Cycleconsistency consists of doing a forward and backward translation (back-translation) of input into another space (this can be another domain or the GW space) and forcing the reconstruction to be equal to the input. For example, this principle has been used to pair two visual domains in CycleGAN [START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF], pair two languages in unsupervised machine translation [START_REF] Lample | Unsupervised Machine Translation Using Monolingual Corpora Only[END_REF], and in an unsupervised multimodal language translation task [START_REF] Su | Unsupervised Multi-Modal Neural Machine Translation[END_REF].

Related Work

Cycle-consistency

Using back-translations as a way to synchronize two spaces is not new. In [START_REF] Kalal | Forward-Backward Error: Automatic Detection of Tracking Failures[END_REF], the authors present a novel way to solve a visual point-tracking task.

They used what they call forward-backward error, which consists in predicting a forward trajectory of the tracked point in an image sequence, and then predicting a reverse trajectory, considering the reversed image sequence. The two trajectories are then compared together.

More recently, cycle-consistency has been used to synchronize multiple visual domains in CycleGAN [START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF]. The authors train two GANs to generate images in the style of one domain and use the cycle consistency loss to synchronize the latent spaces of the two GANs. In unsupervised machine translation, [START_REF] Lample | Unsupervised Machine Translation Using Monolingual Corpora Only[END_REF] used back-translations to optimize a sequence-to-sequence with attention model [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF], able to translate between two languages without the access of aligned multilingual corpora during training. Their training objective combines back-translations with an adversarial loss to force the generation in each domain to match the actual language distributions.

Cycle-consistency has also been used to synchronize modalities of different natures in [START_REF] Pham | Found in Translation: Learning Robust Joint Representations by Cyclic Translations between Modalities[END_REF] on a multimodal (image, text, and sound) sentiment analysis task. They showed that using back-translations produces robust representations and that the model can deal with missing modalities during inference. They use a hierarchical architecture, where first, two modalities are aligned, and then the third modality is aligned with the common latent space of the first two. This architecture is asymmetric and favors some modalities over others. They try a different combination and report that their best model is to first translate between vision and text, then with audio.

Global Workspace

The GW theory, and its recent implementations, have already been discussed in chapter 2, and I refer the reader to sections 2.1 and 2.5 for more details.

The GW theory was introduced by Bernard Baars in [START_REF] Baars | A cognitive theory of consciousness[END_REF][START_REF] Baars | Global workspace theory of consciousness: toward a cognitive neuroscience of human experience[END_REF], as a cognitive theory of consciousness. It describes how the human brain makes different modules (perceptual modules, memory, motor) interact through a shared workspace. Recently, (VanRullen and Kanai, 2021) stated that current working AI principles could implement this theory, and they provide some clear guidelines on the implementation. Moreover, some implementations have already been suggested. [START_REF] Jaegle | Perceiver: General Perception with Iterative Attention[END_REF] have implemented a new transformer architecture, and [START_REF] Juliani | The Perceiver Architecture is a Functional Global Workspace[END_REF] highlighted that it could be used as a GW; [START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF] have introduced a very similar architecture that has been explicitly labeled as a GW implementation by the authors.

Method

This project aims to observe the effect of back-translation to train a multimodal translation model, and we want to analyze how the amount of annotation affects the training.

Dataset

To answer our questions, we first need a multimodal dataset to train the model on.

To work in a completely controlled environment, we designed a multimodal dataset called the "simple shapes" dataset. This dataset fits several objectives: firstly, we want an automatically generated dataset to obtain as many samples as possible. It also allows us to control the number of annotations in the dataset. Secondly, we want the modalities to overlap by representing the same content so that we can train a translation model between the modalities. Thirdly, we want the model architecture to be simple to iterate quickly over several model training for our analysis.

Hence, we build a dataset of shapes with attributes and represent them in three modalities: a visual domain with a colored depiction of the shape, an attribute domain that contains a list of all the shape attributes used to generate the image, and a text domain which is a description of the image in natural language.

For the visual domain, we create small images of size 32 × 32 pixels with a black background and a unique object fully visible in the image. [0,2π[,and an HSL (hue,saturation,lightness) 

color (c h , c s , c l ) ∈ [0, 1] 2 × [l min , 1],
then translated into RGB (this allows to have images that can be seen on a black background by setting a minimum lightness value).

We directly use the attributes and categories that produced the images for the attribute domain. It contains a 3-dimensional one-hot annotation for the category, two values for the position (x, y), one for the size, 3 for the colors (in RGB), and we transform the angle value of the rotation into 2 for its sine and cosine. We found that predicting the angle in the cos/sin space is easier, and it removes the fact that the rotation is cyclic modulo 2π, which can lead to a large error signal when using the mean-squared-error (MSE) loss while in reality, the angles are similar modulo 2π.

Besides, all the attributes are normalized to have a value between -1 and 1.

For the text domain, we use natural language to describe the visual aspects of the image. The text is automatically generated from the semantic vectors using a heuristic described below. Training with language adds complexity as the attributes are quantized into words, which means that we go from a continuous distribution to a categorical one. Moreover, language contains uncertainties where one word represents a distribution and not a specific range of attribute values: "small" and "medium" may describe the same sizes depending on the person or context. Using language also allows having more liberties when describing the shapes, the structure of the sentence, or even the vocabulary.

We generate a dataset containing 500 000 samples. All samples have initial annotations for all three domains, but not all the annotations will be used during our experiments.

Generating the text domain

The text domain describes the images in natural language and is automatically generated from the attribute vectors. We want to generate varied descriptions of the images but still describe the images in detail. Before setting the generation rules, we ask some participants to describe images from our dataset in their own words but as accurately as possible, such that a faithful reproduction of the image can be obtained from their description. We gathered 100 such descriptions and built our text generator to produce similar descriptions to the human participants. The generator first transforms the attribute values into words; then assembles them into a complete sentence.

For the shapes, we use several descriptions of the three shapes given by the participants. The rotation is described either using 16 cardinal points ("west", "northwest", "north-northwest", ...), corner locations ("left", "top-left", "top top-left"), or the angle (rotated 15 degrees clockwise) where the angle is approximated by the closest multiple of 5. The sizes are split between 4 categories ("tiny", "small", "medium" and "large"). For the location, the image is split into a 7 × 7 grid and described accordingly ("at the very top, slightly left", "in the center", ...). For the colors, we select 141 color names and RGB values from matplotlib's list of named colors; the name of the closest color in the RGB space is selected.

The overall sentence is generated by sampling the attributes and linking words between them (for example, "There is a isosceles triangle, it's located top, slightly right, it's large, it's in dark slate grey colored, it's pointing towards the north-northwest.", "The image represents a isosceles triangle, it's lower left, it's large, it's white smoke color, it's pointing to the top.").

Model

For the model's architecture, we take inspiration from the design choices listed in [START_REF] Vanrullen | Deep Learning and the Global Workspace Theory[END_REF], where they highlight several criteria for the model.

The model must have the following:

• multiple specialized modules (N ≥ 2), which encode unimodal information into their own latent space. Existing pretrained modules can serve as a sensory perception specialized module (visual classification, object detection or segmentation, pose estimation, optical character or text recognition, auditory perception), language understanding (language models), memory storage, or motor control.

• A Global Latent Workspace (GLW) is a multimodal shared latent space between all the specialized modules that can transcribe information between the modules.

• An attention mechanism that selects information from the specialized modules that can enter the workspace.

• The selected representations in the workspace are instantly broadcast to all the connected specialized modules. In other words, the information in the workspace is instantly and automatically translated to the modules. First, we define three specialist modules for each modality. As we want the specialist modules to be pretrained and to expose their own unimodal latent spaces, we train each module independently on the corresponding modality in the dataset.

Following the notations in chapter 2, we denote x m ∈ I m the input of modality m and z k ∈ K m the latent vector generated by the specialist module from x m . We will describe the specificities of each domain's specialist module in more detail later.

For the second criterion, each domain can occupy the workspace, and we use an encoder e m for each domain m ∈ {v, t, a} to project the unimodal representation of the specialist module into the GW space.

e m : K m → S m z m → e m (z m ) = s m (4.1)
where K m and S m are the unimodal latent space and the multimodal latent space (global workspace) of modality m.

The third requirement is for the specialist module to be able to compete for access to the global workspace. In our experiments, we restrict ourselves to models with only two domains and train them using a translation objective (translating from one domain to another). As a result, only one domain can occupy the GW at each moment, and the competition is trivial (the only domain automatically has access to the workspace).

Finally, the information is broadcast using a decoder d m to each domain. 

d m : S m → K m s m → d m (s m ) = ẑm

Specialist modules

Visual domain For the visual specialist module, we use a β-VAE based on the regularized auto-encoder architecture [START_REF] Ghosh | From Variational to Deterministic Autoencoders[END_REF]. We choose a VAE [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] instead of a regular auto-encoder, to take advantage of the N (0, 1)

normal distributed latent space. The normality of the distribution of the unimodal latent vectors will make it easier for the domain encoder and decoder to translate from the VAE space to the workspace. Moreover, we use a β-VAE [START_REF] Higgins | beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework[END_REF] as opposed to a regular VAE to obtain a more regularized latent space. Indeed, the latent space of a β-VAE has better disentangled dimensions, which again will allow for better translations between the modalities. We train the VAE on the visual domain data only, using a 12-dimensional latent space for the VAE. We tune a β value that allows for a near-perfect reconstruction while still having a latent space for correct sampling.

Attribute domain

For the attribute domain, we directly use the normalized attributes between -1 and 1. We also add a handcrafted decoder that can generate the image from the attributes using the image generator we use to create the dataset.

This decoder allows us to visualize the attribute qualitatively in the same form as the visual domain.

Text domain

We use a pretrained BERT model for the text domain to encode the sentences into a latent vector. Then we project this vector into a smaller dimensional latent representation. We train the projection using a regression model that predicts the attributes from the small latent representation. Figure 4.3 shows the architecture of the language model.

To train the projection, we are using information contained in another domain.

Ideally, we would directly use the pretrained language model representation as the latent space of the specialist module. However, because our dataset and model are small (in comparison with recent models, e.g., CLIP), having a large 768-dimensional BERT vector introduced too many weights to optimize for the translation model.

Besides, much information in the default BERT vector (such as grammatical information) is not predictive of the shapes and is, therefore, unnecessary. We choose this projection method in order to only keep the relevant information for our task.

In our experiments, we use the vision module with either the attribute or the text module, so the fact that we train the text module with information from the attribute domain should not affect the results of our experiments.

The designed architecture is one-directional, but we can still generate a visualization for representations that come from a translation of the GW. Indeed, from the latent representation, we can predict the attribute vector. We either use the visual visualization of the attribute domain or generate the sentence associated with the predicted attributes using the text generator.

Multimodal model

We will now describe how the modules are connected to the workspace, and the objectives used to train the model. The GW is an intermediary space that allows unimodal latent spaces to communicate. To connect the modalities to the GW, We use a semi-supervised setting for training, where we have a supervised loss and an unsupervised objective. The unsupervised objective is based on cycle-consistency and acts as regularization. We now describe the different loss components in detail.

Cycle-consistency

The cycle-consistency loss can synchronize latent spaces without supervision by leveraging some regularities in both domains. If both domains represent the same information, then there must exist a mapping between them. Cycleconsistency tries to solve this problem by translating input from one domain to another and forcing the back-translation to return to the original input:

d(e(x)) ≈ x
where e, d are the optimized encoder and decoder, and x is the input. If the backtranslation is similar to the original input, we can assume that the two spaces are synchronized.

In our case, the global workspace is between the two domain spaces. In the following, we call demi-cycle consistency the prediction of input into the global workspace and back-translated to the original domain. Let us first define the demicycle loss for domain m:

L m dcy = 1 |D m | x∈Dm ℓ (d m • e m (x), x) (4.3)
where m is a modality (vision, attribute, or text), D m is the unimodal dataset of modality m, and ℓ is the element-wise loss function (like the mean squared error).

Finally, the demi-cycle loss when training with two modalities m 1 , m 2 is defined as:

L dcy = 0.5(L m 1 dcy + L m 2 dcy ) (4.4)
Similarly, we call cycle-consistency a prediction of input into another domain via the GW and back-translated to the original domain:

L m 1 →m 2 cy = 1 |D m 1 | x∈Dm 1 ℓ (d m 1 • e m 2 • d m 2 • e m 1 (x), x) (4.5)
To have the full objective when training with two modalities:

L cy = 0.5(L m 1 →m 2 cy + L m 2 →m 1 cy ) (4.6)
Both objectives serve a different purpose: the cycle-consistency loss ensures that the two domains are synchronized; the demi-cycle consistency ensures that d m and e m are inverse functions of one another and forces the global workspace to coordinate the representations of the domains.

