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CONTENTS INTRODUCTION (FR)

Panorama de mes travaux L'étude des effets induits par la présence d'un bord dans des problèmes d'évolution continus ou discrets est au coeur de mes travaux de recherche, ceci spécifiquement dans le contexte des systèmes d'équations aux dérivées partielles hyperboliques linéaires, de lois de conservation hyperboliques non-linéaires, ou encore de leurs approximations numériques. Dans ces différentes situations, diverses échelles sont susceptibles d'intervenir à travers les phénomènes de viscosité, de relaxation ou de discrétisation. Ces échelles sont présentes parfois pour des raisons inhérentes à la théorie sous-jacente. C'est le cas pour les solutions faibles entropiques en tant que limites évanescentes d'approximations paraboliques, ou pour les modèles de relaxation faisant intervenir une limite singulière dans des termes d'ordre inférieur. Pour ce qui concerne le cas de méthodes numériques de type volumes finis ou différences finies, les échelles en jeu sont alors directement liées aux paramètres de discrétisation et, parfois simultanément, aux autres échelles concomitamment envisagées. Les interactions entre ces différentes échelles et le bord du domaine sont susceptibles d'engendrer des effets parasites inattendus. Ceux-ci se manifestent typiquement à travers l'apparition de couches limites, nuisant parfois sévèrement aux propriétés de stabilité dans l'asymptotique, et plus souvent dégradant la qualité de l'approximation.

Travaux liés à la thèse de Doctorat et miscellanées

Les travaux décrits ci-après ne seront pas développés précisément dans la suite du manuscrit. Ils concernent en grande partie des recherches directement liées à mes travaux de thèse [PhD/Bou09] portant sur les lois de conservation hyperboliques non-linéaires. En premier lieu, la série de papiers [A/BCL11 ; A/BCL13 ; A/BCL15 ; A/BCL21], les actes de congrés [C/ABC + 08 ; C/BCG08 ; C/BCL12], ainsi que la publication [A/BCR10] portent sur l'étude du couplage de tels modèles à travers une interface spatiale fixée. Plus précisément, le couplage envisagé présente un caractère non-conservatif. Le point de vue diffère ainsi assez fondamentalement du cadre plus standard des lois de conservations à flux discontinus [BV06 ; AKR11 ; And15]. La motivation est au contraire de pouvoir capturer les solutions qui sont entropiques en dehors des interfaces mais possiblement continues à leur traversée malgré la discontinuité du flux. Le point de vue retenu est alors celui du recollement de deux demiproblèmes aux limites. Une première approche emploie les traces admissibles de Dubois et LeFloch [START_REF] Dubois | Boundary conditions for nonlinear hyperbolic systems of conservation laws[END_REF], faisant suite aux travaux de Bardos, Leroux et Nédélec [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. Une seconde approche s'appuie sur le procédé de régularisation visqueuse à la Dafermos [START_REF] Dafermos | Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method[END_REF] via des estimations d'interaction d'ondes non-linéaires inspirées des travaux de LeFloch et Tzavaras [START_REF] Lefloch | Representation of weak limits and definition of nonconservative products[END_REF]. La dernière approche envisagée consiste en une modélisation par interface épaissie et en la mise en place de stratégies numériques inspirées des travaux de Greenberg et Leroux [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF] Introduction de façon à permettre la préservation d'états stationnaires prescrits, en l'occurence continus à l'interface. L'analyse de convergence de ces méthodes, traitées dans le cas multidimensionnel, requiert les techniques de solutions mesures entropiques de DiPerna [START_REF] Diperna | Measure-valued solutions to conservation laws[END_REF]. Dans tous ces travaux, les résultats d'existence de solutions sont obtenus. L'unicité n'est pas systématiquement aquise et demeure in fine une question ouverte dans le cas d'interfaces minces. On peut cependant noter que les divers procédés d'approximation envisagés permettent tous de dégager un principe de sélection au moins partielle des solutions, tout du moins en comparaison du cadre le plus général du couplage par des traces admissibles.

Un travail connexe [A/BCL + 08b ; C/BCL + 08a] concerne le développement d'une nouvelle stratégie numérique permettant le calcul de solutions non-classiques de lois de conservation scalaires. Ces solutions correspondent à des discontinuités sous-compressives liées à une approximation d'ordre supérieur en limite de petite diffusion-dispersion. Alternativement, ces solutions sont caratérisées par une relation cinétique décrivant la dynamique des discontinuités non-classiques [START_REF] Bedjaoui | Diffusive-dispersive traveling waves and kinetic relations. I. Nonconvex hyperbolic conservation laws[END_REF] entre deux phases. La difficulté de l'approximation de ces solutions repose sur le fait que les méthodes usuelles, de façon à être stables, introduisent une diffusion numérique qui nuit à la capture des solutions non-classiques. Une procédure de reconstruction locale permet d'imposer la relation cinétique convenable et de supprimer toute diffusion numérique pour l'approximation numérique des chocs non-classiques.

Dans [A/BBT15], nous nous intéressons à un modèle d'écoulement gravitaire de Saint-Venant-Exner faisant intervenir des produits non-conservatifs. Ces modèles décrivent des écoulements à surface libre, en eaux peu profondes, sur un fond affecté par des effets sédimentaires1 (dépôt et érosion) dont l'évolution est régie par des lois de comportement plus ou moins empiriques. De façon générale, la définition d'un cadre mathématique adapté aux produits non-conservatifs a été entreprise dès les travaux de Volpert [START_REF] Volpert | Spaces BV and quasilinear equations[END_REF] et complétée plus récemment par ceux de Dal Maso, LeFloch et Murat [START_REF] Maso | Definition and weak stability of nonconservative products[END_REF]. Les profils de chocs nonconservatifs sont déterminés et comparés avec ceux calculés par différents schémas numériques récents de la littérature.

Les publications [C/BBF + 09 ; C/BBC + 11 ; C/BDH + 11] correspondent à des rapports de projets de recherche effectués au cours de sessions d'été du CEMRACS2 .

Le travail [P/BCC + ] soumis plus récemment concerne l'utilisation de méthodes d'intégration en temps de type Lawson adaptées à la résolution de modèles cinétiques de type Vlasov et [P/ABC] concerne la mise en place de méthodes d'ordre élevé, préservant l'asymptotique de diffusion pour des modèles cinétiques linéaires.

Contenu de ce manuscrit d'habilitation

Dans sa majeure partie (Chapitres 1 à 3), les sujets développés dans ce manuscrit concernent plusieurs aspects complémentaires de l'analyse numérique de schémas de différences finies dédiés à l'approximation de solutions de problèmes hyperboliques linéaires en présence de bords.

Ces aspects vont de la détermination de propriétés de stabilité vis-à-vis de la condition de bord numérique (Chapitres 1 et 3), à leur utilisation en vue de déterminer des développements asymptotiques des solutions numériques, dont l'utilisation pour une analyse optimale de convergence est précieuse (Chapitre 2). Un autre point de vue, présent à plusieurs reprises dans le manuscrit est celui de l'étude spectrale d'opérateurs en dimension infinie, soit du type Toeplitz ou quasi-Toeplitz (Chapitres 1 et 2), soit du type Hilbert-Schmidt (Chapitre 4). Les Chapitres 4 et 5 sont essentiellement indépendants du reste du manuscrit et emploient des aspects géométriques pour l'asymptotique en temps grand de systèmes dynamiques. Des perspectives de recherches sont présentées à la fin des Chapitres 1, 2 et 3. Une très syntétique présentation des chapitres est la suivante :

• Une introduction à la théorie générale de stabilité pour le problème discret en domaine borné débute le Chapitre 1, introduisant en particulier les outils classiques usuels de cette étude et ouvrant la voie à la présentation des publications [A/BLS23 ; P/BLS] toutes deux issues de la thèse de P. Le Barbenchon [Le 23]. Ces travaux portent sur la mise en place et la justification de méthodes numériques efficaces permettant d'apprécier la validité de la condition de Kreiss-Lopatinskii uniforme dans le cas de schémas de différences finies avec bord.

• Le Chapitre 2 aborde les aspects de consistance au bord, afin de permettre une étude de convergence améliorée pour des schémas assez généraux. La méthode repose sur la construction de développements asymptotiques des solutions numériques, valables dans le domaine intérieur de calcul ainsi qu'au voisinage du bord. L'identification des couches limites numériques est alors centrale. Il est également question d'autres phénomènes multi-échelles qui peuvent être identifiés par une méthodologie analogue. Il s'agit de travaux reliés à la publication [A/BC17] en collaboration avec J.-F. Coulombel, ainsi qu'au travail [A/BNS + 21] issu d'un encadrement de projet supporté par l'ANR NABUCO3 durant le CEMRACS 2019.

• Dans le Chapitre 3, l'étude porte sur la présence conjointe d'effets de termes de relaxation et d'un bord, ainsi que dans un deuxième temps d'effets liés à la discrétisation numérique. L'étude se limite au cas linéaire sous la condition habituelle de Kreiss 

INTRODUCTION (EN)

Overview of my work

The study of the effects induced by the presence of a boundary in continuous or discrete evolution problems lies at the heart of my research works, more specifically in the context of systems of linear hyperbolic partial differential equations, non-linear hyperbolic conservation laws, or their numerical approximations. In these different situations, various scales are likely to be present through phenomena such as viscosity, relaxation, discretization. These scales are sometimes present for reasons that are inherent to the underlying theory. This is the case for entropy weak solutions, being evanescent limits of higher order viscosity approximations, or also for relaxation models in which a singular limit is considered for lower order terms. With regard to the case of numerical methods such as finite volumes or finite differences, the involved scales are then directly related to the discretization parameters and, sometimes simultaneously, to the other scales of the model concomitantly considered. The interactions between these different scales and the boundary of the domain are likely to generate unexpected parasitic effects. These typically manifest themselves through the appearance of boundary layers, sometimes severely impairing the stability properties in the asymptotic process, and more often at least degrading the quality of the approximation.

Work related to the PhD thesis and miscellaneous

The work described below will not be developed in detail in the rest of the manuscript.

They largely concern research directly related to my thesis work [PhD/Bou09] on nonlinear hyperbolic conservation laws. Firstly, the series of papers [A/BCL11; A/BCL13; A/BCL15; A/BCL21], the conference proceedings [C/ABC + 08; C/BCG08; C/BCL12] , as well as the publication [A/BCR10]relate to the study of the coupling of such models through a fixed spatial interface. More precisely, the considered coupling has a non-conservative character. The point of view thus differs quite fundamentally from the more standard framework of conservation laws with discontinuous fluxes [BV06; AKR11; And15]. The motivation is on the contrary to be able to capture the solutions which are entropic outside the interfaces but possibly continuous at their crossings despite the discontinuity of the flux. The point of view retained is then that of the gluing together of two boundary half-problems. A first approach uses the admissible traces of Dubois and LeFloch [START_REF] Dubois | Boundary conditions for nonlinear hyperbolic systems of conservation laws[END_REF], following the work of Bardos, Leroux, and Nédélec [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. A second approach relies on the viscous regularization process a la Dafermos [START_REF] Dafermos | Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method[END_REF] via nonlinear wave interaction estimates inspired by the work of LeFloch and Tzavaras [START_REF] Lefloch | Representation of weak limits and definition of nonconservative products[END_REF]. The last approach considered consists of a modeling by thickened interface and the implementation of numerical strategies inspired by the work of Greenberg and Leroux [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF] in order to allow the preservation of prescribed stationary states, in this case continuous at interface. The convergence analysis of these methods, treated in the multidimensional case, requires the entropic measurement solution techniques of DiPerna [START_REF] Diperna | Measure-valued solutions to conservation laws[END_REF]. In all these works, the existence results of solutions are obtained. Uniqueness is not systematically acquired and ultimately remains an open question in the case of thin interfaces. It can however be noted that the various approximation methods considered all make it possible to identify a principle of at least partial selection of the solutions, at least in comparison with the most general framework of coupling by admissible traces.

A related work [A/BCL + 08b; C/BCL + 08a] concerns the development of a new numerical strategy allowing the computation of non-classical solutions of scalar conservation laws. These solutions correspond to undercompressive discontinuities related to a higher order approximation in the small diffusion-dispersion limit. Alternatively, these solutions are characterized by a kinetic relation describing the dynamics of non-classical discontinuities [START_REF] Bedjaoui | Diffusive-dispersive traveling waves and kinetic relations. I. Nonconvex hyperbolic conservation laws[END_REF] between two phases. The difficulty in approximating these solutions lies in the fact that the usual numerical methods, in order to be stable, introduce a numerical diffusion which harms the capture of non-classical solutions. A local reconstruction procedure makes it possible to impose the appropriate kinetic relation and to suppress any numerical diffusion for the numerical approximation of non-classical shocks.

In [A/BBT15], we are interested in a gravity flow model of Saint-Venant-Exner involving non-conservative products. These models describe free surface flows, in shallow waters, on a bottom affected by sedimentary effects4 (deposition and erosion) whose evolution is governed by more or less empirical behaviour laws. In general, the definition of a mathematical framework adapted to non-conservative products has been undertaken since the work of Volpert [START_REF] Volpert | Spaces BV and quasilinear equations[END_REF] and completed more recently by those of Dal Maso, LeFloch, and Murat [START_REF] Maso | Definition and weak stability of nonconservative products[END_REF]. The non-conservative shock profiles are determined and compared with those calculated by various recent numerical schemes from the literature.

The publications [C/BBF + 09; C/BBC + 11; C/BDH + 11] correspond to reports of research projects carried out during summer sessions of CEMRACS5 .

The work [P/BCC + ] submitted more recently concerns the use of modified Lawson-type time integration methods suitable for solving Vlasov-type kinetic models and [P/ABC] concerns the development of high order methods that preserve the diffusion asymptotic for linear kinetic models.

Contents of this habilitation manuscript

In its major part (Chapters 1 to 3), the subjects developed in this manuscript concern several complementary aspects of the numerical analysis of finite difference schemes dedicated to the approximation of solutions of linear hyperbolic problems in the presence of boundaries. These aspects range from the determination of stability properties with respect to the numerical boundary condition (Chapters 1 and 3), to their use in order to determine asymptotic expansions of numerical solutions, whose use for an optimal convergence analysis is valuable (Chapter 2). Another point of view, present several times in the manuscript, is that of the spectral study of operators in infinite dimension, either of the Toeplitz or quasi-Toeplitz type (Chapters 1 and 2), or of the Hilbert-Schmidt type (Chapter 4). Chapters 4 and 5 are essentially independent from the rest of the manuscript and employ geometric aspects for the large-time asymptotic of dynamical systems. Research perspectives are presented at the end of Chapters 1, 2 and 3. A very synthetic presentation of the chapters is as follows:

• An introduction to the general theory of stability for the discrete problem in a bounded domain begins Chapter 1, introducing in particular the usual classical tools of this study and opening the way to the presentation of the publications [A/BLS23; P/BLS] both from the thesis of P. Le Barbenchon [Le 23]. This work focuses on the establishment and justification of effective numerical methods for assessing the validity of the uniform Kreiss-Lopatinskii condition in the case of finite difference schemes with a boundary.

• Chapter 2 deals with boundary consistency aspects, in order to allow an improved convergence study for fairly general schemes. The method is based on the construction of asymptotic expansions of the numerical solutions, valid in the inner computational domain as well as in the vicinity of the boundary. The identification of discrete boundary layers is then central. It also discusses other multi-scale phenomena that can be identified from an analogous methodology. These are works related to the publication [A/BC17] in collaboration with J.-F. Coulombel, as well as to the work [A/BNS + 21] resulting from a project supervision during CEMRACS 2019, supported by the funding project ANR NABUCO6 .

• In Chapter 3, the study focuses on the joint presence of effects of relaxation terms and of a boundary, as well as in a second time of effects related to numerical discretization.

The study is limited to the linear case under the usual Kreiss-Lopatinskii condition, the relaxation term being subject to the usual dissipative properties. In the continuous case, the expansions of relaxation boundary layers and the uniformly well-posed character of the problem, with respect to the parameter , are known in the literature, fully characterized by a condition called "Stiff Kreiss Condition"(SKC). In the paper [A/BNS20] resulting from the thesis [Ngu20] of T. H. T. Nguyen we demonstrate the uniformly stable character of a semi-discretized scheme in space. The scheme is made up on the basis of techniques of discrete summation by parts (SBP), useful for the energy method, and of Laplace or Z transform according to the framework (semi-discrete or discrete respectively). The result of uniform stability of the scheme is nevertheless only obtained on a strict subset of the SKC condition. By a technique of discrete transparent boundary condition, we propose in [P/BNS] a new fully discrete scheme, stable uniformly in the relaxation and discretization parameters, under the only condition SKC.

