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Abstract

Recently released non-volatile main memory (NVMM), as fast and durable memory,
dramatically increases storage performance over traditional media (SSD, hard disk). A
substantial and unique property of NVMM is byte-addressability – complex memory
data structures, maintained with regular load/store instructions, can now resist machine
power-cycles, software faults or system crashes. However, correctly managing persis-
tence with the fine grain of memory instructions is laborious, with increased risk of
compromising data integrity and recovery at any misstep. Programming abstractions
from software libraries and support from language runtime and compilers are necessary
to avoid memory bugs that are exacerbated with persistence.

In this thesis, we address the challenges of supporting persistent memory in managed
language environments by introducing J-NVM, a framework to efficiently access NVMM
in Java. With J-NVM, we demonstrate how to design an efficient, simple and complete
interface to weave NVMM-devised persistence into object-oriented programming, while
remaining unobtrusive to the language runtime itself. In detail, J-NVM offers a fully-
fledged interface to persist plain Java objects using failure-atomic sections. This interface
relies internally on proxy objects that intermediate direct off-heap access to NVMM. The
framework also provides a library of highly-optimized persistent data types that resist
reboots and power failures. We evaluate J-NVM by implementing a persistent backend
for Infinispan, an industrial-grade data store. Our experimental results, obtained with a
TPC-B like benchmark and YCSB, show that J-NVM is consistently faster than other
approaches at accessing NVMM in Java.
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Preface

This thesis comes out as the fruition of the research I conducted from 2018 to 2022, under
the supervision of Pierre Sutra and Gaël Thomas, within the Parallel and Distributed
Systems (PDS) team at Télécom SudParis, and in the pursue of a Ph.D. in Computer
Science from the doctoral school of the Institut Polytechnique de Paris (IP Paris).

Research presented in this thesis. The starting point of this research was the
hope of harnessing looming persistent memory technology to provide faster durability in
big data applications, through novel Persistent Data Types (PDTs) – specialized data
structures and types that would manage data relative to their persistence property in
non-volatile memory.

For a topic that lies at the crossroads of persistent data management, object-oriented
programming, non-volatile memory and modern persistent memory programming; the
body of work that I went across when surveying existing research was rather dense.
Chapter 2 sums up the large majority of what I have learned over those years.

Our core contribution – J-NVM, presented throughout chapters 3 to 5, was published
in an international conference:

• J-NVM: Off-heap Persistent Objects in Java [210]. Anatole Lefort, Yohan
Pipereau, Kwabena Amponsem, Pierre Sutra, Gaël Thomas. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP), Virtual
Event, October 20211.

Later opportunities to present our work also appeared on many occasions. The most
notable were two international workshops: (i) at NVMW’22 in San Diego (CA), USA2,
(ii) and for HMEM’22, held in virtual format.

Last, we were extremely lucky to receive two prizes and awards for this work. (i) The
first prize for the Best Student Publication in ICTs for the “Plateau de Saclay” in 2022,
issued by Labex Digicosme, l’Université Paris-Saclay, et l’Institut Polytechnique de Paris.
(ii) I am also the winner of the 2022 Engineers of the Future Award - Engineers for
Research category3, issued by l’Usine Nouvelle.

Other research. For the first year of my Ph.D., I was also involved in a research
project with Alexey Gotsman from IMDEA Software, Madrid, Spain; where I had in-
terned before starting my Ph.D. The project itself was about a novel distributed protocol
for fault-tolerant genuine atomic multicast, that weaved paxos-like logic with traditional
multicast algorithm into a single cohesive protocol. Although not presented in this thesis
because clearly out of topic, this work was also published in an international conference:

1Our SOSP’21 talk is available at: https://youtu.be/6RcV9PSsub8
2Our NVMW’22 talk is available at: https://youtu.be/SChlHo7ShiI
3The TIF 3min video pitch: https://content.jwplatform.com/previews/VtPS3YnL

xi

https://youtu.be/6RcV9PSsub8
https://youtu.be/SChlHo7ShiI
https://content.jwplatform.com/previews/VtPS3YnL


• White-box Atomic Multicast [151]. Alexey Gotsman, Anatole Lefort, Gregory
Chockler. In Proceedings of the 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Portland (OR), USA, June 2019.
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Chapter 1

Introduction

1.1 Research Context

General context. Big data stores form the backbone of modern computing infras-
tructures. They support large data sets and enable processing frameworks to mine in-
formation from this data. They are designed for quick response and parallel computing
at unprecedented scale. Recent examples of such systems include in-memory databases,
NoSQL databases and key-value stores. The fact that storage device speeds and laten-
cies never caught up to that of main memory, now lagging behind by several orders of
magnitude, have long constituted a major setback to the architecture of these systems.

In such systems, although processing occurs in main memory, the authoritative ver-
sion of data is maintained on durable storage devices (SSD, disk) with significantly
slower access times. Keeping those two versions of the data mutually consistent through
synchronous operations to the persistent devices typically induce serious performance
and I/O bottlenecks. Asynchronous persistence has grown very popular for this very
reason, in spite of the degraded durability guarantees it provides and the complexity of
the algorithms it requires. In addition, because of this dichotomy between memory and
durable storage, data stores are bound to spend tons of time on reboot before being able
to resume normal operation. In cause, the need to reconstruct previous states in main
memory, or to repopulate a data cache. This boot-up phase then is so long because it
involves copying from disk to DRAM a partition of the data, in order to avoid sluggish
query processing right after recovering from a system failure.

The advent of NVMM. In 2015, Intel made a shaking announcement for their Op-
tane Persistent Memory product lineup. The first commercially-available Non-volatile
Main Memory (NVMM) technology to offer byte-grain direct access to data on the mem-
ory bus – identical to DRAM – but with up to 8x larger capacities and most importantly,
non-volatility of the resident data – much like storage devices. Such a technology, that
combines DRAM-like accesses and performance, with storage’s durability, has potential
to completely redefine the role and architecture of storage systems; by presenting novel
and singular opportunities for fine-grained data persistence in applications.

Non-volatile Main Memory (NVMM), by their recent advent, also came to challenge
the relevance of the traditional file abstraction and its data persistence interface. The
very ones that system software had been exposing for decades and that nearly all appli-
cations were built from. In cause, the very simple fact, that present NVMM technology
have raw access latencies only 2 to 3x higher than DRAM, meaning a range of operation

1
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comprised in the 100ns to 300ns. A range that file systems are simply unable to deliver,
suffering from decades-long buildups of cluttering optimizations, with in mind rotational,
sector-based mechanical drives, that operate on the millisecond scale, far away from the
sub-microsecond scale. One may still notice improved performance over SSDs when us-
ing NVMM as regular block-based storage media with file operations, however, NVMM
true and full potential lies with direct-access mode.

In direct-access mode, applications can use memory instructions to access and manage
NVMM-resident data at unrivaled speeds – completely by-passing the OS I/O subsys-
tem. That is because NVMM-resident data are directly processor addressable, meaning
Optane products are effectively the very first ones able to erase the memory/storage di-
chotomy in commodity appliances. Imaginably, NVMM introduction in storage systems
could suppress the dual representation of data and lead to extremely reduced recovery
times, along with a signification reduction and simplification of their code bases, and
finally, better overall throughput or response times.

Conversely, direct-access also burdens applications with new responsibilities regard-
ing data persistence. The consistency and integrity of persisted data, relative to potential
system or software faults, now have to be fully assumed by user-level code. Were a crash
to occur, system software stacks would no longer be of any help to ensure a consistent
version of data is recovered. This is not easily achieved: as one might recall, current
machine architectures feature volatile CPU caches and relaxed memory models. Which
entails that, (i) nothing can prevent stores to memory locations from being evicted from
caches and reaching NVMM prematurely (implicit flushes), or that (ii) hardware dictates
the order in which memory stores are evicted from caches and reach NVMM. Overall,
a situation in which any memory store could reach NVMM at almost any point of time
and irrespective of program order.

In response, Intel extended their ISA for persistent memory and included revised in-
struction semantics or new instructions for persistence. Their newly formed (architecture-
level) programming model for persistent memory presents instructions (flush) to request
asynchronous write-back of a specific memory location and another (fence) to establish
happens-before relationships between different flushes.

The point is that existing in-memory algorithms, such as data structures, are ab-
solutely unable to operate over NVMM and recover a consistent state in the wake of
a crash, without first being manually amended with flushes and fences. Even though
some expert programmers might feasibly fulfill the task, it remains an ordeal for their
patience and skills. Furthermore, this low-level programming model abidingly leads to
brittle persistence in programs. Any misplaced flush or fence instruction can cause novel
bugs, that silently put the whole data in jeopardy. Simply consider that persistence
exacerbate memory bugs, since memory leaks or heap corruption are now permanent.

About this thesis. In this thesis, we surf on the Optane craze, and dully note that the
bulk of the effort to alleviate complexity of NVMM programming concentrates towards
native languages (C, C++, etc), and almost completely forgoes managed languages, as
Java. A peculiar observation, considered that Java and its ecosystem stand as major
players in the big data world – many modern data stores, data analytics or process-
ing frameworks are indeed written in Java. All of them could immensely benefit from
NVMM, yet, no efficient and readily-applicable way of addressing NVMM in Java exists
presently.

Our perception, is that bringing the full potential of NVMM to Java could unlock a
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new kind of fine-grained and game changing persistence to a plethora of applications. At
the same time, high-level languages, and in particular object-oriented idioms, look like
robust candidates to intuitively intertwine the notion of persistent or recoverable data
in programs, effectively abstracting away the programming burden of NVMM.

1.2 Motivation and research problems

1.2.1 Language-level support for NVMM persistence

Until recently volatile media were order of magnitude faster than persistent ones. This
fundamental difference much impacted the way systems are architectured.

Recent advances in persistent memory technology promise to re-shuffle the cards. In
particular, non-volatile main memory (NVMM) is a byte-addressable memory that pre-
serves its content after a power outage. It provides durability with memory performance
similar to DRAM, offering the promise of a dramatic increase in storage performance.

To harvest the benefits of NVMM, it is key to integrate it with programming lan-
guages. This matters notably for languages used in the design of the distributed storage
systems at heart of nowadays computer infrastructures. Such an integration is however
challenging because managed object-oriented languages are complex software runtimes
which inherit from decades of refinements and optimizations. This thesis tackles the
problem of integrating NVMM with the Java language.

1.2.2 No viable solution for Java

To date, approaches that integrate NVMM with Java use it as a mass storage medium
accessible through a file system interface [2, 184, 332], address it through the Java native
interface (JNI) [16, 249], or transparently make part of the Java heap persistent [288, 329].
As detailed next, such approaches are generic and unsatisfactory for several reasons.

• The file system and JNI approaches maintain dual representations of data, one
in-memory and another on NVMM. This requires to continuously marshal objects
back and forth between the persistent and the volatile memory. In particular,
complex software mechanisms are necessary to keep the two representations mu-
tually consistent. We demonstrate that (§5.3), these software costs (marshaling +
consistency), although insignificant with prior storage media, came to be serious
bottlenecks with the advent of NVMM devices.

• The integrated design solves the dual representation problem: plain Java objects
are directly and durably stored in NVMM. Through NVMM byte-addressability,
persisted objects are directly accessible with memory read and write instructions.
Durable data thus no longer need to be copied over by the application from the
storage media in to memory to be manipulated. However, total integration requires
significant and impractical modifications to the Java virtual machine (JVM), and
comes with several performance limitations and reliability concerns whose are de-
tailed next.

Garbage collection (GC). First, integrating persistent objects on the Java heap
means they have to be garbage collected. We show (§3.2) that garbage collecting just
80 GB can degrade by 3 the completion time, yet NVMM is expected to host hundreds of
GBs to TBs of data. Further, we report after studying several NVMM-ready data stores
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that persistent objects however are often deleted in a very limited number of places.
Altogether, the use of garbage collection for persistent objects seems unneeded.

Orthogonal Persistence. Second, the integrated design lacks static persistent
types and relies on Java bytecodes instrumentation to transparently check whether an
object is allocated on volatile or persistent memory at runtime. In detail, Shull et al. [288]
register a 51% slow down when not even actually using NVMM. (9% with a subsequent
compiler optimization [289]) Furthermore, when persistent states in the application are
not made obvious by types, neither the developer nor the compiler can easily identify
bugs since they occur at runtime [92, 220]. Mistaking a volatile object for a persistent
one leads to data loss, the opposite to a non-volatile memory leak. Instead of silently
loosing data or memory, the runtime should provide help to prevent these situations.

1.2.3 Research problem statement

Thus, at present, there is a real need for a proper Java-native solution to accessing
NVMM. Until then, no heavy data processing workload in managed environment could
feasibly harness the full potential of NVMM and benefit from it.

In particular, an appropriate solution would be one that: (i) does not induce any
software overhead when accessing persistent memory locations. (ii) knows no limitation
tied to NVMM large capacities and heap management (iii) has minimal performance
impact in crash-free executions. (iv) is safe and empowering for programmers, that leaves
them in-control, while it abstracts the complexity of failure-atomicity with object-oriented
idioms.

In contrast, the integrated design offers direct NVMM access but it trades in code
simplicity for performance penalty (GC + code instrumentation) and potential reliability
issues.

1.3 Contributions

1.3.1 Key insights

In this thesis, we proposes to remedy these shortcomings by keeping NVMM outside
the Java heap to avoid costly garbage collection while retaining direct NVMM access
as in the integrated design. To this end, we introduce a decoupling principle between
the data structure of a persistent object and its representation in the JVM. Specifically,
persistent objects are separated into a data structure that is stored off-heap on NVMM
and a proxy Java object that remains on-heap in volatile memory. The data structure
holds the fields of the persistent object, while the volatile proxy acts as a gateway to the
durable off-heap data structure and implements the methods of the persistent object.
With this design, durable data remains outside the Java heap (using a dedicated memory
layout), and thus cannot be collected by the Java runtime. The dual representation of
data is also avoided thanks to a JVM interface that inlines the low-level instructions that
access NVMM directly from Java methods.

1.3.2 J-NVM, J-PDT, P-PFA and JNVM-Transformer

These key ideas are implemented in the J-NVM framework [210], a lightweight pure-Java
library that runs on the Hotspot 8 JVM with the minimal addition of three NVMM-
specific instructions (pwb, pfence and psync [174]).
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J-NVM is a low-level interface that focuses on efficient proxy and memory manipula-
tion. Namely, the bare logic to instantiate and destroy persistent objects and efficiently
access their fields. In order to ensure recoverability and crash-consistency of durable
data through simple programming abstractions, we build up from J-NVM two higher
level interfaces: J-PFA and J-PDT.

• J-PFA provides failure-atomic blocks of code, i.e., a generic way of making any
code crash consistent.

• J-PDT is a collection of hand-crafted crash-consistent data structures for NVMM
(e.g., arrays, maps, trees), which do not rely on J-PFA for performance.

Moreover, because J-NVM relies on explicit persistent types, we provide an auto-
mated way of making Java objects persistent with the addition of a single class annota-
tion. Indeed, we include a java code transformer to automatically enhance and decouple
legacy Java classes into a persistent data structure and a volatile proxy object. It is
implemented as an off-line Java bytecode to bytecode post-compilation transformation
plugin integrated in the application build system. It scans for annotated classes and
applies the transformation for each one, while accounting and preserving user-defined
functionality in any class hierarchy.

1.3.3 Experimental results and findings.

We evaluate J-NVM by implementing several persistent backends for Infinispan [229] -
and industrial-grade data store - and test them on a TPC-B like workload [9] as well as
the YCSB benchmark [99]. These implementations are available at [209]. We compare
the performance (§5.2) on the YCSB workloads for backends based on J-PFA and J-PDT,
the original file-system approach FS sitting atop DAX-ext4, as well as a backend based on
PCJ that uses internally the Intel PMDK [19] through the Java Native Interface. J-NVM
is significantly more efficient than prior approaches, at least one order of magnitude
faster.
Throughout our evaluation campaign, we show that:

• Both the J-PDT and J-PFA systematically outperform the external design. In
YCSB, J-PDT is at least 10.5x faster than FS or PCJ, except in a single case
where it is only 3.6x faster.

• While the failure-atomic blocks of J-PFA offer an all-around solution, J-PDT, with
its hand-crafted persistent data types, executes up to 65% faster. Compared to
the Volatile implementation, J-PDT is only 45-50% slower.

• Integrating NVMM in the language runtime hurts performance due to the cost of
garbage-collecting the persistent objects. For a Redis-like application written with
go-pmem [143], increasing the persistent dataset from 0.3 GB to 151 GB multiplies
the completion time of YCSB-F by 3.4

Other relevant insights from the performance analysis of J-NVM are as follows:
Marshalling. The low performance of FS comes from (un)marshalling operations

to move the persistent objects back and forth between their file and Java representation.
PCJ is highly impacted by the cost of JNI calls to escape the Java world. These opera-
tions were commonly used and had no significant impact with slower storage media, but
can now be bottlenecks with NVMM and should be avoided where possible.
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Caching. We observe in the YCSB benchmark that J-PDT does not benefit from
caching. Indeed, because data is accessed directly and only proxies are kept in the cache,
increasing the cache ratio has almost no impact on read or update latencies.

Recovery. The performance of the recovery procedure is evaluated with a TPC-
B like (transactional) workload. J-PFA recovers about 4.7x faster than FS and up to
8.6x faster with a recovery optimization possible for purely transactional workloads.
Conversely, FS has to repopulate the 10% in-memory cache eagerly on recovery when
J-PFA can only recreate proxies lazily with much less NVMM bandwidth usage.

1.4 Thesis Outline

The remainder of this document organizes as follows:

Chapter 2 provides background material on persistence abstractions, programming chal-
lenges with NVMM, and the present state of NVMM support and techniques for
failure-atomicity (first broadly, then in the specific case of Java). In particular,
since NVMM media have only been available for a few years, we ought to examine
them in lengths, and present the ample body of knowledge surrounding this novel
technology.

Chapter 3 defines the programming model of our contribution, and in essence, how it
pragmatically erases limitations of anterior proposals, to then provide base blocks
for high-level NVMM programming with negligible overhead compared to native
languages.

Chapter 4 describes the core of our contributions. In order, the system design and
internals of the J-NVM library, our methodology to build efficient and recoverable
data structures (J-PDT), our implementation of failure-atomic generic sections of
code (J-PFA), and last, our bytecode enhancement tool that generates persistent
objects from regular POJOs (JNVM-Transformer).

Chapter 5 presents a performance evaluation of our contributions: J-NVM, J-PDT and
J-PFA. We compare them to the publicly available solutions for NVMM persistence
in Java (file system and PMDK through JNI).

Chapter 6 concludes this thesis with a summary of our work and suggestions for future
research directions.



Chapter 2

Persistence, Non-Volatile Memory
and Java
Non-volatile main memory (NVMM) presents new opportunities for data persistence in
applications. At core, it offers fine grain access to durable data at the level of memory
instructions. However with NVMM, programs are also directly liable for data consistency
in face of crashes. Integrating the notion of persistence into programming languages, such
as Java, can make NVMM easier to use and applicable to a broader range.

NVMM is such a recent addition to commodity servers that we assuredly cannot
delve into language-level integration challenges first hand. First, we have to review
its subtle inner properties and tedious programming model. Furthermore, entangling
persistence with programming languages demands interface design to be on-point with
the user needs. For that, we must also delaminate past or present-day, failed or successful
persistence facilities, so as to shape pragmatic and useful NVMM support software.

In this chapter, we propose to examine all of the above to then formulate requirements
for satisfactory NVMM persistence facilities in Java. To this end, we organize the chapter
as follows:
(§2.1) We present the notion of data persistence.
(§2.2) We go over historical solutions, and focus on traits that made them last long-term.
(§2.3) We introduce early schemes for software-based persistent memory. They were

made for spinning drives, but laid persistence abstractions we might be tempted
to relight.

(§2.4) We examine NVMM, how it compares to software persistent memory, and hardware
properties that settles it further away from DRAM than we all anticipated.

(§2.5) We detail several active or prospective application domains of NVMM, while trying
to get insight on user needs and expectations.

(§2.6) We stop on the low-level aspects of NVMM programming, to understand intrinsic
challenges, correctness properties in faulty executions and why solutions have to
differ from the ones established using traditional durable media.

(§2.7) We inspect existing and proposed programming abstractions for NVMM that sim-
plify reasoning about recovery. We also stay alert about support they expect or
assume from language execution environments.

(§2.8) We finally review industrial and academic work addressing NVMM persistence in
Java. Doing so, we shed light on the fact that none of them properly address every
essential attribute we establish from the preceding sections, for Java-level support
of data persistence on NVMM.

(Table 2.4) We provide a comparison of NVMM support libraries and their features (failure-
atomicity, model applicability, and NVMM efficiency).

7
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2.1 Notion of data persistence

From the early days’ punch cards to modern flash memories, forms of permanent storage
have commonly been used by computer systems to operate on digital data. Regardless
of the decade and technology, input and output data along with computer programs
have all been stored on media where they could survive power cycles of the processing
unit. This stemmed from the need in data processing for long term data storage, data
portability and system interoperability.

Storage is certainly a central components of computer systems and present-day big
data stores form the back bone of modern computing infrastructures. Yet, applications
remained accountable for the proper handling of their transient state residing in-memory,
in relationship to their authoritative state that stayed persistent on durable media. In-
teracting with durable storage have consequently been a major research concern with
the recurring aim of providing painless ways of reading and writing bytes on non-volatile
media in both an efficient and safe way. Fortunately enough, we now have abstractions
to reliably manage, logically organize or share stored data. Yet, we have not completely
strayed away from some archaic and unsafe ways. For instance, consider that programs
may still have to ingest and process stored data from a stream of homogeneous and
untyped bytes. Altering data on durable storage must also be done by applications in
account with the potential system failures and program crashes that may occur while
the durable media is being written to.

The notion of data persistence then emerged as a more reasonable way of envisioning
the interplay with storage from a application design perspective.

Def. Persistence, for Atkinson et al. [46], is thought of as a property of the data, in that
it characterizes their ability to outlive instances of a program. In turn, a piece of
data remains persistent for the extent of time during which it may be recalled and
used by a program.

In practice, this often results in the ability to denote or allocate data as persistent
from within the programming language, where the data is also given structure. The clear
benefit of which is supporting the system by abstracting away the storage from the pro-
grammer and instead providing them with an array of tools and APIs to manage durable
data. With persistent data denoted, the programmer no longer has to do the heavy lift-
ing, which is then deferred to a library, a language runtime and compiler or even the
operating system. Therefore, the programmer needs only to be trusted with the marking
of consistent states of the persistent data throughout the execution, to preserve the ap-
plication logic, in respect to potential failures. The underlying persistence abstractions
can in turn work out the recovery and eviction of the durable data accordingly.

Research has led to the inception of various abstractions following these principles,
with resulting schemes for data persistence occurring at different levels of the system
software stack. (§2.2) The next following sections detail them along with historical
background and solutions.

2.2 Early Works & Historical Solutions

For decades now, computer systems have been relying on memory technology that was
volatile, meaning their content did not carry over subsequent power cycles. As early
as the 1970s, volatile semiconductor memory superseded the dominant technology and
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could since then be found in computer memory as DRAM, of large capacity used for
main memory, or as faster but more expensive SRAM, found in CPU caches. Their
massive adoption, because of improved performance over former technologies, also deeply
grounded the fact that data in computer memory were only transient. Typical durable
data storage devices such as tape, hard disk, or flash, were also order of magnitude slower
than memory. Therefore, efficient data processing demanded memory and storage to be
tiered. The transient nature of memory effectively made it, in that hierarchy, a scratch
space on which processing occurs using a temporary working copy of the persistent data
found on storage devices.

Moreover, storage devices have not only just been slower than memory but feature
much different access patterns as a whole, since they are sequential and block-based for
the most part. As such, working with stored data is then typically done with large grain
operations and using hardware-fitting algorithm in order to maximize device bandwidth
and endurance. In contrast, in-memory data can be manipulated with very fine grain,
in a highly concurrent manner, and kept organized in data structures carefully tuned to
optimize program decisive operations.

Persistence in systems has thus historically been shaped around these two overarching
facts:

• In-memory data does not need to remain consistent at any point of time. Because
main memory is swept across system reboots, it can only act as a temporary cache
and in-memory data structures will not be recovered. Consequently, systems have
abused this property to perform optimizations. For instance by allowing reordering
of memory instructions from the program order on non-conflicting data.

• Durable data consistency can be managed with very complex algorithms. Indeed,
storage being orders of magnitude slower than memory, protocols for crash-consistency
can maintain and update as much volatile metadata as they want before affecting
storage response times. Transactional systems have leveraged this fact to pro-
vide a full spectrum of very useful guarantees, supported by extremely complex
in-memory data structures. In addition, systems have also been used to perform
tons of preprocessing on the data before issuing commands to input/output storage
devices. As such, data is commonly transformed and laid out in a more compact
format to reduce the impact on device bandwidth, and carefully arranged on the
device to minimize latency of subsequent read or writes or prolong the device en-
durance. Data also often pass through multiple distinct buffers in memory to be
coalesced into blocks that can be written to the device.

With all that considered, durable data management in systems have grown into a
confusing stack of cluttering optimizations aiming at utilizing better the hardware for
performance, but not directly serving towards data persistence. In the light of these
architectural concerns, clearly, past research on data persistence might not be of much
technical use to present-day persistent memory technologies, considering that they do
not fit in the current memory hierarchy. Nonetheless, understanding older research on
persistence will be useful to pinpoint where persistent memory may stand to benefit the
most modern data processing systems. Hence, we revisit literature from the past with
the underlying aim of designing successful abstractions for current persistent memory.
Precisely, which features were crucial for some abstractions to pass the test of time, and
among the ones that did not make it to this day, which ideas could be rekindled or
definitively forsaken.
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(§2.2.1) We begin with the concept of single-level store - a pioneering tentative of
uniformly integrating main memory and persistent storage in a single coherent virtual
address space. After that, we continue with the file systems (§2.2.2) and databases
(§2.2.3), that have been the two ubiquitous interface for persistence in the span of the
last decades. (§2.2.4) We close this section with persistent object systems, that bring
persistence in object-oriented programming through database-like operations and trans-
actions. We note that the outline for this historical tour on data persistence is taken
from Seltzer et al. [283], who analyze how NVMM differs from traditional approaches
to persist data.

2.2.1 Single-level store

The first instances of persistence as an abstraction goes back at least to the concept
of single-level store (SLS). The single-level store builds on virtual memory to erase the
distinction between main and secondary memory (e.g., on-disk storage); allowing pro-
cesses to envision and handle data, whether volatile or persistent, in the same way. In
practical terms, applications consistently access all of their data from main memory, by
following pointers. For that, any combination of memory and storage is automatically
tiered and uniformly presented in the processes’ address space. When accessed data is
in effect missing from main memory, the operating system transparently fetches it from
disk; and conversely, data written to memory is transparently written back to disk even-
tually. From a high-level, it enables developers to write applications as if they never
crash, and to omit code for persistence and recovery. From the system’s perspective, the
whole application state - which is for the most part its memory content - is transparently
persisted. In that, SLS conceptually places data persistence as a service provided by the
operating system.

The Atlas computer [136, 196] from the University of Manchester was the first
system to implement the idea of integrating main memory with secondary storage seam-
lessly together. For economical reasons, Atlas employed jointly a small expensive core
memory and a magnetic-drum store, but it eliminated the inconvenience of that ar-
rangement by making transfers completely automatic. At the cost of an effective loss in
machine speed, non-expert machine users were as such relieved from the time consuming
task of programming transfers between the two types of stores. Unifying memory also
made programs portable on machines with different memory divisions, and able to auto-
matically take advantage of additional fast core memory. Kilburn et al. even recognized
the broader applicability of the technique as they wrote: « [...] the paper describes an
automatic system which in principle can be applied to any combination of two storage
systems so that the combination can be regarded by the machine user as a single level »
[196].

Atlas forms a virtual memory restricted to computational purposes, akin to modern
paging and swap, and it consequently still requires a dedicated memory for long-term
data storage. As the Multics designers pointed out, this results in the duplication of
mechanisms for disk space organization, protection, and incurs a lot of copying between
the virtual memory and the backing storage. This observation led them to the design of
a new store that directly addresses any physical storage location and allows to control
how information is shared among processes. Designed the mid 1960s, Multics [250]
leverages a technique now commonly termed virtual memory to introduce persistence
in SLS: « the Multics user no longer uses files; instead he references all information as



2.2. EARLY WORKS & HISTORICAL SOLUTIONS 11

segments, which are directly accessible to his programs » [58].
The store can be seen as a single uniform persistent virtual memory [58, 107]. In de-

tail, data is accessed in Multics through "segments", that are linear arrays of information
referenced by symbolic names and directly processor addressable. These symbolic names
are permanent and hierarchically combined to form unique paths to the data segments
entries. Each entry is associated with a set of attributes to denote user capabilities over
the segment and provide access control lists (ACLs). When users reference any segment,
they are checked by hardware and software to provide controlled access to the data. By
design, users need not to know the device or physical address of the data for it to be
mapped and addressable through the virtual memory. Reading or writing to a particular
address of a segment materializes the associated page and disk block into main memory
synchronously. Conversely, alterations made to pages in main memory are written back
to the disk asynchronously by the kernel at some later time.

In effect, Multics and its virtual memory design pioneered the integration of volatile
and durable media behind a single-level cohesive address space with support for persistent
data. With no prevailing standards at the time, its designers experimented and extended
the ideas from Atlas with two fundamental concepts tied to persistence: naming and
protection of the data. Even though the innovative idea of transparently managing
persistence using the paging system consisted in a powerful abstraction for programmers,
it remained insufficient in meeting the requirements of some applications. Precisely, when
programmers would purposely carefully order disk writes to provide strong consistency
over durable data, with the aim of preventing corruption or cleanly recovering corrupted
data from a system interruption. It turns out that this is simply not achievable in this
model, as noted in [152]: « Because the ordering of the actual disk writes bears no
relation to the ordering of the modification of the pages, [...], it is impossible to place an
ordering on the modifications that actually appear in the disk file. »

Eventually, the Multics designers provided a supervisor call to force all altered pages
to disk. It was effective but expensive and breached the supposed transparency, contra-
dicting the whole architecture of the Multics virtual memory. « That "file sync" was
necessary admits of a major flaw in the design. » [152].

Flash forward to present times, and hierarchical name spaces or access control lists are
found in virtually every file system on every modern operating system. Modern Unix-
like and Windows operating systems also support a restricted form of Multics’ virtual
memory abstraction through memory-mapped files.

We will see in §2.4 that modern persistent memory still rely on this abstraction, with
challenges reminiscently resemblant to those of Multics’ memory-addressed storage.

The SLS idea was not abandoned with Multics, but carried over in the design of
persistent object systems and later object-oriented databases that are discussed in §2.2.4.
Before though, we must mention file systems and databases to call up their specificities
towards data persistence, after which, we will resume this discussion.

2.2.2 File systems

File systems historically dominate, from the 80s onward, the management of persistent
data. As underlined in §2.2, following the adoption of fast semiconductor memories,
secondary storage media became largely block-based. With that arose the need to address
the sequential nature and larger access grain of these devices.
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This complexity is dissimulated with a layering of storage mechanisms in the oper-
ating system, all hidden behind a file abstraction and its rigid I/O interface. In detail,
(performance) Caching mechanisms to coalesce individual data writes into write-back-
ready device blocks or to retain in memory often-accessed data; (sharing) Mechanisms
for proper scheduling of disk operations when multiple programs work with the same
device; and (resilience) Mechanisms for the building of complex storage hierarchies
and disk arrays engineered to aggregate spinning drives bandwidth while covering for
potential hardware-failure-incurred data loss. In this thesis, we do not cover the inter-
nals of these mechanisms, but rather only say they have been extremely useful, awfully
complex, and definitely system-specific problems - not applicative issues. Instead, we
are rather interested with the implications of the file system and block-device interfaces
on the user’s perspective.

The file interface addresses the naming and protection of durable data similarly to the
SLS. For the same purpose of referencing and multiplexing access to stored data, it relies
on a permanent (on-disk) logical name space to reference files and per-entry permissions
to provide ACLs.

Unlike in the SLS design though, data persistence with files is not transparently
managed. In fact, it is quite exactly the opposite: users have to issue explicit interface
calls to retrieve data listed in files, or propagate changes to the files. The inner structure
of a file and the way data is laid out in it is as such fully defined by applications, which
need not to be concerned with where the actual physical data chunks resides on durable
media. The file system and block-device interfaces allow for a lot of flexibility in that,
programs have full control over: (i) how data are structured within files, and (ii) the
order in which data are accessed since device operations reflect the program order. Yet,
the underlying device nature and physical location of the data are completely abstracted
away from the users. This combination of flexibility and control may very well be the
reason for which time can now attest the success of the file abstraction.

Further, despite how cumbersome the file interface might look in comparison to single-
level stores, expert programmers are empowered with precise calls that allow them to
perform application-specific persistence optimizations. Users can well-tune on-disk data
layout or durable data manipulation algorithms to speed up the flow of specific appli-
cation paths, without interfering with the handling of data in the rest of the program.
In comparison the SLS took on the challenge of providing persistence orthogonally to
the logic and execution of the application and stripped programs from these data design
options. In turn, this leaves them with no choice but sticking with the in-memory repre-
sentation of the data established by the programming language compilers, and adopting
the one-size-fits-all write back and consistency patterns of the operating system. Re-
member that spinning drives are orders of magnitude slower than memory; optimizing
data movement on a per-application basis was highly desirable to provide swifter systems
with lower response times; not giving control over that was mostly a deal breaker for the
SLS.

These are the facts we take away from the file interface, and for which it was highly
favored and widely adopted over time. The file interface today knows limitations. The
apparent flexibility turns into a double-edged sword when deployed over faster hardware
storage devices, namely flash memories that are now capable of microsecond response
times. In cause is the direct lineage of file systems, that have engendered over time an
array of both system and user-level techniques carefully designed and layered on top of
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each other with millisecond-scale hardware in mind, with an overall resulting software
complexity simply too high for lower latency devices [55, 66].

Modern performance consideration aside, file systems have also faced more substantial
semantic shortcomings. Traditional file I/O do not provide any guarantees to the data
contained within files, in respect to system failures.

A file system needs only, to be deemed « correct », to ensure the resilience of its own
on-disk data structures and metadata. Not that this property is unimportant, it is even
critical to the integrity of the whole file system as well as of the user data. Corruption
in the metadata can prevent the file system from mounting, cause loss of entries (i.e.,
files, directories) and ultimately, loss of data. For these reasons, proper management of
metadata is paramount in file systems and various techniques, principally logging, are
applied to ensure they are fault tolerant.

However, since they are restricted to the inners of the file system, following the general
design philosophy, programs remained burdened with the implementation of their own
data safety and recovery logic. In general, the file interface does not offer facilities to
issue and execute multiple operations in an all-or-nothing manner over the data. That
being said, advanced modern file systems typically offer resilient user-data writes through
copy-on-write or logging [273] techniques.

All considered, the file abstraction consists more of a building block to access durable
media, than an abstraction to program data persistence. Through files, data is manip-
ulated unsafely as raw streams of untyped bytes, with no built-in safety, recovery or
transactional facilities. Incidently programs directly leveraging files are fully in charge of
the proper interpretation of durable bytes and must do the heavy lifting to reconstruct
a consistent application state from them.

In the light of these weaknesses, the file abstraction usage should really remain limited
to power users, and serve in the building of data storage services. Databases, that will
be discussed next, typically provide an interface to persisted data with richer structure
and semantics, and prevent inconsistent states originating from concurrent alterations
or system failures.

2.2.3 Databases

Databases, and especially relational databases which have been dominant as early as
the 80s, have been tremendously helpful in the building of software applications since
then. They are not simply external services that multiple programs can interact with
to fetch or store data, but fully data-centric systems. They were envisioned with the
primary goal of relieving programs from the painstaking task of managing their durable
or shared data.

Databases arrange data logically following a given model (e.g., relational). In partic-
ular, they offer a mean to model application data into database records, as user-defined
combination of database builtin types. This allows databases to view and interpret
fields of individual data records, unlike file systems that must treat whole file chunks as
black-boxes.

In comparison with the file interface, the database’s one is just as rigid but it offers a
much richer semantics. Remember that, with files, the user requests/emits a sequence of
raw untyped bytes from/to a given file at a given offset. That remains a fairly low-level
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approach, in the sense that, the program must retain knowledge of the file map, meaning
which data lives at which offset, and properly map the raw data bits to application in-
memory types and structures. In contrast, databases traditionally allow for data retrieval
or update through complex declarative query statements.

Data is no longer only accessed using uniquely defined symbolic names, as in a file
system name space, but is enhanced by the capabilities of the query language. The use
of external identifiers embedded in records may be leveraged to reference other pieces of
data, mimicking in-memory pointers. Thanks to the indexing of the data fields within
records, the database engine is able to support a query language that also allows for the
use of filtering or combining predicates. For a given request, this permits to identify
data by its characteristics and properties to selectively fetch/update part of it.

The white-box approach to the structure of data inside databases allows for internal
optimizations performed by the database engine, along with semantically-rich operations
performed by the user. The data space can even be dynamically reconfigured through
queries to the database management service. This allows, for instance, to migrate appli-
cation data from one model to another.

With a database, users need to specifically design and structure data records within
the model supported by the database. In this task, they might feel restrained by the
modeling power and expressiveness offered by the database. They must further bridge
the representation of data records in the database to the in-memory structures defined
and used in their programs. The two representations are in that mutually exclusive,
much like in the case of the file system. Furthermore, maintaining the two definitions of
the data records mutually compatible is prone to programming errors.

Despite the added complexity, databases have been historically a success and users
are still willful to organize and arrange data according to the database model. The
explanation lies with the service provided by a database in regard to the data and
guaranteed properties that immensely simplify application programming.

In particular, the database interface is empowered by transactions [59]. Transactions
allow a series of user requests to be bundled and processed as one single database oper-
ation. Users think and reason about a transaction as a single cohesive operation, from
an outside perspective. As detailed next, this abstraction also provides a strong form
of concurrency control over shared data. Overall, transactions are more reasonable to
grasp and more convenient from the user’s perspective than the file system interface.
This explains why they are extensively employed in writing applications.

Data persistence has always been a core concern in the design of traditional database
systems. Precisely, ensuring user data validity in presence of errors and power failures,
for which database transactions have also been accountable for. Indeed, in 1983 the set
of properties traditional database transactions offered was first coined with the acronym
ACID (atomicity, consistency, isolation, durability) [155]. Where the ’D’ in ACID stands
for durable, requiring that the effect of a transaction becomes persisted once it is com-
mitted.

Persisting committed changes to the database is the task the recovery manager (RM)
is in charge of [59]. It issues read/write operations to the cache and fetch/flush to stable
storage. Multiple implementations exists based on different techniques, either based on
logging or copy-on-write. Logging-based approaches, such as undo and redo allows in-
place updates of the data by storing logs on the durable media. On one hand, redo
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logging first adds modifications to the log, leaving the original data unchanged, then
later applies them once the log is committed. In the event of a non-corrupting failure,
the modifications are played back. On the other hand, techniques based on undo logs
first save the original data in the log. Modifications are kept in a volatile variable until
commit time, and only made persistent at the end of the transaction. They are reverted
back in case of a failure.

For improved performance, logs may be written in an append-only fashion on disk,
prior to updating the actual data. This pattern is called write-ahead logging (WAL).
ARIES [233] is among the first popular algorithms of this family. Another advantage
of WAL is that it enables to write in-place, meaning that updated data may be written
safely at the same physical location, saving the hurdle of modifying the data indexes
as well. WAL is also found in modern file systems where it is often used to preserve
file system metadata. Other file systems use WAL for fast synchronous logging of disk
writes, such as ZFS and its intent log (ZIL) [317].

Other non-logging based techniques to persist committed changes atomically include
shadow paging, which derives from copy-on-write, used to purposely avoids in-place
updates. Data updates are written out-of-place, in newly allocated disk pages, with no
durability and consistency concerns since they are not yet referenced. Once data is ready,
all references to the old page are swung to the new one, in an atomic way. Out-of-place
updates may help reduce disk hotspots, when some programs have to write over and over
the same information. However, typical storage media feature faster sequential access,
making WAL a more popular option overall.

Databases and especially recovery managers have then a good lot of techniques and
implementation to choose from in order to ensure atomicity and durability of the data.
Modern systems may defer part of that decision to the end user, with the use of a
recoverability or consistency criteria as a configuration parameter of the transaction
manager.

A recoverability criteria defines the form of executions passed to the recovery manager
by the transaction manager. In general, such executions are strict, that is there is no
concurrent conflicting transactions passed to the RM. Some programs may however prefer
to work with more relaxed executions constraints, and favor improved performance.

Database as a research area definitely bred a rich history of theoretical properties and
practical techniques for data durability and atomicity. Techniques that later trickled-
down to the lower layers of the system stack, as we hinted earlier they could now be
found in modern file systems as well. They also served as a solid bedrock in the design
of persistent objects systems and object-oriented databases, that we are just about to
discuss.

2.2.4 Persistent objects

Let us just rewind to the early 80s, and consider the ideas work from the previous
decade has fanned out. The single-level store blurred the line between main memory
and storage, unifying the two in a cohesive virtual address space. File systems how-
ever were getting mainstream with their rougher yet explicit interface to persistent data,
conveying more flexibility and control towards durability on a per-program basis, which
in turn enabled the development of user-level services for data storage. Databases sys-
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tems already have had a decade-long competition around data models, which resulted in
systems providing high-level relational interfaces to data storage.

The end user was by then already as much as possible isolated from the underly-
ing storage structure, and had access to facilities for data control, such as logging and
recovery, or maintaining consistency in a shared-update environment. In this context,
in-between relational databases and the remanence of integrated and transparent ap-
proaches to durability, persistent object systems and object-oriented databases arose in
response to prior systems’ limitations.

As we previously stated, relational databases had their own way of structuring data
records. Conditioned by the relational data representation model, as originally conceived
by Codd [95], and later realized in systems such as SystemR [45] or Ingres [160]. That
model was further constrained by the set of builtin data types offered by the database
engine, limiting their modeling power and ability to conceive complex object types.
Since then, databases have had a problem dubbed “impedance mismatch” [46, 100]. This
problem is the fundamental mismatch between the data representations in the database
and in the program. It results from this problem a programming and modeling hurdle
for application developers.

Despite this problem, time can now attest the success of the relational model [10],
and how it trampled over alternative more integrated approaches. In particular, Postgres
[302], presently an industry staple database system, was conceived in the mid 80s as the
successor of Ingres [160]. Nonetheless, we are all still well-advised to refresh our memories
with the rich history of persistence lying in object-oriented databases and persistent
object systems. Especially with the advent of low-latency storage technologies that
might want to rekindle similar ideas of persistence attached to in-memory objects. This
is the purpose of what follows, where we detail the research which was conducted around
persistent objects.

Back in the early 80s, the increasing popularity of object-oriented programming sparked
the idea of eliminating the difference between the database management system (DBMS)
and programming language models of data. In the line of the SLS that unified volatile
and durable data behind the same virtual address space, these systems attempted to
bridge volatile and persistent data representations behind the object abstraction. Ulti-
mately, these systems strove at integration of persistence with programming language
constructions and as a property of the data objects.

This time period has cultivated different sort of approaches to persistent application
systems [48], to fill the needs of application composing long-lived data and program-
matic computations. We will next set our focus on fully-fledged systems that allowed
direct manipulation of persistent data through object-oriented idioms, while exhibiting
database-like capabilities, essentially transactions and querying.

Atkinson et al. introduced with PS-algol [46] principles and an abstract machine to
bring persistence as an abstraction to programming languages.

Their base hypothesis was the minimality criteria as they believed « it should be
possible to add persistence to an existing programming language with minimal changes
to the language. » [46] An hypothesis which stemmed from their observation that man-
aging the mappings between long-term and short-term data was impairing the quality
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of application code and distracting programmers. As such, they sought of offering « the
facility for persistence for little or no extra effort. » [46]

A criteria they supported with the idea that persistence should be a property of data,
orthogonal to object types or execution parameters. The same procedure should be able
to work with persistent or transient objects, and that the way of identifying persistence
in the language should be independent of data types.

The interface they specified to enable programmers to work on persistent data is eerily
modern, in the minimalist and restricted set of procedures it provided. Programmers
would call a procedure to open a database from a symbolic name, from which they
would retrieve a pointer that « is the root from which preserved data is identified by
transitive closure of reachability. » [46] A commit procedure was available to end the
transaction and record all changes to the underlying database. A table abstraction for
the means of associative lookups was also provided, with traditional key-value mapping
and lookup/enter/scan procedures.

The article further describes the data movement between main store and backing
store, which are hidden away as internals of the language runtime. The PS-algol ab-
stract machine was devised to rely on a backing store, that could be a database shared
by multiple programs. Persistent data is, in an example implementation, held inside
the CPOMS [94], the persistent object management system written in C, an external
persistent object store that acts as an external persistent heap for PS-algol.

Within the CPOMS, data objects reference each other using persistent identifiers
(PID). Data is pulled from the external heap lazily, as PID are encountered by the
programming language’s abstract machine during execution. When that occurs, the per-
sistent object manager is called to locate the object and place it on the local volatile
heap if needed. The PID is then replaced by a local object number (LON), the equivalent
of a traditional pointer, once the object was successfully copied on the local heap. Ref-
erential integrity is ensured by a single table used for tracking of objects copied onto the
local volatile heap. LONs have to be replaced at commit time because of their transient
nature, before data objects are effectively copied back to the external heap and made
stable. This notable technique of replacing PIDs with LONs momentarily is known as
pointer-swizzling [237].

As a whole, PS-algol managed to design an abstract and generic way of bringing per-
sistence to programming languages. The minimal set of facilities to manage persistence
makes it extremely easy to grasp. Persistence is treated orthogonally, enabling program
procedures to be called on transient and persistent objects. The burden of managing
persistence is then placed on the language runtime, leaving programmers with a single
procedure to recover the graph of persistent objects living on the external persistent
heap.

While PS-algol provides a language design method to orthogonal persistence, it does
not tackle the data representation model issue. Data objects are simply put away in
a backing store, with extremely simplified database-like semantics, and no support for
useful relational queries.

In contrast, other systems from the same period that presents themselves as database
systems underwent the way of incorporating secondary storage management inside pro-
gramming language runtime.

OPAL [100] is a language derived from SmallTalk enhanced with an implementation
of the GemStone data model. They conceived the GemStone model fully beforehand, as
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one that would be suitable for data manipulation and general computation. It is derived
from a pure set theoretic data model, formally specified, with support for declarative
queries and in-object data history. The paper describes in detail this specific data model
and how it was merged into the typing model of SmallTalk. They further explain how
a simple path syntax could be used to navigate sets declaratively while being translated
into database queries by the runtime. The system was deployed on special-purpose
hardware for efficiency, and worked as a remote service. It received blocks of code from
client software, in the form of compiled bytecodes, which it interpreted in separate user
sessions.

Along the same lines, the ObjectStore [205] database system devised extensions to
include data persistence in C++. They enhanced the C++ language into one that could
provide a unified programmatic interface to both persistently and transiently allocated
data.

Their take on persistence remained orthogonal, in that C++ object types did not
reflect their allocation heap whatsoever. Objects could incidently be located and possibly
later updated either by reference traversal or associative queries, regardless of their
allocation nature. As we already pounded with other related work from the same period,
no translation code was needed and the modeling power of persistent structures were
limited only by the extent of that of the host language.

ObjectStore was still referred to as a database system, thanks to the facilities they
provided through C++ user libraries to programmers. These included a library of col-
lection types, bidirectional relationships, along with facilities for querying, versioning
and database administration. Their extended C++ interface and syntax relied on a
modified C++ compiler. (Recovery) was similar to PS-algol: the user would recover
a database entry-point (root) pointer through a dedicated procedure call and interact
with the database objects within transactional blocks of code. (Allocation) was per-
formed with a decorator to the new operator, to request the object to be placed in the
table identified by the root pointer. (Collections) resembled ordinary data containers,
except for the policy criterion users could specify on a per collection-basis to dictate how
external changes made to the database should be reflected in the local collection view of
the data. (Bidirectional relationship) were available as a syntax extension to class
definitions supported by the pC++ compiler of ObjectStore. They enabled to express
one-to-many or many-to-many relationship between objects of distinct classes and auto-
matically maintain and update reverse pointers. Reverse pointers are especially useful,
when for instance, retrieving an object from a query to navigate back to its parent set
just by following a reference. They are however a pain to manually maintain as program-
ming errors result in loss of referential integrity and serious bugs, but pC++ made use of
their compiler to statically enforce these constraints. (Queries.) were also supported by
ObjectStore’s pC++ compiler. It was necessary to statically verify their specific associa-
tive query syntax with usual selection predicates, which were essentially tailored C++
expressions applied to one or more of their collections. (Data model) wise, ObjectStore
was then something akin to an object-relational model, as they empowered C++ object
and classes with collections and relational DBMS capabilities.

The architecture and implementation of the ObjectStore system was realized on con-
ventional hardware and operating system such as Unix, and worked in client-server mode.
The client machine executed the C++ program within the same virtual address space
as of the ObjectStore server holding the persistent data. The Unix operating system on
the client machine reflected back the memory faults raised by missing memory pages to
the ObjectStore service, which fetched them remotely. On the server machine , the
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ObjectStore application had no knowledge of the contents of pages, simply passed them
to and from the client, and stored them on disk. It relied on a dedicated file system to
avoid unnecessary operating system intermediation, and was also responsible for concur-
rency control and recovery. It used to this end a log and WAL protocol, also found in
traditional DBMS.

ObjectStore reminded us of the SLS systems that builds on virtual memory, where
here the client holds a cache or subset of the total memory and the server stows colder
pages on persistent media transparently. Where it parts from single-level stores is with
the added facilities for database-style queries and relationships enhancing the C++ com-
piler and language with relational DBMS semantics.

Ultimately, in this object-store jungle, different groups combined their modeling ef-
forts and formed the Object Data Management Group (ODMG) [81]. Their specification
included descriptions of the core object model, along with languages for object specifi-
cation or query, and specification of the bindings with C++, SmallTalk, or Java.

Speaking of Java, right about its first release in 1995, the Persistent and Distribution
Group at the university of Glasgow, also behind PS-algol and other persistent object
systems, jumped in with their hopes of demonstrating their hypothesis for orthogonal
persistence on what was envisioned to become a language and platform for future enter-
prise applications. As such, Java benefited from works around persistence from its very
beginning, on the trend of orthogonal persistent application systems.

Extending their previous definition for persistence: « This is the period of time
for which the data exists and is useable. » [46] from PS-algol, the Persistence and
Distribution Group at the university of Glasgow (Atkinson et al.) founded the PJama
project [49] and proposed PJava (persistent Java) [47].