However, when there is not enough information in the domains, there can be several possible alignments that make sense in the unsupervised setting, but only one is correct. For instance, if we want to map the letters {a, b, c} to the numbers {1, 2, 3}.

Although we might want a linked to 1, b to 2, and c to 3, any one-to-one mapping is correct in this case, as there is not enough information on what the mapping is linking.

To solve this, we add more information with a variable amount of supervision.

The synchronized examples provide supervision, where both domains are available and represent the same information, and can come in two different ways: with a translation or a contrastive loss.

Translation loss

The first supervision loss we consider is the translation loss, where we predict one domain from the other, having pairs of synchronized examples (x 1 , x 2 ).

For the translation loss starting from modality m 1 and predicting modality m 2 :

L m 1 →m 2 tr = 1 |D m 1 ,m 2 | (x 1 ,x 2 )∈Dm 1 ,m 2 ℓ (d m 2 • e m 1 (x 1 ), x 2 ) (4.7)
where D m 1 ,m 2 is the supervision set of synchronized pairs of modalities m 1 and m 2 .

In the case of a model with two domains, the final loss is obtained by:

L tr = 0.5(L m 1 →m 2 tr + L m 2 →m 1 tr ) (4.8)
Contrastive loss Another option is to use contrastive learning where:

L m 1 ,m 2 cont = (x 1 ,x 2 )∈Dm 1 ,m 2 ℓ (e m 1 (x 1 ), e m 2 (x 2 )) (4.9)
where D m 1 ,m 2 is the supervision set of synchronized pairs of modalities m 1 and m 2 .

In the case of a model with two domains, the final loss is obtained by:

L cont = L m 1 ,m 2 cont (4.10)
The translation objective (eq. 4.8) optimizes both the encoders and decoders, which allows us to use it as a standalone objective. On the other hand, contrastive learning (eq. 4.9) only optimizes the encoders. When learning with the contrastive loss, we require an additional objective, such as the demi-cycle loss (eq. 4.4).

As opposed to the unsupervised cycle-consistency losses, the translation and contrastive losses require coordinated examples. This supervision can solve the alignment issue observed when training in a fully unsupervised fashion: indeed, infinite possible mappings of the domains exist, and only one is correct. Using the same example as before of mapping {a, b, c} to {1, 2, 3}, if we additionally provide that a maps to 1 and c maps to 3, then the ambiguity is completely removed.

Combining the objectives

The final loss function is a combination of the different objectives with different weights:

L = α tr L tr + α cont L cont + α dcy L dcy + α cy L cy (4.11)
In the experiments, we will name the models based on the coefficients: "tr" if we only use the translation loss, "tr+dcy+cy" if we use the translation, demi-cycle, and full cycle losses.

In our implementation, the shared workspace is implicit. It emerges from the chosen training objectives-the alignment task measures how similar the multimodal spaces S m of the different domains m are. For example, training a model with only the translation loss or the cycle loss does not produce a shared space. Indeed, the losses do not constrain anything on S m for all m. On the contrary, the contrastive loss directly optimizes the shared space. In the experiments, we will use the "tr" as a baseline without a shared space.

Experiments

As explained previously, we use the simple shapes dataset composed of K = 500 000

image-text pairs. To experiment with different levels of domain supervision, we will We experiment with different values for N ∈ {50, 100, 500, 1000, 5000, 10 000, 50 000, 100 000, 500 000}, and for the loss coefficients, with α tr ∈ {0, 1} and let the other coefficients vary in {0, 1, 5, 10}. We train two versions of the global workspace:

one where we align the vision and attribute modalities and one where we align the vision and text modalities. We report the value of the validation translation or contrastive losses as a function of N . Each point in the graph is one different model trained until convergence, and the same bimodal examples are used for models with the same value of N . We report the losses for the coefficients that lead to the best results for the translation task. 

Multimodal translation

First, let us focus on the model's performance on the translation task. Here, we evaluate the ability of the models to translate from one domain to another via the GW. In the following figure, we report the averaged translation loss as in eq. 4.8. We first observe that models trained solely with either the demi-cycle or cycle loss (dcy in dotted red in the image and cy in dotted green) cannot solve the translation task. They do not depend on the number of bimodal examples N , as there is no supervision during training (they can be interpreted as the N = 0 case of tr+dcy or tr+cy). These results justify our hypothesis that the unsupervised losses alone cannot solve the task.

Then, we can observe that the model trained with the cycle loss is better at translating than the one trained with the demi-cycle. It is a trend that other plots confirm, and it reinforces our claim that the cycle loss helps to synchronize the unimodal domain representation (translation) but does not force the GW to be aligned. On the other hand, the demi-cycle loss can align the workspace, as we will see later.

Suppose we now introduce some supervision with the cycle-consistency losses (solid lines in the figure). In that case, we see that the performance of the models improves (losses decrease) when we increase the amount of supervision (N ). We can expect this behavior; more supervision through the translation loss allows for better translation. What is more interesting is that the models trained with the translation loss in conjunction with the cycle loss (green and yellow lines) have better performance overall than those trained without. This result shows that the cycle loss helps to reduce the amount of supervision compared to a model trained with only the translation loss. Looking at the model trained on vision and attribute, and for a translation loss of about 0.03 (N = 1000 for the yellow curve), the model trained only with the translation loss requires N = 20 000, so about 20 times more annotation!

Let us now make the same comparison, using the contrastive loss instead of the translation loss for supervision, but still comparing the performance on the translation task (figure 4.5). We first observe that the model trained with only the contrastive loss does not decrease with increasing N . Indeed, the contrastive loss only optimizes the domain encoders. The translation task is impossible because the decoders are initialized randomly. However, we notice that the models trained with only the contrastive loss have very similar performance with the model trained with L cy . Besides, the performance of the model trained with only the demi-cycle loss seems to be worse than the other two. Looking at qualitative reconstructions made by those models on the visual domains (see figure 4.6), we can observe that all reconstructions are wrong and that the issues in the reconstruction are of different nature. It shows that for too high values of the translation loss, we cannot rely on the loss values.

A second observation we can make is that if we combine the contrastive loss with the demi-cycle loss (dashed red curve in figure 4.5), the models have better performance with increasing N . Indeed, the demi-cycle loss allows the optimization of the domain decoder, and the model can leverage supervision information provided by the contrastive loss for the translation task. Additionally, using the cycle loss with the contrastive and demi-cycle ones further improves the performance. It can even match the performance of models trained explicitly on translation, in the Vision-Attribute case, and up until N = 10 000. On the other hand, combining L cont and L cy gives the same constant curve across values of N as the one trained with only the contrastive loss for the Vision-Attributes case. Furthermore, this loss increases with N in the Vision-Text case. This result shows that if we choose to use the contrastive loss as the form of supervision, the demi-cycle loss is essential to train the model. combined with the demi-cycle loss to be used for supervision.

Multimodal alignment

We have now seen the impact of the various losses on the translation task. Another question we try to answer is how well the multimodal representations in the GW are aligned. We focus on the different models' contrastive loss L cont values to do so.

Indeed, the contrastive loss measures how similar the workspace representations of the evaluated models are.

In figure 4.8, we show the alignment performance of models trained with individual losses and in conjunction with the contrastive loss. The models trained with the contrastive loss are also shown (light blue with diamond markers) to compare achievable alignment when explicitly training for it.

First, we can see that models trained on the demi-cycle or cycle losses alone are not aligned. Then, combining the cycle loss with the contrastive loss does not allow a better alignment than learning with the contrastive loss alone. However, when combined with the contrastive loss, L dcy improves the alignment of the models, and it is even more pronounced when training with both demi-cycle and cycle losses (orange curve).

We now focus on the effect of the translation loss as a supervision objective on alignment, figure 4.9. We can observe that models trained without L dcy (green and light blue solid curves) do not improve with increasing N . It means that the translation loss (solid light blue curve) or the translation with cycle losses (solid green curve) do not allow alignment of the latent spaces. We can expect this result, as these losses do not explicitly optimize to align the latent space. A more interesting observation is that models trained with the demi-cycle loss and some supervision ("tr+dcy" in red or "tr+dcy+cy" in orange) manage to align the GW. Indeed, the "tr+dcy+cy" models can even compete with the model trained only on the contrastive loss, up until N = 10 000.

To sum up, the demi-cycle loss can help align the representations of the domains in the shared workspace. However, it must be combined with the translation loss.

Translation versus contrastive learning

We have seen how the translation or contrastive loss performs individually on the translation or alignment tasks. We will now focus on comparing the supervised loss.

Figure 4.10 compares the performances of supervised models trained either with the translation loss, or the contrastive loss, on the translation task. We see a similar trend as before: supervision+dcy+cy leads to better performance than supervision+dcy (we use supervision here as a placeholder for either tr or cont).

This graph also shows that optimizing the translation loss leads to better performance than using the contrastive loss on the translation task.

Similarly, figure 4.11 shows the same models on the alignment task. Here again, we observe, as expected, that models trained with the contrastive loss are better than the ones trained with the translation loss.

Finally, we can wonder what the performance of a model that combines translation loss and contrastive loss would be. translation loss, and with both supervision losses, and figure 4.13 compares models trained with the contrastive loss, and with both supervision losses. In both cases, the models trained with cycle-consistency losses and one supervision loss (tr+dcy+cy for the translation task and cont+dcy+cy for alignment) behave similarly to the one trained with both supervision losses (tr+cont+dcy+cy). This result is interesting, as the model trained with both supervised losses can bring the benefits of both worlds and is a reasonable compromise that can perform well in the translation task and have an aligned workspace. This conclusion reinforces the results of CoCa [START_REF] Yu | CoCa: Contrastive Captioners are Image-Text Foundation Models[END_REF], where they trained a vision and language model using a masked modeling task and contrastive learning and showed that it led to better performance than training with only one or the other. 

Generalization to a downstream task

To test the quality of the GW, we design a visual task and compare a baseline model with pretrained frozen visual encoders e v from the GW.

We design an odd-one-out task using three images from our simple shapes dataset,

where two share at least one attribute, and the last one shares no attributes with the other two. the "odd-one-out". This task should be achievable by a purely visual model, but understanding the different attributes of the objects will facilitate resolution. This task will allow us to see if the GW training can transfer the knowledge provided by the language domain to the visual one. Indeed, solving this task with access to the attribute is easy, as it was designed to be solved by selecting the attribute vector that is furthest from the other two in the Euclidean distance.

For the architecture, we first encode the images with the frozen VAE encoder, then use a visual encoder e v . Finally, the representations of the three images are concatenated and fed to a small two-layers feedforward classifier (containing 643 trainable parameters in total). We compare a baseline where we optimize the classifier and the visual encoder from scratch (138K trainable parameters) with pretrained and frozen visual encoders taken from our previous experiments (only the classifier is optimized). The pretrained visual encoders are trained with the cycle-consistency and translation objectives between the visual and language (BERT) domains. As the VAE already disentangles the different features to some extent, we also experiment with no encoder and provide the classifier directly with the VAE features (the "no encoder" label in the figure).

In figure 4.15, panel B, we plot the performance of our model on the odd-one-out task. The models are trained on the odd-one-out dataset, and the x-axis shows the number of bimodal examples used to train the encoders when they are pretrained to translate between modalities. We can observe that having no encoder is worse than training the model end-to-end with an encoder (baseline). However, it leads to non-random accuracy (random being at an accuracy of 1/3 rd ). Indeed, the baseline model has more trainable weights and is, therefore, able to better solve the task.

Looking at the models trained with pretrained encoders, we first observe that the performance on the task increases as N increases. The performance of these models on the translation and alignment task (see previous sections) can explain this observation.

As the number of bimodal data increases, the domain encoders and decoders learn a better mapping, leading to a better workspace representation for downstream tasks.

Moreover, we can observe a similar trend with the translation task results: The tr+cy and tr+dcy+cy models lead to better accuracies than tr+dcy or tr, and the performance seems to converge towards the same value for large N . It indicates that good performance on the translation task is most important here, as the cycle loss leads to better results than the demi-cycle one.

To summarize, the GW can be used as a latent space for the odd-one-out task to obtain better results than a model trained end-to-end on the task.

Discussion

In this work, we have trained a simple global workspace architecture and designed it according to the recommendations of [START_REF] Vanrullen | Deep Learning and the Global Workspace Theory[END_REF]. In particular, we have focused on how the training framework can align the domains in a shared workspace. VanRullen and Kanai suggest using a translation objective, particularly cycle-consistency, to align the domains in a semi-supervised fashion.