• Chapter 4 deals with the formalization and analysis of dynamical systems in infinite dimension, with values in the set of Hilbert-Schmidt operators, and having a double- 

Discrete initial boundary value problems

The present chapter is intended to discuss the stability theories for initial boundary value problems (IBVP), on one hand for first order linear hyperbolic partial differential evolution equations, and on the other hand for linear finite difference schemes. The well-posedness or the stability properties of the corresponding IBVPs are essential and the main issue is to fully characterize these properties by means of concise (e.g. algebraic) conditions. More detailed presentations and developments of the general theory can be found for example in the books by Benzoni-Gavage and Serre [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations: first-order systems and applications[END_REF] for the continuous problem, and in the book by Gustafsson, Kreiss, and Oliger [START_REF] Gustafsson | Time-dependent problems and difference methods[END_REF] and the lecture notes by Coulombel [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] for discrete schemes. We restrict the following presentation to the main lines of these two theories. After that, we will present an overview of some contributions to the numerical study of Kreiss-Lopatinskii determinants, with applications to the strong (GKS-) stability properties for the discrete IBVP with commonly used boundary conditions. Discrete initial boundary value problems

Well-posedness theory for linear hyperbolic problems

Main lines The study of first order linear hyperbolic IBVPs is based on two theories. The first one is the theory of Friedrichs [START_REF] Friedrichs | On symmetrizable differential operators[END_REF] specifically adapted to symmetric systems with maximal dissipative boundary conditions. From integration by parts and using the dissipativity property at the boundary, some energy estimates are available so as to deduce then the required a priori estimates. These estimates encompass the interior norm of the solution as well as its trace at the boundary. The second theory is from Kreiss [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF]. It handles with more general problems (lack of symmetry, of symmetrizability, of maximal dissipativity at the boundary) and is based on the construction of frequency-dependent dissipative symmetrizers also known as Kreiss symmetrizers. As a counterpart, the a priori estimates first consist in resolvent estimates and concern zero initial data only. A more technical part for closing the well-posedness theory towards semigroup estimates then rely on a causality argument, duality formulation, and the Gårding and Leray method. It is due to Rauch [START_REF] Rauch | L2 is a continuable initial condition for Kreiss' mixed problems[END_REF] and we omit here any discussion in that direction.

Notations and setting

For convenience and tightness in the presentation, the physical geometry under consideration is here mostly restricted to the simple case of a straight halfspace, namely x = (y,

x d ) ∈ R d + := R d-1 × (0, +∞
) and the unknown is u(x, t) ∈ R N . The evolution operator and the boundary conditions are linear with constant coefficients, namely the continuous IBVP has the form

Lu = F , (x, t) ∈ R d + × R + , Bu |x d =0 = g, (y, t) ∈ R d-1 × R + , u |t=0 = f , x ∈ R d + .
(1.1)

where the differential operator L is given by

L = ∂ t + d j=1 A j ∂ x j , (1.2) B ∈ M m,N (R) being a full rank matrix: rank B = m ≤ N and, for 1 ≤ j ≤ d, A j ∈ M N (R)
being real valued matrices. The data are F , g and f , respectively an interior source term, the boundary data and the initial data, in L 2 spaces of their variables.

Hyperbolicity A first important necessary condition for the well-posedness is related to the time-hyperbolicity of the operator L. In the sequel, we simply talk about hyperbolicity since the time is clearly the principal direction for evolution problems. The hyperbolicity property is addressed to the Cauchy problem only (without space boundaries). It is fully characterized from the Fourier space symbol function A defined for frequencies ξ ∈ R d by

A(ξ) = d j=1 iξ j A j .
More precisely the well-posedness of the Cauchy problem associated to the operator L in appropriate function spaces is then equivalent to the uniform power boundedness of the family of matrices A(ξ) for ξ ∈ R d or equivalently (by an appropriate normalization)

1.1. Well-posedness theory for linear hyperbolic problems for ξ such that |ξ| = 1. Among the various subfamilies of hyperbolic problems, let us now recall the principal ones. The operator L is said to be • weakly hyperbolic if for all ξ ∈ R d , |ξ| = 1, the matrix A(ξ) has spectrum inside iR;

• strongly hyperbolic or shortly hyperbolic, if in addition the matrices A(ξ) are uniformly diagonalizable;

• semi-strictly hyperbolic if in addition the eigenvalues of A(ξ) have constant multiplicities;

• strictly hyperbolic if in addition the eigenvalues of A(ξ) have multiplicity one;

• symmetric hyperbolic if A(ξ) is skew-hermitian;

• symmetrizable hyperbolic if there exists a hermitian positive definite matrix S such that

SA(ξ) is skew-hermitian.
It has to be noticed that the weakest notion of hyperbolicity above is related to a stability property in the Hadamard sense only, namely with possible loss of derivatives in semigroup estimates. It is not as robust as are the others and in particular does not directly enable the possible treatment of supplementary lower order perturbation terms, useful to cover the quasi-linear or the nonlinear case. On the contrary Strang [START_REF] Strang | On strong hyperbolicity[END_REF] has shown that strongly hyperbolic problems (with no loss of derivatives) are stable by zeroth-order perturbations.

The same issue occurs when dealing with the IBVP and requires an adapted form of stability with respect to the boundary data.

Kreiss-Lopatinskii conditions

In the one-dimensional case d = 1, many of the previously mentioned hyperbolicity notions coincide, due to the scalar form of the frequency parameter ξ.

The strong, semi-strict and symmetrizable hyperbolicity are then equivalent to the requirement that the matrix A = A 1 has real eigenvalues and a complete set of eigenvectors. This is true if

A is real symmetric. If the boundary is non-characteristic in the sense that Ker A = {0}, then we may decompose the full space R N according to the characteristic fields of A into

R N = E + (A) ⊕ E -(A). (1.3)
Here the space E + (A) (respectively E -(A)) is defined from the eigenprojection of A associated to the p + = dim E + (A) positive (respectively p -negative) eigenvalues of A, with multiplicities. They correspond physically to rightgoing (respectively leftgoing) scalar waves in the time-evolution problem. The algebraic solving of the boundary equation Bu |x=0 = g then corresponds, after decomposing u |x=0 = u + + u -matching (1.3), to the solving of the equation

Bu + = g -Bu -.
Therefore, inverting the matrix B acting from E + (A) to R m is mandatory.

To that aim, two complementary properties are required: rank B ≥ p + for the uniqueness;

R m ⊂ BE + (A) for the existence. Finally the convenient structural property is the following necessary condition:

One-dimensional Kreiss-Lopatinskii condition:

R N = Ker B ⊕ E + (A).
Under the strong hyperbolicity and the Kreiss-Lopatinskii condition, the continuous onedimensional IBVP admits a full well-posedness setting.

The treatment of multidimensional problems is done somehow similarly through modal Laplace-Fourier analysis, based first on the fundamental dispersion relation

det L(τ, ξ) = 0, (1.4)
where we set L(τ, ξ) := τ Id + A(ξ). Here τ ∈ C is related to the time-Laplace dual parameter and ξ ∈ R d to the space-Fourier dual variable. The zero set of the dispersion relation gathers the frequencies (τ, ξ) associated to nonzero modal solutions, that is of the form u(t, x) = e τ t+ix•ξ ϕ for some ϕ ∈ C N \ {0}. The solving of the boundary equations is done by using the tangential part of the differential operator L along the space boundary R d-1 × {0}.

A partial space-Fourier transform is helpful to algebraize the tangential variable y ∈ R d-1 with dual frequency variable η ∈ R d-1 . The symbol for the normal problem at the boundary reads

G(τ, η) = -A -1 d (τ Id + A 0 (η)) (1.5)
where we set A 0 (η) = d-1 j=1 iη j A j . The solutions of the form u(t, x) = e τ t+iy•η ϕ(x d ) are then associated to functions ϕ(x d ) = exp(x d G(τ, η))ϕ(0) for ϕ(0) ∈ C N . Similarly to the onedimensional case, the boundary condition Bu |x d =0 = g is intended to prescribe in a unique way the convenient value for ϕ(0) ∈ C N so that the solution ϕ takes value in L 2 (R + ) and depends continuously on the boundary data g in appropriate function spaces. An important structural result comes from the hyperbolicity property itself (thus from the Cauchy well-posedness). It consists in a separation property for the positive and negative eigenspaces of the matrices G(τ, η). The result is due to Hersh and appears as a natural generalization of the previous decomposition (1.3) to frequency-parameterized cases.

Lemma 1 (Separation [START_REF] Hersh | Mixed problems in several variables[END_REF]). Assume the operator L to be hyperbolic and the boundary to be non-characteristic in the sense that Ker A d = {0}. Then

C N = E + (A d ) ⊕ E -(A d ). Moreover for any (τ, η) ∈ C × R d-1 with Re τ > 0: C N = E s (τ, η) ⊕ E u (τ, η), with in addition dim E s (τ, η) = dim E + (A d ) and dim E u (τ, η) = dim E -(A d ).
Here the stable space E s (τ, η) (respectively the unstable space E u (τ, η)) is defined as the sum of the eigenspaces of G(τ, η) associated to eigenvalues with negative (respectively positive) real parts. These spaces depend on the frequency parameter as positively homogeneous functions with degree 0, thus it is interesting to introduce the set of normalized frequency parameters

Σ := {(τ, η) ∈ C × R d-1 , Re τ > 0, |τ | 2 + |η| 2 = 1} and its boundary Σ 0 := {(τ, η) ∈ C × R d-1 , Re τ = 0, |τ | 2 + |η| 2 = 1}.
To preclude the existence of time-unstable solutions with finite space energies, the following condition is required:

Kreiss-Lopatinskii condition: ∀(τ, η) ∈ Σ, Ker B ∩ E s (τ, η) = {0}.
The condition admits several equivalent formulations (nonzero determinant, resolvent inequality) but it is important to observe that the stability for the IBVP is generally obtained only under the following reinforced condition, where | • | denotes here any finite-dimensional norm:

Uniform Kreiss-Lopatinskii Condition (UKLC): rank B = dim E + (A d ) ∃C > 0, ∀(τ, η) ∈ Σ, ∀ϕ ∈ E s (τ, η), |Bϕ| ≥ C|ϕ|.
For many hyperbolic problems such as strictly or semi-strictly hyperbolic it is known that the spaces E s (τ, η) and E u (τ, η) depend analytically on the parameters (τ, η) ∈ Σ and admit a continuous extension to Σ 0 (see Métivier [START_REF] Métivier | Small Viscosity and Boundary Layer Methods[END_REF]). In particular the UKLC can be formulated by means of a determinant constructed from an orthonormal basis

{e 1 , e 2 , • • • , e r } of E s (τ, η) as ∆(τ, η) := det (Be 1 (τ, η), Be 2 (τ, η), • • • , Be r (τ, η)).
Reformulation by the UKLC determinant:

∃δ > 0, ∀(τ, η) ∈ Σ, |∆(τ, η)| ≥ δ.

A priori estimates and general results

Equipped with these tools, the general theory for the well-posedness is based on several other notions: discrete block structure condition, Kreiss symmetrizers, continuous extension of the formulation, UKLC resolvent reformulation and finally energy estimates adapted to that reformulation. We do not detail these aspects here and refer the interested reader to the book by [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations: first-order systems and applications[END_REF] or to the work by Métivier [START_REF] Métivier | On the L2 well posedness of hyperbolic initial boundary value problems[END_REF].

Let us sketch some first steps, that will be important in the forthcoming similar stability analysis for discrete IBVPs. Even if the existence of a solution with traces along the boundary is an important part of the problem, assume it and let us only discuss the useful a priori estimates (actually they participate to prove the existence by a duality argument). The time-Laplace transformed version of (1.1) is considered for zero initial data f and without source term F . Under the UKLC, from the Laplace-Parseval identity and the invertibility of B on E s , the following estimate follows for all γ > 0:

∞ 0 e -2γt |u(t, η, 0)| 2 dt ∞ 0 e -2γt |Bu(t, η, 0)| 2 dt.
(1.6)

Here and everywhere after, identities of the form X Y mean that there exists a constant C > 0 independent of X, Y and the other parameters in the formula (including γ here), such that X ≤ C Y . In the following lines, we also make use of the following notations of norms to shorten and to alleviate the reading of exponential weights:

u(t, •) 2 R d + := R d + |u(t, x)| 2 dx, u(t, •, 0) 2 R d-1 := R d-1 |u(t, y, 0)| 2 dy, u 2 γ := +∞ 0 e -2γt u(t, •) 2 R d + dt, |u| 2 γ := +∞ 0 e -2γt u(t, •, 0) 2 R d-1 dt.
The previous estimate (1.6) on traces thus also reads |u| 2 γ |Bu| 2 γ . The general theorem to have in mind afterwards is the following one. The estimates also encompass interior norms, source terms and even non-zero initial data.

Theorem 2 (Benzoni-Gavage and Serre [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations: first-order systems and applications[END_REF]). Let us consider a strictly or a semi-strictly hyperbolic system (1.1) with a non-characteristic boundary condition. The Uniform Kreiss-Lopatinskii Condition is then equivalent to the strong stability property

γ u 2 γ + |u| 2 γ |Bu| 2 γ + 1 γ Lu 2 γ .
(1.7)

If satisfied, then the PDE is strongly well-posed in L 2 : for any data f , g, F in L 2 spaces, there exists a unique solution u in L 2 space:

sup t>0 e -2γt u(t, •) 2 + γ u 2 γ + |u| 2 γ f 2 + |g| 2 γ + 1 γ F 2 γ .
(1.8)

Stability theory for linear finite difference schemes

The stability theory for finite difference methods dates back first to 1928 and the work by Courant, Friedrichs, and Lewy [START_REF] Courant | Über die partiellen Differenzengleichungen der mathematischen Physik[END_REF] where the famous eponym condition is introduced, based on the necessary inclusion property of the theoretical dependency domain into the numerical one. Later on, from Crank and Nicolson [CN47] and Charney, Fjörtoft, and von Neumann [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF], the helpful Fourier-spectral condition facilitates the stability analysis for linear methods set over domains without boundaries (periodic or infinite).

Notations and setting

In order to highlight the similarities with the well-posedness theory previously discussed for PDEs, we introduce now a quite abstract notation and consider discrete scalar IBVPs on the quarter plane put under the form

(Lu) n j = F n j , (j, n) ∈ N × N, (Bu) n j = g n , (j, n) ∈ {0} × N, (Iu) n j = f j , (j, n) ∈ N × {0}.
(1.9)

The unknown u = (u n j ) could be vector-valued but we restrict here to scalar values only. The finite difference operator L is given by a finite constant coefficients linear combination of powers of the time-translation T : u n → u n+1 and of the space-shift S : u j → u j+1 . Actually the operators S in defined on the whole set of sequences indexed by Z when we discuss the problem without boundaries (or by periodicity on periodic in space domains). The interior scheme is

L = k σ=0 p =-r a σ, T σ S .
(1.10)

The operator I = (Id, T, . . . , T k-1 ) is used to define the k first time steps from the multistep initial data f . Actually, for a scheme having r left points, the space-shift S is defined from only the indices {-r, -r + 1, . . . , -1} ∪ N in the following natural way: S(u -r , u -r+1 , . . .) := (u -r+1 , u -r+2 , . . .) and S -1 (u -r , u -r+1 , . . .) := (0, u -r , , u -r+1 , . . .). The boundary scheme operator B = (B 1 , . . . , B r ) T has to provide the r ghost cells required from L at each time step.

Stability theory for linear finite difference schemes

We consider here simply a time-independent local form, with for 1 ≤ q ≤ r:

B q = m =-r b q, S , (1.11)
Both the full Cauchy problem associated to (1.9) (without boundary) and the IBVP have to be solvable, what may require sometimes complicated algebraic properties in the present general setting, but is quite straightforward for a given usual scheme. The corresponding solvability assumption is that, being given some data f , g and F , the existence and uniqueness of a solution u to (1.9) is guaranteed.

As an example, let us consider the Beam-Warming scheme for solving (with positive velocity a > 0) the advection problem ∂ t u + a∂ x u = 0 together with discrete Dirichlet boundary conditions u n -2 = u n -1 = g n . Setting λ = a∆t/∆x, the scheme corresponds to the operators

L = 1 ∆t T -λ(λ-1) 2 S -2 -λ(2 -λ)S -1 -(2-λ)(1-λ) 2 S 0 , B = (S -2 , S -1 ) T .

Fourier Von Neumann symbolic analysis

In between the most general case (1.9) and the previous simple example, we introduce for future purpose the explicit linear multistep methods based on the method-of-lines. These family of schemes will again be used later in the Chapter 2. The space discretization is first done and, after that, a scalar time-integrator is used:

1 ∆t k σ=0 α σ u n+σ j + 1 ∆x k-1 σ=0 β σ p =-r a l u n+σ j+ = 0, (1.12) or L = 1 ∆t k σ=0 α σ T σ + 1 ∆x k-1 σ=0 β σ T σ p =-r a l S .
Formally, the discrete dispersion relation is obtained by considering solutions of the form u n j = z n κ j , or by replacing symbolically T by z and S by κ. In the scalar-unknown setting, it reads

P LMM (z, κ) := 1 ∆t ρ 1 (z) + 1 ∆x ρ 0 (z)A(κ) = 0. (1.13)
Here we denote the Dahlquist polynomial of the time linear recurrence ρ 1 (z) = k σ=0 α σ z σ and ρ 0 (z) = k-1 σ=0 β σ z σ , and the Fourier symbol for the space discrete operator A(κ) = p =-r a κ . With these notations, the consistency property with ∂ t u + a∂ x u = 0 is related to tangency properties at (z, κ) = (1, 1): ρ 1 (1) = A(1) = 0, ρ 1 (1) = ρ 0 (1) = 1 and A (1) = a. In addition, the underlying Cauchy 2 -stability for both the periodic case or the infinite (j ∈ Z) domain is then fully determined by the so-called root condition.

Root condition:

∀κ ∈ S 1 , ∀z ∈ C, ρ 1 (z) + ∆t ∆x ρ 0 (z)A(κ) = 0 ⇒ |z| < 1 or |z| = 1 is simple root .