Building on their previous eighteen years or so of research on persistence [48], they
integrated in PJava their three base principles: orthogonal persistence, transitive persis-
tence, and persistence independence. (Orthogonal Persistence) First, PJava conceptu-
ally classified lifetimes of data on a scale from transient to infinite, and said of persistence
to be orthogonal when data of any kind had the same rights towards lifetimes accessible
to them. (Transitive Persistence) Second, remember that the systems we previously
mentioned relied on explicit decorators to request persistent allocation and database-like
facilities to locate and recover durable data. PJava however introduced the notion of
persistence by reachability or transitive persistence, meaning from a set of “persistent
root” designated objects, any transitively reachable object also inherited the property
of persistence. (Persistence independence) Third, persistence independence implies
that code and software may be operating on transient or long-lived data indistinguish-
ably, enabling straightforward re-use of libraries and classes regardless of the execution
context. By doing, they were adhering to the Write once, run anywhere (WORA) slo-
gan touted by Sun Microsystems to illustrate the benefits of Java—also later mocked as
Write once, debug everywhere due to the disparity of Java runtime implementations.

Next, onto the implementation side, PJava required no changes to the Java language,
but used an additional API through the PJavaStore class to register new persistent roots,
or orchestrate transactions dynamically. We have already alluded this generic store
interface as a way of retrieving an entry point with PS-algol or ObjectStore’s pC++.
Similarly, Transitive persistence is the real addition of PJava, as we already discussed
orthogonal persistence and persistence independence with previous work.

Persistence by reachability in PJava is implemented by piggy-backing on the garbage
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collector running over the volatile heap. « The candidates for promotion are found by
treating all the mutated pointers in objects in the cache as roots of the new reachability
sub-graph » [47]. As in previously discussed designs, the objects are promoted to an
external persistent heap managed by an object store.

The external object store also needed to run concurrent garbage collection over disk
space, because of the requirements of Java towards automatic memory management. This
could be achieved unobtrusively to the language runtime, as demonstrated by PMOS
(Persistent Mature Object Space) [238]. PMOS required no changes to the language
interpreter to perform garbage collection on a persistent store, with recoverability and
stability constraints on the data. It was further designed to support a number of pro-
gramming languages such as PJava or Napier88 [236], another orthogonally persistent
programming language.

Although seducing, the idea of orthogonal persistence and its three principles behind
the PJama project and PJava did not catch into mainstream Java. The quickly evolving
Java ecosystem and specification were colliding on many aspects of the PJava principles,
as they thoroughly reported [183]. As a whole, integrating these ideas in an efficient Java
language runtime was perceived as far too ambitious from a research and engineering
perspective.

Instead, Java standardized object-relational mapping (ORM) with the Java Data
Object (JDO) [182] and Java Persistence API (JPA) [120]. It was largely preferred and
eventually supplanted the idea of orthogonal persistence in Java. As the ODMG did
before, JDO and JPA specified a common interface to persistence in Java, including op-
erational semantics, transactional support and object to relational entity mapping. That
common API was not limited to relational databases, but could enable many heteroge-
neous data sources to supply data as regular Java objects. Hibernate [11], developed by
Red Hat and first released in 2001, still goes strong as one of most well-known example
implementation of JPA, and can be used to provide transparent persistence to plain old
java objects (POJOs).

Finally, to conclude on persistent object systems and object oriented databases, we
seen through their evolution during the 80s and early 90s that they ventured on the
unification of data models for both computations and long-lived storage. They took on
the challenge of hiding the data property of persistence behind idioms of object-oriented
programming. The trend was to support persistence with the least amount of visible
changes on the programmer’s end. In that, they devised persistence as an orthogonal
property relative to data types and program executions. Denoting persistence would
incidently be done for each data objects at allocation time, or be automatically computed
following the transitive closure of special persistent "root" objects.

More interestingly, was their genuine emphasis on database-like facilities for locating
and updating data, with functionality such as associative queries, transactions, versioning
or replication. In the context of a direct competition with relational DBMS systems, they
looked for ways of extending language syntax to support operations coming from older
database systems.

Although the alluring idea of orthogonal persistence did not subsist, due to various
limitations, data models were nonetheless consolidated under the object-relational model.
The introduction of standardized ORM specifications and real implementations enabled
conventional languages and DBMS to communicate, effectively enhancing object-oriented
programs with database functionality.
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2.2.5 Summary and limitations

Through this historical detour, as we came across the single-level store (§2.2.1), file
systems (§2.2.2), database systems (§2.2.3), and finally object-oriented storage (§2.2.4);
we refreshed our minds with historical techniques and interfaces to durable data. Each
one of these incrementally building on the shortcomings of the previous, in the following
manner:

First, the single-level store emerged as a result of experimentation around the newly-
introduced virtual memory, persistence being abstracted behind a single cohesive address
space. The transparent buffering and write-back of data allocated on durable segments
however proved to be a major hindrance for programs serious about their data manipu-
lation.

Later, file systems surged as an intermediate abstraction to allow programs to struc-
ture their own data logically, isolated one from another on the same device, with an
explicit control over disk operations and their order. Fault tolerance was yet minimally
enforced on file chunks, with no protocol for recovery of program data.

Database systems arose with facilities to make higher-level data semantics readily
available to applications. These included transactions with durability and atomicity
constraints in respect to program data, and powerful means of locating and retrieving
pieces of data from their attributes.

Persistence in object-oriented languages and object stores then focused on easing
the translation between program data structures and the data model of database sys-
tems. One lost approach, orthogonal persistence, conceived persistence as a property of
data objects, managed transparently from within the language runtime, with database
functionalities being rebuilt atop. Conversely, time-favored object-relational mappers
(ORM) have bridged relational databases with object-oriented programming, leveraging
tools to manage object/relational mappings through a standardized API.

Orthogonal persistence hypothesis. All things considered, unrolling these histor-
ical facts may sounds like a snake biting its own tail to some extent. The appealing
simplicity of the single-level store take on persistence was forgone due to the transpar-
ent nature of durable data management. Yet, the return of orthogonal persistence with
object-oriented programming demonstrates a lot of interest for these concepts. At this
stage, the historical double loss of orthogonality still raises questions. Whether it were
just balanced-out by a lack of applicability and efficiency with conventionally available
hardware, or because of more substantial deficiencies in usability prospects.

On one end, the SLS seemed to have potential to provide a powerful and flexible
software development environment for its users. However, efficient implementation had
requirements for dedicated and purpose-built hardware until then. Furthermore, as sec-
ondary storage remained block-based, the persistent virtual memory scheme was perhaps
never truly well-grounded. That is because, from a cost/capacity/performance stand-
point: flash memories never buried the ever-cheaper hard disks. IBM reported the I
series operating system [112] to be built for the future, featuring a SLS for seamless
transition to upcoming storage and memory technology. Apparently, in anticipation of
a future that never came.

In detail, storage devices remained block-based, lacked byte addressability, with la-
tencies in the millisecond scale; leaving purely software-based approach to persistence
plentiful, in respect to performance and compatibility with conventional hardware. From
a pure performance standpoint, no hardware made it relevant for persistence to be ser-
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viced by virtual memory and the operating system directly.
The seamless integration of persistence within programming languages was nonethe-

less appealing. Persistent object systems indeed provided the same facilities for data
persistence on conventional hardware through programming language idioms. However,
they faced the exact same challenges of moving data between volatile and persistent
block-based storage. Jordan and Atkinson [49, 183] argued that persistent operating
systems could provide automatic persistence to the majority of language runtime. How-
ever managing external state such as network communications may have required break-
ing transparency, among the other challenge of retrieving sufficient information about
application data to perform disk space reclamation or evolution.

We do not hope to place our definitive answer on the matter with the current discus-
sion. Rather simply to lay the foundations as we will come back to orthogonality on the
review present-day work. For instance, AutoPersist [288] that devised an orthogonally
persistent Java virtual machine for NVMM (§2.8.4). We will duly provide an answer
though as we motivate the design decisions of our own contributions in the next chapter
§3.3.

Persistence functionality. Another quaint takeaway lies with the emphasis of object
stores on relational database functionality. One might be thinking that, having long-lived
data readily accessible from within programming languages data model and structures
would eliminate the need for such functionality. Indeed, aside from the transactional
facility that undoubtedly is useful to concurrency control as well, database-like queries
and relationships may seem antiquated considering usual programming language data
structures. Even data versioning and history-keeping had already been tackled by in-
memory data-structures [126].

The question we are on about to raise here, is whether the full set of database
functionalities is indeed relevant in the context of in-memory persistence; atomicity and
durability aside of course. Recent NewSQL-style DBMS may suggest that relational
data view is still of interest. With that, the ability to perform computations on scan
results from very large data sets, or create new data sets from complex joins. We already
know these are simply orthogonal to data persistence, as big data processing systems can
already be designed to completely run on volatile memory. The thing that comes out clear
though, is that facility for persistence should come in, easy to grasp for the programmer,
but as also easily composable with existing abstraction for data manipulation. Answers
can be found around software-based durable-memory transactions, that we review in
§2.3.2.4, with NVMM-specific implementations later in §2.7.3.

Finally, as we close this section on early and historical work on data persistence, one
might have noticed that we omitted to mention persistent memory. Although persistent
memory is in direct lineage with the single-level store, this omission was, of course,
purposely made as persistent memory is the main subject of the next coming section.

2.3 Persistent Memory

Data persistence has had a long history strongly rooted in databases and file systems, as
reminded by the previous section. A parallel line of research though attempted to design
a totally new computational platform with persistence at its core. Persistent memory
(PMEM) was the programming abstraction proposed by these systems.
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Until recently, volatile media were orders of magnitude faster than persistent ones.
This fundamental difference much impacted the way systems are architectured. Re-
cent advances in non-volatile random access memory (NVRAM) technology promise to
however re-shuffle the cards.

In this thesis, we consider how this new technology can be harnessed to breed modern
PMEM and incidently modern data persistence facilities. To this end, we first revisit
past schemes for software-based persistent memory. This section organizes as follows.
(§2.3.1) We define persistent memory as an abstraction. (§2.3.2) We then survey the
earliest efforts in that field. In particular, PMEM as found in persistent operating sys-
tems (§2.3.2.1), object-oriented storage (§2.3.2.2), languages for distributed computing
(§2.3.2.3) and finally lightweight durable-memory transactions (§2.3.2.4).

2.3.1 Definition

Conceptually speaking, persistent memory is an abstraction that allows efficient manip-
ulation of long-lived data, using only memory instructions or APIs. Data contained in
regions of PMEM outlive the execution of programs that created or updated them.

The major separation from other interfaces to durable data, lies with the nature of
accesses to PMEM resident data. Indeed, programs may solely rely on memory interfaces
to manage arbitrary data structures, regardless of their lifetime (transient or persistent).

The key to understanding PMEM, is that it must behave, from an application’s
perspective, as regular memory; except for data that should remain available across
executions or system power cycles.

We propose to principle this informal description into three essential properties fulfilled
by PMEM: granularity, stability and efficiency.

• Granularity. A first defining factor of persistent memory is on the uniformity of
accesses to bits of data, relative to regular main computer memory. This includes
the interface to data, and incidently, the grain of those accesses. In general, PMEM
relies on common memory load/store instructions that allow byte-grain access to
the data.

• Stability. PMEM-resident data must persist across program executions or ma-
chine power-cycles. Including unprompted ones as well, such as software or system-
wide faults; much like any durable storage facility so far. However, this extends
beyond durability of stored bits: data integrity must be retained in presence of
failures, which might corrupt them, or the metadata they are associated to.

• Efficiency. Uniformity relative to regular volatile memory does not limit to ac-
cess interfaces and granularity. It is fundamental that the access delays of PMEM
remain within the same range. Programs should not be startled by reaching persis-
tent locations or, ideally, not be able to differentiate memory kinds from operation
latencies.

Benefits Persistent memory alleviate the need for programs to retrieve long-lived data
through external interface to durable storage (file, database). All data, regardless of their
lifetime, are directly addressable in their in-memory/computational representation. The
direct benefits of which are threefold.
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(Unique data representation.) Firstly, programs only have a single format of data
to handle. In so doing, they benefit from the full expressiveness of programming
languages, erasing the semantic mismatch between internal and external formats.

Moreover, in-memory data structures have long proven themselves as extremely
useful composable abstractions that outstandingly facilitate programming. Their
use no longer have to be restricted to transient data with persistent memory.

(Code base decluttering.) Secondly, persistent memory helps reducing programming
efforts, boosting productivity—a highly-valuable characteristic from a software en-
gineering perspective.

For starters, because programs only deal with a unique view of data, complex and
complicated algorithms are no longer required to keep these multiple copies of data
mutually consistent, in respect to system faults.

In addition, programs are no longer directly in charge of communicating with stor-
age, or managing the structure of data on-disk. Therefore, a sensible amount of
codes are no longer required in programs: translating storage data format, organiz-
ing disk space, indexing stored data, or efficiently caching long-lived data in smaller
main memory. Less code decreases overall complexity with its usual benefits (e.g.,
more predictable performance).

(Performance gains.) Thirdly, since persistent data are directly addressable, pro-
grams no longer have to manually move them back and forth from durable storage.
The aforementioned code simplifications also reduce the complexity of operational
logic, leading to better performance. Namely, conversion operations - or the lack
thereof - to translate storage data format; or the mechanisms to manage disk space
and file chunks.

2.3.2 Early occurrences

Earliest instances of persistent memory throw us back to Multic’s virtual memory we
already covered in §2.2.1. It did not strictly register as persistent memory though, as
stores to persistent memory segments were buffered and written back asynchronously,
irrespective of program instruction order. Unless all dirty pages were flushed to sec-
ondary storage, segments on secondary storage were not in a consistent state; therefore,
not resilient to system faults. Although such transparent design lacked the facilities to
implement stability protocols in presence of failures, it laid the premises for a body of
research focused on providing persistence as an operating system’s service.

We propose in what follows to introduce early forms of persistent memory as the vir-
tual PMEM abstraction found and exposed by subsequent single-level stores and persis-
tent operating systems. Persistent memory also has roots in object storage (introduced in
§2.2.4) and distributed programming, as software-defined abstractions for object persis-
tence. Finally, transactional memory systems in some instances also provided durability
guarantees and, thus, an abstraction akin to persistent memory.

2.3.2.1 Persistent operating systems

The idea of persistent operating systems came from persistent application systems [48].
As a whole, they expected better support than the ephemeral virtual address space and
file interface offered by conventional operating systems. A famous paper argued that they
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did so poorly, for the specific case of DBMS [301]. The field was thoroughly summarized
by Dearle et al. in [115, 116, 171], who worked on the Grasshopper persistent kernel
[117].

They enunciated as a major requirement that any data object must live in a single
space with a uniform addressing scheme were they were both stable and resilient to
system faults. In other terms, they exposed a persistent virtual memory to processes.

Content of processes’ virtual memory was usually backed by a large persistent store
that allowed for concurrent processes to manipulate persistent data, while the store
remained stable and resilient to system faults.

Resilience was achieved with checkpointing of the backing store, either explicitly
through a custom APIs or periodically for transparency.

Examples of such systems include Monads [28, 188, 270, 271], KeyKOS [158, 206],
Eros [284, 285], Grasshoper [113, 114, 272] and the IBM i -series operating systems
[297]. We briefly go over them in order to demonstrate the impracticality of persistent
operating systems and issues they raise.

The Monads-PC project began in the mid 70s at Monash University in Melbourne,
Australia, with the aim of building a computing platform that improved security by
encapsulating all data in capability-based modules. Their single-level addressing
scheme was supported by purpose-built hardware, that allowed for access control
and protection, directly serviced by their hardware-assisted virtual memory paging
mechanism. Where Multics wrote back disk pages to the same location, Monads’
storage management unit [271] updated dirty disk pages out-of-place, utilizing
shadow-paging from Lorie [221]. Periodic checkpointing was used to stabilize new
consistent versions of the store. This operation consisted in the consolidation of the
shadow page table and write back of all dirty pages to disk, followed then by the
atomic installation of the root page with a single disk write using Challis’ atomic
update [84].

KeyKOS also tackled memory persistence generically through system-wide periodic
checkpoints. Instead of shadow-paging that constantly moves around pages and
leads to a data locality mismatch, KeyKOS relied on two dedicated swap areas on
disk to checkpoint memory content. Every 5 minutes, the system would stop all
process activity, for around tens of seconds under normal load, in order to put all
dirty pages in a copy-on-write state. After resuming processes, dirty pages would
gradually be migrated to disk in the swap area that was not designated for recovery.
The copy-on-write state of dirty pages prevented programs running concurrently
from further updating the pages being migrated and ensured the whole state was
consistent while being written back. Once all pages were evicted, the checkpoint
header was atomically updated such that the roles of both swap area were reversed,
effectively committing the new checkpoint. Finally, while the old checkpoint area is
prepared and recycled to host the next checkpoint, pages in the current checkpoint
area were migrated to their home location on disk.

KeyKOS additionally provided a custom API to flush to disk a specific page in the
next checkpoint area, breaking transparency to explicitly enable applications to
build custom recovery and implement full transaction processing, as they mention.

EROS proposed a similar persistence mechanism directly evolved from KeyKOS. In
addition of taking a snapshot of the entire machine state, Eros ran a battery of
consistency checks including unitary testing of essential kernel data structures. The
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goal was to ensure no bad checkpoint would be committed, because in a setting were
the whole system state is persisted, any inconsistent checkpoint lives forever. If
tests were to fail, the system would be rebooted without committing the checkpoint
being taken.

Grasshopper solely relied on a custom API to perform per-process snapshots, and com-
pletely separated from the stop-the-world periodic checkpoint mechanisms found
in previously mentioned work. Now, because processes might share memory and
communicate through IPC, similarly to distributed systems, individual process
snapshots are insufficient to persist a globally consistent state. Grasshopper pro-
posed to allow optimistic per-process snapshots, and to asynchronously rebuild a
global consistent view from data causal dependencies. The kernel detects causal
dependencies by tracking the dirty page list of each process at each snapshots,
and maintains those causal dependencies between processes as vector clocks for
recovery purposes.

IBM i along with its predecessors AS/400 [296] and System/38 [8], were a commer-
cially successful series of operating systems that all integrated a patented single-
level store. The operating system, runtime and compilers all worked in concert
to provide persistence. The IBM compilers semi-automatically inserted API calls
for persistence. This approach had the restriction of tying users to a monolithic
system stack and a restricted set of supported languages.

Limitations To conclude on persistent operating systems, their uniform single-level
memory adheres to our requirements for persistent memory. As such, they allow for
straightforward persistent programming, while stability and resilience are guaranteed by
the underlying store. However, essential design flaws make them impractical with regard
to data persistence. We detail them below.

Programs are prevented from distinctively managing transient and per-
sistent states. We do not need to stress the fact that applications want only a subset
of their data persistent, and transient state to be reconstructed on restart. Otherwise,
any unintended state would destructively become permanent, and no longer be fixable
by rebooting; software evolution would become an engineering nightmare. EROS per-
fectly illustrates this with its online consistency checks enforced at each snapshot. It is
unreasonable to expect any serious program to implement workarounds as costly as a
battery of online tests before each checkpoint, to assert whether it stayed semantically
sound as well.

Virtual memory as supported in commodity hardware is a wrong fit in
single-level store. Contrary to persistent object systems we reviewed in §2.2.4, oper-
ating systems have a black box view of memory pages. Where persistent language run-
times could translate in-memory data structures to enable sharing (e.g., swizzle native
pointers), persistent memory serviced by operating systems must adopt an addressing
scheme that crosses the process boundaries and their lifetime. In particular, uniquely
identifying any data object with native pointers in a global virtual address space with
support for protection and access control. Monads-PC, KeyKOS or IBM’s operating sys-
tems all depended on purpose built hardware to this end. EROS and Grasshopper built
on previous work from single-address-space operating systems [85] (SASOS) to operate
on commodity hardware. In addition to performance overheads, a global and perma-
nent address space is not easily composed with essential security techniques, for instance
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address space layout randomization (ASLR).
Fully transparent resilience protocols can not create semantically consis-

tent application state snapshots. Periodic checkpoint techniques are not only limited
by the capturing frequency the performance of storage hardware would allow for; but
also as appearing consistent. Monads-PC is indeed the only of the above not to expose
an explicit API for resilience, even though they were all built around a persistent kernel
and made processes persistent as well. Reason being that always resuming a process
execution, or even a complete system, from a previously known state does not make
it consistent from an external perspective. Just as Grasshopper’s optimistic process
snapshots needed to be stitched back into a causally consistent system-wide snapshot;
processes participating in distributed protocols might appear faulty externally when re-
covering at an arbitrary execution step, even when their local state appears consistent
in isolation.

Dependence on custom APIs or whole system software stack. Explicit APIs
are required for persistence but were not made compatible with ubiquitous operating
system interfaces (e.g., POSIX). Persistent operating systems investigated interesting
concepts to enable cooperation with persistent language runtimes; but as illustrated
with IBM i, the resulting monolithic software stack for production-grade applications
was a huge technological commitment companies have struggled to migrate away from.

To summarize on persistent operating systems and their approximation of a system
that never stops; they promise programs they will no longer have to implement recovery
and rebuild transient application states inferred from persisted data, which might sound
handy. However, as we discussed previously, they do not reduce the software engineering
burden in persistent programs, but rather move its inherent complexity around without
eliminating it. The real world is made of buggy software and faulty hardware; these per-
sistent operating systems would simply force users into a bunch of workarounds because
of deficient design of their persistent memory. In particular, apparent simplifications for
applications and increased developer productivity are largely undermined by the cost
and commitment of re-engineering software and runtimes for their custom APIs.

In spite of all this, recent academic work proposed to revisit single-level store [306],
motivated by the advent of new low-latency storage technology. The concept of persis-
tent operating system is also actively pursued by PhantomOS [129, 344] since 2009. It
somewhat parts from the idea of persistent memory and instead rely on a virtual machine
abstraction with periodic snapshots. Their target is also limited to desktop and handled
devices and incidently only client programs, where issues we pointed out above are of
little concern.

2.3.2.2 Object-oriented storage

The area of persistent object systems and object-oriented databases, we already dis-
cussed in §2.2.4 for language/programming prospects, has also readily proposed per-
sistent memory schemes to be used as a base abstraction for persistent stores above
object storage management units. In comparison to persistent operating systems that
consisted in system-managed persistence, the work described here could register rather
as application-directed persistence; meaning programs are accessing persistent memory
along with specific tools to, for instance, coordinate resilience protocols and ensure their
objects remain semantically consistent.
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Earliest PMEMs related to object persistence were designed for special-purpose object-
oriented hardware architectures. Language runtimes were tightly coupled to the system
and hardware; PMEM, among other services such as garbage collection, were supported
by the whole system software stack. Even though persistence was system-supported,
they smartly did not fall into the same pitfalls and simplification trap the persistent
operating systems did. We can see the context of object-oriented programming obviously
made them consider issues that works from our previous section did not even raise.
Example systems include Intel’s iMAX 432 [186, 261] Ada machine and its filing system,
or Thatte’s recoverable virtual memory [304] intended for TI’s Explorer Lisp machine.

The iMAX 432 filing system outright rejected uniform single-level address space,
and favored a two-space approach. « We rejected the one-space model because of
the difficulty in maintaining object consistency in the presence of system crashes
» [261]. Persistent objects were referenced by symbolic names from the filing sys-
tem, and lived in the passive space. They could be activated by opening access
descriptors, a copy of the data would then be instantiated in the active (memory
or swap) space. The two diverging versions were brought back together in stable
storage with either: (1) an explicit commit of the object, (2) an automatic policy
implemented in the Type Manager, (3) garbage collection of the active version.
Multiple objects could also be committed at once, and resilience was achieved
through a redo-logging-based technique. Garbage collection was used to manage
the active space for its superior productivity in dynamic environment; however
an ownership scheme for the passive space was employed, as they anticipated the
impracticality of garbage collection in large persistent spaces.

Thatte’s recoverable virtual memory design on the other hand held onto the single-
level uniform memory model, but without strictly advocating for transparency,
which alleviated most of the limitations. The scheme relied on a specific virtual
address fixed at a disk location, to host the persistent root, and enforced transitive
persistence by preventing garbage collection of any non-transient object. Hence
transient objects were simply identified as being referenced in the transitive clo-
sure of the transient root and not the persistent one. The recoverable memory
was periodically checkpointed incrementally, at the whole system scale, for fault
tolerance in respect to system or disk crashes. However, they realized system-wide
snapshots were insufficient to construct resilient and consistent objects. For that
reason, they implemented on top of it a persistent object manager to organize per-
sistent name spaces as well as to provide a transactional facility with undo and
redo logging. From their experience they admitted this abstraction was superior
in terms of flexibility and representational power, for the construction of database
systems on top of it.

Later, around the mid 80s and early 90s, persistent object stores backing PMEM for
conventional hardware and operating systems started to show up. First, as fully sup-
ported by software and simple files, like in Brown’s stable store [72, 73, 94]. Afterwards,
using modern operating systems memory-mapped files (e.g., mmap in Unix, SunOS)
and hardware-assisted virtual memory. Examples include the Texas Persistent Store
[292, 293] and QuickStore [320].

The CPOMS (Persistent Object Management System in C), we previously referred to
as Brown’s stable store, supported PS-algol, a programming language for orthog-
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onal persistence we discussed earlier. The CPOMS cooperated with the PS-algol
abstract machine in order to perform address translation or checkpointing in the
store. For instance, it swizzled pointers lazily (see §2.2.4), that is, upon first ac-
cess. Virtual addresses were retrieved from a global in-memory repository that kept
a mapping between virtual addresses and persistent identifiers of all instantiated
objects. When no mapping existed for the persistent identifier being accessed, it
meant the object had to be retrieved from the persistent store. Checkpointing of
the persistent store was directed from PS-Algol transactional API; precisely, from
the explicit database-style commit operation. The store itself was managing disk
space through simple Unix files, and implemented atomic checkpoints with a page
shadowing technique. The disk space was split into two regions: one containing
the current versions of the pages, and the second shadow region held undo copies
of them. Writes were instrumented to create an undo copy of pages in the shadow
region for every first modification following the previous checkpoint. An on-disk
bitmap ensured it was only created once. Recovery involved reading the bitmap
and writing back the modified pages from the shadow region onto the main one.
Storing undo copies of pages had the convenient property of allowing in-place up-
dates since the working copy was never relocated. Not relocating pages has the
additional benefits of preserving the write order as well as the spatial locality of
accesses, and last, to remove the need for instrumented reads.

Texas is a persistent store that brought persistence to C++ in a lightweight and
portable way. They conceded sharing common design ideas with ObjectStore’s
pC++ [205], without the OODBMS functionality though, as it was not a com-
mercial product. It was implemented as a concise C++ library, and worked with
conventional compiler. Persistent memory was materialized through an alternative
heap manager that was backed by a memory-mapped raw Unix partition (mmap-
ed) to avoid the file system overheads. Persistence was then identified at allocation
time, for any type, with no class code modification; objects could be linked to a
persistent root object for recovery. Explicit heap checkpointing was ensuring object
resilience.

The core idea was to use conventional virtual memory abstractions to implement
address translation and write logging. The technique was coined « pointer swiz-
zling at page fault time » by Wilson as it first appeared in [321]; and had the main
benefit of eliminating substantial software overheads of lazily unswizzling every
single pointer when dereferenced. To this end, memory pages were initially pro-
tected with mprotect and pointer swizzling was performed at page fault time, with
page-wise granularity. Locating pointers within pages was achieved with a custom
C++ preprocessor that was used to generate C++ type descriptors. No caching
needed to be implemented, as it could conveniently be offered as part of conven-
tional virtual memory. In all, the store made sure unprotected pages contained at
all time only hardware-supported addresses.

Likewise, checkpointing relied on a simple pagewise write-ahead logging approach in
a first iteration. Write protection was used to detect alteration on pages in-between
checkpoints. Later on, they moved to a log-structured technique for storage, in or-
der to reduce bandwidth usage. Modified pages could be written out in a sequential
way, with no consistency concerns; and the indexing structure atomically updated
afterwards to designate new page versions. The disk storage component was also
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working directly with a raw Unix partition to further avoid irrelevant caching in a
file system’s buffer.

Down the road, in [187], they experimented mixing pointer swizzling at page-fault
time with finer grain swizzling through C++ smart pointers. As they reckon the
coarser grain of pages for swizzling might not be appropriate for data structures
that exhibit poor locality of reference, such as sparse indexing structures.

In all, Texas experimented with portable ways of implementing persistent memory;
with either no or little code modification, depending on whether client code needed
to differentiate transient from persistent data. They showed working at page gran-
ularity could be made sufficiently efficient, compared to object-wise more intrusive
techniques, in regard to both swizzling and checkpointing. As a research-oriented
prototype, Texas’ PMEM sure lacked functionality and remained single-user with
no support for client-server mode for instance.

QuickStore had an almost identical approach to PMEM in C++ than Texas. It also
leveraged hardware-supported virtual memory though it did not swizzle at page
fault time. They also differed in that QuickStore relied on an external DBMS
client (EXODUS [80]) for stable storage, instead of a custom file-based storage
layer. This made support for client-server mode rather straightforward and opened
the possibility of extending transactions to both concurrency control and recovery.
Precisely, their PMEM was overlapping with the DBMS client buffer pool (with
mmap) in order to avoid an extra data copy. They still relied on page fault to
read-in whole pages to the client buffer pool; but they did not swizzle pointers
before writing out pages to storage. Instead, they persisted metadata relative to
the mapping of disk pages, and attempted to remap them at the same location.
Swizzling was then occurring as pages were pulled in from storage and the mapping
had already been reused. In that case, pointer values were rebased from their
previous location onto the new one.

Regarding recovery, a page-diffing technique was implemented to minimize the
amount of logged data during transactions. Pages would be write-protected at
the start of a transaction, and their original values copied when first modified.
At commit time, the two versions were diffed and log entries generated for every
mismatching byte sequences.

Further down, they admitted that relying on page fault was not enough to support
object identity and that some silent errors could not be avoided. For instance,
upon dereferencing dangling pointers to some deleted objects, no error would be
flagged. The page could still be active, even in subsequent program runs, and the
page could be pulled in when accessing other objects. If a new object occupies the
free-ed space, then the dangling references would reference this new object. The
additional cost of checking references would be prohibitive. As nothing is done to
prevent dangling pointers, they may still happen as any other programming bug;
failing silently is, especially in this instance, a recipe for data corruption.

To summarize, persistent memory as proposed by object-oriented stores corrects al-
most the 4 issues we raised with persistent operating system:

• They always allow for distinct allocation of transient or persistent data.
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• Virtual memory is properly made use of, even smartly leveraged as a mean
of intermediating store operations without changing binary code.

• Object resilience and semantic consistency is possible, as the application
is directing atomic crash-recovery of the store.

• They stay portable and easily integrate with existing software stack, rely-
ing on generic compilers and all using the same open, close, persistent_allocation,
persistent_root interface.

In turn, refraining from persisting whole process states and virtual address spaces
incurs challenges specifically towards persistent reference management.

• Pointer translation between stable storage and in-memory virtual ad-
dresses. Pointers can be (un)swizzled eagerly, lazily, with fine or coarser granular-
ity. Systems above found a good trade-off in using pagewise swizzling for general
purpose, and fine-grained only in indexing data structures.

• Dangling references. Not all systems resort to garbage collection on persistent
heap, dangling references might happen there as the result of programming bugs.
In comparison to traditional allocators though, the mmap-approach would never
raise explicit errors and always induce silent bugs as detailed above. Although the
problem is pointed out, no applicable solution is provided.

• References from persistent to transient data. This one was not addressed
by any of the above, yet could lead to silent bugs as well. They could not even
nullify transient references during swizzling, as object types are entirely orthogonal
to persistence.

Finally, preferred interfaces for atomic and consistent updates of persistent object
data were transactions in multi-user environments, and simple explicit store checkpoints
in single-user application-embedded stores. Techniques themselves to stabilize and pro-
vide resilience in the stores were all comprised in the usual shadow-paging, log-based or
log-structured families, introduced by database systems. Following the fact that all used
disks as storage media, all favored techniques that minimized the amount of data written
and which avoided seeking while checkpointing to maximize write bandwidth.

2.3.2.3 Distributed computing

Although bringing up distributed computing in a persistent memory discussion might feel
a bit of a stretch on first thought, data persistence is a fundamental concern of the field,
as it had been for database systems before. Building distributed programs is inherently
complex. Memory abstractions were sought out to facilitate the process, for instance, by
hiding away message-passing paradigms or complicated communication protocols. As we
have already discussed, stabilizing semantically consistent data to storage in multi-user
environment with shared data requires coordinating concurrency control mechanisms
with data resilience protocols. That is to say, memory abstractions tackling distribution
need to account for data persistence as well. The surging ideas in distributed systems
from the mid 80s and early 90s then put all that together and attempted to tackle these
new challenges with either operating systems, programming languages, or object storage.
We illustrate that with a few examples:
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Clouds [109, 110] was a distributed operating system developed at the Georgia
Institute of Technology in the mid 80s. The two base abstractions were objects and
threads. All data were encapsulated in objects, and threads executed within objects.
Objects had their own persistent virtual address space and their own procedural interface
to provide operations for threads to execute. Although each object implemented a single-
level store, user-level utilities enabled management of a transient heap and persistent
heap separately. Running threads could cross machine boundaries by invoking operations
from remote objects, but data were only moved between objects as argument or return
value of operations. Multiple threads might have executed concurrently within the same
object with the help of consistency policies specified when invoking operations.

Argus [218, 246] was a system and programming language for distributed programs,
created at MIT around the same time. It provided built-in atomic data types that guar-
anteed both indivisibility and recoverability. Indivisibility meant that « the execution
of one action never appears to overlap the execution of any other action » and in that
is similar to linearizability [163]. Recoverability required that the overall effect of an
action was all-or-nothing. To this end, all data were guarded by an encapsulating unit
that internally used read-write locks and accessed stable storage. The model for persis-
tence was similar to Thatte’s: a collection of fixed root objects and transitive persistence
enforced by garbage collection.

Thor [217] was a object-oriented database system for use in distributed environ-
ments, also developed at MIT. It relied on strict object encapsulation to provide safety
from strong typing. Automatic memory management was employed in the store to both
implement transitive persistence and prevent dangling references. Object methods were
also encapsulated and stored on media, described in an abstract and statically typed
language, to be then safely instantiated and manipulated from multiple language envi-
ronments. Persisting methods is a way of safely dealing with code evolution without the
risk of linking against the wrong implementation version. However, a lot more work is
required: Thor was dynamically generating stub-objects from stored implementations
upon data retrieval. They rather considered this approach to save work, as implementa-
tions needed to be written only once for many languages.

2.3.2.4 Durable memory transactions

Transactions are admittedly everywhere, persistent memory is no exception. The idea
of transactional memory (TM) started out as a hardware solution (HTM) for optimistic
concurrency control [162]; and software transactional memory (STM) was the fruition of
research work attempting to pass by restrictions of HTM [286]. In that spectrum, recov-
erable (or persistent) software transactional memory were conceived to provide durability
and atomicity of operations. The results were lightweight and portable abstractions that
only brought transactional facilities in programs, that could be applied on any block of
code, but without the database functionalities and specific data models or types.

RVM [276], as in lightweight recoverable virtual memory, is an important piece of
work that was widely referenced and steered the first modern persistent memory designs.
RVM was a minimalist and portable software library, with transactions that provided
only atomicity and persistence over a virtual memory address range. Its transactional
facility was meant to be easily composable, and gave user independent control over
atomicity, persistence and serializability properties of transactions. Atomicity was al-
ways guaranteed, but other properties could be layered on-demand with explicit flags.
For instance, about durability, flushing the transaction log on commit could be omit-
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ted, or delayed to a later point in time with an explicit log_flush operation. Each
transaction spanned over a finite number of memory ranges, which were declared with
an explicit API call. Ranges were copied on tx_begin to different memory locations
for potential aborts (undo), tx_commit then used WAL (redo) to safely write them out.
This algorithm was simple and effective, and needed no recovery aside from the log, be-
cause only committed data were stabilized on storage. Unclean working data were kept
in-memory and thus swept with crash faults. They declared RVM as a building block for
anywhere persistent data structures were needed to survive local client failures (think
about file system metadata management for instance, or runtime systems for persistent
languages). In particular, in [251], RVM was used to implement concurrent garbage
collection of a persistent heap.

Rio Vista [222] is another recoverable transactional memory that improves perfor-
mance over RVM. In essence, RVM copied database segments (transaction ranges) inside
application main memory for processing, and performed two more data copies (undo &
redo) for aborts and safe write back. In contrast, persistent stores used to directly mmap
portion of the database inside applications and relied on virtual memory to trigger safe
data movements. Rio Vista instead assumed a reliable file cache: Rio detailed in [86],
as its memory-mapped stable storage. The Rio file cache coped with power faults using
an uninterruptible power supply, and software memory corruption (e.g., wild memory
stores) with virtual memory protection. As such, Rio Vista considered data reliably
stabilized as soon as it entered the Rio file cache. In particular, individual store instruc-
tions to a mmap-ed region were considered persistent immediately, with no msync. RVM
performance was increased by 20x by running on Rio, but Rio Vista further improved
performance from tailoring its crash-recovery techniques for Rio. In detail, Rio Vista
did not need to use any system call for transaction processing, and the redo WAL could
be completely omitted, saving one data copy. Omitting WAL was possible because data
were altered in-place in the file cache during transactions, on reboot, transaction abort
undo logs were used to revert any uncommitted transactions. Put together, Rio Vista
avoided any system call and did copied data only once, all resulting in a 5µsec overhead
per transaction.

One controversial medial thought before moving to the last system. The use of a
battery-backed system might feel like cheating, but beyond that, it demonstrates that
even in this case, recovery is still needed for crash-consistency. Plus the fun of toying with
the idea of a stable directly-addressable main memory, which resembles at lot prototyping
for NVMM.

Stasis [280] was a transactional storage framework from UC Berkeley that aimed at
filling the gap between file systems and {R, OO, OR}DBMS. Its authors argued that
even lightweight embedded databases, such as the much well-known BerkeleyDB, were
not suited for system programming. They claimed that easing the implementation of
transactional systems required more powerful primitives that could degrade their guar-
antees on-demand, or be extended for fine, hand-tuned data movements. A view that
shaped Stasis into a persistent object system that combined traditional ACID database
semantics with a configurable and extensible interface, meant for implementation of
sophisticated performance optimizations. At its core, Stasis provided page-based trans-
actions. To this end, it used a customized variation of a well-known database technique,
ARIES [233], that generalizes write-ahead logging to any block of code. Additionally, the
framework supported tweaks to turn down ARIES guarantees on a per-operation basis,
mixing physical (page) or logical (operation) logs and flexible locking options. Over the
course of their experiments, they demonstrated the flexibility of the framework by denot-
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ing how concise implementations of a number of systems would be above Stasis, or how
some ad-hoc storage approaches could be supported. For instance, they showed with
Stasis that the RVM algorithm with concurrency support could be implemented simply
from Stasis flexible interface and user-defined operations—for the record, RVM and Rio
Vita had relegated concurrency or isolation to future work and upper layers. Instead
of a rigid API that forces programmers into work-arounds or re-implementing a whole
new storage architecture from scratch, Stasis addressed their needs with a transactional
storage library that could be bent in many ways to accommodate various usage.

2.3.3 Summary

Before turning into works of the new century, we had to check out for now-antiquated
forms of persistent memory. We brought up designs abiding to our definition with ap-
propriate granularity, stability and efficiency (§2.3.1) from the territories of persistent
operating systems, persistent object systems, distributed computed or transactional sys-
tems.

Persistent operating systems (§2.3.2.1) we reviewed took it upon themselves to sta-
bilize whole-system states, including processes with their execution context and virtual
address space. The resulting kind of PMEM promised hands-off data durability and
recoverability to applications. Appealing claims that were shortly muted on second
thought: having programs forfeit transient state is a recipe for disaster in a world of
buggy software. Design deficiencies of persistent operating systems could be coped with
APIs allowing explicit checkpointing, but admittedly with no prevalence over the ab-
straction of user-level persistent stores.

Reason being that persistent object stores (§2.3.2.2) demonstrated the same degree of
support for transparent checkpointing of in-memory data structures, whilst additionally
allowing for more flexibility with explicit APIs. Specifically, they considered mapping in
virtual memory database segments, relied on virtual memory protection to coordinate
data movements, and orchestrated store checkpoints with database transactions. The
database interface allowed for distinguishing transient and persistent objects at allocation
time, but without language support and only a limiting coarse grain (page-wise) control
over data. Here, it is worth noting that this kind of PMEM could not easily maintain
objects’ referential integrity or prevent persistence bugs factored by dangling pointers.

We then found language-level support for persistent memory in object oriented pro-
gramming and distributed computing (§2.3.2.3), above persistent stores. Data strictly
safeguarded behind language objects with guarantees towards consistency or recoverabil-
ity as part of type specifications. Blending with garbage collection support for transitive
persistence and displacement of dangling references.

Finally, portable transactional libraries (§2.3.2.4) proposed themselves as lightweight
persistent memory to ease storage interaction in system programming. Their stripped-
down transactions ensured only atomicity regarding crash recovery, and their explicit API
left no hint of transparency for maximum control. They were built with the underlying
goal of offering a low-overhead transactional interface to on-disk data structures — a
valuable base building block for persistent stores or language runtimes.

Perhaps the most obvious overarching theme between all of the above is resilience
of persisted data. Which all sample work provided through atomic commit protocols
inspired by well-known techniques from database transactions. Whether it is shadow-
paging, log-based or log-structured ; reviewing those systems got us a feel for the com-
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plicated trade-off space of transaction implementation. Navigating this space properly
requires understanding the reality of the under layer (storage), but also client require-
ments and operation archetypes. That is to say, factoring in that modern persistent
memory will not rely on spinning disks, the change of too many parameters may throw
off the deductions of prior studies.

Another common topic, is allocation routines for the persistent heap. Crash consis-
tent allocation is crucial to avoid leaks, but was rarely brought up. Especially as most
of the scheme we reviewed were designed for « unsafe » languages, where it is common
to assume that proper memory management is the task of programmers. Too little ef-
fort were put into describing how heap recovery stays consistent with user maintained
references. For instance, no technique preventing object allocation with no pointer in-
stallation inside of a transaction were described, or heap reconstruction procedure to
recover leaked spots. Fortunately, modern persistent heap design cover for both, as we
will see in §2.7.5.

We must duly note that all systems presented above made use of conventional disks
for stable storage (perhaps with the exception of Rio’s battery backed file cache). As
such, they were presented with the challenge of moving data back and forth between
different media. Moreover, their protocols for resilience, were all optimized for sequential
access and block-based devices. The work conducted in this thesis instead focuses on
emerging storage technology that lifts the two preceding statements. Before tackling
persistent memory opportunities and recent work inspired by that media, we are obliged
to properly introduce it, NVMM, in the next section.

2.4 Non-Volatile Main Memory

Non-volatile main memory (NVMM) and persistent memory are now often reciprocally
confused. We however decided to define persistent memory as an abstracted program-
ming construct, and further refer to NVMM as hardware technology or media matching
the following attributes:

Def. Computer main memory that retains data without power, have latencies of the
same order of magnitude as traditional random-access memory (DRAM) and storage-
class capacity.

In that, NVMM descends from both memory and storage, mixing non-volatility with
granular direct access. Those properties of NVMM are commonly denoted direct-byte
addressability, low-latency, durability and density.

• Direct-byte addressability. This is the game-changing factor of NVMM. Mod-
ules have the form factor of regular DRAM modules, physically connect on the
same slots, and sit on the processor’s memory bus. Processors have then direct
access over NVMM physical addresses, enabling data to be manipulated exactly
in the same way, through common load/store and other byte-wise instructions
(atomics for instance).

• Low-latency. DRAM access, for instance with DDR4, features around ten nanosec-
onds of read or write latency. NVMM technologies expect several tens of nanosec-
onds, and no to exceed the hundred. This alone accounts for claims that NVMM
may close the memory-storage gap.
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• Durability. Non-volatility was a characterizing trait of storage technology. That
data remained stable without power applied. Beside storage use cases, this factually
makes NVMM an appropriate low-power memory alternative.

• Density. NVMM modules are several times more dense than DRAM at the same
price point, but remain quite far off from flash memories or spinning disks. Density
is perhaps the main determinant factor in future wide adoption of NVMM, as it
directly correlates to cost of the system. Spinning disks, for instance, are vastly
inferior and do not make computer run any faster or smarter; yet we have carried
on engineering complex storage architectures that offset their weaknesses in order
to reap big profits from their unrivaled cost-efficiency.

PMEM support The striking consideration at this point is how close NVMM as a
hardware device is to the essential components of persistent memory. It strictly adheres
to granularity and performance thanks to its byte-addressability and low-latency.

The main concern however is that non-volatility alone is not sufficient to reliably pro-
vide data stability. In current computing systems, CPUs use write-back caches that are
volatile and hardware that might not reflect program order when evicting data to mem-
ory modules. Meaning programs can carry on their execution past a store instruction,
with data that have not yet reached the persistency domain of NVMM modules, or that
have but in a different order. Possibly leading to loss of data integrity or inconsistencies
when considering recovering from potential system failures. We elaborate on that in §2.6
along with other challenges faced by NVMM as a support for PMEM.

NVMM is nonetheless game-changing when it comes to persistent memory. We pre-
viously listed the three direct benefits of PMEM as unique data representation, code base
simplification, performance gains. Additionally, direct byte-addressability of NVMM al-
lows for a single copy of the data to serve both computations and storage; when anterior
PMEM had to transparently manage the two versions of the data living on memory
and durable media. That single copy brings unique data representation and performance
gains to a whole new level:

• Erasing the need for data movement across media, making recovery rapid and
warm-up-free.

• No more (un)marshaling or (de)serializing to translate between storage and mem-
ory data format, saving precious CPU cycles.

• Managing those two data copies was a continuous complex trade-off between effi-
cient caching and preserving consistency; but NVMM altogether has potential to
eliminate the need for caching - withal making PMEM simpler and practical.

2.4.1 Usage & system interface

Reference documents specifying system support for NVMM are: the Non-volatile mem-
ory Programming Model (NPM) [295] edited by the SNIA (Storage Networking Industry
Association) and Intel’s book on « Programming Persistent Memory » [278]. The SNIA
is an industrial conglomerate with a working group on NVMM, responsible for devel-
opment of reference libraries and programming models for upcoming devices. Intel, as
pioneer NVMM vendor, also played a defining role in system support for NVM. Three
distinct use scenarios are covered: main memory (volatile), block-device (storage), and
persistent memory direct access.
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(Memory mode.) Memory configuration is handled directly by machine’s firmware
and requires no change in system software. DRAM is used as a last-level cache for
NVMM, and the firmware then blends DRAM and NVMM physical ranges as volatile
memory when exposing them to the operating system.

(App-direct mode.) When memory configuration is disabled, NVMM modules are
exposed by the machine’s firmware as persistent memory ranges in ACPI tables. The
operating system can then detect the special ranges and configure them freely, as volatile
memory, block-devices, or direct-access devices.

Modern operating systems (e.g., Linux, Windows) have user-space utilities to allow
these configurations. Users first isolate or interleave NVMM modules with namespaces;
then each namespace can be configured as: (i) volatile memory, in a CPU-free virtual
NUMA node, or (ii) block devices, with optional support for DAX (direct access) [2].

DAX-enabled block devices can be used like any other, starting with the creation of
a file system on them, and followed with regular block I/O, with support for memory-
mapped files (mmap).

(DAX-mmap.) NVMM direct access (DAX) is then requested with a specific mmap
flag on DAX block-devices. When DAX is enabled, the operating system’s I/O subsystem
is bypassed and the processor’s MMU is programmed to map NVMM physical ranges
directly in the process virtual address space. With DAX mmap, programs may access
uniformly, without any intermediate software, an hybrid virtual address space, made of
both volatile (DRAM) and durable (NVMM) memory regions. We describe later in
§2.6.2 the subtle programming model that enables crash-consistent updates to NVMM
regions. Intel has released its “Persistent Memory Development Kit” (PMDK) [19], a
suite of basic low-level tools (memory allocators, logging facilities) to aid DAX NVMM
programming in C or C++.

(NVMM-native namespace.) One may have noticed at this stage, that current
direct-access method for NVMM modules leverage file system namespace and metadata.
Although this approach has the benefit of offering a file system’s basic form of naming
and protection, it also restricts NVMM use in applications. For instance, dynamically
extending the range of persistent memory mapped in a process. More NVMM-native
solution to direct access have been presented in research work, such as HEAPO [172]
which implemented in Linux a directory to service NVMM objects in applications, with
their own dedicated sharing metadata for ACLs and protection. Keep in mind though,
this topic do not seem to be very active anymore. The DAX mmap method remains the
only one employed ever since technical documentation for Optane modules have been
available.

In all, NVMM can currently be exposed as either: a slower tier of volatile memory for
large memory applications, a block device for legacy storage applications, or as explicit
non-volatile memory. That last one is obviously the novel support for persistent memory.

Real NVMM do exist! We have been fortunate enough to have access to modules for
almost the entire duration of the PhD, as we got our hands on some by the end of the
first year. We detail next the commercial product that motivated our project.

2.4.2 Intel’s Optane DC Persistent Memory modules

Optane DC Persistent Memory is the commercial name under which Intel and Micron
announced in 2015 their upcoming jointly-developed NVMM modules. The technology
commercially labeled 3D-XPoint was first released as traditional NVMe SSDs in 2017
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before being available as memory modules in April 2019. These, as the first ever commer-
cially available byte-addressable non-volatile memory, were enough to rejuvenate interest
in persistent memory. Their announcement alone spurred various research communities
to consider the implications of NVMM, for instance in system design, storage systems,
data management, or entire systems.

Compatibility Intel Optane DC PM modules are compatible with Intel’s x86_64
server platforms, starting with Cascade Lake microarchitecture (2nd generation Intel
Xeon Scalable platform, debuted in April 2019) and onward. With this generation, Intel
has introduced ISA extensions specifically for NVMM: instructions for cache line persist
ordering, essential to reliably provide data stability. More on that later in §2.6 as we
review NVMM programming models.

Endurance Intel’s NVMM has a limited wear reliability, as opposed to DRAM for
which endurance is approximately infinite. Optane specification sheets announce a ball-
park of 108 full write cycles, when DRAM is considered above 1016 and flash SSDs sit
around 105. Intel’s marketing claims this to equate with 5 years of continuous abuse,
at maximum write bandwidth 24/7, 365 day a year. This shortcoming forbids Optane
to fully substitute for DRAM, which leads in practice to hybrid/heterogeneous memory
architectures using both NVMM and DRAM.

Performance characterization On the release of Optane modules, multiple research
studies [175, 257, 331, 338] have disclosed raw performance figures at both micro and
macro levels. This proved remarkably helpful in understanding the specificities of Intel’s
technology to later design efficient schemes for real NVMM. In particular, these studies
found that Optane modules are not truly random-access, but block-based, with
limited bandwidth compared to DRAM. In detail,

• The nominal read latency of Optane DC memory is about 3x slower than DRAM for
random patterns, but only 2x slower for sequential access. Write latency is similar
to DRAM, that is because, according to Intel’s specification, writes are considered
persistent as soon as they reach the processor’s integrated memory controller (iMC)
write pending queue. We elaborate on persistency domains later on in §2.6.3.