We evaluated the performance of our GW architecture on a handcrafted dataset called the simple shapes dataset. We analyzed the impact of two unsupervised losses Finally, the contrastive loss allows for an even better alignment of the latent space, although it does not improve the translation performance. We argue that using it as a training objective is beneficial.

Furthermore, we have shown that a purely visual odd-one-out downstream task benefited from the latent space of the GW, compared to an equivalent model trained end-to-end. To solve the odd-one-out task, one has to understand visual conceptswhat is a shape, a color, a position, rotation, or size -and compare these concepts from three different images. It is a trivial task from the attribute domain, as the visual concepts of the shapes are directly accessible in the attribute vector. However, this is more challenging from the visual domain because the visual features must first be extracted before being able to solve the task. We have also observed from the results that the unimodal latent space of the visual module ("no encoder" dotted line in figure 4.15) does not par with the performance of the other models. It is the case, even with a β-VAE known to separate the latent space into interpretable dimensions.

Moreover, the encoders trained for the GW using the semi-supervised framework provide a latent space that allows a simple linear projection to classify the images correctly. It shows that our learning framework allows the attribute domain to ground information into the visual domain by structuring its latent space. Unfortunately, the figure does not report the performance of models trained with L cont (specifically tr+cont+dcy+cy), which would have helped us better understand the importance of each component in solving the odd-one-out task.

These experiments have provided some answers on the utility of each of the losses we used, but it also brings some additional questions for future work. First, how to select good coefficients for the losses and how they should be balanced. Here, we opted to try values among {1, 2, 5, 10} as we have observed that this range gives the best results. In all our experiments, we also selected the coefficient that led to the lowest translation loss. Indeed, we wanted to compare the same models in the translation and alignment tasks. What is clear is that the choice of the value of the coefficients depends on the amount of supervision. For example, one would expect that the need for unsupervised losses decreases with the available supervision.

However, when plotting the best coefficient for each of the models, we did not observe a consistent trend (see figures 4.16, 4.17 and 4.18 for the chosen values of coefficients for each model). Additional experiments (notably repeating our results over several repetitions) may provide more hindsight for choosing the coefficient values.

Another interesting question is what happens when more than two modalities are involved. For example, we could simultaneously use the vision, attribute, and text domains. Using two domains did not allow us to focus on the fusion task, as our learning paradigm requires at least one domain not to be encoded in the GW to act as supervision. The GW theory advocates for a competition of the specialist module to enter the GW. One way of doing it is using a hard or soft attention mechanism to select the information from the domain to enter the space. Another exciting aspect of using at least three modalities is that we could observe some grounding properties.

For example, we could restrict our dataset to have annotation only in the form of pairs of domains and never triplets. We could also choose never to show one type of pair (for example, never have vision and attributes paired) and see how the grounding between these two domains. We hope that the cycle-consistency losses would allow aligning the GW for all domains, regardless of the type of annotation available, as long as modalities can be connected using transitivity. If we have annotations for vision-text and text-attribute, and if all domains are aligned, then vision-attribute should also be feasible.

We used a handcrafted, simple dataset to iterate our analysis quickly in our experiments. One can wonder how well these results generalize to different and more complex datasets. For example, the CLEVR dataset [START_REF] Johnson | CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning[END_REF], or the TVR dataset [START_REF] Hong | Transformation Driven Visual Reasoning[END_REF], are both datasets of 3D objects with attributes.

Moreover, they add another level of complexity as they all represent several objects that need to be encoded. For tri-modal data, we can also use a multimodal sentiment analysis dataset that provides visual, audio, and text domains like the CMU-MOSEI dataset [START_REF] Zadeh | Multi-attention recurrent network for human communication comprehension[END_REF].

From the experiments conducted on multimodal networks in chapter 3, we concluded that contrastive learning allowed us to keep only supplementary information from the domains and that complementary information was lost. With the addition of the cycle-consistency objectives, we hope that the demi-cycle loops allow the domain encoders to keep domain-specific knowledge in the multimodal representation.

However, our dataset did not allow us to test this hypothesis because all domains contain the same information. Future work could investigate this behavior by adding domain-specific information to our dataset and evaluating how the different models can retain this information in the multimodal space.

To conclude, we have studied the effect of cycle-consistency on a model based on the GW architecture and found that it leads to better performance with less annotation than fully supervised models. Then, we wonder how well current large multimodal networks would improve their representations if they used the same training paradigm we studied. Our study shows that the semi-supervised objective benefits translation and alignment. In particular, in could be used to improve: the aligned multimodal representation in CLIP; the supervised text to image translation in DALL-E 2, Imagen, or Stable Diffusion [START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF][START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF][START_REF] Rombach | High-Resolution Image Synthesis with Latent Diffusion Models[END_REF]; and even the supervised image to text translation in image-captioning models such as the model introduced by [START_REF] Anderson | Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering[END_REF], or

ClipCap [START_REF] Mokady | ClipCap: CLIP Prefix for Image Captioning[END_REF]. Perceptual modalities change with time and come as a stream (images become videos, for example). In addition to perceptual modules, the model might also need to perform actions on its environment using a policy module, which predicts actions given the GW latent space.

Furthermore, to solve complex tasks in a complex environment, imagining possible future outcomes helps to plan what will happen next, and how to behave. For example, to rival human opponents, AI agents that can play games (such as AlphaGo [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] in Go, or OpenAI Five [START_REF] Openai | Dota 2 with Large Scale Deep Reinforcement Learning[END_REF] in Dota 2) predict possible outcomes that will happen several steps into the future to plan their following action.

Having an internal representation of the environment has a long history in machine learning [START_REF] Friston | A free energy principle for the brain[END_REF][START_REF] Jordan | Forward models: Supervised learning with a distal teacher[END_REF][START_REF] Ha | World Models[END_REF]. One manner of using such a system is in forward learning, where a prediction of the future state of the world is made given the current state. A self-representation of the world is the basis of model-based Reinforcement Learning (RL) [START_REF] Janner | When to trust your model: Model-based policy optimization[END_REF], where a predictive environment model is used to derive the policy.

Intuitively, the human brain seems also to make use of this principle. To prepare for a trip, we can imagine all the steps, the road to turn into, or the landmarks we will cross. Besides, some studies [START_REF] Kawato | A computational model of four regions of the cerebellum based on feedback-error learning[END_REF][START_REF] Wolpert | An Internal Model for Sensorimotor Integration[END_REF][START_REF] Miall | Forward models for physiological motor control[END_REF] have shown that this principle coincides with experimental evidence.

To fit this idea into our framework, we would like to extend the GW with a world model that can act as a virtual environment. This chapter is a collection of ideas on how to merge the global workspace and a world model. Because of time, the implementations and experiments could not have been conducted, but it represents the research directions we would have liked to pursue.

Related Work

Forward learning has been used in control since the 90s [START_REF] Jordan | Forward models: Supervised learning with a distal teacher[END_REF].

This method does not need manual annotations compared to standard supervised approaches because the environment naturally provides supervision. To obtain the ground truth of a prediction, one has to wait and observe if the prediction comes true.

Model-based reinforcement learning algorithms also use a world model to learn a policy function that can predict which action to take given a state. For example, in [START_REF] Ha | World Models[END_REF], the authors added a world model to ease the training Friston's free energy model [START_REF] Friston | A free energy principle for the brain[END_REF][START_REF] Friston | The free-energy principle: a unified brain theory?[END_REF] also models the interactions between the environment and a world model (brain or machine). It models the active inference principle, where the world model acts on the environment and obtains sensations as feedback. The representation of the environment is learned by minimizing the free energy, which can be interpreted as minimizing the model's surprise.

In his recent opinion paper, (LeCun, 2022) proposes a full model of autonomous intelligence. The main component is the world model. It receives information from perception and memory and can predict the world's future states, which can then be used by the policy module (actor).

Method

Model

Following notations introduced in chapter 2, section 2.2, we define x k ∈ I k the input modality k and z k ∈ K k the unimodal latent vector of modality k obtained from x k .

The modality encoder e k projects the unimodal latent vectors into S k :

e k : K k → S k z k → e k (z k ) (5.1)
Additionally, we define S the global latent workspace.

To define our problem, we have m time-dependent domains x k t ∈ I k for a fixed time step t, and m associated pretrained specialist modules, that can encode the domains into an unimodal latent space z k t ∈ K k . Then, the modality representations are projected using the modality encoders s k t = e k (z t k ) ∈ S k , and the representation from all modalities are combined at a fixed time t into the global workspace representation

s t ∈ S: c : m k=1 S k → S (s k t ) 1≤k≤m → c (s k t ) 1≤k≤m = s t (5.2)
where c is the combination function and merges the domain representations into a single latent vector s t (we will discuss later the exact workings of c).

Then, the model must act to achieve a goal. For example, a user can give a goal through a perceptual modality. The model must then take actions to carry it out.

This means that the model must contain an actor module (or policy, π) that can predict an action a t ∈ A from s t ∈ S:

π : S → A (5.3)
Finally, we define the world model w, which uses the workspace latent representation s t ∈ S and an action a t ∈ A, and predicts a future time step of this representation ŝt+1 ∈ S:

w : S × A → S (s t , a t ) → w(s t , a t ) = ŝt+1
(5.4)

The world model is a function of the current world state and an action, and its goal is to describe how the state changes when we complete the action a t . Figure 5.1 illustrates how the world model connects to the GW and the actor module.

Multimodal Fusion

In the experiments done in chapter 4, the representations from the different modalities were not merged into a unique representation (multimodal fusion) because we only used two modalities. However, in most cases, the supplementary information contained in the modalities can help shape a better multimodal representation, and encoding several of them simultaneously into the multimodal space is necessary.

In the original theory of the GW [START_REF] Baars | A cognitive theory of consciousness[END_REF], Baars describes a competition between the specialists to access the workspace. Previous work [START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF] have used a key-query-value attention mechanism (such as in [START_REF] Vaswani | Attention Is All You Need[END_REF])

to select the information transmitted into the workspace. The previous state of the workspace can act as the query of the attention mechanism (it provides context for the new state), and all the latent representations of the specialist modules define the keys and the values. It defines a complex form of attention that will be discussed further in the discussion. As a first implementation, though, we will combine the content of all modules without competition by summing their representations before the activation function.

The advantage of the sum (over concatenation, for instance) is that the global latent representation can be of a fixed dimension, regardless of the number of specialist modules connected to the global workspace. Moreover, inactive modules (modules The image represents a tiny dark slate blue color deformed square shape, and is at the lower left, pointing southwest.

start domains target domains

Figure 5.2: Illustration of the imitation task. A start and a target shape are selected, and the goal is to predict the transformation τ in the attribute space (object category, location, size, rotation, color) required to go from one shape to the other. Some domains can be unavailable (such as the text domain of the start shape).

that do not produce any input at a given time) do not need to encode a zero-state.

However, using a sum means that we lose the origin module of each contribution in the summed representation. It is acceptable if all the modules encode the same congruent information, but this is problematic if several modules encode supplementary information in the same latent space. In transformers, they solve this issue by adding a position embedding modulation to each token to keep track of each token's contribution. In our model, we will assume that the modality encoder of each specialist module is trained to encode supplementary information in a way that can still be accessible in the summed representation.

Evaluation Task

Based on our goals, we build an artificial evaluation task that will use the simple shapes dataset introduced in chapter 4. Given some modalities, we design a task where the model has to perform actions to solve a task. It consists of having the model predict the visual transformations required to change a starting object from the simple shapes dataset into a target object. The policy module predicts the transformation given the start and target objects encoded into the global latent workspace. The transformation is represented by the relative attribute vector we need to add to the start attribute vector to obtain the target attribute vector. See figure 5.2 for an illustration. In the following, we will denote this task as the "imitation task".

Training

To train w, we take advantage of the predictive nature of w and use a predictive coding algorithm. At time t, w predicts the following state ŝt+1 given the previous state s t and an action a t performed on the environment, and this prediction is compared with the actual workspace state at the next time step s t+1 (s t+1 encodes the observation of the environment after having performed a t ). The difference between the prediction ŝt+1 and the real future state s t+1 is used as an error to optimize w. To implement this learning procedure, we gather triplets of states and actions, sampled from the real environment (s t , a t , s t+1 ) by doing random actions and observing the outcome. These triplets are then used as supervision to train w. It can be seen as an exploration

where w is trying to understand how specific actions affect the environment.

