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INTRODUCTION (FR)

Panorama de mes travaux

L’étude des effets induits par la présence d’un bord dans des problèmes d’évolution continus
ou discrets est au cœur de mes travaux de recherche, ceci spécifiquement dans le contexte des
systèmes d’équations aux dérivées partielles hyperboliques linéaires, de lois de conservation
hyperboliques non-linéaires, ou encore de leurs approximations numériques. Dans ces différentes
situations, diverses échelles sont susceptibles d’intervenir à travers les phénomènes de viscosité,
de relaxation ou de discrétisation. Ces échelles sont présentes parfois pour des raisons inhérentes
à la théorie sous-jacente. C’est le cas pour les solutions faibles entropiques en tant que
limites évanescentes d’approximations paraboliques, ou pour les modèles de relaxation faisant
intervenir une limite singulière dans des termes d’ordre inférieur. Pour ce qui concerne le
cas de méthodes numériques de type volumes finis ou différences finies, les échelles en jeu
sont alors directement liées aux paramètres de discrétisation et, parfois simultanément, aux
autres échelles concomitamment envisagées. Les interactions entre ces différentes échelles et
le bord du domaine sont susceptibles d’engendrer des effets parasites inattendus. Ceux-ci se
manifestent typiquement à travers l’apparition de couches limites, nuisant parfois sévèrement
aux propriétés de stabilité dans l’asymptotique, et plus souvent dégradant la qualité de
l’approximation.

Travaux liés à la thèse de Doctorat et miscellanées

Les travaux décrits ci-après ne seront pas développés précisément dans la suite du ma-
nuscrit. Ils concernent en grande partie des recherches directement liées à mes travaux de
thèse [PhD/Bou09] portant sur les lois de conservation hyperboliques non-linéaires. En pre-
mier lieu, la série de papiers [A/BCL11 ; A/BCL13 ; A/BCL15 ; A/BCL21], les actes de
congrés [C/ABC+08 ; C/BCG08 ; C/BCL12], ainsi que la publication [A/BCR10] portent sur
l’étude du couplage de tels modèles à travers une interface spatiale fixée. Plus précisément, le
couplage envisagé présente un caractère non-conservatif. Le point de vue diffère ainsi assez
fondamentalement du cadre plus standard des lois de conservations à flux discontinus [BV06 ;
AKR11 ; And15]. La motivation est au contraire de pouvoir capturer les solutions qui sont
entropiques en dehors des interfaces mais possiblement continues à leur traversée malgré la
discontinuité du flux. Le point de vue retenu est alors celui du recollement de deux demi-
problèmes aux limites. Une première approche emploie les traces admissibles de Dubois et
LeFloch [DL88], faisant suite aux travaux de Bardos, Leroux et Nédélec [BLN79]. Une seconde
approche s’appuie sur le procédé de régularisation visqueuse à la Dafermos [Daf73] via des
estimations d’interaction d’ondes non-linéaires inspirées des travaux de LeFloch et Tzavaras
[LT99]. La dernière approche envisagée consiste en une modélisation par interface épaissie et en
la mise en place de stratégies numériques inspirées des travaux de Greenberg et Leroux [GL96]
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Introduction

de façon à permettre la préservation d’états stationnaires prescrits, en l’occurence continus à
l’interface. L’analyse de convergence de ces méthodes, traitées dans le cas multidimensionnel,
requiert les techniques de solutions mesures entropiques de DiPerna [DiP85]. Dans tous ces
travaux, les résultats d’existence de solutions sont obtenus. L’unicité n’est pas systématique-
ment aquise et demeure in fine une question ouverte dans le cas d’interfaces minces. On peut
cependant noter que les divers procédés d’approximation envisagés permettent tous de dégager
un principe de sélection au moins partielle des solutions, tout du moins en comparaison du
cadre le plus général du couplage par des traces admissibles.

Un travail connexe [A/BCL+08b ; C/BCL+08a] concerne le développement d’une nouvelle
stratégie numérique permettant le calcul de solutions non-classiques de lois de conservation
scalaires. Ces solutions correspondent à des discontinuités sous-compressives liées à une
approximation d’ordre supérieur en limite de petite diffusion-dispersion. Alternativement, ces
solutions sont caratérisées par une relation cinétique décrivant la dynamique des discontinuités
non-classiques [BL02] entre deux phases. La difficulté de l’approximation de ces solutions
repose sur le fait que les méthodes usuelles, de façon à être stables, introduisent une diffusion
numérique qui nuit à la capture des solutions non-classiques. Une procédure de reconstruction
locale permet d’imposer la relation cinétique convenable et de supprimer toute diffusion
numérique pour l’approximation numérique des chocs non-classiques.

Dans [A/BBT15], nous nous intéressons à un modèle d’écoulement gravitaire de Saint-
Venant-Exner faisant intervenir des produits non-conservatifs. Ces modèles décrivent des
écoulements à surface libre, en eaux peu profondes, sur un fond affecté par des effets sédi-
mentaires1 (dépôt et érosion) dont l’évolution est régie par des lois de comportement plus
ou moins empiriques. De façon générale, la définition d’un cadre mathématique adapté aux
produits non-conservatifs a été entreprise dès les travaux de Volpert [Vol67] et complétée
plus récemment par ceux de Dal Maso, LeFloch et Murat [DLM95]. Les profils de chocs non-
conservatifs sont déterminés et comparés avec ceux calculés par différents schémas numériques
récents de la littérature.

Les publications [C/BBF+09 ; C/BBC+11 ; C/BDH+11] correspondent à des rapports de
projets de recherche effectués au cours de sessions d’été du CEMRACS2.

Le travail [P/BCC+] soumis plus récemment concerne l’utilisation de méthodes d’intégra-
tion en temps de type Lawson adaptées à la résolution de modèles cinétiques de type Vlasov
et [P/ABC] concerne la mise en place de méthodes d’ordre élevé, préservant l’asymptotique
de diffusion pour des modèles cinétiques linéaires.

Contenu de ce manuscrit d’habilitation

Dans sa majeure partie (Chapitres 1 à 3), les sujets développés dans ce manuscrit concernent
plusieurs aspects complémentaires de l’analyse numérique de schémas de différences finies
dédiés à l’approximation de solutions de problèmes hyperboliques linéaires en présence de bords.

1Travail effectué avec le support du GdR EGRIN 3485 "Modélisation & simulations numériques Ecoulements
Gravitaires et RIsques Naturels", désormais GdR MathGeoPhy

2Le CEMRACS est un évènement scientifique de la SMAI organisé au CIRM l’été sur 6 semaines, permettant
à des jeunes chercheurs de travailler sur des projets de recherche, ceci après une première semaine d’école d’été.
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Ces aspects vont de la détermination de propriétés de stabilité vis-à-vis de la condition de
bord numérique (Chapitres 1 et 3), à leur utilisation en vue de déterminer des développements
asymptotiques des solutions numériques, dont l’utilisation pour une analyse optimale de
convergence est précieuse (Chapitre 2). Un autre point de vue, présent à plusieurs reprises
dans le manuscrit est celui de l’étude spectrale d’opérateurs en dimension infinie, soit du
type Toeplitz ou quasi-Toeplitz (Chapitres 1 et 2), soit du type Hilbert-Schmidt (Chapitre 4).
Les Chapitres 4 et 5 sont essentiellement indépendants du reste du manuscrit et emploient
des aspects géométriques pour l’asymptotique en temps grand de systèmes dynamiques. Des
perspectives de recherches sont présentées à la fin des Chapitres 1, 2 et 3. Une très syntétique
présentation des chapitres est la suivante :

• Une introduction à la théorie générale de stabilité pour le problème discret en domaine
borné débute le Chapitre 1, introduisant en particulier les outils classiques usuels de
cette étude et ouvrant la voie à la présentation des publications [A/BLS23 ; P/BLS]
toutes deux issues de la thèse de P. Le Barbenchon [Le 23]. Ces travaux portent
sur la mise en place et la justification de méthodes numériques efficaces permettant
d’apprécier la validité de la condition de Kreiss-Lopatinskii uniforme dans le cas de
schémas de différences finies avec bord.

• Le Chapitre 2 aborde les aspects de consistance au bord, afin de permettre une étude
de convergence améliorée pour des schémas assez généraux. La méthode repose sur la
construction de développements asymptotiques des solutions numériques, valables dans
le domaine intérieur de calcul ainsi qu’au voisinage du bord. L’identification des couches
limites numériques est alors centrale. Il est également question d’autres phénomènes
multi-échelles qui peuvent être identifiés par une méthodologie analogue. Il s’agit de
travaux reliés à la publication [A/BC17] en collaboration avec J.-F. Coulombel,
ainsi qu’au travail [A/BNS+21] issu d’un encadrement de projet supporté par l’ANR
NABUCO3 durant le CEMRACS 2019.

• Dans le Chapitre 3, l’étude porte sur la présence conjointe d’effets de termes de relaxation
et d’un bord, ainsi que dans un deuxième temps d’effets liés à la discrétisation numérique.
L’étude se limite au cas linéaire sous la condition habituelle de Kreiss-Lopatinskii,
le terme de relaxation étant soumis aux propriétés usuelles de dissipativité. Dans
le cas continu, les développements de couches limites de relaxation et le caractère
uniformément bien posé du problème, par rapport au paramètre ε, sont connus dans
la littérature, en entièrement caractérisés par une condition appelée « Stiff Kreiss
Condition »(SKC). Dans le papier [A/BNS20] issu de la thèse [Ngu20] de T. H. T.
Nguyen nous démontrons le caractère uniformément stable d’un schéma semi-discrétisé
en espace. Ce schéma est constitué sur la base de techniques de sommation par parties
discrètes (SBP) utiles pour les méthodes d’énergies et de transformée de Laplace ou en
Z selon le cadre (semi-discret ou discret respectivement). Le résultat d’uniforme stabilité
du schéma n’est néanmoins obtenu que sur un sous-ensemble strict de la condition SKC.

3ANR-17-CE40-0025 Numerical Boundaries and Coupling.
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Par une technique de conditions de bord discrète transparente, nous proposons
dans [P/BNS] un nouveau schéma discret stable uniformément dans les paramètres de
relaxation et de discrétisation, sous la seule condition SKC.

• Le Chapitre 4 porte sur la formalisation et l’analyse de systèmes dynamiques en dimension
infinie, à valeurs opérateurs de Hilbert-Schmidt, de la forme de double-crochets. Ce
travail correspond à la publication [A/BR17]. Il est en lien d’une part avec la méthode
itérative QR pour le calcul du spectre d’une matrice de taille finie, et d’autre part avec
les aspects géométriques spécifiques aux flots de crochet. Des résultats de convergence
sont obtenus pour la classe de flots envisagée.

• Pour terminer, le travail [A/FJL+20] est décrit dans le Chapitre 5. Il s’agit d’une
recherche interdisciplinaire menée avec des biologistes de l’« Institut de Recherche en
Santé, Environnement et Travail » (IRSET – Université de Rennes). Les mécanismes de
multistabilité liés à la différentiation cellulaire de l’hématopoïèse sont mis en évidence par
le calcul de paysages de Waddington obtenus par résolution numérique d’une équation
de Fokker-Planck.

14



INTRODUCTION (EN)

Overview of my work

The study of the effects induced by the presence of a boundary in continuous or discrete
evolution problems lies at the heart of my research works, more specifically in the context of
systems of linear hyperbolic partial differential equations, non-linear hyperbolic conservation
laws, or their numerical approximations. In these different situations, various scales are likely
to be present through phenomena such as viscosity, relaxation, discretization. These scales are
sometimes present for reasons that are inherent to the underlying theory. This is the case for
entropy weak solutions, being evanescent limits of higher order viscosity approximations, or
also for relaxation models in which a singular limit is considered for lower order terms. With
regard to the case of numerical methods such as finite volumes or finite differences, the involved
scales are then directly related to the discretization parameters and, sometimes simultaneously,
to the other scales of the model concomitantly considered. The interactions between these
different scales and the boundary of the domain are likely to generate unexpected parasitic
effects. These typically manifest themselves through the appearance of boundary layers,
sometimes severely impairing the stability properties in the asymptotic process, and more
often at least degrading the quality of the approximation.

Work related to the PhD thesis and miscellaneous

The work described below will not be developed in detail in the rest of the manuscript.
They largely concern research directly related to my thesis work [PhD/Bou09] on nonlinear
hyperbolic conservation laws. Firstly, the series of papers [A/BCL11; A/BCL13; A/BCL15;
A/BCL21], the conference proceedings [C/ABC+08; C/BCG08; C/BCL12] , as well as the
publication [A/BCR10]relate to the study of the coupling of such models through a fixed spatial
interface. More precisely, the considered coupling has a non-conservative character. The point
of view thus differs quite fundamentally from the more standard framework of conservation
laws with discontinuous fluxes [BV06; AKR11; And15]. The motivation is on the contrary
to be able to capture the solutions which are entropic outside the interfaces but possibly
continuous at their crossings despite the discontinuity of the flux. The point of view retained
is then that of the gluing together of two boundary half-problems. A first approach uses the
admissible traces of Dubois and LeFloch [DL88], following the work of Bardos, Leroux, and
Nédélec [BLN79]. A second approach relies on the viscous regularization process a la Dafermos
[Daf73] via nonlinear wave interaction estimates inspired by the work of LeFloch and Tzavaras
[LT99]. The last approach considered consists of a modeling by thickened interface and the
implementation of numerical strategies inspired by the work of Greenberg and Leroux [GL96]
in order to allow the preservation of prescribed stationary states, in this case continuous at
interface. The convergence analysis of these methods, treated in the multidimensional case,
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Introduction

requires the entropic measurement solution techniques of DiPerna [DiP85]. In all these works,
the existence results of solutions are obtained. Uniqueness is not systematically acquired and
ultimately remains an open question in the case of thin interfaces. It can however be noted
that the various approximation methods considered all make it possible to identify a principle
of at least partial selection of the solutions, at least in comparison with the most general
framework of coupling by admissible traces.

A related work [A/BCL+08b; C/BCL+08a] concerns the development of a new numerical
strategy allowing the computation of non-classical solutions of scalar conservation laws. These
solutions correspond to undercompressive discontinuities related to a higher order approxima-
tion in the small diffusion-dispersion limit. Alternatively, these solutions are characterized
by a kinetic relation describing the dynamics of non-classical discontinuities [BL02] between
two phases. The difficulty in approximating these solutions lies in the fact that the usual
numerical methods, in order to be stable, introduce a numerical diffusion which harms the
capture of non-classical solutions. A local reconstruction procedure makes it possible to impose
the appropriate kinetic relation and to suppress any numerical diffusion for the numerical
approximation of non-classical shocks.

In [A/BBT15], we are interested in a gravity flow model of Saint-Venant-Exner involving
non-conservative products. These models describe free surface flows, in shallow waters, on a
bottom affected by sedimentary effects4 (deposition and erosion) whose evolution is governed by
more or less empirical behaviour laws. In general, the definition of a mathematical framework
adapted to non-conservative products has been undertaken since the work of Volpert [Vol67]
and completed more recently by those of Dal Maso, LeFloch, and Murat [DLM95]. The
non-conservative shock profiles are determined and compared with those calculated by various
recent numerical schemes from the literature.

The publications [C/BBF+09; C/BBC+11; C/BDH+11] correspond to reports of research
projects carried out during summer sessions of CEMRACS5.

The work [P/BCC+] submitted more recently concerns the use of modified Lawson-type
time integration methods suitable for solving Vlasov-type kinetic models and [P/ABC] concerns
the development of high order methods that preserve the diffusion asymptotic for linear kinetic
models.

Contents of this habilitation manuscript

In its major part (Chapters 1 to 3), the subjects developed in this manuscript concern several
complementary aspects of the numerical analysis of finite difference schemes dedicated to the
approximation of solutions of linear hyperbolic problems in the presence of boundaries. These
aspects range from the determination of stability properties with respect to the numerical
boundary condition (Chapters 1 and 3), to their use in order to determine asymptotic
expansions of numerical solutions, whose use for an optimal convergence analysis is valuable

4This work has been partially supported by GdR EGRIN 3485 "Modeling & numerical simulations Gravitary
Flows and Natural RIsks", now GdR MathGeoPhy

5CEMRACS is a scientific event of SMAI organized at CIRM in the summer during 6 weeks, allowing young
researchers to work on research projects, after a first week of summer school.

16



(Chapter 2). Another point of view, present several times in the manuscript, is that of the
spectral study of operators in infinite dimension, either of the Toeplitz or quasi-Toeplitz
type (Chapters 1 and 2), or of the Hilbert-Schmidt type (Chapter 4). Chapters 4 and 5 are
essentially independent from the rest of the manuscript and employ geometric aspects for the
large-time asymptotic of dynamical systems. Research perspectives are presented at the end
of Chapters 1, 2 and 3. A very synthetic presentation of the chapters is as follows:

• An introduction to the general theory of stability for the discrete problem in a bounded
domain begins Chapter 1, introducing in particular the usual classical tools of this study
and opening the way to the presentation of the publications [A/BLS23; P/BLS] both
from the thesis of P. Le Barbenchon [Le 23]. This work focuses on the establishment
and justification of effective numerical methods for assessing the validity of the uniform
Kreiss-Lopatinskii condition in the case of finite difference schemes with a boundary.

• Chapter 2 deals with boundary consistency aspects, in order to allow an improved
convergence study for fairly general schemes. The method is based on the construction
of asymptotic expansions of the numerical solutions, valid in the inner computational
domain as well as in the vicinity of the boundary. The identification of discrete boundary
layers is then central. It also discusses other multi-scale phenomena that can be identified
from an analogous methodology. These are works related to the publication [A/BC17]
in collaboration with J.-F. Coulombel, as well as to the work [A/BNS+21] resulting
from a project supervision during CEMRACS 2019, supported by the funding project
ANR NABUCO6.