• Optane memory internally uses a 256B block size, as shown by bandwidth-per-
access-size performance experiments. Byte-wise operations are internally cached
by one read and one write buffer those sizes approximate 16KB. Which means
that smaller random reads or writes can be tolerated for very small working sets;
however, as soon as those internal buffers are reaching saturation, any subsequent
access will force a whole block operation, leading to apparent read or write amplifi-
cation. Small accesses are then preferably avoided, to maximize Optane saturation
bandwidth.

• Maximum bandwidth for a single module is around 6GBps for reads and 2GBps
for writes (with optimal 256B ordered writes). When interleaving several Optane
DIMMs, the maximum bandwidth compared to DRAM was between 2x-6x lower
for reads, 6x-18x lower for writes, depending on access pattern and ratio of reads
vs writes. Bandwidth is also higher (up to 4x) when accessed sequentially, showing
that the device contains merging logic for adjacent requests. Last, parallelism is
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also limited, read throughput declines above 8 threads with a single module and
16 threads for interleaved modules; write throughput starts declining with only 4
threads.

Reaching optimal performance with Optane PMEM is not straightfor-
ward. These modules can work as drop-in replacements for DRAM, but performance
will likely suffer. A recent study [331] from Xiang et al. in-depth analyzed the internal
on-DIMM buffering and showed asymmetry in the read vs write buffer management.
Moreover, they established that the mismatch between cache line granularity and 3D-
XPoint 256B blocks negatively impacted CPU prefetching and was responsible for wasted
DIMM bandwidth.

We shall also add that, as the memory model of Intel platforms supporting Optane
NVMM does not enforce strict ordering of writes, to actually issue sequential writes
one needs to explicitly order them. Meaning that a sequence of adjacent memory
writes made by a program may result in random write requests to the module when
the program does not use write ordering instructions. In cause the cache eviction pol-
icy that enlists cache lines for write back as they move to the last-level cache (LLC),
irrespective of program instruction order. In practice, we were measuring similar band-
width with random write patterns or sequential writes with no or infrequent memory
fence instructions. According to general belief, memory fence instructions are
expensive, but in the case of sequential writes, they are essential to achieve
optimal bandwidth. Even more so to avoid write amplification from torn blocks, that
may appear when not explicitly ordering sequential byte-wise writes, as a result of the
mismatch between CPU cache lines and Optane blocks.

Takeaways of these studies are highlighted by Yang et al. in [338] under best practices
for NVMM. The first and most disappointing one is « Avoid random accesses smaller
than 256B », then recommend to « use non-temporal stores for large transfers » and
finally « limit the number of concurrent threads ». In the light of these facts, they
suggest that prior art produced in anticipation of NVMM should be reevaluated and
re-optimized for real Optane NVMM; as they significantly differ from random-access
memory with emulated latencies that were used back then.

End of life As of 2022, Intel has shut down Optane device production and removed
equipment from their fab. Micron had discontinued Optane as early as March 2021,
Intel made their announcement one year after in July 2022. They still claimed third
generation of Optane to hit the market, with several years worth of supplies in existing
inventory. Intel took the harsh decision of winding down Optane business due to sales
hardly picking up, in the middle of a bad year. It was largely relayed in press articles
[39, 105, 226, 263, 294], and we all had troubles accepting it: “It was the biggest step
forward since the minicomputer. But we blew it” [263].

Optane memory was definitively a product with a bright future, but also one that
have struggled to find a market. Coming at around $5-6 per GB, Optane is 50% cheaper
than server-class DDR4 ($11-12 per GB) but almost 10 times more expensive than server
class NVMe SSDs (<$1 per GB). When Optane SSDs and NVMM are put head to
head in a persistent index comparison [170], the cost per performance of SSDs is highly
competitive although NVMM has better overall performance. Hence, the craze about
extra IOPS and tenfold lower latencies for storage was cut short by the much higher
price point compared to SSD, and caused a disengagement in both consumer and data
center markets. In memory applications, Optane significant edge on cost-per-GB versus
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ReRAM PCM STT-
MRAM

SRAM DRAM Flash
(NAND)

HDD

Cell size (F²) <4 4-16 20-60 140 6-12 1-4 2/3
Energy per bit (pJ) 0.1-3 2-25 0.1-2.5 5.10−4 0.05 2.10−5 1-10.109
Read time (ns) <10 10-50 10-35 0.1-0.3 10 105 5-8.106
Write time (ns) ≈ 10 50-500 10-90 0.1-0.3 10 105 5-8.106
Retention years years years voltage << 1s years years
Endurance (cycles) 1012 109 1015 1016 1016 104 104

Table 2.1: Memory technology trade-offs. [23]

DRAM was dulled by its unique set of performance properties, requiring Optane-specific
tuning.

Intel’s NVMM altogether was so much more than just some sort of really fast disk
drive, or denser main memory. It was an enabling technology when it came to persis-
tent memory and a huge step forward that challenged at least four decades of computer
system design. PMEM support obviously could not build itself overnight, still it could
have gradually matured as more killer app and use-cases were demonstrated. Market-
ing however blew Optane, by not immediately making it worthwhile in legacy systems.
Whether a lower price tag would have secured Optane’s future, or incurred even more
loss to Intel, we will likely never know. NV-DIMMs are poised to reappear in the near
future in the market, from different manufacturers and/or with alternative technologies.
As noted in this ACM SIGARCH blog entry [298], PMEM devices are fully part of the
CXL 2.01(Compute-Express Link) specifications backed by Micron; which heralds the
(near) return of NV-DIMMs.

2.4.3 Alternative technologies

Truthfully, byte-addressable non-volatile memory did not start and will hopefully not
stop with Intel’s modules. A variety of emerging non-volatile memory technologies are
being actively explored, as summarized in [335], as denser and lower-power alternative to
DRAM. The main ones are phase-change memory (PCM) [324], resistive RAM (ReRAM)
[33] and spin-torque transfer magnetic RAM (STT-MRAM) [43]. Table 2.1 illustrates
properties of each, and shows that all are fit for byte-addressable NVM use. We can
mention that Optane is a representative of PCM, according to data gathered from per-
formance studies, even though Intel never disclosed 3D-XPoint underlying technology.

For reference purposes, we now briefly present NVM’s past, and alternative future
approach to support persistent memory that do not rely on byte-addressable NVMM
devices.

Magnetic core memory We could trace back as far as the 50s and 60s to find mag-
netic ferrite-core memory that were also non-volatile. Later in the 70s, Bubble memory,
another kind of core memory, was developed and pushed for storage applications, even
incorporated in commercial products. However, by the early 80s, faster semiconductor
memory (DRAM) and mechanical hard drives had completely buried them with their
faster response time, higher densities and overall lower cost. Bubble memory subsisted
for a while in a niche of systems operating in harsh environments (e.g with high vibra-

1CXL is an industry standard interconnect with low-latency (sub-Infiniband scale). It enables cache-
coherent device sharing in the whole rack.
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tions), where they were used to avoid the high failure rate of mechanical drives. An
anecdotal but telltale example was Konami’s Bubble arcade game system that used bub-
ble memory game cartridges for storage, to cope with ruthless players. Eventually, these
systems adopted either ROM chips (no need to save states in arcades) or flash memory
as they became cheaper.

Simulation, emulation and Vikings NVMM has been long anticipated, and re-
searchers did not wait idly for Optane NV-DIMMs to be readily available; by the time
they were released, a slew of papers had already been written. Starting from 2010, they
began proposing new hardware designs, programming models, file systems, libraries and
even applications built to hardness to full potential of byte-addressable NVMM. While
work introducing new hardware components resorted to simulation, system research
drew conclusions using DRAM hardware in lieu of upcoming NV-DIMMs. At the time,
expectations for NVM were DRAM-like behavior with higher latencies and narrower
bandwidth. Performance studies were made in anticipation using PCIe-attached FPGA-
based NVM-emulating devices [82]. Techniques for NVM emulation induced those lower
performance through software emulation, new CPU microcode [350], exploiting NUMA
remote-node access, and simply pretended DRAM to be persistent. A few work were
also evaluated using NV-DIMM contraptions. For instance, using the battery-backed
DDR4 modules from Viking Technology, as did Espresso [329] (§2.8.4.1), Anecdotally,
[197] evaluated a new WAL technique for NVMM, by running SQLite benchmarks on a
Nexus 5 smartphone, attached to an NVM emulation board.

Software persistent memory Momentum gathered from NVMM and Optane an-
nouncement, combined with a scarce availability, eventually led to rediscovery of persis-
tent memory designs for conventional hardware.

SoftPM [153], for instance, proposed in the midst of the NVM hype, a software
persistent memory abstraction for C. The abstraction is conceptually close to RVM
we discussed, but with the aim of reducing programmer involvement. To this end,
they mix in other ideas from older object persistent stores, such as write detection
at page-fault time, or transitive persistence. The storage layer implements an atomic-
commit protocol for resilience. The programming interface revolves around asynchronous
persistence checkpoints, with calls to synchronize on outstanding checkpoint I/Os.

Kelly has re-demonstrated with an in-depth tutorial for C++ in [189] the use of mmap
in modern operating systems to implement on conventional hardware (spinning or flash
block devices) a persistent heap with the foundations of a persistent memory abstraction.
One of which is the introduction of a failure-atomic msync (FAMS [254]) call to facilitate
programming.

PM-gawk (persistent memory GNU AWK) [191, 303] and PMA (persistent memory
allocation) [190], by Kelly et al., recently brought persistent memory to scripting lan-
guages without relying on NVMM. Scripts are simple programs; used for clear, concise
and quick writing of automated tasks or recurring jobs. The proposed persistent script-
ing paradigm offers to "remember" script whole-state across executions. The PM-gawk
script interpreter attaches to a file-backed persistent heap managed by PMA, that it uses
to re-populate previous variable states, and save state at the end of a run. One good
usage example are scripts that analyze continuous data streams (e.g., append-only files,
log files). In this instance, recovering previous state allows for dead simple incremental
computations, where only new data can be processed at each script invocation.
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Flash memory SSDs and flash have long been relegated to the traditional block inter-
face. They were commonly thought of as fast drop-in replacement for spinning mechan-
ical drives and have thus far formidably emulated the behavior of sector-based drives.
However, the NVMe ecosystem and specification nowadays grows larger with support for
modern interfaces and I/O frameworks. Featuring new capabilities like user-space I/Os
(with the SPDK [341]), zoned namespaces [67] and NVMe directives. New capabilities
also keep landing, such as upcoming programmable interfaces for on-storage computa-
tions. New NVMe extensions are constantly being proposed, for instance ccNVMe [216]
(Crash-Consistent NVMe), that brings transaction-aware memory-mapped I/O to effi-
ciently provide atomicity. Additionally, the NVMe specification starting with version
1.4 [21] (2019) introduced support for an on-device PMR (Persistent Memory Region),
directly byte-addressable as it bypasses NVMe command queues. All for an enhanced
versatility that marks the dawn of a new era of system-storage co-designs. For reference,
that body of knowledge is summarized in [211], a tutorial paper evocatively entitled «
Not your Grandpa’s SSD ». Alternatively, designs for byte-addressable flash were also
proposed:

eNVy [328], in the middle of the 90s, described a non-volatile main memory storage
system that presented a linear storage space to the application. eNVy sat on the memory
bus, with a combination of flash memory for data persistence, and battery backed SRAM
for internal buffering. Internally, the system used a copy-on-write approach to work
around flash inability to perform in-place updates; and remapped the memory pages in
the battery backed SRAM to make in-place updates transparent.

FlatFlash [29], in the last years, proposed to leverage the byte addressability of
the PCIe interconnect to turn flash SSDs into cheap main memory. Even though the
goal was to extend volatile memory more efficiently than with usual OS paging, they
effectively demonstrated a byte-addressable SSD design. Through existing interfaces
and using memory-mapped I/O, CPUs are capable of issuing byte-grain operations to
SSDs, but the NAND flash chip on SSDs are not byte-addressable. The core idea was
to leverage the internal DRAM in SSDs, previously used for the flash translation layer
(FTL), to allow the CPU to address the SSD memory with cache line granularity.

Our closing note on byte-addressable NVM goes to Optane DC PMEM. Intel’s mem-
ory is gone, and we hardly got to know her. The future however is not looking so bleak.
Hopefully, persistent memory is here to stay, whether supported by another emerging
technology, or a smart arrangement of software-storage co-design. Optane has put per-
sistent memory back under the spotlight. We must now play our part and focus on
attesting its applicability as an abstraction (§2.6 onward). Before though, we next go
over potential use cases of NVMM in §2.5, to fully comprehend the enormous reach of
the technology.

Please note that we will henceforth, unless explicitly specified otherwise, exclusively
consider Intel’s platform and Optane NV-DIMMs when addressing NVMM or persistent
memory. Recent development on Intel and Micron winding down of Optane business were
fun to document, as were referencing alternatives; yet we had assumed Intel’s model and
hardware throughout the entire duration of this PhD.
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2.5 Applications & Use cases for NVMM

We previously concluded that, without non-volatile main memory, the abstraction of a
persistent memory was never truly grounded (§2.2). Past developments were closer from
research test vehicles than industrial products (§2.3). The promise of increased produc-
tivity from the erased distinction between in-memory and storage data representations
did not win the argument. Overall, it is fairly understandable that such a paradigm
switch was compromised after decades of asset investment in the now all successful re-
lational databases and file abstraction. Programmers already knew well enough their
way around the traditional interfaces for persistence to firmly believe in or advocate for
their superiority. They could genuinely not feel the urge to adopt newer, shady-looking,
ways to go about their valuable stored data, even more so for the lack of general support
for persistent memory from trustworthy organizations. The apparent productivity gains
must have resonated like a farce to anyone realizing the whole code base needed to be
re-designed and re-written.

The availability of non-volatile main memory hopefully echoes a more engaging mes-
sage (§2.4). This time, the increased productivity is supplemented by real-world per-
formance gains. Above all, persistent memory feels like the natural and proper way
to harness NVMM and harvest all of its benefits. NVMM-backed persistent memory
is not another logical layer to abstract storage, but the most direct path for data to
be persisted. Someday, it may even overthrow the antiquated and unsafe file systems
that can only stream untyped bytes. However, this day is still far ahead: a colossal
amount of work must be carried out before persistent memory could reliably and easily
support systems. Until then, applications of persistent memory will span across support
for legacy systems and data persistence interfaces, to whole new system designs opened
by the technology.

We propose in this section to introduce use cases of persistent memory within this
spectrum from obvious to novel, that is, building giant memory systems (§2.5.1), speeding-
up file systems (§2.5.2), recovering large databases in seconds (§2.5.3) or assembling to-
tally novel persistent components in systems (§2.5.4). Additionally, we attempt from this
overview to get a better grasp of potential user expectations towards persistent memory
programming abstractions.

2.5.1 Large memory systems

The easiest way to use NVMM is to ignore its persistence, to build giant main memory
systems. Real world big data processing or HPC applications often require or perform
better with extremely large amounts of main memory. Employing persistent memory in
lieu of DRAM could potentially grow by 8x systems’ maximum memory capacity while
keeping the cost down and making them more energy-efficient. Even so NVMM can be
twice as cheap, recall that it noticeably increases latencies by 2-3x and narrow memory
bandwidth up to 8x. In [106], the authors went extreme and used only NVMM (no
DRAM) to survey the performance impact of the new memory kind on OLAP work-
loads. They found that DRAM-like read accesses were harmless, but unrestricted write
patterns to be damaging, and thus proposed guidelines to keep writes from overly hurting
bandwidth.

Mixing NVMM and DRAM technologies is key to constitute an hybrid or heteroge-
neous main memory of higher capacity and reap the cost, performance, or energy benefits.
A simple off-the-self, but limited solution is to use the “memory mode” of Intel’s NV-
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DIMMs. The firmware-builtin DRAM-NVMM tiering mechanism is fully transparent
to OS and software. Results are extremely mixed depending on applications, and such
hardware-level mechanism leaves little opportunity for smarter refinements. A body of
work is dedicated to exploring sensible approaches for heterogeneous main memory tier-
ing, with the goal of essentially hiding slower memory characteristics. These approaches
either fall into transparent tiering (i) at the OS level, (ii) at the language runtime level,
or explicit tiering through (iii) specialized memory allocators.

OS-level tiering. OS-level support for heterogeneous memory in Linux was introduced
with a series of patches to expose NV-DIMMs as virtual NUMA nodes [101, 287]. The
two memory tiers are simply managed with NUMA balancing. Thermostat [31] fur-
ther implemented in Linux a page-sampling technique to identify hot and cold memory
pages, and demote cold data to slower memory. HeMem [268] presented a low-overhead
memory access sampling method based on CPU events, and implemented their memory
management policies in a user-level library for flexibility.

Runtime-level tiering. Managed workloads constitute quite a hefty portion of big
data processing, but garbage collection makes ineffective transparent physical memory
page sampling techniques employed at the OS-level. In cause, mainstream garbage col-
lectors that are copy-based, meaning they keep changing the data layout by relocating
objects to different physical pages for memory compaction. Additionally, the mixing of
small random read-write operations found in memory compaction algorithms was iden-
tified as outstandingly disrupting for NVMM bandwidth in [340]. Naturally, this led
to specific solutions and language runtime enhancement for hybrid memory, as found
in [34–36, 215, 311, 340]; which we save details for later discussion on Java garbage
collection in §2.8.1.

Allocation-time placement. Hybrid memory allocation APIs forgo transparency and
allow hinting the purpose of memory objects. Memkind [14], supplied by Intel, is a
general-purpose memory allocator that allows choosing the destination kind of memory
between DRAM, NVMM or HBM. Unimem [327] is a runtime system for HPC that
leverage allocation-time hints and online profiling of memory access patterns to choose
the best data placement of memory objects. NVCache [132] employs such hybrid
allocation APIs to devise a volatile NVMM cache for MongoDB. At its core, NVCache
throttles writes to balance with the rate of reads, so as to avoid NVMM bandwidth to
crumble under unrestricted write traffic.

As a whole, the take-home message of volatile usage of NVMM is - besides guidelines
for access patterns and limitations of managed runtime mechanisms atop NVMM - that
exogenous policies provide a good starting point with broad support, but do not eliminate
the need for explicit application-level NVMM management: necessary to treat peculiar
policies close to application semantics. Then, NVMM programming libraries could also
come as a solution to explicitly manage transient NVMM objects, by allowing crash-
consistency to be disabled.

2.5.2 Block storage

The second easiest way to use NVMM ignores its memory characteristics, and exposes
a block device on which OSes allow conventional file systems to run. File systems bring
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NVMM persistence to legacy applications “for free” through conventional file I/O. Al-
though forfeiting unique opportunities for single data representation and copy along the
way. In a nutshell, legacy I/O intensive applications can outright perceive a performance
boost without any code modification.

Unfortunately, conventional file system have known decades of careful optimization
for sector-based disk drives that can add microseconds to common operations. Moreover,
file system operations are typically handled in kernel space, which incurs system call
overheads at every I/O and additional memory copies of the data. This extra latency
may be irrelevant to spinning drives with millisecond-scale response times, or even SSDs
with hundred-of-microsecond latencies; but definitely noticeable with low-latency media
such as tens-of-microsecond SSDs or our microsecond-scale NVMM.

A line of work then focuses on designing NVMM-specific file systems that thrive
at reducing system overheads of file systems, and that adopt NVMM-friendly access
patterns to further enhance common operations latencies.

Optimized file systems. NOVA [332] is one of the most notable efforts in this area.
It adapts conventional log-structured file system techniques [273] and data structures
to be a better for fit NVMM. Additionally, it provides atomicity to metadata, data,
and mmap updates, while remaining between 10% and 10x faster than file systems with
equally strong data consistency guarantees. NOVA-Fortis [333] further address relia-
bility issues in the face of media errors and software bugs. Achieving resilience versus
data corruption through checksums and raid-style parity. The authors measured a lim-
ited impact on performance versus plain NOVA: it still outperforms reliable file systems
running on NVMM by 3x on average. FLEX [334] (FiLe Emulation with DAX ) is not a
file system, but a transform that rewrites file I/Os with user-space memory operations. It
was used to gauge the impact of file system software stacks on NVMM performance. For
short, it turns open() into a DAX mmap(), replaces write() with non-temporal stores,
read() with memcpy() and fsync() with SFENCE. Note that FLEX is not atomic, thus
breaks applications that assume atomicity of the write system call. SplitFS [184] dis-
tributes the responsibilities of handling metadata and data updates between the kernel
and a user-level library. It intercepts POSIX calls to service data operations with direct-
access load & stores by memory-mapping the underlying file. In doing so, it bypasses
costly system calls and in-kernel operations. Overall reducing the software overhead by
up-to 4x compared to NOVA, while providing the same consistency guarantees. WineFS
[185] notices that fragmentation severely degrades performance of NVMM file system.
It then proposes to use log-based consistency techniques to avoid disruption of hugepage
usage, at the cost of an increased write traffic. Prior log-structured file systems were un-
able to allocate 2MB hugepages after being highly utilized, having to resort to 4KB pages
instead and causing extra page faults and misses. WineFS matches NOVA performance
in the basic settings, and performs twice as fast as an “aged” NOVA file system.

Caching file I/Os. NVMM has also long been seen as a suitable media to build fast
persistent client-local I/O caches for distributed file systems. As early as 1992, Baker et
al. [53] showed through trace-driven simulations, that small amounts (1MB) of NVMM
on disk-less clients could halve remote writes to server disks. Similarly, they demon-
strated reduced disk traffic by using small NVMM server-side write buffers. ZFS [317],
an industrial grade file system, have long had the capability of employing low-latency
medium to log writes and reduce latency of the file systems. Strata [203] is a file system
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built for a 3-layer storage hierarchy, made of emulated NVMM, fast flash SSDs, and
high-density HDDs. Data updates are logged in user-land on NVMM for fast response
time, then asynchronously propagated to the kernel portion of Strata. This arrangement
achieves good performance with a synchronous I/O model without being restricted to
smaller capacity of NVMM modules. Ziggurat [351] expands on this idea to build a
tiered file system with smarter I/O predictors and data migration policies to optimize
for every tiers’ characteristics. It profiles application use of fsync to predict I/O syn-
chronicity, such that small synchronous writes are allocated on NVMM, while larger
asynchronous ones are directly sent to slower tiers. Plus, only cold data are migrated
out of NVMM, and hot data can be brought back to NVMM or DRAM under frequent
accesses. Migration policies also coalesce data into variable size chunks, to optimize for
sequential access at each device preferred granularity. NVCache [128] proposes a plug-
gable user-land NVMM file I/O cache that rival NVMM-specific file systems performance,
with conventional file systems and tiered storage hierarchy. Assise [41] is a distributed
file system that leverage client-local NVMM to build a linearizable and crash-consistent
replicated coherent cache between compute and storage nodes. Features include near-
instantaneous application fail-over to a warm replica that mirrored the file system cache,
and faster remote reads by accessing NVMM caches of warm replica instead of network
disks. Hydra [352] and Orion [337] utilize RDMA networks to further accelerate such
decentralized distributed NVMM-aware file system designs.

Direct-access file systems. This last category of NVMM-specific file systems is the
most compelling for us. They provide direct access (DAX) through mmap, which allows
applications to access the content of a file directly in user space using load and store
instructions. PMFS [127] from Intel, first proposed that DAX mmap by-passes the
block layer and OS page cache to improve performance. These changes were then all
integrated in conventional file systems with DAX support, such as the Linux file system
Ext4 [2]. They all maintain POSIX-like guarantees, that is metadata integrity and
atomic metadata operations through common journaling techniques. However, they
perform data updates in-place, and with Ext4-DAX, the data-journal of regular (non-
DAX) Ext4 is disabled; in all data updates or appends are not atomic. As a consequence,
it behoves applications developers to take care of data integrity. These file systems also
do not provide the necessary features to detect and correct media errors and protect
data against corruption.

To summarize, NVMM-specific file systems aim at supporting legacy programs and
quicken their file I/Os with no code modifications. They are however limiting the poten-
tial of NVMM with the antiquated file interface that incurs additional data copy in main
memory. Direct access from the CPU to NVMMmodules is possible by memory-mapping
a file on a DAX-enabled file systems. With that, a whole new support for in-memory
durable data types, reminiscent of a persistent memory abstraction, that were beyond
the realm of possibility with conventional file systems interfaces. However, as DAX by-
passes completely the file system control plane operations, it falls onto applications to
reliably write data onto the media and preserve their integrity.

2.5.3 Database systems

Database systems are among the most popular and anticipated field of application for
NVMM. Its formidable characteristics are especially relevant for big data analytics, in-
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memory databases, or high availability systems. In-memory persistent data types bring
back the promise of productivity benefits from past persistent memory, together with
unprecedented data access latencies. In that, they are extremely well indicated base
building blocks for database systems; as attested by the recent burst of research activity
in the area. Countless research key-value stores for NVMM spurted over just the span
of the last 5 years or so; all in line for the immense expected benefits. Whether to
lower database response times, increase operation throughput, attain near instantaneous
system recovery; the list is long.

Benefits. NVMM enables groundbreaking evolution in DBMS architecture, calling for
substantial code base simplifications. The fact that the technology might be suitable for
data indexing, storage and caching all at once, may basically let DBMS maintain a single
copy of any data object. Incidently deprecating the protocols that were responsible for
maintaining consistency of data across those multiple representations and copies. More-
over, low media latencies might cut the need for asynchronous persistence, by making
less significant the cost of strong consistency in the critical path of user operations.

Legacy support. With the release of Optane modules, performance studies empiri-
cally analyzed opportunities for NVMM in databases. In [202], the authors surveyed
off-the-shelf (memory & block mode) Optane configurations for traditional relational
DBMS (PostgreSQL, MySQL, SQLServer). Despite fine tinkering with many of the
engines’ knobs, they reported little improvement with NVMM versus SSDs for storage
media. Quite expectedly, their findings corroborate that storage performance in DBMS
is held back by software inefficiencies rather than storage hardware characteristics. Espe-
cially for write-heavy workloads, where an unoptimized I/O path dip overall performance
on NVMM. Precisely, DBMS storage engines spend significant CPU resources to reduce
I/O traffic, which turns out to be baseless and detrimental with NVMM media. In all,
DBMS re-design is not only advisable but necessary to make NVMM hardware worth-
while.

DBMS re-design. Strategies for NVMM integration can be broken down into 3 dis-
tinct stages, each of higher complexity but better payoff.

• Stage 1 optimizes the block storage layer for NVMM devices. This is the least
intrusive strategy and is typically enough to witness a throughput increase. Latency
critical I/O operations, such as logging (e.g., WAL), are placed on NVMM.

• Stage 2 takes a more radical approach. It turns volatile memory tables into NVMM-
resident persistent tables. By making memory tables persistent, the memory footprint
is substantially reduced (no more volatile DRAM caches). User data need no longer to
be marshalled and hosted on block devices, making the DBMS code for block storage
redundant and dispensable. However, the complexity of keeping memory tables crash-
consistent may hinder throughput versus Stage 1, as it becomes harder to maximize
sequential NVMM bandwidth.

• Stage 3 directly implements persistent index structures. That is, this stage lever-
ages NVMM-native persistent data structures for data indexing. Further cutting down
on the database startup time, as in-memory indexes need not to be re-populated. We
will tackle this point in §2.7.1 together with other data structures for NVMM.

Several industrial-grade modern databases have benefited from NVMM re-design
efforts. Experimental code base forks are available, and leverage Intel’s PMDK to im-
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plement NVMM support strategies. Example includes NVMM ports of MongoDB [18],
RocksDB [7], SAP Hana [42], Redis [6], Memcached [125] or Apache Cassandra [17].

Network stack overheads Fedorova relates on theMongoDB developer’s blog [131]
their experience with Optane PMEM and Optane SSDs on WiredTiger, MongoDB’s
default block storage engine. Their experimental findings are on a par with the studies
performed on other DBMS: WiredTiger exhibits no superior throughput with Optane
PMEM in block mode versus Optane SSD. They concluded that DBMS storage engines
were effectively hiding storage media latencies with DRAM caching.

Interestingly though, Izraelevitz et al. in [175] also benchmarked Intel’s Persistent
Memory Storage Engine (PMSE) for MongoDB [18]. PMSE is a drop-in replacement
for WiredTiger, that rely on Intel’s PMDK to implement the engine’s key-value interface
with a crash-consistent hash map. They found no throughput difference as well between
PMSE and WiredTiger on Optane PMEM modules; which they associated to the cost of
client-server communications and MongoDB query processing engine in the benchmark-
ing application. Note that client and server were co-localized, meaning the dominating
cost lies in the networking software stack and not the actual network data transfers.

The conclusion we can draw here with MongoDB and the stage-1-ish re-design strat-
egy of PMSE, is that in a nutshell, Optane PMEM failed to demonstrate in a client-
server setting a throughput increase versus SSDs. As Fedorova noted, Optane PMEM
may better serve operations where access latency to storage is the bottleneck, such as
write logging. We shall add - when not undermined by the network stack latencies -
considering that Optane SSDs and their hundreds-of-microsecond delays are otherwise
hardly restricting on conventional ethernet stacks.

Embedded databases. As seen previously, the purpose of NVMM is unclear in client-
server databases: whether performance gains may still be attainable with faster network-
ing stacks (e.g., Infiniband), or whether exclusively recovery times may be improved with
Optane PMEM. Fortunately, embeddable databases can help us complete the picture.
As living in the application’s process, they negate the cost of networking. RocksDB is
such a database, and benefits from an NVMM-optimized WAL scheme [7] (stage 1 ). In
[175], the authors report an appreciable throughput increase versus Optane SSDs: al-
most 8x when going from an Ext4 file system with Optane SSDs to a NOVA file system
with Optane NVMM. Additionally, the authors performed a stage-2 re-design by mak-
ing RocksDB’s memtable (skiplist) persistent using PMDK transactions, and removing
the block layer (WAL & file storage) that had become unnecessary. In doing so, they
registered an additional 73% throughput increase over the previous best configuration.
At last, this depicts a compelling illustration of the potential performance benefits that
NVMM may bring to database systems. Inconveniently, these may not benefit other
kinds of databases until networking stacks catch up.

In-memory databases. Replicated and distributed object caches are high-performance
databases built for quick response times in highly scalable applications. Their distributed
and highly-available nature made them resilient to node failures without resorting to per-
sistence. However, being entirely volatile made recovering local node crashes a rather
costly operation: receiving lost data over the network from replicas is both time and
energy inefficient. As such, in-memory databases usually implement a rudimentary data
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persistence scheme (e.g., an append-only-file), that asynchronously persists data to alle-
viate the node recovery cost.

RAMCloud [248], a research decentralized in-memory storage system, made the
case for fast crash recovery by recollecting data in parallel from multiple nodes. It
could recover 22GB of data per second in a 60-node cluster, reaching the upper limit
of the Infiniband network device bandwidth on the recovering server; equivalent to 8-10
aggregated Optane SSDs. In contrast, it would take only 3 interleaved Optane NVMM
modules to rival that rate of recovery while relying only on local storage.

Going further with fine NVMM integration (stage 2 -ish strategies), this class of
database could become crash-consistent and experience near-instantaneous node recov-
ery. Assuming that data and the primary store reside on NVMM, no data movement
would be required on recovery, only the re-generation of secondary indexes. The point
for NVMM impact on in-memory databases is made and summarized with more depth
in an IDC white paper [247], wherein SAP Hana is taken as example of joint efforts
between SAP and Intel to showcase NVMM direct access potential.

SAP Hana was the first commercial product to benefit from Optane PMEM support,
as described in [42]. Hana is a modern in-memory database built from the ground up with
large scale data analytics in mind. In all its complexity, the authors in [42] emphasize on
« an early adoption, where HANA consumes NVRAM without heart surgery on the core
relational engine. » As such, NVMM in Hana supports the primary columnar store and
hosts only the backing arrays of column dictionaries or data vectors. Being published
prior to Optane PMEM release, the performance figures in the paper are tainted by the
lack of real NVMM hardware. Nonetheless, marketing claims assure up to 12x reduced
startup times (from VMWare’s blog [269]) - loading terrabytes in minutes rather than
hours - thereby incurring an overhead contained under 7% on most workloads, and up
to 30% for the worst one (data insertion), according to Fujitsu’s white paper [24].

Memcached or Redis are popular distributed in-memory object caching systems.
While Memcached exposes a simple key-value store interface, Redis, also referred to
as “data structure server”, offers an API with richer commands. They both make use
of NVMM, as found in [125] and [6]. However, under the complexity of programming
persistent memory, both approach NVMM as volatile and, as a mean of reaching higher
memory capacities per CPU.

Overall, non-volatile main memory is truly a re-defining media for data store systems.
All anticipated benefits could be validated from preliminary studies and real Optane
PMEM; but none of them may be harvested without surgical evolution in DBMS archi-
tecture. Sadly, performance improvements will go unnoticed except with faster network-
ing stacks, or unless the client-server paradigm is avoided - as in the case of embeddable
databases. To top it all, these game changing evolution are held back by the complexity
of correctly programming with persistent memory in DAX mode. These major setbacks
are hardly balanced out by shorter recovery times alone: given how huge amount of
time, asset and material expenses they require to implement. To this day, no major
player has conducted an official and thorough NVMM integration campaign - Hana is
perhaps as close as it gets - when others like Redis or Memcached avoid persistence
altogether. Hopefully, reticence will cease as the NVMM ecosystem matures, with sim-
pler programming libraries, paired with tools to assert and validate integrity of persisted
data. In order to evaluate our contributions (§5.1), we augmented the Infinispan NoSQL
industrial store [229] for NVMM using our system. Thanks to our design decisions, we
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were able to avoid dual representation of data and marshaling when porting Infinispan
to NVMM, in less than 200 lines of code.

2.5.4 Exotic applications

Non-volatile main memory truly is an earthshaking piece of hardware with never-before-
seen properties and characteristics. As such, applications extend beyond the enhance-
ment of traditional storage interfaces, including file systems or databases. NVMM to-
gether with the versatility of a persistent memory programming abstraction pave the
way towards novel and original means of going about durable data. To the point where
it redefines modern computing system architectures and proposes new execution mod-
els. So as to illustrate this, we are about to take a peek at topics that emerged very
recently around (i) persistence of user data in network devices, (ii) using GPU as
storage workload accelerators, or even (iii) rethinking data centers around unreliable
power sources.

In-network persistence We previously made the point for NVMM being held back by
traditional networking stacks lagging behind in respect to both throughput and latency.
On one hand, a reasonable line of work attempts at soothing the issue by mixing-in
fast disaggregated memory abstractions [314], or by combining PMEM with RDMA
[224, 313], all to build low-latency in-memory distributed databases. On the other hand,
a more disruptive take on the matter proposes that emerging programmable network
devices directly address and manage NVMM.

PMNet [281] for instance builds on the idea of caching read requests on pro-
grammable network data plane (e.g., NIC, switch), as in NetCache [180], and extends
it to also log update requests in-network by attaching NVMM on those devices. In do-
ing so, clients no longer have to stall, waiting for servers to commit their updates and
acknowledge them. Instead, the network critical path is shortened as PMNet allows to
reliably stash data by logging update requests on programmable network devices, poten-
tially closer to the client. In all, PMNet turns emerging programmable network devices
into read/write request proxies for applications, extending the data-persistence domain
from servers to network devices; with the goal of alleviating impact of network transfers.

PASTE [164] complementarily proposes that user-level I/O stacks, meant for lower
latencies as kernel by-passing, be built jointly for storage and network purposes at the
NVMM era. The result is a network programming interface that supports standard
transport protocols (e.g., TCP, UDP) and DMA data straight from NIC to host NVMM;
such that they “never need to be copied again - even for persistence”. Effectively negating
the software overhead of traditional networking stacks.

GPU-accelerated storage Functionality and utility of GPU as a “general-purpose”
computing platform is an ever expanding province. In a nutshell, any program with
data-intensive computations, that is either - (i) very demanding on memory bandwidth,
and/or that (ii) executes undemanding tasks, fit for slim computing units, but with
massive data parallelism - might be sped-up by running on GPU. Two properties that
in-memory databases verify, according to Mega-KV [348] that made a strong point for
high-throughput GPU-based volatile key-value stores.

In addition, data path to persistent media from GPUs - or the lack thereof - are
shackles to the diversification of computing kernels and the generalization of GPU as
a computing platform. GPUfs [291] proposed file system primitives for GPU kernels.
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Although it helps eliminate CPU support code required to feed data to GPUs, data
ingestion is still assisted by the CPU under the hood - they transit through the main
memory hierarchy before reaching the GPU. More recently, in 2019, NVIDIA introduced
GPUDirect Storage [305] in CUDA. The technology exploits DMA capabilities of
PCIe interconnects to bypass the CPU and access NVMe SSD data directly; however
relies on a proprietary IO subsystem and programming interface.

GPM [253], very recently in 2022, envisioned making NVMM directly accessible
to GPU in order to achieve fine-grain persistence in compute kernels. With conven-
tional hardware and by leveraging NVIDIA’s Uniform Virtual Address (UVA) technology,
NVMM memory ranges can be mapped to kernels’ virtual address space. From there,
GPM proposes a fully-fledged persistent memory programming abstraction for GPUs,
including logging and checkpointing facilities optimized for GPU parallelism. Creating
in this way a system where GPU kernels may directly manipulate NVMM-resident data
structures crash-consistently, without help from the CPU or the OS. The reported results
present impressive speedups across-the-board for a host of popular GPU applications.
In particular, for in-memory key-value stores, the authors report throughput increases
by: • 8x in Mega-KV when using GPM instead of GPUfs to persist updates on NVMM,
• 4x in Mega-KV when persisting updates with GPM instead of delegating persistence
and NVMM data flushes to the CPU, and finally, • 3x for Mega-KV+GPM compared
to RocksDB-PMEM running on CPU.

Intermittent computing Long before byte-addressable NVM were sensibly available
to mainstream computing platforms with the recent introduction of Intel’s Optane lineup,
NVRAM chips have been deployed on small devices and embedded computing platforms
such as IoT devices, wearables, sensors and environmental monitors.

Energy harvesting systems [262] are such small devices that run off unreliable power
sources. NVRAM chips enable them to go battery-free, reducing their environmental
footprint, while achieving ultra-long operation times without maintenance. As they
collect energy from different ambient sources (e.g., solar, thermal, radiations) and face
frequent unpredictable power outages; these platforms require programmers to reason
about energy to compose data consistency with forward progress in their programs.

Intermittent computing is the field that strives at solving these challenges: avoid
data loss or inconsistencies, while balancing performance, energy and result quality. In
particular, through lightweight checkpointing that saves hard-earned energy by reducing
overheads of saving/restoring states. Techniques vary, for instance, QuickRecall [177]
performs just-in-time (JIT) checkpoints including whole register states when voltage is
about to drop. Ratchet [325] does not rely on voltage monitoring and energy buffers,
but rather adds at compile-time lightweight checkpoints between idempotent regions of
code. Chinchilla [225] also instruments code at compile-time with checkpoints, but
disables them dynamically based on an adaptive timer. ReplayCache [345] enables the
use of volatile write-back caches without the associated data crash-consistency issues
through software-only techniques. Instead of resorting to costly logging of programs’
memory stores, they combine JIT store register checkpoints, as in QuickRecall, with
compile-time persist code region detection. By doing so, they allow in-place NVM stores
to be asynchronous throughout persist regions, with no write amplification; since stores
that were not persisted before a power failure may be replayed first thing on restart from
the register checkpoint.

The advent of NVMM on server platforms creates interesting openings for an in-
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termittent computing model on traditional computer architectures. Whether to power
energy-aware computations, shut down under-loaded servers, or even have whole data
centers run off self-produced energy - as scarcer unreliable power sources. This might just
as well be one of the first step towards energy-driven large-scale computing; where ser-
vices and jobs could be scheduled not only relative to customer traffic, but also according
to energy rations or shares.

2.5.5 Summary

In summary, the application range of NVMM is truly wide. From enabling giant memory
systems (§2.5.1), enhancing performance of traditional storage - file systems (§2.5.2) or
databases (§2.5.3); to novel scenarios where low-latency fine-grained data persistence
might empower programs with data durability or fault-tolerance almost for free (§2.5.4).
Of course, these boons may not easily be unlocked without proper programming support
for NVMM. In all instances we presented, the full potential of NVMM could only be
noticed with in-depth system re-engineering. A task that might be largely eased by
integrating NVMM and persistence with programming idioms. Unsurprisingly that does
not come for a cheap, as we are about to understand in the next section while we discuss
hardships to overcome when ensuring reliable persistence with NVMM.

2.6 Challenges for persistence with NVMM

Considering what we have covered so far regarding both persistent memory and byte-
addressable non-volatile memory, the only remaining grey area in the design of a suc-
cessful PMEM abstraction over NVMM, is the case of answering requirements for data
consistency in respect to potential faults.

The specificity of NVMM when compared to traditional storage devices lies with the
fact that NVMM resident data is already persistent. No explicit data copy are needed
to/from the storage device for persistence: durable bits are mutated in-place through di-
rect byte-addressability. Problem arise with the physical arrangement of NVMM devices
on the memory bus, requiring byte-wise operations to go through CPU caches. This
means that the actual data updates are still buffered on volatile caches before navigat-
ing back upward to the NV-DIMMs. Now remember that CPU cache protocols were
designed at a time were volatile DRAM were the only main memory option available.
Obviously, with no account for persistence or data crash resilience. The challenges we
are about to present regarding implementation of persistent memory on Intel platforms
directly stem from there: the memory model enforced by cache protocols.

Please note that we intentionally restrict the discussion to Intel platforms. Not that
the broader body of work on memory persistency models is unimportant, but is simply
beyond the scope of our problem instance, which is again, persistent memory abstraction
for Optane NV-DIMMs.

(Memory store re-ordering.) A first challenge is to have the data remain consis-
tent upon reaching the persistence domain. That is, the region of a computer system
where content will be preserved in the event of a failure, which may not be restricted
to NVMM modules. Of course, dirty CPU cache lines can be evicted explicitly with a
flush instruction, allowing data to reach the persistence domain. However, in this access
hierarchy, cache lines may also be written back implicitly to main memory as part of the
CPU cache management protocols built in hardware. These so called "implicit flushes"
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also propagate the effect of memory store instructions to the persistence domain, but
following an arbitrary order dictated by hardware - typically not the program instruction
order. In other words, unless something specific is done, any memory store may reach
the persistence domain in any order 2. Although data stability can be trivially reached
with explicit flushes, in presence of implicit flushes, guaranteeing data consistency in the
wake of a crash is complicated and requires extra care.

(The read of not-yet-persistent-writes.) The second challenge comes as exten-
sion of the first one in concurrent settings. When multiple execution threads share a
piece of data, consistency is provided by the cache coherence protocol. Precisely, besides
locks, concurrent programs may synchronize on the notion of "globally visible write".
Simply put, this notion denotes writes that were made visible by the cache coherence
protocol to concurrent observers. The challenge comes from the mismatch between this
concurrent visibility and the persist order. Not only that a write can be made globally
visible and be observed by a concurrent thread without yet being persisted, i.e., not
observable post-crash, but also that the cache protocols may further persist changes in
another order, leading to potential inconsistencies given that a crash may occur at any
time (in-between any two atomic steps).

To picture that, let’s say that a write was made globally visible and allowed a con-
current observer from taking actions based on value he read, with for instance, writing
at another memory location. In that scenario, the cache coherence protocol granted
causal consistency: the original write (the cause) was globally visible before the subse-
quent write (the action). However, the cache eviction order could (and for the sake of
correctness, we must assume that it always would) have the second write (the action)
reach the persistence domain before the first one (the cause). Should a system crash
happen in-between (and for the sake of correctness, we must assume that it always will),
an inconsistent state would be recovered.

(Failure atomicity.) The third and last challenge is a familiar one, as it is also
found in early persistent memory we previously discussed. Namely, in program and
applications, typical data structure operations generally transition between multiple in-
termediate states in order to evolve the structure from one consistent state to another.
Traditional persistence interface (files, database) allowed for explicitly stabilizing consis-
tent states only. Any semantically inconsistent state was kept in volatile memory, and
swept away with failures or reboots. Recall that we have however seen with persistent
memory (especially with fully transparent persistence), that intermediate states might
also be captured on non-volatile storage. Breaking transparency was then necessary,
at least with an explicit checkpointing call, to identify semantically consistent states in
the application. This is even more true for modern persistent memory, where nothing
can prevent memory stores from reaching NVMM and becoming persistent. Bulk of the
work required to properly answer this challenge in the NVMM era, is in the adaptation
of prior techniques found in file systems or databases. Early failure-atomicity schemes
for PMEM were optimized for mechanical drives; modern PMEM must re-explore this
body of work under the new performance profile of NVMM.

Persistent memory from the past faced diverse difficulty: pointer representation, heap
management, atomic checkpoints. . . The point is not that present persistent memory

2This statement is a bit of a stretch, especially since we consider Intel architectures which implement
TSO (total-store order) memory model, where any two writes to a single memory location can not be
re-ordered.
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will not face them as well, but first and foremost, a gap must be filled in the platform’s
classical memory model to construct persistence with load/store instructions. Until then,
the three aforementioned challenges can not be addressed, and no data can be reliably
stabilized on NVMM.

This section then organizes as follows. (§2.6.1) We detail memory model exten-
sions for persistency. (§2.6.2) We present the low-level (architecture-level) programming
model extensions for NVMM, and proposed correctness properties to characterize faulty
program executions. (§2.6.3) We examine attempts at reducing the gap with hardware
modifications, and ultimately why software will always have to be involved for consis-
tency. (§2.6.4) We discuss the implication of the preceding points towards protocols for
failure-atomic updates, and why they must be re-adapted to NVMM.

2.6.1 Memory models

The previous informal description served as an introduction to the challenges presented
by programming persistent memory on Intel machines. Hopefully, the reader could sense
that the mismatch between the memory consistency model and the memory persistency
model was at the core of the issue. Solving the issue requires defining correctness proper-
ties of persistent executions. Besides, the notion of a persistent execution implies defin-
ing persistency extensions to the memory model of processor architectures. Put simply,
defining « the semantics of instructions controlling the ordering and timing under which
cached values are pushed to persistent memory. » [174]

2.6.1.1 Persistency models

Pelley et al. [256] in 2014 importantly identified that a concept analogous to memory
consistency was necessary to minimally describe write constraints with respect to failures.
They dubbed the concept memory persistency, of which they defined two main classes:
strict and relaxed.

• Strict persistency couples the persist order to the memory consistency model, e.g.,
SC (sequential consistency) or TSO (total-store order). Meaning the persist order
matches the order in which stores become visible. The consistency write barrier
thus also enforce persist order, simplifying the reasoning task of the programmer.
Strict persistency is yet impractical: any volatile write with an ordering constraint
on a persistent store will be stalled until the slower NVMM write completes.

• Buffered strict persistency is then introduced as an optimization where the volatile
and persist order are still coupled, but the persistent state is allowed to "lag"
behind. An implementing hardware typically achieves this through the use of a
persist write queue. Persist writes are enqueued synchronously on persist barriers
to record the order, while the queue can be processed asynchronously. In case of
recovery, the persist state will match some prior point of the observable memory
order.

• Relaxed persistency allows for further performance optimizations by fully decou-
pling the two models. Which comes at the cost of extra programming complexity,
with a separate set of write barrier (pfence) used only to define persist order
constraints. The advised reader might have noticed by now, from difficulty we
mentioned previously, that Intel has chosen a relaxed persistency implementation
for its platform.
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• Epoch persistency is a notable model found in contemporary work (BPFS [98]) that
Pelley instantiates within their framework. Epoch persistency is a relaxed persis-
tency model that exhibits an interesting intuitive reasoning mechanism. Under this
model, persist barriers (pfence) delimit “persist epochs”, meaning, on recovery any
write observed after a barrier implies all the writes before the barrier. Writes within
the same epoch (in-between the same two barrier) are free to reorder or occur in
parallel, improving persist concurrency. The buffered epoch persistency variant
similarly allows the next epoch to start without waiting on previous persists to
reach the non-volatile device. When necessary, a separate instruction (psync) can
be used to block until the persist buffer has fully drained, emulating the behavior
of the un-buffered variant.

2.6.1.2 Explicit buffered-epoch persistency

Epoch persistency may sound like a viable model that allows for intuitive reasoning and
reasonable amount of persist concurrency. It is in fact part of the persistency model
assumed by Intel platforms, give or take two subtle changes: Intel ISA extensions make
for an explicit persistency model and forbid persist-epoch races.

Explicit models. Izraelevitz et al. in [174] duly notes that Pelley’s persist models
are implicit. Meaning persist barriers order persistent stores, without persistent stores
appearing in the instruction stream. However this is not practical to implement in real
hardware. A more grounded approach is to use explicit persist models, where persistent
stores are differentiated from volatile stores. This is what manufacturers did, in both
Intel and ARM, by introducing a persistent write-back instructions (pwb). Under these
models, pwb is used to queue up persist stores relative to a given memory location; while
pfence provides ordering constraints across memory locations.

Persist-epoch races. Pelley additionally noted that « reasoning about persist order
across threads can be challenging ». In cause, the decoupling between consistency and
persistency makes persist epochs local to each thread, and do not restrict cross-thread
persist-epoch races. Racing epochs are any two persist epochs from different threads that
share data. While allowing for persist epoch races may improve concurrent persists by
lessening the ordering constraints, they are difficult to reason about: persists can not be
ordered across racing epochs other than with individual atomic-ordering instructions. A
strategy to avoid them, is to use thread synchronization primitives on shared resources
to coordinate new persist epoch start across threads. If racing persist epochs are to be
avoided altogether, at the cost of less concurrent persists, a pfence persist barrier might
as well just imply a consistency barrier upon starting a new persist epoch. That reasoning
gets us closer to the practical limits of the decoupling in Pelley’s relaxed persistency
model. Real solutions rather coordinate consistency and persistency models, for instance,
to avoid persist epoch races.

Persistent TSO. Raad et al. in [266] followed that approach and intertwined Pelley’s
buffered epoch persistency with Intel-x86 consistency model (TSO3). Their effort of
formalizing persistency semantics under realistic consistency model resulted in P-x86, a

3A preliminary work called P-TSO [264] did exactly the same, but ended up mismatching actual
NVMM support due to some inaccurate forethoughts.
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combined consistency/persistency model. P-x86 is effectively a formalization of actual
Intel’s memory model persistency semantics. This rigorous work showed for instance,
that psync was unnecessary for correctness - and we will get to defining correct persistent
executions - when the buffering persist write queue was part of the persistency domain.
Since Intel deprecated their psync equivalent instruction, they have claimed their persist
domain to extend to the WPQs (write-pending queues) in the iMC (integrated memory
controller). Both of which are on-die CPU components (so not durable), but Intel
supports this claim by stating that in power-fail events, latent energy is sufficient to
drain the WPQs. They coined this technology ADR, for Asynchronous DRAM Refresh.