Moreover, the policy module is connected to the multimodal space and predicts actions from the broadcast representation of the workspace. Predictive coding alone cannot optimize a good policy because we sample random actions to obtain the prediction of the next state.

An additional objective is required to optimize the actor. The first way is to rely on the environment by sampling random actions (exploration), observing how it changes the environment, and obtaining a reward signal that we can use to train the policy using reinforcement learning. We obtain the reward signal for a given task by establishing if the new state s t+1 corresponds to the state of the solved task.

However, if the world model is faithful to the environment, it can be leveraged to optimize an optimal policy for a given task directly. Indeed, as opposed to the environment, the world model is not a black box, and we can compute gradients through the model to directly optimize the policy for a given task. 

Experiments

No experiment has been conducted, but we suggest some experiments that we deem interesting in this section.

The imitation task presented above can be used to evaluate the model's potential planning ability. As a reminder, we use the dataset that we created in chapter 4 to create a task where the model has to predict a transformation in order to transform a starting shape into a target shape (see figure 5.2). The model will have five modalities:

a starting visual and a starting text modality, a target visual and a target text modality, and a transformation modality (the policy module which will predict the model's actions). We illustrate this in figure 5.3. Either the visual or text modality can provide the start and target objects.

As in the previous chapter, the specialist modules are pretrained and frozen.

Moreover, in the previous chapter, the encoders and decoders were trained using translation, contrastive, and cycle-consistency objectives. It was possible because the domains represented the same information. In this instance, some domains encode the same information (visual and text domain of the start or target shapes).

However, some domains also have complementary information (start domains, target domains, and transformation). The predictive coding loss will complement the ones introduced in the previous chapter to optimize the domain encoders and decoders.

The translation loss can be seen as a predictive coding prediction where the inputs are constant over time. It means that we train the world model in conjunction with the global workspace in the way detailed in section 5.3.4.

Then, we train the policy module using the pretrained world model and an explicit loss function on the task. Indeed, we can optimize the policy so that the predicted start modules from ŝt+1 are equal to the target modules using gradient descent. Using the world model in this instance is similar to "dreaming", and it would allow the model to learn the policy by simulating outcomes.

The reported performance can be compared with the performance of a model trained without a world model, where the policy is learned with an RL setting.

Similarly to the experiments done in the previous section, we can observe the effect of the cycle-consistency of the performance of the world model. Moreover, we can consider a "temporal" version of cycle-consistency objectives, where a modality is translated into a future step using the world model, and forcing the back-translation to be equal to the original input. Hence, a reverse function of w is required for the back-translation and is learned thanks to the cycle-consistency losses. Additionally, we can observe how the quality of the predictions of the world model affects the actor's performance.

Discussion

Here, we presented an extension of the GW model designed in chapter 4, where we added a world model that can predict future states of the workspace given an action. This module can be used as a simulation environment to train policy modules on specific tasks. However, it can also be used to learn domain representations for modules that depend on time (motor modules or even memory, which will be further discussed in chapter 6). We suggest some experiments to compare the model with an RL approach that does not have access to a world model.

With the addition of the world model, the model can be optimized for specific tasks and dream about the future to plan sequences of actions. When humans ponder and imagine future outcomes through their representation of the world, they sometimes imagine several steps into the future, not only the immediately following step. We can achieve this by iteratively using the world model to predict several steps into the future. However, how to differentiate between a dreamed action used for a future state prediction or an executed action? Indeed, we can imagine ourselves doing actions in our heads, but this does not mean we achieve them in real life. In our simple experiment, this does not matter, but this problem will have to be resolved for more complex environments.

Finally, many design iterations were considered when considering how to integrate the world module with the global workspace. In particular, one initially debated aspect was that the world model requires the policy module's output but not the output of the other modules. This implementation breaks the model's symmetry as the policy is treated differently than the other modules. In fact, how is the actor module different from the other specialist module? Why is it critical that it directly communicates with the world model and does not use the global latent workspace like the other modules?

The actor requires the representation of the GW to predict the action, so the action has to happen after computing the workspace state s t . Then, the world model needs the chosen action in addition to s t to predict a future state conditioned on an action, and this information is not available in s t . Hence w needs to be directly conditioned on the predicted action. In an even more general setting, we can conclude that the world model takes as input the GW representation s t and the output of all specialized modules to make its prediction. The outputs can be empty (for example, perceptual modules do not produce any outputs). However, they can also provide essential information for the prediction (from the actor module or a memory module that fetches stored content). With this interpretation, the symmetry is restored, and all modules are used in the same way.

Chapter 6 Discussion

It is without a doubt that multimodal networks will play a significant role in future artificial intelligence (AI) applications. First, machines will need to take advantage of all possible sources of information (visual, olfactory, or haptic stimuli, for instance).

For example, some autonomous cars simultaneously use cameras for visual input,

LIDARs, which provides a 3D point cloud of the environment, and RADARs. Combining the information gathered from the three sources allows them to be robust to weather conditions and obstructed or dirty sensors. Moreover, the different domains can leverage complementary information to train the models. For example, large bimodal models such as CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] use online data where images and text are paired to align a visual and a language encoder using contrastive learning.

In chapter 4, we showed a semi-supervised approach for multimodal translation and alignment that also used redundancy in the modalities to optimize the models using cycle-consistency. In any case, combining modalities to obtain a meaningful, grounded multimodal representation is a complex task. Current multimodal networks use large datasets hoping that the sheer amount of examples will suffice. This training paradigm produces models with impressive performance and with new emergent abilities. However, it appears that these models do not behave as we would expect, and we showed in chapter 3 that multimodal networks do not generalize as well as purely visual models to new vision classification tasks. Besides, one would expect that the regularization provided by the different modalities would make the model more robust to adversarial attacks than purely visual models. However, we showed that this is not the case.

In this chapter, I will discuss the results presented in this dissertation and give our opinion on some aspects of the current state of multimodal AI. First, I will discuss the generalization abilities of multimodal networks (and CLIP in particular) in section 6.1 and describe in what cases multimodal networks outperform unimodal ones in generalization. Then, I will provide some opinions on the source of generalization in section 6.2 and why multimodal networks are particularly well-suited. Finally, in section 6.3, I will provide some perspectives on the global workspace implementation I introduced in the previous chapter and what can be improved in our implementation.

When does CLIP help generalization?

In chapter 3, we showed that multimodal networks -including CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] -do not generalize better than visual-only models on few-shot and transfer learning tasks. It has also been reported in [START_REF] Zhai | LiT: Zero-Shot Transfer with Locked-image Text Tuning[END_REF], where CLIP-like architectures had better generalization performance on visual datasets when the visual encoder is frozen and has only been trained on visual data. Thus, we concluded that the way current models incorporate multimodality does not allow models to retain better visual features than their unimodal counterparts. However, we tested the multimodal networks on purely visual classification tasks, which do not fully represent the kind of task that multimodal networks can achieve. Indeed, they are trained to synchronize a vision and language stream; in particular, CLIP uses images and descriptions gathered from the web, where the descriptions were intended for human users. In a recent study, [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF] showed that individual neurons in CLIP could represent entire multimodal concepts, reminiscent of concept cells in the brain [START_REF] Quiroga | Invariant visual representation by single neurons in the human brain[END_REF][START_REF] Reddy | Concept cells through associative learning of high-level representations[END_REF]. Besides, when feature representations of multimodal and unimodal networks are compared to fMRI of human brain regions, multimodal features have a higher correlation with the brain, especially with the hippocampus, where concept cells are located [START_REF] Choksi | Multimodal neural networks better explain multivoxel patterns in the hippocampus[END_REF].

To find why we observe a discrepancy with unimodal networks on a purely visual dataset, we conduct additional generalization experiments on more human-centric datasets. In [START_REF] Bielawski | When does CLIP generalize better than unimodal models? When judging human-centric concepts[END_REF] 1 , we compare CLIP (we use the version using a ResNet50 backbone to be comparable with the other models) with a ResNet50 and BiT-M on new generalization tasks based on classification, which correspond to more natural human tasks. We coined this type of task "human-centric" based on cultural, social, affective, or aesthetic concepts. In particular, we focus on visual and linguistic tasks, such as predicting the genre of a book or a movie based on its cover, poster, or a combination of text and image inputs. Successfully solving this requires extracting detailed information about the images, such as style, composition, conveyed emotions, or artistic choices. The first dataset is Multi-View Sentiment Analysis (MVSA) [START_REF] Niu | Sentiment analysis on multi-view social data[END_REF]. It is a dataset of pairs of images and text from Twitter labeled with three levels of sentiments (positive, neutral, or negative). The second dataset is the Book Covers dataset by [START_REF] Iwana | Judging a Book By its Cover[END_REF], and improved by [START_REF] Lucieri | Benchmarking Deep Learning Models for Classification of Book Covers[END_REF], containing 55.1k images of book covers scraped from the Amazon website, paired with the title, and a genre (from 28 possible genres). For the last dataset called Plotster, we gathered 207,902 movies from the TMDb website (themoviedb.org), which is a community-handled database of movies. Each example comprises a title, a poster, the synopsis of the movie, and a list of genres that qualify the movie among 19 possible values. As CLIP can read texts in images from its visual encoder, we also extend the dataset with a "masked" version. We mask the text present in the images with a black box, using the EAST algorithm [START_REF] Zhou | EAST: An Efficient and Accurate Scene Text Detector[END_REF] CLIP is the best performing model on the Book Cover dataset (table 6.2), even in the masked setting. On this dataset, CLIP beats the state-of-the-art results by [START_REF] Lucieri | Benchmarking Deep Learning Models for Classification of Book Covers[END_REF] for unimodal CLIP (with a previous SOTA of 27.8%), unimodal CLIP-T (with a previous SOTA of 55.6%), and bimodal CLIP+CLIP-T (with a previous SOTA of 55.7%). On the Plotster dataset (table 6.3), CLIP again outperforms the unimodal networks, even when text is masked. It shows that the performance of CLIP does not only come from its ability to read texts and might be the result of some multimodal grounding.

In general, CLIP outperforms the unimodal network on human-centric tasks.

Nevertheless, CLIP-T has fewer parameters than the other language models.

We also replicated the results that we showed in chapter 3 (see figure 6.1). We evaluated the visual parts of the models on the new tasks and obtained that CLIP surpasses all unimodal models. This result further shows that multimodal training alters the learned features, such that they are more adapted to what we call humancentric concepts. The language stream regularizes the visual models by providing Figure 6.1: Few-shot learning accuracy (vision-only) over single label datasets (Book Covers, MVSA) and f1-score over the multilabel Plotster datasets. The leftmost panel reports average accuracy on six standard visual datasets used in chapter 3namely CIFAR10, CIFAR100, CUB, FashionMNIST, MNIST, and SVHN. Accuracy was recomputed using the same method as for our datasets; the conclusions are identical to those of chapter 3: CLIP does not perform better than RN50 or BiT in this few-shot learning setting. On the contrary, CLIP outperforms the two other vision models for our datasets. The advantage is reduced but still present when masks are applied. additional information and introducing a structure in the features (see section 6.2).

Bert-base

This work does not change the conclusions we drew in chapter 3. However, it helps us further understand the abilities of multimodal networks. Purely visual tasks, specifically visual classification tasks, only require an understanding of visual features.

The models must build complex shape detection filters to solve ImageNet-1K or even ImageNet-22K. Indeed, ImageNet contains various classes, and some are very similar visually (breeds of dogs, or birds, for example).

On the other hand, bimodal networks rely on human descriptions as supervision.

This type of supervision is noisier but can provide more data than a simple label.

We use the term human-centric to talk about tasks that are helped by this type of annotation. We focused here on sentiment analysis and genre classification, which requires artistic and cultural knowledge. The results we obtained hint at the possible use of multimodal training paradigms for more general and complex tasks.

These experiments also help justify global-workspace-inspired models for multimodal learning. Indeed, we see that text annotation for images is beneficial for human-centric models but at the expense of their performance on unimodal tasks. Besides, choosing to use pretrained models for the unimodal models should hopefully transfer knowledge between modalities while still allowing them to stay faithful to their initial domain.

Does Generalization come from Decomposition?

The ability to generalize to unseen data has always been the Grail of AI models. To It means that the model will not see these examples during training and will be used to evaluate the model's performance.

Current AI models can generalize to unseen examples to some degree, and current research is evaluating the performance gap between training distributions and realworld distributions [START_REF] Mitchell | Explanation-based generalization: A unifying view[END_REF][START_REF] Nakkiran | The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers[END_REF].