• In Chapter 3, the study focuses on the joint presence of effects of relaxation terms and
of a boundary, as well as in a second time of effects related to numerical discretization.
The study is limited to the linear case under the usual Kreiss-Lopatinskii condition, the
relaxation term being subject to the usual dissipative properties. In the continuous case,
the expansions of relaxation boundary layers and the uniformly well-posed character of
the problem, with respect to the parameter ε, are known in the literature, fully charac-
terized by a condition called “Stiff Kreiss Condition”(SKC). In the paper [A/BNS20]
resulting from the thesis [Ngu20] of T. H. T. Nguyen we demonstrate the uniformly
stable character of a semi-discretized scheme in space. The scheme is made up on the
basis of techniques of discrete summation by parts (SBP), useful for the energy method,
and of Laplace or Z transform according to the framework (semi-discrete or discrete
respectively). The result of uniform stability of the scheme is nevertheless only obtained
on a strict subset of the SKC condition.
By a technique of discrete transparent boundary condition, we propose in [P/BNS] a new
fully discrete scheme, stable uniformly in the relaxation and discretization parameters,
under the only condition SKC.

• Chapter 4 deals with the formalization and analysis of dynamical systems in infinite
dimension, with values in the set of Hilbert-Schmidt operators, and having a double-

6ANR-17-CE40-0025 Numerical Boundaries and Coupling.
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brackets structure. This work corresponds to the publication [A/BR17]. It is concerned
the one hand with to the iterative QR method for computing the spectrum of a matrix
in finite dimensional spaces, and on the other hand with the geometrical aspects specific
to bracket flows. Convergence results are obtained for the considered class of flows.

• Finally, the work [A/FJL+20] is described in Chapter 5. This is an interdisciplinary
research carried out with biologists from the “Institute for Research in Health, Environ-
ment and Work” (IRSET – University of Rennes). The mechanisms of multistability
linked to the cellular differentiation of haematopoiesis are highlighted by the calculation
of Waddington landscapes obtained by numerical resolution of a Fokker-Planck equation.
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CHAPTER 1

Discrete initial boundary value problems

The present chapter is intended to discuss the stability theories for initial boundary value
problems (IBVP), on one hand for first order linear hyperbolic partial differential evolution
equations, and on the other hand for linear finite difference schemes. The well-posedness
or the stability properties of the corresponding IBVPs are essential and the main issue is
to fully characterize these properties by means of concise (e.g. algebraic) conditions. More
detailed presentations and developments of the general theory can be found for example
in the books by Benzoni-Gavage and Serre [BS07] for the continuous problem, and in the
book by Gustafsson, Kreiss, and Oliger [GKO13] and the lecture notes by Coulombel [Cou13]
for discrete schemes. We restrict the following presentation to the main lines of these two
theories. After that, we will present an overview of some contributions to the numerical
study of Kreiss-Lopatinskii determinants, with applications to the strong (GKS-) stability
properties for the discrete IBVP with commonly used boundary conditions. The presented
results are mainly based on the publications [A/BLS23; P/BLS] recalled hereunder, related
to the PhD work of Pierre Le Barbenchon within the years 2020–2023. Most of the
illustrations can be reproduced by using the Python library "boundaryscheme" [LN23] (see
doi:10.5281/zenodo.7773741) developed by P. Le Barbenchon.

[A/BLS23] B. Boutin, P. Le Barbenchon, and N. Seguin. On the stability of totally
upwind schemes for the hyperbolic initial boundary value problem. IMA Jour-
nal of Numerical Analysis, 2023. (In press, doi:10.1093/imanum/drad040).

[P/BLS] B. Boutin, P. Le Barbenchon, and N. Seguin. Stability of finite difference
schemes for the hyperbolic initial boundary value problem by winding number
computations.
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Discrete initial boundary value problems

1.1 Well-posedness theory for linear hyperbolic problems

Main lines The study of first order linear hyperbolic IBVPs is based on two theories.
The first one is the theory of Friedrichs [FL67] specifically adapted to symmetric systems
with maximal dissipative boundary conditions. From integration by parts and using the
dissipativity property at the boundary, some energy estimates are available so as to deduce then
the required a priori estimates. These estimates encompass the interior norm of the solution
as well as its trace at the boundary. The second theory is from Kreiss [Kre70]. It handles with
more general problems (lack of symmetry, of symmetrizability, of maximal dissipativity at the
boundary) and is based on the construction of frequency-dependent dissipative symmetrizers
also known as Kreiss symmetrizers. As a counterpart, the a priori estimates first consist in
resolvent estimates and concern zero initial data only. A more technical part for closing the
well-posedness theory towards semigroup estimates then rely on a causality argument, duality
formulation, and the Gårding and Leray method. It is due to Rauch [Rau72] and we omit
here any discussion in that direction.

Notations and setting For convenience and tightness in the presentation, the physical
geometry under consideration is here mostly restricted to the simple case of a straight half-
space, namely x = (y, xd) ∈ Rd+ := Rd−1 × (0,+∞) and the unknown is u(x, t) ∈ RN . The
evolution operator and the boundary conditions are linear with constant coefficients, namely
the continuous IBVP has the form

Lu = F , (x, t) ∈ Rd+ × R+,

Bu|xd=0 = g, (y, t) ∈ Rd−1 × R+,

u|t=0 = f, x ∈ Rd+.

(1.1)

where the differential operator L is given by

L = ∂t +
d∑
j=1

Aj∂xj , (1.2)

B ∈ Mm,N (R) being a full rank matrix: rank B = m ≤ N and, for 1 ≤ j ≤ d, Aj ∈ MN (R)
being real valued matrices. The data are F , g and f , respectively an interior source term, the
boundary data and the initial data, in L2 spaces of their variables.

Hyperbolicity A first important necessary condition for the well-posedness is related to
the time-hyperbolicity of the operator L. In the sequel, we simply talk about hyperbolicity
since the time is clearly the principal direction for evolution problems. The hyperbolicity
property is addressed to the Cauchy problem only (without space boundaries). It is fully
characterized from the Fourier space symbol function A defined for frequencies ξ ∈ Rd by
A(ξ) = ∑d

j=1 iξjAj . More precisely the well-posedness of the Cauchy problem associated to the
operator L in appropriate function spaces is then equivalent to the uniform power boundedness
of the family of matrices A(ξ) for ξ ∈ Rd or equivalently (by an appropriate normalization)
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1.1. Well-posedness theory for linear hyperbolic problems

for ξ such that |ξ| = 1. Among the various subfamilies of hyperbolic problems, let us now
recall the principal ones. The operator L is said to be

• weakly hyperbolic if for all ξ ∈ Rd, |ξ| = 1, the matrix A(ξ) has spectrum inside iR;

• strongly hyperbolic or shortly hyperbolic, if in addition the matrices A(ξ) are uniformly
diagonalizable;

• semi-strictly hyperbolic if in addition the eigenvalues of A(ξ) have constant multiplicities;

• strictly hyperbolic if in addition the eigenvalues of A(ξ) have multiplicity one;

• symmetric hyperbolic if A(ξ) is skew-hermitian;

• symmetrizable hyperbolic if there exists a hermitian positive definite matrix S such that
SA(ξ) is skew-hermitian.

It has to be noticed that the weakest notion of hyperbolicity above is related to a stability
property in the Hadamard sense only, namely with possible loss of derivatives in semigroup
estimates. It is not as robust as are the others and in particular does not directly enable
the possible treatment of supplementary lower order perturbation terms, useful to cover the
quasi-linear or the nonlinear case. On the contrary Strang [Str67] has shown that strongly
hyperbolic problems (with no loss of derivatives) are stable by zeroth-order perturbations.
The same issue occurs when dealing with the IBVP and requires an adapted form of stability
with respect to the boundary data.

Kreiss-Lopatinskii conditions In the one-dimensional case d = 1, many of the previously
mentioned hyperbolicity notions coincide, due to the scalar form of the frequency parameter ξ.
The strong, semi-strict and symmetrizable hyperbolicity are then equivalent to the requirement
that the matrix A = A1 has real eigenvalues and a complete set of eigenvectors. This is true if
A is real symmetric. If the boundary is non-characteristic in the sense that Ker A = {0}, then
we may decompose the full space RN according to the characteristic fields of A into

RN = E+(A)⊕ E−(A). (1.3)

Here the space E+(A) (respectively E−(A)) is defined from the eigenprojection of A associated
to the p+ = dimE+(A) positive (respectively p− negative) eigenvalues of A, with multiplic-
ities. They correspond physically to rightgoing (respectively leftgoing) scalar waves in the
time-evolution problem. The algebraic solving of the boundary equation Bu|x=0 = g then
corresponds, after decomposing u|x=0 = u+ +u− matching (1.3), to the solving of the equation
Bu+ = g − Bu−. Therefore, inverting the matrix B acting from E+(A) to Rm is mandatory.
To that aim, two complementary properties are required: rank B ≥ p+ for the uniqueness;
Rm ⊂ BE+(A) for the existence. Finally the convenient structural property is the following
necessary condition:

One-dimensional Kreiss-Lopatinskii condition:
RN = Ker B⊕ E+(A).
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Discrete initial boundary value problems

Under the strong hyperbolicity and the Kreiss-Lopatinskii condition, the continuous one-
dimensional IBVP admits a full well-posedness setting.

The treatment of multidimensional problems is done somehow similarly through modal
Laplace-Fourier analysis, based first on the fundamental dispersion relation

detL(τ, ξ) = 0, (1.4)

where we set L(τ, ξ) := τ Id +A(ξ). Here τ ∈ C is related to the time-Laplace dual parameter
and ξ ∈ Rd to the space-Fourier dual variable. The zero set of the dispersion relation
gathers the frequencies (τ, ξ) associated to nonzero modal solutions, that is of the form
u(t, x) = eτt+ix·ξϕ for some ϕ ∈ CN \ {0}. The solving of the boundary equations is done by
using the tangential part of the differential operator L along the space boundary Rd−1 × {0}.
A partial space-Fourier transform is helpful to algebraize the tangential variable y ∈ Rd−1

with dual frequency variable η ∈ Rd−1. The symbol for the normal problem at the boundary
reads

G(τ, η) = −A−1
d (τ Id +A0(η)) (1.5)

where we set A0(η) = ∑d−1
j=1 iηjAj . The solutions of the form u(t, x) = eτt+iy·ηϕ(xd) are then

associated to functions ϕ(xd) = exp(xd G(τ, η))ϕ(0) for ϕ(0) ∈ CN . Similarly to the one-
dimensional case, the boundary condition Bu|xd=0 = g is intended to prescribe in a unique way
the convenient value for ϕ(0) ∈ CN so that the solution ϕ takes value in L2(R+) and depends
continuously on the boundary data g in appropriate function spaces. An important structural
result comes from the hyperbolicity property itself (thus from the Cauchy well-posedness). It
consists in a separation property for the positive and negative eigenspaces of the matrices
G(τ, η). The result is due to Hersh and appears as a natural generalization of the previous
decomposition (1.3) to frequency-parameterized cases.

Lemma 1 (Separation [Her63]). Assume the operator L to be hyperbolic and the boundary to
be non-characteristic in the sense that Ker Ad 6= {0}. Then CN = E+(Ad)⊕E−(Ad). Moreover
for any (τ, η) ∈ C× Rd−1 with Re τ > 0:

CN = Es(τ, η)⊕ Eu(τ, η),

with in addition dimEs(τ, η) = dimE+(Ad) and dimEu(τ, η) = dimE−(Ad).

Here the stable space Es(τ, η) (respectively the unstable space Eu(τ, η)) is defined as the
sum of the eigenspaces of G(τ, η) associated to eigenvalues with negative (respectively positive)
real parts. These spaces depend on the frequency parameter as positively homogeneous
functions with degree 0, thus it is interesting to introduce the set of normalized frequency
parameters Σ := {(τ, η) ∈ C × Rd−1, Re τ > 0, |τ |2 + |η|2 = 1} and its boundary Σ0 :=
{(τ, η) ∈ C × Rd−1, Re τ = 0, |τ |2 + |η|2 = 1}. To preclude the existence of time-unstable
solutions with finite space energies, the following condition is required:

Kreiss-Lopatinskii condition:
∀(τ, η) ∈ Σ, Ker B ∩ Es(τ, η) = {0}.
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1.1. Well-posedness theory for linear hyperbolic problems

The condition admits several equivalent formulations (nonzero determinant, resolvent inequal-
ity) but it is important to observe that the stability for the IBVP is generally obtained only
under the following reinforced condition, where | · | denotes here any finite-dimensional norm:

Uniform Kreiss-Lopatinskii Condition (UKLC):
rank B = dimE+(Ad)

∃C > 0, ∀(τ, η) ∈ Σ, ∀ϕ ∈ Es(τ, η), |Bϕ| ≥ C|ϕ|.

For many hyperbolic problems such as strictly or semi-strictly hyperbolic it is known that the
spaces Es(τ, η) and Eu(τ, η) depend analytically on the parameters (τ, η) ∈ Σ and admit a
continuous extension to Σ0 (see Métivier [Mét04]). In particular the UKLC can be formulated
by means of a determinant constructed from an orthonormal basis {e1, e2, · · · , er} of Es(τ, η)
as ∆(τ, η) := det (Be1(τ, η),Be2(τ, η), · · · ,Ber(τ, η)).

Reformulation by the UKLC determinant:
∃δ > 0, ∀(τ, η) ∈ Σ, |∆(τ, η)| ≥ δ.

A priori estimates and general results Equipped with these tools, the general theory
for the well-posedness is based on several other notions: discrete block structure condition,
Kreiss symmetrizers, continuous extension of the formulation, UKLC resolvent reformulation
and finally energy estimates adapted to that reformulation. We do not detail these aspects
here and refer the interested reader to the book by [BS07] or to the work by Métivier [Mét17].

Let us sketch some first steps, that will be important in the forthcoming similar stability
analysis for discrete IBVPs. Even if the existence of a solution with traces along the boundary
is an important part of the problem, assume it and let us only discuss the useful a priori
estimates (actually they participate to prove the existence by a duality argument). The
time-Laplace transformed version of (1.1) is considered for zero initial data f and without
source term F . Under the UKLC, from the Laplace-Parseval identity and the invertibility of
B on Es, the following estimate follows for all γ > 0:∫ ∞

0
e−2γt|u(t, η, 0)|2dt .

∫ ∞
0

e−2γt|Bu(t, η, 0)|2dt. (1.6)

Here and everywhere after, identities of the form X . Y mean that there exists a constant
C > 0 independent of X, Y and the other parameters in the formula (including γ here), such
that X ≤ C Y . In the following lines, we also make use of the following notations of norms
to shorten and to alleviate the reading of exponential weights:

‖u(t, ·)‖2Rd
+

:=
∫
Rd

+

|u(t, x)|2dx, ‖u(t, ·, 0)‖2Rd−1 :=
∫
Rd−1

|u(t, y, 0)|2dy,

‖u‖2γ :=
∫ +∞

0
e−2γt‖u(t, ·)‖2Rd

+
dt, |u|2γ :=

∫ +∞

0
e−2γt‖u(t, ·, 0)‖2Rd−1dt.

The previous estimate (1.6) on traces thus also reads |u|2γ . |Bu|2γ . The general theorem to
have in mind afterwards is the following one. The estimates also encompass interior norms,
source terms and even non-zero initial data.
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Discrete initial boundary value problems

Theorem 2 (Benzoni-Gavage and Serre [BS07]). Let us consider a strictly or a semi-strictly
hyperbolic system (1.1) with a non-characteristic boundary condition.
The Uniform Kreiss-Lopatinskii Condition is then equivalent to the strong stability property

γ‖u‖2γ + |u|2γ . |Bu|2γ + 1
γ
‖Lu‖2γ . (1.7)

If satisfied, then the PDE is strongly well-posed in L2: for any data f , g, F in L2 spaces,
there exists a unique solution u in L2 space:

sup
t>0

(
e−2γt‖u(t, ·)‖2

)
+ γ‖u‖2γ + |u|2γ . ‖f‖2 + |g|2γ + 1

γ
‖F‖2γ . (1.8)

1.2 Stability theory for linear finite difference schemes

The stability theory for finite difference methods dates back first to 1928 and the work by
Courant, Friedrichs, and Lewy [CFL28] where the famous eponym condition is introduced,
based on the necessary inclusion property of the theoretical dependency domain into the
numerical one. Later on, from Crank and Nicolson [CN47] and Charney, Fjörtoft, and
von Neumann [CFvN50], the helpful Fourier-spectral condition facilitates the stability analysis
for linear methods set over domains without boundaries (periodic or infinite).

Notations and setting In order to highlight the similarities with the well-posedness theory
previously discussed for PDEs, we introduce now a quite abstract notation and consider
discrete scalar IBVPs on the quarter plane put under the form

(Lu)nj = Fnj , (j, n) ∈ N× N,

(Bu)nj = gn, (j, n) ∈ {0} × N,

(Iu)nj = fj , (j, n) ∈ N× {0}.

(1.9)

The unknown u = (unj ) could be vector-valued but we restrict here to scalar values only. The
finite difference operator L is given by a finite constant coefficients linear combination of
powers of the time-translation T : un 7→ un+1 and of the space-shift S : uj 7→ uj+1. Actually
the operators S in defined on the whole set of sequences indexed by Z when we discuss the
problem without boundaries (or by periodicity on periodic in space domains). The interior
scheme is

L =
k∑

σ=0

p∑
`=−r

aσ,`TσS`. (1.10)

The operator I = (Id, T, . . . , T k−1) is used to define the k first time steps from the multistep
initial data f . Actually, for a scheme having r left points, the space-shift S is defined from
only the indices {−r,−r + 1, . . . ,−1} ∪ N in the following natural way: S(u−r, u−r+1, . . .) :=
(u−r+1, u−r+2, . . .) and S−1(u−r, u−r+1, . . .) := (0, u−r, , u−r+1, . . .). The boundary scheme
operator B = (B1, . . . ,Br)T has to provide the r ghost cells required from L at each time step.
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1.2. Stability theory for linear finite difference schemes

We consider here simply a time-independent local form, with for 1 ≤ q ≤ r:

Bq =
m∑

`=−r
bq,`S`, (1.11)

Both the full Cauchy problem associated to (1.9) (without boundary) and the IBVP have
to be solvable, what may require sometimes complicated algebraic properties in the present
general setting, but is quite straightforward for a given usual scheme. The corresponding
solvability assumption is that, being given some data f , g and F , the existence and uniqueness
of a solution u to (1.9) is guaranteed.