We clearly now understand the value of rigorous formal approach. It makes for a deeper
understanding of the construction steps of persistency extensions and their raison d’etre
in the memory model. Additionally, a formal definition provides a solid framework for
verification of either programs correctness or model implementations in hardware. In
all, essential to programmers, for them to reason about correctness when programming
on persistent memory and to detect persistency bugs - whether manually or automated
with tools. Last, an abstracted persistency model allows for portability across multiple
computer architectures, which is important to understand as NVMM and software may
not be restricted to Intel servers in the future.

Which finally brings us to detailing the full picture of the programming model for
persistent memory, comprised of: Intel’s ISA extensions for persistent memory, the per-
sistency model it abides to, and the correctness properties programs must verify.

2.6.2 Programming model

Intel devised ISA extensions for persistence on x86, to permit NV-DIMMs to be used
as persistent memory and circumvent the memory write-back problem (challenge 1).
These extensions allow threads to control the ordering and timing of persistence enforced
by the cache coherency protocols in hardware. The complete view of Optane PMEM
programming model is available in Intel’s book on persistent programming by Scargall
and Rudoff [274, 277].

2.6.2.1 ISA extensions

The persistency domain on Intel microarchitectures with PMEM support, as we dis-
cussed, extends past the NVMM devices. On platforms benefiting from the ADR mech-
anism (Asynchronous DRAM Refresh), a write operation is considered to be persistent
as soon as it reaches the WPQs in the iMC. That is because on power-fail, ADR ensures
the WPQs to be drained with remaining latent energy. ADR protects the on-die inte-
grated memory controller (iMC) of the CPU, but not the content of the CPU caches.
Special instructions are then necessary to control the timing and ordering with which
persistent writes to reach the WPQs. Notice that thanks to ADR, most of these special
instructions can be asynchronous and at most require an acknowledgment from the iMC.

New instructions. The memory model of Intel machines supporting Optane PMEM
is an implementation of the explicit buffered-epoch persistency model we just detailed.
We remind that under this model:

• pwb is a persist write-back instruction that initiates write-back of a memory loca-
tion without blocking,
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• pfence enforces an happens-before ordering relationship between any previous and
subsequent pwb instruction in the current thread,

• psync blocks until all previous persistency epochs delimited by prior pfence in-
structions have reached the persistency domain.

The correspondence between that abstract memory-consistency-persistency model and
Intel’s implementation is summarized in Table 2.2.

Explicit buffered-
epoch persistency

NVM on x86

pwb CLFLUSH CLFLUSHOPT or CLWB
pfence NOP SFENCE
psync NOP SFENCE∗

Table 2.2: Intel equivalent instructions for explicit buffered-epoch persistency.
∗asynchronous instruction because WPQs are assumed part of the persistency domain.

These new instructions leave programs with a relaxed and low-level approach to
persistence. In detail, Intel propose 3 distinct persistent flush instructions: CLFLUSH,
CLFLUSHOPT, and the brand new CLWB. The persist barrier is implemented by re-purposing,
or rather extending the semantics of, SFENCE and other store-fencing instructions. The
PCOMMIT instruction, originally planned to implement psync, was deprecated from ear-
lier Intel specifications even before release. As it turned out with ADR, a blocking
instruction waiting for the WPQs to be drained was unneeded. We now detail the effect
of these instructions:

• CLFLUSH: Flush Cache Line invalidates the cache line containing the memory lo-
cation pointed by the source operand and waits for persistence. Were the cache
line dirty, the data modifications would be written back to memory. This instruc-
tion orders with respect to each others, but also with respect to writes, locked
read-modify-write instructions, and fence instructions. From this description, we
develop that a program may use CLFLUSH only to persist writes, and have a be-
havior analogous to Pelley’s strict persistency with sequential consistency. This
instruction implicitly orders with basically everything, making for an expensive
primitive that further reduce concurrent persist opportunities. In that, it is typi-
cally avoided and not even considered in persistent programming.

• CLFLUSHOPT Flush Cache Line Optimized invalidates the cache line containing the
memory location pointed by the source operand, but does not wait for persistence.
This instruction orders with respect to older writes to the same cache line, and
locked read-modify-write instructions or fence instructions only.

• CLWB Cache Line Write Back writes back the cache line (if modified) containing the
memory location pointed by the source operand, it does not wait for persistence,
and does not invalidate the cache line from any level of the cache hierarchy. It
follows the same ordering constraints than CLFLUSHOPT, and in that consists only
in a performance optimization where the cache line may be retained in the cache
hierarchy to avoid subsequent cache misses.

• SFENCE Store Fence orders all memory stores (and persist write back) prior to the
instruction, such that they are globally visible before any store (and persist write
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back) occurring after the SFENCE. This typically means waiting for a handshake
from the WPQs until all previous writes-back issued by this thread have reached
their WPQ.

A funny observation made by performance studies on Optane, was that in all current
Intel microarchitectures, CLWB is not properly implemented. In particular, the opcode
is available, but the operation executes without the optimization, thus remains identical
to CLFLUSHOPT.

For the sake of clarity, we will adopt from now on a simplified view of these hardware
instructions. We already ruled out CLFLUSH due to over restrictive semantics. CLWB is
in all aspect an optimized version of CLFLUSHOPT. This leaves us with CLWB and SFENCE
only, or equivalently pwb and pfence to remain architecture independent.

Practical flush ordering. We stated that CLWB orders with respect to any store-
fencing instruction, or anterior stores and CLWB to the same memory location. This
leads to three fundamental remarks:

• "Any store-fencing instruction" includes SFENCE obviously, but also more lightweight
write barriers and most importantly, any lock-prefixed read-modify-write instruc-
tion. Meaning all instructions commonly referred to as « atomic primitives », e.g.,
fetch-and-add, compare-and-swap (lock xadd, lock xcmpxchg in x86 assembly)
and so on. For short, store barriers and atomic primitives effectively delimit persis-
tency epochs. A first aftereffect is that it makes it impossible to encounter Pelley’s
persist-epoch races; a second is that it makes the pairing of SFENCE redundant with
atomic primitives as they already produce an equivalent persist barrier and start
a new persist epoch on their own.

• Persist writes-back and older stores to the same cache line will not be re-ordered
with CLWB. Meaning a thread-local sequence of byte-wise stores to the same cache
line will not be re-ordered, and a single CLWB can be used to persist write-back the
whole cache line. SFENCE in this case can be omitted for persist ordering, so long
the stores affect the same cache line.

• Memory stores to PMEM addresses are always ordered by SFENCEs but they will
not be made part of any persistent epoch so long no CLWB is issued to these memory
location. Meaning these memory stores will become persistent implicitly when
the cache management protocols evict them. Not issuing CLWB to an updated
PMEM location will then not force that location in the current persistent epoch.
Leveraging this behavior for increased parallelism can sound tempting. Remember
however that these implicit stores will also disturb the internal write buffering of
Optane physical blocks, and most likely restrict available bandwidth. That is,
because the cache protocols will implicitly evict 64B cache lines in a random order,
when the Optane internal write granularity is 256B, leading to fourfold amplified
writes.

Last, CLWB and SFENCE are intrinsically expensive. Of course, SFENCE reduce par-
allelism by constraining ordering in respect to both persistency and consistency. Above
that, each one of them approximately cost 95ns, due to the on-chip synchronous hand-
shakes with the iMC on the control path. Synchronizing at this level is necessary to
allow the program to proceed only after a persist write was pushed to its WPQ. Because
of these costs, reducing the number of flush and fences in programs and algorithms is



2.6. CHALLENGES FOR PERSISTENCE WITH NVMM 59

key for good performance. In particular, multiple consecutive flushes will pipeline, but
flush-fence pairs will not.

2.6.2.2 Ordering persistent stores for crash-consistency

In summary, we thankfully now completed the series of explanations required to grasp
the resolution of the write-back problem (challenge 1). We had stipulated that implicit
flushes were the cause of consistency loss upon system faults. Assuming x86 memory
model without persistency extensions, nothing could have prevented memory stores to
PMEM from becoming persistent. In the wake of a crash, no assumption and logical
reasoning on persisted data could have guided recovery in inferring the pre-crash execu-
tion state. We now know that memory stores to PMEM locations can be paired with a
CLWB instruction to register them for asynchronous write-back, which conceptually places
them in the current persist epoch; and that persist epochs can be delimited with SFENCE
instructions (or equivalent) for ordering. These simple mechanisms are the base building
blocks we will need to work with to implement recovery routines, and other mechanisms
we surveyed from past persistent memory or persistent object systems.

As to understand how to properly wield these new instructions in programs, assessing
the correctness and safety of persistent programs is the next logical development. After
a thorough overview of the model, intuitively, we would deem a PMEM abstraction
correct if no inconsistent state might be recovered in the wake of a crash. In single
thread environment, it is made trivial by the following pattern: (i) issuing a pwb for
every dirtied cache line on PMEM, (ii) issuing a pfence before updating the metadata
associated with the progress of the executing thread.

However, when considering concurrent thread executions, genuine head scratching
begins. The two following executions highlight the issue we dubbed « the read of not-
yet-persistent-writes » (challenge 2):

x:=1;
pwb &x;
pfence;
y:=1;

a:=y;
if a then
z:=1;

(a)

x:=1;
pwb &x;
x:=2;

a:=x;
if a=2 then
y:=1;

(b)

rec: z = 1⇒ (x = 1 ∧ y ∈ {0, 1}) rec: y = 1⇒ x ∈ {0, 1, 2}

Figure 2.1: Misleading executions of concurrent persistent programs from [266].

Figure 2.1a illustrates that global visibility of memory stores do not imply
those stores were made persistent. In this sample execution, having thread τb (right)
recover z = 1 implies thread τa (left) had entered its second persist epoch before the
fault. That is because in thread τb, z = 1 has a causal dependency on y = 1 from thread
τa, hence the y = 1 store was made globally visible before the fault. Which in turns
implies thread τa had executed its pfence, allowing x = 1 to be persisted. However,
y is undefined after recovery, because nothing prevented it from being globally visible
before persisting. Additionally, even though z = 1 was recovered, no persist order was
enforced between z = 1 and y = 1, thus the two writes might have been re-ordered and
z persisted before.

Figure 2.1b exhibits that an unreachable state during normal execution
might be recovered after a crash. In a normal execution, thread τa or τb may never
observe y = 1 ∧ x 6= 2. The alert reader may think that, after recovery, y = 1 ⇒ x ∈
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{1, 2}, that is, x = 2 was or was not persisted. The alert reader further assumes that,
because we recovered y = 1, we know that pwb had executed in thread τa, and x = 1 is
the oldest possible recoverable state. This assumption is based on the fact that pwb may
not be re-ordered relative to previous writes to the same location. However, nothing
prevents pwb to be re-ordered relative to later writes to the same location. That is to
say, x := 2 could have been executed before pwb in thread τa and be made globally
visible. After which y = 1 could have been persisted from thread τb, with odds of a crash
occurring before pwb was ever executed in thread τa. Leading to a possible x = 0 on
recovery.

As the head scratching intensifies, one might be lost under what seems to be an
overwhelming programming model with room for persistency bugs at almost every single
lines of code. When pwb should be used? On what data? Where to place fences? What
about failure-atomicity? And recovery? How to tell it’s bug-free? Is it optimal?

2.6.2.3 Correctness criteria

Traditionally, programming complexity is detangled by frameworks for reasoning about
system correctness, with properties that come to the rescue of expert programmers.
In the field of concurrent programming, the standard safety criterion of transient data
structures is Linearizability [163], proposed by Herlihy and Wing in 1987. Admittedly, we
realize that linearizability proofs are mind-boggling on their own; yet they are a, slight,
improvement over the initial problem complexity. For starters, proofs can be aided by
standard methodologies, but more importantly, thanks to composability, abstractions
can be stacked and proved individually, providing welcomed opportunities for problem
decomposition.

Linearizability assess that a concurrent execution can be made equivalent to some
single threaded execution. In other words, there exists a legal single threaded execution
that respects: (i) program order within each thread, and (ii) "real-time" order across
threads - non-overlapping operation invocations can not be re-ordered. A program
verifies linearizability if and only if all of its executions do.

Durable Linearizability [174] was proposed in 2016 by Izraelevitz as an extension of
linearizability for persistence. (Model) The idea is to introduce the notion of full-system
crashes in program executions, and to reduce a faulty execution into a classical fault-free
concurrent execution by eliding operations that are concurrent to crashes. The rational
being that, for any operation concurrent to a crash, since a recovery procedure must
run after the crash, then the sequencing of the operation-crash-recovery is equivalent to
either no operation or the fault-free operation. (Def. 1) An execution is then durable
linearizable if it is linearizable after cleaning the crashes. Similarly, a program is durable
linearizable if and only if all of its executions are. Since full system crashes can basically
happen at any time, this implies that no system crash will induce inconsistencies in
respect to both persistence and concurrent accesses. (Def. 2) Friedman et al. in [138]
proposed an equivalent (was proven to be) definition of durable linearizability. On their
terms, an execution is durable linearizable if and only if: (i) every operation persists
before returning, and (ii) the persist order matches the linearization order. (Locality)
Conveniently, durable linearizability was also shown to be compositional, just like regular
linearizability. (Buffered d-lin) A buffered variant, Buffered-Durable Linearizability
was also defined as a weaker property that allows for operation to return before persisting
data, for performance at the cost of data loss. That is, because operations do not
synchronously persist data, some data may be lost after a crash, but the reminder is
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consistent with the persist and concurrent access order established before the crash.
(Persist points) With linearizability, the concept of linearization points is often used
as a proof writing strategy. An analogous concept also exists with durable linearizability.
For short, all stores must persist and be fenced after the operation linearization point
and before the operation return value or the linearization point of concurrent operations.

Izraelevitz, still in [174] after defining the durable linearizability correctness prop-
erty, proposes a mechanical program transformation that guarantees correct persistence.
Their formalized memory model extensions for persistence apply to release consistency
model, but as a subsume of x86, they apply on Intel as well. His mechanical recipe
consistently decorates store, load, store-release, load-acquire operations with pwb, pfence
instructions. This transformation takes any linearizable base program into a durably
linearizable program, which has a null recovery procedure if the base code was lock-free.

Although this mechanized transform is no optimal solution to our (challenge 2), it
demonstrates that any linearizable program can be adapted to be durable linearizable.
In other words, that under Intel’s persistent memory programming model, correct con-
current programs can always be re-written to be consistently correct in regard to both
concurrence and persistence. Which implies that (challenge 2) always knows a solution,
even if reaching it is another challenge of its own.

2.6.2.4 Crash-consistent concurrent objects

As a side note and for reference purposes, we must mention that durable linearizability is
not the only safety and correctness criterion for persistent executions. While Izraelevitz’s
work has most certainly became the de-facto property used to gauge integrity and con-
sistency of persistent data throughout program executions; other researchers have taken
the opportunity to tackle the fundamental problem of formalizing concurrent objects
behavior in crash-fault environment.

Linearizability extensions Anterior proposals to extend linearizability and include
crashes in history include: strict linearizability [32] by Aguilera and Frølund, persistent
linearizability [154] by Guerraoui and Levy, and recoverable linearizability [62] by Berry-
hill and Golab. Each one of them sacrificed either locality, program order after a crash,
or precluded implementations of some wait-free objects to retain locality and program
order. In cause their failure model that allowed for individual process crash and recovery.
In contrast, Izraelevitz with durable linearizability assumed a full-system crash closer to
real-world system faults. In doing so, they noticed that the former definitions were in-
distinguishable and that their previously known limitations were no longer observable as
well.

Recoverable synchronization primitives The question of recoverable mutual exclu-
sion have been studied by Golab and Ramaraju [147]. They proposed revised deadlock-
freedom and starvation freedom progress properties in presence of independent process
faults and an algorithm to implement recoverable mutex. Similarly, recoverable coun-
terparts of non-blocking synchronization primitives such as compare-and-swap (CAS)
were proposed as persistent multi-word CAS in [255] and [315], or as hardware-based
persistent CAS for ARM in [316].

Recoverable consensus Herlihy’s consensus hierarchy is a framework for ranking the
synchronization power of various primitives for solving consensus in a concurrent setting
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on shared-memory. Golab in [146] revisits this hierarchy in a model with crash-recovery
failures, forming a new problem specification called recoverable consensus. They observed
afterwards in [62] that Herlihy’s universal construction results still carry over in a model
with system-wide failures by placing shared variables in non-volatile memory and using
recoverable consensus in place of consensus. Delporte-Gallet, in [119] extended these
results to individual process failures by exposing additional conditions necessary and
sufficient to solve recoverable consensus under this less restrictive failure model.

Detectable objects In addition to tolerating crash faults and staying consistent, the
study of recoverable implementations consist in a new field of interest. The concept
of detectable objects was introduced by Friedman et al. in [138]. Detectability ensures
that in the wake of a crash, state of on-going operations at the time of the crash can
be inferred, as either completed or aborted. In contrast to durable linearizability that
elides operations concurrent to crashes, detectable recovery ensures that every crashed
operation recovers and returns a correct response. In NRL (nesting-safe recoverable
linearizability) [50], Attiya et al. consider a composable approach to constructing recov-
erable objects. Under their single-process fault model, operations are extended with a
recovery routine that enables invocations to be prolonged until they return, for as many
crashes as necessary. Attiya et al. describe in [51] a tracking method for detectable
recovery of concurrent lock-free data structures. The space-complexity cost of abiding
to the new detectable correctness condition was explored in [56] by Ben-Baruch et al. Li
and Golab [214] have proposed a sequential specification for detectable shared objects
(DSS), later refined by Moridi et al. in [235] with unified-DSS.

These more recent evolution in the realm of formal specification of persistent execu-
tions bring new opportunities for constructing valid concurrent recoverable programs.
On one hand, durable linearizability defined a practical framework for studying safety
and correctness of concurrent faulty executions, but gave no cues on how to ensure for-
ward progress. On the other hand, recent detectable objects embed recovery routines in
their specification, providing precise semantics to resolve post-crash states. A sequential
specification for recoverable objects makes overall for a more portable framework; in that
it can be combined with off-the-self criteria for concurrency, under shared-memory or
distributed settings, with system-wide or individual process faults. Besides, the study
of recoverable consensus opens up opportunities for universal constructions and auto-
mated translations of code into their concurrent crash-consistent counterpart. We detail
practical universal constructions for NVMM in §2.7.2.

2.6.3 Persistence domains

The persistent memory programming model is undeniably complicated, as this lengthy
section can attest. Looking for answers to (challenge 1) and (challenge 2) required more
than a simple look over, and had us dig deep into subtle topics of the model. The deeper
we dug, the less confident we grew of its practicality. (§2.6.2) As a matter of fact, it is
unreasonable to expect any developer to pick up on fine grain store ordering and careful
placement of barrier and flushes. Let alone hand proving their programs by reasoning at
the level of assembly instructions. The matter is albeit of all concerns. Remember the
dire consequences of persistency bugs: not only could they jeopardize data consistency,
but also induce permanent corruption in a persistent heap. In worst cases, all data were
to be forfeited and the program to start all over again from a fresh and empty persistent
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heap. Permanent data loss is too big of a blow to endure, for that, data integrity can
not be entrusted to such brittle designs. Therefore, the programming model must be
revised, extended or abstracted in order to rule out bugs coming from hazardous manual
flushes and fences.

2.6.3.1 Extending persistence to caches

Pelley (§2.6.1.1) showed us that synchronous ordering would stall the execution to order
persistent memory writes, exposing higher latencies in the critical path. Even so, its
compatibility with traditional consistency model is appealing. Another possible route to
blend persistent memory in traditional memory models, lies in extending the persistency
domain to further reduce latencies in the critical path. By introducing ADR, Intel typi-
cally extended the persistency domain of NV-DIMMs to the CPU’s integrated memory
controller, allowing for lower-delay handshakes. On power-fail, residual energy from the
power supply is enough to completely drain the iMC write-pending queues and persist
data.

eADR, for Enhanced Asynchronous DRAM Refresh, extends the persistency domain
to include CPU caches. It was introduced by Intel in persistent memory specifications
starting with the second generation of Optane modules. eADR is an optional platform re-
quirement for persistent memory, and currently, no known server vendor have advertised
an implementing appliance. The specification describes a flush-on-power-fail mechanism
that guarantees CPU caches to be drained on system-wide crashes. This operation is
expected to take more energy than the residual one typical power supply can provide.
For this reason, manufacturers are free to introduce batteries or rely on uninterruptible
power supplies for supporting eADR. This approach however introduces new hardware
components (batteries) that require maintenance routines, are not easy to dispose of
or recycle, and can also be faulty themselves. Assuming eADR, individual cache line
flushes are no longer necessary, but SFENCE do remain, so as to order writes within
persist epochs. For instance, any concurrent program verifying linearizability would be
durable linearizable with eADR; because essentially, its persist points would match its
linearization points [25, 346].

Research work equally tried simplifying the memory persistency model by introducing
new hardware components and making part of the cache hierarchy persistent. Whole-
system persistence [242] used the same flush-on-fail idea but also made CPU registers
persistent, in order to provide suspend/resume semantics to processes in the event of a
fault. We need not to re-detail why the concept of persistent processes is unattractive.
BBB (Battery-Backed Buffer) [40] improves over eADR by reducing the energy required
to drain by two orders of magnitude. DPO (Delegated Persist Ordering) [200], HOPS
(Hands-off Persistence System) [240], or StrandWeaver [145] all proposed introducing
some persistent buffer (battery-backed) alongside the CPU cache hierarchy, together with
amendments to the memory model. From an external perspective, they still require the
programmer to properly hint ordering constraints with special instructions, and in that
provide no ground-breaking programming benefit over eADR.

2.6.3.2 Hardware transactions

In fact, the ordering only approach, that most of the research work considered when
revisiting memory models for persistent hardware, has semantics that makes reasoning
about recovery extremely cumbersome; as underlined by Gogte et al. [144] while making
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their point for failure-atomicity of groups of writes. No code is solely made of non-
blocking data structures that have null recovery when durable linearizable (otherwise
called log-free [111], cf. §2.7.1). Failure-atomic blocks of code cover for crashes of arbi-
trary code and further help reducing the amount of software implementation required
to clean up persistent state on recovery. We have seen interesting efforts in providing
hardware-assisted failure-atomic constructions in the following recent work.

JustDo [173] is designed for machines with non-volatile caches, and proposes to
resume interrupted or crashed failure-atomic sections to completion. A small log check-
points in caches the program counter and live registers prior to every store. In the wake
of a crash, the remainder of any interrupted lock-guarded failure-atomic sections can
be executed. JustDo limits the write traffic because actual values and payloads are not
flushed to media for logging purposes.

ASAP [30] leverages hardware-level logging (WAL), but allows for asynchronously
persisting data after transactions commit. Ordering is preserved by tracking in hardware
data interdependencies between failure-atomic regions.

PMEM-spec [178] introduces a novel hardware-software co-design to support failure-
atomic regions; that allows strict persistency to rival with relaxed persistency models
found in hardware. The idea is to allow optimistic access to PMEM (without stalling
or buffering), detect potential ordering violation, then leverage atomic region aborts to
recover any misspeculations as if they were power-failures. Their design requires no
modification in CPU cache hierarchy (no persist buffer alongside caches), no changes in
cache-coherence protocols, and no batteries. The only hardware change needed is for
persistent writes to bypass CPU caches altogether and directly be sent to the PMEM
controller. That is because they install inside the PMEM controller their own special
speculation buffer data structure that handles most of their algorithm’s logic. On the
software side, the implementation of failure-atomic blocks must support an abort handler
that discards data and re-executes the transaction from the start. It must also register
a misspeculation handler that receives misspeculation detection signals from the OS.

2.6.3.3 Limits of hardware-based solutions

Finally to conclude, eADR, persistent caches or broadly speaking, any other approach
that extends the persistence domain to even include CPU registers, are no silver bullet.
Do not get us wrong, they are helpful in reducing the performance cost of flushes or bar-
riers, but simply put, they are no permanent fix to the persistent memory programming
model. The need for manual ordering remains, and delimiting persist epochs alone does
not lift the burden of implementing recovery from the user. Moreover, by introducing
new hardware components they also introduce new fault scenarios that software would
have to cover for anyways. The promised performance gains are however interesting,
software just need to stay aware that only power outage or any system-wide failure are
covered, not individual process crashes. Further, we learn from novel hardware-assisted
failure-atomic protected sections, that software involvement can only be reduced, never
fully eliminated. Overall, exclusively hardware-based solutions will always come short-
handed when it comes down to making the persistent memory programming model more
accessible. Meaning that the only way forward is through software constructs that pro-
vide relevant abstractions for programs to reason about persistence in an easier, more
high-level way.

PMEM-spec is interesting, in that it does not claim to solve all PMEM programming
issues in hardware, but reckons reducing PMEM programming hardships may require
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appropriate software cooperation. We however do not want to assume hardware changes
and going forward, will only consider software-based approaches to persistent memory
programming. Going about hardware solutions to PMEM programming issues was neces-
sary though: so as to understand their inherent limitations and ultimately, the definitive
role of software in modern NVMM-based persistent memory. Understand that transi-
tional steps are always welcomed, but above and whenever possible, we guilelessly prefer
contributing on systems and abstractions that may last beyond uttermost hardware im-
provements.

2.6.4 Ensuring failure-atomicity

We realize that this section on PMEM challenges at the NVMM era might be a bit of
a drag at this point - or that it might already have been starting few pages ago - but
please, bear with us for a little more; methods for failure-atomicity are truly the corner
stone of this new breed of persistent memory.

We gathered so far that ordering alone was sufficient for correctness of programming
constructs, and that it fell onto software to properly order persistent writes. However,
we made it clear that reasoning at the ISA-level and manually ordering persistent stores
were extremely brittle and bug-prone ways of programming persistent memory; even
more cumbersome when going about recovery.

Under these low level abstractions, programs would have to self-tailor recovery im-
plementations. Not only to infer anterior program state from persisted data, but also
to correct and clear any inconsistencies left by implicit writes. Which is as complex as
finding out whether any operation was on-going at the time of a crash, and whether they
successfully persisted. Then adopt the appropriate strategy to un-persist any outstand-
ing inconsistent data originating from operations that could not be completely recovered.

Although this methodology might be applicable on a small scale, e.g., to a single
data structure, it completely falls short when considering operations that are purely
transactional. That is, whose effects apply on a bundle of data that can not be directly
related by navigating existing in-memory references.

Def. Failure-atomicity is the term commonly used to denote operations to appear as
atomic, i.e., to execute in a all-or-nothing fashion, with regards to persistence. Sim-
ilarly to the atomicity property found in concurrent settings which stipulates that
intermediate states of an atomic operation are invisible to concurrent observers;
failure-atomicity prevents intermediate states from being visible to post-crash ob-
servers.

This notion is not exclusive to persistent memory, but a broader issue common to
all abstractions for data persistence. Recall that any anterior design we deemed usable
(§2.2, §2.3.2) had to feature an explicit way of denoting consistent application states
that must persist. In doing so, the program was guaranteed to resume from one of these
state, which made reasoning around recovery much simpler. In the systems we went over,
failure-atomicity was assured by either explicit checkpoints or durable transactions. Both
are compatible with the epoch persistency model of persistent memory, from an interface
standpoint.

2.6.4.1 User-level APIs

Failure-atomicity is most often envisioned through • transactions, or more broadly
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speaking, • failure-atomic sections of code. Note we avoid referring to them as
transactions when they only ensure failure-atomicity and not the classical ACID prop-
erties. Less commonly, explicit • checkpoints may also be used to create a separation
between two persist epochs and identify persist points (recoverable states) in programs.
Finally, individual • data structures and their operations might also appear as failure-
atomic from an external viewpoint. Either because they may be log-free and have null
recovery, or thanks to some internal clean-up code that is invoked first thing on recovery
to re-attain a consistent state.

Failure-atomic sections of code are genuinely appealing for the general-purpose solu-
tion they provide to all three challenges we identified for persistent memory atop NVMM.
Turning any arbitrary code sequence, identified as easily as some critical section, into a
crash-consistent execution; where any undesirable intermediate state is guaranteed not
to be recovered. Although this abstraction have been well tried for databases, we have al-
ready seen with RVM and Rio-Vista that durable transactions for main memory required
to be reworked substantially. Similarly, NVMM introduces a singular programming
model and peculiar performance characteristics, requiring protocols for failure-atomicity
to be entirely revised.

2.6.4.2 Basic implementations

The two major hurdles to consider then when adapting techniques from spinning drives to
NVMM, are: (i) the fact that nothing can prevent writes from becoming persistent, and
(ii) that 8-byte stores are the largest to appear as atomically persisted at the hardware
level, on Intel platforms. In particular, previous failure-atomicity schemes for traditional
storage media could exploit memory volatility to host and traverse inconsistent program
states, and explicitly persist changes on commit. For instance, only record the data
changeset during the execution of failure-atomic sections of code, and reliably commit
mutated media blocks with physical logging.

Conversely, with NVMM, inconsistent transitional states might be implicitly per-
sisted with extremely fine grain while executing failure-atomic sections; which demands
both versions of data (the working copy and consistent copy) to exist concurrently in
persistent memory and to be atomically joined together on commit.

The resulting solutions typically involve forms of logging or leverage out-of-place
updates, akin to database WAL and shadow-paging. Logging must be performed ahead-
of-time or on-the-go, with appropriate fencing to avoid compromising the consistent
version of data. Out-of-place updates require complex read and write instrumentation
to access the working copy of data within failure-atomic sections.

Since at most 8-byte stores may be atomically persisted, all schemes working at
the physical level are challenged by the prohibiting overheads of tracking and logging
changes with such extreme fine grain. Systems either choose to work at a larger grain,
e.g., 64B cache line granularity, 256B Optane block size, or even at a logical level. The
latter commonly involves cooperation from the language runtime and compiler or stands
as more programmatically intrusive. As an illustration, let us consider the most basic
schemes we already discussed while covering databases: undo logging, redo logging and
copy-on-write.

(Undo logging.) Every value is logged before being mutated, such that previous values
can be recovered from the log and operations rolled back. This scheme requires
a minimum of one flush-fence pair for every new entry in the log. The most
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compelling benefit is that reads inside failure-atomic sections are regular, unin-
strumented loads.

(Redo logging.) Every new value is logged on-the-go, such that previous values are left
untouched at their home location. Only one fence is needed to mark the whole log
complete, after which logged (new) values can safely be applied to their home loca-
tion on commit. On recovery, the whole log is discarded when incomplete, or rolled
forward when complete. The appeal for this technique comes from asynchronous
writes throughout the failure-atomic section, which needs only to be ordered before
starting to apply changes to data home locations. The main difficulty comes from
reads that must be instrumented such that read-after-write accesses return the new
value.

(Copy-on-Write.) Every value is duplicated and homed to a different location on
first access in failure-atomic sections. An extra layer of indirection is required to
direct subsequent accesses to the new home location of the data. On commit, new
locations become the real locations, the old ones may be discarded and deallocated.
New values can be allocated and written asynchronously and persisted with a single
barrier on commit, but the extra indirection layer and the possible memory leaks
on commit makes it a very situational and contextual choice.

These three basic schemes were extensively compared in [228], unfortunately, before
real NVMM were available. Conclusions we can draw from them are:

• They increase write traffic: logging suffers from a double write problem and
copy-on-write from a write amplification problem for too small updates.

• They need more fences than the minimum: one for each log entry with
undo, generally four with redo (1 to log updates, 1 to mark log complete, 1 to
apply logged values, 1 to mark log empty), at least two with copy-on-write (1 to
persist new values, 1 to atomically update the index).

• They require instrumenting reads and writes: all three interpose on writes,
while redo and copy-on-write redirect reads as well to tolerate their out-of-place
updates.

Ensuring failure-atomicity of generic executions is thus a space of subtle trade-offs
between the type of scheme employed and the granularity at which updates are tracked.
As to optimize for multiple performance criteria such as the number of flushes and fences,
write amplification (ratio of total bits written to NV-DIMMs for every bit of application
payload), and access patterns favorable to Optane NV-DIMMs.

2.6.5 Summary

To conclude on PMEM challenges at the NVMM era, the PMEM programming model
is a substantial hindrance for broad adoption of PMEM in the spectrum of interfaces
for data persistence, as the length we went to even express the problems entails. Show-
ing how (challenge 1) and (challenge 2) could be overcome from Intel’s extensions was
nonetheless necessary to motivate why this complexity had to be broken down for PMEM
to be practical and eventually successful. With NVMM, proper ordering is a dead hard
requirement to fulfill, yet vital before even thinking about renewing the meaningful ab-
stractions and design ideas PMEM from the past have laid for us. All convenient support
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for failure-atomic sections might be, in that it lends a well-tried programming abstrac-
tion that solves all three challenges; implementations for NVMM come with deterring
overheads. Past persistent object systems could encompass failure-atomicity with a one-
size-fits-all solution, such as checkpointing or durable transactions: whose overheads
were minimal compared to media access latencies. Conversely, persistent memory with
NVMM will be made practical by offering multiple programming abstractions for failure-
atomicity. A complete palette for developers to compose with, depending on their needs
toward guarantees, performance, and productivity.

We can already tell that failure-atomicity for NVMM is poised to hover between spe-
cialized recovery schemes for performance and general-purpose constructions for practi-
cality. Data structures and objects may implement self-tailored and finely tuned failure-
atomicity through precise ordering and on-point recovery, while being proven or verified
correct locally. Whereas general purpose failure-atomic sections, due to their reduced
performance, might be avoided except for purely transactional computations; perhaps
also where productivity precedes performance. Consequently, language-level support for
persistent memory will have to accommodate and arrange for all these relevant atomic
programming abstractions to be implementable, but more importantly, composable to-
gether and composable with crash-consistent heap management (persistent memory al-
location, deallocation, and permanent object reference management). That marks the
consideration with which we will cover present work that propose programming abstrac-
tions for persistent memory in §2.7.

2.7 Persistent Programming Abstractions for NVMM

We just made the point for failure-atomicity to be the missing link between past per-
sistent memory and its renewal in the NVMM era. The never-before-seen blending of
media direct access with fine-grain persistence (flush & ordering) raises a new host of
challenges for crash-consistent memory data structures atop NVMM.

Recall that fine-grain instructions make suboptimal (§2.6.4) the well-tried and easy-
to-reason-about past programming abstractions for sound crash recovery. That are
durable transactions and checkpoints, in regard to write-amplification and the minimal
number of persistence instructions. All the while, direct access also incapacitates system
software from interposing on the data path. Reasons for which answers to these chal-
lenges will rather come as programming help and support for failure-atomicity, namely,
a set of libraries, tools, language compilers and runtimes.

The shape of these facilities however remains an active area of research. The broad
outlines of which were traced by researchers starting couples years before the announce-
ment of Optane NV-DIMMs. These prototype systems demonstrated usefulness of sev-
eral programming abstractions, providing situationally-optimized solutions to failure-
atomicity. They can be parted in four broad classes:

• Data structures. Either purpose-built and finely hand-tuned or mechanically
ported on NVMM, persistent data types offer specialized crash-consistent opera-
tions at their interface. We cover both design options in §2.7.1 and §2.7.2.

• Transactions. NVMM has re-ignited interest in thin software-based durable mem-
ory transactions, with guarantees ranging from full-blown ACID to minimal failure-
atomicity; that we discuss in §2.7.3.
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• Checkpointing. A minimalist interface to denoting application consistent states,
we relate in §2.7.4 its employability on NVMM.

• Heap management. Techniques for crash-consistent memory (de)allocation and
persistent reference management will close this section in §2.7.5.

We do not plan on extensively surveying this ever-expanding body of work in this
section. First and foremost, because a newly published (September 2022) survey by
Baldassin et al. [54] already does an outstanding effort - more so than we ever could.
Then, because our interests are more inclined towards requirements for language-level
support of NVMM and appropriate heap extensions that may play well with library-level
schemes for failure-atomicity.

2.7.1 Persistent data structures

First off, we must clarify: here we cover persistent data structures, as in designed for
NVMM and persistent memory; not to be confused with the homonymous persistent
data structures [126] from functional programming. This second kind designate history-
preserving data types, that are immutable and keep observable former versions of them-
selves whenever modified.

Back to the matter, data structures are exceptionally useful constructs that aid orga-
nizing and arranging individual data objects in programs, or that capture relationships
between multiple ones. Precisely, data structures are collection of values that define
the external operations and interactions exercisable onto its data. Examples include
searchable data types (e.g., B-trees, hash tables, skip lists) or sequential collections (e.g.,
queues, stacks). The former are used broadly for indexing in storage and optimize for
fast lookup or insertion of (un)sorted values. The latter find use in any sort of event
processing, as buffers that maintain inserted values in sequential order.

Hand-made non-blocking (lock-free, wait-free) concurrent data structures have been
proposed in the literature for almost forty years. Being tailored for scalability in highly
concurrent settings, they are key to designing efficient algorithms and therefore, are read-
ily employed in demanding systems, including production-grade large databases (§2.5.3).
On the flip side, they are optimized for a single data type and generally require a high
expertise to understand the fine interleaving of operations that underpin their correct-
ness.

Over the past few years, the same effort has been conducted to create persistent
concurrent data types (PDT). We currently limit the discussion to PDTs that are
manually built from bare pwb and pfence. Those are neither transactional nor log-
based but carefully and finely tuned by brave experts, coming up with ad-hoc tech-
niques for correct persist ordering and overall reduced number of persist barriers. Loads
of research paper present new PDTs, mostly indexing structures: think tons of trees
[44, 88, 198, 199, 252, 309, 339], hash maps [169, 223, 241, 243, 279, 353], skip lists
[87, 91]; but also sequential data types, namely queues [130, 138, 282], where ideas from
set-type structures hardly apply.

Bear in mind that Table 2.3 is not exhaustive and just scratches the surface, so
much that research paper [212] even dedicates to comparing persistent indexes. We will
therefore not present them individually, but rather try to extract and summarize key
ideas and takeaways from PDT designs.

1. Leverage non-blocking (lock-free) structures for failure-atomicity.
In [111], David et al. stress out that “lock-free algorithms are a good fit for the NVRAM
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Trees CDDS B-tree [309], wB+-tree [88], NV-tree [339], FPTree [252],
Bztree [44], clfB-tree [198], PACTree [199]

Hash maps NVC-Hashmap [279], Dalí [243], Level hashing [353], Cacheline-
Conscious Extendible Hashing [241], Dash [223], Halo [169]

Skip lists NV-Skiplist [87], UPSkipList [91]

Queues Durable lock-free queue [138], OptUnlinkedQ & OptLinkedQ [282],
PBqueue & PWFqueue [130]

Table 2.3: Notable persistent data structures

environment.” Indeed, recall that lock-free linearizable algorithms always resume in a
consistent state so long a thread stores persist in the linearization order (Friedman et al.
definition in [138]). This property eliminates the need for any form of logging altogether,
and allows executions to resume from a consistent state with null-recovery ; as showed by
Izraelevitz et al. in [174] with their mechanized transform for lock-free structures which
abusively supplemented any store with a flush-fence pair.

David et al. expand on these ideas and come up with practical techniques for
persistent pointer update and persistent memory allocation, that are sufficient to make
lock-free structures failure-atomic. They amusingly coined such structures as log-free.
The techniques themselves are (i) Link-and-persist , (ii) Link-caching , and (iii) Epoch-
based memory reclamation.

• Link-and-persist. Non-blocking linked data structures commonly rely on atomic
pointer update to make operations globally visible. We now understand that such
operation may persist after being globally visible. For this reason, David et al.
introduce a mark on newly added links, such that any marked links are logically
interpreted as transient. Once both links and referenced data are guaranteed to
have persisted, the mark may be removed safely. Were a thread to encounter a
marked link on which depends the completion of its own operation, it would help
persisting and un-marking it instead of blocking.

• Link-caching. Individually flushing and fencing link updates is costly. Even more
so with the added mark metadata that must be lifted (and fenced) before data-
dependent operations may proceed. In order to reduce the cost of sync operations
in data structures, David et al. introduce a batching scheme for link updates.
Newly added links are not immediately persisted, but rather tracked by a volatile
set-like data structures, called the link cache. The link cache efficiently packs up to
6 links in a single of its cache-line-sized buckets, and flushes whole buckets (then at
most 6 cache lines) with a single fence. When applied to a linked-list algorithm, the
authors report that the link cache helped replace “writing back 4 cache lines one at
a time by a single batch of 3 cache line write-backs”; that is, a single pfence.

• Epoch-based memory reclamation. Linked concurrent data structures exten-
sively rely on dynamic memory management, to atomically insert, delete or update
nodes. Special care is then necessary to avoid persistent memory leaks that could
arise from crashes concurrent to operations that handle allocated data momentar-
ily not linked anywhere in the data structure. This is usually taken care of with
transactional allocation: before (de)allocating and (un)linking data, the intent is
captured (durably) in a log record. Here, David et al. propose to reduce the book-
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keeping overhead with coarser grain tracking of active memory areas. For short,
each thread maintains for each allocator page the last “epoch” numbers at which
it last allocated and deallocated memory from; such that on recovery, threads can
inspect in parallel and clean up memory areas for which the recorded epoch number
is high enough, relative to their own advancement epoch number. Then, on recov-
ery, only active memory areas need to be traversed to detect and discard unlinked
or marked nodes.

2. Persist in NVMM only data that are necessary for recoverability.
A recurring theme in achieving good NVMM performance is minimal bandwidth usage
(especially writes) and minimal fencing instructions. In this regard, many PDTs thought
of sidestepping the issue by allocating only recovery-critical data off NVMM, and recon-
structing other metadata on recovery. Resulting as a whole in hybrid DRAM-NVMM
data structures. The techniques is often referred to as selective persistence, and decouples
the data layer from the search layer of data types. Allowing the latter to be managed
at DRAM speeds with no overheads tied to failure-atomicity. That includes (i) struc-
ture traversal, (ii) concurrency control, (iii) structural modification operations (e.g.,
node balancing), or basically, (iv) any link update in the top layer. Selective persistence
was first introduced byNV-Tree [339] and FPTree [252] that placed (data-holding) leaf
nodes on NVMM but inner nodes on DRAM. In doing so, FPTree was also able to resort
to hardware transactional memory (HTM) for concurrency control in its top (DRAM)
layer, otherwise incompatible with NVMM-specific instructions; and fine-grained locking
for the bottom (NVMM) layer.

Efficient lock-free sets, as proposed in [354], go even one step ahead and avoid per-
sisting absolutely any link in NVMM. Indeed, they notice that most indexing structures
are link-free as they boil down to sets. Meaning the whole structure can be reconstructed
without any extra metadata, apart from knowing which record belongs to the structure.
This applies to linked-lists, binary search trees, hash maps, skip lists and the likes.
Each set then consists of a (thread-safe) data structure in volatile memory and a set of
durable records in NVMM. Records are kept in special designated NVMM areas, which
are scanned on recovery. Each record maintain membership information, that indicates
whether it belongs to the set or whether its state were transient. Concisely, the proposed
approach works as follows:

• insert first creates a record in NVMM, adds it to volatile structure then, if the prior
addition was successful, marks it as valid.

• contains traverses the volatile memory, finds the matching record and return a
reference to its content on NVMM.

• remove simply trims the record from volatile memory then marks it as invalid in
NVMM.

During the last two operations, if a matching record is found while being inserted by
another thread, then the inserting thread is helped. This ensures that the data structure
remains durable linearizable. Interestingly, this algorithm is able to match the theoretical
lower bound of one pfence per thread update, as established by Cohen et al. in [96].
Note also that, allocating and freeing nodes need not to be transactional as no leak
may be caused: a node’s validity scheme is used on recovery to reconstruct the node
allocator state as well. In practice, only durable areas of a set need to be allocated
crash-consistently and persistently referenced.

Still, hybrid data structures are ill suited when crashes are frequent or when recon-
struction time matters. As one might have noticed by now, even though overheads are
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reduced in crash-free executions, the approach forfeits opportunities for instantaneous
recovery as well.

3. Optimize for current-gen NVMM hardware properties.
“Minimizing the number of persist instructions is an important topic, but not enough”
[282]. As of 2022, three years after the launch of Optane NV-DIMMs, singular charac-
teristics of real NVMM are now better understood. We remind that prior studies, as we
discussed in §2.4.2, found:

• Limited media bandwidth. Quickly saturates under unrestricted parallelism.
• Asymmetric read/write bandwidth and latency. Mixed read/write workloads

will most likely bottleneck first on write bandwidth, leading to underutilized read
bandwidth.

• Sequential accesses to hide media latencies. Sequential reads benefit from
CPU prefetching and the on-DIMM read buffer; similarly, sequential writes exploit
efficiently the on-DIMM write-combining buffer.

PDTs [130, 199, 282] noticed persistence instructions to be more hurtful than first
thought:

• CLWB invalidates cache lines in current processor architectures. As a con-
sequence, persistence always incurs the cost of cache line invalidation; making es-
pecially expensive subsequent accesses to flushed content.

• Contention leads to more severe performance degradation on NVMM.
Lengthy critical sections tend to be higher-latency operations, therefore are more
susceptible to stalling concurrent threads, or make them retry on lock-free designs.
Which might also translate into more wasted bandwidth.

Reading flushed content. In detail, the performance impact of reading explicitly
flushed content is explored by Sela et al. in [282]. At first, their implementation of a
durable concurrent queue did not clearly have an edge over the work of Friedman et
al. [138], in spite of issuing optimal number of pfence (one per update operation, zero
per read operation). However, their revised implementation that performs zero access
to explicitly flushed content (OptUnlinkedQ and OptLinkedQ) improve throughput
between two to threefold. Promisingly, by reasoning on the abstract universal construc-
tion of Cohen et al. in [96], they could show that any object might be implemented with
zero access to flushed content.

Asynchronous concurrent index updates Comprehensive guidelines for efficient
PDT implementations are also presented with PACTree [199]. They support various
claims and patterns by measuring wasted bandwidth or excessive persist instructions.
For instance in remote NUMA accesses to NVMM, or persistent memory allocation in
the PMDK. Perhaps, their most notable idea is to take off the critical path persistence
of structural modification operations.

Indexing data structures are susceptible to structural modifications (e.g., node split-
ting/merging, tree re-balancing) on key insertion or deletion, that can cascade to ancestor
nodes. In persistent indexes, the performance blow is even more severe: these lengthy
critical sections are made of high-latency persistent writes that will block or stall concur-
rent threads. Hybrid structures dodged the issue, by placing internal nodes on DRAM.

PACTree [199] conversely establish that, internal nodes can be kept persistent and
compromising on recovery time to be unnecessary; when structural changes to the index
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structure are made asynchronous. PACTree makes this possible by decoupling its search
layer from its data layer, with a design that tolerates inconsistencies between the two.
Both structures reside on NVMM for faster recovery, and optimize for their own doings.
Precisely, the search layer employs a NVMM-consistent variation of a trie index because
of reduced read bandwidth on traversal - only partial keys are stored and compared from
internal nodes. The data layer then is a doubly-linked list of B+-tree-like leaf nodes that
conveniently enables sequential access for scan operations. When the data layer needs
to be updated (node split or merge) to secure new key-value slots, only local changes
happen synchronously. A logical persistent log tracks these changes to the data layer,
so as to reflect them back to the search layer from a background updater thread. While
the search layer might be out-of-sync, traversal operations would land on an adjacent
node in the data layer. The inconsistency is then tolerated simply by navigating links
to the correct node in the data layer. From their evaluation, placing the search layer
in DRAM was not that beneficial (less than 10% throughput increase), thanks to the
asynchronous background updates. Overall, the design of PACTree genuinely attests
that hybrid persistent indexes can be built without impeding recovery or restricting the
size of the index to that of DRAM.

In conclusion, persistent data structures provide tailored failure-atomicity at their
interface. When hand-crafted, they may exploit custom schemes for failure-atomicity,
finely intertwined with the data type’s own characteristics. In that, being designed for
a single-purpose lends them potential to outperform generic failure-atomic solutions.

Building a PDT from scratch however might feel like a daunting prospect: both exper-
tise and original insight are necessary to design an efficient one. The task is unarguably
harder than building volatile lock-free data structures. Leaving regular programmers
with little design options were a structure not to fit their particular needs. Still, by
going over multiple persistent data structure we found valuable insights and were able
to extract ideas, findings and guidance applicable beyond the making of PDTs.

Notice that PDTs are often linked data structure and heavily rely on dynamic al-
locations, but do not solve the problem of memory management. To use them, it is
necessary to integrate (i) their ad-hoc memory management mechanism, or (ii) to rely
on an external solution. That second option usually means assuming a crash-consistent
memory allocator, often transactional with malloc-to/free-from semantics. We cover in
§2.7.5 other suitable techniques for management of persistent heap.

The way we have designed PDTs in our contribution (§4.5) is heavily inspired by
Efficient lock-free sets [354], in that a mirror data structure indexes in DRAM the data
nodes laid flat in a persistent array. By updating the persistent array before the volatile
mirror structure, we guarantee that only persisted values are globally visible. Note that
our DRAM mirror only holds representant objects that forward to the actual data nodes,
to avoid data duplication in main memory.

Some authors [103] have also the questioned the efficiency of PDTs with regard to
generic solutions. For instance, the queue implementation in [138] executes several
pfence instructions, while the persistent transactional memory (PTM) proposed in [96]
requires a single one. For this reason, we explore generic solutions to durable data struc-
ture implementation next (§2.7.2), and failure-atomicity of arbitrary code afterwards in
§2.7.3.
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2.7.2 General-purpose constructions for data structures

In the light of difficulty faced and dedication required so as to assemble new persistent
data types; constituting a whole library of persistent container types (e.g., C++’s STL,
Java’s java.util) sounds to be quite the fairly serious endeavor.

As a more direct path, another body of work explored general-purpose frameworks
to transition existing volatile data types into their NVMM-consistent derivative. Were
proposed in research papers schemes to augment data type algorithms either from me-
chanical (manual) recipes that a programmer applies; or with automated transforms
that work from instrumented code. In any instance, the programmer is relieved from
non-trivial design decisions, while the resulting PDT has predictable efficiency and cor-
rectness guarantees.

Amongst the first representatives of these two kinds were the mechanical transform
of Izraelevitz et al. from [174] that we already presented in §2.6.2.3, and the ONLL
(Order Now, Linearize Later) universal construction of Cohen et al. [96]. Neither of the
two were meant to be practical though: they rather served as theoretical proof material.
Izraelevitz et al. showed with theirs that any lock-free object could be made durable-
linearizable. Cohen et al. added a lower bound result on the number of persistent fence
instructions per memory-updating operation and a detectable execution guarantee (cf.
§2.6.2.4).

Then, over just the span of the last four years, numerous research papers have de-
scribed methodologies that aimed at producing efficient converted implementations for
real NVMM.

Capsules [57] proposes programmers to segment code into idempotent regions made
of reads or private writes, called the capsules, and their boundary - a single CAS op-
eration. Capsules are in effect processor-local checkpoints. The CAS at boundaries
have to be replaced with the recoverable variant of Attiya et al. [50] for correct recov-
ery of shared variables. Although quite a challenge implementation-wise, Capsules offer
detectable recovery.