New visualization techniques have been developed [START_REF] Olah | Zoom In: An Introduction to Circuits[END_REF] to directly analyze individual neurons by visualizing the features extracted by each neuron.

These methods have revealed a hierarchy of the features learned by the neurons.

Feedforward neural networks are naturally hierarchical: they contain several layers of depth, and each layer builds on top of the previous one. As a result of this architecture, low-level neurons are activated when simple features are present (curves, angles, or high and low-frequency patches). The higher-level neurons can represent complex objects regardless of the pose (for example, a pose-invariant dog neuron).

Decomposing images (or inputs more generally) into smaller parts might play a significant role in the ability to generalize to new objects. Indeed, these smaller parts can be recycled to detect new objects: horses, donkeys, and zebras share a lot of similar attributes, for instance, and a hoof feature learned from horse images can be used for zebras as well.

In zero-shot learning [START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF][START_REF] Xian | Zero-Shot Learning -The Good, the Bad and the Ugly[END_REF], generalization is pushed to the extreme, as the evaluation datasets contain categories that are not seen at all during training. Additional information in the form of a semantic modality is added. Instead of directly predicting the category, a pretrained visual feature extractor predicts a visual vector that is then projected into an attribute space. This attribute space describes essential features of the category (for example, textures, colors, abilities, or shapes). Some features are shared among several categories, which is what is used to classify new objects: if we know how to describe an object in the attribute space, we can deduce how it will look and recognize it when a visual occurrence appears.

Here an explicit synchronization is done. Recently, CLIP [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] took advantage of the web and trained a model on images and captions. According to them, this model has impressive generalization abilities: it can perform well in a zero-shot setting on many classical datasets (with performances on par with stateof-the-art models trained directly on those datasets). A following work [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF] analyzed individual neurons inside the final convolution layer of CLIP and found the individual neurons to be very interpretable.

However, we showed in chapter 3 that unimodal visual models generalize better than CLIP. Although it is astonishing at first, it may be because CLIP is trained to synchronize both domains without ensuring that each modality stays faithful to its original domain. In [START_REF] Zhai | LiT: Zero-Shot Transfer with Locked-image Text Tuning[END_REF], they showed that a similar training to CLIP but keeping the visual domain frozen leads to even better performance. In any case, this is what we set to achieve by taking inspiration from the global workspace architecture: expert modules are pretrained (for example, a visual domain pretrained on ImageNet, an object detection on CoCo, and a language model on Wikipedia), and we can improve their representations by learning translations between the modalities.

By doing so, we leverage all the information in the different modalities to define the best decomposition for the inputs. A decomposition that is satisfying for several modalities should be more robust than a decomposition that has been inferred from only one domain.

That seems to be the case looking back at the odd-one-out experiment, figure 4.15. This experiment shows three images containing a shape with multiple attributes (location, size, rotation, and color). Two images have at least one attribute in common, and one is entirely different. The visual model needs to decompose the image into individual attributes to solve the task. We directly compare the visual featureslearned with only visual information (labeled no encoder) and bimodal networks (all colored curves). All variants trained using two modalities perform better on this task. Indeed, even though β-VAEs have good decomposition properties, the bimodal networks are directly learned with a modality that naturally decomposes the attributes, leading the joint space to be adapted for the odd-one-out task.

Perspectives on the Global Workspace model

The global workspace theory of Baars [START_REF] Baars | A cognitive theory of consciousness[END_REF][START_REF] Baars | Global workspace theory of consciousness: toward a cognitive neuroscience of human experience[END_REF]) is a cornerstone model of consciousness, and some works have already tried to implement a computational model [START_REF] Dehaene | A neuronal model of a global workspace in effortful cognitive tasks[END_REF] as a way to confirm the cognitive model, or to use its principle for multimodal learning [START_REF] Juliani | The Perceiver Architecture is a Functional Global Workspace[END_REF][START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF]. These models provide first implementations, but their training framework does not entirely reflect how humans learn. A standard model of how humans start their learning process is the Bayesian approach of trying to build a statistical model of what they perceive [START_REF] Friston | Predictive coding under the free-energy principle[END_REF]. Predictive coding, which consists in correcting a mental model of the environment, is one way to build a statistical model. Predictions of sensory inputs are compared with the actual inputs and are used to improve the mental model. In conjunction with predictive coding, humans also learn from their environment from reinforcements [START_REF] Holroyd | The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity[END_REF]. Punishments and rewards condition the brain and provide feedback to teach us how to behave in certain situations.

On the other hand, the global workspace's first implementations rely on learning the representations to solve one task and do not try to acquire a statistical model of the world. In our model, we are training the GW models using a translation task regularized by cycle-consistency. This method builds a representation of the world through statistical correlation of the modalities and can be seen as a form of predictive coding.

We will now focus on aspects of the GW theory lacking in our current implementation and some work directions we could pursue to improve the current implementations.

An attention mechanism

Attention is a critical aspect of the GW that was not part of our design. In our model, only one modality simultaneously had access to the global workspace, and no attention mechanism was required.

In Baars' theory of the global workspace [START_REF] Baars | A cognitive theory of consciousness[END_REF], unimodal specialists compete to enter the shared workspace. This competition process is modelled in [START_REF] Jaegle | Perceiver: General Perception with Iterative Attention[END_REF] and [START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF] by the key-query-value soft attention mechanism of the transformer architecture. This form of attention selects information from the unimodal specialist modules that fits a particular query conditioned by the global workspace state. The query represents previously encoded prior knowledge in the workspace and also encodes the current task the model is trying to solve. For example, while watching a scene with several animals, if the task is to follow the movement of a cat, the information about the other object is not relevant, and the query selects cat-related information from the specialized modules.

This query selection is top-down (task-related), but this attention mechanism can also select information based on a bottom-up criterion. Indeed, suppose a specialized module contains salient information that is important for the model (for example, we follow the cat's movement, but a wild lion is running towards us). In that case, this information can be selected by providing a universal key that will allow the information to be selected regardless of the query.

This type of attention provides a way to select information from the unimodal modules. However, we might want a more competitive implementation of attention, where some models are entirely prevented from entering the workspace. A hard attention mechanism would select only one module to enter the workspace, which is limiting, as there is no more interaction between the domains. In [START_REF] Goyal | Coordination Among Neural Modules Through a Shared Global Workspace[END_REF], they experiment with top-k attention, where only k modules can be encoded with the soft-attention mechanism. This hybrid method gives more competition between the specialist modules, as some will not be able to enter the workspace in any way.

In addition to select the information that can enter the GW or not, this mechanism also produces contextualized vectors with merged information from the domains (see eq. 2.6). Going back to the implementation we introduced in chapter 4, an attention module could be added after predicting the domain encoders. The representations of the unimodal specialist are first encoded into a common representation (to have the same dimensions), then they would act as the keys and values of the attention model. For the query, we use the design described in chapter 5, where we added a world model and made the model autoregressive. In that case, the query is defined by the workspace state of the previous time step. The controller can also write information in the memory. The result is returned as external output. Image credit: [START_REF] Graves | Neural Turing Machines[END_REF].

Memory module

In the simple tasks we presented in chapter 5, no memory module was required to solve them. Indeed, short-term memory could be used thanks to the recurrent nature of the model, which should be enough to solve the tasks. However, memory stored through a recurrent process vanishes quickly [START_REF] Hochreiter | Recurrent neural net learning and vanishing gradient[END_REF], and more complex planning tasks require a better memory storage system.

In the context of the GW, a memory module would be used the same way as the other specialist modules. The module has two available actions: read, and write, and already existing architectures, such as Neural Turing Machines [START_REF] Graves | Neural Turing Machines[END_REF] (see figure 6.2 for an illustration of the method), can be adapted to work with the workspace.

Neural Turing Machines (NTMs) are composed of a memory bank where the information is stored and a controller that can read or write in the bank. The access of information can be done either by location, by providing the index in the memory, or by content, by providing a key that represents the content that is looked for, similarly to how we search on search engines using a text description.

In the context of our GW implementation, let us first recall the computing steps of the extended model from chapter 5 (figure 5.1):

1. first, specialized modules produce unimodal representations;

2. then, the modules compete to access the workspace -in our case, we described a concatenation for the fusion of the models, but a more advanced mechanism like the attention mechanism presented in the previous section could also be used;

3. the selected module is projected into the workspace using the domain encoder;

4. the workspace representation is broadcast to all modules; 5. go back to the first step, with new inputs from the environment.

To accommodate the NTMs, we need to define how to obtain the external input of the NTMs and how the external output is used. First, the input is directly provided by the state of the workspace obtained after the broadcast. An additional process decides between three actions: read, write, and no operation, and it also predicts the content for storage or retrieval. Then, the controller's output acts as a modality and partakes in the competition to enter the workspace. Two time steps are required to access information from memory: one to instruct the memory module to fetch information and one to use the memory output. Note that the memory module must compete with the other modules to enter the GW. However, as the previous workspace state has requested some information retrieval, this module will have a high priority to enter the workspace. If this is not the case (salient representation from another module taking precedence, such as the information of imminent danger), and until the memory module has not been selected to enter the workspace or until another read request is initiated, the NTMs will continue to make the last "external output" available at every iteration.

World Model and the Global Workspace

We presented in chapter 5 an extension of the GW, where we added a prediction model that could predict the future state of the GW. The workspace acts as a representation of the world and can be used for planning. Moreover, it allows training modules such as memory (see the previous chapter) or motor modules. Hence, the resulting model is fully equipped to integrate multimodal information but also interact with its environment and other entities (embodiment and social world scopes of [START_REF] Bisk | Experience Grounds Language[END_REF]). I often give robotic analogies in the discussion.

As explained in the previous chapter and at the beginning of this section, several would benefit from all three types of error signals. In particular, domain encoders and decoders of output modules, such as motor modules, or memory (the answer to a read request is not instantaneous and is accessible after one or more time steps), would benefit from a temporal predictive coding objective in addition to reward signals.

Another question remains: several versions of the workspace are required simultaneously. One is used for inference, and one comes from the world model prediction at a future time step. This representation must be stored separately from the current global workspace state to not interfere with the GW representation. In the implementation, this is not problematic, as the prediction of the world model can be stored in a separate variable. In the brain, this means that either a memory mechanism is used to store the prediction or that there is a copy of the neurons used to encode the GW state that the world model can utilize.

Another possible option (which architecturally would be different from the two options presented in the previous chapter) is to schedule the use of the GW neurons.

In more detail, the workspace would be alternatively populated by current data encoded by the specialist modules and by the prediction of the world model. It also means that the information predicted by the world model is broadcast to all modules every two steps. It is a form of multiplexing which is not biologically incompatible, as we know that the brain can produce some form of multiplexing [START_REF] Lankarany | Differentially synchronized spiking enables multiplexed neural coding[END_REF].

Conclusive Words

The working principles of modern machine learning have been heavily inspired by the human brain [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]. Neuroscientists have been studying the brain for several decades, and cognitive theories backed by experimental studies, are a precious source of inspiration for machine learning. Conversely, implementations of brain theories can give feedback, and confirming or not their validity. Indeed, through the behavior of the computational model, it can consolidate, or invalidate the theory.

In this dissertation, we focused on the global workspace theory of consciousness [START_REF] Baars | A cognitive theory of consciousness[END_REF][START_REF] Baars | Global workspace theory of consciousness: toward a cognitive neuroscience of human experience[END_REF], as a way to represent multimodal information. The first implementations we provided, or coming from the current literature, revealed that it can perform multimodal grounding and alignment without requiring massive amounts of supervision. It is advantageous, compared to other multimodal foundation models, such as CLIP, which have been trained with more than 400M image-text pairs.

Besides, the amount of data and compute we use to design our machine learning model is skyrocketing. New AI models report increasing FLOPS (number of floating point operations per second), and throughput (processing speed) for their model.

Indeed, they require large computing clusters; In PaLM [START_REF] Chowdhery | PaLM: Scaling Language Modeling with Pathways[END_REF], they used the pathway architecture [START_REF] Barham | Pathways: Asynchronous Distributed Dataflow for ML[END_REF] that allowed them to train the model on 6144 computing chips.

This could be problematic at two levels. First, ecologically speaking, powering the computing chips used to train the models consumes a lot of energy. Some studies report the amount of CO2 emissions produced by the development of those models [START_REF] Strubell | Energy and Policy Considerations for Deep Learning in NLP[END_REF][START_REF] Schwartz | Green AI[END_REF]. However, this is to be nuanced by the fact that these large foundation models are often accessible online, without the need to retrain the models. Besides, they can be used for many downstream applications, and are now used by many products (BERT for instance has been used in google search 2 to allow more natural text prompts). Besides, the efficiency of the computing chips used for training are improving exponentially over the years.