As an example, let us consider the Beam-Warming scheme for solving (with positive velocity
a > 0) the advection problem ∂tu + a∂xu = 0 together with discrete Dirichlet boundary
conditions un−2 = un−1 = gn. Setting λ = a∆t/∆x, the scheme corresponds to the operators

L = 1
∆t

(
T− λ(λ−1)

2 S−2 − λ(2− λ)S−1 − (2−λ)(1−λ)
2 S0

)
,

B = (S−2, S−1)T .

Fourier Von Neumann symbolic analysis In between the most general case (1.9) and
the previous simple example, we introduce for future purpose the explicit linear multistep
methods based on the method-of-lines. These family of schemes will again be used later in
the Chapter 2. The space discretization is first done and, after that, a scalar time-integrator
is used:

1
∆t

k∑
σ=0

ασu
n+σ
j + 1

∆x

k−1∑
σ=0

βσ

p∑
`=−r

alu
n+σ
j+` = 0, (1.12)

or

L = 1
∆t

k∑
σ=0

ασTσ + 1
∆x

k−1∑
σ=0

βσTσ
p∑

`=−r
alS`.

Formally, the discrete dispersion relation is obtained by considering solutions of the form
unj = znκj , or by replacing symbolically T by z and S by κ. In the scalar-unknown setting, it
reads

PLMM(z, κ) := 1
∆tρ1(z) + 1

∆xρ0(z)A(κ) = 0. (1.13)

Here we denote the Dahlquist polynomial of the time linear recurrence ρ1(z) = ∑k
σ=0 ασz

σ and
ρ0(z) = ∑k−1

σ=0 βσz
σ, and the Fourier symbol for the space discrete operator A(κ) = ∑p

`=−r a`κ
`.

With these notations, the consistency property with ∂tu+ a∂xu = 0 is related to tangency
properties at (z, κ) = (1, 1): ρ1(1) = A(1) = 0, ρ′1(1) = ρ0(1) = 1 and A′(1) = a. In addition,
the underlying Cauchy `2-stability for both the periodic case or the infinite (j ∈ Z) domain is
then fully determined by the so-called root condition.

Root condition:
∀κ ∈ S1, ∀z ∈ C,

[
ρ1(z) + ∆t

∆xρ0(z)A(κ) = 0⇒ |z| < 1 or |z| = 1 is simple root
]
.

This condition follows from the power boundedness property of the companion matrices
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Discrete initial boundary value problems

associated to the involved time recurrence. The stability domains of classical time integration
method are known (see Hairer and Wanner [HW96]) so that the stability of a given space
discretization is most of the time either possible for ∆t sufficiently small, or simply impossible.

Always for the scalar multistep scheme (1.12) with initial data f and source term F = 0
(in the sense of (1.9) but now for j ∈ Z), the root condition is equivalent to the validity of the
following stability estimate:

sup
n≥0

∑
j∈Z
|unj |2∆x .

∑
j∈Z
|fj |2∆x.

Normal mode analysis and strong stability In order to introduce now the boundary
problem, the following norms are used, that depend on γ > 0 and on ∆t and ∆x in a consistent
way, being compared to the continuous case:

‖u‖2γ :=
∑
n≥0

+∞∑
j=−r

e−2γn∆t|unj |2∆x∆t, |u|2γ :=
∑
n≥0

p∑
j=−r

e−2γn∆t|unj |2∆t.

Similarly to the continuous case and (1.6), the first step is to estimate the boundary values of
the discrete solution from the set of boundary data:

|u|2γ . |Bu|2γ :=
∑
n≥0

r∑
q=1

e−2γn∆t|(Bqu)n0 |2∆t, (1.14)

The two seminal papers for the boundary stability theory for finite difference schemes are the
ones by Kreiss [Kre68] and Gustafsson, Kreiss, and Sundström [GKS72]. The definition to
consider is the following.

Definition 3 (Gustafsson, Kreiss, and Sundström [GKS72]). The numerical scheme (1.9) is
strongly (GKS-) stable if any solution unj with zero initial data f = 0 satisfies the following
estimate, independent of γ > 0 and ∆t ∈ (0, 1]:

γ

1 + γ∆t‖u‖
2
γ + |u|2γ . |Bu|2γ + 1 + γ∆t

γ
‖Lu‖2γ . (1.15)

A few years before these results, from the Moscou-Novossibirsk research group has emerged
in 1956 the Babenko-Gelfand procedure for analysing the boundary stability for difference
equations, and directly from there the necessary condition from Godunov and Rjabenkii
[GR63]. This is exactly the discrete counterpart of the Kreiss-Lopatinskii necessary condition
and makes use of an adapted stable space Es(z) for the discrete setting. Actually, under the
Cauchy `2-stability of the scheme, the following separation result is available.

Lemma 4 (Root splitting). Assume the scheme (1.12) to be Cauchy `2-stable. Then for all
z ∈ U , the relation dispersion P(z, ·) has exactly r roots in D := {κ, |κ| < 1} and p roots in
U := {κ, |κ| > 1} (with multiplicities).

From this result, this is possible to solve the z-transformed version of the boundary problem
with zero initial data f (and zero source terms F here for convenience). We recall that the
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1.2. Stability theory for linear finite difference schemes

z-transform is defined for |z| > 1 and a sequence (un)n≥0 with u0 = 0, by the following series
transform û(z) := ∑

n≥0 z
−nun. From there the solution to (1.9)-(1.10) satisfies:

p∑
`=−r

(
k∑

σ=0
aσ,`z

σ

)
ûj+`(z) = 0, j ≥ 0,

(Bû(z))0 = ĝ(z).
(1.16)

The homogeneous space linear recurrence relation for (ûj(z))j≥0 has order r + p (under a
non-degeneracy for the extreme terms that is known as non-characteristic property in the
literature) and therefore the linear space E(z) of their solutions has dimension r + p. In
detail the space Es(z), defined as the linear subspace of E(z) with zero limit at infinity (so
in `2({−r, . . . ,−1} ∪ N)), has dimension r exactly. Similarly, the linear subspace Eu(z) of
solutions with zero limit at −∞ has dimension p. Finally the previous root splitting result
leads to the following decomposition:

∀z ∈ U , E(z) = Es(z)⊕ Eu(z).

We can now state hereafter an adapted statement with notations similar to the PDE case.
Let us observe that there is a slight abuse in the notation since we denote Ker B instead of
Ker (B ·)0.

Proposition 5 (Godunov-Rjabenkii necessary condition). If there exists a complex value z
with |z| > 1, such that Ker B∩Es(z) 6= {0}, then the discrete IBVP (1.9) is not strongly stable.

In short, this condition excludes the existence of a solution to the homogeneous version of
(1.16) with value in `2(N). As for the PDE case, the Godunov-Rjabenkii condition is actually
no sufficient to synthesize back the estimate (1.14). To that aim a reinforced uniform version
of the inequality is required:

Theorem 6 (Gustafsson, Kreiss, and Sundström [GKS72]). Under natural solvability proper-
ties of the scheme, the strong stability of (1.9) is equivalent to the following uniform version
of the Godunov-Rjabenkii condition

∃C > 0, ∀z ∈ U , ∀u ∈ Es(z), |(Bu)0| ≥ C|u|. (1.17)

In the literature the previous condition is simply known as UKLC to mimic the continuous
case. Here the involved norms are actually finite-dimensional, due to the structure of Es(z)
discussed previously. Even more, the stable space Es(z) is a holomorphic fiber bundle over U
and in many comfortable situations such as scalar problems, it can be continuously extended
to the unit circle, see [GKS72; Cou13]. Again, resolvent inequalities, block structures and
Kreiss symmetrizers are involved in the general theory.

Some usefull results Let us now quickly state two results, that will appear as fundamental
tools in the rest of Chapter 1 as well as in Chapter 2.
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Discrete initial boundary value problems

Lemma 7 (Strong stability of Dirichlet boundary condition). Let us consider a scalar scheme
of the form (1.9), with natural solvability conditions, together with the Dirichlet boundary
condition B. The Cauchy `2-stability of the scheme is then sufficient to guarantee its strong
stability.

Initially obtained by Goldberg and Tadmor [GT81] for both dissipative and unitary
schemes, this result is extended to the general case by Coulombel [Cou13]. An important
point is that the inflowing or outflowing nature of the underlying characteristic at the
boundary has no incidence on the strong stability for the Dirichlet boundary condition. Of
course, we cannot overestimate the incidence of such a choice in terms of the quality of the
approximation. Consistency issues are still to discuss (to follow in Chapter 2). A result
similar to the previous Lemma is proved by Goldberg [Gol77] for dissipative schemes with
extrapolation boundary conditions.

The second result is the discrete counterpart of the method by Rauch [Rau72], with the
aim of including nonzero initial data for a full estimate of the discrete solution with respect to
the data. It is obtained by J.-F. Coulombel by using adapted Leray-Gårding multipliers in
order to have a discrete time integration method for the discrete energy, for multidimensional
systems. The statement is quite similar to Theorem 2.

Theorem 8 (Full estimate – Coulombel [Cou15; Cou20]). Consider the scalar scheme (1.12)
assumed to be Cauchy `2-stable, non-degenerate and with simple roots in the relation dispersion
z 7→ P(z, κ) for any κ ∈ S1. The strong stability is equivalent to the UKLC. If satisfied, then
for any data f , g and F the solution satisfies, independently of γ > 0 and ∆t ∈ (0, 1]:

sup
n>0

(
e−2γn∆t‖un‖2

)
+ γ

1 + γ∆t‖u‖
2
γ + |u|2γ . ‖f‖2 + |Bu|2γ + 1 + γ∆t

γ
‖Lu‖2γ . (1.18)

1.3 Kreiss-Lopatinskii determinants for finite difference
schemes

Intrinsic Kreiss-Lopatinksii determinant A crucial question for proving the strong
stability of a given discrete IBVP is to detect the zeros of the Kreiss-Lopatinskii determinant.
It corresponds to testing the invertibility of B on Es leading to the uniform estimate (1.17).
Very often in the literature, this is done case by case and thus available only for very special
discrete schemes and boundary conditions where the algebra is helpful, i.e. of low degree or
reducible. In a more general framework, the Kreiss-Lopatinskii determinant is defined directly
from the stable vector bundle Es and the boundary operator B. It naturally inherits structural
properties as holomorphicity and continuity. However, its concrete computation depends on
the considered basis for Es. Due to the non-trivial monodromy group for the set of roots of
the dispersion relation, as functions on z, no holomorphic representation of the individual
vector in that basis do exist in general. The previous discussion nevertheless guarantees that
the basis as a whole is a holomorphic vector bundle on U .
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1.3. Kreiss-Lopatinskii determinants for finite difference schemes

In the work [A/BLS23], we propose a basis-independent version of the Kreiss-Lopatinskii
determinant, which we call the intrinsic Kreiss-Lopatinskii determinant. The idea is very
simple and enables the use of complex analysis tools to look numerically for the zeros of ∆ by
complex winding number computations. One can mention the work by Thuné [Thu86] who
also developed a numerical method to check the strong stability.

Definition 9 (Intrinsic Kreiss-Lopatinskii determinant). Let us denote, for any value z ∈ U
a basis E(z) = (e1(z), . . . , er(z)) of the r-dimensional vector space Es(z), made of sequences
indexed by {−r, . . . ,−1} ∪ N. The intrinsic Kreiss-Lopatinskii determinant is the following
function:

∆(z) = det (BE(z))0
det (ΠrE(z))0

, (1.19)

where Πr := (Id, S, . . . ,Sr−1)T .

To get the quite complicated notation, let us look at an example. Assume that r = 2, exactly
two roots κ1 6= κ2 are in D, and the linear space Es(z) is then spanned by e1(z) = (κj1)j≥−2,
e2(z) = (κj2)j≥−2. Consider the boundary condition u−2 = 0 and u−1 = u0 represented by
B = (S−2, Id− S−1)T . In that case, we obtain the formula:

(Π2E(z))0 =
(

1 1
κ1 κ2

)
, (BE(z))0 =

(
κ−2

1 κ−2
2

1− κ−1
1 1− κ−1

2

)
.

In some favorable situations, the intrinsic determinant can be computed directly from the
coefficients of the scheme.

Theorem 10 (Theorem 13 in [A/BLS23]). Let a > 0. Consider a scalar one-step explicit
finite difference scheme of the form

un+1
j =

p∑
`=−r

aku
n
j+`, j ≥ r

unj =
m−1∑
k=0

bj,ku
n
k + gnj , 0 ≤ j ≤ r − 1,

(1.20)

with p = 0 (totally upwind), consistent and Cauchy `2-stable. Then the intrinsic Kreiss-
Lopatinskii determinant reads

∆(z) = (−1)r(r−m)
(

a−r
a0 − z

)m−r
detC(z), (1.21)

where C(z) is a matrix depending on (a`)−r≤`≤p, on B, and polynomially on z.

Actually, the matrix C can be deduced from the boundary matrix B by an algorithmic
gaussian elimination procedure directly related to the linear recurrence relation induced by
the interior scheme.

The previous results incidentally gives an alternative direct proof for the holomorphicity
and the continuity properties of ∆ over U as a result of the property |a0| < 1. The following
corollary is central in the forthcoming applications and enables a purely geometrical observation
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for determining the strong stability of the considered scheme from the integer value of the
complex index Ind∆(S1)(0):

Corollary 11 (Corollary 15 in [A/BLS23]). Let the assumptions of the Theorem 10 hold and
assume moreover the absence of neutral instabilities, meaning that 0 /∈ ∆(S1). The equation
∆(z) = 0 has then exactly r − Ind∆(S1)(0) zeros in U .

In a second work [P/BLS], the result is extended in particular to the case p ≥ 1. In that
case, no such explicit formulation for the Kreiss-Lopatinskii determinant is available but a
slight reformulation of the boundary condition is then useful to reduce as much as possible
the form of ∆ and get the important bounds and properties. Finally, this is proved that the
proposed formulation is able to transfer the holomorphicity and continuous extension from Es

to ∆, whatever is the choice of the basis E(z).

Theorem 12 ([P/BLS]). Let a > 0. Consider a one-step explicit finite difference scheme of the
form (1.20), consistent and Cauchy `2-stable. The intrinsic Kreiss-Lopatinskii determinant ∆
is holomorphic on U and continuous on U .

Strategy for winding number computations Applying the residue theorem to the
function ∆ on the circle S1, a numerical strategy is available to put the previous discussion in
action. The improvement compared to the existing literature is that the method does not
use an arbitrary dimension truncation of (quasi-)Toeplitz matrices plus the computation of
the spectral radius of such a large matrix. As a counterpart, the numerical experiments are
exposed to some technical conditioning difficulties due to large amplitude variations in the
modulus of ∆. The winding number computation is then improved by an adaptive mesh
refinement strategy based on the work by Zapata and Martín [ZM13] and García Zapata and
Díaz Martín [GD12].

1.4 Numerical experiments

Inverse Lax-Wendroff boundary condition Tan and Shu [TS10] develop the inverse
Lax-Wendroff (ILW) procedure so as to improve the order of consistency of an inflow boundary
for transport-like problems. The method uses the PDE itself so as to transform the space
derivatives that appear in extrapolation at the boundary into time derivatives. Then the
available physical boundary data can be used in order to define artificial boundary conditions.
For example, for the one-dimensional advection problem ∂tu+a∂xu = 0, the following relation
holds, for k ∈ N∗,

∂ku

∂xk
= (−1)k

ak
∂ku

∂tk
.

So from Taylor expansion up to order d, the ghost points at the inflow boundary u(t, 0) = g(t)
are chosen to be:

unj =
d−1∑
k=0

(j∆x)k
k!

∂ku

∂xk
(n∆t, 0) =

d−1∑
k=0

(j∆x)k
k! (−1)k g

(k)(n∆t)
ak

, −r ≤ j ≤ −1.
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1.4. Numerical experiments

The method is particularly efficient and benefits directly the stability features available for
Dirichlet boundary conditions (Lemma 7): any Cauchy `2-stable scheme is convenient.

Simplified ILW by extrapolation procedure Motivated by the difficulty to extend
the ILW method to multidimensional situations, where defining the inverse Lax-Wendroff
procedure requires hard procedures to mix normal and tangential derivatives along the
boundary, Vilar and Shu [VS15] proposed a simplified version of the ILW method denoted
here “SkdILWd”. In that method, only the first kd − 1 derivatives of g are substituted in
the expansion, next terms for orders from kd to d are defined from the interior points by an
extrapolation procedure at the same order d. At the end, the formula (for the one-dimensional
case) takes the form

unj =
kd−1∑
k=0

(−j∆x)k
k!

g(k)(n∆t)
ak

+
d−1∑
k=kd

jk

k!

d−1∑
s=0

p
(d)
k,su

n
s , −r ≤ j ≤ −1, (1.22)

where the coefficients p(d)
k,s correspond to the extrapolation procedure.

With our method, we are able now to draw the Kreiss-Lopatinskii curve ∆(S1) for the
corresponding discrete IBVP. Now the result by [GT81] (Lemma 7) does not apply anymore
and the strong stability of the half-problem has to be investigated again: the CFL parameter
λ has to be chosen so as to get the full stability property (even for a Cauchy dissipative
`2-scheme). To that aim, we compute the curve ∆(S1) for several values of the CFL parameter
λ (see Figure 1.1). The Beam-Warming scheme (see [Des09]) is known to be Cauchy `2-stable
exactly for λ ∈ (0, 2]. The instability for λ = 1.4 and the stability for λ = 1.6 are thus proved.

Figure 1.1: Set ∆(S1) for the Beam-Warming scheme with S2ILW3.

Misalignment of grids The ILW and SILW procedures can be very easily extended to
the case where a misalignment between physical boundaries and grid points occur. Consider
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the boundary condition u(t, xσ) = g(t) now prescribed at a point xσ = σ∆x. The value of σ
is thought as possibly changing when time evolves (for moving boundaries xσ(t)) or along
another space direction missing here (for multidimensional setting with curved or oblique
boundaries, with xσ(y)). The aim is to provide strong stability results that are independent
of the value of σ, at least in a known set of values.