RECIPE [208] presents a manual conversion method for in-memory indexing struc-
tures. Based on three distinct conditions that DRAM indexes may match, they prescribe
corresponding conversion actions to be implemented. In essence, these conditions cap-
ture non-blocking data structures that already possess appropriate mechanisms to avoid
or tolerate crash-inconsistencies; and aid extending them for real NVMM with appropri-
ate flush and fence placement. RECIPE was also extended for the making of UPSkipList
in [91], by providing a mean of detecting post-crash inconsistency repair without relying
on locks; so as to support algorithms with non-blocking and non-repairing writes. Lastly,
RECIPE was found to yield incorrect persistent algorithms in some instances. Their re-
vised version on ArXiv now adopts flush and fence instructions after every stores and
most of loads in NVMM, almost as in the transform of Izraelevitz et al. [174].

PMwCAS [315] is a persistent multi-word compare-and-swap operation that pro-
vides CAS semantics across arbitrary words in NVRAM. The operation itself is lock-free
and ensures that concurrent readers only observe persisted values. In that, the transition
from volatile to persistent is seamless, nearly as easy as writing lock-based structures
thanks to the multi-word interface. PMwCAS employs a dirty bit design where a mark
is set on each word before being flushed and which is removed afterwards, to prevent
concurrent read of uncommited data. On recovery, the whole pool of PMwCAS descrip-
tors is scanned and each in-flight operation is rolled back or forward according to its own
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progress. Correct memory management is simplified by enabling applications to install a
callback to piggyback reclamation on PMwCAS’s own memory recycling strategies. Al-
though a powerful abstract base block, it was found to have limited scalability in write
heavy workloads. [212] thoroughly analyzed and evaluated multiple persistent indexing
structures, including Bztree [44] that internally rely on PMwCAS. Overall, Bztree had
the highest count of flushes per insert/update/delete operation, mainly due to PMwCAS
that incurs at least 3 flushes and fence when not contended.

MOD [159] observe that concurrent flushes (pwb) degrades the performance on Op-
tane NV-DIMMs. To sidestep this problem, they propose to construct persistent data
structures as functional ones. An update to a functional data structure is non-destructive
[126]. Instead, it returns a new version of the object (for performance, this new version
shadows the previous one). To inject data persistence, the recipe of [159] is as follows:
before returning the new version, a single fence is needed followed by a flush on the
pointer to the new version. We note that relying on functional data structures implies
to massively copy in certain case the previous content (e.g., for a vector), leading to
performance degradation. Moreover, it induces an overhead in maintaining all of the
prior versions, as they report up to a 131x memory overhead.

NVTraverse [139] is a semi-automated transform that targets a specific class of
lock-free data structures they named traversal data structures. They define traversal
data structures as node-based tree-like whose operations first begin with a (possibly
lengthy) traversal phase that locates nodes on which to perform the modifications. The
key idea is to avoid flushing read locations during the traversal phase but only a few at
the end to validate and persist the final location, then perform the operation. Although
they describe how to automatically apply flush and fences to structures in appropriate
traversal form, programmers would likely have to tune their concurrent volatile structures
to fit their rigorous definition of a data structure in traversal form.

Pronto [232] is a software library that brings persistence to any volatile data types
with minimal code changes. It achieves this through logical logging: the ASLs (Asyn-
chronous Semantic Logs) capture operations and their arguments concurrently to the
execution. The programmer needs only to wrap a data type and its operations with
begin/commit frontiers, similar to transactions. Pronto maintains a volatile online im-
age of the data structure against which runs the main execution thread. A background
thread then records the logical logs on NVMM and synchronize on commit. The log is
periodically compacted by taking consistent snapshots of the data structure, to reduce
reconstruction time of the volatile image on recovery. The approach has little over-
head over the unmodified data type, is trivial to use, and even outperforms hand-tuned
structures; but has a large memory footprint and costly recovery. Basically, it mirrors
the whole transient memory on NVMM and has to replay the execution from the last
snapshot. Moreover, the approach doubles the number of maximum concurrent threads.

Persimmon [349] is an interposition mechanism to persist a state machine. 4 It
relies on a persistent log to store the state-machine updates. These updates are then
applied outside the critical path by a fork of the original program running in NVMM.
To ensure failure-atomicity of the shadow NVMM copy, persimmon uses an undo mech-
anism. This mechanism instruments the program at runtime and persist every memory
modification (by first saving its original content in the undo log). Persimmon does not
handle concurrency, that is it only provides durability. Persimmon pays the cost of mar-
shaling each state-machine update as well as blindly persisting the program heap in full.

4A state machine is a deterministic program without I/Os.
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Applied to Redis, the authors show at best a 2x improvement over a file-system based
approach (Redis AOF, fsync-ing every file modification).

CX-PUC [103] is the first universal construction to make a data type jointly per-
sistent, linearizable and with wait-free progress. The approach is an adaptation of CX
[104] for persistence, which is itself based on the combining technique of Herlihy [161]
with a few modifications to enforce durability. The construction maintains 2n copies of
a persistent object as well as a global mutation queue that establishes the linearization
order. Upon executing an operation, a thread seals one of the copy, applies the missing
mutations from the queue, then pending operation. After which, it tries to update the
pointer to the most update-to-date copy. If this fails, the full procedure is repeated
one more time. 5 The key interest of this approach is that recovery is immediate: the
pointer to the latest copy being always consistent. However, it requires an upper bound
on the number of thread (n), as well as persisting 2n full copies of the data. In addition,
CX-PUC does not interpose on memory stores thus is only able to track changes with
object granularity. A limitation they overcome by proposing a variant that combines
with transactions for higher throughput, at the expense of additional annotations.

Montage [319] and nbMontage [77] provide the first transforms for buffered durable-
linearizable structures of blocking or non-blocking types. Adopting buffered durable lin-
earizability allows Montage to perform less than one fence per operation. They rely on
a custom memory allocator [76] and epoch-based approach to recover an anterior image
of the data type. The interface allows to selectively identify data nodes, thus avoids
persisting data that can be reconstructed, reducing checkpointing overheads.

Mirror [140] works as an extension of the C++ std::atomic library in order to build
hybrid data types. That is, it keeps a volatile replica of every persistent variables, to serve
faster consistent reads directly from DRAM. The NVMM copy is accessed only on modi-
fying operations to persist data. Intuitively, the transform updates crash-consistent vari-
ables before the volatile copy, and therefore, prevents reading not-yet-persistent-writes.
Programmers need only to annotate types to use patomic instead of std::atomic, re-
place allocation calls with theirs; and for recovery, specify the root of the structure and
a routine to traverse all nodes from the root. The mirror approach even outperforms
NVTraverse by 4x on a linked-list for a write-heavy workload, and 10x for a read-heavy
workload.

NAP [312] is a black-box approach that brings NUMA-awareness to hot items in
existing persistent indexes. In essence, NAP introduces a wrapping layer that absorbs
accesses to hot items, while cold ones are served by the underlying index. The NUMA-
aware layer maintains a global view in DRAM, and a per-node view in NVMM; such
that remote NVMM accesses are eliminated without inducing extra reads in NVMM.
It is implemented in C++ and provide a wrapper template class for NVMM indexes,
that takes around 3̃0 lines of code to glue-on an existing type. NAP improves by up
to 2x throughput in write-intensive workloads when using all four NUMA nodes of the
machine.

PREP-UC [93] is a universal construction based on the node replication technique of
Calciu et al. [78]. The technique was originally designed for NUMA-awareness. PREP-
UC preserves that property and adds persistence with (buffered) durable linearizable
variants. It utilizes logging and two persistence replica of the underlying sequential
object. PREP-UC achieves significant performance improvements over CX-PUC, with
lower spatial complexity.

5If the procedure fails two times, then another thread executes the operation and reports the result.
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Tracking [52] presents a generic (manual) approach to derive detectable recoverable
implementations of concurrent data structures. At a high-level, Tracking tags the struc-
ture’s nodes with an operation descriptor that contains operation status, working set,
and helping-relevant information. For recovery, every thread maintains a reference to
its current operation descriptor. In spite of the larger (eyeballed) number of flush and
fences their approach seems to entail, they found significant performance improvements
over Capsules - the only other detectable transform to date. By disabling persist instruc-
tions and re-introducing them one by one (line after line), they could approximate the
cost of each. Their analysis led to interesting findings: (i) persistent fences had nearly
no impact on performance (with Tracking), and (ii) flushes to non-volatile memory had
varying performance impact. In detail, they parted flushes in low, medium and high
impact categories, and found (i) the low impact ones to match with private or freshly
allocated variables that have not become shared yet, and (ii) the high impact ones to
match with highly contended shared variables. With all that considered, Tracking ex-
hibited mostly low impact flushes and some medium ones, which they used to conclude
that most data being kept private explained the better performance.

PBCOMB and PWFCOMB [130] are two software combining protocols, blocking
and wait-free, that can be employed to build data structures with detectable recoverability.
Approaching persistence with combining is compelling, as it calls for a reduction in the
number of persistence instructions and reduced contention on flushes. One crucial design
decision for performance in PBCOMB is for the combiner threads to perform updates
out-of-place, so as to maximize sequential and un-contended writes in NVMM before
making the new copy globally visible. Their protocols leads to impressive throughput
speedups when applied to sequential data structures (stack, queue, heap): severalfold
better than with other UCs, PTMs or even hand-crafted ones. Combining however,
restricts parallelism generally speaking. Even non-conflicting requests are serialized. For
that, it might not be relevant in indexing structures. Additionally, out-of-place updates
might result in a prohibitive copying cost as the structure grows larger.

We hope that this part could get us all a feel for how overwhelming persistent data
structure can be. Devising conversion methods and automated transforms remains an
active research area, as can attest the barrage of papers covering the topic. A perplexing
balance between genericity, efficiency and correctness properties, that is indeed hard to
get right as RECIPE illustrated.

To make matters worse, it comes unclear whether both principled, manual method-
ologies or automatic transforms are really applicable. Our main concerns are, that the
preconditions expected by many techniques may necessitate non-trivial adaptations to
the original data structure. Automatic transforms are not as immune to this as one
may think: adhering to a specific API, using the right library calls or selectively making
persistent allocations can also come out to be tricky to get right. In the end, it is defi-
nitely not a hands-off experience, but one with many tiny micro-adjustments that add
up and turn out to be not so trivial for programmers. Additionally, the nearly gener-
alized reliance on custom allocators, custom memory management or custom recovery
fixed-points do not facilitate adoption in general-purpose persistent memory toolkits and
libraries.

On the bright side, the aforementioned techniques provided us with experimentally-
supported evidence for some efficient NVMM access patterns and situations they might
be used in. Namely, the findings we take home are:
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• Use DRAM to avoid costlier operation in NVMM. Pronto, Mirror, NAP,
or even PCOMB all leverage DRAM to some extent in order to alleviate the cost
of persistent instructions and slower NVMM.

• Avoid persisting things read during a possibly lengthy traversal phases.
As entailed by NVTraverse, keeping a read-mostly phase and a write-heavy phase
in sequence helps save NVMM bandwidth.

• Use out-of-place updates to avoid small, fragmented writes. MOD, or
PCOMB notice that out-of-place updates do not always result in higher device
bandwidth usage. Indeed, small fragmented writes with amplification may generate
more write traffic, whereas creating a new copy promotes packed writes.

• Avoid expensive flushes on highly contended data. The analysis in Tracking
clearly shows that not all flushes are equal. Low contention appears to be a recipe
for faster explicit flushes, which promotes DRAM for highly contended objects.

The fact that these findings resonate with those we extracted earlier from hand-crafted
data structures suggests we are indeed on the right track.

2.7.3 Persistent transactional memory

We previously discussed the need for failure-atomic sections (FASEs) and possible ba-
sic implementations in §2.6.4. In essence, FASEs form an all-encompassing solution to
challenges of direct access to NVMM, bundled in the most well-tried and easy-to-grasp
abstraction for failure-atomicity. Recall that we concluded however NVMM-specific im-
plementations to be faced with inefficiencies when compared to special-purpose failure-
atomicity. Namely, increased write traffic, extra fencing instructions and heavy load/-
store instrumentation. FASEs might nonetheless be preferred for productivity reasons
alone, since they immensely simplify coming by correct persistent code and going about
application recovery. In any case, they are not entirely dispensable and remain necessary
to atomically update any two piece of data that might not reference one another.

A versatility that is well-understood and welcomed as a failure-atomic abstraction:
nearly all existing persistent object systems for NVMM include support for FASEs.
Overall, when accounting for every research paper that proposes original implementation
of FASEs, the body of work comes out as immense. Those that specifically present a
novel logging technique, the others that propose one as part of a larger and complete
persistent object system. As such and again, we will not be able to extensively present
and compare them all. We remind however that the excellent survey from Baldassin et
al. published this year [54] covers nearly them all, and provide a detailed comparison
of decisive implementation aspects. Indeed, logging schemes can be distinctively tuned
by working at different granularity, with varying support of thread-atomicity and crash-
consistency properties.

The most common kind of FASEs found in the literature is undoubtedly transac-
tions. Originating from software transactional memory (STM), a persistent transactional
memory library (PTM) provides transactional semantics to programmers over regions
of persistent memory. That is, within transaction boundaries denoted with begin_tx()
and end_tx(), NVMM load and stores are ACID (or at least failure-atomic). We now
examine notable PTMs.
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Mnemosyne [310], is one of the first PTM designs dedicated to NVMM. It is built
on top of the lock-based TinySTM transactional memory [133], and uses per-thread
redo logs with global timestamps to preserve order when recovering transactions. Only
four persistence fences are necessary to commit a transaction, regardless of the number
of memory locations it modifies. Finally, since it has to log every memory word, it
also provides automatic compile-time load/store interposition, to relieve the programmer
from marking every transactional memory instruction.

PMDK [19], the official Persistent Memory Development Kit for Optane NV-DIMMs
from Intel, contains an undo log implementation that reduces the number of persistent
fences by aggregating all the modifications done on one memory object inside a trans-
action. PMDK transactions provide failure-atomicity, but not isolation. The persistent
memory allocator is also highly optimized to reduce the number of pwb instructions.
Programmers yet have to identify with manual special markings every memory load and
store that are part of the transaction.

Romulus [102] is a lightweight PTM design that provides durable transactions
through the use of two full copies of the data. Read-only transactions execute in isola-
tion on one of two copies. Updates first execute on the most up to date version of the
data (waiting its turn if necessary), then its modifications are played back on the second
copy. For efficient play-back, mutations are recorded in a volatile redo log. If a failure
occurs, any of the two copy holds a sound version of the data to restart from. Update
transactions require at most four persistence fences, regardless of their sizes.

OneFile [267] ensures a stronger form of progress for updates, namely wait-freedom.
To achieve this, the PTM uses a helping mechanism, a redo log for durability and a
timestamp-based concurrency control. Though, every store in the sequential data struc-
ture require one double-word CAS to NVMM.

Redo-PTM [103] uses a variation of the CX universal construction [104] (CX-PUC)
to construct durable linearizable data structure. As prior universal constructions, Redo-
PTM relies on a queue of operations and multiple copies of the shared data. When
executing a write, a thread first secures a copy then it applies the updates that were not
played before returning. This approach has two main limitations: First, it requires to
know beforehand the maximal number of threads (t) that concurrently access it. Second,
it exhibits a write amplification of O(t).

Since we have already partially discussed most common base logging schemes and their
drawbacks on NVMM (§2.6.4), we propose to focus here on knobs available to PTMs for
efficiency tuning:

• Logging schemes. We have established that: (i) undo logging needed one persist
fence per log entry, (ii) redo logging needed 3-4 fences per transactions but at the
expense of redirecting reads to in-flight updates, and (iii) copy-on-write required
constant number of fences per transactions, avoided the double write problem of
logging, but needed another intermediate indirection layer.

Research work has then naturally sought to smooth out these sources of inefficien-
cies with variations of the techniques. For instance, InCLL [97] carefully lay out
objects (data structure nodes) in memory to efficiently pack undo log entries in
one cache line and save precious fence instructions; but is not applicable to generic
FASEs. Alternatively, redo and copy-on-write are often combined one way or the
other. First, as in Romulus to avoid full copies with CoW. Second, considering that
Optane NV-DIMMs have a 256B block size, redo could also be made to work with
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larger grain, while a shadow DRAM copy helps servicing reads during transactions.
Last, hybrid logging strategies are also employed for HTM-PTM hybrids, as a way
to sidestep limitations regarding persistence instructions in hardware transactions.
In doing so, Crafty [142] is able to leverage HTM for isolation.

• Tracking granularity. Most often, updates are tracked at the word (8B) or
object granularity with NVMM. Finer grain is often conceptually associated with
fewer writes to media, while a coarser grain tend to reduce the overhead of the
underlying mechanism. Remember that with spinning disks, we even encountered
schemes that worked at page-granularity (4KB) with binary diffing techniques to
reduce amplification. With the 256B internal block size of Optane NVMM however,
finer grain might not always result in less effective bandwidth usage due to write
amplification of small fragmented writes.

• Thread atomicity. In most of the above PTM designs, for the purpose of isola-
tion, writes are serialized. At times, even resorting to a crude global shared lock.
Such design decisions largely impede scalability on multi-core machines, especially
hurtful in massively parallel workloads. By using per-thread logs and even de-
ferring isolation to usual external synchronization primitives, scalability may be
reattained. Special care is yet necessary in the overlap between critical sections and
FASEs, as persisting partial updates in critical sections could for instance throw
off durable linearizability.

• Persistence guarantee. Nearly all PTMs wait for persistence on commit, which
are more natural semantics for programmers. With that, durable linearizability
is obtained when they are designed jointly with concurrency control. Buffered
variants are nonetheless still explored so as to amortize the cost of persistence
instructions.

Lock-based FASEs Transactions, although dominant, do not consist in the only in-
terface for FASEs. Among pioneering NVMM object systems, Atlas [83] proposed to
infer FASEs from mutex-guarded critical sections. NVthreads [168] worked as a drop-in
replacement for the pthreads C library and inferred consistent states from synchroniza-
tion primitives. Atlas, NVthreads, and similar approaches might feel more natural to
programmers for delimiting FASEs with already well-understood semantics of critical sec-
tions. Although such designs lack proper ordering in sequential executions, they might
rather prove useful with the coming eADR-enabled architectures that have persistent
caches. Where precise ordering is needed only for concurrent accesses.

In conclusion, durable transactions for NVMM are an essential component of any per-
sistent memory support library. Existing implementations do not rival with the tailored
failure-atomicity of data structures. That being said, by going over durable data types
and FASEs, we accumulated a fair amount of clues on performance critical implementa-
tion aspects.

In particular, our contribution provides FASEs (§4.6) with only failure-atomicity, iso-
lation being easily attained in Java with the synchronized keyword. Our implementation
consists in a simple redo log, but working at 256B (Optane’s block size) granularity. It
is inspired by Romulus, except we avoid allocating eagerly the dual (back) space for the
in-flight data version, mainly not to sacrifice half of our max heap capacity. Further
details are available in §4.6.
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2.7.4 Checkpointing

Checkpointing, or epoch-based persistence, is an alternative general-purpose abstraction
that also provides a form of failure-atomicity. Checkpoints are often used for fault
tolerance in environments with long computations such as in HPC, or basically, in any
other situations where re-running computations is undesirable for time, cost, or energy
reasons (e.g., small devices).

As we remember from early persistent memory and persistent object systems (§2.3.2),
checkpoints were largely employed as an even easier way of denoting consistent applica-
tion states for programmers. Assumedly, only explicit calls to the checkpointing facility
are required to identify consistent recovery points that delimit persist epoch boundaries.

At the NVMM era, checkpointing remains quite attractive. Being a form of buffered
persistence, it soothes out the cost of persistence instructions. NVMM low latencies may
in addition largely help reducing runtime overheads of checkpoints.

ResPCT [193] provides a general checkpointing approach for fault-tolerance of multi-
threaded programs on NVMM. They adopt InCLL (In-Cache-Line-Logging) of Cohen
et al. [97] to store both variables and undo information in the same cache line. In
doing so, they can update values during normal operation without issuing flushes or
fences. Implicit flushes will not re-order undo information, since they are stored on
the same cache line. ResPCT checkpoint period can be adjusted for performance. A
16ms period has negligible overhead versus a fully volatile execution with their hash
map benchmark. With a 4ms period, throughput is still better than other generic other
evaluated competing approaches. ResPCT performance are tied to its ability to allocate
variables together with undo and epoch tracking information on the same cache line.
However, it does not elaborate on how NVMM accesses are interposed, nor on whether
its original memory layout for data object needs to be implemented manually. Moreover,
with its specific memory layout, ResPCT at least doubles the NVMM footprint, just like
Romulus [102].

Aside from general-purpose failure-atomicity, checkpointing on NVMM is also used to
pursue full-system persistence. Capri [179] envisions an architecture/compiler co-design
where their compiler automatically partitions persist epochs in programs. Similarly,
OS-level persistence or single-level stores for NVMM, as in LightPC [207], Aurora
[306] and Twizzler [65], use a form of checkpointing for transparent whole thread state
persistence. We need not to elaborate again (§2.3.2.1) onto why this model is not the
one we prefer to compose persistent programs.

Finally, Arthas [90] is a checkpointing mechanism for NVMM that covers up for
hard faults. We already made the point several times that with direct access, transients
bugs in software could potentially lead to permanent data corruption (hard faults) in
NVMM. Then, in the manner of file system snapshots that enable recovering anterior
images of the data, Arthas employs checkpointing for fine-grained versioning of NVMM
states, such that the problematic ones could be rolled back.

Surprisingly, NVMM checkpointing for general-purpose failure-atomicity feels under-
explored, in comparison to durable data structures or transactions. Though, forms of
periodic persistence or checkpointing are found in the implementation of some buffered
data structures or FASEs.
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2.7.5 Memory and heap management

Correct memory management of a crash-consistent heap is the foundation of any persis-
tent program. Evocatively, every single programming abstraction we discussed until now
also requires a memory allocator that tolerates failures. Intuitively speaking, persistent
variables are expected to remain reachable across multiple program executions, which
entails that heap metadata stay sound as well.

Conventional memory allocators are optimized for fast allocation and reduced heap
fragmentation, but are unable to maintain consistent states across potentially faulty
executions. In addition to enforcing crash-consistency of their own metadata, allocators
need to consider the effects of possible crashes while they hand-off memory responsibility
to application code. For instance, a fault occurring before the application could durably
reference newly allocated data would result in a persistent memory leak.

We have already identified issues tied to persistent heap management when we went
over early persistent object systems in §2.3.2.2. NVMM-specific persistent heap man-
agement and allocators are also faced with the same ones, that we then recall here:

• Dangling references. Generally speaking, persistent references need to be up-
dated atomically to avoid memory leaks or dangling pointers. This remains true
when dynamically allocated memory is handed-over or reclaimed by the allocator.

• Persistent pointers. In modern OSes, a process’ address space is only ephemeral.
Pointer values stored from anterior executions are then garbage, unless the heap
could be re-mapped at the same starting address. The generally accepted solutions
are to swizzle pointers or, to store relative offsets rather than virtual addresses.

• Referential integrity. All pointers must stay valid at any time. In particular,
persisting addresses to volatile objects will result in “wild” pointers in subsequent
executions. Additionally, using relative offsets for durable references will collide
when dealing with multiple persistent heaps.

Proper durable heap management and memory allocation are then expected to endow
applications with sufficient facilities that prevent any of the aforementioned situation
and the associated persistent bugs to occur. We now propose to present how these
topics are tackled by present NVMM-specific persistent object systems, heap managers
and allocators. For that, we will exemplify the most common techniques, by referring
to the following work. PMDK [19], a production-grade persistent memory program-
ming toolkit backed by Intel, and the de-facto library used by newcomers to NVMM
programming. Mnemosyne [310] and NV-Heaps [92], two (relatively older) complete
system for NVMM programming, designed even before the Optane craze. NVAlloc
[108], Makalu [63] and Ralloc [76], crash-consistent allocators that are either log-based
or use a form of garbage collection.

2.7.5.1 Memory leaks & Dangling pointers

Persistent memory allocators obviously need to remain internally consistent across po-
tential failures. Otherwise, bugs such as double frees may occur in executions. More
importantly, the user interface for memory allocation must also maintain a continuity
between the allocator and the user code. Simply put, it must provide atomicity of
(de)allocation and reference (de)installment in the user code. We identify the follow-
ing three distinct semantics that prevent dangling pointers: (i) transactional allocation,
(ii) malloc-to/free-from calls, and (iii) post-crash garbage collection.
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(Transactional allocation.) In persistent programming models with support for
FASEs, dynamic persistent memory allocations and reclamations can be enclosed within
transaction boundaries. So long as the (de)allocation operation and the pointer update
are part of the same atomic section, the underlying logging schemes guarantees no leaks
or dangling pointers may result of failures. These semantics are supported in the PMDK,
and tend to be more natural for programmers. However, this mechanism is expensive:
allocator metadata are tiny, and small writes do not play best with NVMM; also the
PMDK, which relies on undo logs, incurs six flush operations for one alloc-free pair [199].

(Malloc-to/free-from.) By extending the traditional allocation API to addition-
ally supply a destination or origin pointer, the allocator can then assume the respon-
sibility of atomically updating the memory attachment’s point. This API was already
supported in Mnemosyne then largely re-used with the PMDK; and was assumed even
in latest academic work such as NVAlloc. Note that the underlying mechanisms for
atomicity of allocation metadata and pointer update is still log-based in these systems.

(Post-crash garbage-collection.) Ralloc and Makalu are built around a garbage-
collection (GC) phase on recovery, and can thus use the standard malloc()/free() API
with no code modification. This offline GC pass enables them to reclaim unreachable
memory block by traversing from the user persistent root objects. Those persistent roots
provide tracing GC algorithm an obvious starting point. Conveniently, root objects are
demanded by the programming model of persistent memory, to get users a fixed-point
to recover from. Notice that this is similar to transitive persistence from §2.3.2.2 and
§2.3.2.3, except that memory objects are not automatically migrated to NVMM here.
Another attractive point, is that allocation metadata can be reconstructed on recovery.
Thanks to GC and offline metadata reconstruction, Makalu and Ralloc pay almost no
persistence cost and rival with transient memory allocators under normal (crash-free)
operation. In a broader way, automatic memory management schemes are reassuring for
programmers. Even more so when dealing with persistent memory, and the amplified
consequences of its associated memory bugs.

Recovery time garbage collection is almost a clear winner here. Mainly for the (al-
most) null cost during normal operation and for simplifying the programming model.
Although recovery may seem expensive for large heaps, remember that the procedure
consists of a massively parallel read-only (long) tracing phase, followed by a (shorter)
write-only phase for metadata re-population. Both have favorable NVMM access pat-
terns, as we explained in §2.7.1 and §2.7.2.

2.7.5.2 Persistent pointers & Referential integrity

Preserving referential integrity is nonnegotiable: pointers must remain valid, even across
consecutive faulty executions. With ephemeral virtual address spaces, persisting raw
pointers will most likely lead to data loss. Likewise, persisting pointers to volatile objects
will result in dangerous “wild” pointers in subsequent executions.

(References to volatile heap.) These kind of pointers can prove to be convenient
when coding, but are totally unsafe. Most systems deem them illegal and forbid them.
As in the PMDK and NV-Heaps, where they are statically prohibited using dedicated
persistent types. Other systems (e.g., Espresso [329]) simply set them to null on recovery,
to at least, raise an exception on next accesses in subsequent program runs, and avoid
failing silently.

(References to persistent heap.) Storing raw pointers is possible, since the heap
may be mmap-ed at the same starting address, but is unreliable generally speaking.
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Swizzled pointers are safe to store, but costlier to de-reference. In Go-PMEM [143],
raw pointers are stored. If the heap were to be mapped at a different starting address,
all pointers would be re-originated on recovery. For that, they store along with heap
metadata the previous heap starting address. Expectedly, re-writing all pointers comes
at a high cost and this is not a common solution. More frequent, is the offset-based
pointer representation, as found in Ralloc and NVAlloc. A simple arithmetic addition is
needed when de-referencing a pointer.

(Cross-heap references.) When accessing multiple persistent heaps, as permitted
in NV-Heaps and the PMDK, relative offsets will collide. Conceptually speaking, cross-
heap references are only legal when the two heaps are loaded. That is the reason why
such references are banned in NV-Heaps and the PMDK, with dynamic checking. Both
systems use fat pointers, i.e. composite software structs that combine a heap identifier
with an offset-based pointer. Additionally, an extra mapping table is necessary to map
heap identifiers to their starting addresses. Needless to say that the de-referencing of fat
pointers is a high cost operation.

In the end, referential integrity is crucial, with yet simple solutions. We note nonethe-
less that, this is the case only when opting for a model with dedicated persistent types.
With implicit types, (costly) dynamic instrumentation is likely to be required, as with
PS-Algol, PJama, or any other orthogonally persistent languages (§2.2.4). That also
includes AutoPersist [288], a persistent flavor of Java for NVMM, that we review later
in §2.8.4.2.

For reference, in our contribution, as motivated in chapter 3, we use in conjunction
(i) recovery-time GC, as in Makalu [63], (ii) offset-based pointer representation, (iii) and
dedicated persistent types to cover for unsafe volatile or cross-heap references.

2.7.6 Summary

To conclude, abstractions for failure-atomicity help break down the intrinsic complexity
of the NVMM programming model. We now understand why any programming support
for NVMMmay want to include them. Through this section, we introduced, first, off-the-
shelf durable data structures, either hand-tuned for performance (§2.7.1), or mechanically
constructed for coverage and convenience (§2.7.2). Then, general-purpose FASEs as,
basically, a sledgehammer to solving all NVMM programming challenges. Either in the
form of durable memory transactions (§2.7.3), or epoch-delimiting checkpoints (§2.7.4).
Finally, suitable techniques for NVMM heap management and data referential integrity
(§2.7.5), which are essential building blocks towards any of the previous.

Among all the guidance and specific insights for performance and efficiency we gath-
ered, two main themes seemed to emerge across the board. On one side, NVMM-native
constructions and log-based approaches that seek out algorithms for lower cost of NVMM
accesses and persistence overheads; with the underlying goal of benefiting from instanta-
neous recovery by staying consistent at any instant. On the other, algorithms that take
advantage of hybrid memory architectures and leverage DRAM to eliminate most of the
need for logging, crash-consistency and specific access patterns; at the expense of longer
recovery time to reconstruct soft data. For this reason, including a recovery pass at
the library level that orchestrates object-specific recovery code sounds like a thoughtful
touch.

We must also mark, through these diverse solutions we encountered, comes out very
clear that answers to NVMM programming challenges are very well explored as of now.
Mature and reliable enough so that combining them all into a single cohesive program-
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ming model seems like the only last thing left out to do. In fact, this is mostly what we
did, by basing our PDTs from [354], our FASEs from [102] and our heap management
from [63]. With detail, we explain their implementation later in §4.5, §4.6 and §4.4.

Typical developers are waiting to harness NVMM and persistence at the language-level.
To some extent, the PMDK offers a complete set of tools, but remains fairly low-level,
meaning cumbersome and difficult to use. In fact, all work we mentioned until now were
implemented in native languages: C or C++. Presently, higher-level of abstractions are
clearly overlooked and object-oriented languages miss out on the tremendous benefits of
persistent memory.

In an effort of democratizing persistence and reaching the whole host of potential
use cases for NVMM we detailed in §2.4.1, our interests are piqued by potential sim-
plifications of the programming model made possible in the object-oriented model and
managed language runtimes. Our intent is to unveil essential properties for efficiency,
genericity and applicability of a programming model for persistence atop NVMM in
managed-language ecosystems. To this end, we present in the coming section (§2.8) the
state of persistence in the Java language, along with existing NVMM-specific exploration
(industry and academic) work.

2.8 NVMM and Java

In the previous section, we noted that most prior works on persistent memory target
programming languages that compile to native (C, C++, etc). We argue that due to
the wide application range of NVMM, covering managed languages and object-oriented
programming is equally as important. In particular, Java has been seen as a solid
candidate for persistent memory ever since its first release, as related in §2.2.4 with the
PJama project from Atkinson’s group [49]. Today, Java stands as a major player in the
big data ecosystem. Many modern data stores, data analytics or processing framework
are written in Java [64, 70, 118, 204, 229, 239, 275, 318, 342, 343]. Unfortunately, to
date, accessing efficiently NVMM in Java remains an open challenge.

Nonetheless, some recent academic research [143, 288, 329] , and industrial efforts
[16, 20, 157, 299], offer solutions for managed languages. From the insight we gathered in
previous sections, we propose to show how these recent solutions fail to address all core
challenges. We could frame requirements for practicality, applicability and usability of
persistent memory from early designs (§2.2, §2.3). Whereas programming abstractions
for failure-atomicity (§2.4, §2.6, §2.7) got us guidance towards achieving balance between
genericity and efficiency on NVMM. Consequently, the core challenges we then identify
for language support of persistent memory are:

• (User) Separation between transient and persistent data.

• (User) Identification of consistent program states.

• (System) Easily integrate in existing applications.

• (System) Prevent dangerous persistent to volatile references.

• (System) Avoid dangling references or memory leaks on recovery.

• (System) Lightweight management that do not restrict NVMM charac-
teristics (bandwidth, access latency, heap size).
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• (System) Offer tuned FASEs & PDTs, do not limit users in implementing
their own.

• (System) Allow recovery-time code to clean inconsistencies in both sys-
tem and user (meta)data.

We then organize this section as follows: (§2.8.1) We remind the specificities of man-
aged language environments, with an emphasis on garbage collection in Java. (§2.8.2)
We present the state of persistence in Java, unrelated to PMEM. (§2.8.3) We relate
recent external solutions to NVMM persistence in Java. (§2.8.4) We examine internal
approaches that bring persistent memory in Java.

2.8.1 Managed languages & Garbage collection in Java

Briefly, we remind that Java does not compile to native code, and therefore can not
easily benefit from all prior work we mentioned. Instead, Java compiles in architecture
agnostic bytecodes6that are then interpreted by a Java virtual machine, its language
execution runtime. Another key point of the Java runtime, is that it offers automatic
memory management through garbage collection.

Execution environment. Loads of Java virtual machines (JVM) exist, on various
platforms. Commodity servers usually run the Hotspot JVM (OpenJDK), a reference
open-source implementation initially developed by Sun Microsystems. In particular, this
implementation has no direct programming support for persistence instructions (CLWB or
SFENCE) of recent Intel architectures. Along with Hotspot, modern JVMs do not simply
interpret Java bytecodes, but embed a just-in-time compiler to output native code on-the-
fly, in order to re-optimize frequently executed code. With details, Hotspot VM profiles
bytecodes’ execution, and use a tiered compilation mechanism to re-compile hot code
first. Its C1 compiler quickly outputs native code with a low degree of optimization, and
instrumentation for online profiling. Its C2 compiler outputs fully optimized native code,
including dynamic optimizations. Adding new machine instructions in Hotspot is tedious
for this very reason. One has to ensure that they are retained and executed in all three
code representations. Above all, that they are properly inlined in the assembly generated
by the C2 compiler. JEP7-352 [124] introduced a composite abstract instruction to flush
and fence a memory range. Meaning that since 2020, from OpenJDK 14 and onward,
persistence instructions (pwb, pfence, psync) are internally supported and properly
compiled, but not externally exposed. First and foremost, we had to take on the task
of backporting their, at the time, experimental patches to OpenJDK 8 and externally
expose these individual instructions, as we report in §4.4.8.1.

Garbage collection in Java. The second topic on which Java differs from native
languages, is memory management. Java users need not to allocate, free memory, or even
manipulate pointers. Memory objects are transparently allocated when created, or freed
when no longer referenced. In Java, the garbage collector (GC) is a JVM service that
performs all heap management routines. As a consequence, blindly enhancing Hotspot
VM for NVMM calls for a crash-consistent GC. Recoverable GCs were proposed nearly

6An abstract assembly language for the Java virtual machine.
7Java Enhancement Proposal
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30 years ago [135, 201, 251], for the purpose of orthogonally persistent Java (§2.2.4) or
persistent distributed shared memory (§2.3.2.3), but nothing at the NVMM era.

G1 [121] is a modern GC and the default in Hotspot VM, it has: (i) a generational
heap, does (ii) concurrent marking, and (iii) parallel compaction. In detail, G1 orches-
trates its collection phases around a cycle, and partitions its heap in multiple generations.
G1 traces object reachability concurrently, but still need short pauses to promote (copy)
them from one generational space to the other or to compact each generation. Objects
that survive multiple collections are gradually promoted from the “eden” space to the
larger “survivor” space that is less frequently inspected. G1 bounds the application pause
time during collection phases by reclaiming regions with the lowest liveness first (fewer
incoming pointers). Running frequent, generation-based small passes, ideally avoids G1
running expensive stop-the-world full-gc phases.

Turning such complex GC algorithm crash-consistent has yet to be done. Work that
extended the Java heap for NVMM wittily avoided doing it, by favoring alternative
GC algorithms (e.g., Espresso [329]), or by building on research JVM that are easier to
tinker with (e.g., AutoPersist [288], JaphaVM [259]). Furthermore, nothing guarantees
this conversion would be efficient. Evidences even point the opposite. In [340], the author
establish that G1 constitutes a performance bottleneck when running atop Optane NV-
DIMMs (in volatile mode, without persistent instructions) [192]. Their experiments
point towards improper NVMM bandwidth usage to be the cause. Namely random
small-sized mixed read-write accesses. They propose to rework G1 compaction algorithm
with favorable NVMM access patterns in mind for transient executions (large memory
use case). For that, they re-arrange small mixed accesses into distinct read-mostly and
write-mostly phases.

ZGC [336] is a newer GC algorithm, declared production-ready since OpenJDK 15
(2020). It is designed with larger heap sizes in mind (up to 16TB) and sub-millisecond
pause times (even as the heap grows). No data is available on its performance on NV-
DIMMs. All considered, with its 25,000 source lines of code, modifying ZGC for crash-
consistency will be at least as hard as G1.

Garbage collection atop NVMM. Extending GC to efficiently run on Optane was
more explored for the volatile use of NVMM in heterogeneous memory systems. G1
and many modern GC, do copy-based compaction, meaning they relocate objects to re-
duce heap fragmentation. These continuous object movements prevent OS-level memory
tiering mechanisms from tracking objects and finding which ones are more frequently
accessed, as we had mentioned in §2.5.1. Work then implemented tiering mechanism as
GC extension inside JVMs to detect hot and cold objects. Panthera [311] is designed
for energy savings in big data processing. The system detects cold objects through code
analysis and leverages the GC to migrate them to NVMM. Write-rationing garbage col-
lectors, as in [35, 36], tackle the write endurance problem. Kingsguard [35] redesigns
the Java heap to include new mature object spaces in NVMM and DRAM, and Crys-
tal Gazer [36] profiles past executions to predict highly-mutated object allocation code
sites and read-mostly ones, to then allocate them to mature NVMM or DRAM spaces
accordingly. PIMA [34] allows to further reduce the DRAM footprint by trading-in
write endurance for performance. It promotes mature objects successively to DRAM
and NVMM, while sampling performance online. Then decides, based on collected pro-
filing data, on placing them long-term in DRAM only when performance is improved.
GCMove [215] very recently proposed to leverage a lightweight GC write barrier to dif-
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ferentiate read-mostly objects. Their design splits the heap old-gen space in two parts,
one residing in DRAM and the other in NVMM, with distinct memory management for
NVMM.

2.8.2 Persistence in Java

Commonly, persistence in Java is achieved through specific interfaces, that externalize
data out of the heap. Since heap management have ever been designed for traditional
volatile memory, the role of these interfaces is, obviously, to read in and write out data,
but also to translate between the in-memory Java object representation and the format
of the persistency layer, that is, data marshaling. We first describe database object
mappers (§2.8.2.1), then file system access (§2.8.2.2). After which we present additional
interfaces when considering NVMM. That is, the one to call native code from Java
(§2.8.2.3), and the one to do direct memory manipulations (§2.8.2.4).

2.8.2.1 Persistent object model

Object-relational mappers. We recall from §2.2.4, that Java included early-on in
its specifications standardized support for external database connectors. In essence, to
abstract away the “impedance mismatch” of database systems. The Java Persistence API
(JPA) [120] and the Java Data Object (JDO) [182] both provide standardized bindings
for object-relational mapping. In a nutshell, they translate objects into database entities
and object operation into database queries. Hibernate [11] is a popular object-relational
mapper and a notable JPA provider.

The Java Persistence API. The persistent object model of JPA is based on object-
oriented idioms, to make persistence fit naturally within application code. In particular,
any class can be persistent. Code annotations on the class, its attribute and methods,
enable generating a mapping with the database. Retrieving “Entity” objects (annotated
class) fetches and copies the data onto the Java heap and materializes it through a
volatile representant object. Mutations are performed in volatile memory, by accessing
the methods of the entity object. Database transactions can be orchestrated through
the “EntityManager” instance. Entities are copied-out and pushed back to persistence
on calls to the flush() method of the entity manager or on commit() of the on-going
database transaction.

In all, JPA eradicates database queries from application code. Relational table rows
are instantiated on-heap as plain Java objects. They can be manipulated without special
attention, being a local copy of the stored data.

2.8.2.2 File system interface

File operation. Java posses file manipulation interfaces that matches with the com-
mon open/read/write/close and mmap system calls. In the JDK (Java Development
Kit), a FileChannel is a channel connected to a file, that allows reading, writing or
appending data. The data is supplied or retrieved in the form of a ByteBuffer in-
stance that materializes a sequence of bytes. Alternatively, a file can be memory-mapped
through its FileChannel. The resulting MappedByteBuffer specialized instance has an
additional force() method. It flushes the changes made to the ByteBuffer onto the storage
device containing the file.
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Object serialization. The previous file manipulations are fairly low-level and cum-
bersome to use. Java also exposes higher-level facilities that read and write whole
objects to files. To that end, Java has commodity classes (ObjectInputStream and
ObjectOutputStream) that (un)marshal Serializable objects into byte sequences. In
most cases, a class needs only to be “tagged” with the Serializable interface, without ac-
tually implementing any interface abstract methods. Object streams can be instantiated
and connected to any FileChannel. The streams’ readObject() and writeObject()
methods make trivial persisting Java collections whole to files.

2.8.2.3 Native interfaces

Considering that most implementation efforts towards tools and libraries for NVMM
programming focus on native languages, we briefly present the Java Native Interface
(JNI) [249].

The Java Native Interface. JNI allows gluing C or C++ library code to Java ap-
plications. With it, from any Java class declaring native abstract methods, a C header
file can be generated. Next, a C implementation of the header-declared functions must
be manually provided. Usually, one bridges on existing C library code. After being
compiled, the resulting native library file can be dynamically loaded in Java programs
through the System class. At this point, calling any of the Java class native methods
will then run the C code.

Limitations. JNI is yet notoriously known for several (bad) reasons. First, it is not
easily integrated in Java build systems. Producing a self-contained jar artifact with
both Java bytecodes and native dependencies can not be done elegantly. Additionally,
native code is architecture dependent, meaning the produced jar artifact will no longer be
portable. More substantially, JNI makes crossing the boundary between the Java world
and native an expensive operation [156]. The JVM treats native code as a black-box.
As such, native method calls do not benefit from compile-time code optimizations and
can not be inlined. Equally as bad, the layer of communication between Java and native
does (un)marshal any data exchanged. Accessing Java objects’ data without memory
copies is possible by calling object methods from native code. Invoking object methods
necessitates to pass an object pointer through JNI, then a first lookup in a table to
retrieve the function pointer of the object’s method, and finally the actual function call.
For all these reasons, JNI induces overheads that are prohibitive for small calls. Each
JNI call can induce tens to hundreds-of-microsecond of additional delays.

Project Panama. Project Panama [5] is the next-generation native interface in Open-
JDK. It is still experimental, but aims at remedying JNI shortcomings. Essential features
include foreign memory access through a safe API, and foreign function calls. That is,
direct memory operation to off-heap memory segments, and sharing of those segments
with foreign functions. Presently, only the foreign memory API has reached an usable
state. None of the two are deemed production ready yet.

2.8.2.4 Direct off-heap memory access

Off-heap for large memory. Accessing off-heap memory in Java have been an ances-
tral way of relieving the garbage collector. As the heap grows, garbage collection phases
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become costlier [245]. Regardless of NVMM, several applications avoid running GC by
storing part of their (large) datasets outside the Java heap. This is notably the case
of modern data stores (e.g., Spark [343], Cassandra [204] or Infinispan [229]). Apache
Arrow [1] addresses the problem of making such data structures portable. In [231], the
authors propose Oak, an efficient volatile lock-free off-heap map. Oak allows modifying
directly off-heap objects, that is, without copying data between the on- and off-heap
spaces. Contrarily to our contribution, all of the above do store only marshalled objects
off-heap (as arrays of bytes) for portability.

Direct ByteBuffer. Off-heap memory can be safely allocated and represented in Java
by instantiating a DirectByteBuffer. It is a ByteBuffer implementation whose memory
reside outside the garbage-collected heap. All of its on-heap and off-heap memory is
reclaimed when the buffer instance is garbage collected. As any other ByteBuffer, Java
provides only methods to read and write primitive types or byte arrays in the buffer.
Consequently, storing Java objects in a direct byte buffer also necessitates marshalling
and memory-copying them.

The Unsafe interface. Amore permissive, but dangerous, interface exists in the JDK:
sun.misc.Unsafe. This interface allows for low-level (and unsafe) memory manipula-
tions, such as, manual (de)allocation of off-heap memory, or memory load/stores at
arbitrary addresses (on- or off-heap alike). Because of the Java typing system, these
manipulations are exposed as method calls in the form of getCharAt(long addr),
putCharAt(long addr, char c) and so on, for every primitive types. Unsafe also
has methods to retrieve the virtual address of on-heap allocated Java objects, and an
equivalent of memcpy(). Though, memory-copying Java instances is sketchy due to pos-
sible concurrent object relocation during GC pauses. All of these manipulations are
directly inlined in the assembly generated by C2, similarly to the magic interface of
JikesRVM [137].

In all, Unsafe is the only interface for direct-memory manipulation in Java. It can
erase the dual data representation, and avoid wasting precious CPU cycles to convert or
copy data back and forth between on- and off-heap.

Unsafe is the interface in which JEP-352 added its composite operation to flush whole
memory ranges to NVMM. In spite of being extremely low-level, we also heavily rely on
Unsafe in our contribution, as a building block for all off-heap memory management.
Furthermore, we expose pwb, pfence and psync through Unsafe as well (see §4.4.8.1).

2.8.3 NVMM framework bindings for Java

In here, we examine external systems for NVMM persistence in Java. That is, those that
place data and NVMM outside (off) of the Java heap. We notice that none of all work
presented here is academic. Mashona revisits the Java file interface for NVMM (§2.8.3.1).
PCJ and LLPL are Java bindings for the PMDK with two different programming models
(§2.8.3.2, §2.8.3.3). MDS is a library of managed data structures for persistent memory
with Java bindings (§2.8.3.4).

2.8.3.1 Mashona

Mashona [157], an experimental third-party solution from RedHat, offers NVMM-
optimized FileChannel and MappedByteBuffer implementations. The library can open



2.8. NVMM AND JAVA 91

a special file channel and memory-map a direct byte buffer from a file stored on a DAX
file system. They are optimized, in the sense that, they both employ direct-access and
user-space memory instructions instead of regular file system calls. The approach is
similar to FLEX [334] (§2.5.2), it replaces in implementation read/write and fsync/m-
sync system calls with memcpy, CLWB and SFENCE. Precisely, the Mashona channel and
byte buffer use the flush-range operation from JEP-352 to force memcpy-ed data to the
underlying NVMM DAX file.

(Applicability.) FileChannel and ByteBuffer alike in Mashona both strictly
adhere to JDK specifications. They can as such be used as drop-in replacements in Java
applications. Therefore, the ones that directly used a file system (which includes most
of big data stores) can leverage NVMM with a single code line edit.

(Benefits.) Mashona is another “block device” approach to NVMM, that is, designed
for compatibility of legacy applications. It does cleverly hide beneath the Java file system
interface and is transparent to applications. Compared to NVMM-optimized file systems
(§2.5.2), Mashona avoids the cost of system calls.

(Limitations.) Mashona is compatible with legacy applications, but very likely,
those programs were optimized for rotational hard-drives. As a result, the file access
patterns and protocols for crash-consistent updates are sub-optimal with NVMM, as seen
in §2.2 and §2.3.2. More importantly, Mashona does not prevent the dual representation
of data, nor marshaling operations. We show in the evaluation of our contribution (§5.3)
the high impact of these software operations.

2.8.3.2 PCJ

The Persistent Collections for Java (PCJ) [16] is a library of persistent data types
proposed by Intel and implemented with the PMDK. The programming model is similar
to the PMDK. It differs though, by exposing collections (as in java.util) and boxing
classes for primitive types, instead of C structs. Its interface is extendible with abstract
classes that allow users to define their own persistent types. Under the hood, it uses
JNI to call the PMDK and to manage its persistent heap. In particular, all updates to
memory, for consistency, are encapsulated in PMDK transactions through JNI calls. As
an optimization, non-transactional reads are serviced by Unsafe.

(Applicability.) PCJ data structures implement java.util interfaces for the most
part. Theoretically, they can then be used in place of regular volatile Java collections. Ex-
cept, things are not that simple. PCJ collections can only contain PCJ types (primitive
boxes or user defined ones). Which means that applications have to: (i) identify which
data types are durable, (ii) provide a PCJ-compatible implementation, and (iii) replace
every occurrences in their code while making sure nothing else breaks.

With that put aside, the programming model is rather sound: crash-consistent data
structures, PMDK FASEs, transactional allocations, and reference counting for memory
reclamation.

(Benefits.) PCJ were the first to propose high-level data types and collections
for NVMM in Java. Its programming model ticks all properties we established (§2.8),
including explicit identification of persistent and transient data. It neglects recovery-time
user code, but again, only FASEs are supported, hence it has always null recovery.

(Limitations.) A big shortcoming of PCJ is its reliance on JNI to manage its
persistent heap. This alone contradicts all of our performance-related principles. We
show throughout our evaluation (§5.2), that PCJ underperforms all across the board
due to JNI. To the point where it is even slower than using a file system interface in
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Java, with actual system calls.

2.8.3.3 LLPL

The Low-Level Persistence Library (LLPL) [20] is a low-level library for off-heap
persistent memory access, by Intel and also implemented with the PMDK. Low-level, be-
cause unlike PCJ, it does not expose data structures but abstract memory blocks. Mem-
ory blocks are untyped and unstructured byte sequences that can contain arbitrary data
and be linked together for structure. A purpose-built allocator provides crash-consistent
management of the heap, that contains only memory blocks. Again, all updates are
transactional (undo logging) as coordinated with the PMDK, through JNI.

(Applicability.) LLPL’s low-level take on NVMM persistence sounds difficult and
cumbersome. Truth is, the memory block abstraction is far easier to convert programs
that used to rely on a file system. Memory blocks can host marshaled data, and be
managed just like file chunks by programs. Intel actually released LLPL after PCJ.
They did so for a port of Cassandra to NVMM [60, 61, 307], after realizing high-level
data structures required too much heart surgery on the data store.

(Benefits.) Similarly to Mashona, LLPL is more suited as a compatibility layer for
programs that used block storage. This time, with opportunities of revising application
protocols for efficient NVMM patterns. Although using LLPL requires to almost entirely
re-develop the storage management engine of a DBMS.