Second, economically speaking, training large scale models requires access to big data clusters and is extremely expensive [START_REF] Strubell | Energy and Policy Considerations for Deep Learning in NLP[END_REF]. AI companies have financed most recent foundation models. However, small labs can still contribute through the use and analysis of these large models. Moreover, some large supercomputer 2 https://blog.google/products/search/search-language-understanding-bert such as Jean Zay, or CALMIP financed by states or regions, are also available to researchers: for example BLOOM 3 , a 176B parameter language model trained on 59 languages, was released in summer 2022 by BigScience, and was trained on the Jean Zay supercomputer.

Most certainly, AI models will play a big role in upcoming crisis [START_REF] Rolnick | Tackling Climate Change with Machine Learning[END_REF], through predictions and optimizations.

2. 1
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 21 Figure 2.1: Illustration of the Global Workspace theory. The concentric circles show the hierarchy of the specialized modules, with sensory modules in the extremities and more central processes in the center. Each specialized module processes information independently and competes with the other modules to access the global workspace.Information is selected either because it is relevant to the current task (red processes) or because its content is salient (gray processes). The content in the global workspace can be broadcast to the other modules thanks to long-distance interconnectivity. Image credit: (VanRullen and Kanai, 2021).

Figure 2 . 2 :

 22 Figure 2.2: Schematic of the Global Latent Workspace. Unimodal modules are pretrained models (object detection, NLP, memory). The GW connects them with bidirectional encoders. Image credit: (VanRullen and Kanai, 2021)
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 23 Figure 2.3: Diagrams of the different methods of multimodal integration. The rectangles containing different shades of red represent input feature vectors. Purple blocks represent unimodal layers, and green blocks represent multimodal layers. The full arrows represent the fusion of two representations using a fusion function (like concatenation). The dashed lines indicate that the representations are constrained to be identical according to a similarity metric. A) early fusion, B) late fusion, C) alignment, D) fusion and alignment.
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 2 Figure 2.4: VideoBERT. Image credit:[START_REF] Sun | VideoBERT: A Joint Model for Video and Language Representation Learning[END_REF] 
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 2 Figure 2.5: ViLBERT. Image credit:[START_REF] Lu | ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks[END_REF] 
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 2 Figure 2.6: LXMERT. Image credit:[START_REF] Tan | LXMERT: Learning Cross-Modality Encoder Representations from Transformers[END_REF] 
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 2 Figure 2.8: VL-BERT. Image credit:[START_REF] Su | VL-BERT: Pre-training of Generic Visual-Linguistic Representations[END_REF] 
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 2 Figure2.9: UNITER. Image credit:[START_REF] Chen | Uniter: Universal image-text representation learning[END_REF] 

Figure 2 .

 2 Figure2.12: Perceiver. Image credit:[START_REF] Jaegle | Perceiver: General Perception with Iterative Attention[END_REF] 

Figure 2 .

 2 Figure 2.14: Contrastive Learning in CLIP. A visual encoder projects images into a latent representation, while a text encoder (transformer) transforms the associated captions. All visual representations are compared with the text vectors to construct a similarity matrix in blueish color. The goal is that each real pair has a similarity of 1, and the image and text that do not come from the same pair have a similarity of 0. Image credit: the small images on the left have been generated by OpenAI's DALL-E 2.

Figure 2 .

 2 Figure 2.16: Expected risk curve (black) decomposed in terms of variance (red) and squared bias (blue). Figure taken from (Yang et al., 2020).

  Figure 2.17: Example of data augmentations. We can obtain four different images from one image with the same annotation. Original image from the ImageNet dataset.

  objective of zero-shot learning is to detect new objects without having image examples of these objects during training. The class categories are separated into two sets, the "seen" objects with image examples in the training set and the "unseen" objects which do not appear in any image in the training set.

  on multimodal datasets can benefit from the wide availability of large image-caption datasets. A recent model (CLIP) was found to generalize well in zero-shot and transfer learning settings. This could imply that linguistic or "semantic grounding" confers additional generalization abilities to the visual feature space. Here, we systematically evaluate various multimodal architectures and vision-only models in terms of unsupervised clustering, few-shot learning, transfer learning and adversarial robustness. In each setting, multimodal training produced no additional generalization capability compared to standard supervised visual training.
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 31 Figure 3.1: Size of the training dataset used by the models (number of images, in log scale). ICMLM and VirTex are trained on CoCo, TSM on HowTo100M, CLIP on a (not publicly available) scrape of the internet, RN50 is trained on ImageNet-1k, the AR models and SIN models are trained on augmented versions of ImageNet-1k and BiT-M is trained on ImageNet-21k.

  understand the potential effects of linguistic training, we compare the multimodal networks to vision-only networks. We include a baseline architecture (ResNet50) trained on ImageNet-1K[START_REF] He | Deep residual learning for image recognition[END_REF] (1.3M labelled images). Second, we consider a similar architecture (ResNet50 backbone) called BiT-M[START_REF] Kolesnikov | Big transfer (bit): General visual representation learning[END_REF], trained on ImageNet-21K, a much larger dataset (14M labelled images).While generalization and robustness properties can often be derived from access to large labelled image datasets (as in BiT-M), obtaining such labels is costly. An alternative is to train models with additional datapoints based on assumptions about the real-life data distribution-as done, e.g., with adversarial training. In this study, we use the Adversarially Robust (AR) ResNet50 models provided by[START_REF] Engstrom | Adversarial Robustness as a Prior for Learned Representations[END_REF], trained on the 1.3M ImageNet training set plus 110 adversarial attacks of each image (i.e. more than 140M images overall). The different model variants (AR-L2, AR-LI4, AR-LI8) correspond to distinct adversarial attacks (refer to[START_REF] Engstrom | Adversarial Robustness as a Prior for Learned Representations[END_REF] for more details). This adversarial training was found to produce more perceptually aligned features and to improve generalization (e.g.
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 35 Figure 3.5: Average performance of the models across datasets, with standard error of the mean, for the various generalization tasks (few-shot learning, unsupervised clustering, transfer learning). Multimodal networks (ICMLM, VirTex, CLIP, TSM in blue) have worse generalization accuracy across all tasks.

Figure 3 .

 3 Figure 3.3 shows the unsupervised clustering performance on individual datasets.It shows a similar ranking to the few-shot learning task where BiT has the best performance overall and the visio-linguistic models lag behind the vision-only models.

Figure 3 .

 3 Figure 3.5 panel 4 (from left) shows the performance of the unsupervised clustering algorithm averaged over all datasets.

Fig 3. 4

 4 Fig 3.4 shows the performance of the models on this task, separately for each dataset, and Fig 3.5 (rightmost panel) reports the average across datasets. Multimodal networks fail again to improve generalization.
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 36 Figure3.6: Robustness of some of the models to untargeted (left) and targeted (right) random projected gradient descent (RPGD) attacks for varying epsilons, with L 2 (left) or L ∞ norm (right). AR models are robust by design. Multimodal networks (CLIP, VirTex) are less robust than vision-only models (RN50, SIN+IN, BiT-M).

Figure 3

 3 Figure 3.7: How to compute representational Dissimilarity Matrices (RDMs). RDMs are built from the model's embedding space. The RDMs can then be used for a Representational Similarity Analysis by comparing them using a Pearson Correlation.

  means that we can compare our models' representations by computing the Pearson correlation between their respective RDMs. The corresponding comparison matrix, for all pairs of models, is illustrated in Fig 3.8. Results Figure 3.9 shows the results of a hierarchical clustering (a) or t-SNE (Van der Maaten and Hinton, 2008) embedding (b) of the RDMs using Pearson correlation as a distance. Looking at the dendrogram, all the vision-only models are very close to one another with a maximum distance <0.2. Then, multimodal models stand a bit further (CLIP, TSM, VirTex, ICMLM); and finally, CLIP-T and the language models (BERT, GPT2) are the furthest away. This indicates that the language supervision (contrastive embedding, text-generation or text-unmasking objectives) has changed the structure of the ResNet latent space for CLIP, TSM,
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 38 Figure 3.8: Correlations of the RDMs of our evaluation models. The RDMs are computed as explained in Fig 3.7 using the ImageNet dataset.

Figure 3

 3 Figure 3.9: (a) Dendrogram of a hierarchical clustering of the RDMs. (b) t-SNE of the RDMs.

Fig 3 .

 3 Fig 3.10). This is to be expected since the embeddings are learned freely, without any additional constraint during training. Interestingly, this baseline advantage is weakest in the case of the semantic analogy task (Fig 3.10, leftmost panel), where some of the vision and visio-linguistic models are on par with the baseline. This

  the visio-linguistic networks, CLIP and TSM, which are trained contrastively on a large amount of data (see Figure3.1) have embeddings that correlate well with human word similarity judgements. However, when compared with the vision-only models, we do not observe a clear-cut performance improvement. Indeed, the best vision-only model (BiT-M) is on par with CLIP and TSM. Interestingly, by comparing the results from the Fig 3.10 rightmost panel to the data plotted in Fig 3.1, we observe that among our twelve models, the top six for the word pair similarity task (TSM, CLIP,

  the previous results, for training the visually-guided word embedding models, we averaged the visual feature vectors over many examples for each class. This averaging can potentially alter the quality of the embeddings, e.g. by discarding important information about the feature distributions. Thus, we check the validity of these averaged feature vectors 3 , by verifying that they remain useful in a vision context. We use these visual feature vectors as class prototypes and evaluate the corresponding nearest-neighbor classification accuracy on the ImageNet validation set 4 with a method similar to section 3.3.2. For all models considered, classification accuracy was well above chance (p<0.01): this means that the class-specific vectors indeed remain useful as visual representations of their category. Furthermore, we computed the correlation between this visual classification accuracy of the word embedding, and the corresponding word analogy or word-pair similarity accuracy for each model. The resulting Pearson correlation coefficient was r=-0.0821 with the semantic Word Analogy performance, r=0.301 with the morphology Word Analogy performance, and r=0.797 with the Word Pair Similarity.
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 41 Figure 4.1: Example of images from the shape dataset. Each image contains a unique object of different shapes, colors, rotations, sizes, and positions.

  Figure 4.1 shows examples of the visual domain. The object can be of 3 categories: an egg-like shape, an isosceles triangle, and a diamond. Each object has several attributes which are sampled uniformly: a size s ∈ [s min , s max ], a location (x, y) ∈ [ smax 2 , 32 -smax 2 [ 2 (we add a margin of size s max /2 so that images of all sizes are fully visible), a rotation r ∈
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 42 Figure 4.2: Diagram of the chosen Global Workspace architecture. Specialist modules have a blue background. We use the modality's encoder and decoder to translate it into a common latent space.
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 43 Figure 4.3: Architecture of the language model. A pretrained BERT model first encodes the sentence; then, we project the BERT prediction into a small-dimensional latent space. Finally, we train the projection by trying to predict the attribute domain from the latent representation.

  build a new dataset composed of unimodal and bimodal examples. First, as all examples in the dataset can be used without supervision, we add each example twice, once only with the visual domain and another with the language domain. We now have a dataset of size 2k with unimodal examples. Then, we select N ≤ K bimodal examples from our original set and use a supervised loss on these examples. It is advantageous to test setups where supervision is hard to get, but data is readily available. Indeed, in most cases, annotation (or bimodal examples in our case) is usually costly to obtain. Then, we have a pool of N bimodal examples and a pool of 2k unimodal examples. We create batches by drawing examples from these two pools with different probabilities, thus having bimodal and unimodal samples for every training step. During training, we use the loss defined in eq. 4.11 to optimize the model. We apply the cycle and demi-cycle consistency losses to all examples, even on the bimodal examples (we artificially remove the pairing with the other modality).
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 44 Figure 4.4: Effect of the translation loss combined with cycle-consistency losses, on the validation translation loss as a function of the number of bimodal examples N .

Figure 4 .

 4 Figure 4.4 shows the performances of models trained with individual losses, and with the translation loss (tr) combined with the cycle-consistency losses (demi-cycles: dcy, and cycles: cy).
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 45 Figure 4.5: Effect of the contrastive loss, combined with cycle-consistency losses, on the validation translation loss as a function of the number of bimodal examples N .
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 46 Figure 4.6: Reconstruction of the visual domains for models trained with only L cont , L cy , or L dcy .

Finally, figure 4

 4 Figure 4.7: Translation from language domain to the visual domain of the models trained with N = 1000 bimodal examples in the dataset. The demi-cycle and cycle losses help the model translate the different features to the visual domain.