In that case, the adapted SILW procedure depends on σ and reads:

unj =
kd−1∑
k=0

(−(j + σ)∆x)k
k!

g(k)(n∆t)
ak

+
d−1∑
k=kd

(j + σ)k
k!

d−1∑
s=0

p
(d)
k,su

n
s , −r ≤ j ≤ −1.

For the Beam-Warming scheme, we explore simultaneously the set of the parameters λ and
σ ∈ [−0.5, 0.5] for which the strong stability occurs (see Figure 1.2). The main advantage of
the method is now clear: the computational cost to draw these maps is reduced and does not
depend on high-dimensional spectrum approximations for matrices, but rather on the number
of points used to compute Ind∆(S1)(0). It has also to be observed that exceptional points with
0 ∈ ∆(S1) only happens quite rarely, along transition curves only.

λ

σ

λ

σ

Figure 1.2: Number of boundary instabilities for the Beam-Warming scheme with S2ILW3
(left) and with S1ILW3 (right).

Simplified ILW by reconstruction procedure In the literature an alternative procedure
to simplify ILW boundary conditions by simplifying high order terms is proposed by Dakin,
Després, and Jaouen [DDJ18]. We skip here many details to not rise unnecessarily the
technicality. The boundary condition, denoted Rd,kd , has the form

(un−r, . . . , un−1)T = Y−Y−1
+ (un0 , . . . , und−kd−2)T +Gn,

with a convenient reconstruction matrix Y−Y−1
+ (depending on σ) and Gn depending also

on the boundary data g. The Figure 1.3 represents the number of boundary instabilities
computed for the fifth order Lax-Wendroff method [LM06] with such reconstruction procedures
at the boundary.
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R5,0

R5,1

R5,2

R5,3

R6,0

R6,1

R6,2

R6,3

λ

Figure 1.3: Number of boundary instabilities for the fifth order Lax-Wendroff scheme with
different reconstruction boundary conditions for λ ∈]0, 1] and σ = 0.4.

1.5 Perspectives

(1A) Porting of the technique to other problems. The proposed technique is partic-
ularly powerful for high order (so large stencils) schemes for which the complicated
underlying algebra generally precludes the stability proof by hand. A first natural
research direction is to grasp and surely adapt the previously established determinantal
technique to other discrete boundary conditions handling with more general PDEs,
higher dimension problems or even schemes for kinetic problems. For example, recently
Li, Shu, and Zhang [LSZ17] studied an inverse Lax-Wendroff technique adapted to
central schemes for solving diffusion equations; Al Hassanieh, Banks, Henshaw, and
Schwendeman [ABH+22] defined local compatibility boundary conditions (CBC) for
multidimensional wave equations. A second porting of the technique is for drawing
stability maps such as Figure 1.2 in the case of parameterized discrete transmission
conditions between several numerical schemes handled with domain decomposition
techniques. The application of interest is the interfacial coupling of hyperbolic and/or
dispersive models in the framework of water wave models with artificial transmission
conditions, first in the linear setting or in a linearized analysis.

(1B) Spectral theory, Wiener-Hopf factorizations and Shur complements. The
theory of stability for the discrete problems may be analysed through several frameworks.
For example, finite difference schemes with constant coefficients and no boundary
(periodic or doubly-infinite domains) are well-known through circulant Toeplitz matrices
(i.e. Laurent operators). The Fourier-diagonalization-multiplier traduces the uniform
boundedness of the associated discrete semi-group. This is the most classical situation,
where several aspects coincide: matrix spectrum, resolvent inequalities, uniform power
boundedness.

In the presence of boundaries, the situation slightly differs since we generally face then
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non-selfadjoint operators. General (pseudo-)spectral analysis for large matrices is then
covered by the Kreiss Matrix Theorem. The literature and the results on the topic is
large (Nevanlinna [LN91; Nev01], Spijker and collaborators [BDS02; BS00; BS02; Spi17],
Szehr [Sze14] and the book by Trefethen and Embree [TE05]).

On the other side, the case with Dirichlet boundary conditions on the one-dimensional
half-space leads to Toeplitz operators (and their finite sections), whose spectral theory
is quite well understood. More general boundary conditions are studied through their
quasi-Toeplitz form: the asymptotic of their spectrum and pseudospectrum (resolvent
inequalities) for large dimensions is handled by Reichel and Trefethen [RT92] and
Beam and Warming [BW93] (see also the older work by Schmidt and Spitzer [SS60]
concerning the asymptotic spectrum of Toeplitz matrices). Some of these aspects have
been explored in the PhD work of P. Le Barbenchon (numerical exploration of bulges
of the pseudospectrum of large Toeplitz matrices and their relation with generalized
eigenvalues of the boundary problem).

Actually the semi-infinite matrix obtained from another boundary condition defines
a Fredholm operator that is a compact perturbation of the original Toeplitz matrix.
Therefore their spectra only differ from a finite set of discrete points. The Kreiss-
Lopatinskii determinant is in some sense the reduced finite-dimensional determinant
of that perturbation, computed from reducing first the symbolic form by means of
Wiener-Hopf factorization (the Hersh separation lemma).

A perspective is to clarify these spectral aspects with the help of spectral theory and
harmonic functions theory.
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CHAPTER 2

Multiscale expansions for discrete
boundaries

The present chapter is focused on multiscale expansions describing the solutions to finite
difference schemes, and on their uses to analyze the convergence properties and understand
some stability features. The typical decomposition of the discrete solution is achieved from
modes emanating from the boundary and usual Fourier interior modes. In a first section, we
introduce some general ideas partially related to the previous chapters. Then, from the strong
stability property and a consistency analysis adapted to the asymptotic expansion, we obtain
some improved convergence results. The considered analysis enables a new descriptive proof
of semigroup estimates for the discrete mixed initial boundary value problem, that are close
to be optimal, in comparison with the continuous case. Some various possible extensions of
these techniques are finally discussed. The presentation is mainly based on the publications
[A/BC17; A/BNS+21] recalled hereunder.

[A/BC17] B. Boutin and J.-F. Coulombel. Stability of finite difference schemes
for hyperbolic initial boundary value problems: numerical boundary layers.
Numer. Math. Theory Methods Appl. 10 3:489–519, 2017.

[A/BNS+21] B. Boutin, T. H. T. Nguyen, A. Sylla, S. Tran-Tien, and J.-F.
Coulombel. High order numerical schemes for transport equations on
bounded domains. ESAIM: ProcS, 70:84–106, 2021.
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Multiscale expansions for discrete boundaries

2.1 Multiscale expansions

Even if an equation is nondispersive, any discrete
model of it will be dispersive.

Trefethen [Tre82]

Finite difference schemes can be interpreted as discrete non-local operators that filter
informations in concordance with a given continuous problem, in the limit of small discretization
parameters ∆x and ∆t. The filtering effect is due typically to the underlying smoothness
of the approximated objects and/or to damping properties. However, in some situations,
some parts of the discrete solution may refuse to obey the expected limiting problem, or
obey another limiting process. This is true especially when the the approximated solution is
lacking in smoothness, due e.g. to non-linearities, or when impurities affect the scheme, e.g.
inhomogeneities or boundaries. These last specific situations can actually be considered itself
as a lack of smoothness in the coefficients of the filter itself.

The above quoted citation from Trefethen reminds us about the dispersive nature of
difference schemes, and one should have in mind that a scheme does not only solve the single
partial differential equation (PDE) it is designed for. In fact, it solves a full set of PDEs,
among which the expected model has somehow a dominant presence due to the previously
mentioned filtering effect. The other hidden PDEs are unexpected but can be awakened for
example by the presence of inhomogeneities or boundaries. Thus the paradigm hereafter is
to consider the discrete solution to a linear numerical scheme with or without boundaries as
being the approximate superposition of solutions to several PDEs involving various time and
space scales and more or less independent structural properties. This is a natural continuation
of the common Fourier symbolic analysis for the Cauchy problem [Str04], but with an enriched
basis of representation.

The dispersive analysis of numerical methods is clearly not new and has received many
interests from the 1980’s. It follows the group velocity wave analysis from Brillouin [Bri60]
and some important contributions with the use of dispersive features for discrete schemes
are done in particular by Vichnevetsky [Vic81a; Vic81b], by Trefethen [Tre82; Tre84], by
Higdon [Hig86a; Hig86b], by Michelson [Mic87]. The paper by Trefethen [Tre84] actually
makes a rich connection in between the strong (GKS-) instability and the presence of what he
calls “rightgoing steady-state solutions”. In particular the amplitude of instability factors are
related to kind of instabilities present in the scheme.

For non-linear schemes with boundaries, the study of boundary layers and of their stability
has been studied for example by Chainais-Hillairet and Grenier [CG01] for the Lax-Friedrichs
scheme (see also Godillon [God03] for the more general study of discrete shock profiles in that
case), and by Ye [Ye04] for non-characteristic relaxation models.

From now on, we consider only finite difference schemes for solving the one-dimensional
scalar constant coefficient transport problem

∂tu+ a∂xu = 0, x > 0, t > 0, (2.1)
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2.1. Multiscale expansions

but many ideas are still available for higher order constant coefficients initial boundary value
PDEs.

Normal modes, conjugated schemes and equivalent equations To begin with, we
consider normal modes of the form unj = znκj with (z, κ) ∈ C2 as the typical solution involved
by the roots of the dispersion relation P(z, κ). The space structure and the time dynamic
of these particular solutions are given by some simple considerations. For example, a mode
(z, κ) is said to be stationary if z = 1 and more generally unitary if |z| = 1. It is said to be
damped if |z| < 1 and unstable if |z| > 1. Concerning the space structure in dimension one,
the mode is left localized if |κ| < 1, right localized if |κ| > 1, and finally extended if |κ| = 1.
This last case precisely correspond to the classical Fourier modes for the problem without
boundaries. When there is no ambiguity, for example when dealing with the half problem set
on N, localized means simply left localized.

The linear analysis allows to easily consider a modulated version of the previous solution,
that is a solution of the form unj = v(tn, xj)znκj where v is a smooth profile function and
P(z, κ) = 0. Then vnj = v(tn, xj) solves then approximately a conjugated scheme shifted in
(z, κ), having then to be precise the dispersion relation

P(z, κ) := P(zz, κκ) = 0.

In particular, for (z, κ) close to (1, 1), the tangency properties of the zero set of P unveil
the modulated PDE satisfied by the profile function v at the lowest order. The consistency
property of the scheme with a given PDE (such as (2.1) here) thus reduces to these tangency
properties, in the spirit of matching expansions. The first leading equivalent equation at the
scale ∆t and ∆x reads, after some Taylor expansions:

∆t∂P
∂z

(1, 1)∂tv + ∆x∂P
∂κ

(1, 1)∂xv = 0.

According to the possible vanishing in the sequence of derivatives of P at (1, 1), it may be
necessary to increase the order of the corresponding Taylor expansions so as to find out the
dominant term in the expansion and finally a higher order modulated PDE. In view of having
in the end the good scaling in the discretization parameters ∆t and ∆x, this is then necessary
to change accordingly the time and/or space scale for the modulated profile. For example,
assuming

∂P
∂κ

(1, 1) = 0 and ∂P
∂z

(1, 1) 6= 0,

then, this is natural to consider the solution to the conjugated scheme vnj to have the form
vnj = v(n∆t, j∆x1/2) so that the profile function v solves at low order the PDE problem:

∆t∂P
∂z

(1, 1)∂tv + ∆x
2
∂2P
∂κ2 (1, 1)∂2

xv = 0.

In the end, one understands that along the zero set of the dispersion relation P of the
numerical scheme can be found a set of PDEs, each one being consistent with the corresponding
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Multiscale expansions for discrete boundaries

conjugated schemes. All of them have various stability and scaling properties. Of course, in
view of a given final expected application, not any of these numerous modes and scales have
to be considered. Let us give hereafter some quick guidelines.

• Handling with the problem without boundaries, the Cauchy `2-stability requires that
0 /∈ P(U ,S1). For smooth initial data (both in time and space) only modes for |κ| = 1
(Fourier analysis) and |z| ≤ 1 are relevant in the convergence analysis. Of course,
damped modes for |z| < 1 cannot damage seriously the convergence results for positive
times. For linear multistep methods, the relevant analysis can make use of the so-called
one-step underlying method [EN88]. However, for weakly stable multistep method,
because of the presence of unitary non-trivial modes |z| = 1 and |κ| = 1, an appropriate
choice for the initial conditions is required so as to guarantee the expected convergence
result without spurious time oscillations in the solutions.

• Handling with one boundary at the left of the domain, the Fourier analysis has to be
supplemented by considering in addition possible localized unitary modes (|z| = 1 and
|κ| < 1) and extended unitary modes (|z| = 1 and |κ| = 1). Of course, among these
modes the stationary ones (z = 1) play a central role for the convergence analysis with
smooth in time solutions. However more general situations may also require to deal
with the full set of unitary modes.

For the rest of the chapter, the presentation is reduced to explicit linear multistep schemes
constructed by an method-of-lines, discretizing first in space. They were already met in the
previous chapter but for convenience we recall hereafter the form for the half-problem set over
j ∈ N with discrete boundary condition from an finite difference operator B.

(Lu)nj := 1
∆t

k∑
σ=0

ασ u
n+σ
j +

k−1∑
σ=0

βσ
1

∆x

p∑
`=−r

a` u
n+σ
j+` = 0, (n, j) ∈ N× N,

(Bu)nj = gnj , 0 ≤ j ≤ r − 1, n ≥ k,
uσj = fσj , j ∈ N, 0 ≤ σ ≤ k − 1.

(2.2)

We recall that the corresponding dispersion relation for the interior scheme is

P(z, κ) := 1
∆tρ1(z) + 1

∆xρ0(z)A(κ) = 0, (2.3)

with the notations already introduced around (1.13).

2.2 Discrete boundary layers

The mostly observed parasitic phenomenon when solving discrete initial boundary value
problems consists in spurious oscillations located close to the boundaries of the computational
domain. Actually, this phenomenon is present for almost any scheme, sometimes at imper-
ceptible scales. Their careful analysis and description is particularly interesting and leads to
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2.2. Discrete boundary layers

improved convergence estimates by adapting the consistency analysis through appropriate
asymptotic expansions. Strong stability properties have here to be already available so as to
go easily from boundary consistency errors towards convergence errors. This is the case for
example when dealing with the Dirichlet discrete boundary conditions, known from Goldberg
and Tadmor [GT81] to lead to a strongly stable scheme when associated to any scalar scheme
that exhibits Cauchy `2-stability for the interior domain.

Localized stationary modes The case of semi-discrete or of method-of-lines multistep
schemes is more convenient to cover because the algebra related to the discrete space operator
can then be separated from the other aspects. Let us consider the fully discrete case (2.2) and
stationary modes only. They admit the modal form unj = znϕj with z = 1 and where (ϕj)j is
some appropriate complex valued sequence. The set of stationary solutions is entirely spanned
by the geometrical sequences corresponding to the roots of the dispersion relation for z = 1:

P(1, κ) = 0, (2.4)

with κ ∈ C. Among them, we distinguish the localized modes (in `2) spanned by the interior
roots only (meaning |κ| < 1), from the extended modes also involving the unitary roots
(meaning |κ| = 1).

From now on, we restrict our attention to space operators satisfying the following structural
assumption that consists in the absence of extended stationary mode:

∀κ ∈ S1 \ {1}, A(κ) 6= 0. (2.5)

As a typical example, a one-step scheme based on Euler forward time integrator that is
dissipative in the sense of Kreiss satisfies the previous assumption, namely:

|1− ∆t
∆xA(eiθ)| ≤ 1− cη2m, |η| ≤ π.

Other non-dissipative schemes, such as the Lax-Friedrichs scheme also satisfy the required
assumption.

Adapted consistency analysis The classical convergence error denoted by ecl
n,j =

u(tn, xj) − unj is estimated through the main stability property and estimates for the
truncation error εcl

n,j = Lu(tn, xj) and for the initial error ecl
σ,j for 0 ≤ σ ≤ k − 1. Now,

considered as an improved comparison object, we slightly modify the process by adding a new
whole asymptotic expansion uapp

n,j at dominant order:

en,j = uapp
n,j − u

n
j .
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Multiscale expansions for discrete boundaries

The method consists in constructing the appropriate boundary layer expansion so that en,j
solves the discrete IBVP:

(Le)n,j = εn,j , (n, j) ∈ N× N

(Be)n,j = ηn,j , 0 ≤ j ≤ r − 1, n ≥ k
eσ,j = 0, 0 ≤ σ ≤ k − 1, j ≥ 0

with a zero initial data, small boundary truncation error η and small interior truncation error
ε, thus forcing the boundary inconsistency to reduce. These smallness requirements motivate
the appropriate expansion for having the form

uapp
n,j = uint(tn, j∆x) + ubl(tn, j) (2.6)

where uint solves the interior equation and ubl corrects the boundary truncation error. It has
to not modify severely the interior truncation error εcl and thus to correspond to well-chosen
localized modes only. The main step to choose appropriately the boundary layer term is the
boundary equation that, for convenience, we present here in the semi-discrete case only:

(Bubl(t))j = −(Buint(t))j , 0 ≤ j ≤ r − 1. (2.7)

and ubl(t) ∈ Ess(1) the strictly stable space associated to z = 1, involving only interior roots
|κ| < 1, while uint is directly related to the usual consistency mode (z, κ) = (1, 1). According
to the sign of a, κ = 1 corresponds to a mode in the continuous extension Es(1) of the
stable space. The following lemma is a convenient reinterpreted version of the Hersh Lemma
from [A/BC17].

Lemma 13 (Construction of Ess(1)). Let a 6= 0 and consider a scheme of the form (2.2)
Cauchy `2-stable and without extended stationary mode. Then A admits exactly

• κ = 1 as simple root, moreover (1j) ∈ Es(1) iff a > 0,

• r interior roots |κ| < 1 and p− 1 exterior roots |κ| > 1 (with mult.), if a < 0,

• r − 1 interior roots |κ| < 1 and p exterior roots |κ| > 1 (with mult.), if a > 0.