(Limitations.) For the exact same reasons as in PCJ, reliance on JNI is a deal
breaker.

2.8.3.4 MDS

Managed Data Structures (MDS) [15, 299] were developped concurrently to PCJ
by HP, and both are similar in essence. The library has cross-language support: C++,
Python, and Java (through JNI). PCJ lacked in its ability to support existing volatile
code. MDS provides class annotations to easily declare Records (data objects) and
generate their memory layout on the persistent heap.

(Applicability.) MDS proposes an object and compute model separated from
Java’s, with strongly-typed persistent objects. For instance, records are specified by
the user as an interface class, and instantiated with a static method. In fact, all record
methods are static and attributes can only be accessed through their getters/setters.
Their programming model is difficult to compose with regular Java objects, and unnat-
ural for object-oriented programmers.

(Benefits.) Although MDS parts from regular Java, their point is to never bring
any durable data on the Java heap. With that, they also aim at minimizing the number
of JNI calls. Generic computations (lambdas) can be programmatically encapsulated in
“Tasks”, with or without isolation. Precisely, a whole execution graph of tasks can be
built in the manner of Java’s functional API. Then, only the origin arguments of the
whole execution need to be communicated with JNI, along with a pointer to Java task
objects.

(Limitations.) At least, MDS design avoids a lot more JNI overheads. They min-
imize the number of switches between Java and native, and reduce the amount of data
transferred. All things considered, it severely parts from object-oriented idioms. Con-
verting existing volatile Java code to persistence, or migrate disk management to NVMM,
seems more than challenging with MDS.
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2.8.4 Runtime-managed Persistence

We now examine internal systems for persistence in Java. That is, those that enhance the
JVM for NVMM. Memory management is augmented for durability and recoverability
of the Java heap. With little to no markings for persistence, the general theme is to sup-
port close-to-unmodified Java source code. All work presented here is part of academic
research. Espresso introduces persistent allocation for Java objects (§2.8.4.1). AutoP-
ersist brings orthogonal persistence back to Java with NVMM (§2.8.4.2). Go-PMEM,
technically not for Java, but still incorporates persistence in a managed environment -
the Go language (§2.8.4.3).

2.8.4.1 Espresso

Espresso [329] introduces the pnew operator to allocate persistent objects in Java.
Their modified JVM, derived from Hotspot VM (JDK 8), is able to create transient or
durable instances alike, simply by changing the new keyword into pnew. The Java heap
is extended with a separate memory region on NVMM, treated as a non-generational
space. The GC collects this persistent space as frequently as the “survivor” space, since
both should only contain long-lived objects.

Relevant heap metadata are kept consistent across program restarts. Hotspot uses
a bump pointer for fast allocations, they moved it to NVMM and issue a flush-fence
pair on every pnew. For GC, they did not turn G1 crash-consistent, but the “parallel
scavenge” GC (PSGC). Snapshots of the whole heap (data and metadata) are taken in
NVMM right before stop-the-world compaction phases. A recovery mechanism detects
crashes concurrent to heap compaction, and re-applies the last snapshot before retrying.

Programmers can use getRoot()/setRoot() new JDK calls to define persistent root
objects. Persistent objects have extra flush() methods to persist whole or individual
fields (inducing pwb-pfence pairs). Dangerous persistent to volatile references are not
disallowed, but three safety criterion are described. User-defined, recovery zero-ing, and
type-based safety. That last one is enforced by statically verifying (compile-time), that
only references to JPA-like (durable) entities are held.

Espresso then also proposes a JPA-like API, named JPO, atop of the persistent heap
abstraction. The goal is to re-use JPA annotations and calls to be compatible with
traditional persistence in applications. For short, they heavily modified a JPA provider
(Datanucleus [12]) to act as a local object store. FASEs are supported with JPA trans-
actions API, though no implementation is described. Their design kind of breaks JPA
semantics. JPA assumes that entities are local DRAM copies, and can be altered with no
consequences until entityManager.persist(entity) or transaction.commit() are
called. Whereas with NVMM, mutations are silently propagated. Programmers must
then guard every single update with FASEs, a restriction absent in regular JPA.

(Applicability.) The programming model of Espresso allows any Java object to be
persisted at allocation time. While a separation exists between volatile and persistent
data, it is not possible to tell whether an object is persistent without tracking its ori-
gin point and allocation code site. We anticipate this to be error-prone and result in
additional programming complexity.

Furthermore, constructing complex data structures with Espresso is not as simple as
allocating a JDK HashMap with pnew. Rather, composite objects need to be manually
edited. All their relevant attributes must also be allocated with pnew, with correct
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manual insertion of flush() when mutated. Note that pfence are only available with
flush() calls. A restriction that hinders the writing of efficient NVMM protocols with
optimal flushes and fences. FASEs are also not accessible outside of the JPA-like entities
and transaction interface.

Espresso is almost a no-abstraction approach, low-level, and semantically close to
wielding bare CLWB and SFENCE; but with reduced malleability. Overall difficult to use,
if possible at all. Related work [288] even report giving up on porting part of their
experiments to the Espresso programming model: “we found it much more difficult to
create a correct crash-consistent application in Espresso”.

(Benefits.) Espresso is the first internal design for JVM-assisted persistence on
NVMM. It successfully avoids dual data representation and marshaling.

Object types are not altered, meaning compatibility with legacy code is retained.
That is, existing modules and libraries can work unmodified with persistent objects
alike; so long they do not treat durability concerns. (persistence independence §2.2.4)

Heap management is crash-consistent, from allocation to reclamation. In particular,
using a GC prevents dangling pointers and leaks. Cross-heap references are avoided, with
either null-ing on recovery, or static persistent types. Though, nullifying on recovery
could lead to unexpected null pointer exceptions.

Performance is hard to gauge, evaluations were performed on battery-backed DRAM
(before Optane release), and the source code is unavailable.

(Limitations.) Espresso runs garbage collection over the persistent heap. Online GC
pause times will inevitably restrict the maximum practical size of the NVMM region.
Even more so since snapshots of the heap are made before each compaction phase.

GC is formidable for high-level object-oriented programming, but does not fully pre-
vent memory leaks. GC approximates object liveness by reachability, meaning that
failing to set a reference to null (coding error) will result in a permanent leak. These
bugs are silent but can be detected with code analysis tools. However, fixing a corrupted
persistent heap might not be so trivial.

Last, Espresso use native pointers inside the persistent heap. Therefore, it needs
to retry mapping the heap until the OS accepts to use the exact same starting virtual
address. If it fails repeatedly to do so, it gives up and re-originates all pointers from the
previous base address to the new one. That is, Espresso traverses the whole heap and
updates (then flushes) all pointers.

2.8.4.2 AutoPersist

AutoPersist [288] transparently migrates any Java object to NVMM as they become
reachable from a persistent root, or back to the volatile realm when they no longer
are. A persistent root is identified with a @DurableRoot annotation, hand-placed on a
static object (a class-wide attribute). Scarce annotations and FASEs are the only code
markings programmers need to add in their applications to support persistent memory
with AutoPersist. The point is that all persistence-related operations are serviced by the
JVM, with no programmer involvement.

Object migration is initiated by interposing on every putField Java bytecodes. The
operation is augmented and first checks whether the object being referenced is already
persistent. If not, then marks it as “converted” and recursively persists its whole transi-
tive closure. Finally, it updates (and persists) the field.



2.8. NVMM AND JAVA 95

Relocating objects also breaks existing inward references. They circumvent the issue
with the same mechanism as in heap compaction. That is, forwarding placeholder objects
that stand in the old location. When accessed, they force-update the reference of the
caller to the new location. When they are no longer referenced, i.e., there are no more
outstanding pointers to the old location, forwarding objects are garbage collected as any
other object.

The persistent region of the heap is also garbage-collected. They extended GC to
move back to DRAM objects that have become unreachable from the durable root.
Objects are deallocated if not reachable at all.

For consistency, AutoPersist augments all non-transactional stores with pwb and
pfence. Failure-atomic regions are also available through new JDK methods. Their
implementation is a regular per-thread undo log.

AutoPersist is implemented in the Maxine JVM [322]. It is a research-oriented JVM,
fully written in Java, which allows for faster and easier prototyping (compared to Hotspot
VM), with reduced performance of course (up-to 50% slower).

(Applicability.) Individually denoting data that should reside in NVMM is no longer
necessary. In truth, AutoPersist implements all three base principles of Atkinson’s or-
thogonal persistence from PJama (§2.2.4): (i) orthogonal persistence — any type can be
persisted, (ii) transitive persistence — the property of persistence is inherited by transi-
tive reachability from a durable root, and (iii) persistence independence — bits of code
handle transient or durable objects indistinguishably.

Although simple and seductive, this programming model seems to eagerly turn too
much objects and data to NVMM. For that, they provide an additional @Unrecoverable
annotation that denotes fields as weak references, not propagating persistence. Still, we
question the relevance of the model. Real-world Java programs have tons of references,
often circular. Understanding the structure of these humongous object graphs, in partic-
ular, their connected components is not easy. We anticipate that, in realistic cases, this
model will not provide any coding simplification. Instead, it shifts positively marking
persistent fields (Espresso-style), into negatively marking transient ones.

With Espresso, we argued that relying on GC could cause silent permanent leaks
(programming bugs) when failing to unset a reference - back to null. In AutoPersist,
misuse of the @Unrecoverable annotation will instead cause whole sub-graphs (con-
nected components) of objects to leak silently. Put simply, dangerous references from
persistent to volatile are not avoided, instead, volatile objects are made persistent to
preserve referential integrity.

(Benefits.) AutoPersist is the first instance of fully-orthogonal persistence applied to
NVMM. It avoids dangling references with GC, but it fails to satisfy every single other
core properties we identified for language-level support of NVMM.

(Limitations.) For consistency, AutoPersist adds expensive flush-fence pairs after
every single (non-transactional) store to NVMM. FASEs are implemented with undo
logging, which duplicates every write and also adds expensive flush-fence pairs for every
log entry (i.e., every store considering their logging granularity). Which means that in
any instance, AutoPersist excessively adds flush-fence pairs to any memory store.

Persistence is managed transparently from within the JVM. To accomplish that,
AutoPersist must interpose on every single Java bytecodes that incurs memory load or
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store. Dynamically instrumenting previously inlined memory operations with complex
Java methods comes at a price. They wrote a sibling paper [289] that explains com-
piler optimizations to turn that cost down. For short, without the optimization, their
modified JVM ran 50% slower on test benchmarks with neither NVMM nor persistence
- a fully transient execution on DRAM. With the optimization, the overhead is reduced
to 10%. The optimization consists in verifying instance persistence firsthand, on every
instrumented bytecode, with a single check (branching instruction). In most instances,
the volatile implementation can be predicted right and inlined. Note that the fact this
optimization works well, entails that code sites tend to mostly execute only on volatile
or persistent data. Therefore, Atkinson’s persistence independence is somewhat not re-
flected in the architecture of actual programs. Performance-wise, that means a fully
volatile execution, which does not use FASEs or persistence annotations, is still 10%
slower on their JVM.

Lastly, implementing AutoPersist in mainstream JVM such as Hotspot is far too
ambitious. All of AutoPersist’s complex algorithms directly augment Java bytecodes.
Bringing support implementations throughout Hotspot tiered compilation is a severe
programmer’s trial. PJama [49] (§2.2.4) also was too complex to be actively maintained
with the fast-evolving Java specifications; and ended-up being abandoned.

For reference purposes, AutoPersist is not the only orthogonally persistent Java for
NVMM. JaphaVM [259] and GCPersist [330] are alternative research proposals. In
particular, GCPersist provides a form of buffered durability by migrating transitively-
reachable objects to NVMM during GC cycles.

2.8.4.3 Go-PMEM

Go-PMEM [143], is not for Java, but remains an effort to support NVMM natively in
an object-oriented managed language. Go-PMEM is spiritually close to Espresso. Their
only modifications to the Go programming model are: a pnew operator, and support for
FASEs (undo logging). Crash-consistency outside of FASEs can be obtained by calling
a new persistRange(addr, size) function from the Go runtime. Persistent pointers
are swizzled on recovery as in Espresso, when the heap can not be mapped at the same
virtual address. Volatile pointers can be stored in durable objects, but the swizzling pass
zeroes out any of them on recovery.

(Applicability.) The programming model of Go-PMEM is almost identical to Espresso,
perhaps with more malleable flush/fence primitives. It also does not use dedicated per-
sistent types for compatibility. The authors admitted that: “as the applications become
complicated it becomes increasingly difficult to keep track of exactly which variables and
pointers are in persistent memory”.

(Benefits.) This is the only NVMM-native interface for Go. The implementation is
publicly available, which was not the case for Espresso or AutoPersist.

(Limitations.) As in Espresso, it does not support composite objects natively with
pnew. This is even more obvious in Go-PMEM, where trying to pnew a builtin hash map
will just fail and raise an exception.

We also noticed an implementation issue with GC and the persistent heap. Go-
PMEM does not decouple GC triggers on the volatile heap from the persistent heap.
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Meaning that a larger persistent heap (as is commonly the case) can postpone GC, to
the point where garbage critically accumulate in DRAM, to eventually cause out-of-
memory errors and an application crash.

2.8.5 Summary

In this section we presented the challenges tied to exposing NVMM in high-level en-
vironments such as Java; and articulated deficiencies of existing approaches found in
academic and industrial designs alike. (§2.8.1) We reminded the specificities of managed
programming languages, especially garbage collection. (§2.8.2) We exposed traditional
APIs for persistence in Java. They all place durable data outside of the Java heap and
build on object-oriented idioms to ease interactions with data.

(§2.8.3) We examined existing NVMM solutions that places data off-heap. They still
can reuse object-oriented abstractions to successfully hide NVMM management. Their
shortcomings mainly come from relying on native libraries (e.g., PMDK) for off-heap
data and metadata management, which incurs impracticable JNI overheads.

(§2.8.4) We presented academic proposals that take advantage of NVMM to expose
persistence as language extensions. The main interest is to offer identical programability
opportunities for the two kinds of data. Hence, NVMM is directly managed by their
(heavily-modified) Java runtime, with minimal additions to the language’s standard li-
braries. All for supporting the full set of features offered by the programming language
on persistent data. Let’s just ignore for now performance limitations of assuring identi-
cal but crash-consistent heap management for NVMM objects; as we come back to the
matter in §3.2.1 with experimentally-backed evidences. That aside, all three work have
deficiencies in their programming model that stem from, roughly speaking, whole or part
of persistence-related information being implicit, or hidden from programmers when they
simply just stare at the code. Furthermore, we argued that persistent allocation alone
(Espresso, Go-PMEM) was insufficient to build data types and make persistent program-
ming high-level on Optane. Likewise, transitive persistence exacerbates consequences of
software bugs, that is, persisting unnecessary (transitively-reachable) data when linking
objects to a persistent root.

Overall, the only true differentiating factor between external and internal existing
solutions, is that only the latter provides Java-native direct access to NVMM and totally
avoids marshalling. As things stand right now, an ideal solution would be one that
ticks all core properties we formulated at the beginning of this section, while combining
off-heap NVMM with direct access through Unsafe, and hiding persistent programming
complexity behind object-oriented idioms. In a nutshell, this is what we did with our
contribution — that of the programming model is detailed in ??.

2.9 Conclusion

With that last section, we finally could identify shortcomings in existing approaches to
NVMM persistence in Java, and formulate the precise outline of our answer; meaning
that we are now ready to bring this chapter to a conclusion.

(§2.1) We started out by defining persistence, as a property of data characterizing
its lifetime. Pieces of data with the ability to outlive executions, to remain persistent
for the extent of time during which they may be recalled and used by programs.

(§2.2) We reminisced historical ways of interacting with durable data. The time-
attested success of file systems (§2.2.2) and database systems (§2.2.3), in spite of mis-
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matched representations in main memory and storage. The attempt of single-level stores
(§2.2.1) and persistent object systems (§2.2.4) at blurring the line between persistent
and transient data. Abstracting persistence in systems continued being investigated, as
a parallel line that could never overthrow file systems and databases.

(§2.3) As part of which was persistent memory; that we conceptually introduced
as a programming abstraction. It strove at directing persistence through main-memory
operations. We examined systems that implemented avatars of persistent memory, so
as to understand what refrained them from becoming mainstream. Persistent operating
systems (§2.3.2.1), object-oriented storage (§2.3.2.2), distributed programming languages
(§2.3.2.3), and durable memory transactions (§2.3.2.4). All told us about the unattrac-
tiveness of transparent persistency, techniques for reference management in a persistent
heap, or how software bugs are exacerbated with persistence. At all cost, we must avoid
re-iterating conceptually broken designs from the past, with the advent of non-volatile
main memory.

(§2.4) Actual NVMM is upon us. (§2.4.1) System software support is already laid for
us to harness its direct byte-addressability. (§2.4.2) Commercially available Intel Optane
modules, though, exhibit very different performance profiles and hardware properties
when compared to regular DRAM. (§2.4.3) Optane and alternative NVMM technolo-
gies are poised to become central hardware components of next generation computing
platforms.

(§2.5) The anticipated use cases for NVMM are plenty. They include building giant
volatile memory systems (§2.5.1), accelerating file storage (§2.5.2), recovering databases
in seconds (§2.5.3), or exploiting fine-grained persistence to bring fault-tolerance in a
wide range of computing platforms (GPU kernels, on-device network caches, or even
energy-harvesting servers) (§2.5.4).

(§2.6) NVMM however do not strictly provide a hardware-based support for persis-
tent memory. Challenges for persistence with byte-grain direct access arise from current
computer architectures, in particular, their volatile CPU caches and relaxed memory
consistency models (§2.6.1). (§2.6.2) The extended memory model for Optane requires
persistent stores to be explicitly marked and ordered with CLWB and SFENCE instruc-
tions. The resulting programming model is too low-level and error-prone. (§2.6.3) Even
with persistent CPU caches, software will have to carefully enforce memory order for
consistency. (§2.6.4) Software-based failure-atomic regions of code could provide an all-
encompassing and easy-to-apply solution to the difficult programming model. However,
typical protocols known in database systems for generic failure-atomic updates, when
ported on NVMM, are somewhat impeding latency and bandwidth of the media.

(§2.7) Abstractions tailored for NVMM persistence then appear as a remedy to
programming complexity and crash-consistency. Just as with concurrency, persistence
has been granted a host of data structures (§2.7.1) and universal constructions (§2.7.2).
Failure-atomic sections (FASEs) also flourished as renewed transactional memory (§2.7.3)
or checkpointing (§2.7.4), tuned for NVMM specifically. All these well optimized tech-
niques mean nothing if corruption spreads in the persistent heap after faults. (§2.7.5)
Crash-consistent memory allocation and heap management are thus paramount to guar-
antee all pointers remain valid and no memory location leaks.

(§2.8)Managed language, as Java, are widely employed in the design of modern data
stores and big data processing frameworks. (§2.8.1) Injecting NVMM in these systems
then necessitates a gateway to persistent memory in Java. (§2.8.2) However, the state of
NVMM persistence in managed environment is severely lacking. Nearly all of industrial
or academic work support only native languages. The handful of them dedicated to
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Java, either, (i) manage NVMM as external memory (§2.8.3) and rely on inefficient
native interface calls, or (ii) manage NVMM as internal memory (§2.8.4) and end-up
exposing a deficient programming model for persistence with largely inefficient NVMM
handling (persistence instruction overuse or bad access patterns in heap management).

The contribution we present in this thesis then aspires at designing a proper Java-
native solution to accessing NVMM. One that does not induce any overhead when
reaching persistent memory locations. One that knows no limitation tied to NVMM
large capacities and heap management. One with minimal performance impact in crash-
free executions. One that is safe and empowering for programmers, that leaves them
in-control, while it abstracts the complexity of failure-atomicity with object-oriented
idioms. We present this contribution in the next chapters; (§3.1) starting with its pro-
gramming model and experimental evidences that back our choices.

Finally, we close this chapter with Table 2.4. It displays a synoptic view of NVMM
programming systems and abstractions we examined so far. It compares them in rela-
tionship to the core properties for language-level support we extracted throughout this
chapter.
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Chapter 3

The Programming Model of J-NVM

This chapter presents the programming model of J-NVM and the rationale behind our
design choices.

In what follows,
(§3.1) We briefly describe the key design aspects of J-NVM.
(§3.2) We present evidences that garbage collection is dispensable for data stores and

hurtful on large persistent heaps. Current GC algorithms do not scale to the larger
size datasets (§3.2.1) and there are too few object deletion sites in the code base
(§3.2.2).

(§3.3) We detail the object persistence model of J-NVM and argument for explicit static
persistent types.

(§3.4) We present how J-NVM goes about recovery to ensure liveness of persistent objects.
(§3.5) We finally demonstrate J-NVM usage with a basic example.

3.1 Overview

J-NVM decomposes a persistent object into a persistent data structure and a volatile
proxy. Persistent data structures live in NVMM, outside the Java heap. Proxies are
regular Java objects that intermediate access to the persistent data structures. They
implement the PObject interface, are instantiated on-demand (e.g., when a persistent
object is dereferenced) and managed by the Java runtime.

The above decoupling principle avoids running a garbage collector on persistent ob-
jects. Based on it, J-NVM implements a complete developer-friendly interface that offers
failure-atomic blocks. To construct this interface, J-NVM reuses ideas and principles pro-
posed in prior works, but assembles them differently. Our framework uses a class-centric
programming model, that is the property of durability is attached to a class, and not to
an instance. As common with prior frameworks (e.g., Thor [217]), a persistent object is
live by reachability from a set of user-defined persistent roots. J-NVM garbage collects
the unreachable persistent objects at recovery, but avoids running a GC at runtime for
performance. Instead, objects are explicitly freed by the developer.

3.2 Memory management

Running a GC at runtime has a cost. For volatile objects, this cost is balanced by the
usefulness of the GC: the GC avoids many bugs and simplifies substantially the code
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Figure 3.1: YCSB-F in Java with different cache ratios.

base. This section shows that this is no more the case with persistent objects in the
context of a data store.

3.2.1 GC Overhead

First, we measure the cost of running a GC at the scale of a large persistent dataset.
We consider G1, the default GC of Hotspot [121], then the tri-color concurrent marking
algorithm of Go-PMEM [143], a recent persistent framework for the Go language.

G1. In this experiment, we evaluate the cost of collecting a large dataset with a state-of-
the-art GC algorithm. We focus on the performance of a GC for volatile memory, because
GCs for NVMM are not as optimized yet [143]. We evaluate G1, a modern GC that
features many optimizations (generations, concurrent marking and parallel compaction).
In particular, G1 pauses the application when it compacts the heap, but bounds the
pause time by compacting the regions that contain more garbage first.

We evaluate G1 when running the YCSB-F workload with Infinispan. The exper-
iment uses 15M persistent objects, which amounts for 15 GB of user data. Infinispan
stores these objects in NVMM through the file system interface (DAX ext4). The work-
load is a mix of read and read-modify-write operations (50/50). In total, 10 threads
executes 100M operations.1

To evaluate the performance of G1, we change the ratio of volatile cache in Infinispan.
Infinispan uses this cache to avoid costly accesses to the file system. For each ratio, by
testing different sizes, we configure the size of the Java heap for the best performance
(20 GB, 30 GB and 100 GB for respectively 1%, 10% and 100%).2

Figure 3.1(left) reports the completion time of YCSB-F for the three cache ratios.
With a cache of 100%, the completion time is roughly multiplied by two. When we
analyze this result, we observe that the compute time alone becomes better when the
cache ratio increases. This is expected: with a bigger cache, we decrease the number
of accesses to the file system, which boosts performance. However, we also notice that,
when every object is cached, 69% of the time is spent in GC, erasing the advantage of a
larger cache (see breakdown in Figure 3.1(left)). This shows that, even with a modern
optimized GC, collecting a large dataset comes at severe performance cost.

1The YCSB benchmark is fully detailed in §5.2.
2100 GB may sound large compared to the 15 GB of user data. Yet, the volatile cache occupies

80 GB when it is populated with all data.
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Figure 3.2: YCSB-F in Go-PMEM [143] when varying the size of the persistent dataset.

We verified that the overhead is caused by the size of the dataset and not by other
phenomenons. Especially, with 100 GB, G1 has to use two NUMA nodes on our machine
(see §5.1). G1 has also to use uncompressed ordinary object pointers (OOP) of 8 bytes
while it can use compressed OOPs of 4 bytes with heaps up to 32 GB. For each ratio,
we tested three NUMA configurations (interleaved or first-touch – through numactl –
while the experiment presented in §3.2.1 uses the NUMA-aware G1 collector). For the
1% and 10% ratios, we also compared the performance with and without compressed
references. The overhead does not come from these phenomenons: fluctuations between
the configurations are insignificant.

Figure 3.1(right) indicates that a large heap also significantly harms performance
stability. In this figure, we report the tail of the latency distribution for the YCSB
operations. Above the 0.9999 percentile (10,000 operations), a small cache of 1% is 50x
faster than the largest cache. This experimental result shows that managing a large heap
can additionally incur rare yet impactful slowdowns.

Go-PMEM. The Go-PMEM framework [143] offers access to NVMM in Go following
an integrated design. Its GC collects jointly the persistent and volatile heaps, using
a tri-color concurrent marking algorithm [123] adapted for NVMM. The heap is not
compacted. It is automatically resized after each collection. Because of a flaw in the
resizing policy, applications may end with an out of memory error. To avoid this problem,
we had to force a collection every 10 GB of allocation.

Figure 3.2 reports the performance of YCSB-F when using the go-redis-pmem data
store. This data store is a feature-poor version of Redis [13] written by the authors
of Go-PMEM. We execute the workload of Figure 3.1 and test different sizes for the
persistent dataset. The black line in Figure 3.2 shows the completion time for each run.
With a small dataset, YCSB-F lasts 5 min. The same experiment takes 3.4x more time
(17 min) with a large dataset. To understand this drop of performance, Figure 3.2 shows
the accumulated time spent by all the threads in GC (dark gray) and in compute (light
gray).

In Figure 3.2, the compute time is relatively stable. This is expected since the exact
same amount of operations is executed in each run. However, increasing the size of the
persistent dataset also drastically increases the time spent in GC. With a small dataset,
this time is negligible and accounts for less than 1% of the total CPU time. This shows
that collecting the heap after 10 GB of allocated data is sufficient for the workload. With
the largest dataset, despite that the number of operations remain the same across all
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Data store SLOC # sites

infinispan (this paper) 603, 800 4
cassandra-pmem [17] 334, 300 1
pmem-rocksdb [7] 314, 900 4
pmem-redis [6] 55, 900 1
pmemkv [22] 25, 600 2

go-redis-pmem [143] 8, 400 2
pmse (MongoDB)[18] 4, 800 3

Table 3.1: NVMM-ready data stores rarely delete persistent objects.

runs, the CPU time spent in GC reaches 67% of the total time.
This degradation comes from the fact that each GC pass visits all the persistent

objects. As the size of the dataset increases, so does the cost of this computation. It
would be possible to reduce the time spent in GC by adding more volatile memory to
decrease the collection frequency. Unfortunately, this solution is not satisfactory because
it just moves the cost of collecting NVMM from the CPU to the volatile memory.

3.2.2 Deletion sites

The previous experiment shows that collecting a large heap has a non-negligible cost.
Paying this cost is only interesting if the GC actually helps the developer, either by
simplifying the code or by avoiding bugs. Table 3.1 reports the number of deletion
sites in several NVMM-ready data stores. We observe that even for data stores with
a voluminous code base, a handful of deletion sites exists. This shows that garbage
collecting persistent objects at runtime has a limited interest to ease programming.

From what precedes, we pragmatically consider that the performance penalty of
garbage-collecting NVMM in a data store outweighs its benefits. This key observation
motivates our design choice, where persistent objects live outside the Java heap.

3.3 Data persistence model

J-NVM exposes what we call a class-centric programming model. With this model,
durability is a property attached to a class: in J-NVM, a class is persistent if and only
if it implements the PObject interface.

On the contrary, AutoPersist [288] and Espresso [329] attach the durable property to
each instance of a class. We call this approach the instance-centric model. Espresso relies
on the pnew keyword to allocate an instance of a given class directly in persistent memory.
Similarly to Thor [217], AutoPersist first allocates the object in volatile memory, and
once it becomes referenced by another persistent object, it is moved to persistent memory.

The instance-centric model is appealing because the programmer can use the same
class to instantiate a volatile or a persistent object, which is not the case with the
class-centric model. As discussed below, the instance-centric model, however, raises two
fundamental problems.

Reliability. By hiding durability from the type system, the instance-centric model
provides a form of orthogonal persistence [48]. Hiding durability can be harmful be-
cause neither the developer nor the compiler can easily identify the persistent state of
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the application. This problem is also underlined by George et al. [143]: “as the applica-
tions become complicated it becomes increasingly difficult to keep track of exactly which
variables and pointers are in persistent memory”. The developer can make mistakes by
thinking that an object resides in persistent memory while it resides in volatile memory,
which leads to data loss [183]. Conversely, the developer can also move to NVMM more
objects than necessary, leading to memory leaks. Because these bugs only happen at
runtime, identifying them is difficult [92, 220].

The class-centric model of J-NVM decreases transparency but makes the code clearer
and thus less error-prone for the developer. The type of a variable (or a field) directly
indicates whether it resides in persistent or volatile memory. The class-centric model
trades the code simplicity of the instance-centric model for better reliability, exactly as
a statically-typed language trades the code simplicity of a dynamically-typed language
for better reliability.

Cross-heap references The instance-centric model raises a second problem related
to the way it manage cross-heap references. Such a reference, from the persistent to the
volatile heap can appear because the same class serves to allocate objects in both persis-
tent and volatile memory. In particular, a reference stored in NVMM can indifferently
refer to a persistent or a volatile object. When a crash occurs, because the volatile heap
is emptied, a cross-reference from persistent to volatile memory becomes dangling, that
is referring to an invalid location.

AutoPersist avoids cross-references by instrumenting the code. When the application
writes a reference to b in an object a, if a is in NVMM and b in volatile memory, Au-
toPersist transparently migrates b to NVMM. The code instrumentation in AutoPersist
has a non-negligible cost. Even if the application does not use NVMM, it induces an
overhead of 51% (9% with the QuickCheck optimization [289]).

Espresso does not instrument the code to detect cross-references, thus they may ap-
pear. To deal with them, Espresso can nullify a dangling reference at recovery. However,
this approach is not satisfying: a dangling reference can appear because the developer
thought erroneously that the referenced object is persistent, while it is volatile. Instead
of silently losing data, the runtime should provide help to prevent such situations. Al-
ternatively, Espresso proposes to rely on annotations to prevent cross-references. The
type of an annotated reference becomes incompatible with the type of a volatile object.
This mechanism is similar to a class-centric solution.

J-NVM avoids the problem of cross-references at all by relying on the class-centric
model: an application may store a reference in NVMM only if the referenced object
implements PObject.

3.4 Liveness by reachability

Programming with NVMM requires to deal with two fundamental concerns. First, after
a crash, an object may be lost, which leads to a memory leak. This may happen when
an object is allocated but not yet reachable from a persistent root. Second, after a
crash, a reachable object may be partially deleted and thus unusable. Such a situation
occurs when an object is freed but not yet removed from the reachable graph. To avoid
both problems, J-NVM focuses on simplicity. It considers that once created, a persistent
object remains alive as long as it is reachable from a persistent root. This approach is
called liveness by reachability and commonly found in many frameworks (e.g., [217, 310]).
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Liveness by reachability is implemented in J-NVM using a recovery-time GC, simi-
larly to Makalu [63]. The GC traverses the graph formed by the persistent objects when
the application resumes after a crash. This does not happen at runtime to limit the im-
pact on performance (see §3.2.1). During the collection pass, if J-NVM finds a reference
to a partially deleted object inside the reachable graph, the reference is nullified. Then,
to prevent memory leaks, the persistent objects that are unreachable from a persistent
root are deleted.

3.5 Example usage

As illustrated in Figure 3.3, programming with J-NVM is straightforward. Any class
annotated with @Persistent is durable. For instance, this is the case of Simple in
Figure 3.3 (line 1).

To run the application, the developer compiles the sources as usual, then passes a code
generator over the bytecode files (the .class files). Any class marked with @Persistent
is transformed.3 The code generator replaces the volatile fields with persistent ones (lines
3 and 4 in Figure 3.3). Accordingly, accesses to such fields are replaced by persistent
accesses (lines 8, 9, 12, 27 and 28). If a field is marked transient (line 5), the code
generator keeps it in volatile memory, making no transformation. The developer may
use transient fields to optimize the application, e.g., to deduce a volatile value from the
persistent state (see §4.2).

In addition to the above transformations, the code generator also wraps methods
into failure-atomic blocks. The fa="non-private" argument of @Persistent at line 1
specifies that each non private method has to be wrapped.

In the Main class of Figure 3.3, the application manipulates a Simple object. It starts
by creating (or retrieving) a persistent memory region of 1 MB called "/mnt/pmem/simple"
(line 17). A persistent memory region contains by default the persistent map JNVM.root.
This map associates names with the root persistent objects used by the application. The
main method uses this map to retrieve the persistent object associated with the name
"simple". If the object does not exist (line 19), the method allocates a new Simple
object and records it in the map (line 20). Further, main retrieves the simple object,
increments its x field, sets its y field and prints its content (lines 22-28). Line 30 creates
a second Simple object and inserts it in the root map. The code then frees the first
object still referenced by the local variable s (lines 31-32).

3.6 Methodology

J-NVM offers a general framework to inject durability in a Java application. Starting
from a set of legacy classes to persist, the developer annotates them to generate appro-
priate proxies. Once transformed, the methods of the proxies are failure-atomic, that
is they execute entirely, or not at all, despite system failures. Because J-NVM exposes
a class-centric model that favors reliability over re-usability, the developer cannot di-
rectly use the volatile classes from the Java runtime in a persistent object (e.g., native
arrays, or java.lang.String). Instead, the developer should use the drop-in persistent
replacements provided in the J-PDT library (such as PString at line 9 in Figure 3.3).

3If the sources are unavailable, instead of relying on the @Persistent annotation, the tool takes as
input an explicit list of classes to transform.
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With J-NVM, the developer has to manage differently the life cycle of a persistent
object than a volatile one. Liveness by reachability requires a persistent object to be
reachable from the root map (JNVM.root). This restriction is commonly found in prior
frameworks, such as the PMDK library [19]. Persistent objects have also to be explicitly
deleted where appropriate. As illustrated at lines 31-32 in Figure 3.3, explicit deletion
makes the code slightly more complex than with an integrated design. However, as
shown in §3.2.2, such events are rare in persistent data stores.

1 @Persistent(fa="non-private")
2 class Simple {
3 PString msg;
4 int x;
5 transient int y;
6
7 Simple(int x) {
8 this.x = x;
9 this.msg = new PString("Hello, NVMM!");

10 }
11
12 void inc() { x++; }
13 }
14
15 class Main {
16 static void main(String args[]) {
17 JNVM.init("/mnt/pmem/simple", 1024*1024);
18
19 if(!JNVM.root.exists("simple"))
20 JNVM.root.put("simple", new Simple(42));
21
22 Simple s = (Simple)JNVM.root.get("simple");
23
24 s.inc();
25 s.y = 42;
26
27 System.out.println(s.x);
28 System.out.println(s.msg);
29
30 JNVM.root.put("simple", new Simple(24));
31 JNVM.free(s.msg);
32 JNVM.free(s);
33 }
34 }

Figure 3.3: How to use J-NVM.

3.7 Summary

In this chapter, we presented the programming model of J-NVM and how it allows
for scalable and safer management of a persistent heap, while remaining intuitive for
object-oriented programmers. (§3.1) We sidestep online garbage collection for persistent
objects, by splitting them into an off-heap structure (NVMM) and an on-heap volatile
“proxy” Java object (DRAM). (§3.2) Our decision of relying on explicit deletion (free)
for persistent objects, as opposed to volatile objects that are garbage-collected online, is
motivated from the pragmatic observations that online GC is presently incompatible with
large heap sizes and not so beneficial in data store applications. (§3.3) We also stress out
the necessity of having strong typing for persistent objects, that jointly, (i) eases code
comprehension and avoids programming mistakes, (ii) or prevents dangerous persistent-
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to-volatile references at compile time i.e, without costly online instrumentation. (§3.4)
J-NVM further enforces referential integrity with recovery-time GC to reclaim memory or
repair stall references left from faulty executions. (§3.5, §3.6) We demonstrated the usage
of J-NVM from a concrete programming example and recapped the overall methodology
to follow.

In the next chapter, we dive deep into the system design of J-NVM and the imple-
mentation of its key components, plus the high-level abstractions built on top: J-PFA
and J-PDT.



Chapter 4

J-NVM:

Off-heap Persistent Objects for Java

This chapter covers the system design of J-NVM and implementation aspects of the
persistent heap, J-PDT, J-PFA, and the code transformer.

It organizes as follows.
(§4.1) We describe the structure and generation process of volatile proxy objects.
(§4.2) We detail the specific life cycle of persistent objects, and how volatile proxy objects

can represent them with only a limited lifetime.
(§4.3) We present J-NVM low-level interface and the help it provides to developers that

do not want every memory accesses to be encapsulated in FASEs.
(§4.4) We continue with the structure and management mechanisms of the NVMM heap.
(§4.5) We explain our methodology to build recoverable data structures in J-PDT.
(§4.6) We present the redo-log algorithm of J-PFA and how proxies help us interpose on

transactional reads or writes.
(§4.7) We finish by detailing the bytecode transformation process that JNVM-Transformer

automatically performs to turn regular java objects into their persistent counter-
part (NVMM data type + proxy).

4.1 Proxy objects

J-NVM exposes NVMM through persistent objects. A persistent object consists of a
persistent data structure and a volatile proxy. The proxy implements the PObject
interface. It contains the methods of the persistent object and defines an interface to
access the persistent fields of the object, which are stored in NVMM, outside the Java
heap.

Figure 4.1 shows a simplified version of the persistent object generated by the code
generator of J-NVM from the example in Figure 3.3. The code generator is based on the
ASM framework [74, 75], which provides helpers to simplify the rewriting of bytecode.
To obtain Figure 4.1, the code generator first adds the PObject interface, which marks
objects of the Simple class persistent, then it removes all the non-transient volatile fields.
Any access to a non-transient field (e.g., lines 8 and 9 in Figure 3.3) is then transformed
into a call to a generated method that accesses the persistent data structure (lines 7, 8
and 15 in Figure 4.1). Because of the non-private arguments at line 1 in Figure 3.3,
the code generator wraps each method into a failure-atomic block. Such blocks (lines
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6-10 and 14-16 in Figure 4.1) are delimited with faStart()..faEnd().
Additionally to the above setters and getters, the generated code contains methods

to manage the life cycle of a persistent object. The sections below detail these methods
and then explain how the developer can use them jointly with the low-level interface to
create custom persistent data types.

4.2 Life cycle

Association. By design, J-NVM decouples the persistent data structure of an object
from the proxy that represents it in the Java world. J-NVM has thus to maintain an
association between a proxy and the persistent data structure it gives access to. The
addr field (line 20 in Figure 4.1) maintains such an association: it contains the address of
the persistent data structure associated with the proxy. The getters and setters use this
address to execute operations over the persistent fields. For instance, x is the second
persistent field of Simple in Figure 4.1. As a consequence, getX returns the integer
located at offset 8 in the persistent data structure at address addr.

Allocation The data structure of a persistent object is stored in NVMM. J-NVM
allocates it in the constructor, using JNVM.alloc (line 7 in Figure 4.1). Once allocated,
the persistent data structure is associated with the corresponding proxy. The method
alloc takes two arguments: the Java class of the proxy, which is used during resurrection
(see details below), and the size of the data structure.

Persistent references and resurrection A persistent object may hold a reference to
another persistent object. As with primitive types, J-NVM provides the readPObject
and writePObject methods to manipulate them (see for instance lines 27-28 in Fig-
ure 4.1). Because these methods manipulate proxies, the Java type system ensures that
NVMM contains only references to persistent objects, and not to volatile ones.

To store a reference to an object a, writePObject stores a.addr in NVMM. Upon
dereferencing a, readPObject dynamically creates a proxy associated to its persistent
data structure. In detail, readPObject reads the address of the persistent data structure
in NVMM, retrieves the name of the proxy class in its header, then allocates the corre-
sponding proxy class. Once the proxy is allocated, readPObject calls the constructor
generated at line 22 in Figure 4.1, before returning the proxy to the caller.

We call this constructor the resurrect constructor.1 The resurrect constructor first
associates the proxy with the persistent data structure (line 23). Then, it calls the
resurrect method (line 24). This method, if overridden, may initialize transient fields
upon resurrection (e.g., the y field in our example).

Free As seen at lines 31-32 in Figure 3.3, calling JNVM.free frees the persistent object.
This method takes a proxy as argument. It frees the persistent data structure associated
with the proxy and writes 0 in its addr field, which makes the proxy invalid: after a call
to free, accessing the proxy throws an exception.

1In our implementation, the resurrect constructor uses a signature that cannot collide with a user-
defined constructor.
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1 class Simple implements PObject {
2 // transformed code
3 transient int y;
4
5 Simple(int x) {
6 JNVM.faStart();
7 this.addr = JNVM.alloc(getClass(), size());
8 setX(x);
9 setMsg(new PString("Hello, NVMM!"));

10 JNVM.faEnd();
11 }
12
13 void inc() {
14 JNVM.faStart();
15 setX(getX()++);
16 JNVM.faEnd();
17 }
18
19 // added code
20 long addr; // the persistent data structure
21
22 Simple(long addr) {
23 this.addr = addr;
24 this.resurrect();
25 }
26
27 PString getMsg() { return (PString)JNVM.readPObject(addr, 0); }
28 void setMsg(PString v) { JNVM.writePObject(addr, 0, v); }
29 int getX() { return JNVM.readInt(addr, 8); }
30 void setX(int v) { JNVM.writeInt(addr, 8, v); }
31 long size() { return 12; }
32 }

Figure 4.1: A generated persistent object.

4.3 Low-level interface

Prior research [57, 138, 174, 223, 354] shows that constructs such as failure-atomic blocks
and transactions are costly, and in many cases not required by the application. For this
reason, J-NVM also exposes a low-level interface that trades the simplicity of the high-
level interface for better performance.

To use the low-level interface, the developer omits the fa argument in the Persistent
annotation at line 1 in Figure 3.3. In that case, the code generator performs the same
transformation as described above, but it does not wrap methods in failure-atomic blocks.
To still create such blocks, the developer can call faStart()..faEnd() explicitly. It
is also possible to fine-grained manage data persistence without failure-atomic blocks at
all, as we detail next.

Outside a failure-atomic block, the field accessors behave differently. To achieve this,
J-NVM maintains a per-thread counter that tracks the nested level of failure-atomic
blocks. At runtime, J-NVM checks this counter when it loads or stores a field. If the
counter is strictly greater than 0, J-NVM instruments the load/store to ensure that the
failure-atomic blocks execute atomically. Otherwise, it grants a direct access to NVMM
without mediation. We measured that checking this counter for each access has almost
no performance impact because the counter is always in the L1 cache of the processor and
the branch predictor makes correct predictions. For that reason, we have not investigated
static analysis methods to eliminate them.

Accessing NVMM without mediation requires to ensure data persistence by hand.
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The remainder of the section is devoted to describing the interface that J-NVM provides
to help the developer in this task.

4.3.1 The recover() method

If an object does not use failure-atomic blocks, it can be in an inconsistent state at recov-
ery. To prevent such a situation, the developer needs to override the PObject.recover()
method. At recovery, before the application resumes, this method is called for each live
object encountered during the collection pass.

4.3.2 Cache line management

A system crash can happen at any point in time. When such an event occurs, the appli-
cation needs to find out which operations were applied before the crash. This requires
to control the propagation order of the CPU cache lines to NVMM. With failure-atomic
blocks, J-NVM transparently takes care of the cache line management. In particular,
the system ensures that all the persistent stores of a block are propagated to NVMM at
the end of the block.

When using the low-level interface, J-NVM does not enforce any propagation order,
allowing the developer to make optimizations. J-NVM exposes three operations to con-
trol propagation to NVMM: pwb, pfence and psync. These operations implement the
architecture-agnostic instructions defined by Izraelevitz et al. [174]. We adapted them
to work with the Java memory model [176, 227], as also proposed in JEP 352 [124].

In detail, pwb(addr) adds the cache line of addr to the write pending queue of the
processor. Because of the Java memory model, pwb may be reordered with other instruc-
tions. A call to pfence() prevents such a situation: it ensures that the preceding pwbs
and stores to (both persistent and volatile) memory are executed before the succeeding
pwbs and stores. The method psync behaves as a pfence and additionally ensures that
the cache lines in the write pending queue are also propagated to NVMM.

J-NVM exposes pfence and psync directly in the PObject interface. pwb is accessi-
ble using the methods generated in a persistent object: pwb() flushes all the cache lines
of the object, and pwbX() flushes the cache lines that hold field x.

4.3.3 Validation and recovery

Calling pfence prevents out-of-order execution inside the processor. This drastically
decreases the instruction-level parallelism. As a consequence, reducing the number of
pfences in the application is paramount for performance [102].

Unfortunately, liveness by reachability requires that each reachable object is always
in a consistent state. For instance, if a newly-created object becomes reachable, its fields
must be voided to prevent reading random values at recovery. It follows that a pfence
should always precede a store that would make an object reachable. Enforcing liveness
by reachability is thus harmful for performance.

To reduce the number of pfences, J-NVM does not consider an object to be alive
when it is just reachable. Instead, the object has also a valid status stored in its persistent
header. J-NVM considers that only both reachable and valid objects are alive. Internally,
an object is allocated in the invalid state, and it only becomes valid after a call to
the validate method. Similarly, J-NVM atomically deletes an object by invalidating
it before recycling its memory. The valid state is totally transparent to the high-level
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1 @Persistent
2 class LowLevel implements PObject {
3 PObject o;
4
5 LowLevel(String name) {
6 o = new Other();
7 o.pwb();
8 o.validate();
9 pwb();

10 JNVM.root.wput(name, this);
11 }
12
13 static void main(String[] args) {
14 a = new LowLevel("a");
15 b = new LowLevel("b");
16 pfence();
17 a.validate();
18 b.validate();
19 }
20 }

Figure 4.2: The low-level interface.

developer through the use of failure-atomic blocks. However, with the low-level interface,
the developer may call directly validate to minimize the number of pfences.

Figure 4.2 illustrates how the developer may use the validation mechanism internal
to J-NVM. The optimization consists of deferring validation after the pfence at line 16,
to allocate and make reachable several objects with a unique pfence. In detail, the code
allocates two objects a and b (lines 14-15), which themselves allocate a sub-object each
(line 6). The two objects are added to the root map (line 10) using wput. This operation
is weak, in the sense that it does not rely internally on a failure-atomic block, and thus
does not executes pfences. The calls to pwb at lines 7 and 9 ensures that the cache lines
of a, b, a.o and b.o are all added to the write pending queue. The call to validate
at line 8 validates a.o and b.o. This call does not execute pfence: it just changes the
valid state of the object and adds the cache line of the header to the write pending
queue.

If a crash happens before line 16, since a and b are invalid, J-NVM will free them at
recovery, even if they are already reachable from the root map. J-NVM will also delete
a.o and b.o because they are not reachable from a live object. As a result, in case of
a crash before line 16, all the allocated objects are deleted. Thus, by not executing any
pfence before line 16, the code is correct. The unique pfence at line 16 ensures that if
a (resp. b) is valid (lines 17 and 18), then so do a.o (resp. b.o).

In what follows, we detail the implementation of J-NVM. After a description of the
persistent heap (§4.4), the next sections present the algorithm used to ensure failure
atomicity (§4.6) and the library of persistent data types (§4.5).

4.4 The persistent heap

4.4.1 Memory allocator

Designing a persistent heap requires to address fragmentation: after multiple object
allocations and releases, the free space is divided into small pieces, making allocation of
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id valid next state(15 bits) (1 bit) (48 bits)
class 0 any valid
class 1 any invalid
0 0 any free or slave

Table 4.1: The block header and its associated states.

large objects impossible. Solving this problem is essential for a persistent memory since,
by definition, it is long lived.

Usually, we eliminate fragmentation in managed languages such as Java by executing
a compacting phase during a GC cycle [181]. However, J-NVM avoids the use of a GC
at runtime to deliver better performance. To deal with fragmentation, J-NVM relies
instead on a memory layout inspired by the work of Pizlo et al. [260]. This layout splits
the heap in blocks of fixed size, exactly as we do with the blocks of a file system. If
a large object does not fit into a single block, J-NVM creates a linked-list of blocks to
store its content.

Using blocks of fixed size eliminates the fragmentation problem by design since we can
always allocate large objects. However, this memory layout also increases the complexity
of accessing large objects. J-NVM hides this complexity behind proxies. Instead of
keeping a single address for the persistent data structure (line 20 in Figure 4.1), the
proxy actually contains an array that holds the addresses of all its blocks. The array is
populated during the association between the proxy and the persistent data structure.
Once the proxy is initialized, retrieving the block that contains a given field simply
requires a division.

4.4.2 Block header

A block starts with a header of a single word (8B) that provides its state (see Table 4.1).
For allocated blocks, next gives the next block that belongs to the object. When id is
not equal to 0, the block is the first block of a persistent object, called the master block.
In this case, J-NVM uses id as an index in a persistent array to retrieve the name of the
proxy class during resurrection (§4.2). Otherwise, when id equals 0, valid is necessarily
equal to 0. We have then two possibilities. The block can be a slave block, which means
that it belongs to a persistent object but it is not the first block. Alternatively, the block
may also be free in which case it does not belong to any object.

4.4.3 Block allocation

J-NVM allocates a free block using a bump pointer stored in persistent memory and a
free queue stored in volatile memory. The free queue is implemented with a concurrent
queue to scale with the number of threads. To allocate a block, J-NVM tries first to
obtain one from the free queue. If this fails, J-NVM creates new blocks by bumping the
bump pointer. When J-NVM allocates a block, except when it uses the bump pointer,
it only accesses volatile memory and never updates NVMM. The task of initializing the
block (as a master or a slave) is delegated to higher levels of the software stack.

4.4.4 Recovery

At startup, J-NVM executes a recovery procedure. To create the volatile free queue,
this procedure uses a volatile bitmap. For each block, the bitmap indicates with a bit
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1 void updateO(PObject n) {
2 n.validate();
3 pfence();
4 setO(n);
5 }

Figure 4.3: Atomic update.

whether the block is free or not. Starting from the root map, J-NVM traverses the live
object graph. As any graph traversal, this procedure has thus a complexity linear in the
number of live objects. When it finds a reference to a valid object, J-NVM marks its
blocks as alive in the bitmap, and calls the recover method of the object. Otherwise,
since the referenced object is invalid, the reference is set to null.

At the end of the traversal, J-NVM populates the free queue with the blocks marked
as free in the bitmap. In doing so, J-NVM writes 0 in the valid bit of each free block to
ensure that a newly allocated block is necessarily in the invalid state. Once the recovery
procedure terminates, J-NVM triggers a pfence.