This condition follows from the power boundedness property of the companion matrices

Discrete initial boundary value problems associated to the involved time recurrence. The stability domains of classical time integration method are known (see Hairer and Wanner [START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF]) so that the stability of a given space discretization is most of the time either possible for ∆t sufficiently small, or simply impossible. Always for the scalar multistep scheme (1.12) with initial data f and source term F = 0 (in the sense of (1.9) but now for j ∈ Z), the root condition is equivalent to the validity of the following stability estimate:

sup n≥0 j∈Z |u n j | 2 ∆x j∈Z |f j | 2 ∆x.
Normal mode analysis and strong stability In order to introduce now the boundary problem, the following norms are used, that depend on γ > 0 and on ∆t and ∆x in a consistent way, being compared to the continuous case:

u 2 γ := n≥0 +∞ j=-r e -2γn∆t |u n j | 2 ∆x∆t, |u| 2 γ := n≥0 p j=-r e -2γn∆t |u n j | 2 ∆t.
Similarly to the continuous case and (1.6), the first step is to estimate the boundary values of the discrete solution from the set of boundary data:

|u| 2 γ |Bu| 2 γ := n≥0 r q=1 e -2γn∆t |(B q u) n 0 | 2 ∆t, (1.14) 
The two seminal papers for the boundary stability theory for finite difference schemes are the ones by Kreiss [START_REF] Kreiss | Stability theory for difference approximations of mixed initial boundary value problems[END_REF] and Gustafsson, Kreiss, and Sundström [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]. The definition to consider is the following.

Definition 3 (Gustafsson, Kreiss, and Sundström [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]). The numerical scheme (1.9) is strongly (GKS-) stable if any solution u n j with zero initial data f = 0 satisfies the following estimate, independent of γ > 0 and ∆t ∈ (0, 1]:

γ 1 + γ∆t u 2 γ + |u| 2 γ |Bu| 2 γ + 1 + γ∆t γ Lu 2 γ .
(1.15)

A few years before these results, from the Moscou-Novossibirsk research group has emerged in 1956 the Babenko-Gelfand procedure for analysing the boundary stability for difference equations, and directly from there the necessary condition from Godunov and Rjabenkii [START_REF] Godunov | Spectral criteria for the stability of boundary-value problems for non-selfadjoint difference equations[END_REF]. This is exactly the discrete counterpart of the Kreiss-Lopatinskii necessary condition and makes use of an adapted stable space E s (z) for the discrete setting. Actually, under the Cauchy 2 -stability of the scheme, the following separation result is available.

Lemma 4 (Root splitting). Assume the scheme (1.12) to be Cauchy 2 -stable. Then for all z ∈ U, the relation dispersion P(z, •) has exactly r roots in D := {κ, |κ| < 1} and p roots in U := {κ, |κ| > 1} (with multiplicities).

From this result, this is possible to solve the z-transformed version of the boundary problem with zero initial data f (and zero source terms F here for convenience). We recall that the 1.2. Stability theory for linear finite difference schemes z-transform is defined for |z| > 1 and a sequence (u n ) n≥0 with u 0 = 0, by the following series transform û(z) := n≥0 z -n u n . From there the solution to (1.9)-(1.10) satisfies:

p =-r k σ=0 a σ, z σ ûj+ (z) = 0, j ≥ 0, (Bû(z)) 0 = ĝ(z).
(1.16)

The homogeneous space linear recurrence relation for (û j (z)) j≥0 has order r + p (under a non-degeneracy for the extreme terms that is known as non-characteristic property in the literature) and therefore the linear space E(z) of their solutions has dimension r + p. In detail the space E s (z), defined as the linear subspace of E(z) with zero limit at infinity (so in 2 ({-r, . . . , -1} ∪ N)), has dimension r exactly. Similarly, the linear subspace E u (z) of solutions with zero limit at -∞ has dimension p. Finally the previous root splitting result leads to the following decomposition:

∀z ∈ U, E(z) = E s (z) ⊕ E u (z).
We can now state hereafter an adapted statement with notations similar to the PDE case. Let us observe that there is a slight abuse in the notation since we denote Ker B instead of

Ker (B •) 0 .
Proposition 5 (Godunov-Rjabenkii necessary condition). If there exists a complex value z with |z| > 1, such that Ker B ∩ E s (z) = {0}, then the discrete IBVP (1.9) is not strongly stable.

In short, this condition excludes the existence of a solution to the homogeneous version of (1.16) with value in 2 (N). As for the PDE case, the Godunov-Rjabenkii condition is actually no sufficient to synthesize back the estimate (1.14). To that aim a reinforced uniform version of the inequality is required: Theorem 6 (Gustafsson, Kreiss, and Sundström [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]). Under natural solvability properties of the scheme, the strong stability of (1.9) is equivalent to the following uniform version of the Godunov-Rjabenkii condition

∃C > 0, ∀z ∈ U, ∀u ∈ E s (z), |(Bu) 0 | ≥ C|u|.
(1.17)

In the literature the previous condition is simply known as UKLC to mimic the continuous case. Here the involved norms are actually finite-dimensional, due to the structure of E s (z) discussed previously. Even more, the stable space E s (z) is a holomorphic fiber bundle over U and in many comfortable situations such as scalar problems, it can be continuously extended to the unit circle, see [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF][START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]. Again, resolvent inequalities, block structures and Kreiss symmetrizers are involved in the general theory.

Some usefull results

Let us now quickly state two results, that will appear as fundamental tools in the rest of Chapter 1 as well as in Chapter 2.

Discrete initial boundary value problems

Lemma 7 (Strong stability of Dirichlet boundary condition). Let us consider a scalar scheme of the form (1.9), with natural solvability conditions, together with the Dirichlet boundary condition B. The Cauchy 2 -stability of the scheme is then sufficient to guarantee its strong stability.

Initially obtained by Goldberg and Tadmor [START_REF] Goldberg | Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems[END_REF] for both dissipative and unitary schemes, this result is extended to the general case by Coulombel [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]. An important point is that the inflowing or outflowing nature of the underlying characteristic at the boundary has no incidence on the strong stability for the Dirichlet boundary condition. Of course, we cannot overestimate the incidence of such a choice in terms of the quality of the approximation. Consistency issues are still to discuss (to follow in Chapter 2). A result similar to the previous Lemma is proved by Goldberg [START_REF] Goldberg | On a boundary extrapolation theorem by Kreiss[END_REF] for dissipative schemes with extrapolation boundary conditions.

The second result is the discrete counterpart of the method by Rauch [START_REF] Rauch | L2 is a continuable initial condition for Kreiss' mixed problems[END_REF], with the aim of including nonzero initial data for a full estimate of the discrete solution with respect to the data. It is obtained by J.-F. Coulombel by using adapted Leray-Gårding multipliers in order to have a discrete time integration method for the discrete energy, for multidimensional systems. The statement is quite similar to Theorem 2.

Theorem 8 (Full estimate -Coulombel [START_REF] Coulombel | The Leray-Gårding method for finite difference schemes[END_REF][START_REF] Coulombel | The Leray-Gårding method for finite difference schemes. II. Smooth crossing modes[END_REF]). Consider the scalar scheme (1.12) assumed to be Cauchy 2 -stable, non-degenerate and with simple roots in the relation dispersion z → P(z, κ) for any κ ∈ S 1 . The strong stability is equivalent to the UKLC. If satisfied, then for any data f , g and F the solution satisfies, independently of γ > 0 and ∆t ∈ (0, 1]:

sup n>0 e -2γn∆t u n 2 + γ 1 + γ∆t u 2 γ + |u| 2 γ f 2 + |Bu| 2 γ + 1 + γ∆t γ Lu 2 γ . (1.18)

Kreiss-Lopatinskii determinants for finite difference schemes

Intrinsic Kreiss-Lopatinksii determinant A crucial question for proving the strong stability of a given discrete IBVP is to detect the zeros of the Kreiss-Lopatinskii determinant. It corresponds to testing the invertibility of B on E s leading to the uniform estimate (1.17).

Very often in the literature, this is done case by case and thus available only for very special discrete schemes and boundary conditions where the algebra is helpful, i.e. of low degree or reducible. In a more general framework, the Kreiss-Lopatinskii determinant is defined directly from the stable vector bundle E s and the boundary operator B. It naturally inherits structural properties as holomorphicity and continuity. However, its concrete computation depends on the considered basis for E s . Due to the non-trivial monodromy group for the set of roots of the dispersion relation, as functions on z, no holomorphic representation of the individual vector in that basis do exist in general. The previous discussion nevertheless guarantees that the basis as a whole is a holomorphic vector bundle on U.

1.3. Kreiss-Lopatinskii determinants for finite difference schemes

In the work [A/BLS23], we propose a basis-independent version of the Kreiss-Lopatinskii determinant, which we call the intrinsic Kreiss-Lopatinskii determinant. The idea is very simple and enables the use of complex analysis tools to look numerically for the zeros of ∆ by complex winding number computations. One can mention the work by Thuné [Thu86] who also developed a numerical method to check the strong stability.

Definition 9 (Intrinsic Kreiss-Lopatinskii determinant). Let us denote, for any value z ∈ U a basis E(z) = (e 1 (z), . . . , e r (z)) of the r-dimensional vector space E s (z), made of sequences indexed by {-r, . . . , -1} ∪ N. The intrinsic Kreiss-Lopatinskii determinant is the following function:

∆(z) = det (BE(z)) 0 det (Π r E(z)) 0 , (1.19)
where Π r := (Id, S, . . . , S r-1 ) T .

To get the quite complicated notation, let us look at an example. Assume that r = 2, exactly two roots κ 1 = κ 2 are in D, and the linear space E s (z) is then spanned by e 1 (z) = (κ j 1 ) j≥-2 , e 2 (z) = (κ j 2 ) j≥-2 . Consider the boundary condition u -2 = 0 and u -1 = u 0 represented by B = (S -2 , Id -S -1 ) T . In that case, we obtain the formula:

(Π 2 E(z)) 0 = 1 1 κ 1 κ 2 , (BE(z)) 0 = κ -2 1 κ -2 2 1 -κ -1 1 1 -κ -1 2 .
In some favorable situations, the intrinsic determinant can be computed directly from the coefficients of the scheme.

Theorem 10 (Theorem 13 in [A/BLS23]). Let a > 0. Consider a scalar one-step explicit finite difference scheme of the form

u n+1 j = p =-r a k u n j+ , j ≥ r u n j = m-1 k=0 b j,k u n k + g n j , 0 ≤ j ≤ r -1, (1.20)
with p = 0 (totally upwind), consistent and Cauchy 2 -stable. Then the intrinsic Kreiss-Lopatinskii determinant reads

∆(z) = (-1) r(r-m) a -r a 0 -z m-r det C(z), (1.21)
where C(z) is a matrix depending on (a ) -r≤ ≤p , on B, and polynomially on z.

Actually, the matrix C can be deduced from the boundary matrix B by an algorithmic gaussian elimination procedure directly related to the linear recurrence relation induced by the interior scheme.

The previous results incidentally gives an alternative direct proof for the holomorphicity and the continuity properties of ∆ over U as a result of the property |a 0 | < 1. The following corollary is central in the forthcoming applications and enables a purely geometrical observation for determining the strong stability of the considered scheme from the integer value of the complex index Ind ∆(S 1 ) (0):

Corollary 11 (Corollary 15 in [A/BLS23]). Let the assumptions of the Theorem 10 hold and assume moreover the absence of neutral instabilities, meaning that 0 / ∈ ∆(S 1 ). The equation ∆(z) = 0 has then exactly r -Ind ∆(S 1 ) (0) zeros in U.

In a second work [P/BLS], the result is extended in particular to the case p ≥ 1. In that case, no such explicit formulation for the Kreiss-Lopatinskii determinant is available but a slight reformulation of the boundary condition is then useful to reduce as much as possible the form of ∆ and get the important bounds and properties. Finally, this is proved that the proposed formulation is able to transfer the holomorphicity and continuous extension from E s to ∆, whatever is the choice of the basis E(z).

Theorem 12 ([P/BLS]). Let a > 0. Consider a one-step explicit finite difference scheme of the form (1.20), consistent and Cauchy 2 -stable. The intrinsic Kreiss-Lopatinskii determinant ∆ is holomorphic on U and continuous on U.

Strategy for winding number computations

Applying the residue theorem to the function ∆ on the circle S 1 , a numerical strategy is available to put the previous discussion in action. The improvement compared to the existing literature is that the method does not use an arbitrary dimension truncation of (quasi-)Toeplitz matrices plus the computation of the spectral radius of such a large matrix. As a counterpart, the numerical experiments are exposed to some technical conditioning difficulties due to large amplitude variations in the modulus of ∆. The winding number computation is then improved by an adaptive mesh refinement strategy based on the work by Zapata and Martín [START_REF] Zapata | A geometrical root finding method for polynomials, with complexity analysis[END_REF] and García Zapata and Díaz Martín [START_REF] Zapata | A geometric algorithm for winding number computation with complexity analysis[END_REF].

Numerical experiments

Inverse Lax-Wendroff boundary condition Tan and Shu [START_REF] Tan | Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws[END_REF] develop the inverse Lax-Wendroff (ILW) procedure so as to improve the order of consistency of an inflow boundary for transport-like problems. The method uses the PDE itself so as to transform the space derivatives that appear in extrapolation at the boundary into time derivatives. Then the available physical boundary data can be used in order to define artificial boundary conditions. For example, for the one-dimensional advection problem ∂ t u + a∂ x u = 0, the following relation holds,

for k ∈ N * , ∂ k u ∂x k = (-1) k a k ∂ k u ∂t k .
So from Taylor expansion up to order d, the ghost points at the inflow boundary u(t, 0) = g(t) are chosen to be:

u n j = d-1 k=0 (j∆x) k k! ∂ k u ∂x k (n∆t, 0) = d-1 k=0 (j∆x) k k! (-1) k g (k) (n∆t) a k , -r ≤ j ≤ -1. 1.4. Numerical experiments
The method is particularly efficient and benefits directly the stability features available for Dirichlet boundary conditions (Lemma 7): any Cauchy 2 -stable scheme is convenient.

Simplified ILW by extrapolation procedure Motivated by the difficulty to extend the ILW method to multidimensional situations, where defining the inverse Lax-Wendroff procedure requires hard procedures to mix normal and tangential derivatives along the boundary, Vilar and Shu [START_REF] Vilar | Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes[END_REF] proposed a simplified version of the ILW method denoted here "Sk d ILWd". In that method, only the first k d -1 derivatives of g are substituted in the expansion, next terms for orders from k d to d are defined from the interior points by an extrapolation procedure at the same order d. At the end, the formula (for the one-dimensional case) takes the form

u n j = k d -1 k=0 (-j∆x) k k! g (k) (n∆t) a k + d-1 k=k d j k k! d-1 s=0 p (d) k,s u n s , -r ≤ j ≤ -1, (1.22) 
where the coefficients p

(d)
k,s correspond to the extrapolation procedure. With our method, we are able now to draw the Kreiss-Lopatinskii curve ∆(S 1 ) for the corresponding discrete IBVP. Now the result by [GT81] (Lemma 7) does not apply anymore and the strong stability of the half-problem has to be investigated again: the CFL parameter λ has to be chosen so as to get the full stability property (even for a Cauchy dissipative 2 -scheme). To that aim, we compute the curve ∆(S 1 ) for several values of the CFL parameter λ (see Figure 1.1). The Beam-Warming scheme (see [START_REF] Després | Uniform asymptotic stability of Strang's explicit compact schemes for linear advection[END_REF]) is known to be Cauchy 2 -stable exactly for λ ∈ (0, 2]. The instability for λ = 1.4 and the stability for λ = 1.6 are thus proved.

Figure 1.1: Set ∆(S 1 ) for the Beam-Warming scheme with S2ILW3.

Misalignment of grids

The ILW and SILW procedures can be very easily extended to the case where a misalignment between physical boundaries and grid points occur. Consider the boundary condition u(t, x σ ) = g(t) now prescribed at a point x σ = σ∆x. The value of σ is thought as possibly changing when time evolves (for moving boundaries x σ (t)) or along another space direction missing here (for multidimensional setting with curved or oblique boundaries, with x σ (y)). The aim is to provide strong stability results that are independent of the value of σ, at least in a known set of values.

In that case, the adapted SILW procedure depends on σ and reads:

u n j = k d -1 k=0 (-(j + σ)∆x) k k! g (k) (n∆t) a k + d-1 k=k d (j + σ) k k! d-1 s=0 p (d) k,s u n s , -r ≤ j ≤ -1.
For the Beam-Warming scheme, we explore simultaneously the set of the parameters λ and σ ∈ [-0.5, 0.5] for which the strong stability occurs (see Figure 1.2). The main advantage of the method is now clear: the computational cost to draw these maps is reduced and does not depend on high-dimensional spectrum approximations for matrices, but rather on the number of points used to compute Ind ∆(S 1 ) (0). It has also to be observed that exceptional points with 0 ∈ ∆(S 1 ) only happens quite rarely, along transition curves only. Simplified ILW by reconstruction procedure In the literature an alternative procedure to simplify ILW boundary conditions by simplifying high order terms is proposed by Dakin, Després, and Jaouen [START_REF] Dakin | Inverse Lax-Wendroff boundary treatment for compressible lagrange-remap hydrodynamics on cartesian grids[END_REF]. We skip here many details to not rise unnecessarily the technicality. The boundary condition, denoted R d,k d , has the form

(u n -r , . . . , u n -1 ) T = Y -Y -1 + (u n 0 , . . . , u n d-k d -2 ) T + G n ,
with a convenient reconstruction matrix Y -Y -1 + (depending on σ) and G n depending also on the boundary data g. The Figure 1.3 represents the number of boundary instabilities computed for the fifth order Lax-Wendroff method [START_REF] Lorcher | Lax-Wendroff-type schemes of arbitrary order in several space dimensions[END_REF] with such reconstruction procedures at the boundary. (1B) Spectral theory, Wiener-Hopf factorizations and Shur complements. The theory of stability for the discrete problems may be analysed through several frameworks. For example, finite difference schemes with constant coefficients and no boundary (periodic or doubly-infinite domains) are well-known through circulant Toeplitz matrices (i.e. Laurent operators). The Fourier-diagonalization-multiplier traduces the uniform boundedness of the associated discrete semi-group. This is the most classical situation, where several aspects coincide: matrix spectrum, resolvent inequalities, uniform power boundedness.