It has to be observed that for outgoing problem a < 0, then Es(1) = Ess(1) while for
the incoming problem a > 0, then Es(1) = Ess(1) ∪ {1}. In any case, dimEs(1) = r and the
equation (2.7) is always solvable from the invertibility of B on Es(1) (UKLC).

Extrapolation boundary conditions The most convenient discrete boundary condition
to program is the Dirichlet boundary condition, even if rarely consistent. It consists in
setting the required ghost values directly from some prescribed exterior data. A standard
improvement of this choice, especially promoted for outflowing problems, consists in considering
extrapolatory discrete boundary conditions. It is also known as discrete Neumann boundary
conditions. The stability properties of these methods have been studied by Goldberg [Gol77]
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2.2. Discrete boundary layers

for dissipative or unitary schemes, or by Goldberg and Tadmor [GT81] for Cauchy `2-stable
schemes with Dirichlet boundary conditions.

Let us fix some notations and begin by introducing the following right sided discrete
difference operator (D+v)j = vj+1 − vj . The previously mentioned boundary conditions take
the following form:

(Dm
+u)` = g`, 0 ≤ ` ≤ r − 1. (2.8)

where (g`)0≤`≤r−1 is the discrete boundary data. For example, when solving physically
outflowing problems where no data is thus available from the continuous setting, the most
easy choice consists in prescribing homogeneous discrete boundary conditions at some given
order m:

• m = 0 (homogeneous Dirichlet): u0 = . . . = ur−1 = 0;
• m = 1 (homogeneous Neumann): u0 = . . . = ur−1 = ur;
• m = 2 (second-order homogeneous Neumann): u1 − u0 = . . . = ur − ur−1 = ur+1 − ur.

Smooth functions naturally benefits the following consistency error at the boundary:

Lemma 14 (Consistency of extrapolation). Let m ∈ N. There exists C > 0 such that for any
v ∈ Hm+1(R) and any 0 ≤ ` ≤ r−1: |(Dm

+v)`| ≤ C∆xm‖v(m)‖H1(R), where vj = 1
∆x
∫
Cj
v(y) dy

for j ∈ Z.

Discrete derivatives of confluent Vandermonde matrices The main step for iden-
tifying the boundary layer terms lies in the solving of the boundary equation (2.7). The
Dirichlet boundary conditions (2.8), for m = 0, is solved, for example when the involved roots
κ1, . . . , κr of P(1, κ) have multiplicity one, by inverting the classical Vandermonde matrix:


1 1 . . . 1
κ1 κ2 . . . κr
...

...
...

κr−1
1 κr−1

2 . . . κr−1
r

 .

Now for roots κ1, . . . , κr of P(1, κ) with possible multiplicities, this requires to invert the
confluent Vandermonde matrix:

V =


κ

(1)
0 κ

(2)
0 . . . κ

(r)
0

κ
(1)
1 κ

(2)
1 . . . κ

(r)
1

...
...

...
κ

(1)
r−1 κ

(2)
r−1 . . . κ

(r)
r−1

 ,

where the sequences (κ(`)
j )j for 1 ≤ ` ≤ r correspond to a relabeling of the sequences

j(j− 1) . . . (j−σ+ 1)κj−σ for 0 ≤ σ ≤ µ− 1 considered for any interior root κ of P(1, κ) with
multiplicity µ. The solving of Neumann extrapolation boundary condition at order m requires
the inversion of the following discrete derivative at order m of the confluent Vandermonde
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Multiscale expansions for discrete boundaries

matrix:

DmV :=


(Dm

+κ
(1))0 (Dm

+κ
(2))0 . . . (Dm

+κ
(r))0

(Dm
+κ

(1))1 (Dm
+κ

(2))0 . . . (Dm
+κ

(r))1
...

...
...

(Dm
+κ

(1))r−1 (Dm
+κ

(2))r−1 . . . (Dm
+κ

(r))r−1

 .

Incidentally, all these matrices are invertibles. For the last case, a direct proof is available
in [A/BNS+21] using the divided difference algebra and the specific Leibniz formula (see
Popoviciu [Pop40] and de Boor [dBoo05]).

Asymptotic expansions for outflow boundary conditions From the adapted consis-
tency analysis adapted to the constructed expansion, using the scale localization property of
the boundary terms and comparing different discrete trace formulations.

Theorem 15 (Outflow Dirichlet [A/BC17]). Let us consider a consistent Cauchy `2-stable
scalar scheme of the form (2.2) with homogeneous boundary condition (2.8) at order m = 0.
Assume that there is no extended stationary mode. For smooth initially compatible data
f ∈ H2(R∗+), the discrete solution unj has the asymptotic expansion

unj = uint(tn, xj) + ubl(tn, j) + h.o.t,

where

• uint is the exact solution to ∂tu+ a∂xu = 0 (a < 0) with initial data f ,

• ubl(tn, ·) ∈ Es(1) solves ubl(tn, ·) = −uint(tn, 0).

Theorem 16 (High order outflow [A/BNS+21]). Let us consider a consistent order k Cauchy
`2-stable scalar scheme of the form (2.2) with homogeneous boundary conditions (2.8) at order
m < k. Assume that there is no extended stationary mode. For smooth initially compatible
data f ∈ Hk+1(R∗+), the discrete solution unj has the asymptotic expansion

unj = uint(tn, j∆x) + ∆xmubl(tn, j) + h.o.t. (2.9)

where

• uint is the exact solution to ∂tu+ a∂xu = 0 (a < 0) with initial data f ,

• ubl(tn, ·) ∈ Es(1) solves Dm
+ubl(tn, ·) = −∆x−mDm

+uint(tn, ·).

In the previous above expansions, due to the explicit form of the the boundary layer, the
following estimate is available:

sup
n∈N

sup
0≤j≤r−1

|ubl(tn, j)| . ∆x1/2‖f‖Hm+1 .

In a previous work by Coulombel and Lagoutière [CL20], the transport equation on a
onedimensional bounded domain is studied. The numerical scheme under consideration is
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2.2. Discrete boundary layers

supposed to be `2-stable with a given consistency order k. The inflowing boundary is handled
with homogeneous Dirichlet boundary condition and the outflowing with extrapolation at
order m ≤ k. By a new energy method, the authors obtain a quantified convergence result
in the norm `∞t `

2
x as O(∆xmin(k,m)) and then deduce an estimate in the norm `∞t `

∞
x as

O(∆xmin(k,m)−1/2). The purpose of the work in [A/BNS+21] is twofold. First, we extend the
result and analysis to the case of non-homogeneous incoming data, by means of the inverse
Lax-Wendroff procedure proposed by Tan and Shu [TS10] considered at the convenient order.
The global order of the scheme is that way not destroyed. The second point is to make use
of the previously discussed boundary layer expansions in order to improve the convergence
estimate by a factor ∆x1/2, this result being supported by the effective simulations.

Theorem 17 (Improved convergence estimates [A/BNS+21]). Consider the assumptions of
Theorem 16 (with m < k). Then the discrete solution unj satisfies the following convergence
estimates in the `∞t `2x norm:

sup
0≤n≤NT

∑
j≥0

∆x|unj − uint(tn, xj)|2
1/2

≤ C(T )∆xm+1/2‖f‖2Hk+1 , (2.10)

and in the `∞t `∞x -norm:

sup
0≤n≤NT

sup
j≥0
|unj − uint(tn, xj)|2 ≤ C(T )∆xm‖f‖2Hk+1 . (2.11)

Some numerical illustrations are represented on Figures 2.1 and 2.2. They correspond
to several schemes of order k = 1 (upwind), k = 2 (Lax-Wendroff), k = 3 (O3), k = 5
(Lax-Wendroff 5), considered with the inflow high order Inverse Lax-Wendroff boundary
condition at order k and extrapolation boundary condition at order m. The Figure 2.1 is for
the case m = k− 2. The numerical results are in agreement with the estimates in the previous
theorem. The upwind scheme has no outflow numerical boundary condition and still of order
1. The Lax-Wendroff scheme does not converge in the `∞x norm but converges at order almost
1/2 in `2x. The third order scheme has order almost 1 in the `∞x norm but almost 3/2 in `2x.
The fifth order scheme has order almost 3 in the `∞x norm but almost 7/2 in `2x. With the
same computation in the case m = k, the Figure 2.1 supports the validity of no loss in the
order for the norms but actually our method with the asymptotic boundary layer expansion
is not able to prove the result.

Application to discrete semigroup estimates Using an additional corrective term
∆x ubl,1 to handle with the time variations of the trace uint(tn, 0), the asymptotic expansion
present in the Theorem 15 is slightly improved so as to get the following semigroup estimate.

Corollary 18 (Semigroup-like estimate [A/BC17]). Under the assumptions of Theorem 15,
the numerical solution satisfies the close to optimal `∞t `2x-semigroup estimate:

sup
0≤n≤NT

∑
j≥0

∆x|unj |2 ≤ C(‖f‖2L2 + ∆xT 3‖f‖2H2), (2.12)
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Figure 2.1: Convergence curves `2x (solid) / `∞x (dashed) with m = k − 2.

Figure 2.2: Convergence curves `2x (solid) / `∞x (dashed) with m = k.

where the constant C > 0 only depends on the scheme.

Let us comment briefly the interest of this result. In the continuous PDE case, obtaining
semigroup stability estimates from the hyperbolicity and under the UKLC condition is not
easy in any case. The symmetrizable hyperbolic systems with dissipative boundary condition
is covered since the seminal work by Friedrichs and Lax [FL67]. The methodology has been
extended by Rauch [Rau72] to any strictly hyperbolic system, later by Audiard [Aud11] to
semi-strictly hyperbolic systems and recently by Métivier [Mét17] for a very general class of
systems (having the block structure property). The same difficulty holds for discrete numerical
schemes, that is: how to assemble the Cauchy stability to the strong (GKS) stability in order
to obtain a full estimate of the form (1.18) with non zero initial data. The argument by Wu
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2.3. Propagative and glancing wavepackets

[Wu95], restricted however to the scalar or to the onedimensional one-step schemes, consist in
constructing from the Cauchy `2-stability an auxiliary strictly dissipative boundary condition.
Then the result by Goldberg and Tadmor [GT81] enables a superposition argument making
use of the Dirichlet boundary conditions. Several more recent works treat with this topic to
extend the result, always by designing auxiliary dissipative boundary conditions in the spirit
of energy methods: Coulombel and Gloria [CG11], Coulombel [Cou15; Cou20].

Application to the interfacial coupling of discrete schemes The previous discussion
deal only with boundary problems, but with homogeneous (constant coefficients) interior
schemes. This excludes somehow the treatment of nonlinearities or of non-homogeneous
schemes. The specific case of piecewise homogeneous schemes (onedimensional domain
decomposition) is however possibly analyzed by the same above ideas. In the literature, this
situation has already been discussed earlier by Vichnevetsky [Vic81b], Giles and Thompkins
[GT83] and Giles and Thompkins [GT85], and more recently Trefethen and Chapman [TC04]
with the construction of approximate pseudomodes for twisted Toeplitz matrices.

The previous asymptotic boundary layer analysis, supported by the discrete trace estimates
for strongly stable boundary schemes, appear to be a convenient tool to prove mathematically
the convergence of discrete coupling procedure between various models, even for high order
situations. Incidentally, the perspective (1A) is here a point of interest to activate the required
stability estimates.

2.3 Propagative and glancing wavepackets

The previous last discussions are restricted to the case of finite difference schemes without
extended stationary modes, thus satisfying the assumption (2.5). When extended stationary
modes are present, new discrete parasitic phenomenon may occur, sometimes in an unaccept-
able way, but sometimes only reducing the order of convergence of the overall scheme. This
is the case only if the damping properties of the scheme is not strong enough to preclude
the presence of neutrally stable modes. Diffusive schemes (in the sense of Lax) do not enter
this framework but when solving purely dispersive phenomenon with high accuracy or with
discrete preservation of energies, it appears crucial to handle with this kind of considerations,
let us mention for example the works [KN20; BCN20], where discrete transparent boundary
conditions are computed in that aim or in [BGK+22], where perfect matched layers are used for
mixed hyperbolic-dispersive equations. Actually, only a few situations are clearly understood
at the theoretical level and asymptotic expansions based on discrete boundary layer and/or
propagative wave-packets is usefull for analyzing the general situation.

Once again, only stationary modes are considered here, associated to the amplification
factor z = 1, but many ideas and results can likely be naturally extended to other unitary
modes |z| = 1.
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Propagative wavepackets The ansatz for an appropriate expansion in the more general
case has the form of a WKB asymptotic expansion with several terms

uapp
n,j = uint(tn, xj) +

∑
κ∈K+

uint
(κ)(tn, xj)κj + ubl(tn, j) (2.13)

where K+ denotes the set of κ ∈ S1 satisfying A(κ) = 0 and having positive (real) group
velocity κA′(κ) > 0. The associated profile uint

(κ) then solves the incoming transport equation
∂tu+ κA′(κ)∂xu = 0 with zero initial data and the "appropriate" incoming boundary value
obtained from the coupling of waves concerned by Es(1). The procedure is then entirely
similar to the solving of the boundary problem (2.7).

Glancing modes As already discussed at the beginning of this chapter, a particular
situation appears when the group velocity κA′(κ) is zero. Different scales in space then have
to be considered so as to correctly define the profile equation for the asymptotic expansion.

Lemma 19. Assume the scheme (2.2) to be consistant and `2-stable. Let κ ∈ S1 be a root of
A of order g ∈ N? exactly, meaning: A(κ) = A′(κ) = . . . = A(g−1)(κ) = 0, and A(g)(κ) 6= 0.
Then the following property holds, according to the remainder in the division of g by 4:

Re
(
κgA(g)(κ)

)
> 0 if gmod 4 = 0,

Im
(
κgA(g)(κ)

)
= 0 if gmod 4 = 1,

Re
(
κgA(g)(κ)

)
< 0 if gmod 4 = 2,

Im
(
κgA(g)(κ)

)
= 0 if gmod 4 = 3.

As for the very low order equivalent PDEs, the `2-stability of the scheme precludes the
ill-posedness for the equivalent equation of the conjugated scheme around (1, κ), that is

∂v

∂t
+ 1
g!κ

gA(g)(κ)∂
gv

∂yg
= 0. (2.14)

The is the main idea behind the previous lemma. With the same notations, the corresponding
expected WKB asymptotic expansion involves now a term of the form vκ(tn, j∆x1/g)κj where
vκ solves the previous PDE problem (see Figure 2.4 for examples of such effective modulated
envelope modes). For solving the similar boundary problem (2.8), an invertibility result is
required that reduces actually to a dimension argument for Vandermonde-like matrices. The
result is the following, that corresponds actually to the decomposition of the space Es(1) from
the different multiplicities occuring for |κ| = 1, in the spirit of Hersh lemma [Her63].

Proposition 20 (Extension of the counting lemma to general stationary modes). Assume
the scheme (2.2) to be consistant and `2-stable and consider the roots of A.
Let K+ = {κ ∈ S1, /A(κ) = 0, κA′(κ) > 0}, K− = {κ ∈ S1, /A(κ) = 0, κA′(κ) < 0} and
n

(1)
+ := n+, n(1)

− := n− the cumulated multiplicities of the corresponding simple roots.
For any g ∈ N?, consider also the integer n(g) ∈ gN equal to the sum of the multiplicities of the
roots having multiplicity g ∈ N? exactly. For odd values of g ∈ N?, let us separate the (possibly
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empty) set K(g) of the roots having multiplicity g into two disjoint sets, namely K(g)
+ and K(g)

− ,
according to the sign of the quantity Re

(
κgA(g)(κ)

)
. Let us denote, in accordance with this

partition, n(g)
+ ∈ gN and n(g)

− ∈ gN their cumulated multiplicities so that n(g) = n
(g)
+ + n

(g)
− .

Then one has:

r = nD +
∑
g even

1
2n

(g) +
∑

gmod 4=1

(
g+1
2g n

(g)
+ + g−1

2g n
(g)
−

)
+

∑
gmod 4=3

(
g−1
2g n

(g)
+ + g+1

2g n
(g)
−

)
,

p = nU +
∑
g even

1
2n

(g) +
∑

gmod 4=1

(
g−1
2g n

(g)
+ + g+1

2g n
(g)
−

)
+

∑
gmod 4=3

(
g+1
2g n

(g)
+ + g−1

2g n
(g)
−

)
.

Actually, the existence of schemes with high order glancing scheme may seem to be
hypothetical since many tangential and stability constraints are present. We give hereafter an
existence result for such schemes at a given glancing order, with glancing modes of order g
for the value κ = −1 to keep easily real coefficients. This result is up to now, not thought as
being of a real importance for the applications but enables however some simple illustrations
for the possible glancing effect at discrete boundaries.

Proposition 21 (Existence and uniqueness of glancing schemes with minimal width). For
any integer g ≥ 2, there exists a finite difference scheme satisfying the following properties:

• consistency with ∂tu+ a∂xu = 0 with a < 0,
• stability in the sense of the strong property Re A(S1) ∩ {Re z > 0} = ∅,
• existence of a g-glancing mode.

Moreover, there is uniqueness of such a scheme when minimizing the width of the stencil
r+p+ 1. The concerned scheme is described as follows. We define r = g−1

2 for g odd or r = g
2

for g even, and then set p = g + 1− r so that the stencil has width g + 2. The corresponding
scheme is then

un+1
j − unj

∆t + a

2g∆x

[
−unj−r +

g∑
`=1

((
g

`− 1

)
−
(
g

`

))
unj−r+` + unj−r+g+1

]
= 0, j ≥ r.

(2.16)

This result is proved by means of elementary polynomial algebra. From the consistency
properties, the space operator may be factorized under the following form

A(κ) = a

2g (κ+ 1)g(κ− 1)κq,

where q is an appropriate value, uniquely defined from the Cauchy `2-stability property and
local analysis close to the particular frequencies κ = 1 and κ = −1. Rather that a detailed
proof, we prefer here to give for the interested reader the list of the very first schemes for the
Euler forward time discretization. The Figure 2.3 represents the amplification factor of the
schemes with parameter g and q. The green curves corresponds to stable schemes and the red
curves to unstable schemes.