4.4.5 Object allocation

When J-NVM allocates an object, it first allocates its blocks using the free queue and the
bump pointer. Then, J-NVM writes its id in the master block and links appropriately
the slave blocks. During the allocation of an object, J-NVM does not use any fence since
a master block is necessarily in the invalid state.

4.4.6 Object deletion

To delete an object, the application explicitly calls JNVM.free. This method invalidates
the master block and adds all its blocks to the volatile queue. J-NVM does not execute
a pfence in JNVM.free, which allows a developer that uses the low-level interface to use
a single pfence to free a graph of objects. For instance, to free a and a.o in Figure 4.2,
the developer marks a as invalid by calling JNVM.free and then explicitly triggers a
single pfence. In case of a crash after the pfence, J-NVM will delete a because it is
invalid, and a.o because it is not reachable by valid objects. Executing a pfence in
JNVM.free for a.o is thus useless.

4.4.7 Atomic update

For a developer that uses the low-level interface, J-NVM provides a method that atom-
ically updates a reference. This method ensures that the collection pass executed at
recovery cannot nullify the reference. As shown in Figure 4.3, the implementation of
this method is straightforward. It simply validates the new reference, executes a pfence
and updates the reference. Calling pfence ensures that the new object is valid before
being reachable. The code generator creates this method for each field that references a
persistent object. It also generates a second helper that updates a reference and addi-
tionally frees the old referenced object atomically. Our NVMM portage of the Infinispan
key-value store (see §5.1) uses these methods to ensure at all time a sound association
between a key and its values.
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4.4.8 Implementation details

This section completes the presentation with implementation details.

4.4.8.1 NVMM access

J-NVM leverages the Unsafe interface to access NVMM, as indicated in §2.8.2.4. This
interface directly inlines assembly instructions in the generated code, similarly to the
magic interface of JikesRVM [137]. J-NVM uses this interface to read and write NVMM.
We also implemented pwb, pfence and psync with this interface. For the recent Intel
architecture used in our experiments, we implemented pwb with the clwb instruction,
and, even though they are conceptually different, we implemented both pfence and
psync with the same sfence instruction. As a result, by using the intrinsic mechanism
and adding three new instructions, J-NVM accesses NVMM at nearly native speed (see
our evaluation in §5.3.5).

4.4.8.2 Small immutable objects.

As presented above, J-NVM stores objects in blocks of fixed size. Consequently, the
system is subject to internal fragmentation, that is each object consumes a whole block
regardless of its size, potentially wasting NVMM. To avoid internal fragmentation for
small immutable objects, e.g., PString in Figure 3.3, J-NVM uses memory pool alloca-
tors built atop the default one (§4.4). These allocators are able to pack several objects
of the same size in a single block.

Memory pool allocators handle only immutable objects. This comes from the fact
that the failure-atomic algorithm described in §4.6 works at the block level and not at the
object level. To understand why, consider that two threads execute each a failure-atomic
block that modifies an object. If the two updated objects are located in the same block,
the block will be replicated twice, and the content of the two replicas will diverge. As
reconciling these replicas requires complex algorithms, J-NVM avoids such a situation
by packing only immutable objects in the same block.

4.4.8.3 Heap relocation.

J-NVM ensures that the persistent heap is relocatable. For that, instead of storing
absolute addresses in NVMM, it stores only offset relative to the beginning of the heap.
This is similar to the offset-based pointer representation in NVAlloc [108] or Ralloc [76]
(§2.7.5.2).

4.5 J-PDT

J-PDT is a stand-alone library of persistent data types built on top of the low-level
interface. Similarly to those in §2.7.1 and §2.7.2, these types provide failure-atomic
operations without resorting to logging mechanisms. This section gives an overview of
the main data types present in the library.

4.5.1 Persistent arrays

J-PDT provides arrays of fixed sizes. An array contains its length at offset 0 and the
elements afterward. This class provides a constructor to initialize its content appropri-
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ately, accessors to retrieve the elements, and methods to flush either an element, or the
array in full. In addition, J-PDT provides extensible arrays similar to the ArrayList
class of the standard Java library. To extend an array, we rely on the low-level atomic
update methods described in §4.4.7.

4.5.2 Maps and sets

J-PDT includes several set and map abstractions. Implementing these data structures
is more challenging than implementing the arrays and extensible arrays detailed previ-
ously. However, the decoupling principle introduced by proxies offers a general pattern
of solution: the content of a persistent object is stored in NVMM, while its logic remains
in volatile memory. We largely identified this recurring pattern in §2.7. With proxies,
the separation is seamless: all data are kept and accessible from a single Java class. Note
that we absolutely avoid storing duplicates of the data in proxies, transient fields only
hold control data necessary to implement the logic of the structure.

Overview. We first implement a persistent set as a persistent map that associates
each key with itself. Then, to construct a persistent map, J-PDT stores the references
to the persistent key/value pairs in a persistent extensible array. In the proxy, J-NVM
maintains two volatile data structures: a free queue that stores the empty cells in the
persistent array, and a mirror map that mirrors the persistent array in volatile memory.
The mirror map implements the logic of the data structure. For instance, for a hash
table, we use a Java HashMap, and for a persistent binary tree, we use a Java TreeMap (a
red-black tree). In §5.3.4, we provide an evaluation for a persistent HashMap, TreeMap,
and SkipListMap we built with this method.

During resurrection (see §4.2), J-PDT inspects each cell of the persistent array. If
it finds a non-null reference to a pair (k,v) at index n, it adds the mapping (k,n) to
the volatile mirror. Otherwise, n is added to the volatile free queue. To add a key/value
pair, J-PDT first removes a free cell index n from the volatile free queue. If the queue
is empty, the persistent array is extended and the queue populated accordingly. Then,
J-PDT allocates a new pair in persistent memory, and writes its references at index n in
the persistent array. To remove a key/value pair, J-NVM adds its index, say n, to the
volatile free queue. Then, it writes a null reference at index n in the persistent array.

The persistent data structure is always in a consistent state because modifying it
incurs a single write to NVMM (at the right index in the persistent array). Note that as
in Mirror [140] or SOFT [354], the persistent layer is updated before the volatile mirror
map, and reads always go through the volatile map first. Therefore, only persisted states
can be read.

Concurrency. J-PDT provides concurrent persistent maps and sets. For that, a per-
sistent data structure is mirrored with an appropriate concurrent class from the Java
runtime. For instance, the mirror of the concurrent persistent hash table of J-PDT is
the volatile concurrent hash table of the Java runtime. Internally, the data structure
relies on methods of the Java runtime able to execute a closure when a key is inserted
or removed. The Java runtime ensures that the execution of the closure is linearizable.
J-PDT leverages this feature of the runtime to update appropriately the persistent array
when a key is either inserted or removed.

For instance, to insert a new key/value pair in a concurrent hash map, J-PDT calls
the compute method of the ConcurrentHashMap. If the key is absent, the closure
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(i) finds a free slot in the volatile free queue, (ii) allocates a new persistent key/pair,
and (iii) writes a reference to it in the persistent array.

Base, cached and eager maps and sets. Resurrecting a persistent object has a
performance cost. Indeed, J-NVM needs to allocate a proxy, traverse the linked-list of
blocks of the persistent object, and, for some object, deduce a volatile state from the
persistent state.

To avoid this cost for values stored in maps and sets, J-PDT proposes different
implementations of maps and sets with different trade-offs between performance and
memory consumption.

The default implementation presented above is called the base implementation, and
it favors memory consumption. For each key in persistent memory, the base implementa-
tion keeps a proxy in volatile memory, but it systematically allocates a new proxy when
the application retrieves a value associated with a key.

Both the cached and eager maps and sets trade memory consumption for better per-
formance. They maintain a cache of the proxies to the values. The eager implementation
populates the cache during resurrection, while the cached implementation populates the
cache on demand. In our implementation, the cache contains all proxies but it would be
possible to extend this code to include only the hottest proxies.

1 public interface Convertible<V extends PObject> {
2 V copyToNVM();
3 }
4
5 public class AutoPersistMap<K extends PObject,
6 V extends PObject,
7 I extends Convertible<K>,
8 J extends Convertible<V>>
9 extends AbstractMap<K,V>

10 implements Convertible<RecoverableMap<K, V>>, RecoverableMap<K,V> {
11
12 public V putConvert(I key, J value){...};
13 }

Figure 4.4: Declaration of the AutoPersist-like persistent map.

AutoPersist map. We also implemented a persistent map that mimics the automatic
migration algorithm of Autopersist [288]. To this end, we introduce a new Convertible
interface. This interface provides to objects a self-defined method (copyToNVM() in
Figure 4.4) to convert themselves into some pre-defined persistent type.

In a nutshell, the AutoPersist-like map is a wrapper for any of our RecoverableMap
we described above, and additionally offers a putConvert() method. This method takes
as input two convertible objects and automagically makes them persistent as they are
inserted inside the map. As in AutoPersist, the map migrates the whole underlying
graph behind inserted objects, by propagating through any persistent fields that is also
Convertible. The migration algorithm strictly implements the one described in Au-
toPersist. For instance, it uses a thread-local work queue and pointer queue, to avoid
large recursion graphs, or infinite recursion due to potential circular references.

Of course, because it implements the deep migration protocol with static types, it
can not reproduce the dynamic instrumentation costs of AutoPersist. Compared to our
others persistent maps, it only pays an additional NVMM copy on put(). The interesting
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1 // Entry proto-interface
2 private interface Entry extends PObject {
3 void apply();
4 }
5
6 // Log entry types
7 public static class CopyEntry implements PObject, Entry {
8 private MemoryBlockHandle orig;
9 private MemoryBlockHandle copy;

10
11 CopyEntry(long orig, long copy) {
12 this.orig=MemoryBlockHandle.fromAddr(orig);
13 this.copy=MemoryBlockHandle.fromAddr(copy);
14 }
15
16 public void apply() { MemoryBlockHandle.copy(getOrig(), getCopy()); }
17 }
18
19 public static class ValidateEntry implements PObject, Entry {
20 private MemoryBlockHandle orig;
21
22 ValidateEntry(PObject pobj) { this.orig=pobj.getMasterBlock(); }
23
24 public void apply() { getOrig().validate(); }
25 }
26
27 public static class InvalidateEntry implements PObject, Entry {
28 private MemoryBlockHandle orig;
29
30 InvalidateEntry(PObject pobj) { this.orig=pobj.getMasterBlock(); }
31
32 public void apply() { JNVM.free(getOrig().getAddr()); }
33 }

Figure 4.5: Log entry type for the redo log.

bit compared to AutoPersist, is that from the typing of the map methods, we always
know whether the returned object is persistent or volatile.

4.6 Failure atomic blocks

As indicated in §3.5, the high-level programming model of J-NVM provides failure-atomic
blocks. Many systems already offer such a construct [19, 92, 102, 103, 143, 232, 310] (see
§2.7.3). Our algorithm is not new by itself. It is inspired by Romulus [102] and adapted
to our persistent memory layout. We have implemented failure-atomic blocks not to
advance the state of the art, but instead to verify that we can build a developer-friendly
system based on our decoupling principle.

The log. J-NVM implements a standard redo log. At a high level, during the execution
of a failure-atomic block, J-NVM adds all the modifications (allocations, writes and frees)
to a per-thread persistent redo log, leaving original data intact. When reaching the end
of the failure-atomic block, J-NVM commits the log then applies its modifications to
NVMM. Note that the entries constituting the log contain no data, only pointers to the
affected blocks. As illustrated in Figure 4.5, a copy entry records the original block and
in-flight block, and (in)validate entries record the master block of the affected object.
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1 public class PRedoLog implements PObject {
2
3 /* Entry type declaration */
4
5 //The log
6 private PArray<Entry> log = new PArray<>();
7
8 //Default constructor
9

10 //Logging methods
11 public void logCopy(long orig, long copy) {
12 log.add(new CopyEntry(orig, copy));
13 }
14 public void logValidate(PObject pobj) {
15 log.add(new ValidateEntry(pobj));
16 }
17 public void logInvalidate(PObject pobj) {
18 log.add(new InvalidateEntry(pobj));
19 }
20
21 /**
22 * Invoked either after a crash, or at the end of an FA block.
23 * PRE _ entries written to log (validated)
24 * 1 _ fence and validate log
25 * 2 _ apply entries
26 * 3 _ fence, invalidate log
27 * POST _ nothing, entries are cleared at the start of next FA block
28 *
29 */
30 public void redo() {
31 this.fence();
32 //Commit log
33 this.validate();
34 this.fence();
35 log.forEach(Entry::apply);
36 this.fence();
37 //Erase log
38 this.invalidate();
39 this.fence();
40 }
41
42 /**
43 * Invoked at the start of an FA block.
44 */
45 public void init() {
46 //free all previous log entries
47 log.forEach(e -> e.destroy());
48 log.clear();
49 }
50
51 }

Figure 4.6: The redo log.

The protocol. Before committing the log, J-NVM does not uses any pfence as data
in NVMM is unchanged [102]. As illustrated in Figure 4.6 (line 30-39), to commit the log,
J-NVM first executes a pfence to ensure that the state of the log is persisted. Then, it
marks the log as committed and executes a second pfence to ensure that its new status
reaches NVMM. Finally, it applies the operations recorded in the log without pfence.
If a crash occurs during this last step, the log will be replayed.

Recording object mutations. To update a persistent object, J-NVM considers two
cases. If the object is invalid, J-NVM directly modifies the object. This may happen,
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for instance, if the object is allocated then modified in the same failure-atomic block.
Modifying an invalid object is safe because it is deleted at recovery when a crash occurs
before commit. Now if the object is valid, J-NVMmaintains two versions of each modified
block of the object, an original one and an in-flight one. Upon reading, J-NVM uses the
in-flight block if it exists, and the original block otherwise. Upon writing, if the in-flight
block is already present, J-NVM directly performs writes to it. Otherwise, it allocates
an in-flight block, adds the pair (original, in-flight) to the log then performs writes to
the in-flight block.

Replay log entries. At the end of a failure-atomic block, J-NVM marks the persistent
log as committed then plays the operations recorded in it (line 33, 34 in Figure 4.6). If
it finds an allocation, J-NVM transparently validates the new object, which makes the
object alive if and only if it is reachable (line 24 in Figure 4.5). If it finds a deletion,
J-NVM calls the JNVM.free method (line 32 in Figure 4.5). If it finds an update, J-NVM
copies the in-flight block into the original block (line 16 in Figure 4.5).

Log recovery. After a failure, J-NVM first handles the per-thread logs of failure-
atomic blocks, then it executes the recovery procedure (see §4.4.4). If a crash occurs
before the block was fully played, J-NVM replays its operations. If the crash occurred
before the block was committed, J-NVM aborts it. J-NVM erases the log and lets the
recovery procedure garbage collect the in-flight blocks as well as all the objects allocated
in the block (these objects are still in the invalid state).

4.7 Bytecode transformer

JNVM-Transformer is an off-line tool that generates proxies for J-NVM from regular
Java objects. It works as a post-compilation plugin integrated in the maven build system,
and performs bytecode-to-bytecode transformations on annotated classes. The bytecodes
(.class files) of the target classes are automatically enhanced to implement the decoupling
principle of J-NVM and methods imposed by the framework.

Key aspects of the transformation process were already indicated in §3.5 and §4.1.
This section describes with more detail how it transforms a single class in isolation
(§4.7.2), then how it accounts for inter-class dependencies in class hierarchies (§4.7.3).

4.7.1 Proxy generator

Related work. Annotation processing for bytecode enhancement is an extremely com-
mon theme in Java. In industrial applications for instance. Hibernate [11], as a JPA
provider, transforms entity classes at class loading time2. It does so to generate internal
utility methods for the framework, declarations for the Lucene indexes [4] or Protobuf
[308] message types. Older research on orthogonally persistent Java attempted inserting
read and write barriers in objects without tempering with the JVM for better porta-
bility. Marquez et al. [230] applied bytecode transformations at class loading time for
a portable orthogonally persistent Java. Aspect-oriented [195] frameworks were also
proposed [37, 38, 258] with the same goal in mind.

2A JVM agent is installed to intercept classes right before a class loader instantiates them.
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Proxy building. In J-NVM, proxies are specific objects that must abide to a set of
rules dictated by the PObject interface. While hand-coding proxy objects is possible,
the task requires good knowledge of J-NVM internals. Further, we notice that proxies
contain no additional information compared to plain Java objects, meaning that a static
transformation between the two is operable. JNVM-Transformer automatically operates
the transform at post-compilation time, to avoid the recovery overheads of rewriting
class bytecodes when classes are loaded at runtime. In all, a proxy generator was not
absolutely necessary, but come as a boon for developers’ productivity.

Practical aspects. JNVM-Transformer is written entirely in Java, and relies on two
third-party frameworks to implement its bytecode enhancements. ByteBuddy [323],
which provides a high-level declarative API and enables reasoning about bytecode trans-
formations from Java source concepts rather than bare Java bytecodes. ASM [74, 75], a
lower-level library that reads compiled class files and proposes a visitor pattern to rewrite
matching bytecodes on the fly. For ease of use, JNVM-Transformer is fully integrated
in the maven build system as a post-compilation plugin. Therefore, it transparently
enhances user-defined classes when building code artifacts.

4.7.2 Base case: POJO bytecode enhancement

We now describe the core steps in the transformation process that turns regular Java
objects into J-NVM proxies.

1. Define and initialize a class-wide classID static field. J-NVM safely de-
reference persistent pointers, meaning it needs to call the reconstructor of the appropriate
proxy class. For this reason, classID are stored in NVMM block headers, and are inter-
nally mapped to proxy reconstructors (method handles). For that purpose, J-NVM has
to be aware of user-defined persistent classes in order to attribute them non-conflicting
classID values. As such, we require that proxy classes define a classID static field that
must be populated at the static instant with a call to JNVM.registerUserKlass().
Internally, J-NVM maintains a persistent map between Java class name strings and
classID, such that the identifiers stay valid across multiple executions.

2. Compute the off-heap memory layout of the persistent object. This step
is crucial to issue NVMM allocations of the right size and to note the offsets of each field
within persistent objects. We iterate over all fields defined in the class, skipping static
or transient ones. We also check that non-primitive fields implement the PObject
interface, if not, we bail with an exception because persistent references must point
towards persistent objects. If all is in order, we simply accumulate the total NVMM
layout size as we iterate and along, we remember each fields’ offset in the layout. We
also mark final fields to later adjust their setter visibility to private.

3. Define and implement getters and setters for persistent fields. We
generate getters and setters for each persistent field. Their implementation calls PObject
helper methods that read or write Java fields to NVMM from field offsets. We use the
naming convention of Java EE entity beans3 for getters/setters. If the class already
defines them, we instead generate private accessors with non-conflicting names (leading
underscore character). The original getters/setters are then augmented to call the private
accessors in place of getField/putField Java bytecodes.

3get+fieldName or set+fieldName, with fieldName first character as uppercase



4.7. BYTECODE TRANSFORMER 123

4. Substitute accesses to persistent fields with calls to the generated get-
ters or setters. Actually, we need all instances of getField/putField bytecodes on
persistent fields to be replaced with a method call to their getter or setter. We only
exclude our private accessors from this substitution pass for obvious reasons.

5. Define and implement the tracing method for the recovery-time GC. We
also automatically provide the tracing method for our recovery-time garbage collector.
We first call a PObject helper method to apply the GC “mark” on the current persistent
object, then, for every field that holds a reference to a persistent object, we recursively
call their implementation of the GC tracing method.

6. Remove any non-transient field. We do not want persistent fields to have
a volatile mirror or duplicate in their proxy. For this reason, we strip from the class all
declared fields that are neither transient nor static. Stripping them is safe to do at
this stage. We already generated our NVMM layout definition. In addition, all the field
accesses were already substituted with the getters/setters of persistent fields.

7. Define and implement a “reconstructor”. Reconstructors are essentials to
proxies. They let them be re-instantiated from their underlying data structure. Their
implementation is straightforward: they take as argument a Void and long parameter.
The first argument is only useful to avoid conflicts with other user-defined constructors.
The long argument is our persistent pointer type: an offset from the base address of
the heap. The implementation of a reconstructor simply calls the default constructor to
properly initialize the proxy object, then delegates the proxy re-association to a J-NVM
helper method.

8. Wrap non-private methods with failure-atomic blocks. For all user-
defined methods that are not: private, accessor methods, static methods, the default
constructor, the “reconstructor”, or overridden from PObject; we add library calls to
J-NVM faStart() and faEnd(), at the beginning and end of the instrumented methods.

9. Add PObject interface and implement all abstract methods. We add
class decorations that indicate the instrumented class implements the PObject interface.
Then, we use an ASM visitor to copy all methods from J-NVM proxy template classes
(abstract classes) into the instrumented class. We choose the appropriate proxy template
based on object layout size, to support either mono- or multi-block objects. We skip
abstract methods or the ones we implemented above. Proxy template constructors and
“reconstructor” are transformed into private methods with different names. The static
initializer methods from the template and instrumented classes are combined into a single
one.

10. Enhance constructors for NVMM allocation. Proxy constructors must
perform an NVMM allocation of the correct size, except for the default constructor
and “reconstructor”. This ensures that subsequent initialization of persistent fields can
be satisfied. For that, we use an ASM visitor that adds a call to the proxy template
constructor right after the super() call of the instrumented constructor. In Java, a call
to super() must always be the first instruction in constructors, so we cannot insert our
NVMM allocation before.

11. Remove @Persistent annotations. At last, all transformations were per-
formed on the instrumented class. We may now remove the @Persistent annotation
since it has become a fully-fledged J-NVM proxy class. We use a simple ASM visitor
that matches our annotation and returns null instead.
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To briefly summarize, JNVM-Transformer enhances class bytecodes to: (i) replace
volatile fields with persistent ones, (ii) substitute field access with instrumented getter-
s/setters, (iii) leave out transient fields, (iv) wrap public methods with failure-atomic
sections, and (v) add PObject interface and necessary method implementations expected
by the framework. As a result, plain Java objects become proxy types compatible with
J-NVM.

4.7.3 Inheritance: transformation in an arbitrary class hierarchy

We just described the automatic enhancement steps for POJOs, but in any realistic
scenario, we can not limit the process to isolated classes. Our maven plugin enlists for
transformation all @Persistent annotated classes, when sources are available, or classes
listed in a configuration file when they come from pre-compiled external artifacts. These
classes can absolutely be related to each other with user-defined inheritance schemes.

Supported class hierarchies. J-NVM only requires persistent objects to implement
the PObject interface, and does not restrict in any way user-defined class hierarchies. In
contrast, PCJ [16] institutes that all persistent types descend from a common “Persistent
Object” ancestor class. This is also the case in Espresso [329], but is only visible from
their internal representation of classes in the JVM.

Instead in J-NVM, we noticed we did not have to be this restrictive, rather, that
we could accommodate for any inheritance hierarchy. In essence, all types descend from
“Object” in Java, persistent objects in J-NVM are no exception. Moreover, we allow
the direct parent class of a persistent one to be transient or persistent regardless. In the
end, the hierarchies that we support always begin from “Object” as usual, then can be an
arbitrary interleaving of transient and persistent classes with no additional restrictions.

Additional transformation steps. Tackling these kind of class hierarchies necessi-
tates to operate a dichotomy in the transformation steps depending on whether a class
already has a persistent ancestor. When instrumented classes have no persistent ances-
tor, the transformation steps are exactly the ones described in §4.7.2. However, when
persistent parents already exist, the process is not as trivial as adding calls to super
methods everywhere. We list below the extra crucial steps to instrument classes with
persistent parents. In particular, the reader should pay attention to changes that are
necessary to allocate NVMM properly.

1. Persistent parent identification. We first need to crawl back up the hierarchy
through declared parent classes. We stop upon finding a class implementing PObject
or when we reach Java’s “Object” class. If we find a @Persistent annotated class, we
instrument it before the one currently being treated, such that layout information are
available when we process the child class. This step allows us to deduce whether the
class being instrumented is the first persistent one in its hierarchy, and to adjust the
following transformation steps.

2. Extend implementation of the GC tracing method. When a persistent
parent exists, we first need to make a super call to its own tracing method, to cover
persistent parent fields as well.

3. Specific “reconstructor” implementation. We do not call the default con-
structor and J-NVM helping method, but the “reconstructor” from the super class, fol-
lowed by the user-defined callback for transient field reconstruction.
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4. Skip proxy template class copy. Proxy template methods are already avail-
able through the super class, hence we do not need to use again our ASM visitor to copy
implementations of the mandatory methods in PObject.

5. Extend parent NVMM layout. In Java, the memory layout of a child class
is simply its own concatenated to its parent’s. We adopt the same approach, and begin
counting field offset values from the last one in the parent class. The child class allocation
size in NVMM is then the sum of its own layout length and that of its parent.

6. Propagate NVMM allocation size through parent constructors. We
previously noted that proxy constructors needed to be enhanced for NVMM allocation.
They allocate NVMM right after their super call – which is the earliest possible. Now
consider that, Java forces every constructor to call super() first thing, meaning all
constructors in the hierarchy are traversed. However, we only need to perform a single
NVMM allocation. Incidently, the only possible location to allocate NVMM, hierarchy-
wide, is right after the super call of the topmost persistent ancestor (the one that do
no have any persistent ancestors above). The issue though, is that this ancestor do not
know the allocation size of the child class whose constructor initiated the chaining of
super() upcalls.
We solve this by adding the specific allocation size of the child class as an extra argument
in persistent object constructors. In doing so, the allocation size can be propagated
upward to the first ancestor that performs the NVMM allocation. To stay consistent with
constructors defined by the user, we add this argument in package-protected constructors
only – not the public ones. In detail, we duplicate user defined constructors in package-
protected ones and add an extra argument for allocation size. We pass this argument
to the first super() call in the constructor implementations. We leave untouched the
rest of their implementation. Afterwards, we overwrite user-defined implementations in
public constructors to delegate to the package-protected ones we just crafted. The extra
argument is statically set to the layout size of the instrumented class.

4.8 Summary

With this chapter, we made a thorough tour of J-NVM design and functionality.

Proxy objects. In the first part of this chapter, we presented the fundamental decou-
pling principle we apply to persistent objects (§4.1). The split between the NVMM data
structure and volatile proxy object allows us to separately manage data on the persis-
tent heap. This separation further dissociates the permanent lifetime of persistent data
from that of its ephemeral representant object (§4.2). We abstract these divergences by
extending proxy objects to seamlessly interact with NVMM management. In particular,
NVMM allocation is performed first thing in proxy constructors, and a specific “recon-
structor” re-instantiates a proxy simply from the direct address to its underlying NVMM
data structure. From a developers standpoint, proxies are then fully transparent. The
“reconstructor” is only used internally, and the remainder of their life cycle feels natu-
ral in object-oriented programming. Precisely, persistent objects are durably allocated
with new, and are either retrieved from the root map (global object directory) or when
de-referencing a persistent pointer.

Low-level interface. The J-NVM framework also permits disabling automatic FASEs
interposition for expert programmers that want to implement highly optimized structures
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(§4.3). The persistence instructions (pwb, pfence and psync) are then exposed (§4.3.2).
A recover() callback method can be overridden for algorithms that rely on a recovery
phase to correct their state before resumption (§4.3.1). Finally, a “valid” bit in persistent
object headers can be flipped manually with the validate() method to defer the instant
at which objects become logically durable (§4.3.3). Unless they have this bit is set, the
recovery GC recycles persistent objects. This mechanism can be leveraged to make
persistence by reachability more flexible and efficient (pfence grouping), as it tolerates
that objects are not yet fully flushed and persisted before they first become reachable
from a persistent root.

The second part of this chapter was dedicated to describing implementation aspects
of the persistent heap (§4.4), and the high-level utility libraries that provide: J-PDT
(§4.5), J-PFA (§4.6), and JNVM-Transformer (§4.7).

Heap management. (§4.4.1) Our memory allocator is designed to be extremely simple
and fast. It avoids fragmentation by only allocating 256B fixed-size blocks. Either from
a shared bump pointer, or by recycling freed blocks maintained in a concurrent volatile
free-list (§4.4.3). Objects larger than 256B are accommodated on multiple blocks. For
recovery purposes, these are arranged as a linked-list by installing a next pointer in
each of their blocks’ header (§4.4.2). The blocks need not to be physically contiguous,
since their proxy maintains all associated addresses in a volatile array, to translate field
offset values into actual memory locations with just an extra arithmetic division. The
allocation process itself is free of any persistent flushes and fences, since all metadata
living outside of data blocks can be fully reconstructed on recovery from the GC pass
(§4.4.4).

On top of our block allocator, object (de)allocation (§4.4.5, §4.4.6) simply have to
populate the header of the object’s first block. A classID durably identifies the struc-
ture’s type in NVMM and eliminates user type-casting mistakes. Flipping the valid bit
of a block’s header is the only atomic step required to make the associated object tran-
sient or durable when reachable from a persistent root; thanks to the recovery time GC
(§4.4.7).

Persistent data types. (§4.5) J-PDT provides a library of hand-tuned set-type re-
coverable data structures for NVMM, compatible with the JDK collection interfaces
(java.util.*). Our data structures are NVMM-DRAM hybrids that decouple their
data layer (NVMM) from their search layer (DRAM). The data layer consists of the
same recoverable extensible array (§4.5.1) which replicates Java’s ArrayList. It is im-
plemented from our base persistent arrays – persistent replacements for Java’s native
arrays of any primitive type. (§4.5.2) The search layer is essentially a volatile data struc-
ture from java.util that indexes proxies. It is always updated after the data layer,
such that only persisted content are visible. In the manner of Efficient lock-free sets
[354], the volatile data structure is fully reconstructed on recovery simply by iterating
over the persistent data array.

Failure-atomic blocks. (§4.6) J-PFA is the FASE implementation of J-NVM. It
works as a redo-log but with block granularity, inspired by Romulus [102]. Instead
of logging every single word-sized persistent accesses and mutations, heap blocks are
duplicated when first mutated within a FASE. Only the addresses of duplicated blocks
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are appended to the redo log, not the data. During the remainder of the FASE, all
reads/writes are easily directed to the new duplicate block, thanks to our proxy objects.
At the end of the FASE, the redo log is committed, then every log entry is replayed in
order. That is, every in-flight block is copied back to its original location. The log is
then marked as “clear”, meaning all in-flight blocks will be recycled by the recovery time
GC. With this protocol, until the log is committed, original blocks are never mutated.
Once the log is committed, original blocks are overwritten, but the FASE effects are fully
recorded and can be replayed again and again.

Code generator. (§4.7) JNVM-Transformer is a Java bytecode-to-bytecode post-
compilation tool that enhances regular Java objects (POJOs) to become persistent ob-
jects compatible with J-NVM. It fully integrates with the maven build system and works
its magic from a single @Persistent annotation (§4.7.1). It successively transforms the
attributes and methods of an object to work with J-NVM (§4.7.2). In short, it computes
the object’s NVMM layout from its fields, then deletes the fields, and generates getters
and setters that call J-NVM low-level framework to read or write NVMM locations. All
field accesses are also substituted with calls to their getter or setter. Constructors are
enhanced to request memory from our allocator, and a “reconstructor” is fully generated
to resurrect the proxy. Last, all other necessary methods (abstract) from the PObject
interface are generated. (§4.7.3) We mark that the bytecode transformation process do
not restrict in any way the hierarchy of user classes. That is, we accommodate for the
transformations to work in any circumstances. We do not require to inherit from a “per-
sistent base class”, and @Persistent can enhance any class regardless of its parent type
(volatile or persistent alike).

To conclude, J-NVM offers a feature-rich interface to NVMM in Java. It was especially
designed to reduce persistence overheads in crash-free executions. Thanks to its flexible
low-level interface, J-NVM can easily accommodate for other algorithms or protocols
found in the literature (§2.7). The fact that the framework orchestrates recovery, and
only requires programmers to reason about it on a per-object basis, makes it easy to
grasp and feels extremely natural in object-oriented programming.

In the next chapter, we present a detailed evaluation of J-NVM, J-PDT and J-PFA,
and how they perform when applied to an industrial-grade data store.
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Chapter 5

Evaluation of J-NVM

In this chapter, we present the performance of J-NVM across a variety of workloads and
provide a detailed comparison against other existing approaches. It organises as follows.
(§5.1) We describe our experimental setup: hardware, test applications and competitors.
(§5.2) We present our main benchmark and its synthetic results.
(§5.3) We conduct a comprehensive analysis of J-NVM performance. That includes im-

pact of the workload (§5.3.1), of multi-threading (§5.3.2), performance of recovery
(§5.3.3), of our data types (§5.3.4) and of the physical accesses to NVMM in with
J-NVM (§5.3.5).

5.1 Experimental setup

Hardware and system The test machine is a quad-Intel CLX 6230 hyperthreaded
80-core server with 128 GB of DRAM and 512 GB of Intel Optane DC (128 GB per
socket). It runs Linux 4.19 with gcc 8.3.0, glibc 2.28 and Hotspot 8u232-b03 (commit
c5ca527b0afd) configured to use G1. The patch for Hotspot that adds the three NVMM-
specific instructions to Unsafe (namely, pwb, pfence and psync) contains 200 SLOC.
Besides this patch, J-NVM, J-PDT and J-PFA that all together implement our NVMM
object-oriented programming framework, encompass about 4000 SLOC.

NVMM runs in App Direct mode and is formatted with the ext4 file system. In this
mode, software has direct byte-addressable access to NVMM.

Infinispan Our experiments use Infinispan, an open-source industrial-grade data store
maintained by Red Hat. Infinispan exposes a cache abstraction to the application that
supports advanced operations, such as transactions and JPQL requests. We use Infin-
ispan version 9.4.17.Final [229], which contains around 600,000 SLOC (see Table 3.1).
Infinispan runs either with the application (embedded mode), or as a remote storage
(server mode). Unless stated otherwise, we use the embedded mode during our exper-
iments and cache up to 10% of the data items. As seen in §3.2.1, a larger ratio would
significantly harm performance. Accordingly, we also cap the volatile heap to 22 GB.
This size gives the best performance with our YCSB workload on a file system backend
atop NVMM (precisely, less then 3.7% of the total time is spent in GC in Figure 5.1).

For each experiment, we report the average over at least 6 runs along with the
standard deviation.
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Figure 5.1: The YCSB benchmark.

Persistent backends We evaluate different NVMM-ready persistent backends for In-
finispan: (J-PDT) A backend using the J-PDT standalone library. (J-PFA) A backend
built with the failure-atomic blocks of J-NVM. (FS) The default file system backend
of Infinispan using NVMM formatted in ext4. (PCJ) An implementation that relies
on the Persistent Collections for Java library [16]. PCJ uses the native PMDK 1.9.2
library [19] through the Java Native Interface. For reference purposes, we also consider
the following dummy backends without persistence: (TmpFS) A file system stored in
volatile memory. (NullFS) A virtual file system that treats read and write system
calls as no-ops [27]. (Volatile) A configuration in which persistence is simply disabled.
Volatile behaves as NullFS, except that the marshaling/unmarshaling phase is avoided.

The persistent backend using PCJ is 274 SLOC long. The J-PFA and J-PDT back-
ends use the same code base which contains 271 SLOC.

5.2 YCSB

Benchmark. We compare J-NVM against the other approaches by running version
0.18 of the Yahoo! Cloud Serving Benchmark (YCSB) [99] YCSB is a key-value store
benchmark that consists of six workloads (A to F) with different access patterns. A
client can execute six types of operations (read, scan, insert, update and rmw) on the
key-value store. Workload A is update-heavy (50% of update), B is read-heavy (95% of
read) and C is read-only. Workload D consists of repeated reads (95% of read) followed
by insertions of new values. In the workload E, the client executes short scans. Workload
F is a mix of read and read-modify-write (rmw) operations. We evaluate all workloads
except E. Infinispan only provides scan through the JPQL interface, hence workload E
is not comparable with the others that use a direct interface. If not otherwise specified,
YCSB executes in sequential mode (single-threaded client).

YCSB associates a key with a data record that contains fixed length fields. Unless
otherwise stated, we use the default parameters of 3M records, each having 10 fields
of 100 B. YCSB runs with the default access patterns (namely, zipfian and latest).
Compared to a uniform distribution, these patterns improve the cache hit ratio, and
makes thus the FS backend more efficient.

J-PDT, J-PFA and PCJ all require to use persistent keys and values in YCSB. To
achieve this, we modified the Infinispan client, which represent less than 30 SLOC from
the vanilla version.
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Figure 5.2: The price to access NVMM from the file system.

Results. Figure 5.1 presents the throughput of the YCSB benchmark with the dif-
ferent persistent backends. In this figure, we observe first that J-PDT systematically
outperforms the other approaches. Except in workload D, J-PDT is consistently 10.5x
faster than FS. In comparison to PCJ, the difference ranges between 13.8x and 22.7x
faster. In workload D, J-PDT executes at least 3.6x more operations per second than
FS and PCJ.

The low performance of FS comes from the cost of marshaling persistent objects back
and forth between their file system and Java representations. Figure 5.2 highlights this
phenomenon. In this figure, 1 KB corresponds to Figure 5.1. Compared to Volatile,
the three file system backends (NullFS, TmpFS and FS) have similar performance. The
completion time is between 2.11-6.26x higher than the volatile base line. In particular,
NullFS, which fully ignores reads and writes, is just slightly faster than FS. This shows
that the main cost comes from data marshaling and not from the file system itself.

In Figure 5.1, the lower performance of PCJ is due to the Java native interface that
requires heavy synchronization to call a native method [249]. J-NVM avoids this cost by
leveraging the Unsafe interface (§2.8.2.4, §4.4.8.1), which does not have to synchronize
the whole JVM to escape the Java world.

Overall, the results in Figure 5.1 outline that NVMM drastically changes the way to
access persistent data from the Java runtime: while JNI calls or marshaling/unmarshal-
ing operations were negligible with slow storage devices, this is no more the case with
NVMM. They must be avoided where possible.

In Figure 5.1, J-PFA also systematically outperforms FS and PCJ for the same
reasons as mentioned above. Nevertheless, J-PDT is still up to 65% faster. This result
shows that hand-crafted crash-consistent data structures can be more efficient than a
generic approach.

5.3 Performance analysis

This section provides a comprehensive analysis of the performance of J-NVM. We detail
the importance of the workload, how J-NVM scales with the number of threads, the time
to recover from a crash and the performance of the low-level interface.

5.3.1 Sensitivity to the workload

In what follows, we analyze how J-NVM reacts to workload variations. We use the
settings presented in §5.1, but change one parameter at a time. Figure 5.3 presents our
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results with YCSB-A. This figure reports only the performance of J-PDT and FS since,
as presented earlier, they are respectively faster than J-PFA and PCJ.

Caching. Figure 5.3a measures the impact of caching persistent data in Infinispan.
In this figure, we observe that changing the cache size does not much impact the per-
formance of J-PDT. This observation holds for both reads (from 1.7 µs to 1.2 µs) and
updates (from 2.6 µs to 2.1 µs). With J-PDT, only proxies are kept in the cache. In
particular, J-PDT never marshal/unmarshal the persistent data structures themselves.
As caching brings almost no performance benefits, it is disabled in all our experiments
using J-NVM as a backend for Infinispan.

For FS, improving the cache size has almost no performance impact on updates.
This comes from the fact that, as Infinispan uses a write-through policy for durability,
updates need to access the file system in the critical path. On the contrary, having a
larger cache benefits to reads (from 32.5 µs to 0.8 µs) . At 0%, a read systematically
fetches data from the file system, which becomes less and less likely when the cache size
increases.

With a cache of 100%, J-PDT pays the cost of reading NVMM through proxies, while
FS directly uses volatile objects stored in the cache. As a consequence, FS is slightly
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Figure 5.4: Multi-threaded performance.

better than J-PDT for reads in this case (0.8 µs versus 1.2 µs). In this experiment, the
dataset is small (3 GB) and thus garbage collection has a limited impact on performance.
As underlined in §3.2.1, this caching policy would be problematic with a larger dataset.

Number of records. We now turn our attention towards the impact of the dataset
size on performance. Figure 5.3b presents the access latency when the number of records
increases. Overall, we observe that the performance of both J-PDT and FS is stable.
The number of records does not impact performance because each operation works on a
single record at a time. Furthermore, as neither J-PDT nor FS use a GC to collect the
persistent state, the overheads of Figure 3.2 are avoided.

Record composition In this experiment, we consider additional fields (Figure 5.3c)
and larger fields (Figure 5.3d). In both cases, we adjust the number of records to keep
a constant dataset size.

We first observe that changing the record composition only moderately impacts the
performance of J-PDT. For reads, the latency grows from 1.7 µs to 7.0 µs with more
fields (Figure 5.3c), and from 2.4 µs to 4.0 µs with larger fields (Figure 5.3d). With
updates, the latency grows from 3.6 µs to 4.1 µs with more fields (Figure 5.3c), and from
3.2 µs to 14.6 µs with larger fields (Figure 5.3d). This slight increase in latency comes
from the fact that J-NVM has to resurrect more fields, or larger ones.

In Figures 5.3c and 5.3d, the read performance of FS significantly degrades when the
number of fields increases (from 17.7 µs to 22.3 ms in Figure 5.3c). This is also the case
when the size of each field increases (from 17.5 µs to 1.6 ms in Figure 5.3d). Updates
show a similar pattern: from 71.3 µs to 71.3 ms with more fields, and from 71.0 µs to
6.5 ms with larger fields. As in Figure 5.2, this degradation comes from the increasing
cost of marshaling/unmarshaling voluminous records.

5.3.2 Multi-threading

This section evaluates how J-PDT behaves when the persistent objects are accessed
concurrently. Figure 5.4 presents the throughput achieved in YCSB-A and YCSB-C
using 1M records when the number of threads increases from 1 to 20. For both J-PDT
and FS, accesses to the persistent state are protected by the locks of Infinispan. Notice
that since Infinispan runs in embedded mode, a YCSB thread is also an Infinispan thread.

In Figure 5.4, the peak performance of J-PDT is slightly higher than Volatile in the
two workloads. This surprising result comes from the increased pressure on GC in the
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Figure 5.5: Recovery time with a TPC-B like workload.
Single REST client executing bank transfers (5.106 accounts). A fault is injected after one minute and
the application server restarted. Throughput corresponds to a 5-second moving average.

Volatile implementation. In YCSB-A, J-PDT saturates Infinispan with 12 threads, while
Volatile needs 16 of them. In YCSB-C, J-PDT and Volatile both saturate Infinispan with
8 threads. These results show that J-PDT, with its design based on proxies to access
NVMM, does not introduce additional scalability bottlenecks with respect to the volatile
implementation. Figure 5.4 also shows that FS, with a realistic cache ratio of 10%, scales
up to 16 threads in YCSB-A and up to 8 threads with YCSB-C. In both workloads, at
its peak performance, FS remains more than 5x slower than J-PDT.

5.3.3 Performance of the recovery procedure

In this experiment, we evaluate the time to recover from a crash failure. Figure 5.5
presents our results. We use a bank application inspired from the TPC-B benchmark
[9, 134]. The bank server holds 10M accounts of 140 B each. It provides a single operation
to execute a transfer between two accounts in a failure-atomic block. The server runs
in a container and exposes a REST interface to remote clients. In Figure 5.5, the load
injector continuously performs transfers between two randomly-selected accounts. It
runs on the same machine as the bank server.

After a minute, the container holding the bank server is crashed with SIGKILL,
then immediately restarted. Volatile, which only stores the state in DRAM, resumes
processing requests after 2.4 s. Because the server restarts from a blank state, accounts
are recreated on demand with a 0€ balance after recovery. Volatile is back to its nominal
throughput (9.5K ops/s on average) 5.5 s after the crash.

J-PFA restarts processing requests 8.5 s after the crash, and returns to its nominal
throughput (8.8K ops/s on average) a few seconds later. J-PFA needs 6.1 s more than
Volatile to restart because the recovery procedure has to run the recovery GC over the
10M accounts. Volatile does not exhibit this cost because the bank server simply restarts
from an empty state.

For completeness, Figure 5.5 also includes J-PFA-nogc. With J-PFA-nogc, the recov-
ery procedure does not trigger the traversal of the object graph to delete invalid reachable
objects. Instead, the recovery procedure only inspects each block, adding invalid ones
to the volatile free queue (see §4.4.4). Avoiding the graph traversal is correct in this
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Figure 5.6: Persistent vs. volatile data types.

experiment because the application can not create invalid reachable objects: the server
executes both the allocation and the insertion of an account in the database in the same
failure-atomic block. We observe that without the graph traversal, J-PFA-nogc restarts
processing requests 2.8 s faster than J-PFA.

In Figure 5.5, FS takes 28.8 s to restart and 34 s in total after the crash to return
to normal (4.7K ops/s). This long delay comes from reconstructing eagerly the cache in
memory. Upon restart, Infinispan reloads 10% of the accounts (1M) from NVMM. When
this occurs, J-PFA pays a lower price because it creates proxies instead of reloading data
in full.

5.3.4 Persistent data types.

In Figure 5.6, we compare the persistent maps available in J-PDT against their volatile
counterparts in Hotspot (java.util.*). Three data types are considered: a hash table,
a red-black tree and a skip-list map. In total, this code base covers 629 SLOC.

In Figure 5.6, we run YCSB-A directly on the data types themselves, without Infin-
ispan. The “Blackhole” histogram in Figure 5.6 corresponds to an execution in which the
operations are not applied. In other words, this histogram measures the time spent by the
benchmark to inject the workload. Figure 5.6 shows that J-PDT is 45-50% slower than a
volatile implementation. The rationale behind this drop of performance is the following:
(i) J-PDT handles crashes which requires pfences in the critical path; (ii) NVMM is
slightly slower than volatile memory [175]; and (iii) J-PDT relies on proxy objects to
access NVMM.

5.3.5 Block size and NVMM access performance

During our experiments, we use a block size of 256 B. We measured that this size
provides the best overall performance, because NVMM uses internally also a cache line
of 256 B. A YCSB record contains 10 fields. With small fields (100 B) the NVMM
space lost due to the block headers and the internal fragmentation accounts for 21.2%
per record. This reduces to 9.4% with larger fields (10 KB).

Table 5.1 presents the throughput to access blocks of 256 B using J-NVM and C. For
writes, the benchmark triggers a pwb after each CPU cache line (64 B) and it executes
a pfence after a full block. In Table 5.1, J-NVM is at most 24% slower than C, except
with random reads where it is 2.8x slower. These results show that the Unsafe interface
allows most of the time to access NVMM at nearly native speed.
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Sequential Random
Read Write Read Write

J-NVM 3.21 GB/s 0.74 GB/s 0.71 GB/s 0.38 GB/s
C 4.01 GB/s 0.78 GB/s 1.94 GB/s 0.40 GB/s

Table 5.1: Access to a persistent 256 B-long block.

5.4 Summary

In this chapter, we experimentally validated the design of J-NVM, as able to efficiently
access and manage NVMM from Java.

Experimental setup. (§5.1) We evaluated the performance of J-NVM by implement-
ing several durable backends for the Infinispan data store [229]. Namely, two backends
using J-PDT and J-PFA, another one made with PCJ [16] (PMDK); that we compared
to the existing file backend (FS). We used FS with an Ext4-DAX file system on a
NV-DIMM device (NVMM block-mode), not to introduce any hardware variation.

Overall performance. (§5.2) We measured latency and throughput in crash-free exe-
cutions with the YCSB benchmark, and recovery times with a TPC-B-like workload [9].
From these, we could attest that J-PDT consistently led to 10x increased throughput
over FS, in a real-world industrial-grade database and across all YCSB workloads. Inter-
estingly, J-PDT can be over 65% faster than J-PFA in write-heavy workloads, showing
that hand-tuned persistence remains more efficient than generic approaches, even outside
of micro-benchmarks.

Marshaling. We further showed in Figure 5.2, that the lower performance of FS came
from marshaling persistent objects back and forth between file and Java representa-
tions. The performance impact of system calls or file system operations turned out to
be negligible when compared to software procedures that Infinispan had to do upstream
(marshaling).

Caching. (§5.3) The in-depth performance analysis of J-NVM led us onto some notable
insights. With J-NVM, the data is both durable and CPU addressable from a unique
copy, therefore, no data movement are necessary during normal operation. (§5.3.1) Inci-
dently, we observed constant operation latencies when varying: (i) the DRAM caching
ratio, or (ii) the dataset size – number of records or different record compositions. Pre-
cisely, the gap in read latencies from Figure 5.3a, between J-PDT (NVMM-direct reads)
and FS (DRAM-direct reads1), is only 0.4 µs. For such a small delta, DRAM caching
could be considered obsolete with NVMM. In turn, by eliminating caching, operation
latencies become resilient to variations to the size of the data set, or in the access distri-
bution (uniform, zipfian, etc).

Multi-threading. (§5.3.2) Multi-threaded performance reached saturation between
8-to-12 threads with J-PDT, similar to the DRAM-only execution. This shows that
J-NVM does not impede the application’s scalability, nor the parallel performance of

1FS directly reads from DRAM, since 100% of data is in the cache
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Optane modules; which seemed to saturate with 8 threads as well for a single module –
that we recall from the micro-benchmarks in §2.4.2.

Recovery. (§5.3.3) We measured the performance of J-NVM recovery in faulty exe-
cutions. We compared here J-PFA and FS (10% cache) to a fully volatile backend that
recovers nothing (Volatile). The database was populated with 10M objects (140B pay-
load each). J-PFA took only 3sec more than Volatile to reattain its nominal throughput.
When disabling the GC phase on recovery2, J-PFA-nogc recovered 2.8sec faster than
J-PFA, which is almost as fast as Volatile. This was expected: no data need to be
copied over, recovery then only accounts for the GC pass3, which turned out to be
around 3sec for 10M objects. Conversely, FS took 29sec more than Volatile to get back
to its nominal throughput. Reason being that it had to ingest 10% of the data eagerly
before starting to process requests again.

Micro-benchmarks. (§5.3.4) We also ran micro-benchmarks that put head-to-head
J-PDT against java.util.* volatile data structures. Turned out J-PDT was consis-
tently 45-50% slower on a YCSB-A workload. Just within the ballpark of the performance
gap between the two media: NVMM and DRAM.

(§5.3.5) We finally had a micro-benchmark that compared raw NVMM access per-
formance from either Java through Unsafe or native language (C). J-NVM was slower
only in the read phase, by 25%. Overall, Unsafe allows for near-native access speeds to
NVMM in Java.

The conclusion we can draw on J-NVM from this performance evaluation, is basically,
that it successfully allows NVMM to be accessed in managed languages (Java) with no
performance penalty over native languages (C).

In the next and final chapter, we conclude this thesis with a complete summary of
our work and suggestions for future research directions.

2Skipping GC on recovery is possible in this specific instance (without compromising correctness),
since the workload is purely transactional and only uses J-PFA. No recovery is needed apart from
sorting-out the redo-log. The allocator free-list is reconstructed from a linear (parallel) scan of the heap,
simply inspecting “valid” bits in block headers.