1.5. Perspectives R 5,0 R 5,1 R 5,2 R 5,3 R 6,0 R 6,1 R 6,2
In the presence of boundaries, the situation slightly differs since we generally face then

Discrete initial boundary value problems non-selfadjoint operators. General (pseudo-)spectral analysis for large matrices is then covered by the Kreiss Matrix Theorem. The literature and the results on the topic is large (Nevanlinna [LN91; Nev01], Spijker and collaborators [BDS02; BS00; BS02; Spi17], Szehr [START_REF] Szehr | Eigenvalue estimates for the resolvent of a non-normal matrix[END_REF] and the book by Trefethen and Embree [START_REF] Trefethen | Spectra and pseudospectra: the behavior of nonnormal matrices and operators[END_REF]).

On the other side, the case with Dirichlet boundary conditions on the one-dimensional half-space leads to Toeplitz operators (and their finite sections), whose spectral theory is quite well understood. More general boundary conditions are studied through their quasi-Toeplitz form: the asymptotic of their spectrum and pseudospectrum (resolvent inequalities) for large dimensions is handled by Reichel and Trefethen [START_REF] Reichel | Eigenvalues and pseudo-eigenvalues of Toeplitz matrices[END_REF] and Beam and Warming [START_REF] Beam | The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices[END_REF] (see also the older work by Schmidt and Spitzer [START_REF] Schmidt | The Toeplitz matrices of an arbitrary Laurent polynomial[END_REF] concerning the asymptotic spectrum of Toeplitz matrices). Some of these aspects have been explored in the PhD work of P. Le Barbenchon (numerical exploration of bulges of the pseudospectrum of large Toeplitz matrices and their relation with generalized eigenvalues of the boundary problem).

Actually the semi-infinite matrix obtained from another boundary condition defines a Fredholm operator that is a compact perturbation of the original Toeplitz matrix.

Therefore their spectra only differ from a finite set of discrete points. The Kreiss-Lopatinskii determinant is in some sense the reduced finite-dimensional determinant of that perturbation, computed from reducing first the symbolic form by means of Wiener-Hopf factorization (the Hersh separation lemma).

A perspective is to clarify these spectral aspects with the help of spectral theory and harmonic functions theory.

CHAPTER 2

Multiscale expansions for discrete boundaries

The present chapter is focused on multiscale expansions describing the solutions to finite difference schemes, and on their uses to analyze the convergence properties and understand some stability features. The typical decomposition of the discrete solution is achieved from modes emanating from the boundary and usual Fourier interior modes. In a first section, we introduce some general ideas partially related to the previous chapters. Then, from the strong stability property and a consistency analysis adapted to the asymptotic expansion, we obtain some improved convergence results. The considered analysis enables a new descriptive proof of semigroup estimates for the discrete mixed initial boundary value problem, that are close to be optimal, in comparison with the continuous case. Some various possible extensions of these techniques are finally discussed. The presentation is mainly based on the publications [A/BC17; A/BNS + 21] recalled hereunder.

[ 

Multiscale expansions

Even if an equation is nondispersive, any discrete model of it will be dispersive.

Trefethen [START_REF] Trefethen | Group velocity in finite difference schemes[END_REF] Finite difference schemes can be interpreted as discrete non-local operators that filter informations in concordance with a given continuous problem, in the limit of small discretization parameters ∆x and ∆t. The filtering effect is due typically to the underlying smoothness of the approximated objects and/or to damping properties. However, in some situations, some parts of the discrete solution may refuse to obey the expected limiting problem, or obey another limiting process. This is true especially when the the approximated solution is lacking in smoothness, due e.g. to non-linearities, or when impurities affect the scheme, e.g. inhomogeneities or boundaries. These last specific situations can actually be considered itself as a lack of smoothness in the coefficients of the filter itself.

The above quoted citation from Trefethen reminds us about the dispersive nature of difference schemes, and one should have in mind that a scheme does not only solve the single partial differential equation (PDE) it is designed for. In fact, it solves a full set of PDEs, among which the expected model has somehow a dominant presence due to the previously mentioned filtering effect. The other hidden PDEs are unexpected but can be awakened for example by the presence of inhomogeneities or boundaries. Thus the paradigm hereafter is to consider the discrete solution to a linear numerical scheme with or without boundaries as being the approximate superposition of solutions to several PDEs involving various time and space scales and more or less independent structural properties. This is a natural continuation of the common Fourier symbolic analysis for the Cauchy problem [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], but with an enriched basis of representation. The dispersive analysis of numerical methods is clearly not new and has received many interests from the 1980's. It follows the group velocity wave analysis from Brillouin [START_REF] Brillouin | Wave propagation and group velocity[END_REF] and some important contributions with the use of dispersive features for discrete schemes are done in particular by Vichnevetsky [START_REF] Vichnevetsky | Energy and group velocity in semi discretizations of hyperbolic equations[END_REF][START_REF] Vichnevetsky | Propagation through numerical mesh refinement for hyperbolic equations[END_REF], by Trefethen [Tre82;[START_REF] Trefethen | Instability of difference models for hyperbolic initial-boundary value problems[END_REF], by Higdon [Hig86a; Hig86b], by Michelson [Mic87]. The paper by Trefethen [START_REF] Trefethen | Instability of difference models for hyperbolic initial-boundary value problems[END_REF] actually makes a rich connection in between the strong (GKS-) instability and the presence of what he calls "rightgoing steady-state solutions". In particular the amplitude of instability factors are related to kind of instabilities present in the scheme.

For non-linear schemes with boundaries, the study of boundary layers and of their stability has been studied for example by Chainais-Hillairet and Grenier [START_REF] Chainais-Hillairet | Numerical boundary layers for hyperbolic systems in 1-d. M2AN Math[END_REF] for the Lax-Friedrichs scheme (see also Godillon [God03] for the more general study of discrete shock profiles in that case), and by Ye [START_REF] Ye | Numerical boundary layers of conservation laws with relaxation extension[END_REF] for non-characteristic relaxation models.

From now on, we consider only finite difference schemes for solving the one-dimensional scalar constant coefficient transport problem

∂ t u + a∂ x u = 0,
x > 0, t > 0, (2.1) but many ideas are still available for higher order constant coefficients initial boundary value PDEs.

Normal modes, conjugated schemes and equivalent equations

To begin with, we consider normal modes of the form u n j = z n κ j with (z, κ) ∈ C 2 as the typical solution involved by the roots of the dispersion relation P(z, κ). The space structure and the time dynamic of these particular solutions are given by some simple considerations. For example, a mode (z, κ) is said to be stationary if z = 1 and more generally unitary if |z| = 1. It is said to be damped if |z| < 1 and unstable if |z| > 1. Concerning the space structure in dimension one, the mode is left localized if |κ| < 1, right localized if |κ| > 1, and finally extended if |κ| = 1. This last case precisely correspond to the classical Fourier modes for the problem without boundaries. When there is no ambiguity, for example when dealing with the half problem set on N, localized means simply left localized.

The linear analysis allows to easily consider a modulated version of the previous solution, that is a solution of the form u n j = v(t n , x j )z n κ j where v is a smooth profile function and P(z, κ) = 0. Then v n j = v(t n , x j ) solves then approximately a conjugated scheme shifted in (z, κ), having then to be precise the dispersion relation P(z, κ) := P(zz, κκ) = 0.

In particular, for (z, κ) close to (1, 1), the tangency properties of the zero set of P unveil the modulated PDE satisfied by the profile function v at the lowest order. The consistency property of the scheme with a given PDE (such as (2.1) here) thus reduces to these tangency properties, in the spirit of matching expansions. The first leading equivalent equation at the scale ∆t and ∆x reads, after some Taylor expansions:

∆t ∂P ∂z (1, 1)∂ t v + ∆x ∂P ∂κ (1, 1)∂ x v = 0.
According to the possible vanishing in the sequence of derivatives of P at (1, 1), it may be necessary to increase the order of the corresponding Taylor expansions so as to find out the dominant term in the expansion and finally a higher order modulated PDE. In view of having in the end the good scaling in the discretization parameters ∆t and ∆x, this is then necessary to change accordingly the time and/or space scale for the modulated profile. For example, assuming ∂P ∂κ (1, 1) = 0 and ∂P ∂z (1, 1) = 0, then, this is natural to consider the solution to the conjugated scheme v n j to have the form v n j = v(n∆t, j∆x 1/2 ) so that the profile function v solves at low order the PDE problem:

∆t ∂P ∂z (1, 1)∂ t v + ∆x 2 ∂ 2 P ∂κ 2 (1, 1)∂ 2 x v = 0.
In the end, one understands that along the zero set of the dispersion relation P of the numerical scheme can be found a set of PDEs, each one being consistent with the corresponding conjugated schemes. All of them have various stability and scaling properties. Of course, in view of a given final expected application, not any of these numerous modes and scales have to be considered. Let us give hereafter some quick guidelines.

• Handling with the problem without boundaries, the Cauchy 2 -stability requires that 0 / ∈ P(U, S 1 ). For smooth initial data (both in time and space) only modes for |κ| = 1 (Fourier analysis) and |z| ≤ 1 are relevant in the convergence analysis. Of course, damped modes for |z| < 1 cannot damage seriously the convergence results for positive times. For linear multistep methods, the relevant analysis can make use of the so-called one-step underlying method [START_REF] Eirola | What do multistep methods approximate?[END_REF]. However, for weakly stable multistep method, because of the presence of unitary non-trivial modes |z| = 1 and |κ| = 1, an appropriate choice for the initial conditions is required so as to guarantee the expected convergence result without spurious time oscillations in the solutions.

• Handling with one boundary at the left of the domain, the Fourier analysis has to be supplemented by considering in addition possible localized unitary modes (|z| = 1 and |κ| < 1) and extended unitary modes (|z| = 1 and |κ| = 1). Of course, among these modes the stationary ones (z = 1) play a central role for the convergence analysis with smooth in time solutions. However more general situations may also require to deal with the full set of unitary modes.

For the rest of the chapter, the presentation is reduced to explicit linear multistep schemes constructed by an method-of-lines, discretizing first in space. They were already met in the previous chapter but for convenience we recall hereafter the form for the half-problem set over j ∈ N with discrete boundary condition from an finite difference operator B.

(Lu) n j := 1 ∆t k σ=0 α σ u n+σ j + k-1 σ=0 β σ 1 ∆x p =-r a u n+σ j+ = 0, (n, j) ∈ N × N, (Bu) n j = g n j , 0 ≤ j ≤ r -1, n ≥ k, u σ j = f σ j , j ∈ N, 0 ≤ σ ≤ k -1.
(2.2)

We recall that the corresponding dispersion relation for the interior scheme is

P(z, κ) := 1 ∆t ρ 1 (z) + 1 ∆x ρ 0 (z)A(κ) = 0, (2.3)
with the notations already introduced around (1.13).

Discrete boundary layers

The mostly observed parasitic phenomenon when solving discrete initial boundary value problems consists in spurious oscillations located close to the boundaries of the computational domain. Actually, this phenomenon is present for almost any scheme, sometimes at imperceptible scales. Their careful analysis and description is particularly interesting and leads to improved convergence estimates by adapting the consistency analysis through appropriate asymptotic expansions. Strong stability properties have here to be already available so as to go easily from boundary consistency errors towards convergence errors. This is the case for example when dealing with the Dirichlet discrete boundary conditions, known from Goldberg and Tadmor [START_REF] Goldberg | Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems[END_REF] to lead to a strongly stable scheme when associated to any scalar scheme that exhibits Cauchy 2 -stability for the interior domain.

Localized stationary modes

The case of semi-discrete or of method-of-lines multistep schemes is more convenient to cover because the algebra related to the discrete space operator can then be separated from the other aspects. Let us consider the fully discrete case (2.2) and stationary modes only. They admit the modal form u n j = z n ϕ j with z = 1 and where (ϕ j ) j is some appropriate complex valued sequence. The set of stationary solutions is entirely spanned by the geometrical sequences corresponding to the roots of the dispersion relation for z = 1:

P(1, κ) = 0, (2.4)
with κ ∈ C. Among them, we distinguish the localized modes (in 2 ) spanned by the interior roots only (meaning |κ| < 1), from the extended modes also involving the unitary roots (meaning |κ| = 1).

From now on, we restrict our attention to space operators satisfying the following structural assumption that consists in the absence of extended stationary mode: ∀κ ∈ S 1 \ {1}, A(κ) = 0.

(2.5)

As a typical example, a one-step scheme based on Euler forward time integrator that is dissipative in the sense of Kreiss satisfies the previous assumption, namely:

|1 -∆t ∆x A(e iθ )| ≤ 1 -cη 2m , |η| ≤ π.
Other non-dissipative schemes, such as the Lax-Friedrichs scheme also satisfy the required assumption.

Adapted consistency analysis

The classical convergence error denoted by e cl n,j = u(t n , x j ) -u n j is estimated through the main stability property and estimates for the truncation error ε cl n,j = Lu(t n , x j ) and for the initial error e cl σ,j for 0 ≤ σ ≤ k -1. Now, considered as an improved comparison object, we slightly modify the process by adding a new whole asymptotic expansion u app n,j at dominant order:

e n,j = u app n,j -u n j .

The method consists in constructing the appropriate boundary layer expansion so that e n,j solves the discrete IBVP:

(Le) n,j = ε n,j , (n, j) ∈ N × N (Be) n,j = η n,j , 0 ≤ j ≤ r -1, n ≥ k e σ,j = 0, 0 ≤ σ ≤ k -1, j ≥ 0
with a zero initial data, small boundary truncation error η and small interior truncation error ε, thus forcing the boundary inconsistency to reduce. These smallness requirements motivate the appropriate expansion for having the form

u app n,j = u int (t n , j∆x) + u bl (t n , j) (2.6)
where u int solves the interior equation and u bl corrects the boundary truncation error. It has to not modify severely the interior truncation error ε cl and thus to correspond to well-chosen localized modes only. The main step to choose appropriately the boundary layer term is the boundary equation that, for convenience, we present here in the semi-discrete case only:

(Bu bl (t)) j = -(Bu int (t)) j , 0 ≤ j ≤ r -1. (2.7)
and u bl (t) ∈ E ss (1) the strictly stable space associated to z = 1, involving only interior roots |κ| < 1, while u int is directly related to the usual consistency mode (z, κ) = (1, 1). According to the sign of a, κ = 1 corresponds to a mode in the continuous extension E s (1) of the stable space. The following lemma is a convenient reinterpreted version of the Hersh Lemma from [A/BC17].

Lemma 13 (Construction of E ss (1)). Let a = 0 and consider a scheme of the form (2.2) Cauchy 2 -stable and without extended stationary mode. Then A admits exactly

• κ = 1 as simple root, moreover (1 j ) ∈ E s (1) iff a > 0,

• r interior roots |κ| < 1 and p -1 exterior roots |κ| > 1 (with mult.), if a < 0,

• r -1 interior roots |κ| < 1 and p exterior roots |κ| > 1 (with mult.), if a > 0.

It has to be observed that for outgoing problem a < 0, then E s (1) = E ss (1) while for the incoming problem a > 0, then E s (1) = E ss (1) ∪ {1}. In any case, dim E s (1) = r and the equation (2.7) is always solvable from the invertibility of B on E s (1) (UKLC).

Extrapolation boundary conditions

The most convenient discrete boundary condition to program is the Dirichlet boundary condition, even if rarely consistent. It consists in setting the required ghost values directly from some prescribed exterior data. A standard improvement of this choice, especially promoted for outflowing problems, consists in considering extrapolatory discrete boundary conditions. It is also known as discrete Neumann boundary conditions. The stability properties of these methods have been studied by Goldberg [START_REF] Goldberg | On a boundary extrapolation theorem by Kreiss[END_REF] for dissipative or unitary schemes, or by Goldberg and Tadmor [START_REF] Goldberg | Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems[END_REF] for Cauchy 2 -stable schemes with Dirichlet boundary conditions.

Let us fix some notations and begin by introducing the following right sided discrete difference operator (D + v) j = v j+1 -v j . The previously mentioned boundary conditions take the following form:

(D m + u) = g , 0 ≤ ≤ r -1. (2.8)
where (g ) 0≤ ≤r-1 is the discrete boundary data. For example, when solving physically outflowing problems where no data is thus available from the continuous setting, the most easy choice consists in prescribing homogeneous discrete boundary conditions at some given order m:

• m = 0 (homogeneous Dirichlet): u 0 = . . . = u r-1 = 0;

• m = 1 (homogeneous Neumann): u 0 = . . . = u r-1 = u r ;

• m = 2 (second-order homogeneous Neumann):

u 1 -u 0 = . . . = u r -u r-1 = u r+1 -u r .
Smooth functions naturally benefits the following consistency error at the boundary:

Lemma 14 (Consistency of extrapolation). Let m ∈ N. There exists C > 0 such that for any

v ∈ H m+1 (R) and any 0 ≤ ≤ r-1: |(D m + v) | ≤ C∆x m v (m) H 1 (R) , where v j = 1 ∆x C j v(y) dy for j ∈ Z.