• Scheme g = 2, with q = −1, r = 1, p = 2 :

un+1
j − unj

∆t + a

4∆x [−uj−1 − uj + uj+1 + uj+2] = 0, j ≥ 1
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• Scheme g = 3, with q = −1, r = 1, p = 3 :

un+1
j − unj

∆t + a

8∆x [−uj−1 − 2uj + 2uj+2 + uj+3] = 0, j ≥ 1

• Scheme g = 4, with q = −2, r = 2, p = 3 :

un+1
j − unj

∆t + a

16∆x [−uj−2 − 3uj−1 − 2uj + 2uj+1 + 3uj+2 + uj+3] = 0, j ≥ 2

• Scheme g = 5, with q = −2, r = 2, p = 4 :

un+1
j − unj

∆t + a

32∆x [−uj−2 − 4uj−1 − 5uj + 5uj+2 + 4uj+3 + uj+4] = 0, j ≥ 2

Figure 2.3: Amplification factor for glancing schemes ∆t/∆x = 0.9.

The Figure 2.4 represents the parasitic glancing mode close to the boundary for various
schemes (2.16). The numerical solutions corresponds to the initial data 1 for the outgoing
transport problem and homogeneous Dirichlet boundary scheme. Now this is not surprinsing
to numerically observe the expansion unj = 1 + (−1)jvκ(t, j∆x1/g) where the modulated profile
vκ solves (2.14) with appropriate boundary conditions and initial data.
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Figure 2.4: Demodulated effective envelope (−1)j(uj − 1) ' vκ(t, j∆x1/g) for homogeneous
Dirichlet boundary condition with the numerical schemes (2.16).

2.4 Perspectives

(2A) Mixing different strategies. For any stable discrete IBVPs, an adapted improved
convergence analysis is available from appropriate asymptotic expansions. They involve
corrective terms for measuring the possible localized or propatating loss of consistency
and thus of rate of convergence. They have to be determined from the various possible
interactions: boundary scheme with interior scheme, initial condition with interior
scheme, space corners, etc. Two complementary strategies are possible to improve the
consistency.

1. Change g by removing appropriate terms without changing the boundary scheme.
The benefits are that the strong stability result is not affected. This is the idea used to
obtain ILW methods from Dirichlet in the Chapter 1.

Or 2. Change B so as to purge the expansion from any spurious modes (layers, propaga-
tive, glancing, etc.) The method of discrete transparent boundary condition as Ehrhardt
and Arnold [EA01], Arnold, Ehrhardt, and Sofronov [AES03], Besse, Ehrhardt, and
Lacroix-Violet [BEL16], Besse, Coulombel, and Noble [BCN20], and Kazakova and
Noble [KN20] is precisely constructed in that way and guarantees at the same time
the strong stability (see Coulombel [Cou19]). See also Ehrhardt [Ehr10] for absorbing
boundary conditions with dissipative features.

This is not clear how a general mixing between the two strategies could be realized. In
particular in the Chapter 1, we slightly modify the ILW method to the SILW, what
changes g and B at the same time.

(2B) Explicit parasitic modes in general geometries. Another complementary project
is concerned with the geometrical aspects of the boundary. The whole discussion in the
manuscript is restricted to the poor onedimensional half-problem, even if archetypal
of many principles. Some attention has been put on the stability theories for corners
by Osher [Osh74a; Osh74b] and more recently by Benoit [Ben16; Ben17] and Besse,
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Multiscale expansions for discrete boundaries

Coulombel, and Noble [BCN20], and similarly for interval/strip domains by Trefethen
[Tre85] and more recently Benoit [Ben20; Ben21] and also Inglard, Lagoutière, and Rugh
[ILR20] where "ghost" solutions are analyzed for implicit schemes. The use of WKB-like
expansions to understand the possible appearance of parasitic (even unstable) modes in
such situations seems to be a promising perspective.

(2C) Space inhomogeneities. At the interface of the pseudospectral analysis (Perspec-
tive (1B)) and boundary layer expansions is found the analysis of pseudomodes. This
topic has been studied for example by Trefethen and Chapman [TC04] and Trefethen
[Tre05] that construct asymptotic localized pseudomodes for twisted-Toeplitz (corre-
sponding to finite differences schemes on non-homogeneous domains). On the side of
numerical computations, spurious effects are also observed, called discrete q-waves in
the literature, see Le Roux [Le 12], Sengupta [Sen12], Marica and Zuazua [MZ15] and
Biccari, Marica, and Zuazua [BMZ20]. By means of discrete pseudodifferential analysis,
see Chodosh [Cho11], Schochet [Sch14], Faou and Grébert [FG21], a new analysis could
be promising.
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CHAPTER 3

Hyperbolic relaxation models

The present chapter is devoted to the numerical approximation of hyperbolic relaxation models,
in the sense of Chen, Levermore, and Liu [CLL94], in the linear case with boundaries. The
PDE part is subject to standard stability properties, as strict hyperbolicity of the first order
terms and subcharacteristic dissipativity of the stiff zeroth order relaxation term. In addition
the considered boundary condition satisfies the Kreiss-Lopatinskii condition for the non-stiff
hyperbolic part. It is known from Xin and Xu [XX00] that a reinforced Stiff Kreiss Condition
is actually necessary to preclude boundary instabilities during the limiting relaxation process.
The aim is to develop numerical schemes and analyze carefully their uniform stability with
respect to the relaxation parameter (and the discretization parameters as well of course). To
do that, we make use of the Summation-by-Parts techniques, related to the energy method,
and of the discrete Z-transform. Another strategy is based on the construction of discrete
transparent boundary conditions but only for the extra discrete-boundary conditions. The
presentation hereafter is related to the publications1 [A/BNS20] and [P/BNS], obtained from
the Master internship and then the PhD work of Thi Hoai Thuong Nguyen during the
years 2017–2020, student co-advised with Nicolas Seguin.

[A/BNS20] B. Boutin, T. H. T. Nguyen, and N. Seguin. A stiffly stable semi-discrete
scheme for the characteristic linear hyperbolic relaxation with boundary.
ESAIM Math. Model. Numer. Anal. 54 5:1569–1596, 2020.

[P/BNS] B. Boutin, T. H. T. Nguyen, and N. Seguin. A stiffly stable fully discrete
scheme for the damped wave equation using discrete transparent boundary
condition.

1We warn the reader that some notations have been changed between this manuscript and the cited
publications, so as to unify the current presentation.
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Hyperbolic relaxation models

3.1 Hyperbolic relaxation models with boundaries

Hyperbolic relaxation models Relaxation effects arise in many physical models. In
particular several dynamical effects may coexist but at different time scales so that this is
conceivable to study the reduced dynamic obtained for a partial equilibrium process. For
example in the kinetic theory of the Boltzmann equation, if gases are supposed to be very close
to local thermodynamic equilibrium (Maxwellian) then they are submitted to simpler fluid
models. This assumption precisely consists of a limiting relaxation process in a partial direction
of the dynamic, i.e. neglecting a time scale compared to another one. The usual method to
investigate the subsequent limiting problem is based on Chapman-Enskog expansions. Liu
[Liu87] and Chen, Levermore, and Liu [CLL94] study the stability of the limiting process in
the case of hyperbolic conservation laws with relaxation and show the importance therein
of the Whitham [Whi74] subcharacteristic condition. Indeed, it guarantees the dissipativity
of the source term and activates the strong well-posedness of the system uniformly in the
relaxation parameter and the hyperbolicity of the limiting equation.

Considering a vectorial unknown U ∈ RN , we are interested in relaxation systems of the
form:

∂tU +A∂xU = 1
ε
S(U), x ∈ R+, t ≥ 0,

BU(t, 0) = g(x), t ≥ 0,
U(0, x) = f(x), x ∈ R+.

(3.1a)

The matrices A of size N × N and B are assumed to validate the one-dimensional Kreiss-
Lopatinskii condition described in Chapter 1. On the other side, the relaxation operator
S : RN → RN is subject to the usual dissipative requirements for relaxation problems. More
precisely the results presented in this Chapter is restricted to the two-dimensional linear
problem with the following matrices (where a > 0):

U =
(
u

v

)
, A =

(
0 1
a2 0

)
, S =

(
0 0
b −1

)
. (3.1b)

B = (Bu,Bv), with Bu ≥ 0. (3.1c)

Let us notice that mimicking the physical relaxation dynamics, some numerical method
emerged called relaxation method, and based on a dimensional extension of the unknown
and the modification of the dynamical system with a simpler linear hyperbolic structure, and
additional stiff low order source terms to recover in the limit the original problem. For example,
Jin and Xin [JX95] proposed to approximate the solution of the hyperbolic conservation law
∂tu+ ∂xf(u) = 0 by designing schemes from the relaxation system of the form (3.1a) with
additional relaxation variable v and:

A =
(

0 1
a2 0

)
, S(U) =

(
0

f(u)− v

)
(3.2)

In that case the subcharacteristic condition for the stiff well-posedness of the system (without
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3.1. Hyperbolic relaxation models with boundaries

boundaries) and the convergence of its solution to equilibrium reads a > |f ′(u)| for all values
of u involved. Many results are available from the works by Yong [Yon99b; Yon01; Yon02],
Liu and Yong [LY01], and Yong and Jäger [YJ05].

In the framework of the linear relaxation system (3.1), the subcharacteristic condition is
a ≥ b and the equilibrium solution is Ueq = (ueq, veq) solution to the algebraico-differential
IBVP problem, that is well-posed:

∂tueq + b ∂xueq = 0, veq = b ueq, (3.3)

with boundary condition (Bu + bBv)ueq(t, 0) = g(t) if b > 0,

no b.c. if b ≤ 0.
(3.4)

Relaxation and boundaries Let us first introduce the following definition.

Definition 22. Assume that the IBVP problem (3.1a) is such that for any ε > 0 and any
time T > 0, there exists a constant C > 0 such that for any f ∈ L2(R+) and g ∈ L2(R+), the
corresponding solution satisfies

∫ T

0
‖U(t, ·)‖2L2(R+) dt+

∫ T

0
|U(t, 0)|2 dt ≤ C

(
‖f‖2L2(R+) +

∫ T

0
|g(t)|2 dt

)
.

Then the IBVP is said to be well-posed. If in addition the constant C can be chosen independent
of ε > 0 (small) then the IBVP is said to be stiffly well-posed.

As explained many times in the previous chapters, the boundary condition has to satisfy
the Uniform Kreiss-Lopatinskii Condition for the hyperbolic part. For (3.1b), thanks to the
Riemann invariants au ± v, for the corresponding characteristic velocities ±a, the UKLC,
under which the problem (3.1) is well-posed, reads

Bu + aBv 6= 0. (3.5)

Now, it appears that the above UKLC is not completely sufficient to guarantee the limiting
relaxation process and to preclude the existence of unstable relaxation boundary layers. Yong
[Yon99a] proposed a Generalized Kreiss Condition (GKC) for general multi-dimensional
linear constant coefficient relaxation systems, or one-dimensional nonlinear systems, with
non-characteristic boundaries. This condition enables uniform (in ε) stability estimates and
then justifies the reduced boundary condition for the corresponding equilibrium system. In
the Jin-Xin system (3.2) with boundary condition (3.1c), Xin and Xu [XX00] (see also [XX02;
XX04]) identify and rigorously justify the necessary and sufficient condition, called Stiff Kreiss
Condition (SKC) for the stiff well-posedness. For higher dimensional linear relaxation problems,
the SKC admits a determinantal form, and for the two-dimensional linear system (3.1) under
interest, it reads [

Bv = 0 or BuB−1
v /∈ [−a,− b+|b|

2 ]
]
. (3.6)
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Some insight into the SKC condition Following the classical methodology for first order
IBVPs, the SKC condition is analyzed through the normal mode analysis and then the Laplace
transform. Actually their form is modified so as to catch the scale involved in relaxation
layer: U ε = eτt/εϕ(x/ε) with Re τ > 0 and ϕ ∈ L2(R+,R2). Again a separation results is
available. The modified UKLC condition is then concerned with the stable linear subspace
Es(τ) associated to the matrix A−1(S − τI). Its not-uniform version reads:

Ker B ∩ Es(τ) = {0}.

Asymptotic expansions In addition to [Yon99b], the study by Xin and Xu [XX00] also
covers the characteristic case with b = 0 and provides optimal asymptotic expansions for the
limit process, including boundary and/or initial layers. The system (3.1) with b = 0 is also
known as the damped wave equation and will be the subject of the forthcoming numerical
study. In that case, the SKC in [XX00] then simply reduces to the following inequality:

Bu + aBv > 0. (3.7)

Under the subcharacteristic condition and the SKC (3.6), being given compatible data and
boundary smooth data (in H2(R+) spaces), the asymptotic expansion towards the equilibrium
solution Ueq is of the form

U ε(t, x) = Ueq(t, x) +


0 + h.o.t if b > 0,

Ubl(t, xε ) + h.o.t if b < 0,

Ubl(t, x√
ε
) + h.o.t if b = 0.

(3.8)

The high order terms involve higher power of the relaxation parameter ε and are estimated in
the time-Laplace norm topology (see Chapter 1).

For the interested reader, a review of these results is done by Zhang and Wang [ZW04]
with additional source terms and the corresponding stiff full estimates. More recent works
by Zhou and Yong [ZY21; ZY20] are concerned with the case of general hyperbolic linear
relaxation systems with characteristic boundaries, either for the original hyperbolic part, or
for the limiting hyperbolic part. Other works on the topic are the following ones: [CJL+14;
Xu04; Ye04].

3.2 Stiffly stable schemes for the damped wave equation

From now on, the continuous IBVP under consideration is the following

∂tu
ε + ∂xv

ε = 0,
∂tv

ε + a2∂xu
ε = −ε−1vε,

(3.9)

with the appropriate initial and boundary conditions from (3.1c). A first scheme is introduced
at the semi-discrete level and based on the central scheme for the flux term, thus has the form
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3.2. Stiffly stable schemes for the damped wave equation

∂

∂t
Uj(t) + (QU)j(t) = 1

ε
SUj(t), j ≥ 1, t ≥ 0,

Uj(0) = fj , j ≥ 0,
BU0(t) = g(t), t ≥ 0,

(3.10a)

with
(QU)j = 1

2∆xA(Uj+1 − Uj−1), j ≥ 0.

Following the summation by parts method from Strand [Str94], the energy method can be
adapted to the central operator by choosing the extrapolated ghost value U−1 = 2U0 − U1, so
that finally the boundary scheme is (QU)0 = 1

∆x(U1−U0). The convenient discrete integration
by part (see [GKO13]) then applies for the scalar product

〈U, V 〉∆x := ∆x
2 〈U0, V0〉+ ∆x

∑
j≥1
〈Uj , Vj〉.

The physical boundary condition in (3.10a) determines one scalar boundary unknown in U0

but the numerical scheme requires an additional second scalar unknown so as to fully define
U0(t). This additional scalar boundary discrete boundary condition is proposed under the
following ODE form

Γ
(
∂

∂t
U0(t) + (QU)0(t)

)
= 1
ε

ΓSU0(t), t ≥ 0, (3.10b)

where the rank one matrix is Γ =
(
−a2Bv Bu

)
. The scheme is then fully defined.

The proof of the stiff stability of the semi-discrete scheme (3.10) is based on two ingredients
and a superposition argument. Firstly, the summation by parts enables the treatment of
homogeneous boundary conditions. Secondly, the case with non-homogeneous boundary
conditions and homogeneous initial data is handled by means of the Laplace transform and
the "stiff UKLC" estimate adapted to the problem (uniform in ε and ∆x resolvent estimate).

Our result is the following:

Theorem 23 (Theorem 1.2 in [A/BNS20]). Under the strict dissipativity condition BuBv > 0,
for all T > 0, there exists C > 0 such that for all f ∈ `2(N,R2) and all g ∈ C1(R+,R) ∩
L2(R+,R) the solution (Uj)j≥0 to (3.10) satisfies:

∫ T

0
|U0(t)|2 dt+

∫ T

0

∑
j≥0

∆x|Uj(t)|2 dt ≤ CT

∑
j≥0

∆x|fj |2 +
∫ T

0
|g(t)|2 dt

 ,
where the constant CT is independent of f , g and of the relaxation parameter ε ∈ (0,+∞) and
the discretization parameter ∆x ∈ (0, 1].

We now briefly explain some steps of the proof of that theorem.
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Summation by parts method We first consider homogeneous boundary condition g = 0
and use the energy method. It enjoys the effect of the SBP method,with the symmetrizer
H = diag(a2, 1), so as to obtain the identity

∂t〈U,HU〉∆x + 2a2 Bu
Bv
u2

0 + ∆x
ε
v2

0 = −2∆x
ε

∑
j≥1

v2
j ,

The dissipativity of the boundary condition B then follows under the condition:

2a2 Bu
Bv

+ ∆x
ε

(Bu
Bv

)2
> 0.

Then, using in addition the dissipative character of relaxation, the following stiff bound
follows:

〈U,HU〉∆x + C

∫ T

0
|U0|2dt ≤ 〈f,Hf〉∆x.

Actually, if BuBv > 0 then the above condition is true, else if BuBv < 0, having a bound of
the form ∆x ≥ δε also suffices to conclude.

Normal mode analysis and stiff UKLC estimate As for the continuous case, the
homogeneous initial data case f = 0 can be handled by the UKLC algebra and Laplace
transform. However, the presence of the discretization in space now increase the dimension
of the stable linear subspace associated to some time frequency τ with Re τ > 0. This is the
point where the supplemented artificial boundary condition (3.10b) is involved. In [A/BNS20],
we prove that the condition BuBv > 0 suffices to guarantee the uniform determinantal version
of the UKLC here. In addition, some numerical experiments show that this UKLC is not
always satisfied under the continuous SKC (3.6) only.

3.3 Extensions

• A first extension is concerned with the implicit time discretization of the previous semi-
discrete scheme. The stiff stability is then obtained again under the strict dissipativity
condition BuBv > 0 with an inverse "CFL" condition of the form ∆x < 3a∆t/8.

• A second extension is again for the implicit time discretization, but now with the upwind
flux in space, in the sense of the Riemann invariants of the hyperbolic part of the
problem. The analysis is then successfully conducted only for the energy method part,
i.e. for homogeneous boundary data g.