Figure 4

 4 Figure 4.8: Alignment of the models when trained with contrastive and cycleconsistency losses. We report the validation contrastive loss as a function of the number of bimodal examples N .
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 44444 Figure 4.9: Alignment of the models when trained with translation and cycleconsistency losses. We report the validation contrastive loss as a function of the number of bimodal examples N .

  All the results have been obtained from training only one model per setup.However, as the optimization, the initialization of the models, and the choice of the N annotated examples are stochastic, we should repeat the experiments we conducted to obtain significant results. We report figure 4.14, the same losses, averaged over ten different runs, for N=1000 bimodal examples, with standard error of the mean. These results show the same conclusions as the ones reported and confirm the validity of our results. Ideally, this should have been done for all values of N . By lack of time, we focus on N = 1000, as we found it to be the sweet spot where the cycle-consistency losses are most helpful.

  Figure 4.15, panel A shows some examples of the dataset. For instance, in the first row, the first two shapes share at least the same location (and have a similar shape, color, and rotation), and the last one differs on all counts and is

Figure 4 .

 4 Figure 4.14: Validation translation and contrastive losses with N = 1000 bimodal examples, with standard error of the mean. Each experiment was repeated ten times to test for the robustness of the results.

Figure 4

 4 Figure 4.15: The odd-one-out experiment. Panel A shows examples of the dataset. Each row shows one sample, and the odd one out has a red border. The selected attributes of similar objects are in order: position, color, position, size, shape, position, size, and rotation. Panel B shows the accuracy of the different models trained with the text domain, as a function of N , the number of bimodal examples when training the global workspace.

(

  demi-cycle and cycle losses) and two supervised ones (translation and contrastive losses). The different losses have a distinct impact on the performance and play different roles in the training. First, the cycle loss allows translation from one domain to the other. However, it requires supervision in the form of translation loss to optimize a correct mapping. The amount of supervision does not need to be large when combined with the unsupervised losses, and training with 1000 or 5000 bimodal examples in the dataset leads to a decent performance. Moreover, the demi-cycle loss allows aligning the representation in the GW. This loss can be seen (see eq. 4.3) as a way of ensuring that the decoder is the inverse function of the encoder. Combined with L cy , it regularizes the training and aligns the shared workspace between modalities.

Figure 4 Figure 4 Figure 4

 444 Figure 4.16: Best coefficient values for models trained with translation loss. We tried coefficients in {1, 2, 5, 10}.

  of the policy. The input of the world model is a visual modality, and a Recurrent Neural Network (RNN) models the world model. The world model predicts the next state from the current state and an action. Then, a controller uses the world model output to predict actions to solve the RL task. Finally, the world model can train the controller by dreaming new episodes.

Figure 5

 5 Figure 5.1: Architecture of the World Model combined with the GW. The actor module in green predicts actions from s t . The world model w predicts the next state (in red) from the GW state and the actor output. Icons credits: from the noun project.

w

  Figure 5.3: Illustration of the architecture presented in figure 5.1, adapted for the imitation task. The model has five domains, the visual and text start domains, the visual and text target domains, and the transformation domain. Some of the inputs can be unavailable (gray circle).

  generalize, a model needs to build a statistical model based on training examples that also fit with new unseen examples (test examples). The traditional way to test AI models is to hold out a subset of the available annotated dataset as a testing set.

Figure 6

 6 Figure 6.2: Illustration of the Neural Turing Machine architecture. External inputs are given to the controller to indicate a read or write action. The controller can read the memory by content (by providing a key, similarly to how we would search by content on a search engine) or by location (by providing the index in the memory).The controller can also write information in the memory. The result is returned as external output. Image credit:[START_REF] Graves | Neural Turing Machines[END_REF].

  objectives come into play for the model's training. Translations between modalities and cycle-consistency are used for information grounding -where the data and structure provided by each domain can be infused in the other ones -and to align the unimodal representations. This supervision can be seen as a form of predictive coding, where inputs are constant over time (and future predictions and reconstruction are the same). A temporal form of predictive coding is used to train the world model function w, which predicts possible future representations at time t + 1 from the representation of the world at time t. Predictive coding compares the predictions of the GW state from w with the actual representation obtained in t + 1 and uses the discrepancy as an error signal to optimize w. Finally, we use reward signals (reinforcement learning or optimization of an explicit cost function) to train specialist modules that can produce outputs (hereafter called output modules, such as motor modules, policy module, and memory) on specific tasks. These tasks can be general goals -such as the protection of human beings, or self-preservation in the case of an Asimov robot (first and third laws of robotics) -or specific and transient ones -such as following instructions (Asimov's remaining second law of robotics). This framework was described to simplify training for our model: the different losses were used to train different parts of the model separately. In theory, all components (specialist modules, domain encoders, decoders, competition mechanisms)

  

  

  Ces vecteurs contiennent des informations visuelles structurées et fournissent plus de détails qu'une catégorie unique. Au lieu de prédire une distribution catégorielle, une fonction linéaire est apprise pour faire une régression des vecteurs sémantiques, à partir des vecteurs de caractéristiques visuelles. Ensuite, pour classer les caractéristiques visuelles, nous pouvons sélectionner la catégorie du vecteur sémantique le plus proche avec le vecteur prédit par la régression. Cela permet aux modèles de généraliser à de nouvelles catégories sans avoir besoin d'être entraîné avec des images. En effet, en collectant un nouveau vecteur sémantique représentant la nouvelle catégorie, le modèle peut la prédire si le modèle de régression arrive à généraliser à cet exemple. À cet effet, les principaux facteurs qui permettent au modèle de généraliser sont la qualité de l'espace sémantique et la qualité du modèle de régression. Ce

dernier dépend fortement du nombre de vecteurs sémantiques disponible pendant l'entraînement, la régression étant plus réaliste lorsqu'elle est apprise sur un ensemble d'exemples plus varié. Plus récemment, le modèle CLIP (Radford et al., 2021) a poussé cette idée plus loin, en utilisant un vaste ensemble de données synchronisées d'images et de descriptions textuelles recueillies sur le Web. Ici, le paradigme est légèrement modifié et ils utilisent à la fois un encodeur visuel et un encodeur textuel pour projeter les deux domaines dans un espace multimodal commun. En conséquence, l'espace sémantique n'a pas besoin d'être conçu à la main et est appris à partir des données.

  . Par conséquent, ils peuvent apporter des significations aux mots de la langue grâce à l'expérience et aux autres sens 2 . En effet, les modèles de langue actuels apprennent des représentations de mots basées sur la distribution statistique des mots dans un corpus, ce qui n'apporte pas de sens aux mots. Être capable de prédire que le mot manquant dans « le chat _ ses croquettes » est « mange » ne signifie pas que le modèle associe réellement le mot mange avec tout ce que mange veut dire ; il pourrait comprendre la fonction du mot dans la phrase (présent de l'indicatif du verbe « manger », conjugué à la troisième personne, accordé avec « le chat »), mais pas les aspects pratiques et culturels du

mot (les animaux ont besoin de manger pour survivre, cela nécessite de mettre de la nourriture dans leur estomac...). Certains travaux ont tenté d'ajouter explicitement du sens aux mots dans des modèles visuels

[START_REF] Hudelot | Symbol Grounding for Semantic Image Interpretation: From Image Data to Semantics[END_REF] 

en essayant de prédire des concepts à partir de régions d'intérêt dans une image, mais cela nécessite d'ajouter des connaissances préalables explicites comme forme de supervision, ce qui est impossible à l'échelle requise pour entraîner les modèles fondations.

7 Apprentissage de représentations multimo- dales avec peu de supervision

  

	tâches de généralisation de classification, pour différents cadres d'apprentissage : présente par voie orale, les humains pointent des objets et les décrivent aux enfants en aval bénéficiait de l'espace latent de l'ETG, par rapport à un modèle équivalent
	apprentissage contrastif multimodal, apprentissage de traduction multimodal et « ceci est une voiture rouge », « et voici un vélo bleu », « ce ballon est rouge ! ». Ce entraîné d'un coup.
	mêmes diffèrent des représentations unimodales, et à quel point sont-elles proches classification unimodale. Nous conclurons que les modèles entraînés sur la classification faisant, les enfants obtiennent des informations à partir de très peu d'exemples, mais Notre étude montre que la semi-supervision est bénéfique à la fois pour la tra-
	des représentations dans le cerveau. visuelle ont obtenu de meilleurs résultats que les autres sur la tâche de classification. Les réseaux de neurones profonds sont entraînés avec de plus en plus de données ils peuvent toujours généraliser à des exemples complètement nouveaux et séparer les duction et l'alignement. En particulier, elle pourrait être utilisée pour améliorer
	Un autre aspect sur lequel nous voulons nous concentrer est l'architecture de l'es-Ce résultat peut sembler évident, mais rappelez-vous que (Radford et al., 2021) a et de calculs. Cette tendance a conduit à une augmentation impressionnante des attributs visuels des objets (le rouge, le bleu sont des attributs de couleur et peuvent l'alignement des représentations multimodales dans CLIP, la traduction supervisée
	pace de travail global. De plus, nous explorerons comment faire face à un besoin crois-montré que CLIP a des capacités de généralisation impressionnantes, et que (Goh performances et à l'émergence de nouvelles capacités dans ces modèles. Ces modèles être appliqués à d'autres objets sans nécessairement avoir de supervision explicite de texte en image dans DALL-E 2, Imagen ou Stable Diffusion (Ramesh et al., 2022;
	sant en annotation, en nous inspirant des approches d'apprentissage semi-supervisé. et al., 2021) a montré que certains neurones de CLIP agissaient comme des cellules tirent parti de la supervision déjà existante dans des données récupérées en ligne. Ces pour ceux-ci). Saharia et al., 2022; Rombach et al., 2022), et même la traduction supervisée d'image
	Enfin, la prochaine étape logique est d'utiliser l'expérience personnelle avec l'envi-conceptuelles dans le cerveau humain. données faites par des humains, pour des humains, sont remplies d'informations qui Avec cette idée en tête, nous étudions un cadre d'apprentissage semi-supervisé en texte dans les modèles de description d'image tels que le modèle introduit par
	ronnement pour modéliser le monde. Pour ce faire, un système de contrôle pourrait Comme toutes les architectures sont les mêmes, nous avons conclu qu'il s'agissait pourraient être utilisées pour former des réseaux de neurones. pour former un modèle bimodal de vision et de traduction linguistique. Inspirés (Anderson et al., 2018), ou ClipCap (Mokady et al., 2021).
	par la théorie des sciences cognitives de l'espace de travail global (ETG) (Baars,
	1993; Dehaene et al., 1998), nous suivons les principes directeurs énumérés par (VanRullen and Kanai, 2021) pour concevoir l'architecture du modèle. L'architecture 1.8
	combine plusieurs modules spécialisés unimodaux et préentraînés dans un espace
	latent commun appelé « espace de travail latent global » (ETLG). Pour former le
	modèle, nous utilisons un cadre semi-supervisé, en utilisant l'objectif de cohérence du
	cycle comme fonction de coût non supervisée.
	Nous avons évalué les performances de notre architecture ETG sur un jeu de
	données que nous avons fait nous-même et que nous avons appelé le jeu de données
	formes simples. Nous avons analysé l'impact de fonctions de coût non supervisées
	et supervisées pour l'optimisation. Les différentes fonctions de coût ont un impact
	différent sur la performance, et elles jouent toutes un rôle différent dans l'entraîne-
	ment. Premièrement, la cohérence de cycle permet de passer d'un domaine à l'autre.
	Cependant, elle nécessite une supervision supplémentaire en faisant de la traduction
	pour optimiser une correspondance correcte. La quantité de supervision n'a pas besoin
	d'être importante lorsqu'elle est combinée avec les fonctions de coût non supervisées,
	et l'entraînement avec 1000 ou 5000 exemples bimodaux conduit à des performances
	égales à celles d'un modèle entièrement supervisé entraîné avec plus de 10 fois plus
	un modèle capable de générer des images réalistes à partir d'une description (Ramesh d'annotations. La cohérence de cycle permet également d'aligner la représentation Avoir plusieurs modalités synchronisées est une bonne forme de supervision. Dans et al., 2021). Dans le chapitre 3, nous comparons la même architecture (ResNet50) sur plusieurs la nature, la supervision multimodale peut être rare. Par exemple, lorsqu'elle se dans le ETLG. De plus, nous avons montré qu'une tâche purement visuelle réalisée

La recherche sur les réseaux multimodaux a pris une tournure lourde en données et en calcul, avec l'explosion des modèles fondations. Cela a permis de découvrir de nouvelles possibilités dans les gros modèles, et de les utiliser pour une multitude de tâches en aval.