Discrete derivatives of confluent Vandermonde matrices

The main step for identifying the boundary layer terms lies in the solving of the boundary equation (2.7). The Dirichlet boundary conditions (2.8), for m = 0, is solved, for example when the involved roots κ 1 , . . . , κ r of P(1, κ) have multiplicity one, by inverting the classical Vandermonde matrix:

       1 1 . . . 1 κ 1 κ 2 . . . κ r . . . . . . . . . κ r-1 1 κ r-1 2 . . . κ r-1 r       
. Now for roots κ 1 , . . . , κ r of P(1, κ) with possible multiplicities, this requires to invert the confluent Vandermonde matrix:

V =        κ (1) 0 κ (2) 0 . . . κ (r) 0 κ (1) 1 κ (2) 1 . . . κ (r) 1 . . . . . . . . . κ (1) r-1 κ (2) r-1 . . . κ (r) r-1       
, where the sequences (κ ( ) j ) j for 1 ≤ ≤ r correspond to a relabeling of the sequences j(j -1) . . . (j -σ + 1)κ j-σ for 0 ≤ σ ≤ µ -1 considered for any interior root κ of P(1, κ) with multiplicity µ. The solving of Neumann extrapolation boundary condition at order m requires the inversion of the following discrete derivative at order m of the confluent Vandermonde matrix:

D m V :=        (D m + κ (1) ) 0 (D m + κ (2) ) 0 . . . (D m + κ (r) ) 0 (D m + κ (1) ) 1 (D m + κ (2) ) 0 . . . (D m + κ (r) ) 1 . . . . . . . . . (D m + κ (1) ) r-1 (D m + κ (2) ) r-1 . . . (D m + κ (r) ) r-1        .
Incidentally, all these matrices are invertibles. For the last case, a direct proof is available in [A/BNS + 21] using the divided difference algebra and the specific Leibniz formula (see Popoviciu [START_REF] Popoviciu | Introduction à la théorie des différences divisées[END_REF] and de Boor [START_REF] De Boor | Divided differences[END_REF]). where

Asymptotic expansions for outflow boundary conditions

• u int is the exact solution to ∂ t u + a∂ x u = 0 (a < 0) with initial data f , • u bl (t n , •) ∈ E s (1) solves D m + u bl (t n , •) = -∆x -m D m + u int (t n , •).
In the previous above expansions, due to the explicit form of the the boundary layer, the following estimate is available:

sup n∈N sup 0≤j≤r-1 |u bl (t n , j)| ∆x 1/2 f H m+1 .
In a previous work by Coulombel and Lagoutière [START_REF] Coulombel | The Neumann numerical boundary condition for transport equations[END_REF], the transport equation on a onedimensional bounded domain is studied. The numerical scheme under consideration is supposed to be 2 -stable with a given consistency order k. The inflowing boundary is handled with homogeneous Dirichlet boundary condition and the outflowing with extrapolation at order m ≤ k. By a new energy method, the authors obtain a quantified convergence result in the norm ∞ t 2

x as O(∆x min(k,m) ) and then deduce an estimate in the norm ∞ t ∞

x as O(∆x min(k,m)-1/2 ). The purpose of the work in [A/BNS + 21] is twofold. First, we extend the result and analysis to the case of non-homogeneous incoming data, by means of the inverse Lax-Wendroff procedure proposed by Tan and Shu [START_REF] Tan | Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws[END_REF] considered at the convenient order. The global order of the scheme is that way not destroyed. The second point is to make use of the previously discussed boundary layer expansions in order to improve the convergence estimate by a factor ∆x 1/2 , this result being supported by the effective simulations.

Theorem 17 (Improved convergence estimates [A/BNS + 21]). Consider the assumptions of Theorem 16 (with m < k).

Then the discrete solution u n j satisfies the following convergence estimates in the ∞ t 2

x norm:

sup 0≤n≤N T   j≥0 ∆x|u n j -u int (t n , x j )| 2   1/2 ≤ C(T )∆x m+1/2 f 2 H k+1 , (2.10)
and in the ∞ t ∞

x -norm:

sup 0≤n≤N T sup j≥0 |u n j -u int (t n , x j )| 2 ≤ C(T )∆x m f 2 H k+1 .
(2.11) Some numerical illustrations are represented on Figures 2.1 and 2.2. They correspond to several schemes of order k = 1 (upwind), k = 2 (Lax-Wendroff), k = 3 (O3), k = 5 (Lax-Wendroff 5), considered with the inflow high order Inverse Lax-Wendroff boundary condition at order k and extrapolation boundary condition at order m. The Figure 2.1 is for the case m = k -2. The numerical results are in agreement with the estimates in the previous theorem. The upwind scheme has no outflow numerical boundary condition and still of order 1. The Lax-Wendroff scheme does not converge in the ∞

x norm but converges at order almost 1/2 in 2

x . The third order scheme has order almost 1 in the ∞ x norm but almost 3/2 in 2 x . The fifth order scheme has order almost 3 in the ∞

x norm but almost 7/2 in 2 x . With the same computation in the case m = k, the Figure 2.1 supports the validity of no loss in the order for the norms but actually our method with the asymptotic boundary layer expansion is not able to prove the result.

Application to discrete semigroup estimates Using an additional corrective term ∆x u bl,1 to handle with the time variations of the trace u int (t n , 0), the asymptotic expansion present in the Theorem 15 is slightly improved so as to get the following semigroup estimate.

Corollary 18 (Semigroup-like estimate [A/BC17]). Under the assumptions of Theorem 15, the numerical solution satisfies the close to optimal ∞ t 2

x -semigroup estimate:

sup 0≤n≤N T j≥0 ∆x|u n j | 2 ≤ C( f 2 L 2 + ∆x T 3 f 2 H 2 ),
(2.12) where the constant C > 0 only depends on the scheme.

Let us comment briefly the interest of this result. In the continuous PDE case, obtaining semigroup stability estimates from the hyperbolicity and under the UKLC condition is not easy in any case. The symmetrizable hyperbolic systems with dissipative boundary condition is covered since the seminal work by Friedrichs and Lax [START_REF] Friedrichs | On symmetrizable differential operators[END_REF]. The methodology has been extended by Rauch [Rau72] to any strictly hyperbolic system, later by Audiard [START_REF] Audiard | On mixed initial-boundary value problems for systems that are not strictly hyperbolic[END_REF] to semi-strictly hyperbolic systems and recently by Métivier [START_REF] Métivier | On the L2 well posedness of hyperbolic initial boundary value problems[END_REF] for a very general class of systems (having the block structure property). The same difficulty holds for discrete numerical schemes, that is: how to assemble the Cauchy stability to the strong (GKS) stability in order to obtain a full estimate of the form (1.18) with non zero initial data. The argument by Wu [START_REF] Wu | The semigroup stability of the difference approximations for initialboundary value problems[END_REF], restricted however to the scalar or to the onedimensional one-step schemes, consist in constructing from the Cauchy 2 -stability an auxiliary strictly dissipative boundary condition. Then the result by Goldberg and Tadmor [START_REF] Goldberg | Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems[END_REF] enables a superposition argument making use of the Dirichlet boundary conditions. Several more recent works treat with this topic to extend the result, always by designing auxiliary dissipative boundary conditions in the spirit of energy methods: Coulombel and Gloria [START_REF] Coulombel | Semigroup stability of finite difference schemes for multidimensional hyperbolic initial boundary value problems[END_REF], Coulombel [Cou15;[START_REF] Coulombel | The Leray-Gårding method for finite difference schemes. II. Smooth crossing modes[END_REF].

Application to the interfacial coupling of discrete schemes

The previous discussion deal only with boundary problems, but with homogeneous (constant coefficients) interior schemes. This excludes somehow the treatment of nonlinearities or of non-homogeneous schemes. The specific case of piecewise homogeneous schemes (onedimensional domain decomposition) is however possibly analyzed by the same above ideas. In the literature, this situation has already been discussed earlier by Vichnevetsky [START_REF] Vichnevetsky | Propagation through numerical mesh refinement for hyperbolic equations[END_REF], Giles and Thompkins [START_REF] Giles | Asymptotic analysis of numerical wave propagation in finite difference equations[END_REF] and Giles and Thompkins [START_REF] Giles | Propagation and stability of wavelike solutions of finite difference equations with variable coefficients[END_REF], and more recently Trefethen and Chapman [START_REF] Trefethen | Wave packet pseudomodes of twisted Toeplitz matrices[END_REF] with the construction of approximate pseudomodes for twisted Toeplitz matrices.

The previous asymptotic boundary layer analysis, supported by the discrete trace estimates for strongly stable boundary schemes, appear to be a convenient tool to prove mathematically the convergence of discrete coupling procedure between various models, even for high order situations. Incidentally, the perspective (1A) is here a point of interest to activate the required stability estimates.

Propagative and glancing wavepackets

The previous last discussions are restricted to the case of finite difference schemes without extended stationary modes, thus satisfying the assumption (2.5). When extended stationary modes are present, new discrete parasitic phenomenon may occur, sometimes in an unacceptable way, but sometimes only reducing the order of convergence of the overall scheme. This is the case only if the damping properties of the scheme is not strong enough to preclude the presence of neutrally stable modes. Diffusive schemes (in the sense of Lax) do not enter this framework but when solving purely dispersive phenomenon with high accuracy or with discrete preservation of energies, it appears crucial to handle with this kind of considerations, let us mention for example the works [KN20; BCN20], where discrete transparent boundary conditions are computed in that aim or in [BGK + 22], where perfect matched layers are used for mixed hyperbolic-dispersive equations. Actually, only a few situations are clearly understood at the theoretical level and asymptotic expansions based on discrete boundary layer and/or propagative wave-packets is usefull for analyzing the general situation.

Once again, only stationary modes are considered here, associated to the amplification factor z = 1, but many ideas and results can likely be naturally extended to other unitary modes |z| = 1.

Propagative wavepackets

The ansatz for an appropriate expansion in the more general case has the form of a WKB asymptotic expansion with several terms

u app n,j = u int (t n , x j ) + κ∈K + u int (κ) (t n , x j )κ j + u bl (t n , j) (2.13)
where K + denotes the set of κ ∈ S 1 satisfying A(κ) = 0 and having positive (real) group velocity κA (κ) > 0. The associated profile u int (κ) then solves the incoming transport equation ∂ t u + κA (κ)∂ x u = 0 with zero initial data and the "appropriate" incoming boundary value obtained from the coupling of waves concerned by E s (1). The procedure is then entirely similar to the solving of the boundary problem (2.7).

Glancing modes

As already discussed at the beginning of this chapter, a particular situation appears when the group velocity κA (κ) is zero. Different scales in space then have to be considered so as to correctly define the profile equation for the asymptotic expansion.

Lemma 19. Assume the scheme (2.2) to be consistant and 2 -stable. Let κ ∈ S 1 be a root of A of order g ∈ N exactly, meaning: A(κ) = A (κ) = . . . = A (g-1) (κ) = 0, and A (g) (κ) = 0.

Then the following property holds, according to the remainder in the division of g by 4:

                 Re κ g A (g) (κ) > 0 if g mod 4 = 0, Im κ g A (g) (κ) = 0 if g mod 4 = 1, Re κ g A (g) (κ) < 0 if g mod 4 = 2, Im κ g A (g) (κ) = 0 if g mod 4 = 3.
As for the very low order equivalent PDEs, the 2 -stability of the scheme precludes the ill-posedness for the equivalent equation of the conjugated scheme around (1, κ), that is

∂v ∂t + 1 g! κ g A (g) (κ) ∂ g v ∂y g = 0.
(2.14)

The is the main idea behind the previous lemma. With the same notations, the corresponding expected WKB asymptotic expansion involves now a term of the form v κ (t n , j∆x 1/g )κ j where v κ solves the previous PDE problem (see Figure 2.4 for examples of such effective modulated envelope modes). For solving the similar boundary problem (2.8), an invertibility result is required that reduces actually to a dimension argument for Vandermonde-like matrices. The result is the following, that corresponds actually to the decomposition of the space E s (1) from the different multiplicities occuring for |κ| = 1, in the spirit of Hersh lemma [START_REF] Hersh | Mixed problems in several variables[END_REF].

Proposition 20 (Extension of the counting lemma to general stationary modes). Assume the scheme (2.2) to be consistant and 2 -stable and consider the roots of A.

Let K + = {κ ∈ S 1 , /A(κ) = 0, κA (κ) > 0}, K -= {κ ∈ S 1 , /A(κ) = 0, κA (κ) < 0} and n (1) + := n + , n (1) 
-:= n -the cumulated multiplicities of the corresponding simple roots. For any g ∈ N , consider also the integer n (g) ∈ gN equal to the sum of the multiplicities of the roots having multiplicity g ∈ N exactly. For odd values of g ∈ N , let us separate the (possibly 2.3. Propagative and glancing wavepackets empty) set K (g) of the roots having multiplicity g into two disjoint sets, namely K (g) + and K (g) -, according to the sign of the quantity Re κ g A (g) (κ) . Let us denote, in accordance with this partition, n (g) + ∈ gN and n (g) -∈ gN their cumulated multiplicities so that n (g) = n

(g) + + n (g) -.
Then one has:

r = n D + g even 1 2 n (g) + g mod 4=1 g+1 2g n (g) + + g-1 2g n (g) - + g mod 4=3 g-1 2g n (g) + + g+1 2g n (g) - , p = n U + g even 1 2 n (g) + g mod 4=1 g-1 2g n (g) + + g+1 2g n (g) - + g mod 4=3 g+1 2g n (g) + + g-1 2g n (g) - .
Actually, the existence of schemes with high order glancing scheme may seem to be hypothetical since many tangential and stability constraints are present. We give hereafter an existence result for such schemes at a given glancing order, with glancing modes of order g for the value κ = -1 to keep easily real coefficients. This result is up to now, not thought as being of a real importance for the applications but enables however some simple illustrations for the possible glancing effect at discrete boundaries.

Proposition 21 (Existence and uniqueness of glancing schemes with minimal width). For any integer g ≥ 2, there exists a finite difference scheme satisfying the following properties:

• consistency with ∂ t u + a∂ x u = 0 with a < 0,

• stability in the sense of the strong property Re A(S 1 ) ∩ {Re z > 0} = ∅,

• existence of a g-glancing mode. Moreover, there is uniqueness of such a scheme when minimizing the width of the stencil r + p + 1. The concerned scheme is described as follows. We define r = g-1 2 for g odd or r = g 2 for g even, and then set p = g + 1 -r so that the stencil has width g + 2. The corresponding scheme is then

u n+1 j -u n j ∆t + a 2 g ∆x -u n j-r + g =1 g -1 - g u n j-r+ + u n j-r+g+1 = 0, j ≥ r.
(2.16)

This result is proved by means of elementary polynomial algebra. From the consistency properties, the space operator may be factorized under the following form

A(κ) = a 2 g (κ + 1) g (κ -1)κ q ,
where q is an appropriate value, uniquely defined from the Cauchy 2 -stability property and local analysis close to the particular frequencies κ = 1 and κ = -1. Rather that a detailed proof, we prefer here to give for the interested reader the list of the very first schemes for the Euler forward time discretization. The Figure 2.3 represents the amplification factor of the schemes with parameter g and q. The green curves corresponds to stable schemes and the red curves to unstable schemes.

• Scheme g = 2, with q = -1, r = 1, p = 2 :

u n+1 j -u n j ∆t + a 4∆x [-u j-1 -u j + u j+1 + u j+2 ] = 0, j ≥ 1
Multiscale expansions for discrete boundaries

• Scheme g = 3, with q = -1, r = 1, p = 3 :

u n+1 j -u n j ∆t + a 8∆x [-u j-1 -2u j + 2u j+2 + u j+3 ] = 0, j ≥ 1
• Scheme g = 4, with q = -2, r = 2, p = 3 :

u n+1 j -u n j ∆t + a 16∆x [-u j-2 -3u j-1 -2u j + 2u j+1 + 3u j+2 + u j+3 ] = 0, j ≥ 2
• Scheme g = 5, with q = -2, r = 2, p = 4 :

u n+1 j -u n j ∆t + a 32∆x [-u j-2 -4u j-1 -5u j + 5u j+2 + 4u j+3 + u j+4 ] = 0, j ≥ 2
Figure 2.3: Amplification factor for glancing schemes ∆t/∆x = 0.9.

The Figure 2.4 represents the parasitic glancing mode close to the boundary for various schemes (2.16). The numerical solutions corresponds to the initial data 1 for the outgoing transport problem and homogeneous Dirichlet boundary scheme. Now this is not surprinsing to numerically observe the expansion u n j = 1 + (-1) j v κ (t, j∆x 1/g ) where the modulated profile v κ solves (2.14) with appropriate boundary conditions and initial data. Figure 2.4: Demodulated effective envelope (-1) j (u j -1) v κ (t, j∆x 1/g ) for homogeneous Dirichlet boundary condition with the numerical schemes (2.16).

Perspectives

(2A) Mixing different strategies. For any stable discrete IBVPs, an adapted improved convergence analysis is available from appropriate asymptotic expansions. They involve corrective terms for measuring the possible localized or propatating loss of consistency and thus of rate of convergence. They have to be determined from the various possible interactions: boundary scheme with interior scheme, initial condition with interior scheme, space corners, etc. Two complementary strategies are possible to improve the consistency.

1. Change g by removing appropriate terms without changing the boundary scheme. The benefits are that the strong stability result is not affected. This is the idea used to obtain ILW methods from Dirichlet in the Chapter 1.

Or 2. Change B so as to purge the expansion from any spurious modes (layers, propagative, glancing, etc.) The method of discrete transparent boundary condition as Ehrhardt and Arnold [EA01], Arnold, Ehrhardt, and Sofronov [AES03], Besse, Ehrhardt, and Lacroix-Violet [BEL16], Besse, Coulombel, and Noble [START_REF] Besse | Discrete transparent boundary conditions for the two-dimensional leap-frog scheme[END_REF], and Kazakova and Noble [START_REF] Kazakova | Discrete transparent boundary conditions for the linearized Green-Naghdi system of equations[END_REF] is precisely constructed in that way and guarantees at the same time the strong stability (see Coulombel [START_REF] Coulombel | Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis[END_REF]). See also Ehrhardt [Ehr10] for absorbing boundary conditions with dissipative features. This is not clear how a general mixing between the two strategies could be realized. In particular in the Chapter 1, we slightly modify the ILW method to the SILW, what changes g and B at the same time.