3Recall that the GC pass is a massively parallel read-only operation to NVMM – rather favorable to
the media.
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Chapter 6

Conclusion

This thesis has presented J-NVM, a principled approach to directly access NVMM out-
side the Java heap with volatile proxies. Our evaluation using micro-benchmarks and the
Infinispan data store shows that J-NVM delivers better performance than other existing
solutions.

In this chapter, we conclude the document by first briefly summarizing its content,
then mentioning the limitations of our contributions and future work.

It organizes as follows.
(§6.1) We recall background, motivation and related work behind our contributions.
(§6.2) We summarize our contributions, relative to the original problem statement.
(§6.3) We examine limitations of our approach.
(§6.4) We detail some suggestions for future research directions.
(§6.5) We present some last and closing thoughts.

6.1 Related work

Background. We saw firsthand in chapter 2, that managing persistent data structures
directly from the application through mapped files is an old subject largely studied in
operating systems literature [58, 218, 250, 296, 328] (§2.2, §2.3). This line of research
was fully renewed with the arrival of NVMM (§2.4). Several file systems tailored for
NVMM exist (e.g., NOVA-Fortis [332], SplitFS [184] or Strata [203]). As seen in §5.2,
using NVMM as a file system leads to costly marshaling/unmarshaling operations.

NVMM challenges. The full potential of NVMM and its numerous benefits can only
be unlocked by applications through direct-access. However, the persistent memory
programming model, and low-level reasoning it requires, abidingly leads to brittle per-
sistence in programs (§2.6). Any misplaced flush or fence instruction may put the whole
data at risk, with silent bugs that can now cause permanent heap corruption. Even
though expert programmers might feasibly handle these new responsibilities, ensuring
consistency of NVMM content in the wake of faults or crashes remains an ordeal for
their patience and skills. Even more so as we recall the latent complexity of candidate
applications and use cases for NVMM (§2.5).

Consequently, NVMM tremendous potential will not shine until applications can
soundly change the way they go about persistence to easily adopt persistent memory.
This necessitates programming support from languages and tools, for failure-atomicity
or recovery of memory objects.

139
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While presenting unique opportunities for fine-grained persistence, NVMM direct
access also burdens programs with the integrity, consistency and validity of their data.

NVMM in native languages. Lot of prior research focus on offering to the developer
a transactional interface inspired by databases [19, 92, 102, 103, 143, 232, 310] (§2.7.3).
Others directly deal with the low-level NVMM semantic [265, 266] to implement specific
data types [57, 138, 159, 174, 223, 354] (§2.7.1). A third category of works propose recipes
to build persistent data types upon the prior knowledge about volatile constructions
[159, 174, 208, 349] (§2.7.2). Overall, these works show that general techniques and
hand-tuned persistent data types have their pros and cons. In particular, as confirmed
by our comparison between J-PFA and J-PDT, failure-atomic blocks are easy to use but
often less efficient than hand-tuned data types (§5.2).

NVMM in Java. All these prior works target native programming languages and
they cannot be readily used in a managed language such as Java. Some recent efforts
try to fill this gap by using an integrated design [143, 288, 329], or an external design
[16, 20]. We discuss Espresso [329], AutoPersist [288] and Go-PMEM [143] in §3.2 and
§3.3. We show experimentally that their approaches lead to collecting very large datasets,
which negatively impacts performance. In chapter 5, we evaluate PCJ [16], which is in
essence similar to LLPL [20], and show that it performs less efficiently than a file system
interface.

Off-heap in Java. Regardless of NVMM, several applications avoid running a GC by
storing part of their datasets outside the heap. This is notably the case of modern data
stores (e.g., Spark [343] and Cassandra [204]). Apache Arrow [1] aims at addressing
the problem of making such data structures portable. In [231], the authors propose
an efficient volatile lock-free off-heap map. The map allows to modify directly off-heap
objects, that is, without copying data between the on- and off-heap spaces. Contrarily
to J-NVM, it only manipulates arrays of bytes, and thus requires to marshal/unmarshal
its content.

6.2 J-NVM: Scalable, Safe and Quick Persistence in Java

This thesis has focused on the fundamental problem of providing support for NVMM
direct-access in managed languages. Java and other high-level object-oriented program-
ming languages are largely used for their productivity gains, and are especially popular
choices in intensive data-processing programs. We deemed, in §2.8, that proper support
for NVMM should neither restrict the expressiveness of the language, nor be limiting
NVMM relative to its performance characteristics.

Core idea. Our key insight is to keep persistent data (NVMM-resident) outside the
Java heap to avoid costly garbage collection, while preserving NVMM direct access (with
Unsafe). Our contributions propose a novel “decoupling” principle for Java objects, that
separates the data structure of a persistent object from its methods. This principle is key
to run dedicated memory management in the NVMM heap. The use of a representant
“proxy” object, unifies the representation of persistent objects under Java’s object model.
Proxies are data-less and ephemeral (instantiated lazily) on the Java heap, hence they
put low-pressure on the GC.
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Contributions. We presented four contributions in this thesis: J-NVM, J-PDT, J-
PFA and JNVM-Transformer. Put together, they form a complete system that hides the
complexity of NVMM programming behind regular Java objects. In detail:

• J-NVM. The low-level and core component of the framework. It is a pure Java
library, with a builtin NVMM memory allocator, and methods to access NVMM
locations or insert persistence instructions. It implements the decoupling principle,
that is, the bare logic to instantiate or destroy persistent objects and efficiently
access their fields.

• J-PDT. A high-level library of recoverable data structures. They are hand-crafted
collection types for NVMM (e.g., arrays, maps, trees) which provide failure-atomic
operations. Internally, the logical state of the structure is maintained in a volatile
(DRAM) index from java.util.* that only holds on proxies; and a persistent set
type materializes the data tuples in NVMM.

• J-PFA. The high-level support for failure-atomic blocks of code (FASEs). They
enable any code sequence to execute atomically with respect to concurrent crashes.
We implemented them with per-thread redo logs that work at a 256B granularity.

• JNVM-Transformer. The post-compilation tool that generates persistent ob-
jects and proxies from annotated Java objects. It saves a lot of manual effort that
would otherwise be necessary to code proxy classes. In a nutshell, it restructures a
POJO to comply with our framework and injects the appropriate J-NVM library
calls for data manipulation and life cycle management.

Our evaluation on the Infinispan data store with the YCSB benchmark showed that
J-NVM had superior performance all across the board, by at least one order of magni-
tude. Since detailed summaries of our contributions are already available at the end of
preceding chapters (§3.7, §4.8, or §5.4); in what follows, we propose to examine how J-
NVM fulfilled the core challenges we identified for language support of persistent memory
in §2.8.

1. (User) Separation between transient and persistent data. J-NVM ex-
poses a class-centric model, meaning all persistent objects are clearly identified with spe-
cific types. In detail, all classes that implement the PObject interface have persistent
instances. Therefore, programmers can very easily verify off-line whether an instance
is persistent, simply by looking at its class definition. Conversely, in instance-centric
models, such as Espresso, the programmer has to backtrack to the object’s allocation
site and check whether it was instantiated with a pnew. In systems with transitive per-
sistence (§2.2.4), such as AutoPersist, it becomes almost impossible to statically identify
whether an object is durable or transient. Programmers would have to trace the whole
flow graph of an instance and look for whether it was ever attached to an object that
was itself (in)directly reachable from a persistent root. In all, the class-centric model
of J-NVM saves a lot of hassles from our perspective. Generally speaking, clear and
available information at glance leads to less coding bugs.

2. (User) Identification of consistent program states. With J-PFA, or es-
sentially all systems proposing FASEs, inconsistent (transitional) program states are
identified by programmers and encapsulated with transactional semantics. Our imple-
mentation of FASEs do not avoid the double write problem, but at least, incurs logging
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overheads only per 256B blocks mutated – and not every single 8B stores. In compari-
son, Espresso, AutoPersist or Go-PMEM all use undo logging, which aggressively emits
persistence instructions: 1 flush-fence pair for each new log entry.

3. (System) Easily integrate in existing applications. The class-centric
model of J-NVM prohibits re-use of existing types, meaning parts of an application code
base have to be rewritten for persistent objects. In situations where only some types
have to permanently become persistent, JNVM-Transformer can automatically enhance
these class definitions. Orthogonal persistence and persistence independence (§2.2.4),
as found in Espresso or AutoPersist, seem more easily applicable on first thought. On
second thought though, this is only the case for conversion of volatile code in applica-
tions. Whereas most real-world applications waiting to benefit from NVMM already use
conventional file system calls for persistence. Even with integrated approaches, these
programs would still need significant re-design efforts to integrate NVMM.

4. (System) Prevent dangerous persistent to volatile references. Again,
the class-centric model of J-NVM statically forbids dangerous cross-heap references.
Any volatile reference in persistent objects have to be marked as transient. This way,
they are stored in the proxy but not in the NVMM data structure. In doing so, they
remain volatile-to-volatile references, and persistent objects are free to initialize them in
recover() or proxy “reconstructor”. Note that the dichotomy between proxy fields and
NVMM fields is entirely transparent when working with persistent objects. We discussed
in §2.8.4.1 how Espresso proposed to nullify volatile fields on recovery, or in §2.8.4.2, how
AutoPersist does not solve the issue. Instead of preventing these bugs from happening,
AutoPersist migrates volatile objects referenced by persistent objects to the persistent
heap. In all, it trades in “wild” pointers on recovery, for more frequent memory leaks –
a bug for a bug.

5. (System) Avoid dangling references or memory leaks on recovery. The
recovery-time GC of J-NVM can make up for persistence bugs originating from crashes
concurrent to object free or references de-installation. The atomic-update utility method
(§4.4.7) further covers for dangling pointers resulting of reference updates outside of
FASEs. Competitor systems (e.g., PMDK) usually prevent these issues with transac-
tional allocation, transactional pointer update, or with the alloc-to/free-from specific al-
locator API. These mechanisms often require a larger number of flushes and fences than
with garbage-collection. Though, online GC comes with other limitations on NVMM.

6. (System) Lightweight management that does not restrict NVMM char-
acteristics (bandwidth, access latency, heap size). J-NVM can perform most of
its memory management operations without persistence instructions, or even any access
to persistent metadata. NVMM allocation, free of persistent object, or even reference
updates, need not to account for potential inconsistencies in heap metadata following a
crash. It is the recovery-time GC of J-NVM that fixes these crash inconsistencies, and
permits heap management operations not to issue persistence instructions (for heap con-
sistency purposes) in crash-free executions. In all, little access if any at all to NVMM for
heap management operations. Conversely, Espresso, AutoPersist and Go-PMEM all em-
ploy online garbage collection that severely impedes the amount of live data on NVMM
heaps. Moreover, orthogonal persistence in AutoPersist requires dynamic instrumenta-
tion of Java bytecodes, which has a deterring cost as well.

7. (System) Builtin FASEs & PDTs do not limit users in implementing
their own. With J-PFA and J-PDT, J-NVM offers both. Additionally, the low-level
interface provides building blocks for programs to assemble their own data structures
if needed. In comparison, Espresso, AutoPersist or Go-PMEM only provide FASEs.
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Moreover, their low-level interface is hardly usable, if at all. They tend to group pwb with
pfence in composite operations, which is less malleable and actively restricts custom
PDT implementations.

8. (System) Allow recovery-time code to clean inconsistencies in both sys-
tem and user (meta)data. Recovery is a central concept in J-NVM. No data can be
considered persistent if they can not be re-instantiated in subsequent executions. The
reason for which we offer to each persistent object to implement an optional recover()
callback method. J-NVM orchestrates their invocation with its bootstrap procedure:
during the graph traversal of our recovery-time GC (after processing log entries). With
this design, persistent objects are responsible for their own NVMM data structure, and
are given the opportunity to correct their state early-on in the heap bootstrap process.
Moreover, the “reconstructor” of proxies is a good place to re-initialize any soft-state
(transient) from durable data. In other terms, the proxies’ “reconstructor” easily ac-
commodates for (reconstructible) transient (meta)data in persistent objects, and the
recover() method, for algorithms whose inconsistencies are fixed at the beginning of
next executions. In competitor frameworks, recovery is often, if not always, overlooked.
No equivalent handles for recovery are provided to objects. In most cases, that is because
they assume all application code is made failure-atomic with FASEs, or similar. In that
case, only the log needs to be recovered. This assumption of course restricts the class of
algorithm and protocols that can be implemented within these frameworks. J-NVM and
its design do not have such limitations, and could hypothetically let users implement
their own protocols for failure-atomicity for instance.

To conclude this section, our contributions are not just more efficient than previous
art to access NVMM in Java, as we just discussed, but they also perfectly fit our original
problem statement. In particular, they (i) do not induce significant software overhead
when accessing persistent memory locations, (ii) are not limiting in respect to NVMM
large capacities, (iii) have minimal performance impact in crash-free executions, (iv) are
safe and clear for programmers, (v) abstract the complexity of failure-atomicity with
object-oriented idioms.

6.3 Limitations

Nonetheless, J-NVM parts from Java’s object model a few key points: (i) strong persis-
tent types, (ii) online garbage collection, (iii) extended object life cycle. Although we
motivated why we had to diverge from Java’s model, these differences can still appear
as weaknesses since they limit code re-use. We now remind how we make these choices
tolerable to programmers.

Limited code re-use. J-NVM does not support orthogonal persistence or persistence
independence (§2.2.4) for a lot of good reasons we previously mentioned. On the surface,
that might appear as limiting to re-employ legacy codes, but recall that in any case,
properly turning volatile code for persistence is more involved than simply making object
allocations persistent. In particular, persistent data have unique life cycles, and Optane
modules exhibit singular performance patterns. With transitive persistence (§2.2.4), in
AutoPersist, programmers even have to manually partition persistent data by tagging
volatile object fields with @unrecoverable annotations. This step is necessary to avoid
transitively pulling all data on the persistent heap.
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Our point is that, neither J-NVM nor orthogonal persistence can effortlessly port ex-
isting code to NVMM. However, we reduce the coding burden with JNVM-Transformer,
that lets programmers write regular Java objects and automatically converts them to
persistent objects. Our off-the-self persistent types (J-PDT) also contribute to easing
software development, with drop-in replacements for common JDK collections and types.
The fact that we could under 200 lines of code implement a J-PDT backend for Infinispan,
is a good testimony to the effectiveness of these programming abstractions.

We could perhaps go as far as stating that volatile code re-use for persistence on
NVMM is a pipe dream. Consequently, a well-thought programming model for persis-
tence prevails over orthogonal approaches whose only forte is code portability.

Explicit free. Compromising on online garbage collection is a decision which may
seriously bug Java users. We remind them that garbage collection is not a silver bullet
to avoiding memory leaks: they may still happen when developers forget to nullify
references. Specifically, garbage collectors approximate object liveness by reachability,
and leaks might still result of no longer accessed objects that are yet still linked in
the graph [68]. In that regard, nullify-ing a reference or calling a free method sounds
fairly similar. At the exception of the latter requiring users to manually keep track
of incoming references to avoid double frees or dangling references. All considered, we
emphasize that explicit deletion has been the only common way of disposing of durable
data in mainstream persistence facilities – file systems or databases alike.

We now relate more substantial limitations. We must mark though, these are not
specific to J-NVM but broadly affect NVMM persistent heaps. The first one is tied
to verifying crash-consistency of applications, the second, to interoperability of durable
data.

Testing tools. As with file systems [234, 290], or key-value stores [69] verifying crash-
consistency of NVMM programs is a topic of uttermost importance. In contrast with
other forms of storage, persistence bugs on NVMM are simultaneously more endangering
for the data, and harder to catch. In cause, the interleaving of persistence instructions
is immensely harder to get right than file calls. Moreover, NVMM is accessed through
one giant mmap and managed with custom user-level allocator; leaving powerless OS
mechanisms for memory protection. Only rare NVMM libraries prevent (some of) these
bugs. For instance, Corundum [166] extends static checking from the type system
and memory management idioms of the Rust language to persistent memory. Carbide
[165, 167] then works as a bridge between Rust and C++ while preserving Corundum’s
safety guarantees.

A slew of papers proposed, as a generic solution, tools to proactively detect crash-
consistency issues or memory safety violations. Techniques vary: test case generation
[89, 220], fault injection [150, 219], injection of online sanity checks [71], inferring of
correctness criteria and output validation [141], symbolic execution [244], dynamic in-
strumentation [122], or model checking [148, 149] (persistency models seen in §2.6.1.2)1.
Nearly all of them (worryingly) found new persistency bugs in the PMDK, showing

that even industry-standard NVMM libraries developed by experts are not exempt of
programming mistakes.

1Through x86 persistence semantics simulators [148], based on the Px86sim model from Raad et al.
[266] and a later refinement by Khyzha et al. [194].
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Currently, no such tool focuses on Java. Adapting them for managed languages
is not straightforward. They extensively rely on binary instrumentation, or plug on
native language compilation toolchains. As we mentioned in §2.8.1, conventional Java
virtual machines embed their own JIT compiler and produce binaries on-the-fly. We are
confident those ideas in the literature may be usable with Java as well, yet, existing tools
are not directly applicable.

Data sharing. As seen in §2.1, durable media were not only used for data persistence,
but also portability and interoperability. In essence, files and databases have been used
for the very purpose of exchanging or sharing data between programs. However, com-
mon NVMM libraries persist data on a recoverable heap, without providing any mean of
interacting directly with other programs’ heap and data. Protocols for safe and efficient
sharing of persistent heap data between multiple applications have yet to be presented.
One work comes very close though. UniHeap [213] is a shared heap for multiple pro-
gramming languages. It is externally managed (plugs in different language runtimes)
and proposes an unified persistent object model that enables object sharing across the
supported languages. If NVMM is to be employed on a large scale, outside of specialized
programs, this is an extremely important issue to address.

6.4 Future work

Subsequent research directions do not limit to solving the last two significant shortcom-
ings of persistent heap we just mentioned. Rather, the only logical outcome of having
produced a persistent programming library would be to use it to build a “killer app” for
NVMM and Java.

Recall the most significant use cases of NVMM we detailed in §2.5, and that initially,
our interests were of enhancing big data storage or processing applications with NVMM.
Since then, we understood in §2.5.3 that NVMM in databases would only unrestrict
storage accesses, but that the overall performance would remain capped by network
I/Os. In that section, we shed light on two distinct possible directions: (i) wait on
faster networks to be available, and perhaps, prototype using Infiniband and RDMA,
or (ii) leverage NVMM as embedded storage only. We project a contribution on that
second idea, but still detail opportunities and prospects for both.

Rack-scale distribution and sharing. CXL (Compute Express Link), the new industry-
pushed open standard for high-speed and low-latency device interconnects we named in
§2.4.2, could be the fast network we lack today to further accelerate storage in dis-
tributed settings. CXL is more than just faster networking interfaces, and will definitely
raise new interesting challenges. In detail, from specifications, its memory interface will
propose a cache-coherent and hardware-mediated disaggregated shared memory. The
CXL controller device would apparently directly be connected to the memory controller,
such that it can transparently mediate CPU load/store instructions to remote DIMMs
exposed by other machines in the rack.

Stateful serverless computations. Function-as-a-Service (FaaS) platforms and “server-
less” infrastructures are becoming increasingly popular as cloud computing paradigms
for the simplicity they offer. Users only have to provide their code artifacts as cloud
functions, and not to worry about the executing servers, virtual machines, containers, or
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their configuration. Instead, cloud functions are executed by the platform on a black-
box FaaS runtime. The simplicity of this programming model is even meliorated by
the humongous amount of physical resources offered by cloud providers, allowing near
unbounded elasticity.

Currently though, FaaS offerings only support stateless functions with limited I/Os.
This is ample for short-lived jobs, but restricting to use FaaS as a more generic computing
platform. For instance, consider that functions dealing with some external state need
to: first retrieve it from a remote database, then instantiate it locally and perform their
operations, to finally push it back to the database. For data-intensive applications,
these extra transfers and round-trips lead to reduced performance compared to serverful
deployments. For these reasons, cloud functions are less appealing when dealing with
external states. On one hand, short-lived jobs suffer from increased response times due
to lengthy retrieval of external data. On the other hand, heavy data processing programs
are more excessive on network bandwidth, which is usually highly priced by public cloud
providers.

Some research papers explore stateful serverless. Cloudburst [300] is a prototype
FaaS runtime, with a distributed in-memory database cache attached to computing
nodes. The cache itself relies on Anna KVS [326] to be causally-consistent, but remains
volatile (DRAM-only). Beldi [347] is library for AWS Lambdas [3] that intermediates
accesses to Amazon’s DynamoDB [118]. It essentially provides transactional semantics
to cope with data races across functions, or potential inconsistencies left by faulty ex-
ecutions. Palette [26] proposes to bring computations closer to data – the opposite of
currently applied patterns – with load balancing techniques aware of data locality.

After having developed J-NVM, NVMM almost seems like a perfect fit for serverless
ephemeral functions with stateful computations. The low recovery latencies of persistent
heaps on NVMM would allow quick resumption of hot or cold functions alike. Our
insights were that with J-NVM, persistent data and states could be embedded in cloud
functions with no penalty. Put together with a FaaS runtime that has data locality
awareness – as in Palette [26] – functions could be scheduled and invoked on appropriate
nodes. In doing so, we see that we could almost entirely avoid data transfers. In instances
where data might be scattered across multiple nodes, we would then split computations
into multiple smaller functions, until no inter-node data dependencies exist. In all,
J-NVM and NVMM both seem to have potential to embed local data in ephemeral
cloud functions. Assembled with a locality-aware load balancer, network bandwidth
usage should be largely reduced in stateful FaaS workflows.

6.5 Closing thoughts

This thesis has shown a system design and programming model for efficient support
and use of NVMM in managed languages. Our thought process was guided by practical
observations rather than theoretical modeling. As a result, the programming interface to
NVMM in J-NVM is almost a no-model approach. That is, we did not question the best
possible integration for the notion of persistence in object-oriented languages. Rather,
we extended the Java object model for seamless recovery of specifically “tagged” data
types (PObject).

Explicit persistence. This approach was also motivated by the fact that anterior
schemes with more convoluted ways of weaving persistence into existing software never
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piqued interest of the industry. Namely, the transparent persistent processes in single-
level stores (§2.2.1, §2.3.2.1) or orthogonally persistent object systems (§2.2.4, §2.3.2.2).
Data might just be too precious for applications to forfeit control of their persistence
to obscure system software. Alternatively, when whole-states are persisted, or the line
between transient and permanent data is blurred, programs also have a difficult time
defining which data must be cautiously recovered. Rebooting have been the ancestral way
of healing transient bugs [79], but persistent inconsistencies always had to be manually
fixed. In conclusion, we believe data models for easier (or transparent) persistence will
remain impractical so long they do not help identify persistent data and ease their
recovery as well.

Programming flexibility. We were genuinely surprised by the mixing of J-NVM
programming model with Java’s object-oriented programming. The use of strong types
for persistence never restricted us, and Java’s idioms provide pleasant flexibility that
led us onto some interesting design patterns. Perhaps the most telltale examples are:
(i) lookups with volatile objects in persistent hash maps (§4.5.2), and (ii) the implemen-
tation of AutoPersist’s object graph migration technique in a specific PDT (§4.5.2).

The first example actually leverage the fact that Java’s object equality works irrespec-
tive of types. Therefore, a PString is not prevented from implementing its equals()
method to check equality with java.util.String objects.

For the second one, we created a Convertible interface that we use to bind a
volatile and a persistent type together. Both objects have to declare a conversion method
from volatile to persistent and vice-versa. The PDT can then automagically persist a
volatile type that implements Convertible (and its whole sub-graph) when it crosses
the persistence frontier. That is, persist it when first inserted in the PDT, or convert it
back to its volatile representation when it is removed from it.

In all, we have not found J-NVM to have limited programability in any way due
to its explicit persistent types, but were instead pleasantly surprised by possible design
patterns.

Non-intrusive solution. Perhaps one of the most interesting aspect of J-NVM is in
its nature, as a self-contained user Java library. J-NVM implementation is not intrusive
to Java virtual machines, which we think, is an essential factor for adoption of the system.
We stress that this is not the case for any integrated designs presented in §2.8.4. As we
understand, no industry in their right mind would replace components as crucial as OS
or JDK with research forks or prototypes. Likewise, such projects, as sizable code base
forks, are hardly ever merged back into the upstream. Patch sets are just too big, and
submitted by anonymous contributors. For instance, the NOVA file system [332] never
made it into mainstream Linux. They could not implement everything as a kernel module
and had to patch kernel sources as well. In any case, implementing J-NVM as a set of
JVM extensions would have been foolish and unnecessary. A user library in the end is
far more versatile and portable. More importantly, it does not compete with legitimate
software and organizations that industry spent years investing in and building trust on.
In conclusion, J-NVM is not intrusive to language runtimes, as opposed to integrated
designs, which is strongly superior for ease of deployment and integration in real world
applications.
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Appendix A

French Summary of the Thesis
Synthèse du rapport de thèse en français

As requested by the rules of procedure of IP Paris doctoral school (section 4.2: “Language
of the thesis”), this appendix consists of the compulsory short summary of the thesis
written in french.1Conformément au réglement de l’école doctorale IP Paris, cette annexe
contient la synthèse obligatoire en français du rapport de thèse.

Résumé

L’arrivée de la mémoire non-volatile (NVMM) sur le marché propose une alternative
rapide et durable pour le stockage de données, avec des performances considérablement
accrues par rapport aux supports traditionnels, à savoir SSD et disques durs. La NVMM
est adressable à la granularité de l’octet, une caractéristique unique qui permet de main-
tenir des structures de données complexes par le biais d’instructions mémoires standards,
tout en étant résistante aux pannes système et logiciels. Néanmoins, gérer correctement
la persistance des données est bien plus compliquée que de simples manipulations mé-
moire. De plus, chaque bug en NVMM peut désormais compromettre l’intégrité des
données ainsi que leur récupération, et il faut donc prendre grand soin quant à sa pro-
grammation.

Ainsi, de nouvelles abstractions de programmation pour la persistance et l’intégration
dans les langages et compilateurs sont nécessaires afin de faciliter l’usage de la mémoire
non-volatile. Cette thèse se penche sur ce problème général. Nous expliquons com-
ment intégrer la mémoire persistante dans les langages de programmation managés, et
présentons J-NVM, un framework pour accéder efficacement à la NVMM en Java.

Avec J-NVM, nous montrons comment concevoir une interface d’accès simple, com-
plète et efficace qui lie les spécificités de la persistance sur NVMM avec la programmation
orientée objet. En particulier, J-NVM offre des fonctionnalités pour rendre durable des
objets Java avec des sections de code atomiques en cas de panne. J-NVM est construit
sans apporter de modifications à l’environnement d’exécution de Java, ce qui favorise sa
portabilité aux divers environnements d’exécution de Java.

En interne, J-NVM s’appuie sur des objets mandataires qui réalisent des accès directs

1This is an idiotic requirement and a real struggle for non-native french speakers; which is why I
decided not to rely on my french skills, but rather chose to complete it as our fellow non-french speaking
foreign student would. As such, this summary was automatically translated from English to French,
without further edits, using the DeepL web translator (https://www.deepl.com).
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à la NVMM, gérée comme une mémoire hors-tas. Ce canevas fournit également une
bibliothèque de structures de données optimisées pour la NVMM qui restent cohérentes
à la suite de redémarrages ou d’arrêts impromptus.

Au cours de cette thèse, nous évaluons J-NVM en ré-implémentant la couche de
stockage d’Infinispan, une base de données open-source de niveau industriel. Les résul-
tats obtenus avec les benchmarks TPC-B et YCSB, montrent que J-NVM est systéma-
tiquement plus rapide que les autres approches existant à l’heure actuelle pour accéder
à la NVMM en Java.

A.1 Introduction

Contexte général. Les magasins de données constituent l’épine dorsale des infrastruc-
tures informatiques modernes. Ils prennent en charge de vastes ensembles de données
et permettent aux cadres de traitement d’extraire des informations de ces données. Ils
sont conçus pour une réponse rapide et un calcul parallèle à une échelle sans précédent.
Parmi les exemples récents de ces systèmes, on peut citer les bases de données en mé-
moire, les bases de données NoSQL et les magasins de valeurs clés. Le fait que les vitesses
et les latences des dispositifs de stockage n’aient jamais rattrapé celles de la mémoire
principale, accusant aujourd’hui un retard de plusieurs ordres de grandeur, a longtemps
constitué un obstacle majeur à la mise en œuvre de ces systèmes, a longtemps constitué
un obstacle majeur à l’architecture de ces systèmes.

Dans ces systèmes, bien que le traitement ait lieu dans la mémoire principale, la ver-
sion des données qui fait autorité est conservée sur des dispositifs de stockage durables
(SSD, disque) dont les temps d’accès sont nettement plus lents. Le maintien de la co-
hérence mutuelle de ces deux versions des données par des opérations synchrones sur les
dispositifs persistants induit généralement de sérieux goulets d’étranglement en termes
de performances et d’entrées/sorties. La persistance asynchrone est devenue très pop-
ulaire pour cette raison, malgré les garanties de durabilité dégradées qu’elle offre et la
complexité des algorithmes qu’elle requiert. En outre, en raison de cette dichotomie entre
la mémoire et le stockage durable, les magasins de données sont condamnés à passer des
tonnes de temps au redémarrage avant de pouvoir reprendre un fonctionnement normal.
En cause, la nécessité de reconstruire les états précédents dans la mémoire principale,
ou de repeupler un cache de données. Si cette phase de démarrage est si longue, c’est
parce qu’elle implique la copie d’une partition des données du disque vers la DRAM, afin
d’éviter la lenteur du traitement des requêtes juste après la récupération d’une défaillance
du système.

L’avènement de la NVMM. En 2015, Intel a fait une annonce bouleversante pour
sa gamme de produits Optane Persistent Memory. La première technologie Non-volatile
Main Memory (NVMM) disponible dans le commerce et offrant un accès direct aux
données sur le bus de la mémoire, identique à la DRAM, mais avec des capacités jusqu’à
8 fois plus importantes et, surtout, une non-volatilité des données résidentes, à l’instar des
dispositifs de stockage. Une telle technologie, qui combine des accès et des performances
de type DRAM avec la durabilité du stockage, pourrait redéfinir complètement le rôle et
l’architecture des systèmes de stockage, en offrant des possibilités nouvelles et singulières
pour la persistance des données à grain fin dans les applications.

Mémoire principale non volatile (NVMM), par leur avènement récent, ont également
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remis en question la pertinence de l’abstraction de fichier traditionnelle et de son interface
de persistance des données. Celles-là mêmes que les logiciels système exposaient depuis
des décennies et à partir desquelles presque toutes les applications étaient construites.
En effet, le simple fait que la technologie NVMM actuelle présente des latences d’accès
brutes seulement 2 à 3 fois supérieures à celles de la DRAM, ce qui signifie une plage
d’opérations comprise entre 100 et 300ns. Une plage que les systèmes de fichiers sont tout
simplement incapables de fournir, souffrant de décennies d’accumulation d’optimisations
encombrantes, en gardant à l’esprit les lecteurs mécaniques rotatifs, basés sur les secteurs,
qui fonctionnent à l’échelle de la milliseconde, loin de l’échelle de la sub-microseconde. On
peut encore constater une amélioration des performances par rapport aux disques SSD
lorsqu’on utilise la NVMM comme support de stockage par blocs pour les opérations de
fichiers, Cependant, le véritable potentiel des NVMM réside dans le mode d’accès direct.

En mode d’accès direct, les applications peuvent utiliser des instructions de mémoire
pour accéder aux données résidant dans la NVMM et les gérer à des vitesses inégalées,
en contournant complètement le sous-système d’E/S du système d’exploitation. En ef-
fet, les données résidant dans la NVMM sont directement adressables par le processeur,
ce qui signifie que les produits Optane sont effectivement les premiers à pouvoir ef-
facer la dichotomie mémoire/stockage dans les appareils de base. On peut imaginer que
l’introduction de la NVMM dans les systèmes de stockage pourrait supprimer la double
représentation des données et conduire à des temps de récupération extrêmement réduits.
et conduire à des temps de récupération extrêmement réduits, ainsi qu’à une réduction
et une simplification significatives de leurs bases de code, et enfin, à un meilleur débit
global ou à des temps de réponse plus courts.

Inversement, l’accès direct impose également aux applications de nouvelles respons-
abilités en matière de persistance des données. La cohérence et l’intégrité des données
persistantes, par rapport aux erreurs potentielles du système ou du logiciel, doivent
maintenant être entièrement assumées par le code au niveau de l’utilisateur. En cas
de panne, les piles logicielles du système ne seraient plus d’aucune aide pour garantir
la récupération d’une version cohérente des données. Cela n’est pas facile à réaliser :
comme on peut s’en souvenir, les architectures actuelles des machines se caractérisent
par des caches volatiles de l’unité centrale et des modèles de mémoire détendus. Ce qui
implique que, (i) rien ne peut empêcher que des données stockées dans des emplacements
de mémoire soient expulsées des caches et atteignent prématurément le NVMM (implicit
flushes), ou que (ii) le matériel dicte l’ordre dans lequel les mémoires sont expulsées
des caches et atteignent la NVMM. Globalement, il s’agit d’une situation dans laquelle
n’importe quelle mémoire peut atteindre la NVMM à presque n’importe quel moment et
quel que soit l’ordre du programme.

En réponse, Intel a étendu son ISA pour la mémoire persistante et a inclus une séman-
tique d’instruction révisée ou de nouvelles instructions pour la persistance. Leur nou-
veau modèle de programmation (au niveau de l’architecture) pour la mémoire persistante
présente des instructions (flush) pour demander la réécriture asynchrone d’un emplace-
ment de mémoire spécifique et une autre (fence) pour établir des relations "happens-
before" entre différentes réécritures.

Le fait est que les algorithmes en mémoire existants, tels que les structures de données,
sont absolument incapables de fonctionner sur NVMM et de récupérer un état cohérent
à la suite d’un crash, sans avoir été modifiés manuellement avec des flushes et des fences.
Même si certains programmeurs experts peuvent accomplir cette tâche, elle reste une
épreuve pour leur patience et leurs compétences. En outre, ce modèle de programmation
de bas niveau conduit à une persistance fragile des programmes. Toute instruction flush
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ou fence mal placée peut provoquer de nouveaux bogues, qui mettent silencieusement
en péril l’ensemble des données. Il suffit de considérer que la persistance exacerbe les
bogues de mémoire, puisque les fuites de mémoire ou la corruption du tas sont désormais
permanentes.

À propos de cette thèse. Dans cette thèse, nous surfons sur l’engouement pour
l’Optane et constatons avec dépit que l’essentiel des efforts visant à réduire la complex-
ité de la programmation des NVMM se concentre sur les langages natifs (C, C++, etc.),
et délaisse presque complètement les langages gérés, comme Java. Une observation sin-
gulière, étant donné que Java et son écosystème sont des acteurs majeurs dans le monde
des big data - de nombreux magasins de données modernes, des cadres d’analyse ou
de traitement des données sont en effet écrits en Java. Tous pourraient immensément
bénéficier de la NVMM, mais il n’existe actuellement aucun moyen efficace et facilement
applicable d’aborder la NVMM en Java.

Nous pensons qu’en apportant le plein potentiel de la NVMM à Java, nous pour-
rions offrir à une pléthore d’applications un nouveau type de persistance à grain fin qui
changerait la donne. En même temps, les langages de haut niveau, et en particulier les
idiomes orientés objet, semblent être des candidats solides pour entrelacer intuitivement
la notion de données persistantes ou récupérables dans les programmes, en supprimant
effectivement le fardeau de la programmation de la NVMM.

A.2 Motivation et Problématique

A.2.1 Intégration dans les langages de la persistance sur NVMM

Jusqu’à récemment, les supports volatils étaient beaucoup plus rapides que les supports
persistants. Cette différence fondamentale a eu un impact considérable sur la manière
dont les systèmes sont architecturés.

Les progrès récents de la technologie des mémoires persistantes promettent de redis-
tribuer les cartes. En particulier, la mémoire principale non volatile (NVMM) est une
mémoire adressable par octet qui préserve son contenu après une coupure de courant.
Elle offre une durabilité et des performances de mémoire similaires à celles de la DRAM,
ce qui promet une augmentation spectaculaire des performances de stockage.

Pour tirer parti des avantages de la NVMM, il est essentiel de l’intégrer aux langages
de programmation. Cela est particulièrement important pour les langages utilisés dans
la conception des systèmes de stockage distribués qui sont au cœur des infrastructures
informatiques actuelles. Une telle intégration est cependant difficile car les langages
orientés objet gérés sont des logiciels complexes qui héritent de décennies de raffinements
et d’optimisations. Cette thèse aborde le problème de l’intégration de NVMM avec le
langage Java.

A.2.2 Limitations de l’État de l’Art

À ce jour, les approches qui intègrent le NVMM à Java l’utilisent comme un support
de stockage de masse accessible via une interface de système de fichiers [2, 184, 332],
l’adressent via l’interface native Java (JNI) [16, 249], ou rendent de manière transparente
une partie du tas Java persistante [288, 329]. Comme nous le verrons plus loin, ces
approches sont génériques et insatisfaisantes pour plusieurs raisons.
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Système de fichier et JNI. Le système de fichiers et les approches JNI maintiennent
deux représentations des données, l’une en mémoire et l’autre dans la NVMM. Cela
nécessite un transfert continu d’objets entre la mémoire persistante et la mémoire volatile.
En particulier, des mécanismes logiciels complexes sont nécessaires pour maintenir les
deux représentations mutuellement cohérentes. Nous démontrons dans notre évaluation
(§5.3) que ces coûts logiciels (marshaling + consistency), bien qu’insignifiants avec les
supports de stockage antérieurs, sont devenus de sérieux goulets d’étranglement avec
l’avènement des dispositifs NVMM.

Intégration Totale. La conception intégrée résout le problème de la double représen-
tation : les objets Java ordinaires sont directement et durablement stockés dans la
NVMM. Grâce à l’adressabilité par octet de la NVMM, les objets persistants sont di-
rectement accessibles avec des instructions de lecture et d’écriture de la mémoire. Les
données durables n’ont donc plus besoin d’être copiées par l’application du support de
stockage dans la mémoire pour être manipulées. Cependant, l’intégration totale nécessite
des modifications importantes et peu pratiques de la machine virtuelle Java (JVM), et
s’accompagne de plusieurs limitations de performance et de problèmes de fiabilité, dont
voici quelques exemples :

• Ramasse-miettes (GC). L’intégration d’objets persistants dans le tas Java
signifie qu’ils doivent être ramassés. Figure A.1 montre que le ramassage des
ordures de seulement 80 GB peut diviser par 3 le temps d’exécution, alors que
NVMM devrait héberger des centaines de Go à des To de données. En outre,
après avoir étudié plusieurs magasins de données prêts pour NVMM, nous avons
constaté que les objets persistants sont souvent supprimés à un nombre très limité
d’endroits. Dans l’ensemble, l’utilisation du ramassage des ordures pour les objets
persistants ne semble pas nécessaire.

• Persistance Orthogonale. La conception intégrée manque de types persis-
tants statiques et s’appuie sur l’instrumentation des bytecodes Java pour vérifier
de manière transparente si un objet est alloué sur une mémoire volatile ou per-
sistante au moment de l’exécution. En détail, Shull et al. [288] enregistre un
ralentissement de 51% alors qu’il n’utilise même pas la NVMM. (9% avec une op-
timisation ultérieure du compilateur [289]) En outre, lorsque les états persistants
de l’application ne sont pas mis en évidence par les types, ni le développeur ni
le compilateur ne peuvent facilement identifier les bogues puisqu’ils se produisent
au moment de l’exécution [92, 220]. Le fait de confondre un objet volatil avec un
objet persistant entraîne une perte de données, à l’inverse d’une fuite de mémoire
non volatile. Au lieu de perdre silencieusement des données ou de la mémoire, le
moteur d’exécution devrait fournir une aide pour éviter ces situations.

A.2.3 Problématique

Ainsi, à l’heure actuelle, il existe un réel besoin d’une solution Java native appropriée
pour accéder à la NVMM. En attendant, aucune charge de travail de traitement de
données lourdes dans un environnement géré ne peut exploiter le plein potentiel de la
NVMM et en tirer profit.

En particulier, une solution appropriée serait une solution qui : (i) n’induit aucune
surcharge logicielle lors de l’accès aux emplacements de mémoire persistante. (ii) ne
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Figure A.1: YCSB-F en Java pour différentes proportions de données en cache mémoire
(RAM).

connaît aucune limitation liée aux grandes capacités de la NVMM et à la gestion du tas
(iii) a un impact minimal sur les performances lors d’exécutions sans crash. (iv) est sûr
et habilitant pour les programmeurs, qui leur laisse le contrôle, tout en faisant abstraction
de la complexité de l’atomicité des défaillances grâce à des idiomes orientés objet.

En revanche, la conception intégrée offre un accès direct à la NVMM, mais elle sacrifie
la simplicité du code à une pénalité de performance (GC + instrumentation du code GC)
et à des problèmes de fiabilité potentiels.

A.3 Contributions

A.3.1 Idée centrale

Dans cette thèse, nous proposons de remédier à ces lacunes en maintenant la NVMM
en dehors du tas Java afin d’éviter une collecte de déchets coûteuse tout en conservant
un accès direct à la NVMM comme dans la conception intégrée. À cette fin, nous intro-
duisons un principe de découplage entre la structure de données d’un objet persistant
et sa représentation dans la JVM. Plus précisément, les objets persistants sont séparés
en une structure de données qui est stockée en dehors du tas sur la NVMM et un objet
Java proxy qui reste en dehors du tas dans la mémoire volatile. La structure de données
contient les champs de l’objet persistant, tandis que le proxy volatil agit comme une
passerelle vers la structure de données durable hors tas et met en œuvre les méthodes
de l’objet persistant. Grâce à cette conception, les données durables restent en dehors
du tas Java (en utilisant une disposition de mémoire dédiée) et ne peuvent donc pas
être collectées par le système d’exécution Java. La double représentation des données
est également évitée grâce à une interface JVM qui intègre les instructions de bas niveau
qui accèdent à la NVMM directement à partir des méthodes Java.

A.3.2 J-NVM, J-PDT, P-PFA et JNVM-Transformer

Ces idées clés sont mises en œuvre dans le cadre J-NVM [210], une bibliothèque légère
pure-Java qui fonctionne sur la JVM Hotspot 8 avec l’ajout minimal de trois instructions
spécifiques aux NVMM (pwb, pfence et psync [174]).

J-NVM est une interface de bas niveau qui se concentre sur la manipulation efficace
du proxy et de la mémoire. À savoir, la logique nue pour instancier et détruire des objets



A.4. ÉVALUATION 155

0
100
200
300
400
500
600

A B C D F

T
hr

ou
gh

pu
t

(K
op

s/
s)

J-PDT J-PFA FS PCJ

Figure A.2: Le benchmark YCSB.

persistants et accéder efficacement à leurs champs. Afin d’assurer la récupérabilité et la
cohérence des données durables par le biais d’abstractions de programmation simples,
nous construisons à partir de J-NVM deux interfaces de plus haut niveau : J-PFA et
J-PDT.

• J-PFA fournit des blocs de code atomiques de défaillance, c’est-à-dire une manière
générique de rendre tout code cohérent en cas de défaillance.

• J-PDT est une collection de structures de données cohérentes en cas de crash pour
NVMM (par exemple, des tableaux, des cartes, des arbres), qui ne dépendent pas
de J-PFA pour la performance.

De plus, comme J-NVM repose sur des types persistants explicites, nous fournissons
un moyen automatisé de rendre les objets Java persistants avec l’ajout d’une seule anno-
tation de classe. En effet, nous incluons un transformateur de code Java pour améliorer
et découpler automatiquement les classes Java existantes en une structure de données
persistante et un objet proxy volatile. Il est mis en œuvre sous la forme d’un plugin de
transformation post-compilation de bytecode à bytecode Java hors ligne, intégré dans le
système de construction de l’application. Il recherche les classes annotées et applique la
transformation pour chacune d’entre elles, tout en tenant compte et en préservant les
fonctionnalités définies par l’utilisateur dans n’importe quelle hiérarchie de classes.

A.4 Évaluation

A.4.1 Résultats

Nous évaluons J-NVM en mettant en œuvre plusieurs backends persistants pour Infin-
ispan [229] - un magasin de données de qualité industrielle - et nous les testons sur une
charge de travail de type TPC-B [9] ainsi que sur le benchmark YCSB [99]. Ces implé-
mentations sont disponibles sur [209]. Figure A.2 décrit les performances sur les charges
de travail YCSB pour les backends basés sur J-PFA et J-PDT, l’approche originale du
système de fichiers FS assis sur DAX-ext4, ainsi qu’un backend basé sur PCJ qui utilise
en interne le PMDK d’Intel [19] via l’interface native Java. J-NVM est nettement plus
efficace que les approches précédentes, au moins un ordre de grandeur plus rapide.
Tout au long de notre campagne d’évaluation, nous montrons que :
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• J-PDT et J-PFA sont systématiquement plus performants que la conception ex-
terne. Dans YCSB, J-PDT est au moins 10,5x plus rapide que FS ou PCJ, sauf
dans un seul cas où il n’est que 3,6x plus rapide.

• Alors que les blocs atomiques de J-PFA offrent une solution globale, J-PDT, avec
ses types de données persistants conçus à la main, s’exécute jusqu’à 65% plus
rapidement. Comparé à l’implémentation Volatile, J-PDT est seulement 45-50%
plus lent.

• L’intégration de la NVMM dans l’exécution du langage nuit aux performances
en raison du coût de la collecte des objets persistants. Pour une application de
type Redis écrite avec go-pmem [143], l’augmentation de l’ensemble de données
persistantes de 0,3 GB à 151 GB multiplie le temps d’exécution de YCSB-F par
3,4.

A.4.2 Constatations

L’analyse des performances d’J-NVM a permis de dégager d’autres éléments pertinents.

Marshalling. Les faibles performances de FS proviennent des opérations de (dé)marshalling
pour déplacer les objets persistants entre leur fichier et leur représentation Java. PCJ
est fortement impacté par le coût des appels JNI pour échapper au monde Java. Ces
opérations étaient couramment utilisées et n’avaient pas d’impact significatif avec des
supports de stockage plus lents, mais elles peuvent désormais constituer des goulets
d’étranglement avec NVMM et doivent être évitées dans la mesure du possible.

Mise en cache. Nous observons dans le benchmark YCSB que J-PDT ne bénéficie
pas de la mise en cache. En effet, comme les données sont accédées directement et que
seuls les mandataires sont conservés dans le cache, l’augmentation du ratio de cache n’a
pratiquement aucun impact sur les temps de latence de lecture ou de mise à jour.

Récupération. La performance de la procédure de récupération est évaluée avec une
charge de travail de type TPC-B (transactionnelle). J-PFA récupère environ 4.7x plus
rapidement que FS et jusqu’à 8.6x plus rapidement avec une optimisation de récupération
possible pour les charges de travail purement transactionnelles. Inversement, FS doit
repeupler le cache en mémoire de 10% avec empressement lors de la récupération, alors
qu’J-PFA ne peut recréer les proxies que paresseusement, avec une utilisation beaucoup
moins importante de la bande passante NVMM.
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Titre : Intégration de la mémoire persistante en Java
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Résumé : L’arrivée de la mémoire non-volatile
(NVMM) sur le marché propose une alternative ra-
pide et durable pour le stockage de données, avec
des performances considérablement accrues par rap-
port aux supports traditionnels, à savoir SSD et
disques durs. La NVMM est adressable à la granu-
larité de l’octet, une caractéristique unique qui per-
met de maintenir des structures de données com-
plexes par le biais d’instructions mémoires standards,
tout en étant résistante aux pannes système et logi-
ciels. Néanmoins, gérer correctement la persistance
des données est bien plus compliquée que de simples
manipulations mémoire. De plus, chaque bug en
NVMM peut désormais compromettre l’intégrité des
données ainsi que leur récupération, et il faut donc
prendre grand soin quant à sa programmation.
Ainsi, de nouvelles abstractions de programmation
pour la persistance et l’intégration dans les lan-
gages et compilateurs sont nécessaires afin de faci-
liter l’usage de la mémoire non-volatile. Cette thèse
se penche sur ce problème général. Nous expliquons
comment intégrer la mémoire persistante dans les
langages de programmation managés, et présentons
J-NVM, un framework pour accéder efficacement à la
NVMM en Java.

Avec J-NVM, nous montrons comment concevoir une
interface d’accès simple, complète et efficace qui lie
les spécificités de la persistance sur NVMM avec la
programmation orientée objet. En particulier, J-NVM
offre des fonctionnalités pour rendre durable des ob-
jets Java avec des sections de code atomiques en cas
de panne. J-NVM est construit sans apporter de mo-
difications à l’environnement d’exécution de Java, ce
qui favorise sa portabilité aux divers environnements
d’exécution de Java.
En interne, J-NVM s’appuie sur des objets manda-
taires qui réalisent des accès directs à la NVMM,
gérée comme une mémoire hors-tas. Ce canevas
fournit également une bibliothèque de structures
de données optimisées pour la NVMM qui restent
cohérentes à la suite de redémarrages ou d’arrêts im-
promptus.
Au cours de cette thèse, nous évaluons J-NVM en ré-
implémentant la couche de stockage d’Infinispan, une
base de données open-source de niveau industriel.
Les résultats obtenus avec les benchmarks TPC-B
et YCSB, montrent que J-NVM est systématiquement
plus rapide que les autres approches existant à
l’heure actuelle pour accéder à la NVMM en Java.

Title : A support for Persistent Memory in Java

Keywords : non-volatile main memory, JAVA, persistent memory

Abstract : Recently released non-volatile main me-
mory (NVMM), as fast and durable memory, dra-
matically increases storage performance over tra-
ditional media (SSD, hard disk). A substantial and
unique property of NVMM is byte-addressability –
complex memory data structures, maintained with re-
gular load/store instructions, can now resist machine
power-cycles, software faults or system crashes. Ho-
wever, correctly managing persistence with the fine
grain of memory instructions is laborious, with increa-
sed risk of compromising data integrity and recovery
at any misstep. Programming abstractions from soft-
ware libraries and support from language runtime and
compilers are necessary to avoid memory bugs that
are exacerbated with persistence.
In this thesis, we address the challenges of suppor-
ting persistent memory in managed language envi-
ronments by introducing J-NVM, a framework to ef-

ficiently access NVMM in Java. With J-NVM, we de-
monstrate how to design an efficient, simple and
complete interface to weave NVMM-devised persis-
tence into object-oriented programming, while remai-
ning unobtrusive to the language runtime itself. In de-
tail, J-NVM offers a fully-fledged interface to persist
plain Java objects using failure-atomic sections. This
interface relies internally on proxy objects that inter-
mediate direct off-heap access to NVMM. The frame-
work also provides a library of highly-optimized per-
sistent data types that resist reboots and power fai-
lures. We evaluate J-NVM by implementing a per-
sistent backend for Infinispan, an industrial-grade data
store. Our experimental results, obtained with a TPC-
B like benchmark and YCSB, show that J-NVM is
consistently faster than other approaches at acces-
sing NVMM in Java.
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