De plus, nous avons vu que l'entraînement avec une source d'information diversifiée présente de multiples avantages. Chaque domaine apporte une source naturelle de supervision, et ajoute des informations supplémentaires. Ces modèles soulèvent de nombreuses questions : les représentations bimodales sont-elles capables de se généraliser à des tâches complètement nouvelles ? Les données utilisées pour leur entraînement fournissent-elles une bonne base et offrent-elles un avantage par rapport aux réseaux unimodaux ? Dans quels contextes l'apprentissage multimodal est-il plus performant que l'apprentissage unimodale ? Est-ce toujours mieux ou cela dépend-il du type de tâche ? De plus, on peut se demander en quoi les représentations ellesêtre intégré à l'ETG. De plus, nous verrons comment ajouter un modèle du monde à l'ETG afin que le modèle puisse interagir avec son environnement, ou même simuler des résultats suite à une action ou un événement.

1.6 Capacités de généralisation des réseaux multimodaux

Les avantages de l'apprentissage avec plusieurs modalités sont doubles. 1) chaque modalité peut apporter des informations spécifiques supplémentaires de son domaine (la vision contient des informations sur l'apparence des choses, leur forme, leurs textures, leurs couleurs et sur les relations entre les objets ; le langage est une forme structurée d'informations que les humains utilisent pour partager des connaissances entre eux, il contient des connaissances tirées d'encyclopédies, de journaux, d'articles scientifiques). 2) les informations contenues dans tous les domaines se chevauchent généralement et peuvent donc être utilisées comme source naturelle de supervision. Par exemple, la publication CLIP (Radford et al., 2021) a rapidement fait la une des journaux et est devenue un sujet brûlant, car CLIP était à la base de DALL-E 1, d'un problème d'apprentissage, et que l'apprentissage contrastif, en essayant d'aligner les modalités vision et langage, ne permettait pas aux encodeurs des modalités de rester fidèles à leurs propres domaines. En effet, la supervision étant uniquement contrastive, toute information supplémentaire contenue dans un domaine, et qui n'est pas captée par l'autre modalité, ne sera pas conservée dans la représentation multimodale. En d'autres termes, seules les informations supplémentaires de la modalité peuvent être conservées, mais les informations complémentaires sont perdues. Suivant cette idée, nous avons conçu un réseau multimodal qui pourrait aligner les modalités ensemble, tout en gardant les informations importantes des domaines individuels. Pour ce faire, nous avons utilisé à la fois des tâches de traduction et contrastive pour conserver les avantages de l'apprentissage multimodal, mais nous avons également inclus une fonction de coût lié à la cohérence de cycle, afin que chaque domaine puisse conserver des informations unimodales importantes.

Dans un travail suivant, en collaboration avec Romain Bielawski et Rufin VanRullen

[START_REF] Bielawski | When does CLIP generalize better than unimodal models? When judging human-centric concepts[END_REF]

, nous avons testé CLIP sur des tâches de généralisation multimodales « centrées sur l'humain », et avons observé que dans ce cas, CLIP généralisait mieux que les réseaux unimodaux. Ce travail est examiné en détail dans le chapitre 6, section 6.1.

1.

L'exemple typique est la supervision d'images avec des descriptions textuelles ; les sites web (réseaux sociaux, Wikipédia, sites de discussion, communautés d'art, site d'actualités...), permettent aux utilisateurs de mettre en ligne des publications multimodales avec notamment des contenus textuels et visuels. Bien que ces données soient produites pour d'autres humains, qui sont supposés avoir des connaissances préalables pour comprendre les publications (par exemple, vocabulaire argotique, références à l'histoire et à l'actualité, culture générale, connaissance interne des communautés spécialisées), la quantité de données qui peut être rassemblés, compense le côté bruité de l'annotation.

Par exemple, CLIP

[START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] 

a atteint des performances stupéfiantes sur les tâches de classification, dans la génération d'images

[START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF] 

et dans la description d'images

[START_REF] Mokady | ClipCap: CLIP Prefix for Image Captioning[END_REF]

. Cependant, nous observons que CLIP n'est pas meilleur dans les tâches de classification de généralisation visuelle que les modèles purement visuels. Bien que cela semble surprenant au premier abord, les informations fournies par des annotations explicitement conçues à la main pour des tâches visuelles conduisent à de puissants modèles de vision difficiles à battre. Ensuite, la qualité de l'annotation est essentielle à la conception de réseaux bimodaux, mais coûteuse.

Étendre l'espace de travail global avec un mo- dèle du monde

  

	Le modèle de traduction basé sur l'architecture de l'espace de travail global (ETG)
	que nous avons présenté dans la section précédente peut connecter plusieurs modalités
	dans un espace partagé à travers une langue commune. Cependant, lorsqu'il s'agit d'un
	environnement réel, les modalités évoluent avec le temps. Les modalités sensorielles
	se présentent sous forme de flux (les images sont désormais des vidéos par exemple).
	Un autre problème est qu'avec des environnements plus complexes, une forme
	de connaissance préalable devient importante. Par exemple, lorsque nous voulons
	résoudre une tâche donnée (ex. suivre un point rouge en mouvement dans une scène où
	plusieurs formes de couleurs différentes sont présentes), le contexte est très important
	pour représenter les modalités sensorielles (dans ce cas, nous voulons concentrer notre
	attention sur le point rouge, et non sur les autres formes).

Table 6 .

 6 , to test that his abilities are not since it can read extra information from the covers. This article is published in the 7th Workshop on Representation Learning for NLP in spring 2022 by Romain Bielawski, Rufin VanRullen, and I. I report hereafter the method, results, and conclusions that are part of the published article. My contributions in this article are the few-shot experiments and results (figure 6.1). 1: Accuracies for the MVSA dataset. CLIP is the best vision model, and CLIP-T is the best text model. All text models perform similarly in unimodal and multimodal settings, except when paired with CLIP (which yields the best performance of each column).

	Vision Text	None	Bert-base	Bert-large	CLIP-T
	None	∅	63.33 ± 0.18 64.02 ± 0.74 64.60 ± 0.30
	RN50	55.17 ± 0.37 63.93 ± 0.36 63.92 ± 0.55 64.13 ± 0.37
	BiT-M	60.0 ± 1.46	61.93 ± 2.05 63.16 ± 2.82 62.77 ± 0.72
	CLIP	63.07 ± 0.23 66.03 ± 0.15 66.03 ± 0.6 65.58 ± 0.38
	On MVSA (table 6.1), CLIP is the best vision-only model, and CLIP-T is the best
	text embedding model. The best multimodal combinations are CLIP+BERT (base
	and large), but CLIP+CLIP-T has very similar performance (less than 0.5% point

1 behind), even though CLIP-T counts much fewer parameters than the BERT models.

Table 6 .

 6 2: Accuracies for the Book Cover dataset (standard images on top, masked images on the bottom). CLIP and CLIP-T are the best-performing models of each unimodal test, providing the best multimodal combination for both standard and masked images. Masks diminish the performance of all models (and their combinations), but the advantage for CLIP (and CLIP-T) remains.

	Bert-large	CLIP-T

Table 6 .

 6 ∅ .314 ± .01 .323 ± .01 .397 ± .00 .582 ± .00 .599 ± .01 .612 ± .00 RN50 .090 ± .01 .338 ± .01 .363 ± .01 .393 ± .02 .578 ± .01 .599 ± .01 .599 ± .01 BiT-M .415 ± .01 .490 ± .01 .499 ± .01 .507 ± .01 .625 ± .01 .637 ± .01 .631 ± .01 CLIP .526 ± .01 .559 ± .01 .558 ± .01 .593 ± .01 .672 ± .00 .683 ± .00 .687 ± .00 RN50 .070 ± .01 .335 ± .02 .352 ± .01 .383 ± .02 .576 ± .01 .597 ± .01 .596 ± .01 BiT-M .372 ± .00 .457 ± .02 .480 ± .01 .490 ± .01 .617 ± .01 .631 ± .01 .621 ± .01 CLIP .449 ± .01 .525 ± .01 .534 ± .01 .564 ± .00 .658 ± .00 .667 ± .00 .676 ± .00 3: f1-scores for the Plotster dataset. CLIP is the best model in vision, CLIP-T is the best in language with either titles or plots as input, and CLIP+CLIP-T is the best multimodal combination in all cases. The masking does not affect the advantage of CLIP.

	Vision	Text	None	Bert-base Bert-large Title	CLIP-T	Bert-base Bert-large Plot	CLIP-T
	None						
	Standard						
	Masked						

Le problème de fondement des mots[START_REF] Harnad | The symbol grounding problem[END_REF]) correspond à la façon dont les symboles (mots) acquièrent leur sens. En d'autres termes, comment d'une séquence de mot l'extraction d'informations sémantiques sur le monde peut être faite.

More detail will be provided later about transformers, and how to obtain vector representations of images and text.

Directly using words might lead to unknown token issues, where new words that do not have an associated token cannot be tokenized. A solution to the problem is to encode the most frequent words using one token and to separate rarer tokens into sub-parts (for instance, "cat" is tokenized only with the cat token, and "cats" with the "cat" and "s" tokens).

The amount of data required to sample a space grows exponentially with the number of dimensions.

The grounding problem[START_REF] Harnad | The symbol grounding problem[END_REF] correspond to how words acquire their meaning. In other words, how can we extract semantic information about the world from a sequence of tokens?

https://github.com/bdvllrs/generalization-vision

Of course, we describe multimodal networks as neither visual nor linguistic, but this is to be understood in relative terms-they are relatively far from both visual models and linguistic models. In absolute terms, there is always a reasonable amount of similarity between multimodal networks and certain visual or linguistic models.

We here test the 300d vectors after the PCA dimensionality reduction.

With the images regrouped into our 824 classes.
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Afterwords

In this work, we compared a ResNet50 architecture on several visual classification generalization tasks for different learning frameworks (namely, multimodal contrastive learning, multimodal translation learning, and unimodal classification). We concluded that models trained on visual classification performed better than the others on the classification task. This result might appear obvious, but recall that [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF] showed that CLIP has impressive generalization abilities and that [START_REF] Goh | Multimodal Neurons in Artificial Neural Networks[END_REF] showed that some neurons in CLIP acted as concept cells in the human brain.

As all architectures are the same, we concluded that the problem was a learning one. Contrastive learning did not allow the modality encoders to stay faithful to their own domains when aligning the vision and language modalities. Indeed, as the supervision is contrastive, any additional information contained in one domain that the other modality does not capture will not be kept in the multimodal representation.

In other words, only supplementary information from the modality can be kept, but complementary information is lost.

Following this idea, we started designing a multimodal network that could align modalities while keeping important information from the individual domains. To do this, we used both translation and contrastive objectives to keep the advantages of multimodal learning. However, we also included a cycle-consistency loss so that each domain could keep important unimodal information.

Similarly to the experiments conducted in chapter 3, we want to compare the performance of unimodal networks with bimodal ones on the multimodal datasets previously described. We compare CLIP (trained contrastively on images and text) against several unimodal models. All the vision models are ResNet50 architectures for fairer comparisons. For the unimodal visual models, we use a ResNet50 trained for classification of ImageNet-1K (referred hereafter RN50), and BiT-M trained on ImageNet-22K [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF].

These experiments test the models on vision and text tasks. As a result, we additionally use unimodal text embedding models to encode the text domain of our dataset. We use both the BERT-large and the BERT-base models [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]. All language models, including the language encoder of CLIP (that we will denote CLIP-T in the following), are transformer encoder models. However, they differ in their number of parameters: BERT-large has 300M, BERT-base 110M, and CLIP-T 80M. Although CLIP-T is at a disadvantage, our experiments will show that it is the best-performing language model in our tasks.

We test the models on unimodal (where only one domain is provided) and bimodal tasks. We use the pretrained vision and language models as a backbone and train an additional classifier on:

• either the unimodal representation for the unimodal training;

• or on the concatenation of visual and language representations for the bimodal case.

We first experimented on a transfer learning task (see tables 6.1, 6.2 and 6.3), where we train a classifier on the evaluation datasets, either on top of visual-only features (where the text model is None is the table), on top of text-only features (the None vision model in the table), or on top of the concatenation of one visual, and one text model. The result of the best visual-only model is in bold, the result of the best text-only model is underlined, and the best bimodal network is both in bold and underlined.