(2B) Explicit parasitic modes in general geometries. Another complementary project is concerned with the geometrical aspects of the boundary. The whole discussion in the manuscript is restricted to the poor onedimensional half-problem, even if archetypal of many principles. Some attention has been put on the stability theories for corners by Osher [Osh74a; Osh74b] and more recently by Benoit [Ben16; Ben17] and Besse, Coulombel, and Noble [START_REF] Besse | Discrete transparent boundary conditions for the two-dimensional leap-frog scheme[END_REF], and similarly for interval/strip domains by Trefethen [START_REF] Trefethen | Stability of finite-difference models containing two boundaries or interfaces[END_REF] and more recently Benoit [Ben20; Ben21] and also Inglard, Lagoutière, and Rugh [START_REF] Inglard | Ghost solutions with centered schemes for one-dimensional transport equations with Neumann boundary conditions[END_REF] where "ghost" solutions are analyzed for implicit schemes. The use of WKB-like expansions to understand the possible appearance of parasitic (even unstable) modes in such situations seems to be a promising perspective.

(2C) Space inhomogeneities. At the interface of the pseudospectral analysis (Perspective (1B)) and boundary layer expansions is found the analysis of pseudomodes. This topic has been studied for example by Trefethen and Chapman [START_REF] Trefethen | Wave packet pseudomodes of twisted Toeplitz matrices[END_REF] and Trefethen [START_REF] Trefethen | Wave packet pseudomodes of variable coefficient differential operators[END_REF] that construct asymptotic localized pseudomodes for twisted-Toeplitz (corresponding to finite differences schemes on non-homogeneous domains). On the side of numerical computations, spurious effects are also observed, called discrete q-waves in the literature, see Le Roux [Le 12], Sengupta [START_REF] Sengupta | Spurious waves in discrete computation of wave phenomena and flow problems[END_REF], Marica and Zuazua [START_REF] Marica | Propagation of 1D waves in regular discrete heterogeneous media: a Wigner measure approach[END_REF] and Biccari, Marica, and Zuazua [START_REF] Biccari | Propagation of one-and two-dimensional discrete waves under finite difference approximation[END_REF]. By means of discrete pseudodifferential analysis, see Chodosh [START_REF] Chodosh | Infinite matrix representations of isotropic pseudodifferential operators[END_REF], Schochet [START_REF] Schochet | Singular limits of symmetric hyperbolic systems with large variablecoefficient terms[END_REF], Faou and Grébert [START_REF] Faou | Discrete pseudo-differential operators and applications to numerical schemes[END_REF], a new analysis could be promising.

Hyperbolic relaxation models with boundaries

Hyperbolic relaxation models Relaxation effects arise in many physical models. In particular several dynamical effects may coexist but at different time scales so that this is conceivable to study the reduced dynamic obtained for a partial equilibrium process. For example in the kinetic theory of the Boltzmann equation, if gases are supposed to be very close to local thermodynamic equilibrium (Maxwellian) then they are submitted to simpler fluid models. This assumption precisely consists of a limiting relaxation process in a partial direction of the dynamic, i.e. neglecting a time scale compared to another one. The usual method to investigate the subsequent limiting problem is based on Chapman-Enskog expansions. Liu [START_REF] Liu | Hyperbolic conservation laws with relaxation[END_REF] and Chen, Levermore, and Liu [START_REF] Chen | Hyperbolic conservation laws with stiff relaxation terms and entropy[END_REF] study the stability of the limiting process in the case of hyperbolic conservation laws with relaxation and show the importance therein of the Whitham [Whi74] subcharacteristic condition. Indeed, it guarantees the dissipativity of the source term and activates the strong well-posedness of the system uniformly in the relaxation parameter and the hyperbolicity of the limiting equation.

Considering a vectorial unknown U ∈ R N , we are interested in relaxation systems of the form:

∂ t U + A∂ x U = 1 S(U ), x ∈ R + , t ≥ 0, BU (t, 0) = g(x), t ≥ 0, U (0, x) = f (x), x ∈ R + .
(

The matrices A of size N × N and B are assumed to validate the one-dimensional Kreiss-Lopatinskii condition described in Chapter 1. On the other side, the relaxation operator S : R N → R N is subject to the usual dissipative requirements for relaxation problems. More precisely the results presented in this Chapter is restricted to the two-dimensional linear problem with the following matrices (where a > 0):

U = u v , A = 0 1 a 2 0 , S = 0 0 b -1 . (3.1b) B = (B u , B v ), with B u ≥ 0. (3.1c)
Let us notice that mimicking the physical relaxation dynamics, some numerical method emerged called relaxation method, and based on a dimensional extension of the unknown and the modification of the dynamical system with a simpler linear hyperbolic structure, and additional stiff low order source terms to recover in the limit the original problem. For example, Jin and Xin [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF] proposed to approximate the solution of the hyperbolic conservation law ∂ t u + ∂ x f (u) = 0 by designing schemes from the relaxation system of the form (3.1a) with additional relaxation variable v and:

A = 0 1 a 2 0 , S(U ) = 0 f (u) -v (3.2)
In that case the subcharacteristic condition for the stiff well-posedness of the system (without In the framework of the linear relaxation system (3.1), the subcharacteristic condition is a ≥ b and the equilibrium solution is U eq = (u eq , v eq ) solution to the algebraico-differential IBVP problem, that is well-posed:

∂ t u eq + b ∂ x u eq = 0, v eq = b u eq , (3.3)
with boundary condition

   (B u + bB v )u eq (t, 0) = g(t) if b > 0, no b.c. if b ≤ 0.
(3.4)

Relaxation and boundaries Let us first introduce the following definition.

Definition 22. Assume that the IBVP problem (3.1a) is such that for any > 0 and any time T > 0, there exists a constant C > 0 such that for any f ∈ L 2 (R + ) and g ∈ L 2 (R + ), the corresponding solution satisfies

T 0 U (t, •) 2 L 2 (R + ) dt + T 0 |U (t, 0)| 2 dt ≤ C f 2 L 2 (R + ) + T 0 |g(t)| 2 dt .
Then the IBVP is said to be well-posed. If in addition the constant C can be chosen independent of > 0 (small) then the IBVP is said to be stiffly well-posed.

As explained many times in the previous chapters, the boundary condition has to satisfy the Uniform Kreiss-Lopatinskii Condition for the hyperbolic part. For (3.1b), thanks to the Riemann invariants au ± v, for the corresponding characteristic velocities ±a, the UKLC, under which the problem (3.1) is well-posed, reads

B u + aB v = 0. (3.5)
Now, it appears that the above UKLC is not completely sufficient to guarantee the limiting relaxation process and to preclude the existence of unstable relaxation boundary layers. Yong [START_REF] Yong | Boundary conditions for hyperbolic systems with stiff source terms[END_REF] proposed a Generalized Kreiss Condition (GKC) for general multi-dimensional linear constant coefficient relaxation systems, or one-dimensional nonlinear systems, with non-characteristic boundaries. This condition enables uniform (in ) stability estimates and then justifies the reduced boundary condition for the corresponding equilibrium system. In the Jin-Xin system (3.2) with boundary condition (3.1c), Xin and Xu [START_REF] Xin | Stiff well-posedness and asymptotic convergence for a class of linear relaxation systems in a quarter plane[END_REF] (see also [START_REF] Xin | Initial-boundary value problem to systems of conservation laws with relaxation[END_REF][START_REF] Xin | Boundary conditions and boundary layers for a class of linear relaxation systems in a quarter plane[END_REF]) identify and rigorously justify the necessary and sufficient condition, called Stiff Kreiss Condition (SKC) for the stiff well-posedness. For higher dimensional linear relaxation problems, the SKC admits a determinantal form, and for the two-dimensional linear system (3.1) under interest, it reads

B v = 0 or B u B -1 v / ∈ [-a, -b+|b| 2 ] . (3.6)
Some insight into the SKC condition Following the classical methodology for first order IBVPs, the SKC condition is analyzed through the normal mode analysis and then the Laplace transform. Actually their form is modified so as to catch the scale involved in relaxation layer: U = e τ t/ ϕ(x/ ) with Re τ > 0 and ϕ ∈ L 2 (R + , R 2 ). Again a separation results is available. The modified UKLC condition is then concerned with the stable linear subspace E s (τ ) associated to the matrix A -1 (S -τ I). Its not-uniform version reads:

Ker B ∩ E s (τ ) = {0}.
Asymptotic expansions In addition to [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF], the study by Xin and Xu [XX00] also covers the characteristic case with b = 0 and provides optimal asymptotic expansions for the limit process, including boundary and/or initial layers. The system (3.1) with b = 0 is also known as the damped wave equation and will be the subject of the forthcoming numerical study. In that case, the SKC in [START_REF] Xin | Stiff well-posedness and asymptotic convergence for a class of linear relaxation systems in a quarter plane[END_REF] then simply reduces to the following inequality:

B u + aB v > 0. (3.7)
Under the subcharacteristic condition and the SKC (3.6), being given compatible data and boundary smooth data (in H 2 (R + ) spaces), the asymptotic expansion towards the equilibrium solution U eq is of the form

U (t, x) = U eq (t, x) +            0 + h.o.t if b > 0, U bl (t, x ) + h.o.t if b < 0, U bl (t, x √ ) + h.o.t if b = 0.
(3.8)

The high order terms involve higher power of the relaxation parameter and are estimated in the time-Laplace norm topology (see Chapter 1).

For the interested reader, a review of these results is done by Zhang and Wang [START_REF] Zhang | Well-posedness and asymptotics for initial boundary value problems of linear relaxation systems in one space variable[END_REF] with additional source terms and the corresponding stiff full estimates. More recent works by Zhou and Yong [ZY21; ZY20] are concerned with the case of general hyperbolic linear relaxation systems with characteristic boundaries, either for the original hyperbolic part, or for the limiting hyperbolic part. Other works on the topic are the following ones: [CJL + 14; Xu04; Ye04].

Stiffly stable schemes for the damped wave equation

From now on, the continuous IBVP under consideration is the following

∂ t u ε + ∂ x v ε = 0, ∂ t v ε + a 2 ∂ x u ε = -ε -1 v ε , (3.9)
with the appropriate initial and boundary conditions from (3.1c). A first scheme is introduced at the semi-discrete level and based on the central scheme for the flux term, thus has the form 3.2. Stiffly stable schemes for the damped wave equation

∂ ∂t U j (t) + (QU ) j (t) = 1 SU j (t), j ≥ 1, t ≥ 0, U j (0) = f j , j ≥ 0, BU 0 (t) = g(t), t ≥ 0, (3.10a) with (QU ) j = 1 2∆x A(U j+1 -U j-1 ), j ≥ 0.
Following the summation by parts method from Strand [START_REF] Strand | Summation by parts for finite difference approximations for d/dx[END_REF], the energy method can be adapted to the central operator by choosing the extrapolated ghost value U -1 = 2U 0 -U 1 , so that finally the boundary scheme is (QU ) 0 = 1 ∆x (U 1 -U 0 ). The convenient discrete integration by part (see [START_REF] Gustafsson | Time-dependent problems and difference methods[END_REF]) then applies for the scalar product

U, V ∆x := ∆x 2 U 0 , V 0 + ∆x j≥1 U j , V j .
The physical boundary condition in (3.10a) determines one scalar boundary unknown in U 0 but the numerical scheme requires an additional second scalar unknown so as to fully define U 0 (t). This additional scalar boundary discrete boundary condition is proposed under the following ODE form

Γ ∂ ∂t U 0 (t) + (QU ) 0 (t) = 1 ΓSU 0 (t), t ≥ 0, (3.10b) 
where the rank one matrix is Γ = -a 2 B v B u . The scheme is then fully defined.

The proof of the stiff stability of the semi-discrete scheme (3.10) is based on two ingredients and a superposition argument. Firstly, the summation by parts enables the treatment of homogeneous boundary conditions. Secondly, the case with non-homogeneous boundary conditions and homogeneous initial data is handled by means of the Laplace transform and the "stiff UKLC" estimate adapted to the problem (uniform in and ∆x resolvent estimate).

Our result is the following: Theorem 23 (Theorem 1.2 in [A/BNS20]). Under the strict dissipativity condition B u B v > 0, for all T > 0, there exists C > 0 such that for all f ∈ 2 (N, R 2 ) and all g ∈ C 1 (R + , R) ∩ L 2 (R + , R) the solution (U j ) j≥0 to (3.10) satisfies:

T 0 |U 0 (t)| 2 dt + T 0 j≥0 ∆x|U j (t)| 2 dt ≤ C T   j≥0 ∆x|f j | 2 + T 0 |g(t)| 2 dt   ,
where the constant C T is independent of f , g and of the relaxation parameter ∈ (0, +∞) and the discretization parameter ∆x ∈ (0, 1].

We now briefly explain some steps of the proof of that theorem.

A little history about the QR method

The beginnings To make this presentation more concrete, let us consider a given matrix A ∈ M n (C) whose spectral properties are under interest. Let us also introduce two vectors x 0 ∈ C n and y 0 ∈ C n and study the associated meromorphic function f defined from the resolvent of A by f (z) := y 0 , (zI -A) -1 x 0 .

The poles of f are located among the eigenvalues of A. Namely, using its adjugate, the function f alternatively takes the form of a rational function

f (z) = y 0 , adj(zI -A)x 0 det (zI -A) .
The denominator is the characteristic polynomial of A and the numerator is a polynomial whose degree is less than n -1. Actually the two polynomials may share some zeros, depending on particular choices for the vectors x 0 , y 0 . For z large enough i.e. |z| > ρ(A), the function f admits an expansion as the series

f (z) = ∞ m=0 a m z m+1 ,
where the complex coefficients a m = y 0 , A m x 0 (also known as Schwarz constants) define the sequence of moments associated to the problem of determining the eigenvalues of A / poles of f . From the Cayley-Hamilton formula, the whole sequence (a m ) m≥0 then solves a (constant coefficients) linear recurrence relation whose characteristic polynomial P necessarily divides the characteristic polynomial χ A of A. The polynomial P again depends on possible particular properties of x 0 , y 0 with respect to the eigenstructure of A. The d'Alembert's ratio test (d'Alembert [START_REF]Opuscules mathématiques ou Mémoires sur différens sujets de géométrie[END_REF]) for convergent series, also known from the method by Daniel Bernoulli [START_REF] Bernoulli | Observationes de seriebus quae formantur ex additione vel substractione quacunque terminorum se mutuo consequentium, ubi praesertim earundem insignis usus pro inveniendis radicum omnium aequationum algebraicarum ostenditur[END_REF] for roots, then applies. Assuming for a while, as usual, that A has a dominant root λ 1 and, in addition, that λ 1 is found among the roots of P , then the ratio a m+1 /a m is convergent with limit λ 1 .

The above method is clearly reminiscent of and related to the power method for computing the dominant eigenvalue. In his thesis, Hadamard [START_REF] Hadamard | Essay on the study of functions defined by their taylor expansion[END_REF] proposed an extension of Bernoulli's method so as to characterize successively any of the other poles of a meromorphic function from its moments. He first writes there "Si la seule singularité située sur le cercle est un pôle, simple ou multiple, l'affixe de ce point est donnée par la limite du rapport a m /a m+1 . [. . . ] Cette condition nécessaire est aussi suffisante.". To handle with the other roots, Hadamard makes use of the sequence of the associated Hankel determinants. We recall here that the Hankel determinant of order k at step m, associated to a sequence (a m ) m≥0 is the quantity 

H (k) m = a m a m+1 . . . a
| > . . . > |λ k | > Λ > |λ k+1 | for some Λ > 0, then as m → ∞: H (k) m = (λ 1 . . . λ k ) m 1 + O Λ |λ k | m .
From this result, this is then possible to identity any of the roots as being the limit of (heavily) computable quantities. Indeed, it has first to be noticed that the sequence of quotients

H (k) m+1 /H (k)
m converges to the product λ 1 . . . λ k , and thus

lim m→∞ H (k) m+1 H (k) m H (k-1) m+1 H (k-1) m = λ k . (4.1)
Together with these results, the following Jacobi identity (compound determinant formula)

H (k) m 2 = H (k) m-1 H (k) m+1 + H (k+1) m-1 H (k-1) m+1 , (4.2) 
helps for designing, thanks to simple row and column determinant expansions for H (k) m , an efficient, though costly, algorithmic version of the method for approximating any λ k . This was the idea proposed initially by Aitken [Ait26; Ait31] and that paved the way to further developments.

The algorithmic period

The genuine beginning of the algorithmic methodology to approximate eigenvalues comes from the suggestion by Stiefel to Rutishauser to look again at the Schwarz constants a m . By this way, Rutishauser [Rut54a; Rut54b; Rut54c] introduced the so-called qd algorithm (for quotient-difference) that avoids the explicit use of Hankel determinants, and thus reduces severely the complexity and the ill-posedness of the method. He reformulates, first for tridiagonal matrices, his algorithm into the LR algorithm, based on gaussian LU elimination steps. The idea is surprisingly simple in its formulation, and consists finally in the following matrix decomposition/recomposition process:

L k R k := A k , A k+1 := R k L k .
As a consequence, all matrices (A k ) k≥0 share the same spectrum. The convergence to the diagonal matrix with values sorted by decreasing modulus was obtained by Rutishauser [START_REF] Rutishauser | Une méthode pour la détermination des valeurs propres d'une matrice[END_REF] for real symmetric matrix with positive simple (thus separated) eigenvalues. A simple extension to general symmetric matrices with a quadratic convergence is obtained with Bauer in the same C. R. Acad. Sci. [START_REF] Rutishauser | Détermination des vecteurs propres d'une matrice par une méthode itérative avec convergence quadratique[END_REF].