• A third extension is proposed and intended to obtain a fully discrete scheme that would
be stiffly stable exactly in the same regime than the underlying PDE, that is under
SKC (3.6) and not only the subclass BuBv > 0. Again the interior scheme is the implicit
centered one. The idea now is to replace the ghost value U−1 by a convenient coming
from the discrete transparent boundary technique, but only for the artificial part (3.10b).
Now the eigenstructure involves four waves but only two matricial eigenprojectors Φ−,
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Φ+ related to the continuous problem. The corresponding eigenvalues ±κ±(z) satisfy
|κ+| > 1 and |κ−| < 1. In the Z-transformed version of the scheme, the transparent
boundary extension then simply reads:

Û−1 = κ+(Φ− − Φ+)Û0.

Coupled with the proposed strategy the final boundary scheme has finally the non-local
in time-boundary form:

Γ
[

1
∆t(U

n+1
0 − Un0 ) + 1

2∆x

(
Un+1

1 −
n+1∑
k=0

Cn+1−kU
k
0

)
− 1
ε
SUn+1

0

]
= 0. (3.11)

In [P/BNS], we can prove that under the SKC (and not only under the subclass of
strictly dissipative conditions), the scheme is stiffly strongly stable (i.e. in the sense
of zero initial data and nonzero boundary data), provided the previous inverse "CFL"
condition is satisfied. A part of the analysis is still work in progress.

3.4 Perspectives

(3A) The main extension of this work is to propose asymptotic preserving schemes in the
sense of Jin [Jin99] that encompass the boundary treatment for general situations
with change of sign or vanishing in the characteristic velocities. The stiff stability
under the full stiff Kreiss condition is then a crucial features in order to guarantee that
the numerical scheme is not affected by unstable discrete boundary layers and is able
to encompass in a correct way the (stable) relaxation boundary layer. A submitted
work [P/ABC] with N. Crouseilles and M. Anandan deals with the development
of accurate numerical schemes in the slightly different framework of kinetic relaxation
equations in the diffusive scaling. The use of adapted half-moments strategies through
micro-macro decompositions is often limited to first order in space. Increasing the order
in space then requires appropriate treatments for the relaxation layer.
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CHAPTER 4

Infinite dimensional QR eigenvalue method

[The QR algorithm is] one of the most remarkable
algorithm in scientific computing.

Strang [Str80] Linear algebra and its applications.

The names of Rutishauser, Wilkinson, Lanczos and Francis are at the heart of the
development of numerical algorithms for spectra computations mainly within the 1950s and
the 1960s. The foundations of their results are found in some older analysis due to Jacques
Hadamard in his thesis. It is concerned with characterizations of poles of meromorphic
functions that follow themselves older results by Daniel Bernoulli. More recently, after the
development of the first numerical algorithms for spectra approximations, two main directions
have emerged. A first one is concerned with the improvement of the cost and the quality of the
effective computations: reduction of the cost, improvement of the rate convergence, dimension
reduction, etc. For a more complete overview of the developments of eigenvalue computational
algorithm during the 20ts century, we refer the reader to the work by Golub and van der Vorst
[GvdV00] and Golub and Uhlig [GU09]. A second one is motivated by several theoretical
applications towards operator theory, based on the deep relationship between these algorithms
and some infinite-dimensional dynamical systems (see Chu [Chu08]).

We present hereafter first a quick overview of the previously mentioned historical aspects,
partially inspired from Gutknecht and Parlett [GP11]. After that, a discussion is proposed on
some recent results [A/BR17] obtained a few years ago in a collaboration with N. Raymond.
The topic is about formalizing in an unified way a family of isospectral differential systems
acting on Hilbert-Schmidt operators. The abstract method is able to determine asymptotically
the spectrum of such operators, with identified convergence rates, even in infinite dimension.

[A/BR17] B. Boutin and N. Raymond. Some remarks about flows of Hilbert-Schmidt
operators. J. Evol. Equ. 17 2:805–826, 2017.
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Infinite dimensional QR eigenvalue method

4.1 A little history about the QR method

The beginnings To make this presentation more concrete, let us consider a given matrix
A ∈Mn(C) whose spectral properties are under interest. Let us also introduce two vectors
x0 ∈ Cn and y0 ∈ Cn and study the associated meromorphic function f defined from the
resolvent of A by

f(z) := 〈y0, (zI −A)−1x0〉.

The poles of f are located among the eigenvalues of A. Namely, using its adjugate, the
function f alternatively takes the form of a rational function

f(z) = 〈y0, adj(zI −A)x0〉
det (zI −A) .

The denominator is the characteristic polynomial of A and the numerator is a polynomial
whose degree is less than n−1. Actually the two polynomials may share some zeros, depending
on particular choices for the vectors x0, y0. For z large enough i.e. |z| > ρ(A), the function f
admits an expansion as the series

f(z) =
∞∑
m=0

am
zm+1 ,

where the complex coefficients am = 〈y0, A
mx0〉 (also known as Schwarz constants) define the

sequence of moments associated to the problem of determining the eigenvalues of A / poles of
f . From the Cayley-Hamilton formula, the whole sequence (am)m≥0 then solves a (constant
coefficients) linear recurrence relation whose characteristic polynomial P necessarily divides
the characteristic polynomial χA of A. The polynomial P again depends on possible particular
properties of x0, y0 with respect to the eigenstructure of A. The d’Alembert’s ratio test
(d’Alembert [dAle68]) for convergent series, also known from the method by Daniel Bernoulli
[Ber32] for roots, then applies. Assuming for a while, as usual, that A has a dominant root λ1

and, in addition, that λ1 is found among the roots of P , then the ratio am+1/am is convergent
with limit λ1.

The above method is clearly reminiscent of and related to the power method for computing
the dominant eigenvalue. In his thesis, Hadamard [Had92] proposed an extension of Bernoulli’s
method so as to characterize successively any of the other poles of a meromorphic function
from its moments. He first writes there “Si la seule singularité située sur le cercle est un pôle,
simple ou multiple, l’affixe de ce point est donnée par la limite du rapport am/am+1. [. . . ]
Cette condition nécessaire est aussi suffisante.”. To handle with the other roots, Hadamard
makes use of the sequence of the associated Hankel determinants. We recall here that the
Hankel determinant of order k at step m, associated to a sequence (am)m≥0 is the quantity

H(k)
m =

∣∣∣∣∣∣∣∣∣∣∣

am am+1 . . . am+k−1

am+1 am+2 . . . am+k
...

...
am+k−1 am+k . . . am+2k−2

∣∣∣∣∣∣∣∣∣∣∣
.
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4.1. A little history about the QR method

In particular, the sequence (am)m≥0 solves a linear recurrence relation if and only if the
sequence (H(k)

0 )k≥0 is null starting from some rank k0. This is clearly the case here. The point
of interest here lies in the behaviour of the quantity H(k)

m for large values m, but now fixed
size k of the determinants. In this spirit, Hadamard proved the following result. Assume the
modulus-separation property |λ1| > . . . > |λk| > Λ > |λk+1| for some Λ > 0, then as m→∞:

H(k)
m = (λ1 . . . λk)m

[
1 +O

( Λ
|λk|

)m]
.

From this result, this is then possible to identity any of the roots as being the limit of (heavily)
computable quantities. Indeed, it has first to be noticed that the sequence of quotients
H

(k)
m+1/H

(k)
m converges to the product λ1 . . . λk, and thus

lim
m→∞

H
(k)
m+1

H
(k)
m

H
(k−1)
m+1

H
(k−1)
m

= λk. (4.1)

Together with these results, the following Jacobi identity (compound determinant formula)
(
H(k)
m

)2
= H

(k)
m−1H

(k)
m+1 +H

(k+1)
m−1 H

(k−1)
m+1 , (4.2)

helps for designing, thanks to simple row and column determinant expansions for H(k)
m , an

efficient, though costly, algorithmic version of the method for approximating any λk. This
was the idea proposed initially by Aitken [Ait26; Ait31] and that paved the way to further
developments.

The algorithmic period The genuine beginning of the algorithmic methodology to ap-
proximate eigenvalues comes from the suggestion by Stiefel to Rutishauser to look again at
the Schwarz constants am. By this way, Rutishauser [Rut54a; Rut54b; Rut54c] introduced
the so-called qd algorithm (for quotient-difference) that avoids the explicit use of Hankel
determinants, and thus reduces severely the complexity and the ill-posedness of the method.
He reformulates, first for tridiagonal matrices, his algorithm into the LR algorithm, based on
gaussian LU elimination steps. The idea is surprisingly simple in its formulation, and consists
finally in the following matrix decomposition/recomposition process:

LkRk := Ak, Ak+1 := RkLk.

As a consequence, all matrices (Ak)k≥0 share the same spectrum. The convergence to the
diagonal matrix with values sorted by decreasing modulus was obtained by Rutishauser
[Rut55] for real symmetric matrix with positive simple (thus separated) eigenvalues. A simple
extension to general symmetric matrices with a quadratic convergence is obtained with Bauer
in the same C. R. Acad. Sci. [RB55].

Motivated by handling with more general (i.e. non-symmetric) matrices, and by both the
computational cost and the possible numerical instability, Francis [Fra61a; Fra61b] introduced
the now famous variant, that makes use of unitary matrices rather than gaussian elimination
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Infinite dimensional QR eigenvalue method

(see also Kublanovskaja [Kub61]): Francis’ QR algorithm. A preprocessing step based on
Householder matrices (see [Wil60]) is intended to reduce the matrix A first under the upper
Hessenberg form so as to reduce the computational cost of further algorithmic steps. Actually,
this first step produces a symmetric tridiagonal matrix when dealing with symmetric matrix
A. The overall diagonalization algorithm is again very simple:

QkRk := Ak, Ak+1 = RkQk. (4.3)

A variant with shifts (and even the double complex conjugate pairs shift technique) has made
Francis’ method very famous due to the significant increase in the convergence properties of
the induced algorithm (cubic in the best case)

QkRk := Ak − σkIn, Ak+1 = RkQk + σkIn,

Isospectral dynamical systems The QR iteration (4.3) can be understood as a discrete
dynamical system that preserves the spectrum along the orbits and that admits the subset
of diagonal matrices as a manifold of equilibrium points. Concretely, this last property
can be understood after observing then the vanishing of the Lie commutator (or bracket)
[Q,R] = QR−RQ. In finite dimension, among all the isospectral diagonal equilibrium points,
only a few exhibits attractivity properties in a more or less large isospectral stable manifold.

From Watkins [Wat84], it is known that the QR algorithm (and several generalizations
for other abstract matrix factorization, e.g. LU and Cholesky, see Chu and Norris [CN88])
can be reinterpreted as the sampling at integer times of the solution to a differential system
acting then on a time-dependent matrix, or linear operator, A(t). These continuous dynamical
systems also have a bracket structures and therefore manifest isospectrality in the flow as
well. A more recent review about the reinterpretation of several linear algebra algorithms
through such dynamical systems can be found in Chu [Chu08].

Our aim is to extend the previous ideas to the case of infinite dimension operators. In this
spirit, Bach and Bru [BB10] tackle the example of the Brockett flow (presented later on) in
infinite dimension. We analyze the structural and convergence properties of some bracket flows
in a quite general framework (Hilbert-Schmidt operators) for which the diagonal operators
turns out again to be an attractive manifold. There are deep applications in mathematical
physics, for instance Bach and Bru [BB16] made use of this for diagonalizing unbounded
operators in boson quantum field theory.

4.2 Double bracket flows of Hilbert-Schmidt operators

Some motivations: Toda lattice and Lax pairs The Toda lattice proposed by Toda
[Tod67; Tod75] models a system of equal masses connected on a one-dimensional line by
identical springs with a nonlinear exponential restoring force. The associated Hamiltonian
has the following form

H(p, q) = 1
2
∑
n

p2
n +

∑
n

eqn−qn+1 ,
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4.2. Double bracket flows of Hilbert-Schmidt operators

where pn and qn are respectively the momentum and the displacement of the n-th mass from
equilibrium. This model may seem to be quite artificial, however it exhibits many important
features such as complete integrability, nonlinear normal modes, and it is in fact directly
related to some approximation of solutions to the Korteweg-de-Vries equation for long-wave
limits. The bracket structure behind this model is observed by Flaschka [Fla74a; Fla74b].
Namely, the dynamical hamiltonian system associated to H, that is

dqn
dt

= ∂H
∂pn

,
dpn
dt

= − ∂H
∂qn

,

can be, after the change of variables an = −1
2pn, bn = 1

2e(qn−qn+1)/2, formulated under the
more tractable form

dan
dt

= 2(b2n − b2n−1), dbn
dt

= bn(an+1 − an).

Actually, this reformulation reveals the associated Lax [Lax68] pair

L(t) =


a1 b1

b1 a2
. . .

. . . . . . bN−1

bN−1 aN

 , P (t) =


0 −b1
b1 0 . . .

. . . . . . −bN−1

bN−1 0


and the associated bracket flow:

d

dt
L = [L,P ].

Global isospectral flows of Hilbert-Schmidt operators Let us now introduce some
notations. We consider a separable complex Hilbert space H, equipped with a scalar product
〈·, ·〉 and a Hilbert basis (en)n≥0. L(H) denotes the set of bounded endomorphisms on H and
L2(H) the subset of Hilbert-Schmidt operators endowed with the norm ‖H‖2HS = tr(H?H) =∑
n≥0 ‖Hen‖2 = ∑+∞

n=0 |λn(H)|2 and has the canonical Hilbert basis ei,j = 〈ei, ·〉ej . The
subset of bounded operators that are diagonal with respect to the basis (en)n≥0 is denoted
D(H). We also denote S(H), A(H) and U(H) respectively the symmetric (i.e. hermitian),
skew-symmetric and unitary operators in L(H), and S2(H), A2(H) their intersection with
L2(H). The Hilbert space S2(H) is equipped with the canonical Hilbert basis: Ei,j for i ≤ j,
with coefficients 1√

2(ei,j + ej,i). The Hilbert space A2(H) is equipped with the canonical
Hilbert basis E±i,j for i < j, with coefficients 1√

2(ei,j − ej,i).
In this context the following result is quite natural to obtain (see Lax [Lax68] and Flaschka

[Fla74a])

Proposition 24. Let G : S(H)→ A(H) be a locally Lipschitz mapping. Any Cauchy problem

H ′ = [H,G(H)], H(0) = H0 ∈ S2(H) (4.4)

admits a unique global solution H ∈ C1(R,S2(H)). It is smoothly unitarily equivalent to the
initial data: there exists U ∈ C1(R,U(H)) such that the solution reads H(t) = U?(t)H0U(t).
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Infinite dimensional QR eigenvalue method

Actually, the change of basis U solves the linear differential problem

U ′ = UG(H), U(0) = Id. (4.5)

The asymptotic dynamic in the neighbourhood of an diagonal equilibrium point H∞ =
diag(λi, i ≥ 0) is actually directly related to the quantities gij involved in the identities
G(Ei,j) = gijE

±
i,j for i < j, if available. To be more precise, the differential of the flow

F : H 7→ [H,G(H)] at the point H∞, considered as an endomorphism in S2(H), is diagonalized
in the basis Ei,j with dFH∞(Ei,j) = gij(λi − λj)Ei,j . The first issue is then to identify the
equilibrium points with non-positive eigenvalues. 0 is an eigenvalue associated in particular
to any Ei,i.

• Brockett sorting algorithm

The simplest archetypal example proposed from Brockett [Bro91] is related to the linear
mapping G(H) = [H,A] where A = diag(ai, i ≥ 0) ∈ D(H) ∩ S2(H) is a diagonal
operator with a1 > a2 > . . . > 0. In that case for i < j, one has gij = aj − ai and thus
the eigenvalues of dFH∞ are −(ai − aj)(λi − λj) for i < j. All of them are negative if
and only if the order of sorting is the same for A and H∞.

• Toda flows

The previously discussed Toda flow also reads more compactly as G(H) = H− − (H−)?

where H− = ∑
0≤i≤j hi,je

?
i ej is the low truncation of H. Again, from the identity

G(Ei,j) = −E±i,j , we deduce the eigenvalues of dFH∞ that are −(λi − λj) for i < j.

• Wegner flow

The flow by Wegner [Weg94] is defined by G(H) = [H, diag(H)] where diag(H) =∑
0≤i hi,ie

?
i ei is the diagonal part of H. In that case, the mapping G does not act linearly

but the spectrum of dFH∞ at a given diagonal point H∞ = diag(λi, i ≥ 0) is then
−(λi − λj)2 for i < j.

Convergence results Contrary to the finite dimensional case, the unitary matrix U does
not evolve in a compact set, thus other strategies have to be considered (a priori bounds,
integrability properties and monotonicity arguments) to conclude on convergence.

Theorem 25 (Corollary 1.8 and 1.9 in [A/BR17]). Assume G ∈ L(S2(H),A2(H)) and
appropriate sign and lower bound assumptions on the "eigenvalues" gij of G. Then, the global
solution H(t) weakly converges in S2(H) to H∞ = diag(λi, i ≥ 0) ∈ D2(H), with spectrum
included in spec(H0) with multiplicities.
If dimH < +∞ then the convergence is available in the strong topology and, if H0 has simple
eigenvalues then the convergence rate is O(e−γt) where γ = inf{−gi,j(λi − λj) > 0, i < j}.

The corresponding proof permits to extend the usual convergence result for the QR
algorithm to the infinite dimensional case. We present this result hereafter with a quantification
of the convergence of the off-diagonal terms.
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Theorem 26 (Proposition 1.10 in [A/BR17]). Let H0 ∈ L2(H) be diagonalizable with eigenval-
ues (λj)j≥0 indexed by decreasing real parts. Assume in addition the existence of an invertible
P ∈ L(H) such that PH0P

−1 = diag(λj , j ≥ 0) and such that the minors det (〈Pei, ej〉)0≤i,j≤J

are invertible for all integer J . Then the solution H(t) to the Toda flow satisfies for all finite
` ∈ N and with δ` := min0≤j≤` Re (λj − λj+1):

H(t)e` −
∑
j>`

〈H(t)e`, ej〉ej = λ`e` +O(e−tδ`),

4.3 Numerical examples in finite dimension

We present hereafter some finite dimensional numerical illustrations for matrices inM5(R) with
a symmetric (full matrix) initial data, unitarily equivalent to the matrix diag ([1, 4, 9, 16, 25]).
The ODE systems (4.4) plus (4.5) are approximated by means of the adaptive 4th-order Runge-
Kutta scheme. Actually, there is no loss of isospectrality during the numerical discretization
(up to the machine error) due to the use of the equation (4.5). This would not be true when
using (4.4) directly (see the works by Calvo, Iserles, and Zanna [CIZ97] for more details on the
numerical integration of bracket flows and Hairer, Lubich, and Wanner [HLW10] for general
geometric integration results).

• Brockett flow

The matrix-parameter is the diagonal matrix A = diag ([5, 4, 3, 2, 1]). On Figure 4.1, the
convergence to the limit matrix H∞ = diag ([25, 16, 9, 4, 1]) is observed, with a sorting of
the eigenvalues in the descending order, in accordance to the ordering in the coefficients
in A. The rate of convergence O(e−3t) is asymptotically observed, also in agreement with
the theoretical value given by the values (aj − ai)(λi − λj) in the following empty-low
tabular:  . −9 −32 −63 −96

. −7 −24 −45
. −5 −16

. −3
.

 .

Figure 4.1: Brockett flow – Diagonal entries (left), rate of convergence(right).
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• Toda flow

The Toda flow gives similar results with the same rate of convergence. Now the empty-low
tabular has coefficients −(λi − λj): . −9 −16 −21 −24

. −7 −12 −15
. −5 −8

. −3
.

 .
The Figure 4.2 illustrates the numerical counterpart of Theorem 26. For any 0 ≤ ` ≤ 4,
we compute the norm of the residual column ‖∑j>`〈H(t)e`, ej〉ej‖. The thick dashed
curves represent the effective error and the thin solid ones correspond to reference rates,
namely δ` ∈ {9, 7, 5, 3}.

Figure 4.2: Toda flow – Convergence of extradiagonal columns.

• Wegner flow

For the Wegner flow, the effective limiting solution appears to be the matrix H∞ =
diag ([4, 9, 16, 25, 1]) and the convergence rate O(e−9t) is again in concordance with
the theory. Close to the limit H∞ the empty-low "tabular-eigenvalue" measuring the
linear-attractivity of H∞ reads  . −25 −144 −441 −9

. −49 −256 −64
. −81 −225

. −576
.

 .

Figure 4.3: Wegner flow – Diagonal entries (left), rate of convergence(right).
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CHAPTER 5

Dynamical systems in biology

This chapter is devoted to a brief presentation of the work [A/FJL+20]. This is an interdisci-
plinary research activity carried out with cellular biologists from the “Institute for Research
in Health, Environment and Work” (IRSET – Université de Rennes), and more particularly
with Denis Michel. The collaboration followed a first work [A/MBR16] which will not be
discussed here.

[A/MBR16] D. Michel, B. Boutin, and P. Ruelle. The accuracy of biochemical
interactions is ensured by endothermic stepwise kinetics. Prog. Biophys. Mol.
Biol. 121 1:35–44, 2016.

[A/FJL+20] G. Flouriot, C. Jehanno, Y. Le Page, P. Le Goff, B. Boutin, and
D. Michel. The basal level of gene expression associated with chromatin
loosening shapes Waddington landscapes and controls cell differentiation. J.
Mol. Biol. 432 7:2253–2270, 2020.

Problematic The mechanisms of cellular differentiation and dedifferentiation are under
study. More precisely the balance between red and white blood cells (hematopoietic regu-
lation) mostly results from a choice between the proteins called GATA1/2 and PU.1. The
concentrations of these proteins, respectively denoted x and y, evolve according to positive
and negative effects such as mutual sequestration and the basal gene expression b1 and b2
(Figure 5.1). The supported thesis is that the mutual inhibition between the two genes does
not proceed through reduction of some basal level, but through preventing the self-stimulations
of the proteins.

Scheme 2. Re-interpretation of the GATA-PU motif as a recip-

rocal inhibition of self-stimulation, in which basal transcription

frequencies are not regulated by specific factors.

A key parameter for modeling the revised mechanism
of inhibited activation, is the molecular association between
GATA1/2 and PU.1 (Fig.6A) [44]. This association corre-
sponds to a mutual sequestration preventing PU.1 from (i)
stimulating its own gene and (ii) inhibiting the GATA1/2
gene, and vice versa (Scheme 2). The set of equations cor-
responding to Scheme 2 reads

dx

dt
= b1 + a1

xf

K1 + xf
� r1 x (5a)

dy

dt
= b2 + a2

yf

K2 + yf
� r2 y (5b)

where xf and yf are the concentrations of molecules not
mutually interacting in x • y complexes. Given the time
scale separation between molecular interactions (very fast)
and gene expression dynamics (much slower) the free con-
centrations are simply given by non-di↵erential, algebraic
equations.

xf = x� x • y (5c)

yf = y � x • y (5d)

where the complex is given by

x • y =
1

2

h
D + x + y �

p
(D + x + y)2 � 4xy

i
(5e)

where D is the equilibrium dimerisation constant be-
tween x and y. The exponents n in the classical model-
ing of Eq.(4) are Hill coe�cients describing molecular co-
operativity, whose values are generally chosen for conve-
nience. Arbitrarily increasing Hill’s coe�cients is an easy
way to accentuate the relief of epigenetic landscapes, but
this twist is poorly justifiable in practice in the absence of
precise quantitative data. By contrast, the simple mecha-
nism of mutual sequestration is both biologically relevant
and su�cient to provide the nonlinearity necessary for mul-
tistability, whether or not the TFs work as monomers or

preformed dimers. Concretely, the production functions in
the di↵erential equations are unchanged but the TF concen-
trations should just be replaced by their free concentrations
(xf and yf ). The roles of GATA1/2 and PU.1 are supposed
to be symmetrical with identical parameters for both genes
(a1 = a2, b1 = b2, K1 = K2 and r1 = r2). Unlike the
unidimensional evolution system Eq.(3), not any di↵erential
system in higher dimension may be described from a simple
scalar-valued potential function. When a Lyapunov function
exists however, it provides directly a scalar characterization
of the attractive behavior of steady states and thus enables
drawing of a landscape. This is the case for example for any
gradient-like systems. More generally, one may try to take
into account the Hamiltonian part of the dynamics, however
this is not clear how to use the Hodge-Helmholtz-like decom-
positions to draw then a Waddington landscape [50, 20]. A
general overview of landscape theories is available from [51].
An alternative approach is based on the probabilistic point
of view and concerns the Freidlin-Wentzell theorem in the
large deviations theory for invariant measures of stochas-
tic convection-di↵usion processes [52]. In the phase space
(x, y), we consider many trajectories of the deterministic
system Eq.(5) perturbated with a small brownian motion.
These trajectories, as random variables, evolve according to
a stochastic di↵erential equation (SDE) and their probabil-
ity density p follows the corresponding Fokker-Planck equa-
tion, also known as Kolmogorov forward equation. This is
the following partial di↵erential equation (PDE)

@p

@t
+

@(Xp)

@x
+

@(Y p)

@y
= ✏

✓
@2p

@x2
+

@2p

@y2

◆
(6)

where the dynamical drift field X(x, y), Y (x, y) corresponds
to the respective right-hand sides in Eq.(5) and the di↵usive
term in the right-hand-side takes into account the random
processes and thus renders the mean e↵ect of possible noise.
In large time, under some conditions on the field (X, Y ),
most of the random trajectories of the SDE accumulates
close to attractive steady states or singular trajectories of
the dynamical system Eq.(5). They then evolve finally only
through a fine balance between the brownian process and
the deterministic dynamics. At the level of the PDE, the
probability density p then becomes independent of time and
converges to the so-called invariant measure of the stochas-
tic process. By simulating the convection-di↵usion PDE
Eq.(6), we compute numerically this invariant measure to
obtain its values at any point of the phase space (x, y). This
probability appears to be a useful tool to figure out the
multistable landscape. It concentrates to high values in the
neighborhood of such points but vanishes close to repulsing
points. The probability in Fig.6B is obtained using a finite
di↵erence scheme to solve the PDE Eq.(6) over the domain
[0, 10]⇥ [0, 10] in (x, y) and over [0, 10] in the time variable.
A sketch of that code is available in the appendix A. The

9

Figure 5.1: Reciprocal inhibition of self-stimulation with no specific regulation of the basal
transcription frequencies.
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To model these mechanisms, we study the following differential system:

dx

dt
= b1 + a1

xf
K1 + xf

− r1 x

dy

dt
= b2 + a2

yf
K2 + yf

− r2 y

(5.1a)

where xf and yf are the concentrations of molecules not mutually interacting, because
sequestrated in x•y complexes. Given the time scale separation between molecular interactions
(very fast) and gene expression dynamics (much slower) the free concentrations are simply
given by non-differential, algebraic equations, thus we have the free quantities

xf = x− x • y

yf = y − x • y
(5.1b)

and the sequestrated complex is given by

x • y = 1
2

[
(D + x+ y −

√
(D + x+ y)2 − 4xy

]
. (5.1c)

The constant D is the equilibrium dimerisation constant between x and y. In the further
presentation and the numerical simulations, the roles of GATA1/2 and PU.1 are supposed
to be symmetric with identical parameters for both genes (a1 = a2, b1 = b2, K1 = K2 and
r1 = r2).

Waddington epigenetic landscapes In parameterized dynamical systems, the analysis of
bifurcations in the multistability landscape are important to correctly understand the possible
behaviors of the concrete (non-deterministic) system. The dedicated tool for this study is
the Waddington landscape, long envisioned as the ideal framework for conceptualizing cell
differentiation and development. An epigenetic landscape, in the sense initiated by Wadding-
ton [Wad14], is a n-dimensional potential surface shaped by the mutual compatibility or
incompatibility of the concentrations of the n cellular components, and modulated by the
action of the genes. We reproduce hereafter on Figure 5.2 the nice pictures and heuristic
proposed by Waddington. We refer also to the Wikipedia entry "Epigenetics" [Wik23] for
more about the subject.

Strategy We propose hereafter a short informal discussion to present the methodology
used to compute quasi-potential landscapes associated to the differential system (5.1). For
mathematical results, the interested reader can refer to [FW12] or the other references
hereafter.

Unlike unidimensional evolution system, not any differential system in higher dimension
may be described from a simple scalar-valued potential function. When a Lyapunov function
however exist, it may directly provide a scalar characterization of the attractive behavior
of steady states and thus enables the possibility to draw a landscape. This is the case for
example for any gradient-like systems. More generally, one may try to take into account
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some extent. Consider a more or less flat, or rather undulating, 
surface, which is tilted so that points representing later states are 
lower than those representing earlier ones (Fig. 4). Then if some-
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. 

FIGURE 4 
Part of an Epigenetic Landscape. The path followed by the ball, as 
it rolls down towards the spectator, corresponds to the develop-
mental history of a particular part of the egg. There is first an 
alternative, towards the right or the lefi:. Along the former path, 
a second alternative is offered; along the path to the left, the 
main channel continues leftwards, but there is an alternative path 

which, however, can only be reached over a threshold. 

thing, such as a ball, were placed on the surface it would run down 
towards some final end state at the bottom edge. There are, of 
course, not enough dimensions available along the bottom edge 
to specify all the components in these end states, but we can, very 
diagrammatically, mark along it one positi0n to correspond, say, 
to the eye, and another to the brain, a third to the spinal cord, and 
so on for each type of tissue or organ. Similarly, along the top 
edge we can suppose that the points represent different cyto-
plasmic states in the various parts of the egg. Or we could rep-
resent the various different initial conditions by imagining various 
degrees of bias on the balls which are to run across the surface ( c£ 
Waddington 1954b, Fig. 2). 

Figure 5.2: Excerpts from the work of Waddington [Wad14].
Copyright © 1957 George Allen & Unwin Ltd. All rights reserved.
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the hamiltonian part of the dynamics, however this is not clear how to use the Hodge-
Helmholtz-like decompositions to draw then a Waddington landscape [WZX+11; Wan15;
Hua12; ZAA+12]. A very nice general overview of landscape theories with quasi-potentials is
also available from Zhou and Li [ZL16].

The alternative selected approach is based on the probabilistic point of view and concerns
the Freidlin and Wentzell [FW12] large deviations principle for invariant measures of stochastic
convection-diffusion processes. In the phase space (x, y), we consider many trajectories of
the deterministic system (5.1) perturbated with a small brownian motion. These trajectories,
as random variables, evolve according to a stochastic differential equation (SDE) and their
probability density p(t, x, y) follows the corresponding Fokker-Planck equation, also known as
Kolmogorov forward equation:

∂p

∂t
+ ∂(Xp)

∂x
+ ∂(Y p)

∂y
= ε∆x,yp. (5.2)

Here the dynamical drift field X(x, y), Y (x, y) corresponds to the respective right-hand sides
in (5.1) and the diffusive term in the right-hand-side takes into account isotropically the
random brownian processes, thus rendering the mean effect of possible perturbations. In large
time, depending on the structure of the vector field (x, y) 7→ (X,Y ), most of the random
trajectories of the SDE accumulates close to attractive steady states or singular trajectories
of the dynamical system (5.1). They then evolves finally only through a fine balance between
the brownian process and the deterministic dynamic. At the level of the PDE, the probability
density p then becomes independent of time and converges to the so-called invariant measure
of the stochastic process.

Figure 5.3: Invariant measure for the GATA1/2 (x): PU.1 (y) circuit. Bistable configuration
with low basal expression b = 1 (left). Monostable configuration with high basal expression
b = 4 (right).

The convection-diffusion PDE (5.2) is numerically processed, so as to identify the invariant
measure for a given set of parameters (see Figure 5.3). The steady state probability p can then
be used to figure out the landscape of multistable equilibria. It concentrates to high values
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(red) in the neighborhood of such points but vanishes close to repulsing points (violet). Some
deterministic trajectories of (5.1) are also represented on the same figure for a set of initial
data (black curves). The situation depicted is the following. For a high basal expression b = 4
there is monostability ("indecise" cell with equivalent coexpression of the proteins GATA1/2
and PU.1), but for a low basal expression b = 1 two equilibria coexist and the probability of
jump transition is also measured (pink bridge).

The transition from bistability to monostability is represented on Figure 5.4 with a
convenient "projection" of the 4D mapping: (x, y, b) 7→ p onto a 3D mapping: (x, b) 7→ p̃.

Figure 5.4: Projection of steady states on the axis of one of the variables as a function of b,
showing the switch from bi- to monostability when increasing b, for other parameters fixed.
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Titre : Méthodes de différences finies pour des problèmes hyperboliques avec bords : stabilité et analyse
multi-échelle

Résumé : Ce manuscrit d’habilitation à diriger
des recherches présente les travaux que j’ai ef-
fectués ces dernières années. Ils se concentrent
sur l’étude de la stabilité et sur l’analyse multi-
échelle de méthodes numériques de différences fi-
nies, mises en œuvre dans le cadre de l’approxi-
mation de problèmes hyperboliques linéaires avec
bords. Dans un tel contexte, différentes échelles
peuvent intervenir, liées par exemple aux phéno-
mènes de viscosité, de relaxation ou de discré-
tisation. À ces échelles, les interactions entre le
problème intérieur et le bord du domaine de cal-
cul sont alors susceptibles d’engendrer des effets
parasites inattendus, tels que des couches limites.
Elles nuisent souvent sévèrement aux propriétés
de stabilité dans l’asymptotique souhaitée et ré-
duisent parfois la qualité et la précision de l’approxi-
mation. Il apparaît alors crucial de discriminer et
d’écarter les situations pathologiques.

Les trois premiers chapitres portent succes-
sivement sur 1) la théorie générale de stabilité
pour le problème discret en domaine borné et la
vérification numérique de la condition de Kreiss-
Lopatinskii uniforme discrète, 2) la construction
et l’utilisation de développements asymptotiques
multi-échelles dans l’analyse de consistance au
bord, et 3) le caractère uniforme des propriétés de
stabilité au bord en présence d’une limite de relaxa-
tion.

Les deux chapitres finaux portent sur des as-
pects géométriques de l’asymptotique en temps
grand de systèmes dynamiques pour 4) des flots
de crochet isospectraux en dimension infinie, direc-
tement inspirés de la méthode QR d’approximation
spectrale de matrices, et 5) le calcul de paysages
de quasi-potentiels en biologie cellulaire, concer-
nant les propriétés de multistabilité dans les méca-
nismes de l’hématopoïèse.

Title: Finite difference methods for hyperbolic problems with boundaries: stability and multiscale analy-
sis

Abstract: This habilitation manuscript gathers the
work I have done in recent years. They mainly fo-
cus on the study of the stability and the multiscale
analysis of finite difference methods for the approx-
imation of linear hyperbolic problems with bound-
aries. In such a context, various scales are likely
to be present, related for example to the phenom-
ena of viscosity, relaxation or discretization. Then,
the interactions at these scales between the inte-
rior problem and the boundary of the computational
domain are liable for unexpected parasitic effects,
such as boundary layers. They often severely im-
pair the stability properties in the asymptotic pro-
cess and sometimes reduce the quality and the ac-
curacy of the approximation. Therefore, it appears
crucial to discriminate and rule out pathological sit-
uations.

The first three chapters relate successively
to 1) the general theory of stability for the dis-
crete problem in a bounded domain and the nu-
merical verification of the discrete uniform Kreiss-
Lopatinskii condition, 2) the construction and the
use of asymptotic multi-scale expansions for the
consistency analysis at the boundary, and 3) the
uniform character of boundary stability properties
in the presence of a relaxation limit.

The next two chapters deal with geometric as-
pects in the large-time asymptotic of dynamical
systems for 4) isospectral bracket flows in infinite
dimension, directly inspired by the QR method
for spectral approximation of matrices, and 5) the
computation of quasi-potential landscapes in cel-
lular biology, for the multistability properties in the
hematopoiesis mechanisms.
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