Motivated by handling with more general (i.e. non-symmetric) matrices, and by both the computational cost and the possible numerical instability, Francis [START_REF] Francis | The QR transformation: a unitary analogue to the LR transformation[END_REF][START_REF] Francis | The QR transformation[END_REF] introduced the now famous variant, that makes use of unitary matrices rather than gaussian elimination (see also Kublanovskaja [Kub61]): Francis' QR algorithm. A preprocessing step based on Householder matrices (see [START_REF] Wilkinson | Householder's method for the solution of the algebraic eigenproblem[END_REF]) is intended to reduce the matrix A first under the upper Hessenberg form so as to reduce the computational cost of further algorithmic steps. Actually, this first step produces a symmetric tridiagonal matrix when dealing with symmetric matrix A. The overall diagonalization algorithm is again very simple:

Q k R k := A k , A k+1 = R k Q k .
(4.3)

A variant with shifts (and even the double complex conjugate pairs shift technique) has made Francis' method very famous due to the significant increase in the convergence properties of the induced algorithm (cubic in the best case)

Q k R k := A k -σ k I n , A k+1 = R k Q k + σ k I n ,
Isospectral dynamical systems The QR iteration (4.3) can be understood as a discrete dynamical system that preserves the spectrum along the orbits and that admits the subset of diagonal matrices as a manifold of equilibrium points. Concretely, this last property can be understood after observing then the vanishing of the Lie commutator (or bracket) [Q, R] = QR -RQ. In finite dimension, among all the isospectral diagonal equilibrium points, only a few exhibits attractivity properties in a more or less large isospectral stable manifold.

From Watkins [START_REF] Watkins | Isospectral flows[END_REF], it is known that the QR algorithm (and several generalizations for other abstract matrix factorization, e.g. LU and Cholesky, see Chu and Norris [START_REF] Chu | Isospectral flows and abstract matrix factorizations[END_REF]) can be reinterpreted as the sampling at integer times of the solution to a differential system acting then on a time-dependent matrix, or linear operator, A(t). These continuous dynamical systems also have a bracket structures and therefore manifest isospectrality in the flow as well. A more recent review about the reinterpretation of several linear algebra algorithms through such dynamical systems can be found in Chu [START_REF] Chu | Linear algebra algorithms as dynamical systems[END_REF].

Our aim is to extend the previous ideas to the case of infinite dimension operators. In this spirit, Bach and Bru [START_REF] Bach | Rigorous foundations of the Brockett-Wegner flow for operators[END_REF] tackle the example of the Brockett flow (presented later on) in infinite dimension. We analyze the structural and convergence properties of some bracket flows in a quite general framework (Hilbert-Schmidt operators) for which the diagonal operators turns out again to be an attractive manifold. There are deep applications in mathematical physics, for instance Bach and Bru [START_REF] Bach | Diagonalizing quadratic bosonic operators by nonautonomous flow equation[END_REF] made use of this for diagonalizing unbounded operators in boson quantum field theory.

Double bracket flows of Hilbert-Schmidt operators

Some motivations: Toda lattice and Lax pairs The Toda lattice proposed by Toda [Tod67; Tod75] models a system of equal masses connected on a one-dimensional line by identical springs with a nonlinear exponential restoring force. The associated Hamiltonian has the following form where p n and q n are respectively the momentum and the displacement of the n-th mass from equilibrium. This model may seem to be quite artificial, however it exhibits many important features such as complete integrability, nonlinear normal modes, and it is in fact directly related to some approximation of solutions to the Korteweg-de-Vries equation for long-wave limits. The bracket structure behind this model is observed by Flaschka [Fla74a;[START_REF] Flaschka | On the Toda lattice. II. Inverse-scattering solution[END_REF]. Namely, the dynamical hamiltonian system associated to H, that is

H(p, q) = 1 2 n p 2 n + n e qn-q n+1 ,
dq n dt = ∂H ∂p n , dp n dt = - ∂H ∂q n ,
can be, after the change of variables a n = -1 2 p n , b n = 1 2 e (qn-q n+1 )/2 , formulated under the more tractable form

da n dt = 2(b 2 n -b 2 n-1 ), db n dt = b n (a n+1 -a n ).
Actually, this reformulation reveals the associated Lax [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF] pair

L(t) =         a 1 b 1 b 1 a 2 . . . . . . . . . b N -1 b N -1 a N         , P (t) =         0 -b 1 b 1 0 . . . . . . . . . -b N -1 b N -1 0        
and the associated bracket flow:

d dt L = [L, P ].

Global isospectral flows of Hilbert-Schmidt operators

Let us now introduce some notations. We consider a separable complex Hilbert space H, equipped with a scalar product and has the canonical Hilbert basis e i,j = e i , • e j . The subset of bounded operators that are diagonal with respect to the basis (e n ) n≥0 is denoted D(H). We also denote S(H), A(H) and U(H) respectively the symmetric (i.e. hermitian), skew-symmetric and unitary operators in L(H), and S 2 (H), A 2 (H) their intersection with L 2 (H). The Hilbert space S 2 (H) is equipped with the canonical Hilbert basis: E i,j for i ≤ j, with coefficients 1 √ 2 (e i,j + e j,i ). The Hilbert space A 2 (H) is equipped with the canonical Hilbert basis E ± i,j for i < j, with coefficients 1 √ 2 (e i,j -e j,i ). In this context the following result is quite natural to obtain (see Lax [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF] CHAPTER 5 Problematic The mechanisms of cellular differentiation and dedifferentiation are under study. More precisely the balance between red and white blood cells (hematopoietic regulation) mostly results from a choice between the proteins called GATA1/2 and PU.1. The concentrations of these proteins, respectively denoted x and y, evolve according to positive and negative effects such as mutual sequestration and the basal gene expression b 1 and b 2 (Figure 5.1). The supported thesis is that the mutual inhibition between the two genes does not proceed through reduction of some basal level, but through preventing the self-stimulations of the proteins.

Dynamical systems in biology

Scheme 2. Re-interpretation of the GATA-PU motif as a reciprocal inhibition of self-stimulation, in which basal transcription frequencies are not regulated by specific factors.

A key parameter for modeling the revised mechanism of inhibited activation, is the molecular association between GATA1/2 and PU.1 (Fig. 6A) [44]. This association corre-preformed dimers. Concre the di↵erential equations ar trations should just be repl (x f and y f ). The roles of G to be symmetrical with ide (a 1 = a 2 , b 1 = b 2 , K 1 = unidimensional evolution sy system in higher dimension scalar-valued potential func exists however, it provides of the attractive behavior o drawing of a landscape. Th gradient-like systems. Mor into account the Hamiltoni this is not clear how to use t positions to draw then a W To model these mechanisms, we study the following differential system:

dx dt = b 1 + a 1 x f K 1 + x f -r 1 x dy dt = b 2 + a 2 y f K 2 + y f -r 2 y
(5.1a)

where x f and y f are the concentrations of molecules not mutually interacting, because sequestrated in x•y complexes. Given the time scale separation between molecular interactions (very fast) and gene expression dynamics (much slower) the free concentrations are simply given by non-differential, algebraic equations, thus we have the free quantities

x f = x -x • y y f = y -x • y (5.1b)
and the sequestrated complex is given by x • y = 1 2 (D + x + y -(D + x + y) 2 -4xy .

(5.1c)

The constant D is the equilibrium dimerisation constant between x and y. In the further presentation and the numerical simulations, the roles of GATA1/2 and PU.1 are supposed to be symmetric with identical parameters for both genes (a 1 = a 2 , b 1 = b 2 , K 1 = K 2 and r 1 = r 2 ).

Waddington epigenetic landscapes

In parameterized dynamical systems, the analysis of bifurcations in the multistability landscape are important to correctly understand the possible behaviors of the concrete (non-deterministic) system. The dedicated tool for this study is the Waddington landscape, long envisioned as the ideal framework for conceptualizing cell differentiation and development. An epigenetic landscape, in the sense initiated by Waddington [START_REF] Waddington | The Strategy of the Genes[END_REF], is a n-dimensional potential surface shaped by the mutual compatibility or incompatibility of the concentrations of the n cellular components, and modulated by the action of the genes. We reproduce hereafter on Figure 5.2 the nice pictures and heuristic proposed by Waddington. We refer also to the Wikipedia entry "Epigenetics" [Wik23] for more about the subject.

Strategy

We propose hereafter a short informal discussion to present the methodology used to compute quasi-potential landscapes associated to the differential system (5.1). For mathematical results, the interested reader can refer to [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] or the other references hereafter.

Unlike unidimensional evolution system, not any differential system in higher dimension may be described from a simple scalar-valued potential function. When a Lyapunov function however exist, it may directly provide a scalar characterization of the attractive behavior of steady states and thus enables the possibility to draw a landscape. This is the case for example for any gradient-like systems. More generally, one may try to take into account some extent. Consider a more or less flat, or rather undulating, surface, which is tilted so that points representing later states are lower than those representing earlier ones (Fig. 4). Then if some-• .. ~.:-. Part of an Epigenetic Landscape. The path followed by the ball, as it rolls down towards the spectator, corresponds to the developmental history of a particular part of the egg. There is first an alternative, towards the right or the lefi:. Along the former path, a second alternative is offered; along the path to the left, the main channel continues leftwards, but there is an alternative path which, however, can only be reached over a threshold.

. . )tti~~-' =' -

thing, such as a ball, were placed on the surface it would run down towards some final end state at the bottom edge. There are, of course, not enough dimensions available along the bottom edge to specify all the components in these end states, but we can, very diagrammatically, mark along it one positi0n to correspond, say, to the eye, and another to the brain, a third to the spinal cord, and so on for each type of tissue or organ. Similarly, along the top edge we can suppose that the points represent different cytoplasmic states in the various parts of the egg. Or we could represent the various different initial conditions by imagining various degrees of bias on the balls which are to run across the surface ( c£ Waddington 1954b, Fig. 2). the hamiltonian part of the dynamics, however this is not clear how to use the Hodge-Helmholtz-like decompositions to draw then a Waddington landscape [WZX + 11; Wan15; Hua12; ZAA + 12]. A very nice general overview of landscape theories with quasi-potentials is also available from Zhou and Li [START_REF] Zhou | Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond[END_REF].

The alternative selected approach is based on the probabilistic point of view and concerns the Freidlin and Wentzell [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] large deviations principle for invariant measures of stochastic convection-diffusion processes. In the phase space (x, y), we consider many trajectories of the deterministic system (5.1) perturbated with a small brownian motion. These trajectories, as random variables, evolve according to a stochastic differential equation (SDE) and their probability density p(t, x, y) follows the corresponding Fokker-Planck equation, also known as Kolmogorov forward equation: Here the dynamical drift field X(x, y), Y (x, y) corresponds to the respective right-hand sides in (5.1) and the diffusive term in the right-hand-side takes into account isotropically the random brownian processes, thus rendering the mean effect of possible perturbations. In large time, depending on the structure of the vector field (x, y) → (X, Y ), most of the random trajectories of the SDE accumulates close to attractive steady states or singular trajectories of the dynamical system (5.1). They then evolves finally only through a fine balance between the brownian process and the deterministic dynamic. At the level of the PDE, the probability density p then becomes independent of time and converges to the so-called invariant measure of the stochastic process. The convection-diffusion PDE (5.2) is numerically processed, so as to identify the invariant measure for a given set of parameters (see Figure 5.3). The steady state probability p can then be used to figure out the landscape of multistable equilibria. It concentrates to high values (red) in the neighborhood of such points but vanishes close to repulsing points (violet). Some deterministic trajectories of (5.1) are also represented on the same figure for a set of initial data (black curves). The situation depicted is the following. For a high basal expression b = 4 there is monostability ("indecise" cell with equivalent coexpression of the proteins GATA1/2 and PU.1), but for a low basal expression b = 1 two equilibria coexist and the probability of jump transition is also measured (pink bridge).

The transition from bistability to monostability is represented on Titre : Méthodes de différences finies pour des problèmes hyperboliques avec bords : stabilité et analyse multi-échelle Résumé : Ce manuscrit d'habilitation à diriger des recherches présente les travaux que j'ai effectués ces dernières années. Ils se concentrent sur l'étude de la stabilité et sur l'analyse multiéchelle de méthodes numériques de différences finies, mises en oeuvre dans le cadre de l'approximation de problèmes hyperboliques linéaires avec bords. Dans un tel contexte, différentes échelles peuvent intervenir, liées par exemple aux phénomènes de viscosité, de relaxation ou de discrétisation. À ces échelles, les interactions entre le problème intérieur et le bord du domaine de calcul sont alors susceptibles d'engendrer des effets parasites inattendus, tels que des couches limites. Elles nuisent souvent sévèrement aux propriétés de stabilité dans l'asymptotique souhaitée et réduisent parfois la qualité et la précision de l'approximation. Il apparaît alors crucial de discriminer et d'écarter les situations pathologiques.

Les trois premiers chapitres portent successivement sur 1) la théorie générale de stabilité pour le problème discret en domaine borné et la vérification numérique de la condition de Kreiss-Lopatinskii uniforme discrète, 2) la construction et l'utilisation de développements asymptotiques multi-échelles dans l'analyse de consistance au bord, et 3) le caractère uniforme des propriétés de stabilité au bord en présence d'une limite de relaxation.

Les deux chapitres finaux portent sur des aspects géométriques de l'asymptotique en temps grand de systèmes dynamiques pour 4) des flots de crochet isospectraux en dimension infinie, directement inspirés de la méthode QR d'approximation spectrale de matrices, et 5) le calcul de paysages de quasi-potentiels en biologie cellulaire, concernant les propriétés de multistabilité dans les mécanismes de l'hématopoïèse. Title: Finite difference methods for hyperbolic problems with boundaries: stability and multiscale analysis Abstract: This habilitation manuscript gathers the work I have done in recent years. They mainly focus on the study of the stability and the multiscale analysis of finite difference methods for the approximation of linear hyperbolic problems with boundaries. In such a context, various scales are likely to be present, related for example to the phenomena of viscosity, relaxation or discretization. Then, the interactions at these scales between the interior problem and the boundary of the computational domain are liable for unexpected parasitic effects, such as boundary layers. They often severely impair the stability properties in the asymptotic process and sometimes reduce the quality and the accuracy of the approximation. Therefore, it appears crucial to discriminate and rule out pathological situations.

The first three chapters relate successively to 1) the general theory of stability for the discrete problem in a bounded domain and the numerical verification of the discrete uniform Kreiss-Lopatinskii condition, 2) the construction and the use of asymptotic multi-scale expansions for the consistency analysis at the boundary, and 3) the uniform character of boundary stability properties in the presence of a relaxation limit.

The next two chapters deal with geometric aspects in the large-time asymptotic of dynamical systems for 4) isospectral bracket flows in infinite dimension, directly inspired by the QR method for spectral approximation of matrices, and 5) the computation of quasi-potential landscapes in cellular biology, for the multistability properties in the hematopoiesis mechanisms.

Figure 1

 1 Figure 1.2: Number of boundary instabilities for the Beam-Warming scheme with S2ILW3 (left) and with S1ILW3 (right).
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 3 Figure 1.3: Number of boundary instabilities for the fifth order Lax-Wendroff scheme with different reconstruction boundary conditions for λ ∈]0, 1] and σ = 0.4.
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 21 Figure 2.1: Convergence curves 2x (solid) / ∞ x (dashed) with m = k -2.
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 22 Figure 2.2: Convergence curves 2 x (solid) / ∞ x (dashed) with m = k.
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 2 Double bracket flows of Hilbert-Schmidt operators
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 4243 Figure 4.2: Toda flow -Convergence of extradiagonal columns.

Figure 5

 5 Figure 5.1: Reciprocal inhibition of self-stimulation with no specific regulation of the basal transcription frequencies.
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 52 Figure 5.2: Excerpts from the work of Waddington [Wad14]. Copyright © 1957 George Allen & Unwin Ltd. All rights reserved.

Figure 5 . 3 :

 53 Figure 5.3: Invariant measure for the GATA1/2 (x): PU.1 (y) circuit. Bistable configuration with low basal expression b = 1 (left). Monostable configuration with high basal expression b = 4 (right).

  Figure 5.4 with a convenient "projection" of the 4D mapping: (x, y, b) → p onto a 3D mapping: (x, b) → p.

Figure 5 . 4 :

 54 Figure 5.4: Projection of steady states on the axis of one of the variables as a function of b, showing the switch from bi-to monostability when increasing b, for other parameters fixed.
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  de conditions de bord discrète transparente, nous proposons dans [P/BNS] un nouveau schéma discret stable uniformément dans les paramètres de relaxation et de discrétisation, sous la seule condition SKC. • Le Chapitre 4 porte sur la formalisation et l'analyse de systèmes dynamiques en dimension infinie, à valeurs opérateurs de Hilbert-Schmidt, de la forme de double-crochets. Ce travail correspond à la publication [A/BR17]. Il est en lien d'une part avec la méthode itérative QR pour le calcul du spectre d'une matrice de taille finie, et d'autre part avec les aspects géométriques spécifiques aux flots de crochet. Des résultats de convergence sont obtenus pour la classe de flots envisagée. • Pour terminer, le travail [A/FJL + 20] est décrit dans le Chapitre 5. Il s'agit d'une recherche interdisciplinaire menée avec des biologistes de l'« Institut de Recherche en

-Lopatinskii, le terme de relaxation étant soumis aux propriétés usuelles de dissipativité. Dans le cas continu, les développements de couches limites de relaxation et le caractère uniformément bien posé du problème, par rapport au paramètre , sont connus dans la littérature, en entièrement caractérisés par une condition appelée « Stiff Kreiss Condition »(SKC). Dans le papier [A/BNS20] issu de la thèse [Ngu20] de T. H. T.

Introduction

Par une technique Santé, Environnement et Travail » (IRSET -Université de Rennes). Les mécanismes de multistabilité liés à la différentiation cellulaire de l'hématopoïèse sont mis en évidence par le calcul de paysages de Waddington obtenus par résolution numérique d'une équation de Fokker-Planck.

  Introductionbrackets structure. This work corresponds to the publication [A/BR17]. It is concerned the one hand with to the iterative QR method for computing the spectrum of a matrix in finite dimensional spaces, and on the other hand with the geometrical aspects specific to bracket flows. Convergence results are obtained for the considered class of flows.

	CHAPTER 1
	• Finally, the work [A/FJL + 20] is described in Chapter 5. This is an interdisciplinary
	research carried out with biologists from the "Institute for Research in Health, Environ-
	ment and Work" (IRSET -University of Rennes). The mechanisms of multistability
	linked to the cellular differentiation of haematopoiesis are highlighted by the calculation
	of Waddington landscapes obtained by numerical resolution of a Fokker-Planck equation.

  From the adapted consistency analysis adapted to the constructed expansion, using the scale localization property of the boundary terms and comparing different discrete trace formulations.

Theorem 15 (Outflow Dirichlet [A/BC17]). Let us consider a consistent Cauchy 2 -stable scalar scheme of the form (2.2) with homogeneous boundary condition (2.8) at order m = 0. Assume that there is no extended stationary mode. For smooth initially compatible data

f ∈ H 2 (R * + )

, the discrete solution u n j has the asymptotic expansion

u n j = u int (t n , x j ) + u bl (t n , j) + h.o.

t, where • u int is the exact solution to ∂ t u + a∂ x u = 0 (a < 0) with initial data f , • u bl (t n , •) ∈ E s (1) solves u bl (t n , •) = -u int (t n , 0). Theorem 16 (High order outflow [A/BNS + 21]). Let us consider a consistent order k Cauchy 2 -stable scalar scheme of the form (2.2) with homogeneous boundary conditions (2.8) at order m < k. Assume that there is no extended stationary mode. For smooth initially compatible data f ∈ H k+1 (R * + ), the discrete solution u n j has the asymptotic expansion u n j = u int (t n , j∆x) + ∆x m u bl (t n , j) + h.o.t. (2.9)

  3.1. Hyperbolic relaxation models with boundaries boundaries) and the convergence of its solution to equilibrium reads a > |f (u)| for all values of u involved. Many results are available from the works by Yong [Yon99b; Yon01; Yon02], Liu and Yong[START_REF] Liu | Time-asymptotic stability of boundary-layers for a hyperbolic relaxation system[END_REF], and Yong and Jäger[START_REF] Yong | On hyperbolic relaxation problems[END_REF].

  ) k≥0 is null starting from some rank k 0 . This is clearly the case here. The point of interest here lies in the behaviour of the quantity H for large values m, but now fixed size k of the determinants. In this spirit, Hadamard proved the following result. Assume the modulus-separation property |λ 1

	In particular, the sequence (a m ) m≥0 solves a linear recurrence relation if and only if the
	sequence (H	(k) 0 (k)
			m+k-1
		a m+1 a m+2 . . . . . . . . .	a m+k	.
		a m+k-1 a m+k . . . a m+2k-2

m

  The Toda flow gives similar results with the same rate of convergence. Now the empty-low tabular has coefficients -(λ i -λ j ):The Figure4.2 illustrates the numerical counterpart of Theorem 26. For any 0 ≤ ≤ 4, we compute the norm of the residual column j> H(t)e , e j e j . The thick dashed curves represent the effective error and the thin solid ones correspond to reference rates, namely δ ∈ {9, 7, 5, 3}.

		. -9 -16 -21 -24	
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				and Flaschka
	[Fla74a])		
	Proposition 24. Let G : S(H) → A(H) be a locally Lipschitz mapping. Any Cauchy problem
	H = [H, G(H)],	H(0) = H 0 ∈ S 2 (H)	(4.4)

admits a unique global solution H ∈ C 1 (R, S 2 (H)). It is smoothly unitarily equivalent to the initial data: there exists U ∈ C 1 (R, U(H)) such that the solution reads H(t) = U (t)H 0 U (t).

• Toda flow

  This chapter is devoted to a brief presentation of the work [A/FJL + 20]. This is an interdisciplinary research activity carried out with cellular biologists from the "Institute for Research in Health, Environment and Work" (IRSET -Université de Rennes), and more particularly with Denis Michel. The collaboration followed a first work [A/MBR16] which will not be discussed here. Michel, B. Boutin, and P. Ruelle. The accuracy of biochemical interactions is ensured by endothermic stepwise kinetics. Prog. Biophys. Mol.

	[A/MBR16]	D. Biol. 121 1:35-44, 2016.

[A/FJL + 20] G. Flouriot, C. Jehanno, Y. Le Page, P. Le Goff, B. Boutin, and D. Michel. The basal level of gene expression associated with chromatin loosening shapes Waddington landscapes and controls cell differentiation. J. Mol. Biol. 432 7:2253-2270, 2020.

Dans le métier d'enseignant-chercheur, un temps important est directement ou indirectement consacré aux étudiants. Aussi j'ai une pensée pour l'ensemble des étudiants de licence et de master dont j'ai un peu accompagné la route et qui ont incidemment accompagné la mienne. Je remercie plus spécialement Mégane Bournissou avec qui j'ai beaucoup partagé, ainsi que ceux avec lesquels j'ai le plus travaillé : l'infatiguable Thi Hoai Thuong Nguyen, le créatif et serein Pierre Le Barbenchon. Sans nos collaborations et la présence de Nicolas dans
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Le CEMRACS est un évènement scientifique de la SMAI organisé au CIRM l'été sur 6 semaines, permettant à des jeunes chercheurs de travailler sur des projets de recherche, ceci après une première semaine d'école d'été.

ANR-17-CE40-0025 Numerical Boundaries and Coupling.
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CEMRACS is a scientific event of SMAI organized at CIRM in the summer during
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2.3. Propagative and glancing wavepackets

We warn the reader that some notations have been changed between this manuscript and the cited publications, so as to unify the current presentation.
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CHAPTER 3

Hyperbolic relaxation models

The present chapter is devoted to the numerical approximation of hyperbolic relaxation models, in the sense of Chen, Levermore, and Liu [START_REF] Chen | Hyperbolic conservation laws with stiff relaxation terms and entropy[END_REF], in the linear case with boundaries. The PDE part is subject to standard stability properties, as strict hyperbolicity of the first order terms and subcharacteristic dissipativity of the stiff zeroth order relaxation term. In addition the considered boundary condition satisfies the Kreiss-Lopatinskii condition for the non-stiff hyperbolic part. It is known from Xin and Xu [START_REF] Xin | Stiff well-posedness and asymptotic convergence for a class of linear relaxation systems in a quarter plane[END_REF] that a reinforced Stiff Kreiss Condition is actually necessary to preclude boundary instabilities during the limiting relaxation process. The aim is to develop numerical schemes and analyze carefully their uniform stability with respect to the relaxation parameter (and the discretization parameters as well of course). To do that, we make use of the Summation-by-Parts techniques, related to the energy method, and of the discrete Z-transform. Another strategy is based on the construction of discrete transparent boundary conditions but only for the extra discrete-boundary conditions. The presentation hereafter is related to the publications 1 [A/BNS20] and [P/BNS], obtained from the Master internship and then the PhD work of Thi Hoai Thuong Nguyen during the years 2017-2020, student co-advised with Nicolas Seguin. [P/BNS] B. Boutin, T. H. T. Nguyen, and N. Seguin. A stiffly stable fully discrete scheme for the damped wave equation using discrete transparent boundary condition.

Hyperbolic relaxation models

Summation by parts method We first consider homogeneous boundary condition g = 0 and use the energy method. It enjoys the effect of the SBP method,with the symmetrizer H = diag(a 2 , 1), so as to obtain the identity

The dissipativity of the boundary condition B then follows under the condition:

Then, using in addition the dissipative character of relaxation, the following stiff bound follows:

Actually, if B u B v > 0 then the above condition is true, else if B u B v < 0, having a bound of the form ∆x ≥ δ also suffices to conclude.

Normal mode analysis and stiff UKLC estimate

As for the continuous case, the homogeneous initial data case f = 0 can be handled by the UKLC algebra and Laplace transform. However, the presence of the discretization in space now increase the dimension of the stable linear subspace associated to some time frequency τ with Re τ > 0. This is the point where the supplemented artificial boundary condition (3.10b) is involved. In [A/BNS20], we prove that the condition B u B v > 0 suffices to guarantee the uniform determinantal version of the UKLC here. In addition, some numerical experiments show that this UKLC is not always satisfied under the continuous SKC (3.6) only.

Extensions

• A first extension is concerned with the implicit time discretization of the previous semidiscrete scheme. The stiff stability is then obtained again under the strict dissipativity condition B u B v > 0 with an inverse "CFL" condition of the form ∆x < 3a∆t/8.

• A second extension is again for the implicit time discretization, but now with the upwind flux in space, in the sense of the Riemann invariants of the hyperbolic part of the problem. The analysis is then successfully conducted only for the energy method part, i.e. for homogeneous boundary data g.

• A third extension is proposed and intended to obtain a fully discrete scheme that would be stiffly stable exactly in the same regime than the underlying PDE, that is under SKC (3.6) and not only the subclass B u B v > 0. Again the interior scheme is the implicit centered one. The idea now is to replace the ghost value U -1 by a convenient coming from the discrete transparent boundary technique, but only for the artificial part (3.10b). Now the eigenstructure involves four waves but only two matricial eigenprojectors Φ -, Φ + related to the continuous problem. The corresponding eigenvalues ±κ ± (z) satisfy

In the Z-transformed version of the scheme, the transparent boundary extension then simply reads:

Coupled with the proposed strategy the final boundary scheme has finally the non-local in time-boundary form:

In [P/BNS], we can prove that under the SKC (and not only under the subclass of strictly dissipative conditions), the scheme is stiffly strongly stable (i.e. in the sense of zero initial data and nonzero boundary data), provided the previous inverse "CFL" condition is satisfied. A part of the analysis is still work in progress.

Perspectives (3A)

The main extension of this work is to propose asymptotic preserving schemes in the sense of Jin [START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF] that encompass the boundary treatment for general situations with change of sign or vanishing in the characteristic velocities. The stiff stability under the full stiff Kreiss condition is then a crucial features in order to guarantee that the numerical scheme is not affected by unstable discrete boundary layers and is able to encompass in a correct way the (stable) relaxation boundary layer. A submitted work [P/ABC] with N. Crouseilles and M. Anandan deals with the development of accurate numerical schemes in the slightly different framework of kinetic relaxation equations in the diffusive scaling. The use of adapted half-moments strategies through micro-macro decompositions is often limited to first order in space. Increasing the order in space then requires appropriate treatments for the relaxation layer.

CHAPTER 4

Infinite dimensional QR eigenvalue method

[The QR algorithm is] one of the most remarkable algorithm in scientific computing.

Strang [START_REF] Strang | Linear algebra and its applications[END_REF] Linear algebra and its applications.

The names of Rutishauser, Wilkinson, Lanczos and Francis are at the heart of the development of numerical algorithms for spectra computations mainly within the 1950s and the 1960s. The foundations of their results are found in some older analysis due to Jacques Hadamard in his thesis. It is concerned with characterizations of poles of meromorphic functions that follow themselves older results by Daniel Bernoulli. More recently, after the development of the first numerical algorithms for spectra approximations, two main directions have emerged. A first one is concerned with the improvement of the cost and the quality of the effective computations: reduction of the cost, improvement of the rate convergence, dimension reduction, etc. For a more complete overview of the developments of eigenvalue computational algorithm during the 20ts century, we refer the reader to the work by Golub and van der Vorst [GvdV00] and Golub and Uhlig [START_REF] Golub | The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments[END_REF]. A second one is motivated by several theoretical applications towards operator theory, based on the deep relationship between these algorithms and some infinite-dimensional dynamical systems (see Chu [START_REF] Chu | Linear algebra algorithms as dynamical systems[END_REF]).

We present hereafter first a quick overview of the previously mentioned historical aspects, partially inspired from Gutknecht and Parlett [START_REF] Gutknecht | From qd to LR, or, how were the qd and LR algorithms discovered ?[END_REF]. After that, a discussion is proposed on some recent results [A/BR17] obtained a few years ago in a collaboration with N. Raymond. The topic is about formalizing in an unified way a family of isospectral differential systems acting on Hilbert-Schmidt operators. The abstract method is able to determine asymptotically the spectrum of such operators, with identified convergence rates, even in infinite dimension.

[A/BR17] B. Boutin and N. Raymond. Some remarks about flows of Hilbert-Schmidt operators. J. Evol. Equ. 17 2:805-826, 2017.

Actually, the change of basis U solves the linear differential problem

The asymptotic dynamic in the neighbourhood of an diagonal equilibrium point H ∞ = diag(λ i , i ≥ 0) is actually directly related to the quantities g ij involved in the identities G(E i,j ) = g ij E ± i,j for i < j, if available. To be more precise, the differential of the flow F : H → [H, G(H)] at the point H ∞ , considered as an endomorphism in S 2 (H), is diagonalized in the basis E i,j with dF H∞ (E i,j ) = g ij (λ i -λ j )E i,j . The first issue is then to identify the equilibrium points with non-positive eigenvalues. 0 is an eigenvalue associated in particular to any E i,i .

• Brockett sorting algorithm

The simplest archetypal example proposed from Brockett [START_REF] Brockett | Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems[END_REF] is related to the linear mapping

In that case for i < j, one has g ij = a j -a i and thus the eigenvalues of dF H∞ are -(a i -a j )(λ i -λ j ) for i < j. All of them are negative if and only if the order of sorting is the same for A and H ∞ .

• Toda flows

The previously discussed Toda flow also reads more compactly as G(H) = H --(H -) where H -= 0≤i≤j h i,j e i e j is the low truncation of H. Again, from the identity G(E i,j ) = -E ± i,j , we deduce the eigenvalues of dF H∞ that are -(λ i -λ j ) for i < j.

• Wegner flow

The flow by Wegner [START_REF] Wegner | Flow-equations for Hamiltonians[END_REF] is defined by G(H) = [H, diag(H)] where diag(H) = 0≤i h i,i e i e i is the diagonal part of H. In that case, the mapping G does not act linearly but the spectrum of dF H∞ at a given diagonal point

Convergence results Contrary to the finite dimensional case, the unitary matrix U does not evolve in a compact set, thus other strategies have to be considered (a priori bounds, integrability properties and monotonicity arguments) to conclude on convergence.

Theorem 25 (Corollary 1.8 and 1.9 in [A/BR17]). Assume G ∈ L(S 2 (H), A 2 (H)) and appropriate sign and lower bound assumptions on the "eigenvalues" g ij of G. Then, the global solution H(t) weakly converges in S 2 (H) to H ∞ = diag(λ i , i ≥ 0) ∈ D 2 (H), with spectrum included in spec(H 0 ) with multiplicities. If dim H < +∞ then the convergence is available in the strong topology and, if H 0 has simple eigenvalues then the convergence rate is O(e -γt ) where γ = inf{-g i,j (λ i -λ j ) > 0, i < j}.

The corresponding proof permits to extend the usual convergence result for the QR algorithm to the infinite dimensional case. We present this result hereafter with a quantification of the convergence of the off-diagonal terms.

Numerical examples in finite dimension

Theorem 26 (Proposition 1.10 in [A/BR17]). Let H 0 ∈ L 2 (H) be diagonalizable with eigenvalues (λ j ) j≥0 indexed by decreasing real parts. Assume in addition the existence of an invertible P ∈ L(H) such that P H 0 P -1 = diag(λ j , j ≥ 0) and such that the minors det ( P e i , e j ) 0≤i,j≤J are invertible for all integer J. Then the solution H(t) to the Toda flow satisfies for all finite ∈ N and with δ := min 0≤j≤ Re (λ j -λ j+1 ): 

Numerical examples in finite dimension

We present hereafter some finite dimensional numerical illustrations for matrices in M 5 (R) with a symmetric (full matrix) initial data, unitarily equivalent to the matrix diag ([1, 4, 9, 16, 25]). The ODE systems (4.4) plus (4.5) are approximated by means of the adaptive 4th-order Runge-Kutta scheme. Actually, there is no loss of isospectrality during the numerical discretization (up to the machine error) due to the use of the equation (4.5). This would not be true when using (4.4) directly (see the works by Calvo, Iserles, and Zanna [START_REF] Calvo | Numerical solution of isospectral flows[END_REF] for more details on the numerical integration of bracket flows and Hairer, Lubich, and Wanner [START_REF] Hairer | Geometric numerical integration[END_REF] for general geometric integration results).

• Brockett flow

The matrix-parameter is the diagonal matrix A = diag ([5, 4, 3, 2, 1]). On Figure 4.1, the convergence to the limit matrix H ∞ = diag ([25, 16, 9, 4, 1]) is observed, with a sorting of the eigenvalues in the descending order, in accordance to the ordering in the coefficients in A. The rate of convergence O(e -3t ) is asymptotically observed, also in agreement with the theoretical value given by the values (a j -a i )(λ i -λ j ) in the following empty-low tabular: